]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
[ARM] Mention ARMv8-R +fp.sp option
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2017 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2017 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 @c man end
125
126 @xref{Option Index}, for an index to GCC's options.
127
128 @menu
129 * Option Summary:: Brief list of all options, without explanations.
130 * Overall Options:: Controlling the kind of output:
131 an executable, object files, assembler files,
132 or preprocessed source.
133 * Invoking G++:: Compiling C++ programs.
134 * C Dialect Options:: Controlling the variant of C language compiled.
135 * C++ Dialect Options:: Variations on C++.
136 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137 and Objective-C++.
138 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
139 be formatted.
140 * Warning Options:: How picky should the compiler be?
141 * Debugging Options:: Producing debuggable code.
142 * Optimize Options:: How much optimization?
143 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
144 * Preprocessor Options:: Controlling header files and macro definitions.
145 Also, getting dependency information for Make.
146 * Assembler Options:: Passing options to the assembler.
147 * Link Options:: Specifying libraries and so on.
148 * Directory Options:: Where to find header files and libraries.
149 Where to find the compiler executable files.
150 * Code Gen Options:: Specifying conventions for function calls, data layout
151 and register usage.
152 * Developer Options:: Printing GCC configuration info, statistics, and
153 debugging dumps.
154 * Submodel Options:: Target-specific options, such as compiling for a
155 specific processor variant.
156 * Spec Files:: How to pass switches to sub-processes.
157 * Environment Variables:: Env vars that affect GCC.
158 * Precompiled Headers:: Compiling a header once, and using it many times.
159 @end menu
160
161 @c man begin OPTIONS
162
163 @node Option Summary
164 @section Option Summary
165
166 Here is a summary of all the options, grouped by type. Explanations are
167 in the following sections.
168
169 @table @emph
170 @item Overall Options
171 @xref{Overall Options,,Options Controlling the Kind of Output}.
172 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
173 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
174 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
175 @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
176 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
177
178 @item C Language Options
179 @xref{C Dialect Options,,Options Controlling C Dialect}.
180 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
181 -fpermitted-flt-eval-methods=@var{standard} @gol
182 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
183 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
184 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
185 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
186 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
187 -fsigned-bitfields -fsigned-char @gol
188 -funsigned-bitfields -funsigned-char}
189
190 @item C++ Language Options
191 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
192 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
193 -faligned-new=@var{n} -fargs-in-order=@var{n} -fcheck-new @gol
194 -fconstexpr-depth=@var{n} -fconstexpr-loop-limit=@var{n} @gol
195 -ffriend-injection @gol
196 -fno-elide-constructors @gol
197 -fno-enforce-eh-specs @gol
198 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
199 -fno-implicit-templates @gol
200 -fno-implicit-inline-templates @gol
201 -fno-implement-inlines -fms-extensions @gol
202 -fnew-inheriting-ctors @gol
203 -fnew-ttp-matching @gol
204 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
205 -fno-optional-diags -fpermissive @gol
206 -fno-pretty-templates @gol
207 -frepo -fno-rtti -fsized-deallocation @gol
208 -ftemplate-backtrace-limit=@var{n} @gol
209 -ftemplate-depth=@var{n} @gol
210 -fno-threadsafe-statics -fuse-cxa-atexit @gol
211 -fno-weak -nostdinc++ @gol
212 -fvisibility-inlines-hidden @gol
213 -fvisibility-ms-compat @gol
214 -fext-numeric-literals @gol
215 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
216 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
217 -Wnamespaces -Wnarrowing @gol
218 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
219 -Wnon-virtual-dtor -Wreorder -Wregister @gol
220 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
221 -Wno-non-template-friend -Wold-style-cast @gol
222 -Woverloaded-virtual -Wno-pmf-conversions @gol
223 -Wsign-promo -Wvirtual-inheritance}
224
225 @item Objective-C and Objective-C++ Language Options
226 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
227 Objective-C and Objective-C++ Dialects}.
228 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
229 -fgnu-runtime -fnext-runtime @gol
230 -fno-nil-receivers @gol
231 -fobjc-abi-version=@var{n} @gol
232 -fobjc-call-cxx-cdtors @gol
233 -fobjc-direct-dispatch @gol
234 -fobjc-exceptions @gol
235 -fobjc-gc @gol
236 -fobjc-nilcheck @gol
237 -fobjc-std=objc1 @gol
238 -fno-local-ivars @gol
239 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
240 -freplace-objc-classes @gol
241 -fzero-link @gol
242 -gen-decls @gol
243 -Wassign-intercept @gol
244 -Wno-protocol -Wselector @gol
245 -Wstrict-selector-match @gol
246 -Wundeclared-selector}
247
248 @item Diagnostic Message Formatting Options
249 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
250 @gccoptlist{-fmessage-length=@var{n} @gol
251 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
252 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
253 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
254 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
255 -fdiagnostics-show-template-tree -fno-elide-type @gol
256 -fno-show-column}
257
258 @item Warning Options
259 @xref{Warning Options,,Options to Request or Suppress Warnings}.
260 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
261 -pedantic-errors @gol
262 -w -Wextra -Wall -Waddress -Waggregate-return @gol
263 -Walloc-zero -Walloc-size-larger-than=@var{n}
264 -Walloca -Walloca-larger-than=@var{n} @gol
265 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
266 -Wno-attributes -Wbool-compare -Wbool-operation @gol
267 -Wno-builtin-declaration-mismatch @gol
268 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
269 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
270 -Wchar-subscripts -Wchkp -Wcatch-value -Wcatch-value=@var{n} @gol
271 -Wclobbered -Wcomment -Wconditionally-supported @gol
272 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
273 -Wdelete-incomplete @gol
274 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
275 -Wdisabled-optimization @gol
276 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
277 -Wno-div-by-zero -Wdouble-promotion @gol
278 -Wduplicated-branches -Wduplicated-cond @gol
279 -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined @gol
280 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
281 -Wfloat-equal -Wformat -Wformat=2 @gol
282 -Wno-format-contains-nul -Wno-format-extra-args @gol
283 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
284 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
285 -Wformat-y2k -Wframe-address @gol
286 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
287 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
288 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
289 -Wimplicit-function-declaration -Wimplicit-int @gol
290 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
291 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
292 -Winvalid-pch -Wlarger-than=@var{len} @gol
293 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
294 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
295 -Wmisleading-indentation -Wmissing-braces @gol
296 -Wmissing-field-initializers -Wmissing-include-dirs @gol
297 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
298 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
299 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
300 -Woverride-init-side-effects -Woverlength-strings @gol
301 -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
302 -Wparentheses -Wno-pedantic-ms-format @gol
303 -Wplacement-new -Wplacement-new=@var{n} @gol
304 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
305 -Wno-pragmas -Wredundant-decls -Wrestrict -Wno-return-local-addr @gol
306 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
307 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
308 -Wshift-overflow -Wshift-overflow=@var{n} @gol
309 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
310 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
311 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
312 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
313 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
314 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
315 -Wstringop-overflow=@var{n} @gol
316 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
317 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
318 -Wmissing-format-attribute -Wsubobject-linkage @gol
319 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
320 -Wswitch-unreachable -Wsync-nand @gol
321 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
322 -Wtype-limits -Wundef @gol
323 -Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations @gol
324 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
325 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
326 -Wunused-parameter -Wno-unused-result @gol
327 -Wunused-value -Wunused-variable @gol
328 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
329 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
330 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
331 -Wvla -Wvla-larger-than=@var{n} -Wvolatile-register-var -Wwrite-strings @gol
332 -Wzero-as-null-pointer-constant -Whsa}
333
334 @item C and Objective-C-only Warning Options
335 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
336 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
337 -Wold-style-declaration -Wold-style-definition @gol
338 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
339 -Wdeclaration-after-statement -Wpointer-sign}
340
341 @item Debugging Options
342 @xref{Debugging Options,,Options for Debugging Your Program}.
343 @gccoptlist{-g -g@var{level} -gcoff -gdwarf -gdwarf-@var{version} @gol
344 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
345 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
346 -gcolumn-info -gno-column-info @gol
347 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
348 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
349 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
350 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
351 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
352 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
353 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
354 -fvar-tracking -fvar-tracking-assignments}
355
356 @item Optimization Options
357 @xref{Optimize Options,,Options that Control Optimization}.
358 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
359 -falign-jumps[=@var{n}] @gol
360 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
361 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
362 -fauto-inc-dec -fbranch-probabilities @gol
363 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
364 -fbtr-bb-exclusive -fcaller-saves @gol
365 -fcombine-stack-adjustments -fconserve-stack @gol
366 -fcompare-elim -fcprop-registers -fcrossjumping @gol
367 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
368 -fcx-limited-range @gol
369 -fdata-sections -fdce -fdelayed-branch @gol
370 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
371 -fdevirtualize-at-ltrans -fdse @gol
372 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
373 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
374 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
375 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
376 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
377 -fif-conversion2 -findirect-inlining @gol
378 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
379 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
380 -fipa-bit-cp -fipa-vrp @gol
381 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
382 -fira-algorithm=@var{algorithm} @gol
383 -fira-region=@var{region} -fira-hoist-pressure @gol
384 -fira-loop-pressure -fno-ira-share-save-slots @gol
385 -fno-ira-share-spill-slots @gol
386 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
387 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
388 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
389 -floop-block -floop-interchange -floop-strip-mine @gol
390 -floop-unroll-and-jam -floop-nest-optimize @gol
391 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
392 -flto-partition=@var{alg} -fmerge-all-constants @gol
393 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
394 -fmove-loop-invariants -fno-branch-count-reg @gol
395 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
396 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
397 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
398 -fno-sched-spec -fno-signed-zeros @gol
399 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
400 -fomit-frame-pointer -foptimize-sibling-calls @gol
401 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
402 -fprefetch-loop-arrays @gol
403 -fprofile-correction @gol
404 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
405 -fprofile-reorder-functions @gol
406 -freciprocal-math -free -frename-registers -freorder-blocks @gol
407 -freorder-blocks-algorithm=@var{algorithm} @gol
408 -freorder-blocks-and-partition -freorder-functions @gol
409 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
410 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
411 -fsched-spec-load -fsched-spec-load-dangerous @gol
412 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
413 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
414 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
415 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
416 -fschedule-fusion @gol
417 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
418 -fselective-scheduling -fselective-scheduling2 @gol
419 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
420 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
421 -fsignaling-nans @gol
422 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
423 -fsplit-paths @gol
424 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
425 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
426 -fthread-jumps -ftracer -ftree-bit-ccp @gol
427 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
428 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
429 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
430 -ftree-loop-if-convert -ftree-loop-im @gol
431 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
432 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
433 -ftree-loop-vectorize @gol
434 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
435 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
436 -ftree-switch-conversion -ftree-tail-merge @gol
437 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
438 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
439 -funsafe-math-optimizations -funswitch-loops @gol
440 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
441 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
442 --param @var{name}=@var{value}
443 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
444
445 @item Program Instrumentation Options
446 @xref{Instrumentation Options,,Program Instrumentation Options}.
447 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
448 -fprofile-abs-path @gol
449 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
450 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
451 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
452 -fsanitize-undefined-trap-on-error -fbounds-check @gol
453 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
454 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
455 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
456 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
457 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
458 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
459 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
460 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
461 -fchkp-use-wrappers -fchkp-flexible-struct-trailing-arrays@gol
462 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
463 -fstack-protector-explicit -fstack-check @gol
464 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
465 -fno-stack-limit -fsplit-stack @gol
466 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
467 -fvtv-counts -fvtv-debug @gol
468 -finstrument-functions @gol
469 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
470 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
471
472 @item Preprocessor Options
473 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
474 @gccoptlist{-A@var{question}=@var{answer} @gol
475 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
476 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
477 -dD -dI -dM -dN -dU @gol
478 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
479 -fexec-charset=@var{charset} -fextended-identifiers @gol
480 -finput-charset=@var{charset} -fno-canonical-system-headers @gol
481 -fpch-deps -fpch-preprocess -fpreprocessed @gol
482 -ftabstop=@var{width} -ftrack-macro-expansion @gol
483 -fwide-exec-charset=@var{charset} -fworking-directory @gol
484 -H -imacros @var{file} -include @var{file} @gol
485 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
486 -no-integrated-cpp -P -pthread -remap @gol
487 -traditional -traditional-cpp -trigraphs @gol
488 -U@var{macro} -undef @gol
489 -Wp,@var{option} -Xpreprocessor @var{option}}
490
491 @item Assembler Options
492 @xref{Assembler Options,,Passing Options to the Assembler}.
493 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
494
495 @item Linker Options
496 @xref{Link Options,,Options for Linking}.
497 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
498 -nostartfiles -nodefaultlibs -nostdlib -pie -pthread -rdynamic @gol
499 -s -static -static-libgcc -static-libstdc++ @gol
500 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
501 -static-libmpx -static-libmpxwrappers @gol
502 -shared -shared-libgcc -symbolic @gol
503 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
504 -u @var{symbol} -z @var{keyword}}
505
506 @item Directory Options
507 @xref{Directory Options,,Options for Directory Search}.
508 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
509 -idirafter @var{dir} @gol
510 -imacros @var{file} -imultilib @var{dir} @gol
511 -iplugindir=@var{dir} -iprefix @var{file} @gol
512 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
513 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
514 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
515 -nostdinc -nostdinc++ --sysroot=@var{dir}}
516
517 @item Code Generation Options
518 @xref{Code Gen Options,,Options for Code Generation Conventions}.
519 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
520 -ffixed-@var{reg} -fexceptions @gol
521 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
522 -fasynchronous-unwind-tables @gol
523 -fno-gnu-unique @gol
524 -finhibit-size-directive -fno-common -fno-ident @gol
525 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
526 -fno-jump-tables @gol
527 -frecord-gcc-switches @gol
528 -freg-struct-return -fshort-enums -fshort-wchar @gol
529 -fverbose-asm -fpack-struct[=@var{n}] @gol
530 -fleading-underscore -ftls-model=@var{model} @gol
531 -fstack-reuse=@var{reuse_level} @gol
532 -ftrampolines -ftrapv -fwrapv @gol
533 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
534 -fstrict-volatile-bitfields -fsync-libcalls}
535
536 @item Developer Options
537 @xref{Developer Options,,GCC Developer Options}.
538 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
539 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
540 -fdbg-cnt=@var{counter-value-list} @gol
541 -fdisable-ipa-@var{pass_name} @gol
542 -fdisable-rtl-@var{pass_name} @gol
543 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
544 -fdisable-tree-@var{pass_name} @gol
545 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
546 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
547 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
548 -fdump-final-insns@r{[}=@var{file}@r{]}
549 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
550 -fdump-lang-all @gol
551 -fdump-lang-@var{switch} @gol
552 -fdump-lang-@var{switch}-@var{options} @gol
553 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
554 -fdump-passes @gol
555 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
556 -fdump-statistics @gol
557 -fdump-tree-all @gol
558 -fdump-tree-@var{switch} @gol
559 -fdump-tree-@var{switch}-@var{options} @gol
560 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
561 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
562 -fenable-@var{kind}-@var{pass} @gol
563 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
564 -fira-verbose=@var{n} @gol
565 -flto-report -flto-report-wpa -fmem-report-wpa @gol
566 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
567 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
568 -fprofile-report @gol
569 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
570 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
571 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
572 -fvar-tracking-assignments-toggle -gtoggle @gol
573 -print-file-name=@var{library} -print-libgcc-file-name @gol
574 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
575 -print-prog-name=@var{program} -print-search-dirs -Q @gol
576 -print-sysroot -print-sysroot-headers-suffix @gol
577 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
578
579 @item Machine-Dependent Options
580 @xref{Submodel Options,,Machine-Dependent Options}.
581 @c This list is ordered alphanumerically by subsection name.
582 @c Try and put the significant identifier (CPU or system) first,
583 @c so users have a clue at guessing where the ones they want will be.
584
585 @emph{AArch64 Options}
586 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
587 -mgeneral-regs-only @gol
588 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
589 -mstrict-align @gol
590 -momit-leaf-frame-pointer @gol
591 -mtls-dialect=desc -mtls-dialect=traditional @gol
592 -mtls-size=@var{size} @gol
593 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
594 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
595 -mpc-relative-literal-loads @gol
596 -msign-return-address=@var{scope} @gol
597 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} -moverride=@var{string}}
598
599 @emph{Adapteva Epiphany Options}
600 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
601 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
602 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
603 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
604 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
605 -msplit-vecmove-early -m1reg-@var{reg}}
606
607 @emph{ARC Options}
608 @gccoptlist{-mbarrel-shifter @gol
609 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
610 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
611 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
612 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
613 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
614 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
615 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
616 -mrgf-banked-regs @gol
617 -mvolatile-cache -mtp-regno=@var{regno} @gol
618 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
619 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
620 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
621 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
622 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
623 -mtune=@var{cpu} -mmultcost=@var{num} @gol
624 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
625 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu}}
626
627 @emph{ARM Options}
628 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
629 -mabi=@var{name} @gol
630 -mapcs-stack-check -mno-apcs-stack-check @gol
631 -mapcs-reentrant -mno-apcs-reentrant @gol
632 -msched-prolog -mno-sched-prolog @gol
633 -mlittle-endian -mbig-endian @gol
634 -mbe8 -mbe32 @gol
635 -mfloat-abi=@var{name} @gol
636 -mfp16-format=@var{name}
637 -mthumb-interwork -mno-thumb-interwork @gol
638 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
639 -mtune=@var{name} -mprint-tune-info @gol
640 -mstructure-size-boundary=@var{n} @gol
641 -mabort-on-noreturn @gol
642 -mlong-calls -mno-long-calls @gol
643 -msingle-pic-base -mno-single-pic-base @gol
644 -mpic-register=@var{reg} @gol
645 -mnop-fun-dllimport @gol
646 -mpoke-function-name @gol
647 -mthumb -marm @gol
648 -mtpcs-frame -mtpcs-leaf-frame @gol
649 -mcaller-super-interworking -mcallee-super-interworking @gol
650 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
651 -mword-relocations @gol
652 -mfix-cortex-m3-ldrd @gol
653 -munaligned-access @gol
654 -mneon-for-64bits @gol
655 -mslow-flash-data @gol
656 -masm-syntax-unified @gol
657 -mrestrict-it @gol
658 -mpure-code @gol
659 -mcmse}
660
661 @emph{AVR Options}
662 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
663 -mbranch-cost=@var{cost} @gol
664 -mcall-prologues -mgas-isr-prologues -mint8 @gol
665 -mn_flash=@var{size} -mno-interrupts @gol
666 -mrelax -mrmw -mstrict-X -mtiny-stack -mfract-convert-truncate @gol
667 -mshort-calls -nodevicelib @gol
668 -Waddr-space-convert -Wmisspelled-isr}
669
670 @emph{Blackfin Options}
671 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
672 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
673 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
674 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
675 -mno-id-shared-library -mshared-library-id=@var{n} @gol
676 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
677 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
678 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
679 -micplb}
680
681 @emph{C6X Options}
682 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
683 -msim -msdata=@var{sdata-type}}
684
685 @emph{CRIS Options}
686 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
687 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
688 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
689 -mstack-align -mdata-align -mconst-align @gol
690 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
691 -melf -maout -melinux -mlinux -sim -sim2 @gol
692 -mmul-bug-workaround -mno-mul-bug-workaround}
693
694 @emph{CR16 Options}
695 @gccoptlist{-mmac @gol
696 -mcr16cplus -mcr16c @gol
697 -msim -mint32 -mbit-ops
698 -mdata-model=@var{model}}
699
700 @emph{Darwin Options}
701 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
702 -arch_only -bind_at_load -bundle -bundle_loader @gol
703 -client_name -compatibility_version -current_version @gol
704 -dead_strip @gol
705 -dependency-file -dylib_file -dylinker_install_name @gol
706 -dynamic -dynamiclib -exported_symbols_list @gol
707 -filelist -flat_namespace -force_cpusubtype_ALL @gol
708 -force_flat_namespace -headerpad_max_install_names @gol
709 -iframework @gol
710 -image_base -init -install_name -keep_private_externs @gol
711 -multi_module -multiply_defined -multiply_defined_unused @gol
712 -noall_load -no_dead_strip_inits_and_terms @gol
713 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
714 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
715 -private_bundle -read_only_relocs -sectalign @gol
716 -sectobjectsymbols -whyload -seg1addr @gol
717 -sectcreate -sectobjectsymbols -sectorder @gol
718 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
719 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
720 -segprot -segs_read_only_addr -segs_read_write_addr @gol
721 -single_module -static -sub_library -sub_umbrella @gol
722 -twolevel_namespace -umbrella -undefined @gol
723 -unexported_symbols_list -weak_reference_mismatches @gol
724 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
725 -mkernel -mone-byte-bool}
726
727 @emph{DEC Alpha Options}
728 @gccoptlist{-mno-fp-regs -msoft-float @gol
729 -mieee -mieee-with-inexact -mieee-conformant @gol
730 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
731 -mtrap-precision=@var{mode} -mbuild-constants @gol
732 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
733 -mbwx -mmax -mfix -mcix @gol
734 -mfloat-vax -mfloat-ieee @gol
735 -mexplicit-relocs -msmall-data -mlarge-data @gol
736 -msmall-text -mlarge-text @gol
737 -mmemory-latency=@var{time}}
738
739 @emph{FR30 Options}
740 @gccoptlist{-msmall-model -mno-lsim}
741
742 @emph{FT32 Options}
743 @gccoptlist{-msim -mlra -mnodiv}
744
745 @emph{FRV Options}
746 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
747 -mhard-float -msoft-float @gol
748 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
749 -mdouble -mno-double @gol
750 -mmedia -mno-media -mmuladd -mno-muladd @gol
751 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
752 -mlinked-fp -mlong-calls -malign-labels @gol
753 -mlibrary-pic -macc-4 -macc-8 @gol
754 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
755 -moptimize-membar -mno-optimize-membar @gol
756 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
757 -mvliw-branch -mno-vliw-branch @gol
758 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
759 -mno-nested-cond-exec -mtomcat-stats @gol
760 -mTLS -mtls @gol
761 -mcpu=@var{cpu}}
762
763 @emph{GNU/Linux Options}
764 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
765 -tno-android-cc -tno-android-ld}
766
767 @emph{H8/300 Options}
768 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
769
770 @emph{HPPA Options}
771 @gccoptlist{-march=@var{architecture-type} @gol
772 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
773 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
774 -mfixed-range=@var{register-range} @gol
775 -mjump-in-delay -mlinker-opt -mlong-calls @gol
776 -mlong-load-store -mno-disable-fpregs @gol
777 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
778 -mno-jump-in-delay -mno-long-load-store @gol
779 -mno-portable-runtime -mno-soft-float @gol
780 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
781 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
782 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
783 -munix=@var{unix-std} -nolibdld -static -threads}
784
785 @emph{IA-64 Options}
786 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
787 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
788 -mconstant-gp -mauto-pic -mfused-madd @gol
789 -minline-float-divide-min-latency @gol
790 -minline-float-divide-max-throughput @gol
791 -mno-inline-float-divide @gol
792 -minline-int-divide-min-latency @gol
793 -minline-int-divide-max-throughput @gol
794 -mno-inline-int-divide @gol
795 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
796 -mno-inline-sqrt @gol
797 -mdwarf2-asm -mearly-stop-bits @gol
798 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
799 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
800 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
801 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
802 -msched-spec-ldc -msched-spec-control-ldc @gol
803 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
804 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
805 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
806 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
807
808 @emph{LM32 Options}
809 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
810 -msign-extend-enabled -muser-enabled}
811
812 @emph{M32R/D Options}
813 @gccoptlist{-m32r2 -m32rx -m32r @gol
814 -mdebug @gol
815 -malign-loops -mno-align-loops @gol
816 -missue-rate=@var{number} @gol
817 -mbranch-cost=@var{number} @gol
818 -mmodel=@var{code-size-model-type} @gol
819 -msdata=@var{sdata-type} @gol
820 -mno-flush-func -mflush-func=@var{name} @gol
821 -mno-flush-trap -mflush-trap=@var{number} @gol
822 -G @var{num}}
823
824 @emph{M32C Options}
825 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
826
827 @emph{M680x0 Options}
828 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
829 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
830 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
831 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
832 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
833 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
834 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
835 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
836 -mxgot -mno-xgot -mlong-jump-table-offsets}
837
838 @emph{MCore Options}
839 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
840 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
841 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
842 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
843 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
844
845 @emph{MeP Options}
846 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
847 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
848 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
849 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
850 -mtiny=@var{n}}
851
852 @emph{MicroBlaze Options}
853 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
854 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
855 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
856 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
857 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
858
859 @emph{MIPS Options}
860 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
861 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
862 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
863 -mips16 -mno-mips16 -mflip-mips16 @gol
864 -minterlink-compressed -mno-interlink-compressed @gol
865 -minterlink-mips16 -mno-interlink-mips16 @gol
866 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
867 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
868 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
869 -mno-float -msingle-float -mdouble-float @gol
870 -modd-spreg -mno-odd-spreg @gol
871 -mabs=@var{mode} -mnan=@var{encoding} @gol
872 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
873 -mmcu -mmno-mcu @gol
874 -meva -mno-eva @gol
875 -mvirt -mno-virt @gol
876 -mxpa -mno-xpa @gol
877 -mmicromips -mno-micromips @gol
878 -mmsa -mno-msa @gol
879 -mfpu=@var{fpu-type} @gol
880 -msmartmips -mno-smartmips @gol
881 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
882 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
883 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
884 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
885 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
886 -membedded-data -mno-embedded-data @gol
887 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
888 -mcode-readable=@var{setting} @gol
889 -msplit-addresses -mno-split-addresses @gol
890 -mexplicit-relocs -mno-explicit-relocs @gol
891 -mcheck-zero-division -mno-check-zero-division @gol
892 -mdivide-traps -mdivide-breaks @gol
893 -mload-store-pairs -mno-load-store-pairs @gol
894 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
895 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
896 -mfix-24k -mno-fix-24k @gol
897 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
898 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
899 -mfix-vr4120 -mno-fix-vr4120 @gol
900 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
901 -mflush-func=@var{func} -mno-flush-func @gol
902 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
903 -mcompact-branches=@var{policy} @gol
904 -mfp-exceptions -mno-fp-exceptions @gol
905 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
906 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
907 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
908 -mframe-header-opt -mno-frame-header-opt}
909
910 @emph{MMIX Options}
911 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
912 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
913 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
914 -mno-base-addresses -msingle-exit -mno-single-exit}
915
916 @emph{MN10300 Options}
917 @gccoptlist{-mmult-bug -mno-mult-bug @gol
918 -mno-am33 -mam33 -mam33-2 -mam34 @gol
919 -mtune=@var{cpu-type} @gol
920 -mreturn-pointer-on-d0 @gol
921 -mno-crt0 -mrelax -mliw -msetlb}
922
923 @emph{Moxie Options}
924 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
925
926 @emph{MSP430 Options}
927 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
928 -mwarn-mcu @gol
929 -mcode-region= -mdata-region= @gol
930 -msilicon-errata= -msilicon-errata-warn= @gol
931 -mhwmult= -minrt}
932
933 @emph{NDS32 Options}
934 @gccoptlist{-mbig-endian -mlittle-endian @gol
935 -mreduced-regs -mfull-regs @gol
936 -mcmov -mno-cmov @gol
937 -mperf-ext -mno-perf-ext @gol
938 -mv3push -mno-v3push @gol
939 -m16bit -mno-16bit @gol
940 -misr-vector-size=@var{num} @gol
941 -mcache-block-size=@var{num} @gol
942 -march=@var{arch} @gol
943 -mcmodel=@var{code-model} @gol
944 -mctor-dtor -mrelax}
945
946 @emph{Nios II Options}
947 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
948 -mel -meb @gol
949 -mno-bypass-cache -mbypass-cache @gol
950 -mno-cache-volatile -mcache-volatile @gol
951 -mno-fast-sw-div -mfast-sw-div @gol
952 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
953 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
954 -mcustom-fpu-cfg=@var{name} @gol
955 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
956 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
957
958 @emph{Nvidia PTX Options}
959 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
960
961 @emph{PDP-11 Options}
962 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
963 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
964 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
965 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
966 -mbranch-expensive -mbranch-cheap @gol
967 -munix-asm -mdec-asm}
968
969 @emph{picoChip Options}
970 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
971 -msymbol-as-address -mno-inefficient-warnings}
972
973 @emph{PowerPC Options}
974 See RS/6000 and PowerPC Options.
975
976 @emph{RISC-V Options}
977 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
978 -mmemcpy -mno-memcpy @gol
979 -mplt -mno-plt @gol
980 -mabi=@var{ABI-string} @gol
981 -mfdiv -mno-fdiv @gol
982 -mdiv -mno-div @gol
983 -march=@var{ISA-string} @gol
984 -mtune=@var{processor-string} @gol
985 -msmall-data-limit=@var{N-bytes} @gol
986 -msave-restore -mno-save-restore @gol
987 -mstrict-align -mno-strict-align @gol
988 -mcmodel=@var{code-model} @gol
989 -mexplicit-relocs -mno-explicit-relocs @gol}
990
991 @emph{RL78 Options}
992 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
993 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
994 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
995
996 @emph{RS/6000 and PowerPC Options}
997 @gccoptlist{-mcpu=@var{cpu-type} @gol
998 -mtune=@var{cpu-type} @gol
999 -mcmodel=@var{code-model} @gol
1000 -mpowerpc64 @gol
1001 -maltivec -mno-altivec @gol
1002 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1003 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1004 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1005 -mfprnd -mno-fprnd @gol
1006 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
1007 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1008 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1009 -malign-power -malign-natural @gol
1010 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1011 -msingle-float -mdouble-float -msimple-fpu @gol
1012 -mstring -mno-string -mupdate -mno-update @gol
1013 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1014 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1015 -mstrict-align -mno-strict-align -mrelocatable @gol
1016 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1017 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1018 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
1019 -mprioritize-restricted-insns=@var{priority} @gol
1020 -msched-costly-dep=@var{dependence_type} @gol
1021 -minsert-sched-nops=@var{scheme} @gol
1022 -mcall-sysv -mcall-netbsd @gol
1023 -maix-struct-return -msvr4-struct-return @gol
1024 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1025 -mblock-move-inline-limit=@var{num} @gol
1026 -misel -mno-isel @gol
1027 -misel=yes -misel=no @gol
1028 -mspe -mno-spe @gol
1029 -mspe=yes -mspe=no @gol
1030 -mpaired @gol
1031 -mvrsave -mno-vrsave @gol
1032 -mmulhw -mno-mulhw @gol
1033 -mdlmzb -mno-dlmzb @gol
1034 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
1035 -mprototype -mno-prototype @gol
1036 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1037 -msdata=@var{opt} -mvxworks -G @var{num} @gol
1038 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1039 -mno-recip-precision @gol
1040 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1041 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1042 -msave-toc-indirect -mno-save-toc-indirect @gol
1043 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1044 -mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move @gol
1045 -mquad-memory -mno-quad-memory @gol
1046 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1047 -mcompat-align-parm -mno-compat-align-parm @gol
1048 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
1049 -mupper-regs-di -mno-upper-regs-di @gol
1050 -mupper-regs -mno-upper-regs @gol
1051 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1052 -mgnu-attribute -mno-gnu-attribute @gol
1053 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1054 -mstack-protector-guard-offset=@var{offset} @gol
1055 -mlra -mno-lra}
1056
1057 @emph{RX Options}
1058 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1059 -mcpu=@gol
1060 -mbig-endian-data -mlittle-endian-data @gol
1061 -msmall-data @gol
1062 -msim -mno-sim@gol
1063 -mas100-syntax -mno-as100-syntax@gol
1064 -mrelax@gol
1065 -mmax-constant-size=@gol
1066 -mint-register=@gol
1067 -mpid@gol
1068 -mallow-string-insns -mno-allow-string-insns@gol
1069 -mjsr@gol
1070 -mno-warn-multiple-fast-interrupts@gol
1071 -msave-acc-in-interrupts}
1072
1073 @emph{S/390 and zSeries Options}
1074 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1075 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1076 -mlong-double-64 -mlong-double-128 @gol
1077 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1078 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1079 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1080 -mhtm -mvx -mzvector @gol
1081 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1082 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1083 -mhotpatch=@var{halfwords},@var{halfwords}}
1084
1085 @emph{Score Options}
1086 @gccoptlist{-meb -mel @gol
1087 -mnhwloop @gol
1088 -muls @gol
1089 -mmac @gol
1090 -mscore5 -mscore5u -mscore7 -mscore7d}
1091
1092 @emph{SH Options}
1093 @gccoptlist{-m1 -m2 -m2e @gol
1094 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1095 -m3 -m3e @gol
1096 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1097 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1098 -mb -ml -mdalign -mrelax @gol
1099 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1100 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1101 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1102 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1103 -maccumulate-outgoing-args @gol
1104 -matomic-model=@var{atomic-model} @gol
1105 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1106 -mcbranch-force-delay-slot @gol
1107 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1108 -mpretend-cmove -mtas}
1109
1110 @emph{Solaris 2 Options}
1111 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1112 -pthreads}
1113
1114 @emph{SPARC Options}
1115 @gccoptlist{-mcpu=@var{cpu-type} @gol
1116 -mtune=@var{cpu-type} @gol
1117 -mcmodel=@var{code-model} @gol
1118 -mmemory-model=@var{mem-model} @gol
1119 -m32 -m64 -mapp-regs -mno-app-regs @gol
1120 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1121 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1122 -mhard-quad-float -msoft-quad-float @gol
1123 -mstack-bias -mno-stack-bias @gol
1124 -mstd-struct-return -mno-std-struct-return @gol
1125 -munaligned-doubles -mno-unaligned-doubles @gol
1126 -muser-mode -mno-user-mode @gol
1127 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1128 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1129 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1130 -mcbcond -mno-cbcond -mfmaf -mno-fmaf @gol
1131 -mpopc -mno-popc -msubxc -mno-subxc @gol
1132 -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc @gol
1133 -mlra -mno-lra}
1134
1135 @emph{SPU Options}
1136 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1137 -msafe-dma -munsafe-dma @gol
1138 -mbranch-hints @gol
1139 -msmall-mem -mlarge-mem -mstdmain @gol
1140 -mfixed-range=@var{register-range} @gol
1141 -mea32 -mea64 @gol
1142 -maddress-space-conversion -mno-address-space-conversion @gol
1143 -mcache-size=@var{cache-size} @gol
1144 -matomic-updates -mno-atomic-updates}
1145
1146 @emph{System V Options}
1147 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1148
1149 @emph{TILE-Gx Options}
1150 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1151 -mcmodel=@var{code-model}}
1152
1153 @emph{TILEPro Options}
1154 @gccoptlist{-mcpu=@var{cpu} -m32}
1155
1156 @emph{V850 Options}
1157 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1158 -mprolog-function -mno-prolog-function -mspace @gol
1159 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1160 -mapp-regs -mno-app-regs @gol
1161 -mdisable-callt -mno-disable-callt @gol
1162 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1163 -mv850e -mv850 -mv850e3v5 @gol
1164 -mloop @gol
1165 -mrelax @gol
1166 -mlong-jumps @gol
1167 -msoft-float @gol
1168 -mhard-float @gol
1169 -mgcc-abi @gol
1170 -mrh850-abi @gol
1171 -mbig-switch}
1172
1173 @emph{VAX Options}
1174 @gccoptlist{-mg -mgnu -munix}
1175
1176 @emph{Visium Options}
1177 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1178 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1179
1180 @emph{VMS Options}
1181 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1182 -mpointer-size=@var{size}}
1183
1184 @emph{VxWorks Options}
1185 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1186 -Xbind-lazy -Xbind-now}
1187
1188 @emph{x86 Options}
1189 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1190 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1191 -mfpmath=@var{unit} @gol
1192 -masm=@var{dialect} -mno-fancy-math-387 @gol
1193 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1194 -mno-wide-multiply -mrtd -malign-double @gol
1195 -mpreferred-stack-boundary=@var{num} @gol
1196 -mincoming-stack-boundary=@var{num} @gol
1197 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1198 -mrecip -mrecip=@var{opt} @gol
1199 -mvzeroupper -mprefer-avx128 @gol
1200 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1201 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1202 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1203 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
1204 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1205 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1206 -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx @gol
1207 -mmwaitx -mclzero -mpku -mthreads @gol
1208 -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1209 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1210 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1211 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1212 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1213 -mregparm=@var{num} -msseregparm @gol
1214 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1215 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1216 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1217 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1218 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1219 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1220 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1221 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1222 -mmitigate-rop -mgeneral-regs-only -mcall-ms2sysv-xlogues}
1223
1224 @emph{x86 Windows Options}
1225 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1226 -mnop-fun-dllimport -mthread @gol
1227 -municode -mwin32 -mwindows -fno-set-stack-executable}
1228
1229 @emph{Xstormy16 Options}
1230 @gccoptlist{-msim}
1231
1232 @emph{Xtensa Options}
1233 @gccoptlist{-mconst16 -mno-const16 @gol
1234 -mfused-madd -mno-fused-madd @gol
1235 -mforce-no-pic @gol
1236 -mserialize-volatile -mno-serialize-volatile @gol
1237 -mtext-section-literals -mno-text-section-literals @gol
1238 -mauto-litpools -mno-auto-litpools @gol
1239 -mtarget-align -mno-target-align @gol
1240 -mlongcalls -mno-longcalls}
1241
1242 @emph{zSeries Options}
1243 See S/390 and zSeries Options.
1244 @end table
1245
1246
1247 @node Overall Options
1248 @section Options Controlling the Kind of Output
1249
1250 Compilation can involve up to four stages: preprocessing, compilation
1251 proper, assembly and linking, always in that order. GCC is capable of
1252 preprocessing and compiling several files either into several
1253 assembler input files, or into one assembler input file; then each
1254 assembler input file produces an object file, and linking combines all
1255 the object files (those newly compiled, and those specified as input)
1256 into an executable file.
1257
1258 @cindex file name suffix
1259 For any given input file, the file name suffix determines what kind of
1260 compilation is done:
1261
1262 @table @gcctabopt
1263 @item @var{file}.c
1264 C source code that must be preprocessed.
1265
1266 @item @var{file}.i
1267 C source code that should not be preprocessed.
1268
1269 @item @var{file}.ii
1270 C++ source code that should not be preprocessed.
1271
1272 @item @var{file}.m
1273 Objective-C source code. Note that you must link with the @file{libobjc}
1274 library to make an Objective-C program work.
1275
1276 @item @var{file}.mi
1277 Objective-C source code that should not be preprocessed.
1278
1279 @item @var{file}.mm
1280 @itemx @var{file}.M
1281 Objective-C++ source code. Note that you must link with the @file{libobjc}
1282 library to make an Objective-C++ program work. Note that @samp{.M} refers
1283 to a literal capital M@.
1284
1285 @item @var{file}.mii
1286 Objective-C++ source code that should not be preprocessed.
1287
1288 @item @var{file}.h
1289 C, C++, Objective-C or Objective-C++ header file to be turned into a
1290 precompiled header (default), or C, C++ header file to be turned into an
1291 Ada spec (via the @option{-fdump-ada-spec} switch).
1292
1293 @item @var{file}.cc
1294 @itemx @var{file}.cp
1295 @itemx @var{file}.cxx
1296 @itemx @var{file}.cpp
1297 @itemx @var{file}.CPP
1298 @itemx @var{file}.c++
1299 @itemx @var{file}.C
1300 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1301 the last two letters must both be literally @samp{x}. Likewise,
1302 @samp{.C} refers to a literal capital C@.
1303
1304 @item @var{file}.mm
1305 @itemx @var{file}.M
1306 Objective-C++ source code that must be preprocessed.
1307
1308 @item @var{file}.mii
1309 Objective-C++ source code that should not be preprocessed.
1310
1311 @item @var{file}.hh
1312 @itemx @var{file}.H
1313 @itemx @var{file}.hp
1314 @itemx @var{file}.hxx
1315 @itemx @var{file}.hpp
1316 @itemx @var{file}.HPP
1317 @itemx @var{file}.h++
1318 @itemx @var{file}.tcc
1319 C++ header file to be turned into a precompiled header or Ada spec.
1320
1321 @item @var{file}.f
1322 @itemx @var{file}.for
1323 @itemx @var{file}.ftn
1324 Fixed form Fortran source code that should not be preprocessed.
1325
1326 @item @var{file}.F
1327 @itemx @var{file}.FOR
1328 @itemx @var{file}.fpp
1329 @itemx @var{file}.FPP
1330 @itemx @var{file}.FTN
1331 Fixed form Fortran source code that must be preprocessed (with the traditional
1332 preprocessor).
1333
1334 @item @var{file}.f90
1335 @itemx @var{file}.f95
1336 @itemx @var{file}.f03
1337 @itemx @var{file}.f08
1338 Free form Fortran source code that should not be preprocessed.
1339
1340 @item @var{file}.F90
1341 @itemx @var{file}.F95
1342 @itemx @var{file}.F03
1343 @itemx @var{file}.F08
1344 Free form Fortran source code that must be preprocessed (with the
1345 traditional preprocessor).
1346
1347 @item @var{file}.go
1348 Go source code.
1349
1350 @item @var{file}.brig
1351 BRIG files (binary representation of HSAIL).
1352
1353 @item @var{file}.ads
1354 Ada source code file that contains a library unit declaration (a
1355 declaration of a package, subprogram, or generic, or a generic
1356 instantiation), or a library unit renaming declaration (a package,
1357 generic, or subprogram renaming declaration). Such files are also
1358 called @dfn{specs}.
1359
1360 @item @var{file}.adb
1361 Ada source code file containing a library unit body (a subprogram or
1362 package body). Such files are also called @dfn{bodies}.
1363
1364 @c GCC also knows about some suffixes for languages not yet included:
1365 @c Pascal:
1366 @c @var{file}.p
1367 @c @var{file}.pas
1368 @c Ratfor:
1369 @c @var{file}.r
1370
1371 @item @var{file}.s
1372 Assembler code.
1373
1374 @item @var{file}.S
1375 @itemx @var{file}.sx
1376 Assembler code that must be preprocessed.
1377
1378 @item @var{other}
1379 An object file to be fed straight into linking.
1380 Any file name with no recognized suffix is treated this way.
1381 @end table
1382
1383 @opindex x
1384 You can specify the input language explicitly with the @option{-x} option:
1385
1386 @table @gcctabopt
1387 @item -x @var{language}
1388 Specify explicitly the @var{language} for the following input files
1389 (rather than letting the compiler choose a default based on the file
1390 name suffix). This option applies to all following input files until
1391 the next @option{-x} option. Possible values for @var{language} are:
1392 @smallexample
1393 c c-header cpp-output
1394 c++ c++-header c++-cpp-output
1395 objective-c objective-c-header objective-c-cpp-output
1396 objective-c++ objective-c++-header objective-c++-cpp-output
1397 assembler assembler-with-cpp
1398 ada
1399 f77 f77-cpp-input f95 f95-cpp-input
1400 go
1401 brig
1402 @end smallexample
1403
1404 @item -x none
1405 Turn off any specification of a language, so that subsequent files are
1406 handled according to their file name suffixes (as they are if @option{-x}
1407 has not been used at all).
1408 @end table
1409
1410 If you only want some of the stages of compilation, you can use
1411 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1412 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1413 @command{gcc} is to stop. Note that some combinations (for example,
1414 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1415
1416 @table @gcctabopt
1417 @item -c
1418 @opindex c
1419 Compile or assemble the source files, but do not link. The linking
1420 stage simply is not done. The ultimate output is in the form of an
1421 object file for each source file.
1422
1423 By default, the object file name for a source file is made by replacing
1424 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1425
1426 Unrecognized input files, not requiring compilation or assembly, are
1427 ignored.
1428
1429 @item -S
1430 @opindex S
1431 Stop after the stage of compilation proper; do not assemble. The output
1432 is in the form of an assembler code file for each non-assembler input
1433 file specified.
1434
1435 By default, the assembler file name for a source file is made by
1436 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1437
1438 Input files that don't require compilation are ignored.
1439
1440 @item -E
1441 @opindex E
1442 Stop after the preprocessing stage; do not run the compiler proper. The
1443 output is in the form of preprocessed source code, which is sent to the
1444 standard output.
1445
1446 Input files that don't require preprocessing are ignored.
1447
1448 @cindex output file option
1449 @item -o @var{file}
1450 @opindex o
1451 Place output in file @var{file}. This applies to whatever
1452 sort of output is being produced, whether it be an executable file,
1453 an object file, an assembler file or preprocessed C code.
1454
1455 If @option{-o} is not specified, the default is to put an executable
1456 file in @file{a.out}, the object file for
1457 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1458 assembler file in @file{@var{source}.s}, a precompiled header file in
1459 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1460 standard output.
1461
1462 @item -v
1463 @opindex v
1464 Print (on standard error output) the commands executed to run the stages
1465 of compilation. Also print the version number of the compiler driver
1466 program and of the preprocessor and the compiler proper.
1467
1468 @item -###
1469 @opindex ###
1470 Like @option{-v} except the commands are not executed and arguments
1471 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1472 This is useful for shell scripts to capture the driver-generated command lines.
1473
1474 @item --help
1475 @opindex help
1476 Print (on the standard output) a description of the command-line options
1477 understood by @command{gcc}. If the @option{-v} option is also specified
1478 then @option{--help} is also passed on to the various processes
1479 invoked by @command{gcc}, so that they can display the command-line options
1480 they accept. If the @option{-Wextra} option has also been specified
1481 (prior to the @option{--help} option), then command-line options that
1482 have no documentation associated with them are also displayed.
1483
1484 @item --target-help
1485 @opindex target-help
1486 Print (on the standard output) a description of target-specific command-line
1487 options for each tool. For some targets extra target-specific
1488 information may also be printed.
1489
1490 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1491 Print (on the standard output) a description of the command-line
1492 options understood by the compiler that fit into all specified classes
1493 and qualifiers. These are the supported classes:
1494
1495 @table @asis
1496 @item @samp{optimizers}
1497 Display all of the optimization options supported by the
1498 compiler.
1499
1500 @item @samp{warnings}
1501 Display all of the options controlling warning messages
1502 produced by the compiler.
1503
1504 @item @samp{target}
1505 Display target-specific options. Unlike the
1506 @option{--target-help} option however, target-specific options of the
1507 linker and assembler are not displayed. This is because those
1508 tools do not currently support the extended @option{--help=} syntax.
1509
1510 @item @samp{params}
1511 Display the values recognized by the @option{--param}
1512 option.
1513
1514 @item @var{language}
1515 Display the options supported for @var{language}, where
1516 @var{language} is the name of one of the languages supported in this
1517 version of GCC@.
1518
1519 @item @samp{common}
1520 Display the options that are common to all languages.
1521 @end table
1522
1523 These are the supported qualifiers:
1524
1525 @table @asis
1526 @item @samp{undocumented}
1527 Display only those options that are undocumented.
1528
1529 @item @samp{joined}
1530 Display options taking an argument that appears after an equal
1531 sign in the same continuous piece of text, such as:
1532 @samp{--help=target}.
1533
1534 @item @samp{separate}
1535 Display options taking an argument that appears as a separate word
1536 following the original option, such as: @samp{-o output-file}.
1537 @end table
1538
1539 Thus for example to display all the undocumented target-specific
1540 switches supported by the compiler, use:
1541
1542 @smallexample
1543 --help=target,undocumented
1544 @end smallexample
1545
1546 The sense of a qualifier can be inverted by prefixing it with the
1547 @samp{^} character, so for example to display all binary warning
1548 options (i.e., ones that are either on or off and that do not take an
1549 argument) that have a description, use:
1550
1551 @smallexample
1552 --help=warnings,^joined,^undocumented
1553 @end smallexample
1554
1555 The argument to @option{--help=} should not consist solely of inverted
1556 qualifiers.
1557
1558 Combining several classes is possible, although this usually
1559 restricts the output so much that there is nothing to display. One
1560 case where it does work, however, is when one of the classes is
1561 @var{target}. For example, to display all the target-specific
1562 optimization options, use:
1563
1564 @smallexample
1565 --help=target,optimizers
1566 @end smallexample
1567
1568 The @option{--help=} option can be repeated on the command line. Each
1569 successive use displays its requested class of options, skipping
1570 those that have already been displayed.
1571
1572 If the @option{-Q} option appears on the command line before the
1573 @option{--help=} option, then the descriptive text displayed by
1574 @option{--help=} is changed. Instead of describing the displayed
1575 options, an indication is given as to whether the option is enabled,
1576 disabled or set to a specific value (assuming that the compiler
1577 knows this at the point where the @option{--help=} option is used).
1578
1579 Here is a truncated example from the ARM port of @command{gcc}:
1580
1581 @smallexample
1582 % gcc -Q -mabi=2 --help=target -c
1583 The following options are target specific:
1584 -mabi= 2
1585 -mabort-on-noreturn [disabled]
1586 -mapcs [disabled]
1587 @end smallexample
1588
1589 The output is sensitive to the effects of previous command-line
1590 options, so for example it is possible to find out which optimizations
1591 are enabled at @option{-O2} by using:
1592
1593 @smallexample
1594 -Q -O2 --help=optimizers
1595 @end smallexample
1596
1597 Alternatively you can discover which binary optimizations are enabled
1598 by @option{-O3} by using:
1599
1600 @smallexample
1601 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1602 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1603 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1604 @end smallexample
1605
1606 @item --version
1607 @opindex version
1608 Display the version number and copyrights of the invoked GCC@.
1609
1610 @item -pass-exit-codes
1611 @opindex pass-exit-codes
1612 Normally the @command{gcc} program exits with the code of 1 if any
1613 phase of the compiler returns a non-success return code. If you specify
1614 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1615 the numerically highest error produced by any phase returning an error
1616 indication. The C, C++, and Fortran front ends return 4 if an internal
1617 compiler error is encountered.
1618
1619 @item -pipe
1620 @opindex pipe
1621 Use pipes rather than temporary files for communication between the
1622 various stages of compilation. This fails to work on some systems where
1623 the assembler is unable to read from a pipe; but the GNU assembler has
1624 no trouble.
1625
1626 @item -specs=@var{file}
1627 @opindex specs
1628 Process @var{file} after the compiler reads in the standard @file{specs}
1629 file, in order to override the defaults which the @command{gcc} driver
1630 program uses when determining what switches to pass to @command{cc1},
1631 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1632 @option{-specs=@var{file}} can be specified on the command line, and they
1633 are processed in order, from left to right. @xref{Spec Files}, for
1634 information about the format of the @var{file}.
1635
1636 @item -wrapper
1637 @opindex wrapper
1638 Invoke all subcommands under a wrapper program. The name of the
1639 wrapper program and its parameters are passed as a comma separated
1640 list.
1641
1642 @smallexample
1643 gcc -c t.c -wrapper gdb,--args
1644 @end smallexample
1645
1646 @noindent
1647 This invokes all subprograms of @command{gcc} under
1648 @samp{gdb --args}, thus the invocation of @command{cc1} is
1649 @samp{gdb --args cc1 @dots{}}.
1650
1651 @item -fplugin=@var{name}.so
1652 @opindex fplugin
1653 Load the plugin code in file @var{name}.so, assumed to be a
1654 shared object to be dlopen'd by the compiler. The base name of
1655 the shared object file is used to identify the plugin for the
1656 purposes of argument parsing (See
1657 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1658 Each plugin should define the callback functions specified in the
1659 Plugins API.
1660
1661 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1662 @opindex fplugin-arg
1663 Define an argument called @var{key} with a value of @var{value}
1664 for the plugin called @var{name}.
1665
1666 @item -fdump-ada-spec@r{[}-slim@r{]}
1667 @opindex fdump-ada-spec
1668 For C and C++ source and include files, generate corresponding Ada specs.
1669 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1670 GNAT User's Guide}, which provides detailed documentation on this feature.
1671
1672 @item -fada-spec-parent=@var{unit}
1673 @opindex fada-spec-parent
1674 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1675 Ada specs as child units of parent @var{unit}.
1676
1677 @item -fdump-go-spec=@var{file}
1678 @opindex fdump-go-spec
1679 For input files in any language, generate corresponding Go
1680 declarations in @var{file}. This generates Go @code{const},
1681 @code{type}, @code{var}, and @code{func} declarations which may be a
1682 useful way to start writing a Go interface to code written in some
1683 other language.
1684
1685 @include @value{srcdir}/../libiberty/at-file.texi
1686 @end table
1687
1688 @node Invoking G++
1689 @section Compiling C++ Programs
1690
1691 @cindex suffixes for C++ source
1692 @cindex C++ source file suffixes
1693 C++ source files conventionally use one of the suffixes @samp{.C},
1694 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1695 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1696 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1697 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1698 files with these names and compiles them as C++ programs even if you
1699 call the compiler the same way as for compiling C programs (usually
1700 with the name @command{gcc}).
1701
1702 @findex g++
1703 @findex c++
1704 However, the use of @command{gcc} does not add the C++ library.
1705 @command{g++} is a program that calls GCC and automatically specifies linking
1706 against the C++ library. It treats @samp{.c},
1707 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1708 files unless @option{-x} is used. This program is also useful when
1709 precompiling a C header file with a @samp{.h} extension for use in C++
1710 compilations. On many systems, @command{g++} is also installed with
1711 the name @command{c++}.
1712
1713 @cindex invoking @command{g++}
1714 When you compile C++ programs, you may specify many of the same
1715 command-line options that you use for compiling programs in any
1716 language; or command-line options meaningful for C and related
1717 languages; or options that are meaningful only for C++ programs.
1718 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1719 explanations of options for languages related to C@.
1720 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1721 explanations of options that are meaningful only for C++ programs.
1722
1723 @node C Dialect Options
1724 @section Options Controlling C Dialect
1725 @cindex dialect options
1726 @cindex language dialect options
1727 @cindex options, dialect
1728
1729 The following options control the dialect of C (or languages derived
1730 from C, such as C++, Objective-C and Objective-C++) that the compiler
1731 accepts:
1732
1733 @table @gcctabopt
1734 @cindex ANSI support
1735 @cindex ISO support
1736 @item -ansi
1737 @opindex ansi
1738 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1739 equivalent to @option{-std=c++98}.
1740
1741 This turns off certain features of GCC that are incompatible with ISO
1742 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1743 such as the @code{asm} and @code{typeof} keywords, and
1744 predefined macros such as @code{unix} and @code{vax} that identify the
1745 type of system you are using. It also enables the undesirable and
1746 rarely used ISO trigraph feature. For the C compiler,
1747 it disables recognition of C++ style @samp{//} comments as well as
1748 the @code{inline} keyword.
1749
1750 The alternate keywords @code{__asm__}, @code{__extension__},
1751 @code{__inline__} and @code{__typeof__} continue to work despite
1752 @option{-ansi}. You would not want to use them in an ISO C program, of
1753 course, but it is useful to put them in header files that might be included
1754 in compilations done with @option{-ansi}. Alternate predefined macros
1755 such as @code{__unix__} and @code{__vax__} are also available, with or
1756 without @option{-ansi}.
1757
1758 The @option{-ansi} option does not cause non-ISO programs to be
1759 rejected gratuitously. For that, @option{-Wpedantic} is required in
1760 addition to @option{-ansi}. @xref{Warning Options}.
1761
1762 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1763 option is used. Some header files may notice this macro and refrain
1764 from declaring certain functions or defining certain macros that the
1765 ISO standard doesn't call for; this is to avoid interfering with any
1766 programs that might use these names for other things.
1767
1768 Functions that are normally built in but do not have semantics
1769 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1770 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1771 built-in functions provided by GCC}, for details of the functions
1772 affected.
1773
1774 @item -std=
1775 @opindex std
1776 Determine the language standard. @xref{Standards,,Language Standards
1777 Supported by GCC}, for details of these standard versions. This option
1778 is currently only supported when compiling C or C++.
1779
1780 The compiler can accept several base standards, such as @samp{c90} or
1781 @samp{c++98}, and GNU dialects of those standards, such as
1782 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1783 compiler accepts all programs following that standard plus those
1784 using GNU extensions that do not contradict it. For example,
1785 @option{-std=c90} turns off certain features of GCC that are
1786 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1787 keywords, but not other GNU extensions that do not have a meaning in
1788 ISO C90, such as omitting the middle term of a @code{?:}
1789 expression. On the other hand, when a GNU dialect of a standard is
1790 specified, all features supported by the compiler are enabled, even when
1791 those features change the meaning of the base standard. As a result, some
1792 strict-conforming programs may be rejected. The particular standard
1793 is used by @option{-Wpedantic} to identify which features are GNU
1794 extensions given that version of the standard. For example
1795 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1796 comments, while @option{-std=gnu99 -Wpedantic} does not.
1797
1798 A value for this option must be provided; possible values are
1799
1800 @table @samp
1801 @item c90
1802 @itemx c89
1803 @itemx iso9899:1990
1804 Support all ISO C90 programs (certain GNU extensions that conflict
1805 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1806
1807 @item iso9899:199409
1808 ISO C90 as modified in amendment 1.
1809
1810 @item c99
1811 @itemx c9x
1812 @itemx iso9899:1999
1813 @itemx iso9899:199x
1814 ISO C99. This standard is substantially completely supported, modulo
1815 bugs and floating-point issues
1816 (mainly but not entirely relating to optional C99 features from
1817 Annexes F and G). See
1818 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1819 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1820
1821 @item c11
1822 @itemx c1x
1823 @itemx iso9899:2011
1824 ISO C11, the 2011 revision of the ISO C standard. This standard is
1825 substantially completely supported, modulo bugs, floating-point issues
1826 (mainly but not entirely relating to optional C11 features from
1827 Annexes F and G) and the optional Annexes K (Bounds-checking
1828 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1829
1830 @item gnu90
1831 @itemx gnu89
1832 GNU dialect of ISO C90 (including some C99 features).
1833
1834 @item gnu99
1835 @itemx gnu9x
1836 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1837
1838 @item gnu11
1839 @itemx gnu1x
1840 GNU dialect of ISO C11. This is the default for C code.
1841 The name @samp{gnu1x} is deprecated.
1842
1843 @item c++98
1844 @itemx c++03
1845 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1846 additional defect reports. Same as @option{-ansi} for C++ code.
1847
1848 @item gnu++98
1849 @itemx gnu++03
1850 GNU dialect of @option{-std=c++98}.
1851
1852 @item c++11
1853 @itemx c++0x
1854 The 2011 ISO C++ standard plus amendments.
1855 The name @samp{c++0x} is deprecated.
1856
1857 @item gnu++11
1858 @itemx gnu++0x
1859 GNU dialect of @option{-std=c++11}.
1860 The name @samp{gnu++0x} is deprecated.
1861
1862 @item c++14
1863 @itemx c++1y
1864 The 2014 ISO C++ standard plus amendments.
1865 The name @samp{c++1y} is deprecated.
1866
1867 @item gnu++14
1868 @itemx gnu++1y
1869 GNU dialect of @option{-std=c++14}.
1870 This is the default for C++ code.
1871 The name @samp{gnu++1y} is deprecated.
1872
1873 @item c++1z
1874 The next revision of the ISO C++ standard, tentatively planned for
1875 2017. Support is highly experimental, and will almost certainly
1876 change in incompatible ways in future releases.
1877
1878 @item gnu++1z
1879 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1880 and will almost certainly change in incompatible ways in future
1881 releases.
1882 @end table
1883
1884 @item -fgnu89-inline
1885 @opindex fgnu89-inline
1886 The option @option{-fgnu89-inline} tells GCC to use the traditional
1887 GNU semantics for @code{inline} functions when in C99 mode.
1888 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1889 Using this option is roughly equivalent to adding the
1890 @code{gnu_inline} function attribute to all inline functions
1891 (@pxref{Function Attributes}).
1892
1893 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1894 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1895 specifies the default behavior).
1896 This option is not supported in @option{-std=c90} or
1897 @option{-std=gnu90} mode.
1898
1899 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1900 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1901 in effect for @code{inline} functions. @xref{Common Predefined
1902 Macros,,,cpp,The C Preprocessor}.
1903
1904 @item -fpermitted-flt-eval-methods=@var{style}
1905 @opindex fpermitted-flt-eval-methods
1906 @opindex fpermitted-flt-eval-methods=c11
1907 @opindex fpermitted-flt-eval-methods=ts-18661-3
1908 ISO/IEC TS 18661-3 defines new permissible values for
1909 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
1910 a semantic type that is an interchange or extended format should be
1911 evaluated to the precision and range of that type. These new values are
1912 a superset of those permitted under C99/C11, which does not specify the
1913 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
1914 conforming to C11 may not have been written expecting the possibility of
1915 the new values.
1916
1917 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
1918 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
1919 or the extended set of values specified in ISO/IEC TS 18661-3.
1920
1921 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
1922
1923 The default when in a standards compliant mode (@option{-std=c11} or similar)
1924 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
1925 dialect (@option{-std=gnu11} or similar) is
1926 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
1927
1928 @item -aux-info @var{filename}
1929 @opindex aux-info
1930 Output to the given filename prototyped declarations for all functions
1931 declared and/or defined in a translation unit, including those in header
1932 files. This option is silently ignored in any language other than C@.
1933
1934 Besides declarations, the file indicates, in comments, the origin of
1935 each declaration (source file and line), whether the declaration was
1936 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1937 @samp{O} for old, respectively, in the first character after the line
1938 number and the colon), and whether it came from a declaration or a
1939 definition (@samp{C} or @samp{F}, respectively, in the following
1940 character). In the case of function definitions, a K&R-style list of
1941 arguments followed by their declarations is also provided, inside
1942 comments, after the declaration.
1943
1944 @item -fallow-parameterless-variadic-functions
1945 @opindex fallow-parameterless-variadic-functions
1946 Accept variadic functions without named parameters.
1947
1948 Although it is possible to define such a function, this is not very
1949 useful as it is not possible to read the arguments. This is only
1950 supported for C as this construct is allowed by C++.
1951
1952 @item -fno-asm
1953 @opindex fno-asm
1954 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1955 keyword, so that code can use these words as identifiers. You can use
1956 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1957 instead. @option{-ansi} implies @option{-fno-asm}.
1958
1959 In C++, this switch only affects the @code{typeof} keyword, since
1960 @code{asm} and @code{inline} are standard keywords. You may want to
1961 use the @option{-fno-gnu-keywords} flag instead, which has the same
1962 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1963 switch only affects the @code{asm} and @code{typeof} keywords, since
1964 @code{inline} is a standard keyword in ISO C99.
1965
1966 @item -fno-builtin
1967 @itemx -fno-builtin-@var{function}
1968 @opindex fno-builtin
1969 @cindex built-in functions
1970 Don't recognize built-in functions that do not begin with
1971 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1972 functions provided by GCC}, for details of the functions affected,
1973 including those which are not built-in functions when @option{-ansi} or
1974 @option{-std} options for strict ISO C conformance are used because they
1975 do not have an ISO standard meaning.
1976
1977 GCC normally generates special code to handle certain built-in functions
1978 more efficiently; for instance, calls to @code{alloca} may become single
1979 instructions which adjust the stack directly, and calls to @code{memcpy}
1980 may become inline copy loops. The resulting code is often both smaller
1981 and faster, but since the function calls no longer appear as such, you
1982 cannot set a breakpoint on those calls, nor can you change the behavior
1983 of the functions by linking with a different library. In addition,
1984 when a function is recognized as a built-in function, GCC may use
1985 information about that function to warn about problems with calls to
1986 that function, or to generate more efficient code, even if the
1987 resulting code still contains calls to that function. For example,
1988 warnings are given with @option{-Wformat} for bad calls to
1989 @code{printf} when @code{printf} is built in and @code{strlen} is
1990 known not to modify global memory.
1991
1992 With the @option{-fno-builtin-@var{function}} option
1993 only the built-in function @var{function} is
1994 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1995 function is named that is not built-in in this version of GCC, this
1996 option is ignored. There is no corresponding
1997 @option{-fbuiltin-@var{function}} option; if you wish to enable
1998 built-in functions selectively when using @option{-fno-builtin} or
1999 @option{-ffreestanding}, you may define macros such as:
2000
2001 @smallexample
2002 #define abs(n) __builtin_abs ((n))
2003 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2004 @end smallexample
2005
2006 @item -fgimple
2007 @opindex fgimple
2008
2009 Enable parsing of function definitions marked with @code{__GIMPLE}.
2010 This is an experimental feature that allows unit testing of GIMPLE
2011 passes.
2012
2013 @item -fhosted
2014 @opindex fhosted
2015 @cindex hosted environment
2016
2017 Assert that compilation targets a hosted environment. This implies
2018 @option{-fbuiltin}. A hosted environment is one in which the
2019 entire standard library is available, and in which @code{main} has a return
2020 type of @code{int}. Examples are nearly everything except a kernel.
2021 This is equivalent to @option{-fno-freestanding}.
2022
2023 @item -ffreestanding
2024 @opindex ffreestanding
2025 @cindex hosted environment
2026
2027 Assert that compilation targets a freestanding environment. This
2028 implies @option{-fno-builtin}. A freestanding environment
2029 is one in which the standard library may not exist, and program startup may
2030 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2031 This is equivalent to @option{-fno-hosted}.
2032
2033 @xref{Standards,,Language Standards Supported by GCC}, for details of
2034 freestanding and hosted environments.
2035
2036 @item -fopenacc
2037 @opindex fopenacc
2038 @cindex OpenACC accelerator programming
2039 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2040 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2041 compiler generates accelerated code according to the OpenACC Application
2042 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
2043 implies @option{-pthread}, and thus is only supported on targets that
2044 have support for @option{-pthread}.
2045
2046 @item -fopenacc-dim=@var{geom}
2047 @opindex fopenacc-dim
2048 @cindex OpenACC accelerator programming
2049 Specify default compute dimensions for parallel offload regions that do
2050 not explicitly specify. The @var{geom} value is a triple of
2051 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2052 can be omitted, to use a target-specific default value.
2053
2054 @item -fopenmp
2055 @opindex fopenmp
2056 @cindex OpenMP parallel
2057 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2058 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2059 compiler generates parallel code according to the OpenMP Application
2060 Program Interface v4.5 @w{@uref{http://www.openmp.org/}}. This option
2061 implies @option{-pthread}, and thus is only supported on targets that
2062 have support for @option{-pthread}. @option{-fopenmp} implies
2063 @option{-fopenmp-simd}.
2064
2065 @item -fopenmp-simd
2066 @opindex fopenmp-simd
2067 @cindex OpenMP SIMD
2068 @cindex SIMD
2069 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2070 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2071 are ignored.
2072
2073 @item -fcilkplus
2074 @opindex fcilkplus
2075 @cindex Enable Cilk Plus
2076 Enable the usage of Cilk Plus language extension features for C/C++.
2077 When the option @option{-fcilkplus} is specified, enable the usage of
2078 the Cilk Plus Language extension features for C/C++. The present
2079 implementation follows ABI version 1.2. This is an experimental
2080 feature that is only partially complete, and whose interface may
2081 change in future versions of GCC as the official specification
2082 changes. Currently, all features but @code{_Cilk_for} have been
2083 implemented.
2084
2085 @item -fgnu-tm
2086 @opindex fgnu-tm
2087 When the option @option{-fgnu-tm} is specified, the compiler
2088 generates code for the Linux variant of Intel's current Transactional
2089 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2090 an experimental feature whose interface may change in future versions
2091 of GCC, as the official specification changes. Please note that not
2092 all architectures are supported for this feature.
2093
2094 For more information on GCC's support for transactional memory,
2095 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2096 Transactional Memory Library}.
2097
2098 Note that the transactional memory feature is not supported with
2099 non-call exceptions (@option{-fnon-call-exceptions}).
2100
2101 @item -fms-extensions
2102 @opindex fms-extensions
2103 Accept some non-standard constructs used in Microsoft header files.
2104
2105 In C++ code, this allows member names in structures to be similar
2106 to previous types declarations.
2107
2108 @smallexample
2109 typedef int UOW;
2110 struct ABC @{
2111 UOW UOW;
2112 @};
2113 @end smallexample
2114
2115 Some cases of unnamed fields in structures and unions are only
2116 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2117 fields within structs/unions}, for details.
2118
2119 Note that this option is off for all targets but x86
2120 targets using ms-abi.
2121
2122 @item -fplan9-extensions
2123 @opindex fplan9-extensions
2124 Accept some non-standard constructs used in Plan 9 code.
2125
2126 This enables @option{-fms-extensions}, permits passing pointers to
2127 structures with anonymous fields to functions that expect pointers to
2128 elements of the type of the field, and permits referring to anonymous
2129 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2130 struct/union fields within structs/unions}, for details. This is only
2131 supported for C, not C++.
2132
2133 @item -fcond-mismatch
2134 @opindex fcond-mismatch
2135 Allow conditional expressions with mismatched types in the second and
2136 third arguments. The value of such an expression is void. This option
2137 is not supported for C++.
2138
2139 @item -flax-vector-conversions
2140 @opindex flax-vector-conversions
2141 Allow implicit conversions between vectors with differing numbers of
2142 elements and/or incompatible element types. This option should not be
2143 used for new code.
2144
2145 @item -funsigned-char
2146 @opindex funsigned-char
2147 Let the type @code{char} be unsigned, like @code{unsigned char}.
2148
2149 Each kind of machine has a default for what @code{char} should
2150 be. It is either like @code{unsigned char} by default or like
2151 @code{signed char} by default.
2152
2153 Ideally, a portable program should always use @code{signed char} or
2154 @code{unsigned char} when it depends on the signedness of an object.
2155 But many programs have been written to use plain @code{char} and
2156 expect it to be signed, or expect it to be unsigned, depending on the
2157 machines they were written for. This option, and its inverse, let you
2158 make such a program work with the opposite default.
2159
2160 The type @code{char} is always a distinct type from each of
2161 @code{signed char} or @code{unsigned char}, even though its behavior
2162 is always just like one of those two.
2163
2164 @item -fsigned-char
2165 @opindex fsigned-char
2166 Let the type @code{char} be signed, like @code{signed char}.
2167
2168 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2169 the negative form of @option{-funsigned-char}. Likewise, the option
2170 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2171
2172 @item -fsigned-bitfields
2173 @itemx -funsigned-bitfields
2174 @itemx -fno-signed-bitfields
2175 @itemx -fno-unsigned-bitfields
2176 @opindex fsigned-bitfields
2177 @opindex funsigned-bitfields
2178 @opindex fno-signed-bitfields
2179 @opindex fno-unsigned-bitfields
2180 These options control whether a bit-field is signed or unsigned, when the
2181 declaration does not use either @code{signed} or @code{unsigned}. By
2182 default, such a bit-field is signed, because this is consistent: the
2183 basic integer types such as @code{int} are signed types.
2184
2185 @item -fsso-struct=@var{endianness}
2186 @opindex fsso-struct
2187 Set the default scalar storage order of structures and unions to the
2188 specified endianness. The accepted values are @samp{big-endian},
2189 @samp{little-endian} and @samp{native} for the native endianness of
2190 the target (the default). This option is not supported for C++.
2191
2192 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2193 code that is not binary compatible with code generated without it if the
2194 specified endianness is not the native endianness of the target.
2195 @end table
2196
2197 @node C++ Dialect Options
2198 @section Options Controlling C++ Dialect
2199
2200 @cindex compiler options, C++
2201 @cindex C++ options, command-line
2202 @cindex options, C++
2203 This section describes the command-line options that are only meaningful
2204 for C++ programs. You can also use most of the GNU compiler options
2205 regardless of what language your program is in. For example, you
2206 might compile a file @file{firstClass.C} like this:
2207
2208 @smallexample
2209 g++ -g -fstrict-enums -O -c firstClass.C
2210 @end smallexample
2211
2212 @noindent
2213 In this example, only @option{-fstrict-enums} is an option meant
2214 only for C++ programs; you can use the other options with any
2215 language supported by GCC@.
2216
2217 Some options for compiling C programs, such as @option{-std}, are also
2218 relevant for C++ programs.
2219 @xref{C Dialect Options,,Options Controlling C Dialect}.
2220
2221 Here is a list of options that are @emph{only} for compiling C++ programs:
2222
2223 @table @gcctabopt
2224
2225 @item -fabi-version=@var{n}
2226 @opindex fabi-version
2227 Use version @var{n} of the C++ ABI@. The default is version 0.
2228
2229 Version 0 refers to the version conforming most closely to
2230 the C++ ABI specification. Therefore, the ABI obtained using version 0
2231 will change in different versions of G++ as ABI bugs are fixed.
2232
2233 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2234
2235 Version 2 is the version of the C++ ABI that first appeared in G++
2236 3.4, and was the default through G++ 4.9.
2237
2238 Version 3 corrects an error in mangling a constant address as a
2239 template argument.
2240
2241 Version 4, which first appeared in G++ 4.5, implements a standard
2242 mangling for vector types.
2243
2244 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2245 attribute const/volatile on function pointer types, decltype of a
2246 plain decl, and use of a function parameter in the declaration of
2247 another parameter.
2248
2249 Version 6, which first appeared in G++ 4.7, corrects the promotion
2250 behavior of C++11 scoped enums and the mangling of template argument
2251 packs, const/static_cast, prefix ++ and --, and a class scope function
2252 used as a template argument.
2253
2254 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2255 builtin type and corrects the mangling of lambdas in default argument
2256 scope.
2257
2258 Version 8, which first appeared in G++ 4.9, corrects the substitution
2259 behavior of function types with function-cv-qualifiers.
2260
2261 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2262 @code{nullptr_t}.
2263
2264 Version 10, which first appeared in G++ 6.1, adds mangling of
2265 attributes that affect type identity, such as ia32 calling convention
2266 attributes (e.g. @samp{stdcall}).
2267
2268 Version 11, which first appeared in G++ 7, corrects the mangling of
2269 sizeof... expressions and operator names. For multiple entities with
2270 the same name within a function, that are declared in different scopes,
2271 the mangling now changes starting with the twelfth occurrence. It also
2272 implies @option{-fnew-inheriting-ctors}.
2273
2274 See also @option{-Wabi}.
2275
2276 @item -fabi-compat-version=@var{n}
2277 @opindex fabi-compat-version
2278 On targets that support strong aliases, G++
2279 works around mangling changes by creating an alias with the correct
2280 mangled name when defining a symbol with an incorrect mangled name.
2281 This switch specifies which ABI version to use for the alias.
2282
2283 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2284 compatibility). If another ABI version is explicitly selected, this
2285 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2286 use @option{-fabi-compat-version=2}.
2287
2288 If this option is not provided but @option{-Wabi=@var{n}} is, that
2289 version is used for compatibility aliases. If this option is provided
2290 along with @option{-Wabi} (without the version), the version from this
2291 option is used for the warning.
2292
2293 @item -fno-access-control
2294 @opindex fno-access-control
2295 Turn off all access checking. This switch is mainly useful for working
2296 around bugs in the access control code.
2297
2298 @item -faligned-new
2299 @opindex faligned-new
2300 Enable support for C++17 @code{new} of types that require more
2301 alignment than @code{void* ::operator new(std::size_t)} provides. A
2302 numeric argument such as @code{-faligned-new=32} can be used to
2303 specify how much alignment (in bytes) is provided by that function,
2304 but few users will need to override the default of
2305 @code{alignof(std::max_align_t)}.
2306
2307 This flag is enabled by default for @option{-std=c++1z}.
2308
2309 @item -fcheck-new
2310 @opindex fcheck-new
2311 Check that the pointer returned by @code{operator new} is non-null
2312 before attempting to modify the storage allocated. This check is
2313 normally unnecessary because the C++ standard specifies that
2314 @code{operator new} only returns @code{0} if it is declared
2315 @code{throw()}, in which case the compiler always checks the
2316 return value even without this option. In all other cases, when
2317 @code{operator new} has a non-empty exception specification, memory
2318 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2319 @samp{new (nothrow)}.
2320
2321 @item -fconcepts
2322 @opindex fconcepts
2323 Enable support for the C++ Extensions for Concepts Technical
2324 Specification, ISO 19217 (2015), which allows code like
2325
2326 @smallexample
2327 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2328 template <Addable T> T add (T a, T b) @{ return a + b; @}
2329 @end smallexample
2330
2331 @item -fconstexpr-depth=@var{n}
2332 @opindex fconstexpr-depth
2333 Set the maximum nested evaluation depth for C++11 constexpr functions
2334 to @var{n}. A limit is needed to detect endless recursion during
2335 constant expression evaluation. The minimum specified by the standard
2336 is 512.
2337
2338 @item -fconstexpr-loop-limit=@var{n}
2339 @opindex fconstexpr-loop-limit
2340 Set the maximum number of iterations for a loop in C++14 constexpr functions
2341 to @var{n}. A limit is needed to detect infinite loops during
2342 constant expression evaluation. The default is 262144 (1<<18).
2343
2344 @item -fdeduce-init-list
2345 @opindex fdeduce-init-list
2346 Enable deduction of a template type parameter as
2347 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2348
2349 @smallexample
2350 template <class T> auto forward(T t) -> decltype (realfn (t))
2351 @{
2352 return realfn (t);
2353 @}
2354
2355 void f()
2356 @{
2357 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2358 @}
2359 @end smallexample
2360
2361 This deduction was implemented as a possible extension to the
2362 originally proposed semantics for the C++11 standard, but was not part
2363 of the final standard, so it is disabled by default. This option is
2364 deprecated, and may be removed in a future version of G++.
2365
2366 @item -ffriend-injection
2367 @opindex ffriend-injection
2368 Inject friend functions into the enclosing namespace, so that they are
2369 visible outside the scope of the class in which they are declared.
2370 Friend functions were documented to work this way in the old Annotated
2371 C++ Reference Manual.
2372 However, in ISO C++ a friend function that is not declared
2373 in an enclosing scope can only be found using argument dependent
2374 lookup. GCC defaults to the standard behavior.
2375
2376 This option is for compatibility, and may be removed in a future
2377 release of G++.
2378
2379 @item -fno-elide-constructors
2380 @opindex fno-elide-constructors
2381 The C++ standard allows an implementation to omit creating a temporary
2382 that is only used to initialize another object of the same type.
2383 Specifying this option disables that optimization, and forces G++ to
2384 call the copy constructor in all cases. This option also causes G++
2385 to call trivial member functions which otherwise would be expanded inline.
2386
2387 In C++17, the compiler is required to omit these temporaries, but this
2388 option still affects trivial member functions.
2389
2390 @item -fno-enforce-eh-specs
2391 @opindex fno-enforce-eh-specs
2392 Don't generate code to check for violation of exception specifications
2393 at run time. This option violates the C++ standard, but may be useful
2394 for reducing code size in production builds, much like defining
2395 @code{NDEBUG}. This does not give user code permission to throw
2396 exceptions in violation of the exception specifications; the compiler
2397 still optimizes based on the specifications, so throwing an
2398 unexpected exception results in undefined behavior at run time.
2399
2400 @item -fextern-tls-init
2401 @itemx -fno-extern-tls-init
2402 @opindex fextern-tls-init
2403 @opindex fno-extern-tls-init
2404 The C++11 and OpenMP standards allow @code{thread_local} and
2405 @code{threadprivate} variables to have dynamic (runtime)
2406 initialization. To support this, any use of such a variable goes
2407 through a wrapper function that performs any necessary initialization.
2408 When the use and definition of the variable are in the same
2409 translation unit, this overhead can be optimized away, but when the
2410 use is in a different translation unit there is significant overhead
2411 even if the variable doesn't actually need dynamic initialization. If
2412 the programmer can be sure that no use of the variable in a
2413 non-defining TU needs to trigger dynamic initialization (either
2414 because the variable is statically initialized, or a use of the
2415 variable in the defining TU will be executed before any uses in
2416 another TU), they can avoid this overhead with the
2417 @option{-fno-extern-tls-init} option.
2418
2419 On targets that support symbol aliases, the default is
2420 @option{-fextern-tls-init}. On targets that do not support symbol
2421 aliases, the default is @option{-fno-extern-tls-init}.
2422
2423 @item -ffor-scope
2424 @itemx -fno-for-scope
2425 @opindex ffor-scope
2426 @opindex fno-for-scope
2427 If @option{-ffor-scope} is specified, the scope of variables declared in
2428 a @i{for-init-statement} is limited to the @code{for} loop itself,
2429 as specified by the C++ standard.
2430 If @option{-fno-for-scope} is specified, the scope of variables declared in
2431 a @i{for-init-statement} extends to the end of the enclosing scope,
2432 as was the case in old versions of G++, and other (traditional)
2433 implementations of C++.
2434
2435 If neither flag is given, the default is to follow the standard,
2436 but to allow and give a warning for old-style code that would
2437 otherwise be invalid, or have different behavior.
2438
2439 @item -fno-gnu-keywords
2440 @opindex fno-gnu-keywords
2441 Do not recognize @code{typeof} as a keyword, so that code can use this
2442 word as an identifier. You can use the keyword @code{__typeof__} instead.
2443 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2444 @option{-std=c++98}, @option{-std=c++11}, etc.
2445
2446 @item -fno-implicit-templates
2447 @opindex fno-implicit-templates
2448 Never emit code for non-inline templates that are instantiated
2449 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2450 @xref{Template Instantiation}, for more information.
2451
2452 @item -fno-implicit-inline-templates
2453 @opindex fno-implicit-inline-templates
2454 Don't emit code for implicit instantiations of inline templates, either.
2455 The default is to handle inlines differently so that compiles with and
2456 without optimization need the same set of explicit instantiations.
2457
2458 @item -fno-implement-inlines
2459 @opindex fno-implement-inlines
2460 To save space, do not emit out-of-line copies of inline functions
2461 controlled by @code{#pragma implementation}. This causes linker
2462 errors if these functions are not inlined everywhere they are called.
2463
2464 @item -fms-extensions
2465 @opindex fms-extensions
2466 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2467 int and getting a pointer to member function via non-standard syntax.
2468
2469 @item -fnew-inheriting-ctors
2470 @opindex fnew-inheriting-ctors
2471 Enable the P0136 adjustment to the semantics of C++11 constructor
2472 inheritance. This is part of C++17 but also considered to be a Defect
2473 Report against C++11 and C++14. This flag is enabled by default
2474 unless @option{-fabi-version=10} or lower is specified.
2475
2476 @item -fnew-ttp-matching
2477 @opindex fnew-ttp-matching
2478 Enable the P0522 resolution to Core issue 150, template template
2479 parameters and default arguments: this allows a template with default
2480 template arguments as an argument for a template template parameter
2481 with fewer template parameters. This flag is enabled by default for
2482 @option{-std=c++1z}.
2483
2484 @item -fno-nonansi-builtins
2485 @opindex fno-nonansi-builtins
2486 Disable built-in declarations of functions that are not mandated by
2487 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2488 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2489
2490 @item -fnothrow-opt
2491 @opindex fnothrow-opt
2492 Treat a @code{throw()} exception specification as if it were a
2493 @code{noexcept} specification to reduce or eliminate the text size
2494 overhead relative to a function with no exception specification. If
2495 the function has local variables of types with non-trivial
2496 destructors, the exception specification actually makes the
2497 function smaller because the EH cleanups for those variables can be
2498 optimized away. The semantic effect is that an exception thrown out of
2499 a function with such an exception specification results in a call
2500 to @code{terminate} rather than @code{unexpected}.
2501
2502 @item -fno-operator-names
2503 @opindex fno-operator-names
2504 Do not treat the operator name keywords @code{and}, @code{bitand},
2505 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2506 synonyms as keywords.
2507
2508 @item -fno-optional-diags
2509 @opindex fno-optional-diags
2510 Disable diagnostics that the standard says a compiler does not need to
2511 issue. Currently, the only such diagnostic issued by G++ is the one for
2512 a name having multiple meanings within a class.
2513
2514 @item -fpermissive
2515 @opindex fpermissive
2516 Downgrade some diagnostics about nonconformant code from errors to
2517 warnings. Thus, using @option{-fpermissive} allows some
2518 nonconforming code to compile.
2519
2520 @item -fno-pretty-templates
2521 @opindex fno-pretty-templates
2522 When an error message refers to a specialization of a function
2523 template, the compiler normally prints the signature of the
2524 template followed by the template arguments and any typedefs or
2525 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2526 rather than @code{void f(int)}) so that it's clear which template is
2527 involved. When an error message refers to a specialization of a class
2528 template, the compiler omits any template arguments that match
2529 the default template arguments for that template. If either of these
2530 behaviors make it harder to understand the error message rather than
2531 easier, you can use @option{-fno-pretty-templates} to disable them.
2532
2533 @item -frepo
2534 @opindex frepo
2535 Enable automatic template instantiation at link time. This option also
2536 implies @option{-fno-implicit-templates}. @xref{Template
2537 Instantiation}, for more information.
2538
2539 @item -fno-rtti
2540 @opindex fno-rtti
2541 Disable generation of information about every class with virtual
2542 functions for use by the C++ run-time type identification features
2543 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2544 of the language, you can save some space by using this flag. Note that
2545 exception handling uses the same information, but G++ generates it as
2546 needed. The @code{dynamic_cast} operator can still be used for casts that
2547 do not require run-time type information, i.e.@: casts to @code{void *} or to
2548 unambiguous base classes.
2549
2550 @item -fsized-deallocation
2551 @opindex fsized-deallocation
2552 Enable the built-in global declarations
2553 @smallexample
2554 void operator delete (void *, std::size_t) noexcept;
2555 void operator delete[] (void *, std::size_t) noexcept;
2556 @end smallexample
2557 as introduced in C++14. This is useful for user-defined replacement
2558 deallocation functions that, for example, use the size of the object
2559 to make deallocation faster. Enabled by default under
2560 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2561 warns about places that might want to add a definition.
2562
2563 @item -fstrict-enums
2564 @opindex fstrict-enums
2565 Allow the compiler to optimize using the assumption that a value of
2566 enumerated type can only be one of the values of the enumeration (as
2567 defined in the C++ standard; basically, a value that can be
2568 represented in the minimum number of bits needed to represent all the
2569 enumerators). This assumption may not be valid if the program uses a
2570 cast to convert an arbitrary integer value to the enumerated type.
2571
2572 @item -fstrong-eval-order
2573 @opindex fstrong-eval-order
2574 Evaluate member access, array subscripting, and shift expressions in
2575 left-to-right order, and evaluate assignment in right-to-left order,
2576 as adopted for C++17. Enabled by default with @option{-std=c++1z}.
2577 @option{-fstrong-eval-order=some} enables just the ordering of member
2578 access and shift expressions, and is the default without
2579 @option{-std=c++1z}.
2580
2581 @item -ftemplate-backtrace-limit=@var{n}
2582 @opindex ftemplate-backtrace-limit
2583 Set the maximum number of template instantiation notes for a single
2584 warning or error to @var{n}. The default value is 10.
2585
2586 @item -ftemplate-depth=@var{n}
2587 @opindex ftemplate-depth
2588 Set the maximum instantiation depth for template classes to @var{n}.
2589 A limit on the template instantiation depth is needed to detect
2590 endless recursions during template class instantiation. ANSI/ISO C++
2591 conforming programs must not rely on a maximum depth greater than 17
2592 (changed to 1024 in C++11). The default value is 900, as the compiler
2593 can run out of stack space before hitting 1024 in some situations.
2594
2595 @item -fno-threadsafe-statics
2596 @opindex fno-threadsafe-statics
2597 Do not emit the extra code to use the routines specified in the C++
2598 ABI for thread-safe initialization of local statics. You can use this
2599 option to reduce code size slightly in code that doesn't need to be
2600 thread-safe.
2601
2602 @item -fuse-cxa-atexit
2603 @opindex fuse-cxa-atexit
2604 Register destructors for objects with static storage duration with the
2605 @code{__cxa_atexit} function rather than the @code{atexit} function.
2606 This option is required for fully standards-compliant handling of static
2607 destructors, but only works if your C library supports
2608 @code{__cxa_atexit}.
2609
2610 @item -fno-use-cxa-get-exception-ptr
2611 @opindex fno-use-cxa-get-exception-ptr
2612 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2613 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2614 if the runtime routine is not available.
2615
2616 @item -fvisibility-inlines-hidden
2617 @opindex fvisibility-inlines-hidden
2618 This switch declares that the user does not attempt to compare
2619 pointers to inline functions or methods where the addresses of the two functions
2620 are taken in different shared objects.
2621
2622 The effect of this is that GCC may, effectively, mark inline methods with
2623 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2624 appear in the export table of a DSO and do not require a PLT indirection
2625 when used within the DSO@. Enabling this option can have a dramatic effect
2626 on load and link times of a DSO as it massively reduces the size of the
2627 dynamic export table when the library makes heavy use of templates.
2628
2629 The behavior of this switch is not quite the same as marking the
2630 methods as hidden directly, because it does not affect static variables
2631 local to the function or cause the compiler to deduce that
2632 the function is defined in only one shared object.
2633
2634 You may mark a method as having a visibility explicitly to negate the
2635 effect of the switch for that method. For example, if you do want to
2636 compare pointers to a particular inline method, you might mark it as
2637 having default visibility. Marking the enclosing class with explicit
2638 visibility has no effect.
2639
2640 Explicitly instantiated inline methods are unaffected by this option
2641 as their linkage might otherwise cross a shared library boundary.
2642 @xref{Template Instantiation}.
2643
2644 @item -fvisibility-ms-compat
2645 @opindex fvisibility-ms-compat
2646 This flag attempts to use visibility settings to make GCC's C++
2647 linkage model compatible with that of Microsoft Visual Studio.
2648
2649 The flag makes these changes to GCC's linkage model:
2650
2651 @enumerate
2652 @item
2653 It sets the default visibility to @code{hidden}, like
2654 @option{-fvisibility=hidden}.
2655
2656 @item
2657 Types, but not their members, are not hidden by default.
2658
2659 @item
2660 The One Definition Rule is relaxed for types without explicit
2661 visibility specifications that are defined in more than one
2662 shared object: those declarations are permitted if they are
2663 permitted when this option is not used.
2664 @end enumerate
2665
2666 In new code it is better to use @option{-fvisibility=hidden} and
2667 export those classes that are intended to be externally visible.
2668 Unfortunately it is possible for code to rely, perhaps accidentally,
2669 on the Visual Studio behavior.
2670
2671 Among the consequences of these changes are that static data members
2672 of the same type with the same name but defined in different shared
2673 objects are different, so changing one does not change the other;
2674 and that pointers to function members defined in different shared
2675 objects may not compare equal. When this flag is given, it is a
2676 violation of the ODR to define types with the same name differently.
2677
2678 @item -fno-weak
2679 @opindex fno-weak
2680 Do not use weak symbol support, even if it is provided by the linker.
2681 By default, G++ uses weak symbols if they are available. This
2682 option exists only for testing, and should not be used by end-users;
2683 it results in inferior code and has no benefits. This option may
2684 be removed in a future release of G++.
2685
2686 @item -nostdinc++
2687 @opindex nostdinc++
2688 Do not search for header files in the standard directories specific to
2689 C++, but do still search the other standard directories. (This option
2690 is used when building the C++ library.)
2691 @end table
2692
2693 In addition, these optimization, warning, and code generation options
2694 have meanings only for C++ programs:
2695
2696 @table @gcctabopt
2697 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2698 @opindex Wabi
2699 @opindex Wno-abi
2700 Warn when G++ it generates code that is probably not compatible with
2701 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2702 ABI with each major release, normally @option{-Wabi} will warn only if
2703 there is a check added later in a release series for an ABI issue
2704 discovered since the initial release. @option{-Wabi} will warn about
2705 more things if an older ABI version is selected (with
2706 @option{-fabi-version=@var{n}}).
2707
2708 @option{-Wabi} can also be used with an explicit version number to
2709 warn about compatibility with a particular @option{-fabi-version}
2710 level, e.g. @option{-Wabi=2} to warn about changes relative to
2711 @option{-fabi-version=2}.
2712
2713 If an explicit version number is provided and
2714 @option{-fabi-compat-version} is not specified, the version number
2715 from this option is used for compatibility aliases. If no explicit
2716 version number is provided with this option, but
2717 @option{-fabi-compat-version} is specified, that version number is
2718 used for ABI warnings.
2719
2720 Although an effort has been made to warn about
2721 all such cases, there are probably some cases that are not warned about,
2722 even though G++ is generating incompatible code. There may also be
2723 cases where warnings are emitted even though the code that is generated
2724 is compatible.
2725
2726 You should rewrite your code to avoid these warnings if you are
2727 concerned about the fact that code generated by G++ may not be binary
2728 compatible with code generated by other compilers.
2729
2730 Known incompatibilities in @option{-fabi-version=2} (which was the
2731 default from GCC 3.4 to 4.9) include:
2732
2733 @itemize @bullet
2734
2735 @item
2736 A template with a non-type template parameter of reference type was
2737 mangled incorrectly:
2738 @smallexample
2739 extern int N;
2740 template <int &> struct S @{@};
2741 void n (S<N>) @{2@}
2742 @end smallexample
2743
2744 This was fixed in @option{-fabi-version=3}.
2745
2746 @item
2747 SIMD vector types declared using @code{__attribute ((vector_size))} were
2748 mangled in a non-standard way that does not allow for overloading of
2749 functions taking vectors of different sizes.
2750
2751 The mangling was changed in @option{-fabi-version=4}.
2752
2753 @item
2754 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2755 qualifiers, and @code{decltype} of a plain declaration was folded away.
2756
2757 These mangling issues were fixed in @option{-fabi-version=5}.
2758
2759 @item
2760 Scoped enumerators passed as arguments to a variadic function are
2761 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2762 On most targets this does not actually affect the parameter passing
2763 ABI, as there is no way to pass an argument smaller than @code{int}.
2764
2765 Also, the ABI changed the mangling of template argument packs,
2766 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2767 a class scope function used as a template argument.
2768
2769 These issues were corrected in @option{-fabi-version=6}.
2770
2771 @item
2772 Lambdas in default argument scope were mangled incorrectly, and the
2773 ABI changed the mangling of @code{nullptr_t}.
2774
2775 These issues were corrected in @option{-fabi-version=7}.
2776
2777 @item
2778 When mangling a function type with function-cv-qualifiers, the
2779 un-qualified function type was incorrectly treated as a substitution
2780 candidate.
2781
2782 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2783
2784 @item
2785 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2786 unaligned accesses. Note that this did not affect the ABI of a
2787 function with a @code{nullptr_t} parameter, as parameters have a
2788 minimum alignment.
2789
2790 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2791
2792 @item
2793 Target-specific attributes that affect the identity of a type, such as
2794 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2795 did not affect the mangled name, leading to name collisions when
2796 function pointers were used as template arguments.
2797
2798 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2799
2800 @end itemize
2801
2802 It also warns about psABI-related changes. The known psABI changes at this
2803 point include:
2804
2805 @itemize @bullet
2806
2807 @item
2808 For SysV/x86-64, unions with @code{long double} members are
2809 passed in memory as specified in psABI. For example:
2810
2811 @smallexample
2812 union U @{
2813 long double ld;
2814 int i;
2815 @};
2816 @end smallexample
2817
2818 @noindent
2819 @code{union U} is always passed in memory.
2820
2821 @end itemize
2822
2823 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2824 @opindex Wabi-tag
2825 @opindex -Wabi-tag
2826 Warn when a type with an ABI tag is used in a context that does not
2827 have that ABI tag. See @ref{C++ Attributes} for more information
2828 about ABI tags.
2829
2830 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2831 @opindex Wctor-dtor-privacy
2832 @opindex Wno-ctor-dtor-privacy
2833 Warn when a class seems unusable because all the constructors or
2834 destructors in that class are private, and it has neither friends nor
2835 public static member functions. Also warn if there are no non-private
2836 methods, and there's at least one private member function that isn't
2837 a constructor or destructor.
2838
2839 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2840 @opindex Wdelete-non-virtual-dtor
2841 @opindex Wno-delete-non-virtual-dtor
2842 Warn when @code{delete} is used to destroy an instance of a class that
2843 has virtual functions and non-virtual destructor. It is unsafe to delete
2844 an instance of a derived class through a pointer to a base class if the
2845 base class does not have a virtual destructor. This warning is enabled
2846 by @option{-Wall}.
2847
2848 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2849 @opindex Wliteral-suffix
2850 @opindex Wno-literal-suffix
2851 Warn when a string or character literal is followed by a ud-suffix which does
2852 not begin with an underscore. As a conforming extension, GCC treats such
2853 suffixes as separate preprocessing tokens in order to maintain backwards
2854 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2855 For example:
2856
2857 @smallexample
2858 #define __STDC_FORMAT_MACROS
2859 #include <inttypes.h>
2860 #include <stdio.h>
2861
2862 int main() @{
2863 int64_t i64 = 123;
2864 printf("My int64: %" PRId64"\n", i64);
2865 @}
2866 @end smallexample
2867
2868 In this case, @code{PRId64} is treated as a separate preprocessing token.
2869
2870 Additionally, warn when a user-defined literal operator is declared with
2871 a literal suffix identifier that doesn't begin with an underscore. Literal
2872 suffix identifiers that don't begin with an underscore are reserved for
2873 future standardization.
2874
2875 This warning is enabled by default.
2876
2877 @item -Wlto-type-mismatch
2878 @opindex Wlto-type-mismatch
2879 @opindex Wno-lto-type-mismatch
2880
2881 During the link-time optimization warn about type mismatches in
2882 global declarations from different compilation units.
2883 Requires @option{-flto} to be enabled. Enabled by default.
2884
2885 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
2886 @opindex Wnarrowing
2887 @opindex Wno-narrowing
2888 For C++11 and later standards, narrowing conversions are diagnosed by default,
2889 as required by the standard. A narrowing conversion from a constant produces
2890 an error, and a narrowing conversion from a non-constant produces a warning,
2891 but @option{-Wno-narrowing} suppresses the diagnostic.
2892 Note that this does not affect the meaning of well-formed code;
2893 narrowing conversions are still considered ill-formed in SFINAE contexts.
2894
2895 With @option{-Wnarrowing} in C++98, warn when a narrowing
2896 conversion prohibited by C++11 occurs within
2897 @samp{@{ @}}, e.g.
2898
2899 @smallexample
2900 int i = @{ 2.2 @}; // error: narrowing from double to int
2901 @end smallexample
2902
2903 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2904
2905 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2906 @opindex Wnoexcept
2907 @opindex Wno-noexcept
2908 Warn when a noexcept-expression evaluates to false because of a call
2909 to a function that does not have a non-throwing exception
2910 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2911 the compiler to never throw an exception.
2912
2913 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
2914 @opindex Wnoexcept-type
2915 @opindex Wno-noexcept-type
2916 Warn if the C++1z feature making @code{noexcept} part of a function
2917 type changes the mangled name of a symbol relative to C++14. Enabled
2918 by @option{-Wabi} and @option{-Wc++1z-compat}.
2919
2920 @smallexample
2921 template <class T> void f(T t) @{ t(); @};
2922 void g() noexcept;
2923 void h() @{ f(g); @} // in C++14 calls f<void(*)()>, in C++1z calls f<void(*)()noexcept>
2924 @end smallexample
2925
2926 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
2927 @opindex Wclass-memaccess
2928 Warn when the destination of a call to a raw memory function such as
2929 @code{memset} or @code{memcpy} is an object of class type writing into which
2930 might bypass the class non-trivial or deleted constructor or copy assignment,
2931 violate const-correctness or encapsulation, or corrupt the virtual table.
2932 Modifying the representation of such objects may violate invariants maintained
2933 by member functions of the class. For example, the call to @code{memset}
2934 below is undefined becase it modifies a non-trivial class object and is,
2935 therefore, diagnosed. The safe way to either initialize or clear the storage
2936 of objects of such types is by using the appropriate constructor or assignment
2937 operator, if one is available.
2938 @smallexample
2939 std::string str = "abc";
2940 memset (&str, 0, 3);
2941 @end smallexample
2942 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
2943
2944 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2945 @opindex Wnon-virtual-dtor
2946 @opindex Wno-non-virtual-dtor
2947 Warn when a class has virtual functions and an accessible non-virtual
2948 destructor itself or in an accessible polymorphic base class, in which
2949 case it is possible but unsafe to delete an instance of a derived
2950 class through a pointer to the class itself or base class. This
2951 warning is automatically enabled if @option{-Weffc++} is specified.
2952
2953 @item -Wregister @r{(C++ and Objective-C++ only)}
2954 @opindex Wregister
2955 @opindex Wno-register
2956 Warn on uses of the @code{register} storage class specifier, except
2957 when it is part of the GNU @ref{Explicit Register Variables} extension.
2958 The use of the @code{register} keyword as storage class specifier has
2959 been deprecated in C++11 and removed in C++17.
2960 Enabled by default with @option{-std=c++1z}.
2961
2962 @item -Wreorder @r{(C++ and Objective-C++ only)}
2963 @opindex Wreorder
2964 @opindex Wno-reorder
2965 @cindex reordering, warning
2966 @cindex warning for reordering of member initializers
2967 Warn when the order of member initializers given in the code does not
2968 match the order in which they must be executed. For instance:
2969
2970 @smallexample
2971 struct A @{
2972 int i;
2973 int j;
2974 A(): j (0), i (1) @{ @}
2975 @};
2976 @end smallexample
2977
2978 @noindent
2979 The compiler rearranges the member initializers for @code{i}
2980 and @code{j} to match the declaration order of the members, emitting
2981 a warning to that effect. This warning is enabled by @option{-Wall}.
2982
2983 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2984 @opindex fext-numeric-literals
2985 @opindex fno-ext-numeric-literals
2986 Accept imaginary, fixed-point, or machine-defined
2987 literal number suffixes as GNU extensions.
2988 When this option is turned off these suffixes are treated
2989 as C++11 user-defined literal numeric suffixes.
2990 This is on by default for all pre-C++11 dialects and all GNU dialects:
2991 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2992 @option{-std=gnu++14}.
2993 This option is off by default
2994 for ISO C++11 onwards (@option{-std=c++11}, ...).
2995 @end table
2996
2997 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2998
2999 @table @gcctabopt
3000 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3001 @opindex Weffc++
3002 @opindex Wno-effc++
3003 Warn about violations of the following style guidelines from Scott Meyers'
3004 @cite{Effective C++} series of books:
3005
3006 @itemize @bullet
3007 @item
3008 Define a copy constructor and an assignment operator for classes
3009 with dynamically-allocated memory.
3010
3011 @item
3012 Prefer initialization to assignment in constructors.
3013
3014 @item
3015 Have @code{operator=} return a reference to @code{*this}.
3016
3017 @item
3018 Don't try to return a reference when you must return an object.
3019
3020 @item
3021 Distinguish between prefix and postfix forms of increment and
3022 decrement operators.
3023
3024 @item
3025 Never overload @code{&&}, @code{||}, or @code{,}.
3026
3027 @end itemize
3028
3029 This option also enables @option{-Wnon-virtual-dtor}, which is also
3030 one of the effective C++ recommendations. However, the check is
3031 extended to warn about the lack of virtual destructor in accessible
3032 non-polymorphic bases classes too.
3033
3034 When selecting this option, be aware that the standard library
3035 headers do not obey all of these guidelines; use @samp{grep -v}
3036 to filter out those warnings.
3037
3038 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3039 @opindex Wstrict-null-sentinel
3040 @opindex Wno-strict-null-sentinel
3041 Warn about the use of an uncasted @code{NULL} as sentinel. When
3042 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3043 to @code{__null}. Although it is a null pointer constant rather than a
3044 null pointer, it is guaranteed to be of the same size as a pointer.
3045 But this use is not portable across different compilers.
3046
3047 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3048 @opindex Wno-non-template-friend
3049 @opindex Wnon-template-friend
3050 Disable warnings when non-template friend functions are declared
3051 within a template. In very old versions of GCC that predate implementation
3052 of the ISO standard, declarations such as
3053 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3054 could be interpreted as a particular specialization of a template
3055 function; the warning exists to diagnose compatibility problems,
3056 and is enabled by default.
3057
3058 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3059 @opindex Wold-style-cast
3060 @opindex Wno-old-style-cast
3061 Warn if an old-style (C-style) cast to a non-void type is used within
3062 a C++ program. The new-style casts (@code{dynamic_cast},
3063 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3064 less vulnerable to unintended effects and much easier to search for.
3065
3066 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3067 @opindex Woverloaded-virtual
3068 @opindex Wno-overloaded-virtual
3069 @cindex overloaded virtual function, warning
3070 @cindex warning for overloaded virtual function
3071 Warn when a function declaration hides virtual functions from a
3072 base class. For example, in:
3073
3074 @smallexample
3075 struct A @{
3076 virtual void f();
3077 @};
3078
3079 struct B: public A @{
3080 void f(int);
3081 @};
3082 @end smallexample
3083
3084 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3085 like:
3086
3087 @smallexample
3088 B* b;
3089 b->f();
3090 @end smallexample
3091
3092 @noindent
3093 fails to compile.
3094
3095 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3096 @opindex Wno-pmf-conversions
3097 @opindex Wpmf-conversions
3098 Disable the diagnostic for converting a bound pointer to member function
3099 to a plain pointer.
3100
3101 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3102 @opindex Wsign-promo
3103 @opindex Wno-sign-promo
3104 Warn when overload resolution chooses a promotion from unsigned or
3105 enumerated type to a signed type, over a conversion to an unsigned type of
3106 the same size. Previous versions of G++ tried to preserve
3107 unsignedness, but the standard mandates the current behavior.
3108
3109 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3110 @opindex Wtemplates
3111 Warn when a primary template declaration is encountered. Some coding
3112 rules disallow templates, and this may be used to enforce that rule.
3113 The warning is inactive inside a system header file, such as the STL, so
3114 one can still use the STL. One may also instantiate or specialize
3115 templates.
3116
3117 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3118 @opindex Wmultiple-inheritance
3119 Warn when a class is defined with multiple direct base classes. Some
3120 coding rules disallow multiple inheritance, and this may be used to
3121 enforce that rule. The warning is inactive inside a system header file,
3122 such as the STL, so one can still use the STL. One may also define
3123 classes that indirectly use multiple inheritance.
3124
3125 @item -Wvirtual-inheritance
3126 @opindex Wvirtual-inheritance
3127 Warn when a class is defined with a virtual direct base class. Some
3128 coding rules disallow multiple inheritance, and this may be used to
3129 enforce that rule. The warning is inactive inside a system header file,
3130 such as the STL, so one can still use the STL. One may also define
3131 classes that indirectly use virtual inheritance.
3132
3133 @item -Wnamespaces
3134 @opindex Wnamespaces
3135 Warn when a namespace definition is opened. Some coding rules disallow
3136 namespaces, and this may be used to enforce that rule. The warning is
3137 inactive inside a system header file, such as the STL, so one can still
3138 use the STL. One may also use using directives and qualified names.
3139
3140 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3141 @opindex Wterminate
3142 @opindex Wno-terminate
3143 Disable the warning about a throw-expression that will immediately
3144 result in a call to @code{terminate}.
3145 @end table
3146
3147 @node Objective-C and Objective-C++ Dialect Options
3148 @section Options Controlling Objective-C and Objective-C++ Dialects
3149
3150 @cindex compiler options, Objective-C and Objective-C++
3151 @cindex Objective-C and Objective-C++ options, command-line
3152 @cindex options, Objective-C and Objective-C++
3153 (NOTE: This manual does not describe the Objective-C and Objective-C++
3154 languages themselves. @xref{Standards,,Language Standards
3155 Supported by GCC}, for references.)
3156
3157 This section describes the command-line options that are only meaningful
3158 for Objective-C and Objective-C++ programs. You can also use most of
3159 the language-independent GNU compiler options.
3160 For example, you might compile a file @file{some_class.m} like this:
3161
3162 @smallexample
3163 gcc -g -fgnu-runtime -O -c some_class.m
3164 @end smallexample
3165
3166 @noindent
3167 In this example, @option{-fgnu-runtime} is an option meant only for
3168 Objective-C and Objective-C++ programs; you can use the other options with
3169 any language supported by GCC@.
3170
3171 Note that since Objective-C is an extension of the C language, Objective-C
3172 compilations may also use options specific to the C front-end (e.g.,
3173 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3174 C++-specific options (e.g., @option{-Wabi}).
3175
3176 Here is a list of options that are @emph{only} for compiling Objective-C
3177 and Objective-C++ programs:
3178
3179 @table @gcctabopt
3180 @item -fconstant-string-class=@var{class-name}
3181 @opindex fconstant-string-class
3182 Use @var{class-name} as the name of the class to instantiate for each
3183 literal string specified with the syntax @code{@@"@dots{}"}. The default
3184 class name is @code{NXConstantString} if the GNU runtime is being used, and
3185 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3186 @option{-fconstant-cfstrings} option, if also present, overrides the
3187 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3188 to be laid out as constant CoreFoundation strings.
3189
3190 @item -fgnu-runtime
3191 @opindex fgnu-runtime
3192 Generate object code compatible with the standard GNU Objective-C
3193 runtime. This is the default for most types of systems.
3194
3195 @item -fnext-runtime
3196 @opindex fnext-runtime
3197 Generate output compatible with the NeXT runtime. This is the default
3198 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3199 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3200 used.
3201
3202 @item -fno-nil-receivers
3203 @opindex fno-nil-receivers
3204 Assume that all Objective-C message dispatches (@code{[receiver
3205 message:arg]}) in this translation unit ensure that the receiver is
3206 not @code{nil}. This allows for more efficient entry points in the
3207 runtime to be used. This option is only available in conjunction with
3208 the NeXT runtime and ABI version 0 or 1.
3209
3210 @item -fobjc-abi-version=@var{n}
3211 @opindex fobjc-abi-version
3212 Use version @var{n} of the Objective-C ABI for the selected runtime.
3213 This option is currently supported only for the NeXT runtime. In that
3214 case, Version 0 is the traditional (32-bit) ABI without support for
3215 properties and other Objective-C 2.0 additions. Version 1 is the
3216 traditional (32-bit) ABI with support for properties and other
3217 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3218 nothing is specified, the default is Version 0 on 32-bit target
3219 machines, and Version 2 on 64-bit target machines.
3220
3221 @item -fobjc-call-cxx-cdtors
3222 @opindex fobjc-call-cxx-cdtors
3223 For each Objective-C class, check if any of its instance variables is a
3224 C++ object with a non-trivial default constructor. If so, synthesize a
3225 special @code{- (id) .cxx_construct} instance method which runs
3226 non-trivial default constructors on any such instance variables, in order,
3227 and then return @code{self}. Similarly, check if any instance variable
3228 is a C++ object with a non-trivial destructor, and if so, synthesize a
3229 special @code{- (void) .cxx_destruct} method which runs
3230 all such default destructors, in reverse order.
3231
3232 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3233 methods thusly generated only operate on instance variables
3234 declared in the current Objective-C class, and not those inherited
3235 from superclasses. It is the responsibility of the Objective-C
3236 runtime to invoke all such methods in an object's inheritance
3237 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3238 by the runtime immediately after a new object instance is allocated;
3239 the @code{- (void) .cxx_destruct} methods are invoked immediately
3240 before the runtime deallocates an object instance.
3241
3242 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3243 support for invoking the @code{- (id) .cxx_construct} and
3244 @code{- (void) .cxx_destruct} methods.
3245
3246 @item -fobjc-direct-dispatch
3247 @opindex fobjc-direct-dispatch
3248 Allow fast jumps to the message dispatcher. On Darwin this is
3249 accomplished via the comm page.
3250
3251 @item -fobjc-exceptions
3252 @opindex fobjc-exceptions
3253 Enable syntactic support for structured exception handling in
3254 Objective-C, similar to what is offered by C++. This option
3255 is required to use the Objective-C keywords @code{@@try},
3256 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3257 @code{@@synchronized}. This option is available with both the GNU
3258 runtime and the NeXT runtime (but not available in conjunction with
3259 the NeXT runtime on Mac OS X 10.2 and earlier).
3260
3261 @item -fobjc-gc
3262 @opindex fobjc-gc
3263 Enable garbage collection (GC) in Objective-C and Objective-C++
3264 programs. This option is only available with the NeXT runtime; the
3265 GNU runtime has a different garbage collection implementation that
3266 does not require special compiler flags.
3267
3268 @item -fobjc-nilcheck
3269 @opindex fobjc-nilcheck
3270 For the NeXT runtime with version 2 of the ABI, check for a nil
3271 receiver in method invocations before doing the actual method call.
3272 This is the default and can be disabled using
3273 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3274 checked for nil in this way no matter what this flag is set to.
3275 Currently this flag does nothing when the GNU runtime, or an older
3276 version of the NeXT runtime ABI, is used.
3277
3278 @item -fobjc-std=objc1
3279 @opindex fobjc-std
3280 Conform to the language syntax of Objective-C 1.0, the language
3281 recognized by GCC 4.0. This only affects the Objective-C additions to
3282 the C/C++ language; it does not affect conformance to C/C++ standards,
3283 which is controlled by the separate C/C++ dialect option flags. When
3284 this option is used with the Objective-C or Objective-C++ compiler,
3285 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3286 This is useful if you need to make sure that your Objective-C code can
3287 be compiled with older versions of GCC@.
3288
3289 @item -freplace-objc-classes
3290 @opindex freplace-objc-classes
3291 Emit a special marker instructing @command{ld(1)} not to statically link in
3292 the resulting object file, and allow @command{dyld(1)} to load it in at
3293 run time instead. This is used in conjunction with the Fix-and-Continue
3294 debugging mode, where the object file in question may be recompiled and
3295 dynamically reloaded in the course of program execution, without the need
3296 to restart the program itself. Currently, Fix-and-Continue functionality
3297 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3298 and later.
3299
3300 @item -fzero-link
3301 @opindex fzero-link
3302 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3303 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3304 compile time) with static class references that get initialized at load time,
3305 which improves run-time performance. Specifying the @option{-fzero-link} flag
3306 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3307 to be retained. This is useful in Zero-Link debugging mode, since it allows
3308 for individual class implementations to be modified during program execution.
3309 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3310 regardless of command-line options.
3311
3312 @item -fno-local-ivars
3313 @opindex fno-local-ivars
3314 @opindex flocal-ivars
3315 By default instance variables in Objective-C can be accessed as if
3316 they were local variables from within the methods of the class they're
3317 declared in. This can lead to shadowing between instance variables
3318 and other variables declared either locally inside a class method or
3319 globally with the same name. Specifying the @option{-fno-local-ivars}
3320 flag disables this behavior thus avoiding variable shadowing issues.
3321
3322 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3323 @opindex fivar-visibility
3324 Set the default instance variable visibility to the specified option
3325 so that instance variables declared outside the scope of any access
3326 modifier directives default to the specified visibility.
3327
3328 @item -gen-decls
3329 @opindex gen-decls
3330 Dump interface declarations for all classes seen in the source file to a
3331 file named @file{@var{sourcename}.decl}.
3332
3333 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3334 @opindex Wassign-intercept
3335 @opindex Wno-assign-intercept
3336 Warn whenever an Objective-C assignment is being intercepted by the
3337 garbage collector.
3338
3339 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3340 @opindex Wno-protocol
3341 @opindex Wprotocol
3342 If a class is declared to implement a protocol, a warning is issued for
3343 every method in the protocol that is not implemented by the class. The
3344 default behavior is to issue a warning for every method not explicitly
3345 implemented in the class, even if a method implementation is inherited
3346 from the superclass. If you use the @option{-Wno-protocol} option, then
3347 methods inherited from the superclass are considered to be implemented,
3348 and no warning is issued for them.
3349
3350 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3351 @opindex Wselector
3352 @opindex Wno-selector
3353 Warn if multiple methods of different types for the same selector are
3354 found during compilation. The check is performed on the list of methods
3355 in the final stage of compilation. Additionally, a check is performed
3356 for each selector appearing in a @code{@@selector(@dots{})}
3357 expression, and a corresponding method for that selector has been found
3358 during compilation. Because these checks scan the method table only at
3359 the end of compilation, these warnings are not produced if the final
3360 stage of compilation is not reached, for example because an error is
3361 found during compilation, or because the @option{-fsyntax-only} option is
3362 being used.
3363
3364 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3365 @opindex Wstrict-selector-match
3366 @opindex Wno-strict-selector-match
3367 Warn if multiple methods with differing argument and/or return types are
3368 found for a given selector when attempting to send a message using this
3369 selector to a receiver of type @code{id} or @code{Class}. When this flag
3370 is off (which is the default behavior), the compiler omits such warnings
3371 if any differences found are confined to types that share the same size
3372 and alignment.
3373
3374 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3375 @opindex Wundeclared-selector
3376 @opindex Wno-undeclared-selector
3377 Warn if a @code{@@selector(@dots{})} expression referring to an
3378 undeclared selector is found. A selector is considered undeclared if no
3379 method with that name has been declared before the
3380 @code{@@selector(@dots{})} expression, either explicitly in an
3381 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3382 an @code{@@implementation} section. This option always performs its
3383 checks as soon as a @code{@@selector(@dots{})} expression is found,
3384 while @option{-Wselector} only performs its checks in the final stage of
3385 compilation. This also enforces the coding style convention
3386 that methods and selectors must be declared before being used.
3387
3388 @item -print-objc-runtime-info
3389 @opindex print-objc-runtime-info
3390 Generate C header describing the largest structure that is passed by
3391 value, if any.
3392
3393 @end table
3394
3395 @node Diagnostic Message Formatting Options
3396 @section Options to Control Diagnostic Messages Formatting
3397 @cindex options to control diagnostics formatting
3398 @cindex diagnostic messages
3399 @cindex message formatting
3400
3401 Traditionally, diagnostic messages have been formatted irrespective of
3402 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3403 options described below
3404 to control the formatting algorithm for diagnostic messages,
3405 e.g.@: how many characters per line, how often source location
3406 information should be reported. Note that some language front ends may not
3407 honor these options.
3408
3409 @table @gcctabopt
3410 @item -fmessage-length=@var{n}
3411 @opindex fmessage-length
3412 Try to format error messages so that they fit on lines of about
3413 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3414 done; each error message appears on a single line. This is the
3415 default for all front ends.
3416
3417 @item -fdiagnostics-show-location=once
3418 @opindex fdiagnostics-show-location
3419 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3420 reporter to emit source location information @emph{once}; that is, in
3421 case the message is too long to fit on a single physical line and has to
3422 be wrapped, the source location won't be emitted (as prefix) again,
3423 over and over, in subsequent continuation lines. This is the default
3424 behavior.
3425
3426 @item -fdiagnostics-show-location=every-line
3427 Only meaningful in line-wrapping mode. Instructs the diagnostic
3428 messages reporter to emit the same source location information (as
3429 prefix) for physical lines that result from the process of breaking
3430 a message which is too long to fit on a single line.
3431
3432 @item -fdiagnostics-color[=@var{WHEN}]
3433 @itemx -fno-diagnostics-color
3434 @opindex fdiagnostics-color
3435 @cindex highlight, color
3436 @vindex GCC_COLORS @r{environment variable}
3437 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3438 or @samp{auto}. The default depends on how the compiler has been configured,
3439 it can be any of the above @var{WHEN} options or also @samp{never}
3440 if @env{GCC_COLORS} environment variable isn't present in the environment,
3441 and @samp{auto} otherwise.
3442 @samp{auto} means to use color only when the standard error is a terminal.
3443 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3444 aliases for @option{-fdiagnostics-color=always} and
3445 @option{-fdiagnostics-color=never}, respectively.
3446
3447 The colors are defined by the environment variable @env{GCC_COLORS}.
3448 Its value is a colon-separated list of capabilities and Select Graphic
3449 Rendition (SGR) substrings. SGR commands are interpreted by the
3450 terminal or terminal emulator. (See the section in the documentation
3451 of your text terminal for permitted values and their meanings as
3452 character attributes.) These substring values are integers in decimal
3453 representation and can be concatenated with semicolons.
3454 Common values to concatenate include
3455 @samp{1} for bold,
3456 @samp{4} for underline,
3457 @samp{5} for blink,
3458 @samp{7} for inverse,
3459 @samp{39} for default foreground color,
3460 @samp{30} to @samp{37} for foreground colors,
3461 @samp{90} to @samp{97} for 16-color mode foreground colors,
3462 @samp{38;5;0} to @samp{38;5;255}
3463 for 88-color and 256-color modes foreground colors,
3464 @samp{49} for default background color,
3465 @samp{40} to @samp{47} for background colors,
3466 @samp{100} to @samp{107} for 16-color mode background colors,
3467 and @samp{48;5;0} to @samp{48;5;255}
3468 for 88-color and 256-color modes background colors.
3469
3470 The default @env{GCC_COLORS} is
3471 @smallexample
3472 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3473 quote=01:fixit-insert=32:fixit-delete=31:\
3474 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3475 type-diff=01;32
3476 @end smallexample
3477 @noindent
3478 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3479 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3480 @samp{01} is bold, and @samp{31} is red.
3481 Setting @env{GCC_COLORS} to the empty string disables colors.
3482 Supported capabilities are as follows.
3483
3484 @table @code
3485 @item error=
3486 @vindex error GCC_COLORS @r{capability}
3487 SGR substring for error: markers.
3488
3489 @item warning=
3490 @vindex warning GCC_COLORS @r{capability}
3491 SGR substring for warning: markers.
3492
3493 @item note=
3494 @vindex note GCC_COLORS @r{capability}
3495 SGR substring for note: markers.
3496
3497 @item range1=
3498 @vindex range1 GCC_COLORS @r{capability}
3499 SGR substring for first additional range.
3500
3501 @item range2=
3502 @vindex range2 GCC_COLORS @r{capability}
3503 SGR substring for second additional range.
3504
3505 @item locus=
3506 @vindex locus GCC_COLORS @r{capability}
3507 SGR substring for location information, @samp{file:line} or
3508 @samp{file:line:column} etc.
3509
3510 @item quote=
3511 @vindex quote GCC_COLORS @r{capability}
3512 SGR substring for information printed within quotes.
3513
3514 @item fixit-insert=
3515 @vindex fixit-insert GCC_COLORS @r{capability}
3516 SGR substring for fix-it hints suggesting text to
3517 be inserted or replaced.
3518
3519 @item fixit-delete=
3520 @vindex fixit-delete GCC_COLORS @r{capability}
3521 SGR substring for fix-it hints suggesting text to
3522 be deleted.
3523
3524 @item diff-filename=
3525 @vindex diff-filename GCC_COLORS @r{capability}
3526 SGR substring for filename headers within generated patches.
3527
3528 @item diff-hunk=
3529 @vindex diff-hunk GCC_COLORS @r{capability}
3530 SGR substring for the starts of hunks within generated patches.
3531
3532 @item diff-delete=
3533 @vindex diff-delete GCC_COLORS @r{capability}
3534 SGR substring for deleted lines within generated patches.
3535
3536 @item diff-insert=
3537 @vindex diff-insert GCC_COLORS @r{capability}
3538 SGR substring for inserted lines within generated patches.
3539
3540 @item type-diff=
3541 @vindex type-diff GCC_COLORS @r{capability}
3542 SGR substring for highlighting mismatching types within template
3543 arguments in the C++ frontend.
3544 @end table
3545
3546 @item -fno-diagnostics-show-option
3547 @opindex fno-diagnostics-show-option
3548 @opindex fdiagnostics-show-option
3549 By default, each diagnostic emitted includes text indicating the
3550 command-line option that directly controls the diagnostic (if such an
3551 option is known to the diagnostic machinery). Specifying the
3552 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3553
3554 @item -fno-diagnostics-show-caret
3555 @opindex fno-diagnostics-show-caret
3556 @opindex fdiagnostics-show-caret
3557 By default, each diagnostic emitted includes the original source line
3558 and a caret @samp{^} indicating the column. This option suppresses this
3559 information. The source line is truncated to @var{n} characters, if
3560 the @option{-fmessage-length=n} option is given. When the output is done
3561 to the terminal, the width is limited to the width given by the
3562 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3563
3564 @item -fdiagnostics-parseable-fixits
3565 @opindex fdiagnostics-parseable-fixits
3566 Emit fix-it hints in a machine-parseable format, suitable for consumption
3567 by IDEs. For each fix-it, a line will be printed after the relevant
3568 diagnostic, starting with the string ``fix-it:''. For example:
3569
3570 @smallexample
3571 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3572 @end smallexample
3573
3574 The location is expressed as a half-open range, expressed as a count of
3575 bytes, starting at byte 1 for the initial column. In the above example,
3576 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3577 given string:
3578
3579 @smallexample
3580 00000000011111111112222222222
3581 12345678901234567890123456789
3582 gtk_widget_showall (dlg);
3583 ^^^^^^^^^^^^^^^^^^
3584 gtk_widget_show_all
3585 @end smallexample
3586
3587 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3588 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3589 (e.g. vertical tab as ``\013'').
