]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
c-family/
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2015 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75
76 Other options are passed on to one stage of processing. Some options
77 control the preprocessor and others the compiler itself. Yet other
78 options control the assembler and linker; most of these are not
79 documented here, since you rarely need to use any of them.
80
81 @cindex C compilation options
82 Most of the command-line options that you can use with GCC are useful
83 for C programs; when an option is only useful with another language
84 (usually C++), the explanation says so explicitly. If the description
85 for a particular option does not mention a source language, you can use
86 that option with all supported languages.
87
88 @cindex C++ compilation options
89 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90 options for compiling C++ programs.
91
92 @cindex grouping options
93 @cindex options, grouping
94 The @command{gcc} program accepts options and file names as operands. Many
95 options have multi-letter names; therefore multiple single-letter options
96 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97 -v}}.
98
99 @cindex order of options
100 @cindex options, order
101 You can mix options and other arguments. For the most part, the order
102 you use doesn't matter. Order does matter when you use several
103 options of the same kind; for example, if you specify @option{-L} more
104 than once, the directories are searched in the order specified. Also,
105 the placement of the @option{-l} option is significant.
106
107 Many options have long names starting with @samp{-f} or with
108 @samp{-W}---for example,
109 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
110 these have both positive and negative forms; the negative form of
111 @option{-ffoo} is @option{-fno-foo}. This manual documents
112 only one of these two forms, whichever one is not the default.
113
114 @c man end
115
116 @xref{Option Index}, for an index to GCC's options.
117
118 @menu
119 * Option Summary:: Brief list of all options, without explanations.
120 * Overall Options:: Controlling the kind of output:
121 an executable, object files, assembler files,
122 or preprocessed source.
123 * Invoking G++:: Compiling C++ programs.
124 * C Dialect Options:: Controlling the variant of C language compiled.
125 * C++ Dialect Options:: Variations on C++.
126 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127 and Objective-C++.
128 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
129 be formatted.
130 * Warning Options:: How picky should the compiler be?
131 * Debugging Options:: Symbol tables, measurements, and debugging dumps.
132 * Optimize Options:: How much optimization?
133 * Preprocessor Options:: Controlling header files and macro definitions.
134 Also, getting dependency information for Make.
135 * Assembler Options:: Passing options to the assembler.
136 * Link Options:: Specifying libraries and so on.
137 * Directory Options:: Where to find header files and libraries.
138 Where to find the compiler executable files.
139 * Spec Files:: How to pass switches to sub-processes.
140 * Target Options:: Running a cross-compiler, or an old version of GCC.
141 * Submodel Options:: Specifying minor hardware or convention variations,
142 such as 68010 vs 68020.
143 * Code Gen Options:: Specifying conventions for function calls, data layout
144 and register usage.
145 * Environment Variables:: Env vars that affect GCC.
146 * Precompiled Headers:: Compiling a header once, and using it many times.
147 @end menu
148
149 @c man begin OPTIONS
150
151 @node Option Summary
152 @section Option Summary
153
154 Here is a summary of all the options, grouped by type. Explanations are
155 in the following sections.
156
157 @table @emph
158 @item Overall Options
159 @xref{Overall Options,,Options Controlling the Kind of Output}.
160 @gccoptlist{-c -S -E -o @var{file} -no-canonical-prefixes @gol
161 -pipe -pass-exit-codes @gol
162 -x @var{language} -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help @gol
163 --version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
164 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166 @item C Language Options
167 @xref{C Dialect Options,,Options Controlling C Dialect}.
168 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
169 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170 -fno-asm -fno-builtin -fno-builtin-@var{function} @gol
171 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172 -fms-extensions -fplan9-extensions -trigraphs -traditional -traditional-cpp @gol
173 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
174 -fsigned-bitfields -fsigned-char @gol
175 -funsigned-bitfields -funsigned-char}
176
177 @item C++ Language Options
178 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
179 @gccoptlist{-fabi-version=@var{n} -fno-access-control -fcheck-new @gol
180 -fconstexpr-depth=@var{n} -ffriend-injection @gol
181 -fno-elide-constructors @gol
182 -fno-enforce-eh-specs @gol
183 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
184 -fno-implicit-templates @gol
185 -fno-implicit-inline-templates @gol
186 -fno-implement-inlines -fms-extensions @gol
187 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
188 -fno-optional-diags -fpermissive @gol
189 -fno-pretty-templates @gol
190 -frepo -fno-rtti -fsized-deallocation @gol
191 -fstats -ftemplate-backtrace-limit=@var{n} @gol
192 -ftemplate-depth=@var{n} @gol
193 -fno-threadsafe-statics -fuse-cxa-atexit @gol
194 -fno-weak -nostdinc++ @gol
195 -fvisibility-inlines-hidden @gol
196 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
197 -fvtv-counts -fvtv-debug @gol
198 -fvisibility-ms-compat @gol
199 -fext-numeric-literals @gol
200 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
201 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
202 -Wnamespaces -Wnarrowing @gol
203 -Wnoexcept -Wnon-virtual-dtor -Wreorder @gol
204 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
205 -Wno-non-template-friend -Wold-style-cast @gol
206 -Woverloaded-virtual -Wno-pmf-conversions @gol
207 -Wsign-promo -Wvirtual-inheritance}
208
209 @item Objective-C and Objective-C++ Language Options
210 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
211 Objective-C and Objective-C++ Dialects}.
212 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
213 -fgnu-runtime -fnext-runtime @gol
214 -fno-nil-receivers @gol
215 -fobjc-abi-version=@var{n} @gol
216 -fobjc-call-cxx-cdtors @gol
217 -fobjc-direct-dispatch @gol
218 -fobjc-exceptions @gol
219 -fobjc-gc @gol
220 -fobjc-nilcheck @gol
221 -fobjc-std=objc1 @gol
222 -fno-local-ivars @gol
223 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
224 -freplace-objc-classes @gol
225 -fzero-link @gol
226 -gen-decls @gol
227 -Wassign-intercept @gol
228 -Wno-protocol -Wselector @gol
229 -Wstrict-selector-match @gol
230 -Wundeclared-selector}
231
232 @item Diagnostic Message Formatting Options
233 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
234 @gccoptlist{-fmessage-length=@var{n} @gol
235 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
236 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
237 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
238
239 @item Warning Options
240 @xref{Warning Options,,Options to Request or Suppress Warnings}.
241 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
242 -pedantic-errors @gol
243 -w -Wextra -Wall -Waddress -Waggregate-return @gol
244 -Waggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
245 -Wbool-compare -Wframe-address @gol
246 -Wno-attributes -Wno-builtin-macro-redefined @gol
247 -Wc90-c99-compat -Wc99-c11-compat @gol
248 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
249 -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
250 -Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp @gol
251 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
252 -Wdisabled-optimization @gol
253 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
254 -Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare @gol
255 -Wno-endif-labels -Werror -Werror=* @gol
256 -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
257 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
258 -Wformat-security -Wformat-signedness -Wformat-y2k @gol
259 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
260 -Wignored-qualifiers -Wincompatible-pointer-types @gol
261 -Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol
262 -Winit-self -Winline -Wno-int-conversion @gol
263 -Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
264 -Wnull-dereference @gol
265 -Winvalid-pch -Wlarger-than=@var{len} -Wunsafe-loop-optimizations @gol
266 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
267 -Wmain -Wmaybe-uninitialized -Wmemset-transposed-args @gol
268 -Wmisleading-indentation -Wmissing-braces @gol
269 -Wmissing-field-initializers -Wmissing-include-dirs @gol
270 -Wno-multichar -Wnonnull -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
271 -Wodr -Wno-overflow -Wopenmp-simd @gol
272 -Woverride-init-side-effects @gol
273 -Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
274 -Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
275 -Wpointer-arith -Wno-pointer-to-int-cast @gol
276 -Wredundant-decls -Wno-return-local-addr @gol
277 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
278 -Wshift-overflow -Wshift-overflow=@var{n} @gol
279 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
280 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
281 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
282 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
283 -Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
284 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
285 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
286 -Wmissing-format-attribute -Wsubobject-linkage @gol
287 -Wswitch -Wswitch-default -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
288 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
289 -Wtype-limits -Wundef @gol
290 -Wuninitialized -Wunknown-pragmas -Wno-pragmas @gol
291 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
292 -Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
293 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
294 -Wunused-const-variable @gol
295 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
296 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
297 -Wvla -Wvolatile-register-var -Wwrite-strings @gol
298 -Wzero-as-null-pointer-constant}
299
300 @item C and Objective-C-only Warning Options
301 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
302 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
303 -Wold-style-declaration -Wold-style-definition @gol
304 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
305 -Wdeclaration-after-statement -Wpointer-sign}
306
307 @item Debugging Options
308 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
309 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
310 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
311 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
312 -fsanitize-undefined-trap-on-error @gol
313 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
314 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
315 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
316 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
317 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
318 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
319 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
320 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
321 -fchkp-use-wrappers @gol
322 -fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
323 -fdisable-ipa-@var{pass_name} @gol
324 -fdisable-rtl-@var{pass_name} @gol
325 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
326 -fdisable-tree-@var{pass_name} @gol
327 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
328 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
329 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
330 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
331 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
332 -fdump-passes @gol
333 -fdump-statistics @gol
334 -fdump-tree-all @gol
335 -fdump-tree-original@r{[}-@var{n}@r{]} @gol
336 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
337 -fdump-tree-cfg -fdump-tree-alias @gol
338 -fdump-tree-ch @gol
339 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
340 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
341 -fdump-tree-gimple@r{[}-raw@r{]} @gol
342 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
343 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
344 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
345 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
346 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
347 -fdump-tree-nrv -fdump-tree-vect @gol
348 -fdump-tree-sink @gol
349 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
350 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
351 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
352 -fdump-tree-vtable-verify @gol
353 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
354 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
355 -fdump-final-insns=@var{file} @gol
356 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
357 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
358 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
359 -fenable-@var{kind}-@var{pass} @gol
360 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
361 -fdebug-types-section -fmem-report-wpa @gol
362 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
363 -fopt-info @gol
364 -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
365 -frandom-seed=@var{number} -fsched-verbose=@var{n} @gol
366 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
367 -fstack-usage -ftest-coverage -ftime-report -fvar-tracking @gol
368 -fvar-tracking-assignments -fvar-tracking-assignments-toggle @gol
369 -g -g@var{level} -gtoggle -gcoff -gdwarf-@var{version} @gol
370 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
371 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
372 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
373 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
374 -fdebug-prefix-map=@var{old}=@var{new} @gol
375 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
376 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
377 -p -pg -print-file-name=@var{library} -print-libgcc-file-name @gol
378 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
379 -print-prog-name=@var{program} -print-search-dirs -Q @gol
380 -print-sysroot -print-sysroot-headers-suffix @gol
381 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
382
383 @item Optimization Options
384 @xref{Optimize Options,,Options that Control Optimization}.
385 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
386 -falign-jumps[=@var{n}] @gol
387 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
388 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
389 -fauto-inc-dec -fbranch-probabilities @gol
390 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
391 -fbtr-bb-exclusive -fcaller-saves @gol
392 -fcombine-stack-adjustments -fconserve-stack @gol
393 -fcompare-elim -fcprop-registers -fcrossjumping @gol
394 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
395 -fcx-limited-range @gol
396 -fdata-sections -fdce -fdelayed-branch @gol
397 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
398 -fdevirtualize-at-ltrans -fdse @gol
399 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
400 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
401 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
402 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
403 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
404 -fif-conversion2 -findirect-inlining @gol
405 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
406 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
407 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
408 -fira-algorithm=@var{algorithm} @gol
409 -fira-region=@var{region} -fira-hoist-pressure @gol
410 -fira-loop-pressure -fno-ira-share-save-slots @gol
411 -fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
412 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
413 -fivopts -fkeep-inline-functions -fkeep-static-consts @gol
414 -flive-range-shrinkage @gol
415 -floop-block -floop-interchange -floop-strip-mine @gol
416 -floop-unroll-and-jam -floop-nest-optimize @gol
417 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
418 -flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
419 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
420 -fmove-loop-invariants -fno-branch-count-reg @gol
421 -fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
422 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
423 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
424 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
425 -fomit-frame-pointer -foptimize-sibling-calls @gol
426 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
427 -fprefetch-loop-arrays -fprofile-report @gol
428 -fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
429 -fprofile-generate=@var{path} @gol
430 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
431 -fprofile-reorder-functions @gol
432 -freciprocal-math -free -frename-registers -freorder-blocks @gol
433 -freorder-blocks-and-partition -freorder-functions @gol
434 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
435 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
436 -fsched-spec-load -fsched-spec-load-dangerous @gol
437 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
438 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
439 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
440 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
441 -fschedule-fusion @gol
442 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
443 -fselective-scheduling -fselective-scheduling2 @gol
444 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
445 -fsemantic-interposition @gol
446 -fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
447 -fsplit-ivs-in-unroller -fsplit-wide-types -fssa-phiopt @gol
448 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
449 -fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
450 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
451 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
452 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
453 -ftree-dse -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
454 -ftree-loop-if-convert-stores -ftree-loop-im @gol
455 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
456 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
457 -ftree-loop-vectorize @gol
458 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
459 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
460 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
461 -ftree-vectorize -ftree-vrp @gol
462 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
463 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
464 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
465 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
466 --param @var{name}=@var{value}
467 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
468
469 @item Preprocessor Options
470 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
471 @gccoptlist{-A@var{question}=@var{answer} @gol
472 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
473 -C -dD -dI -dM -dN @gol
474 -D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
475 -idirafter @var{dir} @gol
476 -include @var{file} -imacros @var{file} @gol
477 -iprefix @var{file} -iwithprefix @var{dir} @gol
478 -iwithprefixbefore @var{dir} -isystem @var{dir} @gol
479 -imultilib @var{dir} -isysroot @var{dir} @gol
480 -M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
481 -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
482 -remap -trigraphs -undef -U@var{macro} @gol
483 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
484
485 @item Assembler Option
486 @xref{Assembler Options,,Passing Options to the Assembler}.
487 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
488
489 @item Linker Options
490 @xref{Link Options,,Options for Linking}.
491 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
492 -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
493 -s -static -static-libgcc -static-libstdc++ @gol
494 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
495 -static-libmpx -static-libmpxwrappers @gol
496 -shared -shared-libgcc -symbolic @gol
497 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
498 -u @var{symbol} -z @var{keyword}}
499
500 @item Directory Options
501 @xref{Directory Options,,Options for Directory Search}.
502 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
503 -iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
504 --sysroot=@var{dir} --no-sysroot-suffix}
505
506 @item Machine Dependent Options
507 @xref{Submodel Options,,Hardware Models and Configurations}.
508 @c This list is ordered alphanumerically by subsection name.
509 @c Try and put the significant identifier (CPU or system) first,
510 @c so users have a clue at guessing where the ones they want will be.
511
512 @emph{AArch64 Options}
513 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
514 -mgeneral-regs-only @gol
515 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
516 -mstrict-align @gol
517 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
518 -mtls-dialect=desc -mtls-dialect=traditional @gol
519 -mtls-size=@var{size} @gol
520 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
521 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
522 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
523
524 @emph{Adapteva Epiphany Options}
525 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
526 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
527 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
528 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
529 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
530 -msplit-vecmove-early -m1reg-@var{reg}}
531
532 @emph{ARC Options}
533 @gccoptlist{-mbarrel-shifter @gol
534 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
535 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
536 -mea -mno-mpy -mmul32x16 -mmul64 @gol
537 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
538 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
539 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
540 -mepilogue-cfi -mlong-calls -mmedium-calls -msdata @gol
541 -mucb-mcount -mvolatile-cache @gol
542 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
543 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
544 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
545 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
546 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
547 -mtune=@var{cpu} -mmultcost=@var{num} -munalign-prob-threshold=@var{probability}}
548
549 @emph{ARM Options}
550 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
551 -mabi=@var{name} @gol
552 -mapcs-stack-check -mno-apcs-stack-check @gol
553 -mapcs-float -mno-apcs-float @gol
554 -mapcs-reentrant -mno-apcs-reentrant @gol
555 -msched-prolog -mno-sched-prolog @gol
556 -mlittle-endian -mbig-endian @gol
557 -mfloat-abi=@var{name} @gol
558 -mfp16-format=@var{name}
559 -mthumb-interwork -mno-thumb-interwork @gol
560 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
561 -mtune=@var{name} -mprint-tune-info @gol
562 -mstructure-size-boundary=@var{n} @gol
563 -mabort-on-noreturn @gol
564 -mlong-calls -mno-long-calls @gol
565 -msingle-pic-base -mno-single-pic-base @gol
566 -mpic-register=@var{reg} @gol
567 -mnop-fun-dllimport @gol
568 -mpoke-function-name @gol
569 -mthumb -marm @gol
570 -mtpcs-frame -mtpcs-leaf-frame @gol
571 -mcaller-super-interworking -mcallee-super-interworking @gol
572 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
573 -mword-relocations @gol
574 -mfix-cortex-m3-ldrd @gol
575 -munaligned-access @gol
576 -mneon-for-64bits @gol
577 -mslow-flash-data @gol
578 -masm-syntax-unified @gol
579 -mrestrict-it}
580
581 @emph{AVR Options}
582 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
583 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
584 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
585
586 @emph{Blackfin Options}
587 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
588 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
589 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
590 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
591 -mno-id-shared-library -mshared-library-id=@var{n} @gol
592 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
593 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
594 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
595 -micplb}
596
597 @emph{C6X Options}
598 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
599 -msim -msdata=@var{sdata-type}}
600
601 @emph{CRIS Options}
602 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
603 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
604 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
605 -mstack-align -mdata-align -mconst-align @gol
606 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
607 -melf -maout -melinux -mlinux -sim -sim2 @gol
608 -mmul-bug-workaround -mno-mul-bug-workaround}
609
610 @emph{CR16 Options}
611 @gccoptlist{-mmac @gol
612 -mcr16cplus -mcr16c @gol
613 -msim -mint32 -mbit-ops
614 -mdata-model=@var{model}}
615
616 @emph{Darwin Options}
617 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
618 -arch_only -bind_at_load -bundle -bundle_loader @gol
619 -client_name -compatibility_version -current_version @gol
620 -dead_strip @gol
621 -dependency-file -dylib_file -dylinker_install_name @gol
622 -dynamic -dynamiclib -exported_symbols_list @gol
623 -filelist -flat_namespace -force_cpusubtype_ALL @gol
624 -force_flat_namespace -headerpad_max_install_names @gol
625 -iframework @gol
626 -image_base -init -install_name -keep_private_externs @gol
627 -multi_module -multiply_defined -multiply_defined_unused @gol
628 -noall_load -no_dead_strip_inits_and_terms @gol
629 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
630 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
631 -private_bundle -read_only_relocs -sectalign @gol
632 -sectobjectsymbols -whyload -seg1addr @gol
633 -sectcreate -sectobjectsymbols -sectorder @gol
634 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
635 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
636 -segprot -segs_read_only_addr -segs_read_write_addr @gol
637 -single_module -static -sub_library -sub_umbrella @gol
638 -twolevel_namespace -umbrella -undefined @gol
639 -unexported_symbols_list -weak_reference_mismatches @gol
640 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
641 -mkernel -mone-byte-bool}
642
643 @emph{DEC Alpha Options}
644 @gccoptlist{-mno-fp-regs -msoft-float @gol
645 -mieee -mieee-with-inexact -mieee-conformant @gol
646 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
647 -mtrap-precision=@var{mode} -mbuild-constants @gol
648 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
649 -mbwx -mmax -mfix -mcix @gol
650 -mfloat-vax -mfloat-ieee @gol
651 -mexplicit-relocs -msmall-data -mlarge-data @gol
652 -msmall-text -mlarge-text @gol
653 -mmemory-latency=@var{time}}
654
655 @emph{FR30 Options}
656 @gccoptlist{-msmall-model -mno-lsim}
657
658 @emph{FT32 Options}
659 @gccoptlist{-msim -mlra}
660
661 @emph{FRV Options}
662 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
663 -mhard-float -msoft-float @gol
664 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
665 -mdouble -mno-double @gol
666 -mmedia -mno-media -mmuladd -mno-muladd @gol
667 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
668 -mlinked-fp -mlong-calls -malign-labels @gol
669 -mlibrary-pic -macc-4 -macc-8 @gol
670 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
671 -moptimize-membar -mno-optimize-membar @gol
672 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
673 -mvliw-branch -mno-vliw-branch @gol
674 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
675 -mno-nested-cond-exec -mtomcat-stats @gol
676 -mTLS -mtls @gol
677 -mcpu=@var{cpu}}
678
679 @emph{GNU/Linux Options}
680 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
681 -tno-android-cc -tno-android-ld}
682
683 @emph{H8/300 Options}
684 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
685
686 @emph{HPPA Options}
687 @gccoptlist{-march=@var{architecture-type} @gol
688 -mdisable-fpregs -mdisable-indexing @gol
689 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
690 -mfixed-range=@var{register-range} @gol
691 -mjump-in-delay -mlinker-opt -mlong-calls @gol
692 -mlong-load-store -mno-disable-fpregs @gol
693 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
694 -mno-jump-in-delay -mno-long-load-store @gol
695 -mno-portable-runtime -mno-soft-float @gol
696 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
697 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
698 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
699 -munix=@var{unix-std} -nolibdld -static -threads}
700
701 @emph{IA-64 Options}
702 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
703 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
704 -mconstant-gp -mauto-pic -mfused-madd @gol
705 -minline-float-divide-min-latency @gol
706 -minline-float-divide-max-throughput @gol
707 -mno-inline-float-divide @gol
708 -minline-int-divide-min-latency @gol
709 -minline-int-divide-max-throughput @gol
710 -mno-inline-int-divide @gol
711 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
712 -mno-inline-sqrt @gol
713 -mdwarf2-asm -mearly-stop-bits @gol
714 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
715 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
716 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
717 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
718 -msched-spec-ldc -msched-spec-control-ldc @gol
719 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
720 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
721 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
722 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
723
724 @emph{LM32 Options}
725 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
726 -msign-extend-enabled -muser-enabled}
727
728 @emph{M32R/D Options}
729 @gccoptlist{-m32r2 -m32rx -m32r @gol
730 -mdebug @gol
731 -malign-loops -mno-align-loops @gol
732 -missue-rate=@var{number} @gol
733 -mbranch-cost=@var{number} @gol
734 -mmodel=@var{code-size-model-type} @gol
735 -msdata=@var{sdata-type} @gol
736 -mno-flush-func -mflush-func=@var{name} @gol
737 -mno-flush-trap -mflush-trap=@var{number} @gol
738 -G @var{num}}
739
740 @emph{M32C Options}
741 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
742
743 @emph{M680x0 Options}
744 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
745 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
746 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
747 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
748 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
749 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
750 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
751 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
752 -mxgot -mno-xgot}
753
754 @emph{MCore Options}
755 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
756 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
757 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
758 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
759 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
760
761 @emph{MeP Options}
762 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
763 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
764 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
765 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
766 -mtiny=@var{n}}
767
768 @emph{MicroBlaze Options}
769 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
770 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
771 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
772 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
773 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
774
775 @emph{MIPS Options}
776 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
777 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
778 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
779 -mips16 -mno-mips16 -mflip-mips16 @gol
780 -minterlink-compressed -mno-interlink-compressed @gol
781 -minterlink-mips16 -mno-interlink-mips16 @gol
782 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
783 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
784 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
785 -mno-float -msingle-float -mdouble-float @gol
786 -modd-spreg -mno-odd-spreg @gol
787 -mcompact-branches=@var{policy} @gol
788 -mabs=@var{mode} -mnan=@var{encoding} @gol
789 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
790 -mmcu -mmno-mcu @gol
791 -meva -mno-eva @gol
792 -mvirt -mno-virt @gol
793 -mxpa -mno-xpa @gol
794 -mmicromips -mno-micromips @gol
795 -mfpu=@var{fpu-type} @gol
796 -msmartmips -mno-smartmips @gol
797 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
798 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
799 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
800 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
801 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
802 -membedded-data -mno-embedded-data @gol
803 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
804 -mcode-readable=@var{setting} @gol
805 -msplit-addresses -mno-split-addresses @gol
806 -mexplicit-relocs -mno-explicit-relocs @gol
807 -mcheck-zero-division -mno-check-zero-division @gol
808 -mdivide-traps -mdivide-breaks @gol
809 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
810 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
811 -mfix-24k -mno-fix-24k @gol
812 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
813 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
814 -mfix-vr4120 -mno-fix-vr4120 @gol
815 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
816 -mflush-func=@var{func} -mno-flush-func @gol
817 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
818 -mfp-exceptions -mno-fp-exceptions @gol
819 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
820 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address}
821
822 @emph{MMIX Options}
823 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
824 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
825 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
826 -mno-base-addresses -msingle-exit -mno-single-exit}
827
828 @emph{MN10300 Options}
829 @gccoptlist{-mmult-bug -mno-mult-bug @gol
830 -mno-am33 -mam33 -mam33-2 -mam34 @gol
831 -mtune=@var{cpu-type} @gol
832 -mreturn-pointer-on-d0 @gol
833 -mno-crt0 -mrelax -mliw -msetlb}
834
835 @emph{Moxie Options}
836 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
837
838 @emph{MSP430 Options}
839 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
840 -mcode-region= -mdata-region= @gol
841 -mhwmult= -minrt}
842
843 @emph{NDS32 Options}
844 @gccoptlist{-mbig-endian -mlittle-endian @gol
845 -mreduced-regs -mfull-regs @gol
846 -mcmov -mno-cmov @gol
847 -mperf-ext -mno-perf-ext @gol
848 -mv3push -mno-v3push @gol
849 -m16bit -mno-16bit @gol
850 -misr-vector-size=@var{num} @gol
851 -mcache-block-size=@var{num} @gol
852 -march=@var{arch} @gol
853 -mcmodel=@var{code-model} @gol
854 -mctor-dtor -mrelax}
855
856 @emph{Nios II Options}
857 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
858 -mel -meb @gol
859 -mno-bypass-cache -mbypass-cache @gol
860 -mno-cache-volatile -mcache-volatile @gol
861 -mno-fast-sw-div -mfast-sw-div @gol
862 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
863 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
864 -mcustom-fpu-cfg=@var{name} @gol
865 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
866 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
867
868 @emph{Nvidia PTX Options}
869 @gccoptlist{-m32 -m64 -mmainkernel}
870
871 @emph{PDP-11 Options}
872 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
873 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
874 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
875 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
876 -mbranch-expensive -mbranch-cheap @gol
877 -munix-asm -mdec-asm}
878
879 @emph{picoChip Options}
880 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
881 -msymbol-as-address -mno-inefficient-warnings}
882
883 @emph{PowerPC Options}
884 See RS/6000 and PowerPC Options.
885
886 @emph{RL78 Options}
887 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
888 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
889 -m64bit-doubles -m32bit-doubles}
890
891 @emph{RS/6000 and PowerPC Options}
892 @gccoptlist{-mcpu=@var{cpu-type} @gol
893 -mtune=@var{cpu-type} @gol
894 -mcmodel=@var{code-model} @gol
895 -mpowerpc64 @gol
896 -maltivec -mno-altivec @gol
897 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
898 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
899 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
900 -mfprnd -mno-fprnd @gol
901 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
902 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
903 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
904 -malign-power -malign-natural @gol
905 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
906 -msingle-float -mdouble-float -msimple-fpu @gol
907 -mstring -mno-string -mupdate -mno-update @gol
908 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
909 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
910 -mstrict-align -mno-strict-align -mrelocatable @gol
911 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
912 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
913 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
914 -mprioritize-restricted-insns=@var{priority} @gol
915 -msched-costly-dep=@var{dependence_type} @gol
916 -minsert-sched-nops=@var{scheme} @gol
917 -mcall-sysv -mcall-netbsd @gol
918 -maix-struct-return -msvr4-struct-return @gol
919 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
920 -mblock-move-inline-limit=@var{num} @gol
921 -misel -mno-isel @gol
922 -misel=yes -misel=no @gol
923 -mspe -mno-spe @gol
924 -mspe=yes -mspe=no @gol
925 -mpaired @gol
926 -mgen-cell-microcode -mwarn-cell-microcode @gol
927 -mvrsave -mno-vrsave @gol
928 -mmulhw -mno-mulhw @gol
929 -mdlmzb -mno-dlmzb @gol
930 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
931 -mprototype -mno-prototype @gol
932 -msim -mmvme -mads -myellowknife -memb -msdata @gol
933 -msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
934 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
935 -mno-recip-precision @gol
936 -mveclibabi=@var{type} -mfriz -mno-friz @gol
937 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
938 -msave-toc-indirect -mno-save-toc-indirect @gol
939 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
940 -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
941 -mquad-memory -mno-quad-memory @gol
942 -mquad-memory-atomic -mno-quad-memory-atomic @gol
943 -mcompat-align-parm -mno-compat-align-parm @gol
944 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
945 -mupper-regs -mno-upper-regs}
946
947 @emph{RX Options}
948 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
949 -mcpu=@gol
950 -mbig-endian-data -mlittle-endian-data @gol
951 -msmall-data @gol
952 -msim -mno-sim@gol
953 -mas100-syntax -mno-as100-syntax@gol
954 -mrelax@gol
955 -mmax-constant-size=@gol
956 -mint-register=@gol
957 -mpid@gol
958 -mallow-string-insns -mno-allow-string-insns@gol
959 -mno-warn-multiple-fast-interrupts@gol
960 -msave-acc-in-interrupts}
961
962 @emph{S/390 and zSeries Options}
963 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
964 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
965 -mlong-double-64 -mlong-double-128 @gol
966 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
967 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
968 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
969 -mhtm -mvx -mzvector @gol
970 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
971 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
972 -mhotpatch=@var{halfwords},@var{halfwords}}
973
974 @emph{Score Options}
975 @gccoptlist{-meb -mel @gol
976 -mnhwloop @gol
977 -muls @gol
978 -mmac @gol
979 -mscore5 -mscore5u -mscore7 -mscore7d}
980
981 @emph{SH Options}
982 @gccoptlist{-m1 -m2 -m2e @gol
983 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
984 -m3 -m3e @gol
985 -m4-nofpu -m4-single-only -m4-single -m4 @gol
986 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
987 -mb -ml -mdalign -mrelax @gol
988 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
989 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
990 -mspace -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
991 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
992 -maccumulate-outgoing-args @gol
993 -matomic-model=@var{atomic-model} @gol
994 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
995 -mcbranch-force-delay-slot @gol
996 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
997 -mpretend-cmove -mtas}
998
999 @emph{Solaris 2 Options}
1000 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1001 -pthreads -pthread}
1002
1003 @emph{SPARC Options}
1004 @gccoptlist{-mcpu=@var{cpu-type} @gol
1005 -mtune=@var{cpu-type} @gol
1006 -mcmodel=@var{code-model} @gol
1007 -mmemory-model=@var{mem-model} @gol
1008 -m32 -m64 -mapp-regs -mno-app-regs @gol
1009 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1010 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1011 -mhard-quad-float -msoft-quad-float @gol
1012 -mstack-bias -mno-stack-bias @gol
1013 -munaligned-doubles -mno-unaligned-doubles @gol
1014 -muser-mode -mno-user-mode @gol
1015 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1016 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1017 -mcbcond -mno-cbcond @gol
1018 -mfmaf -mno-fmaf -mpopc -mno-popc @gol
1019 -mfix-at697f -mfix-ut699}
1020
1021 @emph{SPU Options}
1022 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1023 -msafe-dma -munsafe-dma @gol
1024 -mbranch-hints @gol
1025 -msmall-mem -mlarge-mem -mstdmain @gol
1026 -mfixed-range=@var{register-range} @gol
1027 -mea32 -mea64 @gol
1028 -maddress-space-conversion -mno-address-space-conversion @gol
1029 -mcache-size=@var{cache-size} @gol
1030 -matomic-updates -mno-atomic-updates}
1031
1032 @emph{System V Options}
1033 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1034
1035 @emph{TILE-Gx Options}
1036 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1037 -mcmodel=@var{code-model}}
1038
1039 @emph{TILEPro Options}
1040 @gccoptlist{-mcpu=@var{cpu} -m32}
1041
1042 @emph{V850 Options}
1043 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1044 -mprolog-function -mno-prolog-function -mspace @gol
1045 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1046 -mapp-regs -mno-app-regs @gol
1047 -mdisable-callt -mno-disable-callt @gol
1048 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1049 -mv850e -mv850 -mv850e3v5 @gol
1050 -mloop @gol
1051 -mrelax @gol
1052 -mlong-jumps @gol
1053 -msoft-float @gol
1054 -mhard-float @gol
1055 -mgcc-abi @gol
1056 -mrh850-abi @gol
1057 -mbig-switch}
1058
1059 @emph{VAX Options}
1060 @gccoptlist{-mg -mgnu -munix}
1061
1062 @emph{Visium Options}
1063 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1064 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1065
1066 @emph{VMS Options}
1067 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1068 -mpointer-size=@var{size}}
1069
1070 @emph{VxWorks Options}
1071 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1072 -Xbind-lazy -Xbind-now}
1073
1074 @emph{x86 Options}
1075 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1076 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1077 -mfpmath=@var{unit} @gol
1078 -masm=@var{dialect} -mno-fancy-math-387 @gol
1079 -mno-fp-ret-in-387 -msoft-float @gol
1080 -mno-wide-multiply -mrtd -malign-double @gol
1081 -mpreferred-stack-boundary=@var{num} @gol
1082 -mincoming-stack-boundary=@var{num} @gol
1083 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1084 -mrecip -mrecip=@var{opt} @gol
1085 -mvzeroupper -mprefer-avx128 @gol
1086 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1087 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha @gol
1088 -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1 @gol
1089 -mclflushopt -mxsavec -mxsaves @gol
1090 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1091 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mthreads @gol
1092 -mno-align-stringops -minline-all-stringops @gol
1093 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1094 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1095 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1096 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1097 -mregparm=@var{num} -msseregparm @gol
1098 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1099 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1100 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1101 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1102 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1103 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1104 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1105 -malign-data=@var{type} -mstack-protector-guard=@var{guard}}
1106
1107 @emph{x86 Windows Options}
1108 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1109 -mnop-fun-dllimport -mthread @gol
1110 -municode -mwin32 -mwindows -fno-set-stack-executable}
1111
1112 @emph{Xstormy16 Options}
1113 @gccoptlist{-msim}
1114
1115 @emph{Xtensa Options}
1116 @gccoptlist{-mconst16 -mno-const16 @gol
1117 -mfused-madd -mno-fused-madd @gol
1118 -mforce-no-pic @gol
1119 -mserialize-volatile -mno-serialize-volatile @gol
1120 -mtext-section-literals -mno-text-section-literals @gol
1121 -mauto-litpools -mno-auto-litpools @gol
1122 -mtarget-align -mno-target-align @gol
1123 -mlongcalls -mno-longcalls}
1124
1125 @emph{zSeries Options}
1126 See S/390 and zSeries Options.
1127
1128 @item Code Generation Options
1129 @xref{Code Gen Options,,Options for Code Generation Conventions}.