3590
3591 An empty replacement string indicates that the given range is to be removed.
3592 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3593 be inserted at the given position.
3594
3595 @item -fdiagnostics-generate-patch
3596 @opindex fdiagnostics-generate-patch
3597 Print fix-it hints to stderr in unified diff format, after any diagnostics
3598 are printed. For example:
3599
3600 @smallexample
3601 --- test.c
3602 +++ test.c
3603 @@ -42,5 +42,5 @@
3604
3605 void show_cb(GtkDialog *dlg)
3606 @{
3607 - gtk_widget_showall(dlg);
3608 + gtk_widget_show_all(dlg);
3609 @}
3610
3611 @end smallexample
3612
3613 The diff may or may not be colorized, following the same rules
3614 as for diagnostics (see @option{-fdiagnostics-color}).
3615
3616 @item -fdiagnostics-show-template-tree
3617 @opindex fdiagnostics-show-template-tree
3618
3619 In the C++ frontend, when printing diagnostics showing mismatching
3620 template types, such as:
3621
3622 @smallexample
3623 could not convert 'std::map<int, std::vector<double> >()'
3624 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3625 @end smallexample
3626
3627 the @option{-fdiagnostics-show-template-tree} flag enables printing a
3628 tree-like structure showing the common and differing parts of the types,
3629 such as:
3630
3631 @smallexample
3632 map<
3633 [...],
3634 vector<
3635 [double != float]>>
3636 @end smallexample
3637
3638 The parts that differ are highlighted with color (``double'' and
3639 ``float'' in this case).
3640
3641 @item -fno-elide-type
3642 @opindex fno-elide-type
3643 @opindex felide-type
3644 By default when the C++ frontend prints diagnostics showing mismatching
3645 template types, common parts of the types are printed as ``[...]'' to
3646 simplify the error message. For example:
3647
3648 @smallexample
3649 could not convert 'std::map<int, std::vector<double> >()'
3650 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3651 @end smallexample
3652
3653 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
3654 This flag also affects the output of the
3655 @option{-fdiagnostics-show-template-tree} flag.
3656
3657 @item -fno-show-column
3658 @opindex fno-show-column
3659 Do not print column numbers in diagnostics. This may be necessary if
3660 diagnostics are being scanned by a program that does not understand the
3661 column numbers, such as @command{dejagnu}.
3662
3663 @end table
3664
3665 @node Warning Options
3666 @section Options to Request or Suppress Warnings
3667 @cindex options to control warnings
3668 @cindex warning messages
3669 @cindex messages, warning
3670 @cindex suppressing warnings
3671
3672 Warnings are diagnostic messages that report constructions that
3673 are not inherently erroneous but that are risky or suggest there
3674 may have been an error.
3675
3676 The following language-independent options do not enable specific
3677 warnings but control the kinds of diagnostics produced by GCC@.
3678
3679 @table @gcctabopt
3680 @cindex syntax checking
3681 @item -fsyntax-only
3682 @opindex fsyntax-only
3683 Check the code for syntax errors, but don't do anything beyond that.
3684
3685 @item -fmax-errors=@var{n}
3686 @opindex fmax-errors
3687 Limits the maximum number of error messages to @var{n}, at which point
3688 GCC bails out rather than attempting to continue processing the source
3689 code. If @var{n} is 0 (the default), there is no limit on the number
3690 of error messages produced. If @option{-Wfatal-errors} is also
3691 specified, then @option{-Wfatal-errors} takes precedence over this
3692 option.
3693
3694 @item -w
3695 @opindex w
3696 Inhibit all warning messages.
3697
3698 @item -Werror
3699 @opindex Werror
3700 @opindex Wno-error
3701 Make all warnings into errors.
3702
3703 @item -Werror=
3704 @opindex Werror=
3705 @opindex Wno-error=
3706 Make the specified warning into an error. The specifier for a warning
3707 is appended; for example @option{-Werror=switch} turns the warnings
3708 controlled by @option{-Wswitch} into errors. This switch takes a
3709 negative form, to be used to negate @option{-Werror} for specific
3710 warnings; for example @option{-Wno-error=switch} makes
3711 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3712 is in effect.
3713
3714 The warning message for each controllable warning includes the
3715 option that controls the warning. That option can then be used with
3716 @option{-Werror=} and @option{-Wno-error=} as described above.
3717 (Printing of the option in the warning message can be disabled using the
3718 @option{-fno-diagnostics-show-option} flag.)
3719
3720 Note that specifying @option{-Werror=}@var{foo} automatically implies
3721 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3722 imply anything.
3723
3724 @item -Wfatal-errors
3725 @opindex Wfatal-errors
3726 @opindex Wno-fatal-errors
3727 This option causes the compiler to abort compilation on the first error
3728 occurred rather than trying to keep going and printing further error
3729 messages.
3730
3731 @end table
3732
3733 You can request many specific warnings with options beginning with
3734 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3735 implicit declarations. Each of these specific warning options also
3736 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3737 example, @option{-Wno-implicit}. This manual lists only one of the
3738 two forms, whichever is not the default. For further
3739 language-specific options also refer to @ref{C++ Dialect Options} and
3740 @ref{Objective-C and Objective-C++ Dialect Options}.
3741
3742 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3743 options, such as @option{-Wunused}, which may turn on further options,
3744 such as @option{-Wunused-value}. The combined effect of positive and
3745 negative forms is that more specific options have priority over less
3746 specific ones, independently of their position in the command-line. For
3747 options of the same specificity, the last one takes effect. Options
3748 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3749 as if they appeared at the end of the command-line.
3750
3751 When an unrecognized warning option is requested (e.g.,
3752 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3753 that the option is not recognized. However, if the @option{-Wno-} form
3754 is used, the behavior is slightly different: no diagnostic is
3755 produced for @option{-Wno-unknown-warning} unless other diagnostics
3756 are being produced. This allows the use of new @option{-Wno-} options
3757 with old compilers, but if something goes wrong, the compiler
3758 warns that an unrecognized option is present.
3759
3760 @table @gcctabopt
3761 @item -Wpedantic
3762 @itemx -pedantic
3763 @opindex pedantic
3764 @opindex Wpedantic
3765 Issue all the warnings demanded by strict ISO C and ISO C++;
3766 reject all programs that use forbidden extensions, and some other
3767 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3768 version of the ISO C standard specified by any @option{-std} option used.
3769
3770 Valid ISO C and ISO C++ programs should compile properly with or without
3771 this option (though a rare few require @option{-ansi} or a
3772 @option{-std} option specifying the required version of ISO C)@. However,
3773 without this option, certain GNU extensions and traditional C and C++
3774 features are supported as well. With this option, they are rejected.
3775
3776 @option{-Wpedantic} does not cause warning messages for use of the
3777 alternate keywords whose names begin and end with @samp{__}. Pedantic
3778 warnings are also disabled in the expression that follows
3779 @code{__extension__}. However, only system header files should use
3780 these escape routes; application programs should avoid them.
3781 @xref{Alternate Keywords}.
3782
3783 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3784 C conformance. They soon find that it does not do quite what they want:
3785 it finds some non-ISO practices, but not all---only those for which
3786 ISO C @emph{requires} a diagnostic, and some others for which
3787 diagnostics have been added.
3788
3789 A feature to report any failure to conform to ISO C might be useful in
3790 some instances, but would require considerable additional work and would
3791 be quite different from @option{-Wpedantic}. We don't have plans to
3792 support such a feature in the near future.
3793
3794 Where the standard specified with @option{-std} represents a GNU
3795 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3796 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3797 extended dialect is based. Warnings from @option{-Wpedantic} are given
3798 where they are required by the base standard. (It does not make sense
3799 for such warnings to be given only for features not in the specified GNU
3800 C dialect, since by definition the GNU dialects of C include all
3801 features the compiler supports with the given option, and there would be
3802 nothing to warn about.)
3803
3804 @item -pedantic-errors
3805 @opindex pedantic-errors
3806 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3807 requires a diagnostic, in some cases where there is undefined behavior
3808 at compile-time and in some other cases that do not prevent compilation
3809 of programs that are valid according to the standard. This is not
3810 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3811 by this option and not enabled by the latter and vice versa.
3812
3813 @item -Wall
3814 @opindex Wall
3815 @opindex Wno-all
3816 This enables all the warnings about constructions that some users
3817 consider questionable, and that are easy to avoid (or modify to
3818 prevent the warning), even in conjunction with macros. This also
3819 enables some language-specific warnings described in @ref{C++ Dialect
3820 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3821
3822 @option{-Wall} turns on the following warning flags:
3823
3824 @gccoptlist{-Waddress @gol
3825 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3826 -Wbool-compare @gol
3827 -Wbool-operation @gol
3828 -Wc++11-compat -Wc++14-compat @gol
3829 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
3830 -Wchar-subscripts @gol
3831 -Wcomment @gol
3832 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
3833 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3834 -Wformat @gol
3835 -Wint-in-bool-context @gol
3836 -Wimplicit @r{(C and Objective-C only)} @gol
3837 -Wimplicit-int @r{(C and Objective-C only)} @gol
3838 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3839 -Winit-self @r{(only for C++)} @gol
3840 -Wlogical-not-parentheses @gol
3841 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3842 -Wmaybe-uninitialized @gol
3843 -Wmemset-elt-size @gol
3844 -Wmemset-transposed-args @gol
3845 -Wmisleading-indentation @r{(only for C/C++)} @gol
3846 -Wmissing-braces @r{(only for C/ObjC)} @gol
3847 -Wmultistatement-macros @gol
3848 -Wnarrowing @r{(only for C++)} @gol
3849 -Wnonnull @gol
3850 -Wnonnull-compare @gol
3851 -Wopenmp-simd @gol
3852 -Wparentheses @gol
3853 -Wpointer-sign @gol
3854 -Wreorder @gol
3855 -Wreturn-type @gol
3856 -Wsequence-point @gol
3857 -Wsign-compare @r{(only in C++)} @gol
3858 -Wsizeof-pointer-div @gol
3859 -Wsizeof-pointer-memaccess @gol
3860 -Wstrict-aliasing @gol
3861 -Wstrict-overflow=1 @gol
3862 -Wswitch @gol
3863 -Wtautological-compare @gol
3864 -Wtrigraphs @gol
3865 -Wuninitialized @gol
3866 -Wunknown-pragmas @gol
3867 -Wunused-function @gol
3868 -Wunused-label @gol
3869 -Wunused-value @gol
3870 -Wunused-variable @gol
3871 -Wvolatile-register-var @gol
3872 }
3873
3874 Note that some warning flags are not implied by @option{-Wall}. Some of
3875 them warn about constructions that users generally do not consider
3876 questionable, but which occasionally you might wish to check for;
3877 others warn about constructions that are necessary or hard to avoid in
3878 some cases, and there is no simple way to modify the code to suppress
3879 the warning. Some of them are enabled by @option{-Wextra} but many of
3880 them must be enabled individually.
3881
3882 @item -Wextra
3883 @opindex W
3884 @opindex Wextra
3885 @opindex Wno-extra
3886 This enables some extra warning flags that are not enabled by
3887 @option{-Wall}. (This option used to be called @option{-W}. The older
3888 name is still supported, but the newer name is more descriptive.)
3889
3890 @gccoptlist{-Wclobbered @gol
3891 -Wempty-body @gol
3892 -Wignored-qualifiers @gol
3893 -Wimplicit-fallthrough=3 @gol
3894 -Wmissing-field-initializers @gol
3895 -Wmissing-parameter-type @r{(C only)} @gol
3896 -Wold-style-declaration @r{(C only)} @gol
3897 -Woverride-init @gol
3898 -Wsign-compare @r{(C only)} @gol
3899 -Wtype-limits @gol
3900 -Wuninitialized @gol
3901 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
3902 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3903 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3904 }
3905
3906 The option @option{-Wextra} also prints warning messages for the
3907 following cases:
3908
3909 @itemize @bullet
3910
3911 @item
3912 A pointer is compared against integer zero with @code{<}, @code{<=},
3913 @code{>}, or @code{>=}.
3914
3915 @item
3916 (C++ only) An enumerator and a non-enumerator both appear in a
3917 conditional expression.
3918
3919 @item
3920 (C++ only) Ambiguous virtual bases.
3921
3922 @item
3923 (C++ only) Subscripting an array that has been declared @code{register}.
3924
3925 @item
3926 (C++ only) Taking the address of a variable that has been declared
3927 @code{register}.
3928
3929 @item
3930 (C++ only) A base class is not initialized in the copy constructor
3931 of a derived class.
3932
3933 @end itemize
3934
3935 @item -Wchar-subscripts
3936 @opindex Wchar-subscripts
3937 @opindex Wno-char-subscripts
3938 Warn if an array subscript has type @code{char}. This is a common cause
3939 of error, as programmers often forget that this type is signed on some
3940 machines.
3941 This warning is enabled by @option{-Wall}.
3942
3943 @item -Wchkp
3944 @opindex Wchkp
3945 Warn about an invalid memory access that is found by Pointer Bounds Checker
3946 (@option{-fcheck-pointer-bounds}).
3947
3948 @item -Wno-coverage-mismatch
3949 @opindex Wno-coverage-mismatch
3950 Warn if feedback profiles do not match when using the
3951 @option{-fprofile-use} option.
3952 If a source file is changed between compiling with @option{-fprofile-gen} and
3953 with @option{-fprofile-use}, the files with the profile feedback can fail
3954 to match the source file and GCC cannot use the profile feedback
3955 information. By default, this warning is enabled and is treated as an
3956 error. @option{-Wno-coverage-mismatch} can be used to disable the
3957 warning or @option{-Wno-error=coverage-mismatch} can be used to
3958 disable the error. Disabling the error for this warning can result in
3959 poorly optimized code and is useful only in the
3960 case of very minor changes such as bug fixes to an existing code-base.
3961 Completely disabling the warning is not recommended.
3962
3963 @item -Wno-cpp
3964 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3965
3966 Suppress warning messages emitted by @code{#warning} directives.
3967
3968 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3969 @opindex Wdouble-promotion
3970 @opindex Wno-double-promotion
3971 Give a warning when a value of type @code{float} is implicitly
3972 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3973 floating-point unit implement @code{float} in hardware, but emulate
3974 @code{double} in software. On such a machine, doing computations
3975 using @code{double} values is much more expensive because of the
3976 overhead required for software emulation.
3977
3978 It is easy to accidentally do computations with @code{double} because
3979 floating-point literals are implicitly of type @code{double}. For
3980 example, in:
3981 @smallexample
3982 @group
3983 float area(float radius)
3984 @{
3985 return 3.14159 * radius * radius;
3986 @}
3987 @end group
3988 @end smallexample
3989 the compiler performs the entire computation with @code{double}
3990 because the floating-point literal is a @code{double}.
3991
3992 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
3993 @opindex Wduplicate-decl-specifier
3994 @opindex Wno-duplicate-decl-specifier
3995 Warn if a declaration has duplicate @code{const}, @code{volatile},
3996 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
3997 @option{-Wall}.
3998
3999 @item -Wformat
4000 @itemx -Wformat=@var{n}
4001 @opindex Wformat
4002 @opindex Wno-format
4003 @opindex ffreestanding
4004 @opindex fno-builtin
4005 @opindex Wformat=
4006 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4007 the arguments supplied have types appropriate to the format string
4008 specified, and that the conversions specified in the format string make
4009 sense. This includes standard functions, and others specified by format
4010 attributes (@pxref{Function Attributes}), in the @code{printf},
4011 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4012 not in the C standard) families (or other target-specific families).
4013 Which functions are checked without format attributes having been
4014 specified depends on the standard version selected, and such checks of
4015 functions without the attribute specified are disabled by
4016 @option{-ffreestanding} or @option{-fno-builtin}.
4017
4018 The formats are checked against the format features supported by GNU
4019 libc version 2.2. These include all ISO C90 and C99 features, as well
4020 as features from the Single Unix Specification and some BSD and GNU
4021 extensions. Other library implementations may not support all these
4022 features; GCC does not support warning about features that go beyond a
4023 particular library's limitations. However, if @option{-Wpedantic} is used
4024 with @option{-Wformat}, warnings are given about format features not
4025 in the selected standard version (but not for @code{strfmon} formats,
4026 since those are not in any version of the C standard). @xref{C Dialect
4027 Options,,Options Controlling C Dialect}.
4028
4029 @table @gcctabopt
4030 @item -Wformat=1
4031 @itemx -Wformat
4032 @opindex Wformat
4033 @opindex Wformat=1
4034 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4035 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4036 @option{-Wformat} also checks for null format arguments for several
4037 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4038 aspects of this level of format checking can be disabled by the
4039 options: @option{-Wno-format-contains-nul},
4040 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4041 @option{-Wformat} is enabled by @option{-Wall}.
4042
4043 @item -Wno-format-contains-nul
4044 @opindex Wno-format-contains-nul
4045 @opindex Wformat-contains-nul
4046 If @option{-Wformat} is specified, do not warn about format strings that
4047 contain NUL bytes.
4048
4049 @item -Wno-format-extra-args
4050 @opindex Wno-format-extra-args
4051 @opindex Wformat-extra-args
4052 If @option{-Wformat} is specified, do not warn about excess arguments to a
4053 @code{printf} or @code{scanf} format function. The C standard specifies
4054 that such arguments are ignored.
4055
4056 Where the unused arguments lie between used arguments that are
4057 specified with @samp{$} operand number specifications, normally
4058 warnings are still given, since the implementation could not know what
4059 type to pass to @code{va_arg} to skip the unused arguments. However,
4060 in the case of @code{scanf} formats, this option suppresses the
4061 warning if the unused arguments are all pointers, since the Single
4062 Unix Specification says that such unused arguments are allowed.
4063
4064 @item -Wformat-overflow
4065 @itemx -Wformat-overflow=@var{level}
4066 @opindex Wformat-overflow
4067 @opindex Wno-format-overflow
4068 Warn about calls to formatted input/output functions such as @code{sprintf}
4069 and @code{vsprintf} that might overflow the destination buffer. When the
4070 exact number of bytes written by a format directive cannot be determined
4071 at compile-time it is estimated based on heuristics that depend on the
4072 @var{level} argument and on optimization. While enabling optimization
4073 will in most cases improve the accuracy of the warning, it may also
4074 result in false positives.
4075
4076 @table @gcctabopt
4077 @item -Wformat-overflow
4078 @item -Wformat-overflow=1
4079 @opindex Wformat-overflow
4080 @opindex Wno-format-overflow
4081 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4082 employs a conservative approach that warns only about calls that most
4083 likely overflow the buffer. At this level, numeric arguments to format
4084 directives with unknown values are assumed to have the value of one, and
4085 strings of unknown length to be empty. Numeric arguments that are known
4086 to be bounded to a subrange of their type, or string arguments whose output
4087 is bounded either by their directive's precision or by a finite set of
4088 string literals, are assumed to take on the value within the range that
4089 results in the most bytes on output. For example, the call to @code{sprintf}
4090 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4091 the terminating NUL character (@code{'\0'}) appended by the function
4092 to the destination buffer will be written past its end. Increasing
4093 the size of the buffer by a single byte is sufficient to avoid the
4094 warning, though it may not be sufficient to avoid the overflow.
4095
4096 @smallexample
4097 void f (int a, int b)
4098 @{
4099 char buf [12];
4100 sprintf (buf, "a = %i, b = %i\n", a, b);
4101 @}
4102 @end smallexample
4103
4104 @item -Wformat-overflow=2
4105 Level @var{2} warns also about calls that might overflow the destination
4106 buffer given an argument of sufficient length or magnitude. At level
4107 @var{2}, unknown numeric arguments are assumed to have the minimum
4108 representable value for signed types with a precision greater than 1, and
4109 the maximum representable value otherwise. Unknown string arguments whose
4110 length cannot be assumed to be bounded either by the directive's precision,
4111 or by a finite set of string literals they may evaluate to, or the character
4112 array they may point to, are assumed to be 1 character long.
4113
4114 At level @var{2}, the call in the example above is again diagnosed, but
4115 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4116 @code{%i} directive will write some of its digits beyond the end of
4117 the destination buffer. To make the call safe regardless of the values
4118 of the two variables, the size of the destination buffer must be increased
4119 to at least 34 bytes. GCC includes the minimum size of the buffer in
4120 an informational note following the warning.
4121
4122 An alternative to increasing the size of the destination buffer is to
4123 constrain the range of formatted values. The maximum length of string
4124 arguments can be bounded by specifying the precision in the format
4125 directive. When numeric arguments of format directives can be assumed
4126 to be bounded by less than the precision of their type, choosing
4127 an appropriate length modifier to the format specifier will reduce
4128 the required buffer size. For example, if @var{a} and @var{b} in the
4129 example above can be assumed to be within the precision of
4130 the @code{short int} type then using either the @code{%hi} format
4131 directive or casting the argument to @code{short} reduces the maximum
4132 required size of the buffer to 24 bytes.
4133
4134 @smallexample
4135 void f (int a, int b)
4136 @{
4137 char buf [23];
4138 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4139 @}
4140 @end smallexample
4141 @end table
4142
4143 @item -Wno-format-zero-length
4144 @opindex Wno-format-zero-length
4145 @opindex Wformat-zero-length
4146 If @option{-Wformat} is specified, do not warn about zero-length formats.
4147 The C standard specifies that zero-length formats are allowed.
4148
4149
4150 @item -Wformat=2
4151 @opindex Wformat=2
4152 Enable @option{-Wformat} plus additional format checks. Currently
4153 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4154 -Wformat-y2k}.
4155
4156 @item -Wformat-nonliteral
4157 @opindex Wformat-nonliteral
4158 @opindex Wno-format-nonliteral
4159 If @option{-Wformat} is specified, also warn if the format string is not a
4160 string literal and so cannot be checked, unless the format function
4161 takes its format arguments as a @code{va_list}.
4162
4163 @item -Wformat-security
4164 @opindex Wformat-security
4165 @opindex Wno-format-security
4166 If @option{-Wformat} is specified, also warn about uses of format
4167 functions that represent possible security problems. At present, this
4168 warns about calls to @code{printf} and @code{scanf} functions where the
4169 format string is not a string literal and there are no format arguments,
4170 as in @code{printf (foo);}. This may be a security hole if the format
4171 string came from untrusted input and contains @samp{%n}. (This is
4172 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4173 in future warnings may be added to @option{-Wformat-security} that are not
4174 included in @option{-Wformat-nonliteral}.)
4175
4176 @item -Wformat-signedness
4177 @opindex Wformat-signedness
4178 @opindex Wno-format-signedness
4179 If @option{-Wformat} is specified, also warn if the format string
4180 requires an unsigned argument and the argument is signed and vice versa.
4181
4182 @item -Wformat-truncation
4183 @itemx -Wformat-truncation=@var{level}
4184 @opindex Wformat-truncation
4185 @opindex Wno-format-truncation
4186 Warn about calls to formatted input/output functions such as @code{snprintf}
4187 and @code{vsnprintf} that might result in output truncation. When the exact
4188 number of bytes written by a format directive cannot be determined at
4189 compile-time it is estimated based on heuristics that depend on
4190 the @var{level} argument and on optimization. While enabling optimization
4191 will in most cases improve the accuracy of the warning, it may also result
4192 in false positives. Except as noted otherwise, the option uses the same
4193 logic @option{-Wformat-overflow}.
4194
4195 @table @gcctabopt
4196 @item -Wformat-truncation
4197 @item -Wformat-truncation=1
4198 @opindex Wformat-truncation
4199 @opindex Wno-format-overflow
4200 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4201 employs a conservative approach that warns only about calls to bounded
4202 functions whose return value is unused and that will most likely result
4203 in output truncation.
4204
4205 @item -Wformat-truncation=2
4206 Level @var{2} warns also about calls to bounded functions whose return
4207 value is used and that might result in truncation given an argument of
4208 sufficient length or magnitude.
4209 @end table
4210
4211 @item -Wformat-y2k
4212 @opindex Wformat-y2k
4213 @opindex Wno-format-y2k
4214 If @option{-Wformat} is specified, also warn about @code{strftime}
4215 formats that may yield only a two-digit year.
4216 @end table
4217
4218 @item -Wnonnull
4219 @opindex Wnonnull
4220 @opindex Wno-nonnull
4221 Warn about passing a null pointer for arguments marked as
4222 requiring a non-null value by the @code{nonnull} function attribute.
4223
4224 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4225 can be disabled with the @option{-Wno-nonnull} option.
4226
4227 @item -Wnonnull-compare
4228 @opindex Wnonnull-compare
4229 @opindex Wno-nonnull-compare
4230 Warn when comparing an argument marked with the @code{nonnull}
4231 function attribute against null inside the function.
4232
4233 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4234 can be disabled with the @option{-Wno-nonnull-compare} option.
4235
4236 @item -Wnull-dereference
4237 @opindex Wnull-dereference
4238 @opindex Wno-null-dereference
4239 Warn if the compiler detects paths that trigger erroneous or
4240 undefined behavior due to dereferencing a null pointer. This option
4241 is only active when @option{-fdelete-null-pointer-checks} is active,
4242 which is enabled by optimizations in most targets. The precision of
4243 the warnings depends on the optimization options used.
4244
4245 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4246 @opindex Winit-self
4247 @opindex Wno-init-self
4248 Warn about uninitialized variables that are initialized with themselves.
4249 Note this option can only be used with the @option{-Wuninitialized} option.
4250
4251 For example, GCC warns about @code{i} being uninitialized in the
4252 following snippet only when @option{-Winit-self} has been specified:
4253 @smallexample
4254 @group
4255 int f()
4256 @{
4257 int i = i;
4258 return i;
4259 @}
4260 @end group
4261 @end smallexample
4262
4263 This warning is enabled by @option{-Wall} in C++.
4264
4265 @item -Wimplicit-int @r{(C and Objective-C only)}
4266 @opindex Wimplicit-int
4267 @opindex Wno-implicit-int
4268 Warn when a declaration does not specify a type.
4269 This warning is enabled by @option{-Wall}.
4270
4271 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4272 @opindex Wimplicit-function-declaration
4273 @opindex Wno-implicit-function-declaration
4274 Give a warning whenever a function is used before being declared. In
4275 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4276 enabled by default and it is made into an error by
4277 @option{-pedantic-errors}. This warning is also enabled by
4278 @option{-Wall}.
4279
4280 @item -Wimplicit @r{(C and Objective-C only)}
4281 @opindex Wimplicit
4282 @opindex Wno-implicit
4283 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4284 This warning is enabled by @option{-Wall}.
4285
4286 @item -Wimplicit-fallthrough
4287 @opindex Wimplicit-fallthrough
4288 @opindex Wno-implicit-fallthrough
4289 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4290 and @option{-Wno-implicit-fallthrough} is the same as
4291 @option{-Wimplicit-fallthrough=0}.
4292
4293 @item -Wimplicit-fallthrough=@var{n}
4294 @opindex Wimplicit-fallthrough=
4295 Warn when a switch case falls through. For example:
4296
4297 @smallexample
4298 @group
4299 switch (cond)
4300 @{
4301 case 1:
4302 a = 1;
4303 break;
4304 case 2:
4305 a = 2;
4306 case 3:
4307 a = 3;
4308 break;
4309 @}
4310 @end group
4311 @end smallexample
4312
4313 This warning does not warn when the last statement of a case cannot
4314 fall through, e.g. when there is a return statement or a call to function
4315 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4316 also takes into account control flow statements, such as ifs, and only
4317 warns when appropriate. E.g.@:
4318
4319 @smallexample
4320 @group
4321 switch (cond)
4322 @{
4323 case 1:
4324 if (i > 3) @{
4325 bar (5);
4326 break;
4327 @} else if (i < 1) @{
4328 bar (0);
4329 @} else
4330 return;
4331 default:
4332 @dots{}
4333 @}
4334 @end group
4335 @end smallexample
4336
4337 Since there are occasions where a switch case fall through is desirable,
4338 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4339 to be used along with a null statement to suppress this warning that
4340 would normally occur:
4341
4342 @smallexample
4343 @group
4344 switch (cond)
4345 @{
4346 case 1:
4347 bar (0);
4348 __attribute__ ((fallthrough));
4349 default:
4350 @dots{}
4351 @}
4352 @end group
4353 @end smallexample
4354
4355 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4356 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4357 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4358 Instead of these attributes, it is also possible to add a fallthrough comment
4359 to silence the warning. The whole body of the C or C++ style comment should
4360 match the given regular expressions listed below. The option argument @var{n}
4361 specifies what kind of comments are accepted:
4362
4363 @itemize @bullet
4364
4365 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4366
4367 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4368 expression, any comment is used as fallthrough comment.
4369
4370 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4371 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4372
4373 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4374 following regular expressions:
4375
4376 @itemize @bullet
4377
4378 @item @code{-fallthrough}
4379
4380 @item @code{@@fallthrough@@}
4381
4382 @item @code{lint -fallthrough[ \t]*}
4383
4384 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4385
4386 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4387
4388 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4389
4390 @end itemize
4391
4392 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4393 following regular expressions:
4394
4395 @itemize @bullet
4396
4397 @item @code{-fallthrough}
4398
4399 @item @code{@@fallthrough@@}
4400
4401 @item @code{lint -fallthrough[ \t]*}
4402
4403 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4404
4405 @end itemize
4406
4407 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4408 fallthrough comments, only attributes disable the warning.
4409
4410 @end itemize
4411
4412 The comment needs to be followed after optional whitespace and other comments
4413 by @code{case} or @code{default} keywords or by a user label that precedes some
4414 @code{case} or @code{default} label.
4415
4416 @smallexample
4417 @group
4418 switch (cond)
4419 @{
4420 case 1:
4421 bar (0);
4422 /* FALLTHRU */
4423 default:
4424 @dots{}
4425 @}
4426 @end group
4427 @end smallexample
4428
4429 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4430
4431 @item -Wignored-qualifiers @r{(C and C++ only)}
4432 @opindex Wignored-qualifiers
4433 @opindex Wno-ignored-qualifiers
4434 Warn if the return type of a function has a type qualifier
4435 such as @code{const}. For ISO C such a type qualifier has no effect,
4436 since the value returned by a function is not an lvalue.
4437 For C++, the warning is only emitted for scalar types or @code{void}.
4438 ISO C prohibits qualified @code{void} return types on function
4439 definitions, so such return types always receive a warning
4440 even without this option.
4441
4442 This warning is also enabled by @option{-Wextra}.
4443
4444 @item -Wignored-attributes @r{(C and C++ only)}
4445 @opindex Wignored-attributes
4446 @opindex Wno-ignored-attributes
4447 Warn when an attribute is ignored. This is different from the
4448 @option{-Wattributes} option in that it warns whenever the compiler decides
4449 to drop an attribute, not that the attribute is either unknown, used in a
4450 wrong place, etc. This warning is enabled by default.
4451
4452 @item -Wmain
4453 @opindex Wmain
4454 @opindex Wno-main
4455 Warn if the type of @code{main} is suspicious. @code{main} should be
4456 a function with external linkage, returning int, taking either zero
4457 arguments, two, or three arguments of appropriate types. This warning
4458 is enabled by default in C++ and is enabled by either @option{-Wall}
4459 or @option{-Wpedantic}.
4460
4461 @item -Wmisleading-indentation @r{(C and C++ only)}
4462 @opindex Wmisleading-indentation
4463 @opindex Wno-misleading-indentation
4464 Warn when the indentation of the code does not reflect the block structure.
4465 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
4466 @code{for} clauses with a guarded statement that does not use braces,
4467 followed by an unguarded statement with the same indentation.
4468
4469 In the following example, the call to ``bar'' is misleadingly indented as
4470 if it were guarded by the ``if'' conditional.
4471
4472 @smallexample
4473 if (some_condition ())
4474 foo ();
4475 bar (); /* Gotcha: this is not guarded by the "if". */
4476 @end smallexample
4477
4478 In the case of mixed tabs and spaces, the warning uses the
4479 @option{-ftabstop=} option to determine if the statements line up
4480 (defaulting to 8).
4481
4482 The warning is not issued for code involving multiline preprocessor logic
4483 such as the following example.
4484
4485 @smallexample
4486 if (flagA)
4487 foo (0);
4488 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
4489 if (flagB)
4490 #endif
4491 foo (1);
4492 @end smallexample
4493
4494 The warning is not issued after a @code{#line} directive, since this
4495 typically indicates autogenerated code, and no assumptions can be made
4496 about the layout of the file that the directive references.
4497
4498 This warning is enabled by @option{-Wall} in C and C++.
4499
4500 @item -Wmissing-braces
4501 @opindex Wmissing-braces
4502 @opindex Wno-missing-braces
4503 Warn if an aggregate or union initializer is not fully bracketed. In
4504 the following example, the initializer for @code{a} is not fully
4505 bracketed, but that for @code{b} is fully bracketed. This warning is
4506 enabled by @option{-Wall} in C.
4507
4508 @smallexample
4509 int a[2][2] = @{ 0, 1, 2, 3 @};
4510 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
4511 @end smallexample
4512
4513 This warning is enabled by @option{-Wall}.
4514
4515 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
4516 @opindex Wmissing-include-dirs
4517 @opindex Wno-missing-include-dirs
4518 Warn if a user-supplied include directory does not exist.
4519
4520 @item -Wmultistatement-macros
4521 @opindex Wmultistatement-macros
4522 @opindex Wno-multistatement-macros
4523 Warn about unsafe multiple statement macros that appear to be guarded
4524 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
4525 @code{while}, in which only the first statement is actually guarded after
4526 the macro is expanded.
4527
4528 For example:
4529
4530 @smallexample
4531 #define DOIT x++; y++
4532 if (c)
4533 DOIT;
4534 @end smallexample
4535
4536 will increment @code{y} unconditionally, not just when @code{c} holds.
4537 The can usually be fixed by wrapping the macro in a do-while loop:
4538 @smallexample
4539 #define DOIT do @{ x++; y++; @} while (0)
4540 if (c)
4541 DOIT;
4542 @end smallexample
4543
4544 This warning is enabled by @option{-Wall} in C and C++.
4545
4546 @item -Wparentheses
4547 @opindex Wparentheses
4548 @opindex Wno-parentheses
4549 Warn if parentheses are omitted in certain contexts, such
4550 as when there is an assignment in a context where a truth value
4551 is expected, or when operators are nested whose precedence people
4552 often get confused about.
4553
4554 Also warn if a comparison like @code{x<=y<=z} appears; this is
4555 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
4556 interpretation from that of ordinary mathematical notation.
4557
4558 Also warn for dangerous uses of the GNU extension to
4559 @code{?:} with omitted middle operand. When the condition
4560 in the @code{?}: operator is a boolean expression, the omitted value is
4561 always 1. Often programmers expect it to be a value computed
4562 inside the conditional expression instead.
4563
4564 This warning is enabled by @option{-Wall}.
4565
4566 @item -Wsequence-point
4567 @opindex Wsequence-point
4568 @opindex Wno-sequence-point
4569 Warn about code that may have undefined semantics because of violations
4570 of sequence point rules in the C and C++ standards.
4571
4572 The C and C++ standards define the order in which expressions in a C/C++
4573 program are evaluated in terms of @dfn{sequence points}, which represent
4574 a partial ordering between the execution of parts of the program: those
4575 executed before the sequence point, and those executed after it. These
4576 occur after the evaluation of a full expression (one which is not part
4577 of a larger expression), after the evaluation of the first operand of a
4578 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4579 function is called (but after the evaluation of its arguments and the
4580 expression denoting the called function), and in certain other places.
4581 Other than as expressed by the sequence point rules, the order of
4582 evaluation of subexpressions of an expression is not specified. All
4583 these rules describe only a partial order rather than a total order,
4584 since, for example, if two functions are called within one expression
4585 with no sequence point between them, the order in which the functions
4586 are called is not specified. However, the standards committee have
4587 ruled that function calls do not overlap.
4588
4589 It is not specified when between sequence points modifications to the
4590 values of objects take effect. Programs whose behavior depends on this
4591 have undefined behavior; the C and C++ standards specify that ``Between
4592 the previous and next sequence point an object shall have its stored
4593 value modified at most once by the evaluation of an expression.
4594 Furthermore, the prior value shall be read only to determine the value
4595 to be stored.''. If a program breaks these rules, the results on any
4596 particular implementation are entirely unpredictable.
4597
4598 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4599 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4600 diagnosed by this option, and it may give an occasional false positive
4601 result, but in general it has been found fairly effective at detecting
4602 this sort of problem in programs.
4603
4604 The C++17 standard will define the order of evaluation of operands in
4605 more cases: in particular it requires that the right-hand side of an
4606 assignment be evaluated before the left-hand side, so the above
4607 examples are no longer undefined. But this warning will still warn
4608 about them, to help people avoid writing code that is undefined in C
4609 and earlier revisions of C++.
4610
4611 The standard is worded confusingly, therefore there is some debate
4612 over the precise meaning of the sequence point rules in subtle cases.
4613 Links to discussions of the problem, including proposed formal
4614 definitions, may be found on the GCC readings page, at
4615 @uref{http://gcc.gnu.org/@/readings.html}.
4616
4617 This warning is enabled by @option{-Wall} for C and C++.
4618
4619 @item -Wno-return-local-addr
4620 @opindex Wno-return-local-addr
4621 @opindex Wreturn-local-addr
4622 Do not warn about returning a pointer (or in C++, a reference) to a
4623 variable that goes out of scope after the function returns.
4624
4625 @item -Wreturn-type
4626 @opindex Wreturn-type
4627 @opindex Wno-return-type
4628 Warn whenever a function is defined with a return type that defaults
4629 to @code{int}. Also warn about any @code{return} statement with no
4630 return value in a function whose return type is not @code{void}
4631 (falling off the end of the function body is considered returning
4632 without a value).
4633
4634 For C only, warn about a @code{return} statement with an expression in a
4635 function whose return type is @code{void}, unless the expression type is
4636 also @code{void}. As a GNU extension, the latter case is accepted
4637 without a warning unless @option{-Wpedantic} is used.
4638
4639 For C++, a function without return type always produces a diagnostic
4640 message, even when @option{-Wno-return-type} is specified. The only
4641 exceptions are @code{main} and functions defined in system headers.
4642
4643 This warning is enabled by @option{-Wall}.
4644
4645 @item -Wshift-count-negative
4646 @opindex Wshift-count-negative
4647 @opindex Wno-shift-count-negative
4648 Warn if shift count is negative. This warning is enabled by default.
4649
4650 @item -Wshift-count-overflow
4651 @opindex Wshift-count-overflow
4652 @opindex Wno-shift-count-overflow
4653 Warn if shift count >= width of type. This warning is enabled by default.
4654
4655 @item -Wshift-negative-value
4656 @opindex Wshift-negative-value
4657 @opindex Wno-shift-negative-value
4658 Warn if left shifting a negative value. This warning is enabled by
4659 @option{-Wextra} in C99 and C++11 modes (and newer).
4660
4661 @item -Wshift-overflow
4662 @itemx -Wshift-overflow=@var{n}
4663 @opindex Wshift-overflow
4664 @opindex Wno-shift-overflow
4665 Warn about left shift overflows. This warning is enabled by
4666 default in C99 and C++11 modes (and newer).
4667
4668 @table @gcctabopt
4669 @item -Wshift-overflow=1
4670 This is the warning level of @option{-Wshift-overflow} and is enabled
4671 by default in C99 and C++11 modes (and newer). This warning level does
4672 not warn about left-shifting 1 into the sign bit. (However, in C, such
4673 an overflow is still rejected in contexts where an integer constant expression
4674 is required.)
4675
4676 @item -Wshift-overflow=2
4677 This warning level also warns about left-shifting 1 into the sign bit,
4678 unless C++14 mode is active.
4679 @end table
4680
4681 @item -Wswitch
4682 @opindex Wswitch
4683 @opindex Wno-switch
4684 Warn whenever a @code{switch} statement has an index of enumerated type
4685 and lacks a @code{case} for one or more of the named codes of that
4686 enumeration. (The presence of a @code{default} label prevents this
4687 warning.) @code{case} labels outside the enumeration range also
4688 provoke warnings when this option is used (even if there is a
4689 @code{default} label).
4690 This warning is enabled by @option{-Wall}.
4691
4692 @item -Wswitch-default
4693 @opindex Wswitch-default
4694 @opindex Wno-switch-default
4695 Warn whenever a @code{switch} statement does not have a @code{default}
4696 case.
4697
4698 @item -Wswitch-enum
4699 @opindex Wswitch-enum
4700 @opindex Wno-switch-enum
4701 Warn whenever a @code{switch} statement has an index of enumerated type
4702 and lacks a @code{case} for one or more of the named codes of that
4703 enumeration. @code{case} labels outside the enumeration range also
4704 provoke warnings when this option is used. The only difference
4705 between @option{-Wswitch} and this option is that this option gives a
4706 warning about an omitted enumeration code even if there is a
4707 @code{default} label.
4708
4709 @item -Wswitch-bool
4710 @opindex Wswitch-bool
4711 @opindex Wno-switch-bool
4712 Warn whenever a @code{switch} statement has an index of boolean type
4713 and the case values are outside the range of a boolean type.
4714 It is possible to suppress this warning by casting the controlling
4715 expression to a type other than @code{bool}. For example:
4716 @smallexample
4717 @group
4718 switch ((int) (a == 4))
4719 @{
4720 @dots{}
4721 @}
4722 @end group
4723 @end smallexample
4724 This warning is enabled by default for C and C++ programs.
4725
4726 @item -Wswitch-unreachable
4727 @opindex Wswitch-unreachable
4728 @opindex Wno-switch-unreachable
4729 Warn whenever a @code{switch} statement contains statements between the
4730 controlling expression and the first case label, which will never be
4731 executed. For example:
4732 @smallexample
4733 @group
4734 switch (cond)
4735 @{
4736 i = 15;
4737 @dots{}
4738 case 5:
4739 @dots{}
4740 @}
4741 @end group
4742 @end smallexample
4743 @option{-Wswitch-unreachable} does not warn if the statement between the
4744 controlling expression and the first case label is just a declaration:
4745 @smallexample
4746 @group
4747 switch (cond)
4748 @{
4749 int i;
4750 @dots{}
4751 case 5:
4752 i = 5;
4753 @dots{}
4754 @}
4755 @end group
4756 @end smallexample
4757 This warning is enabled by default for C and C++ programs.
4758
4759 @item -Wsync-nand @r{(C and C++ only)}
4760 @opindex Wsync-nand
4761 @opindex Wno-sync-nand
4762 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4763 built-in functions are used. These functions changed semantics in GCC 4.4.
4764
4765 @item -Wunused-but-set-parameter
4766 @opindex Wunused-but-set-parameter
4767 @opindex Wno-unused-but-set-parameter
4768 Warn whenever a function parameter is assigned to, but otherwise unused
4769 (aside from its declaration).
4770
4771 To suppress this warning use the @code{unused} attribute
4772 (@pxref{Variable Attributes}).
4773
4774 This warning is also enabled by @option{-Wunused} together with
4775 @option{-Wextra}.
4776
4777 @item -Wunused-but-set-variable
4778 @opindex Wunused-but-set-variable
4779 @opindex Wno-unused-but-set-variable
4780 Warn whenever a local variable is assigned to, but otherwise unused
4781 (aside from its declaration).
4782 This warning is enabled by @option{-Wall}.
4783
4784 To suppress this warning use the @code{unused} attribute
4785 (@pxref{Variable Attributes}).
4786
4787 This warning is also enabled by @option{-Wunused}, which is enabled
4788 by @option{-Wall}.
4789
4790 @item -Wunused-function
4791 @opindex Wunused-function
4792 @opindex Wno-unused-function
4793 Warn whenever a static function is declared but not defined or a
4794 non-inline static function is unused.
4795 This warning is enabled by @option{-Wall}.
4796
4797 @item -Wunused-label
4798 @opindex Wunused-label
4799 @opindex Wno-unused-label
4800 Warn whenever a label is declared but not used.
4801 This warning is enabled by @option{-Wall}.
4802
4803 To suppress this warning use the @code{unused} attribute
4804 (@pxref{Variable Attributes}).
4805
4806 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4807 @opindex Wunused-local-typedefs
4808 Warn when a typedef locally defined in a function is not used.
4809 This warning is enabled by @option{-Wall}.
4810
4811 @item -Wunused-parameter
4812 @opindex Wunused-parameter
4813 @opindex Wno-unused-parameter
4814 Warn whenever a function parameter is unused aside from its declaration.
4815
4816 To suppress this warning use the @code{unused} attribute
4817 (@pxref{Variable Attributes}).
4818
4819 @item -Wno-unused-result
4820 @opindex Wunused-result
4821 @opindex Wno-unused-result
4822 Do not warn if a caller of a function marked with attribute
4823 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4824 its return value. The default is @option{-Wunused-result}.
4825
4826 @item -Wunused-variable
4827 @opindex Wunused-variable
4828 @opindex Wno-unused-variable
4829 Warn whenever a local or static variable is unused aside from its
4830 declaration. This option implies @option{-Wunused-const-variable=1} for C,
4831 but not for C++. This warning is enabled by @option{-Wall}.
4832
4833 To suppress this warning use the @code{unused} attribute
4834 (@pxref{Variable Attributes}).
4835
4836 @item -Wunused-const-variable
4837 @itemx -Wunused-const-variable=@var{n}
4838 @opindex Wunused-const-variable
4839 @opindex Wno-unused-const-variable
4840 Warn whenever a constant static variable is unused aside from its declaration.
4841 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
4842 for C, but not for C++. In C this declares variable storage, but in C++ this
4843 is not an error since const variables take the place of @code{#define}s.
4844
4845 To suppress this warning use the @code{unused} attribute
4846 (@pxref{Variable Attributes}).
4847
4848 @table @gcctabopt
4849 @item -Wunused-const-variable=1
4850 This is the warning level that is enabled by @option{-Wunused-variable} for
4851 C. It warns only about unused static const variables defined in the main
4852 compilation unit, but not about static const variables declared in any
4853 header included.
4854
4855 @item -Wunused-const-variable=2
4856 This warning level also warns for unused constant static variables in
4857 headers (excluding system headers). This is the warning level of
4858 @option{-Wunused-const-variable} and must be explicitly requested since
4859 in C++ this isn't an error and in C it might be harder to clean up all
4860 headers included.
4861 @end table
4862
4863 @item -Wunused-value
4864 @opindex Wunused-value
4865 @opindex Wno-unused-value
4866 Warn whenever a statement computes a result that is explicitly not
4867 used. To suppress this warning cast the unused expression to
4868 @code{void}. This includes an expression-statement or the left-hand
4869 side of a comma expression that contains no side effects. For example,
4870 an expression such as @code{x[i,j]} causes a warning, while
4871 @code{x[(void)i,j]} does not.
4872
4873 This warning is enabled by @option{-Wall}.
4874
4875 @item -Wunused
4876 @opindex Wunused
4877 @opindex Wno-unused
4878 All the above @option{-Wunused} options combined.
4879
4880 In order to get a warning about an unused function parameter, you must
4881 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4882 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4883
4884 @item -Wuninitialized
4885 @opindex Wuninitialized
4886 @opindex Wno-uninitialized
4887 Warn if an automatic variable is used without first being initialized
4888 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4889 warn if a non-static reference or non-static @code{const} member
4890 appears in a class without constructors.
4891
4892 If you want to warn about code that uses the uninitialized value of the
4893 variable in its own initializer, use the @option{-Winit-self} option.
4894
4895 These warnings occur for individual uninitialized or clobbered
4896 elements of structure, union or array variables as well as for
4897 variables that are uninitialized or clobbered as a whole. They do
4898 not occur for variables or elements declared @code{volatile}. Because
4899 these warnings depend on optimization, the exact variables or elements
4900 for which there are warnings depends on the precise optimization
4901 options and version of GCC used.
4902
4903 Note that there may be no warning about a variable that is used only
4904 to compute a value that itself is never used, because such
4905 computations may be deleted by data flow analysis before the warnings
4906 are printed.
4907
4908 @item -Winvalid-memory-model
4909 @opindex Winvalid-memory-model
4910 @opindex Wno-invalid-memory-model
4911 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
4912 and the C11 atomic generic functions with a memory consistency argument
4913 that is either invalid for the operation or outside the range of values
4914 of the @code{memory_order} enumeration. For example, since the
4915 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
4916 defined for the relaxed, release, and sequentially consistent memory
4917 orders the following code is diagnosed:
4918
4919 @smallexample
4920 void store (int *i)
4921 @{
4922 __atomic_store_n (i, 0, memory_order_consume);
4923 @}
4924 @end smallexample
4925
4926 @option{-Winvalid-memory-model} is enabled by default.
4927
4928 @item -Wmaybe-uninitialized
4929 @opindex Wmaybe-uninitialized
4930 @opindex Wno-maybe-uninitialized
4931 For an automatic variable, if there exists a path from the function
4932 entry to a use of the variable that is initialized, but there exist
4933 some other paths for which the variable is not initialized, the compiler
4934 emits a warning if it cannot prove the uninitialized paths are not
4935 executed at run time. These warnings are made optional because GCC is
4936 not smart enough to see all the reasons why the code might be correct
4937 in spite of appearing to have an error. Here is one example of how
4938 this can happen:
4939
4940 @smallexample
4941 @group
4942 @{
4943 int x;
4944 switch (y)
4945 @{
4946 case 1: x = 1;
4947 break;
4948 case 2: x = 4;
4949 break;
4950 case 3: x = 5;
4951 @}
4952 foo (x);
4953 @}
4954 @end group
4955 @end smallexample
4956
4957 @noindent
4958 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4959 always initialized, but GCC doesn't know this. To suppress the
4960 warning, you need to provide a default case with assert(0) or
4961 similar code.
4962
4963 @cindex @code{longjmp} warnings
4964 This option also warns when a non-volatile automatic variable might be
4965 changed by a call to @code{longjmp}. These warnings as well are possible
4966 only in optimizing compilation.
4967
4968 The compiler sees only the calls to @code{setjmp}. It cannot know
4969 where @code{longjmp} will be called; in fact, a signal handler could
4970 call it at any point in the code. As a result, you may get a warning
4971 even when there is in fact no problem because @code{longjmp} cannot
4972 in fact be called at the place that would cause a problem.
4973
4974 Some spurious warnings can be avoided if you declare all the functions
4975 you use that never return as @code{noreturn}. @xref{Function
4976 Attributes}.
4977
4978 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4979
4980 @item -Wunknown-pragmas
4981 @opindex Wunknown-pragmas
4982 @opindex Wno-unknown-pragmas
4983 @cindex warning for unknown pragmas
4984 @cindex unknown pragmas, warning
4985 @cindex pragmas, warning of unknown
4986 Warn when a @code{#pragma} directive is encountered that is not understood by
4987 GCC@. If this command-line option is used, warnings are even issued
4988 for unknown pragmas in system header files. This is not the case if
4989 the warnings are only enabled by the @option{-Wall} command-line option.
4990
4991 @item -Wno-pragmas
4992 @opindex Wno-pragmas
4993 @opindex Wpragmas
4994 Do not warn about misuses of pragmas, such as incorrect parameters,
4995 invalid syntax, or conflicts between pragmas. See also
4996 @option{-Wunknown-pragmas}.
4997
4998 @item -Wstrict-aliasing
4999 @opindex Wstrict-aliasing
5000 @opindex Wno-strict-aliasing
5001 This option is only active when @option{-fstrict-aliasing} is active.
5002 It warns about code that might break the strict aliasing rules that the
5003 compiler is using for optimization. The warning does not catch all
5004 cases, but does attempt to catch the more common pitfalls. It is
5005 included in @option{-Wall}.
5006 It is equivalent to @option{-Wstrict-aliasing=3}
5007
5008 @item -Wstrict-aliasing=n
5009 @opindex Wstrict-aliasing=n
5010 This option is only active when @option{-fstrict-aliasing} is active.
5011 It warns about code that might break the strict aliasing rules that the
5012 compiler is using for optimization.
5013 Higher levels correspond to higher accuracy (fewer false positives).
5014 Higher levels also correspond to more effort, similar to the way @option{-O}
5015 works.
5016 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5017
5018 Level 1: Most aggressive, quick, least accurate.
5019 Possibly useful when higher levels
5020 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5021 false negatives. However, it has many false positives.
5022 Warns for all pointer conversions between possibly incompatible types,
5023 even if never dereferenced. Runs in the front end only.
5024
5025 Level 2: Aggressive, quick, not too precise.
5026 May still have many false positives (not as many as level 1 though),
5027 and few false negatives (but possibly more than level 1).
5028 Unlike level 1, it only warns when an address is taken. Warns about
5029 incomplete types. Runs in the front end only.
5030
5031 Level 3 (default for @option{-Wstrict-aliasing}):
5032 Should have very few false positives and few false
5033 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5034 Takes care of the common pun+dereference pattern in the front end:
5035 @code{*(int*)&some_float}.
5036 If optimization is enabled, it also runs in the back end, where it deals
5037 with multiple statement cases using flow-sensitive points-to information.
5038 Only warns when the converted pointer is dereferenced.
5039 Does not warn about incomplete types.
5040
5041 @item -Wstrict-overflow
5042 @itemx -Wstrict-overflow=@var{n}
5043 @opindex Wstrict-overflow
5044 @opindex Wno-strict-overflow
5045 This option is only active when signed overflow is undefined.
5046 It warns about cases where the compiler optimizes based on the
5047 assumption that signed overflow does not occur. Note that it does not
5048 warn about all cases where the code might overflow: it only warns
5049 about cases where the compiler implements some optimization. Thus
5050 this warning depends on the optimization level.
5051
5052 An optimization that assumes that signed overflow does not occur is
5053 perfectly safe if the values of the variables involved are such that
5054 overflow never does, in fact, occur. Therefore this warning can
5055 easily give a false positive: a warning about code that is not
5056 actually a problem. To help focus on important issues, several
5057 warning levels are defined. No warnings are issued for the use of
5058 undefined signed overflow when estimating how many iterations a loop
5059 requires, in particular when determining whether a loop will be
5060 executed at all.
5061
5062 @table @gcctabopt
5063 @item -Wstrict-overflow=1
5064 Warn about cases that are both questionable and easy to avoid. For
5065 example the compiler simplifies
5066 @code{x + 1 > x} to @code{1}. This level of
5067 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5068 are not, and must be explicitly requested.
5069
5070 @item -Wstrict-overflow=2
5071 Also warn about other cases where a comparison is simplified to a
5072 constant. For example: @code{abs (x) >= 0}. This can only be
5073 simplified when signed integer overflow is undefined, because
5074 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5075 zero. @option{-Wstrict-overflow} (with no level) is the same as
5076 @option{-Wstrict-overflow=2}.
5077
5078 @item -Wstrict-overflow=3
5079 Also warn about other cases where a comparison is simplified. For
5080 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5081
5082 @item -Wstrict-overflow=4
5083 Also warn about other simplifications not covered by the above cases.
5084 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5085
5086 @item -Wstrict-overflow=5
5087 Also warn about cases where the compiler reduces the magnitude of a
5088 constant involved in a comparison. For example: @code{x + 2 > y} is
5089 simplified to @code{x + 1 >= y}. This is reported only at the
5090 highest warning level because this simplification applies to many
5091 comparisons, so this warning level gives a very large number of
5092 false positives.
5093 @end table
5094
5095 @item -Wstringop-overflow
5096 @itemx -Wstringop-overflow=@var{type}
5097 @opindex Wstringop-overflow
5098 @opindex Wno-stringop-overflow
5099 Warn for calls to string manipulation functions such as @code{memcpy} and
5100 @code{strcpy} that are determined to overflow the destination buffer. The
5101 optional argument is one greater than the type of Object Size Checking to
5102 perform to determine the size of the destination. @xref{Object Size Checking}.
5103 The argument is meaningful only for functions that operate on character arrays
5104 but not for raw memory functions like @code{memcpy} which always make use
5105 of Object Size type-0. The option also warns for calls that specify a size
5106 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5107 The option produces the best results with optimization enabled but can detect
5108 a small subset of simple buffer overflows even without optimization in
5109 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5110 correspond to the standard functions. In any case, the option warns about
5111 just a subset of buffer overflows detected by the corresponding overflow
5112 checking built-ins. For example, the option will issue a warning for
5113 the @code{strcpy} call below because it copies at least 5 characters
5114 (the string @code{"blue"} including the terminating NUL) into the buffer
5115 of size 4.
5116
5117 @smallexample
5118 enum Color @{ blue, purple, yellow @};
5119 const char* f (enum Color clr)
5120 @{
5121 static char buf [4];
5122 const char *str;
5123 switch (clr)
5124 @{
5125 case blue: str = "blue"; break;
5126 case purple: str = "purple"; break;
5127 case yellow: str = "yellow"; break;
5128 @}
5129
5130 return strcpy (buf, str); // warning here
5131 @}
5132 @end smallexample
5133
5134 Option @option{-Wstringop-overflow=2} is enabled by default.
5135
5136 @table @gcctabopt
5137 @item -Wstringop-overflow
5138 @item -Wstringop-overflow=1
5139 @opindex Wstringop-overflow
5140 @opindex Wno-stringop-overflow
5141 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5142 to determine the sizes of destination objects. This is the default setting
5143 of the option. At this setting the option will not warn for writes past
5144 the end of subobjects of larger objects accessed by pointers unless the
5145 size of the largest surrounding object is known. When the destination may
5146 be one of several objects it is assumed to be the largest one of them. On
5147 Linux systems, when optimization is enabled at this setting the option warns
5148 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5149 a non-zero value.
5150
5151 @item -Wstringop-overflow=2
5152 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5153 to determine the sizes of destination objects. At this setting the option
5154 will warn about overflows when writing to members of the largest complete
5155 objects whose exact size is known. It will, however, not warn for excessive
5156 writes to the same members of unknown objects referenced by pointers since
5157 they may point to arrays containing unknown numbers of elements.
5158
5159 @item -Wstringop-overflow=3
5160 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5161 to determine the sizes of destination objects. At this setting the option
5162 warns about overflowing the smallest object or data member. This is the
5163 most restrictive setting of the option that may result in warnings for safe
5164 code.
5165
5166 @item -Wstringop-overflow=4
5167 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5168 to determine the sizes of destination objects. At this setting the option
5169 will warn about overflowing any data members, and when the destination is
5170 one of several objects it uses the size of the largest of them to decide
5171 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5172 setting of the option may result in warnings for benign code.
5173 @end table
5174
5175 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
5176 @opindex Wsuggest-attribute=
5177 @opindex Wno-suggest-attribute=
5178 Warn for cases where adding an attribute may be beneficial. The
5179 attributes currently supported are listed below.
5180
5181 @table @gcctabopt
5182 @item -Wsuggest-attribute=pure
5183 @itemx -Wsuggest-attribute=const
5184 @itemx -Wsuggest-attribute=noreturn
5185 @opindex Wsuggest-attribute=pure
5186 @opindex Wno-suggest-attribute=pure
5187 @opindex Wsuggest-attribute=const
5188 @opindex Wno-suggest-attribute=const
5189 @opindex Wsuggest-attribute=noreturn
5190 @opindex Wno-suggest-attribute=noreturn
5191
5192 Warn about functions that might be candidates for attributes
5193 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
5194 functions visible in other compilation units or (in the case of @code{pure} and
5195 @code{const}) if it cannot prove that the function returns normally. A function
5196 returns normally if it doesn't contain an infinite loop or return abnormally
5197 by throwing, calling @code{abort} or trapping. This analysis requires option
5198 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
5199 higher. Higher optimization levels improve the accuracy of the analysis.
5200
5201 @item -Wsuggest-attribute=format
5202 @itemx -Wmissing-format-attribute
5203 @opindex Wsuggest-attribute=format
5204 @opindex Wmissing-format-attribute
5205 @opindex Wno-suggest-attribute=format
5206 @opindex Wno-missing-format-attribute
5207 @opindex Wformat
5208 @opindex Wno-format
5209
5210 Warn about function pointers that might be candidates for @code{format}
5211 attributes. Note these are only possible candidates, not absolute ones.
5212 GCC guesses that function pointers with @code{format} attributes that
5213 are used in assignment, initialization, parameter passing or return
5214 statements should have a corresponding @code{format} attribute in the
5215 resulting type. I.e.@: the left-hand side of the assignment or
5216 initialization, the type of the parameter variable, or the return type
5217 of the containing function respectively should also have a @code{format}
5218 attribute to avoid the warning.
5219
5220 GCC also warns about function definitions that might be
5221 candidates for @code{format} attributes. Again, these are only
5222 possible candidates. GCC guesses that @code{format} attributes
5223 might be appropriate for any function that calls a function like
5224 @code{vprintf} or @code{vscanf}, but this might not always be the
5225 case, and some functions for which @code{format} attributes are
5226 appropriate may not be detected.
5227 @end table
5228
5229 @item -Wsuggest-final-types
5230 @opindex Wno-suggest-final-types
5231 @opindex Wsuggest-final-types
5232 Warn about types with virtual methods where code quality would be improved
5233 if the type were declared with the C++11 @code{final} specifier,
5234 or, if possible,
5235 declared in an anonymous namespace. This allows GCC to more aggressively
5236 devirtualize the polymorphic calls. This warning is more effective with link
5237 time optimization, where the information about the class hierarchy graph is
5238 more complete.
5239
5240 @item -Wsuggest-final-methods
5241 @opindex Wno-suggest-final-methods
5242 @opindex Wsuggest-final-methods
5243 Warn about virtual methods where code quality would be improved if the method
5244 were declared with the C++11 @code{final} specifier,
5245 or, if possible, its type were
5246 declared in an anonymous namespace or with the @code{final} specifier.
5247 This warning is
5248 more effective with link-time optimization, where the information about the
5249 class hierarchy graph is more complete. It is recommended to first consider
5250 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5251 annotations.
5252
5253 @item -Wsuggest-override
5254 Warn about overriding virtual functions that are not marked with the override
5255 keyword.
5256
5257 @item -Walloc-zero
5258 @opindex Wno-alloc-zero
5259 @opindex Walloc-zero
5260 Warn about calls to allocation functions decorated with attribute
5261 @code{alloc_size} that specify zero bytes, including those to the built-in
5262 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5263 @code{malloc}, and @code{realloc}. Because the behavior of these functions
5264 when called with a zero size differs among implementations (and in the case
5265 of @code{realloc} has been deprecated) relying on it may result in subtle
5266 portability bugs and should be avoided.
5267
5268 @item -Walloc-size-larger-than=@var{n}
5269 Warn about calls to functions decorated with attribute @code{alloc_size}
5270 that attempt to allocate objects larger than the specified number of bytes,
5271 or where the result of the size computation in an integer type with infinite
5272 precision would exceed @code{SIZE_MAX / 2}. The option argument @var{n}
5273 may end in one of the standard suffixes designating a multiple of bytes
5274 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
5275 @code{MB} and @code{MiB} for megabyte and mebibyte, and so on.
5276 @xref{Function Attributes}.
5277
5278 @item -Walloca
5279 @opindex Wno-alloca
5280 @opindex Walloca
5281 This option warns on all uses of @code{alloca} in the source.
5282
5283 @item -Walloca-larger-than=@var{n}
5284 This option warns on calls to @code{alloca} that are not bounded by a
5285 controlling predicate limiting its argument of integer type to at most
5286 @var{n} bytes, or calls to @code{alloca} where the bound is unknown.
5287 Arguments of non-integer types are considered unbounded even if they
5288 appear to be constrained to the expected range.
5289
5290 For example, a bounded case of @code{alloca} could be:
5291
5292 @smallexample
5293 void func (size_t n)
5294 @{
5295 void *p;
5296 if (n <= 1000)
5297 p = alloca (n);
5298 else
5299 p = malloc (n);
5300 f (p);
5301 @}
5302 @end smallexample
5303
5304 In the above example, passing @code{-Walloca-larger-than=1000} would not
5305 issue a warning because the call to @code{alloca} is known to be at most
5306 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
5307 the compiler would emit a warning.
5308
5309 Unbounded uses, on the other hand, are uses of @code{alloca} with no
5310 controlling predicate constraining its integer argument. For example:
5311
5312 @smallexample
5313 void func ()
5314 @{
5315 void *p = alloca (n);
5316 f (p);
5317 @}
5318 @end smallexample
5319
5320 If @code{-Walloca-larger-than=500} were passed, the above would trigger
5321 a warning, but this time because of the lack of bounds checking.
5322
5323 Note, that even seemingly correct code involving signed integers could
5324 cause a warning:
5325
5326 @smallexample
5327 void func (signed int n)
5328 @{
5329 if (n < 500)
5330 @{
5331 p = alloca (n);
5332 f (p);
5333 @}
5334 @}
5335 @end smallexample
5336
5337 In the above example, @var{n} could be negative, causing a larger than
5338 expected argument to be implicitly cast into the @code{alloca} call.
5339
5340 This option also warns when @code{alloca} is used in a loop.
5341
5342 This warning is not enabled by @option{-Wall}, and is only active when
5343 @option{-ftree-vrp} is active (default for @option{-O2} and above).
5344
5345 See also @option{-Wvla-larger-than=@var{n}}.
5346
5347 @item -Warray-bounds
5348 @itemx -Warray-bounds=@var{n}
5349 @opindex Wno-array-bounds
5350 @opindex Warray-bounds
5351 This option is only active when @option{-ftree-vrp} is active
5352 (default for @option{-O2} and above). It warns about subscripts to arrays
5353 that are always out of bounds. This warning is enabled by @option{-Wall}.
5354
5355 @table @gcctabopt
5356 @item -Warray-bounds=1
5357 This is the warning level of @option{-Warray-bounds} and is enabled
5358 by @option{-Wall}; higher levels are not, and must be explicitly requested.
5359
5360 @item -Warray-bounds=2
5361 This warning level also warns about out of bounds access for
5362 arrays at the end of a struct and for arrays accessed through
5363 pointers. This warning level may give a larger number of
5364 false positives and is deactivated by default.
5365 @end table
5366
5367 @item -Wbool-compare
5368 @opindex Wno-bool-compare
5369 @opindex Wbool-compare
5370 Warn about boolean expression compared with an integer value different from
5371 @code{true}/@code{false}. For instance, the following comparison is
5372 always false:
5373 @smallexample
5374 int n = 5;
5375 @dots{}
5376 if ((n > 1) == 2) @{ @dots{} @}
5377 @end smallexample
5378 This warning is enabled by @option{-Wall}.
5379
5380 @item -Wbool-operation
5381 @opindex Wno-bool-operation
5382 @opindex Wbool-operation
5383 Warn about suspicious operations on expressions of a boolean type. For
5384 instance, bitwise negation of a boolean is very likely a bug in the program.
5385 For C, this warning also warns about incrementing or decrementing a boolean,
5386 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
5387 Incrementing a boolean is invalid in C++1z, and deprecated otherwise.)
5388
5389 This warning is enabled by @option{-Wall}.
5390
5391 @item -Wduplicated-branches
5392 @opindex Wno-duplicated-branches
5393 @opindex Wduplicated-branches
5394 Warn when an if-else has identical branches. This warning detects cases like
5395 @smallexample
5396 if (p != NULL)
5397 return 0;
5398 else
5399 return 0;
5400 @end smallexample
5401 It doesn't warn when both branches contain just a null statement. This warning
5402 also warn for conditional operators:
5403 @smallexample
5404 int i = x ? *p : *p;
5405 @end smallexample
5406
5407 @item -Wduplicated-cond
5408 @opindex Wno-duplicated-cond
5409 @opindex Wduplicated-cond
5410 Warn about duplicated conditions in an if-else-if chain. For instance,
5411 warn for the following code:
5412 @smallexample
5413 if (p->q != NULL) @{ @dots{} @}
5414 else if (p->q != NULL) @{ @dots{} @}
5415 @end smallexample
5416
5417 @item -Wframe-address
5418 @opindex Wno-frame-address
5419 @opindex Wframe-address
5420 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
5421 is called with an argument greater than 0. Such calls may return indeterminate
5422 values or crash the program. The warning is included in @option{-Wall}.
5423
5424 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
5425 @opindex Wno-discarded-qualifiers
5426 @opindex Wdiscarded-qualifiers
5427 Do not warn if type qualifiers on pointers are being discarded.
5428 Typically, the compiler warns if a @code{const char *} variable is
5429 passed to a function that takes a @code{char *} parameter. This option
5430 can be used to suppress such a warning.
5431
5432 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
5433 @opindex Wno-discarded-array-qualifiers
5434 @opindex Wdiscarded-array-qualifiers
5435 Do not warn if type qualifiers on arrays which are pointer targets
5436 are being discarded. Typically, the compiler warns if a
5437 @code{const int (*)[]} variable is passed to a function that
5438 takes a @code{int (*)[]} parameter. This option can be used to
5439 suppress such a warning.
5440
5441 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
5442 @opindex Wno-incompatible-pointer-types
5443 @opindex Wincompatible-pointer-types
5444 Do not warn when there is a conversion between pointers that have incompatible
5445 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
5446 which warns for pointer argument passing or assignment with different
5447 signedness.
5448
5449 @item -Wno-int-conversion @r{(C and Objective-C only)}
5450 @opindex Wno-int-conversion
5451 @opindex Wint-conversion
5452 Do not warn about incompatible integer to pointer and pointer to integer
5453 conversions. This warning is about implicit conversions; for explicit
5454 conversions the warnings @option{-Wno-int-to-pointer-cast} and
5455 @option{-Wno-pointer-to-int-cast} may be used.
5456
5457 @item -Wno-div-by-zero
5458 @opindex Wno-div-by-zero
5459 @opindex Wdiv-by-zero
5460 Do not warn about compile-time integer division by zero. Floating-point
5461 division by zero is not warned about, as it can be a legitimate way of
5462 obtaining infinities and NaNs.
5463
5464 @item -Wsystem-headers
5465 @opindex Wsystem-headers
5466 @opindex Wno-system-headers
5467 @cindex warnings from system headers
5468 @cindex system headers, warnings from
5469 Print warning messages for constructs found in system header files.
5470 Warnings from system headers are normally suppressed, on the assumption
5471 that they usually do not indicate real problems and would only make the
5472 compiler output harder to read. Using this command-line option tells
5473 GCC to emit warnings from system headers as if they occurred in user
5474 code. However, note that using @option{-Wall} in conjunction with this
5475 option does @emph{not} warn about unknown pragmas in system
5476 headers---for that, @option{-Wunknown-pragmas} must also be used.
5477
5478 @item -Wtautological-compare
5479 @opindex Wtautological-compare
5480 @opindex Wno-tautological-compare
5481 Warn if a self-comparison always evaluates to true or false. This
5482 warning detects various mistakes such as:
5483 @smallexample
5484 int i = 1;
5485 @dots{}
5486 if (i > i) @{ @dots{} @}
5487 @end smallexample
5488 This warning is enabled by @option{-Wall}.
5489
5490 @item -Wtrampolines
5491 @opindex Wtrampolines
5492 @opindex Wno-trampolines
5493 Warn about trampolines generated for pointers to nested functions.
5494 A trampoline is a small piece of data or code that is created at run
5495 time on the stack when the address of a nested function is taken, and is
5496 used to call the nested function indirectly. For some targets, it is
5497 made up of data only and thus requires no special treatment. But, for
5498 most targets, it is made up of code and thus requires the stack to be
5499 made executable in order for the program to work properly.
5500
5501 @item -Wfloat-equal
5502 @opindex Wfloat-equal
5503 @opindex Wno-float-equal
5504 Warn if floating-point values are used in equality comparisons.
5505
5506 The idea behind this is that sometimes it is convenient (for the
5507 programmer) to consider floating-point values as approximations to
5508 infinitely precise real numbers. If you are doing this, then you need
5509 to compute (by analyzing the code, or in some other way) the maximum or
5510 likely maximum error that the computation introduces, and allow for it
5511 when performing comparisons (and when producing output, but that's a
5512 different problem). In particular, instead of testing for equality, you
5513 should check to see whether the two values have ranges that overlap; and
5514 this is done with the relational operators, so equality comparisons are
5515 probably mistaken.
5516
5517 @item -Wtraditional @r{(C and Objective-C only)}
5518 @opindex Wtraditional
5519 @opindex Wno-traditional
5520 Warn about certain constructs that behave differently in traditional and
5521 ISO C@. Also warn about ISO C constructs that have no traditional C
5522 equivalent, and/or problematic constructs that should be avoided.
5523
5524 @itemize @bullet
5525 @item
5526 Macro parameters that appear within string literals in the macro body.
5527 In traditional C macro replacement takes place within string literals,
5528 but in ISO C it does not.
5529
5530 @item
5531 In traditional C, some preprocessor directives did not exist.
5532 Traditional preprocessors only considered a line to be a directive
5533 if the @samp{#} appeared in column 1 on the line. Therefore
5534 @option{-Wtraditional} warns about directives that traditional C
5535 understands but ignores because the @samp{#} does not appear as the
5536 first character on the line. It also suggests you hide directives like
5537 @code{#pragma} not understood by traditional C by indenting them. Some
5538 traditional implementations do not recognize @code{#elif}, so this option
5539 suggests avoiding it altogether.
5540
5541 @item
5542 A function-like macro that appears without arguments.
5543
5544 @item
5545 The unary plus operator.
5546
5547 @item
5548 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
5549 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
5550 constants.) Note, these suffixes appear in macros defined in the system
5551 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
5552 Use of these macros in user code might normally lead to spurious
5553 warnings, however GCC's integrated preprocessor has enough context to
5554 avoid warning in these cases.
5555
5556 @item
5557 A function declared external in one block and then used after the end of
5558 the block.
5559
5560 @item
5561 A @code{switch} statement has an operand of type @code{long}.
5562
5563 @item
5564 A non-@code{static} function declaration follows a @code{static} one.
5565 This construct is not accepted by some traditional C compilers.
5566
5567 @item
5568 The ISO type of an integer constant has a different width or
5569 signedness from its traditional type. This warning is only issued if
5570 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
5571 typically represent bit patterns, are not warned about.
5572
5573 @item
5574 Usage of ISO string concatenation is detected.
5575
5576 @item
5577 Initialization of automatic aggregates.
5578
5579 @item
5580 Identifier conflicts with labels. Traditional C lacks a separate
5581 namespace for labels.
5582
5583 @item
5584 Initialization of unions. If the initializer is zero, the warning is
5585 omitted. This is done under the assumption that the zero initializer in
5586 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
5587 initializer warnings and relies on default initialization to zero in the
5588 traditional C case.
5589
5590 @item
5591 Conversions by prototypes between fixed/floating-point values and vice
5592 versa. The absence of these prototypes when compiling with traditional
5593 C causes serious problems. This is a subset of the possible
5594 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
5595
5596 @item
5597 Use of ISO C style function definitions. This warning intentionally is
5598 @emph{not} issued for prototype declarations or variadic functions
5599 because these ISO C features appear in your code when using
5600 libiberty's traditional C compatibility macros, @code{PARAMS} and
5601 @code{VPARAMS}. This warning is also bypassed for nested functions
5602 because that feature is already a GCC extension and thus not relevant to
5603 traditional C compatibility.
5604 @end itemize
5605
5606 @item -Wtraditional-conversion @r{(C and Objective-C only)}
5607 @opindex Wtraditional-conversion
5608 @opindex Wno-traditional-conversion
5609 Warn if a prototype causes a type conversion that is different from what
5610 would happen to the same argument in the absence of a prototype. This
5611 includes conversions of fixed point to floating and vice versa, and
5612 conversions changing the width or signedness of a fixed-point argument
5613 except when the same as the default promotion.
5614
5615 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
5616 @opindex Wdeclaration-after-statement
5617 @opindex Wno-declaration-after-statement
5618 Warn when a declaration is found after a statement in a block. This
5619 construct, known from C++, was introduced with ISO C99 and is by default
5620 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
5621
5622 @item -Wshadow
5623 @opindex Wshadow
5624 @opindex Wno-shadow
5625 Warn whenever a local variable or type declaration shadows another
5626 variable, parameter, type, class member (in C++), or instance variable
5627 (in Objective-C) or whenever a built-in function is shadowed. Note
5628 that in C++, the compiler warns if a local variable shadows an
5629 explicit typedef, but not if it shadows a struct/class/enum.
5630 Same as @option{-Wshadow=global}.
5631
5632 @item -Wno-shadow-ivar @r{(Objective-C only)}
5633 @opindex Wno-shadow-ivar
5634 @opindex Wshadow-ivar
5635 Do not warn whenever a local variable shadows an instance variable in an
5636 Objective-C method.
5637
5638 @item -Wshadow=global
5639 @opindex Wshadow=local
5640 The default for @option{-Wshadow}. Warns for any (global) shadowing.
5641
5642 @item -Wshadow=local
5643 @opindex Wshadow=local
5644 Warn when a local variable shadows another local variable or parameter.
5645 This warning is enabled by @option{-Wshadow=global}.
5646
5647 @item -Wshadow=compatible-local
5648 @opindex Wshadow=compatible-local
5649 Warn when a local variable shadows another local variable or parameter
5650 whose type is compatible with that of the shadowing variable. In C++,
5651 type compatibility here means the type of the shadowing variable can be
5652 converted to that of the shadowed variable. The creation of this flag
5653 (in addition to @option{-Wshadow=local}) is based on the idea that when
5654 a local variable shadows another one of incompatible type, it is most
5655 likely intentional, not a bug or typo, as shown in the following example:
5656
5657 @smallexample
5658 @group
5659 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
5660 @{
5661 for (int i = 0; i < N; ++i)
5662 @{
5663 ...
5664 @}
5665 ...
5666 @}
5667 @end group
5668 @end smallexample
5669
5670 Since the two variable @code{i} in the example above have incompatible types,
5671 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
5672 Because their types are incompatible, if a programmer accidentally uses one
5673 in place of the other, type checking will catch that and emit an error or
5674 warning. So not warning (about shadowing) in this case will not lead to
5675 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
5676 possibly reduce the number of warnings triggered by intentional shadowing.
5677
5678 This warning is enabled by @option{-Wshadow=local}.
5679
5680 @item -Wlarger-than=@var{len}
5681 @opindex Wlarger-than=@var{len}
5682 @opindex Wlarger-than-@var{len}
5683 Warn whenever an object of larger than @var{len} bytes is defined.
5684
5685 @item -Wframe-larger-than=@var{len}
5686 @opindex Wframe-larger-than
5687 Warn if the size of a function frame is larger than @var{len} bytes.
5688 The computation done to determine the stack frame size is approximate
5689 and not conservative.
5690 The actual requirements may be somewhat greater than @var{len}
5691 even if you do not get a warning. In addition, any space allocated
5692 via @code{alloca}, variable-length arrays, or related constructs
5693 is not included by the compiler when determining
5694 whether or not to issue a warning.
5695
5696 @item -Wno-free-nonheap-object
5697 @opindex Wno-free-nonheap-object
5698 @opindex Wfree-nonheap-object
5699 Do not warn when attempting to free an object that was not allocated
5700 on the heap.
5701
5702 @item -Wstack-usage=@var{len}
5703 @opindex Wstack-usage
5704 Warn if the stack usage of a function might be larger than @var{len} bytes.
5705 The computation done to determine the stack usage is conservative.
5706 Any space allocated via @code{alloca}, variable-length arrays, or related
5707 constructs is included by the compiler when determining whether or not to
5708 issue a warning.
5709
5710 The message is in keeping with the output of @option{-fstack-usage}.
5711
5712 @itemize
5713 @item
5714 If the stack usage is fully static but exceeds the specified amount, it's:
5715
5716 @smallexample
5717 warning: stack usage is 1120 bytes
5718 @end smallexample
5719 @item
5720 If the stack usage is (partly) dynamic but bounded, it's:
5721
5722 @smallexample
5723 warning: stack usage might be 1648 bytes
5724 @end smallexample
5725 @item
5726 If the stack usage is (partly) dynamic and not bounded, it's:
5727
5728 @smallexample
5729 warning: stack usage might be unbounded
5730 @end smallexample
5731 @end itemize
5732
5733 @item -Wunsafe-loop-optimizations
5734 @opindex Wunsafe-loop-optimizations
5735 @opindex Wno-unsafe-loop-optimizations
5736 Warn if the loop cannot be optimized because the compiler cannot
5737 assume anything on the bounds of the loop indices. With
5738 @option{-funsafe-loop-optimizations} warn if the compiler makes
5739 such assumptions.
5740
5741 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
5742 @opindex Wno-pedantic-ms-format
5743 @opindex Wpedantic-ms-format
5744 When used in combination with @option{-Wformat}
5745 and @option{-pedantic} without GNU extensions, this option
5746 disables the warnings about non-ISO @code{printf} / @code{scanf} format
5747 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
5748 which depend on the MS runtime.
5749
5750 @item -Waligned-new
5751 @opindex Waligned-new
5752 @opindex Wno-aligned-new
5753 Warn about a new-expression of a type that requires greater alignment
5754 than the @code{alignof(std::max_align_t)} but uses an allocation
5755 function without an explicit alignment parameter. This option is
5756 enabled by @option{-Wall}.
5757
5758 Normally this only warns about global allocation functions, but
5759 @option{-Waligned-new=all} also warns about class member allocation
5760 functions.
5761
5762 @item -Wplacement-new
5763 @itemx -Wplacement-new=@var{n}
5764 @opindex Wplacement-new
5765 @opindex Wno-placement-new
5766 Warn about placement new expressions with undefined behavior, such as
5767 constructing an object in a buffer that is smaller than the type of
5768 the object. For example, the placement new expression below is diagnosed
5769 because it attempts to construct an array of 64 integers in a buffer only
5770 64 bytes large.
5771 @smallexample
5772 char buf [64];
5773 new (buf) int[64];
5774 @end smallexample
5775 This warning is enabled by default.
5776
5777 @table @gcctabopt
5778 @item -Wplacement-new=1
5779 This is the default warning level of @option{-Wplacement-new}. At this
5780 level the warning is not issued for some strictly undefined constructs that
5781 GCC allows as extensions for compatibility with legacy code. For example,
5782 the following @code{new} expression is not diagnosed at this level even
5783 though it has undefined behavior according to the C++ standard because
5784 it writes past the end of the one-element array.
5785 @smallexample
5786 struct S @{ int n, a[1]; @};
5787 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
5788 new (s->a)int [32]();
5789 @end smallexample
5790
5791 @item -Wplacement-new=2
5792 At this level, in addition to diagnosing all the same constructs as at level
5793 1, a diagnostic is also issued for placement new expressions that construct
5794 an object in the last member of structure whose type is an array of a single
5795 element and whose size is less than the size of the object being constructed.
5796 While the previous example would be diagnosed, the following construct makes
5797 use of the flexible member array extension to avoid the warning at level 2.
5798 @smallexample
5799 struct S @{ int n, a[]; @};
5800 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
5801 new (s->a)int [32]();
5802 @end smallexample
5803
5804 @end table
5805
5806 @item -Wpointer-arith
5807 @opindex Wpointer-arith
5808 @opindex Wno-pointer-arith
5809 Warn about anything that depends on the ``size of'' a function type or
5810 of @code{void}. GNU C assigns these types a size of 1, for
5811 convenience in calculations with @code{void *} pointers and pointers
5812 to functions. In C++, warn also when an arithmetic operation involves
5813 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
5814
5815 @item -Wpointer-compare
5816 @opindex Wpointer-compare
5817 @opindex Wno-pointer-compare
5818 Warn if a pointer is compared with a zero character constant. This usually
5819 means that the pointer was meant to be dereferenced. For example:
5820
5821 @smallexample
5822 const char *p = foo ();
5823 if (p == '\0')
5824 return 42;
5825 @end smallexample
5826
5827 Note that the code above is invalid in C++11.
5828
5829 This warning is enabled by default.
5830
5831 @item -Wtype-limits
5832 @opindex Wtype-limits
5833 @opindex Wno-type-limits
5834 Warn if a comparison is always true or always false due to the limited
5835 range of the data type, but do not warn for constant expressions. For
5836 example, warn if an unsigned variable is compared against zero with
5837 @code{<} or @code{>=}. This warning is also enabled by
5838 @option{-Wextra}.
5839
5840 @include cppwarnopts.texi
5841
5842 @item -Wbad-function-cast @r{(C and Objective-C only)}
5843 @opindex Wbad-function-cast
5844 @opindex Wno-bad-function-cast
5845 Warn when a function call is cast to a non-matching type.
5846 For example, warn if a call to a function returning an integer type
5847 is cast to a pointer type.
5848
5849 @item -Wc90-c99-compat @r{(C and Objective-C only)}
5850 @opindex Wc90-c99-compat
5851 @opindex Wno-c90-c99-compat
5852 Warn about features not present in ISO C90, but present in ISO C99.
5853 For instance, warn about use of variable length arrays, @code{long long}
5854 type, @code{bool} type, compound literals, designated initializers, and so
5855 on. This option is independent of the standards mode. Warnings are disabled
5856 in the expression that follows @code{__extension__}.
5857
5858 @item -Wc99-c11-compat @r{(C and Objective-C only)}
5859 @opindex Wc99-c11-compat
5860 @opindex Wno-c99-c11-compat
5861 Warn about features not present in ISO C99, but present in ISO C11.
5862 For instance, warn about use of anonymous structures and unions,
5863 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
5864 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
5865 and so on. This option is independent of the standards mode. Warnings are
5866 disabled in the expression that follows @code{__extension__}.
5867
5868 @item -Wc++-compat @r{(C and Objective-C only)}
5869 @opindex Wc++-compat
5870 Warn about ISO C constructs that are outside of the common subset of
5871 ISO C and ISO C++, e.g.@: request for implicit conversion from
5872 @code{void *} to a pointer to non-@code{void} type.
5873
5874 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
5875 @opindex Wc++11-compat
5876 Warn about C++ constructs whose meaning differs between ISO C++ 1998
5877 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
5878 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
5879 enabled by @option{-Wall}.
5880
5881 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
5882 @opindex Wc++14-compat
5883 Warn about C++ constructs whose meaning differs between ISO C++ 2011
5884 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
5885
5886 @item -Wc++1z-compat @r{(C++ and Objective-C++ only)}
5887 @opindex Wc++1z-compat
5888 Warn about C++ constructs whose meaning differs between ISO C++ 2014
5889 and the forthoming ISO C++ 2017(?). This warning is enabled by @option{-Wall}.
5890
5891 @item -Wcast-qual
5892 @opindex Wcast-qual
5893 @opindex Wno-cast-qual
5894 Warn whenever a pointer is cast so as to remove a type qualifier from
5895 the target type. For example, warn if a @code{const char *} is cast
5896 to an ordinary @code{char *}.
5897
5898 Also warn when making a cast that introduces a type qualifier in an
5899 unsafe way. For example, casting @code{char **} to @code{const char **}
5900 is unsafe, as in this example:
5901
5902 @smallexample
5903 /* p is char ** value. */
5904 const char **q = (const char **) p;
5905 /* Assignment of readonly string to const char * is OK. */
5906 *q = "string";
5907 /* Now char** pointer points to read-only memory. */
5908 **p = 'b';
5909 @end smallexample
5910
5911 @item -Wcast-align
5912 @opindex Wcast-align
5913 @opindex Wno-cast-align
5914 Warn whenever a pointer is cast such that the required alignment of the
5915 target is increased. For example, warn if a @code{char *} is cast to
5916 an @code{int *} on machines where integers can only be accessed at
5917 two- or four-byte boundaries.
5918
5919 @item -Wwrite-strings
5920 @opindex Wwrite-strings
5921 @opindex Wno-write-strings
5922 When compiling C, give string constants the type @code{const
5923 char[@var{length}]} so that copying the address of one into a
5924 non-@code{const} @code{char *} pointer produces a warning. These
5925 warnings help you find at compile time code that can try to write
5926 into a string constant, but only if you have been very careful about
5927 using @code{const} in declarations and prototypes. Otherwise, it is
5928 just a nuisance. This is why we did not make @option{-Wall} request
5929 these warnings.
5930
5931 When compiling C++, warn about the deprecated conversion from string
5932 literals to @code{char *}. This warning is enabled by default for C++
5933 programs.
5934
5935 @item -Wcatch-value
5936 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
5937 @opindex Wcatch-value
5938 @opindex Wno-catch-value
5939 Warn about catch handlers that do not catch via reference.
5940 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
5941 warn about polymorphic class types that are caught by value.
5942 With @option{-Wcatch-value=2} warn about all class types that are caught
5943 by value. With @option{-Wcatch-value=3} warn about all types that are
5944 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
5945
5946 @item -Wclobbered
5947 @opindex Wclobbered
5948 @opindex Wno-clobbered
5949 Warn for variables that might be changed by @code{longjmp} or
5950 @code{vfork}. This warning is also enabled by @option{-Wextra}.
5951
5952 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
5953 @opindex Wconditionally-supported
5954 @opindex Wno-conditionally-supported
5955 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
5956
5957 @item -Wconversion
5958 @opindex Wconversion
5959 @opindex Wno-conversion
5960 Warn for implicit conversions that may alter a value. This includes
5961 conversions between real and integer, like @code{abs (x)} when
5962 @code{x} is @code{double}; conversions between signed and unsigned,
5963 like @code{unsigned ui = -1}; and conversions to smaller types, like
5964 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
5965 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
5966 changed by the conversion like in @code{abs (2.0)}. Warnings about
5967 conversions between signed and unsigned integers can be disabled by
5968 using @option{-Wno-sign-conversion}.
5969
5970 For C++, also warn for confusing overload resolution for user-defined
5971 conversions; and conversions that never use a type conversion
5972 operator: conversions to @code{void}, the same type, a base class or a
5973 reference to them. Warnings about conversions between signed and
5974 unsigned integers are disabled by default in C++ unless
5975 @option{-Wsign-conversion} is explicitly enabled.
5976
5977 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
5978 @opindex Wconversion-null
5979 @opindex Wno-conversion-null
5980 Do not warn for conversions between @code{NULL} and non-pointer
5981 types. @option{-Wconversion-null} is enabled by default.
5982
5983 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
5984 @opindex Wzero-as-null-pointer-constant
5985 @opindex Wno-zero-as-null-pointer-constant
5986 Warn when a literal @samp{0} is used as null pointer constant. This can
5987 be useful to facilitate the conversion to @code{nullptr} in C++11.
5988
5989 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
5990 @opindex Wsubobject-linkage
5991 @opindex Wno-subobject-linkage
5992 Warn if a class type has a base or a field whose type uses the anonymous
5993 namespace or depends on a type with no linkage. If a type A depends on
5994 a type B with no or internal linkage, defining it in multiple
5995 translation units would be an ODR violation because the meaning of B
5996 is different in each translation unit. If A only appears in a single
5997 translation unit, the best way to silence the warning is to give it
5998 internal linkage by putting it in an anonymous namespace as well. The
5999 compiler doesn't give this warning for types defined in the main .C
6000 file, as those are unlikely to have multiple definitions.
6001 @option{-Wsubobject-linkage} is enabled by default.
6002
6003 @item -Wdangling-else
6004 @opindex Wdangling-else
6005 @opindex Wno-dangling-else
6006 Warn about constructions where there may be confusion to which
6007 @code{if} statement an @code{else} branch belongs. Here is an example of
6008 such a case:
6009
6010 @smallexample
6011 @group
6012 @{
6013 if (a)
6014 if (b)
6015 foo ();
6016 else
6017 bar ();
6018 @}
6019 @end group
6020 @end smallexample
6021
6022 In C/C++, every @code{else} branch belongs to the innermost possible
6023 @code{if} statement, which in this example is @code{if (b)}. This is
6024 often not what the programmer expected, as illustrated in the above
6025 example by indentation the programmer chose. When there is the
6026 potential for this confusion, GCC issues a warning when this flag
6027 is specified. To eliminate the warning, add explicit braces around
6028 the innermost @code{if} statement so there is no way the @code{else}
6029 can belong to the enclosing @code{if}. The resulting code
6030 looks like this:
6031
6032 @smallexample
6033 @group
6034 @{
6035 if (a)
6036 @{
6037 if (b)
6038 foo ();
6039 else
6040 bar ();
6041 @}
6042 @}
6043 @end group
6044 @end smallexample
6045
6046 This warning is enabled by @option{-Wparentheses}.
6047
6048 @item -Wdate-time
6049 @opindex Wdate-time
6050 @opindex Wno-date-time
6051 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6052 are encountered as they might prevent bit-wise-identical reproducible
6053 compilations.
6054
6055 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6056 @opindex Wdelete-incomplete
6057 @opindex Wno-delete-incomplete
6058 Warn when deleting a pointer to incomplete type, which may cause
6059 undefined behavior at runtime. This warning is enabled by default.
6060
6061 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6062 @opindex Wuseless-cast
6063 @opindex Wno-useless-cast
6064 Warn when an expression is casted to its own type.
6065
6066 @item -Wempty-body
6067 @opindex Wempty-body
6068 @opindex Wno-empty-body
6069 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6070 while} statement. This warning is also enabled by @option{-Wextra}.
6071
6072 @item -Wenum-compare
6073 @opindex Wenum-compare
6074 @opindex Wno-enum-compare
6075 Warn about a comparison between values of different enumerated types.
6076 In C++ enumerated type mismatches in conditional expressions are also
6077 diagnosed and the warning is enabled by default. In C this warning is
6078 enabled by @option{-Wall}.
6079
6080 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6081 @opindex Wextra-semi
6082 @opindex Wno-extra-semi
6083 Warn about redundant semicolon after in-class function definition.
6084
6085 @item -Wjump-misses-init @r{(C, Objective-C only)}
6086 @opindex Wjump-misses-init
6087 @opindex Wno-jump-misses-init
6088 Warn if a @code{goto} statement or a @code{switch} statement jumps
6089 forward across the initialization of a variable, or jumps backward to a
6090 label after the variable has been initialized. This only warns about
6091 variables that are initialized when they are declared. This warning is
6092 only supported for C and Objective-C; in C++ this sort of branch is an
6093 error in any case.
6094
6095 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
6096 can be disabled with the @option{-Wno-jump-misses-init} option.
6097
6098 @item -Wsign-compare
6099 @opindex Wsign-compare
6100 @opindex Wno-sign-compare
6101 @cindex warning for comparison of signed and unsigned values
6102 @cindex comparison of signed and unsigned values, warning
6103 @cindex signed and unsigned values, comparison warning
6104 Warn when a comparison between signed and unsigned values could produce
6105 an incorrect result when the signed value is converted to unsigned.
6106 In C++, this warning is also enabled by @option{-Wall}. In C, it is
6107 also enabled by @option{-Wextra}.
6108
6109 @item -Wsign-conversion
6110 @opindex Wsign-conversion
6111 @opindex Wno-sign-conversion
6112 Warn for implicit conversions that may change the sign of an integer
6113 value, like assigning a signed integer expression to an unsigned
6114 integer variable. An explicit cast silences the warning. In C, this
6115 option is enabled also by @option{-Wconversion}.
6116
6117 @item -Wfloat-conversion
6118 @opindex Wfloat-conversion
6119 @opindex Wno-float-conversion
6120 Warn for implicit conversions that reduce the precision of a real value.
6121 This includes conversions from real to integer, and from higher precision
6122 real to lower precision real values. This option is also enabled by
6123 @option{-Wconversion}.
6124
6125 @item -Wno-scalar-storage-order
6126 @opindex -Wno-scalar-storage-order
6127 @opindex -Wscalar-storage-order
6128 Do not warn on suspicious constructs involving reverse scalar storage order.
6129
6130 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6131 @opindex Wsized-deallocation
6132 @opindex Wno-sized-deallocation
6133 Warn about a definition of an unsized deallocation function
6134 @smallexample
6135 void operator delete (void *) noexcept;
6136 void operator delete[] (void *) noexcept;
6137 @end smallexample
6138 without a definition of the corresponding sized deallocation function
6139 @smallexample
6140 void operator delete (void *, std::size_t) noexcept;
6141 void operator delete[] (void *, std::size_t) noexcept;
6142 @end smallexample
6143 or vice versa. Enabled by @option{-Wextra} along with
6144 @option{-fsized-deallocation}.
6145
6146 @item -Wsizeof-pointer-div
6147 @opindex Wsizeof-pointer-div
6148 @opindex Wno-sizeof-pointer-div
6149 Warn for suspicious divisions of two sizeof expressions that divide
6150 the pointer size by the element size, which is the usual way to compute
6151 the array size but won't work out correctly with pointers. This warning
6152 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
6153 not an array, but a pointer. This warning is enabled by @option{-Wall}.
6154
6155 @item -Wsizeof-pointer-memaccess
6156 @opindex Wsizeof-pointer-memaccess
6157 @opindex Wno-sizeof-pointer-memaccess
6158 Warn for suspicious length parameters to certain string and memory built-in
6159 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
6160 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
6161 but a pointer, and suggests a possible fix, or about
6162 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
6163 @option{-Wall}.
6164
6165 @item -Wsizeof-array-argument
6166 @opindex Wsizeof-array-argument
6167 @opindex Wno-sizeof-array-argument
6168 Warn when the @code{sizeof} operator is applied to a parameter that is
6169 declared as an array in a function definition. This warning is enabled by
6170 default for C and C++ programs.
6171
6172 @item -Wmemset-elt-size
6173 @opindex Wmemset-elt-size
6174 @opindex Wno-memset-elt-size
6175 Warn for suspicious calls to the @code{memset} built-in function, if the
6176 first argument references an array, and the third argument is a number
6177 equal to the number of elements, but not equal to the size of the array
6178 in memory. This indicates that the user has omitted a multiplication by
6179 the element size. This warning is enabled by @option{-Wall}.
6180
6181 @item -Wmemset-transposed-args
6182 @opindex Wmemset-transposed-args
6183 @opindex Wno-memset-transposed-args
6184 Warn for suspicious calls to the @code{memset} built-in function, if the
6185 second argument is not zero and the third argument is zero. This warns e.g.@
6186 about @code{memset (buf, sizeof buf, 0)} where most probably
6187 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
6188 is only emitted if the third argument is literal zero. If it is some
6189 expression that is folded to zero, a cast of zero to some type, etc.,
6190 it is far less likely that the user has mistakenly exchanged the arguments
6191 and no warning is emitted. This warning is enabled by @option{-Wall}.
6192
6193 @item -Waddress
6194 @opindex Waddress
6195 @opindex Wno-address
6196 Warn about suspicious uses of memory addresses. These include using
6197 the address of a function in a conditional expression, such as
6198 @code{void func(void); if (func)}, and comparisons against the memory
6199 address of a string literal, such as @code{if (x == "abc")}. Such
6200 uses typically indicate a programmer error: the address of a function
6201 always evaluates to true, so their use in a conditional usually
6202 indicate that the programmer forgot the parentheses in a function
6203 call; and comparisons against string literals result in unspecified
6204 behavior and are not portable in C, so they usually indicate that the
6205 programmer intended to use @code{strcmp}. This warning is enabled by
6206 @option{-Wall}.
6207
6208 @item -Wlogical-op
6209 @opindex Wlogical-op
6210 @opindex Wno-logical-op
6211 Warn about suspicious uses of logical operators in expressions.
6212 This includes using logical operators in contexts where a
6213 bit-wise operator is likely to be expected. Also warns when
6214 the operands of a logical operator are the same:
6215 @smallexample
6216 extern int a;
6217 if (a < 0 && a < 0) @{ @dots{} @}
6218 @end smallexample
6219
6220 @item -Wlogical-not-parentheses
6221 @opindex Wlogical-not-parentheses
6222 @opindex Wno-logical-not-parentheses
6223 Warn about logical not used on the left hand side operand of a comparison.
6224 This option does not warn if the right operand is considered to be a boolean
6225 expression. Its purpose is to detect suspicious code like the following:
6226 @smallexample
6227 int a;
6228 @dots{}
6229 if (!a > 1) @{ @dots{} @}
6230 @end smallexample
6231
6232 It is possible to suppress the warning by wrapping the LHS into
6233 parentheses:
6234 @smallexample
6235 if ((!a) > 1) @{ @dots{} @}
6236 @end smallexample
6237
6238 This warning is enabled by @option{-Wall}.
6239
6240 @item -Waggregate-return
6241 @opindex Waggregate-return
6242 @opindex Wno-aggregate-return
6243 Warn if any functions that return structures or unions are defined or
6244 called. (In languages where you can return an array, this also elicits
6245 a warning.)
6246
6247 @item -Wno-aggressive-loop-optimizations
6248 @opindex Wno-aggressive-loop-optimizations
6249 @opindex Waggressive-loop-optimizations
6250 Warn if in a loop with constant number of iterations the compiler detects
6251 undefined behavior in some statement during one or more of the iterations.
6252
6253 @item -Wno-attributes
6254 @opindex Wno-attributes
6255 @opindex Wattributes
6256 Do not warn if an unexpected @code{__attribute__} is used, such as
6257 unrecognized attributes, function attributes applied to variables,
6258 etc. This does not stop errors for incorrect use of supported
6259 attributes.
6260
6261 @item -Wno-builtin-declaration-mismatch
6262 @opindex Wno-builtin-declaration-mismatch
6263 @opindex Wbuiltin-declaration-mismatch
6264 Warn if a built-in function is declared with the wrong signature.
6265 This warning is enabled by default.
6266
6267 @item -Wno-builtin-macro-redefined
6268 @opindex Wno-builtin-macro-redefined
6269 @opindex Wbuiltin-macro-redefined
6270 Do not warn if certain built-in macros are redefined. This suppresses
6271 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
6272 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
6273
6274 @item -Wstrict-prototypes @r{(C and Objective-C only)}
6275 @opindex Wstrict-prototypes
6276 @opindex Wno-strict-prototypes
6277 Warn if a function is declared or defined without specifying the
6278 argument types. (An old-style function definition is permitted without
6279 a warning if preceded by a declaration that specifies the argument
6280 types.)
6281
6282 @item -Wold-style-declaration @r{(C and Objective-C only)}
6283 @opindex Wold-style-declaration
6284 @opindex Wno-old-style-declaration
6285 Warn for obsolescent usages, according to the C Standard, in a
6286 declaration. For example, warn if storage-class specifiers like
6287 @code{static} are not the first things in a declaration. This warning
6288 is also enabled by @option{-Wextra}.
6289
6290 @item -Wold-style-definition @r{(C and Objective-C only)}
6291 @opindex Wold-style-definition
6292 @opindex Wno-old-style-definition
6293 Warn if an old-style function definition is used. A warning is given
6294 even if there is a previous prototype.
6295
6296 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
6297 @opindex Wmissing-parameter-type
6298 @opindex Wno-missing-parameter-type
6299 A function parameter is declared without a type specifier in K&R-style
6300 functions:
6301
6302 @smallexample
6303 void foo(bar) @{ @}
6304 @end smallexample
6305
6306 This warning is also enabled by @option{-Wextra}.
6307
6308 @item -Wmissing-prototypes @r{(C and Objective-C only)}
6309 @opindex Wmissing-prototypes
6310 @opindex Wno-missing-prototypes
6311 Warn if a global function is defined without a previous prototype
6312 declaration. This warning is issued even if the definition itself
6313 provides a prototype. Use this option to detect global functions
6314 that do not have a matching prototype declaration in a header file.
6315 This option is not valid for C++ because all function declarations
6316 provide prototypes and a non-matching declaration declares an
6317 overload rather than conflict with an earlier declaration.
6318 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
6319
6320 @item -Wmissing-declarations
6321 @opindex Wmissing-declarations
6322 @opindex Wno-missing-declarations
6323 Warn if a global function is defined without a previous declaration.
6324 Do so even if the definition itself provides a prototype.
6325 Use this option to detect global functions that are not declared in
6326 header files. In C, no warnings are issued for functions with previous
6327 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
6328 missing prototypes. In C++, no warnings are issued for function templates,
6329 or for inline functions, or for functions in anonymous namespaces.
6330
6331 @item -Wmissing-field-initializers
6332 @opindex Wmissing-field-initializers
6333 @opindex Wno-missing-field-initializers
6334 @opindex W
6335 @opindex Wextra
6336 @opindex Wno-extra
6337 Warn if a structure's initializer has some fields missing. For
6338 example, the following code causes such a warning, because
6339 @code{x.h} is implicitly zero:
6340
6341 @smallexample
6342 struct s @{ int f, g, h; @};
6343 struct s x = @{ 3, 4 @};
6344 @end smallexample
6345
6346 This option does not warn about designated initializers, so the following
6347 modification does not trigger a warning:
6348
6349 @smallexample
6350 struct s @{ int f, g, h; @};
6351 struct s x = @{ .f = 3, .g = 4 @};
6352 @end smallexample
6353
6354 In C this option does not warn about the universal zero initializer
6355 @samp{@{ 0 @}}:
6356
6357 @smallexample
6358 struct s @{ int f, g, h; @};
6359 struct s x = @{ 0 @};
6360 @end smallexample
6361
6362 Likewise, in C++ this option does not warn about the empty @{ @}
6363 initializer, for example:
6364
6365 @smallexample
6366 struct s @{ int f, g, h; @};
6367 s x = @{ @};
6368 @end smallexample
6369
6370 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
6371 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
6372
6373 @item -Wno-multichar
6374 @opindex Wno-multichar
6375 @opindex Wmultichar
6376 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
6377 Usually they indicate a typo in the user's code, as they have
6378 implementation-defined values, and should not be used in portable code.
6379
6380 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
6381 @opindex Wnormalized=
6382 @opindex Wnormalized
6383 @opindex Wno-normalized
6384 @cindex NFC
6385 @cindex NFKC
6386 @cindex character set, input normalization
6387 In ISO C and ISO C++, two identifiers are different if they are
6388 different sequences of characters. However, sometimes when characters
6389 outside the basic ASCII character set are used, you can have two
6390 different character sequences that look the same. To avoid confusion,
6391 the ISO 10646 standard sets out some @dfn{normalization rules} which
6392 when applied ensure that two sequences that look the same are turned into
6393 the same sequence. GCC can warn you if you are using identifiers that
6394 have not been normalized; this option controls that warning.
6395
6396 There are four levels of warning supported by GCC@. The default is
6397 @option{-Wnormalized=nfc}, which warns about any identifier that is
6398 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
6399 recommended form for most uses. It is equivalent to
6400 @option{-Wnormalized}.
6401
6402 Unfortunately, there are some characters allowed in identifiers by
6403 ISO C and ISO C++ that, when turned into NFC, are not allowed in
6404 identifiers. That is, there's no way to use these symbols in portable
6405 ISO C or C++ and have all your identifiers in NFC@.
6406 @option{-Wnormalized=id} suppresses the warning for these characters.
6407 It is hoped that future versions of the standards involved will correct
6408 this, which is why this option is not the default.
6409
6410 You can switch the warning off for all characters by writing
6411 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
6412 only do this if you are using some other normalization scheme (like
6413 ``D''), because otherwise you can easily create bugs that are
6414 literally impossible to see.
6415
6416 Some characters in ISO 10646 have distinct meanings but look identical
6417 in some fonts or display methodologies, especially once formatting has
6418 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
6419 LETTER N'', displays just like a regular @code{n} that has been
6420 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
6421 normalization scheme to convert all these into a standard form as
6422 well, and GCC warns if your code is not in NFKC if you use
6423 @option{-Wnormalized=nfkc}. This warning is comparable to warning
6424 about every identifier that contains the letter O because it might be
6425 confused with the digit 0, and so is not the default, but may be
6426 useful as a local coding convention if the programming environment
6427 cannot be fixed to display these characters distinctly.
6428
6429 @item -Wno-deprecated
6430 @opindex Wno-deprecated
6431 @opindex Wdeprecated
6432 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
6433
6434 @item -Wno-deprecated-declarations
6435 @opindex Wno-deprecated-declarations
6436 @opindex Wdeprecated-declarations
6437 Do not warn about uses of functions (@pxref{Function Attributes}),
6438 variables (@pxref{Variable Attributes}), and types (@pxref{Type
6439 Attributes}) marked as deprecated by using the @code{deprecated}
6440 attribute.
6441
6442 @item -Wno-overflow
6443 @opindex Wno-overflow
6444 @opindex Woverflow
6445 Do not warn about compile-time overflow in constant expressions.
6446
6447 @item -Wno-odr
6448 @opindex Wno-odr
6449 @opindex Wodr
6450 Warn about One Definition Rule violations during link-time optimization.
6451 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
6452
6453 @item -Wopenmp-simd
6454 @opindex Wopenm-simd
6455 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
6456 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
6457 option can be used to relax the cost model.
6458
6459 @item -Woverride-init @r{(C and Objective-C only)}
6460 @opindex Woverride-init
6461 @opindex Wno-override-init
6462 @opindex W
6463 @opindex Wextra
6464 @opindex Wno-extra
6465 Warn if an initialized field without side effects is overridden when
6466 using designated initializers (@pxref{Designated Inits, , Designated
6467 Initializers}).
6468
6469 This warning is included in @option{-Wextra}. To get other
6470 @option{-Wextra} warnings without this one, use @option{-Wextra
6471 -Wno-override-init}.
6472
6473 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
6474 @opindex Woverride-init-side-effects
6475 @opindex Wno-override-init-side-effects
6476 Warn if an initialized field with side effects is overridden when
6477 using designated initializers (@pxref{Designated Inits, , Designated
6478 Initializers}). This warning is enabled by default.
6479
6480 @item -Wpacked
6481 @opindex Wpacked
6482 @opindex Wno-packed
6483 Warn if a structure is given the packed attribute, but the packed
6484 attribute has no effect on the layout or size of the structure.
6485 Such structures may be mis-aligned for little benefit. For
6486 instance, in this code, the variable @code{f.x} in @code{struct bar}
6487 is misaligned even though @code{struct bar} does not itself
6488 have the packed attribute:
6489
6490 @smallexample
6491 @group
6492 struct foo @{
6493 int x;
6494 char a, b, c, d;
6495 @} __attribute__((packed));
6496 struct bar @{
6497 char z;
6498 struct foo f;
6499 @};
6500 @end group
6501 @end smallexample
6502
6503 @item -Wpacked-bitfield-compat
6504 @opindex Wpacked-bitfield-compat
6505 @opindex Wno-packed-bitfield-compat
6506 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
6507 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
6508 the change can lead to differences in the structure layout. GCC
6509 informs you when the offset of such a field has changed in GCC 4.4.
6510 For example there is no longer a 4-bit padding between field @code{a}
6511 and @code{b} in this structure:
6512
6513 @smallexample
6514 struct foo
6515 @{
6516 char a:4;
6517 char b:8;
6518 @} __attribute__ ((packed));
6519 @end smallexample
6520
6521 This warning is enabled by default. Use
6522 @option{-Wno-packed-bitfield-compat} to disable this warning.
6523
6524 @item -Wpadded
6525 @opindex Wpadded
6526 @opindex Wno-padded
6527 Warn if padding is included in a structure, either to align an element
6528 of the structure or to align the whole structure. Sometimes when this
6529 happens it is possible to rearrange the fields of the structure to
6530 reduce the padding and so make the structure smaller.
6531
6532 @item -Wredundant-decls
6533 @opindex Wredundant-decls
6534 @opindex Wno-redundant-decls
6535 Warn if anything is declared more than once in the same scope, even in
6536 cases where multiple declaration is valid and changes nothing.
6537
6538 @item -Wrestrict
6539 @opindex Wrestrict
6540 @opindex Wno-restrict
6541 Warn when an argument passed to a restrict-qualified parameter
6542 aliases with another argument.
6543
6544 @item -Wnested-externs @r{(C and Objective-C only)}
6545 @opindex Wnested-externs
6546 @opindex Wno-nested-externs
6547 Warn if an @code{extern} declaration is encountered within a function.
6548
6549 @item -Wno-inherited-variadic-ctor
6550 @opindex Winherited-variadic-ctor
6551 @opindex Wno-inherited-variadic-ctor
6552 Suppress warnings about use of C++11 inheriting constructors when the
6553 base class inherited from has a C variadic constructor; the warning is
6554 on by default because the ellipsis is not inherited.
6555
6556 @item -Winline
6557 @opindex Winline
6558 @opindex Wno-inline
6559 Warn if a function that is declared as inline cannot be inlined.
6560 Even with this option, the compiler does not warn about failures to
6561 inline functions declared in system headers.
6562
6563 The compiler uses a variety of heuristics to determine whether or not
6564 to inline a function. For example, the compiler takes into account
6565 the size of the function being inlined and the amount of inlining
6566 that has already been done in the current function. Therefore,
6567 seemingly insignificant changes in the source program can cause the
6568 warnings produced by @option{-Winline} to appear or disappear.
6569
6570 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
6571 @opindex Wno-invalid-offsetof
6572 @opindex Winvalid-offsetof
6573 Suppress warnings from applying the @code{offsetof} macro to a non-POD
6574 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
6575 to a non-standard-layout type is undefined. In existing C++ implementations,
6576 however, @code{offsetof} typically gives meaningful results.
6577 This flag is for users who are aware that they are
6578 writing nonportable code and who have deliberately chosen to ignore the
6579 warning about it.
6580
6581 The restrictions on @code{offsetof} may be relaxed in a future version
6582 of the C++ standard.
6583
6584 @item -Wint-in-bool-context
6585 @opindex Wint-in-bool-context
6586 @opindex Wno-int-in-bool-context
6587 Warn for suspicious use of integer values where boolean values are expected,
6588 such as conditional expressions (?:) using non-boolean integer constants in
6589 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
6590 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
6591 for all kinds of multiplications regardless of the data type.
6592 This warning is enabled by @option{-Wall}.
6593
6594 @item -Wno-int-to-pointer-cast
6595 @opindex Wno-int-to-pointer-cast
6596 @opindex Wint-to-pointer-cast
6597 Suppress warnings from casts to pointer type of an integer of a
6598 different size. In C++, casting to a pointer type of smaller size is
6599 an error. @option{Wint-to-pointer-cast} is enabled by default.
6600
6601
6602 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
6603 @opindex Wno-pointer-to-int-cast
6604 @opindex Wpointer-to-int-cast
6605 Suppress warnings from casts from a pointer to an integer type of a
6606 different size.
6607
6608 @item -Winvalid-pch
6609 @opindex Winvalid-pch
6610 @opindex Wno-invalid-pch
6611 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
6612 the search path but cannot be used.
6613
6614 @item -Wlong-long
6615 @opindex Wlong-long
6616 @opindex Wno-long-long
6617 Warn if @code{long long} type is used. This is enabled by either
6618 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
6619 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
6620
6621 @item -Wvariadic-macros
6622 @opindex Wvariadic-macros
6623 @opindex Wno-variadic-macros
6624 Warn if variadic macros are used in ISO C90 mode, or if the GNU
6625 alternate syntax is used in ISO C99 mode. This is enabled by either
6626 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
6627 messages, use @option{-Wno-variadic-macros}.
6628
6629 @item -Wvarargs
6630 @opindex Wvarargs
6631 @opindex Wno-varargs
6632 Warn upon questionable usage of the macros used to handle variable
6633 arguments like @code{va_start}. This is default. To inhibit the
6634 warning messages, use @option{-Wno-varargs}.
6635
6636 @item -Wvector-operation-performance
6637 @opindex Wvector-operation-performance
6638 @opindex Wno-vector-operation-performance
6639 Warn if vector operation is not implemented via SIMD capabilities of the
6640 architecture. Mainly useful for the performance tuning.
6641 Vector operation can be implemented @code{piecewise}, which means that the
6642 scalar operation is performed on every vector element;
6643 @code{in parallel}, which means that the vector operation is implemented
6644 using scalars of wider type, which normally is more performance efficient;
6645 and @code{as a single scalar}, which means that vector fits into a
6646 scalar type.
6647
6648 @item -Wno-virtual-move-assign
6649 @opindex Wvirtual-move-assign
6650 @opindex Wno-virtual-move-assign
6651 Suppress warnings about inheriting from a virtual base with a
6652 non-trivial C++11 move assignment operator. This is dangerous because
6653 if the virtual base is reachable along more than one path, it is
6654 moved multiple times, which can mean both objects end up in the
6655 moved-from state. If the move assignment operator is written to avoid
6656 moving from a moved-from object, this warning can be disabled.
6657
6658 @item -Wvla
6659 @opindex Wvla
6660 @opindex Wno-vla
6661 Warn if a variable-length array is used in the code.
6662 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
6663 the variable-length array.
6664
6665 @item -Wvla-larger-than=@var{n}
6666 If this option is used, the compiler will warn on uses of
6667 variable-length arrays where the size is either unbounded, or bounded
6668 by an argument that can be larger than @var{n} bytes. This is similar
6669 to how @option{-Walloca-larger-than=@var{n}} works, but with
6670 variable-length arrays.
6671
6672 Note that GCC may optimize small variable-length arrays of a known
6673 value into plain arrays, so this warning may not get triggered for
6674 such arrays.
6675
6676 This warning is not enabled by @option{-Wall}, and is only active when
6677 @option{-ftree-vrp} is active (default for @option{-O2} and above).
6678
6679 See also @option{-Walloca-larger-than=@var{n}}.
6680
6681 @item -Wvolatile-register-var
6682 @opindex Wvolatile-register-var
6683 @opindex Wno-volatile-register-var
6684 Warn if a register variable is declared volatile. The volatile
6685 modifier does not inhibit all optimizations that may eliminate reads
6686 and/or writes to register variables. This warning is enabled by
6687 @option{-Wall}.
6688
6689 @item -Wdisabled-optimization
6690 @opindex Wdisabled-optimization
6691 @opindex Wno-disabled-optimization
6692 Warn if a requested optimization pass is disabled. This warning does
6693 not generally indicate that there is anything wrong with your code; it
6694 merely indicates that GCC's optimizers are unable to handle the code
6695 effectively. Often, the problem is that your code is too big or too
6696 complex; GCC refuses to optimize programs when the optimization
6697 itself is likely to take inordinate amounts of time.
6698
6699 @item -Wpointer-sign @r{(C and Objective-C only)}
6700 @opindex Wpointer-sign
6701 @opindex Wno-pointer-sign
6702 Warn for pointer argument passing or assignment with different signedness.
6703 This option is only supported for C and Objective-C@. It is implied by
6704 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
6705 @option{-Wno-pointer-sign}.
6706
6707 @item -Wstack-protector
6708 @opindex Wstack-protector
6709 @opindex Wno-stack-protector
6710 This option is only active when @option{-fstack-protector} is active. It
6711 warns about functions that are not protected against stack smashing.
6712
6713 @item -Woverlength-strings
6714 @opindex Woverlength-strings
6715 @opindex Wno-overlength-strings
6716 Warn about string constants that are longer than the ``minimum
6717 maximum'' length specified in the C standard. Modern compilers
6718 generally allow string constants that are much longer than the
6719 standard's minimum limit, but very portable programs should avoid
6720 using longer strings.
6721
6722 The limit applies @emph{after} string constant concatenation, and does
6723 not count the trailing NUL@. In C90, the limit was 509 characters; in
6724 C99, it was raised to 4095. C++98 does not specify a normative
6725 minimum maximum, so we do not diagnose overlength strings in C++@.
6726
6727 This option is implied by @option{-Wpedantic}, and can be disabled with
6728 @option{-Wno-overlength-strings}.
6729
6730 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
6731 @opindex Wunsuffixed-float-constants
6732
6733 Issue a warning for any floating constant that does not have
6734 a suffix. When used together with @option{-Wsystem-headers} it
6735 warns about such constants in system header files. This can be useful
6736 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
6737 from the decimal floating-point extension to C99.
6738
6739 @item -Wno-designated-init @r{(C and Objective-C only)}
6740 Suppress warnings when a positional initializer is used to initialize
6741 a structure that has been marked with the @code{designated_init}
6742 attribute.
6743
6744 @item -Whsa
6745 Issue a warning when HSAIL cannot be emitted for the compiled function or
6746 OpenMP construct.
6747
6748 @end table
6749
6750 @node Debugging Options
6751 @section Options for Debugging Your Program
6752 @cindex options, debugging
6753 @cindex debugging information options
6754
6755 To tell GCC to emit extra information for use by a debugger, in almost
6756 all cases you need only to add @option{-g} to your other options.
6757
6758 GCC allows you to use @option{-g} with
6759 @option{-O}. The shortcuts taken by optimized code may occasionally
6760 be surprising: some variables you declared may not exist
6761 at all; flow of control may briefly move where you did not expect it;
6762 some statements may not be executed because they compute constant
6763 results or their values are already at hand; some statements may
6764 execute in different places because they have been moved out of loops.
6765 Nevertheless it is possible to debug optimized output. This makes
6766 it reasonable to use the optimizer for programs that might have bugs.
6767
6768 If you are not using some other optimization option, consider
6769 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
6770 With no @option{-O} option at all, some compiler passes that collect
6771 information useful for debugging do not run at all, so that
6772 @option{-Og} may result in a better debugging experience.
6773
6774 @table @gcctabopt
6775 @item -g
6776 @opindex g
6777 Produce debugging information in the operating system's native format
6778 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
6779 information.
6780
6781 On most systems that use stabs format, @option{-g} enables use of extra
6782 debugging information that only GDB can use; this extra information
6783 makes debugging work better in GDB but probably makes other debuggers
6784 crash or
6785 refuse to read the program. If you want to control for certain whether
6786 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
6787 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
6788
6789 @item -ggdb
6790 @opindex ggdb
6791 Produce debugging information for use by GDB@. This means to use the
6792 most expressive format available (DWARF, stabs, or the native format
6793 if neither of those are supported), including GDB extensions if at all
6794 possible.
6795
6796 @item -gdwarf
6797 @itemx -gdwarf-@var{version}
6798 @opindex gdwarf
6799 Produce debugging information in DWARF format (if that is supported).
6800 The value of @var{version} may be either 2, 3, 4 or 5; the default version
6801 for most targets is 4. DWARF Version 5 is only experimental.
6802
6803 Note that with DWARF Version 2, some ports require and always
6804 use some non-conflicting DWARF 3 extensions in the unwind tables.
6805
6806 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
6807 for maximum benefit.
6808
6809 GCC no longer supports DWARF Version 1, which is substantially
6810 different than Version 2 and later. For historical reasons, some
6811 other DWARF-related options (including @option{-feliminate-dwarf2-dups}
6812 and @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
6813 in their names, but apply to all currently-supported versions of DWARF.
6814
6815 @item -gstabs
6816 @opindex gstabs
6817 Produce debugging information in stabs format (if that is supported),
6818 without GDB extensions. This is the format used by DBX on most BSD
6819 systems. On MIPS, Alpha and System V Release 4 systems this option
6820 produces stabs debugging output that is not understood by DBX or SDB@.
6821 On System V Release 4 systems this option requires the GNU assembler.
6822
6823 @item -gstabs+
6824 @opindex gstabs+
6825 Produce debugging information in stabs format (if that is supported),
6826 using GNU extensions understood only by the GNU debugger (GDB)@. The
6827 use of these extensions is likely to make other debuggers crash or
6828 refuse to read the program.
6829
6830 @item -gcoff
6831 @opindex gcoff
6832 Produce debugging information in COFF format (if that is supported).
6833 This is the format used by SDB on most System V systems prior to
6834 System V Release 4.
6835
6836 @item -gxcoff
6837 @opindex gxcoff
6838 Produce debugging information in XCOFF format (if that is supported).
6839 This is the format used by the DBX debugger on IBM RS/6000 systems.
6840
6841 @item -gxcoff+
6842 @opindex gxcoff+
6843 Produce debugging information in XCOFF format (if that is supported),
6844 using GNU extensions understood only by the GNU debugger (GDB)@. The
6845 use of these extensions is likely to make other debuggers crash or
6846 refuse to read the program, and may cause assemblers other than the GNU
6847 assembler (GAS) to fail with an error.
6848
6849 @item -gvms
6850 @opindex gvms
6851 Produce debugging information in Alpha/VMS debug format (if that is
6852 supported). This is the format used by DEBUG on Alpha/VMS systems.
6853
6854 @item -g@var{level}
6855 @itemx -ggdb@var{level}
6856 @itemx -gstabs@var{level}
6857 @itemx -gcoff@var{level}
6858 @itemx -gxcoff@var{level}
6859 @itemx -gvms@var{level}
6860 Request debugging information and also use @var{level} to specify how
6861 much information. The default level is 2.
6862
6863 Level 0 produces no debug information at all. Thus, @option{-g0} negates
6864 @option{-g}.
6865
6866 Level 1 produces minimal information, enough for making backtraces in
6867 parts of the program that you don't plan to debug. This includes
6868 descriptions of functions and external variables, and line number
6869 tables, but no information about local variables.
6870
6871 Level 3 includes extra information, such as all the macro definitions
6872 present in the program. Some debuggers support macro expansion when
6873 you use @option{-g3}.
6874
6875 @option{-gdwarf} does not accept a concatenated debug level, to avoid
6876 confusion with @option{-gdwarf-@var{level}}.
6877 Instead use an additional @option{-g@var{level}} option to change the
6878 debug level for DWARF.
6879
6880 @item -feliminate-unused-debug-symbols
6881 @opindex feliminate-unused-debug-symbols
6882 Produce debugging information in stabs format (if that is supported),
6883 for only symbols that are actually used.
6884
6885 @item -femit-class-debug-always
6886 @opindex femit-class-debug-always
6887 Instead of emitting debugging information for a C++ class in only one
6888 object file, emit it in all object files using the class. This option
6889 should be used only with debuggers that are unable to handle the way GCC
6890 normally emits debugging information for classes because using this
6891 option increases the size of debugging information by as much as a
6892 factor of two.
6893
6894 @item -fno-merge-debug-strings
6895 @opindex fmerge-debug-strings
6896 @opindex fno-merge-debug-strings
6897 Direct the linker to not merge together strings in the debugging
6898 information that are identical in different object files. Merging is
6899 not supported by all assemblers or linkers. Merging decreases the size
6900 of the debug information in the output file at the cost of increasing
6901 link processing time. Merging is enabled by default.
6902
6903 @item -fdebug-prefix-map=@var{old}=@var{new}
6904 @opindex fdebug-prefix-map
6905 When compiling files in directory @file{@var{old}}, record debugging
6906 information describing them as in @file{@var{new}} instead.
6907
6908 @item -fvar-tracking
6909 @opindex fvar-tracking
6910 Run variable tracking pass. It computes where variables are stored at each
6911 position in code. Better debugging information is then generated
6912 (if the debugging information format supports this information).
6913
6914 It is enabled by default when compiling with optimization (@option{-Os},
6915 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
6916 the debug info format supports it.
6917
6918 @item -fvar-tracking-assignments
6919 @opindex fvar-tracking-assignments
6920 @opindex fno-var-tracking-assignments
6921 Annotate assignments to user variables early in the compilation and
6922 attempt to carry the annotations over throughout the compilation all the
6923 way to the end, in an attempt to improve debug information while
6924 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
6925
6926 It can be enabled even if var-tracking is disabled, in which case
6927 annotations are created and maintained, but discarded at the end.
6928 By default, this flag is enabled together with @option{-fvar-tracking},
6929 except when selective scheduling is enabled.
6930
6931 @item -gsplit-dwarf
6932 @opindex gsplit-dwarf
6933 Separate as much DWARF debugging information as possible into a
6934 separate output file with the extension @file{.dwo}. This option allows
6935 the build system to avoid linking files with debug information. To
6936 be useful, this option requires a debugger capable of reading @file{.dwo}
6937 files.
6938
6939 @item -gpubnames
6940 @opindex gpubnames
6941 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
6942
6943 @item -ggnu-pubnames
6944 @opindex ggnu-pubnames
6945 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
6946 suitable for conversion into a GDB@ index. This option is only useful
6947 with a linker that can produce GDB@ index version 7.
6948
6949 @item -fdebug-types-section
6950 @opindex fdebug-types-section
6951 @opindex fno-debug-types-section
6952 When using DWARF Version 4 or higher, type DIEs can be put into
6953 their own @code{.debug_types} section instead of making them part of the
6954 @code{.debug_info} section. It is more efficient to put them in a separate
6955 comdat sections since the linker can then remove duplicates.
6956 But not all DWARF consumers support @code{.debug_types} sections yet
6957 and on some objects @code{.debug_types} produces larger instead of smaller
6958 debugging information.
6959
6960 @item -grecord-gcc-switches
6961 @item -gno-record-gcc-switches
6962 @opindex grecord-gcc-switches
6963 @opindex gno-record-gcc-switches
6964 This switch causes the command-line options used to invoke the
6965 compiler that may affect code generation to be appended to the
6966 DW_AT_producer attribute in DWARF debugging information. The options
6967 are concatenated with spaces separating them from each other and from
6968 the compiler version.
6969 It is enabled by default.
6970 See also @option{-frecord-gcc-switches} for another
6971 way of storing compiler options into the object file.
6972
6973 @item -gstrict-dwarf
6974 @opindex gstrict-dwarf
6975 Disallow using extensions of later DWARF standard version than selected
6976 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
6977 DWARF extensions from later standard versions is allowed.
6978
6979 @item -gno-strict-dwarf
6980 @opindex gno-strict-dwarf
6981 Allow using extensions of later DWARF standard version than selected with
6982 @option{-gdwarf-@var{version}}.
6983
6984 @item -gcolumn-info
6985 @item -gno-column-info
6986 @opindex gcolumn-info
6987 @opindex gno-column-info
6988 Emit location column information into DWARF debugging information, rather
6989 than just file and line.
6990 This option is disabled by default.
6991
6992 @item -gz@r{[}=@var{type}@r{]}
6993 @opindex gz
6994 Produce compressed debug sections in DWARF format, if that is supported.
6995 If @var{type} is not given, the default type depends on the capabilities
6996 of the assembler and linker used. @var{type} may be one of
6997 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
6998 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
6999 compression in traditional GNU format). If the linker doesn't support
7000 writing compressed debug sections, the option is rejected. Otherwise,
7001 if the assembler does not support them, @option{-gz} is silently ignored
7002 when producing object files.
7003
7004 @item -feliminate-dwarf2-dups
7005 @opindex feliminate-dwarf2-dups
7006 Compress DWARF debugging information by eliminating duplicated
7007 information about each symbol. This option only makes sense when
7008 generating DWARF debugging information.
7009
7010 @item -femit-struct-debug-baseonly
7011 @opindex femit-struct-debug-baseonly
7012 Emit debug information for struct-like types
7013 only when the base name of the compilation source file
7014 matches the base name of file in which the struct is defined.
7015
7016 This option substantially reduces the size of debugging information,
7017 but at significant potential loss in type information to the debugger.
7018 See @option{-femit-struct-debug-reduced} for a less aggressive option.
7019 See @option{-femit-struct-debug-detailed} for more detailed control.
7020
7021 This option works only with DWARF debug output.
7022
7023 @item -femit-struct-debug-reduced
7024 @opindex femit-struct-debug-reduced
7025 Emit debug information for struct-like types
7026 only when the base name of the compilation source file
7027 matches the base name of file in which the type is defined,
7028 unless the struct is a template or defined in a system header.
7029
7030 This option significantly reduces the size of debugging information,
7031 with some potential loss in type information to the debugger.
7032 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
7033 See @option{-femit-struct-debug-detailed} for more detailed control.
7034
7035 This option works only with DWARF debug output.
7036
7037 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
7038 @opindex femit-struct-debug-detailed
7039 Specify the struct-like types
7040 for which the compiler generates debug information.
7041 The intent is to reduce duplicate struct debug information
7042 between different object files within the same program.
7043
7044 This option is a detailed version of
7045 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
7046 which serves for most needs.
7047
7048 A specification has the syntax@*
7049 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
7050
7051 The optional first word limits the specification to
7052 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
7053 A struct type is used directly when it is the type of a variable, member.
7054 Indirect uses arise through pointers to structs.
7055 That is, when use of an incomplete struct is valid, the use is indirect.
7056 An example is
7057 @samp{struct one direct; struct two * indirect;}.
7058
7059 The optional second word limits the specification to
7060 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
7061 Generic structs are a bit complicated to explain.
7062 For C++, these are non-explicit specializations of template classes,
7063 or non-template classes within the above.
7064 Other programming languages have generics,
7065 but @option{-femit-struct-debug-detailed} does not yet implement them.
7066
7067 The third word specifies the source files for those
7068 structs for which the compiler should emit debug information.
7069 The values @samp{none} and @samp{any} have the normal meaning.
7070 The value @samp{base} means that
7071 the base of name of the file in which the type declaration appears
7072 must match the base of the name of the main compilation file.
7073 In practice, this means that when compiling @file{foo.c}, debug information
7074 is generated for types declared in that file and @file{foo.h},
7075 but not other header files.
7076 The value @samp{sys} means those types satisfying @samp{base}
7077 or declared in system or compiler headers.
7078
7079 You may need to experiment to determine the best settings for your application.
7080
7081 The default is @option{-femit-struct-debug-detailed=all}.
7082
7083 This option works only with DWARF debug output.
7084
7085 @item -fno-dwarf2-cfi-asm
7086 @opindex fdwarf2-cfi-asm
7087 @opindex fno-dwarf2-cfi-asm
7088 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
7089 instead of using GAS @code{.cfi_*} directives.
7090
7091 @item -fno-eliminate-unused-debug-types
7092 @opindex feliminate-unused-debug-types
7093 @opindex fno-eliminate-unused-debug-types
7094 Normally, when producing DWARF output, GCC avoids producing debug symbol
7095 output for types that are nowhere used in the source file being compiled.
7096 Sometimes it is useful to have GCC emit debugging
7097 information for all types declared in a compilation
7098 unit, regardless of whether or not they are actually used
7099 in that compilation unit, for example
7100 if, in the debugger, you want to cast a value to a type that is
7101 not actually used in your program (but is declared). More often,
7102 however, this results in a significant amount of wasted space.
7103 @end table
7104
7105 @node Optimize Options
7106 @section Options That Control Optimization
7107 @cindex optimize options
7108 @cindex options, optimization
7109
7110 These options control various sorts of optimizations.
7111
7112 Without any optimization option, the compiler's goal is to reduce the
7113 cost of compilation and to make debugging produce the expected
7114 results. Statements are independent: if you stop the program with a
7115 breakpoint between statements, you can then assign a new value to any
7116 variable or change the program counter to any other statement in the
7117 function and get exactly the results you expect from the source
7118 code.
7119
7120 Turning on optimization flags makes the compiler attempt to improve
7121 the performance and/or code size at the expense of compilation time
7122 and possibly the ability to debug the program.
7123
7124 The compiler performs optimization based on the knowledge it has of the
7125 program. Compiling multiple files at once to a single output file mode allows
7126 the compiler to use information gained from all of the files when compiling
7127 each of them.
7128
7129 Not all optimizations are controlled directly by a flag. Only
7130 optimizations that have a flag are listed in this section.
7131
7132 Most optimizations are only enabled if an @option{-O} level is set on
7133 the command line. Otherwise they are disabled, even if individual
7134 optimization flags are specified.
7135
7136 Depending on the target and how GCC was configured, a slightly different
7137 set of optimizations may be enabled at each @option{-O} level than
7138 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7139 to find out the exact set of optimizations that are enabled at each level.
7140 @xref{Overall Options}, for examples.
7141
7142 @table @gcctabopt
7143 @item -O
7144 @itemx -O1
7145 @opindex O
7146 @opindex O1
7147 Optimize. Optimizing compilation takes somewhat more time, and a lot
7148 more memory for a large function.
7149
7150 With @option{-O}, the compiler tries to reduce code size and execution
7151 time, without performing any optimizations that take a great deal of
7152 compilation time.
7153
7154 @option{-O} turns on the following optimization flags:
7155 @gccoptlist{
7156 -fauto-inc-dec @gol
7157 -fbranch-count-reg @gol
7158 -fcombine-stack-adjustments @gol
7159 -fcompare-elim @gol
7160 -fcprop-registers @gol
7161 -fdce @gol
7162 -fdefer-pop @gol
7163 -fdelayed-branch @gol
7164 -fdse @gol
7165 -fforward-propagate @gol
7166 -fguess-branch-probability @gol
7167 -fif-conversion2 @gol
7168 -fif-conversion @gol
7169 -finline-functions-called-once @gol
7170 -fipa-pure-const @gol
7171 -fipa-profile @gol
7172 -fipa-reference @gol
7173 -fmerge-constants @gol
7174 -fmove-loop-invariants @gol
7175 -freorder-blocks @gol
7176 -fshrink-wrap @gol
7177 -fshrink-wrap-separate @gol
7178 -fsplit-wide-types @gol
7179 -fssa-backprop @gol
7180 -fssa-phiopt @gol
7181 -ftree-bit-ccp @gol
7182 -ftree-ccp @gol
7183 -ftree-ch @gol
7184 -ftree-coalesce-vars @gol
7185 -ftree-copy-prop @gol
7186 -ftree-dce @gol
7187 -ftree-dominator-opts @gol
7188 -ftree-dse @gol
7189 -ftree-forwprop @gol
7190 -ftree-fre @gol
7191 -ftree-phiprop @gol
7192 -ftree-sink @gol
7193 -ftree-slsr @gol
7194 -ftree-sra @gol
7195 -ftree-pta @gol
7196 -ftree-ter @gol
7197 -funit-at-a-time}
7198
7199 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7200 where doing so does not interfere with debugging.
7201
7202 @item -O2
7203 @opindex O2
7204 Optimize even more. GCC performs nearly all supported optimizations
7205 that do not involve a space-speed tradeoff.
7206 As compared to @option{-O}, this option increases both compilation time
7207 and the performance of the generated code.
7208
7209 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7210 also turns on the following optimization flags:
7211 @gccoptlist{-fthread-jumps @gol
7212 -falign-functions -falign-jumps @gol
7213 -falign-loops -falign-labels @gol
7214 -fcaller-saves @gol
7215 -fcrossjumping @gol
7216 -fcse-follow-jumps -fcse-skip-blocks @gol
7217 -fdelete-null-pointer-checks @gol
7218 -fdevirtualize -fdevirtualize-speculatively @gol
7219 -fexpensive-optimizations @gol
7220 -fgcse -fgcse-lm @gol
7221 -fhoist-adjacent-loads @gol
7222 -finline-small-functions @gol
7223 -findirect-inlining @gol
7224 -fipa-cp @gol
7225 -fipa-bit-cp @gol
7226 -fipa-vrp @gol
7227 -fipa-sra @gol
7228 -fipa-icf @gol
7229 -fisolate-erroneous-paths-dereference @gol
7230 -flra-remat @gol
7231 -foptimize-sibling-calls @gol
7232 -foptimize-strlen @gol
7233 -fpartial-inlining @gol
7234 -fpeephole2 @gol
7235 -freorder-blocks-algorithm=stc @gol
7236 -freorder-blocks-and-partition -freorder-functions @gol
7237 -frerun-cse-after-loop @gol
7238 -fsched-interblock -fsched-spec @gol
7239 -fschedule-insns -fschedule-insns2 @gol
7240 -fstore-merging @gol
7241 -fstrict-aliasing @gol
7242 -ftree-builtin-call-dce @gol
7243 -ftree-switch-conversion -ftree-tail-merge @gol
7244 -fcode-hoisting @gol
7245 -ftree-pre @gol
7246 -ftree-vrp @gol
7247 -fipa-ra}
7248
7249 Please note the warning under @option{-fgcse} about
7250 invoking @option{-O2} on programs that use computed gotos.
7251
7252 @item -O3
7253 @opindex O3
7254 Optimize yet more. @option{-O3} turns on all optimizations specified
7255 by @option{-O2} and also turns on the @option{-finline-functions},
7256 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7257 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7258 @option{-ftree-loop-distribute-patterns}, @option{-fsplit-paths}
7259 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7260 @option{-ftree-partial-pre}, @option{-fpeel-loops}
7261 and @option{-fipa-cp-clone} options.
7262
7263 @item -O0
7264 @opindex O0
7265 Reduce compilation time and make debugging produce the expected
7266 results. This is the default.
7267
7268 @item -Os
7269 @opindex Os
7270 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7271 do not typically increase code size. It also performs further
7272 optimizations designed to reduce code size.
7273
7274 @option{-Os} disables the following optimization flags:
7275 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7276 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc @gol
7277 -freorder-blocks-and-partition -fprefetch-loop-arrays}
7278
7279 @item -Ofast
7280 @opindex Ofast
7281 Disregard strict standards compliance. @option{-Ofast} enables all
7282 @option{-O3} optimizations. It also enables optimizations that are not
7283 valid for all standard-compliant programs.
7284 It turns on @option{-ffast-math} and the Fortran-specific
7285 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7286
7287 @item -Og
7288 @opindex Og
7289 Optimize debugging experience. @option{-Og} enables optimizations
7290 that do not interfere with debugging. It should be the optimization
7291 level of choice for the standard edit-compile-debug cycle, offering
7292 a reasonable level of optimization while maintaining fast compilation
7293 and a good debugging experience.
7294 @end table
7295
7296 If you use multiple @option{-O} options, with or without level numbers,
7297 the last such option is the one that is effective.
7298
7299 Options of the form @option{-f@var{flag}} specify machine-independent
7300 flags. Most flags have both positive and negative forms; the negative
7301 form of @option{-ffoo} is @option{-fno-foo}. In the table
7302 below, only one of the forms is listed---the one you typically
7303 use. You can figure out the other form by either removing @samp{no-}
7304 or adding it.
7305
7306 The following options control specific optimizations. They are either
7307 activated by @option{-O} options or are related to ones that are. You
7308 can use the following flags in the rare cases when ``fine-tuning'' of
7309 optimizations to be performed is desired.
7310
7311 @table @gcctabopt
7312 @item -fno-defer-pop
7313 @opindex fno-defer-pop
7314 Always pop the arguments to each function call as soon as that function
7315 returns. For machines that must pop arguments after a function call,
7316 the compiler normally lets arguments accumulate on the stack for several
7317 function calls and pops them all at once.
7318
7319 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7320
7321 @item -fforward-propagate
7322 @opindex fforward-propagate
7323 Perform a forward propagation pass on RTL@. The pass tries to combine two
7324 instructions and checks if the result can be simplified. If loop unrolling
7325 is active, two passes are performed and the second is scheduled after
7326 loop unrolling.
7327
7328 This option is enabled by default at optimization levels @option{-O},
7329 @option{-O2}, @option{-O3}, @option{-Os}.
7330
7331 @item -ffp-contract=@var{style}
7332 @opindex ffp-contract
7333 @option{-ffp-contract=off} disables floating-point expression contraction.
7334 @option{-ffp-contract=fast} enables floating-point expression contraction
7335 such as forming of fused multiply-add operations if the target has
7336 native support for them.
7337 @option{-ffp-contract=on} enables floating-point expression contraction
7338 if allowed by the language standard. This is currently not implemented
7339 and treated equal to @option{-ffp-contract=off}.
7340
7341 The default is @option{-ffp-contract=fast}.
7342
7343 @item -fomit-frame-pointer
7344 @opindex fomit-frame-pointer
7345 Don't keep the frame pointer in a register for functions that
7346 don't need one. This avoids the instructions to save, set up and
7347 restore frame pointers; it also makes an extra register available
7348 in many functions. @strong{It also makes debugging impossible on
7349 some machines.}
7350
7351 On some machines, such as the VAX, this flag has no effect, because
7352 the standard calling sequence automatically handles the frame pointer
7353 and nothing is saved by pretending it doesn't exist. The
7354 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7355 whether a target machine supports this flag. @xref{Registers,,Register
7356 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7357
7358 The default setting (when not optimizing for
7359 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7360 @option{-fomit-frame-pointer}. You can configure GCC with the
7361 @option{--enable-frame-pointer} configure option to change the default.
7362
7363 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7364
7365 @item -foptimize-sibling-calls
7366 @opindex foptimize-sibling-calls
7367 Optimize sibling and tail recursive calls.
7368
7369 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7370
7371 @item -foptimize-strlen
7372 @opindex foptimize-strlen
7373 Optimize various standard C string functions (e.g. @code{strlen},
7374 @code{strchr} or @code{strcpy}) and
7375 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7376
7377 Enabled at levels @option{-O2}, @option{-O3}.
7378
7379 @item -fno-inline
7380 @opindex fno-inline
7381 Do not expand any functions inline apart from those marked with
7382 the @code{always_inline} attribute. This is the default when not
7383 optimizing.
7384
7385 Single functions can be exempted from inlining by marking them
7386 with the @code{noinline} attribute.
7387
7388 @item -finline-small-functions
7389 @opindex finline-small-functions
7390 Integrate functions into their callers when their body is smaller than expected
7391 function call code (so overall size of program gets smaller). The compiler
7392 heuristically decides which functions are simple enough to be worth integrating
7393 in this way. This inlining applies to all functions, even those not declared
7394 inline.
7395
7396 Enabled at level @option{-O2}.
7397
7398 @item -findirect-inlining
7399 @opindex findirect-inlining
7400 Inline also indirect calls that are discovered to be known at compile
7401 time thanks to previous inlining. This option has any effect only
7402 when inlining itself is turned on by the @option{-finline-functions}
7403 or @option{-finline-small-functions} options.
7404
7405 Enabled at level @option{-O2}.
7406
7407 @item -finline-functions
7408 @opindex finline-functions
7409 Consider all functions for inlining, even if they are not declared inline.
7410 The compiler heuristically decides which functions are worth integrating
7411 in this way.
7412
7413 If all calls to a given function are integrated, and the function is
7414 declared @code{static}, then the function is normally not output as
7415 assembler code in its own right.
7416
7417 Enabled at level @option{-O3}.
7418
7419 @item -finline-functions-called-once
7420 @opindex finline-functions-called-once
7421 Consider all @code{static} functions called once for inlining into their
7422 caller even if they are not marked @code{inline}. If a call to a given
7423 function is integrated, then the function is not output as assembler code
7424 in its own right.
7425
7426 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7427
7428 @item -fearly-inlining
7429 @opindex fearly-inlining
7430 Inline functions marked by @code{always_inline} and functions whose body seems
7431 smaller than the function call overhead early before doing
7432 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7433 makes profiling significantly cheaper and usually inlining faster on programs
7434 having large chains of nested wrapper functions.
7435
7436 Enabled by default.
7437
7438 @item -fipa-sra
7439 @opindex fipa-sra
7440 Perform interprocedural scalar replacement of aggregates, removal of
7441 unused parameters and replacement of parameters passed by reference
7442 by parameters passed by value.
7443
7444 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7445
7446 @item -finline-limit=@var{n}
7447 @opindex finline-limit
7448 By default, GCC limits the size of functions that can be inlined. This flag
7449 allows coarse control of this limit. @var{n} is the size of functions that
7450 can be inlined in number of pseudo instructions.
7451
7452 Inlining is actually controlled by a number of parameters, which may be
7453 specified individually by using @option{--param @var{name}=@var{value}}.
7454 The @option{-finline-limit=@var{n}} option sets some of these parameters
7455 as follows:
7456
7457 @table @gcctabopt
7458 @item max-inline-insns-single
7459 is set to @var{n}/2.
7460 @item max-inline-insns-auto
7461 is set to @var{n}/2.
7462 @end table
7463
7464 See below for a documentation of the individual
7465 parameters controlling inlining and for the defaults of these parameters.
7466
7467 @emph{Note:} there may be no value to @option{-finline-limit} that results
7468 in default behavior.
7469
7470 @emph{Note:} pseudo instruction represents, in this particular context, an
7471 abstract measurement of function's size. In no way does it represent a count
7472 of assembly instructions and as such its exact meaning might change from one
7473 release to an another.
7474
7475 @item -fno-keep-inline-dllexport
7476 @opindex fno-keep-inline-dllexport
7477 This is a more fine-grained version of @option{-fkeep-inline-functions},
7478 which applies only to functions that are declared using the @code{dllexport}
7479 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
7480 Functions}.
7481
7482 @item -fkeep-inline-functions
7483 @opindex fkeep-inline-functions
7484 In C, emit @code{static} functions that are declared @code{inline}
7485 into the object file, even if the function has been inlined into all
7486 of its callers. This switch does not affect functions using the
7487 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7488 inline functions into the object file.
7489
7490 @item -fkeep-static-functions
7491 @opindex fkeep-static-functions
7492 Emit @code{static} functions into the object file, even if the function
7493 is never used.
7494
7495 @item -fkeep-static-consts
7496 @opindex fkeep-static-consts
7497 Emit variables declared @code{static const} when optimization isn't turned
7498 on, even if the variables aren't referenced.
7499
7500 GCC enables this option by default. If you want to force the compiler to
7501 check if a variable is referenced, regardless of whether or not
7502 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7503
7504 @item -fmerge-constants
7505 @opindex fmerge-constants
7506 Attempt to merge identical constants (string constants and floating-point
7507 constants) across compilation units.
7508
7509 This option is the default for optimized compilation if the assembler and
7510 linker support it. Use @option{-fno-merge-constants} to inhibit this
7511 behavior.
7512
7513 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7514
7515 @item -fmerge-all-constants
7516 @opindex fmerge-all-constants
7517 Attempt to merge identical constants and identical variables.
7518
7519 This option implies @option{-fmerge-constants}. In addition to
7520 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7521 arrays or initialized constant variables with integral or floating-point
7522 types. Languages like C or C++ require each variable, including multiple
7523 instances of the same variable in recursive calls, to have distinct locations,
7524 so using this option results in non-conforming
7525 behavior.
7526
7527 @item -fmodulo-sched
7528 @opindex fmodulo-sched
7529 Perform swing modulo scheduling immediately before the first scheduling
7530 pass. This pass looks at innermost loops and reorders their
7531 instructions by overlapping different iterations.
7532
7533 @item -fmodulo-sched-allow-regmoves
7534 @opindex fmodulo-sched-allow-regmoves
7535 Perform more aggressive SMS-based modulo scheduling with register moves
7536 allowed. By setting this flag certain anti-dependences edges are
7537 deleted, which triggers the generation of reg-moves based on the
7538 life-range analysis. This option is effective only with
7539 @option{-fmodulo-sched} enabled.
7540
7541 @item -fno-branch-count-reg
7542 @opindex fno-branch-count-reg
7543 Avoid running a pass scanning for opportunities to use ``decrement and
7544 branch'' instructions on a count register instead of generating sequences
7545 of instructions that decrement a register, compare it against zero, and
7546 then branch based upon the result. This option is only meaningful on
7547 architectures that support such instructions, which include x86, PowerPC,
7548 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
7549 doesn't remove the decrement and branch instructions from the generated
7550 instruction stream introduced by other optimization passes.
7551
7552 Enabled by default at @option{-O1} and higher.
7553
7554 The default is @option{-fbranch-count-reg}.
7555
7556 @item -fno-function-cse
7557 @opindex fno-function-cse
7558 Do not put function addresses in registers; make each instruction that
7559 calls a constant function contain the function's address explicitly.
7560
7561 This option results in less efficient code, but some strange hacks
7562 that alter the assembler output may be confused by the optimizations
7563 performed when this option is not used.
7564
7565 The default is @option{-ffunction-cse}
7566
7567 @item -fno-zero-initialized-in-bss
7568 @opindex fno-zero-initialized-in-bss
7569 If the target supports a BSS section, GCC by default puts variables that
7570 are initialized to zero into BSS@. This can save space in the resulting
7571 code.
7572
7573 This option turns off this behavior because some programs explicitly
7574 rely on variables going to the data section---e.g., so that the
7575 resulting executable can find the beginning of that section and/or make
7576 assumptions based on that.
7577
7578 The default is @option{-fzero-initialized-in-bss}.
7579
7580 @item -fthread-jumps
7581 @opindex fthread-jumps
7582 Perform optimizations that check to see if a jump branches to a
7583 location where another comparison subsumed by the first is found. If
7584 so, the first branch is redirected to either the destination of the
7585 second branch or a point immediately following it, depending on whether
7586 the condition is known to be true or false.
7587
7588 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7589
7590 @item -fsplit-wide-types
7591 @opindex fsplit-wide-types
7592 When using a type that occupies multiple registers, such as @code{long
7593 long} on a 32-bit system, split the registers apart and allocate them
7594 independently. This normally generates better code for those types,
7595 but may make debugging more difficult.
7596
7597 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7598 @option{-Os}.
7599
7600 @item -fcse-follow-jumps
7601 @opindex fcse-follow-jumps
7602 In common subexpression elimination (CSE), scan through jump instructions
7603 when the target of the jump is not reached by any other path. For
7604 example, when CSE encounters an @code{if} statement with an
7605 @code{else} clause, CSE follows the jump when the condition
7606 tested is false.
7607
7608 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7609
7610 @item -fcse-skip-blocks
7611 @opindex fcse-skip-blocks
7612 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7613 follow jumps that conditionally skip over blocks. When CSE
7614 encounters a simple @code{if} statement with no else clause,
7615 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7616 body of the @code{if}.
7617
7618 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7619
7620 @item -frerun-cse-after-loop
7621 @opindex frerun-cse-after-loop
7622 Re-run common subexpression elimination after loop optimizations are
7623 performed.
7624
7625 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7626
7627 @item -fgcse
7628 @opindex fgcse
7629 Perform a global common subexpression elimination pass.
7630 This pass also performs global constant and copy propagation.
7631
7632 @emph{Note:} When compiling a program using computed gotos, a GCC
7633 extension, you may get better run-time performance if you disable
7634 the global common subexpression elimination pass by adding
7635 @option{-fno-gcse} to the command line.
7636
7637 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7638
7639 @item -fgcse-lm
7640 @opindex fgcse-lm
7641 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7642 attempts to move loads that are only killed by stores into themselves. This
7643 allows a loop containing a load/store sequence to be changed to a load outside
7644 the loop, and a copy/store within the loop.
7645
7646 Enabled by default when @option{-fgcse} is enabled.
7647
7648 @item -fgcse-sm
7649 @opindex fgcse-sm
7650 When @option{-fgcse-sm} is enabled, a store motion pass is run after
7651 global common subexpression elimination. This pass attempts to move
7652 stores out of loops. When used in conjunction with @option{-fgcse-lm},
7653 loops containing a load/store sequence can be changed to a load before
7654 the loop and a store after the loop.
7655
7656 Not enabled at any optimization level.
7657
7658 @item -fgcse-las
7659 @opindex fgcse-las
7660 When @option{-fgcse-las} is enabled, the global common subexpression
7661 elimination pass eliminates redundant loads that come after stores to the
7662 same memory location (both partial and full redundancies).
7663
7664 Not enabled at any optimization level.
7665
7666 @item -fgcse-after-reload
7667 @opindex fgcse-after-reload
7668 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7669 pass is performed after reload. The purpose of this pass is to clean up
7670 redundant spilling.
7671
7672 @item -faggressive-loop-optimizations
7673 @opindex faggressive-loop-optimizations
7674 This option tells the loop optimizer to use language constraints to
7675 derive bounds for the number of iterations of a loop. This assumes that
7676 loop code does not invoke undefined behavior by for example causing signed
7677 integer overflows or out-of-bound array accesses. The bounds for the
7678 number of iterations of a loop are used to guide loop unrolling and peeling
7679 and loop exit test optimizations.
7680 This option is enabled by default.
7681
7682 @item -funconstrained-commons
7683 @opindex funconstrained-commons
7684 This option tells the compiler that variables declared in common blocks
7685 (e.g. Fortran) may later be overridden with longer trailing arrays. This
7686 prevents certain optimizations that depend on knowing the array bounds.
7687
7688 @item -fcrossjumping
7689 @opindex fcrossjumping
7690 Perform cross-jumping transformation.
7691 This transformation unifies equivalent code and saves code size. The
7692 resulting code may or may not perform better than without cross-jumping.
7693
7694 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7695
7696 @item -fauto-inc-dec
7697 @opindex fauto-inc-dec
7698 Combine increments or decrements of addresses with memory accesses.
7699 This pass is always skipped on architectures that do not have
7700 instructions to support this. Enabled by default at @option{-O} and
7701 higher on architectures that support this.
7702
7703 @item -fdce
7704 @opindex fdce
7705 Perform dead code elimination (DCE) on RTL@.
7706 Enabled by default at @option{-O} and higher.
7707
7708 @item -fdse
7709 @opindex fdse
7710 Perform dead store elimination (DSE) on RTL@.
7711 Enabled by default at @option{-O} and higher.
7712
7713 @item -fif-conversion
7714 @opindex fif-conversion
7715 Attempt to transform conditional jumps into branch-less equivalents. This
7716 includes use of conditional moves, min, max, set flags and abs instructions, and
7717 some tricks doable by standard arithmetics. The use of conditional execution
7718 on chips where it is available is controlled by @option{-fif-conversion2}.
7719
7720 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7721
7722 @item -fif-conversion2
7723 @opindex fif-conversion2
7724 Use conditional execution (where available) to transform conditional jumps into
7725 branch-less equivalents.
7726
7727 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7728
7729 @item -fdeclone-ctor-dtor
7730 @opindex fdeclone-ctor-dtor
7731 The C++ ABI requires multiple entry points for constructors and
7732 destructors: one for a base subobject, one for a complete object, and
7733 one for a virtual destructor that calls operator delete afterwards.
7734 For a hierarchy with virtual bases, the base and complete variants are
7735 clones, which means two copies of the function. With this option, the
7736 base and complete variants are changed to be thunks that call a common
7737 implementation.
7738
7739 Enabled by @option{-Os}.
7740
7741 @item -fdelete-null-pointer-checks
7742 @opindex fdelete-null-pointer-checks
7743 Assume that programs cannot safely dereference null pointers, and that
7744 no code or data element resides at address zero.
7745 This option enables simple constant
7746 folding optimizations at all optimization levels. In addition, other
7747 optimization passes in GCC use this flag to control global dataflow
7748 analyses that eliminate useless checks for null pointers; these assume
7749 that a memory access to address zero always results in a trap, so
7750 that if a pointer is checked after it has already been dereferenced,
7751 it cannot be null.
7752
7753 Note however that in some environments this assumption is not true.
7754 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
7755 for programs that depend on that behavior.
7756
7757 This option is enabled by default on most targets. On Nios II ELF, it
7758 defaults to off. On AVR and CR16, this option is completely disabled.
7759
7760 Passes that use the dataflow information
7761 are enabled independently at different optimization levels.
7762
7763 @item -fdevirtualize
7764 @opindex fdevirtualize
7765 Attempt to convert calls to virtual functions to direct calls. This
7766 is done both within a procedure and interprocedurally as part of
7767 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
7768 propagation (@option{-fipa-cp}).
7769 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7770
7771 @item -fdevirtualize-speculatively
7772 @opindex fdevirtualize-speculatively
7773 Attempt to convert calls to virtual functions to speculative direct calls.
7774 Based on the analysis of the type inheritance graph, determine for a given call
7775 the set of likely targets. If the set is small, preferably of size 1, change
7776 the call into a conditional deciding between direct and indirect calls. The
7777 speculative calls enable more optimizations, such as inlining. When they seem
7778 useless after further optimization, they are converted back into original form.
7779
7780 @item -fdevirtualize-at-ltrans
7781 @opindex fdevirtualize-at-ltrans
7782 Stream extra information needed for aggressive devirtualization when running
7783 the link-time optimizer in local transformation mode.
7784 This option enables more devirtualization but
7785 significantly increases the size of streamed data. For this reason it is
7786 disabled by default.
7787
7788 @item -fexpensive-optimizations
7789 @opindex fexpensive-optimizations
7790 Perform a number of minor optimizations that are relatively expensive.
7791
7792 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7793
7794 @item -free
7795 @opindex free
7796 Attempt to remove redundant extension instructions. This is especially
7797 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
7798 registers after writing to their lower 32-bit half.
7799
7800 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
7801 @option{-O3}, @option{-Os}.
7802
7803 @item -fno-lifetime-dse
7804 @opindex fno-lifetime-dse
7805 In C++ the value of an object is only affected by changes within its
7806 lifetime: when the constructor begins, the object has an indeterminate
7807 value, and any changes during the lifetime of the object are dead when
7808 the object is destroyed. Normally dead store elimination will take
7809 advantage of this; if your code relies on the value of the object
7810 storage persisting beyond the lifetime of the object, you can use this
7811 flag to disable this optimization. To preserve stores before the
7812 constructor starts (e.g. because your operator new clears the object
7813 storage) but still treat the object as dead after the destructor you,
7814 can use @option{-flifetime-dse=1}. The default behavior can be
7815 explicitly selected with @option{-flifetime-dse=2}.
7816 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
7817
7818 @item -flive-range-shrinkage
7819 @opindex flive-range-shrinkage
7820 Attempt to decrease register pressure through register live range
7821 shrinkage. This is helpful for fast processors with small or moderate
7822 size register sets.
7823
7824 @item -fira-algorithm=@var{algorithm}
7825 @opindex fira-algorithm
7826 Use the specified coloring algorithm for the integrated register
7827 allocator. The @var{algorithm} argument can be @samp{priority}, which
7828 specifies Chow's priority coloring, or @samp{CB}, which specifies
7829 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
7830 for all architectures, but for those targets that do support it, it is
7831 the default because it generates better code.
7832
7833 @item -fira-region=@var{region}
7834 @opindex fira-region
7835 Use specified regions for the integrated register allocator. The
7836 @var{region} argument should be one of the following:
7837
7838 @table @samp
7839
7840 @item all
7841 Use all loops as register allocation regions.
7842 This can give the best results for machines with a small and/or
7843 irregular register set.
7844
7845 @item mixed
7846 Use all loops except for loops with small register pressure
7847 as the regions. This value usually gives
7848 the best results in most cases and for most architectures,
7849 and is enabled by default when compiling with optimization for speed
7850 (@option{-O}, @option{-O2}, @dots{}).
7851
7852 @item one
7853 Use all functions as a single region.
7854 This typically results in the smallest code size, and is enabled by default for
7855 @option{-Os} or @option{-O0}.
7856
7857 @end table
7858
7859 @item -fira-hoist-pressure
7860 @opindex fira-hoist-pressure
7861 Use IRA to evaluate register pressure in the code hoisting pass for
7862 decisions to hoist expressions. This option usually results in smaller
7863 code, but it can slow the compiler down.
7864
7865 This option is enabled at level @option{-Os} for all targets.
7866
7867 @item -fira-loop-pressure
7868 @opindex fira-loop-pressure
7869 Use IRA to evaluate register pressure in loops for decisions to move
7870 loop invariants. This option usually results in generation
7871 of faster and smaller code on machines with large register files (>= 32
7872 registers), but it can slow the compiler down.
7873
7874 This option is enabled at level @option{-O3} for some targets.
7875
7876 @item -fno-ira-share-save-slots
7877 @opindex fno-ira-share-save-slots
7878 Disable sharing of stack slots used for saving call-used hard
7879 registers living through a call. Each hard register gets a
7880 separate stack slot, and as a result function stack frames are
7881 larger.
7882
7883 @item -fno-ira-share-spill-slots
7884 @opindex fno-ira-share-spill-slots
7885 Disable sharing of stack slots allocated for pseudo-registers. Each
7886 pseudo-register that does not get a hard register gets a separate
7887 stack slot, and as a result function stack frames are larger.
7888
7889 @item -flra-remat
7890 @opindex flra-remat
7891 Enable CFG-sensitive rematerialization in LRA. Instead of loading
7892 values of spilled pseudos, LRA tries to rematerialize (recalculate)
7893 values if it is profitable.
7894
7895 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7896
7897 @item -fdelayed-branch
7898 @opindex fdelayed-branch
7899 If supported for the target machine, attempt to reorder instructions
7900 to exploit instruction slots available after delayed branch
7901 instructions.
7902
7903 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7904
7905 @item -fschedule-insns
7906 @opindex fschedule-insns
7907 If supported for the target machine, attempt to reorder instructions to
7908 eliminate execution stalls due to required data being unavailable. This
7909 helps machines that have slow floating point or memory load instructions
7910 by allowing other instructions to be issued until the result of the load
7911 or floating-point instruction is required.
7912
7913 Enabled at levels @option{-O2}, @option{-O3}.
7914
7915 @item -fschedule-insns2
7916 @opindex fschedule-insns2
7917 Similar to @option{-fschedule-insns}, but requests an additional pass of
7918 instruction scheduling after register allocation has been done. This is
7919 especially useful on machines with a relatively small number of
7920 registers and where memory load instructions take more than one cycle.
7921
7922 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7923
7924 @item -fno-sched-interblock
7925 @opindex fno-sched-interblock
7926 Don't schedule instructions across basic blocks. This is normally
7927 enabled by default when scheduling before register allocation, i.e.@:
7928 with @option{-fschedule-insns} or at @option{-O2} or higher.
7929
7930 @item -fno-sched-spec
7931 @opindex fno-sched-spec
7932 Don't allow speculative motion of non-load instructions. This is normally
7933 enabled by default when scheduling before register allocation, i.e.@:
7934 with @option{-fschedule-insns} or at @option{-O2} or higher.
7935
7936 @item -fsched-pressure
7937 @opindex fsched-pressure
7938 Enable register pressure sensitive insn scheduling before register
7939 allocation. This only makes sense when scheduling before register
7940 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
7941 @option{-O2} or higher. Usage of this option can improve the
7942 generated code and decrease its size by preventing register pressure
7943 increase above the number of available hard registers and subsequent
7944 spills in register allocation.
7945
7946 @item -fsched-spec-load
7947 @opindex fsched-spec-load
7948 Allow speculative motion of some load instructions. This only makes
7949 sense when scheduling before register allocation, i.e.@: with
7950 @option{-fschedule-insns} or at @option{-O2} or higher.
7951
7952 @item -fsched-spec-load-dangerous
7953 @opindex fsched-spec-load-dangerous
7954 Allow speculative motion of more load instructions. This only makes
7955 sense when scheduling before register allocation, i.e.@: with
7956 @option{-fschedule-insns} or at @option{-O2} or higher.
7957
7958 @item -fsched-stalled-insns
7959 @itemx -fsched-stalled-insns=@var{n}
7960 @opindex fsched-stalled-insns
7961 Define how many insns (if any) can be moved prematurely from the queue
7962 of stalled insns into the ready list during the second scheduling pass.
7963 @option{-fno-sched-stalled-insns} means that no insns are moved
7964 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
7965 on how many queued insns can be moved prematurely.
7966 @option{-fsched-stalled-insns} without a value is equivalent to
7967 @option{-fsched-stalled-insns=1}.
7968
7969 @item -fsched-stalled-insns-dep
7970 @itemx -fsched-stalled-insns-dep=@var{n}
7971 @opindex fsched-stalled-insns-dep
7972 Define how many insn groups (cycles) are examined for a dependency
7973 on a stalled insn that is a candidate for premature removal from the queue
7974 of stalled insns. This has an effect only during the second scheduling pass,
7975 and only if @option{-fsched-stalled-insns} is used.
7976 @option{-fno-sched-stalled-insns-dep} is equivalent to
7977 @option{-fsched-stalled-insns-dep=0}.
7978 @option{-fsched-stalled-insns-dep} without a value is equivalent to
7979 @option{-fsched-stalled-insns-dep=1}.
7980
7981 @item -fsched2-use-superblocks
7982 @opindex fsched2-use-superblocks
7983 When scheduling after register allocation, use superblock scheduling.
7984 This allows motion across basic block boundaries,
7985 resulting in faster schedules. This option is experimental, as not all machine
7986 descriptions used by GCC model the CPU closely enough to avoid unreliable
7987 results from the algorithm.
7988
7989 This only makes sense when scheduling after register allocation, i.e.@: with
7990 @option{-fschedule-insns2} or at @option{-O2} or higher.
7991
7992 @item -fsched-group-heuristic
7993 @opindex fsched-group-heuristic
7994 Enable the group heuristic in the scheduler. This heuristic favors
7995 the instruction that belongs to a schedule group. This is enabled
7996 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
7997 or @option{-fschedule-insns2} or at @option{-O2} or higher.
7998
7999 @item -fsched-critical-path-heuristic
8000 @opindex fsched-critical-path-heuristic
8001 Enable the critical-path heuristic in the scheduler. This heuristic favors
8002 instructions on the critical path. This is enabled by default when
8003 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8004 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8005
8006 @item -fsched-spec-insn-heuristic
8007 @opindex fsched-spec-insn-heuristic
8008 Enable the speculative instruction heuristic in the scheduler. This
8009 heuristic favors speculative instructions with greater dependency weakness.
8010 This is enabled by default when scheduling is enabled, i.e.@:
8011 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8012 or at @option{-O2} or higher.
8013
8014 @item -fsched-rank-heuristic
8015 @opindex fsched-rank-heuristic
8016 Enable the rank heuristic in the scheduler. This heuristic favors
8017 the instruction belonging to a basic block with greater size or frequency.
8018 This is enabled by default when scheduling is enabled, i.e.@:
8019 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8020 at @option{-O2} or higher.
8021
8022 @item -fsched-last-insn-heuristic
8023 @opindex fsched-last-insn-heuristic
8024 Enable the last-instruction heuristic in the scheduler. This heuristic
8025 favors the instruction that is less dependent on the last instruction
8026 scheduled. This is enabled by default when scheduling is enabled,
8027 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8028 at @option{-O2} or higher.
8029
8030 @item -fsched-dep-count-heuristic
8031 @opindex fsched-dep-count-heuristic
8032 Enable the dependent-count heuristic in the scheduler. This heuristic
8033 favors the instruction that has more instructions depending on it.
8034 This is enabled by default when scheduling is enabled, i.e.@:
8035 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8036 at @option{-O2} or higher.
8037
8038 @item -freschedule-modulo-scheduled-loops
8039 @opindex freschedule-modulo-scheduled-loops
8040 Modulo scheduling is performed before traditional scheduling. If a loop
8041 is modulo scheduled, later scheduling passes may change its schedule.
8042 Use this option to control that behavior.
8043
8044 @item -fselective-scheduling
8045 @opindex fselective-scheduling
8046 Schedule instructions using selective scheduling algorithm. Selective
8047 scheduling runs instead of the first scheduler pass.
8048
8049 @item -fselective-scheduling2
8050 @opindex fselective-scheduling2
8051 Schedule instructions using selective scheduling algorithm. Selective
8052 scheduling runs instead of the second scheduler pass.
8053
8054 @item -fsel-sched-pipelining
8055 @opindex fsel-sched-pipelining
8056 Enable software pipelining of innermost loops during selective scheduling.
8057 This option has no effect unless one of @option{-fselective-scheduling} or
8058 @option{-fselective-scheduling2} is turned on.
8059
8060 @item -fsel-sched-pipelining-outer-loops
8061 @opindex fsel-sched-pipelining-outer-loops
8062 When pipelining loops during selective scheduling, also pipeline outer loops.
8063 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8064
8065 @item -fsemantic-interposition
8066 @opindex fsemantic-interposition
8067 Some object formats, like ELF, allow interposing of symbols by the
8068 dynamic linker.
8069 This means that for symbols exported from the DSO, the compiler cannot perform
8070 interprocedural propagation, inlining and other optimizations in anticipation
8071 that the function or variable in question may change. While this feature is
8072 useful, for example, to rewrite memory allocation functions by a debugging
8073 implementation, it is expensive in the terms of code quality.
8074 With @option{-fno-semantic-interposition} the compiler assumes that
8075 if interposition happens for functions the overwriting function will have
8076 precisely the same semantics (and side effects).
8077 Similarly if interposition happens
8078 for variables, the constructor of the variable will be the same. The flag
8079 has no effect for functions explicitly declared inline
8080 (where it is never allowed for interposition to change semantics)
8081 and for symbols explicitly declared weak.
8082
8083 @item -fshrink-wrap
8084 @opindex fshrink-wrap
8085 Emit function prologues only before parts of the function that need it,
8086 rather than at the top of the function. This flag is enabled by default at
8087 @option{-O} and higher.
8088
8089 @item -fshrink-wrap-separate
8090 @opindex fshrink-wrap-separate
8091 Shrink-wrap separate parts of the prologue and epilogue separately, so that
8092 those parts are only executed when needed.
8093 This option is on by default, but has no effect unless @option{-fshrink-wrap}
8094 is also turned on and the target supports this.
8095
8096 @item -fcaller-saves
8097 @opindex fcaller-saves
8098 Enable allocation of values to registers that are clobbered by
8099 function calls, by emitting extra instructions to save and restore the
8100 registers around such calls. Such allocation is done only when it
8101 seems to result in better code.
8102
8103 This option is always enabled by default on certain machines, usually
8104 those which have no call-preserved registers to use instead.
8105
8106 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8107
8108 @item -fcombine-stack-adjustments
8109 @opindex fcombine-stack-adjustments
8110 Tracks stack adjustments (pushes and pops) and stack memory references
8111 and then tries to find ways to combine them.
8112
8113 Enabled by default at @option{-O1} and higher.
8114
8115 @item -fipa-ra
8116 @opindex fipa-ra
8117 Use caller save registers for allocation if those registers are not used by
8118 any called function. In that case it is not necessary to save and restore
8119 them around calls. This is only possible if called functions are part of
8120 same compilation unit as current function and they are compiled before it.
8121
8122 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
8123 is disabled if generated code will be instrumented for profiling
8124 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
8125 exactly (this happens on targets that do not expose prologues
8126 and epilogues in RTL).
8127
8128 @item -fconserve-stack
8129 @opindex fconserve-stack
8130 Attempt to minimize stack usage. The compiler attempts to use less
8131 stack space, even if that makes the program slower. This option
8132 implies setting the @option{large-stack-frame} parameter to 100
8133 and the @option{large-stack-frame-growth} parameter to 400.
8134
8135 @item -ftree-reassoc
8136 @opindex ftree-reassoc
8137 Perform reassociation on trees. This flag is enabled by default
8138 at @option{-O} and higher.
8139
8140 @item -fcode-hoisting
8141 @opindex fcode-hoisting
8142 Perform code hoisting. Code hoisting tries to move the
8143 evaluation of expressions executed on all paths to the function exit
8144 as early as possible. This is especially useful as a code size
8145 optimization, but it often helps for code speed as well.
8146 This flag is enabled by default at @option{-O2} and higher.
8147
8148 @item -ftree-pre
8149 @opindex ftree-pre
8150 Perform partial redundancy elimination (PRE) on trees. This flag is
8151 enabled by default at @option{-O2} and @option{-O3}.
8152
8153 @item -ftree-partial-pre
8154 @opindex ftree-partial-pre
8155 Make partial redundancy elimination (PRE) more aggressive. This flag is
8156 enabled by default at @option{-O3}.
8157
8158 @item -ftree-forwprop
8159 @opindex ftree-forwprop
8160 Perform forward propagation on trees. This flag is enabled by default
8161 at @option{-O} and higher.
8162
8163 @item -ftree-fre
8164 @opindex ftree-fre
8165 Perform full redundancy elimination (FRE) on trees. The difference
8166 between FRE and PRE is that FRE only considers expressions
8167 that are computed on all paths leading to the redundant computation.
8168 This analysis is faster than PRE, though it exposes fewer redundancies.
8169 This flag is enabled by default at @option{-O} and higher.
8170
8171 @item -ftree-phiprop
8172 @opindex ftree-phiprop
8173 Perform hoisting of loads from conditional pointers on trees. This
8174 pass is enabled by default at @option{-O} and higher.
8175
8176 @item -fhoist-adjacent-loads
8177 @opindex fhoist-adjacent-loads
8178 Speculatively hoist loads from both branches of an if-then-else if the
8179 loads are from adjacent locations in the same structure and the target
8180 architecture has a conditional move instruction. This flag is enabled
8181 by default at @option{-O2} and higher.
8182
8183 @item -ftree-copy-prop
8184 @opindex ftree-copy-prop
8185 Perform copy propagation on trees. This pass eliminates unnecessary
8186 copy operations. This flag is enabled by default at @option{-O} and
8187 higher.
8188
8189 @item -fipa-pure-const
8190 @opindex fipa-pure-const
8191 Discover which functions are pure or constant.
8192 Enabled by default at @option{-O} and higher.
8193
8194 @item -fipa-reference
8195 @opindex fipa-reference
8196 Discover which static variables do not escape the
8197 compilation unit.
8198 Enabled by default at @option{-O} and higher.
8199
8200 @item -fipa-pta
8201 @opindex fipa-pta
8202 Perform interprocedural pointer analysis and interprocedural modification
8203 and reference analysis. This option can cause excessive memory and
8204 compile-time usage on large compilation units. It is not enabled by
8205 default at any optimization level.
8206
8207 @item -fipa-profile
8208 @opindex fipa-profile
8209 Perform interprocedural profile propagation. The functions called only from
8210 cold functions are marked as cold. Also functions executed once (such as
8211 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8212 functions and loop less parts of functions executed once are then optimized for
8213 size.
8214 Enabled by default at @option{-O} and higher.
8215
8216 @item -fipa-cp
8217 @opindex fipa-cp
8218 Perform interprocedural constant propagation.
8219 This optimization analyzes the program to determine when values passed
8220 to functions are constants and then optimizes accordingly.
8221 This optimization can substantially increase performance
8222 if the application has constants passed to functions.
8223 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8224
8225 @item -fipa-cp-clone
8226 @opindex fipa-cp-clone
8227 Perform function cloning to make interprocedural constant propagation stronger.
8228 When enabled, interprocedural constant propagation performs function cloning
8229 when externally visible function can be called with constant arguments.
8230 Because this optimization can create multiple copies of functions,
8231 it may significantly increase code size
8232 (see @option{--param ipcp-unit-growth=@var{value}}).
8233 This flag is enabled by default at @option{-O3}.
8234
8235 @item -fipa-bit-cp
8236 @opindex -fipa-bit-cp
8237 When enabled, perform interprocedural bitwise constant
8238 propagation. This flag is enabled by default at @option{-O2}. It
8239 requires that @option{-fipa-cp} is enabled.
8240
8241 @item -fipa-vrp
8242 @opindex -fipa-vrp
8243 When enabled, perform interprocedural propagation of value
8244 ranges. This flag is enabled by default at @option{-O2}. It requires
8245 that @option{-fipa-cp} is enabled.
8246
8247 @item -fipa-icf
8248 @opindex fipa-icf
8249 Perform Identical Code Folding for functions and read-only variables.
8250 The optimization reduces code size and may disturb unwind stacks by replacing
8251 a function by equivalent one with a different name. The optimization works
8252 more effectively with link-time optimization enabled.
8253
8254 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8255 works on different levels and thus the optimizations are not same - there are
8256 equivalences that are found only by GCC and equivalences found only by Gold.
8257
8258 This flag is enabled by default at @option{-O2} and @option{-Os}.
8259
8260 @item -fisolate-erroneous-paths-dereference
8261 @opindex fisolate-erroneous-paths-dereference
8262 Detect paths that trigger erroneous or undefined behavior due to
8263 dereferencing a null pointer. Isolate those paths from the main control
8264 flow and turn the statement with erroneous or undefined behavior into a trap.
8265 This flag is enabled by default at @option{-O2} and higher and depends on
8266 @option{-fdelete-null-pointer-checks} also being enabled.
8267
8268 @item -fisolate-erroneous-paths-attribute
8269 @opindex fisolate-erroneous-paths-attribute
8270 Detect paths that trigger erroneous or undefined behavior due a null value
8271 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8272 attribute. Isolate those paths from the main control flow and turn the
8273 statement with erroneous or undefined behavior into a trap. This is not
8274 currently enabled, but may be enabled by @option{-O2} in the future.
8275
8276 @item -ftree-sink
8277 @opindex ftree-sink
8278 Perform forward store motion on trees. This flag is
8279 enabled by default at @option{-O} and higher.
8280
8281 @item -ftree-bit-ccp
8282 @opindex ftree-bit-ccp
8283 Perform sparse conditional bit constant propagation on trees and propagate
8284 pointer alignment information.
8285 This pass only operates on local scalar variables and is enabled by default
8286 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8287
8288 @item -ftree-ccp
8289 @opindex ftree-ccp
8290 Perform sparse conditional constant propagation (CCP) on trees. This
8291 pass only operates on local scalar variables and is enabled by default
8292 at @option{-O} and higher.
8293
8294 @item -fssa-backprop
8295 @opindex fssa-backprop
8296 Propagate information about uses of a value up the definition chain
8297 in order to simplify the definitions. For example, this pass strips
8298 sign operations if the sign of a value never matters. The flag is
8299 enabled by default at @option{-O} and higher.
8300
8301 @item -fssa-phiopt
8302 @opindex fssa-phiopt
8303 Perform pattern matching on SSA PHI nodes to optimize conditional
8304 code. This pass is enabled by default at @option{-O} and higher.
8305
8306 @item -ftree-switch-conversion
8307 @opindex ftree-switch-conversion
8308 Perform conversion of simple initializations in a switch to
8309 initializations from a scalar array. This flag is enabled by default
8310 at @option{-O2} and higher.
8311
8312 @item -ftree-tail-merge
8313 @opindex ftree-tail-merge
8314 Look for identical code sequences. When found, replace one with a jump to the
8315 other. This optimization is known as tail merging or cross jumping. This flag
8316 is enabled by default at @option{-O2} and higher. The compilation time
8317 in this pass can
8318 be limited using @option{max-tail-merge-comparisons} parameter and
8319 @option{max-tail-merge-iterations} parameter.
8320
8321 @item -ftree-dce
8322 @opindex ftree-dce
8323 Perform dead code elimination (DCE) on trees. This flag is enabled by
8324 default at @option{-O} and higher.
8325
8326 @item -ftree-builtin-call-dce
8327 @opindex ftree-builtin-call-dce
8328 Perform conditional dead code elimination (DCE) for calls to built-in functions
8329 that may set @code{errno} but are otherwise side-effect free. This flag is
8330 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8331 specified.
8332
8333 @item -ftree-dominator-opts
8334 @opindex ftree-dominator-opts
8335 Perform a variety of simple scalar cleanups (constant/copy
8336 propagation, redundancy elimination, range propagation and expression
8337 simplification) based on a dominator tree traversal. This also
8338 performs jump threading (to reduce jumps to jumps). This flag is
8339 enabled by default at @option{-O} and higher.
8340
8341 @item -ftree-dse
8342 @opindex ftree-dse
8343 Perform dead store elimination (DSE) on trees. A dead store is a store into
8344 a memory location that is later overwritten by another store without
8345 any intervening loads. In this case the earlier store can be deleted. This
8346 flag is enabled by default at @option{-O} and higher.
8347
8348 @item -ftree-ch
8349 @opindex ftree-ch
8350 Perform loop header copying on trees. This is beneficial since it increases
8351 effectiveness of code motion optimizations. It also saves one jump. This flag
8352 is enabled by default at @option{-O} and higher. It is not enabled
8353 for @option{-Os}, since it usually increases code size.
8354
8355 @item -ftree-loop-optimize
8356 @opindex ftree-loop-optimize
8357 Perform loop optimizations on trees. This flag is enabled by default
8358 at @option{-O} and higher.
8359
8360 @item -ftree-loop-linear
8361 @itemx -floop-interchange
8362 @itemx -floop-strip-mine
8363 @itemx -floop-block
8364 @itemx -floop-unroll-and-jam
8365 @opindex ftree-loop-linear
8366 @opindex floop-interchange
8367 @opindex floop-strip-mine
8368 @opindex floop-block
8369 @opindex floop-unroll-and-jam
8370 Perform loop nest optimizations. Same as
8371 @option{-floop-nest-optimize}. To use this code transformation, GCC has
8372 to be configured with @option{--with-isl} to enable the Graphite loop
8373 transformation infrastructure.
8374
8375 @item -fgraphite-identity
8376 @opindex fgraphite-identity
8377 Enable the identity transformation for graphite. For every SCoP we generate
8378 the polyhedral representation and transform it back to gimple. Using
8379 @option{-fgraphite-identity} we can check the costs or benefits of the
8380 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8381 are also performed by the code generator isl, like index splitting and
8382 dead code elimination in loops.
8383
8384 @item -floop-nest-optimize
8385 @opindex floop-nest-optimize
8386 Enable the isl based loop nest optimizer. This is a generic loop nest
8387 optimizer based on the Pluto optimization algorithms. It calculates a loop
8388 structure optimized for data-locality and parallelism. This option
8389 is experimental.
8390
8391 @item -floop-parallelize-all
8392 @opindex floop-parallelize-all
8393 Use the Graphite data dependence analysis to identify loops that can
8394 be parallelized. Parallelize all the loops that can be analyzed to
8395 not contain loop carried dependences without checking that it is
8396 profitable to parallelize the loops.
8397
8398 @item -ftree-coalesce-vars
8399 @opindex ftree-coalesce-vars
8400 While transforming the program out of the SSA representation, attempt to
8401 reduce copying by coalescing versions of different user-defined
8402 variables, instead of just compiler temporaries. This may severely
8403 limit the ability to debug an optimized program compiled with
8404 @option{-fno-var-tracking-assignments}. In the negated form, this flag
8405 prevents SSA coalescing of user variables. This option is enabled by
8406 default if optimization is enabled, and it does very little otherwise.
8407
8408 @item -ftree-loop-if-convert
8409 @opindex ftree-loop-if-convert
8410 Attempt to transform conditional jumps in the innermost loops to
8411 branch-less equivalents. The intent is to remove control-flow from
8412 the innermost loops in order to improve the ability of the
8413 vectorization pass to handle these loops. This is enabled by default
8414 if vectorization is enabled.
8415
8416 @item -ftree-loop-distribution
8417 @opindex ftree-loop-distribution
8418 Perform loop distribution. This flag can improve cache performance on
8419 big loop bodies and allow further loop optimizations, like
8420 parallelization or vectorization, to take place. For example, the loop
8421 @smallexample
8422 DO I = 1, N
8423 A(I) = B(I) + C
8424 D(I) = E(I) * F
8425 ENDDO
8426 @end smallexample
8427 is transformed to
8428 @smallexample
8429 DO I = 1, N
8430 A(I) = B(I) + C
8431 ENDDO
8432 DO I = 1, N
8433 D(I) = E(I) * F
8434 ENDDO
8435 @end smallexample
8436
8437 @item -ftree-loop-distribute-patterns
8438 @opindex ftree-loop-distribute-patterns
8439 Perform loop distribution of patterns that can be code generated with
8440 calls to a library. This flag is enabled by default at @option{-O3}.
8441
8442 This pass distributes the initialization loops and generates a call to
8443 memset zero. For example, the loop
8444 @smallexample
8445 DO I = 1, N
8446 A(I) = 0
8447 B(I) = A(I) + I
8448 ENDDO
8449 @end smallexample
8450 is transformed to
8451 @smallexample
8452 DO I = 1, N
8453 A(I) = 0
8454 ENDDO
8455 DO I = 1, N
8456 B(I) = A(I) + I
8457 ENDDO
8458 @end smallexample
8459 and the initialization loop is transformed into a call to memset zero.
8460
8461 @item -ftree-loop-im
8462 @opindex ftree-loop-im
8463 Perform loop invariant motion on trees. This pass moves only invariants that
8464 are hard to handle at RTL level (function calls, operations that expand to
8465 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8466 operands of conditions that are invariant out of the loop, so that we can use
8467 just trivial invariantness analysis in loop unswitching. The pass also includes
8468 store motion.
8469
8470 @item -ftree-loop-ivcanon
8471 @opindex ftree-loop-ivcanon
8472 Create a canonical counter for number of iterations in loops for which
8473 determining number of iterations requires complicated analysis. Later
8474 optimizations then may determine the number easily. Useful especially
8475 in connection with unrolling.
8476
8477 @item -fivopts
8478 @opindex fivopts
8479 Perform induction variable optimizations (strength reduction, induction
8480 variable merging and induction variable elimination) on trees.
8481
8482 @item -ftree-parallelize-loops=n
8483 @opindex ftree-parallelize-loops
8484 Parallelize loops, i.e., split their iteration space to run in n threads.
8485 This is only possible for loops whose iterations are independent
8486 and can be arbitrarily reordered. The optimization is only
8487 profitable on multiprocessor machines, for loops that are CPU-intensive,
8488 rather than constrained e.g.@: by memory bandwidth. This option
8489 implies @option{-pthread}, and thus is only supported on targets
8490 that have support for @option{-pthread}.
8491
8492 @item -ftree-pta
8493 @opindex ftree-pta
8494 Perform function-local points-to analysis on trees. This flag is
8495 enabled by default at @option{-O} and higher.
8496
8497 @item -ftree-sra
8498 @opindex ftree-sra
8499 Perform scalar replacement of aggregates. This pass replaces structure
8500 references with scalars to prevent committing structures to memory too
8501 early. This flag is enabled by default at @option{-O} and higher.
8502
8503 @item -fstore-merging
8504 @opindex fstore-merging
8505 Perform merging of narrow stores to consecutive memory addresses. This pass
8506 merges contiguous stores of immediate values narrower than a word into fewer
8507 wider stores to reduce the number of instructions. This is enabled by default
8508 at @option{-O2} and higher as well as @option{-Os}.
8509
8510 @item -ftree-ter
8511 @opindex ftree-ter
8512 Perform temporary expression replacement during the SSA->normal phase. Single
8513 use/single def temporaries are replaced at their use location with their
8514 defining expression. This results in non-GIMPLE code, but gives the expanders
8515 much more complex trees to work on resulting in better RTL generation. This is
8516 enabled by default at @option{-O} and higher.
8517
8518 @item -ftree-slsr
8519 @opindex ftree-slsr
8520 Perform straight-line strength reduction on trees. This recognizes related
8521 expressions involving multiplications and replaces them by less expensive
8522 calculations when possible. This is enabled by default at @option{-O} and
8523 higher.
8524
8525 @item -ftree-vectorize
8526 @opindex ftree-vectorize
8527 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8528 and @option{-ftree-slp-vectorize} if not explicitly specified.
8529
8530 @item -ftree-loop-vectorize
8531 @opindex ftree-loop-vectorize
8532 Perform loop vectorization on trees. This flag is enabled by default at
8533 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8534
8535 @item -ftree-slp-vectorize
8536 @opindex ftree-slp-vectorize
8537 Perform basic block vectorization on trees. This flag is enabled by default at
8538 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8539
8540 @item -fvect-cost-model=@var{model}
8541 @opindex fvect-cost-model
8542 Alter the cost model used for vectorization. The @var{model} argument
8543 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8544 With the @samp{unlimited} model the vectorized code-path is assumed
8545 to be profitable while with the @samp{dynamic} model a runtime check
8546 guards the vectorized code-path to enable it only for iteration
8547 counts that will likely execute faster than when executing the original
8548 scalar loop. The @samp{cheap} model disables vectorization of
8549 loops where doing so would be cost prohibitive for example due to
8550 required runtime checks for data dependence or alignment but otherwise
8551 is equal to the @samp{dynamic} model.
8552 The default cost model depends on other optimization flags and is
8553 either @samp{dynamic} or @samp{cheap}.
8554
8555 @item -fsimd-cost-model=@var{model}
8556 @opindex fsimd-cost-model
8557 Alter the cost model used for vectorization of loops marked with the OpenMP
8558 or Cilk Plus simd directive. The @var{model} argument should be one of
8559 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
8560 have the same meaning as described in @option{-fvect-cost-model} and by
8561 default a cost model defined with @option{-fvect-cost-model} is used.
8562
8563 @item -ftree-vrp
8564 @opindex ftree-vrp
8565 Perform Value Range Propagation on trees. This is similar to the
8566 constant propagation pass, but instead of values, ranges of values are
8567 propagated. This allows the optimizers to remove unnecessary range
8568 checks like array bound checks and null pointer checks. This is
8569 enabled by default at @option{-O2} and higher. Null pointer check
8570 elimination is only done if @option{-fdelete-null-pointer-checks} is
8571 enabled.
8572
8573 @item -fsplit-paths
8574 @opindex fsplit-paths
8575 Split paths leading to loop backedges. This can improve dead code
8576 elimination and common subexpression elimination. This is enabled by
8577 default at @option{-O2} and above.
8578
8579 @item -fsplit-ivs-in-unroller
8580 @opindex fsplit-ivs-in-unroller
8581 Enables expression of values of induction variables in later iterations
8582 of the unrolled loop using the value in the first iteration. This breaks
8583 long dependency chains, thus improving efficiency of the scheduling passes.
8584
8585 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8586 same effect. However, that is not reliable in cases where the loop body
8587 is more complicated than a single basic block. It also does not work at all
8588 on some architectures due to restrictions in the CSE pass.
8589
8590 This optimization is enabled by default.
8591
8592 @item -fvariable-expansion-in-unroller
8593 @opindex fvariable-expansion-in-unroller
8594 With this option, the compiler creates multiple copies of some
8595 local variables when unrolling a loop, which can result in superior code.
8596
8597 @item -fpartial-inlining
8598 @opindex fpartial-inlining
8599 Inline parts of functions. This option has any effect only
8600 when inlining itself is turned on by the @option{-finline-functions}
8601 or @option{-finline-small-functions} options.
8602
8603 Enabled at level @option{-O2}.
8604
8605 @item -fpredictive-commoning
8606 @opindex fpredictive-commoning
8607 Perform predictive commoning optimization, i.e., reusing computations
8608 (especially memory loads and stores) performed in previous
8609 iterations of loops.
8610
8611 This option is enabled at level @option{-O3}.
8612
8613 @item -fprefetch-loop-arrays
8614 @opindex fprefetch-loop-arrays
8615 If supported by the target machine, generate instructions to prefetch
8616 memory to improve the performance of loops that access large arrays.
8617
8618 This option may generate better or worse code; results are highly
8619 dependent on the structure of loops within the source code.
8620
8621 Disabled at level @option{-Os}.
8622
8623 @item -fno-printf-return-value
8624 @opindex fno-printf-return-value
8625 Do not substitute constants for known return value of formatted output
8626 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
8627 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
8628 transformation allows GCC to optimize or even eliminate branches based
8629 on the known return value of these functions called with arguments that
8630 are either constant, or whose values are known to be in a range that
8631 makes determining the exact return value possible. For example, when
8632 @option{-fprintf-return-value} is in effect, both the branch and the
8633 body of the @code{if} statement (but not the call to @code{snprint})
8634 can be optimized away when @code{i} is a 32-bit or smaller integer
8635 because the return value is guaranteed to be at most 8.
8636
8637 @smallexample
8638 char buf[9];
8639 if (snprintf (buf, "%08x", i) >= sizeof buf)
8640 @dots{}
8641 @end smallexample
8642
8643 The @option{-fprintf-return-value} option relies on other optimizations
8644 and yields best results with @option{-O2}. It works in tandem with the
8645 @option{-Wformat-overflow} and @option{-Wformat-truncation} options.
8646 The @option{-fprintf-return-value} option is enabled by default.
8647
8648 @item -fno-peephole
8649 @itemx -fno-peephole2
8650 @opindex fno-peephole
8651 @opindex fno-peephole2
8652 Disable any machine-specific peephole optimizations. The difference
8653 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
8654 are implemented in the compiler; some targets use one, some use the
8655 other, a few use both.
8656
8657 @option{-fpeephole} is enabled by default.
8658 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8659
8660 @item -fno-guess-branch-probability
8661 @opindex fno-guess-branch-probability
8662 Do not guess branch probabilities using heuristics.
8663
8664 GCC uses heuristics to guess branch probabilities if they are
8665 not provided by profiling feedback (@option{-fprofile-arcs}). These
8666 heuristics are based on the control flow graph. If some branch probabilities
8667 are specified by @code{__builtin_expect}, then the heuristics are
8668 used to guess branch probabilities for the rest of the control flow graph,
8669 taking the @code{__builtin_expect} info into account. The interactions
8670 between the heuristics and @code{__builtin_expect} can be complex, and in
8671 some cases, it may be useful to disable the heuristics so that the effects
8672 of @code{__builtin_expect} are easier to understand.
8673
8674 The default is @option{-fguess-branch-probability} at levels
8675 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8676
8677 @item -freorder-blocks
8678 @opindex freorder-blocks
8679 Reorder basic blocks in the compiled function in order to reduce number of
8680 taken branches and improve code locality.
8681
8682 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8683
8684 @item -freorder-blocks-algorithm=@var{algorithm}
8685 @opindex freorder-blocks-algorithm
8686 Use the specified algorithm for basic block reordering. The
8687 @var{algorithm} argument can be @samp{simple}, which does not increase
8688 code size (except sometimes due to secondary effects like alignment),
8689 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
8690 put all often executed code together, minimizing the number of branches
8691 executed by making extra copies of code.
8692
8693 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
8694 @samp{stc} at levels @option{-O2}, @option{-O3}.
8695
8696 @item -freorder-blocks-and-partition
8697 @opindex freorder-blocks-and-partition
8698 In addition to reordering basic blocks in the compiled function, in order
8699 to reduce number of taken branches, partitions hot and cold basic blocks
8700 into separate sections of the assembly and @file{.o} files, to improve
8701 paging and cache locality performance.
8702
8703 This optimization is automatically turned off in the presence of
8704 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
8705 section attribute and on any architecture that does not support named
8706 sections. When @option{-fsplit-stack} is used this option is not
8707 enabled by default (to avoid linker errors), but may be enabled
8708 explicitly (if using a working linker).
8709
8710 Enabled for x86 at levels @option{-O2}, @option{-O3}.
8711
8712 @item -freorder-functions
8713 @opindex freorder-functions
8714 Reorder functions in the object file in order to
8715 improve code locality. This is implemented by using special
8716 subsections @code{.text.hot} for most frequently executed functions and
8717 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
8718 the linker so object file format must support named sections and linker must
8719 place them in a reasonable way.
8720
8721 Also profile feedback must be available to make this option effective. See
8722 @option{-fprofile-arcs} for details.
8723
8724 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8725
8726 @item -fstrict-aliasing
8727 @opindex fstrict-aliasing
8728 Allow the compiler to assume the strictest aliasing rules applicable to
8729 the language being compiled. For C (and C++), this activates
8730 optimizations based on the type of expressions. In particular, an
8731 object of one type is assumed never to reside at the same address as an
8732 object of a different type, unless the types are almost the same. For
8733 example, an @code{unsigned int} can alias an @code{int}, but not a
8734 @code{void*} or a @code{double}. A character type may alias any other
8735 type.
8736
8737 @anchor{Type-punning}Pay special attention to code like this:
8738 @smallexample
8739 union a_union @{
8740 int i;
8741 double d;
8742 @};
8743
8744 int f() @{
8745 union a_union t;
8746 t.d = 3.0;
8747 return t.i;
8748 @}
8749 @end smallexample
8750 The practice of reading from a different union member than the one most
8751 recently written to (called ``type-punning'') is common. Even with
8752 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
8753 is accessed through the union type. So, the code above works as
8754 expected. @xref{Structures unions enumerations and bit-fields
8755 implementation}. However, this code might not:
8756 @smallexample
8757 int f() @{
8758 union a_union t;
8759 int* ip;
8760 t.d = 3.0;
8761 ip = &t.i;
8762 return *ip;
8763 @}
8764 @end smallexample
8765
8766 Similarly, access by taking the address, casting the resulting pointer
8767 and dereferencing the result has undefined behavior, even if the cast
8768 uses a union type, e.g.:
8769 @smallexample
8770 int f() @{
8771 double d = 3.0;
8772 return ((union a_union *) &d)->i;
8773 @}
8774 @end smallexample
8775
8776 The @option{-fstrict-aliasing} option is enabled at levels
8777 @option{-O2}, @option{-O3}, @option{-Os}.
8778
8779 @item -falign-functions
8780 @itemx -falign-functions=@var{n}
8781 @opindex falign-functions
8782 Align the start of functions to the next power-of-two greater than
8783 @var{n}, skipping up to @var{n} bytes. For instance,
8784 @option{-falign-functions=32} aligns functions to the next 32-byte
8785 boundary, but @option{-falign-functions=24} aligns to the next
8786 32-byte boundary only if this can be done by skipping 23 bytes or less.
8787
8788 @option{-fno-align-functions} and @option{-falign-functions=1} are
8789 equivalent and mean that functions are not aligned.
8790
8791 Some assemblers only support this flag when @var{n} is a power of two;
8792 in that case, it is rounded up.
8793
8794 If @var{n} is not specified or is zero, use a machine-dependent default.
8795
8796 Enabled at levels @option{-O2}, @option{-O3}.
8797
8798 @item -flimit-function-alignment
8799 If this option is enabled, the compiler tries to avoid unnecessarily
8800 overaligning functions. It attempts to instruct the assembler to align
8801 by the amount specified by @option{-falign-functions}, but not to
8802 skip more bytes than the size of the function.
8803
8804 @item -falign-labels
8805 @itemx -falign-labels=@var{n}
8806 @opindex falign-labels
8807 Align all branch targets to a power-of-two boundary, skipping up to
8808 @var{n} bytes like @option{-falign-functions}. This option can easily
8809 make code slower, because it must insert dummy operations for when the
8810 branch target is reached in the usual flow of the code.
8811
8812 @option{-fno-align-labels} and @option{-falign-labels=1} are
8813 equivalent and mean that labels are not aligned.
8814
8815 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
8816 are greater than this value, then their values are used instead.
8817
8818 If @var{n} is not specified or is zero, use a machine-dependent default
8819 which is very likely to be @samp{1}, meaning no alignment.
8820
8821 Enabled at levels @option{-O2}, @option{-O3}.
8822
8823 @item -falign-loops
8824 @itemx -falign-loops=@var{n}
8825 @opindex falign-loops
8826 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
8827 like @option{-falign-functions}. If the loops are
8828 executed many times, this makes up for any execution of the dummy
8829 operations.
8830
8831 @option{-fno-align-loops} and @option{-falign-loops=1} are
8832 equivalent and mean that loops are not aligned.
8833
8834 If @var{n} is not specified or is zero, use a machine-dependent default.
8835
8836 Enabled at levels @option{-O2}, @option{-O3}.
8837
8838 @item -falign-jumps
8839 @itemx -falign-jumps=@var{n}
8840 @opindex falign-jumps
8841 Align branch targets to a power-of-two boundary, for branch targets
8842 where the targets can only be reached by jumping, skipping up to @var{n}
8843 bytes like @option{-falign-functions}. In this case, no dummy operations
8844 need be executed.
8845
8846 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
8847 equivalent and mean that loops are not aligned.
8848
8849 If @var{n} is not specified or is zero, use a machine-dependent default.
8850
8851 Enabled at levels @option{-O2}, @option{-O3}.
8852
8853 @item -funit-at-a-time
8854 @opindex funit-at-a-time
8855 This option is left for compatibility reasons. @option{-funit-at-a-time}
8856 has no effect, while @option{-fno-unit-at-a-time} implies
8857 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
8858
8859 Enabled by default.
8860
8861 @item -fno-toplevel-reorder
8862 @opindex fno-toplevel-reorder
8863 Do not reorder top-level functions, variables, and @code{asm}
8864 statements. Output them in the same order that they appear in the
8865 input file. When this option is used, unreferenced static variables
8866 are not removed. This option is intended to support existing code
8867 that relies on a particular ordering. For new code, it is better to
8868 use attributes when possible.
8869
8870 Enabled at level @option{-O0}. When disabled explicitly, it also implies
8871 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
8872 targets.
8873
8874 @item -fweb
8875 @opindex fweb
8876 Constructs webs as commonly used for register allocation purposes and assign
8877 each web individual pseudo register. This allows the register allocation pass
8878 to operate on pseudos directly, but also strengthens several other optimization
8879 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
8880 however, make debugging impossible, since variables no longer stay in a
8881 ``home register''.
8882
8883 Enabled by default with @option{-funroll-loops}.
8884
8885 @item -fwhole-program
8886 @opindex fwhole-program
8887 Assume that the current compilation unit represents the whole program being
8888 compiled. All public functions and variables with the exception of @code{main}
8889 and those merged by attribute @code{externally_visible} become static functions
8890 and in effect are optimized more aggressively by interprocedural optimizers.
8891
8892 This option should not be used in combination with @option{-flto}.
8893 Instead relying on a linker plugin should provide safer and more precise
8894 information.
8895
8896 @item -flto[=@var{n}]
8897 @opindex flto
8898 This option runs the standard link-time optimizer. When invoked
8899 with source code, it generates GIMPLE (one of GCC's internal
8900 representations) and writes it to special ELF sections in the object
8901 file. When the object files are linked together, all the function
8902 bodies are read from these ELF sections and instantiated as if they
8903 had been part of the same translation unit.
8904
8905 To use the link-time optimizer, @option{-flto} and optimization
8906 options should be specified at compile time and during the final link.
8907 It is recommended that you compile all the files participating in the
8908 same link with the same options and also specify those options at
8909 link time.
8910 For example:
8911
8912 @smallexample
8913 gcc -c -O2 -flto foo.c
8914 gcc -c -O2 -flto bar.c
8915 gcc -o myprog -flto -O2 foo.o bar.o
8916 @end smallexample
8917
8918 The first two invocations to GCC save a bytecode representation
8919 of GIMPLE into special ELF sections inside @file{foo.o} and
8920 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
8921 @file{foo.o} and @file{bar.o}, merges the two files into a single
8922 internal image, and compiles the result as usual. Since both
8923 @file{foo.o} and @file{bar.o} are merged into a single image, this
8924 causes all the interprocedural analyses and optimizations in GCC to
8925 work across the two files as if they were a single one. This means,
8926 for example, that the inliner is able to inline functions in
8927 @file{bar.o} into functions in @file{foo.o} and vice-versa.
8928
8929 Another (simpler) way to enable link-time optimization is:
8930
8931 @smallexample
8932 gcc -o myprog -flto -O2 foo.c bar.c
8933 @end smallexample
8934
8935 The above generates bytecode for @file{foo.c} and @file{bar.c},
8936 merges them together into a single GIMPLE representation and optimizes
8937 them as usual to produce @file{myprog}.
8938
8939 The only important thing to keep in mind is that to enable link-time
8940 optimizations you need to use the GCC driver to perform the link step.
8941 GCC then automatically performs link-time optimization if any of the
8942 objects involved were compiled with the @option{-flto} command-line option.
8943 You generally
8944 should specify the optimization options to be used for link-time
8945 optimization though GCC tries to be clever at guessing an
8946 optimization level to use from the options used at compile time
8947 if you fail to specify one at link time. You can always override
8948 the automatic decision to do link-time optimization
8949 by passing @option{-fno-lto} to the link command.
8950
8951 To make whole program optimization effective, it is necessary to make
8952 certain whole program assumptions. The compiler needs to know
8953 what functions and variables can be accessed by libraries and runtime
8954 outside of the link-time optimized unit. When supported by the linker,
8955 the linker plugin (see @option{-fuse-linker-plugin}) passes information
8956 to the compiler about used and externally visible symbols. When
8957 the linker plugin is not available, @option{-fwhole-program} should be
8958 used to allow the compiler to make these assumptions, which leads
8959 to more aggressive optimization decisions.
8960
8961 When @option{-fuse-linker-plugin} is not enabled, when a file is
8962 compiled with @option{-flto}, the generated object file is larger than
8963 a regular object file because it contains GIMPLE bytecodes and the usual
8964 final code (see @option{-ffat-lto-objects}. This means that
8965 object files with LTO information can be linked as normal object
8966 files; if @option{-fno-lto} is passed to the linker, no
8967 interprocedural optimizations are applied. Note that when
8968 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
8969 but you cannot perform a regular, non-LTO link on them.
8970
8971 Additionally, the optimization flags used to compile individual files
8972 are not necessarily related to those used at link time. For instance,
8973
8974 @smallexample
8975 gcc -c -O0 -ffat-lto-objects -flto foo.c
8976 gcc -c -O0 -ffat-lto-objects -flto bar.c
8977 gcc -o myprog -O3 foo.o bar.o
8978 @end smallexample
8979
8980 This produces individual object files with unoptimized assembler
8981 code, but the resulting binary @file{myprog} is optimized at
8982 @option{-O3}. If, instead, the final binary is generated with
8983 @option{-fno-lto}, then @file{myprog} is not optimized.
8984
8985 When producing the final binary, GCC only
8986 applies link-time optimizations to those files that contain bytecode.
8987 Therefore, you can mix and match object files and libraries with
8988 GIMPLE bytecodes and final object code. GCC automatically selects
8989 which files to optimize in LTO mode and which files to link without
8990 further processing.
8991
8992 There are some code generation flags preserved by GCC when
8993 generating bytecodes, as they need to be used during the final link
8994 stage. Generally options specified at link time override those
8995 specified at compile time.
8996
8997 If you do not specify an optimization level option @option{-O} at
8998 link time, then GCC uses the highest optimization level
8999 used when compiling the object files.
9000
9001 Currently, the following options and their settings are taken from
9002 the first object file that explicitly specifies them:
9003 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9004 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9005 and all the @option{-m} target flags.
9006
9007 Certain ABI-changing flags are required to match in all compilation units,
9008 and trying to override this at link time with a conflicting value
9009 is ignored. This includes options such as @option{-freg-struct-return}
9010 and @option{-fpcc-struct-return}.
9011
9012 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9013 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9014 are passed through to the link stage and merged conservatively for
9015 conflicting translation units. Specifically
9016 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9017 precedence; and for example @option{-ffp-contract=off} takes precedence
9018 over @option{-ffp-contract=fast}. You can override them at link time.
9019
9020 If LTO encounters objects with C linkage declared with incompatible
9021 types in separate translation units to be linked together (undefined
9022 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9023 issued. The behavior is still undefined at run time. Similar
9024 diagnostics may be raised for other languages.
9025
9026 Another feature of LTO is that it is possible to apply interprocedural
9027 optimizations on files written in different languages:
9028
9029 @smallexample
9030 gcc -c -flto foo.c
9031 g++ -c -flto bar.cc
9032 gfortran -c -flto baz.f90
9033 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9034 @end smallexample
9035
9036 Notice that the final link is done with @command{g++} to get the C++
9037 runtime libraries and @option{-lgfortran} is added to get the Fortran
9038 runtime libraries. In general, when mixing languages in LTO mode, you
9039 should use the same link command options as when mixing languages in a
9040 regular (non-LTO) compilation.
9041
9042 If object files containing GIMPLE bytecode are stored in a library archive, say
9043 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9044 are using a linker with plugin support. To create static libraries suitable
9045 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9046 and @command{ranlib};
9047 to show the symbols of object files with GIMPLE bytecode, use
9048 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9049 and @command{nm} have been compiled with plugin support. At link time, use the the
9050 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9051 the LTO optimization process:
9052
9053 @smallexample
9054 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9055 @end smallexample
9056
9057 With the linker plugin enabled, the linker extracts the needed
9058 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9059 to make them part of the aggregated GIMPLE image to be optimized.
9060
9061 If you are not using a linker with plugin support and/or do not
9062 enable the linker plugin, then the objects inside @file{libfoo.a}
9063 are extracted and linked as usual, but they do not participate
9064 in the LTO optimization process. In order to make a static library suitable
9065 for both LTO optimization and usual linkage, compile its object files with
9066 @option{-flto} @option{-ffat-lto-objects}.
9067
9068 Link-time optimizations do not require the presence of the whole program to
9069 operate. If the program does not require any symbols to be exported, it is
9070 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9071 the interprocedural optimizers to use more aggressive assumptions which may
9072 lead to improved optimization opportunities.
9073 Use of @option{-fwhole-program} is not needed when linker plugin is
9074 active (see @option{-fuse-linker-plugin}).
9075
9076 The current implementation of LTO makes no
9077 attempt to generate bytecode that is portable between different
9078 types of hosts. The bytecode files are versioned and there is a
9079 strict version check, so bytecode files generated in one version of
9080 GCC do not work with an older or newer version of GCC.
9081
9082 Link-time optimization does not work well with generation of debugging
9083 information. Combining @option{-flto} with
9084 @option{-g} is currently experimental and expected to produce unexpected
9085 results.
9086
9087 If you specify the optional @var{n}, the optimization and code
9088 generation done at link time is executed in parallel using @var{n}
9089 parallel jobs by utilizing an installed @command{make} program. The
9090 environment variable @env{MAKE} may be used to override the program
9091 used. The default value for @var{n} is 1.
9092
9093 You can also specify @option{-flto=jobserver} to use GNU make's
9094 job server mode to determine the number of parallel jobs. This
9095 is useful when the Makefile calling GCC is already executing in parallel.
9096 You must prepend a @samp{+} to the command recipe in the parent Makefile
9097 for this to work. This option likely only works if @env{MAKE} is
9098 GNU make.
9099
9100 @item -flto-partition=@var{alg}
9101 @opindex flto-partition
9102 Specify the partitioning algorithm used by the link-time optimizer.
9103 The value is either @samp{1to1} to specify a partitioning mirroring
9104 the original source files or @samp{balanced} to specify partitioning
9105 into equally sized chunks (whenever possible) or @samp{max} to create
9106 new partition for every symbol where possible. Specifying @samp{none}
9107 as an algorithm disables partitioning and streaming completely.
9108 The default value is @samp{balanced}. While @samp{1to1} can be used
9109 as an workaround for various code ordering issues, the @samp{max}
9110 partitioning is intended for internal testing only.
9111 The value @samp{one} specifies that exactly one partition should be
9112 used while the value @samp{none} bypasses partitioning and executes
9113 the link-time optimization step directly from the WPA phase.
9114
9115 @item -flto-odr-type-merging
9116 @opindex flto-odr-type-merging
9117 Enable streaming of mangled types names of C++ types and their unification
9118 at link time. This increases size of LTO object files, but enables
9119 diagnostics about One Definition Rule violations.
9120
9121 @item -flto-compression-level=@var{n}
9122 @opindex flto-compression-level
9123 This option specifies the level of compression used for intermediate
9124 language written to LTO object files, and is only meaningful in
9125 conjunction with LTO mode (@option{-flto}). Valid
9126 values are 0 (no compression) to 9 (maximum compression). Values
9127 outside this range are clamped to either 0 or 9. If the option is not
9128 given, a default balanced compression setting is used.
9129
9130 @item -fuse-linker-plugin
9131 @opindex fuse-linker-plugin
9132 Enables the use of a linker plugin during link-time optimization. This
9133 option relies on plugin support in the linker, which is available in gold
9134 or in GNU ld 2.21 or newer.
9135
9136 This option enables the extraction of object files with GIMPLE bytecode out
9137 of library archives. This improves the quality of optimization by exposing
9138 more code to the link-time optimizer. This information specifies what
9139 symbols can be accessed externally (by non-LTO object or during dynamic
9140 linking). Resulting code quality improvements on binaries (and shared
9141 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9142 See @option{-flto} for a description of the effect of this flag and how to
9143 use it.
9144
9145 This option is enabled by default when LTO support in GCC is enabled
9146 and GCC was configured for use with
9147 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9148
9149 @item -ffat-lto-objects
9150 @opindex ffat-lto-objects
9151 Fat LTO objects are object files that contain both the intermediate language
9152 and the object code. This makes them usable for both LTO linking and normal
9153 linking. This option is effective only when compiling with @option{-flto}
9154 and is ignored at link time.
9155
9156 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9157 requires the complete toolchain to be aware of LTO. It requires a linker with
9158 linker plugin support for basic functionality. Additionally,
9159 @command{nm}, @command{ar} and @command{ranlib}
9160 need to support linker plugins to allow a full-featured build environment
9161 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9162 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9163 to these tools. With non fat LTO makefiles need to be modified to use them.
9164
9165 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9166 support.
9167
9168 @item -fcompare-elim
9169 @opindex fcompare-elim
9170 After register allocation and post-register allocation instruction splitting,
9171 identify arithmetic instructions that compute processor flags similar to a
9172 comparison operation based on that arithmetic. If possible, eliminate the
9173 explicit comparison operation.
9174
9175 This pass only applies to certain targets that cannot explicitly represent
9176 the comparison operation before register allocation is complete.
9177
9178 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9179
9180 @item -fcprop-registers
9181 @opindex fcprop-registers
9182 After register allocation and post-register allocation instruction splitting,
9183 perform a copy-propagation pass to try to reduce scheduling dependencies
9184 and occasionally eliminate the copy.
9185
9186 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9187
9188 @item -fprofile-correction
9189 @opindex fprofile-correction
9190 Profiles collected using an instrumented binary for multi-threaded programs may
9191 be inconsistent due to missed counter updates. When this option is specified,
9192 GCC uses heuristics to correct or smooth out such inconsistencies. By
9193 default, GCC emits an error message when an inconsistent profile is detected.
9194
9195 @item -fprofile-use
9196 @itemx -fprofile-use=@var{path}
9197 @opindex fprofile-use
9198 Enable profile feedback-directed optimizations,
9199 and the following optimizations
9200 which are generally profitable only with profile feedback available:
9201 @option{-fbranch-probabilities}, @option{-fvpt},
9202 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9203 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9204
9205 Before you can use this option, you must first generate profiling information.
9206 @xref{Instrumentation Options}, for information about the
9207 @option{-fprofile-generate} option.
9208
9209 By default, GCC emits an error message if the feedback profiles do not
9210 match the source code. This error can be turned into a warning by using
9211 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9212 code.
9213
9214 If @var{path} is specified, GCC looks at the @var{path} to find
9215 the profile feedback data files. See @option{-fprofile-dir}.
9216
9217 @item -fauto-profile
9218 @itemx -fauto-profile=@var{path}
9219 @opindex fauto-profile
9220 Enable sampling-based feedback-directed optimizations,
9221 and the following optimizations
9222 which are generally profitable only with profile feedback available:
9223 @option{-fbranch-probabilities}, @option{-fvpt},
9224 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9225 @option{-ftree-vectorize},
9226 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9227 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9228 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9229
9230 @var{path} is the name of a file containing AutoFDO profile information.
9231 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9232
9233 Producing an AutoFDO profile data file requires running your program
9234 with the @command{perf} utility on a supported GNU/Linux target system.
9235 For more information, see @uref{https://perf.wiki.kernel.org/}.
9236
9237 E.g.
9238 @smallexample
9239 perf record -e br_inst_retired:near_taken -b -o perf.data \
9240 -- your_program
9241 @end smallexample
9242
9243 Then use the @command{create_gcov} tool to convert the raw profile data
9244 to a format that can be used by GCC.@ You must also supply the
9245 unstripped binary for your program to this tool.
9246 See @uref{https://github.com/google/autofdo}.
9247
9248 E.g.
9249 @smallexample
9250 create_gcov --binary=your_program.unstripped --profile=perf.data \
9251 --gcov=profile.afdo
9252 @end smallexample
9253 @end table
9254
9255 The following options control compiler behavior regarding floating-point
9256 arithmetic. These options trade off between speed and
9257 correctness. All must be specifically enabled.
9258
9259 @table @gcctabopt
9260 @item -ffloat-store
9261 @opindex ffloat-store
9262 Do not store floating-point variables in registers, and inhibit other
9263 options that might change whether a floating-point value is taken from a
9264 register or memory.
9265
9266 @cindex floating-point precision
9267 This option prevents undesirable excess precision on machines such as
9268 the 68000 where the floating registers (of the 68881) keep more
9269 precision than a @code{double} is supposed to have. Similarly for the
9270 x86 architecture. For most programs, the excess precision does only
9271 good, but a few programs rely on the precise definition of IEEE floating
9272 point. Use @option{-ffloat-store} for such programs, after modifying
9273 them to store all pertinent intermediate computations into variables.
9274
9275 @item -fexcess-precision=@var{style}
9276 @opindex fexcess-precision
9277 This option allows further control over excess precision on machines
9278 where floating-point operations occur in a format with more precision or
9279 range than the IEEE standard and interchange floating-point types. By
9280 default, @option{-fexcess-precision=fast} is in effect; this means that
9281 operations may be carried out in a wider precision than the types specified
9282 in the source if that would result in faster code, and it is unpredictable
9283 when rounding to the types specified in the source code takes place.
9284 When compiling C, if @option{-fexcess-precision=standard} is specified then
9285 excess precision follows the rules specified in ISO C99; in particular,
9286 both casts and assignments cause values to be rounded to their
9287 semantic types (whereas @option{-ffloat-store} only affects
9288 assignments). This option is enabled by default for C if a strict
9289 conformance option such as @option{-std=c99} is used.
9290 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
9291 regardless of whether a strict conformance option is used.
9292
9293 @opindex mfpmath
9294 @option{-fexcess-precision=standard} is not implemented for languages
9295 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
9296 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9297 semantics apply without excess precision, and in the latter, rounding
9298 is unpredictable.
9299
9300 @item -ffast-math
9301 @opindex ffast-math
9302 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9303 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9304 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
9305 @option{-fexcess-precision=fast}.
9306
9307 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9308
9309 This option is not turned on by any @option{-O} option besides
9310 @option{-Ofast} since it can result in incorrect output for programs
9311 that depend on an exact implementation of IEEE or ISO rules/specifications
9312 for math functions. It may, however, yield faster code for programs
9313 that do not require the guarantees of these specifications.
9314
9315 @item -fno-math-errno
9316 @opindex fno-math-errno
9317 Do not set @code{errno} after calling math functions that are executed
9318 with a single instruction, e.g., @code{sqrt}. A program that relies on
9319 IEEE exceptions for math error handling may want to use this flag
9320 for speed while maintaining IEEE arithmetic compatibility.
9321
9322 This option is not turned on by any @option{-O} option since
9323 it can result in incorrect output for programs that depend on
9324 an exact implementation of IEEE or ISO rules/specifications for
9325 math functions. It may, however, yield faster code for programs
9326 that do not require the guarantees of these specifications.
9327
9328 The default is @option{-fmath-errno}.
9329
9330 On Darwin systems, the math library never sets @code{errno}. There is
9331 therefore no reason for the compiler to consider the possibility that
9332 it might, and @option{-fno-math-errno} is the default.
9333
9334 @item -funsafe-math-optimizations
9335 @opindex funsafe-math-optimizations
9336
9337 Allow optimizations for floating-point arithmetic that (a) assume
9338 that arguments and results are valid and (b) may violate IEEE or
9339 ANSI standards. When used at link time, it may include libraries
9340 or startup files that change the default FPU control word or other
9341 similar optimizations.
9342
9343 This option is not turned on by any @option{-O} option since
9344 it can result in incorrect output for programs that depend on
9345 an exact implementation of IEEE or ISO rules/specifications for
9346 math functions. It may, however, yield faster code for programs
9347 that do not require the guarantees of these specifications.
9348 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9349 @option{-fassociative-math} and @option{-freciprocal-math}.
9350
9351 The default is @option{-fno-unsafe-math-optimizations}.
9352
9353 @item -fassociative-math
9354 @opindex fassociative-math
9355
9356 Allow re-association of operands in series of floating-point operations.
9357 This violates the ISO C and C++ language standard by possibly changing
9358 computation result. NOTE: re-ordering may change the sign of zero as
9359 well as ignore NaNs and inhibit or create underflow or overflow (and
9360 thus cannot be used on code that relies on rounding behavior like
9361 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9362 and thus may not be used when ordered comparisons are required.
9363 This option requires that both @option{-fno-signed-zeros} and
9364 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9365 much sense with @option{-frounding-math}. For Fortran the option
9366 is automatically enabled when both @option{-fno-signed-zeros} and
9367 @option{-fno-trapping-math} are in effect.
9368
9369 The default is @option{-fno-associative-math}.
9370
9371 @item -freciprocal-math
9372 @opindex freciprocal-math
9373
9374 Allow the reciprocal of a value to be used instead of dividing by
9375 the value if this enables optimizations. For example @code{x / y}
9376 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9377 is subject to common subexpression elimination. Note that this loses
9378 precision and increases the number of flops operating on the value.
9379
9380 The default is @option{-fno-reciprocal-math}.
9381
9382 @item -ffinite-math-only
9383 @opindex ffinite-math-only
9384 Allow optimizations for floating-point arithmetic that assume
9385 that arguments and results are not NaNs or +-Infs.
9386
9387 This option is not turned on by any @option{-O} option since
9388 it can result in incorrect output for programs that depend on
9389 an exact implementation of IEEE or ISO rules/specifications for
9390 math functions. It may, however, yield faster code for programs
9391 that do not require the guarantees of these specifications.
9392
9393 The default is @option{-fno-finite-math-only}.
9394
9395 @item -fno-signed-zeros
9396 @opindex fno-signed-zeros
9397 Allow optimizations for floating-point arithmetic that ignore the
9398 signedness of zero. IEEE arithmetic specifies the behavior of
9399 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9400 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9401 This option implies that the sign of a zero result isn't significant.
9402
9403 The default is @option{-fsigned-zeros}.
9404
9405 @item -fno-trapping-math
9406 @opindex fno-trapping-math
9407 Compile code assuming that floating-point operations cannot generate
9408 user-visible traps. These traps include division by zero, overflow,
9409 underflow, inexact result and invalid operation. This option requires
9410 that @option{-fno-signaling-nans} be in effect. Setting this option may
9411 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9412
9413 This option should never be turned on by any @option{-O} option since
9414 it can result in incorrect output for programs that depend on
9415 an exact implementation of IEEE or ISO rules/specifications for
9416 math functions.
9417
9418 The default is @option{-ftrapping-math}.
9419
9420 @item -frounding-math
9421 @opindex frounding-math
9422 Disable transformations and optimizations that assume default floating-point
9423 rounding behavior. This is round-to-zero for all floating point
9424 to integer conversions, and round-to-nearest for all other arithmetic
9425 truncations. This option should be specified for programs that change
9426 the FP rounding mode dynamically, or that may be executed with a
9427 non-default rounding mode. This option disables constant folding of
9428 floating-point expressions at compile time (which may be affected by
9429 rounding mode) and arithmetic transformations that are unsafe in the
9430 presence of sign-dependent rounding modes.
9431
9432 The default is @option{-fno-rounding-math}.
9433
9434 This option is experimental and does not currently guarantee to
9435 disable all GCC optimizations that are affected by rounding mode.
9436 Future versions of GCC may provide finer control of this setting
9437 using C99's @code{FENV_ACCESS} pragma. This command-line option
9438 will be used to specify the default state for @code{FENV_ACCESS}.
9439
9440 @item -fsignaling-nans
9441 @opindex fsignaling-nans
9442 Compile code assuming that IEEE signaling NaNs may generate user-visible
9443 traps during floating-point operations. Setting this option disables
9444 optimizations that may change the number of exceptions visible with
9445 signaling NaNs. This option implies @option{-ftrapping-math}.
9446
9447 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9448 be defined.
9449
9450 The default is @option{-fno-signaling-nans}.
9451
9452 This option is experimental and does not currently guarantee to
9453 disable all GCC optimizations that affect signaling NaN behavior.
9454
9455 @item -fno-fp-int-builtin-inexact
9456 @opindex fno-fp-int-builtin-inexact
9457 Do not allow the built-in functions @code{ceil}, @code{floor},
9458 @code{round} and @code{trunc}, and their @code{float} and @code{long
9459 double} variants, to generate code that raises the ``inexact''
9460 floating-point exception for noninteger arguments. ISO C99 and C11
9461 allow these functions to raise the ``inexact'' exception, but ISO/IEC
9462 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
9463 functions to do so.
9464
9465 The default is @option{-ffp-int-builtin-inexact}, allowing the
9466 exception to be raised. This option does nothing unless
9467 @option{-ftrapping-math} is in effect.
9468
9469 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
9470 generate a call to a library function then the ``inexact'' exception
9471 may be raised if the library implementation does not follow TS 18661.
9472
9473 @item -fsingle-precision-constant
9474 @opindex fsingle-precision-constant
9475 Treat floating-point constants as single precision instead of
9476 implicitly converting them to double-precision constants.
9477
9478 @item -fcx-limited-range
9479 @opindex fcx-limited-range
9480 When enabled, this option states that a range reduction step is not
9481 needed when performing complex division. Also, there is no checking
9482 whether the result of a complex multiplication or division is @code{NaN
9483 + I*NaN}, with an attempt to rescue the situation in that case. The
9484 default is @option{-fno-cx-limited-range}, but is enabled by
9485 @option{-ffast-math}.
9486
9487 This option controls the default setting of the ISO C99
9488 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9489 all languages.
9490
9491 @item -fcx-fortran-rules
9492 @opindex fcx-fortran-rules
9493 Complex multiplication and division follow Fortran rules. Range
9494 reduction is done as part of complex division, but there is no checking
9495 whether the result of a complex multiplication or division is @code{NaN
9496 + I*NaN}, with an attempt to rescue the situation in that case.
9497
9498 The default is @option{-fno-cx-fortran-rules}.
9499
9500 @end table
9501
9502 The following options control optimizations that may improve
9503 performance, but are not enabled by any @option{-O} options. This
9504 section includes experimental options that may produce broken code.
9505
9506 @table @gcctabopt
9507 @item -fbranch-probabilities
9508 @opindex fbranch-probabilities
9509 After running a program compiled with @option{-fprofile-arcs}
9510 (@pxref{Instrumentation Options}),
9511 you can compile it a second time using
9512 @option{-fbranch-probabilities}, to improve optimizations based on
9513 the number of times each branch was taken. When a program
9514 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9515 counts to a file called @file{@var{sourcename}.gcda} for each source
9516 file. The information in this data file is very dependent on the
9517 structure of the generated code, so you must use the same source code
9518 and the same optimization options for both compilations.
9519
9520 With @option{-fbranch-probabilities}, GCC puts a
9521 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9522 These can be used to improve optimization. Currently, they are only
9523 used in one place: in @file{reorg.c}, instead of guessing which path a
9524 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9525 exactly determine which path is taken more often.
9526
9527 @item -fprofile-values
9528 @opindex fprofile-values
9529 If combined with @option{-fprofile-arcs}, it adds code so that some
9530 data about values of expressions in the program is gathered.
9531
9532 With @option{-fbranch-probabilities}, it reads back the data gathered
9533 from profiling values of expressions for usage in optimizations.
9534
9535 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9536
9537 @item -fprofile-reorder-functions
9538 @opindex fprofile-reorder-functions
9539 Function reordering based on profile instrumentation collects
9540 first time of execution of a function and orders these functions
9541 in ascending order.
9542
9543 Enabled with @option{-fprofile-use}.
9544
9545 @item -fvpt
9546 @opindex fvpt
9547 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9548 to add code to gather information about values of expressions.
9549
9550 With @option{-fbranch-probabilities}, it reads back the data gathered
9551 and actually performs the optimizations based on them.
9552 Currently the optimizations include specialization of division operations
9553 using the knowledge about the value of the denominator.
9554
9555 @item -frename-registers
9556 @opindex frename-registers
9557 Attempt to avoid false dependencies in scheduled code by making use
9558 of registers left over after register allocation. This optimization
9559 most benefits processors with lots of registers. Depending on the
9560 debug information format adopted by the target, however, it can
9561 make debugging impossible, since variables no longer stay in
9562 a ``home register''.
9563
9564 Enabled by default with @option{-funroll-loops}.
9565
9566 @item -fschedule-fusion
9567 @opindex fschedule-fusion
9568 Performs a target dependent pass over the instruction stream to schedule
9569 instructions of same type together because target machine can execute them
9570 more efficiently if they are adjacent to each other in the instruction flow.
9571
9572 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9573
9574 @item -ftracer
9575 @opindex ftracer
9576 Perform tail duplication to enlarge superblock size. This transformation
9577 simplifies the control flow of the function allowing other optimizations to do
9578 a better job.
9579
9580 Enabled with @option{-fprofile-use}.
9581
9582 @item -funroll-loops
9583 @opindex funroll-loops
9584 Unroll loops whose number of iterations can be determined at compile time or
9585 upon entry to the loop. @option{-funroll-loops} implies
9586 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9587 It also turns on complete loop peeling (i.e.@: complete removal of loops with
9588 a small constant number of iterations). This option makes code larger, and may
9589 or may not make it run faster.
9590
9591 Enabled with @option{-fprofile-use}.
9592
9593 @item -funroll-all-loops
9594 @opindex funroll-all-loops
9595 Unroll all loops, even if their number of iterations is uncertain when
9596 the loop is entered. This usually makes programs run more slowly.
9597 @option{-funroll-all-loops} implies the same options as
9598 @option{-funroll-loops}.
9599
9600 @item -fpeel-loops
9601 @opindex fpeel-loops
9602 Peels loops for which there is enough information that they do not
9603 roll much (from profile feedback or static analysis). It also turns on
9604 complete loop peeling (i.e.@: complete removal of loops with small constant
9605 number of iterations).
9606
9607 Enabled with @option{-O3} and/or @option{-fprofile-use}.
9608
9609 @item -fmove-loop-invariants
9610 @opindex fmove-loop-invariants
9611 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
9612 at level @option{-O1}
9613
9614 @item -fsplit-loops
9615 @opindex fsplit-loops
9616 Split a loop into two if it contains a condition that's always true
9617 for one side of the iteration space and false for the other.
9618
9619 @item -funswitch-loops
9620 @opindex funswitch-loops
9621 Move branches with loop invariant conditions out of the loop, with duplicates
9622 of the loop on both branches (modified according to result of the condition).
9623
9624 @item -ffunction-sections
9625 @itemx -fdata-sections
9626 @opindex ffunction-sections
9627 @opindex fdata-sections
9628 Place each function or data item into its own section in the output
9629 file if the target supports arbitrary sections. The name of the
9630 function or the name of the data item determines the section's name
9631 in the output file.
9632
9633 Use these options on systems where the linker can perform optimizations
9634 to improve locality of reference in the instruction space. Most systems
9635 using the ELF object format and SPARC processors running Solaris 2 have
9636 linkers with such optimizations. AIX may have these optimizations in
9637 the future.
9638
9639 Only use these options when there are significant benefits from doing
9640 so. When you specify these options, the assembler and linker
9641 create larger object and executable files and are also slower.
9642 You cannot use @command{gprof} on all systems if you
9643 specify this option, and you may have problems with debugging if
9644 you specify both this option and @option{-g}.
9645
9646 @item -fbranch-target-load-optimize
9647 @opindex fbranch-target-load-optimize
9648 Perform branch target register load optimization before prologue / epilogue
9649 threading.
9650 The use of target registers can typically be exposed only during reload,
9651 thus hoisting loads out of loops and doing inter-block scheduling needs
9652 a separate optimization pass.
9653
9654 @item -fbranch-target-load-optimize2
9655 @opindex fbranch-target-load-optimize2
9656 Perform branch target register load optimization after prologue / epilogue
9657 threading.
9658
9659 @item -fbtr-bb-exclusive
9660 @opindex fbtr-bb-exclusive
9661 When performing branch target register load optimization, don't reuse
9662 branch target registers within any basic block.
9663
9664 @item -fstdarg-opt
9665 @opindex fstdarg-opt
9666 Optimize the prologue of variadic argument functions with respect to usage of
9667 those arguments.
9668
9669 @item -fsection-anchors
9670 @opindex fsection-anchors
9671 Try to reduce the number of symbolic address calculations by using
9672 shared ``anchor'' symbols to address nearby objects. This transformation
9673 can help to reduce the number of GOT entries and GOT accesses on some
9674 targets.
9675
9676 For example, the implementation of the following function @code{foo}:
9677
9678 @smallexample
9679 static int a, b, c;
9680 int foo (void) @{ return a + b + c; @}
9681 @end smallexample
9682
9683 @noindent
9684 usually calculates the addresses of all three variables, but if you
9685 compile it with @option{-fsection-anchors}, it accesses the variables
9686 from a common anchor point instead. The effect is similar to the
9687 following pseudocode (which isn't valid C):
9688
9689 @smallexample
9690 int foo (void)
9691 @{
9692 register int *xr = &x;
9693 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
9694 @}
9695 @end smallexample
9696
9697 Not all targets support this option.
9698
9699 @item --param @var{name}=@var{value}
9700 @opindex param
9701 In some places, GCC uses various constants to control the amount of
9702 optimization that is done. For example, GCC does not inline functions
9703 that contain more than a certain number of instructions. You can
9704 control some of these constants on the command line using the
9705 @option{--param} option.
9706
9707 The names of specific parameters, and the meaning of the values, are
9708 tied to the internals of the compiler, and are subject to change
9709 without notice in future releases.
9710
9711 In each case, the @var{value} is an integer. The allowable choices for
9712 @var{name} are:
9713
9714 @table @gcctabopt
9715 @item predictable-branch-outcome
9716 When branch is predicted to be taken with probability lower than this threshold
9717 (in percent), then it is considered well predictable. The default is 10.
9718
9719 @item max-rtl-if-conversion-insns
9720 RTL if-conversion tries to remove conditional branches around a block and
9721 replace them with conditionally executed instructions. This parameter
9722 gives the maximum number of instructions in a block which should be
9723 considered for if-conversion. The default is 10, though the compiler will
9724 also use other heuristics to decide whether if-conversion is likely to be
9725 profitable.
9726
9727 @item max-rtl-if-conversion-predictable-cost
9728 @item max-rtl-if-conversion-unpredictable-cost
9729 RTL if-conversion will try to remove conditional branches around a block
9730 and replace them with conditionally executed instructions. These parameters
9731 give the maximum permissible cost for the sequence that would be generated
9732 by if-conversion depending on whether the branch is statically determined
9733 to be predictable or not. The units for this parameter are the same as
9734 those for the GCC internal seq_cost metric. The compiler will try to
9735 provide a reasonable default for this parameter using the BRANCH_COST
9736 target macro.
9737
9738 @item max-crossjump-edges
9739 The maximum number of incoming edges to consider for cross-jumping.
9740 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
9741 the number of edges incoming to each block. Increasing values mean
9742 more aggressive optimization, making the compilation time increase with
9743 probably small improvement in executable size.
9744
9745 @item min-crossjump-insns
9746 The minimum number of instructions that must be matched at the end
9747 of two blocks before cross-jumping is performed on them. This
9748 value is ignored in the case where all instructions in the block being
9749 cross-jumped from are matched. The default value is 5.
9750
9751 @item max-grow-copy-bb-insns
9752 The maximum code size expansion factor when copying basic blocks
9753 instead of jumping. The expansion is relative to a jump instruction.
9754 The default value is 8.
9755
9756 @item max-goto-duplication-insns
9757 The maximum number of instructions to duplicate to a block that jumps
9758 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
9759 passes, GCC factors computed gotos early in the compilation process,
9760 and unfactors them as late as possible. Only computed jumps at the
9761 end of a basic blocks with no more than max-goto-duplication-insns are
9762 unfactored. The default value is 8.
9763
9764 @item max-delay-slot-insn-search
9765 The maximum number of instructions to consider when looking for an
9766 instruction to fill a delay slot. If more than this arbitrary number of
9767 instructions are searched, the time savings from filling the delay slot
9768 are minimal, so stop searching. Increasing values mean more
9769 aggressive optimization, making the compilation time increase with probably
9770 small improvement in execution time.
9771
9772 @item max-delay-slot-live-search
9773 When trying to fill delay slots, the maximum number of instructions to
9774 consider when searching for a block with valid live register
9775 information. Increasing this arbitrarily chosen value means more
9776 aggressive optimization, increasing the compilation time. This parameter
9777 should be removed when the delay slot code is rewritten to maintain the
9778 control-flow graph.
9779
9780 @item max-gcse-memory
9781 The approximate maximum amount of memory that can be allocated in
9782 order to perform the global common subexpression elimination
9783 optimization. If more memory than specified is required, the
9784 optimization is not done.
9785
9786 @item max-gcse-insertion-ratio
9787 If the ratio of expression insertions to deletions is larger than this value
9788 for any expression, then RTL PRE inserts or removes the expression and thus
9789 leaves partially redundant computations in the instruction stream. The default value is 20.
9790
9791 @item max-pending-list-length
9792 The maximum number of pending dependencies scheduling allows
9793 before flushing the current state and starting over. Large functions
9794 with few branches or calls can create excessively large lists which
9795 needlessly consume memory and resources.
9796
9797 @item max-modulo-backtrack-attempts
9798 The maximum number of backtrack attempts the scheduler should make
9799 when modulo scheduling a loop. Larger values can exponentially increase
9800 compilation time.
9801
9802 @item max-inline-insns-single
9803 Several parameters control the tree inliner used in GCC@.
9804 This number sets the maximum number of instructions (counted in GCC's
9805 internal representation) in a single function that the tree inliner
9806 considers for inlining. This only affects functions declared
9807 inline and methods implemented in a class declaration (C++).
9808 The default value is 400.
9809
9810 @item max-inline-insns-auto
9811 When you use @option{-finline-functions} (included in @option{-O3}),
9812 a lot of functions that would otherwise not be considered for inlining
9813 by the compiler are investigated. To those functions, a different
9814 (more restrictive) limit compared to functions declared inline can
9815 be applied.
9816 The default value is 40.
9817
9818 @item inline-min-speedup
9819 When estimated performance improvement of caller + callee runtime exceeds this
9820 threshold (in percent), the function can be inlined regardless of the limit on
9821 @option{--param max-inline-insns-single} and @option{--param
9822 max-inline-insns-auto}.
9823
9824 @item large-function-insns
9825 The limit specifying really large functions. For functions larger than this
9826 limit after inlining, inlining is constrained by
9827 @option{--param large-function-growth}. This parameter is useful primarily
9828 to avoid extreme compilation time caused by non-linear algorithms used by the
9829 back end.
9830 The default value is 2700.
9831
9832 @item large-function-growth
9833 Specifies maximal growth of large function caused by inlining in percents.
9834 The default value is 100 which limits large function growth to 2.0 times
9835 the original size.
9836
9837 @item large-unit-insns
9838 The limit specifying large translation unit. Growth caused by inlining of
9839 units larger than this limit is limited by @option{--param inline-unit-growth}.
9840 For small units this might be too tight.
9841 For example, consider a unit consisting of function A
9842 that is inline and B that just calls A three times. If B is small relative to
9843 A, the growth of unit is 300\% and yet such inlining is very sane. For very
9844 large units consisting of small inlineable functions, however, the overall unit
9845 growth limit is needed to avoid exponential explosion of code size. Thus for
9846 smaller units, the size is increased to @option{--param large-unit-insns}
9847 before applying @option{--param inline-unit-growth}. The default is 10000.
9848
9849 @item inline-unit-growth
9850 Specifies maximal overall growth of the compilation unit caused by inlining.
9851 The default value is 20 which limits unit growth to 1.2 times the original
9852 size. Cold functions (either marked cold via an attribute or by profile
9853 feedback) are not accounted into the unit size.
9854
9855 @item ipcp-unit-growth
9856 Specifies maximal overall growth of the compilation unit caused by
9857 interprocedural constant propagation. The default value is 10 which limits
9858 unit growth to 1.1 times the original size.
9859
9860 @item large-stack-frame
9861 The limit specifying large stack frames. While inlining the algorithm is trying
9862 to not grow past this limit too much. The default value is 256 bytes.
9863
9864 @item large-stack-frame-growth
9865 Specifies maximal growth of large stack frames caused by inlining in percents.
9866 The default value is 1000 which limits large stack frame growth to 11 times
9867 the original size.
9868
9869 @item max-inline-insns-recursive
9870 @itemx max-inline-insns-recursive-auto
9871 Specifies the maximum number of instructions an out-of-line copy of a
9872 self-recursive inline
9873 function can grow into by performing recursive inlining.
9874
9875 @option{--param max-inline-insns-recursive} applies to functions
9876 declared inline.
9877 For functions not declared inline, recursive inlining
9878 happens only when @option{-finline-functions} (included in @option{-O3}) is
9879 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
9880 default value is 450.
9881
9882 @item max-inline-recursive-depth
9883 @itemx max-inline-recursive-depth-auto
9884 Specifies the maximum recursion depth used for recursive inlining.
9885
9886 @option{--param max-inline-recursive-depth} applies to functions
9887 declared inline. For functions not declared inline, recursive inlining
9888 happens only when @option{-finline-functions} (included in @option{-O3}) is
9889 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
9890 default value is 8.
9891
9892 @item min-inline-recursive-probability
9893 Recursive inlining is profitable only for function having deep recursion
9894 in average and can hurt for function having little recursion depth by
9895 increasing the prologue size or complexity of function body to other
9896 optimizers.
9897
9898 When profile feedback is available (see @option{-fprofile-generate}) the actual
9899 recursion depth can be guessed from the probability that function recurses
9900 via a given call expression. This parameter limits inlining only to call
9901 expressions whose probability exceeds the given threshold (in percents).
9902 The default value is 10.
9903
9904 @item early-inlining-insns
9905 Specify growth that the early inliner can make. In effect it increases
9906 the amount of inlining for code having a large abstraction penalty.
9907 The default value is 14.
9908
9909 @item max-early-inliner-iterations
9910 Limit of iterations of the early inliner. This basically bounds
9911 the number of nested indirect calls the early inliner can resolve.
9912 Deeper chains are still handled by late inlining.
9913
9914 @item comdat-sharing-probability
9915 Probability (in percent) that C++ inline function with comdat visibility
9916 are shared across multiple compilation units. The default value is 20.
9917
9918 @item profile-func-internal-id
9919 A parameter to control whether to use function internal id in profile
9920 database lookup. If the value is 0, the compiler uses an id that
9921 is based on function assembler name and filename, which makes old profile
9922 data more tolerant to source changes such as function reordering etc.
9923 The default value is 0.
9924
9925 @item min-vect-loop-bound
9926 The minimum number of iterations under which loops are not vectorized
9927 when @option{-ftree-vectorize} is used. The number of iterations after
9928 vectorization needs to be greater than the value specified by this option
9929 to allow vectorization. The default value is 0.
9930
9931 @item gcse-cost-distance-ratio
9932 Scaling factor in calculation of maximum distance an expression
9933 can be moved by GCSE optimizations. This is currently supported only in the
9934 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
9935 is with simple expressions, i.e., the expressions that have cost
9936 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
9937 hoisting of simple expressions. The default value is 10.
9938
9939 @item gcse-unrestricted-cost
9940 Cost, roughly measured as the cost of a single typical machine
9941 instruction, at which GCSE optimizations do not constrain
9942 the distance an expression can travel. This is currently
9943 supported only in the code hoisting pass. The lesser the cost,
9944 the more aggressive code hoisting is. Specifying 0
9945 allows all expressions to travel unrestricted distances.
9946 The default value is 3.
9947
9948 @item max-hoist-depth
9949 The depth of search in the dominator tree for expressions to hoist.
9950 This is used to avoid quadratic behavior in hoisting algorithm.
9951 The value of 0 does not limit on the search, but may slow down compilation
9952 of huge functions. The default value is 30.
9953
9954 @item max-tail-merge-comparisons
9955 The maximum amount of similar bbs to compare a bb with. This is used to
9956 avoid quadratic behavior in tree tail merging. The default value is 10.
9957
9958 @item max-tail-merge-iterations
9959 The maximum amount of iterations of the pass over the function. This is used to
9960 limit compilation time in tree tail merging. The default value is 2.
9961
9962 @item store-merging-allow-unaligned
9963 Allow the store merging pass to introduce unaligned stores if it is legal to
9964 do so. The default value is 1.
9965
9966 @item max-stores-to-merge
9967 The maximum number of stores to attempt to merge into wider stores in the store
9968 merging pass. The minimum value is 2 and the default is 64.
9969
9970 @item max-unrolled-insns
9971 The maximum number of instructions that a loop may have to be unrolled.
9972 If a loop is unrolled, this parameter also determines how many times
9973 the loop code is unrolled.
9974
9975 @item max-average-unrolled-insns
9976 The maximum number of instructions biased by probabilities of their execution
9977 that a loop may have to be unrolled. If a loop is unrolled,
9978 this parameter also determines how many times the loop code is unrolled.
9979
9980 @item max-unroll-times
9981 The maximum number of unrollings of a single loop.
9982
9983 @item max-peeled-insns
9984 The maximum number of instructions that a loop may have to be peeled.
9985 If a loop is peeled, this parameter also determines how many times
9986 the loop code is peeled.
9987
9988 @item max-peel-times
9989 The maximum number of peelings of a single loop.
9990
9991 @item max-peel-branches
9992 The maximum number of branches on the hot path through the peeled sequence.
9993
9994 @item max-completely-peeled-insns
9995 The maximum number of insns of a completely peeled loop.
9996
9997 @item max-completely-peel-times
9998 The maximum number of iterations of a loop to be suitable for complete peeling.
9999
10000 @item max-completely-peel-loop-nest-depth
10001 The maximum depth of a loop nest suitable for complete peeling.
10002
10003 @item max-unswitch-insns
10004 The maximum number of insns of an unswitched loop.
10005
10006 @item max-unswitch-level
10007 The maximum number of branches unswitched in a single loop.
10008
10009 @item max-loop-headers-insns
10010 The maximum number of insns in loop header duplicated by the copy loop headers
10011 pass.
10012
10013 @item lim-expensive
10014 The minimum cost of an expensive expression in the loop invariant motion.
10015
10016 @item iv-consider-all-candidates-bound
10017 Bound on number of candidates for induction variables, below which
10018 all candidates are considered for each use in induction variable
10019 optimizations. If there are more candidates than this,
10020 only the most relevant ones are considered to avoid quadratic time complexity.
10021
10022 @item iv-max-considered-uses
10023 The induction variable optimizations give up on loops that contain more
10024 induction variable uses.
10025
10026 @item iv-always-prune-cand-set-bound
10027 If the number of candidates in the set is smaller than this value,
10028 always try to remove unnecessary ivs from the set
10029 when adding a new one.