1130 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
1131 -ffixed-@var{reg} -fexceptions @gol
1132 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
1133 -fasynchronous-unwind-tables @gol
1134 -fno-gnu-unique @gol
1135 -finhibit-size-directive -finstrument-functions @gol
1136 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1137 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1138 -fno-common -fno-ident @gol
1139 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
1140 -fno-jump-tables @gol
1141 -frecord-gcc-switches @gol
1142 -freg-struct-return -fshort-enums @gol
1143 -fshort-double -fshort-wchar @gol
1144 -fverbose-asm -fpack-struct[=@var{n}] -fstack-check @gol
1145 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
1146 -fno-stack-limit -fsplit-stack @gol
1147 -fleading-underscore -ftls-model=@var{model} @gol
1148 -fstack-reuse=@var{reuse_level} @gol
1149 -ftrapv -fwrapv -fbounds-check @gol
1150 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1151 -fstrict-volatile-bitfields -fsync-libcalls}
1152 @end table
1153
1154
1155 @node Overall Options
1156 @section Options Controlling the Kind of Output
1157
1158 Compilation can involve up to four stages: preprocessing, compilation
1159 proper, assembly and linking, always in that order. GCC is capable of
1160 preprocessing and compiling several files either into several
1161 assembler input files, or into one assembler input file; then each
1162 assembler input file produces an object file, and linking combines all
1163 the object files (those newly compiled, and those specified as input)
1164 into an executable file.
1165
1166 @cindex file name suffix
1167 For any given input file, the file name suffix determines what kind of
1168 compilation is done:
1169
1170 @table @gcctabopt
1171 @item @var{file}.c
1172 C source code that must be preprocessed.
1173
1174 @item @var{file}.i
1175 C source code that should not be preprocessed.
1176
1177 @item @var{file}.ii
1178 C++ source code that should not be preprocessed.
1179
1180 @item @var{file}.m
1181 Objective-C source code. Note that you must link with the @file{libobjc}
1182 library to make an Objective-C program work.
1183
1184 @item @var{file}.mi
1185 Objective-C source code that should not be preprocessed.
1186
1187 @item @var{file}.mm
1188 @itemx @var{file}.M
1189 Objective-C++ source code. Note that you must link with the @file{libobjc}
1190 library to make an Objective-C++ program work. Note that @samp{.M} refers
1191 to a literal capital M@.
1192
1193 @item @var{file}.mii
1194 Objective-C++ source code that should not be preprocessed.
1195
1196 @item @var{file}.h
1197 C, C++, Objective-C or Objective-C++ header file to be turned into a
1198 precompiled header (default), or C, C++ header file to be turned into an
1199 Ada spec (via the @option{-fdump-ada-spec} switch).
1200
1201 @item @var{file}.cc
1202 @itemx @var{file}.cp
1203 @itemx @var{file}.cxx
1204 @itemx @var{file}.cpp
1205 @itemx @var{file}.CPP
1206 @itemx @var{file}.c++
1207 @itemx @var{file}.C
1208 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1209 the last two letters must both be literally @samp{x}. Likewise,
1210 @samp{.C} refers to a literal capital C@.
1211
1212 @item @var{file}.mm
1213 @itemx @var{file}.M
1214 Objective-C++ source code that must be preprocessed.
1215
1216 @item @var{file}.mii
1217 Objective-C++ source code that should not be preprocessed.
1218
1219 @item @var{file}.hh
1220 @itemx @var{file}.H
1221 @itemx @var{file}.hp
1222 @itemx @var{file}.hxx
1223 @itemx @var{file}.hpp
1224 @itemx @var{file}.HPP
1225 @itemx @var{file}.h++
1226 @itemx @var{file}.tcc
1227 C++ header file to be turned into a precompiled header or Ada spec.
1228
1229 @item @var{file}.f
1230 @itemx @var{file}.for
1231 @itemx @var{file}.ftn
1232 Fixed form Fortran source code that should not be preprocessed.
1233
1234 @item @var{file}.F
1235 @itemx @var{file}.FOR
1236 @itemx @var{file}.fpp
1237 @itemx @var{file}.FPP
1238 @itemx @var{file}.FTN
1239 Fixed form Fortran source code that must be preprocessed (with the traditional
1240 preprocessor).
1241
1242 @item @var{file}.f90
1243 @itemx @var{file}.f95
1244 @itemx @var{file}.f03
1245 @itemx @var{file}.f08
1246 Free form Fortran source code that should not be preprocessed.
1247
1248 @item @var{file}.F90
1249 @itemx @var{file}.F95
1250 @itemx @var{file}.F03
1251 @itemx @var{file}.F08
1252 Free form Fortran source code that must be preprocessed (with the
1253 traditional preprocessor).
1254
1255 @item @var{file}.go
1256 Go source code.
1257
1258 @c FIXME: Descriptions of Java file types.
1259 @c @var{file}.java
1260 @c @var{file}.class
1261 @c @var{file}.zip
1262 @c @var{file}.jar
1263
1264 @item @var{file}.ads
1265 Ada source code file that contains a library unit declaration (a
1266 declaration of a package, subprogram, or generic, or a generic
1267 instantiation), or a library unit renaming declaration (a package,
1268 generic, or subprogram renaming declaration). Such files are also
1269 called @dfn{specs}.
1270
1271 @item @var{file}.adb
1272 Ada source code file containing a library unit body (a subprogram or
1273 package body). Such files are also called @dfn{bodies}.
1274
1275 @c GCC also knows about some suffixes for languages not yet included:
1276 @c Pascal:
1277 @c @var{file}.p
1278 @c @var{file}.pas
1279 @c Ratfor:
1280 @c @var{file}.r
1281
1282 @item @var{file}.s
1283 Assembler code.
1284
1285 @item @var{file}.S
1286 @itemx @var{file}.sx
1287 Assembler code that must be preprocessed.
1288
1289 @item @var{other}
1290 An object file to be fed straight into linking.
1291 Any file name with no recognized suffix is treated this way.
1292 @end table
1293
1294 @opindex x
1295 You can specify the input language explicitly with the @option{-x} option:
1296
1297 @table @gcctabopt
1298 @item -x @var{language}
1299 Specify explicitly the @var{language} for the following input files
1300 (rather than letting the compiler choose a default based on the file
1301 name suffix). This option applies to all following input files until
1302 the next @option{-x} option. Possible values for @var{language} are:
1303 @smallexample
1304 c c-header cpp-output
1305 c++ c++-header c++-cpp-output
1306 objective-c objective-c-header objective-c-cpp-output
1307 objective-c++ objective-c++-header objective-c++-cpp-output
1308 assembler assembler-with-cpp
1309 ada
1310 f77 f77-cpp-input f95 f95-cpp-input
1311 go
1312 java
1313 @end smallexample
1314
1315 @item -x none
1316 Turn off any specification of a language, so that subsequent files are
1317 handled according to their file name suffixes (as they are if @option{-x}
1318 has not been used at all).
1319
1320 @item -pass-exit-codes
1321 @opindex pass-exit-codes
1322 Normally the @command{gcc} program exits with the code of 1 if any
1323 phase of the compiler returns a non-success return code. If you specify
1324 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1325 the numerically highest error produced by any phase returning an error
1326 indication. The C, C++, and Fortran front ends return 4 if an internal
1327 compiler error is encountered.
1328 @end table
1329
1330 If you only want some of the stages of compilation, you can use
1331 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1332 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1333 @command{gcc} is to stop. Note that some combinations (for example,
1334 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1335
1336 @table @gcctabopt
1337 @item -c
1338 @opindex c
1339 Compile or assemble the source files, but do not link. The linking
1340 stage simply is not done. The ultimate output is in the form of an
1341 object file for each source file.
1342
1343 By default, the object file name for a source file is made by replacing
1344 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1345
1346 Unrecognized input files, not requiring compilation or assembly, are
1347 ignored.
1348
1349 @item -S
1350 @opindex S
1351 Stop after the stage of compilation proper; do not assemble. The output
1352 is in the form of an assembler code file for each non-assembler input
1353 file specified.
1354
1355 By default, the assembler file name for a source file is made by
1356 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1357
1358 Input files that don't require compilation are ignored.
1359
1360 @item -E
1361 @opindex E
1362 Stop after the preprocessing stage; do not run the compiler proper. The
1363 output is in the form of preprocessed source code, which is sent to the
1364 standard output.
1365
1366 Input files that don't require preprocessing are ignored.
1367
1368 @cindex output file option
1369 @item -o @var{file}
1370 @opindex o
1371 Place output in file @var{file}. This applies to whatever
1372 sort of output is being produced, whether it be an executable file,
1373 an object file, an assembler file or preprocessed C code.
1374
1375 If @option{-o} is not specified, the default is to put an executable
1376 file in @file{a.out}, the object file for
1377 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1378 assembler file in @file{@var{source}.s}, a precompiled header file in
1379 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1380 standard output.
1381
1382 @item -v
1383 @opindex v
1384 Print (on standard error output) the commands executed to run the stages
1385 of compilation. Also print the version number of the compiler driver
1386 program and of the preprocessor and the compiler proper.
1387
1388 @item -###
1389 @opindex ###
1390 Like @option{-v} except the commands are not executed and arguments
1391 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1392 This is useful for shell scripts to capture the driver-generated command lines.
1393
1394 @item -pipe
1395 @opindex pipe
1396 Use pipes rather than temporary files for communication between the
1397 various stages of compilation. This fails to work on some systems where
1398 the assembler is unable to read from a pipe; but the GNU assembler has
1399 no trouble.
1400
1401 @item --help
1402 @opindex help
1403 Print (on the standard output) a description of the command-line options
1404 understood by @command{gcc}. If the @option{-v} option is also specified
1405 then @option{--help} is also passed on to the various processes
1406 invoked by @command{gcc}, so that they can display the command-line options
1407 they accept. If the @option{-Wextra} option has also been specified
1408 (prior to the @option{--help} option), then command-line options that
1409 have no documentation associated with them are also displayed.
1410
1411 @item --target-help
1412 @opindex target-help
1413 Print (on the standard output) a description of target-specific command-line
1414 options for each tool. For some targets extra target-specific
1415 information may also be printed.
1416
1417 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1418 Print (on the standard output) a description of the command-line
1419 options understood by the compiler that fit into all specified classes
1420 and qualifiers. These are the supported classes:
1421
1422 @table @asis
1423 @item @samp{optimizers}
1424 Display all of the optimization options supported by the
1425 compiler.
1426
1427 @item @samp{warnings}
1428 Display all of the options controlling warning messages
1429 produced by the compiler.
1430
1431 @item @samp{target}
1432 Display target-specific options. Unlike the
1433 @option{--target-help} option however, target-specific options of the
1434 linker and assembler are not displayed. This is because those
1435 tools do not currently support the extended @option{--help=} syntax.
1436
1437 @item @samp{params}
1438 Display the values recognized by the @option{--param}
1439 option.
1440
1441 @item @var{language}
1442 Display the options supported for @var{language}, where
1443 @var{language} is the name of one of the languages supported in this
1444 version of GCC@.
1445
1446 @item @samp{common}
1447 Display the options that are common to all languages.
1448 @end table
1449
1450 These are the supported qualifiers:
1451
1452 @table @asis
1453 @item @samp{undocumented}
1454 Display only those options that are undocumented.
1455
1456 @item @samp{joined}
1457 Display options taking an argument that appears after an equal
1458 sign in the same continuous piece of text, such as:
1459 @samp{--help=target}.
1460
1461 @item @samp{separate}
1462 Display options taking an argument that appears as a separate word
1463 following the original option, such as: @samp{-o output-file}.
1464 @end table
1465
1466 Thus for example to display all the undocumented target-specific
1467 switches supported by the compiler, use:
1468
1469 @smallexample
1470 --help=target,undocumented
1471 @end smallexample
1472
1473 The sense of a qualifier can be inverted by prefixing it with the
1474 @samp{^} character, so for example to display all binary warning
1475 options (i.e., ones that are either on or off and that do not take an
1476 argument) that have a description, use:
1477
1478 @smallexample
1479 --help=warnings,^joined,^undocumented
1480 @end smallexample
1481
1482 The argument to @option{--help=} should not consist solely of inverted
1483 qualifiers.
1484
1485 Combining several classes is possible, although this usually
1486 restricts the output so much that there is nothing to display. One
1487 case where it does work, however, is when one of the classes is
1488 @var{target}. For example, to display all the target-specific
1489 optimization options, use:
1490
1491 @smallexample
1492 --help=target,optimizers
1493 @end smallexample
1494
1495 The @option{--help=} option can be repeated on the command line. Each
1496 successive use displays its requested class of options, skipping
1497 those that have already been displayed.
1498
1499 If the @option{-Q} option appears on the command line before the
1500 @option{--help=} option, then the descriptive text displayed by
1501 @option{--help=} is changed. Instead of describing the displayed
1502 options, an indication is given as to whether the option is enabled,
1503 disabled or set to a specific value (assuming that the compiler
1504 knows this at the point where the @option{--help=} option is used).
1505
1506 Here is a truncated example from the ARM port of @command{gcc}:
1507
1508 @smallexample
1509 % gcc -Q -mabi=2 --help=target -c
1510 The following options are target specific:
1511 -mabi= 2
1512 -mabort-on-noreturn [disabled]
1513 -mapcs [disabled]
1514 @end smallexample
1515
1516 The output is sensitive to the effects of previous command-line
1517 options, so for example it is possible to find out which optimizations
1518 are enabled at @option{-O2} by using:
1519
1520 @smallexample
1521 -Q -O2 --help=optimizers
1522 @end smallexample
1523
1524 Alternatively you can discover which binary optimizations are enabled
1525 by @option{-O3} by using:
1526
1527 @smallexample
1528 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1529 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1530 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1531 @end smallexample
1532
1533 @item -no-canonical-prefixes
1534 @opindex no-canonical-prefixes
1535 Do not expand any symbolic links, resolve references to @samp{/../}
1536 or @samp{/./}, or make the path absolute when generating a relative
1537 prefix.
1538
1539 @item --version
1540 @opindex version
1541 Display the version number and copyrights of the invoked GCC@.
1542
1543 @item -wrapper
1544 @opindex wrapper
1545 Invoke all subcommands under a wrapper program. The name of the
1546 wrapper program and its parameters are passed as a comma separated
1547 list.
1548
1549 @smallexample
1550 gcc -c t.c -wrapper gdb,--args
1551 @end smallexample
1552
1553 @noindent
1554 This invokes all subprograms of @command{gcc} under
1555 @samp{gdb --args}, thus the invocation of @command{cc1} is
1556 @samp{gdb --args cc1 @dots{}}.
1557
1558 @item -fplugin=@var{name}.so
1559 @opindex fplugin
1560 Load the plugin code in file @var{name}.so, assumed to be a
1561 shared object to be dlopen'd by the compiler. The base name of
1562 the shared object file is used to identify the plugin for the
1563 purposes of argument parsing (See
1564 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1565 Each plugin should define the callback functions specified in the
1566 Plugins API.
1567
1568 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1569 @opindex fplugin-arg
1570 Define an argument called @var{key} with a value of @var{value}
1571 for the plugin called @var{name}.
1572
1573 @item -fdump-ada-spec@r{[}-slim@r{]}
1574 @opindex fdump-ada-spec
1575 For C and C++ source and include files, generate corresponding Ada specs.
1576 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1577 GNAT User's Guide}, which provides detailed documentation on this feature.
1578
1579 @item -fada-spec-parent=@var{unit}
1580 @opindex fada-spec-parent
1581 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1582 Ada specs as child units of parent @var{unit}.
1583
1584 @item -fdump-go-spec=@var{file}
1585 @opindex fdump-go-spec
1586 For input files in any language, generate corresponding Go
1587 declarations in @var{file}. This generates Go @code{const},
1588 @code{type}, @code{var}, and @code{func} declarations which may be a
1589 useful way to start writing a Go interface to code written in some
1590 other language.
1591
1592 @include @value{srcdir}/../libiberty/at-file.texi
1593 @end table
1594
1595 @node Invoking G++
1596 @section Compiling C++ Programs
1597
1598 @cindex suffixes for C++ source
1599 @cindex C++ source file suffixes
1600 C++ source files conventionally use one of the suffixes @samp{.C},
1601 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1602 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1603 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1604 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1605 files with these names and compiles them as C++ programs even if you
1606 call the compiler the same way as for compiling C programs (usually
1607 with the name @command{gcc}).
1608
1609 @findex g++
1610 @findex c++
1611 However, the use of @command{gcc} does not add the C++ library.
1612 @command{g++} is a program that calls GCC and automatically specifies linking
1613 against the C++ library. It treats @samp{.c},
1614 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1615 files unless @option{-x} is used. This program is also useful when
1616 precompiling a C header file with a @samp{.h} extension for use in C++
1617 compilations. On many systems, @command{g++} is also installed with
1618 the name @command{c++}.
1619
1620 @cindex invoking @command{g++}
1621 When you compile C++ programs, you may specify many of the same
1622 command-line options that you use for compiling programs in any
1623 language; or command-line options meaningful for C and related
1624 languages; or options that are meaningful only for C++ programs.
1625 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1626 explanations of options for languages related to C@.
1627 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1628 explanations of options that are meaningful only for C++ programs.
1629
1630 @node C Dialect Options
1631 @section Options Controlling C Dialect
1632 @cindex dialect options
1633 @cindex language dialect options
1634 @cindex options, dialect
1635
1636 The following options control the dialect of C (or languages derived
1637 from C, such as C++, Objective-C and Objective-C++) that the compiler
1638 accepts:
1639
1640 @table @gcctabopt
1641 @cindex ANSI support
1642 @cindex ISO support
1643 @item -ansi
1644 @opindex ansi
1645 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1646 equivalent to @option{-std=c++98}.
1647
1648 This turns off certain features of GCC that are incompatible with ISO
1649 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1650 such as the @code{asm} and @code{typeof} keywords, and
1651 predefined macros such as @code{unix} and @code{vax} that identify the
1652 type of system you are using. It also enables the undesirable and
1653 rarely used ISO trigraph feature. For the C compiler,
1654 it disables recognition of C++ style @samp{//} comments as well as
1655 the @code{inline} keyword.
1656
1657 The alternate keywords @code{__asm__}, @code{__extension__},
1658 @code{__inline__} and @code{__typeof__} continue to work despite
1659 @option{-ansi}. You would not want to use them in an ISO C program, of
1660 course, but it is useful to put them in header files that might be included
1661 in compilations done with @option{-ansi}. Alternate predefined macros
1662 such as @code{__unix__} and @code{__vax__} are also available, with or
1663 without @option{-ansi}.
1664
1665 The @option{-ansi} option does not cause non-ISO programs to be
1666 rejected gratuitously. For that, @option{-Wpedantic} is required in
1667 addition to @option{-ansi}. @xref{Warning Options}.
1668
1669 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1670 option is used. Some header files may notice this macro and refrain
1671 from declaring certain functions or defining certain macros that the
1672 ISO standard doesn't call for; this is to avoid interfering with any
1673 programs that might use these names for other things.
1674
1675 Functions that are normally built in but do not have semantics
1676 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1677 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1678 built-in functions provided by GCC}, for details of the functions
1679 affected.
1680
1681 @item -std=
1682 @opindex std
1683 Determine the language standard. @xref{Standards,,Language Standards
1684 Supported by GCC}, for details of these standard versions. This option
1685 is currently only supported when compiling C or C++.
1686
1687 The compiler can accept several base standards, such as @samp{c90} or
1688 @samp{c++98}, and GNU dialects of those standards, such as
1689 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1690 compiler accepts all programs following that standard plus those
1691 using GNU extensions that do not contradict it. For example,
1692 @option{-std=c90} turns off certain features of GCC that are
1693 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1694 keywords, but not other GNU extensions that do not have a meaning in
1695 ISO C90, such as omitting the middle term of a @code{?:}
1696 expression. On the other hand, when a GNU dialect of a standard is
1697 specified, all features supported by the compiler are enabled, even when
1698 those features change the meaning of the base standard. As a result, some
1699 strict-conforming programs may be rejected. The particular standard
1700 is used by @option{-Wpedantic} to identify which features are GNU
1701 extensions given that version of the standard. For example
1702 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1703 comments, while @option{-std=gnu99 -Wpedantic} does not.
1704
1705 A value for this option must be provided; possible values are
1706
1707 @table @samp
1708 @item c90
1709 @itemx c89
1710 @itemx iso9899:1990
1711 Support all ISO C90 programs (certain GNU extensions that conflict
1712 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1713
1714 @item iso9899:199409
1715 ISO C90 as modified in amendment 1.
1716
1717 @item c99
1718 @itemx c9x
1719 @itemx iso9899:1999
1720 @itemx iso9899:199x
1721 ISO C99. This standard is substantially completely supported, modulo
1722 bugs and floating-point issues
1723 (mainly but not entirely relating to optional C99 features from
1724 Annexes F and G). See
1725 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1726 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1727
1728 @item c11
1729 @itemx c1x
1730 @itemx iso9899:2011
1731 ISO C11, the 2011 revision of the ISO C standard. This standard is
1732 substantially completely supported, modulo bugs, floating-point issues
1733 (mainly but not entirely relating to optional C11 features from
1734 Annexes F and G) and the optional Annexes K (Bounds-checking
1735 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1736
1737 @item gnu90
1738 @itemx gnu89
1739 GNU dialect of ISO C90 (including some C99 features).
1740
1741 @item gnu99
1742 @itemx gnu9x
1743 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1744
1745 @item gnu11
1746 @itemx gnu1x
1747 GNU dialect of ISO C11. This is the default for C code.
1748 The name @samp{gnu1x} is deprecated.
1749
1750 @item c++98
1751 @itemx c++03
1752 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1753 additional defect reports. Same as @option{-ansi} for C++ code.
1754
1755 @item gnu++98
1756 @itemx gnu++03
1757 GNU dialect of @option{-std=c++98}. This is the default for
1758 C++ code.
1759
1760 @item c++11
1761 @itemx c++0x
1762 The 2011 ISO C++ standard plus amendments.
1763 The name @samp{c++0x} is deprecated.
1764
1765 @item gnu++11
1766 @itemx gnu++0x
1767 GNU dialect of @option{-std=c++11}.
1768 The name @samp{gnu++0x} is deprecated.
1769
1770 @item c++14
1771 @itemx c++1y
1772 The 2014 ISO C++ standard plus amendments.
1773 The name @samp{c++1y} is deprecated.
1774
1775 @item gnu++14
1776 @itemx gnu++1y
1777 GNU dialect of @option{-std=c++14}.
1778 The name @samp{gnu++1y} is deprecated.
1779
1780 @item c++1z
1781 The next revision of the ISO C++ standard, tentatively planned for
1782 2017. Support is highly experimental, and will almost certainly
1783 change in incompatible ways in future releases.
1784
1785 @item gnu++1z
1786 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1787 and will almost certainly change in incompatible ways in future
1788 releases.
1789 @end table
1790
1791 @item -fgnu89-inline
1792 @opindex fgnu89-inline
1793 The option @option{-fgnu89-inline} tells GCC to use the traditional
1794 GNU semantics for @code{inline} functions when in C99 mode.
1795 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1796 Using this option is roughly equivalent to adding the
1797 @code{gnu_inline} function attribute to all inline functions
1798 (@pxref{Function Attributes}).
1799
1800 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1801 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1802 specifies the default behavior).
1803 This option is not supported in @option{-std=c90} or
1804 @option{-std=gnu90} mode.
1805
1806 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1807 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1808 in effect for @code{inline} functions. @xref{Common Predefined
1809 Macros,,,cpp,The C Preprocessor}.
1810
1811 @item -aux-info @var{filename}
1812 @opindex aux-info
1813 Output to the given filename prototyped declarations for all functions
1814 declared and/or defined in a translation unit, including those in header
1815 files. This option is silently ignored in any language other than C@.
1816
1817 Besides declarations, the file indicates, in comments, the origin of
1818 each declaration (source file and line), whether the declaration was
1819 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1820 @samp{O} for old, respectively, in the first character after the line
1821 number and the colon), and whether it came from a declaration or a
1822 definition (@samp{C} or @samp{F}, respectively, in the following
1823 character). In the case of function definitions, a K&R-style list of
1824 arguments followed by their declarations is also provided, inside
1825 comments, after the declaration.
1826
1827 @item -fallow-parameterless-variadic-functions
1828 @opindex fallow-parameterless-variadic-functions
1829 Accept variadic functions without named parameters.
1830
1831 Although it is possible to define such a function, this is not very
1832 useful as it is not possible to read the arguments. This is only
1833 supported for C as this construct is allowed by C++.
1834
1835 @item -fno-asm
1836 @opindex fno-asm
1837 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1838 keyword, so that code can use these words as identifiers. You can use
1839 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1840 instead. @option{-ansi} implies @option{-fno-asm}.
1841
1842 In C++, this switch only affects the @code{typeof} keyword, since
1843 @code{asm} and @code{inline} are standard keywords. You may want to
1844 use the @option{-fno-gnu-keywords} flag instead, which has the same
1845 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1846 switch only affects the @code{asm} and @code{typeof} keywords, since
1847 @code{inline} is a standard keyword in ISO C99.
1848
1849 @item -fno-builtin
1850 @itemx -fno-builtin-@var{function}
1851 @opindex fno-builtin
1852 @cindex built-in functions
1853 Don't recognize built-in functions that do not begin with
1854 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1855 functions provided by GCC}, for details of the functions affected,
1856 including those which are not built-in functions when @option{-ansi} or
1857 @option{-std} options for strict ISO C conformance are used because they
1858 do not have an ISO standard meaning.
1859
1860 GCC normally generates special code to handle certain built-in functions
1861 more efficiently; for instance, calls to @code{alloca} may become single
1862 instructions which adjust the stack directly, and calls to @code{memcpy}
1863 may become inline copy loops. The resulting code is often both smaller
1864 and faster, but since the function calls no longer appear as such, you
1865 cannot set a breakpoint on those calls, nor can you change the behavior
1866 of the functions by linking with a different library. In addition,
1867 when a function is recognized as a built-in function, GCC may use
1868 information about that function to warn about problems with calls to
1869 that function, or to generate more efficient code, even if the
1870 resulting code still contains calls to that function. For example,
1871 warnings are given with @option{-Wformat} for bad calls to
1872 @code{printf} when @code{printf} is built in and @code{strlen} is
1873 known not to modify global memory.
1874
1875 With the @option{-fno-builtin-@var{function}} option
1876 only the built-in function @var{function} is
1877 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1878 function is named that is not built-in in this version of GCC, this
1879 option is ignored. There is no corresponding
1880 @option{-fbuiltin-@var{function}} option; if you wish to enable
1881 built-in functions selectively when using @option{-fno-builtin} or
1882 @option{-ffreestanding}, you may define macros such as:
1883
1884 @smallexample
1885 #define abs(n) __builtin_abs ((n))
1886 #define strcpy(d, s) __builtin_strcpy ((d), (s))
1887 @end smallexample
1888
1889 @item -fhosted
1890 @opindex fhosted
1891 @cindex hosted environment
1892
1893 Assert that compilation targets a hosted environment. This implies
1894 @option{-fbuiltin}. A hosted environment is one in which the
1895 entire standard library is available, and in which @code{main} has a return
1896 type of @code{int}. Examples are nearly everything except a kernel.