10030
10031 @item avg-loop-niter
10032 Average number of iterations of a loop.
10033
10034 @item dse-max-object-size
10035 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
10036 Larger values may result in larger compilation times.
10037
10038 @item scev-max-expr-size
10039 Bound on size of expressions used in the scalar evolutions analyzer.
10040 Large expressions slow the analyzer.
10041
10042 @item scev-max-expr-complexity
10043 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10044 Complex expressions slow the analyzer.
10045
10046 @item max-tree-if-conversion-phi-args
10047 Maximum number of arguments in a PHI supported by TREE if conversion
10048 unless the loop is marked with simd pragma.
10049
10050 @item vect-max-version-for-alignment-checks
10051 The maximum number of run-time checks that can be performed when
10052 doing loop versioning for alignment in the vectorizer.
10053
10054 @item vect-max-version-for-alias-checks
10055 The maximum number of run-time checks that can be performed when
10056 doing loop versioning for alias in the vectorizer.
10057
10058 @item vect-max-peeling-for-alignment
10059 The maximum number of loop peels to enhance access alignment
10060 for vectorizer. Value -1 means no limit.
10061
10062 @item max-iterations-to-track
10063 The maximum number of iterations of a loop the brute-force algorithm
10064 for analysis of the number of iterations of the loop tries to evaluate.
10065
10066 @item hot-bb-count-ws-permille
10067 A basic block profile count is considered hot if it contributes to
10068 the given permillage (i.e. 0...1000) of the entire profiled execution.
10069
10070 @item hot-bb-frequency-fraction
10071 Select fraction of the entry block frequency of executions of basic block in
10072 function given basic block needs to have to be considered hot.
10073
10074 @item max-predicted-iterations
10075 The maximum number of loop iterations we predict statically. This is useful
10076 in cases where a function contains a single loop with known bound and
10077 another loop with unknown bound.
10078 The known number of iterations is predicted correctly, while
10079 the unknown number of iterations average to roughly 10. This means that the
10080 loop without bounds appears artificially cold relative to the other one.
10081
10082 @item builtin-expect-probability
10083 Control the probability of the expression having the specified value. This
10084 parameter takes a percentage (i.e. 0 ... 100) as input.
10085 The default probability of 90 is obtained empirically.
10086
10087 @item align-threshold
10088
10089 Select fraction of the maximal frequency of executions of a basic block in
10090 a function to align the basic block.
10091
10092 @item align-loop-iterations
10093
10094 A loop expected to iterate at least the selected number of iterations is
10095 aligned.
10096
10097 @item tracer-dynamic-coverage
10098 @itemx tracer-dynamic-coverage-feedback
10099
10100 This value is used to limit superblock formation once the given percentage of
10101 executed instructions is covered. This limits unnecessary code size
10102 expansion.
10103
10104 The @option{tracer-dynamic-coverage-feedback} parameter
10105 is used only when profile
10106 feedback is available. The real profiles (as opposed to statically estimated
10107 ones) are much less balanced allowing the threshold to be larger value.
10108
10109 @item tracer-max-code-growth
10110 Stop tail duplication once code growth has reached given percentage. This is
10111 a rather artificial limit, as most of the duplicates are eliminated later in
10112 cross jumping, so it may be set to much higher values than is the desired code
10113 growth.
10114
10115 @item tracer-min-branch-ratio
10116
10117 Stop reverse growth when the reverse probability of best edge is less than this
10118 threshold (in percent).
10119
10120 @item tracer-min-branch-probability
10121 @itemx tracer-min-branch-probability-feedback
10122
10123 Stop forward growth if the best edge has probability lower than this
10124 threshold.
10125
10126 Similarly to @option{tracer-dynamic-coverage} two parameters are
10127 provided. @option{tracer-min-branch-probability-feedback} is used for
10128 compilation with profile feedback and @option{tracer-min-branch-probability}
10129 compilation without. The value for compilation with profile feedback
10130 needs to be more conservative (higher) in order to make tracer
10131 effective.
10132
10133 @item max-cse-path-length
10134
10135 The maximum number of basic blocks on path that CSE considers.
10136 The default is 10.
10137
10138 @item max-cse-insns
10139 The maximum number of instructions CSE processes before flushing.
10140 The default is 1000.
10141
10142 @item ggc-min-expand
10143
10144 GCC uses a garbage collector to manage its own memory allocation. This
10145 parameter specifies the minimum percentage by which the garbage
10146 collector's heap should be allowed to expand between collections.
10147 Tuning this may improve compilation speed; it has no effect on code
10148 generation.
10149
10150 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10151 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10152 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10153 GCC is not able to calculate RAM on a particular platform, the lower
10154 bound of 30% is used. Setting this parameter and
10155 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10156 every opportunity. This is extremely slow, but can be useful for
10157 debugging.
10158
10159 @item ggc-min-heapsize
10160
10161 Minimum size of the garbage collector's heap before it begins bothering
10162 to collect garbage. The first collection occurs after the heap expands
10163 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10164 tuning this may improve compilation speed, and has no effect on code
10165 generation.
10166
10167 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10168 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10169 with a lower bound of 4096 (four megabytes) and an upper bound of
10170 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10171 particular platform, the lower bound is used. Setting this parameter
10172 very large effectively disables garbage collection. Setting this
10173 parameter and @option{ggc-min-expand} to zero causes a full collection
10174 to occur at every opportunity.
10175
10176 @item max-reload-search-insns
10177 The maximum number of instruction reload should look backward for equivalent
10178 register. Increasing values mean more aggressive optimization, making the
10179 compilation time increase with probably slightly better performance.
10180 The default value is 100.
10181
10182 @item max-cselib-memory-locations
10183 The maximum number of memory locations cselib should take into account.
10184 Increasing values mean more aggressive optimization, making the compilation time
10185 increase with probably slightly better performance. The default value is 500.
10186
10187 @item max-sched-ready-insns
10188 The maximum number of instructions ready to be issued the scheduler should
10189 consider at any given time during the first scheduling pass. Increasing
10190 values mean more thorough searches, making the compilation time increase
10191 with probably little benefit. The default value is 100.
10192
10193 @item max-sched-region-blocks
10194 The maximum number of blocks in a region to be considered for
10195 interblock scheduling. The default value is 10.
10196
10197 @item max-pipeline-region-blocks
10198 The maximum number of blocks in a region to be considered for
10199 pipelining in the selective scheduler. The default value is 15.
10200
10201 @item max-sched-region-insns
10202 The maximum number of insns in a region to be considered for
10203 interblock scheduling. The default value is 100.
10204
10205 @item max-pipeline-region-insns
10206 The maximum number of insns in a region to be considered for
10207 pipelining in the selective scheduler. The default value is 200.
10208
10209 @item min-spec-prob
10210 The minimum probability (in percents) of reaching a source block
10211 for interblock speculative scheduling. The default value is 40.
10212
10213 @item max-sched-extend-regions-iters
10214 The maximum number of iterations through CFG to extend regions.
10215 A value of 0 (the default) disables region extensions.
10216
10217 @item max-sched-insn-conflict-delay
10218 The maximum conflict delay for an insn to be considered for speculative motion.
10219 The default value is 3.
10220
10221 @item sched-spec-prob-cutoff
10222 The minimal probability of speculation success (in percents), so that
10223 speculative insns are scheduled.
10224 The default value is 40.
10225
10226 @item sched-state-edge-prob-cutoff
10227 The minimum probability an edge must have for the scheduler to save its
10228 state across it.
10229 The default value is 10.
10230
10231 @item sched-mem-true-dep-cost
10232 Minimal distance (in CPU cycles) between store and load targeting same
10233 memory locations. The default value is 1.
10234
10235 @item selsched-max-lookahead
10236 The maximum size of the lookahead window of selective scheduling. It is a
10237 depth of search for available instructions.
10238 The default value is 50.
10239
10240 @item selsched-max-sched-times
10241 The maximum number of times that an instruction is scheduled during
10242 selective scheduling. This is the limit on the number of iterations
10243 through which the instruction may be pipelined. The default value is 2.
10244
10245 @item selsched-insns-to-rename
10246 The maximum number of best instructions in the ready list that are considered
10247 for renaming in the selective scheduler. The default value is 2.
10248
10249 @item sms-min-sc
10250 The minimum value of stage count that swing modulo scheduler
10251 generates. The default value is 2.
10252
10253 @item max-last-value-rtl
10254 The maximum size measured as number of RTLs that can be recorded in an expression
10255 in combiner for a pseudo register as last known value of that register. The default
10256 is 10000.
10257
10258 @item max-combine-insns
10259 The maximum number of instructions the RTL combiner tries to combine.
10260 The default value is 2 at @option{-Og} and 4 otherwise.
10261
10262 @item integer-share-limit
10263 Small integer constants can use a shared data structure, reducing the
10264 compiler's memory usage and increasing its speed. This sets the maximum
10265 value of a shared integer constant. The default value is 256.
10266
10267 @item ssp-buffer-size
10268 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10269 protection when @option{-fstack-protection} is used.
10270
10271 @item min-size-for-stack-sharing
10272 The minimum size of variables taking part in stack slot sharing when not
10273 optimizing. The default value is 32.
10274
10275 @item max-jump-thread-duplication-stmts
10276 Maximum number of statements allowed in a block that needs to be
10277 duplicated when threading jumps.
10278
10279 @item max-fields-for-field-sensitive
10280 Maximum number of fields in a structure treated in
10281 a field sensitive manner during pointer analysis. The default is zero
10282 for @option{-O0} and @option{-O1},
10283 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10284
10285 @item prefetch-latency
10286 Estimate on average number of instructions that are executed before
10287 prefetch finishes. The distance prefetched ahead is proportional
10288 to this constant. Increasing this number may also lead to less
10289 streams being prefetched (see @option{simultaneous-prefetches}).
10290
10291 @item simultaneous-prefetches
10292 Maximum number of prefetches that can run at the same time.
10293
10294 @item l1-cache-line-size
10295 The size of cache line in L1 cache, in bytes.
10296
10297 @item l1-cache-size
10298 The size of L1 cache, in kilobytes.
10299
10300 @item l2-cache-size
10301 The size of L2 cache, in kilobytes.
10302
10303 @item min-insn-to-prefetch-ratio
10304 The minimum ratio between the number of instructions and the
10305 number of prefetches to enable prefetching in a loop.
10306
10307 @item prefetch-min-insn-to-mem-ratio
10308 The minimum ratio between the number of instructions and the
10309 number of memory references to enable prefetching in a loop.
10310
10311 @item use-canonical-types
10312 Whether the compiler should use the ``canonical'' type system. By
10313 default, this should always be 1, which uses a more efficient internal
10314 mechanism for comparing types in C++ and Objective-C++. However, if
10315 bugs in the canonical type system are causing compilation failures,
10316 set this value to 0 to disable canonical types.
10317
10318 @item switch-conversion-max-branch-ratio
10319 Switch initialization conversion refuses to create arrays that are
10320 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10321 branches in the switch.
10322
10323 @item max-partial-antic-length
10324 Maximum length of the partial antic set computed during the tree
10325 partial redundancy elimination optimization (@option{-ftree-pre}) when
10326 optimizing at @option{-O3} and above. For some sorts of source code
10327 the enhanced partial redundancy elimination optimization can run away,
10328 consuming all of the memory available on the host machine. This
10329 parameter sets a limit on the length of the sets that are computed,
10330 which prevents the runaway behavior. Setting a value of 0 for
10331 this parameter allows an unlimited set length.
10332
10333 @item sccvn-max-scc-size
10334 Maximum size of a strongly connected component (SCC) during SCCVN
10335 processing. If this limit is hit, SCCVN processing for the whole
10336 function is not done and optimizations depending on it are
10337 disabled. The default maximum SCC size is 10000.
10338
10339 @item sccvn-max-alias-queries-per-access
10340 Maximum number of alias-oracle queries we perform when looking for
10341 redundancies for loads and stores. If this limit is hit the search
10342 is aborted and the load or store is not considered redundant. The
10343 number of queries is algorithmically limited to the number of
10344 stores on all paths from the load to the function entry.
10345 The default maximum number of queries is 1000.
10346
10347 @item ira-max-loops-num
10348 IRA uses regional register allocation by default. If a function
10349 contains more loops than the number given by this parameter, only at most
10350 the given number of the most frequently-executed loops form regions
10351 for regional register allocation. The default value of the
10352 parameter is 100.
10353
10354 @item ira-max-conflict-table-size
10355 Although IRA uses a sophisticated algorithm to compress the conflict
10356 table, the table can still require excessive amounts of memory for
10357 huge functions. If the conflict table for a function could be more
10358 than the size in MB given by this parameter, the register allocator
10359 instead uses a faster, simpler, and lower-quality
10360 algorithm that does not require building a pseudo-register conflict table.
10361 The default value of the parameter is 2000.
10362
10363 @item ira-loop-reserved-regs
10364 IRA can be used to evaluate more accurate register pressure in loops
10365 for decisions to move loop invariants (see @option{-O3}). The number
10366 of available registers reserved for some other purposes is given
10367 by this parameter. The default value of the parameter is 2, which is
10368 the minimal number of registers needed by typical instructions.
10369 This value is the best found from numerous experiments.
10370
10371 @item lra-inheritance-ebb-probability-cutoff
10372 LRA tries to reuse values reloaded in registers in subsequent insns.
10373 This optimization is called inheritance. EBB is used as a region to
10374 do this optimization. The parameter defines a minimal fall-through
10375 edge probability in percentage used to add BB to inheritance EBB in
10376 LRA. The default value of the parameter is 40. The value was chosen
10377 from numerous runs of SPEC2000 on x86-64.
10378
10379 @item loop-invariant-max-bbs-in-loop
10380 Loop invariant motion can be very expensive, both in compilation time and
10381 in amount of needed compile-time memory, with very large loops. Loops
10382 with more basic blocks than this parameter won't have loop invariant
10383 motion optimization performed on them. The default value of the
10384 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10385
10386 @item loop-max-datarefs-for-datadeps
10387 Building data dependencies is expensive for very large loops. This
10388 parameter limits the number of data references in loops that are
10389 considered for data dependence analysis. These large loops are no
10390 handled by the optimizations using loop data dependencies.
10391 The default value is 1000.
10392
10393 @item max-vartrack-size
10394 Sets a maximum number of hash table slots to use during variable
10395 tracking dataflow analysis of any function. If this limit is exceeded
10396 with variable tracking at assignments enabled, analysis for that
10397 function is retried without it, after removing all debug insns from
10398 the function. If the limit is exceeded even without debug insns, var
10399 tracking analysis is completely disabled for the function. Setting
10400 the parameter to zero makes it unlimited.
10401
10402 @item max-vartrack-expr-depth
10403 Sets a maximum number of recursion levels when attempting to map
10404 variable names or debug temporaries to value expressions. This trades
10405 compilation time for more complete debug information. If this is set too
10406 low, value expressions that are available and could be represented in
10407 debug information may end up not being used; setting this higher may
10408 enable the compiler to find more complex debug expressions, but compile
10409 time and memory use may grow. The default is 12.
10410
10411 @item min-nondebug-insn-uid
10412 Use uids starting at this parameter for nondebug insns. The range below
10413 the parameter is reserved exclusively for debug insns created by
10414 @option{-fvar-tracking-assignments}, but debug insns may get
10415 (non-overlapping) uids above it if the reserved range is exhausted.
10416
10417 @item ipa-sra-ptr-growth-factor
10418 IPA-SRA replaces a pointer to an aggregate with one or more new
10419 parameters only when their cumulative size is less or equal to
10420 @option{ipa-sra-ptr-growth-factor} times the size of the original
10421 pointer parameter.
10422
10423 @item sra-max-scalarization-size-Ospeed
10424 @item sra-max-scalarization-size-Osize
10425 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10426 replace scalar parts of aggregates with uses of independent scalar
10427 variables. These parameters control the maximum size, in storage units,
10428 of aggregate which is considered for replacement when compiling for
10429 speed
10430 (@option{sra-max-scalarization-size-Ospeed}) or size
10431 (@option{sra-max-scalarization-size-Osize}) respectively.
10432
10433 @item tm-max-aggregate-size
10434 When making copies of thread-local variables in a transaction, this
10435 parameter specifies the size in bytes after which variables are
10436 saved with the logging functions as opposed to save/restore code
10437 sequence pairs. This option only applies when using
10438 @option{-fgnu-tm}.
10439
10440 @item graphite-max-nb-scop-params
10441 To avoid exponential effects in the Graphite loop transforms, the
10442 number of parameters in a Static Control Part (SCoP) is bounded. The
10443 default value is 10 parameters. A variable whose value is unknown at
10444 compilation time and defined outside a SCoP is a parameter of the SCoP.
10445
10446 @item graphite-max-bbs-per-function
10447 To avoid exponential effects in the detection of SCoPs, the size of
10448 the functions analyzed by Graphite is bounded. The default value is
10449 100 basic blocks.
10450
10451 @item loop-block-tile-size
10452 Loop blocking or strip mining transforms, enabled with
10453 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10454 loop in the loop nest by a given number of iterations. The strip
10455 length can be changed using the @option{loop-block-tile-size}
10456 parameter. The default value is 51 iterations.
10457
10458 @item loop-unroll-jam-size
10459 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10460 default value is 4.
10461
10462 @item loop-unroll-jam-depth
10463 Specify the dimension to be unrolled (counting from the most inner loop)
10464 for the @option{-floop-unroll-and-jam}. The default value is 2.
10465
10466 @item ipa-cp-value-list-size
10467 IPA-CP attempts to track all possible values and types passed to a function's
10468 parameter in order to propagate them and perform devirtualization.
10469 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10470 stores per one formal parameter of a function.
10471
10472 @item ipa-cp-eval-threshold
10473 IPA-CP calculates its own score of cloning profitability heuristics
10474 and performs those cloning opportunities with scores that exceed
10475 @option{ipa-cp-eval-threshold}.
10476
10477 @item ipa-cp-recursion-penalty
10478 Percentage penalty the recursive functions will receive when they
10479 are evaluated for cloning.
10480
10481 @item ipa-cp-single-call-penalty
10482 Percentage penalty functions containing a single call to another
10483 function will receive when they are evaluated for cloning.
10484
10485
10486 @item ipa-max-agg-items
10487 IPA-CP is also capable to propagate a number of scalar values passed
10488 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10489 number of such values per one parameter.
10490
10491 @item ipa-cp-loop-hint-bonus
10492 When IPA-CP determines that a cloning candidate would make the number
10493 of iterations of a loop known, it adds a bonus of
10494 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10495 the candidate.
10496
10497 @item ipa-cp-array-index-hint-bonus
10498 When IPA-CP determines that a cloning candidate would make the index of
10499 an array access known, it adds a bonus of
10500 @option{ipa-cp-array-index-hint-bonus} to the profitability
10501 score of the candidate.
10502
10503 @item ipa-max-aa-steps
10504 During its analysis of function bodies, IPA-CP employs alias analysis
10505 in order to track values pointed to by function parameters. In order
10506 not spend too much time analyzing huge functions, it gives up and
10507 consider all memory clobbered after examining
10508 @option{ipa-max-aa-steps} statements modifying memory.
10509
10510 @item lto-partitions
10511 Specify desired number of partitions produced during WHOPR compilation.
10512 The number of partitions should exceed the number of CPUs used for compilation.
10513 The default value is 32.
10514
10515 @item lto-min-partition
10516 Size of minimal partition for WHOPR (in estimated instructions).
10517 This prevents expenses of splitting very small programs into too many
10518 partitions.
10519
10520 @item lto-max-partition
10521 Size of max partition for WHOPR (in estimated instructions).
10522 to provide an upper bound for individual size of partition.
10523 Meant to be used only with balanced partitioning.
10524
10525 @item cxx-max-namespaces-for-diagnostic-help
10526 The maximum number of namespaces to consult for suggestions when C++
10527 name lookup fails for an identifier. The default is 1000.
10528
10529 @item sink-frequency-threshold
10530 The maximum relative execution frequency (in percents) of the target block
10531 relative to a statement's original block to allow statement sinking of a
10532 statement. Larger numbers result in more aggressive statement sinking.
10533 The default value is 75. A small positive adjustment is applied for
10534 statements with memory operands as those are even more profitable so sink.
10535
10536 @item max-stores-to-sink
10537 The maximum number of conditional store pairs that can be sunk. Set to 0
10538 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10539 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
10540
10541 @item allow-store-data-races
10542 Allow optimizers to introduce new data races on stores.
10543 Set to 1 to allow, otherwise to 0. This option is enabled by default
10544 at optimization level @option{-Ofast}.
10545
10546 @item case-values-threshold
10547 The smallest number of different values for which it is best to use a
10548 jump-table instead of a tree of conditional branches. If the value is
10549 0, use the default for the machine. The default is 0.
10550
10551 @item tree-reassoc-width
10552 Set the maximum number of instructions executed in parallel in
10553 reassociated tree. This parameter overrides target dependent
10554 heuristics used by default if has non zero value.
10555
10556 @item sched-pressure-algorithm
10557 Choose between the two available implementations of
10558 @option{-fsched-pressure}. Algorithm 1 is the original implementation
10559 and is the more likely to prevent instructions from being reordered.
10560 Algorithm 2 was designed to be a compromise between the relatively
10561 conservative approach taken by algorithm 1 and the rather aggressive
10562 approach taken by the default scheduler. It relies more heavily on
10563 having a regular register file and accurate register pressure classes.
10564 See @file{haifa-sched.c} in the GCC sources for more details.
10565
10566 The default choice depends on the target.
10567
10568 @item max-slsr-cand-scan
10569 Set the maximum number of existing candidates that are considered when
10570 seeking a basis for a new straight-line strength reduction candidate.
10571
10572 @item asan-globals
10573 Enable buffer overflow detection for global objects. This kind
10574 of protection is enabled by default if you are using
10575 @option{-fsanitize=address} option.
10576 To disable global objects protection use @option{--param asan-globals=0}.
10577
10578 @item asan-stack
10579 Enable buffer overflow detection for stack objects. This kind of
10580 protection is enabled by default when using @option{-fsanitize=address}.
10581 To disable stack protection use @option{--param asan-stack=0} option.
10582
10583 @item asan-instrument-reads
10584 Enable buffer overflow detection for memory reads. This kind of
10585 protection is enabled by default when using @option{-fsanitize=address}.
10586 To disable memory reads protection use
10587 @option{--param asan-instrument-reads=0}.
10588
10589 @item asan-instrument-writes
10590 Enable buffer overflow detection for memory writes. This kind of
10591 protection is enabled by default when using @option{-fsanitize=address}.
10592 To disable memory writes protection use
10593 @option{--param asan-instrument-writes=0} option.
10594
10595 @item asan-memintrin
10596 Enable detection for built-in functions. This kind of protection
10597 is enabled by default when using @option{-fsanitize=address}.
10598 To disable built-in functions protection use
10599 @option{--param asan-memintrin=0}.
10600
10601 @item asan-use-after-return
10602 Enable detection of use-after-return. This kind of protection
10603 is enabled by default when using the @option{-fsanitize=address} option.
10604 To disable it use @option{--param asan-use-after-return=0}.
10605
10606 Note: By default the check is disabled at run time. To enable it,
10607 add @code{detect_stack_use_after_return=1} to the environment variable
10608 @env{ASAN_OPTIONS}.
10609
10610 @item asan-instrumentation-with-call-threshold
10611 If number of memory accesses in function being instrumented
10612 is greater or equal to this number, use callbacks instead of inline checks.
10613 E.g. to disable inline code use
10614 @option{--param asan-instrumentation-with-call-threshold=0}.
10615
10616 @item use-after-scope-direct-emission-threshold
10617 If the size of a local variable in bytes is smaller or equal to this
10618 number, directly poison (or unpoison) shadow memory instead of using
10619 run-time callbacks. The default value is 256.
10620
10621 @item chkp-max-ctor-size
10622 Static constructors generated by Pointer Bounds Checker may become very
10623 large and significantly increase compile time at optimization level
10624 @option{-O1} and higher. This parameter is a maximum number of statements
10625 in a single generated constructor. Default value is 5000.
10626
10627 @item max-fsm-thread-path-insns
10628 Maximum number of instructions to copy when duplicating blocks on a
10629 finite state automaton jump thread path. The default is 100.
10630
10631 @item max-fsm-thread-length
10632 Maximum number of basic blocks on a finite state automaton jump thread
10633 path. The default is 10.
10634
10635 @item max-fsm-thread-paths
10636 Maximum number of new jump thread paths to create for a finite state
10637 automaton. The default is 50.
10638
10639 @item parloops-chunk-size
10640 Chunk size of omp schedule for loops parallelized by parloops. The default
10641 is 0.
10642
10643 @item parloops-schedule
10644 Schedule type of omp schedule for loops parallelized by parloops (static,
10645 dynamic, guided, auto, runtime). The default is static.
10646
10647 @item max-ssa-name-query-depth
10648 Maximum depth of recursion when querying properties of SSA names in things
10649 like fold routines. One level of recursion corresponds to following a
10650 use-def chain.
10651
10652 @item hsa-gen-debug-stores
10653 Enable emission of special debug stores within HSA kernels which are
10654 then read and reported by libgomp plugin. Generation of these stores
10655 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
10656 enable it.
10657
10658 @item max-speculative-devirt-maydefs
10659 The maximum number of may-defs we analyze when looking for a must-def
10660 specifying the dynamic type of an object that invokes a virtual call
10661 we may be able to devirtualize speculatively.
10662
10663 @item max-vrp-switch-assertions
10664 The maximum number of assertions to add along the default edge of a switch
10665 statement during VRP. The default is 10.
10666 @end table
10667 @end table
10668
10669 @node Instrumentation Options
10670 @section Program Instrumentation Options
10671 @cindex instrumentation options
10672 @cindex program instrumentation options
10673 @cindex run-time error checking options
10674 @cindex profiling options
10675 @cindex options, program instrumentation
10676 @cindex options, run-time error checking
10677 @cindex options, profiling
10678
10679 GCC supports a number of command-line options that control adding
10680 run-time instrumentation to the code it normally generates.
10681 For example, one purpose of instrumentation is collect profiling
10682 statistics for use in finding program hot spots, code coverage
10683 analysis, or profile-guided optimizations.
10684 Another class of program instrumentation is adding run-time checking
10685 to detect programming errors like invalid pointer
10686 dereferences or out-of-bounds array accesses, as well as deliberately
10687 hostile attacks such as stack smashing or C++ vtable hijacking.
10688 There is also a general hook which can be used to implement other
10689 forms of tracing or function-level instrumentation for debug or
10690 program analysis purposes.
10691
10692 @table @gcctabopt
10693 @cindex @command{prof}
10694 @item -p
10695 @opindex p
10696 Generate extra code to write profile information suitable for the
10697 analysis program @command{prof}. You must use this option when compiling
10698 the source files you want data about, and you must also use it when
10699 linking.
10700
10701 @cindex @command{gprof}
10702 @item -pg
10703 @opindex pg
10704 Generate extra code to write profile information suitable for the
10705 analysis program @command{gprof}. You must use this option when compiling
10706 the source files you want data about, and you must also use it when
10707 linking.
10708
10709 @item -fprofile-arcs
10710 @opindex fprofile-arcs
10711 Add code so that program flow @dfn{arcs} are instrumented. During
10712 execution the program records how many times each branch and call is
10713 executed and how many times it is taken or returns. On targets that support
10714 constructors with priority support, profiling properly handles constructors,
10715 destructors and C++ constructors (and destructors) of classes which are used
10716 as a type of a global variable.
10717
10718 When the compiled
10719 program exits it saves this data to a file called
10720 @file{@var{auxname}.gcda} for each source file. The data may be used for
10721 profile-directed optimizations (@option{-fbranch-probabilities}), or for
10722 test coverage analysis (@option{-ftest-coverage}). Each object file's
10723 @var{auxname} is generated from the name of the output file, if
10724 explicitly specified and it is not the final executable, otherwise it is
10725 the basename of the source file. In both cases any suffix is removed
10726 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
10727 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
10728 @xref{Cross-profiling}.
10729
10730 @cindex @command{gcov}
10731 @item --coverage
10732 @opindex coverage
10733
10734 This option is used to compile and link code instrumented for coverage
10735 analysis. The option is a synonym for @option{-fprofile-arcs}
10736 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
10737 linking). See the documentation for those options for more details.
10738
10739 @itemize
10740
10741 @item
10742 Compile the source files with @option{-fprofile-arcs} plus optimization
10743 and code generation options. For test coverage analysis, use the
10744 additional @option{-ftest-coverage} option. You do not need to profile
10745 every source file in a program.
10746
10747 @item
10748 Compile the source files additionally with @option{-fprofile-abs-path}
10749 to create absolute path names in the @file{.gcno} files. This allows
10750 @command{gcov} to find the correct sources in projects where compilations
10751 occur with different working directories.
10752
10753 @item
10754 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
10755 (the latter implies the former).
10756
10757 @item
10758 Run the program on a representative workload to generate the arc profile
10759 information. This may be repeated any number of times. You can run
10760 concurrent instances of your program, and provided that the file system
10761 supports locking, the data files will be correctly updated. Also
10762 @code{fork} calls are detected and correctly handled (double counting
10763 will not happen).
10764
10765 @item
10766 For profile-directed optimizations, compile the source files again with
10767 the same optimization and code generation options plus
10768 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
10769 Control Optimization}).
10770
10771 @item
10772 For test coverage analysis, use @command{gcov} to produce human readable
10773 information from the @file{.gcno} and @file{.gcda} files. Refer to the
10774 @command{gcov} documentation for further information.
10775
10776 @end itemize
10777
10778 With @option{-fprofile-arcs}, for each function of your program GCC
10779 creates a program flow graph, then finds a spanning tree for the graph.
10780 Only arcs that are not on the spanning tree have to be instrumented: the
10781 compiler adds code to count the number of times that these arcs are
10782 executed. When an arc is the only exit or only entrance to a block, the
10783 instrumentation code can be added to the block; otherwise, a new basic
10784 block must be created to hold the instrumentation code.
10785
10786 @need 2000
10787 @item -ftest-coverage
10788 @opindex ftest-coverage
10789 Produce a notes file that the @command{gcov} code-coverage utility
10790 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
10791 show program coverage. Each source file's note file is called
10792 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
10793 above for a description of @var{auxname} and instructions on how to
10794 generate test coverage data. Coverage data matches the source files
10795 more closely if you do not optimize.
10796
10797 @item -fprofile-abs-path
10798 @opindex fprofile-abs-path
10799 Automatically convert relative source file names to absolute path names
10800 in the @file{.gcno} files. This allows @command{gcov} to find the correct
10801 sources in projects where compilations occur with different working
10802 directories.
10803
10804 @item -fprofile-dir=@var{path}
10805 @opindex fprofile-dir
10806
10807 Set the directory to search for the profile data files in to @var{path}.
10808 This option affects only the profile data generated by
10809 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
10810 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
10811 and its related options. Both absolute and relative paths can be used.
10812 By default, GCC uses the current directory as @var{path}, thus the
10813 profile data file appears in the same directory as the object file.
10814
10815 @item -fprofile-generate
10816 @itemx -fprofile-generate=@var{path}
10817 @opindex fprofile-generate
10818
10819 Enable options usually used for instrumenting application to produce
10820 profile useful for later recompilation with profile feedback based
10821 optimization. You must use @option{-fprofile-generate} both when
10822 compiling and when linking your program.
10823
10824 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
10825
10826 If @var{path} is specified, GCC looks at the @var{path} to find
10827 the profile feedback data files. See @option{-fprofile-dir}.
10828
10829 To optimize the program based on the collected profile information, use
10830 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
10831
10832 @item -fprofile-update=@var{method}
10833 @opindex fprofile-update
10834
10835 Alter the update method for an application instrumented for profile
10836 feedback based optimization. The @var{method} argument should be one of
10837 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
10838 The first one is useful for single-threaded applications,
10839 while the second one prevents profile corruption by emitting thread-safe code.
10840
10841 @strong{Warning:} When an application does not properly join all threads
10842 (or creates an detached thread), a profile file can be still corrupted.
10843
10844 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
10845 when supported by a target, or to @samp{single} otherwise. The GCC driver
10846 automatically selects @samp{prefer-atomic} when @option{-pthread}
10847 is present in the command line.
10848
10849 @item -fsanitize=address
10850 @opindex fsanitize=address
10851 Enable AddressSanitizer, a fast memory error detector.
10852 Memory access instructions are instrumented to detect
10853 out-of-bounds and use-after-free bugs.
10854 The option enables @option{-fsanitize-address-use-after-scope}.
10855 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
10856 more details. The run-time behavior can be influenced using the
10857 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
10858 the available options are shown at startup of the instrumented program. See
10859 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
10860 for a list of supported options.
10861 The option cannot be combined with @option{-fsanitize=thread}
10862 and/or @option{-fcheck-pointer-bounds}.
10863
10864 @item -fsanitize=kernel-address
10865 @opindex fsanitize=kernel-address
10866 Enable AddressSanitizer for Linux kernel.
10867 See @uref{https://github.com/google/kasan/wiki} for more details.
10868 The option cannot be combined with @option{-fcheck-pointer-bounds}.
10869
10870 @item -fsanitize=thread
10871 @opindex fsanitize=thread
10872 Enable ThreadSanitizer, a fast data race detector.
10873 Memory access instructions are instrumented to detect
10874 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
10875 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
10876 environment variable; see
10877 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
10878 supported options.
10879 The option cannot be combined with @option{-fsanitize=address},
10880 @option{-fsanitize=leak} and/or @option{-fcheck-pointer-bounds}.
10881
10882 Note that sanitized atomic builtins cannot throw exceptions when
10883 operating on invalid memory addresses with non-call exceptions
10884 (@option{-fnon-call-exceptions}).
10885
10886 @item -fsanitize=leak
10887 @opindex fsanitize=leak
10888 Enable LeakSanitizer, a memory leak detector.
10889 This option only matters for linking of executables and
10890 the executable is linked against a library that overrides @code{malloc}
10891 and other allocator functions. See
10892 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
10893 details. The run-time behavior can be influenced using the
10894 @env{LSAN_OPTIONS} environment variable.
10895 The option cannot be combined with @option{-fsanitize=thread}.
10896
10897 @item -fsanitize=undefined
10898 @opindex fsanitize=undefined
10899 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
10900 Various computations are instrumented to detect undefined behavior
10901 at runtime. Current suboptions are:
10902
10903 @table @gcctabopt
10904
10905 @item -fsanitize=shift
10906 @opindex fsanitize=shift
10907 This option enables checking that the result of a shift operation is
10908 not undefined. Note that what exactly is considered undefined differs
10909 slightly between C and C++, as well as between ISO C90 and C99, etc.
10910 This option has two suboptions, @option{-fsanitize=shift-base} and
10911 @option{-fsanitize=shift-exponent}.
10912
10913 @item -fsanitize=shift-exponent
10914 @opindex fsanitize=shift-exponent
10915 This option enables checking that the second argument of a shift operation
10916 is not negative and is smaller than the precision of the promoted first
10917 argument.
10918
10919 @item -fsanitize=shift-base
10920 @opindex fsanitize=shift-base
10921 If the second argument of a shift operation is within range, check that the
10922 result of a shift operation is not undefined. Note that what exactly is
10923 considered undefined differs slightly between C and C++, as well as between
10924 ISO C90 and C99, etc.
10925
10926 @item -fsanitize=integer-divide-by-zero
10927 @opindex fsanitize=integer-divide-by-zero
10928 Detect integer division by zero as well as @code{INT_MIN / -1} division.
10929
10930 @item -fsanitize=unreachable
10931 @opindex fsanitize=unreachable
10932 With this option, the compiler turns the @code{__builtin_unreachable}
10933 call into a diagnostics message call instead. When reaching the
10934 @code{__builtin_unreachable} call, the behavior is undefined.
10935
10936 @item -fsanitize=vla-bound
10937 @opindex fsanitize=vla-bound
10938 This option instructs the compiler to check that the size of a variable
10939 length array is positive.
10940
10941 @item -fsanitize=null
10942 @opindex fsanitize=null
10943 This option enables pointer checking. Particularly, the application
10944 built with this option turned on will issue an error message when it
10945 tries to dereference a NULL pointer, or if a reference (possibly an
10946 rvalue reference) is bound to a NULL pointer, or if a method is invoked
10947 on an object pointed by a NULL pointer.
10948
10949 @item -fsanitize=return
10950 @opindex fsanitize=return
10951 This option enables return statement checking. Programs
10952 built with this option turned on will issue an error message
10953 when the end of a non-void function is reached without actually
10954 returning a value. This option works in C++ only.
10955
10956 @item -fsanitize=signed-integer-overflow
10957 @opindex fsanitize=signed-integer-overflow
10958 This option enables signed integer overflow checking. We check that
10959 the result of @code{+}, @code{*}, and both unary and binary @code{-}
10960 does not overflow in the signed arithmetics. Note, integer promotion
10961 rules must be taken into account. That is, the following is not an
10962 overflow:
10963 @smallexample
10964 signed char a = SCHAR_MAX;
10965 a++;
10966 @end smallexample
10967
10968 @item -fsanitize=bounds
10969 @opindex fsanitize=bounds
10970 This option enables instrumentation of array bounds. Various out of bounds
10971 accesses are detected. Flexible array members, flexible array member-like
10972 arrays, and initializers of variables with static storage are not instrumented.
10973 The option cannot be combined with @option{-fcheck-pointer-bounds}.
10974
10975 @item -fsanitize=bounds-strict
10976 @opindex fsanitize=bounds-strict
10977 This option enables strict instrumentation of array bounds. Most out of bounds
10978 accesses are detected, including flexible array members and flexible array
10979 member-like arrays. Initializers of variables with static storage are not
10980 instrumented. The option cannot be combined
10981 with @option{-fcheck-pointer-bounds}.
10982
10983 @item -fsanitize=alignment
10984 @opindex fsanitize=alignment
10985
10986 This option enables checking of alignment of pointers when they are
10987 dereferenced, or when a reference is bound to insufficiently aligned target,
10988 or when a method or constructor is invoked on insufficiently aligned object.
10989
10990 @item -fsanitize=object-size
10991 @opindex fsanitize=object-size
10992 This option enables instrumentation of memory references using the
10993 @code{__builtin_object_size} function. Various out of bounds pointer
10994 accesses are detected.
10995
10996 @item -fsanitize=float-divide-by-zero
10997 @opindex fsanitize=float-divide-by-zero
10998 Detect floating-point division by zero. Unlike other similar options,
10999 @option{-fsanitize=float-divide-by-zero} is not enabled by
11000 @option{-fsanitize=undefined}, since floating-point division by zero can
11001 be a legitimate way of obtaining infinities and NaNs.
11002
11003 @item -fsanitize=float-cast-overflow
11004 @opindex fsanitize=float-cast-overflow
11005 This option enables floating-point type to integer conversion checking.
11006 We check that the result of the conversion does not overflow.
11007 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
11008 not enabled by @option{-fsanitize=undefined}.
11009 This option does not work well with @code{FE_INVALID} exceptions enabled.
11010
11011 @item -fsanitize=nonnull-attribute
11012 @opindex fsanitize=nonnull-attribute
11013
11014 This option enables instrumentation of calls, checking whether null values
11015 are not passed to arguments marked as requiring a non-null value by the
11016 @code{nonnull} function attribute.
11017
11018 @item -fsanitize=returns-nonnull-attribute
11019 @opindex fsanitize=returns-nonnull-attribute
11020
11021 This option enables instrumentation of return statements in functions
11022 marked with @code{returns_nonnull} function attribute, to detect returning
11023 of null values from such functions.
11024
11025 @item -fsanitize=bool
11026 @opindex fsanitize=bool
11027
11028 This option enables instrumentation of loads from bool. If a value other
11029 than 0/1 is loaded, a run-time error is issued.
11030
11031 @item -fsanitize=enum
11032 @opindex fsanitize=enum
11033
11034 This option enables instrumentation of loads from an enum type. If
11035 a value outside the range of values for the enum type is loaded,
11036 a run-time error is issued.
11037
11038 @item -fsanitize=vptr
11039 @opindex fsanitize=vptr
11040
11041 This option enables instrumentation of C++ member function calls, member
11042 accesses and some conversions between pointers to base and derived classes,
11043 to verify the referenced object has the correct dynamic type.
11044
11045 @end table
11046
11047 While @option{-ftrapv} causes traps for signed overflows to be emitted,
11048 @option{-fsanitize=undefined} gives a diagnostic message.
11049 This currently works only for the C family of languages.
11050
11051 @item -fno-sanitize=all
11052 @opindex fno-sanitize=all
11053
11054 This option disables all previously enabled sanitizers.
11055 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
11056 together.
11057
11058 @item -fasan-shadow-offset=@var{number}
11059 @opindex fasan-shadow-offset
11060 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
11061 It is useful for experimenting with different shadow memory layouts in
11062 Kernel AddressSanitizer.
11063
11064 @item -fsanitize-sections=@var{s1},@var{s2},...
11065 @opindex fsanitize-sections
11066 Sanitize global variables in selected user-defined sections. @var{si} may
11067 contain wildcards.
11068
11069 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
11070 @opindex fsanitize-recover
11071 @opindex fno-sanitize-recover
11072 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
11073 mentioned in comma-separated list of @var{opts}. Enabling this option
11074 for a sanitizer component causes it to attempt to continue
11075 running the program as if no error happened. This means multiple
11076 runtime errors can be reported in a single program run, and the exit
11077 code of the program may indicate success even when errors
11078 have been reported. The @option{-fno-sanitize-recover=} option
11079 can be used to alter
11080 this behavior: only the first detected error is reported
11081 and program then exits with a non-zero exit code.
11082
11083 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
11084 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
11085 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
11086 @option{-fsanitize=bounds-strict},
11087 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
11088 For these sanitizers error recovery is turned on by default,
11089 except @option{-fsanitize=address}, for which this feature is experimental.
11090 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
11091 accepted, the former enables recovery for all sanitizers that support it,
11092 the latter disables recovery for all sanitizers that support it.
11093
11094 Even if a recovery mode is turned on the compiler side, it needs to be also
11095 enabled on the runtime library side, otherwise the failures are still fatal.
11096 The runtime library defaults to @code{halt_on_error=0} for
11097 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
11098 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
11099 setting the @code{halt_on_error} flag in the corresponding environment variable.
11100
11101 Syntax without an explicit @var{opts} parameter is deprecated. It is
11102 equivalent to specifying an @var{opts} list of:
11103
11104 @smallexample
11105 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
11106 @end smallexample
11107
11108 @item -fsanitize-address-use-after-scope
11109 @opindex fsanitize-address-use-after-scope
11110 Enable sanitization of local variables to detect use-after-scope bugs.
11111 The option sets @option{-fstack-reuse} to @samp{none}.
11112
11113 @item -fsanitize-undefined-trap-on-error
11114 @opindex fsanitize-undefined-trap-on-error
11115 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
11116 report undefined behavior using @code{__builtin_trap} rather than
11117 a @code{libubsan} library routine. The advantage of this is that the
11118 @code{libubsan} library is not needed and is not linked in, so this
11119 is usable even in freestanding environments.
11120
11121 @item -fsanitize-coverage=trace-pc
11122 @opindex fsanitize-coverage=trace-pc
11123 Enable coverage-guided fuzzing code instrumentation.
11124 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
11125
11126 @item -fbounds-check
11127 @opindex fbounds-check
11128 For front ends that support it, generate additional code to check that
11129 indices used to access arrays are within the declared range. This is
11130 currently only supported by the Fortran front end, where this option
11131 defaults to false.
11132
11133 @item -fcheck-pointer-bounds
11134 @opindex fcheck-pointer-bounds
11135 @opindex fno-check-pointer-bounds
11136 @cindex Pointer Bounds Checker options
11137 Enable Pointer Bounds Checker instrumentation. Each memory reference
11138 is instrumented with checks of the pointer used for memory access against
11139 bounds associated with that pointer.
11140
11141 Currently there
11142 is only an implementation for Intel MPX available, thus x86 GNU/Linux target
11143 and @option{-mmpx} are required to enable this feature.
11144 MPX-based instrumentation requires
11145 a runtime library to enable MPX in hardware and handle bounds
11146 violation signals. By default when @option{-fcheck-pointer-bounds}
11147 and @option{-mmpx} options are used to link a program, the GCC driver
11148 links against the @file{libmpx} and @file{libmpxwrappers} libraries.
11149 Bounds checking on calls to dynamic libraries requires a linker
11150 with @option{-z bndplt} support; if GCC was configured with a linker
11151 without support for this option (including the Gold linker and older
11152 versions of ld), a warning is given if you link with @option{-mmpx}
11153 without also specifying @option{-static}, since the overall effectiveness
11154 of the bounds checking protection is reduced.
11155 See also @option{-static-libmpxwrappers}.
11156
11157 MPX-based instrumentation
11158 may be used for debugging and also may be included in production code
11159 to increase program security. Depending on usage, you may
11160 have different requirements for the runtime library. The current version
11161 of the MPX runtime library is more oriented for use as a debugging
11162 tool. MPX runtime library usage implies @option{-lpthread}. See
11163 also @option{-static-libmpx}. The runtime library behavior can be
11164 influenced using various @env{CHKP_RT_*} environment variables. See
11165 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
11166 for more details.
11167
11168 Generated instrumentation may be controlled by various
11169 @option{-fchkp-*} options and by the @code{bnd_variable_size}
11170 structure field attribute (@pxref{Type Attributes}) and
11171 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
11172 (@pxref{Function Attributes}). GCC also provides a number of built-in
11173 functions for controlling the Pointer Bounds Checker. @xref{Pointer
11174 Bounds Checker builtins}, for more information.
11175
11176 @item -fchkp-check-incomplete-type
11177 @opindex fchkp-check-incomplete-type
11178 @opindex fno-chkp-check-incomplete-type
11179 Generate pointer bounds checks for variables with incomplete type.
11180 Enabled by default.
11181
11182 @item -fchkp-narrow-bounds
11183 @opindex fchkp-narrow-bounds
11184 @opindex fno-chkp-narrow-bounds
11185 Controls bounds used by Pointer Bounds Checker for pointers to object
11186 fields. If narrowing is enabled then field bounds are used. Otherwise
11187 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
11188 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
11189
11190 @item -fchkp-first-field-has-own-bounds
11191 @opindex fchkp-first-field-has-own-bounds
11192 @opindex fno-chkp-first-field-has-own-bounds
11193 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
11194 first field in the structure. By default a pointer to the first field has
11195 the same bounds as a pointer to the whole structure.
11196
11197 @item -fchkp-flexible-struct-trailing-arrays
11198 @opindex fchkp-flexible-struct-trailing-arrays
11199 @opindex fno-chkp-flexible-struct-trailing-arrays
11200 Forces Pointer Bounds Checker to treat all trailing arrays in structures as
11201 possibly flexible. By default only array fields with zero length or that are
11202 marked with attribute bnd_variable_size are treated as flexible.
11203
11204 @item -fchkp-narrow-to-innermost-array
11205 @opindex fchkp-narrow-to-innermost-array
11206 @opindex fno-chkp-narrow-to-innermost-array
11207 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
11208 case of nested static array access. By default this option is disabled and
11209 bounds of the outermost array are used.
11210
11211 @item -fchkp-optimize
11212 @opindex fchkp-optimize
11213 @opindex fno-chkp-optimize
11214 Enables Pointer Bounds Checker optimizations. Enabled by default at
11215 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
11216
11217 @item -fchkp-use-fast-string-functions
11218 @opindex fchkp-use-fast-string-functions
11219 @opindex fno-chkp-use-fast-string-functions
11220 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
11221 by Pointer Bounds Checker. Disabled by default.
11222
11223 @item -fchkp-use-nochk-string-functions
11224 @opindex fchkp-use-nochk-string-functions
11225 @opindex fno-chkp-use-nochk-string-functions
11226 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
11227 by Pointer Bounds Checker. Disabled by default.
11228
11229 @item -fchkp-use-static-bounds
11230 @opindex fchkp-use-static-bounds
11231 @opindex fno-chkp-use-static-bounds
11232 Allow Pointer Bounds Checker to generate static bounds holding
11233 bounds of static variables. Enabled by default.
11234
11235 @item -fchkp-use-static-const-bounds
11236 @opindex fchkp-use-static-const-bounds
11237 @opindex fno-chkp-use-static-const-bounds
11238 Use statically-initialized bounds for constant bounds instead of
11239 generating them each time they are required. By default enabled when
11240 @option{-fchkp-use-static-bounds} is enabled.
11241
11242 @item -fchkp-treat-zero-dynamic-size-as-infinite
11243 @opindex fchkp-treat-zero-dynamic-size-as-infinite
11244 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
11245 With this option, objects with incomplete type whose
11246 dynamically-obtained size is zero are treated as having infinite size
11247 instead by Pointer Bounds
11248 Checker. This option may be helpful if a program is linked with a library
11249 missing size information for some symbols. Disabled by default.
11250
11251 @item -fchkp-check-read
11252 @opindex fchkp-check-read
11253 @opindex fno-chkp-check-read
11254 Instructs Pointer Bounds Checker to generate checks for all read
11255 accesses to memory. Enabled by default.
11256
11257 @item -fchkp-check-write
11258 @opindex fchkp-check-write
11259 @opindex fno-chkp-check-write
11260 Instructs Pointer Bounds Checker to generate checks for all write
11261 accesses to memory. Enabled by default.
11262
11263 @item -fchkp-store-bounds
11264 @opindex fchkp-store-bounds
11265 @opindex fno-chkp-store-bounds
11266 Instructs Pointer Bounds Checker to generate bounds stores for
11267 pointer writes. Enabled by default.
11268
11269 @item -fchkp-instrument-calls
11270 @opindex fchkp-instrument-calls
11271 @opindex fno-chkp-instrument-calls
11272 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
11273 Enabled by default.
11274
11275 @item -fchkp-instrument-marked-only
11276 @opindex fchkp-instrument-marked-only
11277 @opindex fno-chkp-instrument-marked-only
11278 Instructs Pointer Bounds Checker to instrument only functions
11279 marked with the @code{bnd_instrument} attribute
11280 (@pxref{Function Attributes}). Disabled by default.
11281
11282 @item -fchkp-use-wrappers
11283 @opindex fchkp-use-wrappers
11284 @opindex fno-chkp-use-wrappers
11285 Allows Pointer Bounds Checker to replace calls to built-in functions
11286 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
11287 is used to link a program, the GCC driver automatically links
11288 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
11289 Enabled by default.
11290
11291 @item -fstack-protector
11292 @opindex fstack-protector
11293 Emit extra code to check for buffer overflows, such as stack smashing
11294 attacks. This is done by adding a guard variable to functions with
11295 vulnerable objects. This includes functions that call @code{alloca}, and
11296 functions with buffers larger than 8 bytes. The guards are initialized
11297 when a function is entered and then checked when the function exits.
11298 If a guard check fails, an error message is printed and the program exits.
11299
11300 @item -fstack-protector-all
11301 @opindex fstack-protector-all
11302 Like @option{-fstack-protector} except that all functions are protected.
11303
11304 @item -fstack-protector-strong
11305 @opindex fstack-protector-strong
11306 Like @option{-fstack-protector} but includes additional functions to
11307 be protected --- those that have local array definitions, or have
11308 references to local frame addresses.
11309
11310 @item -fstack-protector-explicit
11311 @opindex fstack-protector-explicit
11312 Like @option{-fstack-protector} but only protects those functions which
11313 have the @code{stack_protect} attribute.
11314
11315 @item -fstack-check
11316 @opindex fstack-check
11317 Generate code to verify that you do not go beyond the boundary of the
11318 stack. You should specify this flag if you are running in an
11319 environment with multiple threads, but you only rarely need to specify it in
11320 a single-threaded environment since stack overflow is automatically
11321 detected on nearly all systems if there is only one stack.
11322
11323 Note that this switch does not actually cause checking to be done; the
11324 operating system or the language runtime must do that. The switch causes
11325 generation of code to ensure that they see the stack being extended.
11326
11327 You can additionally specify a string parameter: @samp{no} means no
11328 checking, @samp{generic} means force the use of old-style checking,
11329 @samp{specific} means use the best checking method and is equivalent
11330 to bare @option{-fstack-check}.
11331
11332 Old-style checking is a generic mechanism that requires no specific
11333 target support in the compiler but comes with the following drawbacks:
11334
11335 @enumerate
11336 @item
11337 Modified allocation strategy for large objects: they are always
11338 allocated dynamically if their size exceeds a fixed threshold.
11339
11340 @item
11341 Fixed limit on the size of the static frame of functions: when it is
11342 topped by a particular function, stack checking is not reliable and
11343 a warning is issued by the compiler.
11344
11345 @item
11346 Inefficiency: because of both the modified allocation strategy and the
11347 generic implementation, code performance is hampered.
11348 @end enumerate
11349
11350 Note that old-style stack checking is also the fallback method for
11351 @samp{specific} if no target support has been added in the compiler.
11352
11353 @item -fstack-limit-register=@var{reg}
11354 @itemx -fstack-limit-symbol=@var{sym}
11355 @itemx -fno-stack-limit
11356 @opindex fstack-limit-register
11357 @opindex fstack-limit-symbol
11358 @opindex fno-stack-limit
11359 Generate code to ensure that the stack does not grow beyond a certain value,
11360 either the value of a register or the address of a symbol. If a larger
11361 stack is required, a signal is raised at run time. For most targets,
11362 the signal is raised before the stack overruns the boundary, so
11363 it is possible to catch the signal without taking special precautions.
11364
11365 For instance, if the stack starts at absolute address @samp{0x80000000}
11366 and grows downwards, you can use the flags
11367 @option{-fstack-limit-symbol=__stack_limit} and
11368 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
11369 of 128KB@. Note that this may only work with the GNU linker.
11370
11371 You can locally override stack limit checking by using the
11372 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
11373
11374 @item -fsplit-stack
11375 @opindex fsplit-stack
11376 Generate code to automatically split the stack before it overflows.
11377 The resulting program has a discontiguous stack which can only
11378 overflow if the program is unable to allocate any more memory. This
11379 is most useful when running threaded programs, as it is no longer
11380 necessary to calculate a good stack size to use for each thread. This
11381 is currently only implemented for the x86 targets running
11382 GNU/Linux.
11383
11384 When code compiled with @option{-fsplit-stack} calls code compiled
11385 without @option{-fsplit-stack}, there may not be much stack space
11386 available for the latter code to run. If compiling all code,
11387 including library code, with @option{-fsplit-stack} is not an option,
11388 then the linker can fix up these calls so that the code compiled
11389 without @option{-fsplit-stack} always has a large stack. Support for
11390 this is implemented in the gold linker in GNU binutils release 2.21
11391 and later.
11392
11393 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
11394 @opindex fvtable-verify
11395 This option is only available when compiling C++ code.
11396 It turns on (or off, if using @option{-fvtable-verify=none}) the security
11397 feature that verifies at run time, for every virtual call, that
11398 the vtable pointer through which the call is made is valid for the type of
11399 the object, and has not been corrupted or overwritten. If an invalid vtable
11400 pointer is detected at run time, an error is reported and execution of the
11401 program is immediately halted.
11402
11403 This option causes run-time data structures to be built at program startup,
11404 which are used for verifying the vtable pointers.
11405 The options @samp{std} and @samp{preinit}
11406 control the timing of when these data structures are built. In both cases the
11407 data structures are built before execution reaches @code{main}. Using
11408 @option{-fvtable-verify=std} causes the data structures to be built after
11409 shared libraries have been loaded and initialized.
11410 @option{-fvtable-verify=preinit} causes them to be built before shared
11411 libraries have been loaded and initialized.
11412
11413 If this option appears multiple times in the command line with different
11414 values specified, @samp{none} takes highest priority over both @samp{std} and
11415 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
11416
11417 @item -fvtv-debug
11418 @opindex fvtv-debug
11419 When used in conjunction with @option{-fvtable-verify=std} or
11420 @option{-fvtable-verify=preinit}, causes debug versions of the
11421 runtime functions for the vtable verification feature to be called.
11422 This flag also causes the compiler to log information about which
11423 vtable pointers it finds for each class.
11424 This information is written to a file named @file{vtv_set_ptr_data.log}
11425 in the directory named by the environment variable @env{VTV_LOGS_DIR}
11426 if that is defined or the current working directory otherwise.
11427
11428 Note: This feature @emph{appends} data to the log file. If you want a fresh log
11429 file, be sure to delete any existing one.
11430
11431 @item -fvtv-counts
11432 @opindex fvtv-counts
11433 This is a debugging flag. When used in conjunction with
11434 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
11435 causes the compiler to keep track of the total number of virtual calls
11436 it encounters and the number of verifications it inserts. It also
11437 counts the number of calls to certain run-time library functions
11438 that it inserts and logs this information for each compilation unit.
11439 The compiler writes this information to a file named
11440 @file{vtv_count_data.log} in the directory named by the environment
11441 variable @env{VTV_LOGS_DIR} if that is defined or the current working
11442 directory otherwise. It also counts the size of the vtable pointer sets
11443 for each class, and writes this information to @file{vtv_class_set_sizes.log}
11444 in the same directory.
11445
11446 Note: This feature @emph{appends} data to the log files. To get fresh log
11447 files, be sure to delete any existing ones.
11448
11449 @item -finstrument-functions
11450 @opindex finstrument-functions
11451 Generate instrumentation calls for entry and exit to functions. Just
11452 after function entry and just before function exit, the following
11453 profiling functions are called with the address of the current
11454 function and its call site. (On some platforms,
11455 @code{__builtin_return_address} does not work beyond the current
11456 function, so the call site information may not be available to the
11457 profiling functions otherwise.)
11458
11459 @smallexample
11460 void __cyg_profile_func_enter (void *this_fn,
11461 void *call_site);
11462 void __cyg_profile_func_exit (void *this_fn,
11463 void *call_site);
11464 @end smallexample
11465
11466 The first argument is the address of the start of the current function,
11467 which may be looked up exactly in the symbol table.
11468
11469 This instrumentation is also done for functions expanded inline in other
11470 functions. The profiling calls indicate where, conceptually, the
11471 inline function is entered and exited. This means that addressable
11472 versions of such functions must be available. If all your uses of a
11473 function are expanded inline, this may mean an additional expansion of
11474 code size. If you use @code{extern inline} in your C code, an
11475 addressable version of such functions must be provided. (This is
11476 normally the case anyway, but if you get lucky and the optimizer always
11477 expands the functions inline, you might have gotten away without
11478 providing static copies.)
11479
11480 A function may be given the attribute @code{no_instrument_function}, in
11481 which case this instrumentation is not done. This can be used, for
11482 example, for the profiling functions listed above, high-priority
11483 interrupt routines, and any functions from which the profiling functions
11484 cannot safely be called (perhaps signal handlers, if the profiling
11485 routines generate output or allocate memory).
11486
11487 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
11488 @opindex finstrument-functions-exclude-file-list
11489
11490 Set the list of functions that are excluded from instrumentation (see
11491 the description of @option{-finstrument-functions}). If the file that
11492 contains a function definition matches with one of @var{file}, then
11493 that function is not instrumented. The match is done on substrings:
11494 if the @var{file} parameter is a substring of the file name, it is
11495 considered to be a match.
11496
11497 For example:
11498
11499 @smallexample
11500 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
11501 @end smallexample
11502
11503 @noindent
11504 excludes any inline function defined in files whose pathnames
11505 contain @file{/bits/stl} or @file{include/sys}.
11506
11507 If, for some reason, you want to include letter @samp{,} in one of
11508 @var{sym}, write @samp{\,}. For example,
11509 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
11510 (note the single quote surrounding the option).
11511
11512 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
11513 @opindex finstrument-functions-exclude-function-list
11514
11515 This is similar to @option{-finstrument-functions-exclude-file-list},
11516 but this option sets the list of function names to be excluded from
11517 instrumentation. The function name to be matched is its user-visible
11518 name, such as @code{vector<int> blah(const vector<int> &)}, not the
11519 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
11520 match is done on substrings: if the @var{sym} parameter is a substring
11521 of the function name, it is considered to be a match. For C99 and C++
11522 extended identifiers, the function name must be given in UTF-8, not
11523 using universal character names.
11524
11525 @end table
11526
11527
11528 @node Preprocessor Options
11529 @section Options Controlling the Preprocessor
11530 @cindex preprocessor options
11531 @cindex options, preprocessor
11532
11533 These options control the C preprocessor, which is run on each C source
11534 file before actual compilation.
11535
11536 If you use the @option{-E} option, nothing is done except preprocessing.
11537 Some of these options make sense only together with @option{-E} because
11538 they cause the preprocessor output to be unsuitable for actual
11539 compilation.
11540
11541 In addition to the options listed here, there are a number of options
11542 to control search paths for include files documented in
11543 @ref{Directory Options}.
11544 Options to control preprocessor diagnostics are listed in
11545 @ref{Warning Options}.
11546
11547 @table @gcctabopt
11548 @include cppopts.texi
11549
11550 @item -Wp,@var{option}
11551 @opindex Wp
11552 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11553 and pass @var{option} directly through to the preprocessor. If
11554 @var{option} contains commas, it is split into multiple options at the
11555 commas. However, many options are modified, translated or interpreted
11556 by the compiler driver before being passed to the preprocessor, and
11557 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11558 interface is undocumented and subject to change, so whenever possible
11559 you should avoid using @option{-Wp} and let the driver handle the
11560 options instead.
11561
11562 @item -Xpreprocessor @var{option}
11563 @opindex Xpreprocessor
11564 Pass @var{option} as an option to the preprocessor. You can use this to
11565 supply system-specific preprocessor options that GCC does not
11566 recognize.
11567
11568 If you want to pass an option that takes an argument, you must use
11569 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11570
11571 @item -no-integrated-cpp
11572 @opindex no-integrated-cpp
11573 Perform preprocessing as a separate pass before compilation.
11574 By default, GCC performs preprocessing as an integrated part of
11575 input tokenization and parsing.
11576 If this option is provided, the appropriate language front end
11577 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11578 and Objective-C, respectively) is instead invoked twice,
11579 once for preprocessing only and once for actual compilation
11580 of the preprocessed input.
11581 This option may be useful in conjunction with the @option{-B} or
11582 @option{-wrapper} options to specify an alternate preprocessor or
11583 perform additional processing of the program source between
11584 normal preprocessing and compilation.
11585
11586 @end table
11587
11588 @node Assembler Options
11589 @section Passing Options to the Assembler
11590
11591 @c prevent bad page break with this line
11592 You can pass options to the assembler.
11593
11594 @table @gcctabopt
11595 @item -Wa,@var{option}
11596 @opindex Wa
11597 Pass @var{option} as an option to the assembler. If @var{option}
11598 contains commas, it is split into multiple options at the commas.
11599
11600 @item -Xassembler @var{option}
11601 @opindex Xassembler
11602 Pass @var{option} as an option to the assembler. You can use this to
11603 supply system-specific assembler options that GCC does not
11604 recognize.
11605
11606 If you want to pass an option that takes an argument, you must use
11607 @option{-Xassembler} twice, once for the option and once for the argument.
11608
11609 @end table
11610
11611 @node Link Options
11612 @section Options for Linking
11613 @cindex link options
11614 @cindex options, linking
11615
11616 These options come into play when the compiler links object files into
11617 an executable output file. They are meaningless if the compiler is
11618 not doing a link step.
11619
11620 @table @gcctabopt
11621 @cindex file names
11622 @item @var{object-file-name}
11623 A file name that does not end in a special recognized suffix is
11624 considered to name an object file or library. (Object files are
11625 distinguished from libraries by the linker according to the file
11626 contents.) If linking is done, these object files are used as input
11627 to the linker.
11628
11629 @item -c
11630 @itemx -S
11631 @itemx -E
11632 @opindex c
11633 @opindex S
11634 @opindex E
11635 If any of these options is used, then the linker is not run, and
11636 object file names should not be used as arguments. @xref{Overall
11637 Options}.
11638
11639 @item -fuse-ld=bfd
11640 @opindex fuse-ld=bfd
11641 Use the @command{bfd} linker instead of the default linker.
11642
11643 @item -fuse-ld=gold
11644 @opindex fuse-ld=gold
11645 Use the @command{gold} linker instead of the default linker.
11646
11647 @cindex Libraries
11648 @item -l@var{library}
11649 @itemx -l @var{library}
11650 @opindex l
11651 Search the library named @var{library} when linking. (The second
11652 alternative with the library as a separate argument is only for
11653 POSIX compliance and is not recommended.)
11654
11655 It makes a difference where in the command you write this option; the
11656 linker searches and processes libraries and object files in the order they
11657 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11658 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11659 to functions in @samp{z}, those functions may not be loaded.
11660
11661 The linker searches a standard list of directories for the library,
11662 which is actually a file named @file{lib@var{library}.a}. The linker
11663 then uses this file as if it had been specified precisely by name.
11664
11665 The directories searched include several standard system directories
11666 plus any that you specify with @option{-L}.
11667
11668 Normally the files found this way are library files---archive files
11669 whose members are object files. The linker handles an archive file by
11670 scanning through it for members which define symbols that have so far
11671 been referenced but not defined. But if the file that is found is an
11672 ordinary object file, it is linked in the usual fashion. The only
11673 difference between using an @option{-l} option and specifying a file name
11674 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11675 and searches several directories.
11676
11677 @item -lobjc
11678 @opindex lobjc
11679 You need this special case of the @option{-l} option in order to
11680 link an Objective-C or Objective-C++ program.
11681
11682 @item -nostartfiles
11683 @opindex nostartfiles
11684 Do not use the standard system startup files when linking.
11685 The standard system libraries are used normally, unless @option{-nostdlib}
11686 or @option{-nodefaultlibs} is used.
11687
11688 @item -nodefaultlibs
11689 @opindex nodefaultlibs
11690 Do not use the standard system libraries when linking.
11691 Only the libraries you specify are passed to the linker, and options
11692 specifying linkage of the system libraries, such as @option{-static-libgcc}
11693 or @option{-shared-libgcc}, are ignored.
11694 The standard startup files are used normally, unless @option{-nostartfiles}
11695 is used.
11696
11697 The compiler may generate calls to @code{memcmp},
11698 @code{memset}, @code{memcpy} and @code{memmove}.
11699 These entries are usually resolved by entries in
11700 libc. These entry points should be supplied through some other
11701 mechanism when this option is specified.
11702
11703 @item -nostdlib
11704 @opindex nostdlib
11705 Do not use the standard system startup files or libraries when linking.
11706 No startup files and only the libraries you specify are passed to
11707 the linker, and options specifying linkage of the system libraries, such as
11708 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11709
11710 The compiler may generate calls to @code{memcmp}, @code{memset},
11711 @code{memcpy} and @code{memmove}.
11712 These entries are usually resolved by entries in
11713 libc. These entry points should be supplied through some other
11714 mechanism when this option is specified.
11715
11716 @cindex @option{-lgcc}, use with @option{-nostdlib}
11717 @cindex @option{-nostdlib} and unresolved references
11718 @cindex unresolved references and @option{-nostdlib}
11719 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11720 @cindex @option{-nodefaultlibs} and unresolved references
11721 @cindex unresolved references and @option{-nodefaultlibs}
11722 One of the standard libraries bypassed by @option{-nostdlib} and
11723 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11724 which GCC uses to overcome shortcomings of particular machines, or special
11725 needs for some languages.
11726 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11727 Collection (GCC) Internals},
11728 for more discussion of @file{libgcc.a}.)
11729 In most cases, you need @file{libgcc.a} even when you want to avoid
11730 other standard libraries. In other words, when you specify @option{-nostdlib}
11731 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11732 This ensures that you have no unresolved references to internal GCC
11733 library subroutines.
11734 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11735 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11736 GNU Compiler Collection (GCC) Internals}.)
11737
11738 @item -pie
11739 @opindex pie
11740 Produce a position independent executable on targets that support it.
11741 For predictable results, you must also specify the same set of options
11742 used for compilation (@option{-fpie}, @option{-fPIE},
11743 or model suboptions) when you specify this linker option.
11744
11745 @item -no-pie
11746 @opindex no-pie
11747 Don't produce a position independent executable.
11748
11749 @item -pthread
11750 @opindex pthread
11751 Link with the POSIX threads library. This option is supported on
11752 GNU/Linux targets, most other Unix derivatives, and also on
11753 x86 Cygwin and MinGW targets. On some targets this option also sets
11754 flags for the preprocessor, so it should be used consistently for both
11755 compilation and linking.
11756
11757 @item -rdynamic
11758 @opindex rdynamic
11759 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11760 that support it. This instructs the linker to add all symbols, not
11761 only used ones, to the dynamic symbol table. This option is needed
11762 for some uses of @code{dlopen} or to allow obtaining backtraces
11763 from within a program.
11764
11765 @item -s
11766 @opindex s
11767 Remove all symbol table and relocation information from the executable.
11768
11769 @item -static
11770 @opindex static
11771 On systems that support dynamic linking, this prevents linking with the shared
11772 libraries. On other systems, this option has no effect.
11773
11774 @item -shared
11775 @opindex shared
11776 Produce a shared object which can then be linked with other objects to
11777 form an executable. Not all systems support this option. For predictable
11778 results, you must also specify the same set of options used for compilation
11779 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11780 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11781 needs to build supplementary stub code for constructors to work. On
11782 multi-libbed systems, @samp{gcc -shared} must select the correct support
11783 libraries to link against. Failing to supply the correct flags may lead
11784 to subtle defects. Supplying them in cases where they are not necessary
11785 is innocuous.}
11786
11787 @item -shared-libgcc
11788 @itemx -static-libgcc
11789 @opindex shared-libgcc
11790 @opindex static-libgcc
11791 On systems that provide @file{libgcc} as a shared library, these options
11792 force the use of either the shared or static version, respectively.
11793 If no shared version of @file{libgcc} was built when the compiler was
11794 configured, these options have no effect.
11795
11796 There are several situations in which an application should use the
11797 shared @file{libgcc} instead of the static version. The most common
11798 of these is when the application wishes to throw and catch exceptions
11799 across different shared libraries. In that case, each of the libraries
11800 as well as the application itself should use the shared @file{libgcc}.
11801
11802 Therefore, the G++ and driver automatically adds @option{-shared-libgcc}
11803 whenever you build a shared library or a main executable, because C++
11804 programs typically use exceptions, so this is the right thing to do.
11805
11806 If, instead, you use the GCC driver to create shared libraries, you may
11807 find that they are not always linked with the shared @file{libgcc}.
11808 If GCC finds, at its configuration time, that you have a non-GNU linker
11809 or a GNU linker that does not support option @option{--eh-frame-hdr},
11810 it links the shared version of @file{libgcc} into shared libraries
11811 by default. Otherwise, it takes advantage of the linker and optimizes
11812 away the linking with the shared version of @file{libgcc}, linking with
11813 the static version of libgcc by default. This allows exceptions to
11814 propagate through such shared libraries, without incurring relocation
11815 costs at library load time.
11816
11817 However, if a library or main executable is supposed to throw or catch
11818 exceptions, you must link it using the G++ driver, as appropriate
11819 for the languages used in the program, or using the option
11820 @option{-shared-libgcc}, such that it is linked with the shared
11821 @file{libgcc}.
11822
11823 @item -static-libasan
11824 @opindex static-libasan
11825 When the @option{-fsanitize=address} option is used to link a program,
11826 the GCC driver automatically links against @option{libasan}. If
11827 @file{libasan} is available as a shared library, and the @option{-static}
11828 option is not used, then this links against the shared version of
11829 @file{libasan}. The @option{-static-libasan} option directs the GCC
11830 driver to link @file{libasan} statically, without necessarily linking
11831 other libraries statically.
11832
11833 @item -static-libtsan
11834 @opindex static-libtsan
11835 When the @option{-fsanitize=thread} option is used to link a program,
11836 the GCC driver automatically links against @option{libtsan}. If
11837 @file{libtsan} is available as a shared library, and the @option{-static}
11838 option is not used, then this links against the shared version of
11839 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11840 driver to link @file{libtsan} statically, without necessarily linking
11841 other libraries statically.
11842
11843 @item -static-liblsan
11844 @opindex static-liblsan
11845 When the @option{-fsanitize=leak} option is used to link a program,
11846 the GCC driver automatically links against @option{liblsan}. If
11847 @file{liblsan} is available as a shared library, and the @option{-static}
11848 option is not used, then this links against the shared version of
11849 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11850 driver to link @file{liblsan} statically, without necessarily linking
11851 other libraries statically.
11852
11853 @item -static-libubsan
11854 @opindex static-libubsan
11855 When the @option{-fsanitize=undefined} option is used to link a program,
11856 the GCC driver automatically links against @option{libubsan}. If
11857 @file{libubsan} is available as a shared library, and the @option{-static}
11858 option is not used, then this links against the shared version of
11859 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11860 driver to link @file{libubsan} statically, without necessarily linking
11861 other libraries statically.
11862
11863 @item -static-libmpx
11864 @opindex static-libmpx
11865 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11866 used to link a program, the GCC driver automatically links against
11867 @file{libmpx}. If @file{libmpx} is available as a shared library,
11868 and the @option{-static} option is not used, then this links against
11869 the shared version of @file{libmpx}. The @option{-static-libmpx}
11870 option directs the GCC driver to link @file{libmpx} statically,
11871 without necessarily linking other libraries statically.
11872
11873 @item -static-libmpxwrappers
11874 @opindex static-libmpxwrappers
11875 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11876 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11877 GCC driver automatically links against @file{libmpxwrappers}. If
11878 @file{libmpxwrappers} is available as a shared library, and the
11879 @option{-static} option is not used, then this links against the shared
11880 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11881 option directs the GCC driver to link @file{libmpxwrappers} statically,
11882 without necessarily linking other libraries statically.
11883
11884 @item -static-libstdc++
11885 @opindex static-libstdc++
11886 When the @command{g++} program is used to link a C++ program, it
11887 normally automatically links against @option{libstdc++}. If
11888 @file{libstdc++} is available as a shared library, and the
11889 @option{-static} option is not used, then this links against the
11890 shared version of @file{libstdc++}. That is normally fine. However, it
11891 is sometimes useful to freeze the version of @file{libstdc++} used by
11892 the program without going all the way to a fully static link. The
11893 @option{-static-libstdc++} option directs the @command{g++} driver to
11894 link @file{libstdc++} statically, without necessarily linking other
11895 libraries statically.
11896
11897 @item -symbolic
11898 @opindex symbolic
11899 Bind references to global symbols when building a shared object. Warn
11900 about any unresolved references (unless overridden by the link editor
11901 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11902 this option.
11903
11904 @item -T @var{script}
11905 @opindex T
11906 @cindex linker script
11907 Use @var{script} as the linker script. This option is supported by most
11908 systems using the GNU linker. On some targets, such as bare-board
11909 targets without an operating system, the @option{-T} option may be required
11910 when linking to avoid references to undefined symbols.
11911
11912 @item -Xlinker @var{option}
11913 @opindex Xlinker
11914 Pass @var{option} as an option to the linker. You can use this to
11915 supply system-specific linker options that GCC does not recognize.
11916
11917 If you want to pass an option that takes a separate argument, you must use
11918 @option{-Xlinker} twice, once for the option and once for the argument.
11919 For example, to pass @option{-assert definitions}, you must write
11920 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11921 @option{-Xlinker "-assert definitions"}, because this passes the entire
11922 string as a single argument, which is not what the linker expects.
11923
11924 When using the GNU linker, it is usually more convenient to pass
11925 arguments to linker options using the @option{@var{option}=@var{value}}
11926 syntax than as separate arguments. For example, you can specify
11927 @option{-Xlinker -Map=output.map} rather than
11928 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11929 this syntax for command-line options.
11930
11931 @item -Wl,@var{option}
11932 @opindex Wl
11933 Pass @var{option} as an option to the linker. If @var{option} contains
11934 commas, it is split into multiple options at the commas. You can use this
11935 syntax to pass an argument to the option.
11936 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11937 linker. When using the GNU linker, you can also get the same effect with
11938 @option{-Wl,-Map=output.map}.
11939
11940 @item -u @var{symbol}
11941 @opindex u
11942 Pretend the symbol @var{symbol} is undefined, to force linking of
11943 library modules to define it. You can use @option{-u} multiple times with
11944 different symbols to force loading of additional library modules.
11945
11946 @item -z @var{keyword}
11947 @opindex z
11948 @option{-z} is passed directly on to the linker along with the keyword
11949 @var{keyword}. See the section in the documentation of your linker for
11950 permitted values and their meanings.
11951 @end table
11952
11953 @node Directory Options
11954 @section Options for Directory Search
11955 @cindex directory options
11956 @cindex options, directory search
11957 @cindex search path
11958
11959 These options specify directories to search for header files, for
11960 libraries and for parts of the compiler:
11961
11962 @table @gcctabopt
11963 @include cppdiropts.texi
11964
11965 @item -iplugindir=@var{dir}
11966 @opindex iplugindir=
11967 Set the directory to search for plugins that are passed
11968 by @option{-fplugin=@var{name}} instead of
11969 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11970 to be used by the user, but only passed by the driver.
11971
11972 @item -L@var{dir}
11973 @opindex L
11974 Add directory @var{dir} to the list of directories to be searched
11975 for @option{-l}.
11976
11977 @item -B@var{prefix}
11978 @opindex B
11979 This option specifies where to find the executables, libraries,
11980 include files, and data files of the compiler itself.
11981
11982 The compiler driver program runs one or more of the subprograms
11983 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11984 @var{prefix} as a prefix for each program it tries to run, both with and
11985 without @samp{@var{machine}/@var{version}/} for the corresponding target
11986 machine and compiler version.
11987
11988 For each subprogram to be run, the compiler driver first tries the
11989 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11990 is not specified, the driver tries two standard prefixes,
11991 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11992 those results in a file name that is found, the unmodified program
11993 name is searched for using the directories specified in your
11994 @env{PATH} environment variable.
11995
11996 The compiler checks to see if the path provided by @option{-B}
11997 refers to a directory, and if necessary it adds a directory
11998 separator character at the end of the path.
11999
12000 @option{-B} prefixes that effectively specify directory names also apply
12001 to libraries in the linker, because the compiler translates these
12002 options into @option{-L} options for the linker. They also apply to
12003 include files in the preprocessor, because the compiler translates these
12004 options into @option{-isystem} options for the preprocessor. In this case,
12005 the compiler appends @samp{include} to the prefix.
12006
12007 The runtime support file @file{libgcc.a} can also be searched for using
12008 the @option{-B} prefix, if needed. If it is not found there, the two
12009 standard prefixes above are tried, and that is all. The file is left
12010 out of the link if it is not found by those means.
12011
12012 Another way to specify a prefix much like the @option{-B} prefix is to use
12013 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
12014 Variables}.
12015
12016 As a special kludge, if the path provided by @option{-B} is
12017 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
12018 9, then it is replaced by @file{[dir/]include}. This is to help
12019 with boot-strapping the compiler.
12020
12021 @item -no-canonical-prefixes
12022 @opindex no-canonical-prefixes
12023 Do not expand any symbolic links, resolve references to @samp{/../}
12024 or @samp{/./}, or make the path absolute when generating a relative
12025 prefix.
12026
12027 @item --sysroot=@var{dir}
12028 @opindex sysroot
12029 Use @var{dir} as the logical root directory for headers and libraries.
12030 For example, if the compiler normally searches for headers in
12031 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
12032 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
12033
12034 If you use both this option and the @option{-isysroot} option, then
12035 the @option{--sysroot} option applies to libraries, but the
12036 @option{-isysroot} option applies to header files.
12037
12038 The GNU linker (beginning with version 2.16) has the necessary support
12039 for this option. If your linker does not support this option, the
12040 header file aspect of @option{--sysroot} still works, but the
12041 library aspect does not.
12042
12043 @item --no-sysroot-suffix
12044 @opindex no-sysroot-suffix
12045 For some targets, a suffix is added to the root directory specified
12046 with @option{--sysroot}, depending on the other options used, so that
12047 headers may for example be found in
12048 @file{@var{dir}/@var{suffix}/usr/include} instead of
12049 @file{@var{dir}/usr/include}. This option disables the addition of
12050 such a suffix.
12051
12052 @end table
12053
12054 @node Code Gen Options
12055 @section Options for Code Generation Conventions
12056 @cindex code generation conventions
12057 @cindex options, code generation
12058 @cindex run-time options
12059
12060 These machine-independent options control the interface conventions
12061 used in code generation.
12062
12063 Most of them have both positive and negative forms; the negative form
12064 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
12065 one of the forms is listed---the one that is not the default. You
12066 can figure out the other form by either removing @samp{no-} or adding
12067 it.
12068
12069 @table @gcctabopt
12070 @item -fstack-reuse=@var{reuse-level}
12071 @opindex fstack_reuse
12072 This option controls stack space reuse for user declared local/auto variables
12073 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
12074 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
12075 local variables and temporaries, @samp{named_vars} enables the reuse only for
12076 user defined local variables with names, and @samp{none} disables stack reuse
12077 completely. The default value is @samp{all}. The option is needed when the
12078 program extends the lifetime of a scoped local variable or a compiler generated
12079 temporary beyond the end point defined by the language. When a lifetime of
12080 a variable ends, and if the variable lives in memory, the optimizing compiler
12081 has the freedom to reuse its stack space with other temporaries or scoped
12082 local variables whose live range does not overlap with it. Legacy code extending
12083 local lifetime is likely to break with the stack reuse optimization.
12084
12085 For example,
12086
12087 @smallexample
12088 int *p;
12089 @{
12090 int local1;
12091
12092 p = &local1;
12093 local1 = 10;
12094 ....
12095 @}
12096 @{
12097 int local2;
12098 local2 = 20;
12099 ...
12100 @}
12101
12102 if (*p == 10) // out of scope use of local1
12103 @{
12104
12105 @}
12106 @end smallexample
12107
12108 Another example:
12109 @smallexample
12110
12111 struct A
12112 @{
12113 A(int k) : i(k), j(k) @{ @}
12114 int i;
12115 int j;
12116 @};
12117
12118 A *ap;
12119
12120 void foo(const A& ar)
12121 @{
12122 ap = &ar;
12123 @}
12124
12125 void bar()
12126 @{
12127 foo(A(10)); // temp object's lifetime ends when foo returns
12128
12129 @{
12130 A a(20);
12131 ....
12132 @}
12133 ap->i+= 10; // ap references out of scope temp whose space
12134 // is reused with a. What is the value of ap->i?
12135 @}
12136
12137 @end smallexample
12138
12139 The lifetime of a compiler generated temporary is well defined by the C++
12140 standard. When a lifetime of a temporary ends, and if the temporary lives
12141 in memory, the optimizing compiler has the freedom to reuse its stack
12142 space with other temporaries or scoped local variables whose live range
12143 does not overlap with it. However some of the legacy code relies on
12144 the behavior of older compilers in which temporaries' stack space is
12145 not reused, the aggressive stack reuse can lead to runtime errors. This
12146 option is used to control the temporary stack reuse optimization.
12147
12148 @item -ftrapv
12149 @opindex ftrapv
12150 This option generates traps for signed overflow on addition, subtraction,
12151 multiplication operations.
12152 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12153 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12154 @option{-fwrapv} being effective. Note that only active options override, so
12155 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12156 results in @option{-ftrapv} being effective.
12157
12158 @item -fwrapv
12159 @opindex fwrapv
12160 This option instructs the compiler to assume that signed arithmetic
12161 overflow of addition, subtraction and multiplication wraps around
12162 using twos-complement representation. This flag enables some optimizations
12163 and disables others.
12164 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12165 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12166 @option{-fwrapv} being effective. Note that only active options override, so
12167 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12168 results in @option{-ftrapv} being effective.
12169
12170 @item -fexceptions
12171 @opindex fexceptions
12172 Enable exception handling. Generates extra code needed to propagate
12173 exceptions. For some targets, this implies GCC generates frame
12174 unwind information for all functions, which can produce significant data
12175 size overhead, although it does not affect execution. If you do not
12176 specify this option, GCC enables it by default for languages like
12177 C++ that normally require exception handling, and disables it for
12178 languages like C that do not normally require it. However, you may need
12179 to enable this option when compiling C code that needs to interoperate
12180 properly with exception handlers written in C++. You may also wish to
12181 disable this option if you are compiling older C++ programs that don't
12182 use exception handling.
12183
12184 @item -fnon-call-exceptions
12185 @opindex fnon-call-exceptions
12186 Generate code that allows trapping instructions to throw exceptions.
12187 Note that this requires platform-specific runtime support that does
12188 not exist everywhere. Moreover, it only allows @emph{trapping}
12189 instructions to throw exceptions, i.e.@: memory references or floating-point
12190 instructions. It does not allow exceptions to be thrown from
12191 arbitrary signal handlers such as @code{SIGALRM}.
12192
12193 @item -fdelete-dead-exceptions
12194 @opindex fdelete-dead-exceptions
12195 Consider that instructions that may throw exceptions but don't otherwise
12196 contribute to the execution of the program can be optimized away.
12197 This option is enabled by default for the Ada front end, as permitted by
12198 the Ada language specification.
12199 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
12200
12201 @item -funwind-tables
12202 @opindex funwind-tables
12203 Similar to @option{-fexceptions}, except that it just generates any needed
12204 static data, but does not affect the generated code in any other way.
12205 You normally do not need to enable this option; instead, a language processor
12206 that needs this handling enables it on your behalf.
12207
12208 @item -fasynchronous-unwind-tables
12209 @opindex fasynchronous-unwind-tables
12210 Generate unwind table in DWARF format, if supported by target machine. The
12211 table is exact at each instruction boundary, so it can be used for stack
12212 unwinding from asynchronous events (such as debugger or garbage collector).
12213
12214 @item -fno-gnu-unique
12215 @opindex fno-gnu-unique
12216 On systems with recent GNU assembler and C library, the C++ compiler
12217 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
12218 of template static data members and static local variables in inline
12219 functions are unique even in the presence of @code{RTLD_LOCAL}; this
12220 is necessary to avoid problems with a library used by two different
12221 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
12222 therefore disagreeing with the other one about the binding of the
12223 symbol. But this causes @code{dlclose} to be ignored for affected
12224 DSOs; if your program relies on reinitialization of a DSO via
12225 @code{dlclose} and @code{dlopen}, you can use
12226 @option{-fno-gnu-unique}.
12227
12228 @item -fpcc-struct-return
12229 @opindex fpcc-struct-return
12230 Return ``short'' @code{struct} and @code{union} values in memory like
12231 longer ones, rather than in registers. This convention is less
12232 efficient, but it has the advantage of allowing intercallability between
12233 GCC-compiled files and files compiled with other compilers, particularly
12234 the Portable C Compiler (pcc).
12235
12236 The precise convention for returning structures in memory depends
12237 on the target configuration macros.
12238
12239 Short structures and unions are those whose size and alignment match
12240 that of some integer type.
12241
12242 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
12243 switch is not binary compatible with code compiled with the
12244 @option{-freg-struct-return} switch.
12245 Use it to conform to a non-default application binary interface.
12246
12247 @item -freg-struct-return
12248 @opindex freg-struct-return
12249 Return @code{struct} and @code{union} values in registers when possible.
12250 This is more efficient for small structures than
12251 @option{-fpcc-struct-return}.
12252
12253 If you specify neither @option{-fpcc-struct-return} nor
12254 @option{-freg-struct-return}, GCC defaults to whichever convention is
12255 standard for the target. If there is no standard convention, GCC
12256 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
12257 the principal compiler. In those cases, we can choose the standard, and
12258 we chose the more efficient register return alternative.
12259
12260 @strong{Warning:} code compiled with the @option{-freg-struct-return}
12261 switch is not binary compatible with code compiled with the
12262 @option{-fpcc-struct-return} switch.
12263 Use it to conform to a non-default application binary interface.
12264
12265 @item -fshort-enums
12266 @opindex fshort-enums
12267 Allocate to an @code{enum} type only as many bytes as it needs for the
12268 declared range of possible values. Specifically, the @code{enum} type
12269 is equivalent to the smallest integer type that has enough room.
12270
12271 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
12272 code that is not binary compatible with code generated without that switch.
12273 Use it to conform to a non-default application binary interface.
12274
12275 @item -fshort-wchar
12276 @opindex fshort-wchar
12277 Override the underlying type for @code{wchar_t} to be @code{short
12278 unsigned int} instead of the default for the target. This option is
12279 useful for building programs to run under WINE@.
12280
12281 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
12282 code that is not binary compatible with code generated without that switch.
12283 Use it to conform to a non-default application binary interface.
12284
12285 @item -fno-common
12286 @opindex fno-common
12287 @cindex tentative definitions
12288 In C code, this option controls the placement of global variables
12289 defined without an initializer, known as @dfn{tentative definitions}
12290 in the C standard. Tentative definitions are distinct from declarations
12291 of a variable with the @code{extern} keyword, which do not allocate storage.
12292
12293 Unix C compilers have traditionally allocated storage for
12294 uninitialized global variables in a common block. This allows the
12295 linker to resolve all tentative definitions of the same variable
12296 in different compilation units to the same object, or to a non-tentative
12297 definition.
12298 This is the behavior specified by @option{-fcommon}, and is the default for
12299 GCC on most targets.
12300 On the other hand, this behavior is not required by ISO
12301 C, and on some targets may carry a speed or code size penalty on
12302 variable references.
12303
12304 The @option{-fno-common} option specifies that the compiler should instead
12305 place uninitialized global variables in the data section of the object file.
12306 This inhibits the merging of tentative definitions by the linker so
12307 you get a multiple-definition error if the same
12308 variable is defined in more than one compilation unit.
12309 Compiling with @option{-fno-common} is useful on targets for which
12310 it provides better performance, or if you wish to verify that the
12311 program will work on other systems that always treat uninitialized
12312 variable definitions this way.
12313
12314 @item -fno-ident
12315 @opindex fno-ident
12316 Ignore the @code{#ident} directive.
12317
12318 @item -finhibit-size-directive
12319 @opindex finhibit-size-directive
12320 Don't output a @code{.size} assembler directive, or anything else that
12321 would cause trouble if the function is split in the middle, and the
12322 two halves are placed at locations far apart in memory. This option is
12323 used when compiling @file{crtstuff.c}; you should not need to use it
12324 for anything else.
12325
12326 @item -fverbose-asm
12327 @opindex fverbose-asm
12328 Put extra commentary information in the generated assembly code to
12329 make it more readable. This option is generally only of use to those
12330 who actually need to read the generated assembly code (perhaps while
12331 debugging the compiler itself).
12332
12333 @option{-fno-verbose-asm}, the default, causes the
12334 extra information to be omitted and is useful when comparing two assembler
12335 files.
12336
12337 The added comments include:
12338
12339 @itemize @bullet
12340
12341 @item
12342 information on the compiler version and command-line options,
12343
12344 @item
12345 the source code lines associated with the assembly instructions,
12346 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
12347
12348 @item
12349 hints on which high-level expressions correspond to
12350 the various assembly instruction operands.
12351
12352 @end itemize
12353
12354 For example, given this C source file:
12355
12356 @smallexample
12357 int test (int n)
12358 @{
12359 int i;
12360 int total = 0;
12361
12362 for (i = 0; i < n; i++)
12363 total += i * i;
12364
12365 return total;
12366 @}
12367 @end smallexample
12368
12369 compiling to (x86_64) assembly via @option{-S} and emitting the result
12370 direct to stdout via @option{-o} @option{-}
12371
12372 @smallexample
12373 gcc -S test.c -fverbose-asm -Os -o -
12374 @end smallexample
12375
12376 gives output similar to this:
12377
12378 @smallexample
12379 .file "test.c"
12380 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
12381 [...snip...]
12382 # options passed:
12383 [...snip...]
12384
12385 .text
12386 .globl test
12387 .type test, @@function
12388 test:
12389 .LFB0:
12390 .cfi_startproc
12391 # test.c:4: int total = 0;
12392 xorl %eax, %eax # <retval>
12393 # test.c:6: for (i = 0; i < n; i++)
12394 xorl %edx, %edx # i
12395 .L2:
12396 # test.c:6: for (i = 0; i < n; i++)
12397 cmpl %edi, %edx # n, i
12398 jge .L5 #,
12399 # test.c:7: total += i * i;
12400 movl %edx, %ecx # i, tmp92
12401 imull %edx, %ecx # i, tmp92
12402 # test.c:6: for (i = 0; i < n; i++)
12403 incl %edx # i
12404 # test.c:7: total += i * i;
12405 addl %ecx, %eax # tmp92, <retval>
12406 jmp .L2 #
12407 .L5:
12408 # test.c:10: @}
12409 ret
12410 .cfi_endproc
12411 .LFE0:
12412 .size test, .-test
12413 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
12414 .section .note.GNU-stack,"",@@progbits
12415 @end smallexample
12416
12417 The comments are intended for humans rather than machines and hence the
12418 precise format of the comments is subject to change.
12419
12420 @item -frecord-gcc-switches
12421 @opindex frecord-gcc-switches
12422 This switch causes the command line used to invoke the
12423 compiler to be recorded into the object file that is being created.
12424 This switch is only implemented on some targets and the exact format
12425 of the recording is target and binary file format dependent, but it
12426 usually takes the form of a section containing ASCII text. This
12427 switch is related to the @option{-fverbose-asm} switch, but that
12428 switch only records information in the assembler output file as
12429 comments, so it never reaches the object file.
12430 See also @option{-grecord-gcc-switches} for another
12431 way of storing compiler options into the object file.
12432
12433 @item -fpic
12434 @opindex fpic
12435 @cindex global offset table
12436 @cindex PIC
12437 Generate position-independent code (PIC) suitable for use in a shared
12438 library, if supported for the target machine. Such code accesses all
12439 constant addresses through a global offset table (GOT)@. The dynamic
12440 loader resolves the GOT entries when the program starts (the dynamic
12441 loader is not part of GCC; it is part of the operating system). If
12442 the GOT size for the linked executable exceeds a machine-specific
12443 maximum size, you get an error message from the linker indicating that
12444 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
12445 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
12446 on the m68k and RS/6000. The x86 has no such limit.)
12447
12448 Position-independent code requires special support, and therefore works
12449 only on certain machines. For the x86, GCC supports PIC for System V
12450 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
12451 position-independent.
12452
12453 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12454 are defined to 1.
12455
12456 @item -fPIC
12457 @opindex fPIC
12458 If supported for the target machine, emit position-independent code,
12459 suitable for dynamic linking and avoiding any limit on the size of the
12460 global offset table. This option makes a difference on AArch64, m68k,
12461 PowerPC and SPARC@.
12462
12463 Position-independent code requires special support, and therefore works
12464 only on certain machines.
12465
12466 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12467 are defined to 2.
12468
12469 @item -fpie
12470 @itemx -fPIE
12471 @opindex fpie
12472 @opindex fPIE
12473 These options are similar to @option{-fpic} and @option{-fPIC}, but
12474 generated position independent code can be only linked into executables.
12475 Usually these options are used when @option{-pie} GCC option is
12476 used during linking.
12477
12478 @option{-fpie} and @option{-fPIE} both define the macros
12479 @code{__pie__} and @code{__PIE__}. The macros have the value 1
12480 for @option{-fpie} and 2 for @option{-fPIE}.
12481
12482 @item -fno-plt
12483 @opindex fno-plt
12484 Do not use the PLT for external function calls in position-independent code.
12485 Instead, load the callee address at call sites from the GOT and branch to it.
12486 This leads to more efficient code by eliminating PLT stubs and exposing
12487 GOT loads to optimizations. On architectures such as 32-bit x86 where
12488 PLT stubs expect the GOT pointer in a specific register, this gives more
12489 register allocation freedom to the compiler.
12490 Lazy binding requires use of the PLT;
12491 with @option{-fno-plt} all external symbols are resolved at load time.
12492
12493 Alternatively, the function attribute @code{noplt} can be used to avoid calls
12494 through the PLT for specific external functions.
12495
12496 In position-dependent code, a few targets also convert calls to
12497 functions that are marked to not use the PLT to use the GOT instead.
12498
12499 @item -fno-jump-tables
12500 @opindex fno-jump-tables
12501 Do not use jump tables for switch statements even where it would be
12502 more efficient than other code generation strategies. This option is
12503 of use in conjunction with @option{-fpic} or @option{-fPIC} for
12504 building code that forms part of a dynamic linker and cannot
12505 reference the address of a jump table. On some targets, jump tables
12506 do not require a GOT and this option is not needed.
12507
12508 @item -ffixed-@var{reg}
12509 @opindex ffixed
12510 Treat the register named @var{reg} as a fixed register; generated code
12511 should never refer to it (except perhaps as a stack pointer, frame
12512 pointer or in some other fixed role).
12513
12514 @var{reg} must be the name of a register. The register names accepted
12515 are machine-specific and are defined in the @code{REGISTER_NAMES}
12516 macro in the machine description macro file.
12517
12518 This flag does not have a negative form, because it specifies a
12519 three-way choice.
12520
12521 @item -fcall-used-@var{reg}
12522 @opindex fcall-used
12523 Treat the register named @var{reg} as an allocable register that is
12524 clobbered by function calls. It may be allocated for temporaries or
12525 variables that do not live across a call. Functions compiled this way
12526 do not save and restore the register @var{reg}.
12527
12528 It is an error to use this flag with the frame pointer or stack pointer.
12529 Use of this flag for other registers that have fixed pervasive roles in
12530 the machine's execution model produces disastrous results.
12531
12532 This flag does not have a negative form, because it specifies a
12533 three-way choice.
12534
12535 @item -fcall-saved-@var{reg}
12536 @opindex fcall-saved
12537 Treat the register named @var{reg} as an allocable register saved by
12538 functions. It may be allocated even for temporaries or variables that
12539 live across a call. Functions compiled this way save and restore
12540 the register @var{reg} if they use it.
12541
12542 It is an error to use this flag with the frame pointer or stack pointer.
12543 Use of this flag for other registers that have fixed pervasive roles in
12544 the machine's execution model produces disastrous results.
12545
12546 A different sort of disaster results from the use of this flag for
12547 a register in which function values may be returned.
12548
12549 This flag does not have a negative form, because it specifies a
12550 three-way choice.
12551
12552 @item -fpack-struct[=@var{n}]
12553 @opindex fpack-struct
12554 Without a value specified, pack all structure members together without
12555 holes. When a value is specified (which must be a small power of two), pack
12556 structure members according to this value, representing the maximum
12557 alignment (that is, objects with default alignment requirements larger than
12558 this are output potentially unaligned at the next fitting location.
12559
12560 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
12561 code that is not binary compatible with code generated without that switch.
12562 Additionally, it makes the code suboptimal.
12563 Use it to conform to a non-default application binary interface.
12564
12565 @item -fleading-underscore
12566 @opindex fleading-underscore
12567 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
12568 change the way C symbols are represented in the object file. One use
12569 is to help link with legacy assembly code.
12570
12571 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
12572 generate code that is not binary compatible with code generated without that
12573 switch. Use it to conform to a non-default application binary interface.
12574 Not all targets provide complete support for this switch.
12575
12576 @item -ftls-model=@var{model}
12577 @opindex ftls-model
12578 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
12579 The @var{model} argument should be one of @samp{global-dynamic},
12580 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
12581 Note that the choice is subject to optimization: the compiler may use
12582 a more efficient model for symbols not visible outside of the translation
12583 unit, or if @option{-fpic} is not given on the command line.
12584
12585 The default without @option{-fpic} is @samp{initial-exec}; with
12586 @option{-fpic} the default is @samp{global-dynamic}.
12587
12588 @item -ftrampolines
12589 @opindex ftrampolines
12590 For targets that normally need trampolines for nested functions, always
12591 generate them instead of using descriptors. Otherwise, for targets that
12592 do not need them, like for example HP-PA or IA-64, do nothing.
12593
12594 A trampoline is a small piece of code that is created at run time on the
12595 stack when the address of a nested function is taken, and is used to call
12596 the nested function indirectly. Therefore, it requires the stack to be
12597 made executable in order for the program to work properly.
12598
12599 @option{-fno-trampolines} is enabled by default on a language by language
12600 basis to let the compiler avoid generating them, if it computes that this
12601 is safe, and replace them with descriptors. Descriptors are made up of data
12602 only, but the generated code must be prepared to deal with them. As of this
12603 writing, @option{-fno-trampolines} is enabled by default only for Ada.
12604
12605 Moreover, code compiled with @option{-ftrampolines} and code compiled with
12606 @option{-fno-trampolines} are not binary compatible if nested functions are
12607 present. This option must therefore be used on a program-wide basis and be
12608 manipulated with extreme care.
12609
12610 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
12611 @opindex fvisibility
12612 Set the default ELF image symbol visibility to the specified option---all
12613 symbols are marked with this unless overridden within the code.
12614 Using this feature can very substantially improve linking and
12615 load times of shared object libraries, produce more optimized
12616 code, provide near-perfect API export and prevent symbol clashes.
12617 It is @strong{strongly} recommended that you use this in any shared objects
12618 you distribute.
12619
12620 Despite the nomenclature, @samp{default} always means public; i.e.,
12621 available to be linked against from outside the shared object.
12622 @samp{protected} and @samp{internal} are pretty useless in real-world
12623 usage so the only other commonly used option is @samp{hidden}.
12624 The default if @option{-fvisibility} isn't specified is
12625 @samp{default}, i.e., make every symbol public.
12626
12627 A good explanation of the benefits offered by ensuring ELF
12628 symbols have the correct visibility is given by ``How To Write
12629 Shared Libraries'' by Ulrich Drepper (which can be found at
12630 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
12631 solution made possible by this option to marking things hidden when
12632 the default is public is to make the default hidden and mark things
12633 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
12634 and @code{__attribute__ ((visibility("default")))} instead of
12635 @code{__declspec(dllexport)} you get almost identical semantics with
12636 identical syntax. This is a great boon to those working with
12637 cross-platform projects.
12638
12639 For those adding visibility support to existing code, you may find
12640 @code{#pragma GCC visibility} of use. This works by you enclosing
12641 the declarations you wish to set visibility for with (for example)
12642 @code{#pragma GCC visibility push(hidden)} and
12643 @code{#pragma GCC visibility pop}.
12644 Bear in mind that symbol visibility should be viewed @strong{as
12645 part of the API interface contract} and thus all new code should
12646 always specify visibility when it is not the default; i.e., declarations
12647 only for use within the local DSO should @strong{always} be marked explicitly
12648 as hidden as so to avoid PLT indirection overheads---making this
12649 abundantly clear also aids readability and self-documentation of the code.
12650 Note that due to ISO C++ specification requirements, @code{operator new} and
12651 @code{operator delete} must always be of default visibility.
12652
12653 Be aware that headers from outside your project, in particular system
12654 headers and headers from any other library you use, may not be
12655 expecting to be compiled with visibility other than the default. You
12656 may need to explicitly say @code{#pragma GCC visibility push(default)}
12657 before including any such headers.
12658
12659 @code{extern} declarations are not affected by @option{-fvisibility}, so
12660 a lot of code can be recompiled with @option{-fvisibility=hidden} with
12661 no modifications. However, this means that calls to @code{extern}
12662 functions with no explicit visibility use the PLT, so it is more
12663 effective to use @code{__attribute ((visibility))} and/or
12664 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
12665 declarations should be treated as hidden.
12666
12667 Note that @option{-fvisibility} does affect C++ vague linkage
12668 entities. This means that, for instance, an exception class that is
12669 be thrown between DSOs must be explicitly marked with default
12670 visibility so that the @samp{type_info} nodes are unified between
12671 the DSOs.
12672
12673 An overview of these techniques, their benefits and how to use them
12674 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
12675
12676 @item -fstrict-volatile-bitfields
12677 @opindex fstrict-volatile-bitfields
12678 This option should be used if accesses to volatile bit-fields (or other
12679 structure fields, although the compiler usually honors those types
12680 anyway) should use a single access of the width of the
12681 field's type, aligned to a natural alignment if possible. For
12682 example, targets with memory-mapped peripheral registers might require
12683 all such accesses to be 16 bits wide; with this flag you can
12684 declare all peripheral bit-fields as @code{unsigned short} (assuming short
12685 is 16 bits on these targets) to force GCC to use 16-bit accesses
12686 instead of, perhaps, a more efficient 32-bit access.
12687
12688 If this option is disabled, the compiler uses the most efficient
12689 instruction. In the previous example, that might be a 32-bit load
12690 instruction, even though that accesses bytes that do not contain
12691 any portion of the bit-field, or memory-mapped registers unrelated to
12692 the one being updated.
12693
12694 In some cases, such as when the @code{packed} attribute is applied to a
12695 structure field, it may not be possible to access the field with a single
12696 read or write that is correctly aligned for the target machine. In this
12697 case GCC falls back to generating multiple accesses rather than code that
12698 will fault or truncate the result at run time.
12699
12700 Note: Due to restrictions of the C/C++11 memory model, write accesses are
12701 not allowed to touch non bit-field members. It is therefore recommended
12702 to define all bits of the field's type as bit-field members.
12703
12704 The default value of this option is determined by the application binary
12705 interface for the target processor.
12706
12707 @item -fsync-libcalls
12708 @opindex fsync-libcalls
12709 This option controls whether any out-of-line instance of the @code{__sync}
12710 family of functions may be used to implement the C++11 @code{__atomic}
12711 family of functions.
12712
12713 The default value of this option is enabled, thus the only useful form
12714 of the option is @option{-fno-sync-libcalls}. This option is used in
12715 the implementation of the @file{libatomic} runtime library.
12716
12717 @end table
12718
12719 @node Developer Options
12720 @section GCC Developer Options
12721 @cindex developer options
12722 @cindex debugging GCC
12723 @cindex debug dump options
12724 @cindex dump options
12725 @cindex compilation statistics
12726
12727 This section describes command-line options that are primarily of
12728 interest to GCC developers, including options to support compiler
12729 testing and investigation of compiler bugs and compile-time
12730 performance problems. This includes options that produce debug dumps
12731 at various points in the compilation; that print statistics such as
12732 memory use and execution time; and that print information about GCC's
12733 configuration, such as where it searches for libraries. You should
12734 rarely need to use any of these options for ordinary compilation and
12735 linking tasks.
12736
12737 @table @gcctabopt
12738
12739 @item -d@var{letters}
12740 @itemx -fdump-rtl-@var{pass}
12741 @itemx -fdump-rtl-@var{pass}=@var{filename}
12742 @opindex d
12743 @opindex fdump-rtl-@var{pass}
12744 Says to make debugging dumps during compilation at times specified by
12745 @var{letters}. This is used for debugging the RTL-based passes of the
12746 compiler. The file names for most of the dumps are made by appending
12747 a pass number and a word to the @var{dumpname}, and the files are
12748 created in the directory of the output file. In case of
12749 @option{=@var{filename}} option, the dump is output on the given file
12750 instead of the pass numbered dump files. Note that the pass number is
12751 assigned as passes are registered into the pass manager. Most passes
12752 are registered in the order that they will execute and for these passes
12753 the number corresponds to the pass execution order. However, passes
12754 registered by plugins, passes specific to compilation targets, or
12755 passes that are otherwise registered after all the other passes are
12756 numbered higher than a pass named "final", even if they are executed
12757 earlier. @var{dumpname} is generated from the name of the output
12758 file if explicitly specified and not an executable, otherwise it is
12759 the basename of the source file.
12760
12761 Some @option{-d@var{letters}} switches have different meaning when
12762 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
12763 for information about preprocessor-specific dump options.
12764
12765 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
12766 @option{-d} option @var{letters}. Here are the possible
12767 letters for use in @var{pass} and @var{letters}, and their meanings:
12768
12769 @table @gcctabopt
12770
12771 @item -fdump-rtl-alignments
12772 @opindex fdump-rtl-alignments
12773 Dump after branch alignments have been computed.
12774
12775 @item -fdump-rtl-asmcons
12776 @opindex fdump-rtl-asmcons
12777 Dump after fixing rtl statements that have unsatisfied in/out constraints.
12778
12779 @item -fdump-rtl-auto_inc_dec
12780 @opindex fdump-rtl-auto_inc_dec
12781 Dump after auto-inc-dec discovery. This pass is only run on
12782 architectures that have auto inc or auto dec instructions.
12783
12784 @item -fdump-rtl-barriers
12785 @opindex fdump-rtl-barriers
12786 Dump after cleaning up the barrier instructions.
12787
12788 @item -fdump-rtl-bbpart
12789 @opindex fdump-rtl-bbpart
12790 Dump after partitioning hot and cold basic blocks.
12791
12792 @item -fdump-rtl-bbro
12793 @opindex fdump-rtl-bbro
12794 Dump after block reordering.
12795
12796 @item -fdump-rtl-btl1
12797 @itemx -fdump-rtl-btl2
12798 @opindex fdump-rtl-btl2
12799 @opindex fdump-rtl-btl2
12800 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
12801 after the two branch
12802 target load optimization passes.
12803
12804 @item -fdump-rtl-bypass
12805 @opindex fdump-rtl-bypass
12806 Dump after jump bypassing and control flow optimizations.
12807
12808 @item -fdump-rtl-combine
12809 @opindex fdump-rtl-combine
12810 Dump after the RTL instruction combination pass.
12811
12812 @item -fdump-rtl-compgotos
12813 @opindex fdump-rtl-compgotos
12814 Dump after duplicating the computed gotos.
12815
12816 @item -fdump-rtl-ce1
12817 @itemx -fdump-rtl-ce2
12818 @itemx -fdump-rtl-ce3
12819 @opindex fdump-rtl-ce1
12820 @opindex fdump-rtl-ce2
12821 @opindex fdump-rtl-ce3
12822 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
12823 @option{-fdump-rtl-ce3} enable dumping after the three
12824 if conversion passes.
12825
12826 @item -fdump-rtl-cprop_hardreg
12827 @opindex fdump-rtl-cprop_hardreg
12828 Dump after hard register copy propagation.
12829
12830 @item -fdump-rtl-csa
12831 @opindex fdump-rtl-csa
12832 Dump after combining stack adjustments.
12833
12834 @item -fdump-rtl-cse1
12835 @itemx -fdump-rtl-cse2
12836 @opindex fdump-rtl-cse1
12837 @opindex fdump-rtl-cse2
12838 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
12839 the two common subexpression elimination passes.
12840
12841 @item -fdump-rtl-dce
12842 @opindex fdump-rtl-dce
12843 Dump after the standalone dead code elimination passes.
12844
12845 @item -fdump-rtl-dbr
12846 @opindex fdump-rtl-dbr
12847 Dump after delayed branch scheduling.
12848
12849 @item -fdump-rtl-dce1
12850 @itemx -fdump-rtl-dce2
12851 @opindex fdump-rtl-dce1
12852 @opindex fdump-rtl-dce2
12853 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
12854 the two dead store elimination passes.
12855
12856 @item -fdump-rtl-eh
12857 @opindex fdump-rtl-eh
12858 Dump after finalization of EH handling code.
12859
12860 @item -fdump-rtl-eh_ranges
12861 @opindex fdump-rtl-eh_ranges
12862 Dump after conversion of EH handling range regions.
12863
12864 @item -fdump-rtl-expand
12865 @opindex fdump-rtl-expand
12866 Dump after RTL generation.
12867
12868 @item -fdump-rtl-fwprop1
12869 @itemx -fdump-rtl-fwprop2
12870 @opindex fdump-rtl-fwprop1
12871 @opindex fdump-rtl-fwprop2
12872 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
12873 dumping after the two forward propagation passes.
12874
12875 @item -fdump-rtl-gcse1
12876 @itemx -fdump-rtl-gcse2
12877 @opindex fdump-rtl-gcse1
12878 @opindex fdump-rtl-gcse2
12879 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
12880 after global common subexpression elimination.
12881
12882 @item -fdump-rtl-init-regs
12883 @opindex fdump-rtl-init-regs
12884 Dump after the initialization of the registers.
12885
12886 @item -fdump-rtl-initvals
12887 @opindex fdump-rtl-initvals
12888 Dump after the computation of the initial value sets.
12889
12890 @item -fdump-rtl-into_cfglayout
12891 @opindex fdump-rtl-into_cfglayout
12892 Dump after converting to cfglayout mode.
12893
12894 @item -fdump-rtl-ira
12895 @opindex fdump-rtl-ira
12896 Dump after iterated register allocation.
12897
12898 @item -fdump-rtl-jump
12899 @opindex fdump-rtl-jump
12900 Dump after the second jump optimization.
12901
12902 @item -fdump-rtl-loop2
12903 @opindex fdump-rtl-loop2
12904 @option{-fdump-rtl-loop2} enables dumping after the rtl
12905 loop optimization passes.
12906
12907 @item -fdump-rtl-mach
12908 @opindex fdump-rtl-mach
12909 Dump after performing the machine dependent reorganization pass, if that
12910 pass exists.
12911
12912 @item -fdump-rtl-mode_sw
12913 @opindex fdump-rtl-mode_sw
12914 Dump after removing redundant mode switches.
12915
12916 @item -fdump-rtl-rnreg
12917 @opindex fdump-rtl-rnreg
12918 Dump after register renumbering.
12919
12920 @item -fdump-rtl-outof_cfglayout
12921 @opindex fdump-rtl-outof_cfglayout
12922 Dump after converting from cfglayout mode.
12923
12924 @item -fdump-rtl-peephole2
12925 @opindex fdump-rtl-peephole2
12926 Dump after the peephole pass.
12927
12928 @item -fdump-rtl-postreload
12929 @opindex fdump-rtl-postreload
12930 Dump after post-reload optimizations.
12931
12932 @item -fdump-rtl-pro_and_epilogue
12933 @opindex fdump-rtl-pro_and_epilogue
12934 Dump after generating the function prologues and epilogues.
12935
12936 @item -fdump-rtl-sched1
12937 @itemx -fdump-rtl-sched2
12938 @opindex fdump-rtl-sched1
12939 @opindex fdump-rtl-sched2
12940 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
12941 after the basic block scheduling passes.
12942
12943 @item -fdump-rtl-ree
12944 @opindex fdump-rtl-ree
12945 Dump after sign/zero extension elimination.
12946
12947 @item -fdump-rtl-seqabstr
12948 @opindex fdump-rtl-seqabstr
12949 Dump after common sequence discovery.
12950
12951 @item -fdump-rtl-shorten
12952 @opindex fdump-rtl-shorten
12953 Dump after shortening branches.
12954
12955 @item -fdump-rtl-sibling
12956 @opindex fdump-rtl-sibling
12957 Dump after sibling call optimizations.
12958
12959 @item -fdump-rtl-split1
12960 @itemx -fdump-rtl-split2
12961 @itemx -fdump-rtl-split3
12962 @itemx -fdump-rtl-split4
12963 @itemx -fdump-rtl-split5
12964 @opindex fdump-rtl-split1
12965 @opindex fdump-rtl-split2
12966 @opindex fdump-rtl-split3
12967 @opindex fdump-rtl-split4
12968 @opindex fdump-rtl-split5
12969 These options enable dumping after five rounds of
12970 instruction splitting.
12971
12972 @item -fdump-rtl-sms
12973 @opindex fdump-rtl-sms
12974 Dump after modulo scheduling. This pass is only run on some
12975 architectures.
12976
12977 @item -fdump-rtl-stack
12978 @opindex fdump-rtl-stack
12979 Dump after conversion from GCC's ``flat register file'' registers to the
12980 x87's stack-like registers. This pass is only run on x86 variants.
12981
12982 @item -fdump-rtl-subreg1
12983 @itemx -fdump-rtl-subreg2
12984 @opindex fdump-rtl-subreg1
12985 @opindex fdump-rtl-subreg2
12986 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
12987 the two subreg expansion passes.
12988
12989 @item -fdump-rtl-unshare
12990 @opindex fdump-rtl-unshare
12991 Dump after all rtl has been unshared.
12992
12993 @item -fdump-rtl-vartrack
12994 @opindex fdump-rtl-vartrack
12995 Dump after variable tracking.
12996
12997 @item -fdump-rtl-vregs
12998 @opindex fdump-rtl-vregs
12999 Dump after converting virtual registers to hard registers.
13000
13001 @item -fdump-rtl-web
13002 @opindex fdump-rtl-web
13003 Dump after live range splitting.
13004
13005 @item -fdump-rtl-regclass
13006 @itemx -fdump-rtl-subregs_of_mode_init
13007 @itemx -fdump-rtl-subregs_of_mode_finish
13008 @itemx -fdump-rtl-dfinit
13009 @itemx -fdump-rtl-dfinish
13010 @opindex fdump-rtl-regclass
13011 @opindex fdump-rtl-subregs_of_mode_init
13012 @opindex fdump-rtl-subregs_of_mode_finish
13013 @opindex fdump-rtl-dfinit
13014 @opindex fdump-rtl-dfinish
13015 These dumps are defined but always produce empty files.
13016
13017 @item -da
13018 @itemx -fdump-rtl-all
13019 @opindex da
13020 @opindex fdump-rtl-all
13021 Produce all the dumps listed above.
13022
13023 @item -dA
13024 @opindex dA
13025 Annotate the assembler output with miscellaneous debugging information.
13026
13027 @item -dD
13028 @opindex dD
13029 Dump all macro definitions, at the end of preprocessing, in addition to
13030 normal output.
13031
13032 @item -dH
13033 @opindex dH
13034 Produce a core dump whenever an error occurs.
13035
13036 @item -dp
13037 @opindex dp
13038 Annotate the assembler output with a comment indicating which
13039 pattern and alternative is used. The length of each instruction is
13040 also printed.
13041
13042 @item -dP
13043 @opindex dP
13044 Dump the RTL in the assembler output as a comment before each instruction.
13045 Also turns on @option{-dp} annotation.
13046
13047 @item -dx
13048 @opindex dx
13049 Just generate RTL for a function instead of compiling it. Usually used
13050 with @option{-fdump-rtl-expand}.
13051 @end table
13052
13053 @item -fdump-noaddr
13054 @opindex fdump-noaddr
13055 When doing debugging dumps, suppress address output. This makes it more
13056 feasible to use diff on debugging dumps for compiler invocations with
13057 different compiler binaries and/or different
13058 text / bss / data / heap / stack / dso start locations.
13059
13060 @item -freport-bug
13061 @opindex freport-bug
13062 Collect and dump debug information into a temporary file if an
13063 internal compiler error (ICE) occurs.
13064
13065 @item -fdump-unnumbered
13066 @opindex fdump-unnumbered
13067 When doing debugging dumps, suppress instruction numbers and address output.
13068 This makes it more feasible to use diff on debugging dumps for compiler
13069 invocations with different options, in particular with and without
13070 @option{-g}.
13071
13072 @item -fdump-unnumbered-links
13073 @opindex fdump-unnumbered-links
13074 When doing debugging dumps (see @option{-d} option above), suppress
13075 instruction numbers for the links to the previous and next instructions
13076 in a sequence.
13077
13078 @item -fdump-ipa-@var{switch}
13079 @opindex fdump-ipa
13080 Control the dumping at various stages of inter-procedural analysis
13081 language tree to a file. The file name is generated by appending a
13082 switch specific suffix to the source file name, and the file is created
13083 in the same directory as the output file. The following dumps are
13084 possible:
13085
13086 @table @samp
13087 @item all
13088 Enables all inter-procedural analysis dumps.
13089
13090 @item cgraph
13091 Dumps information about call-graph optimization, unused function removal,
13092 and inlining decisions.
13093
13094 @item inline
13095 Dump after function inlining.
13096
13097 @end table
13098
13099 @item -fdump-lang-all
13100 @itemx -fdump-lang-@var{switch}
13101 @itemx -fdump-lang-@var{switch}-@var{options}
13102 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
13103 @opindex fdump-lang-all
13104 @opindex fdump-lang
13105 Control the dumping of language-specific information. The @var{options}
13106 and @var{filename} portions behave as described in the
13107 @option{-fdump-tree} option. The following @var{switch} values are
13108 accepted:
13109
13110 @table @samp
13111 @item all
13112
13113 Enable all language-specific dumps.
13114
13115 @item class
13116 Dump class hierarchy information. Virtual table information is emitted
13117 unless '@option{slim}' is specified. This option is applicable to C++ only.
13118
13119 @item raw
13120 Dump the raw internal tree data. This option is applicable to C++ only.
13121
13122 @end table
13123
13124 @item -fdump-passes
13125 @opindex fdump-passes
13126 Print on @file{stderr} the list of optimization passes that are turned
13127 on and off by the current command-line options.
13128
13129 @item -fdump-statistics-@var{option}
13130 @opindex fdump-statistics
13131 Enable and control dumping of pass statistics in a separate file. The
13132 file name is generated by appending a suffix ending in
13133 @samp{.statistics} to the source file name, and the file is created in
13134 the same directory as the output file. If the @samp{-@var{option}}
13135 form is used, @samp{-stats} causes counters to be summed over the
13136 whole compilation unit while @samp{-details} dumps every event as
13137 the passes generate them. The default with no option is to sum
13138 counters for each function compiled.
13139
13140 @item -fdump-tree-all
13141 @itemx -fdump-tree-@var{switch}
13142 @itemx -fdump-tree-@var{switch}-@var{options}
13143 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
13144 @opindex fdump-tree-all
13145 @opindex fdump-tree
13146 Control the dumping at various stages of processing the intermediate
13147 language tree to a file. The file name is generated by appending a
13148 switch-specific suffix to the source file name, and the file is
13149 created in the same directory as the output file. In case of
13150 @option{=@var{filename}} option, the dump is output on the given file
13151 instead of the auto named dump files. If the @samp{-@var{options}}
13152 form is used, @var{options} is a list of @samp{-} separated options
13153 which control the details of the dump. Not all options are applicable
13154 to all dumps; those that are not meaningful are ignored. The
13155 following options are available
13156
13157 @table @samp
13158 @item address
13159 Print the address of each node. Usually this is not meaningful as it
13160 changes according to the environment and source file. Its primary use
13161 is for tying up a dump file with a debug environment.
13162 @item asmname
13163 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
13164 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
13165 use working backward from mangled names in the assembly file.
13166 @item slim
13167 When dumping front-end intermediate representations, inhibit dumping
13168 of members of a scope or body of a function merely because that scope
13169 has been reached. Only dump such items when they are directly reachable
13170 by some other path.
13171
13172 When dumping pretty-printed trees, this option inhibits dumping the
13173 bodies of control structures.
13174
13175 When dumping RTL, print the RTL in slim (condensed) form instead of
13176 the default LISP-like representation.
13177 @item raw
13178 Print a raw representation of the tree. By default, trees are
13179 pretty-printed into a C-like representation.
13180 @item details
13181 Enable more detailed dumps (not honored by every dump option). Also
13182 include information from the optimization passes.
13183 @item stats
13184 Enable dumping various statistics about the pass (not honored by every dump
13185 option).
13186 @item blocks
13187 Enable showing basic block boundaries (disabled in raw dumps).
13188 @item graph
13189 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
13190 dump a representation of the control flow graph suitable for viewing with
13191 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
13192 the file is pretty-printed as a subgraph, so that GraphViz can render them
13193 all in a single plot.
13194
13195 This option currently only works for RTL dumps, and the RTL is always
13196 dumped in slim form.
13197 @item vops
13198 Enable showing virtual operands for every statement.
13199 @item lineno
13200 Enable showing line numbers for statements.
13201 @item uid
13202 Enable showing the unique ID (@code{DECL_UID}) for each variable.
13203 @item verbose
13204 Enable showing the tree dump for each statement.
13205 @item eh
13206 Enable showing the EH region number holding each statement.
13207 @item scev
13208 Enable showing scalar evolution analysis details.
13209 @item optimized
13210 Enable showing optimization information (only available in certain
13211 passes).
13212 @item missed
13213 Enable showing missed optimization information (only available in certain
13214 passes).
13215 @item note
13216 Enable other detailed optimization information (only available in
13217 certain passes).
13218 @item =@var{filename}
13219 Instead of an auto named dump file, output into the given file
13220 name. The file names @file{stdout} and @file{stderr} are treated
13221 specially and are considered already open standard streams. For
13222 example,
13223
13224 @smallexample
13225 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
13226 -fdump-tree-pre=/dev/stderr file.c
13227 @end smallexample
13228
13229 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
13230 output on to @file{stderr}. If two conflicting dump filenames are
13231 given for the same pass, then the latter option overrides the earlier
13232 one.
13233
13234 @item all
13235 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
13236 and @option{lineno}.
13237
13238 @item optall
13239 Turn on all optimization options, i.e., @option{optimized},
13240 @option{missed}, and @option{note}.
13241 @end table
13242
13243 To determine what tree dumps are available or find the dump for a pass
13244 of interest follow the steps below.
13245
13246 @enumerate
13247 @item
13248 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
13249 look for a code that corresponds to the pass you are interested in.
13250 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
13251 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
13252 The number at the end distinguishes distinct invocations of the same pass.
13253 @item
13254 To enable the creation of the dump file, append the pass code to
13255 the @option{-fdump-} option prefix and invoke GCC with it. For example,
13256 to enable the dump from the Early Value Range Propagation pass, invoke
13257 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
13258 specify the name of the dump file. If you don't specify one, GCC
13259 creates as described below.
13260 @item
13261 Find the pass dump in a file whose name is composed of three components
13262 separated by a period: the name of the source file GCC was invoked to
13263 compile, a numeric suffix indicating the pass number followed by the
13264 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
13265 and finally the pass code. For example, the Early VRP pass dump might
13266 be in a file named @file{myfile.c.038t.evrp} in the current working
13267 directory. Note that the numeric codes are not stable and may change
13268 from one version of GCC to another.
13269 @end enumerate
13270
13271 @item -fopt-info
13272 @itemx -fopt-info-@var{options}
13273 @itemx -fopt-info-@var{options}=@var{filename}
13274 @opindex fopt-info
13275 Controls optimization dumps from various optimization passes. If the
13276 @samp{-@var{options}} form is used, @var{options} is a list of
13277 @samp{-} separated option keywords to select the dump details and
13278 optimizations.
13279
13280 The @var{options} can be divided into two groups: options describing the
13281 verbosity of the dump, and options describing which optimizations
13282 should be included. The options from both the groups can be freely
13283 mixed as they are non-overlapping. However, in case of any conflicts,
13284 the later options override the earlier options on the command
13285 line.
13286
13287 The following options control the dump verbosity:
13288
13289 @table @samp
13290 @item optimized
13291 Print information when an optimization is successfully applied. It is
13292 up to a pass to decide which information is relevant. For example, the
13293 vectorizer passes print the source location of loops which are
13294 successfully vectorized.
13295 @item missed
13296 Print information about missed optimizations. Individual passes
13297 control which information to include in the output.
13298 @item note
13299 Print verbose information about optimizations, such as certain
13300 transformations, more detailed messages about decisions etc.
13301 @item all
13302 Print detailed optimization information. This includes
13303 @samp{optimized}, @samp{missed}, and @samp{note}.
13304 @end table
13305
13306 One or more of the following option keywords can be used to describe a
13307 group of optimizations:
13308
13309 @table @samp
13310 @item ipa
13311 Enable dumps from all interprocedural optimizations.
13312 @item loop
13313 Enable dumps from all loop optimizations.
13314 @item inline
13315 Enable dumps from all inlining optimizations.
13316 @item omp
13317 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
13318 @item vec
13319 Enable dumps from all vectorization optimizations.
13320 @item optall
13321 Enable dumps from all optimizations. This is a superset of
13322 the optimization groups listed above.
13323 @end table
13324
13325 If @var{options} is
13326 omitted, it defaults to @samp{optimized-optall}, which means to dump all
13327 info about successful optimizations from all the passes.
13328
13329 If the @var{filename} is provided, then the dumps from all the
13330 applicable optimizations are concatenated into the @var{filename}.
13331 Otherwise the dump is output onto @file{stderr}. Though multiple
13332 @option{-fopt-info} options are accepted, only one of them can include
13333 a @var{filename}. If other filenames are provided then all but the
13334 first such option are ignored.
13335
13336 Note that the output @var{filename} is overwritten
13337 in case of multiple translation units. If a combined output from
13338 multiple translation units is desired, @file{stderr} should be used
13339 instead.
13340
13341 In the following example, the optimization info is output to
13342 @file{stderr}:
13343
13344 @smallexample
13345 gcc -O3 -fopt-info
13346 @end smallexample
13347
13348 This example:
13349 @smallexample
13350 gcc -O3 -fopt-info-missed=missed.all
13351 @end smallexample
13352
13353 @noindent
13354 outputs missed optimization report from all the passes into
13355 @file{missed.all}, and this one:
13356
13357 @smallexample
13358 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
13359 @end smallexample
13360
13361 @noindent
13362 prints information about missed optimization opportunities from
13363 vectorization passes on @file{stderr}.
13364 Note that @option{-fopt-info-vec-missed} is equivalent to
13365 @option{-fopt-info-missed-vec}. The order of the optimization group
13366 names and message types listed after @option{-fopt-info} does not matter.
13367
13368 As another example,
13369 @smallexample
13370 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
13371 @end smallexample
13372
13373 @noindent
13374 outputs information about missed optimizations as well as
13375 optimized locations from all the inlining passes into
13376 @file{inline.txt}.
13377
13378 Finally, consider:
13379
13380 @smallexample
13381 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
13382 @end smallexample
13383
13384 @noindent
13385 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
13386 in conflict since only one output file is allowed. In this case, only
13387 the first option takes effect and the subsequent options are
13388 ignored. Thus only @file{vec.miss} is produced which contains
13389 dumps from the vectorizer about missed opportunities.
13390
13391 @item -fsched-verbose=@var{n}
13392 @opindex fsched-verbose
13393 On targets that use instruction scheduling, this option controls the
13394 amount of debugging output the scheduler prints to the dump files.
13395
13396 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
13397 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
13398 For @var{n} greater than one, it also output basic block probabilities,
13399 detailed ready list information and unit/insn info. For @var{n} greater
13400 than two, it includes RTL at abort point, control-flow and regions info.
13401 And for @var{n} over four, @option{-fsched-verbose} also includes
13402 dependence info.
13403
13404
13405
13406 @item -fenable-@var{kind}-@var{pass}
13407 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
13408 @opindex fdisable-
13409 @opindex fenable-
13410
13411 This is a set of options that are used to explicitly disable/enable
13412 optimization passes. These options are intended for use for debugging GCC.
13413 Compiler users should use regular options for enabling/disabling
13414 passes instead.
13415
13416 @table @gcctabopt
13417
13418 @item -fdisable-ipa-@var{pass}
13419 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13420 statically invoked in the compiler multiple times, the pass name should be
13421 appended with a sequential number starting from 1.
13422
13423 @item -fdisable-rtl-@var{pass}
13424 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
13425 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
13426 statically invoked in the compiler multiple times, the pass name should be
13427 appended with a sequential number starting from 1. @var{range-list} is a
13428 comma-separated list of function ranges or assembler names. Each range is a number
13429 pair separated by a colon. The range is inclusive in both ends. If the range
13430 is trivial, the number pair can be simplified as a single number. If the
13431 function's call graph node's @var{uid} falls within one of the specified ranges,
13432 the @var{pass} is disabled for that function. The @var{uid} is shown in the
13433 function header of a dump file, and the pass names can be dumped by using
13434 option @option{-fdump-passes}.
13435
13436 @item -fdisable-tree-@var{pass}
13437 @itemx -fdisable-tree-@var{pass}=@var{range-list}
13438 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
13439 option arguments.
13440
13441 @item -fenable-ipa-@var{pass}
13442 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13443 statically invoked in the compiler multiple times, the pass name should be
13444 appended with a sequential number starting from 1.
13445
13446 @item -fenable-rtl-@var{pass}
13447 @itemx -fenable-rtl-@var{pass}=@var{range-list}
13448 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
13449 description and examples.
13450
13451 @item -fenable-tree-@var{pass}
13452 @itemx -fenable-tree-@var{pass}=@var{range-list}
13453 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
13454 of option arguments.
13455
13456 @end table
13457
13458 Here are some examples showing uses of these options.
13459
13460 @smallexample
13461
13462 # disable ccp1 for all functions
13463 -fdisable-tree-ccp1
13464 # disable complete unroll for function whose cgraph node uid is 1
13465 -fenable-tree-cunroll=1
13466 # disable gcse2 for functions at the following ranges [1,1],
13467 # [300,400], and [400,1000]
13468 # disable gcse2 for functions foo and foo2
13469 -fdisable-rtl-gcse2=foo,foo2
13470 # disable early inlining
13471 -fdisable-tree-einline
13472 # disable ipa inlining
13473 -fdisable-ipa-inline
13474 # enable tree full unroll
13475 -fenable-tree-unroll
13476
13477 @end smallexample
13478
13479 @item -fchecking
13480 @itemx -fchecking=@var{n}
13481 @opindex fchecking
13482 @opindex fno-checking
13483 Enable internal consistency checking. The default depends on
13484 the compiler configuration. @option{-fchecking=2} enables further
13485 internal consistency checking that might affect code generation.
13486
13487 @item -frandom-seed=@var{string}
13488 @opindex frandom-seed
13489 This option provides a seed that GCC uses in place of
13490 random numbers in generating certain symbol names
13491 that have to be different in every compiled file. It is also used to
13492 place unique stamps in coverage data files and the object files that
13493 produce them. You can use the @option{-frandom-seed} option to produce
13494 reproducibly identical object files.
13495
13496 The @var{string} can either be a number (decimal, octal or hex) or an
13497 arbitrary string (in which case it's converted to a number by
13498 computing CRC32).
13499
13500 The @var{string} should be different for every file you compile.
13501
13502 @item -save-temps
13503 @itemx -save-temps=cwd
13504 @opindex save-temps
13505 Store the usual ``temporary'' intermediate files permanently; place them
13506 in the current directory and name them based on the source file. Thus,
13507 compiling @file{foo.c} with @option{-c -save-temps} produces files
13508 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
13509 preprocessed @file{foo.i} output file even though the compiler now
13510 normally uses an integrated preprocessor.
13511
13512 When used in combination with the @option{-x} command-line option,
13513 @option{-save-temps} is sensible enough to avoid over writing an
13514 input source file with the same extension as an intermediate file.
13515 The corresponding intermediate file may be obtained by renaming the
13516 source file before using @option{-save-temps}.
13517
13518 If you invoke GCC in parallel, compiling several different source
13519 files that share a common base name in different subdirectories or the
13520 same source file compiled for multiple output destinations, it is
13521 likely that the different parallel compilers will interfere with each
13522 other, and overwrite the temporary files. For instance:
13523
13524 @smallexample
13525 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
13526 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
13527 @end smallexample
13528
13529 may result in @file{foo.i} and @file{foo.o} being written to
13530 simultaneously by both compilers.
13531
13532 @item -save-temps=obj
13533 @opindex save-temps=obj
13534 Store the usual ``temporary'' intermediate files permanently. If the
13535 @option{-o} option is used, the temporary files are based on the
13536 object file. If the @option{-o} option is not used, the
13537 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
13538
13539 For example:
13540
13541 @smallexample
13542 gcc -save-temps=obj -c foo.c
13543 gcc -save-temps=obj -c bar.c -o dir/xbar.o
13544 gcc -save-temps=obj foobar.c -o dir2/yfoobar
13545 @end smallexample
13546
13547 @noindent
13548 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
13549 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
13550 @file{dir2/yfoobar.o}.
13551
13552 @item -time@r{[}=@var{file}@r{]}
13553 @opindex time
13554 Report the CPU time taken by each subprocess in the compilation
13555 sequence. For C source files, this is the compiler proper and assembler
13556 (plus the linker if linking is done).
13557
13558 Without the specification of an output file, the output looks like this:
13559
13560 @smallexample
13561 # cc1 0.12 0.01
13562 # as 0.00 0.01
13563 @end smallexample
13564
13565 The first number on each line is the ``user time'', that is time spent
13566 executing the program itself. The second number is ``system time'',
13567 time spent executing operating system routines on behalf of the program.
13568 Both numbers are in seconds.
13569
13570 With the specification of an output file, the output is appended to the
13571 named file, and it looks like this:
13572
13573 @smallexample
13574 0.12 0.01 cc1 @var{options}
13575 0.00 0.01 as @var{options}
13576 @end smallexample
13577
13578 The ``user time'' and the ``system time'' are moved before the program
13579 name, and the options passed to the program are displayed, so that one
13580 can later tell what file was being compiled, and with which options.
13581
13582 @item -fdump-final-insns@r{[}=@var{file}@r{]}
13583 @opindex fdump-final-insns
13584 Dump the final internal representation (RTL) to @var{file}. If the
13585 optional argument is omitted (or if @var{file} is @code{.}), the name
13586 of the dump file is determined by appending @code{.gkd} to the
13587 compilation output file name.
13588
13589 @item -fcompare-debug@r{[}=@var{opts}@r{]}
13590 @opindex fcompare-debug
13591 @opindex fno-compare-debug
13592 If no error occurs during compilation, run the compiler a second time,
13593 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
13594 passed to the second compilation. Dump the final internal
13595 representation in both compilations, and print an error if they differ.
13596
13597 If the equal sign is omitted, the default @option{-gtoggle} is used.
13598
13599 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
13600 and nonzero, implicitly enables @option{-fcompare-debug}. If
13601 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
13602 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
13603 is used.
13604
13605 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
13606 is equivalent to @option{-fno-compare-debug}, which disables the dumping
13607 of the final representation and the second compilation, preventing even
13608 @env{GCC_COMPARE_DEBUG} from taking effect.
13609
13610 To verify full coverage during @option{-fcompare-debug} testing, set
13611 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
13612 which GCC rejects as an invalid option in any actual compilation
13613 (rather than preprocessing, assembly or linking). To get just a
13614 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
13615 not overridden} will do.
13616
13617 @item -fcompare-debug-second
13618 @opindex fcompare-debug-second
13619 This option is implicitly passed to the compiler for the second
13620 compilation requested by @option{-fcompare-debug}, along with options to
13621 silence warnings, and omitting other options that would cause
13622 side-effect compiler outputs to files or to the standard output. Dump
13623 files and preserved temporary files are renamed so as to contain the
13624 @code{.gk} additional extension during the second compilation, to avoid
13625 overwriting those generated by the first.
13626
13627 When this option is passed to the compiler driver, it causes the
13628 @emph{first} compilation to be skipped, which makes it useful for little
13629 other than debugging the compiler proper.
13630
13631 @item -gtoggle
13632 @opindex gtoggle
13633 Turn off generation of debug info, if leaving out this option
13634 generates it, or turn it on at level 2 otherwise. The position of this
13635 argument in the command line does not matter; it takes effect after all
13636 other options are processed, and it does so only once, no matter how
13637 many times it is given. This is mainly intended to be used with
13638 @option{-fcompare-debug}.
13639
13640 @item -fvar-tracking-assignments-toggle
13641 @opindex fvar-tracking-assignments-toggle
13642 @opindex fno-var-tracking-assignments-toggle
13643 Toggle @option{-fvar-tracking-assignments}, in the same way that
13644 @option{-gtoggle} toggles @option{-g}.
13645
13646 @item -Q
13647 @opindex Q
13648 Makes the compiler print out each function name as it is compiled, and
13649 print some statistics about each pass when it finishes.
13650
13651 @item -ftime-report
13652 @opindex ftime-report
13653 Makes the compiler print some statistics about the time consumed by each
13654 pass when it finishes.
13655
13656 @item -ftime-report-details
13657 @opindex ftime-report-details
13658 Record the time consumed by infrastructure parts separately for each pass.
13659
13660 @item -fira-verbose=@var{n}
13661 @opindex fira-verbose
13662 Control the verbosity of the dump file for the integrated register allocator.
13663 The default value is 5. If the value @var{n} is greater or equal to 10,
13664 the dump output is sent to stderr using the same format as @var{n} minus 10.
13665
13666 @item -flto-report
13667 @opindex flto-report
13668 Prints a report with internal details on the workings of the link-time
13669 optimizer. The contents of this report vary from version to version.
13670 It is meant to be useful to GCC developers when processing object
13671 files in LTO mode (via @option{-flto}).
13672
13673 Disabled by default.
13674
13675 @item -flto-report-wpa
13676 @opindex flto-report-wpa
13677 Like @option{-flto-report}, but only print for the WPA phase of Link
13678 Time Optimization.
13679
13680 @item -fmem-report
13681 @opindex fmem-report
13682 Makes the compiler print some statistics about permanent memory
13683 allocation when it finishes.
13684
13685 @item -fmem-report-wpa
13686 @opindex fmem-report-wpa
13687 Makes the compiler print some statistics about permanent memory
13688 allocation for the WPA phase only.
13689
13690 @item -fpre-ipa-mem-report
13691 @opindex fpre-ipa-mem-report
13692 @item -fpost-ipa-mem-report
13693 @opindex fpost-ipa-mem-report
13694 Makes the compiler print some statistics about permanent memory
13695 allocation before or after interprocedural optimization.
13696
13697 @item -fprofile-report
13698 @opindex fprofile-report
13699 Makes the compiler print some statistics about consistency of the
13700 (estimated) profile and effect of individual passes.
13701
13702 @item -fstack-usage
13703 @opindex fstack-usage
13704 Makes the compiler output stack usage information for the program, on a
13705 per-function basis. The filename for the dump is made by appending
13706 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
13707 the output file, if explicitly specified and it is not an executable,
13708 otherwise it is the basename of the source file. An entry is made up
13709 of three fields:
13710
13711 @itemize
13712 @item
13713 The name of the function.
13714 @item
13715 A number of bytes.
13716 @item
13717 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
13718 @end itemize
13719
13720 The qualifier @code{static} means that the function manipulates the stack
13721 statically: a fixed number of bytes are allocated for the frame on function
13722 entry and released on function exit; no stack adjustments are otherwise made
13723 in the function. The second field is this fixed number of bytes.
13724
13725 The qualifier @code{dynamic} means that the function manipulates the stack
13726 dynamically: in addition to the static allocation described above, stack
13727 adjustments are made in the body of the function, for example to push/pop
13728 arguments around function calls. If the qualifier @code{bounded} is also
13729 present, the amount of these adjustments is bounded at compile time and
13730 the second field is an upper bound of the total amount of stack used by
13731 the function. If it is not present, the amount of these adjustments is
13732 not bounded at compile time and the second field only represents the
13733 bounded part.
13734
13735 @item -fstats
13736 @opindex fstats
13737 Emit statistics about front-end processing at the end of the compilation.
13738 This option is supported only by the C++ front end, and
13739 the information is generally only useful to the G++ development team.
13740
13741 @item -fdbg-cnt-list
13742 @opindex fdbg-cnt-list
13743 Print the name and the counter upper bound for all debug counters.
13744
13745
13746 @item -fdbg-cnt=@var{counter-value-list}
13747 @opindex fdbg-cnt
13748 Set the internal debug counter upper bound. @var{counter-value-list}
13749 is a comma-separated list of @var{name}:@var{value} pairs
13750 which sets the upper bound of each debug counter @var{name} to @var{value}.
13751 All debug counters have the initial upper bound of @code{UINT_MAX};
13752 thus @code{dbg_cnt} returns true always unless the upper bound
13753 is set by this option.
13754 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
13755 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
13756
13757 @item -print-file-name=@var{library}
13758 @opindex print-file-name
13759 Print the full absolute name of the library file @var{library} that
13760 would be used when linking---and don't do anything else. With this
13761 option, GCC does not compile or link anything; it just prints the
13762 file name.
13763
13764 @item -print-multi-directory
13765 @opindex print-multi-directory
13766 Print the directory name corresponding to the multilib selected by any
13767 other switches present in the command line. This directory is supposed
13768 to exist in @env{GCC_EXEC_PREFIX}.
13769
13770 @item -print-multi-lib
13771 @opindex print-multi-lib
13772 Print the mapping from multilib directory names to compiler switches
13773 that enable them. The directory name is separated from the switches by
13774 @samp{;}, and each switch starts with an @samp{@@} instead of the
13775 @samp{-}, without spaces between multiple switches. This is supposed to
13776 ease shell processing.
13777
13778 @item -print-multi-os-directory
13779 @opindex print-multi-os-directory
13780 Print the path to OS libraries for the selected
13781 multilib, relative to some @file{lib} subdirectory. If OS libraries are
13782 present in the @file{lib} subdirectory and no multilibs are used, this is
13783 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
13784 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
13785 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
13786 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
13787
13788 @item -print-multiarch
13789 @opindex print-multiarch
13790 Print the path to OS libraries for the selected multiarch,
13791 relative to some @file{lib} subdirectory.
13792
13793 @item -print-prog-name=@var{program}
13794 @opindex print-prog-name
13795 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
13796
13797 @item -print-libgcc-file-name
13798 @opindex print-libgcc-file-name
13799 Same as @option{-print-file-name=libgcc.a}.
13800
13801 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
13802 but you do want to link with @file{libgcc.a}. You can do:
13803
13804 @smallexample
13805 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
13806 @end smallexample
13807
13808 @item -print-search-dirs
13809 @opindex print-search-dirs
13810 Print the name of the configured installation directory and a list of
13811 program and library directories @command{gcc} searches---and don't do anything else.
13812
13813 This is useful when @command{gcc} prints the error message
13814 @samp{installation problem, cannot exec cpp0: No such file or directory}.
13815 To resolve this you either need to put @file{cpp0} and the other compiler
13816 components where @command{gcc} expects to find them, or you can set the environment
13817 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
13818 Don't forget the trailing @samp{/}.
13819 @xref{Environment Variables}.
13820
13821 @item -print-sysroot
13822 @opindex print-sysroot
13823 Print the target sysroot directory that is used during
13824 compilation. This is the target sysroot specified either at configure
13825 time or using the @option{--sysroot} option, possibly with an extra
13826 suffix that depends on compilation options. If no target sysroot is
13827 specified, the option prints nothing.
13828
13829 @item -print-sysroot-headers-suffix
13830 @opindex print-sysroot-headers-suffix
13831 Print the suffix added to the target sysroot when searching for
13832 headers, or give an error if the compiler is not configured with such
13833 a suffix---and don't do anything else.
13834
13835 @item -dumpmachine
13836 @opindex dumpmachine
13837 Print the compiler's target machine (for example,
13838 @samp{i686-pc-linux-gnu})---and don't do anything else.
13839
13840 @item -dumpversion
13841 @opindex dumpversion
13842 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
13843 anything else. This is the compiler version used in filesystem paths,
13844 specs, can be depending on how the compiler has been configured just
13845 a single number (major version), two numbers separated by dot (major and
13846 minor version) or three numbers separated by dots (major, minor and patchlevel
13847 version).
13848
13849 @item -dumpfullversion
13850 @opindex dumpfullversion
13851 Print the full compiler version, always 3 numbers separated by dots,
13852 major, minor and patchlevel version.
13853
13854 @item -dumpspecs
13855 @opindex dumpspecs
13856 Print the compiler's built-in specs---and don't do anything else. (This
13857 is used when GCC itself is being built.) @xref{Spec Files}.
13858 @end table
13859
13860 @node Submodel Options
13861 @section Machine-Dependent Options
13862 @cindex submodel options
13863 @cindex specifying hardware config
13864 @cindex hardware models and configurations, specifying
13865 @cindex target-dependent options
13866 @cindex machine-dependent options
13867
13868 Each target machine supported by GCC can have its own options---for
13869 example, to allow you to compile for a particular processor variant or
13870 ABI, or to control optimizations specific to that machine. By
13871 convention, the names of machine-specific options start with
13872 @samp{-m}.
13873
13874 Some configurations of the compiler also support additional target-specific
13875 options, usually for compatibility with other compilers on the same
13876 platform.
13877
13878 @c This list is ordered alphanumerically by subsection name.
13879 @c It should be the same order and spelling as these options are listed
13880 @c in Machine Dependent Options
13881
13882 @menu
13883 * AArch64 Options::
13884 * Adapteva Epiphany Options::
13885 * ARC Options::
13886 * ARM Options::
13887 * AVR Options::
13888 * Blackfin Options::
13889 * C6X Options::
13890 * CRIS Options::
13891 * CR16 Options::
13892 * Darwin Options::
13893 * DEC Alpha Options::
13894 * FR30 Options::
13895 * FT32 Options::
13896 * FRV Options::
13897 * GNU/Linux Options::
13898 * H8/300 Options::
13899 * HPPA Options::
13900 * IA-64 Options::
13901 * LM32 Options::
13902 * M32C Options::
13903 * M32R/D Options::
13904 * M680x0 Options::
13905 * MCore Options::
13906 * MeP Options::
13907 * MicroBlaze Options::
13908 * MIPS Options::
13909 * MMIX Options::
13910 * MN10300 Options::
13911 * Moxie Options::
13912 * MSP430 Options::
13913 * NDS32 Options::
13914 * Nios II Options::
13915 * Nvidia PTX Options::
13916 * PDP-11 Options::
13917 * picoChip Options::
13918 * PowerPC Options::
13919 * RISC-V Options::
13920 * RL78 Options::
13921 * RS/6000 and PowerPC Options::
13922 * RX Options::
13923 * S/390 and zSeries Options::
13924 * Score Options::
13925 * SH Options::
13926 * Solaris 2 Options::
13927 * SPARC Options::
13928 * SPU Options::
13929 * System V Options::
13930 * TILE-Gx Options::
13931 * TILEPro Options::
13932 * V850 Options::
13933 * VAX Options::
13934 * Visium Options::
13935 * VMS Options::
13936 * VxWorks Options::
13937 * x86 Options::
13938 * x86 Windows Options::
13939 * Xstormy16 Options::
13940 * Xtensa Options::
13941 * zSeries Options::
13942 @end menu
13943
13944 @node AArch64 Options
13945 @subsection AArch64 Options
13946 @cindex AArch64 Options
13947
13948 These options are defined for AArch64 implementations:
13949
13950 @table @gcctabopt
13951
13952 @item -mabi=@var{name}
13953 @opindex mabi
13954 Generate code for the specified data model. Permissible values
13955 are @samp{ilp32} for SysV-like data model where int, long int and pointers
13956 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
13957 but long int and pointers are 64 bits.
13958
13959 The default depends on the specific target configuration. Note that
13960 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
13961 entire program with the same ABI, and link with a compatible set of libraries.
13962
13963 @item -mbig-endian
13964 @opindex mbig-endian
13965 Generate big-endian code. This is the default when GCC is configured for an
13966 @samp{aarch64_be-*-*} target.
13967
13968 @item -mgeneral-regs-only
13969 @opindex mgeneral-regs-only
13970 Generate code which uses only the general-purpose registers. This will prevent
13971 the compiler from using floating-point and Advanced SIMD registers but will not
13972 impose any restrictions on the assembler.
13973
13974 @item -mlittle-endian
13975 @opindex mlittle-endian
13976 Generate little-endian code. This is the default when GCC is configured for an
13977 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
13978
13979 @item -mcmodel=tiny
13980 @opindex mcmodel=tiny
13981 Generate code for the tiny code model. The program and its statically defined
13982 symbols must be within 1MB of each other. Programs can be statically or
13983 dynamically linked.
13984
13985 @item -mcmodel=small
13986 @opindex mcmodel=small
13987 Generate code for the small code model. The program and its statically defined
13988 symbols must be within 4GB of each other. Programs can be statically or
13989 dynamically linked. This is the default code model.
13990
13991 @item -mcmodel=large
13992 @opindex mcmodel=large
13993 Generate code for the large code model. This makes no assumptions about
13994 addresses and sizes of sections. Programs can be statically linked only.
13995
13996 @item -mstrict-align
13997 @opindex mstrict-align
13998 Avoid generating memory accesses that may not be aligned on a natural object
13999 boundary as described in the architecture specification.
14000
14001 @item -momit-leaf-frame-pointer
14002 @itemx -mno-omit-leaf-frame-pointer
14003 @opindex momit-leaf-frame-pointer
14004 @opindex mno-omit-leaf-frame-pointer
14005 Omit or keep the frame pointer in leaf functions. The former behavior is the
14006 default.
14007
14008 @item -mtls-dialect=desc
14009 @opindex mtls-dialect=desc
14010 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
14011 of TLS variables. This is the default.
14012
14013 @item -mtls-dialect=traditional
14014 @opindex mtls-dialect=traditional
14015 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
14016 of TLS variables.
14017
14018 @item -mtls-size=@var{size}
14019 @opindex mtls-size
14020 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
14021 This option requires binutils 2.26 or newer.
14022
14023 @item -mfix-cortex-a53-835769
14024 @itemx -mno-fix-cortex-a53-835769
14025 @opindex mfix-cortex-a53-835769
14026 @opindex mno-fix-cortex-a53-835769
14027 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
14028 This involves inserting a NOP instruction between memory instructions and
14029 64-bit integer multiply-accumulate instructions.
14030
14031 @item -mfix-cortex-a53-843419
14032 @itemx -mno-fix-cortex-a53-843419
14033 @opindex mfix-cortex-a53-843419
14034 @opindex mno-fix-cortex-a53-843419
14035 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
14036 This erratum workaround is made at link time and this will only pass the
14037 corresponding flag to the linker.
14038
14039 @item -mlow-precision-recip-sqrt
14040 @item -mno-low-precision-recip-sqrt
14041 @opindex mlow-precision-recip-sqrt
14042 @opindex mno-low-precision-recip-sqrt
14043 Enable or disable the reciprocal square root approximation.
14044 This option only has an effect if @option{-ffast-math} or
14045 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14046 precision of reciprocal square root results to about 16 bits for
14047 single precision and to 32 bits for double precision.
14048
14049 @item -mlow-precision-sqrt
14050 @item -mno-low-precision-sqrt
14051 @opindex -mlow-precision-sqrt
14052 @opindex -mno-low-precision-sqrt
14053 Enable or disable the square root approximation.
14054 This option only has an effect if @option{-ffast-math} or
14055 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14056 precision of square root results to about 16 bits for
14057 single precision and to 32 bits for double precision.
14058 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
14059
14060 @item -mlow-precision-div
14061 @item -mno-low-precision-div
14062 @opindex -mlow-precision-div
14063 @opindex -mno-low-precision-div
14064 Enable or disable the division approximation.
14065 This option only has an effect if @option{-ffast-math} or
14066 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14067 precision of division results to about 16 bits for
14068 single precision and to 32 bits for double precision.
14069
14070 @item -march=@var{name}
14071 @opindex march
14072 Specify the name of the target architecture and, optionally, one or
14073 more feature modifiers. This option has the form
14074 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
14075
14076 The permissible values for @var{arch} are @samp{armv8-a},
14077 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a} or @var{native}.
14078
14079 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
14080 support for the ARMv8.3-A architecture extensions.
14081
14082 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
14083 support for the ARMv8.2-A architecture extensions.
14084
14085 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
14086 support for the ARMv8.1-A architecture extension. In particular, it
14087 enables the @samp{+crc} and @samp{+lse} features.
14088
14089 The value @samp{native} is available on native AArch64 GNU/Linux and
14090 causes the compiler to pick the architecture of the host system. This
14091 option has no effect if the compiler is unable to recognize the
14092 architecture of the host system,
14093
14094 The permissible values for @var{feature} are listed in the sub-section
14095 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14096 Feature Modifiers}. Where conflicting feature modifiers are
14097 specified, the right-most feature is used.
14098
14099 GCC uses @var{name} to determine what kind of instructions it can emit
14100 when generating assembly code. If @option{-march} is specified
14101 without either of @option{-mtune} or @option{-mcpu} also being
14102 specified, the code is tuned to perform well across a range of target
14103 processors implementing the target architecture.
14104
14105 @item -mtune=@var{name}
14106 @opindex mtune
14107 Specify the name of the target processor for which GCC should tune the
14108 performance of the code. Permissible values for this option are:
14109 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
14110 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
14111 @samp{exynos-m1}, @samp{falkor}, @samp{qdf24xx},
14112 @samp{xgene1}, @samp{vulcan}, @samp{thunderx},
14113 @samp{thunderxt88}, @samp{thunderxt88p1}, @samp{thunderxt81},
14114 @samp{thunderxt83}, @samp{thunderx2t99}, @samp{cortex-a57.cortex-a53},
14115 @samp{cortex-a72.cortex-a53}, @samp{cortex-a73.cortex-a35},
14116 @samp{cortex-a73.cortex-a53}, @samp{cortex-a75.cortex-a55},
14117 @samp{native}.
14118
14119 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
14120 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
14121 @samp{cortex-a75.cortex-a55} specify that GCC should tune for a
14122 big.LITTLE system.
14123
14124 Additionally on native AArch64 GNU/Linux systems the value
14125 @samp{native} tunes performance to the host system. This option has no effect
14126 if the compiler is unable to recognize the processor of the host system.
14127
14128 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
14129 are specified, the code is tuned to perform well across a range
14130 of target processors.
14131
14132 This option cannot be suffixed by feature modifiers.
14133
14134 @item -mcpu=@var{name}
14135 @opindex mcpu
14136 Specify the name of the target processor, optionally suffixed by one
14137 or more feature modifiers. This option has the form
14138 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
14139 the permissible values for @var{cpu} are the same as those available
14140 for @option{-mtune}. The permissible values for @var{feature} are
14141 documented in the sub-section on
14142 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14143 Feature Modifiers}. Where conflicting feature modifiers are
14144 specified, the right-most feature is used.
14145
14146 GCC uses @var{name} to determine what kind of instructions it can emit when
14147 generating assembly code (as if by @option{-march}) and to determine
14148 the target processor for which to tune for performance (as if
14149 by @option{-mtune}). Where this option is used in conjunction
14150 with @option{-march} or @option{-mtune}, those options take precedence
14151 over the appropriate part of this option.
14152
14153 @item -moverride=@var{string}
14154 @opindex moverride
14155 Override tuning decisions made by the back-end in response to a
14156 @option{-mtune=} switch. The syntax, semantics, and accepted values
14157 for @var{string} in this option are not guaranteed to be consistent
14158 across releases.
14159
14160 This option is only intended to be useful when developing GCC.
14161
14162 @item -mpc-relative-literal-loads
14163 @itemx -mno-pc-relative-literal-loads
14164 @opindex mpc-relative-literal-loads
14165 @opindex mno-pc-relative-literal-loads
14166 Enable or disable PC-relative literal loads. With this option literal pools are
14167 accessed using a single instruction and emitted after each function. This
14168 limits the maximum size of functions to 1MB. This is enabled by default for
14169 @option{-mcmodel=tiny}.
14170
14171 @item -msign-return-address=@var{scope}
14172 @opindex msign-return-address
14173 Select the function scope on which return address signing will be applied.
14174 Permissible values are @samp{none}, which disables return address signing,
14175 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
14176 functions, and @samp{all}, which enables pointer signing for all functions. The
14177 default value is @samp{none}.
14178
14179 @end table
14180
14181 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
14182 @anchor{aarch64-feature-modifiers}
14183 @cindex @option{-march} feature modifiers
14184 @cindex @option{-mcpu} feature modifiers
14185 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
14186 the following and their inverses @option{no@var{feature}}:
14187
14188 @table @samp
14189 @item crc
14190 Enable CRC extension. This is on by default for
14191 @option{-march=armv8.1-a}.
14192 @item crypto
14193 Enable Crypto extension. This also enables Advanced SIMD and floating-point
14194 instructions.
14195 @item fp
14196 Enable floating-point instructions. This is on by default for all possible
14197 values for options @option{-march} and @option{-mcpu}.
14198 @item simd
14199 Enable Advanced SIMD instructions. This also enables floating-point
14200 instructions. This is on by default for all possible values for options
14201 @option{-march} and @option{-mcpu}.
14202 @item lse
14203 Enable Large System Extension instructions. This is on by default for
14204 @option{-march=armv8.1-a}.
14205 @item fp16
14206 Enable FP16 extension. This also enables floating-point instructions.
14207 @item rcpc
14208 Enable the RcPc extension. This does not change code generation from GCC,
14209 but is passed on to the assembler, enabling inline asm statements to use
14210 instructions from the RcPc extension.
14211
14212 @end table
14213
14214 Feature @option{crypto} implies @option{simd}, which implies @option{fp}.
14215 Conversely, @option{nofp} implies @option{nosimd}, which implies
14216 @option{nocrypto}.
14217
14218 @node Adapteva Epiphany Options
14219 @subsection Adapteva Epiphany Options
14220
14221 These @samp{-m} options are defined for Adapteva Epiphany:
14222
14223 @table @gcctabopt
14224 @item -mhalf-reg-file
14225 @opindex mhalf-reg-file
14226 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
14227 That allows code to run on hardware variants that lack these registers.
14228
14229 @item -mprefer-short-insn-regs
14230 @opindex mprefer-short-insn-regs
14231 Preferentially allocate registers that allow short instruction generation.
14232 This can result in increased instruction count, so this may either reduce or
14233 increase overall code size.
14234
14235 @item -mbranch-cost=@var{num}
14236 @opindex mbranch-cost
14237 Set the cost of branches to roughly @var{num} ``simple'' instructions.
14238 This cost is only a heuristic and is not guaranteed to produce
14239 consistent results across releases.
14240
14241 @item -mcmove
14242 @opindex mcmove
14243 Enable the generation of conditional moves.
14244
14245 @item -mnops=@var{num}
14246 @opindex mnops
14247 Emit @var{num} NOPs before every other generated instruction.
14248
14249 @item -mno-soft-cmpsf
14250 @opindex mno-soft-cmpsf
14251 For single-precision floating-point comparisons, emit an @code{fsub} instruction
14252 and test the flags. This is faster than a software comparison, but can
14253 get incorrect results in the presence of NaNs, or when two different small
14254 numbers are compared such that their difference is calculated as zero.
14255 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
14256 software comparisons.
14257
14258 @item -mstack-offset=@var{num}
14259 @opindex mstack-offset
14260 Set the offset between the top of the stack and the stack pointer.
14261 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
14262 can be used by leaf functions without stack allocation.
14263 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
14264 Note also that this option changes the ABI; compiling a program with a
14265 different stack offset than the libraries have been compiled with
14266 generally does not work.
14267 This option can be useful if you want to evaluate if a different stack
14268 offset would give you better code, but to actually use a different stack
14269 offset to build working programs, it is recommended to configure the
14270 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
14271
14272 @item -mno-round-nearest
14273 @opindex mno-round-nearest
14274 Make the scheduler assume that the rounding mode has been set to
14275 truncating. The default is @option{-mround-nearest}.
14276
14277 @item -mlong-calls
14278 @opindex mlong-calls
14279 If not otherwise specified by an attribute, assume all calls might be beyond
14280 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
14281 function address into a register before performing a (otherwise direct) call.
14282 This is the default.
14283
14284 @item -mshort-calls
14285 @opindex short-calls
14286 If not otherwise specified by an attribute, assume all direct calls are
14287 in the range of the @code{b} / @code{bl} instructions, so use these instructions
14288 for direct calls. The default is @option{-mlong-calls}.
14289
14290 @item -msmall16
14291 @opindex msmall16
14292 Assume addresses can be loaded as 16-bit unsigned values. This does not
14293 apply to function addresses for which @option{-mlong-calls} semantics
14294 are in effect.
14295
14296 @item -mfp-mode=@var{mode}
14297 @opindex mfp-mode
14298 Set the prevailing mode of the floating-point unit.
14299 This determines the floating-point mode that is provided and expected
14300 at function call and return time. Making this mode match the mode you
14301 predominantly need at function start can make your programs smaller and
14302 faster by avoiding unnecessary mode switches.
14303
14304 @var{mode} can be set to one the following values:
14305
14306 @table @samp
14307 @item caller
14308 Any mode at function entry is valid, and retained or restored when
14309 the function returns, and when it calls other functions.
14310 This mode is useful for compiling libraries or other compilation units
14311 you might want to incorporate into different programs with different
14312 prevailing FPU modes, and the convenience of being able to use a single
14313 object file outweighs the size and speed overhead for any extra
14314 mode switching that might be needed, compared with what would be needed
14315 with a more specific choice of prevailing FPU mode.
14316
14317 @item truncate
14318 This is the mode used for floating-point calculations with
14319 truncating (i.e.@: round towards zero) rounding mode. That includes
14320 conversion from floating point to integer.
14321
14322 @item round-nearest
14323 This is the mode used for floating-point calculations with
14324 round-to-nearest-or-even rounding mode.
14325
14326 @item int
14327 This is the mode used to perform integer calculations in the FPU, e.g.@:
14328 integer multiply, or integer multiply-and-accumulate.
14329 @end table
14330
14331 The default is @option{-mfp-mode=caller}
14332
14333 @item -mnosplit-lohi
14334 @itemx -mno-postinc
14335 @itemx -mno-postmodify
14336 @opindex mnosplit-lohi
14337 @opindex mno-postinc
14338 @opindex mno-postmodify
14339 Code generation tweaks that disable, respectively, splitting of 32-bit
14340 loads, generation of post-increment addresses, and generation of
14341 post-modify addresses. The defaults are @option{msplit-lohi},
14342 @option{-mpost-inc}, and @option{-mpost-modify}.
14343
14344 @item -mnovect-double
14345 @opindex mno-vect-double
14346 Change the preferred SIMD mode to SImode. The default is
14347 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
14348
14349 @item -max-vect-align=@var{num}
14350 @opindex max-vect-align
14351 The maximum alignment for SIMD vector mode types.
14352 @var{num} may be 4 or 8. The default is 8.
14353 Note that this is an ABI change, even though many library function
14354 interfaces are unaffected if they don't use SIMD vector modes
14355 in places that affect size and/or alignment of relevant types.
14356
14357 @item -msplit-vecmove-early
14358 @opindex msplit-vecmove-early
14359 Split vector moves into single word moves before reload. In theory this
14360 can give better register allocation, but so far the reverse seems to be
14361 generally the case.
14362
14363 @item -m1reg-@var{reg}
14364 @opindex m1reg-
14365 Specify a register to hold the constant @minus{}1, which makes loading small negative
14366 constants and certain bitmasks faster.
14367 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
14368 which specify use of that register as a fixed register,
14369 and @samp{none}, which means that no register is used for this
14370 purpose. The default is @option{-m1reg-none}.
14371
14372 @end table
14373
14374 @node ARC Options
14375 @subsection ARC Options
14376 @cindex ARC options
14377
14378 The following options control the architecture variant for which code
14379 is being compiled:
14380
14381 @c architecture variants
14382 @table @gcctabopt
14383
14384 @item -mbarrel-shifter
14385 @opindex mbarrel-shifter
14386 Generate instructions supported by barrel shifter. This is the default
14387 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
14388
14389 @item -mcpu=@var{cpu}
14390 @opindex mcpu
14391 Set architecture type, register usage, and instruction scheduling
14392 parameters for @var{cpu}. There are also shortcut alias options
14393 available for backward compatibility and convenience. Supported
14394 values for @var{cpu} are
14395
14396 @table @samp
14397 @opindex mA6
14398 @opindex mARC600
14399 @item arc600
14400 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
14401
14402 @item arc601
14403 @opindex mARC601
14404 Compile for ARC601. Alias: @option{-mARC601}.
14405
14406 @item arc700
14407 @opindex mA7
14408 @opindex mARC700
14409 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
14410 This is the default when configured with @option{--with-cpu=arc700}@.
14411
14412 @item arcem
14413 Compile for ARC EM.
14414
14415 @item archs
14416 Compile for ARC HS.
14417
14418 @item em
14419 Compile for ARC EM CPU with no hardware extensions.
14420
14421 @item em4
14422 Compile for ARC EM4 CPU.
14423
14424 @item em4_dmips
14425 Compile for ARC EM4 DMIPS CPU.
14426
14427 @item em4_fpus
14428 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
14429 extension.
14430
14431 @item em4_fpuda
14432 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
14433 double assist instructions.
14434
14435 @item hs
14436 Compile for ARC HS CPU with no hardware extensions except the atomic
14437 instructions.
14438
14439 @item hs34
14440 Compile for ARC HS34 CPU.
14441
14442 @item hs38
14443 Compile for ARC HS38 CPU.
14444
14445 @item hs38_linux
14446 Compile for ARC HS38 CPU with all hardware extensions on.
14447
14448 @item arc600_norm
14449 Compile for ARC 600 CPU with @code{norm} instructions enabled.
14450
14451 @item arc600_mul32x16
14452 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
14453 instructions enabled.
14454
14455 @item arc600_mul64
14456 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
14457 instructions enabled.
14458
14459 @item arc601_norm
14460 Compile for ARC 601 CPU with @code{norm} instructions enabled.
14461
14462 @item arc601_mul32x16
14463 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
14464 instructions enabled.
14465
14466 @item arc601_mul64
14467 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
14468 instructions enabled.
14469
14470 @item nps400
14471 Compile for ARC 700 on NPS400 chip.
14472
14473 @end table
14474
14475 @item -mdpfp
14476 @opindex mdpfp
14477 @itemx -mdpfp-compact
14478 @opindex mdpfp-compact
14479 Generate double-precision FPX instructions, tuned for the compact
14480 implementation.
14481
14482 @item -mdpfp-fast
14483 @opindex mdpfp-fast
14484 Generate double-precision FPX instructions, tuned for the fast
14485 implementation.
14486
14487 @item -mno-dpfp-lrsr
14488 @opindex mno-dpfp-lrsr
14489 Disable @code{lr} and @code{sr} instructions from using FPX extension
14490 aux registers.
14491
14492 @item -mea
14493 @opindex mea
14494 Generate extended arithmetic instructions. Currently only
14495 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
14496 supported. This is always enabled for @option{-mcpu=ARC700}.
14497
14498 @item -mno-mpy
14499 @opindex mno-mpy
14500 Do not generate @code{mpy}-family instructions for ARC700. This option is
14501 deprecated.
14502
14503 @item -mmul32x16
14504 @opindex mmul32x16
14505 Generate 32x16-bit multiply and multiply-accumulate instructions.
14506
14507 @item -mmul64
14508 @opindex mmul64
14509 Generate @code{mul64} and @code{mulu64} instructions.
14510 Only valid for @option{-mcpu=ARC600}.
14511
14512 @item -mnorm
14513 @opindex mnorm
14514 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
14515 is in effect.
14516
14517 @item -mspfp
14518 @opindex mspfp
14519 @itemx -mspfp-compact
14520 @opindex mspfp-compact
14521 Generate single-precision FPX instructions, tuned for the compact
14522 implementation.
14523
14524 @item -mspfp-fast
14525 @opindex mspfp-fast
14526 Generate single-precision FPX instructions, tuned for the fast
14527 implementation.
14528
14529 @item -msimd
14530 @opindex msimd
14531 Enable generation of ARC SIMD instructions via target-specific
14532 builtins. Only valid for @option{-mcpu=ARC700}.
14533
14534 @item -msoft-float
14535 @opindex msoft-float
14536 This option ignored; it is provided for compatibility purposes only.
14537 Software floating-point code is emitted by default, and this default
14538 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
14539 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
14540 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
14541
14542 @item -mswap
14543 @opindex mswap
14544 Generate @code{swap} instructions.
14545
14546 @item -matomic
14547 @opindex matomic
14548 This enables use of the locked load/store conditional extension to implement
14549 atomic memory built-in functions. Not available for ARC 6xx or ARC
14550 EM cores.
14551
14552 @item -mdiv-rem
14553 @opindex mdiv-rem
14554 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
14555
14556 @item -mcode-density
14557 @opindex mcode-density
14558 Enable code density instructions for ARC EM.
14559 This option is on by default for ARC HS.
14560
14561 @item -mll64
14562 @opindex mll64
14563 Enable double load/store operations for ARC HS cores.
14564
14565 @item -mtp-regno=@var{regno}
14566 @opindex mtp-regno
14567 Specify thread pointer register number.
14568
14569 @item -mmpy-option=@var{multo}
14570 @opindex mmpy-option
14571 Compile ARCv2 code with a multiplier design option. You can specify
14572 the option using either a string or numeric value for @var{multo}.
14573 @samp{wlh1} is the default value. The recognized values are:
14574
14575 @table @samp
14576 @item 0
14577 @itemx none
14578 No multiplier available.
14579
14580 @item 1
14581 @itemx w
14582 16x16 multiplier, fully pipelined.
14583 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
14584
14585 @item 2
14586 @itemx wlh1
14587 32x32 multiplier, fully
14588 pipelined (1 stage). The following instructions are additionally
14589 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14590
14591 @item 3
14592 @itemx wlh2
14593 32x32 multiplier, fully pipelined
14594 (2 stages). The following instructions are additionally enabled: @code{mpy},
14595 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14596
14597 @item 4
14598 @itemx wlh3
14599 Two 16x16 multipliers, blocking,
14600 sequential. The following instructions are additionally enabled: @code{mpy},
14601 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14602
14603 @item 5
14604 @itemx wlh4
14605 One 16x16 multiplier, blocking,
14606 sequential. The following instructions are additionally enabled: @code{mpy},
14607 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14608
14609 @item 6
14610 @itemx wlh5
14611 One 32x4 multiplier, blocking,
14612 sequential. The following instructions are additionally enabled: @code{mpy},
14613 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14614
14615 @item 7
14616 @itemx plus_dmpy
14617 ARC HS SIMD support.
14618
14619 @item 8
14620 @itemx plus_macd
14621 ARC HS SIMD support.
14622
14623 @item 9
14624 @itemx plus_qmacw
14625 ARC HS SIMD support.
14626
14627 @end table
14628
14629 This option is only available for ARCv2 cores@.
14630
14631 @item -mfpu=@var{fpu}
14632 @opindex mfpu
14633 Enables support for specific floating-point hardware extensions for ARCv2
14634 cores. Supported values for @var{fpu} are:
14635
14636 @table @samp
14637
14638 @item fpus
14639 Enables support for single-precision floating-point hardware
14640 extensions@.
14641
14642 @item fpud
14643 Enables support for double-precision floating-point hardware
14644 extensions. The single-precision floating-point extension is also
14645 enabled. Not available for ARC EM@.
14646
14647 @item fpuda
14648 Enables support for double-precision floating-point hardware
14649 extensions using double-precision assist instructions. The single-precision
14650 floating-point extension is also enabled. This option is
14651 only available for ARC EM@.
14652
14653 @item fpuda_div
14654 Enables support for double-precision floating-point hardware
14655 extensions using double-precision assist instructions.
14656 The single-precision floating-point, square-root, and divide
14657 extensions are also enabled. This option is
14658 only available for ARC EM@.
14659
14660 @item fpuda_fma
14661 Enables support for double-precision floating-point hardware
14662 extensions using double-precision assist instructions.
14663 The single-precision floating-point and fused multiply and add
14664 hardware extensions are also enabled. This option is
14665 only available for ARC EM@.
14666
14667 @item fpuda_all
14668 Enables support for double-precision floating-point hardware
14669 extensions using double-precision assist instructions.
14670 All single-precision floating-point hardware extensions are also
14671 enabled. This option is only available for ARC EM@.
14672
14673 @item fpus_div
14674 Enables support for single-precision floating-point, square-root and divide
14675 hardware extensions@.
14676
14677 @item fpud_div
14678 Enables support for double-precision floating-point, square-root and divide
14679 hardware extensions. This option
14680 includes option @samp{fpus_div}. Not available for ARC EM@.
14681
14682 @item fpus_fma
14683 Enables support for single-precision floating-point and
14684 fused multiply and add hardware extensions@.
14685
14686 @item fpud_fma
14687 Enables support for double-precision floating-point and
14688 fused multiply and add hardware extensions. This option
14689 includes option @samp{fpus_fma}. Not available for ARC EM@.
14690
14691 @item fpus_all
14692 Enables support for all single-precision floating-point hardware
14693 extensions@.
14694
14695 @item fpud_all
14696 Enables support for all single- and double-precision floating-point
14697 hardware extensions. Not available for ARC EM@.
14698
14699 @end table
14700
14701 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
14702 @opindex mirq-ctrl-saved
14703 Specifies general-purposes registers that the processor automatically
14704 saves/restores on interrupt entry and exit. @var{register-range} is
14705 specified as two registers separated by a dash. The register range
14706 always starts with @code{r0}, the upper limit is @code{fp} register.
14707 @var{blink} and @var{lp_count} are optional. This option is only
14708 valid for ARC EM and ARC HS cores.
14709
14710 @item -mrgf-banked-regs=@var{number}
14711 @opindex mrgf-banked-regs
14712 Specifies the number of registers replicated in second register bank
14713 on entry to fast interrupt. Fast interrupts are interrupts with the
14714 highest priority level P0. These interrupts save only PC and STATUS32
14715 registers to avoid memory transactions during interrupt entry and exit
14716 sequences. Use this option when you are using fast interrupts in an
14717 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
14718
14719 @end table
14720
14721 The following options are passed through to the assembler, and also
14722 define preprocessor macro symbols.
14723
14724 @c Flags used by the assembler, but for which we define preprocessor
14725 @c macro symbols as well.
14726 @table @gcctabopt
14727 @item -mdsp-packa
14728 @opindex mdsp-packa
14729 Passed down to the assembler to enable the DSP Pack A extensions.
14730 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
14731 deprecated.
14732
14733 @item -mdvbf
14734 @opindex mdvbf
14735 Passed down to the assembler to enable the dual Viterbi butterfly
14736 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
14737 option is deprecated.
14738
14739 @c ARC700 4.10 extension instruction
14740 @item -mlock
14741 @opindex mlock
14742 Passed down to the assembler to enable the locked load/store
14743 conditional extension. Also sets the preprocessor symbol
14744 @code{__Xlock}.
14745
14746 @item -mmac-d16
14747 @opindex mmac-d16
14748 Passed down to the assembler. Also sets the preprocessor symbol
14749 @code{__Xxmac_d16}. This option is deprecated.
14750
14751 @item -mmac-24
14752 @opindex mmac-24
14753 Passed down to the assembler. Also sets the preprocessor symbol
14754 @code{__Xxmac_24}. This option is deprecated.
14755
14756 @c ARC700 4.10 extension instruction
14757 @item -mrtsc
14758 @opindex mrtsc
14759 Passed down to the assembler to enable the 64-bit time-stamp counter
14760 extension instruction. Also sets the preprocessor symbol
14761 @code{__Xrtsc}. This option is deprecated.
14762
14763 @c ARC700 4.10 extension instruction
14764 @item -mswape
14765 @opindex mswape
14766 Passed down to the assembler to enable the swap byte ordering
14767 extension instruction. Also sets the preprocessor symbol
14768 @code{__Xswape}.
14769
14770 @item -mtelephony
14771 @opindex mtelephony
14772 Passed down to the assembler to enable dual- and single-operand
14773 instructions for telephony. Also sets the preprocessor symbol
14774 @code{__Xtelephony}. This option is deprecated.
14775
14776 @item -mxy
14777 @opindex mxy
14778 Passed down to the assembler to enable the XY memory extension. Also
14779 sets the preprocessor symbol @code{__Xxy}.
14780
14781 @end table
14782
14783 The following options control how the assembly code is annotated:
14784
14785 @c Assembly annotation options
14786 @table @gcctabopt
14787 @item -misize
14788 @opindex misize
14789 Annotate assembler instructions with estimated addresses.
14790
14791 @item -mannotate-align
14792 @opindex mannotate-align
14793 Explain what alignment considerations lead to the decision to make an
14794 instruction short or long.
14795
14796 @end table
14797
14798 The following options are passed through to the linker:
14799
14800 @c options passed through to the linker
14801 @table @gcctabopt
14802 @item -marclinux
14803 @opindex marclinux
14804 Passed through to the linker, to specify use of the @code{arclinux} emulation.
14805 This option is enabled by default in tool chains built for
14806 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
14807 when profiling is not requested.
14808
14809 @item -marclinux_prof
14810 @opindex marclinux_prof
14811 Passed through to the linker, to specify use of the
14812 @code{arclinux_prof} emulation. This option is enabled by default in
14813 tool chains built for @w{@code{arc-linux-uclibc}} and
14814 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
14815
14816 @end table
14817
14818 The following options control the semantics of generated code:
14819
14820 @c semantically relevant code generation options
14821 @table @gcctabopt
14822 @item -mlong-calls
14823 @opindex mlong-calls
14824 Generate calls as register indirect calls, thus providing access
14825 to the full 32-bit address range.
14826
14827 @item -mmedium-calls
14828 @opindex mmedium-calls
14829 Don't use less than 25-bit addressing range for calls, which is the
14830 offset available for an unconditional branch-and-link
14831 instruction. Conditional execution of function calls is suppressed, to
14832 allow use of the 25-bit range, rather than the 21-bit range with
14833 conditional branch-and-link. This is the default for tool chains built
14834 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
14835
14836 @item -mno-sdata
14837 @opindex mno-sdata
14838 Do not generate sdata references. This is the default for tool chains
14839 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
14840 targets.
14841
14842 @item -mvolatile-cache
14843 @opindex mvolatile-cache
14844 Use ordinarily cached memory accesses for volatile references. This is the
14845 default.
14846
14847 @item -mno-volatile-cache
14848 @opindex mno-volatile-cache
14849 Enable cache bypass for volatile references.
14850
14851 @end table
14852
14853 The following options fine tune code generation:
14854 @c code generation tuning options
14855 @table @gcctabopt
14856 @item -malign-call
14857 @opindex malign-call
14858 Do alignment optimizations for call instructions.
14859
14860 @item -mauto-modify-reg
14861 @opindex mauto-modify-reg
14862 Enable the use of pre/post modify with register displacement.
14863
14864 @item -mbbit-peephole
14865 @opindex mbbit-peephole
14866 Enable bbit peephole2.
14867
14868 @item -mno-brcc
14869 @opindex mno-brcc
14870 This option disables a target-specific pass in @file{arc_reorg} to
14871 generate compare-and-branch (@code{br@var{cc}}) instructions.
14872 It has no effect on
14873 generation of these instructions driven by the combiner pass.
14874
14875 @item -mcase-vector-pcrel
14876 @opindex mcase-vector-pcrel
14877 Use PC-relative switch case tables to enable case table shortening.
14878 This is the default for @option{-Os}.
14879
14880 @item -mcompact-casesi
14881 @opindex mcompact-casesi
14882 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
14883 and only available for ARCv1 cores.
14884
14885 @item -mno-cond-exec
14886 @opindex mno-cond-exec
14887 Disable the ARCompact-specific pass to generate conditional
14888 execution instructions.
14889
14890 Due to delay slot scheduling and interactions between operand numbers,
14891 literal sizes, instruction lengths, and the support for conditional execution,
14892 the target-independent pass to generate conditional execution is often lacking,
14893 so the ARC port has kept a special pass around that tries to find more
14894 conditional execution generation opportunities after register allocation,
14895 branch shortening, and delay slot scheduling have been done. This pass
14896 generally, but not always, improves performance and code size, at the cost of
14897 extra compilation time, which is why there is an option to switch it off.
14898 If you have a problem with call instructions exceeding their allowable
14899 offset range because they are conditionalized, you should consider using
14900 @option{-mmedium-calls} instead.
14901
14902 @item -mearly-cbranchsi
14903 @opindex mearly-cbranchsi
14904 Enable pre-reload use of the @code{cbranchsi} pattern.
14905
14906 @item -mexpand-adddi
14907 @opindex mexpand-adddi
14908 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
14909 @code{add.f}, @code{adc} etc.
14910
14911 @item -mindexed-loads
14912 @opindex mindexed-loads
14913 Enable the use of indexed loads. This can be problematic because some
14914 optimizers then assume that indexed stores exist, which is not
14915 the case.
14916
14917 @opindex mlra
14918 Enable Local Register Allocation. This is still experimental for ARC,
14919 so by default the compiler uses standard reload
14920 (i.e. @option{-mno-lra}).
14921
14922 @item -mlra-priority-none
14923 @opindex mlra-priority-none
14924 Don't indicate any priority for target registers.
14925
14926 @item -mlra-priority-compact
14927 @opindex mlra-priority-compact
14928 Indicate target register priority for r0..r3 / r12..r15.
14929
14930 @item -mlra-priority-noncompact
14931 @opindex mlra-priority-noncompact
14932 Reduce target register priority for r0..r3 / r12..r15.
14933
14934 @item -mno-millicode
14935 @opindex mno-millicode
14936 When optimizing for size (using @option{-Os}), prologues and epilogues
14937 that have to save or restore a large number of registers are often
14938 shortened by using call to a special function in libgcc; this is
14939 referred to as a @emph{millicode} call. As these calls can pose
14940 performance issues, and/or cause linking issues when linking in a
14941 nonstandard way, this option is provided to turn off millicode call
14942 generation.
14943
14944 @item -mmixed-code
14945 @opindex mmixed-code
14946 Tweak register allocation to help 16-bit instruction generation.
14947 This generally has the effect of decreasing the average instruction size
14948 while increasing the instruction count.
14949
14950 @item -mq-class
14951 @opindex mq-class
14952 Enable @samp{q} instruction alternatives.
14953 This is the default for @option{-Os}.
14954
14955 @item -mRcq
14956 @opindex mRcq
14957 Enable @samp{Rcq} constraint handling.
14958 Most short code generation depends on this.
14959 This is the default.
14960
14961 @item -mRcw
14962 @opindex mRcw
14963 Enable @samp{Rcw} constraint handling.
14964 Most ccfsm condexec mostly depends on this.
14965 This is the default.
14966
14967 @item -msize-level=@var{level}
14968 @opindex msize-level
14969 Fine-tune size optimization with regards to instruction lengths and alignment.
14970 The recognized values for @var{level} are:
14971 @table @samp
14972 @item 0
14973 No size optimization. This level is deprecated and treated like @samp{1}.
14974
14975 @item 1
14976 Short instructions are used opportunistically.
14977
14978 @item 2
14979 In addition, alignment of loops and of code after barriers are dropped.
14980
14981 @item 3
14982 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
14983
14984 @end table
14985
14986 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
14987 the behavior when this is not set is equivalent to level @samp{1}.
14988
14989 @item -mtune=@var{cpu}
14990 @opindex mtune
14991 Set instruction scheduling parameters for @var{cpu}, overriding any implied
14992 by @option{-mcpu=}.
14993
14994 Supported values for @var{cpu} are
14995
14996 @table @samp
14997 @item ARC600
14998 Tune for ARC600 CPU.
14999
15000 @item ARC601
15001 Tune for ARC601 CPU.
15002
15003 @item ARC700
15004 Tune for ARC700 CPU with standard multiplier block.
15005
15006 @item ARC700-xmac
15007 Tune for ARC700 CPU with XMAC block.
15008
15009 @item ARC725D
15010 Tune for ARC725D CPU.
15011
15012 @item ARC750D
15013 Tune for ARC750D CPU.
15014
15015 @end table
15016
15017 @item -mmultcost=@var{num}
15018 @opindex mmultcost
15019 Cost to assume for a multiply instruction, with @samp{4} being equal to a
15020 normal instruction.
15021
15022 @item -munalign-prob-threshold=@var{probability}
15023 @opindex munalign-prob-threshold
15024 Set probability threshold for unaligning branches.
15025 When tuning for @samp{ARC700} and optimizing for speed, branches without
15026 filled delay slot are preferably emitted unaligned and long, unless
15027 profiling indicates that the probability for the branch to be taken
15028 is below @var{probability}. @xref{Cross-profiling}.
15029 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
15030
15031 @end table
15032
15033 The following options are maintained for backward compatibility, but
15034 are now deprecated and will be removed in a future release:
15035
15036 @c Deprecated options
15037 @table @gcctabopt
15038
15039 @item -margonaut
15040 @opindex margonaut
15041 Obsolete FPX.
15042
15043 @item -mbig-endian
15044 @opindex mbig-endian
15045 @itemx -EB
15046 @opindex EB
15047 Compile code for big-endian targets. Use of these options is now
15048 deprecated. Big-endian code is supported by configuring GCC to build
15049 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
15050 for which big endian is the default.
15051
15052 @item -mlittle-endian
15053 @opindex mlittle-endian
15054 @itemx -EL
15055 @opindex EL
15056 Compile code for little-endian targets. Use of these options is now
15057 deprecated. Little-endian code is supported by configuring GCC to build
15058 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
15059 for which little endian is the default.
15060
15061 @item -mbarrel_shifter
15062 @opindex mbarrel_shifter
15063 Replaced by @option{-mbarrel-shifter}.
15064
15065 @item -mdpfp_compact
15066 @opindex mdpfp_compact
15067 Replaced by @option{-mdpfp-compact}.
15068
15069 @item -mdpfp_fast
15070 @opindex mdpfp_fast
15071 Replaced by @option{-mdpfp-fast}.
15072
15073 @item -mdsp_packa
15074 @opindex mdsp_packa
15075 Replaced by @option{-mdsp-packa}.
15076
15077 @item -mEA
15078 @opindex mEA
15079 Replaced by @option{-mea}.
15080
15081 @item -mmac_24
15082 @opindex mmac_24
15083 Replaced by @option{-mmac-24}.
15084
15085 @item -mmac_d16
15086 @opindex mmac_d16
15087 Replaced by @option{-mmac-d16}.
15088
15089 @item -mspfp_compact
15090 @opindex mspfp_compact
15091 Replaced by @option{-mspfp-compact}.
15092
15093 @item -mspfp_fast
15094 @opindex mspfp_fast
15095 Replaced by @option{-mspfp-fast}.
15096
15097 @item -mtune=@var{cpu}
15098 @opindex mtune
15099 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
15100 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
15101 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
15102
15103 @item -multcost=@var{num}
15104 @opindex multcost
15105 Replaced by @option{-mmultcost}.
15106
15107 @end table
15108
15109 @node ARM Options
15110 @subsection ARM Options
15111 @cindex ARM options
15112
15113 These @samp{-m} options are defined for the ARM port:
15114
15115 @table @gcctabopt
15116 @item -mabi=@var{name}
15117 @opindex mabi
15118 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
15119 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
15120
15121 @item -mapcs-frame
15122 @opindex mapcs-frame
15123 Generate a stack frame that is compliant with the ARM Procedure Call
15124 Standard for all functions, even if this is not strictly necessary for
15125 correct execution of the code. Specifying @option{-fomit-frame-pointer}
15126 with this option causes the stack frames not to be generated for
15127 leaf functions. The default is @option{-mno-apcs-frame}.
15128 This option is deprecated.
15129
15130 @item -mapcs
15131 @opindex mapcs
15132 This is a synonym for @option{-mapcs-frame} and is deprecated.
15133
15134 @ignore
15135 @c not currently implemented
15136 @item -mapcs-stack-check
15137 @opindex mapcs-stack-check
15138 Generate code to check the amount of stack space available upon entry to
15139 every function (that actually uses some stack space). If there is
15140 insufficient space available then either the function
15141 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
15142 called, depending upon the amount of stack space required. The runtime
15143 system is required to provide these functions. The default is
15144 @option{-mno-apcs-stack-check}, since this produces smaller code.
15145
15146 @c not currently implemented
15147 @item -mapcs-reentrant
15148 @opindex mapcs-reentrant
15149 Generate reentrant, position-independent code. The default is
15150 @option{-mno-apcs-reentrant}.
15151 @end ignore
15152
15153 @item -mthumb-interwork
15154 @opindex mthumb-interwork
15155 Generate code that supports calling between the ARM and Thumb
15156 instruction sets. Without this option, on pre-v5 architectures, the
15157 two instruction sets cannot be reliably used inside one program. The
15158 default is @option{-mno-thumb-interwork}, since slightly larger code
15159 is generated when @option{-mthumb-interwork} is specified. In AAPCS
15160 configurations this option is meaningless.
15161
15162 @item -mno-sched-prolog
15163 @opindex mno-sched-prolog
15164 Prevent the reordering of instructions in the function prologue, or the
15165 merging of those instruction with the instructions in the function's
15166 body. This means that all functions start with a recognizable set
15167 of instructions (or in fact one of a choice from a small set of
15168 different function prologues), and this information can be used to
15169 locate the start of functions inside an executable piece of code. The
15170 default is @option{-msched-prolog}.
15171
15172 @item -mfloat-abi=@var{name}
15173 @opindex mfloat-abi
15174 Specifies which floating-point ABI to use. Permissible values
15175 are: @samp{soft}, @samp{softfp} and @samp{hard}.
15176
15177 Specifying @samp{soft} causes GCC to generate output containing
15178 library calls for floating-point operations.
15179 @samp{softfp} allows the generation of code using hardware floating-point
15180 instructions, but still uses the soft-float calling conventions.
15181 @samp{hard} allows generation of floating-point instructions
15182 and uses FPU-specific calling conventions.
15183
15184 The default depends on the specific target configuration. Note that
15185 the hard-float and soft-float ABIs are not link-compatible; you must
15186 compile your entire program with the same ABI, and link with a
15187 compatible set of libraries.
15188
15189 @item -mlittle-endian
15190 @opindex mlittle-endian
15191 Generate code for a processor running in little-endian mode. This is
15192 the default for all standard configurations.
15193
15194 @item -mbig-endian
15195 @opindex mbig-endian
15196 Generate code for a processor running in big-endian mode; the default is
15197 to compile code for a little-endian processor.
15198
15199 @item -mbe8
15200 @itemx -mbe32
15201 @opindex mbe8
15202 When linking a big-endian image select between BE8 and BE32 formats.
15203 The option has no effect for little-endian images and is ignored. The
15204 default is dependent on the selected target architecture. For ARMv6
15205 and later architectures the default is BE8, for older architectures
15206 the default is BE32. BE32 format has been deprecated by ARM.
15207
15208 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
15209 @opindex march
15210 This specifies the name of the target ARM architecture. GCC uses this
15211 name to determine what kind of instructions it can emit when generating
15212 assembly code. This option can be used in conjunction with or instead
15213 of the @option{-mcpu=} option.
15214
15215 Permissible names are:
15216 @samp{armv4t},
15217 @samp{armv5t}, @samp{armv5te},
15218 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
15219 @samp{armv6z}, @samp{armv6zk},
15220 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
15221 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a},
15222 @samp{armv7-r},
15223 @samp{armv8-r},
15224 @samp{armv6-m}, @samp{armv6s-m},
15225 @samp{armv7-m}, @samp{armv7e-m},
15226 @samp{armv8-m.base}, @samp{armv8-m.main},
15227 @samp{iwmmxt} and @samp{iwmmxt2}.
15228
15229 Additionally, the following architectures, which lack support for the
15230 Thumb exection state, are recognized but support is deprecated:
15231 @samp{armv2}, @samp{armv2a}, @samp{armv3}, @samp{armv3m},
15232 @samp{armv4}, @samp{armv5} and @samp{armv5e}.
15233
15234 Many of the architectures support extensions. These can be added by
15235 appending @samp{+@var{extension}} to the architecture name. Extension
15236 options are processed in order and capabilities accumulate. An extension
15237 will also enable any necessary base extensions
15238 upon which it depends. For example, the @samp{+crypto} extension
15239 will always enable the @samp{+simd} extension. The exception to the
15240 additive construction is for extensions that are prefixed with
15241 @samp{+no@dots{}}: these extensions disable the specified option and
15242 any other extensions that may depend on the presence of that
15243 extension.
15244
15245 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
15246 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
15247 entirely disabled by the @samp{+nofp} option that follows it.
15248
15249 Most extension names are generically named, but have an effect that is
15250 dependent upon the architecture to which it is applied. For example,
15251 the @samp{+simd} option can be applied to both @samp{armv7-a} and
15252 @samp{armv8-a} architectures, but will enable the original ARMv7
15253 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-a
15254 variant for @samp{armv8-a}.
15255
15256 The table below lists the supported extensions for each architecture.
15257 Architectures not mentioned do not support any extensions.
15258
15259 @table @samp
15260 @item armv5e
15261 @itemx armv5te
15262 @itemx armv6
15263 @itemx armv6j
15264 @itemx armv6k
15265 @itemx armv6kz
15266 @itemx armv6t2
15267 @itemx armv6z
15268 @itemx armv6zk
15269 @table @samp
15270 @item +fp
15271 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
15272 used as an alias for this extension.
15273
15274 @item +nofp
15275 Disable the floating-point instructions.
15276 @end table
15277
15278 @item armv7
15279 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
15280 @table @samp
15281 @item +fp
15282 The VFPv3 floating-point instructions, with 16 double-precision
15283 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15284 for this extension. Note that floating-point is not supported by the
15285 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
15286 ARMv7-R architectures.
15287
15288 @item +nofp
15289 Disable the floating-point instructions.
15290 @end table
15291
15292 @item armv7-a
15293 @table @samp
15294 @item +fp
15295 The VFPv3 floating-point instructions, with 16 double-precision
15296 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15297 for this extension.
15298
15299 @item +simd
15300 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15301 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
15302 for this extension.
15303
15304 @item +vfpv3
15305 The VFPv3 floating-point instructions, with 32 double-precision
15306 registers.
15307
15308 @item +vfpv3-d16-fp16
15309 The VFPv3 floating-point instructions, with 16 double-precision
15310 registers and the half-precision floating-point conversion operations.
15311
15312 @item +vfpv3-fp16
15313 The VFPv3 floating-point instructions, with 32 double-precision
15314 registers and the half-precision floating-point conversion operations.
15315
15316 @item +vfpv4-d16
15317 The VFPv4 floating-point instructions, with 16 double-precision
15318 registers.
15319
15320 @item +vfpv4
15321 The VFPv4 floating-point instructions, with 32 double-precision
15322 registers.
15323
15324 @item +neon-fp16
15325 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15326 the half-precision floating-point conversion operations.
15327
15328 @item +neon-vfpv4
15329 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
15330
15331 @item +nosimd
15332 Disable the Advanced SIMD instructions (does not disable floating point).
15333
15334 @item +nofp
15335 Disable the floating-point and Advanced SIMD instructions.
15336 @end table
15337
15338 @item armv7ve
15339 The extended version of the ARMv7-A architecture with support for
15340 virtualization.
15341 @table @samp
15342 @item +fp
15343 The VFPv4 floating-point instructions, with 16 double-precision registers.
15344 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
15345
15346 @item +simd
15347 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
15348 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
15349
15350 @item +vfpv3-d16
15351 The VFPv3 floating-point instructions, with 16 double-precision
15352 registers.
15353
15354 @item +vfpv3
15355 The VFPv3 floating-point instructions, with 32 double-precision
15356 registers.
15357
15358 @item +vfpv3-d16-fp16
15359 The VFPv3 floating-point instructions, with 16 double-precision
15360 registers and the half-precision floating-point conversion operations.
15361
15362 @item +vfpv3-fp16
15363 The VFPv3 floating-point instructions, with 32 double-precision
15364 registers and the half-precision floating-point conversion operations.
15365
15366 @item +vfpv4-d16
15367 The VFPv4 floating-point instructions, with 16 double-precision
15368 registers.
15369
15370 @item +vfpv4
15371 The VFPv4 floating-point instructions, with 32 double-precision
15372 registers.
15373
15374 @item +neon
15375 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15376 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
15377
15378 @item +neon-fp16
15379 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15380 the half-precision floating-point conversion operations.
15381
15382 @item +nosimd
15383 Disable the Advanced SIMD instructions (does not disable floating point).
15384
15385 @item +nofp
15386 Disable the floating-point and Advanced SIMD instructions.
15387 @end table
15388
15389 @item armv8-a
15390 @table @samp
15391 @item +crc
15392 The Cyclic Redundancy Check (CRC) instructions.
15393 @item +simd
15394 The ARMv8 Advanced SIMD and floating-point instructions.
15395 @item +crypto
15396 The cryptographic instructions.
15397 @item +nocrypto
15398 Disable the cryptographic isntructions.
15399 @item +nofp
15400 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15401 @end table
15402
15403 @item armv8.1-a
15404 @table @samp
15405 @item +simd
15406 The ARMv8.1 Advanced SIMD and floating-point instructions.
15407
15408 @item +crypto
15409 The cryptographic instructions. This also enables the Advanced SIMD and
15410 floating-point instructions.
15411
15412 @item +nocrypto
15413 Disable the cryptographic isntructions.
15414
15415 @item +nofp
15416 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15417 @end table
15418
15419 @item armv8.2-a
15420 @table @samp
15421 @item +fp16
15422 The half-precision floating-point data processing instructions.
15423 This also enables the Advanced SIMD and floating-point instructions.
15424
15425 @item +simd
15426 The ARMv8.1 Advanced SIMD and floating-point instructions.
15427
15428 @item +crypto
15429 The cryptographic instructions. This also enables the Advanced SIMD and
15430 floating-point instructions.
15431
15432 @item +nocrypto
15433 Disable the cryptographic extension.
15434
15435 @item +nofp
15436 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15437 @end table
15438
15439 @item armv7-r
15440 @table @samp
15441 @item +fp.sp
15442 The single-precision VFPv3 floating-point instructions. The extension
15443 @samp{+vfpv3xd} can be used as an alias for this extension.
15444
15445 @item +fp
15446 The VFPv3 floating-point instructions with 16 double-precision registers.
15447 The extension +vfpv3-d16 can be used as an alias for this extension.
15448
15449 @item +nofp
15450 Disable the floating-point extension.
15451
15452 @item +idiv
15453 The ARM-state integer division instructions.
15454
15455 @item +noidiv
15456 Disable the ARM-state integer division extension.
15457 @end table
15458
15459 @item armv7e-m
15460 @table @samp
15461 @item +fp
15462 The single-precision VFPv4 floating-point instructions.
15463
15464 @item +fpv5
15465 The single-precision FPv5 floating-point instructions.
15466
15467 @item +fp.dp
15468 The single- and double-precision FPv5 floating-point instructions.
15469
15470 @item +nofp
15471 Disable the floating-point extensions.
15472 @end table
15473
15474 @item armv8-m.main
15475 @table @samp
15476 @item +dsp
15477 The DSP instructions.
15478
15479 @item +nodsp
15480 Disable the DSP extension.
15481
15482 @item +fp
15483 The single-precision floating-point instructions.
15484
15485 @item +fp.dp
15486 The single- and double-precision floating-point instructions.
15487
15488 @item +nofp
15489 Disable the floating-point extension.
15490 @end table
15491
15492 @item armv8-r
15493 @table @samp
15494 @item +crc
15495 The Cyclic Redundancy Check (CRC) instructions.
15496 @item +fp.sp
15497 The single-precision FPv5 floating-point instructions.
15498 @item +simd
15499 The ARMv8 Advanced SIMD and floating-point instructions.
15500 @item +crypto
15501 The cryptographic instructions.
15502 @item +nocrypto
15503 Disable the cryptographic isntructions.
15504 @item +nofp
15505 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15506 @end table
15507
15508 @end table
15509
15510 @option{-march=native} causes the compiler to auto-detect the architecture
15511 of the build computer. At present, this feature is only supported on
15512 GNU/Linux, and not all architectures are recognized. If the auto-detect
15513 is unsuccessful the option has no effect.
15514
15515 @item -mtune=@var{name}
15516 @opindex mtune
15517 This option specifies the name of the target ARM processor for
15518 which GCC should tune the performance of the code.
15519 For some ARM implementations better performance can be obtained by using
15520 this option.
15521 Permissible names are: @samp{arm2}, @samp{arm250},
15522 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
15523 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
15524 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
15525 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
15526 @samp{arm720},
15527 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
15528 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
15529 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
15530 @samp{strongarm1110},
15531 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
15532 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
15533 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
15534 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
15535 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
15536 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
15537 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
15538 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
15539 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
15540 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
15541 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
15542 @samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7},
15543 @samp{cortex-r8},
15544 @samp{cortex-m33},
15545 @samp{cortex-m23},
15546 @samp{cortex-m7},
15547 @samp{cortex-m4},
15548 @samp{cortex-m3},
15549 @samp{cortex-m1},
15550 @samp{cortex-m0},
15551 @samp{cortex-m0plus},
15552 @samp{cortex-m1.small-multiply},
15553 @samp{cortex-m0.small-multiply},
15554 @samp{cortex-m0plus.small-multiply},
15555 @samp{exynos-m1},
15556 @samp{marvell-pj4},
15557 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
15558 @samp{fa526}, @samp{fa626},
15559 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
15560 @samp{xgene1}.
15561
15562 Additionally, this option can specify that GCC should tune the performance
15563 of the code for a big.LITTLE system. Permissible names are:
15564 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
15565 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15566 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
15567 @samp{cortex-a75.cortex-a55}.
15568
15569 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
15570 performance for a blend of processors within architecture @var{arch}.
15571 The aim is to generate code that run well on the current most popular
15572 processors, balancing between optimizations that benefit some CPUs in the
15573 range, and avoiding performance pitfalls of other CPUs. The effects of
15574 this option may change in future GCC versions as CPU models come and go.
15575
15576 @option{-mtune} permits the same extension options as @option{-mcpu}, but
15577 the extension options do not affect the tuning of the generated code.
15578
15579 @option{-mtune=native} causes the compiler to auto-detect the CPU
15580 of the build computer. At present, this feature is only supported on
15581 GNU/Linux, and not all architectures are recognized. If the auto-detect is
15582 unsuccessful the option has no effect.
15583
15584 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
15585 @opindex mcpu
15586 This specifies the name of the target ARM processor. GCC uses this name
15587 to derive the name of the target ARM architecture (as if specified
15588 by @option{-march}) and the ARM processor type for which to tune for
15589 performance (as if specified by @option{-mtune}). Where this option
15590 is used in conjunction with @option{-march} or @option{-mtune},
15591 those options take precedence over the appropriate part of this option.
15592
15593 Many of the supported CPUs implement optional architectural
15594 extensions. Where this is so the architectural extensions are
15595 normally enabled by default. If implementations that lack the
15596 extension exist, then the extension syntax can be used to disable
15597 those extensions that have been omitted. For floating-point and
15598 Advanced SIMD (Neon) instructions, the settings of the options
15599 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
15600 floating-point and Advanced SIMD instructions will only be used if
15601 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
15602 @option{-mfpu} other than @samp{auto} will override the available
15603 floating-point and SIMD extension instructions.
15604
15605 For example, @samp{cortex-a9} can be found in three major
15606 configurations: integer only, with just a floating-point unit or with
15607 floating-point and Advanced SIMD. The default is to enable all the
15608 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
15609 be used to disable just the SIMD or both the SIMD and floating-point
15610 instructions respectively.
15611
15612 Permissible names for this option are the same as those for
15613 @option{-mtune}.
15614
15615 The following extension options are common to the listed CPUs:
15616
15617 @table @samp
15618 @item +nofp
15619 Disables the floating-point instructions on @samp{arm9e},
15620 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
15621 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
15622 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
15623 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
15624 Disables the floating-point and SIMD instructions on
15625 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
15626 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
15627 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
15628 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
15629 @samp{cortex-a53} and @samp{cortex-a55}.
15630
15631 @item +nofp.dp
15632 Disables the double-precision component of the floating-point instructions
15633 on @samp{cortex-r5} and @samp{cortex-m7}.
15634
15635 @item +nosimd
15636 Disables the SIMD (but not floating-point) instructions on
15637 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
15638 and @samp{cortex-a9}.
15639 @end table
15640
15641 Additionally the @samp{generic-armv7-a} pseudo target defaults to
15642 VFPv3 with 16 double-precision registers. It supports the following
15643 extension options: @samp{vfpv3-d16}, @samp{vfpv3},
15644 @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16}, @samp{vfpv4-d16},
15645 @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3}, @samp{neon-fp16},
15646 @samp{neon-vfpv4}. The meanings are the same as for the extensions to
15647 @option{-march=armv7-a}.
15648
15649 @option{-mcpu=generic-@var{arch}} is also permissible, and is
15650 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
15651 See @option{-mtune} for more information.
15652
15653 @option{-mcpu=native} causes the compiler to auto-detect the CPU
15654 of the build computer. At present, this feature is only supported on
15655 GNU/Linux, and not all architectures are recognized. If the auto-detect
15656 is unsuccessful the option has no effect.
15657
15658 @item -mfpu=@var{name}
15659 @opindex mfpu
15660 This specifies what floating-point hardware (or hardware emulation) is
15661 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
15662 @samp{vfpv3},
15663 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
15664 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
15665 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
15666 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
15667 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
15668 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
15669 is an alias for @samp{vfpv2}.
15670
15671 The setting @samp{auto} is the default and is special. It causes the
15672 compiler to select the floating-point and Advanced SIMD instructions
15673 based on the settings of @option{-mcpu} and @option{-march}.
15674
15675 If the selected floating-point hardware includes the NEON extension
15676 (e.g. @option{-mfpu=neon}), note that floating-point
15677 operations are not generated by GCC's auto-vectorization pass unless
15678 @option{-funsafe-math-optimizations} is also specified. This is
15679 because NEON hardware does not fully implement the IEEE 754 standard for
15680 floating-point arithmetic (in particular denormal values are treated as
15681 zero), so the use of NEON instructions may lead to a loss of precision.
15682
15683 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
15684
15685 @item -mfp16-format=@var{name}
15686 @opindex mfp16-format
15687 Specify the format of the @code{__fp16} half-precision floating-point type.
15688 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
15689 the default is @samp{none}, in which case the @code{__fp16} type is not
15690 defined. @xref{Half-Precision}, for more information.
15691
15692 @item -mstructure-size-boundary=@var{n}
15693 @opindex mstructure-size-boundary
15694 The sizes of all structures and unions are rounded up to a multiple
15695 of the number of bits set by this option. Permissible values are 8, 32
15696 and 64. The default value varies for different toolchains. For the COFF
15697 targeted toolchain the default value is 8. A value of 64 is only allowed
15698 if the underlying ABI supports it.
15699
15700 Specifying a larger number can produce faster, more efficient code, but
15701 can also increase the size of the program. Different values are potentially
15702 incompatible. Code compiled with one value cannot necessarily expect to
15703 work with code or libraries compiled with another value, if they exchange
15704 information using structures or unions.
15705
15706 @item -mabort-on-noreturn
15707 @opindex mabort-on-noreturn
15708 Generate a call to the function @code{abort} at the end of a
15709 @code{noreturn} function. It is executed if the function tries to
15710 return.
15711
15712 @item -mlong-calls
15713 @itemx -mno-long-calls
15714 @opindex mlong-calls
15715 @opindex mno-long-calls
15716 Tells the compiler to perform function calls by first loading the
15717 address of the function into a register and then performing a subroutine
15718 call on this register. This switch is needed if the target function
15719 lies outside of the 64-megabyte addressing range of the offset-based
15720 version of subroutine call instruction.
15721
15722 Even if this switch is enabled, not all function calls are turned
15723 into long calls. The heuristic is that static functions, functions
15724 that have the @code{short_call} attribute, functions that are inside
15725 the scope of a @code{#pragma no_long_calls} directive, and functions whose
15726 definitions have already been compiled within the current compilation
15727 unit are not turned into long calls. The exceptions to this rule are
15728 that weak function definitions, functions with the @code{long_call}
15729 attribute or the @code{section} attribute, and functions that are within
15730 the scope of a @code{#pragma long_calls} directive are always
15731 turned into long calls.
15732
15733 This feature is not enabled by default. Specifying
15734 @option{-mno-long-calls} restores the default behavior, as does
15735 placing the function calls within the scope of a @code{#pragma
15736 long_calls_off} directive. Note these switches have no effect on how
15737 the compiler generates code to handle function calls via function
15738 pointers.
15739
15740 @item -msingle-pic-base
15741 @opindex msingle-pic-base
15742 Treat the register used for PIC addressing as read-only, rather than
15743 loading it in the prologue for each function. The runtime system is
15744 responsible for initializing this register with an appropriate value
15745 before execution begins.
15746
15747 @item -mpic-register=@var{reg}
15748 @opindex mpic-register
15749 Specify the register to be used for PIC addressing.
15750 For standard PIC base case, the default is any suitable register
15751 determined by compiler. For single PIC base case, the default is
15752 @samp{R9} if target is EABI based or stack-checking is enabled,
15753 otherwise the default is @samp{R10}.
15754
15755 @item -mpic-data-is-text-relative
15756 @opindex mpic-data-is-text-relative
15757 Assume that the displacement between the text and data segments is fixed
15758 at static link time. This permits using PC-relative addressing
15759 operations to access data known to be in the data segment. For
15760 non-VxWorks RTP targets, this option is enabled by default. When
15761 disabled on such targets, it will enable @option{-msingle-pic-base} by
15762 default.
15763
15764 @item -mpoke-function-name
15765 @opindex mpoke-function-name
15766 Write the name of each function into the text section, directly
15767 preceding the function prologue. The generated code is similar to this:
15768
15769 @smallexample
15770 t0
15771 .ascii "arm_poke_function_name", 0
15772 .align
15773 t1
15774 .word 0xff000000 + (t1 - t0)
15775 arm_poke_function_name
15776 mov ip, sp
15777 stmfd sp!, @{fp, ip, lr, pc@}
15778 sub fp, ip, #4
15779 @end smallexample
15780
15781 When performing a stack backtrace, code can inspect the value of
15782 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
15783 location @code{pc - 12} and the top 8 bits are set, then we know that
15784 there is a function name embedded immediately preceding this location
15785 and has length @code{((pc[-3]) & 0xff000000)}.
15786
15787 @item -mthumb
15788 @itemx -marm
15789 @opindex marm
15790 @opindex mthumb
15791
15792 Select between generating code that executes in ARM and Thumb
15793 states. The default for most configurations is to generate code
15794 that executes in ARM state, but the default can be changed by
15795 configuring GCC with the @option{--with-mode=}@var{state}
15796 configure option.
15797
15798 You can also override the ARM and Thumb mode for each function
15799 by using the @code{target("thumb")} and @code{target("arm")} function attributes
15800 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
15801
15802 @item -mtpcs-frame
15803 @opindex mtpcs-frame
15804 Generate a stack frame that is compliant with the Thumb Procedure Call
15805 Standard for all non-leaf functions. (A leaf function is one that does
15806 not call any other functions.) The default is @option{-mno-tpcs-frame}.
15807
15808 @item -mtpcs-leaf-frame
15809 @opindex mtpcs-leaf-frame
15810 Generate a stack frame that is compliant with the Thumb Procedure Call
15811 Standard for all leaf functions. (A leaf function is one that does
15812 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
15813
15814 @item -mcallee-super-interworking
15815 @opindex mcallee-super-interworking
15816 Gives all externally visible functions in the file being compiled an ARM
15817 instruction set header which switches to Thumb mode before executing the
15818 rest of the function. This allows these functions to be called from
15819 non-interworking code. This option is not valid in AAPCS configurations
15820 because interworking is enabled by default.
15821
15822 @item -mcaller-super-interworking
15823 @opindex mcaller-super-interworking
15824 Allows calls via function pointers (including virtual functions) to
15825 execute correctly regardless of whether the target code has been
15826 compiled for interworking or not. There is a small overhead in the cost
15827 of executing a function pointer if this option is enabled. This option
15828 is not valid in AAPCS configurations because interworking is enabled
15829 by default.
15830
15831 @item -mtp=@var{name}
15832 @opindex mtp
15833 Specify the access model for the thread local storage pointer. The valid
15834 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
15835 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
15836 (supported in the arm6k architecture), and @samp{auto}, which uses the
15837 best available method for the selected processor. The default setting is
15838 @samp{auto}.
15839
15840 @item -mtls-dialect=@var{dialect}
15841 @opindex mtls-dialect
15842 Specify the dialect to use for accessing thread local storage. Two
15843 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
15844 @samp{gnu} dialect selects the original GNU scheme for supporting
15845 local and global dynamic TLS models. The @samp{gnu2} dialect
15846 selects the GNU descriptor scheme, which provides better performance
15847 for shared libraries. The GNU descriptor scheme is compatible with
15848 the original scheme, but does require new assembler, linker and
15849 library support. Initial and local exec TLS models are unaffected by
15850 this option and always use the original scheme.
15851
15852 @item -mword-relocations
15853 @opindex mword-relocations
15854 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
15855 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
15856 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
15857 is specified.
15858
15859 @item -mfix-cortex-m3-ldrd
15860 @opindex mfix-cortex-m3-ldrd
15861 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
15862 with overlapping destination and base registers are used. This option avoids
15863 generating these instructions. This option is enabled by default when
15864 @option{-mcpu=cortex-m3} is specified.
15865
15866 @item -munaligned-access
15867 @itemx -mno-unaligned-access
15868 @opindex munaligned-access
15869 @opindex mno-unaligned-access
15870 Enables (or disables) reading and writing of 16- and 32- bit values
15871 from addresses that are not 16- or 32- bit aligned. By default
15872 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
15873 ARMv8-M Baseline architectures, and enabled for all other
15874 architectures. If unaligned access is not enabled then words in packed
15875 data structures are accessed a byte at a time.
15876
15877 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
15878 generated object file to either true or false, depending upon the
15879 setting of this option. If unaligned access is enabled then the
15880 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
15881 defined.
15882
15883 @item -mneon-for-64bits
15884 @opindex mneon-for-64bits
15885 Enables using Neon to handle scalar 64-bits operations. This is
15886 disabled by default since the cost of moving data from core registers
15887 to Neon is high.
15888
15889 @item -mslow-flash-data
15890 @opindex mslow-flash-data
15891 Assume loading data from flash is slower than fetching instruction.
15892 Therefore literal load is minimized for better performance.
15893 This option is only supported when compiling for ARMv7 M-profile and
15894 off by default.
15895
15896 @item -masm-syntax-unified
15897 @opindex masm-syntax-unified
15898 Assume inline assembler is using unified asm syntax. The default is
15899 currently off which implies divided syntax. This option has no impact
15900 on Thumb2. However, this may change in future releases of GCC.
15901 Divided syntax should be considered deprecated.
15902
15903 @item -mrestrict-it
15904 @opindex mrestrict-it
15905 Restricts generation of IT blocks to conform to the rules of ARMv8.
15906 IT blocks can only contain a single 16-bit instruction from a select
15907 set of instructions. This option is on by default for ARMv8 Thumb mode.
15908
15909 @item -mprint-tune-info
15910 @opindex mprint-tune-info
15911 Print CPU tuning information as comment in assembler file. This is
15912 an option used only for regression testing of the compiler and not
15913 intended for ordinary use in compiling code. This option is disabled
15914 by default.
15915
15916 @item -mpure-code
15917 @opindex mpure-code
15918 Do not allow constant data to be placed in code sections.
15919 Additionally, when compiling for ELF object format give all text sections the
15920 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
15921 is only available when generating non-pic code for M-profile targets with the
15922 MOVT instruction.
15923
15924 @item -mcmse
15925 @opindex mcmse
15926 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
15927 Development Tools Engineering Specification", which can be found on
15928 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
15929 @end table
15930
15931 @node AVR Options
15932 @subsection AVR Options
15933 @cindex AVR Options
15934
15935 These options are defined for AVR implementations:
15936
15937 @table @gcctabopt
15938 @item -mmcu=@var{mcu}
15939 @opindex mmcu
15940 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
15941
15942 The default for this option is@tie{}@samp{avr2}.
15943
15944 GCC supports the following AVR devices and ISAs:
15945
15946 @include avr-mmcu.texi
15947
15948 @item -mabsdata
15949 @opindex mabsdata
15950
15951 Assume that all data in static storage can be accessed by LDS / STS
15952 instructions. This option has only an effect on reduced Tiny devices like
15953 ATtiny40. See also the @code{absdata}
15954 @ref{AVR Variable Attributes,variable attribute}.
15955
15956 @item -maccumulate-args
15957 @opindex maccumulate-args
15958 Accumulate outgoing function arguments and acquire/release the needed
15959 stack space for outgoing function arguments once in function
15960 prologue/epilogue. Without this option, outgoing arguments are pushed
15961 before calling a function and popped afterwards.
15962
15963 Popping the arguments after the function call can be expensive on
15964 AVR so that accumulating the stack space might lead to smaller
15965 executables because arguments need not be removed from the
15966 stack after such a function call.
15967
15968 This option can lead to reduced code size for functions that perform
15969 several calls to functions that get their arguments on the stack like
15970 calls to printf-like functions.
15971
15972 @item -mbranch-cost=@var{cost}
15973 @opindex mbranch-cost
15974 Set the branch costs for conditional branch instructions to
15975 @var{cost}. Reasonable values for @var{cost} are small, non-negative
15976 integers. The default branch cost is 0.
15977
15978 @item -mcall-prologues
15979 @opindex mcall-prologues
15980 Functions prologues/epilogues are expanded as calls to appropriate
15981 subroutines. Code size is smaller.
15982
15983 @item -mgas-isr-prologues
15984 @opindex mgas-isr-prologues
15985 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
15986 instruction supported by GNU Binutils.
15987 If this option is on, the feature can still be disabled for individual
15988 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
15989 function attribute. This feature is activated per default
15990 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
15991 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
15992
15993 @item -mint8
15994 @opindex mint8
15995 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
15996 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
15997 and @code{long long} is 4 bytes. Please note that this option does not
15998 conform to the C standards, but it results in smaller code
15999 size.
16000
16001 @item -mn-flash=@var{num}
16002 @opindex mn-flash
16003 Assume that the flash memory has a size of
16004 @var{num} times 64@tie{}KiB.
16005
16006 @item -mno-interrupts
16007 @opindex mno-interrupts
16008 Generated code is not compatible with hardware interrupts.
16009 Code size is smaller.
16010
16011 @item -mrelax
16012 @opindex mrelax
16013 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
16014 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
16015 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
16016 the assembler's command line and the @option{--relax} option to the
16017 linker's command line.
16018
16019 Jump relaxing is performed by the linker because jump offsets are not
16020 known before code is located. Therefore, the assembler code generated by the
16021 compiler is the same, but the instructions in the executable may
16022 differ from instructions in the assembler code.
16023
16024 Relaxing must be turned on if linker stubs are needed, see the
16025 section on @code{EIND} and linker stubs below.
16026
16027 @item -mrmw
16028 @opindex mrmw
16029 Assume that the device supports the Read-Modify-Write
16030 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
16031
16032 @item -mshort-calls
16033 @opindex mshort-calls
16034
16035 Assume that @code{RJMP} and @code{RCALL} can target the whole
16036 program memory.
16037
16038 This option is used internally for multilib selection. It is
16039 not an optimization option, and you don't need to set it by hand.
16040
16041 @item -msp8
16042 @opindex msp8
16043 Treat the stack pointer register as an 8-bit register,
16044 i.e.@: assume the high byte of the stack pointer is zero.
16045 In general, you don't need to set this option by hand.
16046
16047 This option is used internally by the compiler to select and
16048 build multilibs for architectures @code{avr2} and @code{avr25}.
16049 These architectures mix devices with and without @code{SPH}.
16050 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
16051 the compiler driver adds or removes this option from the compiler
16052 proper's command line, because the compiler then knows if the device
16053 or architecture has an 8-bit stack pointer and thus no @code{SPH}
16054 register or not.
16055
16056 @item -mstrict-X
16057 @opindex mstrict-X
16058 Use address register @code{X} in a way proposed by the hardware. This means
16059 that @code{X} is only used in indirect, post-increment or
16060 pre-decrement addressing.
16061
16062 Without this option, the @code{X} register may be used in the same way
16063 as @code{Y} or @code{Z} which then is emulated by additional
16064 instructions.
16065 For example, loading a value with @code{X+const} addressing with a
16066 small non-negative @code{const < 64} to a register @var{Rn} is
16067 performed as
16068
16069 @example
16070 adiw r26, const ; X += const
16071 ld @var{Rn}, X ; @var{Rn} = *X
16072 sbiw r26, const ; X -= const
16073 @end example
16074
16075 @item -mtiny-stack
16076 @opindex mtiny-stack
16077 Only change the lower 8@tie{}bits of the stack pointer.
16078
16079 @item -mfract-convert-truncate
16080 @opindex mfract-convert-truncate
16081 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
16082
16083 @item -nodevicelib
16084 @opindex nodevicelib
16085 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
16086
16087 @item -Waddr-space-convert
16088 @opindex Waddr-space-convert
16089 Warn about conversions between address spaces in the case where the
16090 resulting address space is not contained in the incoming address space.
16091
16092 @item -Wmisspelled-isr
16093 @opindex Wmisspelled-isr
16094 Warn if the ISR is misspelled, i.e. without __vector prefix.
16095 Enabled by default.
16096 @end table
16097
16098 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
16099 @cindex @code{EIND}
16100 Pointers in the implementation are 16@tie{}bits wide.
16101 The address of a function or label is represented as word address so
16102 that indirect jumps and calls can target any code address in the
16103 range of 64@tie{}Ki words.
16104
16105 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
16106 bytes of program memory space, there is a special function register called
16107 @code{EIND} that serves as most significant part of the target address
16108 when @code{EICALL} or @code{EIJMP} instructions are used.
16109
16110 Indirect jumps and calls on these devices are handled as follows by
16111 the compiler and are subject to some limitations:
16112
16113 @itemize @bullet
16114
16115 @item
16116 The compiler never sets @code{EIND}.
16117
16118 @item
16119 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
16120 instructions or might read @code{EIND} directly in order to emulate an
16121 indirect call/jump by means of a @code{RET} instruction.
16122
16123 @item
16124 The compiler assumes that @code{EIND} never changes during the startup
16125 code or during the application. In particular, @code{EIND} is not
16126 saved/restored in function or interrupt service routine
16127 prologue/epilogue.
16128
16129 @item
16130 For indirect calls to functions and computed goto, the linker
16131 generates @emph{stubs}. Stubs are jump pads sometimes also called
16132 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
16133 The stub contains a direct jump to the desired address.
16134
16135 @item
16136 Linker relaxation must be turned on so that the linker generates
16137 the stubs correctly in all situations. See the compiler option
16138 @option{-mrelax} and the linker option @option{--relax}.
16139 There are corner cases where the linker is supposed to generate stubs
16140 but aborts without relaxation and without a helpful error message.
16141
16142 @item
16143 The default linker script is arranged for code with @code{EIND = 0}.
16144 If code is supposed to work for a setup with @code{EIND != 0}, a custom
16145 linker script has to be used in order to place the sections whose
16146 name start with @code{.trampolines} into the segment where @code{EIND}
16147 points to.
16148
16149 @item
16150 The startup code from libgcc never sets @code{EIND}.
16151 Notice that startup code is a blend of code from libgcc and AVR-LibC.
16152 For the impact of AVR-LibC on @code{EIND}, see the
16153 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
16154
16155 @item
16156 It is legitimate for user-specific startup code to set up @code{EIND}
16157 early, for example by means of initialization code located in
16158 section @code{.init3}. Such code runs prior to general startup code
16159 that initializes RAM and calls constructors, but after the bit
16160 of startup code from AVR-LibC that sets @code{EIND} to the segment
16161 where the vector table is located.
16162 @example
16163 #include <avr/io.h>
16164
16165 static void
16166 __attribute__((section(".init3"),naked,used,no_instrument_function))
16167 init3_set_eind (void)
16168 @{
16169 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
16170 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
16171 @}
16172 @end example
16173
16174 @noindent
16175 The @code{__trampolines_start} symbol is defined in the linker script.
16176
16177 @item
16178 Stubs are generated automatically by the linker if
16179 the following two conditions are met:
16180 @itemize @minus
16181
16182 @item The address of a label is taken by means of the @code{gs} modifier
16183 (short for @emph{generate stubs}) like so:
16184 @example
16185 LDI r24, lo8(gs(@var{func}))
16186 LDI r25, hi8(gs(@var{func}))
16187 @end example
16188 @item The final location of that label is in a code segment
16189 @emph{outside} the segment where the stubs are located.
16190 @end itemize
16191
16192 @item
16193 The compiler emits such @code{gs} modifiers for code labels in the
16194 following situations:
16195 @itemize @minus
16196 @item Taking address of a function or code label.
16197 @item Computed goto.
16198 @item If prologue-save function is used, see @option{-mcall-prologues}
16199 command-line option.
16200 @item Switch/case dispatch tables. If you do not want such dispatch
16201 tables you can specify the @option{-fno-jump-tables} command-line option.
16202 @item C and C++ constructors/destructors called during startup/shutdown.
16203 @item If the tools hit a @code{gs()} modifier explained above.
16204 @end itemize
16205
16206 @item
16207 Jumping to non-symbolic addresses like so is @emph{not} supported:
16208
16209 @example
16210 int main (void)
16211 @{
16212 /* Call function at word address 0x2 */
16213 return ((int(*)(void)) 0x2)();
16214 @}
16215 @end example
16216
16217 Instead, a stub has to be set up, i.e.@: the function has to be called
16218 through a symbol (@code{func_4} in the example):
16219
16220 @example
16221 int main (void)
16222 @{
16223 extern int func_4 (void);
16224
16225 /* Call function at byte address 0x4 */
16226 return func_4();
16227 @}
16228 @end example
16229
16230 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
16231 Alternatively, @code{func_4} can be defined in the linker script.
16232 @end itemize
16233
16234 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
16235 @cindex @code{RAMPD}
16236 @cindex @code{RAMPX}
16237 @cindex @code{RAMPY}
16238 @cindex @code{RAMPZ}
16239 Some AVR devices support memories larger than the 64@tie{}KiB range
16240 that can be accessed with 16-bit pointers. To access memory locations
16241 outside this 64@tie{}KiB range, the content of a @code{RAMP}
16242 register is used as high part of the address:
16243 The @code{X}, @code{Y}, @code{Z} address register is concatenated
16244 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
16245 register, respectively, to get a wide address. Similarly,
16246 @code{RAMPD} is used together with direct addressing.
16247
16248 @itemize
16249 @item
16250 The startup code initializes the @code{RAMP} special function
16251 registers with zero.
16252
16253 @item
16254 If a @ref{AVR Named Address Spaces,named address space} other than
16255 generic or @code{__flash} is used, then @code{RAMPZ} is set
16256 as needed before the operation.
16257
16258 @item
16259 If the device supports RAM larger than 64@tie{}KiB and the compiler
16260 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
16261 is reset to zero after the operation.
16262
16263 @item
16264 If the device comes with a specific @code{RAMP} register, the ISR
16265 prologue/epilogue saves/restores that SFR and initializes it with
16266 zero in case the ISR code might (implicitly) use it.
16267
16268 @item
16269 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
16270 If you use inline assembler to read from locations outside the
16271 16-bit address range and change one of the @code{RAMP} registers,
16272 you must reset it to zero after the access.
16273
16274 @end itemize
16275
16276 @subsubsection AVR Built-in Macros
16277
16278 GCC defines several built-in macros so that the user code can test
16279 for the presence or absence of features. Almost any of the following
16280 built-in macros are deduced from device capabilities and thus
16281 triggered by the @option{-mmcu=} command-line option.
16282
16283 For even more AVR-specific built-in macros see
16284 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
16285
16286 @table @code
16287
16288 @item __AVR_ARCH__
16289 Build-in macro that resolves to a decimal number that identifies the
16290 architecture and depends on the @option{-mmcu=@var{mcu}} option.
16291 Possible values are:
16292
16293 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
16294 @code{4}, @code{5}, @code{51}, @code{6}
16295
16296 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
16297 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
16298
16299 respectively and
16300
16301 @code{100},
16302 @code{102}, @code{103}, @code{104},
16303 @code{105}, @code{106}, @code{107}
16304
16305 for @var{mcu}=@code{avrtiny},
16306 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
16307 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
16308 If @var{mcu} specifies a device, this built-in macro is set
16309 accordingly. For example, with @option{-mmcu=atmega8} the macro is
16310 defined to @code{4}.
16311
16312 @item __AVR_@var{Device}__
16313 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
16314 the device's name. For example, @option{-mmcu=atmega8} defines the
16315 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
16316 @code{__AVR_ATtiny261A__}, etc.
16317
16318 The built-in macros' names follow
16319 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
16320 the device name as from the AVR user manual. The difference between
16321 @var{Device} in the built-in macro and @var{device} in
16322 @option{-mmcu=@var{device}} is that the latter is always lowercase.
16323
16324 If @var{device} is not a device but only a core architecture like
16325 @samp{avr51}, this macro is not defined.
16326
16327 @item __AVR_DEVICE_NAME__
16328 Setting @option{-mmcu=@var{device}} defines this built-in macro to
16329 the device's name. For example, with @option{-mmcu=atmega8} the macro
16330 is defined to @code{atmega8}.
16331
16332 If @var{device} is not a device but only a core architecture like
16333 @samp{avr51}, this macro is not defined.
16334
16335 @item __AVR_XMEGA__
16336 The device / architecture belongs to the XMEGA family of devices.
16337
16338 @item __AVR_HAVE_ELPM__
16339 The device has the @code{ELPM} instruction.
16340
16341 @item __AVR_HAVE_ELPMX__
16342 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
16343 R@var{n},Z+} instructions.
16344
16345 @item __AVR_HAVE_MOVW__
16346 The device has the @code{MOVW} instruction to perform 16-bit
16347 register-register moves.
16348
16349 @item __AVR_HAVE_LPMX__
16350 The device has the @code{LPM R@var{n},Z} and
16351 @code{LPM R@var{n},Z+} instructions.
16352
16353 @item __AVR_HAVE_MUL__
16354 The device has a hardware multiplier.
16355
16356 @item __AVR_HAVE_JMP_CALL__
16357 The device has the @code{JMP} and @code{CALL} instructions.
16358 This is the case for devices with more than 8@tie{}KiB of program
16359 memory.
16360
16361 @item __AVR_HAVE_EIJMP_EICALL__
16362 @itemx __AVR_3_BYTE_PC__
16363 The device has the @code{EIJMP} and @code{EICALL} instructions.
16364 This is the case for devices with more than 128@tie{}KiB of program memory.
16365 This also means that the program counter
16366 (PC) is 3@tie{}bytes wide.
16367
16368 @item __AVR_2_BYTE_PC__
16369 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
16370 with up to 128@tie{}KiB of program memory.
16371
16372 @item __AVR_HAVE_8BIT_SP__
16373 @itemx __AVR_HAVE_16BIT_SP__
16374 The stack pointer (SP) register is treated as 8-bit respectively
16375 16-bit register by the compiler.
16376 The definition of these macros is affected by @option{-mtiny-stack}.
16377
16378 @item __AVR_HAVE_SPH__
16379 @itemx __AVR_SP8__
16380 The device has the SPH (high part of stack pointer) special function
16381 register or has an 8-bit stack pointer, respectively.
16382 The definition of these macros is affected by @option{-mmcu=} and
16383 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
16384 by @option{-msp8}.
16385
16386 @item __AVR_HAVE_RAMPD__
16387 @itemx __AVR_HAVE_RAMPX__
16388 @itemx __AVR_HAVE_RAMPY__
16389 @itemx __AVR_HAVE_RAMPZ__
16390 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
16391 @code{RAMPZ} special function register, respectively.
16392
16393 @item __NO_INTERRUPTS__
16394 This macro reflects the @option{-mno-interrupts} command-line option.
16395
16396 @item __AVR_ERRATA_SKIP__
16397 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
16398 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
16399 instructions because of a hardware erratum. Skip instructions are
16400 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
16401 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
16402 set.
16403
16404 @item __AVR_ISA_RMW__
16405 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
16406
16407 @item __AVR_SFR_OFFSET__=@var{offset}
16408 Instructions that can address I/O special function registers directly
16409 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
16410 address as if addressed by an instruction to access RAM like @code{LD}
16411 or @code{STS}. This offset depends on the device architecture and has
16412 to be subtracted from the RAM address in order to get the
16413 respective I/O@tie{}address.
16414
16415 @item __AVR_SHORT_CALLS__
16416 The @option{-mshort-calls} command line option is set.
16417
16418 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
16419 Some devices support reading from flash memory by means of @code{LD*}
16420 instructions. The flash memory is seen in the data address space
16421 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
16422 is not defined, this feature is not available. If defined,
16423 the address space is linear and there is no need to put
16424 @code{.rodata} into RAM. This is handled by the default linker
16425 description file, and is currently available for
16426 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
16427 there is no need to use address spaces like @code{__flash} or
16428 features like attribute @code{progmem} and @code{pgm_read_*}.
16429
16430 @item __WITH_AVRLIBC__
16431 The compiler is configured to be used together with AVR-Libc.
16432 See the @option{--with-avrlibc} configure option.
16433
16434 @end table
16435
16436 @node Blackfin Options
16437 @subsection Blackfin Options
16438 @cindex Blackfin Options
16439
16440 @table @gcctabopt
16441 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
16442 @opindex mcpu=
16443 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
16444 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
16445 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
16446 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
16447 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
16448 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
16449 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
16450 @samp{bf561}, @samp{bf592}.
16451
16452 The optional @var{sirevision} specifies the silicon revision of the target
16453 Blackfin processor. Any workarounds available for the targeted silicon revision
16454 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
16455 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
16456 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
16457 hexadecimal digits representing the major and minor numbers in the silicon
16458 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
16459 is not defined. If @var{sirevision} is @samp{any}, the
16460 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
16461 If this optional @var{sirevision} is not used, GCC assumes the latest known
16462 silicon revision of the targeted Blackfin processor.
16463
16464 GCC defines a preprocessor macro for the specified @var{cpu}.
16465 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
16466 provided by libgloss to be linked in if @option{-msim} is not given.
16467
16468 Without this option, @samp{bf532} is used as the processor by default.
16469
16470 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
16471 only the preprocessor macro is defined.
16472
16473 @item -msim
16474 @opindex msim
16475 Specifies that the program will be run on the simulator. This causes
16476 the simulator BSP provided by libgloss to be linked in. This option
16477 has effect only for @samp{bfin-elf} toolchain.
16478 Certain other options, such as @option{-mid-shared-library} and
16479 @option{-mfdpic}, imply @option{-msim}.
16480
16481 @item -momit-leaf-frame-pointer
16482 @opindex momit-leaf-frame-pointer
16483 Don't keep the frame pointer in a register for leaf functions. This
16484 avoids the instructions to save, set up and restore frame pointers and
16485 makes an extra register available in leaf functions. The option
16486 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
16487 which might make debugging harder.
16488
16489 @item -mspecld-anomaly
16490 @opindex mspecld-anomaly
16491 When enabled, the compiler ensures that the generated code does not
16492 contain speculative loads after jump instructions. If this option is used,
16493 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
16494
16495 @item -mno-specld-anomaly
16496 @opindex mno-specld-anomaly
16497 Don't generate extra code to prevent speculative loads from occurring.
16498
16499 @item -mcsync-anomaly
16500 @opindex mcsync-anomaly
16501 When enabled, the compiler ensures that the generated code does not
16502 contain CSYNC or SSYNC instructions too soon after conditional branches.
16503 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
16504
16505 @item -mno-csync-anomaly
16506 @opindex mno-csync-anomaly
16507 Don't generate extra code to prevent CSYNC or SSYNC instructions from
16508 occurring too soon after a conditional branch.
16509
16510 @item -mlow-64k
16511 @opindex mlow-64k
16512 When enabled, the compiler is free to take advantage of the knowledge that
16513 the entire program fits into the low 64k of memory.
16514
16515 @item -mno-low-64k
16516 @opindex mno-low-64k
16517 Assume that the program is arbitrarily large. This is the default.
16518
16519 @item -mstack-check-l1
16520 @opindex mstack-check-l1
16521 Do stack checking using information placed into L1 scratchpad memory by the
16522 uClinux kernel.
16523
16524 @item -mid-shared-library
16525 @opindex mid-shared-library
16526 Generate code that supports shared libraries via the library ID method.
16527 This allows for execute in place and shared libraries in an environment
16528 without virtual memory management. This option implies @option{-fPIC}.
16529 With a @samp{bfin-elf} target, this option implies @option{-msim}.
16530
16531 @item -mno-id-shared-library
16532 @opindex mno-id-shared-library
16533 Generate code that doesn't assume ID-based shared libraries are being used.
16534 This is the default.
16535
16536 @item -mleaf-id-shared-library
16537 @opindex mleaf-id-shared-library
16538 Generate code that supports shared libraries via the library ID method,
16539 but assumes that this library or executable won't link against any other
16540 ID shared libraries. That allows the compiler to use faster code for jumps
16541 and calls.
16542
16543 @item -mno-leaf-id-shared-library
16544 @opindex mno-leaf-id-shared-library
16545 Do not assume that the code being compiled won't link against any ID shared
16546 libraries. Slower code is generated for jump and call insns.
16547
16548 @item -mshared-library-id=n
16549 @opindex mshared-library-id
16550 Specifies the identification number of the ID-based shared library being
16551 compiled. Specifying a value of 0 generates more compact code; specifying
16552 other values forces the allocation of that number to the current
16553 library but is no more space- or time-efficient than omitting this option.
16554
16555 @item -msep-data
16556 @opindex msep-data
16557 Generate code that allows the data segment to be located in a different
16558 area of memory from the text segment. This allows for execute in place in
16559 an environment without virtual memory management by eliminating relocations
16560 against the text section.
16561
16562 @item -mno-sep-data
16563 @opindex mno-sep-data
16564 Generate code that assumes that the data segment follows the text segment.
16565 This is the default.
16566
16567 @item -mlong-calls
16568 @itemx -mno-long-calls
16569 @opindex mlong-calls
16570 @opindex mno-long-calls
16571 Tells the compiler to perform function calls by first loading the
16572 address of the function into a register and then performing a subroutine
16573 call on this register. This switch is needed if the target function
16574 lies outside of the 24-bit addressing range of the offset-based
16575 version of subroutine call instruction.
16576
16577 This feature is not enabled by default. Specifying
16578 @option{-mno-long-calls} restores the default behavior. Note these
16579 switches have no effect on how the compiler generates code to handle
16580 function calls via function pointers.
16581
16582 @item -mfast-fp
16583 @opindex mfast-fp
16584 Link with the fast floating-point library. This library relaxes some of
16585 the IEEE floating-point standard's rules for checking inputs against
16586 Not-a-Number (NAN), in the interest of performance.
16587
16588 @item -minline-plt
16589 @opindex minline-plt
16590 Enable inlining of PLT entries in function calls to functions that are
16591 not known to bind locally. It has no effect without @option{-mfdpic}.
16592
16593 @item -mmulticore
16594 @opindex mmulticore
16595 Build a standalone application for multicore Blackfin processors.
16596 This option causes proper start files and link scripts supporting
16597 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
16598 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
16599
16600 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
16601 selects the one-application-per-core programming model. Without
16602 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
16603 programming model is used. In this model, the main function of Core B
16604 should be named as @code{coreb_main}.
16605
16606 If this option is not used, the single-core application programming
16607 model is used.
16608
16609 @item -mcorea
16610 @opindex mcorea
16611 Build a standalone application for Core A of BF561 when using
16612 the one-application-per-core programming model. Proper start files
16613 and link scripts are used to support Core A, and the macro
16614 @code{__BFIN_COREA} is defined.
16615 This option can only be used in conjunction with @option{-mmulticore}.
16616
16617 @item -mcoreb
16618 @opindex mcoreb
16619 Build a standalone application for Core B of BF561 when using
16620 the one-application-per-core programming model. Proper start files
16621 and link scripts are used to support Core B, and the macro
16622 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
16623 should be used instead of @code{main}.
16624 This option can only be used in conjunction with @option{-mmulticore}.
16625
16626 @item -msdram
16627 @opindex msdram
16628 Build a standalone application for SDRAM. Proper start files and
16629 link scripts are used to put the application into SDRAM, and the macro
16630 @code{__BFIN_SDRAM} is defined.
16631 The loader should initialize SDRAM before loading the application.
16632
16633 @item -micplb
16634 @opindex micplb
16635 Assume that ICPLBs are enabled at run time. This has an effect on certain
16636 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
16637 are enabled; for standalone applications the default is off.
16638 @end table
16639
16640 @node C6X Options
16641 @subsection C6X Options
16642 @cindex C6X Options
16643
16644 @table @gcctabopt
16645 @item -march=@var{name}
16646 @opindex march
16647 This specifies the name of the target architecture. GCC uses this
16648 name to determine what kind of instructions it can emit when generating
16649 assembly code. Permissible names are: @samp{c62x},
16650 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
16651
16652 @item -mbig-endian
16653 @opindex mbig-endian
16654 Generate code for a big-endian target.
16655
16656 @item -mlittle-endian
16657 @opindex mlittle-endian
16658 Generate code for a little-endian target. This is the default.
16659
16660 @item -msim
16661 @opindex msim
16662 Choose startup files and linker script suitable for the simulator.
16663
16664 @item -msdata=default
16665 @opindex msdata=default
16666 Put small global and static data in the @code{.neardata} section,
16667 which is pointed to by register @code{B14}. Put small uninitialized
16668 global and static data in the @code{.bss} section, which is adjacent
16669 to the @code{.neardata} section. Put small read-only data into the
16670 @code{.rodata} section. The corresponding sections used for large
16671 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
16672
16673 @item -msdata=all
16674 @opindex msdata=all
16675 Put all data, not just small objects, into the sections reserved for
16676 small data, and use addressing relative to the @code{B14} register to
16677 access them.
16678
16679 @item -msdata=none
16680 @opindex msdata=none
16681 Make no use of the sections reserved for small data, and use absolute
16682 addresses to access all data. Put all initialized global and static
16683 data in the @code{.fardata} section, and all uninitialized data in the
16684 @code{.far} section. Put all constant data into the @code{.const}
16685 section.
16686 @end table
16687
16688 @node CRIS Options
16689 @subsection CRIS Options
16690 @cindex CRIS Options
16691
16692 These options are defined specifically for the CRIS ports.
16693
16694 @table @gcctabopt
16695 @item -march=@var{architecture-type}
16696 @itemx -mcpu=@var{architecture-type}
16697 @opindex march
16698 @opindex mcpu
16699 Generate code for the specified architecture. The choices for
16700 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
16701 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
16702 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
16703 @samp{v10}.
16704
16705 @item -mtune=@var{architecture-type}
16706 @opindex mtune
16707 Tune to @var{architecture-type} everything applicable about the generated
16708 code, except for the ABI and the set of available instructions. The
16709 choices for @var{architecture-type} are the same as for
16710 @option{-march=@var{architecture-type}}.
16711
16712 @item -mmax-stack-frame=@var{n}
16713 @opindex mmax-stack-frame
16714 Warn when the stack frame of a function exceeds @var{n} bytes.
16715
16716 @item -metrax4
16717 @itemx -metrax100
16718 @opindex metrax4
16719 @opindex metrax100
16720 The options @option{-metrax4} and @option{-metrax100} are synonyms for
16721 @option{-march=v3} and @option{-march=v8} respectively.
16722
16723 @item -mmul-bug-workaround
16724 @itemx -mno-mul-bug-workaround
16725 @opindex mmul-bug-workaround
16726 @opindex mno-mul-bug-workaround
16727 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
16728 models where it applies. This option is active by default.
16729
16730 @item -mpdebug
16731 @opindex mpdebug
16732 Enable CRIS-specific verbose debug-related information in the assembly
16733 code. This option also has the effect of turning off the @samp{#NO_APP}
16734 formatted-code indicator to the assembler at the beginning of the
16735 assembly file.
16736
16737 @item -mcc-init
16738 @opindex mcc-init
16739 Do not use condition-code results from previous instruction; always emit
16740 compare and test instructions before use of condition codes.
16741
16742 @item -mno-side-effects
16743 @opindex mno-side-effects
16744 Do not emit instructions with side effects in addressing modes other than
16745 post-increment.
16746
16747 @item -mstack-align
16748 @itemx -mno-stack-align
16749 @itemx -mdata-align
16750 @itemx -mno-data-align
16751 @itemx -mconst-align
16752 @itemx -mno-const-align
16753 @opindex mstack-align
16754 @opindex mno-stack-align
16755 @opindex mdata-align
16756 @opindex mno-data-align
16757 @opindex mconst-align
16758 @opindex mno-const-align
16759 These options (@samp{no-} options) arrange (eliminate arrangements) for the
16760 stack frame, individual data and constants to be aligned for the maximum
16761 single data access size for the chosen CPU model. The default is to
16762 arrange for 32-bit alignment. ABI details such as structure layout are
16763 not affected by these options.
16764
16765 @item -m32-bit
16766 @itemx -m16-bit
16767 @itemx -m8-bit
16768 @opindex m32-bit
16769 @opindex m16-bit
16770 @opindex m8-bit
16771 Similar to the stack- data- and const-align options above, these options
16772 arrange for stack frame, writable data and constants to all be 32-bit,
16773 16-bit or 8-bit aligned. The default is 32-bit alignment.
16774
16775 @item -mno-prologue-epilogue
16776 @itemx -mprologue-epilogue
16777 @opindex mno-prologue-epilogue
16778 @opindex mprologue-epilogue
16779 With @option{-mno-prologue-epilogue}, the normal function prologue and
16780 epilogue which set up the stack frame are omitted and no return
16781 instructions or return sequences are generated in the code. Use this
16782 option only together with visual inspection of the compiled code: no
16783 warnings or errors are generated when call-saved registers must be saved,
16784 or storage for local variables needs to be allocated.
16785
16786 @item -mno-gotplt
16787 @itemx -mgotplt
16788 @opindex mno-gotplt
16789 @opindex mgotplt
16790 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
16791 instruction sequences that load addresses for functions from the PLT part
16792 of the GOT rather than (traditional on other architectures) calls to the
16793 PLT@. The default is @option{-mgotplt}.
16794
16795 @item -melf
16796 @opindex melf
16797 Legacy no-op option only recognized with the cris-axis-elf and
16798 cris-axis-linux-gnu targets.
16799
16800 @item -mlinux
16801 @opindex mlinux
16802 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
16803
16804 @item -sim
16805 @opindex sim
16806 This option, recognized for the cris-axis-elf, arranges
16807 to link with input-output functions from a simulator library. Code,
16808 initialized data and zero-initialized data are allocated consecutively.