1897 This is equivalent to @option{-fno-freestanding}.
1898
1899 @item -ffreestanding
1900 @opindex ffreestanding
1901 @cindex hosted environment
1902
1903 Assert that compilation targets a freestanding environment. This
1904 implies @option{-fno-builtin}. A freestanding environment
1905 is one in which the standard library may not exist, and program startup may
1906 not necessarily be at @code{main}. The most obvious example is an OS kernel.
1907 This is equivalent to @option{-fno-hosted}.
1908
1909 @xref{Standards,,Language Standards Supported by GCC}, for details of
1910 freestanding and hosted environments.
1911
1912 @item -fopenacc
1913 @opindex fopenacc
1914 @cindex OpenACC accelerator programming
1915 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1916 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
1917 compiler generates accelerated code according to the OpenACC Application
1918 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
1919 implies @option{-pthread}, and thus is only supported on targets that
1920 have support for @option{-pthread}.
1921
1922 Note that this is an experimental feature, incomplete, and subject to
1923 change in future versions of GCC. See
1924 @w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1925
1926 @item -fopenmp
1927 @opindex fopenmp
1928 @cindex OpenMP parallel
1929 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1930 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
1931 compiler generates parallel code according to the OpenMP Application
1932 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}. This option
1933 implies @option{-pthread}, and thus is only supported on targets that
1934 have support for @option{-pthread}. @option{-fopenmp} implies
1935 @option{-fopenmp-simd}.
1936
1937 @item -fopenmp-simd
1938 @opindex fopenmp-simd
1939 @cindex OpenMP SIMD
1940 @cindex SIMD
1941 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1942 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1943 are ignored.
1944
1945 @item -fcilkplus
1946 @opindex fcilkplus
1947 @cindex Enable Cilk Plus
1948 Enable the usage of Cilk Plus language extension features for C/C++.
1949 When the option @option{-fcilkplus} is specified, enable the usage of
1950 the Cilk Plus Language extension features for C/C++. The present
1951 implementation follows ABI version 1.2. This is an experimental
1952 feature that is only partially complete, and whose interface may
1953 change in future versions of GCC as the official specification
1954 changes. Currently, all features but @code{_Cilk_for} have been
1955 implemented.
1956
1957 @item -fgnu-tm
1958 @opindex fgnu-tm
1959 When the option @option{-fgnu-tm} is specified, the compiler
1960 generates code for the Linux variant of Intel's current Transactional
1961 Memory ABI specification document (Revision 1.1, May 6 2009). This is
1962 an experimental feature whose interface may change in future versions
1963 of GCC, as the official specification changes. Please note that not
1964 all architectures are supported for this feature.
1965
1966 For more information on GCC's support for transactional memory,
1967 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1968 Transactional Memory Library}.
1969
1970 Note that the transactional memory feature is not supported with
1971 non-call exceptions (@option{-fnon-call-exceptions}).
1972
1973 @item -fms-extensions
1974 @opindex fms-extensions
1975 Accept some non-standard constructs used in Microsoft header files.
1976
1977 In C++ code, this allows member names in structures to be similar
1978 to previous types declarations.
1979
1980 @smallexample
1981 typedef int UOW;
1982 struct ABC @{
1983 UOW UOW;
1984 @};
1985 @end smallexample
1986
1987 Some cases of unnamed fields in structures and unions are only
1988 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
1989 fields within structs/unions}, for details.
1990
1991 Note that this option is off for all targets but x86
1992 targets using ms-abi.
1993
1994 @item -fplan9-extensions
1995 @opindex fplan9-extensions
1996 Accept some non-standard constructs used in Plan 9 code.
1997
1998 This enables @option{-fms-extensions}, permits passing pointers to
1999 structures with anonymous fields to functions that expect pointers to
2000 elements of the type of the field, and permits referring to anonymous
2001 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2002 struct/union fields within structs/unions}, for details. This is only
2003 supported for C, not C++.
2004
2005 @item -trigraphs
2006 @opindex trigraphs
2007 Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
2008 options for strict ISO C conformance) implies @option{-trigraphs}.
2009
2010 @cindex traditional C language
2011 @cindex C language, traditional
2012 @item -traditional
2013 @itemx -traditional-cpp
2014 @opindex traditional-cpp
2015 @opindex traditional
2016 Formerly, these options caused GCC to attempt to emulate a pre-standard
2017 C compiler. They are now only supported with the @option{-E} switch.
2018 The preprocessor continues to support a pre-standard mode. See the GNU
2019 CPP manual for details.
2020
2021 @item -fcond-mismatch
2022 @opindex fcond-mismatch
2023 Allow conditional expressions with mismatched types in the second and
2024 third arguments. The value of such an expression is void. This option
2025 is not supported for C++.
2026
2027 @item -flax-vector-conversions
2028 @opindex flax-vector-conversions
2029 Allow implicit conversions between vectors with differing numbers of
2030 elements and/or incompatible element types. This option should not be
2031 used for new code.
2032
2033 @item -funsigned-char
2034 @opindex funsigned-char
2035 Let the type @code{char} be unsigned, like @code{unsigned char}.
2036
2037 Each kind of machine has a default for what @code{char} should
2038 be. It is either like @code{unsigned char} by default or like
2039 @code{signed char} by default.
2040
2041 Ideally, a portable program should always use @code{signed char} or
2042 @code{unsigned char} when it depends on the signedness of an object.
2043 But many programs have been written to use plain @code{char} and
2044 expect it to be signed, or expect it to be unsigned, depending on the
2045 machines they were written for. This option, and its inverse, let you
2046 make such a program work with the opposite default.
2047
2048 The type @code{char} is always a distinct type from each of
2049 @code{signed char} or @code{unsigned char}, even though its behavior
2050 is always just like one of those two.
2051
2052 @item -fsigned-char
2053 @opindex fsigned-char
2054 Let the type @code{char} be signed, like @code{signed char}.
2055
2056 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2057 the negative form of @option{-funsigned-char}. Likewise, the option
2058 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2059
2060 @item -fsigned-bitfields
2061 @itemx -funsigned-bitfields
2062 @itemx -fno-signed-bitfields
2063 @itemx -fno-unsigned-bitfields
2064 @opindex fsigned-bitfields
2065 @opindex funsigned-bitfields
2066 @opindex fno-signed-bitfields
2067 @opindex fno-unsigned-bitfields
2068 These options control whether a bit-field is signed or unsigned, when the
2069 declaration does not use either @code{signed} or @code{unsigned}. By
2070 default, such a bit-field is signed, because this is consistent: the
2071 basic integer types such as @code{int} are signed types.
2072 @end table
2073
2074 @node C++ Dialect Options
2075 @section Options Controlling C++ Dialect
2076
2077 @cindex compiler options, C++
2078 @cindex C++ options, command-line
2079 @cindex options, C++
2080 This section describes the command-line options that are only meaningful
2081 for C++ programs. You can also use most of the GNU compiler options
2082 regardless of what language your program is in. For example, you
2083 might compile a file @file{firstClass.C} like this:
2084
2085 @smallexample
2086 g++ -g -frepo -O -c firstClass.C
2087 @end smallexample
2088
2089 @noindent
2090 In this example, only @option{-frepo} is an option meant
2091 only for C++ programs; you can use the other options with any
2092 language supported by GCC@.
2093
2094 Here is a list of options that are @emph{only} for compiling C++ programs:
2095
2096 @table @gcctabopt
2097
2098 @item -fabi-version=@var{n}
2099 @opindex fabi-version
2100 Use version @var{n} of the C++ ABI@. The default is version 0.
2101
2102 Version 0 refers to the version conforming most closely to
2103 the C++ ABI specification. Therefore, the ABI obtained using version 0
2104 will change in different versions of G++ as ABI bugs are fixed.
2105
2106 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2107
2108 Version 2 is the version of the C++ ABI that first appeared in G++
2109 3.4, and was the default through G++ 4.9.
2110
2111 Version 3 corrects an error in mangling a constant address as a
2112 template argument.
2113
2114 Version 4, which first appeared in G++ 4.5, implements a standard
2115 mangling for vector types.
2116
2117 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2118 attribute const/volatile on function pointer types, decltype of a
2119 plain decl, and use of a function parameter in the declaration of
2120 another parameter.
2121
2122 Version 6, which first appeared in G++ 4.7, corrects the promotion
2123 behavior of C++11 scoped enums and the mangling of template argument
2124 packs, const/static_cast, prefix ++ and --, and a class scope function
2125 used as a template argument.
2126
2127 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2128 builtin type and corrects the mangling of lambdas in default argument
2129 scope.
2130
2131 Version 8, which first appeared in G++ 4.9, corrects the substitution
2132 behavior of function types with function-cv-qualifiers.
2133
2134 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2135 @code{nullptr_t}.
2136
2137 Version 10, which first appeared in G++ 6.1, adds mangling of
2138 attributes that affect type identity, such as ia32 calling convention
2139 attributes (e.g. @samp{stdcall}).
2140
2141 See also @option{-Wabi}.
2142
2143 @item -fabi-compat-version=@var{n}
2144 @opindex fabi-compat-version
2145 On targets that support strong aliases, G++
2146 works around mangling changes by creating an alias with the correct
2147 mangled name when defining a symbol with an incorrect mangled name.
2148 This switch specifies which ABI version to use for the alias.
2149
2150 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2151 compatibility). If another ABI version is explicitly selected, this
2152 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2153 use @option{-fabi-compat-version=2}.
2154
2155 If this option is not provided but @option{-Wabi=@var{n}} is, that
2156 version is used for compatibility aliases. If this option is provided
2157 along with @option{-Wabi} (without the version), the version from this
2158 option is used for the warning.
2159
2160 @item -fno-access-control
2161 @opindex fno-access-control
2162 Turn off all access checking. This switch is mainly useful for working
2163 around bugs in the access control code.
2164
2165 @item -fcheck-new
2166 @opindex fcheck-new
2167 Check that the pointer returned by @code{operator new} is non-null
2168 before attempting to modify the storage allocated. This check is
2169 normally unnecessary because the C++ standard specifies that
2170 @code{operator new} only returns @code{0} if it is declared
2171 @code{throw()}, in which case the compiler always checks the
2172 return value even without this option. In all other cases, when
2173 @code{operator new} has a non-empty exception specification, memory
2174 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2175 @samp{new (nothrow)}.
2176
2177 @item -fconstexpr-depth=@var{n}
2178 @opindex fconstexpr-depth
2179 Set the maximum nested evaluation depth for C++11 constexpr functions
2180 to @var{n}. A limit is needed to detect endless recursion during
2181 constant expression evaluation. The minimum specified by the standard
2182 is 512.
2183
2184 @item -fdeduce-init-list
2185 @opindex fdeduce-init-list
2186 Enable deduction of a template type parameter as
2187 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2188
2189 @smallexample
2190 template <class T> auto forward(T t) -> decltype (realfn (t))
2191 @{
2192 return realfn (t);
2193 @}
2194
2195 void f()
2196 @{
2197 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2198 @}
2199 @end smallexample
2200
2201 This deduction was implemented as a possible extension to the
2202 originally proposed semantics for the C++11 standard, but was not part
2203 of the final standard, so it is disabled by default. This option is
2204 deprecated, and may be removed in a future version of G++.
2205
2206 @item -ffriend-injection
2207 @opindex ffriend-injection
2208 Inject friend functions into the enclosing namespace, so that they are
2209 visible outside the scope of the class in which they are declared.
2210 Friend functions were documented to work this way in the old Annotated
2211 C++ Reference Manual.
2212 However, in ISO C++ a friend function that is not declared
2213 in an enclosing scope can only be found using argument dependent
2214 lookup. GCC defaults to the standard behavior.
2215
2216 This option is for compatibility, and may be removed in a future
2217 release of G++.
2218
2219 @item -fno-elide-constructors
2220 @opindex fno-elide-constructors
2221 The C++ standard allows an implementation to omit creating a temporary
2222 that is only used to initialize another object of the same type.
2223 Specifying this option disables that optimization, and forces G++ to
2224 call the copy constructor in all cases.
2225
2226 @item -fno-enforce-eh-specs
2227 @opindex fno-enforce-eh-specs
2228 Don't generate code to check for violation of exception specifications
2229 at run time. This option violates the C++ standard, but may be useful
2230 for reducing code size in production builds, much like defining
2231 @code{NDEBUG}. This does not give user code permission to throw
2232 exceptions in violation of the exception specifications; the compiler
2233 still optimizes based on the specifications, so throwing an
2234 unexpected exception results in undefined behavior at run time.
2235
2236 @item -fextern-tls-init
2237 @itemx -fno-extern-tls-init
2238 @opindex fextern-tls-init
2239 @opindex fno-extern-tls-init
2240 The C++11 and OpenMP standards allow @code{thread_local} and
2241 @code{threadprivate} variables to have dynamic (runtime)
2242 initialization. To support this, any use of such a variable goes
2243 through a wrapper function that performs any necessary initialization.
2244 When the use and definition of the variable are in the same
2245 translation unit, this overhead can be optimized away, but when the
2246 use is in a different translation unit there is significant overhead
2247 even if the variable doesn't actually need dynamic initialization. If
2248 the programmer can be sure that no use of the variable in a
2249 non-defining TU needs to trigger dynamic initialization (either
2250 because the variable is statically initialized, or a use of the
2251 variable in the defining TU will be executed before any uses in
2252 another TU), they can avoid this overhead with the
2253 @option{-fno-extern-tls-init} option.
2254
2255 On targets that support symbol aliases, the default is
2256 @option{-fextern-tls-init}. On targets that do not support symbol
2257 aliases, the default is @option{-fno-extern-tls-init}.
2258
2259 @item -ffor-scope
2260 @itemx -fno-for-scope
2261 @opindex ffor-scope
2262 @opindex fno-for-scope
2263 If @option{-ffor-scope} is specified, the scope of variables declared in
2264 a @i{for-init-statement} is limited to the @code{for} loop itself,
2265 as specified by the C++ standard.
2266 If @option{-fno-for-scope} is specified, the scope of variables declared in
2267 a @i{for-init-statement} extends to the end of the enclosing scope,
2268 as was the case in old versions of G++, and other (traditional)
2269 implementations of C++.
2270
2271 If neither flag is given, the default is to follow the standard,
2272 but to allow and give a warning for old-style code that would
2273 otherwise be invalid, or have different behavior.
2274
2275 @item -fno-gnu-keywords
2276 @opindex fno-gnu-keywords
2277 Do not recognize @code{typeof} as a keyword, so that code can use this
2278 word as an identifier. You can use the keyword @code{__typeof__} instead.
2279 @option{-ansi} implies @option{-fno-gnu-keywords}.
2280
2281 @item -fno-implicit-templates
2282 @opindex fno-implicit-templates
2283 Never emit code for non-inline templates that are instantiated
2284 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2285 @xref{Template Instantiation}, for more information.
2286
2287 @item -fno-implicit-inline-templates
2288 @opindex fno-implicit-inline-templates
2289 Don't emit code for implicit instantiations of inline templates, either.
2290 The default is to handle inlines differently so that compiles with and
2291 without optimization need the same set of explicit instantiations.
2292
2293 @item -fno-implement-inlines
2294 @opindex fno-implement-inlines
2295 To save space, do not emit out-of-line copies of inline functions
2296 controlled by @code{#pragma implementation}. This causes linker
2297 errors if these functions are not inlined everywhere they are called.
2298
2299 @item -fms-extensions
2300 @opindex fms-extensions
2301 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2302 int and getting a pointer to member function via non-standard syntax.
2303
2304 @item -fno-nonansi-builtins
2305 @opindex fno-nonansi-builtins
2306 Disable built-in declarations of functions that are not mandated by
2307 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2308 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2309
2310 @item -fnothrow-opt
2311 @opindex fnothrow-opt
2312 Treat a @code{throw()} exception specification as if it were a
2313 @code{noexcept} specification to reduce or eliminate the text size
2314 overhead relative to a function with no exception specification. If
2315 the function has local variables of types with non-trivial
2316 destructors, the exception specification actually makes the
2317 function smaller because the EH cleanups for those variables can be
2318 optimized away. The semantic effect is that an exception thrown out of
2319 a function with such an exception specification results in a call
2320 to @code{terminate} rather than @code{unexpected}.
2321
2322 @item -fno-operator-names
2323 @opindex fno-operator-names
2324 Do not treat the operator name keywords @code{and}, @code{bitand},
2325 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2326 synonyms as keywords.
2327
2328 @item -fno-optional-diags
2329 @opindex fno-optional-diags
2330 Disable diagnostics that the standard says a compiler does not need to
2331 issue. Currently, the only such diagnostic issued by G++ is the one for
2332 a name having multiple meanings within a class.
2333
2334 @item -fpermissive
2335 @opindex fpermissive
2336 Downgrade some diagnostics about nonconformant code from errors to
2337 warnings. Thus, using @option{-fpermissive} allows some
2338 nonconforming code to compile.
2339
2340 @item -fno-pretty-templates
2341 @opindex fno-pretty-templates
2342 When an error message refers to a specialization of a function
2343 template, the compiler normally prints the signature of the
2344 template followed by the template arguments and any typedefs or
2345 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2346 rather than @code{void f(int)}) so that it's clear which template is
2347 involved. When an error message refers to a specialization of a class
2348 template, the compiler omits any template arguments that match
2349 the default template arguments for that template. If either of these
2350 behaviors make it harder to understand the error message rather than
2351 easier, you can use @option{-fno-pretty-templates} to disable them.
2352
2353 @item -frepo
2354 @opindex frepo
2355 Enable automatic template instantiation at link time. This option also
2356 implies @option{-fno-implicit-templates}. @xref{Template
2357 Instantiation}, for more information.
2358
2359 @item -fno-rtti
2360 @opindex fno-rtti
2361 Disable generation of information about every class with virtual
2362 functions for use by the C++ run-time type identification features
2363 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2364 of the language, you can save some space by using this flag. Note that
2365 exception handling uses the same information, but G++ generates it as
2366 needed. The @code{dynamic_cast} operator can still be used for casts that
2367 do not require run-time type information, i.e.@: casts to @code{void *} or to
2368 unambiguous base classes.
2369
2370 @item -fsized-deallocation
2371 @opindex fsized-deallocation
2372 Enable the built-in global declarations
2373 @smallexample
2374 void operator delete (void *, std::size_t) noexcept;
2375 void operator delete[] (void *, std::size_t) noexcept;
2376 @end smallexample
2377 as introduced in C++14. This is useful for user-defined replacement
2378 deallocation functions that, for example, use the size of the object
2379 to make deallocation faster. Enabled by default under
2380 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2381 warns about places that might want to add a definition.
2382
2383 @item -fstats
2384 @opindex fstats
2385 Emit statistics about front-end processing at the end of the compilation.
2386 This information is generally only useful to the G++ development team.
2387
2388 @item -fstrict-enums
2389 @opindex fstrict-enums
2390 Allow the compiler to optimize using the assumption that a value of
2391 enumerated type can only be one of the values of the enumeration (as
2392 defined in the C++ standard; basically, a value that can be
2393 represented in the minimum number of bits needed to represent all the
2394 enumerators). This assumption may not be valid if the program uses a
2395 cast to convert an arbitrary integer value to the enumerated type.
2396
2397 @item -ftemplate-backtrace-limit=@var{n}
2398 @opindex ftemplate-backtrace-limit
2399 Set the maximum number of template instantiation notes for a single
2400 warning or error to @var{n}. The default value is 10.
2401
2402 @item -ftemplate-depth=@var{n}
2403 @opindex ftemplate-depth
2404 Set the maximum instantiation depth for template classes to @var{n}.
2405 A limit on the template instantiation depth is needed to detect
2406 endless recursions during template class instantiation. ANSI/ISO C++
2407 conforming programs must not rely on a maximum depth greater than 17
2408 (changed to 1024 in C++11). The default value is 900, as the compiler
2409 can run out of stack space before hitting 1024 in some situations.
2410
2411 @item -fno-threadsafe-statics
2412 @opindex fno-threadsafe-statics
2413 Do not emit the extra code to use the routines specified in the C++
2414 ABI for thread-safe initialization of local statics. You can use this
2415 option to reduce code size slightly in code that doesn't need to be
2416 thread-safe.
2417
2418 @item -fuse-cxa-atexit
2419 @opindex fuse-cxa-atexit
2420 Register destructors for objects with static storage duration with the
2421 @code{__cxa_atexit} function rather than the @code{atexit} function.
2422 This option is required for fully standards-compliant handling of static
2423 destructors, but only works if your C library supports
2424 @code{__cxa_atexit}.
2425
2426 @item -fno-use-cxa-get-exception-ptr
2427 @opindex fno-use-cxa-get-exception-ptr
2428 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2429 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2430 if the runtime routine is not available.
2431
2432 @item -fvisibility-inlines-hidden
2433 @opindex fvisibility-inlines-hidden
2434 This switch declares that the user does not attempt to compare
2435 pointers to inline functions or methods where the addresses of the two functions
2436 are taken in different shared objects.
2437
2438 The effect of this is that GCC may, effectively, mark inline methods with
2439 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2440 appear in the export table of a DSO and do not require a PLT indirection
2441 when used within the DSO@. Enabling this option can have a dramatic effect
2442 on load and link times of a DSO as it massively reduces the size of the
2443 dynamic export table when the library makes heavy use of templates.
2444
2445 The behavior of this switch is not quite the same as marking the
2446 methods as hidden directly, because it does not affect static variables
2447 local to the function or cause the compiler to deduce that
2448 the function is defined in only one shared object.
2449
2450 You may mark a method as having a visibility explicitly to negate the
2451 effect of the switch for that method. For example, if you do want to
2452 compare pointers to a particular inline method, you might mark it as
2453 having default visibility. Marking the enclosing class with explicit
2454 visibility has no effect.
2455
2456 Explicitly instantiated inline methods are unaffected by this option
2457 as their linkage might otherwise cross a shared library boundary.
2458 @xref{Template Instantiation}.
2459
2460 @item -fvisibility-ms-compat
2461 @opindex fvisibility-ms-compat
2462 This flag attempts to use visibility settings to make GCC's C++
2463 linkage model compatible with that of Microsoft Visual Studio.
2464
2465 The flag makes these changes to GCC's linkage model:
2466
2467 @enumerate
2468 @item
2469 It sets the default visibility to @code{hidden}, like
2470 @option{-fvisibility=hidden}.
2471
2472 @item
2473 Types, but not their members, are not hidden by default.
2474
2475 @item
2476 The One Definition Rule is relaxed for types without explicit
2477 visibility specifications that are defined in more than one
2478 shared object: those declarations are permitted if they are
2479 permitted when this option is not used.
2480 @end enumerate
2481
2482 In new code it is better to use @option{-fvisibility=hidden} and
2483 export those classes that are intended to be externally visible.
2484 Unfortunately it is possible for code to rely, perhaps accidentally,
2485 on the Visual Studio behavior.
2486
2487 Among the consequences of these changes are that static data members
2488 of the same type with the same name but defined in different shared
2489 objects are different, so changing one does not change the other;
2490 and that pointers to function members defined in different shared
2491 objects may not compare equal. When this flag is given, it is a
2492 violation of the ODR to define types with the same name differently.
2493
2494 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2495 @opindex fvtable-verify
2496 Turn on (or off, if using @option{-fvtable-verify=none}) the security
2497 feature that verifies at run time, for every virtual call, that
2498 the vtable pointer through which the call is made is valid for the type of
2499 the object, and has not been corrupted or overwritten. If an invalid vtable
2500 pointer is detected at run time, an error is reported and execution of the
2501 program is immediately halted.
2502
2503 This option causes run-time data structures to be built at program startup,
2504 which are used for verifying the vtable pointers.
2505 The options @samp{std} and @samp{preinit}
2506 control the timing of when these data structures are built. In both cases the
2507 data structures are built before execution reaches @code{main}. Using
2508 @option{-fvtable-verify=std} causes the data structures to be built after
2509 shared libraries have been loaded and initialized.
2510 @option{-fvtable-verify=preinit} causes them to be built before shared
2511 libraries have been loaded and initialized.
2512
2513 If this option appears multiple times in the command line with different
2514 values specified, @samp{none} takes highest priority over both @samp{std} and
2515 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2516
2517 @item -fvtv-debug
2518 @opindex fvtv-debug
2519 When used in conjunction with @option{-fvtable-verify=std} or
2520 @option{-fvtable-verify=preinit}, causes debug versions of the
2521 runtime functions for the vtable verification feature to be called.
2522 This flag also causes the compiler to log information about which
2523 vtable pointers it finds for each class.
2524 This information is written to a file named @file{vtv_set_ptr_data.log}
2525 in the directory named by the environment variable @env{VTV_LOGS_DIR}
2526 if that is defined or the current working directory otherwise.
2527
2528 Note: This feature @emph{appends} data to the log file. If you want a fresh log
2529 file, be sure to delete any existing one.
2530
2531 @item -fvtv-counts
2532 @opindex fvtv-counts
2533 This is a debugging flag. When used in conjunction with
2534 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2535 causes the compiler to keep track of the total number of virtual calls
2536 it encounters and the number of verifications it inserts. It also
2537 counts the number of calls to certain run-time library functions
2538 that it inserts and logs this information for each compilation unit.
2539 The compiler writes this information to a file named
2540 @file{vtv_count_data.log} in the directory named by the environment
2541 variable @env{VTV_LOGS_DIR} if that is defined or the current working
2542 directory otherwise. It also counts the size of the vtable pointer sets
2543 for each class, and writes this information to @file{vtv_class_set_sizes.log}
2544 in the same directory.
2545
2546 Note: This feature @emph{appends} data to the log files. To get fresh log
2547 files, be sure to delete any existing ones.
2548
2549 @item -fno-weak
2550 @opindex fno-weak
2551 Do not use weak symbol support, even if it is provided by the linker.
2552 By default, G++ uses weak symbols if they are available. This
2553 option exists only for testing, and should not be used by end-users;
2554 it results in inferior code and has no benefits. This option may
2555 be removed in a future release of G++.
2556
2557 @item -nostdinc++
2558 @opindex nostdinc++
2559 Do not search for header files in the standard directories specific to
2560 C++, but do still search the other standard directories. (This option
2561 is used when building the C++ library.)
2562 @end table
2563
2564 In addition, these optimization, warning, and code generation options
2565 have meanings only for C++ programs:
2566
2567 @table @gcctabopt
2568 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2569 @opindex Wabi
2570 @opindex Wno-abi
2571 Warn when G++ it generates code that is probably not compatible with
2572 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2573 ABI with each major release, normally @option{-Wabi} will warn only if
2574 there is a check added later in a release series for an ABI issue
2575 discovered since the initial release. @option{-Wabi} will warn about
2576 more things if an older ABI version is selected (with
2577 @option{-fabi-version=@var{n}}).
2578
2579 @option{-Wabi} can also be used with an explicit version number to
2580 warn about compatibility with a particular @option{-fabi-version}
2581 level, e.g. @option{-Wabi=2} to warn about changes relative to
2582 @option{-fabi-version=2}.
2583
2584 If an explicit version number is provided and
2585 @option{-fabi-compat-version} is not specified, the version number
2586 from this option is used for compatibility aliases. If no explicit
2587 version number is provided with this option, but
2588 @option{-fabi-compat-version} is specified, that version number is
2589 used for ABI warnings.
2590
2591 Although an effort has been made to warn about
2592 all such cases, there are probably some cases that are not warned about,
2593 even though G++ is generating incompatible code. There may also be
2594 cases where warnings are emitted even though the code that is generated
2595 is compatible.
2596
2597 You should rewrite your code to avoid these warnings if you are
2598 concerned about the fact that code generated by G++ may not be binary
2599 compatible with code generated by other compilers.
2600
2601 Known incompatibilities in @option{-fabi-version=2} (which was the
2602 default from GCC 3.4 to 4.9) include:
2603
2604 @itemize @bullet
2605
2606 @item
2607 A template with a non-type template parameter of reference type was
2608 mangled incorrectly:
2609 @smallexample
2610 extern int N;
2611 template <int &> struct S @{@};
2612 void n (S<N>) @{2@}
2613 @end smallexample
2614
2615 This was fixed in @option{-fabi-version=3}.
2616
2617 @item
2618 SIMD vector types declared using @code{__attribute ((vector_size))} were
2619 mangled in a non-standard way that does not allow for overloading of
2620 functions taking vectors of different sizes.
2621
2622 The mangling was changed in @option{-fabi-version=4}.
2623
2624 @item
2625 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2626 qualifiers, and @code{decltype} of a plain declaration was folded away.
2627
2628 These mangling issues were fixed in @option{-fabi-version=5}.
2629
2630 @item
2631 Scoped enumerators passed as arguments to a variadic function are
2632 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2633 On most targets this does not actually affect the parameter passing
2634 ABI, as there is no way to pass an argument smaller than @code{int}.
2635
2636 Also, the ABI changed the mangling of template argument packs,
2637 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2638 a class scope function used as a template argument.
2639
2640 These issues were corrected in @option{-fabi-version=6}.
2641
2642 @item
2643 Lambdas in default argument scope were mangled incorrectly, and the
2644 ABI changed the mangling of @code{nullptr_t}.
2645
2646 These issues were corrected in @option{-fabi-version=7}.
2647
2648 @item
2649 When mangling a function type with function-cv-qualifiers, the
2650 un-qualified function type was incorrectly treated as a substitution
2651 candidate.
2652
2653 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2654
2655 @item
2656 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2657 unaligned accesses. Note that this did not affect the ABI of a
2658 function with a @code{nullptr_t} parameter, as parameters have a
2659 minimum alignment.
2660
2661 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2662
2663 @item
2664 Target-specific attributes that affect the identity of a type, such as
2665 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2666 did not affect the mangled name, leading to name collisions when
2667 function pointers were used as template arguments.
2668
2669 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2670
2671 @end itemize
2672
2673 It also warns about psABI-related changes. The known psABI changes at this
2674 point include:
2675
2676 @itemize @bullet
2677
2678 @item
2679 For SysV/x86-64, unions with @code{long double} members are
2680 passed in memory as specified in psABI. For example:
2681
2682 @smallexample
2683 union U @{
2684 long double ld;
2685 int i;
2686 @};
2687 @end smallexample
2688
2689 @noindent
2690 @code{union U} is always passed in memory.
2691
2692 @end itemize
2693
2694 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2695 @opindex Wabi-tag
2696 @opindex -Wabi-tag
2697 Warn when a type with an ABI tag is used in a context that does not
2698 have that ABI tag. See @ref{C++ Attributes} for more information
2699 about ABI tags.