16809
16810 @item -sim2
16811 @opindex sim2
16812 Like @option{-sim}, but pass linker options to locate initialized data at
16813 0x40000000 and zero-initialized data at 0x80000000.
16814 @end table
16815
16816 @node CR16 Options
16817 @subsection CR16 Options
16818 @cindex CR16 Options
16819
16820 These options are defined specifically for the CR16 ports.
16821
16822 @table @gcctabopt
16823
16824 @item -mmac
16825 @opindex mmac
16826 Enable the use of multiply-accumulate instructions. Disabled by default.
16827
16828 @item -mcr16cplus
16829 @itemx -mcr16c
16830 @opindex mcr16cplus
16831 @opindex mcr16c
16832 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
16833 is default.
16834
16835 @item -msim
16836 @opindex msim
16837 Links the library libsim.a which is in compatible with simulator. Applicable
16838 to ELF compiler only.
16839
16840 @item -mint32
16841 @opindex mint32
16842 Choose integer type as 32-bit wide.
16843
16844 @item -mbit-ops
16845 @opindex mbit-ops
16846 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
16847
16848 @item -mdata-model=@var{model}
16849 @opindex mdata-model
16850 Choose a data model. The choices for @var{model} are @samp{near},
16851 @samp{far} or @samp{medium}. @samp{medium} is default.
16852 However, @samp{far} is not valid with @option{-mcr16c}, as the
16853 CR16C architecture does not support the far data model.
16854 @end table
16855
16856 @node Darwin Options
16857 @subsection Darwin Options
16858 @cindex Darwin options
16859
16860 These options are defined for all architectures running the Darwin operating
16861 system.
16862
16863 FSF GCC on Darwin does not create ``fat'' object files; it creates
16864 an object file for the single architecture that GCC was built to
16865 target. Apple's GCC on Darwin does create ``fat'' files if multiple
16866 @option{-arch} options are used; it does so by running the compiler or
16867 linker multiple times and joining the results together with
16868 @file{lipo}.
16869
16870 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
16871 @samp{i686}) is determined by the flags that specify the ISA
16872 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
16873 @option{-force_cpusubtype_ALL} option can be used to override this.
16874
16875 The Darwin tools vary in their behavior when presented with an ISA
16876 mismatch. The assembler, @file{as}, only permits instructions to
16877 be used that are valid for the subtype of the file it is generating,
16878 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
16879 The linker for shared libraries, @file{/usr/bin/libtool}, fails
16880 and prints an error if asked to create a shared library with a less
16881 restrictive subtype than its input files (for instance, trying to put
16882 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
16883 for executables, @command{ld}, quietly gives the executable the most
16884 restrictive subtype of any of its input files.
16885
16886 @table @gcctabopt
16887 @item -F@var{dir}
16888 @opindex F
16889 Add the framework directory @var{dir} to the head of the list of
16890 directories to be searched for header files. These directories are
16891 interleaved with those specified by @option{-I} options and are
16892 scanned in a left-to-right order.
16893
16894 A framework directory is a directory with frameworks in it. A
16895 framework is a directory with a @file{Headers} and/or
16896 @file{PrivateHeaders} directory contained directly in it that ends
16897 in @file{.framework}. The name of a framework is the name of this
16898 directory excluding the @file{.framework}. Headers associated with
16899 the framework are found in one of those two directories, with
16900 @file{Headers} being searched first. A subframework is a framework
16901 directory that is in a framework's @file{Frameworks} directory.
16902 Includes of subframework headers can only appear in a header of a
16903 framework that contains the subframework, or in a sibling subframework
16904 header. Two subframeworks are siblings if they occur in the same
16905 framework. A subframework should not have the same name as a
16906 framework; a warning is issued if this is violated. Currently a
16907 subframework cannot have subframeworks; in the future, the mechanism
16908 may be extended to support this. The standard frameworks can be found
16909 in @file{/System/Library/Frameworks} and
16910 @file{/Library/Frameworks}. An example include looks like
16911 @code{#include <Framework/header.h>}, where @file{Framework} denotes
16912 the name of the framework and @file{header.h} is found in the
16913 @file{PrivateHeaders} or @file{Headers} directory.
16914
16915 @item -iframework@var{dir}
16916 @opindex iframework
16917 Like @option{-F} except the directory is a treated as a system
16918 directory. The main difference between this @option{-iframework} and
16919 @option{-F} is that with @option{-iframework} the compiler does not
16920 warn about constructs contained within header files found via
16921 @var{dir}. This option is valid only for the C family of languages.
16922
16923 @item -gused
16924 @opindex gused
16925 Emit debugging information for symbols that are used. For stabs
16926 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
16927 This is by default ON@.
16928
16929 @item -gfull
16930 @opindex gfull
16931 Emit debugging information for all symbols and types.
16932
16933 @item -mmacosx-version-min=@var{version}
16934 The earliest version of MacOS X that this executable will run on
16935 is @var{version}. Typical values of @var{version} include @code{10.1},
16936 @code{10.2}, and @code{10.3.9}.
16937
16938 If the compiler was built to use the system's headers by default,
16939 then the default for this option is the system version on which the
16940 compiler is running, otherwise the default is to make choices that
16941 are compatible with as many systems and code bases as possible.
16942
16943 @item -mkernel
16944 @opindex mkernel
16945 Enable kernel development mode. The @option{-mkernel} option sets
16946 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
16947 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
16948 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
16949 applicable. This mode also sets @option{-mno-altivec},
16950 @option{-msoft-float}, @option{-fno-builtin} and
16951 @option{-mlong-branch} for PowerPC targets.
16952
16953 @item -mone-byte-bool
16954 @opindex mone-byte-bool
16955 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
16956 By default @code{sizeof(bool)} is @code{4} when compiling for
16957 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
16958 option has no effect on x86.
16959
16960 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
16961 to generate code that is not binary compatible with code generated
16962 without that switch. Using this switch may require recompiling all
16963 other modules in a program, including system libraries. Use this
16964 switch to conform to a non-default data model.
16965
16966 @item -mfix-and-continue
16967 @itemx -ffix-and-continue
16968 @itemx -findirect-data
16969 @opindex mfix-and-continue
16970 @opindex ffix-and-continue
16971 @opindex findirect-data
16972 Generate code suitable for fast turnaround development, such as to
16973 allow GDB to dynamically load @file{.o} files into already-running
16974 programs. @option{-findirect-data} and @option{-ffix-and-continue}
16975 are provided for backwards compatibility.
16976
16977 @item -all_load
16978 @opindex all_load
16979 Loads all members of static archive libraries.
16980 See man ld(1) for more information.
16981
16982 @item -arch_errors_fatal
16983 @opindex arch_errors_fatal
16984 Cause the errors having to do with files that have the wrong architecture
16985 to be fatal.
16986
16987 @item -bind_at_load
16988 @opindex bind_at_load
16989 Causes the output file to be marked such that the dynamic linker will
16990 bind all undefined references when the file is loaded or launched.
16991
16992 @item -bundle
16993 @opindex bundle
16994 Produce a Mach-o bundle format file.
16995 See man ld(1) for more information.
16996
16997 @item -bundle_loader @var{executable}
16998 @opindex bundle_loader
16999 This option specifies the @var{executable} that will load the build
17000 output file being linked. See man ld(1) for more information.
17001
17002 @item -dynamiclib
17003 @opindex dynamiclib
17004 When passed this option, GCC produces a dynamic library instead of
17005 an executable when linking, using the Darwin @file{libtool} command.
17006
17007 @item -force_cpusubtype_ALL
17008 @opindex force_cpusubtype_ALL
17009 This causes GCC's output file to have the @samp{ALL} subtype, instead of
17010 one controlled by the @option{-mcpu} or @option{-march} option.
17011
17012 @item -allowable_client @var{client_name}
17013 @itemx -client_name
17014 @itemx -compatibility_version
17015 @itemx -current_version
17016 @itemx -dead_strip
17017 @itemx -dependency-file
17018 @itemx -dylib_file
17019 @itemx -dylinker_install_name
17020 @itemx -dynamic
17021 @itemx -exported_symbols_list
17022 @itemx -filelist
17023 @need 800
17024 @itemx -flat_namespace
17025 @itemx -force_flat_namespace
17026 @itemx -headerpad_max_install_names
17027 @itemx -image_base
17028 @itemx -init
17029 @itemx -install_name
17030 @itemx -keep_private_externs
17031 @itemx -multi_module
17032 @itemx -multiply_defined
17033 @itemx -multiply_defined_unused
17034 @need 800
17035 @itemx -noall_load
17036 @itemx -no_dead_strip_inits_and_terms
17037 @itemx -nofixprebinding
17038 @itemx -nomultidefs
17039 @itemx -noprebind
17040 @itemx -noseglinkedit
17041 @itemx -pagezero_size
17042 @itemx -prebind
17043 @itemx -prebind_all_twolevel_modules
17044 @itemx -private_bundle
17045 @need 800
17046 @itemx -read_only_relocs
17047 @itemx -sectalign
17048 @itemx -sectobjectsymbols
17049 @itemx -whyload
17050 @itemx -seg1addr
17051 @itemx -sectcreate
17052 @itemx -sectobjectsymbols
17053 @itemx -sectorder
17054 @itemx -segaddr
17055 @itemx -segs_read_only_addr
17056 @need 800
17057 @itemx -segs_read_write_addr
17058 @itemx -seg_addr_table
17059 @itemx -seg_addr_table_filename
17060 @itemx -seglinkedit
17061 @itemx -segprot
17062 @itemx -segs_read_only_addr
17063 @itemx -segs_read_write_addr
17064 @itemx -single_module
17065 @itemx -static
17066 @itemx -sub_library
17067 @need 800
17068 @itemx -sub_umbrella
17069 @itemx -twolevel_namespace
17070 @itemx -umbrella
17071 @itemx -undefined
17072 @itemx -unexported_symbols_list
17073 @itemx -weak_reference_mismatches
17074 @itemx -whatsloaded
17075 @opindex allowable_client
17076 @opindex client_name
17077 @opindex compatibility_version
17078 @opindex current_version
17079 @opindex dead_strip
17080 @opindex dependency-file
17081 @opindex dylib_file
17082 @opindex dylinker_install_name
17083 @opindex dynamic
17084 @opindex exported_symbols_list
17085 @opindex filelist
17086 @opindex flat_namespace
17087 @opindex force_flat_namespace
17088 @opindex headerpad_max_install_names
17089 @opindex image_base
17090 @opindex init
17091 @opindex install_name
17092 @opindex keep_private_externs
17093 @opindex multi_module
17094 @opindex multiply_defined
17095 @opindex multiply_defined_unused
17096 @opindex noall_load
17097 @opindex no_dead_strip_inits_and_terms
17098 @opindex nofixprebinding
17099 @opindex nomultidefs
17100 @opindex noprebind
17101 @opindex noseglinkedit
17102 @opindex pagezero_size
17103 @opindex prebind
17104 @opindex prebind_all_twolevel_modules
17105 @opindex private_bundle
17106 @opindex read_only_relocs
17107 @opindex sectalign
17108 @opindex sectobjectsymbols
17109 @opindex whyload
17110 @opindex seg1addr
17111 @opindex sectcreate
17112 @opindex sectobjectsymbols
17113 @opindex sectorder
17114 @opindex segaddr
17115 @opindex segs_read_only_addr
17116 @opindex segs_read_write_addr
17117 @opindex seg_addr_table
17118 @opindex seg_addr_table_filename
17119 @opindex seglinkedit
17120 @opindex segprot
17121 @opindex segs_read_only_addr
17122 @opindex segs_read_write_addr
17123 @opindex single_module
17124 @opindex static
17125 @opindex sub_library
17126 @opindex sub_umbrella
17127 @opindex twolevel_namespace
17128 @opindex umbrella
17129 @opindex undefined
17130 @opindex unexported_symbols_list
17131 @opindex weak_reference_mismatches
17132 @opindex whatsloaded
17133 These options are passed to the Darwin linker. The Darwin linker man page
17134 describes them in detail.
17135 @end table
17136
17137 @node DEC Alpha Options
17138 @subsection DEC Alpha Options
17139
17140 These @samp{-m} options are defined for the DEC Alpha implementations:
17141
17142 @table @gcctabopt
17143 @item -mno-soft-float
17144 @itemx -msoft-float
17145 @opindex mno-soft-float
17146 @opindex msoft-float
17147 Use (do not use) the hardware floating-point instructions for
17148 floating-point operations. When @option{-msoft-float} is specified,
17149 functions in @file{libgcc.a} are used to perform floating-point
17150 operations. Unless they are replaced by routines that emulate the
17151 floating-point operations, or compiled in such a way as to call such
17152 emulations routines, these routines issue floating-point
17153 operations. If you are compiling for an Alpha without floating-point
17154 operations, you must ensure that the library is built so as not to call
17155 them.
17156
17157 Note that Alpha implementations without floating-point operations are
17158 required to have floating-point registers.
17159
17160 @item -mfp-reg
17161 @itemx -mno-fp-regs
17162 @opindex mfp-reg
17163 @opindex mno-fp-regs
17164 Generate code that uses (does not use) the floating-point register set.
17165 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
17166 register set is not used, floating-point operands are passed in integer
17167 registers as if they were integers and floating-point results are passed
17168 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
17169 so any function with a floating-point argument or return value called by code
17170 compiled with @option{-mno-fp-regs} must also be compiled with that
17171 option.
17172
17173 A typical use of this option is building a kernel that does not use,
17174 and hence need not save and restore, any floating-point registers.
17175
17176 @item -mieee
17177 @opindex mieee
17178 The Alpha architecture implements floating-point hardware optimized for
17179 maximum performance. It is mostly compliant with the IEEE floating-point
17180 standard. However, for full compliance, software assistance is
17181 required. This option generates code fully IEEE-compliant code
17182 @emph{except} that the @var{inexact-flag} is not maintained (see below).
17183 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
17184 defined during compilation. The resulting code is less efficient but is
17185 able to correctly support denormalized numbers and exceptional IEEE
17186 values such as not-a-number and plus/minus infinity. Other Alpha
17187 compilers call this option @option{-ieee_with_no_inexact}.
17188
17189 @item -mieee-with-inexact
17190 @opindex mieee-with-inexact
17191 This is like @option{-mieee} except the generated code also maintains
17192 the IEEE @var{inexact-flag}. Turning on this option causes the
17193 generated code to implement fully-compliant IEEE math. In addition to
17194 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
17195 macro. On some Alpha implementations the resulting code may execute
17196 significantly slower than the code generated by default. Since there is
17197 very little code that depends on the @var{inexact-flag}, you should
17198 normally not specify this option. Other Alpha compilers call this
17199 option @option{-ieee_with_inexact}.
17200
17201 @item -mfp-trap-mode=@var{trap-mode}
17202 @opindex mfp-trap-mode
17203 This option controls what floating-point related traps are enabled.
17204 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
17205 The trap mode can be set to one of four values:
17206
17207 @table @samp
17208 @item n
17209 This is the default (normal) setting. The only traps that are enabled
17210 are the ones that cannot be disabled in software (e.g., division by zero
17211 trap).
17212
17213 @item u
17214 In addition to the traps enabled by @samp{n}, underflow traps are enabled
17215 as well.
17216
17217 @item su
17218 Like @samp{u}, but the instructions are marked to be safe for software
17219 completion (see Alpha architecture manual for details).
17220
17221 @item sui
17222 Like @samp{su}, but inexact traps are enabled as well.
17223 @end table
17224
17225 @item -mfp-rounding-mode=@var{rounding-mode}
17226 @opindex mfp-rounding-mode
17227 Selects the IEEE rounding mode. Other Alpha compilers call this option
17228 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
17229 of:
17230
17231 @table @samp
17232 @item n
17233 Normal IEEE rounding mode. Floating-point numbers are rounded towards
17234 the nearest machine number or towards the even machine number in case
17235 of a tie.
17236
17237 @item m
17238 Round towards minus infinity.
17239
17240 @item c
17241 Chopped rounding mode. Floating-point numbers are rounded towards zero.
17242
17243 @item d
17244 Dynamic rounding mode. A field in the floating-point control register
17245 (@var{fpcr}, see Alpha architecture reference manual) controls the
17246 rounding mode in effect. The C library initializes this register for
17247 rounding towards plus infinity. Thus, unless your program modifies the
17248 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
17249 @end table
17250
17251 @item -mtrap-precision=@var{trap-precision}
17252 @opindex mtrap-precision
17253 In the Alpha architecture, floating-point traps are imprecise. This
17254 means without software assistance it is impossible to recover from a
17255 floating trap and program execution normally needs to be terminated.
17256 GCC can generate code that can assist operating system trap handlers
17257 in determining the exact location that caused a floating-point trap.
17258 Depending on the requirements of an application, different levels of
17259 precisions can be selected:
17260
17261 @table @samp
17262 @item p
17263 Program precision. This option is the default and means a trap handler
17264 can only identify which program caused a floating-point exception.
17265
17266 @item f
17267 Function precision. The trap handler can determine the function that
17268 caused a floating-point exception.
17269
17270 @item i
17271 Instruction precision. The trap handler can determine the exact
17272 instruction that caused a floating-point exception.
17273 @end table
17274
17275 Other Alpha compilers provide the equivalent options called
17276 @option{-scope_safe} and @option{-resumption_safe}.
17277
17278 @item -mieee-conformant
17279 @opindex mieee-conformant
17280 This option marks the generated code as IEEE conformant. You must not
17281 use this option unless you also specify @option{-mtrap-precision=i} and either
17282 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
17283 is to emit the line @samp{.eflag 48} in the function prologue of the
17284 generated assembly file.
17285
17286 @item -mbuild-constants
17287 @opindex mbuild-constants
17288 Normally GCC examines a 32- or 64-bit integer constant to
17289 see if it can construct it from smaller constants in two or three
17290 instructions. If it cannot, it outputs the constant as a literal and
17291 generates code to load it from the data segment at run time.
17292
17293 Use this option to require GCC to construct @emph{all} integer constants
17294 using code, even if it takes more instructions (the maximum is six).
17295
17296 You typically use this option to build a shared library dynamic
17297 loader. Itself a shared library, it must relocate itself in memory
17298 before it can find the variables and constants in its own data segment.
17299
17300 @item -mbwx
17301 @itemx -mno-bwx
17302 @itemx -mcix
17303 @itemx -mno-cix
17304 @itemx -mfix
17305 @itemx -mno-fix
17306 @itemx -mmax
17307 @itemx -mno-max
17308 @opindex mbwx
17309 @opindex mno-bwx
17310 @opindex mcix
17311 @opindex mno-cix
17312 @opindex mfix
17313 @opindex mno-fix
17314 @opindex mmax
17315 @opindex mno-max
17316 Indicate whether GCC should generate code to use the optional BWX,
17317 CIX, FIX and MAX instruction sets. The default is to use the instruction
17318 sets supported by the CPU type specified via @option{-mcpu=} option or that
17319 of the CPU on which GCC was built if none is specified.
17320
17321 @item -mfloat-vax
17322 @itemx -mfloat-ieee
17323 @opindex mfloat-vax
17324 @opindex mfloat-ieee
17325 Generate code that uses (does not use) VAX F and G floating-point
17326 arithmetic instead of IEEE single and double precision.
17327
17328 @item -mexplicit-relocs
17329 @itemx -mno-explicit-relocs
17330 @opindex mexplicit-relocs
17331 @opindex mno-explicit-relocs
17332 Older Alpha assemblers provided no way to generate symbol relocations
17333 except via assembler macros. Use of these macros does not allow
17334 optimal instruction scheduling. GNU binutils as of version 2.12
17335 supports a new syntax that allows the compiler to explicitly mark
17336 which relocations should apply to which instructions. This option
17337 is mostly useful for debugging, as GCC detects the capabilities of
17338 the assembler when it is built and sets the default accordingly.
17339
17340 @item -msmall-data
17341 @itemx -mlarge-data
17342 @opindex msmall-data
17343 @opindex mlarge-data
17344 When @option{-mexplicit-relocs} is in effect, static data is
17345 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
17346 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
17347 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
17348 16-bit relocations off of the @code{$gp} register. This limits the
17349 size of the small data area to 64KB, but allows the variables to be
17350 directly accessed via a single instruction.
17351
17352 The default is @option{-mlarge-data}. With this option the data area
17353 is limited to just below 2GB@. Programs that require more than 2GB of
17354 data must use @code{malloc} or @code{mmap} to allocate the data in the
17355 heap instead of in the program's data segment.
17356
17357 When generating code for shared libraries, @option{-fpic} implies
17358 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
17359
17360 @item -msmall-text
17361 @itemx -mlarge-text
17362 @opindex msmall-text
17363 @opindex mlarge-text
17364 When @option{-msmall-text} is used, the compiler assumes that the
17365 code of the entire program (or shared library) fits in 4MB, and is
17366 thus reachable with a branch instruction. When @option{-msmall-data}
17367 is used, the compiler can assume that all local symbols share the
17368 same @code{$gp} value, and thus reduce the number of instructions
17369 required for a function call from 4 to 1.
17370
17371 The default is @option{-mlarge-text}.
17372
17373 @item -mcpu=@var{cpu_type}
17374 @opindex mcpu
17375 Set the instruction set and instruction scheduling parameters for
17376 machine type @var{cpu_type}. You can specify either the @samp{EV}
17377 style name or the corresponding chip number. GCC supports scheduling
17378 parameters for the EV4, EV5 and EV6 family of processors and
17379 chooses the default values for the instruction set from the processor
17380 you specify. If you do not specify a processor type, GCC defaults
17381 to the processor on which the compiler was built.
17382
17383 Supported values for @var{cpu_type} are
17384
17385 @table @samp
17386 @item ev4
17387 @itemx ev45
17388 @itemx 21064
17389 Schedules as an EV4 and has no instruction set extensions.
17390
17391 @item ev5
17392 @itemx 21164
17393 Schedules as an EV5 and has no instruction set extensions.
17394
17395 @item ev56
17396 @itemx 21164a
17397 Schedules as an EV5 and supports the BWX extension.
17398
17399 @item pca56
17400 @itemx 21164pc
17401 @itemx 21164PC
17402 Schedules as an EV5 and supports the BWX and MAX extensions.
17403
17404 @item ev6
17405 @itemx 21264
17406 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
17407
17408 @item ev67
17409 @itemx 21264a
17410 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
17411 @end table
17412
17413 Native toolchains also support the value @samp{native},
17414 which selects the best architecture option for the host processor.
17415 @option{-mcpu=native} has no effect if GCC does not recognize
17416 the processor.
17417
17418 @item -mtune=@var{cpu_type}
17419 @opindex mtune
17420 Set only the instruction scheduling parameters for machine type
17421 @var{cpu_type}. The instruction set is not changed.
17422
17423 Native toolchains also support the value @samp{native},
17424 which selects the best architecture option for the host processor.
17425 @option{-mtune=native} has no effect if GCC does not recognize
17426 the processor.
17427
17428 @item -mmemory-latency=@var{time}
17429 @opindex mmemory-latency
17430 Sets the latency the scheduler should assume for typical memory
17431 references as seen by the application. This number is highly
17432 dependent on the memory access patterns used by the application
17433 and the size of the external cache on the machine.
17434
17435 Valid options for @var{time} are
17436
17437 @table @samp
17438 @item @var{number}
17439 A decimal number representing clock cycles.
17440
17441 @item L1
17442 @itemx L2
17443 @itemx L3
17444 @itemx main
17445 The compiler contains estimates of the number of clock cycles for
17446 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
17447 (also called Dcache, Scache, and Bcache), as well as to main memory.
17448 Note that L3 is only valid for EV5.
17449
17450 @end table
17451 @end table
17452
17453 @node FR30 Options
17454 @subsection FR30 Options
17455 @cindex FR30 Options
17456
17457 These options are defined specifically for the FR30 port.
17458
17459 @table @gcctabopt
17460
17461 @item -msmall-model
17462 @opindex msmall-model
17463 Use the small address space model. This can produce smaller code, but
17464 it does assume that all symbolic values and addresses fit into a
17465 20-bit range.
17466
17467 @item -mno-lsim
17468 @opindex mno-lsim
17469 Assume that runtime support has been provided and so there is no need
17470 to include the simulator library (@file{libsim.a}) on the linker
17471 command line.
17472
17473 @end table
17474
17475 @node FT32 Options
17476 @subsection FT32 Options
17477 @cindex FT32 Options
17478
17479 These options are defined specifically for the FT32 port.
17480
17481 @table @gcctabopt
17482
17483 @item -msim
17484 @opindex msim
17485 Specifies that the program will be run on the simulator. This causes
17486 an alternate runtime startup and library to be linked.
17487 You must not use this option when generating programs that will run on
17488 real hardware; you must provide your own runtime library for whatever
17489 I/O functions are needed.
17490
17491 @item -mlra
17492 @opindex mlra
17493 Enable Local Register Allocation. This is still experimental for FT32,
17494 so by default the compiler uses standard reload.
17495
17496 @item -mnodiv
17497 @opindex mnodiv
17498 Do not use div and mod instructions.
17499
17500 @end table
17501
17502 @node FRV Options
17503 @subsection FRV Options
17504 @cindex FRV Options
17505
17506 @table @gcctabopt
17507 @item -mgpr-32
17508 @opindex mgpr-32
17509
17510 Only use the first 32 general-purpose registers.
17511
17512 @item -mgpr-64
17513 @opindex mgpr-64
17514
17515 Use all 64 general-purpose registers.
17516
17517 @item -mfpr-32
17518 @opindex mfpr-32
17519
17520 Use only the first 32 floating-point registers.
17521
17522 @item -mfpr-64
17523 @opindex mfpr-64
17524
17525 Use all 64 floating-point registers.
17526
17527 @item -mhard-float
17528 @opindex mhard-float
17529
17530 Use hardware instructions for floating-point operations.
17531
17532 @item -msoft-float
17533 @opindex msoft-float
17534
17535 Use library routines for floating-point operations.
17536
17537 @item -malloc-cc
17538 @opindex malloc-cc
17539
17540 Dynamically allocate condition code registers.
17541
17542 @item -mfixed-cc
17543 @opindex mfixed-cc
17544
17545 Do not try to dynamically allocate condition code registers, only
17546 use @code{icc0} and @code{fcc0}.
17547
17548 @item -mdword
17549 @opindex mdword
17550
17551 Change ABI to use double word insns.
17552
17553 @item -mno-dword
17554 @opindex mno-dword
17555
17556 Do not use double word instructions.
17557
17558 @item -mdouble
17559 @opindex mdouble
17560
17561 Use floating-point double instructions.
17562
17563 @item -mno-double
17564 @opindex mno-double
17565
17566 Do not use floating-point double instructions.
17567
17568 @item -mmedia
17569 @opindex mmedia
17570
17571 Use media instructions.
17572
17573 @item -mno-media
17574 @opindex mno-media
17575
17576 Do not use media instructions.
17577
17578 @item -mmuladd
17579 @opindex mmuladd
17580
17581 Use multiply and add/subtract instructions.
17582
17583 @item -mno-muladd
17584 @opindex mno-muladd
17585
17586 Do not use multiply and add/subtract instructions.
17587
17588 @item -mfdpic
17589 @opindex mfdpic
17590
17591 Select the FDPIC ABI, which uses function descriptors to represent
17592 pointers to functions. Without any PIC/PIE-related options, it
17593 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
17594 assumes GOT entries and small data are within a 12-bit range from the
17595 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
17596 are computed with 32 bits.
17597 With a @samp{bfin-elf} target, this option implies @option{-msim}.
17598
17599 @item -minline-plt
17600 @opindex minline-plt
17601
17602 Enable inlining of PLT entries in function calls to functions that are
17603 not known to bind locally. It has no effect without @option{-mfdpic}.
17604 It's enabled by default if optimizing for speed and compiling for
17605 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
17606 optimization option such as @option{-O3} or above is present in the
17607 command line.
17608
17609 @item -mTLS
17610 @opindex mTLS
17611
17612 Assume a large TLS segment when generating thread-local code.
17613
17614 @item -mtls
17615 @opindex mtls
17616
17617 Do not assume a large TLS segment when generating thread-local code.
17618
17619 @item -mgprel-ro
17620 @opindex mgprel-ro
17621
17622 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
17623 that is known to be in read-only sections. It's enabled by default,
17624 except for @option{-fpic} or @option{-fpie}: even though it may help
17625 make the global offset table smaller, it trades 1 instruction for 4.
17626 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
17627 one of which may be shared by multiple symbols, and it avoids the need
17628 for a GOT entry for the referenced symbol, so it's more likely to be a
17629 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
17630
17631 @item -multilib-library-pic
17632 @opindex multilib-library-pic
17633
17634 Link with the (library, not FD) pic libraries. It's implied by
17635 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
17636 @option{-fpic} without @option{-mfdpic}. You should never have to use
17637 it explicitly.
17638
17639 @item -mlinked-fp
17640 @opindex mlinked-fp
17641
17642 Follow the EABI requirement of always creating a frame pointer whenever
17643 a stack frame is allocated. This option is enabled by default and can
17644 be disabled with @option{-mno-linked-fp}.
17645
17646 @item -mlong-calls
17647 @opindex mlong-calls
17648
17649 Use indirect addressing to call functions outside the current
17650 compilation unit. This allows the functions to be placed anywhere
17651 within the 32-bit address space.
17652
17653 @item -malign-labels
17654 @opindex malign-labels
17655
17656 Try to align labels to an 8-byte boundary by inserting NOPs into the
17657 previous packet. This option only has an effect when VLIW packing
17658 is enabled. It doesn't create new packets; it merely adds NOPs to
17659 existing ones.
17660
17661 @item -mlibrary-pic
17662 @opindex mlibrary-pic
17663
17664 Generate position-independent EABI code.
17665
17666 @item -macc-4
17667 @opindex macc-4
17668
17669 Use only the first four media accumulator registers.
17670
17671 @item -macc-8
17672 @opindex macc-8
17673
17674 Use all eight media accumulator registers.
17675
17676 @item -mpack
17677 @opindex mpack
17678
17679 Pack VLIW instructions.
17680
17681 @item -mno-pack
17682 @opindex mno-pack
17683
17684 Do not pack VLIW instructions.
17685
17686 @item -mno-eflags
17687 @opindex mno-eflags
17688
17689 Do not mark ABI switches in e_flags.
17690
17691 @item -mcond-move
17692 @opindex mcond-move
17693
17694 Enable the use of conditional-move instructions (default).
17695
17696 This switch is mainly for debugging the compiler and will likely be removed
17697 in a future version.
17698
17699 @item -mno-cond-move
17700 @opindex mno-cond-move
17701
17702 Disable the use of conditional-move instructions.
17703
17704 This switch is mainly for debugging the compiler and will likely be removed
17705 in a future version.
17706
17707 @item -mscc
17708 @opindex mscc
17709
17710 Enable the use of conditional set instructions (default).
17711
17712 This switch is mainly for debugging the compiler and will likely be removed
17713 in a future version.
17714
17715 @item -mno-scc
17716 @opindex mno-scc
17717
17718 Disable the use of conditional set instructions.
17719
17720 This switch is mainly for debugging the compiler and will likely be removed
17721 in a future version.
17722
17723 @item -mcond-exec
17724 @opindex mcond-exec
17725
17726 Enable the use of conditional execution (default).
17727
17728 This switch is mainly for debugging the compiler and will likely be removed
17729 in a future version.
17730
17731 @item -mno-cond-exec
17732 @opindex mno-cond-exec
17733
17734 Disable the use of conditional execution.
17735
17736 This switch is mainly for debugging the compiler and will likely be removed
17737 in a future version.
17738
17739 @item -mvliw-branch
17740 @opindex mvliw-branch
17741
17742 Run a pass to pack branches into VLIW instructions (default).
17743
17744 This switch is mainly for debugging the compiler and will likely be removed
17745 in a future version.
17746
17747 @item -mno-vliw-branch
17748 @opindex mno-vliw-branch
17749
17750 Do not run a pass to pack branches into VLIW instructions.
17751
17752 This switch is mainly for debugging the compiler and will likely be removed
17753 in a future version.
17754
17755 @item -mmulti-cond-exec
17756 @opindex mmulti-cond-exec
17757
17758 Enable optimization of @code{&&} and @code{||} in conditional execution
17759 (default).
17760
17761 This switch is mainly for debugging the compiler and will likely be removed
17762 in a future version.
17763
17764 @item -mno-multi-cond-exec
17765 @opindex mno-multi-cond-exec
17766
17767 Disable optimization of @code{&&} and @code{||} in conditional execution.
17768
17769 This switch is mainly for debugging the compiler and will likely be removed
17770 in a future version.
17771
17772 @item -mnested-cond-exec
17773 @opindex mnested-cond-exec
17774
17775 Enable nested conditional execution optimizations (default).
17776
17777 This switch is mainly for debugging the compiler and will likely be removed
17778 in a future version.
17779
17780 @item -mno-nested-cond-exec
17781 @opindex mno-nested-cond-exec
17782
17783 Disable nested conditional execution optimizations.
17784
17785 This switch is mainly for debugging the compiler and will likely be removed
17786 in a future version.
17787
17788 @item -moptimize-membar
17789 @opindex moptimize-membar
17790
17791 This switch removes redundant @code{membar} instructions from the
17792 compiler-generated code. It is enabled by default.
17793
17794 @item -mno-optimize-membar
17795 @opindex mno-optimize-membar
17796
17797 This switch disables the automatic removal of redundant @code{membar}
17798 instructions from the generated code.
17799
17800 @item -mtomcat-stats
17801 @opindex mtomcat-stats
17802
17803 Cause gas to print out tomcat statistics.
17804
17805 @item -mcpu=@var{cpu}
17806 @opindex mcpu
17807
17808 Select the processor type for which to generate code. Possible values are
17809 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
17810 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
17811
17812 @end table
17813
17814 @node GNU/Linux Options
17815 @subsection GNU/Linux Options
17816
17817 These @samp{-m} options are defined for GNU/Linux targets:
17818
17819 @table @gcctabopt
17820 @item -mglibc
17821 @opindex mglibc
17822 Use the GNU C library. This is the default except
17823 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
17824 @samp{*-*-linux-*android*} targets.
17825
17826 @item -muclibc
17827 @opindex muclibc
17828 Use uClibc C library. This is the default on
17829 @samp{*-*-linux-*uclibc*} targets.
17830
17831 @item -mmusl
17832 @opindex mmusl
17833 Use the musl C library. This is the default on
17834 @samp{*-*-linux-*musl*} targets.
17835
17836 @item -mbionic
17837 @opindex mbionic
17838 Use Bionic C library. This is the default on
17839 @samp{*-*-linux-*android*} targets.
17840
17841 @item -mandroid
17842 @opindex mandroid
17843 Compile code compatible with Android platform. This is the default on
17844 @samp{*-*-linux-*android*} targets.
17845
17846 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
17847 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
17848 this option makes the GCC driver pass Android-specific options to the linker.
17849 Finally, this option causes the preprocessor macro @code{__ANDROID__}
17850 to be defined.
17851
17852 @item -tno-android-cc
17853 @opindex tno-android-cc
17854 Disable compilation effects of @option{-mandroid}, i.e., do not enable
17855 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
17856 @option{-fno-rtti} by default.
17857
17858 @item -tno-android-ld
17859 @opindex tno-android-ld
17860 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
17861 linking options to the linker.
17862
17863 @end table
17864
17865 @node H8/300 Options
17866 @subsection H8/300 Options
17867
17868 These @samp{-m} options are defined for the H8/300 implementations:
17869
17870 @table @gcctabopt
17871 @item -mrelax
17872 @opindex mrelax
17873 Shorten some address references at link time, when possible; uses the
17874 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
17875 ld, Using ld}, for a fuller description.
17876
17877 @item -mh
17878 @opindex mh
17879 Generate code for the H8/300H@.
17880
17881 @item -ms
17882 @opindex ms
17883 Generate code for the H8S@.
17884
17885 @item -mn
17886 @opindex mn
17887 Generate code for the H8S and H8/300H in the normal mode. This switch
17888 must be used either with @option{-mh} or @option{-ms}.
17889
17890 @item -ms2600
17891 @opindex ms2600
17892 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
17893
17894 @item -mexr
17895 @opindex mexr
17896 Extended registers are stored on stack before execution of function
17897 with monitor attribute. Default option is @option{-mexr}.
17898 This option is valid only for H8S targets.
17899
17900 @item -mno-exr
17901 @opindex mno-exr
17902 Extended registers are not stored on stack before execution of function
17903 with monitor attribute. Default option is @option{-mno-exr}.
17904 This option is valid only for H8S targets.
17905
17906 @item -mint32
17907 @opindex mint32
17908 Make @code{int} data 32 bits by default.
17909
17910 @item -malign-300
17911 @opindex malign-300
17912 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
17913 The default for the H8/300H and H8S is to align longs and floats on
17914 4-byte boundaries.
17915 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
17916 This option has no effect on the H8/300.
17917 @end table
17918
17919 @node HPPA Options
17920 @subsection HPPA Options
17921 @cindex HPPA Options
17922
17923 These @samp{-m} options are defined for the HPPA family of computers:
17924
17925 @table @gcctabopt
17926 @item -march=@var{architecture-type}
17927 @opindex march
17928 Generate code for the specified architecture. The choices for
17929 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
17930 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
17931 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
17932 architecture option for your machine. Code compiled for lower numbered
17933 architectures runs on higher numbered architectures, but not the
17934 other way around.
17935
17936 @item -mpa-risc-1-0
17937 @itemx -mpa-risc-1-1
17938 @itemx -mpa-risc-2-0
17939 @opindex mpa-risc-1-0
17940 @opindex mpa-risc-1-1
17941 @opindex mpa-risc-2-0
17942 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
17943
17944 @item -mcaller-copies
17945 @opindex mcaller-copies
17946 The caller copies function arguments passed by hidden reference. This
17947 option should be used with care as it is not compatible with the default
17948 32-bit runtime. However, only aggregates larger than eight bytes are
17949 passed by hidden reference and the option provides better compatibility
17950 with OpenMP.
17951
17952 @item -mjump-in-delay
17953 @opindex mjump-in-delay
17954 This option is ignored and provided for compatibility purposes only.
17955
17956 @item -mdisable-fpregs
17957 @opindex mdisable-fpregs
17958 Prevent floating-point registers from being used in any manner. This is
17959 necessary for compiling kernels that perform lazy context switching of
17960 floating-point registers. If you use this option and attempt to perform
17961 floating-point operations, the compiler aborts.
17962
17963 @item -mdisable-indexing
17964 @opindex mdisable-indexing
17965 Prevent the compiler from using indexing address modes. This avoids some
17966 rather obscure problems when compiling MIG generated code under MACH@.
17967
17968 @item -mno-space-regs
17969 @opindex mno-space-regs
17970 Generate code that assumes the target has no space registers. This allows
17971 GCC to generate faster indirect calls and use unscaled index address modes.
17972
17973 Such code is suitable for level 0 PA systems and kernels.
17974
17975 @item -mfast-indirect-calls
17976 @opindex mfast-indirect-calls
17977 Generate code that assumes calls never cross space boundaries. This
17978 allows GCC to emit code that performs faster indirect calls.
17979
17980 This option does not work in the presence of shared libraries or nested
17981 functions.
17982
17983 @item -mfixed-range=@var{register-range}
17984 @opindex mfixed-range
17985 Generate code treating the given register range as fixed registers.
17986 A fixed register is one that the register allocator cannot use. This is
17987 useful when compiling kernel code. A register range is specified as
17988 two registers separated by a dash. Multiple register ranges can be
17989 specified separated by a comma.
17990
17991 @item -mlong-load-store
17992 @opindex mlong-load-store
17993 Generate 3-instruction load and store sequences as sometimes required by
17994 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
17995 the HP compilers.
17996
17997 @item -mportable-runtime
17998 @opindex mportable-runtime
17999 Use the portable calling conventions proposed by HP for ELF systems.
18000
18001 @item -mgas
18002 @opindex mgas
18003 Enable the use of assembler directives only GAS understands.
18004
18005 @item -mschedule=@var{cpu-type}
18006 @opindex mschedule
18007 Schedule code according to the constraints for the machine type
18008 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
18009 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
18010 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
18011 proper scheduling option for your machine. The default scheduling is
18012 @samp{8000}.
18013
18014 @item -mlinker-opt
18015 @opindex mlinker-opt
18016 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
18017 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
18018 linkers in which they give bogus error messages when linking some programs.
18019
18020 @item -msoft-float
18021 @opindex msoft-float
18022 Generate output containing library calls for floating point.
18023 @strong{Warning:} the requisite libraries are not available for all HPPA
18024 targets. Normally the facilities of the machine's usual C compiler are
18025 used, but this cannot be done directly in cross-compilation. You must make
18026 your own arrangements to provide suitable library functions for
18027 cross-compilation.
18028
18029 @option{-msoft-float} changes the calling convention in the output file;
18030 therefore, it is only useful if you compile @emph{all} of a program with
18031 this option. In particular, you need to compile @file{libgcc.a}, the
18032 library that comes with GCC, with @option{-msoft-float} in order for
18033 this to work.
18034
18035 @item -msio
18036 @opindex msio
18037 Generate the predefine, @code{_SIO}, for server IO@. The default is
18038 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
18039 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
18040 options are available under HP-UX and HI-UX@.
18041
18042 @item -mgnu-ld
18043 @opindex mgnu-ld
18044 Use options specific to GNU @command{ld}.
18045 This passes @option{-shared} to @command{ld} when
18046 building a shared library. It is the default when GCC is configured,
18047 explicitly or implicitly, with the GNU linker. This option does not
18048 affect which @command{ld} is called; it only changes what parameters
18049 are passed to that @command{ld}.
18050 The @command{ld} that is called is determined by the
18051 @option{--with-ld} configure option, GCC's program search path, and
18052 finally by the user's @env{PATH}. The linker used by GCC can be printed
18053 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
18054 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18055
18056 @item -mhp-ld
18057 @opindex mhp-ld
18058 Use options specific to HP @command{ld}.
18059 This passes @option{-b} to @command{ld} when building
18060 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
18061 links. It is the default when GCC is configured, explicitly or
18062 implicitly, with the HP linker. This option does not affect
18063 which @command{ld} is called; it only changes what parameters are passed to that
18064 @command{ld}.
18065 The @command{ld} that is called is determined by the @option{--with-ld}
18066 configure option, GCC's program search path, and finally by the user's
18067 @env{PATH}. The linker used by GCC can be printed using @samp{which
18068 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
18069 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18070
18071 @item -mlong-calls
18072 @opindex mno-long-calls
18073 Generate code that uses long call sequences. This ensures that a call
18074 is always able to reach linker generated stubs. The default is to generate
18075 long calls only when the distance from the call site to the beginning
18076 of the function or translation unit, as the case may be, exceeds a
18077 predefined limit set by the branch type being used. The limits for
18078 normal calls are 7,600,000 and 240,000 bytes, respectively for the
18079 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
18080 240,000 bytes.
18081
18082 Distances are measured from the beginning of functions when using the
18083 @option{-ffunction-sections} option, or when using the @option{-mgas}
18084 and @option{-mno-portable-runtime} options together under HP-UX with
18085 the SOM linker.
18086
18087 It is normally not desirable to use this option as it degrades
18088 performance. However, it may be useful in large applications,
18089 particularly when partial linking is used to build the application.
18090
18091 The types of long calls used depends on the capabilities of the
18092 assembler and linker, and the type of code being generated. The
18093 impact on systems that support long absolute calls, and long pic
18094 symbol-difference or pc-relative calls should be relatively small.
18095 However, an indirect call is used on 32-bit ELF systems in pic code
18096 and it is quite long.
18097
18098 @item -munix=@var{unix-std}
18099 @opindex march
18100 Generate compiler predefines and select a startfile for the specified
18101 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
18102 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
18103 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
18104 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
18105 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
18106 and later.
18107
18108 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
18109 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
18110 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
18111 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
18112 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
18113 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
18114
18115 It is @emph{important} to note that this option changes the interfaces
18116 for various library routines. It also affects the operational behavior
18117 of the C library. Thus, @emph{extreme} care is needed in using this
18118 option.
18119
18120 Library code that is intended to operate with more than one UNIX
18121 standard must test, set and restore the variable @code{__xpg4_extended_mask}
18122 as appropriate. Most GNU software doesn't provide this capability.
18123
18124 @item -nolibdld
18125 @opindex nolibdld
18126 Suppress the generation of link options to search libdld.sl when the
18127 @option{-static} option is specified on HP-UX 10 and later.
18128
18129 @item -static
18130 @opindex static
18131 The HP-UX implementation of setlocale in libc has a dependency on
18132 libdld.sl. There isn't an archive version of libdld.sl. Thus,
18133 when the @option{-static} option is specified, special link options
18134 are needed to resolve this dependency.
18135
18136 On HP-UX 10 and later, the GCC driver adds the necessary options to
18137 link with libdld.sl when the @option{-static} option is specified.
18138 This causes the resulting binary to be dynamic. On the 64-bit port,
18139 the linkers generate dynamic binaries by default in any case. The
18140 @option{-nolibdld} option can be used to prevent the GCC driver from
18141 adding these link options.
18142
18143 @item -threads
18144 @opindex threads
18145 Add support for multithreading with the @dfn{dce thread} library
18146 under HP-UX@. This option sets flags for both the preprocessor and
18147 linker.
18148 @end table
18149
18150 @node IA-64 Options
18151 @subsection IA-64 Options
18152 @cindex IA-64 Options
18153
18154 These are the @samp{-m} options defined for the Intel IA-64 architecture.
18155
18156 @table @gcctabopt
18157 @item -mbig-endian
18158 @opindex mbig-endian
18159 Generate code for a big-endian target. This is the default for HP-UX@.
18160
18161 @item -mlittle-endian
18162 @opindex mlittle-endian
18163 Generate code for a little-endian target. This is the default for AIX5
18164 and GNU/Linux.
18165
18166 @item -mgnu-as
18167 @itemx -mno-gnu-as
18168 @opindex mgnu-as
18169 @opindex mno-gnu-as
18170 Generate (or don't) code for the GNU assembler. This is the default.
18171 @c Also, this is the default if the configure option @option{--with-gnu-as}
18172 @c is used.
18173
18174 @item -mgnu-ld
18175 @itemx -mno-gnu-ld
18176 @opindex mgnu-ld
18177 @opindex mno-gnu-ld
18178 Generate (or don't) code for the GNU linker. This is the default.
18179 @c Also, this is the default if the configure option @option{--with-gnu-ld}
18180 @c is used.
18181
18182 @item -mno-pic
18183 @opindex mno-pic
18184 Generate code that does not use a global pointer register. The result
18185 is not position independent code, and violates the IA-64 ABI@.
18186
18187 @item -mvolatile-asm-stop
18188 @itemx -mno-volatile-asm-stop
18189 @opindex mvolatile-asm-stop
18190 @opindex mno-volatile-asm-stop
18191 Generate (or don't) a stop bit immediately before and after volatile asm
18192 statements.
18193
18194 @item -mregister-names
18195 @itemx -mno-register-names
18196 @opindex mregister-names
18197 @opindex mno-register-names
18198 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
18199 the stacked registers. This may make assembler output more readable.
18200
18201 @item -mno-sdata
18202 @itemx -msdata
18203 @opindex mno-sdata
18204 @opindex msdata
18205 Disable (or enable) optimizations that use the small data section. This may
18206 be useful for working around optimizer bugs.
18207
18208 @item -mconstant-gp
18209 @opindex mconstant-gp
18210 Generate code that uses a single constant global pointer value. This is
18211 useful when compiling kernel code.
18212
18213 @item -mauto-pic
18214 @opindex mauto-pic
18215 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
18216 This is useful when compiling firmware code.
18217
18218 @item -minline-float-divide-min-latency
18219 @opindex minline-float-divide-min-latency
18220 Generate code for inline divides of floating-point values
18221 using the minimum latency algorithm.
18222
18223 @item -minline-float-divide-max-throughput
18224 @opindex minline-float-divide-max-throughput
18225 Generate code for inline divides of floating-point values
18226 using the maximum throughput algorithm.
18227
18228 @item -mno-inline-float-divide
18229 @opindex mno-inline-float-divide
18230 Do not generate inline code for divides of floating-point values.
18231
18232 @item -minline-int-divide-min-latency
18233 @opindex minline-int-divide-min-latency
18234 Generate code for inline divides of integer values
18235 using the minimum latency algorithm.
18236
18237 @item -minline-int-divide-max-throughput
18238 @opindex minline-int-divide-max-throughput
18239 Generate code for inline divides of integer values
18240 using the maximum throughput algorithm.
18241
18242 @item -mno-inline-int-divide
18243 @opindex mno-inline-int-divide
18244 Do not generate inline code for divides of integer values.
18245
18246 @item -minline-sqrt-min-latency
18247 @opindex minline-sqrt-min-latency
18248 Generate code for inline square roots
18249 using the minimum latency algorithm.
18250
18251 @item -minline-sqrt-max-throughput
18252 @opindex minline-sqrt-max-throughput
18253 Generate code for inline square roots
18254 using the maximum throughput algorithm.
18255
18256 @item -mno-inline-sqrt
18257 @opindex mno-inline-sqrt
18258 Do not generate inline code for @code{sqrt}.
18259
18260 @item -mfused-madd
18261 @itemx -mno-fused-madd
18262 @opindex mfused-madd
18263 @opindex mno-fused-madd
18264 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
18265 instructions. The default is to use these instructions.
18266
18267 @item -mno-dwarf2-asm
18268 @itemx -mdwarf2-asm
18269 @opindex mno-dwarf2-asm
18270 @opindex mdwarf2-asm
18271 Don't (or do) generate assembler code for the DWARF line number debugging
18272 info. This may be useful when not using the GNU assembler.
18273
18274 @item -mearly-stop-bits
18275 @itemx -mno-early-stop-bits
18276 @opindex mearly-stop-bits
18277 @opindex mno-early-stop-bits
18278 Allow stop bits to be placed earlier than immediately preceding the
18279 instruction that triggered the stop bit. This can improve instruction
18280 scheduling, but does not always do so.
18281
18282 @item -mfixed-range=@var{register-range}
18283 @opindex mfixed-range
18284 Generate code treating the given register range as fixed registers.
18285 A fixed register is one that the register allocator cannot use. This is
18286 useful when compiling kernel code. A register range is specified as
18287 two registers separated by a dash. Multiple register ranges can be
18288 specified separated by a comma.
18289
18290 @item -mtls-size=@var{tls-size}
18291 @opindex mtls-size
18292 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
18293 64.
18294
18295 @item -mtune=@var{cpu-type}
18296 @opindex mtune
18297 Tune the instruction scheduling for a particular CPU, Valid values are
18298 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
18299 and @samp{mckinley}.
18300
18301 @item -milp32
18302 @itemx -mlp64
18303 @opindex milp32
18304 @opindex mlp64
18305 Generate code for a 32-bit or 64-bit environment.
18306 The 32-bit environment sets int, long and pointer to 32 bits.
18307 The 64-bit environment sets int to 32 bits and long and pointer
18308 to 64 bits. These are HP-UX specific flags.
18309
18310 @item -mno-sched-br-data-spec
18311 @itemx -msched-br-data-spec
18312 @opindex mno-sched-br-data-spec
18313 @opindex msched-br-data-spec
18314 (Dis/En)able data speculative scheduling before reload.
18315 This results in generation of @code{ld.a} instructions and
18316 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18317 The default setting is disabled.
18318
18319 @item -msched-ar-data-spec
18320 @itemx -mno-sched-ar-data-spec
18321 @opindex msched-ar-data-spec
18322 @opindex mno-sched-ar-data-spec
18323 (En/Dis)able data speculative scheduling after reload.
18324 This results in generation of @code{ld.a} instructions and
18325 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18326 The default setting is enabled.
18327
18328 @item -mno-sched-control-spec
18329 @itemx -msched-control-spec
18330 @opindex mno-sched-control-spec
18331 @opindex msched-control-spec
18332 (Dis/En)able control speculative scheduling. This feature is
18333 available only during region scheduling (i.e.@: before reload).
18334 This results in generation of the @code{ld.s} instructions and
18335 the corresponding check instructions @code{chk.s}.
18336 The default setting is disabled.
18337
18338 @item -msched-br-in-data-spec
18339 @itemx -mno-sched-br-in-data-spec
18340 @opindex msched-br-in-data-spec
18341 @opindex mno-sched-br-in-data-spec
18342 (En/Dis)able speculative scheduling of the instructions that
18343 are dependent on the data speculative loads before reload.
18344 This is effective only with @option{-msched-br-data-spec} enabled.
18345 The default setting is enabled.
18346
18347 @item -msched-ar-in-data-spec
18348 @itemx -mno-sched-ar-in-data-spec
18349 @opindex msched-ar-in-data-spec
18350 @opindex mno-sched-ar-in-data-spec
18351 (En/Dis)able speculative scheduling of the instructions that
18352 are dependent on the data speculative loads after reload.
18353 This is effective only with @option{-msched-ar-data-spec} enabled.
18354 The default setting is enabled.
18355
18356 @item -msched-in-control-spec
18357 @itemx -mno-sched-in-control-spec
18358 @opindex msched-in-control-spec
18359 @opindex mno-sched-in-control-spec
18360 (En/Dis)able speculative scheduling of the instructions that
18361 are dependent on the control speculative loads.
18362 This is effective only with @option{-msched-control-spec} enabled.
18363 The default setting is enabled.
18364
18365 @item -mno-sched-prefer-non-data-spec-insns
18366 @itemx -msched-prefer-non-data-spec-insns
18367 @opindex mno-sched-prefer-non-data-spec-insns
18368 @opindex msched-prefer-non-data-spec-insns
18369 If enabled, data-speculative instructions are chosen for schedule
18370 only if there are no other choices at the moment. This makes
18371 the use of the data speculation much more conservative.
18372 The default setting is disabled.
18373
18374 @item -mno-sched-prefer-non-control-spec-insns
18375 @itemx -msched-prefer-non-control-spec-insns
18376 @opindex mno-sched-prefer-non-control-spec-insns
18377 @opindex msched-prefer-non-control-spec-insns
18378 If enabled, control-speculative instructions are chosen for schedule
18379 only if there are no other choices at the moment. This makes
18380 the use of the control speculation much more conservative.
18381 The default setting is disabled.
18382
18383 @item -mno-sched-count-spec-in-critical-path
18384 @itemx -msched-count-spec-in-critical-path
18385 @opindex mno-sched-count-spec-in-critical-path
18386 @opindex msched-count-spec-in-critical-path
18387 If enabled, speculative dependencies are considered during
18388 computation of the instructions priorities. This makes the use of the
18389 speculation a bit more conservative.
18390 The default setting is disabled.
18391
18392 @item -msched-spec-ldc
18393 @opindex msched-spec-ldc
18394 Use a simple data speculation check. This option is on by default.
18395
18396 @item -msched-control-spec-ldc
18397 @opindex msched-spec-ldc
18398 Use a simple check for control speculation. This option is on by default.
18399
18400 @item -msched-stop-bits-after-every-cycle
18401 @opindex msched-stop-bits-after-every-cycle
18402 Place a stop bit after every cycle when scheduling. This option is on
18403 by default.
18404
18405 @item -msched-fp-mem-deps-zero-cost
18406 @opindex msched-fp-mem-deps-zero-cost
18407 Assume that floating-point stores and loads are not likely to cause a conflict
18408 when placed into the same instruction group. This option is disabled by
18409 default.
18410
18411 @item -msel-sched-dont-check-control-spec
18412 @opindex msel-sched-dont-check-control-spec
18413 Generate checks for control speculation in selective scheduling.
18414 This flag is disabled by default.
18415
18416 @item -msched-max-memory-insns=@var{max-insns}
18417 @opindex msched-max-memory-insns
18418 Limit on the number of memory insns per instruction group, giving lower
18419 priority to subsequent memory insns attempting to schedule in the same
18420 instruction group. Frequently useful to prevent cache bank conflicts.
18421 The default value is 1.
18422
18423 @item -msched-max-memory-insns-hard-limit
18424 @opindex msched-max-memory-insns-hard-limit
18425 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
18426 disallowing more than that number in an instruction group.
18427 Otherwise, the limit is ``soft'', meaning that non-memory operations
18428 are preferred when the limit is reached, but memory operations may still
18429 be scheduled.
18430
18431 @end table
18432
18433 @node LM32 Options
18434 @subsection LM32 Options
18435 @cindex LM32 options
18436
18437 These @option{-m} options are defined for the LatticeMico32 architecture:
18438
18439 @table @gcctabopt
18440 @item -mbarrel-shift-enabled
18441 @opindex mbarrel-shift-enabled
18442 Enable barrel-shift instructions.
18443
18444 @item -mdivide-enabled
18445 @opindex mdivide-enabled
18446 Enable divide and modulus instructions.
18447
18448 @item -mmultiply-enabled
18449 @opindex multiply-enabled
18450 Enable multiply instructions.
18451
18452 @item -msign-extend-enabled
18453 @opindex msign-extend-enabled
18454 Enable sign extend instructions.
18455
18456 @item -muser-enabled
18457 @opindex muser-enabled
18458 Enable user-defined instructions.
18459
18460 @end table
18461
18462 @node M32C Options
18463 @subsection M32C Options
18464 @cindex M32C options
18465
18466 @table @gcctabopt
18467 @item -mcpu=@var{name}
18468 @opindex mcpu=
18469 Select the CPU for which code is generated. @var{name} may be one of
18470 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
18471 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
18472 the M32C/80 series.
18473
18474 @item -msim
18475 @opindex msim
18476 Specifies that the program will be run on the simulator. This causes
18477 an alternate runtime library to be linked in which supports, for
18478 example, file I/O@. You must not use this option when generating
18479 programs that will run on real hardware; you must provide your own
18480 runtime library for whatever I/O functions are needed.
18481
18482 @item -memregs=@var{number}
18483 @opindex memregs=
18484 Specifies the number of memory-based pseudo-registers GCC uses
18485 during code generation. These pseudo-registers are used like real
18486 registers, so there is a tradeoff between GCC's ability to fit the
18487 code into available registers, and the performance penalty of using
18488 memory instead of registers. Note that all modules in a program must
18489 be compiled with the same value for this option. Because of that, you
18490 must not use this option with GCC's default runtime libraries.
18491
18492 @end table
18493
18494 @node M32R/D Options
18495 @subsection M32R/D Options
18496 @cindex M32R/D options
18497
18498 These @option{-m} options are defined for Renesas M32R/D architectures:
18499
18500 @table @gcctabopt
18501 @item -m32r2
18502 @opindex m32r2
18503 Generate code for the M32R/2@.
18504
18505 @item -m32rx
18506 @opindex m32rx
18507 Generate code for the M32R/X@.
18508
18509 @item -m32r
18510 @opindex m32r
18511 Generate code for the M32R@. This is the default.
18512
18513 @item -mmodel=small
18514 @opindex mmodel=small
18515 Assume all objects live in the lower 16MB of memory (so that their addresses
18516 can be loaded with the @code{ld24} instruction), and assume all subroutines
18517 are reachable with the @code{bl} instruction.
18518 This is the default.
18519
18520 The addressability of a particular object can be set with the
18521 @code{model} attribute.
18522
18523 @item -mmodel=medium
18524 @opindex mmodel=medium
18525 Assume objects may be anywhere in the 32-bit address space (the compiler
18526 generates @code{seth/add3} instructions to load their addresses), and
18527 assume all subroutines are reachable with the @code{bl} instruction.
18528
18529 @item -mmodel=large
18530 @opindex mmodel=large
18531 Assume objects may be anywhere in the 32-bit address space (the compiler
18532 generates @code{seth/add3} instructions to load their addresses), and
18533 assume subroutines may not be reachable with the @code{bl} instruction
18534 (the compiler generates the much slower @code{seth/add3/jl}
18535 instruction sequence).
18536
18537 @item -msdata=none
18538 @opindex msdata=none
18539 Disable use of the small data area. Variables are put into
18540 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
18541 @code{section} attribute has been specified).
18542 This is the default.
18543
18544 The small data area consists of sections @code{.sdata} and @code{.sbss}.
18545 Objects may be explicitly put in the small data area with the
18546 @code{section} attribute using one of these sections.
18547
18548 @item -msdata=sdata
18549 @opindex msdata=sdata
18550 Put small global and static data in the small data area, but do not
18551 generate special code to reference them.
18552
18553 @item -msdata=use
18554 @opindex msdata=use
18555 Put small global and static data in the small data area, and generate
18556 special instructions to reference them.
18557
18558 @item -G @var{num}
18559 @opindex G
18560 @cindex smaller data references
18561 Put global and static objects less than or equal to @var{num} bytes
18562 into the small data or BSS sections instead of the normal data or BSS
18563 sections. The default value of @var{num} is 8.
18564 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
18565 for this option to have any effect.
18566
18567 All modules should be compiled with the same @option{-G @var{num}} value.
18568 Compiling with different values of @var{num} may or may not work; if it
18569 doesn't the linker gives an error message---incorrect code is not
18570 generated.
18571
18572 @item -mdebug
18573 @opindex mdebug
18574 Makes the M32R-specific code in the compiler display some statistics
18575 that might help in debugging programs.
18576
18577 @item -malign-loops
18578 @opindex malign-loops
18579 Align all loops to a 32-byte boundary.
18580
18581 @item -mno-align-loops
18582 @opindex mno-align-loops
18583 Do not enforce a 32-byte alignment for loops. This is the default.
18584
18585 @item -missue-rate=@var{number}
18586 @opindex missue-rate=@var{number}
18587 Issue @var{number} instructions per cycle. @var{number} can only be 1
18588 or 2.
18589
18590 @item -mbranch-cost=@var{number}
18591 @opindex mbranch-cost=@var{number}
18592 @var{number} can only be 1 or 2. If it is 1 then branches are
18593 preferred over conditional code, if it is 2, then the opposite applies.
18594
18595 @item -mflush-trap=@var{number}
18596 @opindex mflush-trap=@var{number}
18597 Specifies the trap number to use to flush the cache. The default is
18598 12. Valid numbers are between 0 and 15 inclusive.
18599
18600 @item -mno-flush-trap
18601 @opindex mno-flush-trap
18602 Specifies that the cache cannot be flushed by using a trap.
18603
18604 @item -mflush-func=@var{name}
18605 @opindex mflush-func=@var{name}
18606 Specifies the name of the operating system function to call to flush
18607 the cache. The default is @samp{_flush_cache}, but a function call
18608 is only used if a trap is not available.
18609
18610 @item -mno-flush-func
18611 @opindex mno-flush-func
18612 Indicates that there is no OS function for flushing the cache.
18613
18614 @end table
18615
18616 @node M680x0 Options
18617 @subsection M680x0 Options
18618 @cindex M680x0 options
18619
18620 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
18621 The default settings depend on which architecture was selected when
18622 the compiler was configured; the defaults for the most common choices
18623 are given below.
18624
18625 @table @gcctabopt
18626 @item -march=@var{arch}
18627 @opindex march
18628 Generate code for a specific M680x0 or ColdFire instruction set
18629 architecture. Permissible values of @var{arch} for M680x0
18630 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
18631 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
18632 architectures are selected according to Freescale's ISA classification
18633 and the permissible values are: @samp{isaa}, @samp{isaaplus},
18634 @samp{isab} and @samp{isac}.
18635
18636 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
18637 code for a ColdFire target. The @var{arch} in this macro is one of the
18638 @option{-march} arguments given above.
18639
18640 When used together, @option{-march} and @option{-mtune} select code
18641 that runs on a family of similar processors but that is optimized
18642 for a particular microarchitecture.
18643
18644 @item -mcpu=@var{cpu}
18645 @opindex mcpu
18646 Generate code for a specific M680x0 or ColdFire processor.
18647 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
18648 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
18649 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
18650 below, which also classifies the CPUs into families:
18651
18652 @multitable @columnfractions 0.20 0.80
18653 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
18654 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
18655 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
18656 @item @samp{5206e} @tab @samp{5206e}
18657 @item @samp{5208} @tab @samp{5207} @samp{5208}
18658 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
18659 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
18660 @item @samp{5216} @tab @samp{5214} @samp{5216}
18661 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
18662 @item @samp{5225} @tab @samp{5224} @samp{5225}
18663 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
18664 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
18665 @item @samp{5249} @tab @samp{5249}
18666 @item @samp{5250} @tab @samp{5250}
18667 @item @samp{5271} @tab @samp{5270} @samp{5271}
18668 @item @samp{5272} @tab @samp{5272}
18669 @item @samp{5275} @tab @samp{5274} @samp{5275}
18670 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
18671 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
18672 @item @samp{5307} @tab @samp{5307}
18673 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
18674 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
18675 @item @samp{5407} @tab @samp{5407}
18676 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
18677 @end multitable
18678
18679 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
18680 @var{arch} is compatible with @var{cpu}. Other combinations of
18681 @option{-mcpu} and @option{-march} are rejected.
18682
18683 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
18684 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
18685 where the value of @var{family} is given by the table above.
18686
18687 @item -mtune=@var{tune}
18688 @opindex mtune
18689 Tune the code for a particular microarchitecture within the
18690 constraints set by @option{-march} and @option{-mcpu}.
18691 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
18692 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
18693 and @samp{cpu32}. The ColdFire microarchitectures
18694 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
18695
18696 You can also use @option{-mtune=68020-40} for code that needs
18697 to run relatively well on 68020, 68030 and 68040 targets.
18698 @option{-mtune=68020-60} is similar but includes 68060 targets
18699 as well. These two options select the same tuning decisions as
18700 @option{-m68020-40} and @option{-m68020-60} respectively.
18701
18702 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
18703 when tuning for 680x0 architecture @var{arch}. It also defines
18704 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
18705 option is used. If GCC is tuning for a range of architectures,
18706 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
18707 it defines the macros for every architecture in the range.
18708
18709 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
18710 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
18711 of the arguments given above.
18712
18713 @item -m68000
18714 @itemx -mc68000
18715 @opindex m68000
18716 @opindex mc68000
18717 Generate output for a 68000. This is the default
18718 when the compiler is configured for 68000-based systems.
18719 It is equivalent to @option{-march=68000}.
18720
18721 Use this option for microcontrollers with a 68000 or EC000 core,
18722 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
18723
18724 @item -m68010
18725 @opindex m68010
18726 Generate output for a 68010. This is the default
18727 when the compiler is configured for 68010-based systems.
18728 It is equivalent to @option{-march=68010}.
18729
18730 @item -m68020
18731 @itemx -mc68020
18732 @opindex m68020
18733 @opindex mc68020
18734 Generate output for a 68020. This is the default
18735 when the compiler is configured for 68020-based systems.
18736 It is equivalent to @option{-march=68020}.
18737
18738 @item -m68030
18739 @opindex m68030
18740 Generate output for a 68030. This is the default when the compiler is
18741 configured for 68030-based systems. It is equivalent to
18742 @option{-march=68030}.
18743
18744 @item -m68040
18745 @opindex m68040
18746 Generate output for a 68040. This is the default when the compiler is
18747 configured for 68040-based systems. It is equivalent to
18748 @option{-march=68040}.
18749
18750 This option inhibits the use of 68881/68882 instructions that have to be
18751 emulated by software on the 68040. Use this option if your 68040 does not
18752 have code to emulate those instructions.
18753
18754 @item -m68060
18755 @opindex m68060
18756 Generate output for a 68060. This is the default when the compiler is
18757 configured for 68060-based systems. It is equivalent to
18758 @option{-march=68060}.
18759
18760 This option inhibits the use of 68020 and 68881/68882 instructions that
18761 have to be emulated by software on the 68060. Use this option if your 68060
18762 does not have code to emulate those instructions.
18763
18764 @item -mcpu32
18765 @opindex mcpu32
18766 Generate output for a CPU32. This is the default
18767 when the compiler is configured for CPU32-based systems.
18768 It is equivalent to @option{-march=cpu32}.
18769
18770 Use this option for microcontrollers with a
18771 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
18772 68336, 68340, 68341, 68349 and 68360.
18773
18774 @item -m5200
18775 @opindex m5200
18776 Generate output for a 520X ColdFire CPU@. This is the default
18777 when the compiler is configured for 520X-based systems.
18778 It is equivalent to @option{-mcpu=5206}, and is now deprecated
18779 in favor of that option.
18780
18781 Use this option for microcontroller with a 5200 core, including
18782 the MCF5202, MCF5203, MCF5204 and MCF5206.
18783
18784 @item -m5206e
18785 @opindex m5206e
18786 Generate output for a 5206e ColdFire CPU@. The option is now
18787 deprecated in favor of the equivalent @option{-mcpu=5206e}.
18788
18789 @item -m528x
18790 @opindex m528x
18791 Generate output for a member of the ColdFire 528X family.
18792 The option is now deprecated in favor of the equivalent
18793 @option{-mcpu=528x}.
18794
18795 @item -m5307
18796 @opindex m5307
18797 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
18798 in favor of the equivalent @option{-mcpu=5307}.
18799
18800 @item -m5407
18801 @opindex m5407
18802 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
18803 in favor of the equivalent @option{-mcpu=5407}.
18804
18805 @item -mcfv4e
18806 @opindex mcfv4e
18807 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
18808 This includes use of hardware floating-point instructions.
18809 The option is equivalent to @option{-mcpu=547x}, and is now
18810 deprecated in favor of that option.
18811
18812 @item -m68020-40
18813 @opindex m68020-40
18814 Generate output for a 68040, without using any of the new instructions.
18815 This results in code that can run relatively efficiently on either a
18816 68020/68881 or a 68030 or a 68040. The generated code does use the
18817 68881 instructions that are emulated on the 68040.
18818
18819 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
18820
18821 @item -m68020-60
18822 @opindex m68020-60
18823 Generate output for a 68060, without using any of the new instructions.
18824 This results in code that can run relatively efficiently on either a
18825 68020/68881 or a 68030 or a 68040. The generated code does use the
18826 68881 instructions that are emulated on the 68060.
18827
18828 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
18829
18830 @item -mhard-float
18831 @itemx -m68881
18832 @opindex mhard-float
18833 @opindex m68881
18834 Generate floating-point instructions. This is the default for 68020
18835 and above, and for ColdFire devices that have an FPU@. It defines the
18836 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
18837 on ColdFire targets.
18838
18839 @item -msoft-float
18840 @opindex msoft-float
18841 Do not generate floating-point instructions; use library calls instead.
18842 This is the default for 68000, 68010, and 68832 targets. It is also
18843 the default for ColdFire devices that have no FPU.
18844
18845 @item -mdiv
18846 @itemx -mno-div
18847 @opindex mdiv
18848 @opindex mno-div
18849 Generate (do not generate) ColdFire hardware divide and remainder
18850 instructions. If @option{-march} is used without @option{-mcpu},
18851 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
18852 architectures. Otherwise, the default is taken from the target CPU
18853 (either the default CPU, or the one specified by @option{-mcpu}). For
18854 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
18855 @option{-mcpu=5206e}.
18856
18857 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
18858
18859 @item -mshort
18860 @opindex mshort
18861 Consider type @code{int} to be 16 bits wide, like @code{short int}.
18862 Additionally, parameters passed on the stack are also aligned to a
18863 16-bit boundary even on targets whose API mandates promotion to 32-bit.
18864
18865 @item -mno-short
18866 @opindex mno-short
18867 Do not consider type @code{int} to be 16 bits wide. This is the default.
18868
18869 @item -mnobitfield
18870 @itemx -mno-bitfield
18871 @opindex mnobitfield
18872 @opindex mno-bitfield
18873 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
18874 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
18875
18876 @item -mbitfield
18877 @opindex mbitfield
18878 Do use the bit-field instructions. The @option{-m68020} option implies
18879 @option{-mbitfield}. This is the default if you use a configuration
18880 designed for a 68020.
18881
18882 @item -mrtd
18883 @opindex mrtd
18884 Use a different function-calling convention, in which functions
18885 that take a fixed number of arguments return with the @code{rtd}
18886 instruction, which pops their arguments while returning. This
18887 saves one instruction in the caller since there is no need to pop
18888 the arguments there.
18889
18890 This calling convention is incompatible with the one normally
18891 used on Unix, so you cannot use it if you need to call libraries
18892 compiled with the Unix compiler.
18893
18894 Also, you must provide function prototypes for all functions that
18895 take variable numbers of arguments (including @code{printf});
18896 otherwise incorrect code is generated for calls to those
18897 functions.
18898
18899 In addition, seriously incorrect code results if you call a
18900 function with too many arguments. (Normally, extra arguments are
18901 harmlessly ignored.)
18902
18903 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
18904 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
18905
18906 @item -mno-rtd
18907 @opindex mno-rtd
18908 Do not use the calling conventions selected by @option{-mrtd}.
18909 This is the default.
18910
18911 @item -malign-int
18912 @itemx -mno-align-int
18913 @opindex malign-int
18914 @opindex mno-align-int
18915 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
18916 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
18917 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
18918 Aligning variables on 32-bit boundaries produces code that runs somewhat
18919 faster on processors with 32-bit busses at the expense of more memory.
18920
18921 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
18922 aligns structures containing the above types differently than
18923 most published application binary interface specifications for the m68k.
18924
18925 @item -mpcrel
18926 @opindex mpcrel
18927 Use the pc-relative addressing mode of the 68000 directly, instead of
18928 using a global offset table. At present, this option implies @option{-fpic},
18929 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
18930 not presently supported with @option{-mpcrel}, though this could be supported for
18931 68020 and higher processors.
18932
18933 @item -mno-strict-align
18934 @itemx -mstrict-align
18935 @opindex mno-strict-align
18936 @opindex mstrict-align
18937 Do not (do) assume that unaligned memory references are handled by
18938 the system.
18939
18940 @item -msep-data
18941 Generate code that allows the data segment to be located in a different
18942 area of memory from the text segment. This allows for execute-in-place in
18943 an environment without virtual memory management. This option implies
18944 @option{-fPIC}.
18945
18946 @item -mno-sep-data
18947 Generate code that assumes that the data segment follows the text segment.
18948 This is the default.
18949
18950 @item -mid-shared-library
18951 Generate code that supports shared libraries via the library ID method.
18952 This allows for execute-in-place and shared libraries in an environment
18953 without virtual memory management. This option implies @option{-fPIC}.
18954
18955 @item -mno-id-shared-library
18956 Generate code that doesn't assume ID-based shared libraries are being used.
18957 This is the default.
18958
18959 @item -mshared-library-id=n
18960 Specifies the identification number of the ID-based shared library being
18961 compiled. Specifying a value of 0 generates more compact code; specifying
18962 other values forces the allocation of that number to the current
18963 library, but is no more space- or time-efficient than omitting this option.
18964
18965 @item -mxgot
18966 @itemx -mno-xgot
18967 @opindex mxgot
18968 @opindex mno-xgot
18969 When generating position-independent code for ColdFire, generate code
18970 that works if the GOT has more than 8192 entries. This code is
18971 larger and slower than code generated without this option. On M680x0
18972 processors, this option is not needed; @option{-fPIC} suffices.
18973
18974 GCC normally uses a single instruction to load values from the GOT@.
18975 While this is relatively efficient, it only works if the GOT
18976 is smaller than about 64k. Anything larger causes the linker
18977 to report an error such as:
18978
18979 @cindex relocation truncated to fit (ColdFire)
18980 @smallexample
18981 relocation truncated to fit: R_68K_GOT16O foobar
18982 @end smallexample
18983
18984 If this happens, you should recompile your code with @option{-mxgot}.
18985 It should then work with very large GOTs. However, code generated with
18986 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
18987 the value of a global symbol.
18988
18989 Note that some linkers, including newer versions of the GNU linker,
18990 can create multiple GOTs and sort GOT entries. If you have such a linker,
18991 you should only need to use @option{-mxgot} when compiling a single
18992 object file that accesses more than 8192 GOT entries. Very few do.
18993
18994 These options have no effect unless GCC is generating
18995 position-independent code.
18996
18997 @item -mlong-jump-table-offsets
18998 @opindex mlong-jump-table-offsets
18999 Use 32-bit offsets in @code{switch} tables. The default is to use
19000 16-bit offsets.
19001
19002 @end table
19003
19004 @node MCore Options
19005 @subsection MCore Options
19006 @cindex MCore options
19007
19008 These are the @samp{-m} options defined for the Motorola M*Core
19009 processors.
19010
19011 @table @gcctabopt
19012
19013 @item -mhardlit
19014 @itemx -mno-hardlit
19015 @opindex mhardlit
19016 @opindex mno-hardlit
19017 Inline constants into the code stream if it can be done in two
19018 instructions or less.
19019
19020 @item -mdiv
19021 @itemx -mno-div
19022 @opindex mdiv
19023 @opindex mno-div
19024 Use the divide instruction. (Enabled by default).
19025
19026 @item -mrelax-immediate
19027 @itemx -mno-relax-immediate
19028 @opindex mrelax-immediate
19029 @opindex mno-relax-immediate
19030 Allow arbitrary-sized immediates in bit operations.
19031
19032 @item -mwide-bitfields
19033 @itemx -mno-wide-bitfields
19034 @opindex mwide-bitfields
19035 @opindex mno-wide-bitfields
19036 Always treat bit-fields as @code{int}-sized.
19037
19038 @item -m4byte-functions
19039 @itemx -mno-4byte-functions
19040 @opindex m4byte-functions
19041 @opindex mno-4byte-functions
19042 Force all functions to be aligned to a 4-byte boundary.
19043
19044 @item -mcallgraph-data
19045 @itemx -mno-callgraph-data
19046 @opindex mcallgraph-data
19047 @opindex mno-callgraph-data
19048 Emit callgraph information.
19049
19050 @item -mslow-bytes
19051 @itemx -mno-slow-bytes
19052 @opindex mslow-bytes
19053 @opindex mno-slow-bytes
19054 Prefer word access when reading byte quantities.
19055
19056 @item -mlittle-endian
19057 @itemx -mbig-endian
19058 @opindex mlittle-endian
19059 @opindex mbig-endian
19060 Generate code for a little-endian target.
19061
19062 @item -m210
19063 @itemx -m340
19064 @opindex m210
19065 @opindex m340
19066 Generate code for the 210 processor.
19067
19068 @item -mno-lsim
19069 @opindex mno-lsim
19070 Assume that runtime support has been provided and so omit the
19071 simulator library (@file{libsim.a)} from the linker command line.
19072
19073 @item -mstack-increment=@var{size}
19074 @opindex mstack-increment
19075 Set the maximum amount for a single stack increment operation. Large
19076 values can increase the speed of programs that contain functions
19077 that need a large amount of stack space, but they can also trigger a
19078 segmentation fault if the stack is extended too much. The default
19079 value is 0x1000.
19080
19081 @end table
19082
19083 @node MeP Options
19084 @subsection MeP Options
19085 @cindex MeP options
19086
19087 @table @gcctabopt
19088
19089 @item -mabsdiff
19090 @opindex mabsdiff
19091 Enables the @code{abs} instruction, which is the absolute difference
19092 between two registers.
19093
19094 @item -mall-opts
19095 @opindex mall-opts
19096 Enables all the optional instructions---average, multiply, divide, bit
19097 operations, leading zero, absolute difference, min/max, clip, and
19098 saturation.
19099
19100
19101 @item -maverage
19102 @opindex maverage
19103 Enables the @code{ave} instruction, which computes the average of two
19104 registers.
19105
19106 @item -mbased=@var{n}
19107 @opindex mbased=
19108 Variables of size @var{n} bytes or smaller are placed in the
19109 @code{.based} section by default. Based variables use the @code{$tp}
19110 register as a base register, and there is a 128-byte limit to the
19111 @code{.based} section.
19112
19113 @item -mbitops
19114 @opindex mbitops
19115 Enables the bit operation instructions---bit test (@code{btstm}), set
19116 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
19117 test-and-set (@code{tas}).
19118
19119 @item -mc=@var{name}
19120 @opindex mc=
19121 Selects which section constant data is placed in. @var{name} may
19122 be @samp{tiny}, @samp{near}, or @samp{far}.
19123
19124 @item -mclip
19125 @opindex mclip
19126 Enables the @code{clip} instruction. Note that @option{-mclip} is not
19127 useful unless you also provide @option{-mminmax}.
19128
19129 @item -mconfig=@var{name}
19130 @opindex mconfig=
19131 Selects one of the built-in core configurations. Each MeP chip has
19132 one or more modules in it; each module has a core CPU and a variety of
19133 coprocessors, optional instructions, and peripherals. The
19134 @code{MeP-Integrator} tool, not part of GCC, provides these
19135 configurations through this option; using this option is the same as
19136 using all the corresponding command-line options. The default
19137 configuration is @samp{default}.
19138
19139 @item -mcop
19140 @opindex mcop
19141 Enables the coprocessor instructions. By default, this is a 32-bit
19142 coprocessor. Note that the coprocessor is normally enabled via the
19143 @option{-mconfig=} option.
19144
19145 @item -mcop32
19146 @opindex mcop32
19147 Enables the 32-bit coprocessor's instructions.
19148
19149 @item -mcop64
19150 @opindex mcop64
19151 Enables the 64-bit coprocessor's instructions.
19152
19153 @item -mivc2
19154 @opindex mivc2
19155 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
19156
19157 @item -mdc
19158 @opindex mdc
19159 Causes constant variables to be placed in the @code{.near} section.
19160
19161 @item -mdiv
19162 @opindex mdiv
19163 Enables the @code{div} and @code{divu} instructions.
19164
19165 @item -meb
19166 @opindex meb
19167 Generate big-endian code.
19168
19169 @item -mel
19170 @opindex mel
19171 Generate little-endian code.
19172
19173 @item -mio-volatile
19174 @opindex mio-volatile
19175 Tells the compiler that any variable marked with the @code{io}
19176 attribute is to be considered volatile.
19177
19178 @item -ml
19179 @opindex ml
19180 Causes variables to be assigned to the @code{.far} section by default.
19181
19182 @item -mleadz
19183 @opindex mleadz
19184 Enables the @code{leadz} (leading zero) instruction.
19185
19186 @item -mm
19187 @opindex mm
19188 Causes variables to be assigned to the @code{.near} section by default.
19189
19190 @item -mminmax
19191 @opindex mminmax
19192 Enables the @code{min} and @code{max} instructions.
19193
19194 @item -mmult
19195 @opindex mmult
19196 Enables the multiplication and multiply-accumulate instructions.
19197
19198 @item -mno-opts
19199 @opindex mno-opts
19200 Disables all the optional instructions enabled by @option{-mall-opts}.
19201
19202 @item -mrepeat
19203 @opindex mrepeat
19204 Enables the @code{repeat} and @code{erepeat} instructions, used for
19205 low-overhead looping.
19206
19207 @item -ms
19208 @opindex ms
19209 Causes all variables to default to the @code{.tiny} section. Note
19210 that there is a 65536-byte limit to this section. Accesses to these
19211 variables use the @code{%gp} base register.
19212
19213 @item -msatur
19214 @opindex msatur
19215 Enables the saturation instructions. Note that the compiler does not
19216 currently generate these itself, but this option is included for
19217 compatibility with other tools, like @code{as}.
19218
19219 @item -msdram
19220 @opindex msdram
19221 Link the SDRAM-based runtime instead of the default ROM-based runtime.
19222
19223 @item -msim
19224 @opindex msim
19225 Link the simulator run-time libraries.
19226
19227 @item -msimnovec
19228 @opindex msimnovec
19229 Link the simulator runtime libraries, excluding built-in support
19230 for reset and exception vectors and tables.
19231
19232 @item -mtf
19233 @opindex mtf
19234 Causes all functions to default to the @code{.far} section. Without
19235 this option, functions default to the @code{.near} section.
19236
19237 @item -mtiny=@var{n}
19238 @opindex mtiny=
19239 Variables that are @var{n} bytes or smaller are allocated to the
19240 @code{.tiny} section. These variables use the @code{$gp} base
19241 register. The default for this option is 4, but note that there's a
19242 65536-byte limit to the @code{.tiny} section.
19243
19244 @end table
19245
19246 @node MicroBlaze Options
19247 @subsection MicroBlaze Options
19248 @cindex MicroBlaze Options
19249
19250 @table @gcctabopt
19251
19252 @item -msoft-float
19253 @opindex msoft-float
19254 Use software emulation for floating point (default).
19255
19256 @item -mhard-float
19257 @opindex mhard-float
19258 Use hardware floating-point instructions.
19259
19260 @item -mmemcpy
19261 @opindex mmemcpy
19262 Do not optimize block moves, use @code{memcpy}.
19263
19264 @item -mno-clearbss
19265 @opindex mno-clearbss
19266 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
19267
19268 @item -mcpu=@var{cpu-type}
19269 @opindex mcpu=
19270 Use features of, and schedule code for, the given CPU.
19271 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
19272 where @var{X} is a major version, @var{YY} is the minor version, and
19273 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
19274 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
19275
19276 @item -mxl-soft-mul
19277 @opindex mxl-soft-mul
19278 Use software multiply emulation (default).
19279
19280 @item -mxl-soft-div
19281 @opindex mxl-soft-div
19282 Use software emulation for divides (default).
19283
19284 @item -mxl-barrel-shift
19285 @opindex mxl-barrel-shift
19286 Use the hardware barrel shifter.
19287
19288 @item -mxl-pattern-compare
19289 @opindex mxl-pattern-compare
19290 Use pattern compare instructions.
19291
19292 @item -msmall-divides
19293 @opindex msmall-divides
19294 Use table lookup optimization for small signed integer divisions.
19295
19296 @item -mxl-stack-check
19297 @opindex mxl-stack-check
19298 This option is deprecated. Use @option{-fstack-check} instead.
19299
19300 @item -mxl-gp-opt
19301 @opindex mxl-gp-opt
19302 Use GP-relative @code{.sdata}/@code{.sbss} sections.
19303
19304 @item -mxl-multiply-high
19305 @opindex mxl-multiply-high
19306 Use multiply high instructions for high part of 32x32 multiply.
19307
19308 @item -mxl-float-convert
19309 @opindex mxl-float-convert
19310 Use hardware floating-point conversion instructions.
19311
19312 @item -mxl-float-sqrt
19313 @opindex mxl-float-sqrt
19314 Use hardware floating-point square root instruction.
19315
19316 @item -mbig-endian
19317 @opindex mbig-endian
19318 Generate code for a big-endian target.
19319
19320 @item -mlittle-endian
19321 @opindex mlittle-endian
19322 Generate code for a little-endian target.
19323
19324 @item -mxl-reorder
19325 @opindex mxl-reorder
19326 Use reorder instructions (swap and byte reversed load/store).
19327
19328 @item -mxl-mode-@var{app-model}
19329 Select application model @var{app-model}. Valid models are
19330 @table @samp
19331 @item executable
19332 normal executable (default), uses startup code @file{crt0.o}.
19333
19334 @item xmdstub
19335 for use with Xilinx Microprocessor Debugger (XMD) based
19336 software intrusive debug agent called xmdstub. This uses startup file
19337 @file{crt1.o} and sets the start address of the program to 0x800.
19338
19339 @item bootstrap
19340 for applications that are loaded using a bootloader.
19341 This model uses startup file @file{crt2.o} which does not contain a processor
19342 reset vector handler. This is suitable for transferring control on a
19343 processor reset to the bootloader rather than the application.
19344
19345 @item novectors
19346 for applications that do not require any of the
19347 MicroBlaze vectors. This option may be useful for applications running
19348 within a monitoring application. This model uses @file{crt3.o} as a startup file.
19349 @end table
19350
19351 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
19352 @option{-mxl-mode-@var{app-model}}.
19353
19354 @end table
19355
19356 @node MIPS Options
19357 @subsection MIPS Options
19358 @cindex MIPS options
19359
19360 @table @gcctabopt
19361
19362 @item -EB
19363 @opindex EB
19364 Generate big-endian code.
19365
19366 @item -EL
19367 @opindex EL
19368 Generate little-endian code. This is the default for @samp{mips*el-*-*}
19369 configurations.
19370
19371 @item -march=@var{arch}
19372 @opindex march
19373 Generate code that runs on @var{arch}, which can be the name of a
19374 generic MIPS ISA, or the name of a particular processor.
19375 The ISA names are:
19376 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
19377 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
19378 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
19379 @samp{mips64r5} and @samp{mips64r6}.
19380 The processor names are:
19381 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
19382 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
19383 @samp{5kc}, @samp{5kf},
19384 @samp{20kc},
19385 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
19386 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
19387 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
19388 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
19389 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
19390 @samp{i6400},
19391 @samp{interaptiv},
19392 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
19393 @samp{m4k},
19394 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
19395 @samp{m5100}, @samp{m5101},
19396 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
19397 @samp{orion},
19398 @samp{p5600},
19399 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
19400 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
19401 @samp{rm7000}, @samp{rm9000},
19402 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
19403 @samp{sb1},
19404 @samp{sr71000},
19405 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
19406 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
19407 @samp{xlr} and @samp{xlp}.
19408 The special value @samp{from-abi} selects the
19409 most compatible architecture for the selected ABI (that is,
19410 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
19411
19412 The native Linux/GNU toolchain also supports the value @samp{native},
19413 which selects the best architecture option for the host processor.
19414 @option{-march=native} has no effect if GCC does not recognize
19415 the processor.
19416
19417 In processor names, a final @samp{000} can be abbreviated as @samp{k}
19418 (for example, @option{-march=r2k}). Prefixes are optional, and
19419 @samp{vr} may be written @samp{r}.
19420
19421 Names of the form @samp{@var{n}f2_1} refer to processors with
19422 FPUs clocked at half the rate of the core, names of the form
19423 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
19424 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
19425 processors with FPUs clocked a ratio of 3:2 with respect to the core.
19426 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
19427 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
19428 accepted as synonyms for @samp{@var{n}f1_1}.
19429
19430 GCC defines two macros based on the value of this option. The first
19431 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
19432 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
19433 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
19434 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
19435 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
19436
19437 Note that the @code{_MIPS_ARCH} macro uses the processor names given
19438 above. In other words, it has the full prefix and does not
19439 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
19440 the macro names the resolved architecture (either @code{"mips1"} or
19441 @code{"mips3"}). It names the default architecture when no
19442 @option{-march} option is given.
19443
19444 @item -mtune=@var{arch}
19445 @opindex mtune
19446 Optimize for @var{arch}. Among other things, this option controls
19447 the way instructions are scheduled, and the perceived cost of arithmetic
19448 operations. The list of @var{arch} values is the same as for
19449 @option{-march}.
19450
19451 When this option is not used, GCC optimizes for the processor
19452 specified by @option{-march}. By using @option{-march} and
19453 @option{-mtune} together, it is possible to generate code that
19454 runs on a family of processors, but optimize the code for one
19455 particular member of that family.
19456
19457 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
19458 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
19459 @option{-march} ones described above.
19460
19461 @item -mips1
19462 @opindex mips1
19463 Equivalent to @option{-march=mips1}.
19464
19465 @item -mips2
19466 @opindex mips2
19467 Equivalent to @option{-march=mips2}.
19468
19469 @item -mips3
19470 @opindex mips3
19471 Equivalent to @option{-march=mips3}.
19472
19473 @item -mips4
19474 @opindex mips4
19475 Equivalent to @option{-march=mips4}.
19476
19477 @item -mips32
19478 @opindex mips32
19479 Equivalent to @option{-march=mips32}.
19480
19481 @item -mips32r3
19482 @opindex mips32r3
19483 Equivalent to @option{-march=mips32r3}.
19484
19485 @item -mips32r5
19486 @opindex mips32r5
19487 Equivalent to @option{-march=mips32r5}.
19488
19489 @item -mips32r6
19490 @opindex mips32r6
19491 Equivalent to @option{-march=mips32r6}.
19492
19493 @item -mips64
19494 @opindex mips64
19495 Equivalent to @option{-march=mips64}.
19496
19497 @item -mips64r2
19498 @opindex mips64r2
19499 Equivalent to @option{-march=mips64r2}.
19500
19501 @item -mips64r3
19502 @opindex mips64r3
19503 Equivalent to @option{-march=mips64r3}.
19504
19505 @item -mips64r5
19506 @opindex mips64r5
19507 Equivalent to @option{-march=mips64r5}.
19508
19509 @item -mips64r6
19510 @opindex mips64r6
19511 Equivalent to @option{-march=mips64r6}.
19512
19513 @item -mips16
19514 @itemx -mno-mips16
19515 @opindex mips16
19516 @opindex mno-mips16
19517 Generate (do not generate) MIPS16 code. If GCC is targeting a
19518 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
19519
19520 MIPS16 code generation can also be controlled on a per-function basis
19521 by means of @code{mips16} and @code{nomips16} attributes.
19522 @xref{Function Attributes}, for more information.
19523
19524 @item -mflip-mips16
19525 @opindex mflip-mips16
19526 Generate MIPS16 code on alternating functions. This option is provided
19527 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
19528 not intended for ordinary use in compiling user code.
19529
19530 @item -minterlink-compressed
19531 @item -mno-interlink-compressed
19532 @opindex minterlink-compressed
19533 @opindex mno-interlink-compressed
19534 Require (do not require) that code using the standard (uncompressed) MIPS ISA
19535 be link-compatible with MIPS16 and microMIPS code, and vice versa.
19536
19537 For example, code using the standard ISA encoding cannot jump directly
19538 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
19539 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
19540 knows that the target of the jump is not compressed.
19541
19542 @item -minterlink-mips16
19543 @itemx -mno-interlink-mips16
19544 @opindex minterlink-mips16
19545 @opindex mno-interlink-mips16
19546 Aliases of @option{-minterlink-compressed} and
19547 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
19548 and are retained for backwards compatibility.
19549
19550 @item -mabi=32
19551 @itemx -mabi=o64
19552 @itemx -mabi=n32
19553 @itemx -mabi=64
19554 @itemx -mabi=eabi
19555 @opindex mabi=32
19556 @opindex mabi=o64
19557 @opindex mabi=n32
19558 @opindex mabi=64
19559 @opindex mabi=eabi
19560 Generate code for the given ABI@.
19561
19562 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
19563 generates 64-bit code when you select a 64-bit architecture, but you
19564 can use @option{-mgp32} to get 32-bit code instead.
19565
19566 For information about the O64 ABI, see
19567 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
19568
19569 GCC supports a variant of the o32 ABI in which floating-point registers
19570 are 64 rather than 32 bits wide. You can select this combination with
19571 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
19572 and @code{mfhc1} instructions and is therefore only supported for
19573 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
19574
19575 The register assignments for arguments and return values remain the
19576 same, but each scalar value is passed in a single 64-bit register
19577 rather than a pair of 32-bit registers. For example, scalar
19578 floating-point values are returned in @samp{$f0} only, not a
19579 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
19580 remains the same in that the even-numbered double-precision registers
19581 are saved.
19582
19583 Two additional variants of the o32 ABI are supported to enable
19584 a transition from 32-bit to 64-bit registers. These are FPXX
19585 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
19586 The FPXX extension mandates that all code must execute correctly
19587 when run using 32-bit or 64-bit registers. The code can be interlinked
19588 with either FP32 or FP64, but not both.
19589 The FP64A extension is similar to the FP64 extension but forbids the
19590 use of odd-numbered single-precision registers. This can be used
19591 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
19592 processors and allows both FP32 and FP64A code to interlink and
19593 run in the same process without changing FPU modes.
19594
19595 @item -mabicalls
19596 @itemx -mno-abicalls
19597 @opindex mabicalls
19598 @opindex mno-abicalls
19599 Generate (do not generate) code that is suitable for SVR4-style
19600 dynamic objects. @option{-mabicalls} is the default for SVR4-based
19601 systems.
19602
19603 @item -mshared
19604 @itemx -mno-shared
19605 Generate (do not generate) code that is fully position-independent,
19606 and that can therefore be linked into shared libraries. This option
19607 only affects @option{-mabicalls}.
19608
19609 All @option{-mabicalls} code has traditionally been position-independent,
19610 regardless of options like @option{-fPIC} and @option{-fpic}. However,
19611 as an extension, the GNU toolchain allows executables to use absolute
19612 accesses for locally-binding symbols. It can also use shorter GP
19613 initialization sequences and generate direct calls to locally-defined
19614 functions. This mode is selected by @option{-mno-shared}.
19615
19616 @option{-mno-shared} depends on binutils 2.16 or higher and generates
19617 objects that can only be linked by the GNU linker. However, the option
19618 does not affect the ABI of the final executable; it only affects the ABI
19619 of relocatable objects. Using @option{-mno-shared} generally makes
19620 executables both smaller and quicker.
19621
19622 @option{-mshared} is the default.
19623
19624 @item -mplt
19625 @itemx -mno-plt
19626 @opindex mplt
19627 @opindex mno-plt
19628 Assume (do not assume) that the static and dynamic linkers
19629 support PLTs and copy relocations. This option only affects
19630 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
19631 has no effect without @option{-msym32}.
19632
19633 You can make @option{-mplt} the default by configuring
19634 GCC with @option{--with-mips-plt}. The default is
19635 @option{-mno-plt} otherwise.
19636
19637 @item -mxgot
19638 @itemx -mno-xgot
19639 @opindex mxgot
19640 @opindex mno-xgot
19641 Lift (do not lift) the usual restrictions on the size of the global
19642 offset table.
19643
19644 GCC normally uses a single instruction to load values from the GOT@.
19645 While this is relatively efficient, it only works if the GOT
19646 is smaller than about 64k. Anything larger causes the linker
19647 to report an error such as:
19648
19649 @cindex relocation truncated to fit (MIPS)
19650 @smallexample
19651 relocation truncated to fit: R_MIPS_GOT16 foobar
19652 @end smallexample
19653
19654 If this happens, you should recompile your code with @option{-mxgot}.
19655 This works with very large GOTs, although the code is also
19656 less efficient, since it takes three instructions to fetch the
19657 value of a global symbol.
19658
19659 Note that some linkers can create multiple GOTs. If you have such a
19660 linker, you should only need to use @option{-mxgot} when a single object
19661 file accesses more than 64k's worth of GOT entries. Very few do.
19662
19663 These options have no effect unless GCC is generating position
19664 independent code.
19665
19666 @item -mgp32
19667 @opindex mgp32
19668 Assume that general-purpose registers are 32 bits wide.
19669
19670 @item -mgp64
19671 @opindex mgp64
19672 Assume that general-purpose registers are 64 bits wide.
19673
19674 @item -mfp32
19675 @opindex mfp32
19676 Assume that floating-point registers are 32 bits wide.
19677
19678 @item -mfp64
19679 @opindex mfp64
19680 Assume that floating-point registers are 64 bits wide.
19681
19682 @item -mfpxx
19683 @opindex mfpxx
19684 Do not assume the width of floating-point registers.
19685
19686 @item -mhard-float
19687 @opindex mhard-float
19688 Use floating-point coprocessor instructions.
19689
19690 @item -msoft-float
19691 @opindex msoft-float
19692 Do not use floating-point coprocessor instructions. Implement
19693 floating-point calculations using library calls instead.
19694
19695 @item -mno-float
19696 @opindex mno-float
19697 Equivalent to @option{-msoft-float}, but additionally asserts that the
19698 program being compiled does not perform any floating-point operations.
19699 This option is presently supported only by some bare-metal MIPS
19700 configurations, where it may select a special set of libraries
19701 that lack all floating-point support (including, for example, the
19702 floating-point @code{printf} formats).
19703 If code compiled with @option{-mno-float} accidentally contains
19704 floating-point operations, it is likely to suffer a link-time
19705 or run-time failure.
19706
19707 @item -msingle-float
19708 @opindex msingle-float
19709 Assume that the floating-point coprocessor only supports single-precision
19710 operations.
19711
19712 @item -mdouble-float
19713 @opindex mdouble-float
19714 Assume that the floating-point coprocessor supports double-precision
19715 operations. This is the default.
19716
19717 @item -modd-spreg
19718 @itemx -mno-odd-spreg
19719 @opindex modd-spreg
19720 @opindex mno-odd-spreg
19721 Enable the use of odd-numbered single-precision floating-point registers
19722 for the o32 ABI. This is the default for processors that are known to
19723 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
19724 is set by default.
19725
19726 @item -mabs=2008
19727 @itemx -mabs=legacy
19728 @opindex mabs=2008
19729 @opindex mabs=legacy
19730 These options control the treatment of the special not-a-number (NaN)
19731 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
19732 @code{neg.@i{fmt}} machine instructions.
19733
19734 By default or when @option{-mabs=legacy} is used the legacy
19735 treatment is selected. In this case these instructions are considered
19736 arithmetic and avoided where correct operation is required and the
19737 input operand might be a NaN. A longer sequence of instructions that
19738 manipulate the sign bit of floating-point datum manually is used
19739 instead unless the @option{-ffinite-math-only} option has also been
19740 specified.
19741
19742 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
19743 this case these instructions are considered non-arithmetic and therefore
19744 operating correctly in all cases, including in particular where the
19745 input operand is a NaN. These instructions are therefore always used
19746 for the respective operations.
19747
19748 @item -mnan=2008
19749 @itemx -mnan=legacy
19750 @opindex mnan=2008
19751 @opindex mnan=legacy
19752 These options control the encoding of the special not-a-number (NaN)
19753 IEEE 754 floating-point data.
19754
19755 The @option{-mnan=legacy} option selects the legacy encoding. In this
19756 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
19757 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
19758 by the first bit of their trailing significand field being 1.
19759
19760 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
19761 this case qNaNs are denoted by the first bit of their trailing
19762 significand field being 1, whereas sNaNs are denoted by the first bit of
19763 their trailing significand field being 0.
19764
19765 The default is @option{-mnan=legacy} unless GCC has been configured with
19766 @option{--with-nan=2008}.
19767
19768 @item -mllsc
19769 @itemx -mno-llsc
19770 @opindex mllsc
19771 @opindex mno-llsc
19772 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
19773 implement atomic memory built-in functions. When neither option is
19774 specified, GCC uses the instructions if the target architecture
19775 supports them.
19776
19777 @option{-mllsc} is useful if the runtime environment can emulate the
19778 instructions and @option{-mno-llsc} can be useful when compiling for
19779 nonstandard ISAs. You can make either option the default by
19780 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
19781 respectively. @option{--with-llsc} is the default for some
19782 configurations; see the installation documentation for details.
19783
19784 @item -mdsp
19785 @itemx -mno-dsp
19786 @opindex mdsp
19787 @opindex mno-dsp
19788 Use (do not use) revision 1 of the MIPS DSP ASE@.
19789 @xref{MIPS DSP Built-in Functions}. This option defines the
19790 preprocessor macro @code{__mips_dsp}. It also defines
19791 @code{__mips_dsp_rev} to 1.
19792
19793 @item -mdspr2
19794 @itemx -mno-dspr2
19795 @opindex mdspr2
19796 @opindex mno-dspr2
19797 Use (do not use) revision 2 of the MIPS DSP ASE@.
19798 @xref{MIPS DSP Built-in Functions}. This option defines the
19799 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
19800 It also defines @code{__mips_dsp_rev} to 2.
19801
19802 @item -msmartmips
19803 @itemx -mno-smartmips
19804 @opindex msmartmips
19805 @opindex mno-smartmips
19806 Use (do not use) the MIPS SmartMIPS ASE.
19807
19808 @item -mpaired-single
19809 @itemx -mno-paired-single
19810 @opindex mpaired-single
19811 @opindex mno-paired-single
19812 Use (do not use) paired-single floating-point instructions.
19813 @xref{MIPS Paired-Single Support}. This option requires
19814 hardware floating-point support to be enabled.
19815
19816 @item -mdmx
19817 @itemx -mno-mdmx
19818 @opindex mdmx
19819 @opindex mno-mdmx
19820 Use (do not use) MIPS Digital Media Extension instructions.
19821 This option can only be used when generating 64-bit code and requires
19822 hardware floating-point support to be enabled.
19823
19824 @item -mips3d
19825 @itemx -mno-mips3d
19826 @opindex mips3d
19827 @opindex mno-mips3d
19828 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
19829 The option @option{-mips3d} implies @option{-mpaired-single}.
19830
19831 @item -mmicromips
19832 @itemx -mno-micromips
19833 @opindex mmicromips
19834 @opindex mno-mmicromips
19835 Generate (do not generate) microMIPS code.
19836
19837 MicroMIPS code generation can also be controlled on a per-function basis
19838 by means of @code{micromips} and @code{nomicromips} attributes.
19839 @xref{Function Attributes}, for more information.
19840
19841 @item -mmt
19842 @itemx -mno-mt
19843 @opindex mmt
19844 @opindex mno-mt
19845 Use (do not use) MT Multithreading instructions.
19846
19847 @item -mmcu
19848 @itemx -mno-mcu
19849 @opindex mmcu
19850 @opindex mno-mcu
19851 Use (do not use) the MIPS MCU ASE instructions.
19852
19853 @item -meva
19854 @itemx -mno-eva
19855 @opindex meva
19856 @opindex mno-eva
19857 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
19858
19859 @item -mvirt
19860 @itemx -mno-virt
19861 @opindex mvirt
19862 @opindex mno-virt
19863 Use (do not use) the MIPS Virtualization (VZ) instructions.
19864
19865 @item -mxpa
19866 @itemx -mno-xpa
19867 @opindex mxpa
19868 @opindex mno-xpa
19869 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
19870
19871 @item -mlong64
19872 @opindex mlong64
19873 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
19874 an explanation of the default and the way that the pointer size is
19875 determined.
19876
19877 @item -mlong32
19878 @opindex mlong32
19879 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
19880
19881 The default size of @code{int}s, @code{long}s and pointers depends on
19882 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
19883 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
19884 32-bit @code{long}s. Pointers are the same size as @code{long}s,
19885 or the same size as integer registers, whichever is smaller.
19886
19887 @item -msym32
19888 @itemx -mno-sym32
19889 @opindex msym32
19890 @opindex mno-sym32
19891 Assume (do not assume) that all symbols have 32-bit values, regardless
19892 of the selected ABI@. This option is useful in combination with
19893 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
19894 to generate shorter and faster references to symbolic addresses.
19895
19896 @item -G @var{num}
19897 @opindex G
19898 Put definitions of externally-visible data in a small data section
19899 if that data is no bigger than @var{num} bytes. GCC can then generate
19900 more efficient accesses to the data; see @option{-mgpopt} for details.
19901
19902 The default @option{-G} option depends on the configuration.
19903
19904 @item -mlocal-sdata
19905 @itemx -mno-local-sdata
19906 @opindex mlocal-sdata
19907 @opindex mno-local-sdata
19908 Extend (do not extend) the @option{-G} behavior to local data too,
19909 such as to static variables in C@. @option{-mlocal-sdata} is the
19910 default for all configurations.
19911
19912 If the linker complains that an application is using too much small data,
19913 you might want to try rebuilding the less performance-critical parts with
19914 @option{-mno-local-sdata}. You might also want to build large
19915 libraries with @option{-mno-local-sdata}, so that the libraries leave
19916 more room for the main program.
19917
19918 @item -mextern-sdata
19919 @itemx -mno-extern-sdata
19920 @opindex mextern-sdata
19921 @opindex mno-extern-sdata
19922 Assume (do not assume) that externally-defined data is in
19923 a small data section if the size of that data is within the @option{-G} limit.
19924 @option{-mextern-sdata} is the default for all configurations.
19925
19926 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
19927 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
19928 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
19929 is placed in a small data section. If @var{Var} is defined by another
19930 module, you must either compile that module with a high-enough
19931 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
19932 definition. If @var{Var} is common, you must link the application
19933 with a high-enough @option{-G} setting.
19934
19935 The easiest way of satisfying these restrictions is to compile
19936 and link every module with the same @option{-G} option. However,
19937 you may wish to build a library that supports several different
19938 small data limits. You can do this by compiling the library with
19939 the highest supported @option{-G} setting and additionally using
19940 @option{-mno-extern-sdata} to stop the library from making assumptions
19941 about externally-defined data.
19942
19943 @item -mgpopt
19944 @itemx -mno-gpopt
19945 @opindex mgpopt
19946 @opindex mno-gpopt
19947 Use (do not use) GP-relative accesses for symbols that are known to be
19948 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
19949 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
19950 configurations.
19951
19952 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
19953 might not hold the value of @code{_gp}. For example, if the code is
19954 part of a library that might be used in a boot monitor, programs that
19955 call boot monitor routines pass an unknown value in @code{$gp}.
19956 (In such situations, the boot monitor itself is usually compiled
19957 with @option{-G0}.)
19958
19959 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
19960 @option{-mno-extern-sdata}.
19961
19962 @item -membedded-data
19963 @itemx -mno-embedded-data
19964 @opindex membedded-data
19965 @opindex mno-embedded-data
19966 Allocate variables to the read-only data section first if possible, then
19967 next in the small data section if possible, otherwise in data. This gives
19968 slightly slower code than the default, but reduces the amount of RAM required
19969 when executing, and thus may be preferred for some embedded systems.
19970
19971 @item -muninit-const-in-rodata
19972 @itemx -mno-uninit-const-in-rodata
19973 @opindex muninit-const-in-rodata
19974 @opindex mno-uninit-const-in-rodata
19975 Put uninitialized @code{const} variables in the read-only data section.
19976 This option is only meaningful in conjunction with @option{-membedded-data}.
19977
19978 @item -mcode-readable=@var{setting}
19979 @opindex mcode-readable
19980 Specify whether GCC may generate code that reads from executable sections.
19981 There are three possible settings:
19982
19983 @table @gcctabopt
19984 @item -mcode-readable=yes
19985 Instructions may freely access executable sections. This is the
19986 default setting.
19987
19988 @item -mcode-readable=pcrel
19989 MIPS16 PC-relative load instructions can access executable sections,
19990 but other instructions must not do so. This option is useful on 4KSc
19991 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
19992 It is also useful on processors that can be configured to have a dual
19993 instruction/data SRAM interface and that, like the M4K, automatically
19994 redirect PC-relative loads to the instruction RAM.
19995
19996 @item -mcode-readable=no
19997 Instructions must not access executable sections. This option can be
19998 useful on targets that are configured to have a dual instruction/data
19999 SRAM interface but that (unlike the M4K) do not automatically redirect
20000 PC-relative loads to the instruction RAM.
20001 @end table
20002
20003 @item -msplit-addresses
20004 @itemx -mno-split-addresses
20005 @opindex msplit-addresses
20006 @opindex mno-split-addresses
20007 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
20008 relocation operators. This option has been superseded by
20009 @option{-mexplicit-relocs} but is retained for backwards compatibility.
20010
20011 @item -mexplicit-relocs
20012 @itemx -mno-explicit-relocs
20013 @opindex mexplicit-relocs
20014 @opindex mno-explicit-relocs
20015 Use (do not use) assembler relocation operators when dealing with symbolic
20016 addresses. The alternative, selected by @option{-mno-explicit-relocs},
20017 is to use assembler macros instead.
20018
20019 @option{-mexplicit-relocs} is the default if GCC was configured
20020 to use an assembler that supports relocation operators.
20021
20022 @item -mcheck-zero-division
20023 @itemx -mno-check-zero-division
20024 @opindex mcheck-zero-division
20025 @opindex mno-check-zero-division
20026 Trap (do not trap) on integer division by zero.
20027
20028 The default is @option{-mcheck-zero-division}.
20029
20030 @item -mdivide-traps
20031 @itemx -mdivide-breaks
20032 @opindex mdivide-traps
20033 @opindex mdivide-breaks
20034 MIPS systems check for division by zero by generating either a
20035 conditional trap or a break instruction. Using traps results in
20036 smaller code, but is only supported on MIPS II and later. Also, some
20037 versions of the Linux kernel have a bug that prevents trap from
20038 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
20039 allow conditional traps on architectures that support them and
20040 @option{-mdivide-breaks} to force the use of breaks.
20041
20042 The default is usually @option{-mdivide-traps}, but this can be
20043 overridden at configure time using @option{--with-divide=breaks}.
20044 Divide-by-zero checks can be completely disabled using
20045 @option{-mno-check-zero-division}.
20046
20047 @item -mload-store-pairs
20048 @itemx -mno-load-store-pairs
20049 @opindex mload-store-pairs
20050 @opindex mno-load-store-pairs
20051 Enable (disable) an optimization that pairs consecutive load or store
20052 instructions to enable load/store bonding. This option is enabled by
20053 default but only takes effect when the selected architecture is known
20054 to support bonding.
20055
20056 @item -mmemcpy
20057 @itemx -mno-memcpy
20058 @opindex mmemcpy
20059 @opindex mno-memcpy
20060 Force (do not force) the use of @code{memcpy} for non-trivial block
20061 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
20062 most constant-sized copies.
20063
20064 @item -mlong-calls
20065 @itemx -mno-long-calls
20066 @opindex mlong-calls
20067 @opindex mno-long-calls
20068 Disable (do not disable) use of the @code{jal} instruction. Calling
20069 functions using @code{jal} is more efficient but requires the caller
20070 and callee to be in the same 256 megabyte segment.
20071
20072 This option has no effect on abicalls code. The default is
20073 @option{-mno-long-calls}.
20074
20075 @item -mmad
20076 @itemx -mno-mad
20077 @opindex mmad
20078 @opindex mno-mad
20079 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
20080 instructions, as provided by the R4650 ISA@.
20081
20082 @item -mimadd
20083 @itemx -mno-imadd
20084 @opindex mimadd
20085 @opindex mno-imadd
20086 Enable (disable) use of the @code{madd} and @code{msub} integer
20087 instructions. The default is @option{-mimadd} on architectures
20088 that support @code{madd} and @code{msub} except for the 74k
20089 architecture where it was found to generate slower code.
20090
20091 @item -mfused-madd
20092 @itemx -mno-fused-madd
20093 @opindex mfused-madd
20094 @opindex mno-fused-madd
20095 Enable (disable) use of the floating-point multiply-accumulate
20096 instructions, when they are available. The default is
20097 @option{-mfused-madd}.
20098
20099 On the R8000 CPU when multiply-accumulate instructions are used,
20100 the intermediate product is calculated to infinite precision
20101 and is not subject to the FCSR Flush to Zero bit. This may be
20102 undesirable in some circumstances. On other processors the result
20103 is numerically identical to the equivalent computation using
20104 separate multiply, add, subtract and negate instructions.
20105
20106 @item -nocpp
20107 @opindex nocpp
20108 Tell the MIPS assembler to not run its preprocessor over user
20109 assembler files (with a @samp{.s} suffix) when assembling them.
20110
20111 @item -mfix-24k
20112 @item -mno-fix-24k
20113 @opindex mfix-24k
20114 @opindex mno-fix-24k
20115 Work around the 24K E48 (lost data on stores during refill) errata.
20116 The workarounds are implemented by the assembler rather than by GCC@.
20117
20118 @item -mfix-r4000
20119 @itemx -mno-fix-r4000
20120 @opindex mfix-r4000
20121 @opindex mno-fix-r4000
20122 Work around certain R4000 CPU errata:
20123 @itemize @minus
20124 @item
20125 A double-word or a variable shift may give an incorrect result if executed
20126 immediately after starting an integer division.
20127 @item
20128 A double-word or a variable shift may give an incorrect result if executed
20129 while an integer multiplication is in progress.
20130 @item
20131 An integer division may give an incorrect result if started in a delay slot
20132 of a taken branch or a jump.
20133 @end itemize
20134
20135 @item -mfix-r4400
20136 @itemx -mno-fix-r4400
20137 @opindex mfix-r4400
20138 @opindex mno-fix-r4400
20139 Work around certain R4400 CPU errata:
20140 @itemize @minus
20141 @item
20142 A double-word or a variable shift may give an incorrect result if executed
20143 immediately after starting an integer division.
20144 @end itemize
20145
20146 @item -mfix-r10000
20147 @itemx -mno-fix-r10000
20148 @opindex mfix-r10000
20149 @opindex mno-fix-r10000
20150 Work around certain R10000 errata:
20151 @itemize @minus
20152 @item
20153 @code{ll}/@code{sc} sequences may not behave atomically on revisions
20154 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
20155 @end itemize
20156
20157 This option can only be used if the target architecture supports
20158 branch-likely instructions. @option{-mfix-r10000} is the default when
20159 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
20160 otherwise.
20161
20162 @item -mfix-rm7000
20163 @itemx -mno-fix-rm7000
20164 @opindex mfix-rm7000
20165 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
20166 workarounds are implemented by the assembler rather than by GCC@.
20167
20168 @item -mfix-vr4120
20169 @itemx -mno-fix-vr4120
20170 @opindex mfix-vr4120
20171 Work around certain VR4120 errata:
20172 @itemize @minus
20173 @item
20174 @code{dmultu} does not always produce the correct result.
20175 @item
20176 @code{div} and @code{ddiv} do not always produce the correct result if one
20177 of the operands is negative.
20178 @end itemize
20179 The workarounds for the division errata rely on special functions in
20180 @file{libgcc.a}. At present, these functions are only provided by
20181 the @code{mips64vr*-elf} configurations.
20182
20183 Other VR4120 errata require a NOP to be inserted between certain pairs of
20184 instructions. These errata are handled by the assembler, not by GCC itself.
20185
20186 @item -mfix-vr4130
20187 @opindex mfix-vr4130
20188 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
20189 workarounds are implemented by the assembler rather than by GCC,
20190 although GCC avoids using @code{mflo} and @code{mfhi} if the
20191 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
20192 instructions are available instead.
20193
20194 @item -mfix-sb1
20195 @itemx -mno-fix-sb1
20196 @opindex mfix-sb1
20197 Work around certain SB-1 CPU core errata.
20198 (This flag currently works around the SB-1 revision 2
20199 ``F1'' and ``F2'' floating-point errata.)
20200
20201 @item -mr10k-cache-barrier=@var{setting}
20202 @opindex mr10k-cache-barrier
20203 Specify whether GCC should insert cache barriers to avoid the
20204 side-effects of speculation on R10K processors.
20205
20206 In common with many processors, the R10K tries to predict the outcome
20207 of a conditional branch and speculatively executes instructions from
20208 the ``taken'' branch. It later aborts these instructions if the
20209 predicted outcome is wrong. However, on the R10K, even aborted
20210 instructions can have side effects.
20211
20212 This problem only affects kernel stores and, depending on the system,
20213 kernel loads. As an example, a speculatively-executed store may load
20214 the target memory into cache and mark the cache line as dirty, even if
20215 the store itself is later aborted. If a DMA operation writes to the
20216 same area of memory before the ``dirty'' line is flushed, the cached
20217 data overwrites the DMA-ed data. See the R10K processor manual
20218 for a full description, including other potential problems.
20219
20220 One workaround is to insert cache barrier instructions before every memory
20221 access that might be speculatively executed and that might have side
20222 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
20223 controls GCC's implementation of this workaround. It assumes that
20224 aborted accesses to any byte in the following regions does not have
20225 side effects:
20226
20227 @enumerate
20228 @item
20229 the memory occupied by the current function's stack frame;
20230
20231 @item
20232 the memory occupied by an incoming stack argument;
20233
20234 @item
20235 the memory occupied by an object with a link-time-constant address.
20236 @end enumerate
20237
20238 It is the kernel's responsibility to ensure that speculative
20239 accesses to these regions are indeed safe.
20240
20241 If the input program contains a function declaration such as:
20242
20243 @smallexample
20244 void foo (void);
20245 @end smallexample
20246
20247 then the implementation of @code{foo} must allow @code{j foo} and
20248 @code{jal foo} to be executed speculatively. GCC honors this
20249 restriction for functions it compiles itself. It expects non-GCC
20250 functions (such as hand-written assembly code) to do the same.
20251
20252 The option has three forms:
20253
20254 @table @gcctabopt
20255 @item -mr10k-cache-barrier=load-store
20256 Insert a cache barrier before a load or store that might be
20257 speculatively executed and that might have side effects even
20258 if aborted.
20259
20260 @item -mr10k-cache-barrier=store
20261 Insert a cache barrier before a store that might be speculatively
20262 executed and that might have side effects even if aborted.
20263
20264 @item -mr10k-cache-barrier=none
20265 Disable the insertion of cache barriers. This is the default setting.
20266 @end table
20267
20268 @item -mflush-func=@var{func}
20269 @itemx -mno-flush-func
20270 @opindex mflush-func
20271 Specifies the function to call to flush the I and D caches, or to not
20272 call any such function. If called, the function must take the same
20273 arguments as the common @code{_flush_func}, that is, the address of the
20274 memory range for which the cache is being flushed, the size of the
20275 memory range, and the number 3 (to flush both caches). The default
20276 depends on the target GCC was configured for, but commonly is either
20277 @code{_flush_func} or @code{__cpu_flush}.
20278
20279 @item mbranch-cost=@var{num}
20280 @opindex mbranch-cost
20281 Set the cost of branches to roughly @var{num} ``simple'' instructions.
20282 This cost is only a heuristic and is not guaranteed to produce
20283 consistent results across releases. A zero cost redundantly selects
20284 the default, which is based on the @option{-mtune} setting.
20285
20286 @item -mbranch-likely
20287 @itemx -mno-branch-likely
20288 @opindex mbranch-likely
20289 @opindex mno-branch-likely
20290 Enable or disable use of Branch Likely instructions, regardless of the
20291 default for the selected architecture. By default, Branch Likely
20292 instructions may be generated if they are supported by the selected
20293 architecture. An exception is for the MIPS32 and MIPS64 architectures
20294 and processors that implement those architectures; for those, Branch
20295 Likely instructions are not be generated by default because the MIPS32
20296 and MIPS64 architectures specifically deprecate their use.
20297
20298 @item -mcompact-branches=never
20299 @itemx -mcompact-branches=optimal
20300 @itemx -mcompact-branches=always
20301 @opindex mcompact-branches=never
20302 @opindex mcompact-branches=optimal
20303 @opindex mcompact-branches=always
20304 These options control which form of branches will be generated. The
20305 default is @option{-mcompact-branches=optimal}.
20306
20307 The @option{-mcompact-branches=never} option ensures that compact branch
20308 instructions will never be generated.
20309
20310 The @option{-mcompact-branches=always} option ensures that a compact
20311 branch instruction will be generated if available. If a compact branch
20312 instruction is not available, a delay slot form of the branch will be
20313 used instead.
20314
20315 This option is supported from MIPS Release 6 onwards.
20316
20317 The @option{-mcompact-branches=optimal} option will cause a delay slot
20318 branch to be used if one is available in the current ISA and the delay
20319 slot is successfully filled. If the delay slot is not filled, a compact
20320 branch will be chosen if one is available.
20321
20322 @item -mfp-exceptions
20323 @itemx -mno-fp-exceptions
20324 @opindex mfp-exceptions
20325 Specifies whether FP exceptions are enabled. This affects how
20326 FP instructions are scheduled for some processors.
20327 The default is that FP exceptions are
20328 enabled.
20329
20330 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
20331 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
20332 FP pipe.
20333
20334 @item -mvr4130-align
20335 @itemx -mno-vr4130-align
20336 @opindex mvr4130-align
20337 The VR4130 pipeline is two-way superscalar, but can only issue two
20338 instructions together if the first one is 8-byte aligned. When this
20339 option is enabled, GCC aligns pairs of instructions that it
20340 thinks should execute in parallel.
20341
20342 This option only has an effect when optimizing for the VR4130.
20343 It normally makes code faster, but at the expense of making it bigger.
20344 It is enabled by default at optimization level @option{-O3}.
20345
20346 @item -msynci
20347 @itemx -mno-synci
20348 @opindex msynci
20349 Enable (disable) generation of @code{synci} instructions on
20350 architectures that support it. The @code{synci} instructions (if
20351 enabled) are generated when @code{__builtin___clear_cache} is
20352 compiled.
20353
20354 This option defaults to @option{-mno-synci}, but the default can be
20355 overridden by configuring GCC with @option{--with-synci}.
20356
20357 When compiling code for single processor systems, it is generally safe
20358 to use @code{synci}. However, on many multi-core (SMP) systems, it
20359 does not invalidate the instruction caches on all cores and may lead
20360 to undefined behavior.
20361
20362 @item -mrelax-pic-calls
20363 @itemx -mno-relax-pic-calls
20364 @opindex mrelax-pic-calls
20365 Try to turn PIC calls that are normally dispatched via register
20366 @code{$25} into direct calls. This is only possible if the linker can
20367 resolve the destination at link time and if the destination is within
20368 range for a direct call.
20369
20370 @option{-mrelax-pic-calls} is the default if GCC was configured to use
20371 an assembler and a linker that support the @code{.reloc} assembly
20372 directive and @option{-mexplicit-relocs} is in effect. With
20373 @option{-mno-explicit-relocs}, this optimization can be performed by the
20374 assembler and the linker alone without help from the compiler.