2700
2701 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2702 @opindex Wctor-dtor-privacy
2703 @opindex Wno-ctor-dtor-privacy
2704 Warn when a class seems unusable because all the constructors or
2705 destructors in that class are private, and it has neither friends nor
2706 public static member functions. Also warn if there are no non-private
2707 methods, and there's at least one private member function that isn't
2708 a constructor or destructor.
2709
2710 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2711 @opindex Wdelete-non-virtual-dtor
2712 @opindex Wno-delete-non-virtual-dtor
2713 Warn when @code{delete} is used to destroy an instance of a class that
2714 has virtual functions and non-virtual destructor. It is unsafe to delete
2715 an instance of a derived class through a pointer to a base class if the
2716 base class does not have a virtual destructor. This warning is enabled
2717 by @option{-Wall}.
2718
2719 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2720 @opindex Wliteral-suffix
2721 @opindex Wno-literal-suffix
2722 Warn when a string or character literal is followed by a ud-suffix which does
2723 not begin with an underscore. As a conforming extension, GCC treats such
2724 suffixes as separate preprocessing tokens in order to maintain backwards
2725 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2726 For example:
2727
2728 @smallexample
2729 #define __STDC_FORMAT_MACROS
2730 #include <inttypes.h>
2731 #include <stdio.h>
2732
2733 int main() @{
2734 int64_t i64 = 123;
2735 printf("My int64: %" PRId64"\n", i64);
2736 @}
2737 @end smallexample
2738
2739 In this case, @code{PRId64} is treated as a separate preprocessing token.
2740
2741 This warning is enabled by default.
2742
2743 @item -Wlto-type-mismatch
2744 @opindex Wlto-type-mismatch
2745 @opindex Wno-lto-type-mistmach
2746
2747 During the link-time optimization warn about type mismatches in between
2748 global declarations from different compilation units.
2749 Requires @option{-flto} to be enabled. Enabled by default.
2750
2751 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2752 @opindex Wnarrowing
2753 @opindex Wno-narrowing
2754 Warn when a narrowing conversion prohibited by C++11 occurs within
2755 @samp{@{ @}}, e.g.
2756
2757 @smallexample
2758 int i = @{ 2.2 @}; // error: narrowing from double to int
2759 @end smallexample
2760
2761 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2762
2763 With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2764 required by the standard. Note that this does not affect the meaning
2765 of well-formed code; narrowing conversions are still considered
2766 ill-formed in SFINAE context.
2767
2768 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2769 @opindex Wnoexcept
2770 @opindex Wno-noexcept
2771 Warn when a noexcept-expression evaluates to false because of a call
2772 to a function that does not have a non-throwing exception
2773 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2774 the compiler to never throw an exception.
2775
2776 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2777 @opindex Wnon-virtual-dtor
2778 @opindex Wno-non-virtual-dtor
2779 Warn when a class has virtual functions and an accessible non-virtual
2780 destructor itself or in an accessible polymorphic base class, in which
2781 case it is possible but unsafe to delete an instance of a derived
2782 class through a pointer to the class itself or base class. This
2783 warning is automatically enabled if @option{-Weffc++} is specified.
2784
2785 @item -Wreorder @r{(C++ and Objective-C++ only)}
2786 @opindex Wreorder
2787 @opindex Wno-reorder
2788 @cindex reordering, warning
2789 @cindex warning for reordering of member initializers
2790 Warn when the order of member initializers given in the code does not
2791 match the order in which they must be executed. For instance:
2792
2793 @smallexample
2794 struct A @{
2795 int i;
2796 int j;
2797 A(): j (0), i (1) @{ @}
2798 @};
2799 @end smallexample
2800
2801 @noindent
2802 The compiler rearranges the member initializers for @code{i}
2803 and @code{j} to match the declaration order of the members, emitting
2804 a warning to that effect. This warning is enabled by @option{-Wall}.
2805
2806 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2807 @opindex fext-numeric-literals
2808 @opindex fno-ext-numeric-literals
2809 Accept imaginary, fixed-point, or machine-defined
2810 literal number suffixes as GNU extensions.
2811 When this option is turned off these suffixes are treated
2812 as C++11 user-defined literal numeric suffixes.
2813 This is on by default for all pre-C++11 dialects and all GNU dialects:
2814 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2815 @option{-std=gnu++14}.
2816 This option is off by default
2817 for ISO C++11 onwards (@option{-std=c++11}, ...).
2818 @end table
2819
2820 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2821
2822 @table @gcctabopt
2823 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2824 @opindex Weffc++
2825 @opindex Wno-effc++
2826 Warn about violations of the following style guidelines from Scott Meyers'
2827 @cite{Effective C++} series of books:
2828
2829 @itemize @bullet
2830 @item
2831 Define a copy constructor and an assignment operator for classes
2832 with dynamically-allocated memory.
2833
2834 @item
2835 Prefer initialization to assignment in constructors.
2836
2837 @item
2838 Have @code{operator=} return a reference to @code{*this}.
2839
2840 @item
2841 Don't try to return a reference when you must return an object.
2842
2843 @item
2844 Distinguish between prefix and postfix forms of increment and
2845 decrement operators.
2846
2847 @item
2848 Never overload @code{&&}, @code{||}, or @code{,}.
2849
2850 @end itemize
2851
2852 This option also enables @option{-Wnon-virtual-dtor}, which is also
2853 one of the effective C++ recommendations. However, the check is
2854 extended to warn about the lack of virtual destructor in accessible
2855 non-polymorphic bases classes too.
2856
2857 When selecting this option, be aware that the standard library
2858 headers do not obey all of these guidelines; use @samp{grep -v}
2859 to filter out those warnings.
2860
2861 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2862 @opindex Wstrict-null-sentinel
2863 @opindex Wno-strict-null-sentinel
2864 Warn about the use of an uncasted @code{NULL} as sentinel. When
2865 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2866 to @code{__null}. Although it is a null pointer constant rather than a
2867 null pointer, it is guaranteed to be of the same size as a pointer.
2868 But this use is not portable across different compilers.
2869
2870 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2871 @opindex Wno-non-template-friend
2872 @opindex Wnon-template-friend
2873 Disable warnings when non-templatized friend functions are declared
2874 within a template. Since the advent of explicit template specification
2875 support in G++, if the name of the friend is an unqualified-id (i.e.,
2876 @samp{friend foo(int)}), the C++ language specification demands that the
2877 friend declare or define an ordinary, nontemplate function. (Section
2878 14.5.3). Before G++ implemented explicit specification, unqualified-ids
2879 could be interpreted as a particular specialization of a templatized
2880 function. Because this non-conforming behavior is no longer the default
2881 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2882 check existing code for potential trouble spots and is on by default.
2883 This new compiler behavior can be turned off with
2884 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2885 but disables the helpful warning.
2886
2887 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2888 @opindex Wold-style-cast
2889 @opindex Wno-old-style-cast
2890 Warn if an old-style (C-style) cast to a non-void type is used within
2891 a C++ program. The new-style casts (@code{dynamic_cast},
2892 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2893 less vulnerable to unintended effects and much easier to search for.
2894
2895 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2896 @opindex Woverloaded-virtual
2897 @opindex Wno-overloaded-virtual
2898 @cindex overloaded virtual function, warning
2899 @cindex warning for overloaded virtual function
2900 Warn when a function declaration hides virtual functions from a
2901 base class. For example, in:
2902
2903 @smallexample
2904 struct A @{
2905 virtual void f();
2906 @};
2907
2908 struct B: public A @{
2909 void f(int);
2910 @};
2911 @end smallexample
2912
2913 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2914 like:
2915
2916 @smallexample
2917 B* b;
2918 b->f();
2919 @end smallexample
2920
2921 @noindent
2922 fails to compile.
2923
2924 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2925 @opindex Wno-pmf-conversions
2926 @opindex Wpmf-conversions
2927 Disable the diagnostic for converting a bound pointer to member function
2928 to a plain pointer.
2929
2930 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2931 @opindex Wsign-promo
2932 @opindex Wno-sign-promo
2933 Warn when overload resolution chooses a promotion from unsigned or
2934 enumerated type to a signed type, over a conversion to an unsigned type of
2935 the same size. Previous versions of G++ tried to preserve
2936 unsignedness, but the standard mandates the current behavior.
2937
2938 @item -Wtemplates @r{(C++ and Objective-C++ only)}
2939 @opindex Wtemplates
2940 Warn when a primary template declaration is encountered. Some coding
2941 rules disallow templates, and this may be used to enforce that rule.
2942 The warning is inactive inside a system header file, such as the STL, so
2943 one can still use the STL. One may also instantiate or specialize
2944 templates.
2945
2946 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
2947 @opindex Wmultiple-inheritance
2948 Warn when a class is defined with multiple direct base classes. Some
2949 coding rules disallow multiple inheritance, and this may be used to
2950 enforce that rule. The warning is inactive inside a system header file,
2951 such as the STL, so one can still use the STL. One may also define
2952 classes that indirectly use multiple inheritance.
2953
2954 @item -Wvirtual-inheritance
2955 @opindex Wvirtual-inheritance
2956 Warn when a class is defined with a virtual direct base classe. Some
2957 coding rules disallow multiple inheritance, and this may be used to
2958 enforce that rule. The warning is inactive inside a system header file,
2959 such as the STL, so one can still use the STL. One may also define
2960 classes that indirectly use virtual inheritance.
2961
2962 @item -Wnamespaces
2963 @opindex Wnamespaces
2964 Warn when a namespace definition is opened. Some coding rules disallow
2965 namespaces, and this may be used to enforce that rule. The warning is
2966 inactive inside a system header file, such as the STL, so one can still
2967 use the STL. One may also use using directives and qualified names.
2968
2969 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
2970 @opindex Wterminate
2971 @opindex Wno-terminate
2972 Disable the warning about a throw-expression that will immediately
2973 result in a call to @code{terminate}.
2974 @end table
2975
2976 @node Objective-C and Objective-C++ Dialect Options
2977 @section Options Controlling Objective-C and Objective-C++ Dialects
2978
2979 @cindex compiler options, Objective-C and Objective-C++
2980 @cindex Objective-C and Objective-C++ options, command-line
2981 @cindex options, Objective-C and Objective-C++
2982 (NOTE: This manual does not describe the Objective-C and Objective-C++
2983 languages themselves. @xref{Standards,,Language Standards
2984 Supported by GCC}, for references.)
2985
2986 This section describes the command-line options that are only meaningful
2987 for Objective-C and Objective-C++ programs. You can also use most of
2988 the language-independent GNU compiler options.
2989 For example, you might compile a file @file{some_class.m} like this:
2990
2991 @smallexample
2992 gcc -g -fgnu-runtime -O -c some_class.m
2993 @end smallexample
2994
2995 @noindent
2996 In this example, @option{-fgnu-runtime} is an option meant only for
2997 Objective-C and Objective-C++ programs; you can use the other options with
2998 any language supported by GCC@.
2999
3000 Note that since Objective-C is an extension of the C language, Objective-C
3001 compilations may also use options specific to the C front-end (e.g.,
3002 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3003 C++-specific options (e.g., @option{-Wabi}).
3004
3005 Here is a list of options that are @emph{only} for compiling Objective-C
3006 and Objective-C++ programs:
3007
3008 @table @gcctabopt
3009 @item -fconstant-string-class=@var{class-name}
3010 @opindex fconstant-string-class
3011 Use @var{class-name} as the name of the class to instantiate for each
3012 literal string specified with the syntax @code{@@"@dots{}"}. The default
3013 class name is @code{NXConstantString} if the GNU runtime is being used, and
3014 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3015 @option{-fconstant-cfstrings} option, if also present, overrides the
3016 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3017 to be laid out as constant CoreFoundation strings.
3018
3019 @item -fgnu-runtime
3020 @opindex fgnu-runtime
3021 Generate object code compatible with the standard GNU Objective-C
3022 runtime. This is the default for most types of systems.
3023
3024 @item -fnext-runtime
3025 @opindex fnext-runtime
3026 Generate output compatible with the NeXT runtime. This is the default
3027 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3028 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3029 used.
3030
3031 @item -fno-nil-receivers
3032 @opindex fno-nil-receivers
3033 Assume that all Objective-C message dispatches (@code{[receiver
3034 message:arg]}) in this translation unit ensure that the receiver is
3035 not @code{nil}. This allows for more efficient entry points in the
3036 runtime to be used. This option is only available in conjunction with
3037 the NeXT runtime and ABI version 0 or 1.
3038
3039 @item -fobjc-abi-version=@var{n}
3040 @opindex fobjc-abi-version
3041 Use version @var{n} of the Objective-C ABI for the selected runtime.
3042 This option is currently supported only for the NeXT runtime. In that
3043 case, Version 0 is the traditional (32-bit) ABI without support for
3044 properties and other Objective-C 2.0 additions. Version 1 is the
3045 traditional (32-bit) ABI with support for properties and other
3046 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3047 nothing is specified, the default is Version 0 on 32-bit target
3048 machines, and Version 2 on 64-bit target machines.
3049
3050 @item -fobjc-call-cxx-cdtors
3051 @opindex fobjc-call-cxx-cdtors
3052 For each Objective-C class, check if any of its instance variables is a
3053 C++ object with a non-trivial default constructor. If so, synthesize a
3054 special @code{- (id) .cxx_construct} instance method which runs
3055 non-trivial default constructors on any such instance variables, in order,
3056 and then return @code{self}. Similarly, check if any instance variable
3057 is a C++ object with a non-trivial destructor, and if so, synthesize a
3058 special @code{- (void) .cxx_destruct} method which runs
3059 all such default destructors, in reverse order.
3060
3061 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3062 methods thusly generated only operate on instance variables
3063 declared in the current Objective-C class, and not those inherited
3064 from superclasses. It is the responsibility of the Objective-C
3065 runtime to invoke all such methods in an object's inheritance
3066 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3067 by the runtime immediately after a new object instance is allocated;
3068 the @code{- (void) .cxx_destruct} methods are invoked immediately
3069 before the runtime deallocates an object instance.
3070
3071 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3072 support for invoking the @code{- (id) .cxx_construct} and
3073 @code{- (void) .cxx_destruct} methods.
3074
3075 @item -fobjc-direct-dispatch
3076 @opindex fobjc-direct-dispatch
3077 Allow fast jumps to the message dispatcher. On Darwin this is
3078 accomplished via the comm page.
3079
3080 @item -fobjc-exceptions
3081 @opindex fobjc-exceptions
3082 Enable syntactic support for structured exception handling in
3083 Objective-C, similar to what is offered by C++ and Java. This option
3084 is required to use the Objective-C keywords @code{@@try},
3085 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3086 @code{@@synchronized}. This option is available with both the GNU
3087 runtime and the NeXT runtime (but not available in conjunction with
3088 the NeXT runtime on Mac OS X 10.2 and earlier).
3089
3090 @item -fobjc-gc
3091 @opindex fobjc-gc
3092 Enable garbage collection (GC) in Objective-C and Objective-C++
3093 programs. This option is only available with the NeXT runtime; the
3094 GNU runtime has a different garbage collection implementation that
3095 does not require special compiler flags.
3096
3097 @item -fobjc-nilcheck
3098 @opindex fobjc-nilcheck
3099 For the NeXT runtime with version 2 of the ABI, check for a nil
3100 receiver in method invocations before doing the actual method call.
3101 This is the default and can be disabled using
3102 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3103 checked for nil in this way no matter what this flag is set to.
3104 Currently this flag does nothing when the GNU runtime, or an older
3105 version of the NeXT runtime ABI, is used.
3106
3107 @item -fobjc-std=objc1
3108 @opindex fobjc-std
3109 Conform to the language syntax of Objective-C 1.0, the language
3110 recognized by GCC 4.0. This only affects the Objective-C additions to
3111 the C/C++ language; it does not affect conformance to C/C++ standards,
3112 which is controlled by the separate C/C++ dialect option flags. When
3113 this option is used with the Objective-C or Objective-C++ compiler,
3114 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3115 This is useful if you need to make sure that your Objective-C code can
3116 be compiled with older versions of GCC@.
3117
3118 @item -freplace-objc-classes
3119 @opindex freplace-objc-classes
3120 Emit a special marker instructing @command{ld(1)} not to statically link in
3121 the resulting object file, and allow @command{dyld(1)} to load it in at
3122 run time instead. This is used in conjunction with the Fix-and-Continue
3123 debugging mode, where the object file in question may be recompiled and
3124 dynamically reloaded in the course of program execution, without the need
3125 to restart the program itself. Currently, Fix-and-Continue functionality
3126 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3127 and later.
3128
3129 @item -fzero-link
3130 @opindex fzero-link
3131 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3132 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3133 compile time) with static class references that get initialized at load time,
3134 which improves run-time performance. Specifying the @option{-fzero-link} flag
3135 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3136 to be retained. This is useful in Zero-Link debugging mode, since it allows
3137 for individual class implementations to be modified during program execution.
3138 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3139 regardless of command-line options.
3140
3141 @item -fno-local-ivars
3142 @opindex fno-local-ivars
3143 @opindex flocal-ivars
3144 By default instance variables in Objective-C can be accessed as if
3145 they were local variables from within the methods of the class they're
3146 declared in. This can lead to shadowing between instance variables
3147 and other variables declared either locally inside a class method or
3148 globally with the same name. Specifying the @option{-fno-local-ivars}
3149 flag disables this behavior thus avoiding variable shadowing issues.
3150
3151 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3152 @opindex fivar-visibility
3153 Set the default instance variable visibility to the specified option
3154 so that instance variables declared outside the scope of any access
3155 modifier directives default to the specified visibility.
3156
3157 @item -gen-decls
3158 @opindex gen-decls
3159 Dump interface declarations for all classes seen in the source file to a
3160 file named @file{@var{sourcename}.decl}.
3161
3162 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3163 @opindex Wassign-intercept
3164 @opindex Wno-assign-intercept
3165 Warn whenever an Objective-C assignment is being intercepted by the
3166 garbage collector.
3167
3168 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3169 @opindex Wno-protocol
3170 @opindex Wprotocol
3171 If a class is declared to implement a protocol, a warning is issued for
3172 every method in the protocol that is not implemented by the class. The
3173 default behavior is to issue a warning for every method not explicitly
3174 implemented in the class, even if a method implementation is inherited
3175 from the superclass. If you use the @option{-Wno-protocol} option, then
3176 methods inherited from the superclass are considered to be implemented,
3177 and no warning is issued for them.
3178
3179 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3180 @opindex Wselector
3181 @opindex Wno-selector
3182 Warn if multiple methods of different types for the same selector are
3183 found during compilation. The check is performed on the list of methods
3184 in the final stage of compilation. Additionally, a check is performed
3185 for each selector appearing in a @code{@@selector(@dots{})}
3186 expression, and a corresponding method for that selector has been found
3187 during compilation. Because these checks scan the method table only at
3188 the end of compilation, these warnings are not produced if the final
3189 stage of compilation is not reached, for example because an error is
3190 found during compilation, or because the @option{-fsyntax-only} option is
3191 being used.
3192
3193 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3194 @opindex Wstrict-selector-match
3195 @opindex Wno-strict-selector-match
3196 Warn if multiple methods with differing argument and/or return types are
3197 found for a given selector when attempting to send a message using this
3198 selector to a receiver of type @code{id} or @code{Class}. When this flag
3199 is off (which is the default behavior), the compiler omits such warnings
3200 if any differences found are confined to types that share the same size
3201 and alignment.
3202
3203 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3204 @opindex Wundeclared-selector
3205 @opindex Wno-undeclared-selector
3206 Warn if a @code{@@selector(@dots{})} expression referring to an
3207 undeclared selector is found. A selector is considered undeclared if no
3208 method with that name has been declared before the
3209 @code{@@selector(@dots{})} expression, either explicitly in an
3210 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3211 an @code{@@implementation} section. This option always performs its
3212 checks as soon as a @code{@@selector(@dots{})} expression is found,
3213 while @option{-Wselector} only performs its checks in the final stage of
3214 compilation. This also enforces the coding style convention
3215 that methods and selectors must be declared before being used.
3216
3217 @item -print-objc-runtime-info
3218 @opindex print-objc-runtime-info
3219 Generate C header describing the largest structure that is passed by
3220 value, if any.
3221
3222 @end table
3223
3224 @node Diagnostic Message Formatting Options
3225 @section Options to Control Diagnostic Messages Formatting
3226 @cindex options to control diagnostics formatting
3227 @cindex diagnostic messages
3228 @cindex message formatting
3229
3230 Traditionally, diagnostic messages have been formatted irrespective of
3231 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3232 options described below
3233 to control the formatting algorithm for diagnostic messages,
3234 e.g.@: how many characters per line, how often source location
3235 information should be reported. Note that some language front ends may not
3236 honor these options.
3237
3238 @table @gcctabopt
3239 @item -fmessage-length=@var{n}
3240 @opindex fmessage-length
3241 Try to format error messages so that they fit on lines of about
3242 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3243 done; each error message appears on a single line. This is the
3244 default for all front ends.
3245
3246 @item -fdiagnostics-show-location=once
3247 @opindex fdiagnostics-show-location
3248 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3249 reporter to emit source location information @emph{once}; that is, in
3250 case the message is too long to fit on a single physical line and has to
3251 be wrapped, the source location won't be emitted (as prefix) again,
3252 over and over, in subsequent continuation lines. This is the default
3253 behavior.
3254
3255 @item -fdiagnostics-show-location=every-line
3256 Only meaningful in line-wrapping mode. Instructs the diagnostic
3257 messages reporter to emit the same source location information (as
3258 prefix) for physical lines that result from the process of breaking
3259 a message which is too long to fit on a single line.
3260
3261 @item -fdiagnostics-color[=@var{WHEN}]
3262 @itemx -fno-diagnostics-color
3263 @opindex fdiagnostics-color
3264 @cindex highlight, color, colour
3265 @vindex GCC_COLORS @r{environment variable}
3266 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3267 or @samp{auto}. The default depends on how the compiler has been configured,
3268 it can be any of the above @var{WHEN} options or also @samp{never}
3269 if @env{GCC_COLORS} environment variable isn't present in the environment,
3270 and @samp{auto} otherwise.
3271 @samp{auto} means to use color only when the standard error is a terminal.
3272 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3273 aliases for @option{-fdiagnostics-color=always} and
3274 @option{-fdiagnostics-color=never}, respectively.
3275
3276 The colors are defined by the environment variable @env{GCC_COLORS}.
3277 Its value is a colon-separated list of capabilities and Select Graphic
3278 Rendition (SGR) substrings. SGR commands are interpreted by the
3279 terminal or terminal emulator. (See the section in the documentation
3280 of your text terminal for permitted values and their meanings as
3281 character attributes.) These substring values are integers in decimal
3282 representation and can be concatenated with semicolons.
3283 Common values to concatenate include
3284 @samp{1} for bold,
3285 @samp{4} for underline,
3286 @samp{5} for blink,
3287 @samp{7} for inverse,
3288 @samp{39} for default foreground color,
3289 @samp{30} to @samp{37} for foreground colors,
3290 @samp{90} to @samp{97} for 16-color mode foreground colors,
3291 @samp{38;5;0} to @samp{38;5;255}
3292 for 88-color and 256-color modes foreground colors,
3293 @samp{49} for default background color,
3294 @samp{40} to @samp{47} for background colors,
3295 @samp{100} to @samp{107} for 16-color mode background colors,
3296 and @samp{48;5;0} to @samp{48;5;255}
3297 for 88-color and 256-color modes background colors.
3298
3299 The default @env{GCC_COLORS} is
3300 @smallexample
3301 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3302 @end smallexample
3303 @noindent
3304 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3305 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3306 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3307 string disables colors.
3308 Supported capabilities are as follows.
3309
3310 @table @code
3311 @item error=
3312 @vindex error GCC_COLORS @r{capability}
3313 SGR substring for error: markers.
3314
3315 @item warning=
3316 @vindex warning GCC_COLORS @r{capability}
3317 SGR substring for warning: markers.
3318
3319 @item note=
3320 @vindex note GCC_COLORS @r{capability}
3321 SGR substring for note: markers.
3322
3323 @item caret=
3324 @vindex caret GCC_COLORS @r{capability}
3325 SGR substring for caret line.
3326
3327 @item locus=
3328 @vindex locus GCC_COLORS @r{capability}
3329 SGR substring for location information, @samp{file:line} or
3330 @samp{file:line:column} etc.
3331
3332 @item quote=
3333 @vindex quote GCC_COLORS @r{capability}
3334 SGR substring for information printed within quotes.
3335 @end table
3336
3337 @item -fno-diagnostics-show-option
3338 @opindex fno-diagnostics-show-option
3339 @opindex fdiagnostics-show-option
3340 By default, each diagnostic emitted includes text indicating the
3341 command-line option that directly controls the diagnostic (if such an
3342 option is known to the diagnostic machinery). Specifying the
3343 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3344
3345 @item -fno-diagnostics-show-caret
3346 @opindex fno-diagnostics-show-caret
3347 @opindex fdiagnostics-show-caret
3348 By default, each diagnostic emitted includes the original source line
3349 and a caret '^' indicating the column. This option suppresses this
3350 information. The source line is truncated to @var{n} characters, if
3351 the @option{-fmessage-length=n} option is given. When the output is done
3352 to the terminal, the width is limited to the width given by the
3353 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3354
3355 @end table
3356
3357 @node Warning Options
3358 @section Options to Request or Suppress Warnings
3359 @cindex options to control warnings
3360 @cindex warning messages
3361 @cindex messages, warning
3362 @cindex suppressing warnings
3363
3364 Warnings are diagnostic messages that report constructions that
3365 are not inherently erroneous but that are risky or suggest there
3366 may have been an error.
3367
3368 The following language-independent options do not enable specific
3369 warnings but control the kinds of diagnostics produced by GCC@.
3370
3371 @table @gcctabopt
3372 @cindex syntax checking
3373 @item -fsyntax-only
3374 @opindex fsyntax-only
3375 Check the code for syntax errors, but don't do anything beyond that.
3376
3377 @item -fmax-errors=@var{n}
3378 @opindex fmax-errors
3379 Limits the maximum number of error messages to @var{n}, at which point
3380 GCC bails out rather than attempting to continue processing the source
3381 code. If @var{n} is 0 (the default), there is no limit on the number
3382 of error messages produced. If @option{-Wfatal-errors} is also
3383 specified, then @option{-Wfatal-errors} takes precedence over this
3384 option.
3385
3386 @item -w
3387 @opindex w
3388 Inhibit all warning messages.
3389
3390 @item -Werror
3391 @opindex Werror
3392 @opindex Wno-error
3393 Make all warnings into errors.
3394
3395 @item -Werror=
3396 @opindex Werror=
3397 @opindex Wno-error=
3398 Make the specified warning into an error. The specifier for a warning
3399 is appended; for example @option{-Werror=switch} turns the warnings
3400 controlled by @option{-Wswitch} into errors. This switch takes a
3401 negative form, to be used to negate @option{-Werror} for specific
3402 warnings; for example @option{-Wno-error=switch} makes
3403 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3404 is in effect.
3405
3406 The warning message for each controllable warning includes the
3407 option that controls the warning. That option can then be used with
3408 @option{-Werror=} and @option{-Wno-error=} as described above.
3409 (Printing of the option in the warning message can be disabled using the
3410 @option{-fno-diagnostics-show-option} flag.)
3411
3412 Note that specifying @option{-Werror=}@var{foo} automatically implies
3413 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3414 imply anything.
3415
3416 @item -Wfatal-errors
3417 @opindex Wfatal-errors
3418 @opindex Wno-fatal-errors
3419 This option causes the compiler to abort compilation on the first error
3420 occurred rather than trying to keep going and printing further error
3421 messages.
3422
3423 @end table
3424
3425 You can request many specific warnings with options beginning with
3426 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3427 implicit declarations. Each of these specific warning options also
3428 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3429 example, @option{-Wno-implicit}. This manual lists only one of the
3430 two forms, whichever is not the default. For further
3431 language-specific options also refer to @ref{C++ Dialect Options} and
3432 @ref{Objective-C and Objective-C++ Dialect Options}.
3433
3434 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3435 options, such as @option{-Wunused}, which may turn on further options,
3436 such as @option{-Wunused-value}. The combined effect of positive and
3437 negative forms is that more specific options have priority over less
3438 specific ones, independently of their position in the command-line. For
3439 options of the same specificity, the last one takes effect. Options
3440 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3441 as if they appeared at the end of the command-line.
3442
3443 When an unrecognized warning option is requested (e.g.,
3444 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3445 that the option is not recognized. However, if the @option{-Wno-} form
3446 is used, the behavior is slightly different: no diagnostic is
3447 produced for @option{-Wno-unknown-warning} unless other diagnostics
3448 are being produced. This allows the use of new @option{-Wno-} options
3449 with old compilers, but if something goes wrong, the compiler
3450 warns that an unrecognized option is present.
3451
3452 @table @gcctabopt
3453 @item -Wpedantic
3454 @itemx -pedantic
3455 @opindex pedantic
3456 @opindex Wpedantic
3457 Issue all the warnings demanded by strict ISO C and ISO C++;
3458 reject all programs that use forbidden extensions, and some other
3459 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3460 version of the ISO C standard specified by any @option{-std} option used.
3461
3462 Valid ISO C and ISO C++ programs should compile properly with or without
3463 this option (though a rare few require @option{-ansi} or a
3464 @option{-std} option specifying the required version of ISO C)@. However,
3465 without this option, certain GNU extensions and traditional C and C++
3466 features are supported as well. With this option, they are rejected.
3467
3468 @option{-Wpedantic} does not cause warning messages for use of the
3469 alternate keywords whose names begin and end with @samp{__}. Pedantic
3470 warnings are also disabled in the expression that follows
3471 @code{__extension__}. However, only system header files should use
3472 these escape routes; application programs should avoid them.
3473 @xref{Alternate Keywords}.
3474
3475 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3476 C conformance. They soon find that it does not do quite what they want:
3477 it finds some non-ISO practices, but not all---only those for which
3478 ISO C @emph{requires} a diagnostic, and some others for which
3479 diagnostics have been added.
3480
3481 A feature to report any failure to conform to ISO C might be useful in
3482 some instances, but would require considerable additional work and would
3483 be quite different from @option{-Wpedantic}. We don't have plans to
3484 support such a feature in the near future.
3485
3486 Where the standard specified with @option{-std} represents a GNU
3487 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3488 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3489 extended dialect is based. Warnings from @option{-Wpedantic} are given
3490 where they are required by the base standard. (It does not make sense
3491 for such warnings to be given only for features not in the specified GNU
3492 C dialect, since by definition the GNU dialects of C include all
3493 features the compiler supports with the given option, and there would be
3494 nothing to warn about.)
3495
3496 @item -pedantic-errors
3497 @opindex pedantic-errors
3498 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3499 requires a diagnostic, in some cases where there is undefined behavior
3500 at compile-time and in some other cases that do not prevent compilation
3501 of programs that are valid according to the standard. This is not
3502 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3503 by this option and not enabled by the latter and vice versa.
3504
3505 @item -Wall
3506 @opindex Wall
3507 @opindex Wno-all
3508 This enables all the warnings about constructions that some users
3509 consider questionable, and that are easy to avoid (or modify to
3510 prevent the warning), even in conjunction with macros. This also
3511 enables some language-specific warnings described in @ref{C++ Dialect
3512 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3513
3514 @option{-Wall} turns on the following warning flags:
3515
3516 @gccoptlist{-Waddress @gol
3517 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3518 -Wc++11-compat -Wc++14-compat@gol
3519 -Wchar-subscripts @gol
3520 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3521 -Wimplicit-int @r{(C and Objective-C only)} @gol
3522 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3523 -Wbool-compare @gol
3524 -Wcomment @gol
3525 -Wformat @gol
3526 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3527 -Wmaybe-uninitialized @gol
3528 -Wmissing-braces @r{(only for C/ObjC)} @gol
3529 -Wnonnull @gol
3530 -Wopenmp-simd @gol
3531 -Wparentheses @gol
3532 -Wpointer-sign @gol
3533 -Wreorder @gol
3534 -Wreturn-type @gol
3535 -Wsequence-point @gol
3536 -Wsign-compare @r{(only in C++)} @gol
3537 -Wstrict-aliasing @gol
3538 -Wstrict-overflow=1 @gol
3539 -Wswitch @gol
3540 -Wtautological-compare @gol
3541 -Wtrigraphs @gol
3542 -Wuninitialized @gol
3543 -Wunknown-pragmas @gol
3544 -Wunused-function @gol
3545 -Wunused-label @gol
3546 -Wunused-value @gol
3547 -Wunused-variable @gol
3548 -Wvolatile-register-var @gol
3549 }
3550
3551 Note that some warning flags are not implied by @option{-Wall}. Some of
3552 them warn about constructions that users generally do not consider
3553 questionable, but which occasionally you might wish to check for;
3554 others warn about constructions that are necessary or hard to avoid in
3555 some cases, and there is no simple way to modify the code to suppress
3556 the warning. Some of them are enabled by @option{-Wextra} but many of
3557 them must be enabled individually.
3558
3559 @item -Wextra
3560 @opindex W
3561 @opindex Wextra
3562 @opindex Wno-extra
3563 This enables some extra warning flags that are not enabled by
3564 @option{-Wall}. (This option used to be called @option{-W}. The older
3565 name is still supported, but the newer name is more descriptive.)
3566
3567 @gccoptlist{-Wclobbered @gol
3568 -Wempty-body @gol
3569 -Wignored-qualifiers @gol
3570 -Wmissing-field-initializers @gol
3571 -Wmissing-parameter-type @r{(C only)} @gol
3572 -Wold-style-declaration @r{(C only)} @gol
3573 -Woverride-init @gol
3574 -Wsign-compare @gol
3575 -Wtype-limits @gol
3576 -Wuninitialized @gol
3577 -Wshift-negative-value @gol
3578 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3579 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3580 }
3581
3582 The option @option{-Wextra} also prints warning messages for the
3583 following cases:
3584
3585 @itemize @bullet
3586
3587 @item
3588 A pointer is compared against integer zero with @code{<}, @code{<=},
3589 @code{>}, or @code{>=}.
3590
3591 @item
3592 (C++ only) An enumerator and a non-enumerator both appear in a
3593 conditional expression.
3594
3595 @item
3596 (C++ only) Ambiguous virtual bases.
3597
3598 @item
3599 (C++ only) Subscripting an array that has been declared @code{register}.
3600
3601 @item
3602 (C++ only) Taking the address of a variable that has been declared
3603 @code{register}.
3604
3605 @item
3606 (C++ only) A base class is not initialized in a derived class's copy
3607 constructor.
3608
3609 @end itemize
3610
3611 @item -Wchar-subscripts
3612 @opindex Wchar-subscripts
3613 @opindex Wno-char-subscripts
3614 Warn if an array subscript has type @code{char}. This is a common cause
3615 of error, as programmers often forget that this type is signed on some
3616 machines.
3617 This warning is enabled by @option{-Wall}.
3618
3619 @item -Wcomment
3620 @opindex Wcomment
3621 @opindex Wno-comment
3622 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3623 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3624 This warning is enabled by @option{-Wall}.
3625
3626 @item -Wno-coverage-mismatch
3627 @opindex Wno-coverage-mismatch
3628 Warn if feedback profiles do not match when using the
3629 @option{-fprofile-use} option.
3630 If a source file is changed between compiling with @option{-fprofile-gen} and
3631 with @option{-fprofile-use}, the files with the profile feedback can fail
3632 to match the source file and GCC cannot use the profile feedback
3633 information. By default, this warning is enabled and is treated as an
3634 error. @option{-Wno-coverage-mismatch} can be used to disable the
3635 warning or @option{-Wno-error=coverage-mismatch} can be used to
3636 disable the error. Disabling the error for this warning can result in
3637 poorly optimized code and is useful only in the
3638 case of very minor changes such as bug fixes to an existing code-base.
3639 Completely disabling the warning is not recommended.
3640
3641 @item -Wno-cpp
3642 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3643
3644 Suppress warning messages emitted by @code{#warning} directives.
3645
3646 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3647 @opindex Wdouble-promotion
3648 @opindex Wno-double-promotion
3649 Give a warning when a value of type @code{float} is implicitly
3650 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3651 floating-point unit implement @code{float} in hardware, but emulate
3652 @code{double} in software. On such a machine, doing computations
3653 using @code{double} values is much more expensive because of the
3654 overhead required for software emulation.
3655
3656 It is easy to accidentally do computations with @code{double} because
3657 floating-point literals are implicitly of type @code{double}. For
3658 example, in:
3659 @smallexample
3660 @group
3661 float area(float radius)
3662 @{
3663 return 3.14159 * radius * radius;
3664 @}
3665 @end group
3666 @end smallexample
3667 the compiler performs the entire computation with @code{double}
3668 because the floating-point literal is a @code{double}.
3669
3670 @item -Wformat
3671 @itemx -Wformat=@var{n}
3672 @opindex Wformat
3673 @opindex Wno-format
3674 @opindex ffreestanding
3675 @opindex fno-builtin
3676 @opindex Wformat=
3677 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3678 the arguments supplied have types appropriate to the format string
3679 specified, and that the conversions specified in the format string make
3680 sense. This includes standard functions, and others specified by format
3681 attributes (@pxref{Function Attributes}), in the @code{printf},
3682 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3683 not in the C standard) families (or other target-specific families).
3684 Which functions are checked without format attributes having been
3685 specified depends on the standard version selected, and such checks of
3686 functions without the attribute specified are disabled by
3687 @option{-ffreestanding} or @option{-fno-builtin}.
3688
3689 The formats are checked against the format features supported by GNU
3690 libc version 2.2. These include all ISO C90 and C99 features, as well
3691 as features from the Single Unix Specification and some BSD and GNU
3692 extensions. Other library implementations may not support all these
3693 features; GCC does not support warning about features that go beyond a
3694 particular library's limitations. However, if @option{-Wpedantic} is used
3695 with @option{-Wformat}, warnings are given about format features not
3696 in the selected standard version (but not for @code{strfmon} formats,
3697 since those are not in any version of the C standard). @xref{C Dialect
3698 Options,,Options Controlling C Dialect}.
3699
3700 @table @gcctabopt
3701 @item -Wformat=1
3702 @itemx -Wformat
3703 @opindex Wformat
3704 @opindex Wformat=1
3705 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3706 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
3707 @option{-Wformat} also checks for null format arguments for several
3708 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
3709 aspects of this level of format checking can be disabled by the
3710 options: @option{-Wno-format-contains-nul},
3711 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3712 @option{-Wformat} is enabled by @option{-Wall}.
3713
3714 @item -Wno-format-contains-nul
3715 @opindex Wno-format-contains-nul
3716 @opindex Wformat-contains-nul
3717 If @option{-Wformat} is specified, do not warn about format strings that
3718 contain NUL bytes.
3719
3720 @item -Wno-format-extra-args
3721 @opindex Wno-format-extra-args
3722 @opindex Wformat-extra-args
3723 If @option{-Wformat} is specified, do not warn about excess arguments to a
3724 @code{printf} or @code{scanf} format function. The C standard specifies
3725 that such arguments are ignored.
3726
3727 Where the unused arguments lie between used arguments that are
3728 specified with @samp{$} operand number specifications, normally
3729 warnings are still given, since the implementation could not know what
3730 type to pass to @code{va_arg} to skip the unused arguments. However,
3731 in the case of @code{scanf} formats, this option suppresses the
3732 warning if the unused arguments are all pointers, since the Single
3733 Unix Specification says that such unused arguments are allowed.
3734
3735 @item -Wno-format-zero-length
3736 @opindex Wno-format-zero-length
3737 @opindex Wformat-zero-length
3738 If @option{-Wformat} is specified, do not warn about zero-length formats.
3739 The C standard specifies that zero-length formats are allowed.
3740
3741
3742 @item -Wformat=2
3743 @opindex Wformat=2
3744 Enable @option{-Wformat} plus additional format checks. Currently
3745 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3746 -Wformat-y2k}.
3747
3748 @item -Wformat-nonliteral
3749 @opindex Wformat-nonliteral
3750 @opindex Wno-format-nonliteral
3751 If @option{-Wformat} is specified, also warn if the format string is not a
3752 string literal and so cannot be checked, unless the format function
3753 takes its format arguments as a @code{va_list}.
3754
3755 @item -Wformat-security
3756 @opindex Wformat-security
3757 @opindex Wno-format-security
3758 If @option{-Wformat} is specified, also warn about uses of format
3759 functions that represent possible security problems. At present, this
3760 warns about calls to @code{printf} and @code{scanf} functions where the
3761 format string is not a string literal and there are no format arguments,
3762 as in @code{printf (foo);}. This may be a security hole if the format
3763 string came from untrusted input and contains @samp{%n}. (This is
3764 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3765 in future warnings may be added to @option{-Wformat-security} that are not
3766 included in @option{-Wformat-nonliteral}.)
3767
3768 @item -Wformat-signedness
3769 @opindex Wformat-signedness
3770 @opindex Wno-format-signedness
3771 If @option{-Wformat} is specified, also warn if the format string
3772 requires an unsigned argument and the argument is signed and vice versa.
3773
3774 @item -Wformat-y2k
3775 @opindex Wformat-y2k
3776 @opindex Wno-format-y2k
3777 If @option{-Wformat} is specified, also warn about @code{strftime}
3778 formats that may yield only a two-digit year.
3779 @end table
3780
3781 @item -Wnonnull
3782 @opindex Wnonnull
3783 @opindex Wno-nonnull
3784 Warn about passing a null pointer for arguments marked as
3785 requiring a non-null value by the @code{nonnull} function attribute.
3786
3787 Also warns when comparing an argument marked with the @code{nonnull}
3788 function attribute against null inside the function.
3789
3790 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
3791 can be disabled with the @option{-Wno-nonnull} option.
3792
3793 @item -Wnull-dereference
3794 @opindex Wnull-dereference
3795 @opindex Wno-null-dereference
3796 Warn if the compiler detects paths that trigger erroneous or
3797 undefined behavior due to dereferencing a null pointer. This option
3798 is only active when @option{-fdelete-null-pointer-checks} is active,
3799 which is enabled by optimizations in most targets. The precision of
3800 the warnings depends on the optimization options used.
3801
3802 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3803 @opindex Winit-self
3804 @opindex Wno-init-self
3805 Warn about uninitialized variables that are initialized with themselves.
3806 Note this option can only be used with the @option{-Wuninitialized} option.
3807
3808 For example, GCC warns about @code{i} being uninitialized in the
3809 following snippet only when @option{-Winit-self} has been specified:
3810 @smallexample
3811 @group
3812 int f()
3813 @{
3814 int i = i;
3815 return i;
3816 @}
3817 @end group
3818 @end smallexample
3819
3820 This warning is enabled by @option{-Wall} in C++.
3821
3822 @item -Wimplicit-int @r{(C and Objective-C only)}
3823 @opindex Wimplicit-int
3824 @opindex Wno-implicit-int
3825 Warn when a declaration does not specify a type.
3826 This warning is enabled by @option{-Wall}.
3827
3828 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3829 @opindex Wimplicit-function-declaration
3830 @opindex Wno-implicit-function-declaration
3831 Give a warning whenever a function is used before being declared. In
3832 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3833 enabled by default and it is made into an error by
3834 @option{-pedantic-errors}. This warning is also enabled by
3835 @option{-Wall}.
3836
3837 @item -Wimplicit @r{(C and Objective-C only)}
3838 @opindex Wimplicit
3839 @opindex Wno-implicit
3840 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3841 This warning is enabled by @option{-Wall}.
3842
3843 @item -Wignored-qualifiers @r{(C and C++ only)}
3844 @opindex Wignored-qualifiers
3845 @opindex Wno-ignored-qualifiers
3846 Warn if the return type of a function has a type qualifier
3847 such as @code{const}. For ISO C such a type qualifier has no effect,
3848 since the value returned by a function is not an lvalue.
3849 For C++, the warning is only emitted for scalar types or @code{void}.
3850 ISO C prohibits qualified @code{void} return types on function
3851 definitions, so such return types always receive a warning
3852 even without this option.
3853
3854 This warning is also enabled by @option{-Wextra}.
3855
3856 @item -Wmain
3857 @opindex Wmain
3858 @opindex Wno-main
3859 Warn if the type of @code{main} is suspicious. @code{main} should be
3860 a function with external linkage, returning int, taking either zero
3861 arguments, two, or three arguments of appropriate types. This warning
3862 is enabled by default in C++ and is enabled by either @option{-Wall}
3863 or @option{-Wpedantic}.
3864
3865 @item -Wmisleading-indentation @r{(C and C++ only)}
3866 @opindex Wmisleading-indentation
3867 @opindex Wno-misleading-indentation
3868 Warn when the indentation of the code does not reflect the block structure.
3869 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
3870 @code{for} clauses with a guarded statement that does not use braces,
3871 followed by an unguarded statement with the same indentation.
3872
3873 This warning is disabled by default.
3874
3875 In the following example, the call to ``bar'' is misleadingly indented as
3876 if it were guarded by the ``if'' conditional.
3877
3878 @smallexample
3879 if (some_condition ())
3880 foo ();
3881 bar (); /* Gotcha: this is not guarded by the "if". */
3882 @end smallexample
3883
3884 In the case of mixed tabs and spaces, the warning uses the
3885 @option{-ftabstop=} option to determine if the statements line up
3886 (defaulting to 8).
3887
3888 The warning is not issued for code involving multiline preprocessor logic
3889 such as the following example.
3890
3891 @smallexample
3892 if (flagA)
3893 foo (0);
3894 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
3895 if (flagB)
3896 #endif
3897 foo (1);
3898 @end smallexample
3899
3900 The warning is not issued after a @code{#line} directive, since this
3901 typically indicates autogenerated code, and no assumptions can be made
3902 about the layout of the file that the directive references.
3903
3904 @item -Wmissing-braces
3905 @opindex Wmissing-braces
3906 @opindex Wno-missing-braces
3907 Warn if an aggregate or union initializer is not fully bracketed. In
3908 the following example, the initializer for @code{a} is not fully
3909 bracketed, but that for @code{b} is fully bracketed. This warning is
3910 enabled by @option{-Wall} in C.
3911
3912 @smallexample
3913 int a[2][2] = @{ 0, 1, 2, 3 @};
3914 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3915 @end smallexample
3916
3917 This warning is enabled by @option{-Wall}.
3918
3919 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3920 @opindex Wmissing-include-dirs
3921 @opindex Wno-missing-include-dirs
3922 Warn if a user-supplied include directory does not exist.
3923
3924 @item -Wparentheses
3925 @opindex Wparentheses
3926 @opindex Wno-parentheses
3927 Warn if parentheses are omitted in certain contexts, such
3928 as when there is an assignment in a context where a truth value
3929 is expected, or when operators are nested whose precedence people
3930 often get confused about.
3931
3932 Also warn if a comparison like @code{x<=y<=z} appears; this is
3933 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3934 interpretation from that of ordinary mathematical notation.
3935
3936 Also warn about constructions where there may be confusion to which
3937 @code{if} statement an @code{else} branch belongs. Here is an example of
3938 such a case:
3939
3940 @smallexample
3941 @group
3942 @{
3943 if (a)
3944 if (b)
3945 foo ();
3946 else
3947 bar ();
3948 @}
3949 @end group
3950 @end smallexample
3951
3952 In C/C++, every @code{else} branch belongs to the innermost possible
3953 @code{if} statement, which in this example is @code{if (b)}. This is
3954 often not what the programmer expected, as illustrated in the above
3955 example by indentation the programmer chose. When there is the
3956 potential for this confusion, GCC issues a warning when this flag
3957 is specified. To eliminate the warning, add explicit braces around
3958 the innermost @code{if} statement so there is no way the @code{else}
3959 can belong to the enclosing @code{if}. The resulting code
3960 looks like this:
3961
3962 @smallexample
3963 @group
3964 @{
3965 if (a)
3966 @{
3967 if (b)
3968 foo ();
3969 else
3970 bar ();
3971 @}
3972 @}
3973 @end group
3974 @end smallexample
3975
3976 Also warn for dangerous uses of the GNU extension to
3977 @code{?:} with omitted middle operand. When the condition
3978 in the @code{?}: operator is a boolean expression, the omitted value is
3979 always 1. Often programmers expect it to be a value computed
3980 inside the conditional expression instead.
3981
3982 This warning is enabled by @option{-Wall}.
3983
3984 @item -Wsequence-point
3985 @opindex Wsequence-point
3986 @opindex Wno-sequence-point
3987 Warn about code that may have undefined semantics because of violations
3988 of sequence point rules in the C and C++ standards.
3989
3990 The C and C++ standards define the order in which expressions in a C/C++
3991 program are evaluated in terms of @dfn{sequence points}, which represent
3992 a partial ordering between the execution of parts of the program: those
3993 executed before the sequence point, and those executed after it. These
3994 occur after the evaluation of a full expression (one which is not part
3995 of a larger expression), after the evaluation of the first operand of a
3996 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
3997 function is called (but after the evaluation of its arguments and the
3998 expression denoting the called function), and in certain other places.
3999 Other than as expressed by the sequence point rules, the order of
4000 evaluation of subexpressions of an expression is not specified. All
4001 these rules describe only a partial order rather than a total order,
4002 since, for example, if two functions are called within one expression
4003 with no sequence point between them, the order in which the functions
4004 are called is not specified. However, the standards committee have
4005 ruled that function calls do not overlap.
4006
4007 It is not specified when between sequence points modifications to the
4008 values of objects take effect. Programs whose behavior depends on this
4009 have undefined behavior; the C and C++ standards specify that ``Between
4010 the previous and next sequence point an object shall have its stored
4011 value modified at most once by the evaluation of an expression.
4012 Furthermore, the prior value shall be read only to determine the value
4013 to be stored.''. If a program breaks these rules, the results on any
4014 particular implementation are entirely unpredictable.
4015
4016 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4017 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4018 diagnosed by this option, and it may give an occasional false positive
4019 result, but in general it has been found fairly effective at detecting
4020 this sort of problem in programs.
4021
4022 The standard is worded confusingly, therefore there is some debate
4023 over the precise meaning of the sequence point rules in subtle cases.
4024 Links to discussions of the problem, including proposed formal
4025 definitions, may be found on the GCC readings page, at
4026 @uref{http://gcc.gnu.org/@/readings.html}.
4027
4028 This warning is enabled by @option{-Wall} for C and C++.
4029
4030 @item -Wno-return-local-addr
4031 @opindex Wno-return-local-addr
4032 @opindex Wreturn-local-addr
4033 Do not warn about returning a pointer (or in C++, a reference) to a
4034 variable that goes out of scope after the function returns.
4035
4036 @item -Wreturn-type
4037 @opindex Wreturn-type
4038 @opindex Wno-return-type
4039 Warn whenever a function is defined with a return type that defaults
4040 to @code{int}. Also warn about any @code{return} statement with no
4041 return value in a function whose return type is not @code{void}
4042 (falling off the end of the function body is considered returning
4043 without a value), and about a @code{return} statement with an
4044 expression in a function whose return type is @code{void}.
4045
4046 For C++, a function without return type always produces a diagnostic
4047 message, even when @option{-Wno-return-type} is specified. The only
4048 exceptions are @code{main} and functions defined in system headers.
4049
4050 This warning is enabled by @option{-Wall}.
4051
4052 @item -Wshift-count-negative
4053 @opindex Wshift-count-negative
4054 @opindex Wno-shift-count-negative
4055 Warn if shift count is negative. This warning is enabled by default.
4056
4057 @item -Wshift-count-overflow
4058 @opindex Wshift-count-overflow
4059 @opindex Wno-shift-count-overflow
4060 Warn if shift count >= width of type. This warning is enabled by default.
4061
4062 @item -Wshift-negative-value
4063 @opindex Wshift-negative-value
4064 @opindex Wno-shift-negative-value
4065 Warn if left shifting a negative value. This warning is enabled by
4066 @option{-Wextra} in C99 and C++11 modes (and newer).
4067
4068 @item -Wshift-overflow
4069 @itemx -Wshift-overflow=@var{n}
4070 @opindex Wshift-overflow
4071 @opindex Wno-shift-overflow
4072 Warn about left shift overflows. This warning is enabled by
4073 default in C99 and C++11 modes (and newer).
4074
4075 @table @gcctabopt
4076 @item -Wshift-overflow=1
4077 This is the warning level of @option{-Wshift-overflow} and is enabled
4078 by default in C99 and C++11 modes (and newer). This warning level does
4079 not warn about left-shifting 1 into the sign bit. (However, in C, such
4080 an overflow is still rejected in contexts where an integer constant expression
4081 is required.)
4082
4083 @item -Wshift-overflow=2
4084 This warning level also warns about left-shifting 1 into the sign bit,
4085 unless C++14 mode is active.
4086 @end table
4087
4088 @item -Wswitch
4089 @opindex Wswitch
4090 @opindex Wno-switch
4091 Warn whenever a @code{switch} statement has an index of enumerated type
4092 and lacks a @code{case} for one or more of the named codes of that
4093 enumeration. (The presence of a @code{default} label prevents this
4094 warning.) @code{case} labels outside the enumeration range also
4095 provoke warnings when this option is used (even if there is a
4096 @code{default} label).
4097 This warning is enabled by @option{-Wall}.
4098
4099 @item -Wswitch-default
4100 @opindex Wswitch-default
4101 @opindex Wno-switch-default
4102 Warn whenever a @code{switch} statement does not have a @code{default}
4103 case.
4104
4105 @item -Wswitch-enum
4106 @opindex Wswitch-enum
4107 @opindex Wno-switch-enum
4108 Warn whenever a @code{switch} statement has an index of enumerated type
4109 and lacks a @code{case} for one or more of the named codes of that
4110 enumeration. @code{case} labels outside the enumeration range also
4111 provoke warnings when this option is used. The only difference
4112 between @option{-Wswitch} and this option is that this option gives a
4113 warning about an omitted enumeration code even if there is a
4114 @code{default} label.
4115
4116 @item -Wswitch-bool
4117 @opindex Wswitch-bool
4118 @opindex Wno-switch-bool
4119 Warn whenever a @code{switch} statement has an index of boolean type
4120 and the case values are outside the range of a boolean type.
4121 It is possible to suppress this warning by casting the controlling
4122 expression to a type other than @code{bool}. For example:
4123 @smallexample
4124 @group
4125 switch ((int) (a == 4))
4126 @{
4127 @dots{}
4128 @}
4129 @end group
4130 @end smallexample
4131 This warning is enabled by default for C and C++ programs.
4132
4133 @item -Wsync-nand @r{(C and C++ only)}
4134 @opindex Wsync-nand
4135 @opindex Wno-sync-nand
4136 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4137 built-in functions are used. These functions changed semantics in GCC 4.4.
4138
4139 @item -Wtrigraphs
4140 @opindex Wtrigraphs
4141 @opindex Wno-trigraphs
4142 Warn if any trigraphs are encountered that might change the meaning of
4143 the program (trigraphs within comments are not warned about).
4144 This warning is enabled by @option{-Wall}.
4145
4146 @item -Wunused-but-set-parameter
4147 @opindex Wunused-but-set-parameter
4148 @opindex Wno-unused-but-set-parameter
4149 Warn whenever a function parameter is assigned to, but otherwise unused
4150 (aside from its declaration).
4151
4152 To suppress this warning use the @code{unused} attribute
4153 (@pxref{Variable Attributes}).
4154
4155 This warning is also enabled by @option{-Wunused} together with
4156 @option{-Wextra}.
4157
4158 @item -Wunused-but-set-variable
4159 @opindex Wunused-but-set-variable
4160 @opindex Wno-unused-but-set-variable
4161 Warn whenever a local variable is assigned to, but otherwise unused
4162 (aside from its declaration).
4163 This warning is enabled by @option{-Wall}.
4164
4165 To suppress this warning use the @code{unused} attribute
4166 (@pxref{Variable Attributes}).
4167
4168 This warning is also enabled by @option{-Wunused}, which is enabled
4169 by @option{-Wall}.
4170
4171 @item -Wunused-function
4172 @opindex Wunused-function
4173 @opindex Wno-unused-function
4174 Warn whenever a static function is declared but not defined or a
4175 non-inline static function is unused.
4176 This warning is enabled by @option{-Wall}.
4177
4178 @item -Wunused-label
4179 @opindex Wunused-label
4180 @opindex Wno-unused-label
4181 Warn whenever a label is declared but not used.
4182 This warning is enabled by @option{-Wall}.
4183
4184 To suppress this warning use the @code{unused} attribute
4185 (@pxref{Variable Attributes}).
4186
4187 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4188 @opindex Wunused-local-typedefs
4189 Warn when a typedef locally defined in a function is not used.
4190 This warning is enabled by @option{-Wall}.
4191
4192 @item -Wunused-parameter
4193 @opindex Wunused-parameter
4194 @opindex Wno-unused-parameter
4195 Warn whenever a function parameter is unused aside from its declaration.
4196
4197 To suppress this warning use the @code{unused} attribute
4198 (@pxref{Variable Attributes}).
4199
4200 @item -Wno-unused-result
4201 @opindex Wunused-result
4202 @opindex Wno-unused-result
4203 Do not warn if a caller of a function marked with attribute
4204 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4205 its return value. The default is @option{-Wunused-result}.
4206
4207 @item -Wunused-variable
4208 @opindex Wunused-variable
4209 @opindex Wno-unused-variable
4210 Warn whenever a local or static variable is unused aside from its
4211 declaration. This option implies @option{-Wunused-const-variable} for C,
4212 but not for C++. This warning is enabled by @option{-Wall}.
4213
4214 To suppress this warning use the @code{unused} attribute
4215 (@pxref{Variable Attributes}).
4216
4217 @item -Wunused-const-variable
4218 @opindex Wunused-const-variable
4219 @opindex Wno-unused-const-variable
4220 Warn whenever a constant static variable is unused aside from its declaration.
4221 This warning is enabled by @option{-Wunused-variable} for C, but not for C++.
4222 In C++ this is normally not an error since const variables take the place of
4223 @code{#define}s in C++.
4224
4225 To suppress this warning use the @code{unused} attribute
4226 (@pxref{Variable Attributes}).
4227
4228 @item -Wunused-value
4229 @opindex Wunused-value
4230 @opindex Wno-unused-value
4231 Warn whenever a statement computes a result that is explicitly not
4232 used. To suppress this warning cast the unused expression to
4233 @code{void}. This includes an expression-statement or the left-hand
4234 side of a comma expression that contains no side effects. For example,
4235 an expression such as @code{x[i,j]} causes a warning, while
4236 @code{x[(void)i,j]} does not.
4237
4238 This warning is enabled by @option{-Wall}.
4239
4240 @item -Wunused
4241 @opindex Wunused
4242 @opindex Wno-unused
4243 All the above @option{-Wunused} options combined.
4244
4245 In order to get a warning about an unused function parameter, you must
4246 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4247 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4248
4249 @item -Wuninitialized
4250 @opindex Wuninitialized
4251 @opindex Wno-uninitialized
4252 Warn if an automatic variable is used without first being initialized
4253 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4254 warn if a non-static reference or non-static @code{const} member
4255 appears in a class without constructors.
4256
4257 If you want to warn about code that uses the uninitialized value of the
4258 variable in its own initializer, use the @option{-Winit-self} option.
4259
4260 These warnings occur for individual uninitialized or clobbered
4261 elements of structure, union or array variables as well as for
4262 variables that are uninitialized or clobbered as a whole. They do
4263 not occur for variables or elements declared @code{volatile}. Because
4264 these warnings depend on optimization, the exact variables or elements
4265 for which there are warnings depends on the precise optimization
4266 options and version of GCC used.
4267
4268 Note that there may be no warning about a variable that is used only
4269 to compute a value that itself is never used, because such
4270 computations may be deleted by data flow analysis before the warnings
4271 are printed.
4272
4273 @item -Wmaybe-uninitialized
4274 @opindex Wmaybe-uninitialized
4275 @opindex Wno-maybe-uninitialized
4276 For an automatic variable, if there exists a path from the function
4277 entry to a use of the variable that is initialized, but there exist
4278 some other paths for which the variable is not initialized, the compiler
4279 emits a warning if it cannot prove the uninitialized paths are not
4280 executed at run time. These warnings are made optional because GCC is
4281 not smart enough to see all the reasons why the code might be correct
4282 in spite of appearing to have an error. Here is one example of how
4283 this can happen:
4284
4285 @smallexample
4286 @group
4287 @{
4288 int x;
4289 switch (y)
4290 @{
4291 case 1: x = 1;
4292 break;
4293 case 2: x = 4;
4294 break;
4295 case 3: x = 5;
4296 @}
4297 foo (x);
4298 @}
4299 @end group
4300 @end smallexample
4301
4302 @noindent
4303 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4304 always initialized, but GCC doesn't know this. To suppress the
4305 warning, you need to provide a default case with assert(0) or
4306 similar code.
4307
4308 @cindex @code{longjmp} warnings
4309 This option also warns when a non-volatile automatic variable might be
4310 changed by a call to @code{longjmp}. These warnings as well are possible
4311 only in optimizing compilation.
4312
4313 The compiler sees only the calls to @code{setjmp}. It cannot know
4314 where @code{longjmp} will be called; in fact, a signal handler could
4315 call it at any point in the code. As a result, you may get a warning
4316 even when there is in fact no problem because @code{longjmp} cannot
4317 in fact be called at the place that would cause a problem.
4318
4319 Some spurious warnings can be avoided if you declare all the functions
4320 you use that never return as @code{noreturn}. @xref{Function
4321 Attributes}.
4322
4323 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4324
4325 @item -Wunknown-pragmas
4326 @opindex Wunknown-pragmas
4327 @opindex Wno-unknown-pragmas
4328 @cindex warning for unknown pragmas
4329 @cindex unknown pragmas, warning
4330 @cindex pragmas, warning of unknown
4331 Warn when a @code{#pragma} directive is encountered that is not understood by
4332 GCC@. If this command-line option is used, warnings are even issued
4333 for unknown pragmas in system header files. This is not the case if
4334 the warnings are only enabled by the @option{-Wall} command-line option.