20375
20376 @item -mmcount-ra-address
20377 @itemx -mno-mcount-ra-address
20378 @opindex mmcount-ra-address
20379 @opindex mno-mcount-ra-address
20380 Emit (do not emit) code that allows @code{_mcount} to modify the
20381 calling function's return address. When enabled, this option extends
20382 the usual @code{_mcount} interface with a new @var{ra-address}
20383 parameter, which has type @code{intptr_t *} and is passed in register
20384 @code{$12}. @code{_mcount} can then modify the return address by
20385 doing both of the following:
20386 @itemize
20387 @item
20388 Returning the new address in register @code{$31}.
20389 @item
20390 Storing the new address in @code{*@var{ra-address}},
20391 if @var{ra-address} is nonnull.
20392 @end itemize
20393
20394 The default is @option{-mno-mcount-ra-address}.
20395
20396 @item -mframe-header-opt
20397 @itemx -mno-frame-header-opt
20398 @opindex mframe-header-opt
20399 Enable (disable) frame header optimization in the o32 ABI. When using the
20400 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
20401 function to write out register arguments. When enabled, this optimization
20402 will suppress the allocation of the frame header if it can be determined that
20403 it is unused.
20404
20405 This optimization is off by default at all optimization levels.
20406
20407 @item -mlxc1-sxc1
20408 @itemx -mno-lxc1-sxc1
20409 @opindex mlxc1-sxc1
20410 When applicable, enable (disable) the generation of @code{lwxc1},
20411 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
20412
20413 @item -mmadd4
20414 @itemx -mno-madd4
20415 @opindex mmadd4
20416 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
20417 @code{madd.d} and related instructions. Enabled by default.
20418
20419 @end table
20420
20421 @node MMIX Options
20422 @subsection MMIX Options
20423 @cindex MMIX Options
20424
20425 These options are defined for the MMIX:
20426
20427 @table @gcctabopt
20428 @item -mlibfuncs
20429 @itemx -mno-libfuncs
20430 @opindex mlibfuncs
20431 @opindex mno-libfuncs
20432 Specify that intrinsic library functions are being compiled, passing all
20433 values in registers, no matter the size.
20434
20435 @item -mepsilon
20436 @itemx -mno-epsilon
20437 @opindex mepsilon
20438 @opindex mno-epsilon
20439 Generate floating-point comparison instructions that compare with respect
20440 to the @code{rE} epsilon register.
20441
20442 @item -mabi=mmixware
20443 @itemx -mabi=gnu
20444 @opindex mabi=mmixware
20445 @opindex mabi=gnu
20446 Generate code that passes function parameters and return values that (in
20447 the called function) are seen as registers @code{$0} and up, as opposed to
20448 the GNU ABI which uses global registers @code{$231} and up.
20449
20450 @item -mzero-extend
20451 @itemx -mno-zero-extend
20452 @opindex mzero-extend
20453 @opindex mno-zero-extend
20454 When reading data from memory in sizes shorter than 64 bits, use (do not
20455 use) zero-extending load instructions by default, rather than
20456 sign-extending ones.
20457
20458 @item -mknuthdiv
20459 @itemx -mno-knuthdiv
20460 @opindex mknuthdiv
20461 @opindex mno-knuthdiv
20462 Make the result of a division yielding a remainder have the same sign as
20463 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
20464 remainder follows the sign of the dividend. Both methods are
20465 arithmetically valid, the latter being almost exclusively used.
20466
20467 @item -mtoplevel-symbols
20468 @itemx -mno-toplevel-symbols
20469 @opindex mtoplevel-symbols
20470 @opindex mno-toplevel-symbols
20471 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
20472 code can be used with the @code{PREFIX} assembly directive.
20473
20474 @item -melf
20475 @opindex melf
20476 Generate an executable in the ELF format, rather than the default
20477 @samp{mmo} format used by the @command{mmix} simulator.
20478
20479 @item -mbranch-predict
20480 @itemx -mno-branch-predict
20481 @opindex mbranch-predict
20482 @opindex mno-branch-predict
20483 Use (do not use) the probable-branch instructions, when static branch
20484 prediction indicates a probable branch.
20485
20486 @item -mbase-addresses
20487 @itemx -mno-base-addresses
20488 @opindex mbase-addresses
20489 @opindex mno-base-addresses
20490 Generate (do not generate) code that uses @emph{base addresses}. Using a
20491 base address automatically generates a request (handled by the assembler
20492 and the linker) for a constant to be set up in a global register. The
20493 register is used for one or more base address requests within the range 0
20494 to 255 from the value held in the register. The generally leads to short
20495 and fast code, but the number of different data items that can be
20496 addressed is limited. This means that a program that uses lots of static
20497 data may require @option{-mno-base-addresses}.
20498
20499 @item -msingle-exit
20500 @itemx -mno-single-exit
20501 @opindex msingle-exit
20502 @opindex mno-single-exit
20503 Force (do not force) generated code to have a single exit point in each
20504 function.
20505 @end table
20506
20507 @node MN10300 Options
20508 @subsection MN10300 Options
20509 @cindex MN10300 options
20510
20511 These @option{-m} options are defined for Matsushita MN10300 architectures:
20512
20513 @table @gcctabopt
20514 @item -mmult-bug
20515 @opindex mmult-bug
20516 Generate code to avoid bugs in the multiply instructions for the MN10300
20517 processors. This is the default.
20518
20519 @item -mno-mult-bug
20520 @opindex mno-mult-bug
20521 Do not generate code to avoid bugs in the multiply instructions for the
20522 MN10300 processors.
20523
20524 @item -mam33
20525 @opindex mam33
20526 Generate code using features specific to the AM33 processor.
20527
20528 @item -mno-am33
20529 @opindex mno-am33
20530 Do not generate code using features specific to the AM33 processor. This
20531 is the default.
20532
20533 @item -mam33-2
20534 @opindex mam33-2
20535 Generate code using features specific to the AM33/2.0 processor.
20536
20537 @item -mam34
20538 @opindex mam34
20539 Generate code using features specific to the AM34 processor.
20540
20541 @item -mtune=@var{cpu-type}
20542 @opindex mtune
20543 Use the timing characteristics of the indicated CPU type when
20544 scheduling instructions. This does not change the targeted processor
20545 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
20546 @samp{am33-2} or @samp{am34}.
20547
20548 @item -mreturn-pointer-on-d0
20549 @opindex mreturn-pointer-on-d0
20550 When generating a function that returns a pointer, return the pointer
20551 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
20552 only in @code{a0}, and attempts to call such functions without a prototype
20553 result in errors. Note that this option is on by default; use
20554 @option{-mno-return-pointer-on-d0} to disable it.
20555
20556 @item -mno-crt0
20557 @opindex mno-crt0
20558 Do not link in the C run-time initialization object file.
20559
20560 @item -mrelax
20561 @opindex mrelax
20562 Indicate to the linker that it should perform a relaxation optimization pass
20563 to shorten branches, calls and absolute memory addresses. This option only
20564 has an effect when used on the command line for the final link step.
20565
20566 This option makes symbolic debugging impossible.
20567
20568 @item -mliw
20569 @opindex mliw
20570 Allow the compiler to generate @emph{Long Instruction Word}
20571 instructions if the target is the @samp{AM33} or later. This is the
20572 default. This option defines the preprocessor macro @code{__LIW__}.
20573
20574 @item -mnoliw
20575 @opindex mnoliw
20576 Do not allow the compiler to generate @emph{Long Instruction Word}
20577 instructions. This option defines the preprocessor macro
20578 @code{__NO_LIW__}.
20579
20580 @item -msetlb
20581 @opindex msetlb
20582 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
20583 instructions if the target is the @samp{AM33} or later. This is the
20584 default. This option defines the preprocessor macro @code{__SETLB__}.
20585
20586 @item -mnosetlb
20587 @opindex mnosetlb
20588 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
20589 instructions. This option defines the preprocessor macro
20590 @code{__NO_SETLB__}.
20591
20592 @end table
20593
20594 @node Moxie Options
20595 @subsection Moxie Options
20596 @cindex Moxie Options
20597
20598 @table @gcctabopt
20599
20600 @item -meb
20601 @opindex meb
20602 Generate big-endian code. This is the default for @samp{moxie-*-*}
20603 configurations.
20604
20605 @item -mel
20606 @opindex mel
20607 Generate little-endian code.
20608
20609 @item -mmul.x
20610 @opindex mmul.x
20611 Generate mul.x and umul.x instructions. This is the default for
20612 @samp{moxiebox-*-*} configurations.
20613
20614 @item -mno-crt0
20615 @opindex mno-crt0
20616 Do not link in the C run-time initialization object file.
20617
20618 @end table
20619
20620 @node MSP430 Options
20621 @subsection MSP430 Options
20622 @cindex MSP430 Options
20623
20624 These options are defined for the MSP430:
20625
20626 @table @gcctabopt
20627
20628 @item -masm-hex
20629 @opindex masm-hex
20630 Force assembly output to always use hex constants. Normally such
20631 constants are signed decimals, but this option is available for
20632 testsuite and/or aesthetic purposes.
20633
20634 @item -mmcu=
20635 @opindex mmcu=
20636 Select the MCU to target. This is used to create a C preprocessor
20637 symbol based upon the MCU name, converted to upper case and pre- and
20638 post-fixed with @samp{__}. This in turn is used by the
20639 @file{msp430.h} header file to select an MCU-specific supplementary
20640 header file.
20641
20642 The option also sets the ISA to use. If the MCU name is one that is
20643 known to only support the 430 ISA then that is selected, otherwise the
20644 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
20645 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
20646 name selects the 430X ISA.
20647
20648 In addition an MCU-specific linker script is added to the linker
20649 command line. The script's name is the name of the MCU with
20650 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
20651 command line defines the C preprocessor symbol @code{__XXX__} and
20652 cause the linker to search for a script called @file{xxx.ld}.
20653
20654 This option is also passed on to the assembler.
20655
20656 @item -mwarn-mcu
20657 @itemx -mno-warn-mcu
20658 @opindex mwarn-mcu
20659 @opindex mno-warn-mcu
20660 This option enables or disables warnings about conflicts between the
20661 MCU name specified by the @option{-mmcu} option and the ISA set by the
20662 @option{-mcpu} option and/or the hardware multiply support set by the
20663 @option{-mhwmult} option. It also toggles warnings about unrecognized
20664 MCU names. This option is on by default.
20665
20666 @item -mcpu=
20667 @opindex mcpu=
20668 Specifies the ISA to use. Accepted values are @samp{msp430},
20669 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
20670 @option{-mmcu=} option should be used to select the ISA.
20671
20672 @item -msim
20673 @opindex msim
20674 Link to the simulator runtime libraries and linker script. Overrides
20675 any scripts that would be selected by the @option{-mmcu=} option.
20676
20677 @item -mlarge
20678 @opindex mlarge
20679 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
20680
20681 @item -msmall
20682 @opindex msmall
20683 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
20684
20685 @item -mrelax
20686 @opindex mrelax
20687 This option is passed to the assembler and linker, and allows the
20688 linker to perform certain optimizations that cannot be done until
20689 the final link.
20690
20691 @item mhwmult=
20692 @opindex mhwmult=
20693 Describes the type of hardware multiply supported by the target.
20694 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
20695 for the original 16-bit-only multiply supported by early MCUs.
20696 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
20697 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
20698 A value of @samp{auto} can also be given. This tells GCC to deduce
20699 the hardware multiply support based upon the MCU name provided by the
20700 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
20701 the MCU name is not recognized then no hardware multiply support is
20702 assumed. @code{auto} is the default setting.
20703
20704 Hardware multiplies are normally performed by calling a library
20705 routine. This saves space in the generated code. When compiling at
20706 @option{-O3} or higher however the hardware multiplier is invoked
20707 inline. This makes for bigger, but faster code.
20708
20709 The hardware multiply routines disable interrupts whilst running and
20710 restore the previous interrupt state when they finish. This makes
20711 them safe to use inside interrupt handlers as well as in normal code.
20712
20713 @item -minrt
20714 @opindex minrt
20715 Enable the use of a minimum runtime environment - no static
20716 initializers or constructors. This is intended for memory-constrained
20717 devices. The compiler includes special symbols in some objects
20718 that tell the linker and runtime which code fragments are required.
20719
20720 @item -mcode-region=
20721 @itemx -mdata-region=
20722 @opindex mcode-region
20723 @opindex mdata-region
20724 These options tell the compiler where to place functions and data that
20725 do not have one of the @code{lower}, @code{upper}, @code{either} or
20726 @code{section} attributes. Possible values are @code{lower},
20727 @code{upper}, @code{either} or @code{any}. The first three behave
20728 like the corresponding attribute. The fourth possible value -
20729 @code{any} - is the default. It leaves placement entirely up to the
20730 linker script and how it assigns the standard sections
20731 (@code{.text}, @code{.data}, etc) to the memory regions.
20732
20733 @item -msilicon-errata=
20734 @opindex msilicon-errata
20735 This option passes on a request to assembler to enable the fixes for
20736 the named silicon errata.
20737
20738 @item -msilicon-errata-warn=
20739 @opindex msilicon-errata-warn
20740 This option passes on a request to the assembler to enable warning
20741 messages when a silicon errata might need to be applied.
20742
20743 @end table
20744
20745 @node NDS32 Options
20746 @subsection NDS32 Options
20747 @cindex NDS32 Options
20748
20749 These options are defined for NDS32 implementations:
20750
20751 @table @gcctabopt
20752
20753 @item -mbig-endian
20754 @opindex mbig-endian
20755 Generate code in big-endian mode.
20756
20757 @item -mlittle-endian
20758 @opindex mlittle-endian
20759 Generate code in little-endian mode.
20760
20761 @item -mreduced-regs
20762 @opindex mreduced-regs
20763 Use reduced-set registers for register allocation.
20764
20765 @item -mfull-regs
20766 @opindex mfull-regs
20767 Use full-set registers for register allocation.
20768
20769 @item -mcmov
20770 @opindex mcmov
20771 Generate conditional move instructions.
20772
20773 @item -mno-cmov
20774 @opindex mno-cmov
20775 Do not generate conditional move instructions.
20776
20777 @item -mperf-ext
20778 @opindex mperf-ext
20779 Generate performance extension instructions.
20780
20781 @item -mno-perf-ext
20782 @opindex mno-perf-ext
20783 Do not generate performance extension instructions.
20784
20785 @item -mv3push
20786 @opindex mv3push
20787 Generate v3 push25/pop25 instructions.
20788
20789 @item -mno-v3push
20790 @opindex mno-v3push
20791 Do not generate v3 push25/pop25 instructions.
20792
20793 @item -m16-bit
20794 @opindex m16-bit
20795 Generate 16-bit instructions.
20796
20797 @item -mno-16-bit
20798 @opindex mno-16-bit
20799 Do not generate 16-bit instructions.
20800
20801 @item -misr-vector-size=@var{num}
20802 @opindex misr-vector-size
20803 Specify the size of each interrupt vector, which must be 4 or 16.
20804
20805 @item -mcache-block-size=@var{num}
20806 @opindex mcache-block-size
20807 Specify the size of each cache block,
20808 which must be a power of 2 between 4 and 512.
20809
20810 @item -march=@var{arch}
20811 @opindex march
20812 Specify the name of the target architecture.
20813
20814 @item -mcmodel=@var{code-model}
20815 @opindex mcmodel
20816 Set the code model to one of
20817 @table @asis
20818 @item @samp{small}
20819 All the data and read-only data segments must be within 512KB addressing space.
20820 The text segment must be within 16MB addressing space.
20821 @item @samp{medium}
20822 The data segment must be within 512KB while the read-only data segment can be
20823 within 4GB addressing space. The text segment should be still within 16MB
20824 addressing space.
20825 @item @samp{large}
20826 All the text and data segments can be within 4GB addressing space.
20827 @end table
20828
20829 @item -mctor-dtor
20830 @opindex mctor-dtor
20831 Enable constructor/destructor feature.
20832
20833 @item -mrelax
20834 @opindex mrelax
20835 Guide linker to relax instructions.
20836
20837 @end table
20838
20839 @node Nios II Options
20840 @subsection Nios II Options
20841 @cindex Nios II options
20842 @cindex Altera Nios II options
20843
20844 These are the options defined for the Altera Nios II processor.
20845
20846 @table @gcctabopt
20847
20848 @item -G @var{num}
20849 @opindex G
20850 @cindex smaller data references
20851 Put global and static objects less than or equal to @var{num} bytes
20852 into the small data or BSS sections instead of the normal data or BSS
20853 sections. The default value of @var{num} is 8.
20854
20855 @item -mgpopt=@var{option}
20856 @item -mgpopt
20857 @itemx -mno-gpopt
20858 @opindex mgpopt
20859 @opindex mno-gpopt
20860 Generate (do not generate) GP-relative accesses. The following
20861 @var{option} names are recognized:
20862
20863 @table @samp
20864
20865 @item none
20866 Do not generate GP-relative accesses.
20867
20868 @item local
20869 Generate GP-relative accesses for small data objects that are not
20870 external, weak, or uninitialized common symbols.
20871 Also use GP-relative addressing for objects that
20872 have been explicitly placed in a small data section via a @code{section}
20873 attribute.
20874
20875 @item global
20876 As for @samp{local}, but also generate GP-relative accesses for
20877 small data objects that are external, weak, or common. If you use this option,
20878 you must ensure that all parts of your program (including libraries) are
20879 compiled with the same @option{-G} setting.
20880
20881 @item data
20882 Generate GP-relative accesses for all data objects in the program. If you
20883 use this option, the entire data and BSS segments
20884 of your program must fit in 64K of memory and you must use an appropriate
20885 linker script to allocate them within the addressable range of the
20886 global pointer.
20887
20888 @item all
20889 Generate GP-relative addresses for function pointers as well as data
20890 pointers. If you use this option, the entire text, data, and BSS segments
20891 of your program must fit in 64K of memory and you must use an appropriate
20892 linker script to allocate them within the addressable range of the
20893 global pointer.
20894
20895 @end table
20896
20897 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
20898 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
20899
20900 The default is @option{-mgpopt} except when @option{-fpic} or
20901 @option{-fPIC} is specified to generate position-independent code.
20902 Note that the Nios II ABI does not permit GP-relative accesses from
20903 shared libraries.
20904
20905 You may need to specify @option{-mno-gpopt} explicitly when building
20906 programs that include large amounts of small data, including large
20907 GOT data sections. In this case, the 16-bit offset for GP-relative
20908 addressing may not be large enough to allow access to the entire
20909 small data section.
20910
20911 @item -mel
20912 @itemx -meb
20913 @opindex mel
20914 @opindex meb
20915 Generate little-endian (default) or big-endian (experimental) code,
20916 respectively.
20917
20918 @item -march=@var{arch}
20919 @opindex march
20920 This specifies the name of the target Nios II architecture. GCC uses this
20921 name to determine what kind of instructions it can emit when generating
20922 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
20923
20924 The preprocessor macro @code{__nios2_arch__} is available to programs,
20925 with value 1 or 2, indicating the targeted ISA level.
20926
20927 @item -mbypass-cache
20928 @itemx -mno-bypass-cache
20929 @opindex mno-bypass-cache
20930 @opindex mbypass-cache
20931 Force all load and store instructions to always bypass cache by
20932 using I/O variants of the instructions. The default is not to
20933 bypass the cache.
20934
20935 @item -mno-cache-volatile
20936 @itemx -mcache-volatile
20937 @opindex mcache-volatile
20938 @opindex mno-cache-volatile
20939 Volatile memory access bypass the cache using the I/O variants of
20940 the load and store instructions. The default is not to bypass the cache.
20941
20942 @item -mno-fast-sw-div
20943 @itemx -mfast-sw-div
20944 @opindex mno-fast-sw-div
20945 @opindex mfast-sw-div
20946 Do not use table-based fast divide for small numbers. The default
20947 is to use the fast divide at @option{-O3} and above.
20948
20949 @item -mno-hw-mul
20950 @itemx -mhw-mul
20951 @itemx -mno-hw-mulx
20952 @itemx -mhw-mulx
20953 @itemx -mno-hw-div
20954 @itemx -mhw-div
20955 @opindex mno-hw-mul
20956 @opindex mhw-mul
20957 @opindex mno-hw-mulx
20958 @opindex mhw-mulx
20959 @opindex mno-hw-div
20960 @opindex mhw-div
20961 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
20962 instructions by the compiler. The default is to emit @code{mul}
20963 and not emit @code{div} and @code{mulx}.
20964
20965 @item -mbmx
20966 @itemx -mno-bmx
20967 @itemx -mcdx
20968 @itemx -mno-cdx
20969 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
20970 CDX (code density) instructions. Enabling these instructions also
20971 requires @option{-march=r2}. Since these instructions are optional
20972 extensions to the R2 architecture, the default is not to emit them.
20973
20974 @item -mcustom-@var{insn}=@var{N}
20975 @itemx -mno-custom-@var{insn}
20976 @opindex mcustom-@var{insn}
20977 @opindex mno-custom-@var{insn}
20978 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
20979 custom instruction with encoding @var{N} when generating code that uses
20980 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
20981 instruction 253 for single-precision floating-point add operations instead
20982 of the default behavior of using a library call.
20983
20984 The following values of @var{insn} are supported. Except as otherwise
20985 noted, floating-point operations are expected to be implemented with
20986 normal IEEE 754 semantics and correspond directly to the C operators or the
20987 equivalent GCC built-in functions (@pxref{Other Builtins}).
20988
20989 Single-precision floating point:
20990 @table @asis
20991
20992 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
20993 Binary arithmetic operations.
20994
20995 @item @samp{fnegs}
20996 Unary negation.
20997
20998 @item @samp{fabss}
20999 Unary absolute value.
21000
21001 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
21002 Comparison operations.
21003
21004 @item @samp{fmins}, @samp{fmaxs}
21005 Floating-point minimum and maximum. These instructions are only
21006 generated if @option{-ffinite-math-only} is specified.
21007
21008 @item @samp{fsqrts}
21009 Unary square root operation.
21010
21011 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
21012 Floating-point trigonometric and exponential functions. These instructions
21013 are only generated if @option{-funsafe-math-optimizations} is also specified.
21014
21015 @end table
21016
21017 Double-precision floating point:
21018 @table @asis
21019
21020 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
21021 Binary arithmetic operations.
21022
21023 @item @samp{fnegd}
21024 Unary negation.
21025
21026 @item @samp{fabsd}
21027 Unary absolute value.
21028
21029 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
21030 Comparison operations.
21031
21032 @item @samp{fmind}, @samp{fmaxd}
21033 Double-precision minimum and maximum. These instructions are only
21034 generated if @option{-ffinite-math-only} is specified.
21035
21036 @item @samp{fsqrtd}
21037 Unary square root operation.
21038
21039 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
21040 Double-precision trigonometric and exponential functions. These instructions
21041 are only generated if @option{-funsafe-math-optimizations} is also specified.
21042
21043 @end table
21044
21045 Conversions:
21046 @table @asis
21047 @item @samp{fextsd}
21048 Conversion from single precision to double precision.
21049
21050 @item @samp{ftruncds}
21051 Conversion from double precision to single precision.
21052
21053 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
21054 Conversion from floating point to signed or unsigned integer types, with
21055 truncation towards zero.
21056
21057 @item @samp{round}
21058 Conversion from single-precision floating point to signed integer,
21059 rounding to the nearest integer and ties away from zero.
21060 This corresponds to the @code{__builtin_lroundf} function when
21061 @option{-fno-math-errno} is used.
21062
21063 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
21064 Conversion from signed or unsigned integer types to floating-point types.
21065
21066 @end table
21067
21068 In addition, all of the following transfer instructions for internal
21069 registers X and Y must be provided to use any of the double-precision
21070 floating-point instructions. Custom instructions taking two
21071 double-precision source operands expect the first operand in the
21072 64-bit register X. The other operand (or only operand of a unary
21073 operation) is given to the custom arithmetic instruction with the
21074 least significant half in source register @var{src1} and the most
21075 significant half in @var{src2}. A custom instruction that returns a
21076 double-precision result returns the most significant 32 bits in the
21077 destination register and the other half in 32-bit register Y.
21078 GCC automatically generates the necessary code sequences to write
21079 register X and/or read register Y when double-precision floating-point
21080 instructions are used.
21081
21082 @table @asis
21083
21084 @item @samp{fwrx}
21085 Write @var{src1} into the least significant half of X and @var{src2} into
21086 the most significant half of X.
21087
21088 @item @samp{fwry}
21089 Write @var{src1} into Y.
21090
21091 @item @samp{frdxhi}, @samp{frdxlo}
21092 Read the most or least (respectively) significant half of X and store it in
21093 @var{dest}.
21094
21095 @item @samp{frdy}
21096 Read the value of Y and store it into @var{dest}.
21097 @end table
21098
21099 Note that you can gain more local control over generation of Nios II custom
21100 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
21101 and @code{target("no-custom-@var{insn}")} function attributes
21102 (@pxref{Function Attributes})
21103 or pragmas (@pxref{Function Specific Option Pragmas}).
21104
21105 @item -mcustom-fpu-cfg=@var{name}
21106 @opindex mcustom-fpu-cfg
21107
21108 This option enables a predefined, named set of custom instruction encodings
21109 (see @option{-mcustom-@var{insn}} above).
21110 Currently, the following sets are defined:
21111
21112 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
21113 @gccoptlist{-mcustom-fmuls=252 @gol
21114 -mcustom-fadds=253 @gol
21115 -mcustom-fsubs=254 @gol
21116 -fsingle-precision-constant}
21117
21118 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
21119 @gccoptlist{-mcustom-fmuls=252 @gol
21120 -mcustom-fadds=253 @gol
21121 -mcustom-fsubs=254 @gol
21122 -mcustom-fdivs=255 @gol
21123 -fsingle-precision-constant}
21124
21125 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
21126 @gccoptlist{-mcustom-floatus=243 @gol
21127 -mcustom-fixsi=244 @gol
21128 -mcustom-floatis=245 @gol
21129 -mcustom-fcmpgts=246 @gol
21130 -mcustom-fcmples=249 @gol
21131 -mcustom-fcmpeqs=250 @gol
21132 -mcustom-fcmpnes=251 @gol
21133 -mcustom-fmuls=252 @gol
21134 -mcustom-fadds=253 @gol
21135 -mcustom-fsubs=254 @gol
21136 -mcustom-fdivs=255 @gol
21137 -fsingle-precision-constant}
21138
21139 Custom instruction assignments given by individual
21140 @option{-mcustom-@var{insn}=} options override those given by
21141 @option{-mcustom-fpu-cfg=}, regardless of the
21142 order of the options on the command line.
21143
21144 Note that you can gain more local control over selection of a FPU
21145 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
21146 function attribute (@pxref{Function Attributes})
21147 or pragma (@pxref{Function Specific Option Pragmas}).
21148
21149 @end table
21150
21151 These additional @samp{-m} options are available for the Altera Nios II
21152 ELF (bare-metal) target:
21153
21154 @table @gcctabopt
21155
21156 @item -mhal
21157 @opindex mhal
21158 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
21159 startup and termination code, and is typically used in conjunction with
21160 @option{-msys-crt0=} to specify the location of the alternate startup code
21161 provided by the HAL BSP.
21162
21163 @item -msmallc
21164 @opindex msmallc
21165 Link with a limited version of the C library, @option{-lsmallc}, rather than
21166 Newlib.
21167
21168 @item -msys-crt0=@var{startfile}
21169 @opindex msys-crt0
21170 @var{startfile} is the file name of the startfile (crt0) to use
21171 when linking. This option is only useful in conjunction with @option{-mhal}.
21172
21173 @item -msys-lib=@var{systemlib}
21174 @opindex msys-lib
21175 @var{systemlib} is the library name of the library that provides
21176 low-level system calls required by the C library,
21177 e.g. @code{read} and @code{write}.
21178 This option is typically used to link with a library provided by a HAL BSP.
21179
21180 @end table
21181
21182 @node Nvidia PTX Options
21183 @subsection Nvidia PTX Options
21184 @cindex Nvidia PTX options
21185 @cindex nvptx options
21186
21187 These options are defined for Nvidia PTX:
21188
21189 @table @gcctabopt
21190
21191 @item -m32
21192 @itemx -m64
21193 @opindex m32
21194 @opindex m64
21195 Generate code for 32-bit or 64-bit ABI.
21196
21197 @item -mmainkernel
21198 @opindex mmainkernel
21199 Link in code for a __main kernel. This is for stand-alone instead of
21200 offloading execution.
21201
21202 @item -moptimize
21203 @opindex moptimize
21204 Apply partitioned execution optimizations. This is the default when any
21205 level of optimization is selected.
21206
21207 @item -msoft-stack
21208 @opindex msoft-stack
21209 Generate code that does not use @code{.local} memory
21210 directly for stack storage. Instead, a per-warp stack pointer is
21211 maintained explicitly. This enables variable-length stack allocation (with
21212 variable-length arrays or @code{alloca}), and when global memory is used for
21213 underlying storage, makes it possible to access automatic variables from other
21214 threads, or with atomic instructions. This code generation variant is used
21215 for OpenMP offloading, but the option is exposed on its own for the purpose
21216 of testing the compiler; to generate code suitable for linking into programs
21217 using OpenMP offloading, use option @option{-mgomp}.
21218
21219 @item -muniform-simt
21220 @opindex muniform-simt
21221 Switch to code generation variant that allows to execute all threads in each
21222 warp, while maintaining memory state and side effects as if only one thread
21223 in each warp was active outside of OpenMP SIMD regions. All atomic operations
21224 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
21225 current lane index equals the master lane index), and the register being
21226 assigned is copied via a shuffle instruction from the master lane. Outside of
21227 SIMD regions lane 0 is the master; inside, each thread sees itself as the
21228 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
21229 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
21230 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
21231 with current lane index to compute the master lane index.
21232
21233 @item -mgomp
21234 @opindex mgomp
21235 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
21236 @option{-muniform-simt} options, and selects corresponding multilib variant.
21237
21238 @end table
21239
21240 @node PDP-11 Options
21241 @subsection PDP-11 Options
21242 @cindex PDP-11 Options
21243
21244 These options are defined for the PDP-11:
21245
21246 @table @gcctabopt
21247 @item -mfpu
21248 @opindex mfpu
21249 Use hardware FPP floating point. This is the default. (FIS floating
21250 point on the PDP-11/40 is not supported.)
21251
21252 @item -msoft-float
21253 @opindex msoft-float
21254 Do not use hardware floating point.
21255
21256 @item -mac0
21257 @opindex mac0
21258 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
21259
21260 @item -mno-ac0
21261 @opindex mno-ac0
21262 Return floating-point results in memory. This is the default.
21263
21264 @item -m40
21265 @opindex m40
21266 Generate code for a PDP-11/40.
21267
21268 @item -m45
21269 @opindex m45
21270 Generate code for a PDP-11/45. This is the default.
21271
21272 @item -m10
21273 @opindex m10
21274 Generate code for a PDP-11/10.
21275
21276 @item -mbcopy-builtin
21277 @opindex mbcopy-builtin
21278 Use inline @code{movmemhi} patterns for copying memory. This is the
21279 default.
21280
21281 @item -mbcopy
21282 @opindex mbcopy
21283 Do not use inline @code{movmemhi} patterns for copying memory.
21284
21285 @item -mint16
21286 @itemx -mno-int32
21287 @opindex mint16
21288 @opindex mno-int32
21289 Use 16-bit @code{int}. This is the default.
21290
21291 @item -mint32
21292 @itemx -mno-int16
21293 @opindex mint32
21294 @opindex mno-int16
21295 Use 32-bit @code{int}.
21296
21297 @item -mfloat64
21298 @itemx -mno-float32
21299 @opindex mfloat64
21300 @opindex mno-float32
21301 Use 64-bit @code{float}. This is the default.
21302
21303 @item -mfloat32
21304 @itemx -mno-float64
21305 @opindex mfloat32
21306 @opindex mno-float64
21307 Use 32-bit @code{float}.
21308
21309 @item -mabshi
21310 @opindex mabshi
21311 Use @code{abshi2} pattern. This is the default.
21312
21313 @item -mno-abshi
21314 @opindex mno-abshi
21315 Do not use @code{abshi2} pattern.
21316
21317 @item -mbranch-expensive
21318 @opindex mbranch-expensive
21319 Pretend that branches are expensive. This is for experimenting with
21320 code generation only.
21321
21322 @item -mbranch-cheap
21323 @opindex mbranch-cheap
21324 Do not pretend that branches are expensive. This is the default.
21325
21326 @item -munix-asm
21327 @opindex munix-asm
21328 Use Unix assembler syntax. This is the default when configured for
21329 @samp{pdp11-*-bsd}.
21330
21331 @item -mdec-asm
21332 @opindex mdec-asm
21333 Use DEC assembler syntax. This is the default when configured for any
21334 PDP-11 target other than @samp{pdp11-*-bsd}.
21335 @end table
21336
21337 @node picoChip Options
21338 @subsection picoChip Options
21339 @cindex picoChip options
21340
21341 These @samp{-m} options are defined for picoChip implementations:
21342
21343 @table @gcctabopt
21344
21345 @item -mae=@var{ae_type}
21346 @opindex mcpu
21347 Set the instruction set, register set, and instruction scheduling
21348 parameters for array element type @var{ae_type}. Supported values
21349 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
21350
21351 @option{-mae=ANY} selects a completely generic AE type. Code
21352 generated with this option runs on any of the other AE types. The
21353 code is not as efficient as it would be if compiled for a specific
21354 AE type, and some types of operation (e.g., multiplication) do not
21355 work properly on all types of AE.
21356
21357 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
21358 for compiled code, and is the default.
21359
21360 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
21361 option may suffer from poor performance of byte (char) manipulation,
21362 since the DSP AE does not provide hardware support for byte load/stores.
21363
21364 @item -msymbol-as-address
21365 Enable the compiler to directly use a symbol name as an address in a
21366 load/store instruction, without first loading it into a
21367 register. Typically, the use of this option generates larger
21368 programs, which run faster than when the option isn't used. However, the
21369 results vary from program to program, so it is left as a user option,
21370 rather than being permanently enabled.
21371
21372 @item -mno-inefficient-warnings
21373 Disables warnings about the generation of inefficient code. These
21374 warnings can be generated, for example, when compiling code that
21375 performs byte-level memory operations on the MAC AE type. The MAC AE has
21376 no hardware support for byte-level memory operations, so all byte
21377 load/stores must be synthesized from word load/store operations. This is
21378 inefficient and a warning is generated to indicate
21379 that you should rewrite the code to avoid byte operations, or to target
21380 an AE type that has the necessary hardware support. This option disables
21381 these warnings.
21382
21383 @end table
21384
21385 @node PowerPC Options
21386 @subsection PowerPC Options
21387 @cindex PowerPC options
21388
21389 These are listed under @xref{RS/6000 and PowerPC Options}.
21390
21391 @node RISC-V Options
21392 @subsection RISC-V Options
21393 @cindex RISC-V Options
21394
21395 These command-line options are defined for RISC-V targets:
21396
21397 @table @gcctabopt
21398 @item -mbranch-cost=@var{n}
21399 @opindex mbranch-cost
21400 Set the cost of branches to roughly @var{n} instructions.
21401
21402 @item -mmemcpy
21403 @itemx -mno-memcpy
21404 @opindex mmemcpy
21405 Don't optimize block moves.
21406
21407 @item -mplt
21408 @itemx -mno-plt
21409 @opindex plt
21410 When generating PIC code, allow the use of PLTs. Ignored for non-PIC.
21411
21412 @item -mabi=@var{ABI-string}
21413 @opindex mabi
21414 Specify integer and floating-point calling convention. This defaults to the
21415 natural calling convention: e.g.@ LP64 for RV64I, ILP32 for RV32I, LP64D for
21416 RV64G.
21417
21418 @item -mfdiv
21419 @itemx -mno-fdiv
21420 @opindex mfdiv
21421 Use hardware floating-point divide and square root instructions. This requires
21422 the F or D extensions for floating-point registers.
21423
21424 @item -mdiv
21425 @itemx -mno-div
21426 @opindex mdiv
21427 Use hardware instructions for integer division. This requires the M extension.
21428
21429 @item -march=@var{ISA-string}
21430 @opindex march
21431 Generate code for given RISC-V ISA (e.g.@ @samp{rv64im}). ISA strings must be
21432 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, and @samp{rv32imaf}.
21433
21434 @item -mtune=@var{processor-string}
21435 @opindex mtune
21436 Optimize the output for the given processor, specified by microarchitecture
21437 name.
21438
21439 @item -msmall-data-limit=@var{n}
21440 @opindex msmall-data-limit
21441 Put global and static data smaller than @var{n} bytes into a special section
21442 (on some targets).
21443
21444 @item -msave-restore
21445 @itemx -mno-save-restore
21446 @opindex msave-restore
21447 Use smaller but slower prologue and epilogue code.
21448
21449 @item -mstrict-align
21450 @itemx -mno-strict-align
21451 @opindex mstrict-align
21452 Do not generate unaligned memory accesses.
21453
21454 @item -mcmodel=@var{code-model}
21455 @opindex mcmodel
21456 Specify the code model.
21457
21458 @end table
21459
21460 @node RL78 Options
21461 @subsection RL78 Options
21462 @cindex RL78 Options
21463
21464 @table @gcctabopt
21465
21466 @item -msim
21467 @opindex msim
21468 Links in additional target libraries to support operation within a
21469 simulator.
21470
21471 @item -mmul=none
21472 @itemx -mmul=g10
21473 @itemx -mmul=g13
21474 @itemx -mmul=g14
21475 @itemx -mmul=rl78
21476 @opindex mmul
21477 Specifies the type of hardware multiplication and division support to
21478 be used. The simplest is @code{none}, which uses software for both
21479 multiplication and division. This is the default. The @code{g13}
21480 value is for the hardware multiply/divide peripheral found on the
21481 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
21482 the multiplication and division instructions supported by the RL78/G14
21483 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
21484 the value @code{mg10} is an alias for @code{none}.
21485
21486 In addition a C preprocessor macro is defined, based upon the setting
21487 of this option. Possible values are: @code{__RL78_MUL_NONE__},
21488 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
21489
21490 @item -mcpu=g10
21491 @itemx -mcpu=g13
21492 @itemx -mcpu=g14
21493 @itemx -mcpu=rl78
21494 @opindex mcpu
21495 Specifies the RL78 core to target. The default is the G14 core, also
21496 known as an S3 core or just RL78. The G13 or S2 core does not have
21497 multiply or divide instructions, instead it uses a hardware peripheral
21498 for these operations. The G10 or S1 core does not have register
21499 banks, so it uses a different calling convention.
21500
21501 If this option is set it also selects the type of hardware multiply
21502 support to use, unless this is overridden by an explicit
21503 @option{-mmul=none} option on the command line. Thus specifying
21504 @option{-mcpu=g13} enables the use of the G13 hardware multiply
21505 peripheral and specifying @option{-mcpu=g10} disables the use of
21506 hardware multiplications altogether.
21507
21508 Note, although the RL78/G14 core is the default target, specifying
21509 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
21510 change the behavior of the toolchain since it also enables G14
21511 hardware multiply support. If these options are not specified on the
21512 command line then software multiplication routines will be used even
21513 though the code targets the RL78 core. This is for backwards
21514 compatibility with older toolchains which did not have hardware
21515 multiply and divide support.
21516
21517 In addition a C preprocessor macro is defined, based upon the setting
21518 of this option. Possible values are: @code{__RL78_G10__},
21519 @code{__RL78_G13__} or @code{__RL78_G14__}.
21520
21521 @item -mg10
21522 @itemx -mg13
21523 @itemx -mg14
21524 @itemx -mrl78
21525 @opindex mg10
21526 @opindex mg13
21527 @opindex mg14
21528 @opindex mrl78
21529 These are aliases for the corresponding @option{-mcpu=} option. They
21530 are provided for backwards compatibility.
21531
21532 @item -mallregs
21533 @opindex mallregs
21534 Allow the compiler to use all of the available registers. By default
21535 registers @code{r24..r31} are reserved for use in interrupt handlers.
21536 With this option enabled these registers can be used in ordinary
21537 functions as well.
21538
21539 @item -m64bit-doubles
21540 @itemx -m32bit-doubles
21541 @opindex m64bit-doubles
21542 @opindex m32bit-doubles
21543 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
21544 or 32 bits (@option{-m32bit-doubles}) in size. The default is
21545 @option{-m32bit-doubles}.
21546
21547 @item -msave-mduc-in-interrupts
21548 @item -mno-save-mduc-in-interrupts
21549 @opindex msave-mduc-in-interrupts
21550 @opindex mno-save-mduc-in-interrupts
21551 Specifies that interrupt handler functions should preserve the
21552 MDUC registers. This is only necessary if normal code might use
21553 the MDUC registers, for example because it performs multiplication
21554 and division operations. The default is to ignore the MDUC registers
21555 as this makes the interrupt handlers faster. The target option -mg13
21556 needs to be passed for this to work as this feature is only available
21557 on the G13 target (S2 core). The MDUC registers will only be saved
21558 if the interrupt handler performs a multiplication or division
21559 operation or it calls another function.
21560
21561 @end table
21562
21563 @node RS/6000 and PowerPC Options
21564 @subsection IBM RS/6000 and PowerPC Options
21565 @cindex RS/6000 and PowerPC Options
21566 @cindex IBM RS/6000 and PowerPC Options
21567
21568 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
21569 @table @gcctabopt
21570 @item -mpowerpc-gpopt
21571 @itemx -mno-powerpc-gpopt
21572 @itemx -mpowerpc-gfxopt
21573 @itemx -mno-powerpc-gfxopt
21574 @need 800
21575 @itemx -mpowerpc64
21576 @itemx -mno-powerpc64
21577 @itemx -mmfcrf
21578 @itemx -mno-mfcrf
21579 @itemx -mpopcntb
21580 @itemx -mno-popcntb
21581 @itemx -mpopcntd
21582 @itemx -mno-popcntd
21583 @itemx -mfprnd
21584 @itemx -mno-fprnd
21585 @need 800
21586 @itemx -mcmpb
21587 @itemx -mno-cmpb
21588 @itemx -mmfpgpr
21589 @itemx -mno-mfpgpr
21590 @itemx -mhard-dfp
21591 @itemx -mno-hard-dfp
21592 @opindex mpowerpc-gpopt
21593 @opindex mno-powerpc-gpopt
21594 @opindex mpowerpc-gfxopt
21595 @opindex mno-powerpc-gfxopt
21596 @opindex mpowerpc64
21597 @opindex mno-powerpc64
21598 @opindex mmfcrf
21599 @opindex mno-mfcrf
21600 @opindex mpopcntb
21601 @opindex mno-popcntb
21602 @opindex mpopcntd
21603 @opindex mno-popcntd
21604 @opindex mfprnd
21605 @opindex mno-fprnd
21606 @opindex mcmpb
21607 @opindex mno-cmpb
21608 @opindex mmfpgpr
21609 @opindex mno-mfpgpr
21610 @opindex mhard-dfp
21611 @opindex mno-hard-dfp
21612 You use these options to specify which instructions are available on the
21613 processor you are using. The default value of these options is
21614 determined when configuring GCC@. Specifying the
21615 @option{-mcpu=@var{cpu_type}} overrides the specification of these
21616 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
21617 rather than the options listed above.
21618
21619 Specifying @option{-mpowerpc-gpopt} allows
21620 GCC to use the optional PowerPC architecture instructions in the
21621 General Purpose group, including floating-point square root. Specifying
21622 @option{-mpowerpc-gfxopt} allows GCC to
21623 use the optional PowerPC architecture instructions in the Graphics
21624 group, including floating-point select.
21625
21626 The @option{-mmfcrf} option allows GCC to generate the move from
21627 condition register field instruction implemented on the POWER4
21628 processor and other processors that support the PowerPC V2.01
21629 architecture.
21630 The @option{-mpopcntb} option allows GCC to generate the popcount and
21631 double-precision FP reciprocal estimate instruction implemented on the
21632 POWER5 processor and other processors that support the PowerPC V2.02
21633 architecture.
21634 The @option{-mpopcntd} option allows GCC to generate the popcount
21635 instruction implemented on the POWER7 processor and other processors
21636 that support the PowerPC V2.06 architecture.
21637 The @option{-mfprnd} option allows GCC to generate the FP round to
21638 integer instructions implemented on the POWER5+ processor and other
21639 processors that support the PowerPC V2.03 architecture.
21640 The @option{-mcmpb} option allows GCC to generate the compare bytes
21641 instruction implemented on the POWER6 processor and other processors
21642 that support the PowerPC V2.05 architecture.
21643 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
21644 general-purpose register instructions implemented on the POWER6X
21645 processor and other processors that support the extended PowerPC V2.05
21646 architecture.
21647 The @option{-mhard-dfp} option allows GCC to generate the decimal
21648 floating-point instructions implemented on some POWER processors.
21649
21650 The @option{-mpowerpc64} option allows GCC to generate the additional
21651 64-bit instructions that are found in the full PowerPC64 architecture
21652 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
21653 @option{-mno-powerpc64}.
21654
21655 @item -mcpu=@var{cpu_type}
21656 @opindex mcpu
21657 Set architecture type, register usage, and
21658 instruction scheduling parameters for machine type @var{cpu_type}.
21659 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
21660 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
21661 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
21662 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
21663 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
21664 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
21665 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
21666 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
21667 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
21668 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
21669 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
21670 and @samp{rs64}.
21671
21672 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
21673 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
21674 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
21675 architecture machine types, with an appropriate, generic processor
21676 model assumed for scheduling purposes.
21677
21678 The other options specify a specific processor. Code generated under
21679 those options runs best on that processor, and may not run at all on
21680 others.
21681
21682 The @option{-mcpu} options automatically enable or disable the
21683 following options:
21684
21685 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
21686 -mpopcntb -mpopcntd -mpowerpc64 @gol
21687 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
21688 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
21689 -mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector @gol
21690 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
21691
21692 The particular options set for any particular CPU varies between
21693 compiler versions, depending on what setting seems to produce optimal
21694 code for that CPU; it doesn't necessarily reflect the actual hardware's
21695 capabilities. If you wish to set an individual option to a particular
21696 value, you may specify it after the @option{-mcpu} option, like
21697 @option{-mcpu=970 -mno-altivec}.
21698
21699 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
21700 not enabled or disabled by the @option{-mcpu} option at present because
21701 AIX does not have full support for these options. You may still
21702 enable or disable them individually if you're sure it'll work in your
21703 environment.
21704
21705 @item -mtune=@var{cpu_type}
21706 @opindex mtune
21707 Set the instruction scheduling parameters for machine type
21708 @var{cpu_type}, but do not set the architecture type or register usage,
21709 as @option{-mcpu=@var{cpu_type}} does. The same
21710 values for @var{cpu_type} are used for @option{-mtune} as for
21711 @option{-mcpu}. If both are specified, the code generated uses the
21712 architecture and registers set by @option{-mcpu}, but the
21713 scheduling parameters set by @option{-mtune}.
21714
21715 @item -mcmodel=small
21716 @opindex mcmodel=small
21717 Generate PowerPC64 code for the small model: The TOC is limited to
21718 64k.
21719
21720 @item -mcmodel=medium
21721 @opindex mcmodel=medium
21722 Generate PowerPC64 code for the medium model: The TOC and other static
21723 data may be up to a total of 4G in size. This is the default for 64-bit
21724 Linux.
21725
21726 @item -mcmodel=large
21727 @opindex mcmodel=large
21728 Generate PowerPC64 code for the large model: The TOC may be up to 4G
21729 in size. Other data and code is only limited by the 64-bit address
21730 space.
21731
21732 @item -maltivec
21733 @itemx -mno-altivec
21734 @opindex maltivec
21735 @opindex mno-altivec
21736 Generate code that uses (does not use) AltiVec instructions, and also
21737 enable the use of built-in functions that allow more direct access to
21738 the AltiVec instruction set. You may also need to set
21739 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
21740 enhancements.
21741
21742 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
21743 @option{-maltivec=be}, the element order for AltiVec intrinsics such
21744 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
21745 match array element order corresponding to the endianness of the
21746 target. That is, element zero identifies the leftmost element in a
21747 vector register when targeting a big-endian platform, and identifies
21748 the rightmost element in a vector register when targeting a
21749 little-endian platform.
21750
21751 @item -maltivec=be
21752 @opindex maltivec=be
21753 Generate AltiVec instructions using big-endian element order,
21754 regardless of whether the target is big- or little-endian. This is
21755 the default when targeting a big-endian platform.
21756
21757 The element order is used to interpret element numbers in AltiVec
21758 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
21759 @code{vec_insert}. By default, these match array element order
21760 corresponding to the endianness for the target.
21761
21762 @item -maltivec=le
21763 @opindex maltivec=le
21764 Generate AltiVec instructions using little-endian element order,
21765 regardless of whether the target is big- or little-endian. This is
21766 the default when targeting a little-endian platform. This option is
21767 currently ignored when targeting a big-endian platform.
21768
21769 The element order is used to interpret element numbers in AltiVec
21770 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
21771 @code{vec_insert}. By default, these match array element order
21772 corresponding to the endianness for the target.
21773
21774 @item -mvrsave
21775 @itemx -mno-vrsave
21776 @opindex mvrsave
21777 @opindex mno-vrsave
21778 Generate VRSAVE instructions when generating AltiVec code.
21779
21780 @item -msecure-plt
21781 @opindex msecure-plt
21782 Generate code that allows @command{ld} and @command{ld.so}
21783 to build executables and shared
21784 libraries with non-executable @code{.plt} and @code{.got} sections.
21785 This is a PowerPC
21786 32-bit SYSV ABI option.
21787
21788 @item -mbss-plt
21789 @opindex mbss-plt
21790 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
21791 fills in, and
21792 requires @code{.plt} and @code{.got}
21793 sections that are both writable and executable.
21794 This is a PowerPC 32-bit SYSV ABI option.
21795
21796 @item -misel
21797 @itemx -mno-isel
21798 @opindex misel
21799 @opindex mno-isel
21800 This switch enables or disables the generation of ISEL instructions.
21801
21802 @item -misel=@var{yes/no}
21803 This switch has been deprecated. Use @option{-misel} and
21804 @option{-mno-isel} instead.
21805
21806 @item -mlra
21807 @opindex mlra
21808 Enable Local Register Allocation. By default the port uses LRA.
21809 (i.e. @option{-mno-lra}).
21810
21811 @item -mspe
21812 @itemx -mno-spe
21813 @opindex mspe
21814 @opindex mno-spe
21815 This switch enables or disables the generation of SPE simd
21816 instructions.
21817
21818 @item -mpaired
21819 @itemx -mno-paired
21820 @opindex mpaired
21821 @opindex mno-paired
21822 This switch enables or disables the generation of PAIRED simd
21823 instructions.
21824
21825 @item -mspe=@var{yes/no}
21826 This option has been deprecated. Use @option{-mspe} and
21827 @option{-mno-spe} instead.
21828
21829 @item -mvsx
21830 @itemx -mno-vsx
21831 @opindex mvsx
21832 @opindex mno-vsx
21833 Generate code that uses (does not use) vector/scalar (VSX)
21834 instructions, and also enable the use of built-in functions that allow
21835 more direct access to the VSX instruction set.
21836
21837 @item -mcrypto
21838 @itemx -mno-crypto
21839 @opindex mcrypto
21840 @opindex mno-crypto
21841 Enable the use (disable) of the built-in functions that allow direct
21842 access to the cryptographic instructions that were added in version
21843 2.07 of the PowerPC ISA.
21844
21845 @item -mdirect-move
21846 @itemx -mno-direct-move
21847 @opindex mdirect-move
21848 @opindex mno-direct-move
21849 Generate code that uses (does not use) the instructions to move data
21850 between the general purpose registers and the vector/scalar (VSX)
21851 registers that were added in version 2.07 of the PowerPC ISA.
21852
21853 @item -mhtm
21854 @itemx -mno-htm
21855 @opindex mhtm
21856 @opindex mno-htm
21857 Enable (disable) the use of the built-in functions that allow direct
21858 access to the Hardware Transactional Memory (HTM) instructions that
21859 were added in version 2.07 of the PowerPC ISA.
21860
21861 @item -mpower8-fusion
21862 @itemx -mno-power8-fusion
21863 @opindex mpower8-fusion
21864 @opindex mno-power8-fusion
21865 Generate code that keeps (does not keeps) some integer operations
21866 adjacent so that the instructions can be fused together on power8 and
21867 later processors.
21868
21869 @item -mpower8-vector
21870 @itemx -mno-power8-vector
21871 @opindex mpower8-vector
21872 @opindex mno-power8-vector
21873 Generate code that uses (does not use) the vector and scalar
21874 instructions that were added in version 2.07 of the PowerPC ISA. Also
21875 enable the use of built-in functions that allow more direct access to
21876 the vector instructions.
21877
21878 @item -mquad-memory
21879 @itemx -mno-quad-memory
21880 @opindex mquad-memory
21881 @opindex mno-quad-memory
21882 Generate code that uses (does not use) the non-atomic quad word memory
21883 instructions. The @option{-mquad-memory} option requires use of
21884 64-bit mode.
21885
21886 @item -mquad-memory-atomic
21887 @itemx -mno-quad-memory-atomic
21888 @opindex mquad-memory-atomic
21889 @opindex mno-quad-memory-atomic
21890 Generate code that uses (does not use) the atomic quad word memory
21891 instructions. The @option{-mquad-memory-atomic} option requires use of
21892 64-bit mode.
21893
21894 @item -mupper-regs-di
21895 @itemx -mno-upper-regs-di
21896 @opindex mupper-regs-di
21897 @opindex mno-upper-regs-di
21898 Generate code that uses (does not use) the scalar instructions that
21899 target all 64 registers in the vector/scalar floating point register
21900 set that were added in version 2.06 of the PowerPC ISA when processing
21901 integers. @option{-mupper-regs-di} is turned on by default if you use
21902 any of the @option{-mcpu=power7}, @option{-mcpu=power8},
21903 @option{-mcpu=power9}, or @option{-mvsx} options.
21904
21905 @item -mupper-regs-df
21906 @itemx -mno-upper-regs-df
21907 @opindex mupper-regs-df
21908 @opindex mno-upper-regs-df
21909 Generate code that uses (does not use) the scalar double precision
21910 instructions that target all 64 registers in the vector/scalar
21911 floating point register set that were added in version 2.06 of the
21912 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
21913 use any of the @option{-mcpu=power7}, @option{-mcpu=power8},
21914 @option{-mcpu=power9}, or @option{-mvsx} options.
21915
21916 @item -mupper-regs-sf
21917 @itemx -mno-upper-regs-sf
21918 @opindex mupper-regs-sf
21919 @opindex mno-upper-regs-sf
21920 Generate code that uses (does not use) the scalar single precision
21921 instructions that target all 64 registers in the vector/scalar
21922 floating point register set that were added in version 2.07 of the
21923 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
21924 use either of the @option{-mcpu=power8}, @option{-mpower8-vector}, or
21925 @option{-mcpu=power9} options.
21926
21927 @item -mupper-regs
21928 @itemx -mno-upper-regs
21929 @opindex mupper-regs
21930 @opindex mno-upper-regs
21931 Generate code that uses (does not use) the scalar
21932 instructions that target all 64 registers in the vector/scalar
21933 floating point register set, depending on the model of the machine.
21934
21935 If the @option{-mno-upper-regs} option is used, it turns off both
21936 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
21937
21938 @item -mfloat128
21939 @itemx -mno-float128
21940 @opindex mfloat128
21941 @opindex mno-float128
21942 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
21943 and use either software emulation for IEEE 128-bit floating point or
21944 hardware instructions.
21945
21946 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7}, or
21947 @option{-mcpu=power8}) must be enabled to use the @option{-mfloat128}
21948 option. The @option{-mfloat128} option only works on PowerPC 64-bit
21949 Linux systems.
21950
21951 If you use the ISA 3.0 instruction set (@option{-mcpu=power9}), the
21952 @option{-mfloat128} option will also enable the generation of ISA 3.0
21953 IEEE 128-bit floating point instructions. Otherwise, IEEE 128-bit
21954 floating point will be done with software emulation.
21955
21956 @item -mfloat128-hardware
21957 @itemx -mno-float128-hardware
21958 @opindex mfloat128-hardware
21959 @opindex mno-float128-hardware
21960 Enable/disable using ISA 3.0 hardware instructions to support the
21961 @var{__float128} data type.
21962
21963 If you use @option{-mfloat128-hardware}, it will enable the option
21964 @option{-mfloat128} as well.
21965
21966 If you select ISA 3.0 instructions with @option{-mcpu=power9}, but do
21967 not use either @option{-mfloat128} or @option{-mfloat128-hardware},
21968 the IEEE 128-bit floating point support will not be enabled.
21969
21970 @item -mfloat-gprs=@var{yes/single/double/no}
21971 @itemx -mfloat-gprs
21972 @opindex mfloat-gprs
21973 This switch enables or disables the generation of floating-point
21974 operations on the general-purpose registers for architectures that
21975 support it.
21976
21977 The argument @samp{yes} or @samp{single} enables the use of
21978 single-precision floating-point operations.
21979
21980 The argument @samp{double} enables the use of single and
21981 double-precision floating-point operations.
21982
21983 The argument @samp{no} disables floating-point operations on the
21984 general-purpose registers.
21985
21986 This option is currently only available on the MPC854x.
21987
21988 @item -m32
21989 @itemx -m64
21990 @opindex m32
21991 @opindex m64
21992 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
21993 targets (including GNU/Linux). The 32-bit environment sets int, long
21994 and pointer to 32 bits and generates code that runs on any PowerPC
21995 variant. The 64-bit environment sets int to 32 bits and long and
21996 pointer to 64 bits, and generates code for PowerPC64, as for
21997 @option{-mpowerpc64}.
21998
21999 @item -mfull-toc
22000 @itemx -mno-fp-in-toc
22001 @itemx -mno-sum-in-toc
22002 @itemx -mminimal-toc
22003 @opindex mfull-toc
22004 @opindex mno-fp-in-toc
22005 @opindex mno-sum-in-toc
22006 @opindex mminimal-toc
22007 Modify generation of the TOC (Table Of Contents), which is created for
22008 every executable file. The @option{-mfull-toc} option is selected by
22009 default. In that case, GCC allocates at least one TOC entry for
22010 each unique non-automatic variable reference in your program. GCC
22011 also places floating-point constants in the TOC@. However, only
22012 16,384 entries are available in the TOC@.
22013
22014 If you receive a linker error message that saying you have overflowed
22015 the available TOC space, you can reduce the amount of TOC space used
22016 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
22017 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
22018 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
22019 generate code to calculate the sum of an address and a constant at
22020 run time instead of putting that sum into the TOC@. You may specify one
22021 or both of these options. Each causes GCC to produce very slightly
22022 slower and larger code at the expense of conserving TOC space.
22023
22024 If you still run out of space in the TOC even when you specify both of
22025 these options, specify @option{-mminimal-toc} instead. This option causes
22026 GCC to make only one TOC entry for every file. When you specify this
22027 option, GCC produces code that is slower and larger but which
22028 uses extremely little TOC space. You may wish to use this option
22029 only on files that contain less frequently-executed code.
22030
22031 @item -maix64
22032 @itemx -maix32
22033 @opindex maix64
22034 @opindex maix32
22035 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
22036 @code{long} type, and the infrastructure needed to support them.
22037 Specifying @option{-maix64} implies @option{-mpowerpc64},
22038 while @option{-maix32} disables the 64-bit ABI and
22039 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
22040
22041 @item -mxl-compat
22042 @itemx -mno-xl-compat
22043 @opindex mxl-compat
22044 @opindex mno-xl-compat
22045 Produce code that conforms more closely to IBM XL compiler semantics
22046 when using AIX-compatible ABI@. Pass floating-point arguments to
22047 prototyped functions beyond the register save area (RSA) on the stack
22048 in addition to argument FPRs. Do not assume that most significant
22049 double in 128-bit long double value is properly rounded when comparing
22050 values and converting to double. Use XL symbol names for long double
22051 support routines.
22052
22053 The AIX calling convention was extended but not initially documented to
22054 handle an obscure K&R C case of calling a function that takes the
22055 address of its arguments with fewer arguments than declared. IBM XL
22056 compilers access floating-point arguments that do not fit in the
22057 RSA from the stack when a subroutine is compiled without
22058 optimization. Because always storing floating-point arguments on the
22059 stack is inefficient and rarely needed, this option is not enabled by
22060 default and only is necessary when calling subroutines compiled by IBM
22061 XL compilers without optimization.
22062
22063 @item -mpe
22064 @opindex mpe
22065 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
22066 application written to use message passing with special startup code to
22067 enable the application to run. The system must have PE installed in the
22068 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
22069 must be overridden with the @option{-specs=} option to specify the
22070 appropriate directory location. The Parallel Environment does not
22071 support threads, so the @option{-mpe} option and the @option{-pthread}
22072 option are incompatible.
22073
22074 @item -malign-natural
22075 @itemx -malign-power
22076 @opindex malign-natural
22077 @opindex malign-power
22078 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
22079 @option{-malign-natural} overrides the ABI-defined alignment of larger
22080 types, such as floating-point doubles, on their natural size-based boundary.
22081 The option @option{-malign-power} instructs GCC to follow the ABI-specified
22082 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
22083
22084 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
22085 is not supported.
22086
22087 @item -msoft-float
22088 @itemx -mhard-float
22089 @opindex msoft-float
22090 @opindex mhard-float
22091 Generate code that does not use (uses) the floating-point register set.
22092 Software floating-point emulation is provided if you use the
22093 @option{-msoft-float} option, and pass the option to GCC when linking.
22094
22095 @item -msingle-float
22096 @itemx -mdouble-float
22097 @opindex msingle-float
22098 @opindex mdouble-float
22099 Generate code for single- or double-precision floating-point operations.
22100 @option{-mdouble-float} implies @option{-msingle-float}.
22101
22102 @item -msimple-fpu
22103 @opindex msimple-fpu
22104 Do not generate @code{sqrt} and @code{div} instructions for hardware
22105 floating-point unit.
22106
22107 @item -mfpu=@var{name}
22108 @opindex mfpu
22109 Specify type of floating-point unit. Valid values for @var{name} are
22110 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
22111 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
22112 @samp{sp_full} (equivalent to @option{-msingle-float}),
22113 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
22114
22115 @item -mxilinx-fpu
22116 @opindex mxilinx-fpu
22117 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
22118
22119 @item -mmultiple
22120 @itemx -mno-multiple
22121 @opindex mmultiple
22122 @opindex mno-multiple
22123 Generate code that uses (does not use) the load multiple word
22124 instructions and the store multiple word instructions. These
22125 instructions are generated by default on POWER systems, and not
22126 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
22127 PowerPC systems, since those instructions do not work when the
22128 processor is in little-endian mode. The exceptions are PPC740 and
22129 PPC750 which permit these instructions in little-endian mode.
22130
22131 @item -mstring
22132 @itemx -mno-string
22133 @opindex mstring
22134 @opindex mno-string
22135 Generate code that uses (does not use) the load string instructions
22136 and the store string word instructions to save multiple registers and
22137 do small block moves. These instructions are generated by default on
22138 POWER systems, and not generated on PowerPC systems. Do not use
22139 @option{-mstring} on little-endian PowerPC systems, since those
22140 instructions do not work when the processor is in little-endian mode.
22141 The exceptions are PPC740 and PPC750 which permit these instructions
22142 in little-endian mode.
22143
22144 @item -mupdate
22145 @itemx -mno-update
22146 @opindex mupdate
22147 @opindex mno-update
22148 Generate code that uses (does not use) the load or store instructions
22149 that update the base register to the address of the calculated memory
22150 location. These instructions are generated by default. If you use
22151 @option{-mno-update}, there is a small window between the time that the
22152 stack pointer is updated and the address of the previous frame is
22153 stored, which means code that walks the stack frame across interrupts or
22154 signals may get corrupted data.
22155
22156 @item -mavoid-indexed-addresses
22157 @itemx -mno-avoid-indexed-addresses
22158 @opindex mavoid-indexed-addresses
22159 @opindex mno-avoid-indexed-addresses
22160 Generate code that tries to avoid (not avoid) the use of indexed load
22161 or store instructions. These instructions can incur a performance
22162 penalty on Power6 processors in certain situations, such as when
22163 stepping through large arrays that cross a 16M boundary. This option
22164 is enabled by default when targeting Power6 and disabled otherwise.
22165
22166 @item -mfused-madd
22167 @itemx -mno-fused-madd
22168 @opindex mfused-madd
22169 @opindex mno-fused-madd
22170 Generate code that uses (does not use) the floating-point multiply and
22171 accumulate instructions. These instructions are generated by default
22172 if hardware floating point is used. The machine-dependent
22173 @option{-mfused-madd} option is now mapped to the machine-independent
22174 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
22175 mapped to @option{-ffp-contract=off}.
22176
22177 @item -mmulhw
22178 @itemx -mno-mulhw
22179 @opindex mmulhw
22180 @opindex mno-mulhw
22181 Generate code that uses (does not use) the half-word multiply and
22182 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
22183 These instructions are generated by default when targeting those
22184 processors.
22185
22186 @item -mdlmzb
22187 @itemx -mno-dlmzb
22188 @opindex mdlmzb
22189 @opindex mno-dlmzb
22190 Generate code that uses (does not use) the string-search @samp{dlmzb}
22191 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
22192 generated by default when targeting those processors.
22193
22194 @item -mno-bit-align
22195 @itemx -mbit-align
22196 @opindex mno-bit-align
22197 @opindex mbit-align
22198 On System V.4 and embedded PowerPC systems do not (do) force structures
22199 and unions that contain bit-fields to be aligned to the base type of the
22200 bit-field.
22201
22202 For example, by default a structure containing nothing but 8
22203 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
22204 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
22205 the structure is aligned to a 1-byte boundary and is 1 byte in
22206 size.
22207
22208 @item -mno-strict-align
22209 @itemx -mstrict-align
22210 @opindex mno-strict-align
22211 @opindex mstrict-align
22212 On System V.4 and embedded PowerPC systems do not (do) assume that
22213 unaligned memory references are handled by the system.
22214
22215 @item -mrelocatable
22216 @itemx -mno-relocatable
22217 @opindex mrelocatable
22218 @opindex mno-relocatable
22219 Generate code that allows (does not allow) a static executable to be
22220 relocated to a different address at run time. A simple embedded
22221 PowerPC system loader should relocate the entire contents of
22222 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
22223 a table of 32-bit addresses generated by this option. For this to
22224 work, all objects linked together must be compiled with
22225 @option{-mrelocatable} or @option{-mrelocatable-lib}.
22226 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
22227
22228 @item -mrelocatable-lib
22229 @itemx -mno-relocatable-lib
22230 @opindex mrelocatable-lib
22231 @opindex mno-relocatable-lib
22232 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
22233 @code{.fixup} section to allow static executables to be relocated at
22234 run time, but @option{-mrelocatable-lib} does not use the smaller stack
22235 alignment of @option{-mrelocatable}. Objects compiled with
22236 @option{-mrelocatable-lib} may be linked with objects compiled with
22237 any combination of the @option{-mrelocatable} options.
22238
22239 @item -mno-toc
22240 @itemx -mtoc
22241 @opindex mno-toc
22242 @opindex mtoc
22243 On System V.4 and embedded PowerPC systems do not (do) assume that
22244 register 2 contains a pointer to a global area pointing to the addresses
22245 used in the program.
22246
22247 @item -mlittle
22248 @itemx -mlittle-endian
22249 @opindex mlittle
22250 @opindex mlittle-endian
22251 On System V.4 and embedded PowerPC systems compile code for the
22252 processor in little-endian mode. The @option{-mlittle-endian} option is
22253 the same as @option{-mlittle}.
22254
22255 @item -mbig
22256 @itemx -mbig-endian
22257 @opindex mbig
22258 @opindex mbig-endian
22259 On System V.4 and embedded PowerPC systems compile code for the
22260 processor in big-endian mode. The @option{-mbig-endian} option is
22261 the same as @option{-mbig}.
22262
22263 @item -mdynamic-no-pic
22264 @opindex mdynamic-no-pic
22265 On Darwin and Mac OS X systems, compile code so that it is not
22266 relocatable, but that its external references are relocatable. The
22267 resulting code is suitable for applications, but not shared
22268 libraries.
22269
22270 @item -msingle-pic-base
22271 @opindex msingle-pic-base
22272 Treat the register used for PIC addressing as read-only, rather than
22273 loading it in the prologue for each function. The runtime system is
22274 responsible for initializing this register with an appropriate value
22275 before execution begins.
22276
22277 @item -mprioritize-restricted-insns=@var{priority}
22278 @opindex mprioritize-restricted-insns
22279 This option controls the priority that is assigned to
22280 dispatch-slot restricted instructions during the second scheduling
22281 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
22282 or @samp{2} to assign no, highest, or second-highest (respectively)
22283 priority to dispatch-slot restricted
22284 instructions.
22285
22286 @item -msched-costly-dep=@var{dependence_type}
22287 @opindex msched-costly-dep
22288 This option controls which dependences are considered costly
22289 by the target during instruction scheduling. The argument
22290 @var{dependence_type} takes one of the following values:
22291
22292 @table @asis
22293 @item @samp{no}
22294 No dependence is costly.
22295
22296 @item @samp{all}
22297 All dependences are costly.
22298
22299 @item @samp{true_store_to_load}
22300 A true dependence from store to load is costly.
22301
22302 @item @samp{store_to_load}
22303 Any dependence from store to load is costly.
22304
22305 @item @var{number}
22306 Any dependence for which the latency is greater than or equal to
22307 @var{number} is costly.
22308 @end table
22309
22310 @item -minsert-sched-nops=@var{scheme}
22311 @opindex minsert-sched-nops
22312 This option controls which NOP insertion scheme is used during
22313 the second scheduling pass. The argument @var{scheme} takes one of the
22314 following values:
22315
22316 @table @asis
22317 @item @samp{no}
22318 Don't insert NOPs.
22319
22320 @item @samp{pad}
22321 Pad with NOPs any dispatch group that has vacant issue slots,
22322 according to the scheduler's grouping.
22323
22324 @item @samp{regroup_exact}
22325 Insert NOPs to force costly dependent insns into
22326 separate groups. Insert exactly as many NOPs as needed to force an insn
22327 to a new group, according to the estimated processor grouping.
22328
22329 @item @var{number}
22330 Insert NOPs to force costly dependent insns into
22331 separate groups. Insert @var{number} NOPs to force an insn to a new group.
22332 @end table
22333
22334 @item -mcall-sysv
22335 @opindex mcall-sysv
22336 On System V.4 and embedded PowerPC systems compile code using calling
22337 conventions that adhere to the March 1995 draft of the System V
22338 Application Binary Interface, PowerPC processor supplement. This is the
22339 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
22340
22341 @item -mcall-sysv-eabi
22342 @itemx -mcall-eabi
22343 @opindex mcall-sysv-eabi
22344 @opindex mcall-eabi
22345 Specify both @option{-mcall-sysv} and @option{-meabi} options.
22346
22347 @item -mcall-sysv-noeabi
22348 @opindex mcall-sysv-noeabi
22349 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
22350
22351 @item -mcall-aixdesc
22352 @opindex m
22353 On System V.4 and embedded PowerPC systems compile code for the AIX
22354 operating system.
22355
22356 @item -mcall-linux
22357 @opindex mcall-linux
22358 On System V.4 and embedded PowerPC systems compile code for the
22359 Linux-based GNU system.
22360
22361 @item -mcall-freebsd
22362 @opindex mcall-freebsd
22363 On System V.4 and embedded PowerPC systems compile code for the
22364 FreeBSD operating system.
22365
22366 @item -mcall-netbsd
22367 @opindex mcall-netbsd
22368 On System V.4 and embedded PowerPC systems compile code for the
22369 NetBSD operating system.
22370
22371 @item -mcall-openbsd
22372 @opindex mcall-netbsd
22373 On System V.4 and embedded PowerPC systems compile code for the
22374 OpenBSD operating system.
22375
22376 @item -maix-struct-return
22377 @opindex maix-struct-return
22378 Return all structures in memory (as specified by the AIX ABI)@.
22379
22380 @item -msvr4-struct-return
22381 @opindex msvr4-struct-return
22382 Return structures smaller than 8 bytes in registers (as specified by the
22383 SVR4 ABI)@.
22384
22385 @item -mabi=@var{abi-type}
22386 @opindex mabi
22387 Extend the current ABI with a particular extension, or remove such extension.
22388 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
22389 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
22390 @samp{elfv1}, @samp{elfv2}@.
22391
22392 @item -mabi=spe
22393 @opindex mabi=spe
22394 Extend the current ABI with SPE ABI extensions. This does not change
22395 the default ABI, instead it adds the SPE ABI extensions to the current
22396 ABI@.
22397
22398 @item -mabi=no-spe
22399 @opindex mabi=no-spe
22400 Disable Book-E SPE ABI extensions for the current ABI@.
22401
22402 @item -mabi=ibmlongdouble
22403 @opindex mabi=ibmlongdouble
22404 Change the current ABI to use IBM extended-precision long double.
22405 This is a PowerPC 32-bit SYSV ABI option.
22406
22407 @item -mabi=ieeelongdouble
22408 @opindex mabi=ieeelongdouble
22409 Change the current ABI to use IEEE extended-precision long double.
22410 This is a PowerPC 32-bit Linux ABI option.
22411
22412 @item -mabi=elfv1
22413 @opindex mabi=elfv1
22414 Change the current ABI to use the ELFv1 ABI.
22415 This is the default ABI for big-endian PowerPC 64-bit Linux.
22416 Overriding the default ABI requires special system support and is
22417 likely to fail in spectacular ways.
22418
22419 @item -mabi=elfv2
22420 @opindex mabi=elfv2
22421 Change the current ABI to use the ELFv2 ABI.
22422 This is the default ABI for little-endian PowerPC 64-bit Linux.
22423 Overriding the default ABI requires special system support and is
22424 likely to fail in spectacular ways.
22425
22426 @item -mgnu-attribute
22427 @itemx -mno-gnu-attribute
22428 @opindex mgnu-attribute
22429 @opindex mno-gnu-attribute
22430 Emit .gnu_attribute assembly directives to set tag/value pairs in a
22431 .gnu.attributes section that specify ABI variations in function
22432 parameters or return values.
22433
22434 @item -mprototype
22435 @itemx -mno-prototype
22436 @opindex mprototype
22437 @opindex mno-prototype
22438 On System V.4 and embedded PowerPC systems assume that all calls to
22439 variable argument functions are properly prototyped. Otherwise, the
22440 compiler must insert an instruction before every non-prototyped call to
22441 set or clear bit 6 of the condition code register (@code{CR}) to
22442 indicate whether floating-point values are passed in the floating-point
22443 registers in case the function takes variable arguments. With
22444 @option{-mprototype}, only calls to prototyped variable argument functions
22445 set or clear the bit.
22446
22447 @item -msim
22448 @opindex msim
22449 On embedded PowerPC systems, assume that the startup module is called
22450 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
22451 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
22452 configurations.
22453
22454 @item -mmvme
22455 @opindex mmvme
22456 On embedded PowerPC systems, assume that the startup module is called
22457 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
22458 @file{libc.a}.
22459
22460 @item -mads
22461 @opindex mads
22462 On embedded PowerPC systems, assume that the startup module is called
22463 @file{crt0.o} and the standard C libraries are @file{libads.a} and
22464 @file{libc.a}.
22465
22466 @item -myellowknife
22467 @opindex myellowknife
22468 On embedded PowerPC systems, assume that the startup module is called
22469 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
22470 @file{libc.a}.
22471
22472 @item -mvxworks
22473 @opindex mvxworks
22474 On System V.4 and embedded PowerPC systems, specify that you are
22475 compiling for a VxWorks system.
22476
22477 @item -memb
22478 @opindex memb
22479 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
22480 header to indicate that @samp{eabi} extended relocations are used.
22481
22482 @item -meabi
22483 @itemx -mno-eabi
22484 @opindex meabi
22485 @opindex mno-eabi
22486 On System V.4 and embedded PowerPC systems do (do not) adhere to the
22487 Embedded Applications Binary Interface (EABI), which is a set of
22488 modifications to the System V.4 specifications. Selecting @option{-meabi}
22489 means that the stack is aligned to an 8-byte boundary, a function
22490 @code{__eabi} is called from @code{main} to set up the EABI
22491 environment, and the @option{-msdata} option can use both @code{r2} and
22492 @code{r13} to point to two separate small data areas. Selecting
22493 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
22494 no EABI initialization function is called from @code{main}, and the
22495 @option{-msdata} option only uses @code{r13} to point to a single
22496 small data area. The @option{-meabi} option is on by default if you
22497 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
22498
22499 @item -msdata=eabi
22500 @opindex msdata=eabi
22501 On System V.4 and embedded PowerPC systems, put small initialized
22502 @code{const} global and static data in the @code{.sdata2} section, which
22503 is pointed to by register @code{r2}. Put small initialized
22504 non-@code{const} global and static data in the @code{.sdata} section,
22505 which is pointed to by register @code{r13}. Put small uninitialized
22506 global and static data in the @code{.sbss} section, which is adjacent to
22507 the @code{.sdata} section. The @option{-msdata=eabi} option is
22508 incompatible with the @option{-mrelocatable} option. The
22509 @option{-msdata=eabi} option also sets the @option{-memb} option.
22510
22511 @item -msdata=sysv
22512 @opindex msdata=sysv
22513 On System V.4 and embedded PowerPC systems, put small global and static
22514 data in the @code{.sdata} section, which is pointed to by register
22515 @code{r13}. Put small uninitialized global and static data in the
22516 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
22517 The @option{-msdata=sysv} option is incompatible with the
22518 @option{-mrelocatable} option.
22519
22520 @item -msdata=default
22521 @itemx -msdata
22522 @opindex msdata=default
22523 @opindex msdata
22524 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
22525 compile code the same as @option{-msdata=eabi}, otherwise compile code the
22526 same as @option{-msdata=sysv}.
22527
22528 @item -msdata=data
22529 @opindex msdata=data
22530 On System V.4 and embedded PowerPC systems, put small global
22531 data in the @code{.sdata} section. Put small uninitialized global
22532 data in the @code{.sbss} section. Do not use register @code{r13}
22533 to address small data however. This is the default behavior unless
22534 other @option{-msdata} options are used.
22535
22536 @item -msdata=none
22537 @itemx -mno-sdata
22538 @opindex msdata=none
22539 @opindex mno-sdata
22540 On embedded PowerPC systems, put all initialized global and static data
22541 in the @code{.data} section, and all uninitialized data in the
22542 @code{.bss} section.
22543
22544 @item -mblock-move-inline-limit=@var{num}
22545 @opindex mblock-move-inline-limit
22546 Inline all block moves (such as calls to @code{memcpy} or structure
22547 copies) less than or equal to @var{num} bytes. The minimum value for
22548 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
22549 targets. The default value is target-specific.
22550
22551 @item -G @var{num}
22552 @opindex G
22553 @cindex smaller data references (PowerPC)
22554 @cindex .sdata/.sdata2 references (PowerPC)
22555 On embedded PowerPC systems, put global and static items less than or
22556 equal to @var{num} bytes into the small data or BSS sections instead of
22557 the normal data or BSS section. By default, @var{num} is 8. The
22558 @option{-G @var{num}} switch is also passed to the linker.
22559 All modules should be compiled with the same @option{-G @var{num}} value.
22560
22561 @item -mregnames
22562 @itemx -mno-regnames
22563 @opindex mregnames
22564 @opindex mno-regnames
22565 On System V.4 and embedded PowerPC systems do (do not) emit register
22566 names in the assembly language output using symbolic forms.
22567
22568 @item -mlongcall
22569 @itemx -mno-longcall
22570 @opindex mlongcall
22571 @opindex mno-longcall
22572 By default assume that all calls are far away so that a longer and more
22573 expensive calling sequence is required. This is required for calls
22574 farther than 32 megabytes (33,554,432 bytes) from the current location.
22575 A short call is generated if the compiler knows
22576 the call cannot be that far away. This setting can be overridden by
22577 the @code{shortcall} function attribute, or by @code{#pragma
22578 longcall(0)}.
22579
22580 Some linkers are capable of detecting out-of-range calls and generating
22581 glue code on the fly. On these systems, long calls are unnecessary and
22582 generate slower code. As of this writing, the AIX linker can do this,
22583 as can the GNU linker for PowerPC/64. It is planned to add this feature
22584 to the GNU linker for 32-bit PowerPC systems as well.
22585
22586 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
22587 callee, L42}, plus a @dfn{branch island} (glue code). The two target
22588 addresses represent the callee and the branch island. The
22589 Darwin/PPC linker prefers the first address and generates a @code{bl
22590 callee} if the PPC @code{bl} instruction reaches the callee directly;
22591 otherwise, the linker generates @code{bl L42} to call the branch
22592 island. The branch island is appended to the body of the
22593 calling function; it computes the full 32-bit address of the callee
22594 and jumps to it.
22595
22596 On Mach-O (Darwin) systems, this option directs the compiler emit to
22597 the glue for every direct call, and the Darwin linker decides whether
22598 to use or discard it.
22599
22600 In the future, GCC may ignore all longcall specifications
22601 when the linker is known to generate glue.
22602
22603 @item -mtls-markers
22604 @itemx -mno-tls-markers
22605 @opindex mtls-markers
22606 @opindex mno-tls-markers
22607 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
22608 specifying the function argument. The relocation allows the linker to
22609 reliably associate function call with argument setup instructions for
22610 TLS optimization, which in turn allows GCC to better schedule the
22611 sequence.
22612
22613 @item -mrecip
22614 @itemx -mno-recip
22615 @opindex mrecip
22616 This option enables use of the reciprocal estimate and
22617 reciprocal square root estimate instructions with additional
22618 Newton-Raphson steps to increase precision instead of doing a divide or
22619 square root and divide for floating-point arguments. You should use
22620 the @option{-ffast-math} option when using @option{-mrecip} (or at
22621 least @option{-funsafe-math-optimizations},
22622 @option{-ffinite-math-only}, @option{-freciprocal-math} and
22623 @option{-fno-trapping-math}). Note that while the throughput of the
22624 sequence is generally higher than the throughput of the non-reciprocal
22625 instruction, the precision of the sequence can be decreased by up to 2
22626 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
22627 roots.
22628
22629 @item -mrecip=@var{opt}
22630 @opindex mrecip=opt
22631 This option controls which reciprocal estimate instructions
22632 may be used. @var{opt} is a comma-separated list of options, which may
22633 be preceded by a @code{!} to invert the option:
22634
22635 @table @samp
22636
22637 @item all
22638 Enable all estimate instructions.
22639
22640 @item default
22641 Enable the default instructions, equivalent to @option{-mrecip}.
22642
22643 @item none
22644 Disable all estimate instructions, equivalent to @option{-mno-recip}.
22645
22646 @item div
22647 Enable the reciprocal approximation instructions for both
22648 single and double precision.
22649
22650 @item divf
22651 Enable the single-precision reciprocal approximation instructions.
22652
22653 @item divd
22654 Enable the double-precision reciprocal approximation instructions.
22655
22656 @item rsqrt
22657 Enable the reciprocal square root approximation instructions for both
22658 single and double precision.
22659
22660 @item rsqrtf
22661 Enable the single-precision reciprocal square root approximation instructions.
22662
22663 @item rsqrtd
22664 Enable the double-precision reciprocal square root approximation instructions.
22665
22666 @end table
22667
22668 So, for example, @option{-mrecip=all,!rsqrtd} enables
22669 all of the reciprocal estimate instructions, except for the
22670 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
22671 which handle the double-precision reciprocal square root calculations.
22672
22673 @item -mrecip-precision
22674 @itemx -mno-recip-precision
22675 @opindex mrecip-precision
22676 Assume (do not assume) that the reciprocal estimate instructions
22677 provide higher-precision estimates than is mandated by the PowerPC
22678 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
22679 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
22680 The double-precision square root estimate instructions are not generated by
22681 default on low-precision machines, since they do not provide an
22682 estimate that converges after three steps.
22683
22684 @item -mveclibabi=@var{type}
22685 @opindex mveclibabi
22686 Specifies the ABI type to use for vectorizing intrinsics using an
22687 external library. The only type supported at present is @samp{mass},
22688 which specifies to use IBM's Mathematical Acceleration Subsystem
22689 (MASS) libraries for vectorizing intrinsics using external libraries.
22690 GCC currently emits calls to @code{acosd2}, @code{acosf4},
22691 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
22692 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
22693 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
22694 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
22695 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
22696 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
22697 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
22698 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
22699 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
22700 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
22701 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
22702 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
22703 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
22704 for power7. Both @option{-ftree-vectorize} and
22705 @option{-funsafe-math-optimizations} must also be enabled. The MASS
22706 libraries must be specified at link time.
22707
22708 @item -mfriz
22709 @itemx -mno-friz
22710 @opindex mfriz
22711 Generate (do not generate) the @code{friz} instruction when the
22712 @option{-funsafe-math-optimizations} option is used to optimize
22713 rounding of floating-point values to 64-bit integer and back to floating
22714 point. The @code{friz} instruction does not return the same value if
22715 the floating-point number is too large to fit in an integer.
22716
22717 @item -mpointers-to-nested-functions
22718 @itemx -mno-pointers-to-nested-functions
22719 @opindex mpointers-to-nested-functions
22720 Generate (do not generate) code to load up the static chain register
22721 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
22722 systems where a function pointer points to a 3-word descriptor giving
22723 the function address, TOC value to be loaded in register @code{r2}, and
22724 static chain value to be loaded in register @code{r11}. The
22725 @option{-mpointers-to-nested-functions} is on by default. You cannot
22726 call through pointers to nested functions or pointers
22727 to functions compiled in other languages that use the static chain if
22728 you use @option{-mno-pointers-to-nested-functions}.
22729
22730 @item -msave-toc-indirect
22731 @itemx -mno-save-toc-indirect
22732 @opindex msave-toc-indirect
22733 Generate (do not generate) code to save the TOC value in the reserved
22734 stack location in the function prologue if the function calls through
22735 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
22736 saved in the prologue, it is saved just before the call through the
22737 pointer. The @option{-mno-save-toc-indirect} option is the default.
22738
22739 @item -mcompat-align-parm
22740 @itemx -mno-compat-align-parm
22741 @opindex mcompat-align-parm
22742 Generate (do not generate) code to pass structure parameters with a
22743 maximum alignment of 64 bits, for compatibility with older versions
22744 of GCC.
22745
22746 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
22747 structure parameter on a 128-bit boundary when that structure contained
22748 a member requiring 128-bit alignment. This is corrected in more
22749 recent versions of GCC. This option may be used to generate code
22750 that is compatible with functions compiled with older versions of
22751 GCC.
22752
22753 The @option{-mno-compat-align-parm} option is the default.
22754
22755 @item -mstack-protector-guard=@var{guard}
22756 @itemx -mstack-protector-guard-reg=@var{reg}
22757 @itemx -mstack-protector-guard-offset=@var{offset}
22758 @opindex mstack-protector-guard
22759 @opindex mstack-protector-guard-reg
22760 @opindex mstack-protector-guard-offset
22761 Generate stack protection code using canary at @var{guard}. Supported
22762 locations are @samp{global} for global canary or @samp{tls} for per-thread
22763 canary in the TLS block (the default with GNU libc version 2.4 or later).
22764
22765 With the latter choice the options
22766 @option{-mstack-protector-guard-reg=@var{reg}} and
22767 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
22768 which register to use as base register for reading the canary, and from what
22769 offset from that base register. The default for those is as specified in the
22770 relevant ABI.
22771 @end table
22772
22773 @node RX Options
22774 @subsection RX Options
22775 @cindex RX Options
22776
22777 These command-line options are defined for RX targets:
22778
22779 @table @gcctabopt
22780 @item -m64bit-doubles
22781 @itemx -m32bit-doubles
22782 @opindex m64bit-doubles
22783 @opindex m32bit-doubles
22784 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
22785 or 32 bits (@option{-m32bit-doubles}) in size. The default is
22786 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
22787 works on 32-bit values, which is why the default is
22788 @option{-m32bit-doubles}.
22789
22790 @item -fpu
22791 @itemx -nofpu
22792 @opindex fpu
22793 @opindex nofpu
22794 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
22795 floating-point hardware. The default is enabled for the RX600
22796 series and disabled for the RX200 series.
22797
22798 Floating-point instructions are only generated for 32-bit floating-point
22799 values, however, so the FPU hardware is not used for doubles if the
22800 @option{-m64bit-doubles} option is used.
22801
22802 @emph{Note} If the @option{-fpu} option is enabled then
22803 @option{-funsafe-math-optimizations} is also enabled automatically.
22804 This is because the RX FPU instructions are themselves unsafe.
22805
22806 @item -mcpu=@var{name}
22807 @opindex mcpu
22808 Selects the type of RX CPU to be targeted. Currently three types are
22809 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
22810 the specific @samp{RX610} CPU. The default is @samp{RX600}.
22811
22812 The only difference between @samp{RX600} and @samp{RX610} is that the
22813 @samp{RX610} does not support the @code{MVTIPL} instruction.
22814
22815 The @samp{RX200} series does not have a hardware floating-point unit
22816 and so @option{-nofpu} is enabled by default when this type is
22817 selected.
22818
22819 @item -mbig-endian-data
22820 @itemx -mlittle-endian-data
22821 @opindex mbig-endian-data
22822 @opindex mlittle-endian-data
22823 Store data (but not code) in the big-endian format. The default is
22824 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
22825 format.
22826
22827 @item -msmall-data-limit=@var{N}
22828 @opindex msmall-data-limit
22829 Specifies the maximum size in bytes of global and static variables
22830 which can be placed into the small data area. Using the small data
22831 area can lead to smaller and faster code, but the size of area is
22832 limited and it is up to the programmer to ensure that the area does
22833 not overflow. Also when the small data area is used one of the RX's
22834 registers (usually @code{r13}) is reserved for use pointing to this
22835 area, so it is no longer available for use by the compiler. This
22836 could result in slower and/or larger code if variables are pushed onto
22837 the stack instead of being held in this register.
22838
22839 Note, common variables (variables that have not been initialized) and
22840 constants are not placed into the small data area as they are assigned
22841 to other sections in the output executable.
22842
22843 The default value is zero, which disables this feature. Note, this
22844 feature is not enabled by default with higher optimization levels
22845 (@option{-O2} etc) because of the potentially detrimental effects of
22846 reserving a register. It is up to the programmer to experiment and
22847 discover whether this feature is of benefit to their program. See the
22848 description of the @option{-mpid} option for a description of how the
22849 actual register to hold the small data area pointer is chosen.
22850
22851 @item -msim
22852 @itemx -mno-sim
22853 @opindex msim
22854 @opindex mno-sim
22855 Use the simulator runtime. The default is to use the libgloss
22856 board-specific runtime.
22857
22858 @item -mas100-syntax
22859 @itemx -mno-as100-syntax
22860 @opindex mas100-syntax
22861 @opindex mno-as100-syntax
22862 When generating assembler output use a syntax that is compatible with
22863 Renesas's AS100 assembler. This syntax can also be handled by the GAS
22864 assembler, but it has some restrictions so it is not generated by default.
22865
22866 @item -mmax-constant-size=@var{N}
22867 @opindex mmax-constant-size
22868 Specifies the maximum size, in bytes, of a constant that can be used as
22869 an operand in a RX instruction. Although the RX instruction set does
22870 allow constants of up to 4 bytes in length to be used in instructions,
22871 a longer value equates to a longer instruction. Thus in some
22872 circumstances it can be beneficial to restrict the size of constants
22873 that are used in instructions. Constants that are too big are instead
22874 placed into a constant pool and referenced via register indirection.
22875
22876 The value @var{N} can be between 0 and 4. A value of 0 (the default)
22877 or 4 means that constants of any size are allowed.
22878
22879 @item -mrelax
22880 @opindex mrelax
22881 Enable linker relaxation. Linker relaxation is a process whereby the
22882 linker attempts to reduce the size of a program by finding shorter
22883 versions of various instructions. Disabled by default.
22884
22885 @item -mint-register=@var{N}
22886 @opindex mint-register
22887 Specify the number of registers to reserve for fast interrupt handler
22888 functions. The value @var{N} can be between 0 and 4. A value of 1
22889 means that register @code{r13} is reserved for the exclusive use
22890 of fast interrupt handlers. A value of 2 reserves @code{r13} and
22891 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
22892 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
22893 A value of 0, the default, does not reserve any registers.
22894
22895 @item -msave-acc-in-interrupts
22896 @opindex msave-acc-in-interrupts
22897 Specifies that interrupt handler functions should preserve the
22898 accumulator register. This is only necessary if normal code might use
22899 the accumulator register, for example because it performs 64-bit
22900 multiplications. The default is to ignore the accumulator as this
22901 makes the interrupt handlers faster.
22902
22903 @item -mpid
22904 @itemx -mno-pid
22905 @opindex mpid
22906 @opindex mno-pid
22907 Enables the generation of position independent data. When enabled any
22908 access to constant data is done via an offset from a base address
22909 held in a register. This allows the location of constant data to be
22910 determined at run time without requiring the executable to be
22911 relocated, which is a benefit to embedded applications with tight
22912 memory constraints. Data that can be modified is not affected by this
22913 option.
22914
22915 Note, using this feature reserves a register, usually @code{r13}, for
22916 the constant data base address. This can result in slower and/or
22917 larger code, especially in complicated functions.
22918
22919 The actual register chosen to hold the constant data base address
22920 depends upon whether the @option{-msmall-data-limit} and/or the
22921 @option{-mint-register} command-line options are enabled. Starting
22922 with register @code{r13} and proceeding downwards, registers are
22923 allocated first to satisfy the requirements of @option{-mint-register},
22924 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
22925 is possible for the small data area register to be @code{r8} if both
22926 @option{-mint-register=4} and @option{-mpid} are specified on the
22927 command line.
22928
22929 By default this feature is not enabled. The default can be restored
22930 via the @option{-mno-pid} command-line option.
22931
22932 @item -mno-warn-multiple-fast-interrupts
22933 @itemx -mwarn-multiple-fast-interrupts
22934 @opindex mno-warn-multiple-fast-interrupts
22935 @opindex mwarn-multiple-fast-interrupts
22936 Prevents GCC from issuing a warning message if it finds more than one
22937 fast interrupt handler when it is compiling a file. The default is to
22938 issue a warning for each extra fast interrupt handler found, as the RX
22939 only supports one such interrupt.
22940
22941 @item -mallow-string-insns
22942 @itemx -mno-allow-string-insns
22943 @opindex mallow-string-insns
22944 @opindex mno-allow-string-insns
22945 Enables or disables the use of the string manipulation instructions
22946 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
22947 @code{SWHILE} and also the @code{RMPA} instruction. These
22948 instructions may prefetch data, which is not safe to do if accessing
22949 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
22950 for more information).
22951
22952 The default is to allow these instructions, but it is not possible for
22953 GCC to reliably detect all circumstances where a string instruction
22954 might be used to access an I/O register, so their use cannot be
22955 disabled automatically. Instead it is reliant upon the programmer to
22956 use the @option{-mno-allow-string-insns} option if their program
22957 accesses I/O space.
22958
22959 When the instructions are enabled GCC defines the C preprocessor
22960 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
22961 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
22962
22963 @item -mjsr
22964 @itemx -mno-jsr
22965 @opindex mjsr
22966 @opindex mno-jsr
22967 Use only (or not only) @code{JSR} instructions to access functions.
22968 This option can be used when code size exceeds the range of @code{BSR}
22969 instructions. Note that @option{-mno-jsr} does not mean to not use
22970 @code{JSR} but instead means that any type of branch may be used.
22971 @end table
22972
22973 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
22974 has special significance to the RX port when used with the
22975 @code{interrupt} function attribute. This attribute indicates a
22976 function intended to process fast interrupts. GCC ensures
22977 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
22978 and/or @code{r13} and only provided that the normal use of the
22979 corresponding registers have been restricted via the
22980 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
22981 options.
22982
22983 @node S/390 and zSeries Options
22984 @subsection S/390 and zSeries Options
22985 @cindex S/390 and zSeries Options
22986
22987 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
22988
22989 @table @gcctabopt
22990 @item -mhard-float
22991 @itemx -msoft-float
22992 @opindex mhard-float
22993 @opindex msoft-float
22994 Use (do not use) the hardware floating-point instructions and registers
22995 for floating-point operations. When @option{-msoft-float} is specified,
22996 functions in @file{libgcc.a} are used to perform floating-point
22997 operations. When @option{-mhard-float} is specified, the compiler
22998 generates IEEE floating-point instructions. This is the default.
22999
23000 @item -mhard-dfp
23001 @itemx -mno-hard-dfp
23002 @opindex mhard-dfp
23003 @opindex mno-hard-dfp
23004 Use (do not use) the hardware decimal-floating-point instructions for
23005 decimal-floating-point operations. When @option{-mno-hard-dfp} is
23006 specified, functions in @file{libgcc.a} are used to perform
23007 decimal-floating-point operations. When @option{-mhard-dfp} is
23008 specified, the compiler generates decimal-floating-point hardware
23009 instructions. This is the default for @option{-march=z9-ec} or higher.
23010
23011 @item -mlong-double-64
23012 @itemx -mlong-double-128
23013 @opindex mlong-double-64
23014 @opindex mlong-double-128
23015 These switches control the size of @code{long double} type. A size
23016 of 64 bits makes the @code{long double} type equivalent to the @code{double}
23017 type. This is the default.
23018
23019 @item -mbackchain
23020 @itemx -mno-backchain
23021 @opindex mbackchain
23022 @opindex mno-backchain
23023 Store (do not store) the address of the caller's frame as backchain pointer
23024 into the callee's stack frame.
23025 A backchain may be needed to allow debugging using tools that do not understand
23026 DWARF call frame information.
23027 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
23028 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
23029 the backchain is placed into the topmost word of the 96/160 byte register
23030 save area.
23031
23032 In general, code compiled with @option{-mbackchain} is call-compatible with
23033 code compiled with @option{-mmo-backchain}; however, use of the backchain
23034 for debugging purposes usually requires that the whole binary is built with
23035 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
23036 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
23037 to build a linux kernel use @option{-msoft-float}.
23038
23039 The default is to not maintain the backchain.
23040
23041 @item -mpacked-stack
23042 @itemx -mno-packed-stack
23043 @opindex mpacked-stack
23044 @opindex mno-packed-stack
23045 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
23046 specified, the compiler uses the all fields of the 96/160 byte register save
23047 area only for their default purpose; unused fields still take up stack space.
23048 When @option{-mpacked-stack} is specified, register save slots are densely
23049 packed at the top of the register save area; unused space is reused for other
23050 purposes, allowing for more efficient use of the available stack space.
23051 However, when @option{-mbackchain} is also in effect, the topmost word of
23052 the save area is always used to store the backchain, and the return address
23053 register is always saved two words below the backchain.
23054
23055 As long as the stack frame backchain is not used, code generated with
23056 @option{-mpacked-stack} is call-compatible with code generated with
23057 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
23058 S/390 or zSeries generated code that uses the stack frame backchain at run
23059 time, not just for debugging purposes. Such code is not call-compatible
23060 with code compiled with @option{-mpacked-stack}. Also, note that the
23061 combination of @option{-mbackchain},
23062 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
23063 to build a linux kernel use @option{-msoft-float}.
23064
23065 The default is to not use the packed stack layout.
23066
23067 @item -msmall-exec
23068 @itemx -mno-small-exec
23069 @opindex msmall-exec
23070 @opindex mno-small-exec
23071 Generate (or do not generate) code using the @code{bras} instruction
23072 to do subroutine calls.
23073 This only works reliably if the total executable size does not
23074 exceed 64k. The default is to use the @code{basr} instruction instead,
23075 which does not have this limitation.
23076
23077 @item -m64
23078 @itemx -m31
23079 @opindex m64
23080 @opindex m31
23081 When @option{-m31} is specified, generate code compliant to the
23082 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
23083 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
23084 particular to generate 64-bit instructions. For the @samp{s390}
23085 targets, the default is @option{-m31}, while the @samp{s390x}
23086 targets default to @option{-m64}.
23087
23088 @item -mzarch
23089 @itemx -mesa
23090 @opindex mzarch
23091 @opindex mesa
23092 When @option{-mzarch} is specified, generate code using the
23093 instructions available on z/Architecture.
23094 When @option{-mesa} is specified, generate code using the
23095 instructions available on ESA/390. Note that @option{-mesa} is
23096 not possible with @option{-m64}.
23097 When generating code compliant to the GNU/Linux for S/390 ABI,
23098 the default is @option{-mesa}. When generating code compliant
23099 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
23100
23101 @item -mhtm
23102 @itemx -mno-htm
23103 @opindex mhtm
23104 @opindex mno-htm
23105 The @option{-mhtm} option enables a set of builtins making use of
23106 instructions available with the transactional execution facility
23107 introduced with the IBM zEnterprise EC12 machine generation
23108 @ref{S/390 System z Built-in Functions}.
23109 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
23110
23111 @item -mvx
23112 @itemx -mno-vx
23113 @opindex mvx
23114 @opindex mno-vx
23115 When @option{-mvx} is specified, generate code using the instructions
23116 available with the vector extension facility introduced with the IBM
23117 z13 machine generation.
23118 This option changes the ABI for some vector type values with regard to
23119 alignment and calling conventions. In case vector type values are
23120 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
23121 command will be added to mark the resulting binary with the ABI used.
23122 @option{-mvx} is enabled by default when using @option{-march=z13}.
23123
23124 @item -mzvector
23125 @itemx -mno-zvector
23126 @opindex mzvector
23127 @opindex mno-zvector
23128 The @option{-mzvector} option enables vector language extensions and
23129 builtins using instructions available with the vector extension
23130 facility introduced with the IBM z13 machine generation.
23131 This option adds support for @samp{vector} to be used as a keyword to
23132 define vector type variables and arguments. @samp{vector} is only
23133 available when GNU extensions are enabled. It will not be expanded
23134 when requesting strict standard compliance e.g. with @option{-std=c99}.
23135 In addition to the GCC low-level builtins @option{-mzvector} enables
23136 a set of builtins added for compatibility with AltiVec-style
23137 implementations like Power and Cell. In order to make use of these
23138 builtins the header file @file{vecintrin.h} needs to be included.
23139 @option{-mzvector} is disabled by default.
23140
23141 @item -mmvcle
23142 @itemx -mno-mvcle
23143 @opindex mmvcle
23144 @opindex mno-mvcle
23145 Generate (or do not generate) code using the @code{mvcle} instruction
23146 to perform block moves. When @option{-mno-mvcle} is specified,
23147 use a @code{mvc} loop instead. This is the default unless optimizing for
23148 size.
23149
23150 @item -mdebug
23151 @itemx -mno-debug
23152 @opindex mdebug
23153 @opindex mno-debug
23154 Print (or do not print) additional debug information when compiling.
23155 The default is to not print debug information.
23156
23157 @item -march=@var{cpu-type}
23158 @opindex march
23159 Generate code that runs on @var{cpu-type}, which is the name of a
23160 system representing a certain processor type. Possible values for
23161 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
23162 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
23163 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11}, and
23164 @samp{native}.
23165
23166 The default is @option{-march=z900}. @samp{g5}/@samp{arch3} and
23167 @samp{g6} are deprecated and will be removed with future releases.
23168
23169 Specifying @samp{native} as cpu type can be used to select the best
23170 architecture option for the host processor.
23171 @option{-march=native} has no effect if GCC does not recognize the
23172 processor.
23173
23174 @item -mtune=@var{cpu-type}
23175 @opindex mtune
23176 Tune to @var{cpu-type} everything applicable about the generated code,
23177 except for the ABI and the set of available instructions.
23178 The list of @var{cpu-type} values is the same as for @option{-march}.
23179 The default is the value used for @option{-march}.
23180
23181 @item -mtpf-trace
23182 @itemx -mno-tpf-trace
23183 @opindex mtpf-trace
23184 @opindex mno-tpf-trace
23185 Generate code that adds (does not add) in TPF OS specific branches to trace
23186 routines in the operating system. This option is off by default, even
23187 when compiling for the TPF OS@.
23188
23189 @item -mfused-madd
23190 @itemx -mno-fused-madd
23191 @opindex mfused-madd
23192 @opindex mno-fused-madd
23193 Generate code that uses (does not use) the floating-point multiply and
23194 accumulate instructions. These instructions are generated by default if
23195 hardware floating point is used.
23196
23197 @item -mwarn-framesize=@var{framesize}
23198 @opindex mwarn-framesize
23199 Emit a warning if the current function exceeds the given frame size. Because
23200 this is a compile-time check it doesn't need to be a real problem when the program
23201 runs. It is intended to identify functions that most probably cause
23202 a stack overflow. It is useful to be used in an environment with limited stack
23203 size e.g.@: the linux kernel.
23204
23205 @item -mwarn-dynamicstack
23206 @opindex mwarn-dynamicstack
23207 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
23208 arrays. This is generally a bad idea with a limited stack size.
23209
23210 @item -mstack-guard=@var{stack-guard}
23211 @itemx -mstack-size=@var{stack-size}
23212 @opindex mstack-guard
23213 @opindex mstack-size
23214 If these options are provided the S/390 back end emits additional instructions in
23215 the function prologue that trigger a trap if the stack size is @var{stack-guard}
23216 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
23217 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
23218 the frame size of the compiled function is chosen.
23219 These options are intended to be used to help debugging stack overflow problems.
23220 The additionally emitted code causes only little overhead and hence can also be
23221 used in production-like systems without greater performance degradation. The given
23222 values have to be exact powers of 2 and @var{stack-size} has to be greater than
23223 @var{stack-guard} without exceeding 64k.
23224 In order to be efficient the extra code makes the assumption that the stack starts
23225 at an address aligned to the value given by @var{stack-size}.
23226 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
23227
23228 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
23229 @opindex mhotpatch
23230 If the hotpatch option is enabled, a ``hot-patching'' function
23231 prologue is generated for all functions in the compilation unit.
23232 The funtion label is prepended with the given number of two-byte
23233 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
23234 the label, 2 * @var{post-halfwords} bytes are appended, using the
23235 largest NOP like instructions the architecture allows (maximum
23236 1000000).
23237
23238 If both arguments are zero, hotpatching is disabled.
23239
23240 This option can be overridden for individual functions with the
23241 @code{hotpatch} attribute.
23242 @end table
23243
23244 @node Score Options
23245 @subsection Score Options
23246 @cindex Score Options
23247
23248 These options are defined for Score implementations:
23249
23250 @table @gcctabopt
23251 @item -meb
23252 @opindex meb
23253 Compile code for big-endian mode. This is the default.
23254
23255 @item -mel
23256 @opindex mel
23257 Compile code for little-endian mode.
23258
23259 @item -mnhwloop
23260 @opindex mnhwloop
23261 Disable generation of @code{bcnz} instructions.
23262
23263 @item -muls
23264 @opindex muls
23265 Enable generation of unaligned load and store instructions.
23266
23267 @item -mmac
23268 @opindex mmac
23269 Enable the use of multiply-accumulate instructions. Disabled by default.
23270
23271 @item -mscore5
23272 @opindex mscore5
23273 Specify the SCORE5 as the target architecture.
23274
23275 @item -mscore5u
23276 @opindex mscore5u
23277 Specify the SCORE5U of the target architecture.
23278
23279 @item -mscore7
23280 @opindex mscore7
23281 Specify the SCORE7 as the target architecture. This is the default.
23282
23283 @item -mscore7d
23284 @opindex mscore7d
23285 Specify the SCORE7D as the target architecture.
23286 @end table
23287
23288 @node SH Options
23289 @subsection SH Options
23290
23291 These @samp{-m} options are defined for the SH implementations:
23292
23293 @table @gcctabopt
23294 @item -m1
23295 @opindex m1
23296 Generate code for the SH1.
23297
23298 @item -m2
23299 @opindex m2
23300 Generate code for the SH2.
23301
23302 @item -m2e
23303 Generate code for the SH2e.
23304
23305 @item -m2a-nofpu
23306 @opindex m2a-nofpu
23307 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
23308 that the floating-point unit is not used.
23309
23310 @item -m2a-single-only
23311 @opindex m2a-single-only
23312 Generate code for the SH2a-FPU, in such a way that no double-precision
23313 floating-point operations are used.
23314
23315 @item -m2a-single
23316 @opindex m2a-single
23317 Generate code for the SH2a-FPU assuming the floating-point unit is in
23318 single-precision mode by default.
23319
23320 @item -m2a
23321 @opindex m2a
23322 Generate code for the SH2a-FPU assuming the floating-point unit is in
23323 double-precision mode by default.
23324
23325 @item -m3
23326 @opindex m3
23327 Generate code for the SH3.
23328
23329 @item -m3e
23330 @opindex m3e
23331 Generate code for the SH3e.
23332
23333 @item -m4-nofpu
23334 @opindex m4-nofpu
23335 Generate code for the SH4 without a floating-point unit.
23336
23337 @item -m4-single-only
23338 @opindex m4-single-only
23339 Generate code for the SH4 with a floating-point unit that only
23340 supports single-precision arithmetic.
23341
23342 @item -m4-single
23343 @opindex m4-single
23344 Generate code for the SH4 assuming the floating-point unit is in
23345 single-precision mode by default.
23346
23347 @item -m4
23348 @opindex m4
23349 Generate code for the SH4.
23350
23351 @item -m4-100
23352 @opindex m4-100
23353 Generate code for SH4-100.
23354
23355 @item -m4-100-nofpu
23356 @opindex m4-100-nofpu
23357 Generate code for SH4-100 in such a way that the
23358 floating-point unit is not used.
23359
23360 @item -m4-100-single
23361 @opindex m4-100-single
23362 Generate code for SH4-100 assuming the floating-point unit is in
23363 single-precision mode by default.
23364
23365 @item -m4-100-single-only
23366 @opindex m4-100-single-only
23367 Generate code for SH4-100 in such a way that no double-precision
23368 floating-point operations are used.
23369
23370 @item -m4-200
23371 @opindex m4-200
23372 Generate code for SH4-200.
23373
23374 @item -m4-200-nofpu
23375 @opindex m4-200-nofpu
23376 Generate code for SH4-200 without in such a way that the
23377 floating-point unit is not used.
23378
23379 @item -m4-200-single
23380 @opindex m4-200-single
23381 Generate code for SH4-200 assuming the floating-point unit is in
23382 single-precision mode by default.
23383
23384 @item -m4-200-single-only
23385 @opindex m4-200-single-only
23386 Generate code for SH4-200 in such a way that no double-precision
23387 floating-point operations are used.
23388
23389 @item -m4-300
23390 @opindex m4-300
23391 Generate code for SH4-300.
23392
23393 @item -m4-300-nofpu
23394 @opindex m4-300-nofpu
23395 Generate code for SH4-300 without in such a way that the
23396 floating-point unit is not used.
23397
23398 @item -m4-300-single
23399 @opindex m4-300-single
23400 Generate code for SH4-300 in such a way that no double-precision
23401 floating-point operations are used.
23402
23403 @item -m4-300-single-only
23404 @opindex m4-300-single-only
23405 Generate code for SH4-300 in such a way that no double-precision
23406 floating-point operations are used.
23407
23408 @item -m4-340
23409 @opindex m4-340
23410 Generate code for SH4-340 (no MMU, no FPU).
23411
23412 @item -m4-500
23413 @opindex m4-500
23414 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
23415 assembler.
23416
23417 @item -m4a-nofpu
23418 @opindex m4a-nofpu
23419 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
23420 floating-point unit is not used.
23421
23422 @item -m4a-single-only
23423 @opindex m4a-single-only
23424 Generate code for the SH4a, in such a way that no double-precision
23425 floating-point operations are used.
23426
23427 @item -m4a-single
23428 @opindex m4a-single
23429 Generate code for the SH4a assuming the floating-point unit is in
23430 single-precision mode by default.
23431
23432 @item -m4a
23433 @opindex m4a
23434 Generate code for the SH4a.
23435
23436 @item -m4al
23437 @opindex m4al
23438 Same as @option{-m4a-nofpu}, except that it implicitly passes
23439 @option{-dsp} to the assembler. GCC doesn't generate any DSP
23440 instructions at the moment.
23441
23442 @item -mb
23443 @opindex mb
23444 Compile code for the processor in big-endian mode.
23445
23446 @item -ml
23447 @opindex ml
23448 Compile code for the processor in little-endian mode.
23449
23450 @item -mdalign
23451 @opindex mdalign
23452 Align doubles at 64-bit boundaries. Note that this changes the calling
23453 conventions, and thus some functions from the standard C library do
23454 not work unless you recompile it first with @option{-mdalign}.
23455
23456 @item -mrelax
23457 @opindex mrelax
23458 Shorten some address references at link time, when possible; uses the
23459 linker option @option{-relax}.
23460
23461 @item -mbigtable
23462 @opindex mbigtable
23463 Use 32-bit offsets in @code{switch} tables. The default is to use
23464 16-bit offsets.
23465
23466 @item -mbitops
23467 @opindex mbitops
23468 Enable the use of bit manipulation instructions on SH2A.
23469
23470 @item -mfmovd
23471 @opindex mfmovd
23472 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
23473 alignment constraints.
23474
23475 @item -mrenesas
23476 @opindex mrenesas
23477 Comply with the calling conventions defined by Renesas.
23478
23479 @item -mno-renesas
23480 @opindex mno-renesas
23481 Comply with the calling conventions defined for GCC before the Renesas
23482 conventions were available. This option is the default for all
23483 targets of the SH toolchain.
23484
23485 @item -mnomacsave
23486 @opindex mnomacsave
23487 Mark the @code{MAC} register as call-clobbered, even if
23488 @option{-mrenesas} is given.
23489
23490 @item -mieee
23491 @itemx -mno-ieee
23492 @opindex mieee
23493 @opindex mno-ieee
23494 Control the IEEE compliance of floating-point comparisons, which affects the
23495 handling of cases where the result of a comparison is unordered. By default
23496 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
23497 enabled @option{-mno-ieee} is implicitly set, which results in faster
23498 floating-point greater-equal and less-equal comparisons. The implicit settings
23499 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
23500
23501 @item -minline-ic_invalidate
23502 @opindex minline-ic_invalidate
23503 Inline code to invalidate instruction cache entries after setting up
23504 nested function trampolines.
23505 This option has no effect if @option{-musermode} is in effect and the selected
23506 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
23507 instruction.
23508 If the selected code generation option does not allow the use of the @code{icbi}
23509 instruction, and @option{-musermode} is not in effect, the inlined code
23510 manipulates the instruction cache address array directly with an associative
23511 write. This not only requires privileged mode at run time, but it also
23512 fails if the cache line had been mapped via the TLB and has become unmapped.
23513
23514 @item -misize
23515 @opindex misize
23516 Dump instruction size and location in the assembly code.
23517
23518 @item -mpadstruct
23519 @opindex mpadstruct
23520 This option is deprecated. It pads structures to multiple of 4 bytes,
23521 which is incompatible with the SH ABI@.
23522
23523 @item -matomic-model=@var{model}
23524 @opindex matomic-model=@var{model}
23525 Sets the model of atomic operations and additional parameters as a comma
23526 separated list. For details on the atomic built-in functions see
23527 @ref{__atomic Builtins}. The following models and parameters are supported:
23528
23529 @table @samp
23530
23531 @item none
23532 Disable compiler generated atomic sequences and emit library calls for atomic
23533 operations. This is the default if the target is not @code{sh*-*-linux*}.
23534
23535 @item soft-gusa
23536 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
23537 built-in functions. The generated atomic sequences require additional support
23538 from the interrupt/exception handling code of the system and are only suitable
23539 for SH3* and SH4* single-core systems. This option is enabled by default when
23540 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
23541 this option also partially utilizes the hardware atomic instructions
23542 @code{movli.l} and @code{movco.l} to create more efficient code, unless
23543 @samp{strict} is specified.
23544
23545 @item soft-tcb
23546 Generate software atomic sequences that use a variable in the thread control
23547 block. This is a variation of the gUSA sequences which can also be used on
23548 SH1* and SH2* targets. The generated atomic sequences require additional
23549 support from the interrupt/exception handling code of the system and are only
23550 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
23551 parameter has to be specified as well.
23552
23553 @item soft-imask
23554 Generate software atomic sequences that temporarily disable interrupts by
23555 setting @code{SR.IMASK = 1111}. This model works only when the program runs
23556 in privileged mode and is only suitable for single-core systems. Additional
23557 support from the interrupt/exception handling code of the system is not
23558 required. This model is enabled by default when the target is
23559 @code{sh*-*-linux*} and SH1* or SH2*.
23560
23561 @item hard-llcs
23562 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
23563 instructions only. This is only available on SH4A and is suitable for
23564 multi-core systems. Since the hardware instructions support only 32 bit atomic
23565 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
23566 Code compiled with this option is also compatible with other software
23567 atomic model interrupt/exception handling systems if executed on an SH4A
23568 system. Additional support from the interrupt/exception handling code of the
23569 system is not required for this model.
23570
23571 @item gbr-offset=
23572 This parameter specifies the offset in bytes of the variable in the thread
23573 control block structure that should be used by the generated atomic sequences
23574 when the @samp{soft-tcb} model has been selected. For other models this
23575 parameter is ignored. The specified value must be an integer multiple of four
23576 and in the range 0-1020.
23577
23578 @item strict
23579 This parameter prevents mixed usage of multiple atomic models, even if they
23580 are compatible, and makes the compiler generate atomic sequences of the
23581 specified model only.
23582
23583 @end table
23584
23585 @item -mtas
23586 @opindex mtas
23587 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
23588 Notice that depending on the particular hardware and software configuration
23589 this can degrade overall performance due to the operand cache line flushes
23590 that are implied by the @code{tas.b} instruction. On multi-core SH4A
23591 processors the @code{tas.b} instruction must be used with caution since it
23592 can result in data corruption for certain cache configurations.
23593
23594 @item -mprefergot
23595 @opindex mprefergot
23596 When generating position-independent code, emit function calls using
23597 the Global Offset Table instead of the Procedure Linkage Table.
23598
23599 @item -musermode
23600 @itemx -mno-usermode
23601 @opindex musermode
23602 @opindex mno-usermode
23603 Don't allow (allow) the compiler generating privileged mode code. Specifying
23604 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
23605 inlined code would not work in user mode. @option{-musermode} is the default
23606 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
23607 @option{-musermode} has no effect, since there is no user mode.
23608
23609 @item -multcost=@var{number}
23610 @opindex multcost=@var{number}
23611 Set the cost to assume for a multiply insn.
23612
23613 @item -mdiv=@var{strategy}
23614 @opindex mdiv=@var{strategy}
23615 Set the division strategy to be used for integer division operations.
23616 @var{strategy} can be one of:
23617
23618 @table @samp
23619
23620 @item call-div1
23621 Calls a library function that uses the single-step division instruction
23622 @code{div1} to perform the operation. Division by zero calculates an
23623 unspecified result and does not trap. This is the default except for SH4,
23624 SH2A and SHcompact.
23625
23626 @item call-fp
23627 Calls a library function that performs the operation in double precision
23628 floating point. Division by zero causes a floating-point exception. This is
23629 the default for SHcompact with FPU. Specifying this for targets that do not
23630 have a double precision FPU defaults to @code{call-div1}.
23631
23632 @item call-table
23633 Calls a library function that uses a lookup table for small divisors and
23634 the @code{div1} instruction with case distinction for larger divisors. Division
23635 by zero calculates an unspecified result and does not trap. This is the default
23636 for SH4. Specifying this for targets that do not have dynamic shift
23637 instructions defaults to @code{call-div1}.
23638
23639 @end table
23640
23641 When a division strategy has not been specified the default strategy is
23642 selected based on the current target. For SH2A the default strategy is to
23643 use the @code{divs} and @code{divu} instructions instead of library function
23644 calls.
23645
23646 @item -maccumulate-outgoing-args
23647 @opindex maccumulate-outgoing-args
23648 Reserve space once for outgoing arguments in the function prologue rather
23649 than around each call. Generally beneficial for performance and size. Also
23650 needed for unwinding to avoid changing the stack frame around conditional code.
23651
23652 @item -mdivsi3_libfunc=@var{name}
23653 @opindex mdivsi3_libfunc=@var{name}
23654 Set the name of the library function used for 32-bit signed division to
23655 @var{name}.
23656 This only affects the name used in the @samp{call} division strategies, and
23657 the compiler still expects the same sets of input/output/clobbered registers as
23658 if this option were not present.
23659
23660 @item -mfixed-range=@var{register-range}
23661 @opindex mfixed-range
23662 Generate code treating the given register range as fixed registers.
23663 A fixed register is one that the register allocator can not use. This is
23664 useful when compiling kernel code. A register range is specified as
23665 two registers separated by a dash. Multiple register ranges can be
23666 specified separated by a comma.
23667
23668 @item -mbranch-cost=@var{num}
23669 @opindex mbranch-cost=@var{num}
23670 Assume @var{num} to be the cost for a branch instruction. Higher numbers
23671 make the compiler try to generate more branch-free code if possible.
23672 If not specified the value is selected depending on the processor type that
23673 is being compiled for.
23674
23675 @item -mzdcbranch
23676 @itemx -mno-zdcbranch
23677 @opindex mzdcbranch
23678 @opindex mno-zdcbranch
23679 Assume (do not assume) that zero displacement conditional branch instructions
23680 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
23681 compiler prefers zero displacement branch code sequences. This is
23682 enabled by default when generating code for SH4 and SH4A. It can be explicitly
23683 disabled by specifying @option{-mno-zdcbranch}.
23684
23685 @item -mcbranch-force-delay-slot
23686 @opindex mcbranch-force-delay-slot
23687 Force the usage of delay slots for conditional branches, which stuffs the delay
23688 slot with a @code{nop} if a suitable instruction cannot be found. By default
23689 this option is disabled. It can be enabled to work around hardware bugs as
23690 found in the original SH7055.
23691
23692 @item -mfused-madd
23693 @itemx -mno-fused-madd
23694 @opindex mfused-madd
23695 @opindex mno-fused-madd
23696 Generate code that uses (does not use) the floating-point multiply and
23697 accumulate instructions. These instructions are generated by default
23698 if hardware floating point is used. The machine-dependent
23699 @option{-mfused-madd} option is now mapped to the machine-independent
23700 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
23701 mapped to @option{-ffp-contract=off}.
23702
23703 @item -mfsca
23704 @itemx -mno-fsca
23705 @opindex mfsca
23706 @opindex mno-fsca
23707 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
23708 and cosine approximations. The option @option{-mfsca} must be used in
23709 combination with @option{-funsafe-math-optimizations}. It is enabled by default
23710 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
23711 approximations even if @option{-funsafe-math-optimizations} is in effect.
23712
23713 @item -mfsrra
23714 @itemx -mno-fsrra
23715 @opindex mfsrra
23716 @opindex mno-fsrra
23717 Allow or disallow the compiler to emit the @code{fsrra} instruction for
23718 reciprocal square root approximations. The option @option{-mfsrra} must be used
23719 in combination with @option{-funsafe-math-optimizations} and
23720 @option{-ffinite-math-only}. It is enabled by default when generating code for
23721 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
23722 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
23723 in effect.
23724
23725 @item -mpretend-cmove
23726 @opindex mpretend-cmove
23727 Prefer zero-displacement conditional branches for conditional move instruction
23728 patterns. This can result in faster code on the SH4 processor.
23729
23730 @item -mfdpic
23731 @opindex fdpic
23732 Generate code using the FDPIC ABI.
23733
23734 @end table
23735
23736 @node Solaris 2 Options
23737 @subsection Solaris 2 Options
23738 @cindex Solaris 2 options
23739
23740 These @samp{-m} options are supported on Solaris 2:
23741
23742 @table @gcctabopt
23743 @item -mclear-hwcap
23744 @opindex mclear-hwcap
23745 @option{-mclear-hwcap} tells the compiler to remove the hardware
23746 capabilities generated by the Solaris assembler. This is only necessary
23747 when object files use ISA extensions not supported by the current
23748 machine, but check at runtime whether or not to use them.
23749
23750 @item -mimpure-text
23751 @opindex mimpure-text
23752 @option{-mimpure-text}, used in addition to @option{-shared}, tells
23753 the compiler to not pass @option{-z text} to the linker when linking a
23754 shared object. Using this option, you can link position-dependent
23755 code into a shared object.
23756
23757 @option{-mimpure-text} suppresses the ``relocations remain against
23758 allocatable but non-writable sections'' linker error message.
23759 However, the necessary relocations trigger copy-on-write, and the
23760 shared object is not actually shared across processes. Instead of
23761 using @option{-mimpure-text}, you should compile all source code with
23762 @option{-fpic} or @option{-fPIC}.
23763
23764 @end table
23765
23766 These switches are supported in addition to the above on Solaris 2:
23767
23768 @table @gcctabopt
23769 @item -pthreads
23770 @opindex pthreads
23771 This is a synonym for @option{-pthread}.
23772 @end table
23773
23774 @node SPARC Options
23775 @subsection SPARC Options
23776 @cindex SPARC options
23777
23778 These @samp{-m} options are supported on the SPARC:
23779
23780 @table @gcctabopt
23781 @item -mno-app-regs
23782 @itemx -mapp-regs
23783 @opindex mno-app-regs
23784 @opindex mapp-regs
23785 Specify @option{-mapp-regs} to generate output using the global registers
23786 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
23787 global register 1, each global register 2 through 4 is then treated as an
23788 allocable register that is clobbered by function calls. This is the default.
23789
23790 To be fully SVR4 ABI-compliant at the cost of some performance loss,
23791 specify @option{-mno-app-regs}. You should compile libraries and system
23792 software with this option.
23793
23794 @item -mflat
23795 @itemx -mno-flat
23796 @opindex mflat
23797 @opindex mno-flat
23798 With @option{-mflat}, the compiler does not generate save/restore instructions
23799 and uses a ``flat'' or single register window model. This model is compatible
23800 with the regular register window model. The local registers and the input
23801 registers (0--5) are still treated as ``call-saved'' registers and are
23802 saved on the stack as needed.
23803
23804 With @option{-mno-flat} (the default), the compiler generates save/restore
23805 instructions (except for leaf functions). This is the normal operating mode.
23806
23807 @item -mfpu
23808 @itemx -mhard-float
23809 @opindex mfpu
23810 @opindex mhard-float
23811 Generate output containing floating-point instructions. This is the
23812 default.
23813
23814 @item -mno-fpu
23815 @itemx -msoft-float
23816 @opindex mno-fpu
23817 @opindex msoft-float
23818 Generate output containing library calls for floating point.
23819 @strong{Warning:} the requisite libraries are not available for all SPARC
23820 targets. Normally the facilities of the machine's usual C compiler are
23821 used, but this cannot be done directly in cross-compilation. You must make
23822 your own arrangements to provide suitable library functions for
23823 cross-compilation. The embedded targets @samp{sparc-*-aout} and
23824 @samp{sparclite-*-*} do provide software floating-point support.
23825
23826 @option{-msoft-float} changes the calling convention in the output file;
23827 therefore, it is only useful if you compile @emph{all} of a program with
23828 this option. In particular, you need to compile @file{libgcc.a}, the
23829 library that comes with GCC, with @option{-msoft-float} in order for
23830 this to work.
23831
23832 @item -mhard-quad-float
23833 @opindex mhard-quad-float
23834 Generate output containing quad-word (long double) floating-point
23835 instructions.
23836
23837 @item -msoft-quad-float
23838 @opindex msoft-quad-float
23839 Generate output containing library calls for quad-word (long double)
23840 floating-point instructions. The functions called are those specified
23841 in the SPARC ABI@. This is the default.
23842
23843 As of this writing, there are no SPARC implementations that have hardware
23844 support for the quad-word floating-point instructions. They all invoke
23845 a trap handler for one of these instructions, and then the trap handler
23846 emulates the effect of the instruction. Because of the trap handler overhead,
23847 this is much slower than calling the ABI library routines. Thus the
23848 @option{-msoft-quad-float} option is the default.
23849
23850 @item -mno-unaligned-doubles
23851 @itemx -munaligned-doubles
23852 @opindex mno-unaligned-doubles
23853 @opindex munaligned-doubles
23854 Assume that doubles have 8-byte alignment. This is the default.
23855
23856 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
23857 alignment only if they are contained in another type, or if they have an
23858 absolute address. Otherwise, it assumes they have 4-byte alignment.
23859 Specifying this option avoids some rare compatibility problems with code
23860 generated by other compilers. It is not the default because it results
23861 in a performance loss, especially for floating-point code.
23862
23863 @item -muser-mode
23864 @itemx -mno-user-mode
23865 @opindex muser-mode
23866 @opindex mno-user-mode
23867 Do not generate code that can only run in supervisor mode. This is relevant
23868 only for the @code{casa} instruction emitted for the LEON3 processor. This
23869 is the default.
23870
23871 @item -mfaster-structs
23872 @itemx -mno-faster-structs
23873 @opindex mfaster-structs
23874 @opindex mno-faster-structs
23875 With @option{-mfaster-structs}, the compiler assumes that structures
23876 should have 8-byte alignment. This enables the use of pairs of
23877 @code{ldd} and @code{std} instructions for copies in structure
23878 assignment, in place of twice as many @code{ld} and @code{st} pairs.
23879 However, the use of this changed alignment directly violates the SPARC
23880 ABI@. Thus, it's intended only for use on targets where the developer
23881 acknowledges that their resulting code is not directly in line with
23882 the rules of the ABI@.
23883
23884 @item -mstd-struct-return
23885 @itemx -mno-std-struct-return
23886 @opindex mstd-struct-return
23887 @opindex mno-std-struct-return
23888 With @option{-mstd-struct-return}, the compiler generates checking code
23889 in functions returning structures or unions to detect size mismatches
23890 between the two sides of function calls, as per the 32-bit ABI@.
23891
23892 The default is @option{-mno-std-struct-return}. This option has no effect
23893 in 64-bit mode.
23894
23895 @item -mlra
23896 @itemx -mno-lra
23897 @opindex mlra
23898 @opindex mno-lra
23899 Enable Local Register Allocation. This is the default for SPARC since GCC 7
23900 so @option{-mno-lra} needs to be passed to get old Reload.
23901
23902 @item -mcpu=@var{cpu_type}
23903 @opindex mcpu
23904 Set the instruction set, register set, and instruction scheduling parameters
23905 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
23906 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
23907 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
23908 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
23909 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
23910 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
23911
23912 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
23913 which selects the best architecture option for the host processor.
23914 @option{-mcpu=native} has no effect if GCC does not recognize
23915 the processor.
23916
23917 Default instruction scheduling parameters are used for values that select
23918 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
23919 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
23920
23921 Here is a list of each supported architecture and their supported
23922 implementations.
23923
23924 @table @asis
23925 @item v7
23926 cypress, leon3v7
23927
23928 @item v8
23929 supersparc, hypersparc, leon, leon3
23930
23931 @item sparclite
23932 f930, f934, sparclite86x
23933
23934 @item sparclet
23935 tsc701
23936
23937 @item v9
23938 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
23939 niagara7, m8
23940 @end table
23941
23942 By default (unless configured otherwise), GCC generates code for the V7
23943 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
23944 additionally optimizes it for the Cypress CY7C602 chip, as used in the
23945 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
23946 SPARCStation 1, 2, IPX etc.
23947
23948 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
23949 architecture. The only difference from V7 code is that the compiler emits
23950 the integer multiply and integer divide instructions which exist in SPARC-V8
23951 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
23952 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
23953 2000 series.
23954
23955 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
23956 the SPARC architecture. This adds the integer multiply, integer divide step
23957 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
23958 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
23959 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
23960 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
23961 MB86934 chip, which is the more recent SPARClite with FPU@.
23962
23963 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
23964 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
23965 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
23966 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
23967 optimizes it for the TEMIC SPARClet chip.
23968
23969 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
23970 architecture. This adds 64-bit integer and floating-point move instructions,
23971 3 additional floating-point condition code registers and conditional move
23972 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
23973 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
23974 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
23975 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
23976 @option{-mcpu=niagara}, the compiler additionally optimizes it for
23977 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
23978 additionally optimizes it for Sun UltraSPARC T2 chips. With
23979 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
23980 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
23981 additionally optimizes it for Sun UltraSPARC T4 chips. With
23982 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
23983 Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
23984 additionally optimizes it for Oracle M8 chips.
23985
23986 @item -mtune=@var{cpu_type}
23987 @opindex mtune
23988 Set the instruction scheduling parameters for machine type
23989 @var{cpu_type}, but do not set the instruction set or register set that the
23990 option @option{-mcpu=@var{cpu_type}} does.
23991
23992 The same values for @option{-mcpu=@var{cpu_type}} can be used for
23993 @option{-mtune=@var{cpu_type}}, but the only useful values are those
23994 that select a particular CPU implementation. Those are
23995 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
23996 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
23997 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
23998 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
23999 @samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
24000 and GNU/Linux toolchains, @samp{native} can also be used.
24001
24002 @item -mv8plus
24003 @itemx -mno-v8plus
24004 @opindex mv8plus
24005 @opindex mno-v8plus
24006 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
24007 difference from the V8 ABI is that the global and out registers are
24008 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
24009 mode for all SPARC-V9 processors.
24010
24011 @item -mvis
24012 @itemx -mno-vis
24013 @opindex mvis
24014 @opindex mno-vis
24015 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
24016 Visual Instruction Set extensions. The default is @option{-mno-vis}.
24017
24018 @item -mvis2
24019 @itemx -mno-vis2
24020 @opindex mvis2
24021 @opindex mno-vis2
24022 With @option{-mvis2}, GCC generates code that takes advantage of
24023 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
24024 default is @option{-mvis2} when targeting a cpu that supports such
24025 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
24026 also sets @option{-mvis}.
24027
24028 @item -mvis3
24029 @itemx -mno-vis3
24030 @opindex mvis3
24031 @opindex mno-vis3
24032 With @option{-mvis3}, GCC generates code that takes advantage of
24033 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
24034 default is @option{-mvis3} when targeting a cpu that supports such
24035 instructions, such as niagara-3 and later. Setting @option{-mvis3}
24036 also sets @option{-mvis2} and @option{-mvis}.
24037
24038 @item -mvis4
24039 @itemx -mno-vis4
24040 @opindex mvis4
24041 @opindex mno-vis4
24042 With @option{-mvis4}, GCC generates code that takes advantage of
24043 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
24044 default is @option{-mvis4} when targeting a cpu that supports such
24045 instructions, such as niagara-7 and later. Setting @option{-mvis4}
24046 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
24047
24048 @item -mvis4b
24049 @itemx -mno-vis4b
24050 @opindex mvis4b
24051 @opindex mno-vis4b
24052 With @option{-mvis4b}, GCC generates code that takes advantage of
24053 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
24054 the additional VIS instructions introduced in the Oracle SPARC
24055 Architecture 2017. The default is @option{-mvis4b} when targeting a
24056 cpu that supports such instructions, such as m8 and later. Setting
24057 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
24058 @option{-mvis2} and @option{-mvis}.
24059
24060 @item -mcbcond
24061 @itemx -mno-cbcond
24062 @opindex mcbcond
24063 @opindex mno-cbcond
24064 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
24065 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
24066 when targeting a CPU that supports such instructions, such as Niagara-4 and
24067 later.
24068
24069 @item -mfmaf
24070 @itemx -mno-fmaf
24071 @opindex mfmaf
24072 @opindex mno-fmaf
24073 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
24074 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
24075 when targeting a CPU that supports such instructions, such as Niagara-3 and
24076 later.
24077
24078 @item -mpopc
24079 @itemx -mno-popc
24080 @opindex mpopc
24081 @opindex mno-popc
24082 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
24083 Population Count instruction. The default is @option{-mpopc}
24084 when targeting a CPU that supports such an instruction, such as Niagara-2 and
24085 later.
24086
24087 @item -msubxc
24088 @itemx -mno-subxc
24089 @opindex msubxc
24090 @opindex mno-subxc
24091 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
24092 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
24093 when targeting a CPU that supports such an instruction, such as Niagara-7 and
24094 later.
24095
24096 @item -mfix-at697f
24097 @opindex mfix-at697f
24098 Enable the documented workaround for the single erratum of the Atmel AT697F
24099 processor (which corresponds to erratum #13 of the AT697E processor).
24100
24101 @item -mfix-ut699
24102 @opindex mfix-ut699
24103 Enable the documented workarounds for the floating-point errata and the data
24104 cache nullify errata of the UT699 processor.
24105
24106 @item -mfix-ut700
24107 @opindex mfix-ut700
24108 Enable the documented workaround for the back-to-back store errata of
24109 the UT699E/UT700 processor.
24110
24111 @item -mfix-gr712rc
24112 @opindex mfix-gr712rc
24113 Enable the documented workaround for the back-to-back store errata of
24114 the GR712RC processor.
24115 @end table
24116
24117 These @samp{-m} options are supported in addition to the above
24118 on SPARC-V9 processors in 64-bit environments:
24119
24120 @table @gcctabopt
24121 @item -m32
24122 @itemx -m64
24123 @opindex m32
24124 @opindex m64
24125 Generate code for a 32-bit or 64-bit environment.
24126 The 32-bit environment sets int, long and pointer to 32 bits.
24127 The 64-bit environment sets int to 32 bits and long and pointer
24128 to 64 bits.
24129
24130 @item -mcmodel=@var{which}
24131 @opindex mcmodel
24132 Set the code model to one of
24133
24134 @table @samp
24135 @item medlow
24136 The Medium/Low code model: 64-bit addresses, programs
24137 must be linked in the low 32 bits of memory. Programs can be statically
24138 or dynamically linked.
24139
24140 @item medmid
24141 The Medium/Middle code model: 64-bit addresses, programs
24142 must be linked in the low 44 bits of memory, the text and data segments must
24143 be less than 2GB in size and the data segment must be located within 2GB of
24144 the text segment.
24145
24146 @item medany
24147 The Medium/Anywhere code model: 64-bit addresses, programs
24148 may be linked anywhere in memory, the text and data segments must be less
24149 than 2GB in size and the data segment must be located within 2GB of the
24150 text segment.
24151
24152 @item embmedany
24153 The Medium/Anywhere code model for embedded systems:
24154 64-bit addresses, the text and data segments must be less than 2GB in
24155 size, both starting anywhere in memory (determined at link time). The
24156 global register %g4 points to the base of the data segment. Programs
24157 are statically linked and PIC is not supported.
24158 @end table
24159
24160 @item -mmemory-model=@var{mem-model}
24161 @opindex mmemory-model
24162 Set the memory model in force on the processor to one of
24163
24164 @table @samp
24165 @item default
24166 The default memory model for the processor and operating system.
24167
24168 @item rmo
24169 Relaxed Memory Order
24170
24171 @item pso
24172 Partial Store Order
24173
24174 @item tso
24175 Total Store Order
24176
24177 @item sc
24178 Sequential Consistency
24179 @end table
24180
24181 These memory models are formally defined in Appendix D of the SPARC-V9
24182 architecture manual, as set in the processor's @code{PSTATE.MM} field.
24183
24184 @item -mstack-bias
24185 @itemx -mno-stack-bias
24186 @opindex mstack-bias
24187 @opindex mno-stack-bias
24188 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
24189 frame pointer if present, are offset by @minus{}2047 which must be added back
24190 when making stack frame references. This is the default in 64-bit mode.
24191 Otherwise, assume no such offset is present.
24192 @end table
24193
24194 @node SPU Options
24195 @subsection SPU Options
24196 @cindex SPU options
24197
24198 These @samp{-m} options are supported on the SPU:
24199
24200 @table @gcctabopt
24201 @item -mwarn-reloc
24202 @itemx -merror-reloc
24203 @opindex mwarn-reloc
24204 @opindex merror-reloc
24205
24206 The loader for SPU does not handle dynamic relocations. By default, GCC
24207 gives an error when it generates code that requires a dynamic
24208 relocation. @option{-mno-error-reloc} disables the error,
24209 @option{-mwarn-reloc} generates a warning instead.
24210
24211 @item -msafe-dma
24212 @itemx -munsafe-dma
24213 @opindex msafe-dma
24214 @opindex munsafe-dma
24215
24216 Instructions that initiate or test completion of DMA must not be
24217 reordered with respect to loads and stores of the memory that is being
24218 accessed.
24219 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
24220 memory accesses, but that can lead to inefficient code in places where the
24221 memory is known to not change. Rather than mark the memory as volatile,
24222 you can use @option{-msafe-dma} to tell the compiler to treat
24223 the DMA instructions as potentially affecting all memory.
24224
24225 @item -mbranch-hints
24226 @opindex mbranch-hints
24227
24228 By default, GCC generates a branch hint instruction to avoid
24229 pipeline stalls for always-taken or probably-taken branches. A hint
24230 is not generated closer than 8 instructions away from its branch.
24231 There is little reason to disable them, except for debugging purposes,
24232 or to make an object a little bit smaller.
24233
24234 @item -msmall-mem
24235 @itemx -mlarge-mem
24236 @opindex msmall-mem
24237 @opindex mlarge-mem
24238
24239 By default, GCC generates code assuming that addresses are never larger
24240 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
24241 a full 32-bit address.
24242
24243 @item -mstdmain
24244 @opindex mstdmain
24245
24246 By default, GCC links against startup code that assumes the SPU-style
24247 main function interface (which has an unconventional parameter list).
24248 With @option{-mstdmain}, GCC links your program against startup
24249 code that assumes a C99-style interface to @code{main}, including a
24250 local copy of @code{argv} strings.
24251
24252 @item -mfixed-range=@var{register-range}
24253 @opindex mfixed-range
24254 Generate code treating the given register range as fixed registers.
24255 A fixed register is one that the register allocator cannot use. This is
24256 useful when compiling kernel code. A register range is specified as
24257 two registers separated by a dash. Multiple register ranges can be
24258 specified separated by a comma.
24259
24260 @item -mea32
24261 @itemx -mea64
24262 @opindex mea32
24263 @opindex mea64
24264 Compile code assuming that pointers to the PPU address space accessed
24265 via the @code{__ea} named address space qualifier are either 32 or 64
24266 bits wide. The default is 32 bits. As this is an ABI-changing option,
24267 all object code in an executable must be compiled with the same setting.
24268
24269 @item -maddress-space-conversion
24270 @itemx -mno-address-space-conversion
24271 @opindex maddress-space-conversion
24272 @opindex mno-address-space-conversion
24273 Allow/disallow treating the @code{__ea} address space as superset
24274 of the generic address space. This enables explicit type casts
24275 between @code{__ea} and generic pointer as well as implicit
24276 conversions of generic pointers to @code{__ea} pointers. The
24277 default is to allow address space pointer conversions.
24278
24279 @item -mcache-size=@var{cache-size}
24280 @opindex mcache-size
24281 This option controls the version of libgcc that the compiler links to an
24282 executable and selects a software-managed cache for accessing variables
24283 in the @code{__ea} address space with a particular cache size. Possible
24284 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
24285 and @samp{128}. The default cache size is 64KB.
24286
24287 @item -matomic-updates
24288 @itemx -mno-atomic-updates
24289 @opindex matomic-updates
24290 @opindex mno-atomic-updates
24291 This option controls the version of libgcc that the compiler links to an
24292 executable and selects whether atomic updates to the software-managed
24293 cache of PPU-side variables are used. If you use atomic updates, changes
24294 to a PPU variable from SPU code using the @code{__ea} named address space
24295 qualifier do not interfere with changes to other PPU variables residing
24296 in the same cache line from PPU code. If you do not use atomic updates,
24297 such interference may occur; however, writing back cache lines is
24298 more efficient. The default behavior is to use atomic updates.
24299
24300 @item -mdual-nops
24301 @itemx -mdual-nops=@var{n}
24302 @opindex mdual-nops
24303 By default, GCC inserts NOPs to increase dual issue when it expects
24304 it to increase performance. @var{n} can be a value from 0 to 10. A
24305 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
24306 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
24307
24308 @item -mhint-max-nops=@var{n}
24309 @opindex mhint-max-nops
24310 Maximum number of NOPs to insert for a branch hint. A branch hint must
24311 be at least 8 instructions away from the branch it is affecting. GCC
24312 inserts up to @var{n} NOPs to enforce this, otherwise it does not
24313 generate the branch hint.
24314
24315 @item -mhint-max-distance=@var{n}
24316 @opindex mhint-max-distance
24317 The encoding of the branch hint instruction limits the hint to be within
24318 256 instructions of the branch it is affecting. By default, GCC makes
24319 sure it is within 125.
24320
24321 @item -msafe-hints
24322 @opindex msafe-hints
24323 Work around a hardware bug that causes the SPU to stall indefinitely.
24324 By default, GCC inserts the @code{hbrp} instruction to make sure
24325 this stall won't happen.
24326
24327 @end table
24328
24329 @node System V Options
24330 @subsection Options for System V
24331
24332 These additional options are available on System V Release 4 for
24333 compatibility with other compilers on those systems:
24334
24335 @table @gcctabopt
24336 @item -G
24337 @opindex G
24338 Create a shared object.
24339 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
24340
24341 @item -Qy
24342 @opindex Qy
24343 Identify the versions of each tool used by the compiler, in a
24344 @code{.ident} assembler directive in the output.
24345
24346 @item -Qn
24347 @opindex Qn
24348 Refrain from adding @code{.ident} directives to the output file (this is
24349 the default).
24350
24351 @item -YP,@var{dirs}
24352 @opindex YP
24353 Search the directories @var{dirs}, and no others, for libraries
24354 specified with @option{-l}.
24355
24356 @item -Ym,@var{dir}
24357 @opindex Ym
24358 Look in the directory @var{dir} to find the M4 preprocessor.
24359 The assembler uses this option.
24360 @c This is supposed to go with a -Yd for predefined M4 macro files, but
24361 @c the generic assembler that comes with Solaris takes just -Ym.
24362 @end table
24363
24364 @node TILE-Gx Options
24365 @subsection TILE-Gx Options
24366 @cindex TILE-Gx options
24367
24368 These @samp{-m} options are supported on the TILE-Gx:
24369
24370 @table @gcctabopt
24371 @item -mcmodel=small
24372 @opindex mcmodel=small
24373 Generate code for the small model. The distance for direct calls is
24374 limited to 500M in either direction. PC-relative addresses are 32
24375 bits. Absolute addresses support the full address range.
24376
24377 @item -mcmodel=large
24378 @opindex mcmodel=large
24379 Generate code for the large model. There is no limitation on call
24380 distance, pc-relative addresses, or absolute addresses.
24381
24382 @item -mcpu=@var{name}
24383 @opindex mcpu
24384 Selects the type of CPU to be targeted. Currently the only supported
24385 type is @samp{tilegx}.
24386
24387 @item -m32
24388 @itemx -m64
24389 @opindex m32
24390 @opindex m64
24391 Generate code for a 32-bit or 64-bit environment. The 32-bit
24392 environment sets int, long, and pointer to 32 bits. The 64-bit
24393 environment sets int to 32 bits and long and pointer to 64 bits.
24394
24395 @item -mbig-endian
24396 @itemx -mlittle-endian
24397 @opindex mbig-endian
24398 @opindex mlittle-endian
24399 Generate code in big/little endian mode, respectively.
24400 @end table
24401
24402 @node TILEPro Options
24403 @subsection TILEPro Options
24404 @cindex TILEPro options
24405
24406 These @samp{-m} options are supported on the TILEPro:
24407
24408 @table @gcctabopt
24409 @item -mcpu=@var{name}
24410 @opindex mcpu
24411 Selects the type of CPU to be targeted. Currently the only supported
24412 type is @samp{tilepro}.
24413
24414 @item -m32
24415 @opindex m32
24416 Generate code for a 32-bit environment, which sets int, long, and
24417 pointer to 32 bits. This is the only supported behavior so the flag
24418 is essentially ignored.
24419 @end table
24420
24421 @node V850 Options
24422 @subsection V850 Options
24423 @cindex V850 Options
24424
24425 These @samp{-m} options are defined for V850 implementations:
24426
24427 @table @gcctabopt
24428 @item -mlong-calls
24429 @itemx -mno-long-calls
24430 @opindex mlong-calls
24431 @opindex mno-long-calls
24432 Treat all calls as being far away (near). If calls are assumed to be
24433 far away, the compiler always loads the function's address into a
24434 register, and calls indirect through the pointer.
24435
24436 @item -mno-ep
24437 @itemx -mep
24438 @opindex mno-ep
24439 @opindex mep
24440 Do not optimize (do optimize) basic blocks that use the same index
24441 pointer 4 or more times to copy pointer into the @code{ep} register, and
24442 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
24443 option is on by default if you optimize.
24444
24445 @item -mno-prolog-function
24446 @itemx -mprolog-function
24447 @opindex mno-prolog-function
24448 @opindex mprolog-function
24449 Do not use (do use) external functions to save and restore registers
24450 at the prologue and epilogue of a function. The external functions
24451 are slower, but use less code space if more than one function saves
24452 the same number of registers. The @option{-mprolog-function} option
24453 is on by default if you optimize.
24454
24455 @item -mspace
24456 @opindex mspace
24457 Try to make the code as small as possible. At present, this just turns
24458 on the @option{-mep} and @option{-mprolog-function} options.
24459
24460 @item -mtda=@var{n}
24461 @opindex mtda
24462 Put static or global variables whose size is @var{n} bytes or less into
24463 the tiny data area that register @code{ep} points to. The tiny data
24464 area can hold up to 256 bytes in total (128 bytes for byte references).
24465
24466 @item -msda=@var{n}
24467 @opindex msda
24468 Put static or global variables whose size is @var{n} bytes or less into
24469 the small data area that register @code{gp} points to. The small data
24470 area can hold up to 64 kilobytes.
24471
24472 @item -mzda=@var{n}
24473 @opindex mzda
24474 Put static or global variables whose size is @var{n} bytes or less into
24475 the first 32 kilobytes of memory.
24476
24477 @item -mv850
24478 @opindex mv850
24479 Specify that the target processor is the V850.
24480
24481 @item -mv850e3v5
24482 @opindex mv850e3v5
24483 Specify that the target processor is the V850E3V5. The preprocessor
24484 constant @code{__v850e3v5__} is defined if this option is used.
24485
24486 @item -mv850e2v4
24487 @opindex mv850e2v4
24488 Specify that the target processor is the V850E3V5. This is an alias for
24489 the @option{-mv850e3v5} option.
24490
24491 @item -mv850e2v3
24492 @opindex mv850e2v3
24493 Specify that the target processor is the V850E2V3. The preprocessor
24494 constant @code{__v850e2v3__} is defined if this option is used.
24495
24496 @item -mv850e2
24497 @opindex mv850e2
24498 Specify that the target processor is the V850E2. The preprocessor
24499 constant @code{__v850e2__} is defined if this option is used.
24500
24501 @item -mv850e1
24502 @opindex mv850e1
24503 Specify that the target processor is the V850E1. The preprocessor
24504 constants @code{__v850e1__} and @code{__v850e__} are defined if
24505 this option is used.
24506
24507 @item -mv850es
24508 @opindex mv850es
24509 Specify that the target processor is the V850ES. This is an alias for
24510 the @option{-mv850e1} option.
24511
24512 @item -mv850e
24513 @opindex mv850e
24514 Specify that the target processor is the V850E@. The preprocessor
24515 constant @code{__v850e__} is defined if this option is used.
24516
24517 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
24518 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
24519 are defined then a default target processor is chosen and the
24520 relevant @samp{__v850*__} preprocessor constant is defined.
24521
24522 The preprocessor constants @code{__v850} and @code{__v851__} are always
24523 defined, regardless of which processor variant is the target.
24524
24525 @item -mdisable-callt
24526 @itemx -mno-disable-callt
24527 @opindex mdisable-callt
24528 @opindex mno-disable-callt
24529 This option suppresses generation of the @code{CALLT} instruction for the
24530 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
24531 architecture.
24532
24533 This option is enabled by default when the RH850 ABI is
24534 in use (see @option{-mrh850-abi}), and disabled by default when the
24535 GCC ABI is in use. If @code{CALLT} instructions are being generated
24536 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
24537
24538 @item -mrelax
24539 @itemx -mno-relax
24540 @opindex mrelax
24541 @opindex mno-relax
24542 Pass on (or do not pass on) the @option{-mrelax} command-line option
24543 to the assembler.
24544
24545 @item -mlong-jumps
24546 @itemx -mno-long-jumps
24547 @opindex mlong-jumps
24548 @opindex mno-long-jumps
24549 Disable (or re-enable) the generation of PC-relative jump instructions.
24550
24551 @item -msoft-float
24552 @itemx -mhard-float
24553 @opindex msoft-float
24554 @opindex mhard-float
24555 Disable (or re-enable) the generation of hardware floating point
24556 instructions. This option is only significant when the target
24557 architecture is @samp{V850E2V3} or higher. If hardware floating point
24558 instructions are being generated then the C preprocessor symbol
24559 @code{__FPU_OK__} is defined, otherwise the symbol
24560 @code{__NO_FPU__} is defined.
24561
24562 @item -mloop
24563 @opindex mloop
24564 Enables the use of the e3v5 LOOP instruction. The use of this
24565 instruction is not enabled by default when the e3v5 architecture is
24566 selected because its use is still experimental.
24567
24568 @item -mrh850-abi
24569 @itemx -mghs
24570 @opindex mrh850-abi
24571 @opindex mghs
24572 Enables support for the RH850 version of the V850 ABI. This is the
24573 default. With this version of the ABI the following rules apply:
24574
24575 @itemize
24576 @item
24577 Integer sized structures and unions are returned via a memory pointer
24578 rather than a register.
24579
24580 @item
24581 Large structures and unions (more than 8 bytes in size) are passed by
24582 value.
24583
24584 @item
24585 Functions are aligned to 16-bit boundaries.
24586
24587 @item
24588 The @option{-m8byte-align} command-line option is supported.
24589
24590 @item
24591 The @option{-mdisable-callt} command-line option is enabled by
24592 default. The @option{-mno-disable-callt} command-line option is not
24593 supported.
24594 @end itemize
24595
24596 When this version of the ABI is enabled the C preprocessor symbol
24597 @code{__V850_RH850_ABI__} is defined.
24598
24599 @item -mgcc-abi
24600 @opindex mgcc-abi
24601 Enables support for the old GCC version of the V850 ABI. With this
24602 version of the ABI the following rules apply:
24603
24604 @itemize
24605 @item
24606 Integer sized structures and unions are returned in register @code{r10}.
24607
24608 @item
24609 Large structures and unions (more than 8 bytes in size) are passed by
24610 reference.
24611
24612 @item
24613 Functions are aligned to 32-bit boundaries, unless optimizing for
24614 size.
24615
24616 @item
24617 The @option{-m8byte-align} command-line option is not supported.
24618
24619 @item
24620 The @option{-mdisable-callt} command-line option is supported but not
24621 enabled by default.
24622 @end itemize
24623
24624 When this version of the ABI is enabled the C preprocessor symbol
24625 @code{__V850_GCC_ABI__} is defined.
24626
24627 @item -m8byte-align
24628 @itemx -mno-8byte-align
24629 @opindex m8byte-align
24630 @opindex mno-8byte-align
24631 Enables support for @code{double} and @code{long long} types to be
24632 aligned on 8-byte boundaries. The default is to restrict the
24633 alignment of all objects to at most 4-bytes. When
24634 @option{-m8byte-align} is in effect the C preprocessor symbol
24635 @code{__V850_8BYTE_ALIGN__} is defined.
24636
24637 @item -mbig-switch
24638 @opindex mbig-switch
24639 Generate code suitable for big switch tables. Use this option only if
24640 the assembler/linker complain about out of range branches within a switch
24641 table.
24642
24643 @item -mapp-regs
24644 @opindex mapp-regs
24645 This option causes r2 and r5 to be used in the code generated by
24646 the compiler. This setting is the default.
24647
24648 @item -mno-app-regs
24649 @opindex mno-app-regs
24650 This option causes r2 and r5 to be treated as fixed registers.
24651
24652 @end table
24653
24654 @node VAX Options
24655 @subsection VAX Options
24656 @cindex VAX options
24657
24658 These @samp{-m} options are defined for the VAX:
24659
24660 @table @gcctabopt
24661 @item -munix
24662 @opindex munix
24663 Do not output certain jump instructions (@code{aobleq} and so on)
24664 that the Unix assembler for the VAX cannot handle across long
24665 ranges.
24666
24667 @item -mgnu
24668 @opindex mgnu
24669 Do output those jump instructions, on the assumption that the
24670 GNU assembler is being used.
24671
24672 @item -mg
24673 @opindex mg
24674 Output code for G-format floating-point numbers instead of D-format.
24675 @end table
24676
24677 @node Visium Options
24678 @subsection Visium Options
24679 @cindex Visium options
24680
24681 @table @gcctabopt
24682
24683 @item -mdebug
24684 @opindex mdebug
24685 A program which performs file I/O and is destined to run on an MCM target
24686 should be linked with this option. It causes the libraries libc.a and
24687 libdebug.a to be linked. The program should be run on the target under
24688 the control of the GDB remote debugging stub.
24689
24690 @item -msim
24691 @opindex msim
24692 A program which performs file I/O and is destined to run on the simulator
24693 should be linked with option. This causes libraries libc.a and libsim.a to
24694 be linked.
24695
24696 @item -mfpu
24697 @itemx -mhard-float
24698 @opindex mfpu
24699 @opindex mhard-float
24700 Generate code containing floating-point instructions. This is the
24701 default.
24702
24703 @item -mno-fpu
24704 @itemx -msoft-float
24705 @opindex mno-fpu
24706 @opindex msoft-float
24707 Generate code containing library calls for floating-point.
24708
24709 @option{-msoft-float} changes the calling convention in the output file;
24710 therefore, it is only useful if you compile @emph{all} of a program with
24711 this option. In particular, you need to compile @file{libgcc.a}, the
24712 library that comes with GCC, with @option{-msoft-float} in order for
24713 this to work.
24714
24715 @item -mcpu=@var{cpu_type}
24716 @opindex mcpu
24717 Set the instruction set, register set, and instruction scheduling parameters
24718 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
24719 @samp{mcm}, @samp{gr5} and @samp{gr6}.
24720
24721 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
24722
24723 By default (unless configured otherwise), GCC generates code for the GR5
24724 variant of the Visium architecture.
24725
24726 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
24727 architecture. The only difference from GR5 code is that the compiler will
24728 generate block move instructions.
24729
24730 @item -mtune=@var{cpu_type}
24731 @opindex mtune
24732 Set the instruction scheduling parameters for machine type @var{cpu_type},
24733 but do not set the instruction set or register set that the option
24734 @option{-mcpu=@var{cpu_type}} would.
24735
24736 @item -msv-mode
24737 @opindex msv-mode
24738 Generate code for the supervisor mode, where there are no restrictions on
24739 the access to general registers. This is the default.
24740
24741 @item -muser-mode
24742 @opindex muser-mode
24743 Generate code for the user mode, where the access to some general registers
24744 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
24745 mode; on the GR6, only registers r29 to r31 are affected.
24746 @end table
24747
24748 @node VMS Options
24749 @subsection VMS Options
24750
24751 These @samp{-m} options are defined for the VMS implementations:
24752
24753 @table @gcctabopt
24754 @item -mvms-return-codes
24755 @opindex mvms-return-codes
24756 Return VMS condition codes from @code{main}. The default is to return POSIX-style
24757 condition (e.g.@ error) codes.
24758
24759 @item -mdebug-main=@var{prefix}
24760 @opindex mdebug-main=@var{prefix}
24761 Flag the first routine whose name starts with @var{prefix} as the main
24762 routine for the debugger.
24763
24764 @item -mmalloc64
24765 @opindex mmalloc64
24766 Default to 64-bit memory allocation routines.
24767
24768 @item -mpointer-size=@var{size}
24769 @opindex mpointer-size=@var{size}
24770 Set the default size of pointers. Possible options for @var{size} are
24771 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
24772 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
24773 The later option disables @code{pragma pointer_size}.
24774 @end table
24775
24776 @node VxWorks Options
24777 @subsection VxWorks Options
24778 @cindex VxWorks Options
24779
24780 The options in this section are defined for all VxWorks targets.
24781 Options specific to the target hardware are listed with the other
24782 options for that target.
24783
24784 @table @gcctabopt
24785 @item -mrtp
24786 @opindex mrtp
24787 GCC can generate code for both VxWorks kernels and real time processes
24788 (RTPs). This option switches from the former to the latter. It also
24789 defines the preprocessor macro @code{__RTP__}.
24790
24791 @item -non-static
24792 @opindex non-static
24793 Link an RTP executable against shared libraries rather than static
24794 libraries. The options @option{-static} and @option{-shared} can
24795 also be used for RTPs (@pxref{Link Options}); @option{-static}
24796 is the default.
24797
24798 @item -Bstatic
24799 @itemx -Bdynamic
24800 @opindex Bstatic
24801 @opindex Bdynamic
24802 These options are passed down to the linker. They are defined for
24803 compatibility with Diab.
24804
24805 @item -Xbind-lazy
24806 @opindex Xbind-lazy
24807 Enable lazy binding of function calls. This option is equivalent to
24808 @option{-Wl,-z,now} and is defined for compatibility with Diab.
24809
24810 @item -Xbind-now
24811 @opindex Xbind-now
24812 Disable lazy binding of function calls. This option is the default and
24813 is defined for compatibility with Diab.
24814 @end table
24815
24816 @node x86 Options
24817 @subsection x86 Options
24818 @cindex x86 Options
24819
24820 These @samp{-m} options are defined for the x86 family of computers.
24821
24822 @table @gcctabopt
24823
24824 @item -march=@var{cpu-type}
24825 @opindex march
24826 Generate instructions for the machine type @var{cpu-type}. In contrast to
24827 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
24828 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
24829 to generate code that may not run at all on processors other than the one
24830 indicated. Specifying @option{-march=@var{cpu-type}} implies
24831 @option{-mtune=@var{cpu-type}}.
24832
24833 The choices for @var{cpu-type} are:
24834
24835 @table @samp
24836 @item native
24837 This selects the CPU to generate code for at compilation time by determining
24838 the processor type of the compiling machine. Using @option{-march=native}
24839 enables all instruction subsets supported by the local machine (hence
24840 the result might not run on different machines). Using @option{-mtune=native}
24841 produces code optimized for the local machine under the constraints
24842 of the selected instruction set.
24843
24844 @item i386
24845 Original Intel i386 CPU@.
24846
24847 @item i486
24848 Intel i486 CPU@. (No scheduling is implemented for this chip.)
24849
24850 @item i586
24851 @itemx pentium
24852 Intel Pentium CPU with no MMX support.
24853
24854 @item lakemont
24855 Intel Lakemont MCU, based on Intel Pentium CPU.
24856
24857 @item pentium-mmx
24858 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
24859
24860 @item pentiumpro
24861 Intel Pentium Pro CPU@.
24862
24863 @item i686
24864 When used with @option{-march}, the Pentium Pro
24865 instruction set is used, so the code runs on all i686 family chips.
24866 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
24867
24868 @item pentium2
24869 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
24870 support.
24871
24872 @item pentium3
24873 @itemx pentium3m
24874 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
24875 set support.
24876
24877 @item pentium-m
24878 Intel Pentium M; low-power version of Intel Pentium III CPU
24879 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
24880
24881 @item pentium4
24882 @itemx pentium4m
24883 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
24884
24885 @item prescott
24886 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
24887 set support.
24888
24889 @item nocona
24890 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
24891 SSE2 and SSE3 instruction set support.
24892
24893 @item core2
24894 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
24895 instruction set support.
24896
24897 @item nehalem
24898 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24899 SSE4.1, SSE4.2 and POPCNT instruction set support.
24900
24901 @item westmere
24902 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24903 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
24904
24905 @item sandybridge
24906 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24907 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
24908
24909 @item ivybridge
24910 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
24911 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
24912 instruction set support.
24913
24914 @item haswell
24915 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24916 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24917 BMI, BMI2 and F16C instruction set support.
24918
24919 @item broadwell
24920 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24921 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24922 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
24923
24924 @item skylake
24925 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24926 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24927 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
24928 XSAVES instruction set support.
24929
24930 @item bonnell
24931 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
24932 instruction set support.
24933
24934 @item silvermont
24935 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
24936 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
24937
24938 @item knl
24939 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
24940 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24941 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
24942 AVX512CD instruction set support.
24943
24944 @item skylake-avx512
24945 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
24946 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
24947 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
24948 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
24949
24950 @item k6
24951 AMD K6 CPU with MMX instruction set support.
24952
24953 @item k6-2
24954 @itemx k6-3
24955 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
24956
24957 @item athlon
24958 @itemx athlon-tbird
24959 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
24960 support.
24961
24962 @item athlon-4
24963 @itemx athlon-xp
24964 @itemx athlon-mp
24965 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
24966 instruction set support.
24967
24968 @item k8
24969 @itemx opteron
24970 @itemx athlon64
24971 @itemx athlon-fx
24972 Processors based on the AMD K8 core with x86-64 instruction set support,
24973 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
24974 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
24975 instruction set extensions.)
24976
24977 @item k8-sse3
24978 @itemx opteron-sse3
24979 @itemx athlon64-sse3
24980 Improved versions of AMD K8 cores with SSE3 instruction set support.
24981
24982 @item amdfam10
24983 @itemx barcelona
24984 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
24985 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
24986 instruction set extensions.)
24987
24988 @item bdver1
24989 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
24990 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
24991 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
24992 @item bdver2
24993 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24994 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
24995 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
24996 extensions.)
24997 @item bdver3
24998 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
24999 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
25000 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
25001 64-bit instruction set extensions.
25002 @item bdver4
25003 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
25004 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
25005 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
25006 SSE4.2, ABM and 64-bit instruction set extensions.
25007
25008 @item znver1
25009 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
25010 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
25011 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
25012 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
25013 instruction set extensions.
25014
25015 @item btver1
25016 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
25017 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
25018 instruction set extensions.)
25019
25020 @item btver2
25021 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
25022 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
25023 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
25024
25025 @item winchip-c6
25026 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
25027 set support.
25028
25029 @item winchip2
25030 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
25031 instruction set support.
25032
25033 @item c3
25034 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
25035 (No scheduling is implemented for this chip.)
25036
25037 @item c3-2
25038 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
25039 (No scheduling is implemented for this chip.)
25040
25041 @item c7
25042 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
25043 (No scheduling is implemented for this chip.)
25044
25045 @item samuel-2
25046 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
25047 (No scheduling is implemented for this chip.)
25048
25049 @item nehemiah
25050 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
25051 (No scheduling is implemented for this chip.)
25052
25053 @item esther
25054 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
25055 (No scheduling is implemented for this chip.)
25056
25057 @item eden-x2
25058 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
25059 (No scheduling is implemented for this chip.)
25060
25061 @item eden-x4
25062 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
25063 AVX and AVX2 instruction set support.
25064 (No scheduling is implemented for this chip.)
25065
25066 @item nano
25067 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25068 instruction set support.
25069 (No scheduling is implemented for this chip.)
25070
25071 @item nano-1000
25072 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25073 instruction set support.
25074 (No scheduling is implemented for this chip.)
25075
25076 @item nano-2000
25077 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25078 instruction set support.
25079 (No scheduling is implemented for this chip.)
25080
25081 @item nano-3000
25082 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25083 instruction set support.
25084 (No scheduling is implemented for this chip.)
25085
25086 @item nano-x2
25087 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25088 instruction set support.
25089 (No scheduling is implemented for this chip.)
25090
25091 @item nano-x4
25092 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25093 instruction set support.
25094 (No scheduling is implemented for this chip.)
25095
25096 @item geode
25097 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
25098 @end table
25099
25100 @item -mtune=@var{cpu-type}
25101 @opindex mtune
25102 Tune to @var{cpu-type} everything applicable about the generated code, except
25103 for the ABI and the set of available instructions.
25104 While picking a specific @var{cpu-type} schedules things appropriately
25105 for that particular chip, the compiler does not generate any code that
25106 cannot run on the default machine type unless you use a
25107 @option{-march=@var{cpu-type}} option.
25108 For example, if GCC is configured for i686-pc-linux-gnu
25109 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
25110 but still runs on i686 machines.
25111
25112 The choices for @var{cpu-type} are the same as for @option{-march}.
25113 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
25114
25115 @table @samp
25116 @item generic
25117 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
25118 If you know the CPU on which your code will run, then you should use
25119 the corresponding @option{-mtune} or @option{-march} option instead of
25120 @option{-mtune=generic}. But, if you do not know exactly what CPU users
25121 of your application will have, then you should use this option.
25122
25123 As new processors are deployed in the marketplace, the behavior of this
25124 option will change. Therefore, if you upgrade to a newer version of
25125 GCC, code generation controlled by this option will change to reflect
25126 the processors
25127 that are most common at the time that version of GCC is released.
25128
25129 There is no @option{-march=generic} option because @option{-march}
25130 indicates the instruction set the compiler can use, and there is no
25131 generic instruction set applicable to all processors. In contrast,
25132 @option{-mtune} indicates the processor (or, in this case, collection of
25133 processors) for which the code is optimized.
25134
25135 @item intel
25136 Produce code optimized for the most current Intel processors, which are
25137 Haswell and Silvermont for this version of GCC. If you know the CPU
25138 on which your code will run, then you should use the corresponding
25139 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
25140 But, if you want your application performs better on both Haswell and
25141 Silvermont, then you should use this option.
25142
25143 As new Intel processors are deployed in the marketplace, the behavior of
25144 this option will change. Therefore, if you upgrade to a newer version of
25145 GCC, code generation controlled by this option will change to reflect
25146 the most current Intel processors at the time that version of GCC is
25147 released.
25148
25149 There is no @option{-march=intel} option because @option{-march} indicates
25150 the instruction set the compiler can use, and there is no common
25151 instruction set applicable to all processors. In contrast,
25152 @option{-mtune} indicates the processor (or, in this case, collection of
25153 processors) for which the code is optimized.
25154 @end table
25155
25156 @item -mcpu=@var{cpu-type}
25157 @opindex mcpu
25158 A deprecated synonym for @option{-mtune}.
25159
25160 @item -mfpmath=@var{unit}
25161 @opindex mfpmath
25162 Generate floating-point arithmetic for selected unit @var{unit}. The choices
25163 for @var{unit} are:
25164
25165 @table @samp
25166 @item 387
25167 Use the standard 387 floating-point coprocessor present on the majority of chips and
25168 emulated otherwise. Code compiled with this option runs almost everywhere.
25169 The temporary results are computed in 80-bit precision instead of the precision
25170 specified by the type, resulting in slightly different results compared to most
25171 of other chips. See @option{-ffloat-store} for more detailed description.
25172
25173 This is the default choice for non-Darwin x86-32 targets.
25174
25175 @item sse
25176 Use scalar floating-point instructions present in the SSE instruction set.
25177 This instruction set is supported by Pentium III and newer chips,
25178 and in the AMD line
25179 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
25180 instruction set supports only single-precision arithmetic, thus the double and
25181 extended-precision arithmetic are still done using 387. A later version, present
25182 only in Pentium 4 and AMD x86-64 chips, supports double-precision
25183 arithmetic too.
25184
25185 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
25186 or @option{-msse2} switches to enable SSE extensions and make this option
25187 effective. For the x86-64 compiler, these extensions are enabled by default.
25188
25189 The resulting code should be considerably faster in the majority of cases and avoid
25190 the numerical instability problems of 387 code, but may break some existing
25191 code that expects temporaries to be 80 bits.
25192
25193 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
25194 and the default choice for x86-32 targets with the SSE2 instruction set
25195 when @option{-ffast-math} is enabled.
25196
25197 @item sse,387
25198 @itemx sse+387
25199 @itemx both
25200 Attempt to utilize both instruction sets at once. This effectively doubles the
25201 amount of available registers, and on chips with separate execution units for
25202 387 and SSE the execution resources too. Use this option with care, as it is
25203 still experimental, because the GCC register allocator does not model separate
25204 functional units well, resulting in unstable performance.
25205 @end table
25206
25207 @item -masm=@var{dialect}
25208 @opindex masm=@var{dialect}
25209 Output assembly instructions using selected @var{dialect}. Also affects
25210 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
25211 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
25212 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
25213 not support @samp{intel}.
25214
25215 @item -mieee-fp
25216 @itemx -mno-ieee-fp
25217 @opindex mieee-fp
25218 @opindex mno-ieee-fp
25219 Control whether or not the compiler uses IEEE floating-point
25220 comparisons. These correctly handle the case where the result of a
25221 comparison is unordered.
25222
25223 @item -m80387
25224 @item -mhard-float
25225 @opindex 80387
25226 @opindex mhard-float
25227 Generate output containing 80387 instructions for floating point.
25228
25229 @item -mno-80387
25230 @item -msoft-float
25231 @opindex no-80387
25232 @opindex msoft-float
25233 Generate output containing library calls for floating point.
25234
25235 @strong{Warning:} the requisite libraries are not part of GCC@.
25236 Normally the facilities of the machine's usual C compiler are used, but
25237 this cannot be done directly in cross-compilation. You must make your
25238 own arrangements to provide suitable library functions for
25239 cross-compilation.
25240
25241 On machines where a function returns floating-point results in the 80387
25242 register stack, some floating-point opcodes may be emitted even if
25243 @option{-msoft-float} is used.
25244
25245 @item -mno-fp-ret-in-387
25246 @opindex mno-fp-ret-in-387
25247 Do not use the FPU registers for return values of functions.
25248
25249 The usual calling convention has functions return values of types
25250 @code{float} and @code{double} in an FPU register, even if there
25251 is no FPU@. The idea is that the operating system should emulate
25252 an FPU@.
25253
25254 The option @option{-mno-fp-ret-in-387} causes such values to be returned
25255 in ordinary CPU registers instead.
25256
25257 @item -mno-fancy-math-387
25258 @opindex mno-fancy-math-387
25259 Some 387 emulators do not support the @code{sin}, @code{cos} and
25260 @code{sqrt} instructions for the 387. Specify this option to avoid
25261 generating those instructions. This option is the default on
25262 OpenBSD and NetBSD@. This option is overridden when @option{-march}
25263 indicates that the target CPU always has an FPU and so the
25264 instruction does not need emulation. These
25265 instructions are not generated unless you also use the
25266 @option{-funsafe-math-optimizations} switch.
25267
25268 @item -malign-double
25269 @itemx -mno-align-double
25270 @opindex malign-double
25271 @opindex mno-align-double
25272 Control whether GCC aligns @code{double}, @code{long double}, and
25273 @code{long long} variables on a two-word boundary or a one-word
25274 boundary. Aligning @code{double} variables on a two-word boundary
25275 produces code that runs somewhat faster on a Pentium at the
25276 expense of more memory.
25277
25278 On x86-64, @option{-malign-double} is enabled by default.
25279
25280 @strong{Warning:} if you use the @option{-malign-double} switch,
25281 structures containing the above types are aligned differently than
25282 the published application binary interface specifications for the x86-32
25283 and are not binary compatible with structures in code compiled
25284 without that switch.
25285
25286 @item -m96bit-long-double
25287 @itemx -m128bit-long-double
25288 @opindex m96bit-long-double
25289 @opindex m128bit-long-double
25290 These switches control the size of @code{long double} type. The x86-32
25291 application binary interface specifies the size to be 96 bits,
25292 so @option{-m96bit-long-double} is the default in 32-bit mode.
25293
25294 Modern architectures (Pentium and newer) prefer @code{long double}
25295 to be aligned to an 8- or 16-byte boundary. In arrays or structures
25296 conforming to the ABI, this is not possible. So specifying
25297 @option{-m128bit-long-double} aligns @code{long double}
25298 to a 16-byte boundary by padding the @code{long double} with an additional
25299 32-bit zero.
25300
25301 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
25302 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
25303
25304 Notice that neither of these options enable any extra precision over the x87
25305 standard of 80 bits for a @code{long double}.
25306
25307 @strong{Warning:} if you override the default value for your target ABI, this
25308 changes the size of
25309 structures and arrays containing @code{long double} variables,
25310 as well as modifying the function calling convention for functions taking
25311 @code{long double}. Hence they are not binary-compatible
25312 with code compiled without that switch.
25313
25314 @item -mlong-double-64
25315 @itemx -mlong-double-80
25316 @itemx -mlong-double-128
25317 @opindex mlong-double-64
25318 @opindex mlong-double-80
25319 @opindex mlong-double-128
25320 These switches control the size of @code{long double} type. A size
25321 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25322 type. This is the default for 32-bit Bionic C library. A size
25323 of 128 bits makes the @code{long double} type equivalent to the
25324 @code{__float128} type. This is the default for 64-bit Bionic C library.
25325
25326 @strong{Warning:} if you override the default value for your target ABI, this
25327 changes the size of
25328 structures and arrays containing @code{long double} variables,
25329 as well as modifying the function calling convention for functions taking
25330 @code{long double}. Hence they are not binary-compatible
25331 with code compiled without that switch.
25332
25333 @item -malign-data=@var{type}
25334 @opindex malign-data
25335 Control how GCC aligns variables. Supported values for @var{type} are
25336 @samp{compat} uses increased alignment value compatible uses GCC 4.8
25337 and earlier, @samp{abi} uses alignment value as specified by the
25338 psABI, and @samp{cacheline} uses increased alignment value to match
25339 the cache line size. @samp{compat} is the default.
25340
25341 @item -mlarge-data-threshold=@var{threshold}
25342 @opindex mlarge-data-threshold
25343 When @option{-mcmodel=medium} is specified, data objects larger than
25344 @var{threshold} are placed in the large data section. This value must be the
25345 same across all objects linked into the binary, and defaults to 65535.
25346
25347 @item -mrtd
25348 @opindex mrtd
25349 Use a different function-calling convention, in which functions that
25350 take a fixed number of arguments return with the @code{ret @var{num}}
25351 instruction, which pops their arguments while returning. This saves one
25352 instruction in the caller since there is no need to pop the arguments
25353 there.
25354
25355 You can specify that an individual function is called with this calling
25356 sequence with the function attribute @code{stdcall}. You can also
25357 override the @option{-mrtd} option by using the function attribute
25358 @code{cdecl}. @xref{Function Attributes}.
25359
25360 @strong{Warning:} this calling convention is incompatible with the one
25361 normally used on Unix, so you cannot use it if you need to call
25362 libraries compiled with the Unix compiler.
25363
25364 Also, you must provide function prototypes for all functions that
25365 take variable numbers of arguments (including @code{printf});
25366 otherwise incorrect code is generated for calls to those
25367 functions.
25368
25369 In addition, seriously incorrect code results if you call a
25370 function with too many arguments. (Normally, extra arguments are
25371 harmlessly ignored.)
25372
25373 @item -mregparm=@var{num}
25374 @opindex mregparm
25375 Control how many registers are used to pass integer arguments. By
25376 default, no registers are used to pass arguments, and at most 3
25377 registers can be used. You can control this behavior for a specific
25378 function by using the function attribute @code{regparm}.
25379 @xref{Function Attributes}.
25380
25381 @strong{Warning:} if you use this switch, and
25382 @var{num} is nonzero, then you must build all modules with the same
25383 value, including any libraries. This includes the system libraries and
25384 startup modules.
25385
25386 @item -msseregparm
25387 @opindex msseregparm
25388 Use SSE register passing conventions for float and double arguments
25389 and return values. You can control this behavior for a specific
25390 function by using the function attribute @code{sseregparm}.
25391 @xref{Function Attributes}.
25392
25393 @strong{Warning:} if you use this switch then you must build all
25394 modules with the same value, including any libraries. This includes
25395 the system libraries and startup modules.
25396
25397 @item -mvect8-ret-in-mem
25398 @opindex mvect8-ret-in-mem
25399 Return 8-byte vectors in memory instead of MMX registers. This is the
25400 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
25401 Studio compilers until version 12. Later compiler versions (starting
25402 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
25403 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
25404 you need to remain compatible with existing code produced by those
25405 previous compiler versions or older versions of GCC@.
25406
25407 @item -mpc32
25408 @itemx -mpc64
25409 @itemx -mpc80
25410 @opindex mpc32
25411 @opindex mpc64
25412 @opindex mpc80
25413
25414 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
25415 is specified, the significands of results of floating-point operations are
25416 rounded to 24 bits (single precision); @option{-mpc64} rounds the
25417 significands of results of floating-point operations to 53 bits (double
25418 precision) and @option{-mpc80} rounds the significands of results of
25419 floating-point operations to 64 bits (extended double precision), which is
25420 the default. When this option is used, floating-point operations in higher
25421 precisions are not available to the programmer without setting the FPU
25422 control word explicitly.
25423
25424 Setting the rounding of floating-point operations to less than the default
25425 80 bits can speed some programs by 2% or more. Note that some mathematical
25426 libraries assume that extended-precision (80-bit) floating-point operations
25427 are enabled by default; routines in such libraries could suffer significant
25428 loss of accuracy, typically through so-called ``catastrophic cancellation'',
25429 when this option is used to set the precision to less than extended precision.
25430
25431 @item -mstackrealign
25432 @opindex mstackrealign
25433 Realign the stack at entry. On the x86, the @option{-mstackrealign}
25434 option generates an alternate prologue and epilogue that realigns the
25435 run-time stack if necessary. This supports mixing legacy codes that keep
25436 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
25437 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
25438 applicable to individual functions.
25439
25440 @item -mpreferred-stack-boundary=@var{num}
25441 @opindex mpreferred-stack-boundary
25442 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
25443 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
25444 the default is 4 (16 bytes or 128 bits).
25445
25446 @strong{Warning:} When generating code for the x86-64 architecture with
25447 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
25448 used to keep the stack boundary aligned to 8 byte boundary. Since
25449 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
25450 intended to be used in controlled environment where stack space is
25451 important limitation. This option leads to wrong code when functions
25452 compiled with 16 byte stack alignment (such as functions from a standard
25453 library) are called with misaligned stack. In this case, SSE
25454 instructions may lead to misaligned memory access traps. In addition,
25455 variable arguments are handled incorrectly for 16 byte aligned
25456 objects (including x87 long double and __int128), leading to wrong
25457 results. You must build all modules with
25458 @option{-mpreferred-stack-boundary=3}, including any libraries. This
25459 includes the system libraries and startup modules.
25460
25461 @item -mincoming-stack-boundary=@var{num}
25462 @opindex mincoming-stack-boundary
25463 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
25464 boundary. If @option{-mincoming-stack-boundary} is not specified,
25465 the one specified by @option{-mpreferred-stack-boundary} is used.
25466
25467 On Pentium and Pentium Pro, @code{double} and @code{long double} values
25468 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
25469 suffer significant run time performance penalties. On Pentium III, the
25470 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
25471 properly if it is not 16-byte aligned.
25472
25473 To ensure proper alignment of this values on the stack, the stack boundary
25474 must be as aligned as that required by any value stored on the stack.
25475 Further, every function must be generated such that it keeps the stack
25476 aligned. Thus calling a function compiled with a higher preferred
25477 stack boundary from a function compiled with a lower preferred stack
25478 boundary most likely misaligns the stack. It is recommended that
25479 libraries that use callbacks always use the default setting.
25480
25481 This extra alignment does consume extra stack space, and generally
25482 increases code size. Code that is sensitive to stack space usage, such
25483 as embedded systems and operating system kernels, may want to reduce the
25484 preferred alignment to @option{-mpreferred-stack-boundary=2}.
25485
25486 @need 200
25487 @item -mmmx
25488 @opindex mmmx
25489 @need 200
25490 @itemx -msse
25491 @opindex msse
25492 @need 200
25493 @itemx -msse2
25494 @opindex msse2
25495 @need 200
25496 @itemx -msse3
25497 @opindex msse3
25498 @need 200
25499 @itemx -mssse3
25500 @opindex mssse3
25501 @need 200
25502 @itemx -msse4
25503 @opindex msse4
25504 @need 200
25505 @itemx -msse4a
25506 @opindex msse4a
25507 @need 200
25508 @itemx -msse4.1
25509 @opindex msse4.1
25510 @need 200
25511 @itemx -msse4.2
25512 @opindex msse4.2
25513 @need 200
25514 @itemx -mavx
25515 @opindex mavx
25516 @need 200
25517 @itemx -mavx2
25518 @opindex mavx2
25519 @need 200
25520 @itemx -mavx512f
25521 @opindex mavx512f
25522 @need 200
25523 @itemx -mavx512pf
25524 @opindex mavx512pf
25525 @need 200
25526 @itemx -mavx512er
25527 @opindex mavx512er
25528 @need 200
25529 @itemx -mavx512cd
25530 @opindex mavx512cd
25531 @need 200
25532 @itemx -mavx512vl
25533 @opindex mavx512vl
25534 @need 200
25535 @itemx -mavx512bw
25536 @opindex mavx512bw
25537 @need 200
25538 @itemx -mavx512dq
25539 @opindex mavx512dq
25540 @need 200
25541 @itemx -mavx512ifma
25542 @opindex mavx512ifma
25543 @need 200
25544 @itemx -mavx512vbmi
25545 @opindex mavx512vbmi
25546 @need 200
25547 @itemx -msha
25548 @opindex msha
25549 @need 200
25550 @itemx -maes
25551 @opindex maes
25552 @need 200
25553 @itemx -mpclmul
25554 @opindex mpclmul
25555 @need 200
25556 @itemx -mclfushopt
25557 @opindex mclfushopt
25558 @need 200
25559 @itemx -mfsgsbase
25560 @opindex mfsgsbase
25561 @need 200
25562 @itemx -mrdrnd
25563 @opindex mrdrnd
25564 @need 200
25565 @itemx -mf16c
25566 @opindex mf16c
25567 @need 200
25568 @itemx -mfma
25569 @opindex mfma
25570 @need 200
25571 @itemx -mfma4
25572 @opindex mfma4
25573 @need 200
25574 @itemx -mprefetchwt1
25575 @opindex mprefetchwt1
25576 @need 200
25577 @itemx -mxop
25578 @opindex mxop
25579 @need 200
25580 @itemx -mlwp
25581 @opindex mlwp
25582 @need 200
25583 @itemx -m3dnow
25584 @opindex m3dnow
25585 @need 200
25586 @itemx -m3dnowa
25587 @opindex m3dnowa
25588 @need 200
25589 @itemx -mpopcnt
25590 @opindex mpopcnt
25591 @need 200
25592 @itemx -mabm
25593 @opindex mabm
25594 @need 200
25595 @itemx -mbmi
25596 @opindex mbmi
25597 @need 200
25598 @itemx -mbmi2
25599 @need 200
25600 @itemx -mlzcnt
25601 @opindex mlzcnt
25602 @need 200
25603 @itemx -mfxsr
25604 @opindex mfxsr
25605 @need 200
25606 @itemx -mxsave
25607 @opindex mxsave
25608 @need 200
25609 @itemx -mxsaveopt
25610 @opindex mxsaveopt
25611 @need 200
25612 @itemx -mxsavec
25613 @opindex mxsavec
25614 @need 200
25615 @itemx -mxsaves
25616 @opindex mxsaves
25617 @need 200
25618 @itemx -mrtm
25619 @opindex mrtm
25620 @need 200
25621 @itemx -mtbm
25622 @opindex mtbm
25623 @need 200
25624 @itemx -mmpx
25625 @opindex mmpx
25626 @need 200
25627 @itemx -mmwaitx
25628 @opindex mmwaitx
25629 @need 200
25630 @itemx -mclzero
25631 @opindex mclzero
25632 @itemx -mpku
25633 @opindex mpku
25634 These switches enable the use of instructions in the MMX, SSE,
25635 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
25636 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
25637 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA AVX512VBMI, BMI, BMI2, FXSR,
25638 XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU, 3DNow!@: or enhanced 3DNow!@:
25639 extended instruction sets. Each has a corresponding @option{-mno-} option
25640 to disable use of these instructions.
25641
25642 These extensions are also available as built-in functions: see
25643 @ref{x86 Built-in Functions}, for details of the functions enabled and
25644 disabled by these switches.
25645
25646 To generate SSE/SSE2 instructions automatically from floating-point
25647 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
25648
25649 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
25650 generates new AVX instructions or AVX equivalence for all SSEx instructions
25651 when needed.
25652
25653 These options enable GCC to use these extended instructions in
25654 generated code, even without @option{-mfpmath=sse}. Applications that
25655 perform run-time CPU detection must compile separate files for each
25656 supported architecture, using the appropriate flags. In particular,
25657 the file containing the CPU detection code should be compiled without
25658 these options.
25659
25660 @item -mdump-tune-features
25661 @opindex mdump-tune-features
25662 This option instructs GCC to dump the names of the x86 performance
25663 tuning features and default settings. The names can be used in
25664 @option{-mtune-ctrl=@var{feature-list}}.
25665
25666 @item -mtune-ctrl=@var{feature-list}
25667 @opindex mtune-ctrl=@var{feature-list}
25668 This option is used to do fine grain control of x86 code generation features.
25669 @var{feature-list} is a comma separated list of @var{feature} names. See also
25670 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
25671 on if it is not preceded with @samp{^}, otherwise, it is turned off.
25672 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
25673 developers. Using it may lead to code paths not covered by testing and can
25674 potentially result in compiler ICEs or runtime errors.
25675
25676 @item -mno-default
25677 @opindex mno-default
25678 This option instructs GCC to turn off all tunable features. See also
25679 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
25680
25681 @item -mcld
25682 @opindex mcld
25683 This option instructs GCC to emit a @code{cld} instruction in the prologue
25684 of functions that use string instructions. String instructions depend on
25685 the DF flag to select between autoincrement or autodecrement mode. While the
25686 ABI specifies the DF flag to be cleared on function entry, some operating
25687 systems violate this specification by not clearing the DF flag in their
25688 exception dispatchers. The exception handler can be invoked with the DF flag
25689 set, which leads to wrong direction mode when string instructions are used.
25690 This option can be enabled by default on 32-bit x86 targets by configuring
25691 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
25692 instructions can be suppressed with the @option{-mno-cld} compiler option
25693 in this case.
25694
25695 @item -mvzeroupper
25696 @opindex mvzeroupper
25697 This option instructs GCC to emit a @code{vzeroupper} instruction
25698 before a transfer of control flow out of the function to minimize
25699 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
25700 intrinsics.
25701
25702 @item -mprefer-avx128
25703 @opindex mprefer-avx128
25704 This option instructs GCC to use 128-bit AVX instructions instead of
25705 256-bit AVX instructions in the auto-vectorizer.
25706
25707 @item -mcx16
25708 @opindex mcx16
25709 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
25710 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
25711 objects. This is useful for atomic updates of data structures exceeding one
25712 machine word in size. The compiler uses this instruction to implement
25713 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
25714 128-bit integers, a library call is always used.
25715
25716 @item -msahf
25717 @opindex msahf
25718 This option enables generation of @code{SAHF} instructions in 64-bit code.
25719 Early Intel Pentium 4 CPUs with Intel 64 support,
25720 prior to the introduction of Pentium 4 G1 step in December 2005,
25721 lacked the @code{LAHF} and @code{SAHF} instructions
25722 which are supported by AMD64.
25723 These are load and store instructions, respectively, for certain status flags.
25724 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
25725 @code{drem}, and @code{remainder} built-in functions;
25726 see @ref{Other Builtins} for details.
25727
25728 @item -mmovbe
25729 @opindex mmovbe
25730 This option enables use of the @code{movbe} instruction to implement
25731 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
25732
25733 @item -mcrc32
25734 @opindex mcrc32
25735 This option enables built-in functions @code{__builtin_ia32_crc32qi},
25736 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
25737 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
25738
25739 @item -mrecip
25740 @opindex mrecip
25741 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
25742 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
25743 with an additional Newton-Raphson step
25744 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
25745 (and their vectorized
25746 variants) for single-precision floating-point arguments. These instructions
25747 are generated only when @option{-funsafe-math-optimizations} is enabled
25748 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
25749 Note that while the throughput of the sequence is higher than the throughput
25750 of the non-reciprocal instruction, the precision of the sequence can be
25751 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
25752
25753 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
25754 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
25755 combination), and doesn't need @option{-mrecip}.
25756
25757 Also note that GCC emits the above sequence with additional Newton-Raphson step
25758 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
25759 already with @option{-ffast-math} (or the above option combination), and
25760 doesn't need @option{-mrecip}.
25761
25762 @item -mrecip=@var{opt}
25763 @opindex mrecip=opt
25764 This option controls which reciprocal estimate instructions
25765 may be used. @var{opt} is a comma-separated list of options, which may
25766 be preceded by a @samp{!} to invert the option:
25767
25768 @table @samp
25769 @item all
25770 Enable all estimate instructions.
25771
25772 @item default
25773 Enable the default instructions, equivalent to @option{-mrecip}.
25774
25775 @item none
25776 Disable all estimate instructions, equivalent to @option{-mno-recip}.
25777
25778 @item div
25779 Enable the approximation for scalar division.
25780
25781 @item vec-div
25782 Enable the approximation for vectorized division.
25783
25784 @item sqrt
25785 Enable the approximation for scalar square root.
25786
25787 @item vec-sqrt
25788 Enable the approximation for vectorized square root.
25789 @end table
25790
25791 So, for example, @option{-mrecip=all,!sqrt} enables
25792 all of the reciprocal approximations, except for square root.
25793
25794 @item -mveclibabi=@var{type}
25795 @opindex mveclibabi
25796 Specifies the ABI type to use for vectorizing intrinsics using an
25797 external library. Supported values for @var{type} are @samp{svml}
25798 for the Intel short
25799 vector math library and @samp{acml} for the AMD math core library.
25800 To use this option, both @option{-ftree-vectorize} and
25801 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
25802 ABI-compatible library must be specified at link time.
25803
25804 GCC currently emits calls to @code{vmldExp2},
25805 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
25806 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
25807 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
25808 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
25809 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
25810 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
25811 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
25812 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
25813 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
25814 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
25815 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
25816 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
25817 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
25818 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
25819 when @option{-mveclibabi=acml} is used.
25820
25821 @item -mabi=@var{name}
25822 @opindex mabi
25823 Generate code for the specified calling convention. Permissible values
25824 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
25825 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
25826 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
25827 You can control this behavior for specific functions by
25828 using the function attributes @code{ms_abi} and @code{sysv_abi}.
25829 @xref{Function Attributes}.
25830
25831 @item -mcall-ms2sysv-xlogues
25832 @opindex mcall-ms2sysv-xlogues
25833 @opindex mno-call-ms2sysv-xlogues
25834 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
25835 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
25836 default, the code for saving and restoring these registers is emitted inline,
25837 resulting in fairly lengthy prologues and epilogues. Using
25838 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
25839 use stubs in the static portion of libgcc to perform these saves and restores,
25840 thus reducing function size at the cost of a few extra instructions.
25841
25842 @item -mtls-dialect=@var{type}
25843 @opindex mtls-dialect
25844 Generate code to access thread-local storage using the @samp{gnu} or
25845 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
25846 @samp{gnu2} is more efficient, but it may add compile- and run-time
25847 requirements that cannot be satisfied on all systems.
25848
25849 @item -mpush-args
25850 @itemx -mno-push-args
25851 @opindex mpush-args
25852 @opindex mno-push-args
25853 Use PUSH operations to store outgoing parameters. This method is shorter
25854 and usually equally fast as method using SUB/MOV operations and is enabled
25855 by default. In some cases disabling it may improve performance because of
25856 improved scheduling and reduced dependencies.
25857
25858 @item -maccumulate-outgoing-args
25859 @opindex maccumulate-outgoing-args
25860 If enabled, the maximum amount of space required for outgoing arguments is
25861 computed in the function prologue. This is faster on most modern CPUs
25862 because of reduced dependencies, improved scheduling and reduced stack usage
25863 when the preferred stack boundary is not equal to 2. The drawback is a notable
25864 increase in code size. This switch implies @option{-mno-push-args}.
25865
25866 @item -mthreads
25867 @opindex mthreads
25868 Support thread-safe exception handling on MinGW. Programs that rely
25869 on thread-safe exception handling must compile and link all code with the
25870 @option{-mthreads} option. When compiling, @option{-mthreads} defines
25871 @option{-D_MT}; when linking, it links in a special thread helper library
25872 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
25873
25874 @item -mms-bitfields
25875 @itemx -mno-ms-bitfields
25876 @opindex mms-bitfields
25877 @opindex mno-ms-bitfields
25878
25879 Enable/disable bit-field layout compatible with the native Microsoft
25880 Windows compiler.
25881
25882 If @code{packed} is used on a structure, or if bit-fields are used,
25883 it may be that the Microsoft ABI lays out the structure differently
25884 than the way GCC normally does. Particularly when moving packed
25885 data between functions compiled with GCC and the native Microsoft compiler
25886 (either via function call or as data in a file), it may be necessary to access
25887 either format.
25888
25889 This option is enabled by default for Microsoft Windows
25890 targets. This behavior can also be controlled locally by use of variable
25891 or type attributes. For more information, see @ref{x86 Variable Attributes}
25892 and @ref{x86 Type Attributes}.
25893
25894 The Microsoft structure layout algorithm is fairly simple with the exception
25895 of the bit-field packing.
25896 The padding and alignment of members of structures and whether a bit-field
25897 can straddle a storage-unit boundary are determine by these rules:
25898
25899 @enumerate
25900 @item Structure members are stored sequentially in the order in which they are
25901 declared: the first member has the lowest memory address and the last member
25902 the highest.
25903
25904 @item Every data object has an alignment requirement. The alignment requirement
25905 for all data except structures, unions, and arrays is either the size of the
25906 object or the current packing size (specified with either the
25907 @code{aligned} attribute or the @code{pack} pragma),
25908 whichever is less. For structures, unions, and arrays,
25909 the alignment requirement is the largest alignment requirement of its members.
25910 Every object is allocated an offset so that:
25911
25912 @smallexample
25913 offset % alignment_requirement == 0
25914 @end smallexample
25915
25916 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
25917 unit if the integral types are the same size and if the next bit-field fits
25918 into the current allocation unit without crossing the boundary imposed by the
25919 common alignment requirements of the bit-fields.
25920 @end enumerate
25921
25922 MSVC interprets zero-length bit-fields in the following ways:
25923
25924 @enumerate
25925 @item If a zero-length bit-field is inserted between two bit-fields that
25926 are normally coalesced, the bit-fields are not coalesced.
25927
25928 For example:
25929
25930 @smallexample
25931 struct
25932 @{
25933 unsigned long bf_1 : 12;
25934 unsigned long : 0;
25935 unsigned long bf_2 : 12;
25936 @} t1;
25937 @end smallexample
25938
25939 @noindent
25940 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
25941 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
25942
25943 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
25944 alignment of the zero-length bit-field is greater than the member that follows it,
25945 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
25946
25947 For example:
25948
25949 @smallexample
25950 struct
25951 @{
25952 char foo : 4;
25953 short : 0;
25954 char bar;
25955 @} t2;
25956
25957 struct
25958 @{
25959 char foo : 4;
25960 short : 0;
25961 double bar;
25962 @} t3;
25963 @end smallexample
25964
25965 @noindent
25966 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
25967 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
25968 bit-field does not affect the alignment of @code{bar} or, as a result, the size
25969 of the structure.
25970
25971 Taking this into account, it is important to note the following:
25972
25973 @enumerate
25974 @item If a zero-length bit-field follows a normal bit-field, the type of the
25975 zero-length bit-field may affect the alignment of the structure as whole. For
25976 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
25977 normal bit-field, and is of type short.
25978
25979 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
25980 still affect the alignment of the structure:
25981
25982 @smallexample
25983 struct
25984 @{
25985 char foo : 6;
25986 long : 0;
25987 @} t4;
25988 @end smallexample
25989
25990 @noindent
25991 Here, @code{t4} takes up 4 bytes.
25992 @end enumerate
25993
25994 @item Zero-length bit-fields following non-bit-field members are ignored:
25995
25996 @smallexample
25997 struct
25998 @{
25999 char foo;
26000 long : 0;
26001 char bar;
26002 @} t5;
26003 @end smallexample
26004
26005 @noindent
26006 Here, @code{t5} takes up 2 bytes.
26007 @end enumerate
26008
26009
26010 @item -mno-align-stringops
26011 @opindex mno-align-stringops
26012 Do not align the destination of inlined string operations. This switch reduces
26013 code size and improves performance in case the destination is already aligned,
26014 but GCC doesn't know about it.
26015
26016 @item -minline-all-stringops
26017 @opindex minline-all-stringops
26018 By default GCC inlines string operations only when the destination is
26019 known to be aligned to least a 4-byte boundary.
26020 This enables more inlining and increases code
26021 size, but may improve performance of code that depends on fast
26022 @code{memcpy}, @code{strlen},
26023 and @code{memset} for short lengths.
26024
26025 @item -minline-stringops-dynamically
26026 @opindex minline-stringops-dynamically
26027 For string operations of unknown size, use run-time checks with
26028 inline code for small blocks and a library call for large blocks.
26029
26030 @item -mstringop-strategy=@var{alg}
26031 @opindex mstringop-strategy=@var{alg}
26032 Override the internal decision heuristic for the particular algorithm to use
26033 for inlining string operations. The allowed values for @var{alg} are:
26034
26035 @table @samp
26036 @item rep_byte
26037 @itemx rep_4byte
26038 @itemx rep_8byte
26039 Expand using i386 @code{rep} prefix of the specified size.
26040
26041 @item byte_loop
26042 @itemx loop
26043 @itemx unrolled_loop
26044 Expand into an inline loop.
26045
26046 @item libcall
26047 Always use a library call.
26048 @end table
26049
26050 @item -mmemcpy-strategy=@var{strategy}
26051 @opindex mmemcpy-strategy=@var{strategy}
26052 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
26053 should be inlined and what inline algorithm to use when the expected size
26054 of the copy operation is known. @var{strategy}
26055 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
26056 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
26057 the max byte size with which inline algorithm @var{alg} is allowed. For the last
26058 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
26059 in the list must be specified in increasing order. The minimal byte size for
26060 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
26061 preceding range.
26062
26063 @item -mmemset-strategy=@var{strategy}
26064 @opindex mmemset-strategy=@var{strategy}
26065 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
26066 @code{__builtin_memset} expansion.
26067
26068 @item -momit-leaf-frame-pointer
26069 @opindex momit-leaf-frame-pointer
26070 Don't keep the frame pointer in a register for leaf functions. This
26071 avoids the instructions to save, set up, and restore frame pointers and
26072 makes an extra register available in leaf functions. The option
26073 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
26074 which might make debugging harder.
26075
26076 @item -mtls-direct-seg-refs
26077 @itemx -mno-tls-direct-seg-refs
26078 @opindex mtls-direct-seg-refs
26079 Controls whether TLS variables may be accessed with offsets from the
26080 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
26081 or whether the thread base pointer must be added. Whether or not this
26082 is valid depends on the operating system, and whether it maps the
26083 segment to cover the entire TLS area.
26084
26085 For systems that use the GNU C Library, the default is on.
26086
26087 @item -msse2avx
26088 @itemx -mno-sse2avx
26089 @opindex msse2avx
26090 Specify that the assembler should encode SSE instructions with VEX
26091 prefix. The option @option{-mavx} turns this on by default.
26092
26093 @item -mfentry
26094 @itemx -mno-fentry
26095 @opindex mfentry
26096 If profiling is active (@option{-pg}), put the profiling
26097 counter call before the prologue.
26098 Note: On x86 architectures the attribute @code{ms_hook_prologue}
26099 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
26100
26101 @item -mrecord-mcount
26102 @itemx -mno-record-mcount
26103 @opindex mrecord-mcount
26104 If profiling is active (@option{-pg}), generate a __mcount_loc section
26105 that contains pointers to each profiling call. This is useful for
26106 automatically patching and out calls.
26107
26108 @item -mnop-mcount
26109 @itemx -mno-nop-mcount
26110 @opindex mnop-mcount
26111 If profiling is active (@option{-pg}), generate the calls to
26112 the profiling functions as NOPs. This is useful when they
26113 should be patched in later dynamically. This is likely only
26114 useful together with @option{-mrecord-mcount}.
26115
26116 @item -mskip-rax-setup
26117 @itemx -mno-skip-rax-setup
26118 @opindex mskip-rax-setup
26119 When generating code for the x86-64 architecture with SSE extensions
26120 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
26121 register when there are no variable arguments passed in vector registers.
26122
26123 @strong{Warning:} Since RAX register is used to avoid unnecessarily
26124 saving vector registers on stack when passing variable arguments, the
26125 impacts of this option are callees may waste some stack space,
26126 misbehave or jump to a random location. GCC 4.4 or newer don't have
26127 those issues, regardless the RAX register value.
26128
26129 @item -m8bit-idiv
26130 @itemx -mno-8bit-idiv
26131 @opindex m8bit-idiv
26132 On some processors, like Intel Atom, 8-bit unsigned integer divide is
26133 much faster than 32-bit/64-bit integer divide. This option generates a
26134 run-time check. If both dividend and divisor are within range of 0
26135 to 255, 8-bit unsigned integer divide is used instead of
26136 32-bit/64-bit integer divide.
26137
26138 @item -mavx256-split-unaligned-load
26139 @itemx -mavx256-split-unaligned-store
26140 @opindex mavx256-split-unaligned-load
26141 @opindex mavx256-split-unaligned-store
26142 Split 32-byte AVX unaligned load and store.
26143
26144 @item -mstack-protector-guard=@var{guard}
26145 @opindex mstack-protector-guard=@var{guard}
26146 Generate stack protection code using canary at @var{guard}. Supported
26147 locations are @samp{global} for global canary or @samp{tls} for per-thread
26148 canary in the TLS block (the default). This option has effect only when
26149 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
26150
26151 @item -mmitigate-rop
26152 @opindex mmitigate-rop
26153 Try to avoid generating code sequences that contain unintended return
26154 opcodes, to mitigate against certain forms of attack. At the moment,
26155 this option is limited in what it can do and should not be relied
26156 on to provide serious protection.
26157
26158 @item -mgeneral-regs-only
26159 @opindex mgeneral-regs-only
26160 Generate code that uses only the general-purpose registers. This
26161 prevents the compiler from using floating-point, vector, mask and bound
26162 registers.
26163
26164 @end table
26165
26166 These @samp{-m} switches are supported in addition to the above
26167 on x86-64 processors in 64-bit environments.
26168
26169 @table @gcctabopt
26170 @item -m32
26171 @itemx -m64
26172 @itemx -mx32
26173 @itemx -m16
26174 @itemx -miamcu
26175 @opindex m32
26176 @opindex m64
26177 @opindex mx32
26178 @opindex m16
26179 @opindex miamcu
26180 Generate code for a 16-bit, 32-bit or 64-bit environment.
26181 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
26182 to 32 bits, and
26183 generates code that runs on any i386 system.
26184
26185 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
26186 types to 64 bits, and generates code for the x86-64 architecture.
26187 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
26188 and @option{-mdynamic-no-pic} options.
26189
26190 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
26191 to 32 bits, and
26192 generates code for the x86-64 architecture.
26193
26194 The @option{-m16} option is the same as @option{-m32}, except for that
26195 it outputs the @code{.code16gcc} assembly directive at the beginning of
26196 the assembly output so that the binary can run in 16-bit mode.
26197
26198 The @option{-miamcu} option generates code which conforms to Intel MCU
26199 psABI. It requires the @option{-m32} option to be turned on.
26200
26201 @item -mno-red-zone
26202 @opindex mno-red-zone
26203 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
26204 by the x86-64 ABI; it is a 128-byte area beyond the location of the
26205 stack pointer that is not modified by signal or interrupt handlers
26206 and therefore can be used for temporary data without adjusting the stack
26207 pointer. The flag @option{-mno-red-zone} disables this red zone.
26208
26209 @item -mcmodel=small
26210 @opindex mcmodel=small
26211 Generate code for the small code model: the program and its symbols must
26212 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
26213 Programs can be statically or dynamically linked. This is the default
26214 code model.
26215
26216 @item -mcmodel=kernel
26217 @opindex mcmodel=kernel
26218 Generate code for the kernel code model. The kernel runs in the
26219 negative 2 GB of the address space.
26220 This model has to be used for Linux kernel code.
26221
26222 @item -mcmodel=medium
26223 @opindex mcmodel=medium
26224 Generate code for the medium model: the program is linked in the lower 2
26225 GB of the address space. Small symbols are also placed there. Symbols
26226 with sizes larger than @option{-mlarge-data-threshold} are put into
26227 large data or BSS sections and can be located above 2GB. Programs can
26228 be statically or dynamically linked.
26229
26230 @item -mcmodel=large
26231 @opindex mcmodel=large
26232 Generate code for the large model. This model makes no assumptions
26233 about addresses and sizes of sections.
26234
26235 @item -maddress-mode=long
26236 @opindex maddress-mode=long
26237 Generate code for long address mode. This is only supported for 64-bit
26238 and x32 environments. It is the default address mode for 64-bit
26239 environments.
26240
26241 @item -maddress-mode=short
26242 @opindex maddress-mode=short
26243 Generate code for short address mode. This is only supported for 32-bit
26244 and x32 environments. It is the default address mode for 32-bit and
26245 x32 environments.
26246 @end table
26247
26248 @node x86 Windows Options
26249 @subsection x86 Windows Options
26250 @cindex x86 Windows Options
26251 @cindex Windows Options for x86
26252
26253 These additional options are available for Microsoft Windows targets:
26254
26255 @table @gcctabopt
26256 @item -mconsole
26257 @opindex mconsole
26258 This option
26259 specifies that a console application is to be generated, by
26260 instructing the linker to set the PE header subsystem type
26261 required for console applications.
26262 This option is available for Cygwin and MinGW targets and is
26263 enabled by default on those targets.
26264
26265 @item -mdll
26266 @opindex mdll
26267 This option is available for Cygwin and MinGW targets. It
26268 specifies that a DLL---a dynamic link library---is to be
26269 generated, enabling the selection of the required runtime
26270 startup object and entry point.
26271
26272 @item -mnop-fun-dllimport
26273 @opindex mnop-fun-dllimport
26274 This option is available for Cygwin and MinGW targets. It
26275 specifies that the @code{dllimport} attribute should be ignored.
26276
26277 @item -mthread
26278 @opindex mthread
26279 This option is available for MinGW targets. It specifies
26280 that MinGW-specific thread support is to be used.
26281
26282 @item -municode
26283 @opindex municode
26284 This option is available for MinGW-w64 targets. It causes
26285 the @code{UNICODE} preprocessor macro to be predefined, and
26286 chooses Unicode-capable runtime startup code.
26287
26288 @item -mwin32
26289 @opindex mwin32
26290 This option is available for Cygwin and MinGW targets. It
26291 specifies that the typical Microsoft Windows predefined macros are to
26292 be set in the pre-processor, but does not influence the choice
26293 of runtime library/startup code.
26294
26295 @item -mwindows
26296 @opindex mwindows
26297 This option is available for Cygwin and MinGW targets. It
26298 specifies that a GUI application is to be generated by
26299 instructing the linker to set the PE header subsystem type
26300 appropriately.
26301
26302 @item -fno-set-stack-executable
26303 @opindex fno-set-stack-executable
26304 This option is available for MinGW targets. It specifies that
26305 the executable flag for the stack used by nested functions isn't
26306 set. This is necessary for binaries running in kernel mode of
26307 Microsoft Windows, as there the User32 API, which is used to set executable
26308 privileges, isn't available.
26309
26310 @item -fwritable-relocated-rdata
26311 @opindex fno-writable-relocated-rdata
26312 This option is available for MinGW and Cygwin targets. It specifies
26313 that relocated-data in read-only section is put into the @code{.data}
26314 section. This is a necessary for older runtimes not supporting
26315 modification of @code{.rdata} sections for pseudo-relocation.
26316
26317 @item -mpe-aligned-commons
26318 @opindex mpe-aligned-commons
26319 This option is available for Cygwin and MinGW targets. It
26320 specifies that the GNU extension to the PE file format that
26321 permits the correct alignment of COMMON variables should be
26322 used when generating code. It is enabled by default if
26323 GCC detects that the target assembler found during configuration
26324 supports the feature.
26325 @end table
26326
26327 See also under @ref{x86 Options} for standard options.
26328
26329 @node Xstormy16 Options
26330 @subsection Xstormy16 Options
26331 @cindex Xstormy16 Options
26332
26333 These options are defined for Xstormy16:
26334
26335 @table @gcctabopt
26336 @item -msim
26337 @opindex msim
26338 Choose startup files and linker script suitable for the simulator.
26339 @end table
26340
26341 @node Xtensa Options
26342 @subsection Xtensa Options
26343 @cindex Xtensa Options
26344
26345 These options are supported for Xtensa targets:
26346
26347 @table @gcctabopt
26348 @item -mconst16
26349 @itemx -mno-const16
26350 @opindex mconst16
26351 @opindex mno-const16
26352 Enable or disable use of @code{CONST16} instructions for loading
26353 constant values. The @code{CONST16} instruction is currently not a
26354 standard option from Tensilica. When enabled, @code{CONST16}
26355 instructions are always used in place of the standard @code{L32R}
26356 instructions. The use of @code{CONST16} is enabled by default only if
26357 the @code{L32R} instruction is not available.
26358
26359 @item -mfused-madd
26360 @itemx -mno-fused-madd
26361 @opindex mfused-madd
26362 @opindex mno-fused-madd
26363 Enable or disable use of fused multiply/add and multiply/subtract
26364 instructions in the floating-point option. This has no effect if the
26365 floating-point option is not also enabled. Disabling fused multiply/add
26366 and multiply/subtract instructions forces the compiler to use separate
26367 instructions for the multiply and add/subtract operations. This may be
26368 desirable in some cases where strict IEEE 754-compliant results are
26369 required: the fused multiply add/subtract instructions do not round the
26370 intermediate result, thereby producing results with @emph{more} bits of
26371 precision than specified by the IEEE standard. Disabling fused multiply
26372 add/subtract instructions also ensures that the program output is not
26373 sensitive to the compiler's ability to combine multiply and add/subtract
26374 operations.
26375
26376 @item -mserialize-volatile
26377 @itemx -mno-serialize-volatile
26378 @opindex mserialize-volatile
26379 @opindex mno-serialize-volatile
26380 When this option is enabled, GCC inserts @code{MEMW} instructions before
26381 @code{volatile} memory references to guarantee sequential consistency.
26382 The default is @option{-mserialize-volatile}. Use
26383 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
26384
26385 @item -mforce-no-pic
26386 @opindex mforce-no-pic
26387 For targets, like GNU/Linux, where all user-mode Xtensa code must be
26388 position-independent code (PIC), this option disables PIC for compiling
26389 kernel code.
26390
26391 @item -mtext-section-literals
26392 @itemx -mno-text-section-literals
26393 @opindex mtext-section-literals
26394 @opindex mno-text-section-literals
26395 These options control the treatment of literal pools. The default is
26396 @option{-mno-text-section-literals}, which places literals in a separate
26397 section in the output file. This allows the literal pool to be placed
26398 in a data RAM/ROM, and it also allows the linker to combine literal
26399 pools from separate object files to remove redundant literals and
26400 improve code size. With @option{-mtext-section-literals}, the literals
26401 are interspersed in the text section in order to keep them as close as
26402 possible to their references. This may be necessary for large assembly
26403 files. Literals for each function are placed right before that function.
26404
26405 @item -mauto-litpools
26406 @itemx -mno-auto-litpools
26407 @opindex mauto-litpools
26408 @opindex mno-auto-litpools
26409 These options control the treatment of literal pools. The default is
26410 @option{-mno-auto-litpools}, which places literals in a separate
26411 section in the output file unless @option{-mtext-section-literals} is
26412 used. With @option{-mauto-litpools} the literals are interspersed in
26413 the text section by the assembler. Compiler does not produce explicit
26414 @code{.literal} directives and loads literals into registers with
26415 @code{MOVI} instructions instead of @code{L32R} to let the assembler
26416 do relaxation and place literals as necessary. This option allows
26417 assembler to create several literal pools per function and assemble
26418 very big functions, which may not be possible with
26419 @option{-mtext-section-literals}.
26420
26421 @item -mtarget-align
26422 @itemx -mno-target-align
26423 @opindex mtarget-align
26424 @opindex mno-target-align
26425 When this option is enabled, GCC instructs the assembler to
26426 automatically align instructions to reduce branch penalties at the
26427 expense of some code density. The assembler attempts to widen density
26428 instructions to align branch targets and the instructions following call
26429 instructions. If there are not enough preceding safe density
26430 instructions to align a target, no widening is performed. The
26431 default is @option{-mtarget-align}. These options do not affect the
26432 treatment of auto-aligned instructions like @code{LOOP}, which the
26433 assembler always aligns, either by widening density instructions or
26434 by inserting NOP instructions.
26435
26436 @item -mlongcalls
26437 @itemx -mno-longcalls
26438 @opindex mlongcalls
26439 @opindex mno-longcalls
26440 When this option is enabled, GCC instructs the assembler to translate
26441 direct calls to indirect calls unless it can determine that the target
26442 of a direct call is in the range allowed by the call instruction. This
26443 translation typically occurs for calls to functions in other source
26444 files. Specifically, the assembler translates a direct @code{CALL}
26445 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
26446 The default is @option{-mno-longcalls}. This option should be used in
26447 programs where the call target can potentially be out of range. This
26448 option is implemented in the assembler, not the compiler, so the
26449 assembly code generated by GCC still shows direct call
26450 instructions---look at the disassembled object code to see the actual
26451 instructions. Note that the assembler uses an indirect call for
26452 every cross-file call, not just those that really are out of range.
26453 @end table
26454
26455 @node zSeries Options
26456 @subsection zSeries Options
26457 @cindex zSeries options
26458
26459 These are listed under @xref{S/390 and zSeries Options}.
26460
26461
26462 @c man end
26463
26464 @node Spec Files
26465 @section Specifying Subprocesses and the Switches to Pass to Them
26466 @cindex Spec Files
26467
26468 @command{gcc} is a driver program. It performs its job by invoking a
26469 sequence of other programs to do the work of compiling, assembling and
26470 linking. GCC interprets its command-line parameters and uses these to
26471 deduce which programs it should invoke, and which command-line options
26472 it ought to place on their command lines. This behavior is controlled
26473 by @dfn{spec strings}. In most cases there is one spec string for each
26474 program that GCC can invoke, but a few programs have multiple spec
26475 strings to control their behavior. The spec strings built into GCC can
26476 be overridden by using the @option{-specs=} command-line switch to specify
26477 a spec file.
26478
26479 @dfn{Spec files} are plain-text files that are used to construct spec
26480 strings. They consist of a sequence of directives separated by blank
26481 lines. The type of directive is determined by the first non-whitespace
26482 character on the line, which can be one of the following:
26483
26484 @table @code
26485 @item %@var{command}
26486 Issues a @var{command} to the spec file processor. The commands that can
26487 appear here are:
26488
26489 @table @code
26490 @item %include <@var{file}>
26491 @cindex @code{%include}
26492 Search for @var{file} and insert its text at the current point in the
26493 specs file.
26494
26495 @item %include_noerr <@var{file}>
26496 @cindex @code{%include_noerr}
26497 Just like @samp{%include}, but do not generate an error message if the include
26498 file cannot be found.
26499
26500 @item %rename @var{old_name} @var{new_name}
26501 @cindex @code{%rename}
26502 Rename the spec string @var{old_name} to @var{new_name}.
26503
26504 @end table
26505
26506 @item *[@var{spec_name}]:
26507 This tells the compiler to create, override or delete the named spec
26508 string. All lines after this directive up to the next directive or
26509 blank line are considered to be the text for the spec string. If this
26510 results in an empty string then the spec is deleted. (Or, if the
26511 spec did not exist, then nothing happens.) Otherwise, if the spec
26512 does not currently exist a new spec is created. If the spec does
26513 exist then its contents are overridden by the text of this
26514 directive, unless the first character of that text is the @samp{+}
26515 character, in which case the text is appended to the spec.
26516
26517 @item [@var{suffix}]:
26518 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
26519 and up to the next directive or blank line are considered to make up the
26520 spec string for the indicated suffix. When the compiler encounters an
26521 input file with the named suffix, it processes the spec string in
26522 order to work out how to compile that file. For example:
26523
26524 @smallexample
26525 .ZZ:
26526 z-compile -input %i
26527 @end smallexample
26528
26529 This says that any input file whose name ends in @samp{.ZZ} should be
26530 passed to the program @samp{z-compile}, which should be invoked with the
26531 command-line switch @option{-input} and with the result of performing the
26532 @samp{%i} substitution. (See below.)
26533
26534 As an alternative to providing a spec string, the text following a
26535 suffix directive can be one of the following:
26536
26537 @table @code
26538 @item @@@var{language}
26539 This says that the suffix is an alias for a known @var{language}. This is
26540 similar to using the @option{-x} command-line switch to GCC to specify a
26541 language explicitly. For example:
26542
26543 @smallexample
26544 .ZZ:
26545 @@c++
26546 @end smallexample
26547
26548 Says that .ZZ files are, in fact, C++ source files.
26549
26550 @item #@var{name}
26551 This causes an error messages saying:
26552
26553 @smallexample
26554 @var{name} compiler not installed on this system.
26555 @end smallexample
26556 @end table
26557
26558 GCC already has an extensive list of suffixes built into it.
26559 This directive adds an entry to the end of the list of suffixes, but
26560 since the list is searched from the end backwards, it is effectively
26561 possible to override earlier entries using this technique.
26562
26563 @end table
26564
26565 GCC has the following spec strings built into it. Spec files can
26566 override these strings or create their own. Note that individual
26567 targets can also add their own spec strings to this list.
26568
26569 @smallexample
26570 asm Options to pass to the assembler
26571 asm_final Options to pass to the assembler post-processor
26572 cpp Options to pass to the C preprocessor
26573 cc1 Options to pass to the C compiler
26574 cc1plus Options to pass to the C++ compiler
26575 endfile Object files to include at the end of the link
26576 link Options to pass to the linker
26577 lib Libraries to include on the command line to the linker
26578 libgcc Decides which GCC support library to pass to the linker
26579 linker Sets the name of the linker
26580 predefines Defines to be passed to the C preprocessor
26581 signed_char Defines to pass to CPP to say whether @code{char} is signed
26582 by default
26583 startfile Object files to include at the start of the link
26584 @end smallexample
26585
26586 Here is a small example of a spec file:
26587
26588 @smallexample
26589 %rename lib old_lib
26590
26591 *lib:
26592 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
26593 @end smallexample
26594
26595 This example renames the spec called @samp{lib} to @samp{old_lib} and
26596 then overrides the previous definition of @samp{lib} with a new one.
26597 The new definition adds in some extra command-line options before
26598 including the text of the old definition.
26599
26600 @dfn{Spec strings} are a list of command-line options to be passed to their
26601 corresponding program. In addition, the spec strings can contain
26602 @samp{%}-prefixed sequences to substitute variable text or to
26603 conditionally insert text into the command line. Using these constructs
26604 it is possible to generate quite complex command lines.
26605
26606 Here is a table of all defined @samp{%}-sequences for spec
26607 strings. Note that spaces are not generated automatically around the
26608 results of expanding these sequences. Therefore you can concatenate them
26609 together or combine them with constant text in a single argument.
26610
26611 @table @code
26612 @item %%
26613 Substitute one @samp{%} into the program name or argument.
26614
26615 @item %i
26616 Substitute the name of the input file being processed.
26617
26618 @item %b
26619 Substitute the basename of the input file being processed.
26620 This is the substring up to (and not including) the last period
26621 and not including the directory.
26622
26623 @item %B
26624 This is the same as @samp{%b}, but include the file suffix (text after
26625 the last period).
26626
26627 @item %d
26628 Marks the argument containing or following the @samp{%d} as a
26629 temporary file name, so that that file is deleted if GCC exits
26630 successfully. Unlike @samp{%g}, this contributes no text to the
26631 argument.
26632
26633 @item %g@var{suffix}
26634 Substitute a file name that has suffix @var{suffix} and is chosen
26635 once per compilation, and mark the argument in the same way as
26636 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
26637 name is now chosen in a way that is hard to predict even when previously
26638 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
26639 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
26640 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
26641 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
26642 was simply substituted with a file name chosen once per compilation,
26643 without regard to any appended suffix (which was therefore treated
26644 just like ordinary text), making such attacks more likely to succeed.
26645
26646 @item %u@var{suffix}
26647 Like @samp{%g}, but generates a new temporary file name
26648 each time it appears instead of once per compilation.
26649
26650 @item %U@var{suffix}
26651 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
26652 new one if there is no such last file name. In the absence of any
26653 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
26654 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
26655 involves the generation of two distinct file names, one
26656 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
26657 simply substituted with a file name chosen for the previous @samp{%u},
26658 without regard to any appended suffix.
26659
26660 @item %j@var{suffix}
26661 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
26662 writable, and if @option{-save-temps} is not used;
26663 otherwise, substitute the name
26664 of a temporary file, just like @samp{%u}. This temporary file is not
26665 meant for communication between processes, but rather as a junk
26666 disposal mechanism.
26667
26668 @item %|@var{suffix}
26669 @itemx %m@var{suffix}
26670 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
26671 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
26672 all. These are the two most common ways to instruct a program that it
26673 should read from standard input or write to standard output. If you
26674 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
26675 construct: see for example @file{f/lang-specs.h}.
26676
26677 @item %.@var{SUFFIX}
26678 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
26679 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
26680 terminated by the next space or %.
26681
26682 @item %w
26683 Marks the argument containing or following the @samp{%w} as the
26684 designated output file of this compilation. This puts the argument
26685 into the sequence of arguments that @samp{%o} substitutes.
26686
26687 @item %o
26688 Substitutes the names of all the output files, with spaces
26689 automatically placed around them. You should write spaces
26690 around the @samp{%o} as well or the results are undefined.
26691 @samp{%o} is for use in the specs for running the linker.
26692 Input files whose names have no recognized suffix are not compiled
26693 at all, but they are included among the output files, so they are
26694 linked.
26695
26696 @item %O
26697 Substitutes the suffix for object files. Note that this is
26698 handled specially when it immediately follows @samp{%g, %u, or %U},
26699 because of the need for those to form complete file names. The
26700 handling is such that @samp{%O} is treated exactly as if it had already
26701 been substituted, except that @samp{%g, %u, and %U} do not currently
26702 support additional @var{suffix} characters following @samp{%O} as they do
26703 following, for example, @samp{.o}.
26704
26705 @item %p
26706 Substitutes the standard macro predefinitions for the
26707 current target machine. Use this when running @command{cpp}.
26708
26709 @item %P
26710 Like @samp{%p}, but puts @samp{__} before and after the name of each
26711 predefined macro, except for macros that start with @samp{__} or with
26712 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
26713 C@.
26714
26715 @item %I
26716 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
26717 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
26718 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
26719 and @option{-imultilib} as necessary.
26720
26721 @item %s
26722 Current argument is the name of a library or startup file of some sort.
26723 Search for that file in a standard list of directories and substitute
26724 the full name found. The current working directory is included in the
26725 list of directories scanned.
26726
26727 @item %T
26728 Current argument is the name of a linker script. Search for that file
26729 in the current list of directories to scan for libraries. If the file
26730 is located insert a @option{--script} option into the command line
26731 followed by the full path name found. If the file is not found then
26732 generate an error message. Note: the current working directory is not
26733 searched.
26734
26735 @item %e@var{str}
26736 Print @var{str} as an error message. @var{str} is terminated by a newline.
26737 Use this when inconsistent options are detected.
26738
26739 @item %(@var{name})
26740 Substitute the contents of spec string @var{name} at this point.
26741
26742 @item %x@{@var{option}@}
26743 Accumulate an option for @samp{%X}.
26744
26745 @item %X
26746 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
26747 spec string.
26748
26749 @item %Y
26750 Output the accumulated assembler options specified by @option{-Wa}.
26751
26752 @item %Z
26753 Output the accumulated preprocessor options specified by @option{-Wp}.
26754
26755 @item %a
26756 Process the @code{asm} spec. This is used to compute the
26757 switches to be passed to the assembler.
26758
26759 @item %A
26760 Process the @code{asm_final} spec. This is a spec string for
26761 passing switches to an assembler post-processor, if such a program is
26762 needed.
26763
26764 @item %l
26765 Process the @code{link} spec. This is the spec for computing the
26766 command line passed to the linker. Typically it makes use of the
26767 @samp{%L %G %S %D and %E} sequences.
26768
26769 @item %D
26770 Dump out a @option{-L} option for each directory that GCC believes might
26771 contain startup files. If the target supports multilibs then the
26772 current multilib directory is prepended to each of these paths.
26773
26774 @item %L
26775 Process the @code{lib} spec. This is a spec string for deciding which
26776 libraries are included on the command line to the linker.
26777
26778 @item %G
26779 Process the @code{libgcc} spec. This is a spec string for deciding
26780 which GCC support library is included on the command line to the linker.
26781
26782 @item %S
26783 Process the @code{startfile} spec. This is a spec for deciding which
26784 object files are the first ones passed to the linker. Typically
26785 this might be a file named @file{crt0.o}.
26786
26787 @item %E
26788 Process the @code{endfile} spec. This is a spec string that specifies
26789 the last object files that are passed to the linker.
26790
26791 @item %C
26792 Process the @code{cpp} spec. This is used to construct the arguments
26793 to be passed to the C preprocessor.
26794
26795 @item %1
26796 Process the @code{cc1} spec. This is used to construct the options to be
26797 passed to the actual C compiler (@command{cc1}).
26798
26799 @item %2
26800 Process the @code{cc1plus} spec. This is used to construct the options to be
26801 passed to the actual C++ compiler (@command{cc1plus}).
26802
26803 @item %*
26804 Substitute the variable part of a matched option. See below.
26805 Note that each comma in the substituted string is replaced by
26806 a single space.
26807
26808 @item %<S
26809 Remove all occurrences of @code{-S} from the command line. Note---this
26810 command is position dependent. @samp{%} commands in the spec string
26811 before this one see @code{-S}, @samp{%} commands in the spec string
26812 after this one do not.
26813
26814 @item %:@var{function}(@var{args})
26815 Call the named function @var{function}, passing it @var{args}.
26816 @var{args} is first processed as a nested spec string, then split
26817 into an argument vector in the usual fashion. The function returns
26818 a string which is processed as if it had appeared literally as part
26819 of the current spec.
26820
26821 The following built-in spec functions are provided:
26822
26823 @table @code
26824 @item @code{getenv}
26825 The @code{getenv} spec function takes two arguments: an environment
26826 variable name and a string. If the environment variable is not
26827 defined, a fatal error is issued. Otherwise, the return value is the
26828 value of the environment variable concatenated with the string. For
26829 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
26830
26831 @smallexample
26832 %:getenv(TOPDIR /include)
26833 @end smallexample
26834
26835 expands to @file{/path/to/top/include}.
26836
26837 @item @code{if-exists}
26838 The @code{if-exists} spec function takes one argument, an absolute
26839 pathname to a file. If the file exists, @code{if-exists} returns the
26840 pathname. Here is a small example of its usage:
26841
26842 @smallexample
26843 *startfile:
26844 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
26845 @end smallexample
26846
26847 @item @code{if-exists-else}
26848 The @code{if-exists-else} spec function is similar to the @code{if-exists}
26849 spec function, except that it takes two arguments. The first argument is
26850 an absolute pathname to a file. If the file exists, @code{if-exists-else}
26851 returns the pathname. If it does not exist, it returns the second argument.
26852 This way, @code{if-exists-else} can be used to select one file or another,
26853 based on the existence of the first. Here is a small example of its usage:
26854
26855 @smallexample
26856 *startfile:
26857 crt0%O%s %:if-exists(crti%O%s) \
26858 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
26859 @end smallexample
26860
26861 @item @code{replace-outfile}
26862 The @code{replace-outfile} spec function takes two arguments. It looks for the
26863 first argument in the outfiles array and replaces it with the second argument. Here
26864 is a small example of its usage:
26865
26866 @smallexample
26867 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
26868 @end smallexample
26869
26870 @item @code{remove-outfile}
26871 The @code{remove-outfile} spec function takes one argument. It looks for the
26872 first argument in the outfiles array and removes it. Here is a small example
26873 its usage:
26874
26875 @smallexample
26876 %:remove-outfile(-lm)
26877 @end smallexample
26878
26879 @item @code{pass-through-libs}
26880 The @code{pass-through-libs} spec function takes any number of arguments. It
26881 finds any @option{-l} options and any non-options ending in @file{.a} (which it
26882 assumes are the names of linker input library archive files) and returns a
26883 result containing all the found arguments each prepended by
26884 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
26885 intended to be passed to the LTO linker plugin.
26886
26887 @smallexample
26888 %:pass-through-libs(%G %L %G)
26889 @end smallexample
26890
26891 @item @code{print-asm-header}
26892 The @code{print-asm-header} function takes no arguments and simply
26893 prints a banner like:
26894
26895 @smallexample
26896 Assembler options
26897 =================
26898
26899 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
26900 @end smallexample
26901
26902 It is used to separate compiler options from assembler options
26903 in the @option{--target-help} output.
26904 @end table
26905
26906 @item %@{S@}
26907 Substitutes the @code{-S} switch, if that switch is given to GCC@.
26908 If that switch is not specified, this substitutes nothing. Note that
26909 the leading dash is omitted when specifying this option, and it is
26910 automatically inserted if the substitution is performed. Thus the spec
26911 string @samp{%@{foo@}} matches the command-line option @option{-foo}
26912 and outputs the command-line option @option{-foo}.
26913
26914 @item %W@{S@}
26915 Like %@{@code{S}@} but mark last argument supplied within as a file to be
26916 deleted on failure.
26917
26918 @item %@{S*@}
26919 Substitutes all the switches specified to GCC whose names start
26920 with @code{-S}, but which also take an argument. This is used for
26921 switches like @option{-o}, @option{-D}, @option{-I}, etc.
26922 GCC considers @option{-o foo} as being
26923 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
26924 text, including the space. Thus two arguments are generated.
26925
26926 @item %@{S*&T*@}
26927 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
26928 (the order of @code{S} and @code{T} in the spec is not significant).
26929 There can be any number of ampersand-separated variables; for each the
26930 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
26931
26932 @item %@{S:X@}
26933 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
26934
26935 @item %@{!S:X@}
26936 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
26937
26938 @item %@{S*:X@}
26939 Substitutes @code{X} if one or more switches whose names start with
26940 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
26941 once, no matter how many such switches appeared. However, if @code{%*}
26942 appears somewhere in @code{X}, then @code{X} is substituted once
26943 for each matching switch, with the @code{%*} replaced by the part of
26944 that switch matching the @code{*}.
26945
26946 If @code{%*} appears as the last part of a spec sequence then a space
26947 is added after the end of the last substitution. If there is more
26948 text in the sequence, however, then a space is not generated. This
26949 allows the @code{%*} substitution to be used as part of a larger
26950 string. For example, a spec string like this:
26951
26952 @smallexample
26953 %@{mcu=*:--script=%*/memory.ld@}
26954 @end smallexample
26955
26956 @noindent
26957 when matching an option like @option{-mcu=newchip} produces:
26958
26959 @smallexample
26960 --script=newchip/memory.ld
26961 @end smallexample
26962
26963 @item %@{.S:X@}
26964 Substitutes @code{X}, if processing a file with suffix @code{S}.
26965
26966 @item %@{!.S:X@}
26967 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
26968
26969 @item %@{,S:X@}
26970 Substitutes @code{X}, if processing a file for language @code{S}.
26971
26972 @item %@{!,S:X@}
26973 Substitutes @code{X}, if not processing a file for language @code{S}.
26974
26975 @item %@{S|P:X@}
26976 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
26977 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
26978 @code{*} sequences as well, although they have a stronger binding than
26979 the @samp{|}. If @code{%*} appears in @code{X}, all of the
26980 alternatives must be starred, and only the first matching alternative
26981 is substituted.
26982
26983 For example, a spec string like this:
26984
26985 @smallexample
26986 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
26987 @end smallexample
26988
26989 @noindent
26990 outputs the following command-line options from the following input
26991 command-line options:
26992
26993 @smallexample
26994 fred.c -foo -baz
26995 jim.d -bar -boggle
26996 -d fred.c -foo -baz -boggle
26997 -d jim.d -bar -baz -boggle
26998 @end smallexample
26999
27000 @item %@{S:X; T:Y; :D@}
27001
27002 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
27003 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
27004 be as many clauses as you need. This may be combined with @code{.},
27005 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
27006
27007
27008 @end table
27009
27010 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
27011 or similar construct can use a backslash to ignore the special meaning
27012 of the character following it, thus allowing literal matching of a
27013 character that is otherwise specially treated. For example,
27014 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
27015 @option{-std=iso9899:1999} option is given.
27016
27017 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
27018 construct may contain other nested @samp{%} constructs or spaces, or
27019 even newlines. They are processed as usual, as described above.
27020 Trailing white space in @code{X} is ignored. White space may also
27021 appear anywhere on the left side of the colon in these constructs,
27022 except between @code{.} or @code{*} and the corresponding word.
27023
27024 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
27025 handled specifically in these constructs. If another value of
27026 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
27027 @option{-W} switch is found later in the command line, the earlier
27028 switch value is ignored, except with @{@code{S}*@} where @code{S} is
27029 just one letter, which passes all matching options.
27030
27031 The character @samp{|} at the beginning of the predicate text is used to
27032 indicate that a command should be piped to the following command, but
27033 only if @option{-pipe} is specified.
27034
27035 It is built into GCC which switches take arguments and which do not.
27036 (You might think it would be useful to generalize this to allow each
27037 compiler's spec to say which switches take arguments. But this cannot
27038 be done in a consistent fashion. GCC cannot even decide which input
27039 files have been specified without knowing which switches take arguments,
27040 and it must know which input files to compile in order to tell which
27041 compilers to run).
27042
27043 GCC also knows implicitly that arguments starting in @option{-l} are to be
27044 treated as compiler output files, and passed to the linker in their
27045 proper position among the other output files.
27046
27047 @node Environment Variables
27048 @section Environment Variables Affecting GCC
27049 @cindex environment variables
27050
27051 @c man begin ENVIRONMENT
27052 This section describes several environment variables that affect how GCC
27053 operates. Some of them work by specifying directories or prefixes to use
27054 when searching for various kinds of files. Some are used to specify other
27055 aspects of the compilation environment.
27056
27057 Note that you can also specify places to search using options such as
27058 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
27059 take precedence over places specified using environment variables, which
27060 in turn take precedence over those specified by the configuration of GCC@.
27061 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
27062 GNU Compiler Collection (GCC) Internals}.
27063
27064 @table @env
27065 @item LANG
27066 @itemx LC_CTYPE
27067 @c @itemx LC_COLLATE
27068 @itemx LC_MESSAGES
27069 @c @itemx LC_MONETARY
27070 @c @itemx LC_NUMERIC
27071 @c @itemx LC_TIME
27072 @itemx LC_ALL
27073 @findex LANG
27074 @findex LC_CTYPE
27075 @c @findex LC_COLLATE
27076 @findex LC_MESSAGES
27077 @c @findex LC_MONETARY
27078 @c @findex LC_NUMERIC
27079 @c @findex LC_TIME
27080 @findex LC_ALL
27081 @cindex locale
27082 These environment variables control the way that GCC uses
27083 localization information which allows GCC to work with different
27084 national conventions. GCC inspects the locale categories
27085 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
27086 so. These locale categories can be set to any value supported by your
27087 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
27088 Kingdom encoded in UTF-8.
27089
27090 The @env{LC_CTYPE} environment variable specifies character
27091 classification. GCC uses it to determine the character boundaries in
27092 a string; this is needed for some multibyte encodings that contain quote
27093 and escape characters that are otherwise interpreted as a string
27094 end or escape.
27095
27096 The @env{LC_MESSAGES} environment variable specifies the language to
27097 use in diagnostic messages.
27098
27099 If the @env{LC_ALL} environment variable is set, it overrides the value
27100 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
27101 and @env{LC_MESSAGES} default to the value of the @env{LANG}
27102 environment variable. If none of these variables are set, GCC
27103 defaults to traditional C English behavior.
27104
27105 @item TMPDIR
27106 @findex TMPDIR
27107 If @env{TMPDIR} is set, it specifies the directory to use for temporary
27108 files. GCC uses temporary files to hold the output of one stage of
27109 compilation which is to be used as input to the next stage: for example,
27110 the output of the preprocessor, which is the input to the compiler
27111 proper.
27112
27113 @item GCC_COMPARE_DEBUG
27114 @findex GCC_COMPARE_DEBUG
27115 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
27116 @option{-fcompare-debug} to the compiler driver. See the documentation
27117 of this option for more details.
27118
27119 @item GCC_EXEC_PREFIX
27120 @findex GCC_EXEC_PREFIX
27121 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
27122 names of the subprograms executed by the compiler. No slash is added
27123 when this prefix is combined with the name of a subprogram, but you can
27124 specify a prefix that ends with a slash if you wish.
27125
27126 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
27127 an appropriate prefix to use based on the pathname it is invoked with.
27128
27129 If GCC cannot find the subprogram using the specified prefix, it
27130 tries looking in the usual places for the subprogram.
27131
27132 The default value of @env{GCC_EXEC_PREFIX} is
27133 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
27134 the installed compiler. In many cases @var{prefix} is the value
27135 of @code{prefix} when you ran the @file{configure} script.
27136
27137 Other prefixes specified with @option{-B} take precedence over this prefix.
27138
27139 This prefix is also used for finding files such as @file{crt0.o} that are
27140 used for linking.
27141
27142 In addition, the prefix is used in an unusual way in finding the
27143 directories to search for header files. For each of the standard
27144 directories whose name normally begins with @samp{/usr/local/lib/gcc}
27145 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
27146 replacing that beginning with the specified prefix to produce an
27147 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
27148 @file{foo/bar} just before it searches the standard directory
27149 @file{/usr/local/lib/bar}.
27150 If a standard directory begins with the configured
27151 @var{prefix} then the value of @var{prefix} is replaced by
27152 @env{GCC_EXEC_PREFIX} when looking for header files.
27153
27154 @item COMPILER_PATH
27155 @findex COMPILER_PATH
27156 The value of @env{COMPILER_PATH} is a colon-separated list of
27157 directories, much like @env{PATH}. GCC tries the directories thus
27158 specified when searching for subprograms, if it cannot find the
27159 subprograms using @env{GCC_EXEC_PREFIX}.
27160
27161 @item LIBRARY_PATH
27162 @findex LIBRARY_PATH
27163 The value of @env{LIBRARY_PATH} is a colon-separated list of
27164 directories, much like @env{PATH}. When configured as a native compiler,
27165 GCC tries the directories thus specified when searching for special
27166 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
27167 using GCC also uses these directories when searching for ordinary
27168 libraries for the @option{-l} option (but directories specified with
27169 @option{-L} come first).
27170
27171 @item LANG
27172 @findex LANG
27173 @cindex locale definition
27174 This variable is used to pass locale information to the compiler. One way in
27175 which this information is used is to determine the character set to be used
27176 when character literals, string literals and comments are parsed in C and C++.
27177 When the compiler is configured to allow multibyte characters,
27178 the following values for @env{LANG} are recognized:
27179
27180 @table @samp
27181 @item C-JIS
27182 Recognize JIS characters.
27183 @item C-SJIS
27184 Recognize SJIS characters.
27185 @item C-EUCJP
27186 Recognize EUCJP characters.
27187 @end table
27188
27189 If @env{LANG} is not defined, or if it has some other value, then the
27190 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
27191 recognize and translate multibyte characters.
27192 @end table
27193
27194 @noindent
27195 Some additional environment variables affect the behavior of the
27196 preprocessor.
27197
27198 @include cppenv.texi
27199
27200 @c man end
27201
27202 @node Precompiled Headers
27203 @section Using Precompiled Headers
27204 @cindex precompiled headers
27205 @cindex speed of compilation
27206
27207 Often large projects have many header files that are included in every
27208 source file. The time the compiler takes to process these header files
27209 over and over again can account for nearly all of the time required to
27210 build the project. To make builds faster, GCC allows you to
27211 @dfn{precompile} a header file.
27212
27213 To create a precompiled header file, simply compile it as you would any
27214 other file, if necessary using the @option{-x} option to make the driver
27215 treat it as a C or C++ header file. You may want to use a
27216 tool like @command{make} to keep the precompiled header up-to-date when
27217 the headers it contains change.
27218
27219 A precompiled header file is searched for when @code{#include} is
27220 seen in the compilation. As it searches for the included file
27221 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
27222 compiler looks for a precompiled header in each directory just before it
27223 looks for the include file in that directory. The name searched for is
27224 the name specified in the @code{#include} with @samp{.gch} appended. If
27225 the precompiled header file cannot be used, it is ignored.
27226
27227 For instance, if you have @code{#include "all.h"}, and you have
27228 @file{all.h.gch} in the same directory as @file{all.h}, then the
27229 precompiled header file is used if possible, and the original
27230 header is used otherwise.
27231
27232 Alternatively, you might decide to put the precompiled header file in a
27233 directory and use @option{-I} to ensure that directory is searched
27234 before (or instead of) the directory containing the original header.
27235 Then, if you want to check that the precompiled header file is always
27236 used, you can put a file of the same name as the original header in this
27237 directory containing an @code{#error} command.
27238
27239 This also works with @option{-include}. So yet another way to use
27240 precompiled headers, good for projects not designed with precompiled
27241 header files in mind, is to simply take most of the header files used by
27242 a project, include them from another header file, precompile that header
27243 file, and @option{-include} the precompiled header. If the header files
27244 have guards against multiple inclusion, they are skipped because
27245 they've already been included (in the precompiled header).
27246
27247 If you need to precompile the same header file for different
27248 languages, targets, or compiler options, you can instead make a
27249 @emph{directory} named like @file{all.h.gch}, and put each precompiled
27250 header in the directory, perhaps using @option{-o}. It doesn't matter
27251 what you call the files in the directory; every precompiled header in
27252 the directory is considered. The first precompiled header
27253 encountered in the directory that is valid for this compilation is
27254 used; they're searched in no particular order.
27255
27256 There are many other possibilities, limited only by your imagination,
27257 good sense, and the constraints of your build system.
27258
27259 A precompiled header file can be used only when these conditions apply:
27260
27261 @itemize
27262 @item
27263 Only one precompiled header can be used in a particular compilation.
27264
27265 @item
27266 A precompiled header cannot be used once the first C token is seen. You
27267 can have preprocessor directives before a precompiled header; you cannot
27268 include a precompiled header from inside another header.
27269
27270 @item
27271 The precompiled header file must be produced for the same language as
27272 the current compilation. You cannot use a C precompiled header for a C++
27273 compilation.
27274
27275 @item
27276 The precompiled header file must have been produced by the same compiler
27277 binary as the current compilation is using.
27278
27279 @item
27280 Any macros defined before the precompiled header is included must
27281 either be defined in the same way as when the precompiled header was
27282 generated, or must not affect the precompiled header, which usually
27283 means that they don't appear in the precompiled header at all.
27284
27285 The @option{-D} option is one way to define a macro before a
27286 precompiled header is included; using a @code{#define} can also do it.
27287 There are also some options that define macros implicitly, like
27288 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
27289 defined this way.
27290
27291 @item If debugging information is output when using the precompiled
27292 header, using @option{-g} or similar, the same kind of debugging information
27293 must have been output when building the precompiled header. However,
27294 a precompiled header built using @option{-g} can be used in a compilation
27295 when no debugging information is being output.
27296
27297 @item The same @option{-m} options must generally be used when building
27298 and using the precompiled header. @xref{Submodel Options},
27299 for any cases where this rule is relaxed.
27300
27301 @item Each of the following options must be the same when building and using
27302 the precompiled header:
27303
27304 @gccoptlist{-fexceptions}
27305
27306 @item
27307 Some other command-line options starting with @option{-f},
27308 @option{-p}, or @option{-O} must be defined in the same way as when
27309 the precompiled header was generated. At present, it's not clear
27310 which options are safe to change and which are not; the safest choice
27311 is to use exactly the same options when generating and using the
27312 precompiled header. The following are known to be safe:
27313
27314 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
27315 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
27316 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
27317 -pedantic-errors}
27318
27319 @end itemize
27320
27321 For all of these except the last, the compiler automatically
27322 ignores the precompiled header if the conditions aren't met. If you
27323 find an option combination that doesn't work and doesn't cause the
27324 precompiled header to be ignored, please consider filing a bug report,
27325 see @ref{Bugs}.
27326
27327 If you do use differing options when generating and using the
27328 precompiled header, the actual behavior is a mixture of the
27329 behavior for the options. For instance, if you use @option{-g} to
27330 generate the precompiled header but not when using it, you may or may
27331 not get debugging information for routines in the precompiled header.