4335
4336 @item -Wno-pragmas
4337 @opindex Wno-pragmas
4338 @opindex Wpragmas
4339 Do not warn about misuses of pragmas, such as incorrect parameters,
4340 invalid syntax, or conflicts between pragmas. See also
4341 @option{-Wunknown-pragmas}.
4342
4343 @item -Wstrict-aliasing
4344 @opindex Wstrict-aliasing
4345 @opindex Wno-strict-aliasing
4346 This option is only active when @option{-fstrict-aliasing} is active.
4347 It warns about code that might break the strict aliasing rules that the
4348 compiler is using for optimization. The warning does not catch all
4349 cases, but does attempt to catch the more common pitfalls. It is
4350 included in @option{-Wall}.
4351 It is equivalent to @option{-Wstrict-aliasing=3}
4352
4353 @item -Wstrict-aliasing=n
4354 @opindex Wstrict-aliasing=n
4355 This option is only active when @option{-fstrict-aliasing} is active.
4356 It warns about code that might break the strict aliasing rules that the
4357 compiler is using for optimization.
4358 Higher levels correspond to higher accuracy (fewer false positives).
4359 Higher levels also correspond to more effort, similar to the way @option{-O}
4360 works.
4361 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4362
4363 Level 1: Most aggressive, quick, least accurate.
4364 Possibly useful when higher levels
4365 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4366 false negatives. However, it has many false positives.
4367 Warns for all pointer conversions between possibly incompatible types,
4368 even if never dereferenced. Runs in the front end only.
4369
4370 Level 2: Aggressive, quick, not too precise.
4371 May still have many false positives (not as many as level 1 though),
4372 and few false negatives (but possibly more than level 1).
4373 Unlike level 1, it only warns when an address is taken. Warns about
4374 incomplete types. Runs in the front end only.
4375
4376 Level 3 (default for @option{-Wstrict-aliasing}):
4377 Should have very few false positives and few false
4378 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
4379 Takes care of the common pun+dereference pattern in the front end:
4380 @code{*(int*)&some_float}.
4381 If optimization is enabled, it also runs in the back end, where it deals
4382 with multiple statement cases using flow-sensitive points-to information.
4383 Only warns when the converted pointer is dereferenced.
4384 Does not warn about incomplete types.
4385
4386 @item -Wstrict-overflow
4387 @itemx -Wstrict-overflow=@var{n}
4388 @opindex Wstrict-overflow
4389 @opindex Wno-strict-overflow
4390 This option is only active when @option{-fstrict-overflow} is active.
4391 It warns about cases where the compiler optimizes based on the
4392 assumption that signed overflow does not occur. Note that it does not
4393 warn about all cases where the code might overflow: it only warns
4394 about cases where the compiler implements some optimization. Thus
4395 this warning depends on the optimization level.
4396
4397 An optimization that assumes that signed overflow does not occur is
4398 perfectly safe if the values of the variables involved are such that
4399 overflow never does, in fact, occur. Therefore this warning can
4400 easily give a false positive: a warning about code that is not
4401 actually a problem. To help focus on important issues, several
4402 warning levels are defined. No warnings are issued for the use of
4403 undefined signed overflow when estimating how many iterations a loop
4404 requires, in particular when determining whether a loop will be
4405 executed at all.
4406
4407 @table @gcctabopt
4408 @item -Wstrict-overflow=1
4409 Warn about cases that are both questionable and easy to avoid. For
4410 example, with @option{-fstrict-overflow}, the compiler simplifies
4411 @code{x + 1 > x} to @code{1}. This level of
4412 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4413 are not, and must be explicitly requested.
4414
4415 @item -Wstrict-overflow=2
4416 Also warn about other cases where a comparison is simplified to a
4417 constant. For example: @code{abs (x) >= 0}. This can only be
4418 simplified when @option{-fstrict-overflow} is in effect, because
4419 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4420 zero. @option{-Wstrict-overflow} (with no level) is the same as
4421 @option{-Wstrict-overflow=2}.
4422
4423 @item -Wstrict-overflow=3
4424 Also warn about other cases where a comparison is simplified. For
4425 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4426
4427 @item -Wstrict-overflow=4
4428 Also warn about other simplifications not covered by the above cases.
4429 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4430
4431 @item -Wstrict-overflow=5
4432 Also warn about cases where the compiler reduces the magnitude of a
4433 constant involved in a comparison. For example: @code{x + 2 > y} is
4434 simplified to @code{x + 1 >= y}. This is reported only at the
4435 highest warning level because this simplification applies to many
4436 comparisons, so this warning level gives a very large number of
4437 false positives.
4438 @end table
4439
4440 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4441 @opindex Wsuggest-attribute=
4442 @opindex Wno-suggest-attribute=
4443 Warn for cases where adding an attribute may be beneficial. The
4444 attributes currently supported are listed below.
4445
4446 @table @gcctabopt
4447 @item -Wsuggest-attribute=pure
4448 @itemx -Wsuggest-attribute=const
4449 @itemx -Wsuggest-attribute=noreturn
4450 @opindex Wsuggest-attribute=pure
4451 @opindex Wno-suggest-attribute=pure
4452 @opindex Wsuggest-attribute=const
4453 @opindex Wno-suggest-attribute=const
4454 @opindex Wsuggest-attribute=noreturn
4455 @opindex Wno-suggest-attribute=noreturn
4456
4457 Warn about functions that might be candidates for attributes
4458 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
4459 functions visible in other compilation units or (in the case of @code{pure} and
4460 @code{const}) if it cannot prove that the function returns normally. A function
4461 returns normally if it doesn't contain an infinite loop or return abnormally
4462 by throwing, calling @code{abort} or trapping. This analysis requires option
4463 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4464 higher. Higher optimization levels improve the accuracy of the analysis.
4465
4466 @item -Wsuggest-attribute=format
4467 @itemx -Wmissing-format-attribute
4468 @opindex Wsuggest-attribute=format
4469 @opindex Wmissing-format-attribute
4470 @opindex Wno-suggest-attribute=format
4471 @opindex Wno-missing-format-attribute
4472 @opindex Wformat
4473 @opindex Wno-format
4474
4475 Warn about function pointers that might be candidates for @code{format}
4476 attributes. Note these are only possible candidates, not absolute ones.
4477 GCC guesses that function pointers with @code{format} attributes that
4478 are used in assignment, initialization, parameter passing or return
4479 statements should have a corresponding @code{format} attribute in the
4480 resulting type. I.e.@: the left-hand side of the assignment or
4481 initialization, the type of the parameter variable, or the return type
4482 of the containing function respectively should also have a @code{format}
4483 attribute to avoid the warning.
4484
4485 GCC also warns about function definitions that might be
4486 candidates for @code{format} attributes. Again, these are only
4487 possible candidates. GCC guesses that @code{format} attributes
4488 might be appropriate for any function that calls a function like
4489 @code{vprintf} or @code{vscanf}, but this might not always be the
4490 case, and some functions for which @code{format} attributes are
4491 appropriate may not be detected.
4492 @end table
4493
4494 @item -Wsuggest-final-types
4495 @opindex Wno-suggest-final-types
4496 @opindex Wsuggest-final-types
4497 Warn about types with virtual methods where code quality would be improved
4498 if the type were declared with the C++11 @code{final} specifier,
4499 or, if possible,
4500 declared in an anonymous namespace. This allows GCC to more aggressively
4501 devirtualize the polymorphic calls. This warning is more effective with link
4502 time optimization, where the information about the class hierarchy graph is
4503 more complete.
4504
4505 @item -Wsuggest-final-methods
4506 @opindex Wno-suggest-final-methods
4507 @opindex Wsuggest-final-methods
4508 Warn about virtual methods where code quality would be improved if the method
4509 were declared with the C++11 @code{final} specifier,
4510 or, if possible, its type were
4511 declared in an anonymous namespace or with the @code{final} specifier.
4512 This warning is
4513 more effective with link time optimization, where the information about the
4514 class hierarchy graph is more complete. It is recommended to first consider
4515 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4516 annotations.
4517
4518 @item -Wsuggest-override
4519 Warn about overriding virtual functions that are not marked with the override
4520 keyword.
4521
4522 @item -Warray-bounds
4523 @itemx -Warray-bounds=@var{n}
4524 @opindex Wno-array-bounds
4525 @opindex Warray-bounds
4526 This option is only active when @option{-ftree-vrp} is active
4527 (default for @option{-O2} and above). It warns about subscripts to arrays
4528 that are always out of bounds. This warning is enabled by @option{-Wall}.
4529
4530 @table @gcctabopt
4531 @item -Warray-bounds=1
4532 This is the warning level of @option{-Warray-bounds} and is enabled
4533 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4534
4535 @item -Warray-bounds=2
4536 This warning level also warns about out of bounds access for
4537 arrays at the end of a struct and for arrays accessed through
4538 pointers. This warning level may give a larger number of
4539 false positives and is deactivated by default.
4540 @end table
4541
4542 @item -Wbool-compare
4543 @opindex Wno-bool-compare
4544 @opindex Wbool-compare
4545 Warn about boolean expression compared with an integer value different from
4546 @code{true}/@code{false}. For instance, the following comparison is
4547 always false:
4548 @smallexample
4549 int n = 5;
4550 @dots{}
4551 if ((n > 1) == 2) @{ @dots{} @}
4552 @end smallexample
4553 This warning is enabled by @option{-Wall}.
4554
4555 @item -Wframe-address
4556 @opindex Wno-frame-address
4557 @opindex Wframe-address
4558 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
4559 is called with an argument greater than 0. Such calls may return indeterminate
4560 values or crash the program. The warning is included in @option{-Wall}.
4561
4562 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4563 @opindex Wno-discarded-qualifiers
4564 @opindex Wdiscarded-qualifiers
4565 Do not warn if type qualifiers on pointers are being discarded.
4566 Typically, the compiler warns if a @code{const char *} variable is
4567 passed to a function that takes a @code{char *} parameter. This option
4568 can be used to suppress such a warning.
4569
4570 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4571 @opindex Wno-discarded-array-qualifiers
4572 @opindex Wdiscarded-array-qualifiers
4573 Do not warn if type qualifiers on arrays which are pointer targets
4574 are being discarded. Typically, the compiler warns if a
4575 @code{const int (*)[]} variable is passed to a function that
4576 takes a @code{int (*)[]} parameter. This option can be used to
4577 suppress such a warning.
4578
4579 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4580 @opindex Wno-incompatible-pointer-types
4581 @opindex Wincompatible-pointer-types
4582 Do not warn when there is a conversion between pointers that have incompatible
4583 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
4584 which warns for pointer argument passing or assignment with different
4585 signedness.
4586
4587 @item -Wno-int-conversion @r{(C and Objective-C only)}
4588 @opindex Wno-int-conversion
4589 @opindex Wint-conversion
4590 Do not warn about incompatible integer to pointer and pointer to integer
4591 conversions. This warning is about implicit conversions; for explicit
4592 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4593 @option{-Wno-pointer-to-int-cast} may be used.
4594
4595 @item -Wno-div-by-zero
4596 @opindex Wno-div-by-zero
4597 @opindex Wdiv-by-zero
4598 Do not warn about compile-time integer division by zero. Floating-point
4599 division by zero is not warned about, as it can be a legitimate way of
4600 obtaining infinities and NaNs.
4601
4602 @item -Wsystem-headers
4603 @opindex Wsystem-headers
4604 @opindex Wno-system-headers
4605 @cindex warnings from system headers
4606 @cindex system headers, warnings from
4607 Print warning messages for constructs found in system header files.
4608 Warnings from system headers are normally suppressed, on the assumption
4609 that they usually do not indicate real problems and would only make the
4610 compiler output harder to read. Using this command-line option tells
4611 GCC to emit warnings from system headers as if they occurred in user
4612 code. However, note that using @option{-Wall} in conjunction with this
4613 option does @emph{not} warn about unknown pragmas in system
4614 headers---for that, @option{-Wunknown-pragmas} must also be used.
4615
4616 @item -Wtautological-compare
4617 @opindex Wtautological-compare
4618 @opindex Wno-tautological-compare
4619 Warn if a self-comparison always evaluates to true or false. This
4620 warning detects various mistakes such as:
4621 @smallexample
4622 int i = 1;
4623 @dots{}
4624 if (i > i) @{ @dots{} @}
4625 @end smallexample
4626 This warning is enabled by @option{-Wall}.
4627
4628 @item -Wtrampolines
4629 @opindex Wtrampolines
4630 @opindex Wno-trampolines
4631 Warn about trampolines generated for pointers to nested functions.
4632 A trampoline is a small piece of data or code that is created at run
4633 time on the stack when the address of a nested function is taken, and is
4634 used to call the nested function indirectly. For some targets, it is
4635 made up of data only and thus requires no special treatment. But, for
4636 most targets, it is made up of code and thus requires the stack to be
4637 made executable in order for the program to work properly.
4638
4639 @item -Wfloat-equal
4640 @opindex Wfloat-equal
4641 @opindex Wno-float-equal
4642 Warn if floating-point values are used in equality comparisons.
4643
4644 The idea behind this is that sometimes it is convenient (for the
4645 programmer) to consider floating-point values as approximations to
4646 infinitely precise real numbers. If you are doing this, then you need
4647 to compute (by analyzing the code, or in some other way) the maximum or
4648 likely maximum error that the computation introduces, and allow for it
4649 when performing comparisons (and when producing output, but that's a
4650 different problem). In particular, instead of testing for equality, you
4651 should check to see whether the two values have ranges that overlap; and
4652 this is done with the relational operators, so equality comparisons are
4653 probably mistaken.
4654
4655 @item -Wtraditional @r{(C and Objective-C only)}
4656 @opindex Wtraditional
4657 @opindex Wno-traditional
4658 Warn about certain constructs that behave differently in traditional and
4659 ISO C@. Also warn about ISO C constructs that have no traditional C
4660 equivalent, and/or problematic constructs that should be avoided.
4661
4662 @itemize @bullet
4663 @item
4664 Macro parameters that appear within string literals in the macro body.
4665 In traditional C macro replacement takes place within string literals,
4666 but in ISO C it does not.
4667
4668 @item
4669 In traditional C, some preprocessor directives did not exist.
4670 Traditional preprocessors only considered a line to be a directive
4671 if the @samp{#} appeared in column 1 on the line. Therefore
4672 @option{-Wtraditional} warns about directives that traditional C
4673 understands but ignores because the @samp{#} does not appear as the
4674 first character on the line. It also suggests you hide directives like
4675 @code{#pragma} not understood by traditional C by indenting them. Some
4676 traditional implementations do not recognize @code{#elif}, so this option
4677 suggests avoiding it altogether.
4678
4679 @item
4680 A function-like macro that appears without arguments.
4681
4682 @item
4683 The unary plus operator.
4684
4685 @item
4686 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4687 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
4688 constants.) Note, these suffixes appear in macros defined in the system
4689 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4690 Use of these macros in user code might normally lead to spurious
4691 warnings, however GCC's integrated preprocessor has enough context to
4692 avoid warning in these cases.
4693
4694 @item
4695 A function declared external in one block and then used after the end of
4696 the block.
4697
4698 @item
4699 A @code{switch} statement has an operand of type @code{long}.
4700
4701 @item
4702 A non-@code{static} function declaration follows a @code{static} one.
4703 This construct is not accepted by some traditional C compilers.
4704
4705 @item
4706 The ISO type of an integer constant has a different width or
4707 signedness from its traditional type. This warning is only issued if
4708 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
4709 typically represent bit patterns, are not warned about.
4710
4711 @item
4712 Usage of ISO string concatenation is detected.
4713
4714 @item
4715 Initialization of automatic aggregates.
4716
4717 @item
4718 Identifier conflicts with labels. Traditional C lacks a separate
4719 namespace for labels.
4720
4721 @item
4722 Initialization of unions. If the initializer is zero, the warning is
4723 omitted. This is done under the assumption that the zero initializer in
4724 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4725 initializer warnings and relies on default initialization to zero in the
4726 traditional C case.
4727
4728 @item
4729 Conversions by prototypes between fixed/floating-point values and vice
4730 versa. The absence of these prototypes when compiling with traditional
4731 C causes serious problems. This is a subset of the possible
4732 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4733
4734 @item
4735 Use of ISO C style function definitions. This warning intentionally is
4736 @emph{not} issued for prototype declarations or variadic functions
4737 because these ISO C features appear in your code when using
4738 libiberty's traditional C compatibility macros, @code{PARAMS} and
4739 @code{VPARAMS}. This warning is also bypassed for nested functions
4740 because that feature is already a GCC extension and thus not relevant to
4741 traditional C compatibility.
4742 @end itemize
4743
4744 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4745 @opindex Wtraditional-conversion
4746 @opindex Wno-traditional-conversion
4747 Warn if a prototype causes a type conversion that is different from what
4748 would happen to the same argument in the absence of a prototype. This
4749 includes conversions of fixed point to floating and vice versa, and
4750 conversions changing the width or signedness of a fixed-point argument
4751 except when the same as the default promotion.
4752
4753 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4754 @opindex Wdeclaration-after-statement
4755 @opindex Wno-declaration-after-statement
4756 Warn when a declaration is found after a statement in a block. This
4757 construct, known from C++, was introduced with ISO C99 and is by default
4758 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
4759
4760 @item -Wundef
4761 @opindex Wundef
4762 @opindex Wno-undef
4763 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4764
4765 @item -Wno-endif-labels
4766 @opindex Wno-endif-labels
4767 @opindex Wendif-labels
4768 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4769
4770 @item -Wshadow
4771 @opindex Wshadow
4772 @opindex Wno-shadow
4773 Warn whenever a local variable or type declaration shadows another
4774 variable, parameter, type, class member (in C++), or instance variable
4775 (in Objective-C) or whenever a built-in function is shadowed. Note
4776 that in C++, the compiler warns if a local variable shadows an
4777 explicit typedef, but not if it shadows a struct/class/enum.
4778
4779 @item -Wno-shadow-ivar @r{(Objective-C only)}
4780 @opindex Wno-shadow-ivar
4781 @opindex Wshadow-ivar
4782 Do not warn whenever a local variable shadows an instance variable in an
4783 Objective-C method.
4784
4785 @item -Wlarger-than=@var{len}
4786 @opindex Wlarger-than=@var{len}
4787 @opindex Wlarger-than-@var{len}
4788 Warn whenever an object of larger than @var{len} bytes is defined.
4789
4790 @item -Wframe-larger-than=@var{len}
4791 @opindex Wframe-larger-than
4792 Warn if the size of a function frame is larger than @var{len} bytes.
4793 The computation done to determine the stack frame size is approximate
4794 and not conservative.
4795 The actual requirements may be somewhat greater than @var{len}
4796 even if you do not get a warning. In addition, any space allocated
4797 via @code{alloca}, variable-length arrays, or related constructs
4798 is not included by the compiler when determining
4799 whether or not to issue a warning.
4800
4801 @item -Wno-free-nonheap-object
4802 @opindex Wno-free-nonheap-object
4803 @opindex Wfree-nonheap-object
4804 Do not warn when attempting to free an object that was not allocated
4805 on the heap.
4806
4807 @item -Wstack-usage=@var{len}
4808 @opindex Wstack-usage
4809 Warn if the stack usage of a function might be larger than @var{len} bytes.
4810 The computation done to determine the stack usage is conservative.
4811 Any space allocated via @code{alloca}, variable-length arrays, or related
4812 constructs is included by the compiler when determining whether or not to
4813 issue a warning.
4814
4815 The message is in keeping with the output of @option{-fstack-usage}.
4816
4817 @itemize
4818 @item
4819 If the stack usage is fully static but exceeds the specified amount, it's:
4820
4821 @smallexample
4822 warning: stack usage is 1120 bytes
4823 @end smallexample
4824 @item
4825 If the stack usage is (partly) dynamic but bounded, it's:
4826
4827 @smallexample
4828 warning: stack usage might be 1648 bytes
4829 @end smallexample
4830 @item
4831 If the stack usage is (partly) dynamic and not bounded, it's:
4832
4833 @smallexample
4834 warning: stack usage might be unbounded
4835 @end smallexample
4836 @end itemize
4837
4838 @item -Wunsafe-loop-optimizations
4839 @opindex Wunsafe-loop-optimizations
4840 @opindex Wno-unsafe-loop-optimizations
4841 Warn if the loop cannot be optimized because the compiler cannot
4842 assume anything on the bounds of the loop indices. With
4843 @option{-funsafe-loop-optimizations} warn if the compiler makes
4844 such assumptions.
4845
4846 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4847 @opindex Wno-pedantic-ms-format
4848 @opindex Wpedantic-ms-format
4849 When used in combination with @option{-Wformat}
4850 and @option{-pedantic} without GNU extensions, this option
4851 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4852 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4853 which depend on the MS runtime.
4854
4855 @item -Wpointer-arith
4856 @opindex Wpointer-arith
4857 @opindex Wno-pointer-arith
4858 Warn about anything that depends on the ``size of'' a function type or
4859 of @code{void}. GNU C assigns these types a size of 1, for
4860 convenience in calculations with @code{void *} pointers and pointers
4861 to functions. In C++, warn also when an arithmetic operation involves
4862 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
4863
4864 @item -Wtype-limits
4865 @opindex Wtype-limits
4866 @opindex Wno-type-limits
4867 Warn if a comparison is always true or always false due to the limited
4868 range of the data type, but do not warn for constant expressions. For
4869 example, warn if an unsigned variable is compared against zero with
4870 @code{<} or @code{>=}. This warning is also enabled by
4871 @option{-Wextra}.
4872
4873 @item -Wbad-function-cast @r{(C and Objective-C only)}
4874 @opindex Wbad-function-cast
4875 @opindex Wno-bad-function-cast
4876 Warn when a function call is cast to a non-matching type.
4877 For example, warn if a call to a function returning an integer type
4878 is cast to a pointer type.
4879
4880 @item -Wc90-c99-compat @r{(C and Objective-C only)}
4881 @opindex Wc90-c99-compat
4882 @opindex Wno-c90-c99-compat
4883 Warn about features not present in ISO C90, but present in ISO C99.
4884 For instance, warn about use of variable length arrays, @code{long long}
4885 type, @code{bool} type, compound literals, designated initializers, and so
4886 on. This option is independent of the standards mode. Warnings are disabled
4887 in the expression that follows @code{__extension__}.
4888
4889 @item -Wc99-c11-compat @r{(C and Objective-C only)}
4890 @opindex Wc99-c11-compat
4891 @opindex Wno-c99-c11-compat
4892 Warn about features not present in ISO C99, but present in ISO C11.
4893 For instance, warn about use of anonymous structures and unions,
4894 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4895 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4896 and so on. This option is independent of the standards mode. Warnings are
4897 disabled in the expression that follows @code{__extension__}.
4898
4899 @item -Wc++-compat @r{(C and Objective-C only)}
4900 @opindex Wc++-compat
4901 Warn about ISO C constructs that are outside of the common subset of
4902 ISO C and ISO C++, e.g.@: request for implicit conversion from
4903 @code{void *} to a pointer to non-@code{void} type.
4904
4905 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4906 @opindex Wc++11-compat
4907 Warn about C++ constructs whose meaning differs between ISO C++ 1998
4908 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4909 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
4910 enabled by @option{-Wall}.
4911
4912 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4913 @opindex Wc++14-compat
4914 Warn about C++ constructs whose meaning differs between ISO C++ 2011
4915 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
4916
4917 @item -Wcast-qual
4918 @opindex Wcast-qual
4919 @opindex Wno-cast-qual
4920 Warn whenever a pointer is cast so as to remove a type qualifier from
4921 the target type. For example, warn if a @code{const char *} is cast
4922 to an ordinary @code{char *}.
4923
4924 Also warn when making a cast that introduces a type qualifier in an
4925 unsafe way. For example, casting @code{char **} to @code{const char **}
4926 is unsafe, as in this example:
4927
4928 @smallexample
4929 /* p is char ** value. */
4930 const char **q = (const char **) p;
4931 /* Assignment of readonly string to const char * is OK. */
4932 *q = "string";
4933 /* Now char** pointer points to read-only memory. */
4934 **p = 'b';
4935 @end smallexample
4936
4937 @item -Wcast-align
4938 @opindex Wcast-align
4939 @opindex Wno-cast-align
4940 Warn whenever a pointer is cast such that the required alignment of the
4941 target is increased. For example, warn if a @code{char *} is cast to
4942 an @code{int *} on machines where integers can only be accessed at
4943 two- or four-byte boundaries.
4944
4945 @item -Wwrite-strings
4946 @opindex Wwrite-strings
4947 @opindex Wno-write-strings
4948 When compiling C, give string constants the type @code{const
4949 char[@var{length}]} so that copying the address of one into a
4950 non-@code{const} @code{char *} pointer produces a warning. These
4951 warnings help you find at compile time code that can try to write
4952 into a string constant, but only if you have been very careful about
4953 using @code{const} in declarations and prototypes. Otherwise, it is
4954 just a nuisance. This is why we did not make @option{-Wall} request
4955 these warnings.
4956
4957 When compiling C++, warn about the deprecated conversion from string
4958 literals to @code{char *}. This warning is enabled by default for C++
4959 programs.
4960
4961 @item -Wclobbered
4962 @opindex Wclobbered
4963 @opindex Wno-clobbered
4964 Warn for variables that might be changed by @code{longjmp} or
4965 @code{vfork}. This warning is also enabled by @option{-Wextra}.
4966
4967 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4968 @opindex Wconditionally-supported
4969 @opindex Wno-conditionally-supported
4970 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4971
4972 @item -Wconversion
4973 @opindex Wconversion
4974 @opindex Wno-conversion
4975 Warn for implicit conversions that may alter a value. This includes
4976 conversions between real and integer, like @code{abs (x)} when
4977 @code{x} is @code{double}; conversions between signed and unsigned,
4978 like @code{unsigned ui = -1}; and conversions to smaller types, like
4979 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
4980 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
4981 changed by the conversion like in @code{abs (2.0)}. Warnings about
4982 conversions between signed and unsigned integers can be disabled by
4983 using @option{-Wno-sign-conversion}.
4984
4985 For C++, also warn for confusing overload resolution for user-defined
4986 conversions; and conversions that never use a type conversion
4987 operator: conversions to @code{void}, the same type, a base class or a
4988 reference to them. Warnings about conversions between signed and
4989 unsigned integers are disabled by default in C++ unless
4990 @option{-Wsign-conversion} is explicitly enabled.
4991
4992 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4993 @opindex Wconversion-null
4994 @opindex Wno-conversion-null
4995 Do not warn for conversions between @code{NULL} and non-pointer
4996 types. @option{-Wconversion-null} is enabled by default.
4997
4998 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4999 @opindex Wzero-as-null-pointer-constant
5000 @opindex Wno-zero-as-null-pointer-constant
5001 Warn when a literal '0' is used as null pointer constant. This can
5002 be useful to facilitate the conversion to @code{nullptr} in C++11.
5003
5004 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
5005 @opindex Wsubobject-linkage
5006 @opindex Wno-subobject-linkage
5007 Warn if a class type has a base or a field whose type uses the anonymous
5008 namespace or depends on a type with no linkage. If a type A depends on
5009 a type B with no or internal linkage, defining it in multiple
5010 translation units would be an ODR violation because the meaning of B
5011 is different in each translation unit. If A only appears in a single
5012 translation unit, the best way to silence the warning is to give it
5013 internal linkage by putting it in an anonymous namespace as well. The
5014 compiler doesn't give this warning for types defined in the main .C
5015 file, as those are unlikely to have multiple definitions.
5016 @option{-Wsubobject-linkage} is enabled by default.
5017
5018 @item -Wdate-time
5019 @opindex Wdate-time
5020 @opindex Wno-date-time
5021 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
5022 are encountered as they might prevent bit-wise-identical reproducible
5023 compilations.
5024
5025 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
5026 @opindex Wdelete-incomplete
5027 @opindex Wno-delete-incomplete
5028 Warn when deleting a pointer to incomplete type, which may cause
5029 undefined behavior at runtime. This warning is enabled by default.
5030
5031 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
5032 @opindex Wuseless-cast
5033 @opindex Wno-useless-cast
5034 Warn when an expression is casted to its own type.
5035
5036 @item -Wempty-body
5037 @opindex Wempty-body
5038 @opindex Wno-empty-body
5039 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
5040 while} statement. This warning is also enabled by @option{-Wextra}.
5041
5042 @item -Wenum-compare
5043 @opindex Wenum-compare
5044 @opindex Wno-enum-compare
5045 Warn about a comparison between values of different enumerated types.
5046 In C++ enumeral mismatches in conditional expressions are also
5047 diagnosed and the warning is enabled by default. In C this warning is
5048 enabled by @option{-Wall}.
5049
5050 @item -Wjump-misses-init @r{(C, Objective-C only)}
5051 @opindex Wjump-misses-init
5052 @opindex Wno-jump-misses-init
5053 Warn if a @code{goto} statement or a @code{switch} statement jumps
5054 forward across the initialization of a variable, or jumps backward to a
5055 label after the variable has been initialized. This only warns about
5056 variables that are initialized when they are declared. This warning is
5057 only supported for C and Objective-C; in C++ this sort of branch is an
5058 error in any case.
5059
5060 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
5061 can be disabled with the @option{-Wno-jump-misses-init} option.
5062
5063 @item -Wsign-compare
5064 @opindex Wsign-compare
5065 @opindex Wno-sign-compare
5066 @cindex warning for comparison of signed and unsigned values
5067 @cindex comparison of signed and unsigned values, warning
5068 @cindex signed and unsigned values, comparison warning
5069 Warn when a comparison between signed and unsigned values could produce
5070 an incorrect result when the signed value is converted to unsigned.
5071 This warning is also enabled by @option{-Wextra}; to get the other warnings
5072 of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
5073
5074 @item -Wsign-conversion
5075 @opindex Wsign-conversion
5076 @opindex Wno-sign-conversion
5077 Warn for implicit conversions that may change the sign of an integer
5078 value, like assigning a signed integer expression to an unsigned
5079 integer variable. An explicit cast silences the warning. In C, this
5080 option is enabled also by @option{-Wconversion}.
5081
5082 @item -Wfloat-conversion
5083 @opindex Wfloat-conversion
5084 @opindex Wno-float-conversion
5085 Warn for implicit conversions that reduce the precision of a real value.
5086 This includes conversions from real to integer, and from higher precision
5087 real to lower precision real values. This option is also enabled by
5088 @option{-Wconversion}.
5089
5090 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
5091 @opindex Wsized-deallocation
5092 @opindex Wno-sized-deallocation
5093 Warn about a definition of an unsized deallocation function
5094 @smallexample
5095 void operator delete (void *) noexcept;
5096 void operator delete[] (void *) noexcept;
5097 @end smallexample
5098 without a definition of the corresponding sized deallocation function
5099 @smallexample
5100 void operator delete (void *, std::size_t) noexcept;
5101 void operator delete[] (void *, std::size_t) noexcept;
5102 @end smallexample
5103 or vice versa. Enabled by @option{-Wextra} along with
5104 @option{-fsized-deallocation}.
5105
5106 @item -Wsizeof-pointer-memaccess
5107 @opindex Wsizeof-pointer-memaccess
5108 @opindex Wno-sizeof-pointer-memaccess
5109 Warn for suspicious length parameters to certain string and memory built-in
5110 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
5111 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
5112 but a pointer, and suggests a possible fix, or about
5113 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
5114 @option{-Wall}.
5115
5116 @item -Wsizeof-array-argument
5117 @opindex Wsizeof-array-argument
5118 @opindex Wno-sizeof-array-argument
5119 Warn when the @code{sizeof} operator is applied to a parameter that is
5120 declared as an array in a function definition. This warning is enabled by
5121 default for C and C++ programs.
5122
5123 @item -Wmemset-transposed-args
5124 @opindex Wmemset-transposed-args
5125 @opindex Wno-memset-transposed-args
5126 Warn for suspicious calls to the @code{memset} built-in function, if the
5127 second argument is not zero and the third argument is zero. This warns e.g.@
5128 about @code{memset (buf, sizeof buf, 0)} where most probably
5129 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
5130 is only emitted if the third argument is literal zero. If it is some
5131 expression that is folded to zero, a cast of zero to some type, etc.,
5132 it is far less likely that the user has mistakenly exchanged the arguments
5133 and no warning is emitted. This warning is enabled by @option{-Wall}.
5134
5135 @item -Waddress
5136 @opindex Waddress
5137 @opindex Wno-address
5138 Warn about suspicious uses of memory addresses. These include using
5139 the address of a function in a conditional expression, such as
5140 @code{void func(void); if (func)}, and comparisons against the memory
5141 address of a string literal, such as @code{if (x == "abc")}. Such
5142 uses typically indicate a programmer error: the address of a function
5143 always evaluates to true, so their use in a conditional usually
5144 indicate that the programmer forgot the parentheses in a function
5145 call; and comparisons against string literals result in unspecified
5146 behavior and are not portable in C, so they usually indicate that the
5147 programmer intended to use @code{strcmp}. This warning is enabled by
5148 @option{-Wall}.
5149
5150 @item -Wlogical-op
5151 @opindex Wlogical-op
5152 @opindex Wno-logical-op
5153 Warn about suspicious uses of logical operators in expressions.
5154 This includes using logical operators in contexts where a
5155 bit-wise operator is likely to be expected. Also warns when
5156 the operands of a logical operator are the same:
5157 @smallexample
5158 extern int a;
5159 if (a < 0 && a < 0) @{ @dots{} @}
5160 @end smallexample
5161
5162 @item -Wlogical-not-parentheses
5163 @opindex Wlogical-not-parentheses
5164 @opindex Wno-logical-not-parentheses
5165 Warn about logical not used on the left hand side operand of a comparison.
5166 This option does not warn if the RHS operand is of a boolean type. Its
5167 purpose is to detect suspicious code like the following:
5168 @smallexample
5169 int a;
5170 @dots{}
5171 if (!a > 1) @{ @dots{} @}
5172 @end smallexample
5173
5174 It is possible to suppress the warning by wrapping the LHS into
5175 parentheses:
5176 @smallexample
5177 if ((!a) > 1) @{ @dots{} @}
5178 @end smallexample
5179
5180 This warning is enabled by @option{-Wall}.
5181
5182 @item -Waggregate-return
5183 @opindex Waggregate-return
5184 @opindex Wno-aggregate-return
5185 Warn if any functions that return structures or unions are defined or
5186 called. (In languages where you can return an array, this also elicits
5187 a warning.)
5188
5189 @item -Wno-aggressive-loop-optimizations
5190 @opindex Wno-aggressive-loop-optimizations
5191 @opindex Waggressive-loop-optimizations
5192 Warn if in a loop with constant number of iterations the compiler detects
5193 undefined behavior in some statement during one or more of the iterations.
5194
5195 @item -Wno-attributes
5196 @opindex Wno-attributes
5197 @opindex Wattributes
5198 Do not warn if an unexpected @code{__attribute__} is used, such as
5199 unrecognized attributes, function attributes applied to variables,
5200 etc. This does not stop errors for incorrect use of supported
5201 attributes.
5202
5203 @item -Wno-builtin-macro-redefined
5204 @opindex Wno-builtin-macro-redefined
5205 @opindex Wbuiltin-macro-redefined
5206 Do not warn if certain built-in macros are redefined. This suppresses
5207 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5208 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5209
5210 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5211 @opindex Wstrict-prototypes
5212 @opindex Wno-strict-prototypes
5213 Warn if a function is declared or defined without specifying the
5214 argument types. (An old-style function definition is permitted without
5215 a warning if preceded by a declaration that specifies the argument
5216 types.)
5217
5218 @item -Wold-style-declaration @r{(C and Objective-C only)}
5219 @opindex Wold-style-declaration
5220 @opindex Wno-old-style-declaration
5221 Warn for obsolescent usages, according to the C Standard, in a
5222 declaration. For example, warn if storage-class specifiers like
5223 @code{static} are not the first things in a declaration. This warning
5224 is also enabled by @option{-Wextra}.
5225
5226 @item -Wold-style-definition @r{(C and Objective-C only)}
5227 @opindex Wold-style-definition
5228 @opindex Wno-old-style-definition
5229 Warn if an old-style function definition is used. A warning is given
5230 even if there is a previous prototype.
5231
5232 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5233 @opindex Wmissing-parameter-type
5234 @opindex Wno-missing-parameter-type
5235 A function parameter is declared without a type specifier in K&R-style
5236 functions:
5237
5238 @smallexample
5239 void foo(bar) @{ @}
5240 @end smallexample
5241
5242 This warning is also enabled by @option{-Wextra}.
5243
5244 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5245 @opindex Wmissing-prototypes
5246 @opindex Wno-missing-prototypes
5247 Warn if a global function is defined without a previous prototype
5248 declaration. This warning is issued even if the definition itself
5249 provides a prototype. Use this option to detect global functions
5250 that do not have a matching prototype declaration in a header file.
5251 This option is not valid for C++ because all function declarations
5252 provide prototypes and a non-matching declaration declares an
5253 overload rather than conflict with an earlier declaration.
5254 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5255
5256 @item -Wmissing-declarations
5257 @opindex Wmissing-declarations
5258 @opindex Wno-missing-declarations
5259 Warn if a global function is defined without a previous declaration.
5260 Do so even if the definition itself provides a prototype.
5261 Use this option to detect global functions that are not declared in
5262 header files. In C, no warnings are issued for functions with previous
5263 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5264 missing prototypes. In C++, no warnings are issued for function templates,
5265 or for inline functions, or for functions in anonymous namespaces.
5266
5267 @item -Wmissing-field-initializers
5268 @opindex Wmissing-field-initializers
5269 @opindex Wno-missing-field-initializers
5270 @opindex W
5271 @opindex Wextra
5272 @opindex Wno-extra
5273 Warn if a structure's initializer has some fields missing. For
5274 example, the following code causes such a warning, because
5275 @code{x.h} is implicitly zero:
5276
5277 @smallexample
5278 struct s @{ int f, g, h; @};
5279 struct s x = @{ 3, 4 @};
5280 @end smallexample
5281
5282 This option does not warn about designated initializers, so the following
5283 modification does not trigger a warning:
5284
5285 @smallexample
5286 struct s @{ int f, g, h; @};
5287 struct s x = @{ .f = 3, .g = 4 @};
5288 @end smallexample
5289
5290 In C++ this option does not warn either about the empty @{ @}
5291 initializer, for example:
5292
5293 @smallexample
5294 struct s @{ int f, g, h; @};
5295 s x = @{ @};
5296 @end smallexample
5297
5298 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
5299 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5300
5301 @item -Wno-multichar
5302 @opindex Wno-multichar
5303 @opindex Wmultichar
5304 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5305 Usually they indicate a typo in the user's code, as they have
5306 implementation-defined values, and should not be used in portable code.
5307
5308 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5309 @opindex Wnormalized=
5310 @opindex Wnormalized
5311 @opindex Wno-normalized
5312 @cindex NFC
5313 @cindex NFKC
5314 @cindex character set, input normalization
5315 In ISO C and ISO C++, two identifiers are different if they are
5316 different sequences of characters. However, sometimes when characters
5317 outside the basic ASCII character set are used, you can have two
5318 different character sequences that look the same. To avoid confusion,
5319 the ISO 10646 standard sets out some @dfn{normalization rules} which
5320 when applied ensure that two sequences that look the same are turned into
5321 the same sequence. GCC can warn you if you are using identifiers that
5322 have not been normalized; this option controls that warning.
5323
5324 There are four levels of warning supported by GCC@. The default is
5325 @option{-Wnormalized=nfc}, which warns about any identifier that is
5326 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
5327 recommended form for most uses. It is equivalent to
5328 @option{-Wnormalized}.
5329
5330 Unfortunately, there are some characters allowed in identifiers by
5331 ISO C and ISO C++ that, when turned into NFC, are not allowed in
5332 identifiers. That is, there's no way to use these symbols in portable
5333 ISO C or C++ and have all your identifiers in NFC@.
5334 @option{-Wnormalized=id} suppresses the warning for these characters.
5335 It is hoped that future versions of the standards involved will correct
5336 this, which is why this option is not the default.
5337
5338 You can switch the warning off for all characters by writing
5339 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
5340 only do this if you are using some other normalization scheme (like
5341 ``D''), because otherwise you can easily create bugs that are
5342 literally impossible to see.
5343
5344 Some characters in ISO 10646 have distinct meanings but look identical
5345 in some fonts or display methodologies, especially once formatting has
5346 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5347 LETTER N'', displays just like a regular @code{n} that has been
5348 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
5349 normalization scheme to convert all these into a standard form as
5350 well, and GCC warns if your code is not in NFKC if you use
5351 @option{-Wnormalized=nfkc}. This warning is comparable to warning
5352 about every identifier that contains the letter O because it might be
5353 confused with the digit 0, and so is not the default, but may be
5354 useful as a local coding convention if the programming environment
5355 cannot be fixed to display these characters distinctly.
5356
5357 @item -Wno-deprecated
5358 @opindex Wno-deprecated
5359 @opindex Wdeprecated
5360 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
5361
5362 @item -Wno-deprecated-declarations
5363 @opindex Wno-deprecated-declarations
5364 @opindex Wdeprecated-declarations
5365 Do not warn about uses of functions (@pxref{Function Attributes}),
5366 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5367 Attributes}) marked as deprecated by using the @code{deprecated}
5368 attribute.
5369
5370 @item -Wno-overflow
5371 @opindex Wno-overflow
5372 @opindex Woverflow
5373 Do not warn about compile-time overflow in constant expressions.
5374
5375 @item -Wno-odr
5376 @opindex Wno-odr
5377 @opindex Wodr
5378 Warn about One Definition Rule violations during link-time optimization.
5379 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
5380
5381 @item -Wopenmp-simd
5382 @opindex Wopenm-simd
5383 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5384 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
5385 option can be used to relax the cost model.
5386
5387 @item -Woverride-init @r{(C and Objective-C only)}
5388 @opindex Woverride-init
5389 @opindex Wno-override-init
5390 @opindex W
5391 @opindex Wextra
5392 @opindex Wno-extra
5393 Warn if an initialized field without side effects is overridden when
5394 using designated initializers (@pxref{Designated Inits, , Designated
5395 Initializers}).
5396
5397 This warning is included in @option{-Wextra}. To get other
5398 @option{-Wextra} warnings without this one, use @option{-Wextra
5399 -Wno-override-init}.
5400
5401 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
5402 @opindex Woverride-init-side-effects
5403 @opindex Wno-override-init-side-effects
5404 Warn if an initialized field with side effects is overridden when
5405 using designated initializers (@pxref{Designated Inits, , Designated
5406 Initializers}). This warning is enabled by default.
5407
5408 @item -Wpacked
5409 @opindex Wpacked
5410 @opindex Wno-packed
5411 Warn if a structure is given the packed attribute, but the packed
5412 attribute has no effect on the layout or size of the structure.
5413 Such structures may be mis-aligned for little benefit. For
5414 instance, in this code, the variable @code{f.x} in @code{struct bar}
5415 is misaligned even though @code{struct bar} does not itself
5416 have the packed attribute:
5417
5418 @smallexample
5419 @group
5420 struct foo @{
5421 int x;
5422 char a, b, c, d;
5423 @} __attribute__((packed));
5424 struct bar @{
5425 char z;
5426 struct foo f;
5427 @};
5428 @end group
5429 @end smallexample
5430
5431 @item -Wpacked-bitfield-compat
5432 @opindex Wpacked-bitfield-compat
5433 @opindex Wno-packed-bitfield-compat
5434 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5435 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
5436 the change can lead to differences in the structure layout. GCC
5437 informs you when the offset of such a field has changed in GCC 4.4.
5438 For example there is no longer a 4-bit padding between field @code{a}
5439 and @code{b} in this structure:
5440
5441 @smallexample
5442 struct foo
5443 @{
5444 char a:4;
5445 char b:8;
5446 @} __attribute__ ((packed));
5447 @end smallexample
5448
5449 This warning is enabled by default. Use
5450 @option{-Wno-packed-bitfield-compat} to disable this warning.
5451
5452 @item -Wpadded
5453 @opindex Wpadded
5454 @opindex Wno-padded
5455 Warn if padding is included in a structure, either to align an element
5456 of the structure or to align the whole structure. Sometimes when this
5457 happens it is possible to rearrange the fields of the structure to
5458 reduce the padding and so make the structure smaller.
5459
5460 @item -Wredundant-decls
5461 @opindex Wredundant-decls
5462 @opindex Wno-redundant-decls
5463 Warn if anything is declared more than once in the same scope, even in
5464 cases where multiple declaration is valid and changes nothing.
5465
5466 @item -Wnested-externs @r{(C and Objective-C only)}
5467 @opindex Wnested-externs
5468 @opindex Wno-nested-externs
5469 Warn if an @code{extern} declaration is encountered within a function.
5470
5471 @item -Wno-inherited-variadic-ctor
5472 @opindex Winherited-variadic-ctor
5473 @opindex Wno-inherited-variadic-ctor
5474 Suppress warnings about use of C++11 inheriting constructors when the
5475 base class inherited from has a C variadic constructor; the warning is
5476 on by default because the ellipsis is not inherited.
5477
5478 @item -Winline
5479 @opindex Winline
5480 @opindex Wno-inline
5481 Warn if a function that is declared as inline cannot be inlined.
5482 Even with this option, the compiler does not warn about failures to
5483 inline functions declared in system headers.
5484
5485 The compiler uses a variety of heuristics to determine whether or not
5486 to inline a function. For example, the compiler takes into account
5487 the size of the function being inlined and the amount of inlining
5488 that has already been done in the current function. Therefore,
5489 seemingly insignificant changes in the source program can cause the
5490 warnings produced by @option{-Winline} to appear or disappear.
5491
5492 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5493 @opindex Wno-invalid-offsetof
5494 @opindex Winvalid-offsetof
5495 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5496 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
5497 to a non-standard-layout type is undefined. In existing C++ implementations,
5498 however, @code{offsetof} typically gives meaningful results.
5499 This flag is for users who are aware that they are
5500 writing nonportable code and who have deliberately chosen to ignore the
5501 warning about it.
5502
5503 The restrictions on @code{offsetof} may be relaxed in a future version
5504 of the C++ standard.
5505
5506 @item -Wno-int-to-pointer-cast
5507 @opindex Wno-int-to-pointer-cast
5508 @opindex Wint-to-pointer-cast
5509 Suppress warnings from casts to pointer type of an integer of a
5510 different size. In C++, casting to a pointer type of smaller size is
5511 an error. @option{Wint-to-pointer-cast} is enabled by default.
5512
5513
5514 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5515 @opindex Wno-pointer-to-int-cast
5516 @opindex Wpointer-to-int-cast
5517 Suppress warnings from casts from a pointer to an integer type of a
5518 different size.
5519
5520 @item -Winvalid-pch
5521 @opindex Winvalid-pch
5522 @opindex Wno-invalid-pch
5523 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5524 the search path but can't be used.
5525
5526 @item -Wlong-long
5527 @opindex Wlong-long
5528 @opindex Wno-long-long
5529 Warn if @code{long long} type is used. This is enabled by either
5530 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5531 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
5532
5533 @item -Wvariadic-macros
5534 @opindex Wvariadic-macros
5535 @opindex Wno-variadic-macros
5536 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5537 alternate syntax is used in ISO C99 mode. This is enabled by either
5538 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
5539 messages, use @option{-Wno-variadic-macros}.
5540
5541 @item -Wvarargs
5542 @opindex Wvarargs
5543 @opindex Wno-varargs
5544 Warn upon questionable usage of the macros used to handle variable
5545 arguments like @code{va_start}. This is default. To inhibit the
5546 warning messages, use @option{-Wno-varargs}.
5547
5548 @item -Wvector-operation-performance
5549 @opindex Wvector-operation-performance
5550 @opindex Wno-vector-operation-performance
5551 Warn if vector operation is not implemented via SIMD capabilities of the
5552 architecture. Mainly useful for the performance tuning.
5553 Vector operation can be implemented @code{piecewise}, which means that the
5554 scalar operation is performed on every vector element;
5555 @code{in parallel}, which means that the vector operation is implemented
5556 using scalars of wider type, which normally is more performance efficient;
5557 and @code{as a single scalar}, which means that vector fits into a
5558 scalar type.
5559
5560 @item -Wno-virtual-move-assign
5561 @opindex Wvirtual-move-assign
5562 @opindex Wno-virtual-move-assign
5563 Suppress warnings about inheriting from a virtual base with a
5564 non-trivial C++11 move assignment operator. This is dangerous because
5565 if the virtual base is reachable along more than one path, it is
5566 moved multiple times, which can mean both objects end up in the
5567 moved-from state. If the move assignment operator is written to avoid
5568 moving from a moved-from object, this warning can be disabled.
5569
5570 @item -Wvla
5571 @opindex Wvla
5572 @opindex Wno-vla
5573 Warn if variable length array is used in the code.
5574 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5575 the variable length array.
5576
5577 @item -Wvolatile-register-var
5578 @opindex Wvolatile-register-var
5579 @opindex Wno-volatile-register-var
5580 Warn if a register variable is declared volatile. The volatile
5581 modifier does not inhibit all optimizations that may eliminate reads
5582 and/or writes to register variables. This warning is enabled by
5583 @option{-Wall}.
5584
5585 @item -Wdisabled-optimization
5586 @opindex Wdisabled-optimization
5587 @opindex Wno-disabled-optimization
5588 Warn if a requested optimization pass is disabled. This warning does
5589 not generally indicate that there is anything wrong with your code; it
5590 merely indicates that GCC's optimizers are unable to handle the code
5591 effectively. Often, the problem is that your code is too big or too
5592 complex; GCC refuses to optimize programs when the optimization
5593 itself is likely to take inordinate amounts of time.
5594
5595 @item -Wpointer-sign @r{(C and Objective-C only)}
5596 @opindex Wpointer-sign
5597 @opindex Wno-pointer-sign
5598 Warn for pointer argument passing or assignment with different signedness.
5599 This option is only supported for C and Objective-C@. It is implied by
5600 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5601 @option{-Wno-pointer-sign}.
5602
5603 @item -Wstack-protector
5604 @opindex Wstack-protector
5605 @opindex Wno-stack-protector
5606 This option is only active when @option{-fstack-protector} is active. It
5607 warns about functions that are not protected against stack smashing.
5608
5609 @item -Woverlength-strings
5610 @opindex Woverlength-strings
5611 @opindex Wno-overlength-strings
5612 Warn about string constants that are longer than the ``minimum
5613 maximum'' length specified in the C standard. Modern compilers
5614 generally allow string constants that are much longer than the
5615 standard's minimum limit, but very portable programs should avoid
5616 using longer strings.
5617
5618 The limit applies @emph{after} string constant concatenation, and does
5619 not count the trailing NUL@. In C90, the limit was 509 characters; in
5620 C99, it was raised to 4095. C++98 does not specify a normative
5621 minimum maximum, so we do not diagnose overlength strings in C++@.
5622
5623 This option is implied by @option{-Wpedantic}, and can be disabled with
5624 @option{-Wno-overlength-strings}.
5625
5626 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5627 @opindex Wunsuffixed-float-constants
5628
5629 Issue a warning for any floating constant that does not have
5630 a suffix. When used together with @option{-Wsystem-headers} it
5631 warns about such constants in system header files. This can be useful
5632 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5633 from the decimal floating-point extension to C99.
5634
5635 @item -Wno-designated-init @r{(C and Objective-C only)}
5636 Suppress warnings when a positional initializer is used to initialize
5637 a structure that has been marked with the @code{designated_init}
5638 attribute.
5639
5640 @end table
5641
5642 @node Debugging Options
5643 @section Options for Debugging Your Program or GCC
5644 @cindex options, debugging
5645 @cindex debugging information options
5646
5647 GCC has various special options that are used for debugging
5648 either your program or GCC:
5649
5650 @table @gcctabopt
5651 @item -g
5652 @opindex g
5653 Produce debugging information in the operating system's native format
5654 (stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging
5655 information.
5656
5657 On most systems that use stabs format, @option{-g} enables use of extra
5658 debugging information that only GDB can use; this extra information
5659 makes debugging work better in GDB but probably makes other debuggers
5660 crash or
5661 refuse to read the program. If you want to control for certain whether
5662 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5663 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5664
5665 GCC allows you to use @option{-g} with
5666 @option{-O}. The shortcuts taken by optimized code may occasionally
5667 produce surprising results: some variables you declared may not exist
5668 at all; flow of control may briefly move where you did not expect it;
5669 some statements may not be executed because they compute constant
5670 results or their values are already at hand; some statements may
5671 execute in different places because they have been moved out of loops.
5672
5673 Nevertheless it proves possible to debug optimized output. This makes
5674 it reasonable to use the optimizer for programs that might have bugs.
5675
5676 The following options are useful when GCC is generated with the
5677 capability for more than one debugging format.
5678
5679 @item -gsplit-dwarf
5680 @opindex gsplit-dwarf
5681 Separate as much dwarf debugging information as possible into a
5682 separate output file with the extension .dwo. This option allows
5683 the build system to avoid linking files with debug information. To
5684 be useful, this option requires a debugger capable of reading .dwo
5685 files.
5686
5687 @item -ggdb
5688 @opindex ggdb
5689 Produce debugging information for use by GDB@. This means to use the
5690 most expressive format available (DWARF 2, stabs, or the native format
5691 if neither of those are supported), including GDB extensions if at all
5692 possible.
5693
5694 @item -gpubnames
5695 @opindex gpubnames
5696 Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5697
5698 @item -ggnu-pubnames
5699 @opindex ggnu-pubnames
5700 Generate .debug_pubnames and .debug_pubtypes sections in a format
5701 suitable for conversion into a GDB@ index. This option is only useful
5702 with a linker that can produce GDB@ index version 7.
5703
5704 @item -gstabs
5705 @opindex gstabs
5706 Produce debugging information in stabs format (if that is supported),
5707 without GDB extensions. This is the format used by DBX on most BSD
5708 systems. On MIPS, Alpha and System V Release 4 systems this option
5709 produces stabs debugging output that is not understood by DBX or SDB@.
5710 On System V Release 4 systems this option requires the GNU assembler.
5711
5712 @item -feliminate-unused-debug-symbols
5713 @opindex feliminate-unused-debug-symbols
5714 Produce debugging information in stabs format (if that is supported),
5715 for only symbols that are actually used.
5716
5717 @item -femit-class-debug-always
5718 @opindex femit-class-debug-always
5719 Instead of emitting debugging information for a C++ class in only one
5720 object file, emit it in all object files using the class. This option
5721 should be used only with debuggers that are unable to handle the way GCC
5722 normally emits debugging information for classes because using this
5723 option increases the size of debugging information by as much as a
5724 factor of two.
5725
5726 @item -fdebug-types-section
5727 @opindex fdebug-types-section
5728 @opindex fno-debug-types-section
5729 When using DWARF Version 4 or higher, type DIEs can be put into
5730 their own @code{.debug_types} section instead of making them part of the
5731 @code{.debug_info} section. It is more efficient to put them in a separate
5732 comdat sections since the linker can then remove duplicates.
5733 But not all DWARF consumers support @code{.debug_types} sections yet
5734 and on some objects @code{.debug_types} produces larger instead of smaller
5735 debugging information.
5736
5737 @item -gstabs+
5738 @opindex gstabs+
5739 Produce debugging information in stabs format (if that is supported),
5740 using GNU extensions understood only by the GNU debugger (GDB)@. The
5741 use of these extensions is likely to make other debuggers crash or
5742 refuse to read the program.
5743
5744 @item -gcoff
5745 @opindex gcoff
5746 Produce debugging information in COFF format (if that is supported).
5747 This is the format used by SDB on most System V systems prior to
5748 System V Release 4.
5749
5750 @item -gxcoff
5751 @opindex gxcoff
5752 Produce debugging information in XCOFF format (if that is supported).
5753 This is the format used by the DBX debugger on IBM RS/6000 systems.
5754
5755 @item -gxcoff+
5756 @opindex gxcoff+
5757 Produce debugging information in XCOFF format (if that is supported),
5758 using GNU extensions understood only by the GNU debugger (GDB)@. The
5759 use of these extensions is likely to make other debuggers crash or
5760 refuse to read the program, and may cause assemblers other than the GNU
5761 assembler (GAS) to fail with an error.
5762
5763 @item -gdwarf-@var{version}
5764 @opindex gdwarf-@var{version}
5765 Produce debugging information in DWARF format (if that is supported).
5766 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5767 for most targets is 4. DWARF Version 5 is only experimental.
5768
5769 Note that with DWARF Version 2, some ports require and always
5770 use some non-conflicting DWARF 3 extensions in the unwind tables.
5771
5772 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5773 for maximum benefit.
5774
5775 @item -grecord-gcc-switches
5776 @opindex grecord-gcc-switches
5777 This switch causes the command-line options used to invoke the
5778 compiler that may affect code generation to be appended to the
5779 DW_AT_producer attribute in DWARF debugging information. The options
5780 are concatenated with spaces separating them from each other and from
5781 the compiler version. See also @option{-frecord-gcc-switches} for another
5782 way of storing compiler options into the object file. This is the default.
5783
5784 @item -gno-record-gcc-switches
5785 @opindex gno-record-gcc-switches
5786 Disallow appending command-line options to the DW_AT_producer attribute
5787 in DWARF debugging information.
5788
5789 @item -gstrict-dwarf
5790 @opindex gstrict-dwarf
5791 Disallow using extensions of later DWARF standard version than selected
5792 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
5793 DWARF extensions from later standard versions is allowed.
5794
5795 @item -gno-strict-dwarf
5796 @opindex gno-strict-dwarf
5797 Allow using extensions of later DWARF standard version than selected with
5798 @option{-gdwarf-@var{version}}.
5799
5800 @item -gz@r{[}=@var{type}@r{]}
5801 @opindex gz
5802 Produce compressed debug sections in DWARF format, if that is supported.
5803 If @var{type} is not given, the default type depends on the capabilities
5804 of the assembler and linker used. @var{type} may be one of
5805 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5806 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5807 compression in traditional GNU format). If the linker doesn't support
5808 writing compressed debug sections, the option is rejected. Otherwise,
5809 if the assembler does not support them, @option{-gz} is silently ignored
5810 when producing object files.
5811
5812 @item -gvms
5813 @opindex gvms
5814 Produce debugging information in Alpha/VMS debug format (if that is
5815 supported). This is the format used by DEBUG on Alpha/VMS systems.
5816
5817 @item -g@var{level}
5818 @itemx -ggdb@var{level}
5819 @itemx -gstabs@var{level}
5820 @itemx -gcoff@var{level}
5821 @itemx -gxcoff@var{level}
5822 @itemx -gvms@var{level}
5823 Request debugging information and also use @var{level} to specify how
5824 much information. The default level is 2.
5825
5826 Level 0 produces no debug information at all. Thus, @option{-g0} negates
5827 @option{-g}.
5828
5829 Level 1 produces minimal information, enough for making backtraces in
5830 parts of the program that you don't plan to debug. This includes
5831 descriptions of functions and external variables, and line number
5832 tables, but no information about local variables.
5833
5834 Level 3 includes extra information, such as all the macro definitions
5835 present in the program. Some debuggers support macro expansion when
5836 you use @option{-g3}.
5837
5838 @option{-gdwarf-2} does not accept a concatenated debug level, because
5839 GCC used to support an option @option{-gdwarf} that meant to generate
5840 debug information in version 1 of the DWARF format (which is very
5841 different from version 2), and it would have been too confusing. That
5842 debug format is long obsolete, but the option cannot be changed now.
5843 Instead use an additional @option{-g@var{level}} option to change the
5844 debug level for DWARF.
5845
5846 @item -gtoggle
5847 @opindex gtoggle
5848 Turn off generation of debug info, if leaving out this option
5849 generates it, or turn it on at level 2 otherwise. The position of this
5850 argument in the command line does not matter; it takes effect after all
5851 other options are processed, and it does so only once, no matter how
5852 many times it is given. This is mainly intended to be used with
5853 @option{-fcompare-debug}.
5854
5855 @item -fsanitize=address
5856 @opindex fsanitize=address
5857 Enable AddressSanitizer, a fast memory error detector.
5858 Memory access instructions are instrumented to detect
5859 out-of-bounds and use-after-free bugs.
5860 See @uref{http://code.google.com/p/address-sanitizer/} for
5861 more details. The run-time behavior can be influenced using the
5862 @env{ASAN_OPTIONS} environment variable; see
5863 @url{https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags} for
5864 a list of supported options.
5865
5866 @item -fsanitize=kernel-address
5867 @opindex fsanitize=kernel-address
5868 Enable AddressSanitizer for Linux kernel.
5869 See @uref{http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel} for more details.
5870
5871 @item -fsanitize=thread
5872 @opindex fsanitize=thread
5873 Enable ThreadSanitizer, a fast data race detector.
5874 Memory access instructions are instrumented to detect
5875 data race bugs. See @uref{http://code.google.com/p/thread-sanitizer/} for more
5876 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5877 environment variable; see
5878 @url{https://code.google.com/p/thread-sanitizer/wiki/Flags} for a list of
5879 supported options.
5880
5881 @item -fsanitize=leak
5882 @opindex fsanitize=leak
5883 Enable LeakSanitizer, a memory leak detector.
5884 This option only matters for linking of executables and if neither
5885 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that
5886 case the executable is linked against a library that overrides @code{malloc}
5887 and other allocator functions. See
5888 @uref{https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer} for more
5889 details. The run-time behavior can be influenced using the
5890 @env{LSAN_OPTIONS} environment variable.
5891
5892 @item -fsanitize=undefined
5893 @opindex fsanitize=undefined
5894 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5895 Various computations are instrumented to detect undefined behavior
5896 at runtime. Current suboptions are:
5897
5898 @table @gcctabopt
5899
5900 @item -fsanitize=shift
5901 @opindex fsanitize=shift
5902 This option enables checking that the result of a shift operation is
5903 not undefined. Note that what exactly is considered undefined differs
5904 slightly between C and C++, as well as between ISO C90 and C99, etc.
5905
5906 @item -fsanitize=integer-divide-by-zero
5907 @opindex fsanitize=integer-divide-by-zero
5908 Detect integer division by zero as well as @code{INT_MIN / -1} division.
5909
5910 @item -fsanitize=unreachable
5911 @opindex fsanitize=unreachable
5912 With this option, the compiler turns the @code{__builtin_unreachable}
5913 call into a diagnostics message call instead. When reaching the
5914 @code{__builtin_unreachable} call, the behavior is undefined.
5915
5916 @item -fsanitize=vla-bound
5917 @opindex fsanitize=vla-bound
5918 This option instructs the compiler to check that the size of a variable
5919 length array is positive.
5920
5921 @item -fsanitize=null
5922 @opindex fsanitize=null
5923 This option enables pointer checking. Particularly, the application
5924 built with this option turned on will issue an error message when it
5925 tries to dereference a NULL pointer, or if a reference (possibly an
5926 rvalue reference) is bound to a NULL pointer, or if a method is invoked
5927 on an object pointed by a NULL pointer.
5928
5929 @item -fsanitize=return
5930 @opindex fsanitize=return
5931 This option enables return statement checking. Programs
5932 built with this option turned on will issue an error message
5933 when the end of a non-void function is reached without actually
5934 returning a value. This option works in C++ only.
5935
5936 @item -fsanitize=signed-integer-overflow
5937 @opindex fsanitize=signed-integer-overflow
5938 This option enables signed integer overflow checking. We check that
5939 the result of @code{+}, @code{*}, and both unary and binary @code{-}
5940 does not overflow in the signed arithmetics. Note, integer promotion
5941 rules must be taken into account. That is, the following is not an
5942 overflow:
5943 @smallexample
5944 signed char a = SCHAR_MAX;
5945 a++;
5946 @end smallexample
5947
5948 @item -fsanitize=bounds
5949 @opindex fsanitize=bounds
5950 This option enables instrumentation of array bounds. Various out of bounds
5951 accesses are detected. Flexible array members, flexible array member-like
5952 arrays, and initializers of variables with static storage are not instrumented.
5953
5954 @item -fsanitize=bounds-strict
5955 @opindex fsanitize=bounds-strict
5956 This option enables strict instrumentation of array bounds. Most out of bounds
5957 accesses are detected, including flexible array members and flexible array
5958 member-like arrays. Initializers of variables with static storage are not
5959 instrumented.
5960
5961 @item -fsanitize=alignment
5962 @opindex fsanitize=alignment
5963
5964 This option enables checking of alignment of pointers when they are
5965 dereferenced, or when a reference is bound to insufficiently aligned target,
5966 or when a method or constructor is invoked on insufficiently aligned object.
5967
5968 @item -fsanitize=object-size
5969 @opindex fsanitize=object-size
5970 This option enables instrumentation of memory references using the
5971 @code{__builtin_object_size} function. Various out of bounds pointer
5972 accesses are detected.
5973
5974 @item -fsanitize=float-divide-by-zero
5975 @opindex fsanitize=float-divide-by-zero
5976 Detect floating-point division by zero. Unlike other similar options,
5977 @option{-fsanitize=float-divide-by-zero} is not enabled by
5978 @option{-fsanitize=undefined}, since floating-point division by zero can
5979 be a legitimate way of obtaining infinities and NaNs.
5980
5981 @item -fsanitize=float-cast-overflow
5982 @opindex fsanitize=float-cast-overflow
5983 This option enables floating-point type to integer conversion checking.
5984 We check that the result of the conversion does not overflow.
5985 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
5986 not enabled by @option{-fsanitize=undefined}.
5987 This option does not work well with @code{FE_INVALID} exceptions enabled.
5988
5989 @item -fsanitize=nonnull-attribute
5990 @opindex fsanitize=nonnull-attribute
5991
5992 This option enables instrumentation of calls, checking whether null values
5993 are not passed to arguments marked as requiring a non-null value by the
5994 @code{nonnull} function attribute.
5995
5996 @item -fsanitize=returns-nonnull-attribute
5997 @opindex fsanitize=returns-nonnull-attribute
5998
5999 This option enables instrumentation of return statements in functions
6000 marked with @code{returns_nonnull} function attribute, to detect returning
6001 of null values from such functions.
6002
6003 @item -fsanitize=bool
6004 @opindex fsanitize=bool
6005
6006 This option enables instrumentation of loads from bool. If a value other
6007 than 0/1 is loaded, a run-time error is issued.
6008
6009 @item -fsanitize=enum
6010 @opindex fsanitize=enum
6011
6012 This option enables instrumentation of loads from an enum type. If
6013 a value outside the range of values for the enum type is loaded,
6014 a run-time error is issued.
6015
6016 @item -fsanitize=vptr
6017 @opindex fsanitize=vptr
6018
6019 This option enables instrumentation of C++ member function calls, member
6020 accesses and some conversions between pointers to base and derived classes,
6021 to verify the referenced object has the correct dynamic type.
6022
6023 @end table
6024
6025 While @option{-ftrapv} causes traps for signed overflows to be emitted,
6026 @option{-fsanitize=undefined} gives a diagnostic message.
6027 This currently works only for the C family of languages.
6028
6029 @item -fno-sanitize=all
6030 @opindex fno-sanitize=all
6031
6032 This option disables all previously enabled sanitizers.
6033 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
6034 together.
6035
6036 @item -fasan-shadow-offset=@var{number}
6037 @opindex fasan-shadow-offset
6038 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
6039 It is useful for experimenting with different shadow memory layouts in
6040 Kernel AddressSanitizer.
6041
6042 @item -fsanitize-sections=@var{s1},@var{s2},...
6043 @opindex fsanitize-sections
6044 Sanitize global variables in selected user-defined sections. @var{si} may
6045 contain wildcards.
6046
6047 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
6048 @opindex fsanitize-recover
6049 @opindex fno-sanitize-recover
6050 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
6051 mentioned in comma-separated list of @var{opts}. Enabling this option
6052 for a sanitizer component causes it to attempt to continue
6053 running the program as if no error happened. This means multiple
6054 runtime errors can be reported in a single program run, and the exit
6055 code of the program may indicate success even when errors
6056 have been reported. The @option{-fno-sanitize-recover=} option
6057 can be used to alter
6058 this behavior: only the first detected error is reported
6059 and program then exits with a non-zero exit code.
6060
6061 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
6062 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
6063 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero} and
6064 @option{-fsanitize=kernel-address}. For these sanitizers error recovery is turned on by default.
6065 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
6066 accepted, the former enables recovery for all sanitizers that support it,
6067 the latter disables recovery for all sanitizers that support it.
6068
6069 Syntax without explicit @var{opts} parameter is deprecated. It is equivalent to
6070 @smallexample
6071 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
6072 @end smallexample
6073 @noindent
6074 Similarly @option{-fno-sanitize-recover} is equivalent to
6075 @smallexample
6076 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
6077 @end smallexample
6078
6079 @item -fsanitize-undefined-trap-on-error
6080 @opindex fsanitize-undefined-trap-on-error
6081 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
6082 report undefined behavior using @code{__builtin_trap} rather than
6083 a @code{libubsan} library routine. The advantage of this is that the
6084 @code{libubsan} library is not needed and is not linked in, so this
6085 is usable even in freestanding environments.
6086
6087 @item -fcheck-pointer-bounds
6088 @opindex fcheck-pointer-bounds
6089 @opindex fno-check-pointer-bounds
6090 @cindex Pointer Bounds Checker options
6091 Enable Pointer Bounds Checker instrumentation. Each memory reference
6092 is instrumented with checks of the pointer used for memory access against
6093 bounds associated with that pointer.
6094
6095 Currently there
6096 is only an implementation for Intel MPX available, thus x86 target
6097 and @option{-mmpx} are required to enable this feature.
6098 MPX-based instrumentation requires
6099 a runtime library to enable MPX in hardware and handle bounds
6100 violation signals. By default when @option{-fcheck-pointer-bounds}
6101 and @option{-mmpx} options are used to link a program, the GCC driver
6102 links against the @file{libmpx} runtime library and @file{libmpxwrappers}
6103 library. It also passes '-z bndplt' to a linker in case it supports this
6104 option (which is checked on libmpx configuration). Note that old versions
6105 of linker may ignore option. Gold linker doesn't support '-z bndplt'
6106 option. With no '-z bndplt' support in linker all calls to dynamic libraries
6107 lose passed bounds reducing overall protection level. It's highly
6108 recommended to use linker with '-z bndplt' support. In case such linker
6109 is not available it is adviced to always use @option{-static-libmpxwrappers}
6110 for better protection level or use @option{-static} to completely avoid
6111 external calls to dynamic libraries. MPX-based instrumentation
6112 may be used for debugging and also may be included in production code
6113 to increase program security. Depending on usage, you may
6114 have different requirements for the runtime library. The current version
6115 of the MPX runtime library is more oriented for use as a debugging
6116 tool. MPX runtime library usage implies @option{-lpthread}. See
6117 also @option{-static-libmpx}. The runtime library behavior can be
6118 influenced using various @env{CHKP_RT_*} environment variables. See
6119 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
6120 for more details.
6121
6122 Generated instrumentation may be controlled by various
6123 @option{-fchkp-*} options and by the @code{bnd_variable_size}
6124 structure field attribute (@pxref{Type Attributes}) and
6125 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
6126 (@pxref{Function Attributes}). GCC also provides a number of built-in
6127 functions for controlling the Pointer Bounds Checker. @xref{Pointer
6128 Bounds Checker builtins}, for more information.
6129
6130 @item -fchkp-check-incomplete-type
6131 @opindex fchkp-check-incomplete-type
6132 @opindex fno-chkp-check-incomplete-type
6133 Generate pointer bounds checks for variables with incomplete type.
6134 Enabled by default.
6135
6136 @item -fchkp-narrow-bounds
6137 @opindex fchkp-narrow-bounds
6138 @opindex fno-chkp-narrow-bounds
6139 Controls bounds used by Pointer Bounds Checker for pointers to object
6140 fields. If narrowing is enabled then field bounds are used. Otherwise
6141 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
6142 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
6143
6144 @item -fchkp-first-field-has-own-bounds
6145 @opindex fchkp-first-field-has-own-bounds
6146 @opindex fno-chkp-first-field-has-own-bounds
6147 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
6148 first field in the structure. By default a pointer to the first field has
6149 the same bounds as a pointer to the whole structure.
6150
6151 @item -fchkp-narrow-to-innermost-array
6152 @opindex fchkp-narrow-to-innermost-array
6153 @opindex fno-chkp-narrow-to-innermost-array
6154 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
6155 case of nested static array access. By default this option is disabled and
6156 bounds of the outermost array are used.
6157
6158 @item -fchkp-optimize
6159 @opindex fchkp-optimize
6160 @opindex fno-chkp-optimize
6161 Enables Pointer Bounds Checker optimizations. Enabled by default at
6162 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
6163
6164 @item -fchkp-use-fast-string-functions
6165 @opindex fchkp-use-fast-string-functions
6166 @opindex fno-chkp-use-fast-string-functions
6167 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
6168 by Pointer Bounds Checker. Disabled by default.
6169
6170 @item -fchkp-use-nochk-string-functions
6171 @opindex fchkp-use-nochk-string-functions
6172 @opindex fno-chkp-use-nochk-string-functions
6173 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
6174 by Pointer Bounds Checker. Disabled by default.
6175
6176 @item -fchkp-use-static-bounds
6177 @opindex fchkp-use-static-bounds
6178 @opindex fno-chkp-use-static-bounds
6179 Allow Pointer Bounds Checker to generate static bounds holding
6180 bounds of static variables. Enabled by default.
6181
6182 @item -fchkp-use-static-const-bounds
6183 @opindex fchkp-use-static-const-bounds
6184 @opindex fno-chkp-use-static-const-bounds
6185 Use statically-initialized bounds for constant bounds instead of
6186 generating them each time they are required. By default enabled when
6187 @option{-fchkp-use-static-bounds} is enabled.
6188
6189 @item -fchkp-treat-zero-dynamic-size-as-infinite
6190 @opindex fchkp-treat-zero-dynamic-size-as-infinite
6191 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
6192 With this option, objects with incomplete type whose
6193 dynamically-obtained size is zero are treated as having infinite size
6194 instead by Pointer Bounds
6195 Checker. This option may be helpful if a program is linked with a library
6196 missing size information for some symbols. Disabled by default.
6197
6198 @item -fchkp-check-read
6199 @opindex fchkp-check-read
6200 @opindex fno-chkp-check-read
6201 Instructs Pointer Bounds Checker to generate checks for all read
6202 accesses to memory. Enabled by default.
6203
6204 @item -fchkp-check-write
6205 @opindex fchkp-check-write
6206 @opindex fno-chkp-check-write
6207 Instructs Pointer Bounds Checker to generate checks for all write
6208 accesses to memory. Enabled by default.
6209
6210 @item -fchkp-store-bounds
6211 @opindex fchkp-store-bounds
6212 @opindex fno-chkp-store-bounds
6213 Instructs Pointer Bounds Checker to generate bounds stores for
6214 pointer writes. Enabled by default.
6215
6216 @item -fchkp-instrument-calls
6217 @opindex fchkp-instrument-calls
6218 @opindex fno-chkp-instrument-calls
6219 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
6220 Enabled by default.
6221
6222 @item -fchkp-instrument-marked-only
6223 @opindex fchkp-instrument-marked-only
6224 @opindex fno-chkp-instrument-marked-only
6225 Instructs Pointer Bounds Checker to instrument only functions
6226 marked with the @code{bnd_instrument} attribute
6227 (@pxref{Function Attributes}). Disabled by default.
6228
6229 @item -fchkp-use-wrappers
6230 @opindex fchkp-use-wrappers
6231 @opindex fno-chkp-use-wrappers
6232 Allows Pointer Bounds Checker to replace calls to built-in functions
6233 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
6234 is used to link a program, the GCC driver automatically links
6235 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
6236 Enabled by default.
6237
6238 @item -fdump-final-insns@r{[}=@var{file}@r{]}
6239 @opindex fdump-final-insns
6240 Dump the final internal representation (RTL) to @var{file}. If the
6241 optional argument is omitted (or if @var{file} is @code{.}), the name
6242 of the dump file is determined by appending @code{.gkd} to the
6243 compilation output file name.
6244
6245 @item -fcompare-debug@r{[}=@var{opts}@r{]}
6246 @opindex fcompare-debug
6247 @opindex fno-compare-debug
6248 If no error occurs during compilation, run the compiler a second time,
6249 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6250 passed to the second compilation. Dump the final internal
6251 representation in both compilations, and print an error if they differ.
6252
6253 If the equal sign is omitted, the default @option{-gtoggle} is used.
6254
6255 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6256 and nonzero, implicitly enables @option{-fcompare-debug}. If
6257 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6258 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6259 is used.
6260
6261 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
6262 is equivalent to @option{-fno-compare-debug}, which disables the dumping
6263 of the final representation and the second compilation, preventing even
6264 @env{GCC_COMPARE_DEBUG} from taking effect.
6265
6266 To verify full coverage during @option{-fcompare-debug} testing, set
6267 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6268 which GCC rejects as an invalid option in any actual compilation
6269 (rather than preprocessing, assembly or linking). To get just a
6270 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6271 not overridden} will do.
6272
6273 @item -fcompare-debug-second
6274 @opindex fcompare-debug-second
6275 This option is implicitly passed to the compiler for the second
6276 compilation requested by @option{-fcompare-debug}, along with options to
6277 silence warnings, and omitting other options that would cause
6278 side-effect compiler outputs to files or to the standard output. Dump
6279 files and preserved temporary files are renamed so as to contain the
6280 @code{.gk} additional extension during the second compilation, to avoid
6281 overwriting those generated by the first.
6282
6283 When this option is passed to the compiler driver, it causes the
6284 @emph{first} compilation to be skipped, which makes it useful for little
6285 other than debugging the compiler proper.
6286
6287 @item -feliminate-dwarf2-dups
6288 @opindex feliminate-dwarf2-dups
6289 Compress DWARF 2 debugging information by eliminating duplicated
6290 information about each symbol. This option only makes sense when
6291 generating DWARF 2 debugging information with @option{-gdwarf-2}.
6292
6293 @item -femit-struct-debug-baseonly
6294 @opindex femit-struct-debug-baseonly
6295 Emit debug information for struct-like types
6296 only when the base name of the compilation source file
6297 matches the base name of file in which the struct is defined.
6298
6299 This option substantially reduces the size of debugging information,
6300 but at significant potential loss in type information to the debugger.
6301 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6302 See @option{-femit-struct-debug-detailed} for more detailed control.
6303
6304 This option works only with DWARF 2.
6305
6306 @item -femit-struct-debug-reduced
6307 @opindex femit-struct-debug-reduced
6308 Emit debug information for struct-like types
6309 only when the base name of the compilation source file
6310 matches the base name of file in which the type is defined,
6311 unless the struct is a template or defined in a system header.
6312
6313 This option significantly reduces the size of debugging information,
6314 with some potential loss in type information to the debugger.
6315 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6316 See @option{-femit-struct-debug-detailed} for more detailed control.
6317
6318 This option works only with DWARF 2.
6319
6320 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6321 @opindex femit-struct-debug-detailed
6322 Specify the struct-like types
6323 for which the compiler generates debug information.
6324 The intent is to reduce duplicate struct debug information
6325 between different object files within the same program.
6326
6327 This option is a detailed version of
6328 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6329 which serves for most needs.
6330
6331 A specification has the syntax@*
6332 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6333
6334 The optional first word limits the specification to
6335 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6336 A struct type is used directly when it is the type of a variable, member.
6337 Indirect uses arise through pointers to structs.
6338 That is, when use of an incomplete struct is valid, the use is indirect.
6339 An example is
6340 @samp{struct one direct; struct two * indirect;}.
6341
6342 The optional second word limits the specification to
6343 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6344 Generic structs are a bit complicated to explain.
6345 For C++, these are non-explicit specializations of template classes,
6346 or non-template classes within the above.
6347 Other programming languages have generics,
6348 but @option{-femit-struct-debug-detailed} does not yet implement them.
6349
6350 The third word specifies the source files for those
6351 structs for which the compiler should emit debug information.
6352 The values @samp{none} and @samp{any} have the normal meaning.
6353 The value @samp{base} means that
6354 the base of name of the file in which the type declaration appears
6355 must match the base of the name of the main compilation file.
6356 In practice, this means that when compiling @file{foo.c}, debug information
6357 is generated for types declared in that file and @file{foo.h},
6358 but not other header files.
6359 The value @samp{sys} means those types satisfying @samp{base}
6360 or declared in system or compiler headers.
6361
6362 You may need to experiment to determine the best settings for your application.
6363
6364 The default is @option{-femit-struct-debug-detailed=all}.
6365
6366 This option works only with DWARF 2.
6367
6368 @item -fno-merge-debug-strings
6369 @opindex fmerge-debug-strings
6370 @opindex fno-merge-debug-strings
6371 Direct the linker to not merge together strings in the debugging
6372 information that are identical in different object files. Merging is
6373 not supported by all assemblers or linkers. Merging decreases the size
6374 of the debug information in the output file at the cost of increasing
6375 link processing time. Merging is enabled by default.
6376
6377 @item -fdebug-prefix-map=@var{old}=@var{new}
6378 @opindex fdebug-prefix-map
6379 When compiling files in directory @file{@var{old}}, record debugging
6380 information describing them as in @file{@var{new}} instead.
6381
6382 @item -fno-dwarf2-cfi-asm
6383 @opindex fdwarf2-cfi-asm
6384 @opindex fno-dwarf2-cfi-asm
6385 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6386 instead of using GAS @code{.cfi_*} directives.
6387
6388 @cindex @command{prof}
6389 @item -p
6390 @opindex p
6391 Generate extra code to write profile information suitable for the
6392 analysis program @command{prof}. You must use this option when compiling
6393 the source files you want data about, and you must also use it when
6394 linking.
6395
6396 @cindex @command{gprof}
6397 @item -pg
6398 @opindex pg
6399 Generate extra code to write profile information suitable for the
6400 analysis program @command{gprof}. You must use this option when compiling
6401 the source files you want data about, and you must also use it when
6402 linking.
6403
6404 @item -Q
6405 @opindex Q
6406 Makes the compiler print out each function name as it is compiled, and
6407 print some statistics about each pass when it finishes.
6408
6409 @item -ftime-report
6410 @opindex ftime-report
6411 Makes the compiler print some statistics about the time consumed by each
6412 pass when it finishes.
6413
6414 @item -fmem-report
6415 @opindex fmem-report
6416 Makes the compiler print some statistics about permanent memory
6417 allocation when it finishes.
6418
6419 @item -fmem-report-wpa
6420 @opindex fmem-report-wpa
6421 Makes the compiler print some statistics about permanent memory
6422 allocation for the WPA phase only.
6423
6424 @item -fpre-ipa-mem-report
6425 @opindex fpre-ipa-mem-report
6426 @item -fpost-ipa-mem-report
6427 @opindex fpost-ipa-mem-report
6428 Makes the compiler print some statistics about permanent memory
6429 allocation before or after interprocedural optimization.
6430
6431 @item -fprofile-report
6432 @opindex fprofile-report
6433 Makes the compiler print some statistics about consistency of the
6434 (estimated) profile and effect of individual passes.
6435
6436 @item -fstack-usage
6437 @opindex fstack-usage
6438 Makes the compiler output stack usage information for the program, on a
6439 per-function basis. The filename for the dump is made by appending
6440 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
6441 the output file, if explicitly specified and it is not an executable,
6442 otherwise it is the basename of the source file. An entry is made up
6443 of three fields:
6444
6445 @itemize
6446 @item
6447 The name of the function.
6448 @item
6449 A number of bytes.
6450 @item
6451 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6452 @end itemize
6453
6454 The qualifier @code{static} means that the function manipulates the stack
6455 statically: a fixed number of bytes are allocated for the frame on function
6456 entry and released on function exit; no stack adjustments are otherwise made
6457 in the function. The second field is this fixed number of bytes.
6458
6459 The qualifier @code{dynamic} means that the function manipulates the stack
6460 dynamically: in addition to the static allocation described above, stack
6461 adjustments are made in the body of the function, for example to push/pop
6462 arguments around function calls. If the qualifier @code{bounded} is also
6463 present, the amount of these adjustments is bounded at compile time and
6464 the second field is an upper bound of the total amount of stack used by
6465 the function. If it is not present, the amount of these adjustments is
6466 not bounded at compile time and the second field only represents the
6467 bounded part.
6468
6469 @item -fprofile-arcs
6470 @opindex fprofile-arcs
6471 Add code so that program flow @dfn{arcs} are instrumented. During
6472 execution the program records how many times each branch and call is
6473 executed and how many times it is taken or returns. When the compiled
6474 program exits it saves this data to a file called
6475 @file{@var{auxname}.gcda} for each source file. The data may be used for
6476 profile-directed optimizations (@option{-fbranch-probabilities}), or for
6477 test coverage analysis (@option{-ftest-coverage}). Each object file's
6478 @var{auxname} is generated from the name of the output file, if
6479 explicitly specified and it is not the final executable, otherwise it is
6480 the basename of the source file. In both cases any suffix is removed
6481 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6482 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6483 @xref{Cross-profiling}.
6484
6485 @cindex @command{gcov}
6486 @item --coverage
6487 @opindex coverage
6488
6489 This option is used to compile and link code instrumented for coverage
6490 analysis. The option is a synonym for @option{-fprofile-arcs}
6491 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6492 linking). See the documentation for those options for more details.
6493
6494 @itemize
6495
6496 @item
6497 Compile the source files with @option{-fprofile-arcs} plus optimization
6498 and code generation options. For test coverage analysis, use the
6499 additional @option{-ftest-coverage} option. You do not need to profile
6500 every source file in a program.
6501
6502 @item
6503 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6504 (the latter implies the former).
6505
6506 @item
6507 Run the program on a representative workload to generate the arc profile
6508 information. This may be repeated any number of times. You can run
6509 concurrent instances of your program, and provided that the file system
6510 supports locking, the data files will be correctly updated. Also
6511 @code{fork} calls are detected and correctly handled (double counting
6512 will not happen).
6513
6514 @item
6515 For profile-directed optimizations, compile the source files again with
6516 the same optimization and code generation options plus
6517 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6518 Control Optimization}).
6519
6520 @item
6521 For test coverage analysis, use @command{gcov} to produce human readable
6522 information from the @file{.gcno} and @file{.gcda} files. Refer to the
6523 @command{gcov} documentation for further information.
6524
6525 @end itemize
6526
6527 With @option{-fprofile-arcs}, for each function of your program GCC
6528 creates a program flow graph, then finds a spanning tree for the graph.
6529 Only arcs that are not on the spanning tree have to be instrumented: the
6530 compiler adds code to count the number of times that these arcs are
6531 executed. When an arc is the only exit or only entrance to a block, the
6532 instrumentation code can be added to the block; otherwise, a new basic
6533 block must be created to hold the instrumentation code.
6534
6535 @need 2000
6536 @item -ftest-coverage
6537 @opindex ftest-coverage
6538 Produce a notes file that the @command{gcov} code-coverage utility
6539 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6540 show program coverage. Each source file's note file is called
6541 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
6542 above for a description of @var{auxname} and instructions on how to
6543 generate test coverage data. Coverage data matches the source files
6544 more closely if you do not optimize.
6545
6546 @item -fdbg-cnt-list
6547 @opindex fdbg-cnt-list
6548 Print the name and the counter upper bound for all debug counters.
6549
6550
6551 @item -fdbg-cnt=@var{counter-value-list}
6552 @opindex fdbg-cnt
6553 Set the internal debug counter upper bound. @var{counter-value-list}
6554 is a comma-separated list of @var{name}:@var{value} pairs
6555 which sets the upper bound of each debug counter @var{name} to @var{value}.
6556 All debug counters have the initial upper bound of @code{UINT_MAX};
6557 thus @code{dbg_cnt} returns true always unless the upper bound
6558 is set by this option.
6559 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6560 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
6561
6562 @item -fenable-@var{kind}-@var{pass}
6563 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6564 @opindex fdisable-
6565 @opindex fenable-
6566
6567 This is a set of options that are used to explicitly disable/enable
6568 optimization passes. These options are intended for use for debugging GCC.
6569 Compiler users should use regular options for enabling/disabling
6570 passes instead.
6571
6572 @table @gcctabopt
6573
6574 @item -fdisable-ipa-@var{pass}
6575 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6576 statically invoked in the compiler multiple times, the pass name should be
6577 appended with a sequential number starting from 1.
6578
6579 @item -fdisable-rtl-@var{pass}
6580 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
6581 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
6582 statically invoked in the compiler multiple times, the pass name should be
6583 appended with a sequential number starting from 1. @var{range-list} is a
6584 comma-separated list of function ranges or assembler names. Each range is a number
6585 pair separated by a colon. The range is inclusive in both ends. If the range
6586 is trivial, the number pair can be simplified as a single number. If the
6587 function's call graph node's @var{uid} falls within one of the specified ranges,
6588 the @var{pass} is disabled for that function. The @var{uid} is shown in the
6589 function header of a dump file, and the pass names can be dumped by using
6590 option @option{-fdump-passes}.
6591
6592 @item -fdisable-tree-@var{pass}
6593 @itemx -fdisable-tree-@var{pass}=@var{range-list}
6594 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
6595 option arguments.
6596
6597 @item -fenable-ipa-@var{pass}
6598 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6599 statically invoked in the compiler multiple times, the pass name should be
6600 appended with a sequential number starting from 1.
6601
6602 @item -fenable-rtl-@var{pass}
6603 @itemx -fenable-rtl-@var{pass}=@var{range-list}
6604 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
6605 description and examples.
6606
6607 @item -fenable-tree-@var{pass}
6608 @itemx -fenable-tree-@var{pass}=@var{range-list}
6609 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
6610 of option arguments.
6611
6612 @end table
6613
6614 Here are some examples showing uses of these options.
6615
6616 @smallexample
6617
6618 # disable ccp1 for all functions
6619 -fdisable-tree-ccp1
6620 # disable complete unroll for function whose cgraph node uid is 1
6621 -fenable-tree-cunroll=1
6622 # disable gcse2 for functions at the following ranges [1,1],
6623 # [300,400], and [400,1000]
6624 # disable gcse2 for functions foo and foo2
6625 -fdisable-rtl-gcse2=foo,foo2
6626 # disable early inlining
6627 -fdisable-tree-einline
6628 # disable ipa inlining
6629 -fdisable-ipa-inline
6630 # enable tree full unroll
6631 -fenable-tree-unroll
6632
6633 @end smallexample
6634
6635 @item -d@var{letters}
6636 @itemx -fdump-rtl-@var{pass}
6637 @itemx -fdump-rtl-@var{pass}=@var{filename}
6638 @opindex d
6639 @opindex fdump-rtl-@var{pass}
6640 Says to make debugging dumps during compilation at times specified by
6641 @var{letters}. This is used for debugging the RTL-based passes of the
6642 compiler. The file names for most of the dumps are made by appending
6643 a pass number and a word to the @var{dumpname}, and the files are
6644 created in the directory of the output file. In case of
6645 @option{=@var{filename}} option, the dump is output on the given file
6646 instead of the pass numbered dump files. Note that the pass number is
6647 computed statically as passes get registered into the pass manager.
6648 Thus the numbering is not related to the dynamic order of execution of
6649 passes. In particular, a pass installed by a plugin could have a
6650 number over 200 even if it executed quite early. @var{dumpname} is
6651 generated from the name of the output file, if explicitly specified
6652 and it is not an executable, otherwise it is the basename of the
6653 source file. These switches may have different effects when
6654 @option{-E} is used for preprocessing.
6655
6656 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6657 @option{-d} option @var{letters}. Here are the possible
6658 letters for use in @var{pass} and @var{letters}, and their meanings:
6659
6660 @table @gcctabopt
6661
6662 @item -fdump-rtl-alignments
6663 @opindex fdump-rtl-alignments
6664 Dump after branch alignments have been computed.
6665
6666 @item -fdump-rtl-asmcons
6667 @opindex fdump-rtl-asmcons
6668 Dump after fixing rtl statements that have unsatisfied in/out constraints.
6669
6670 @item -fdump-rtl-auto_inc_dec
6671 @opindex fdump-rtl-auto_inc_dec
6672 Dump after auto-inc-dec discovery. This pass is only run on
6673 architectures that have auto inc or auto dec instructions.
6674
6675 @item -fdump-rtl-barriers
6676 @opindex fdump-rtl-barriers
6677 Dump after cleaning up the barrier instructions.
6678
6679 @item -fdump-rtl-bbpart
6680 @opindex fdump-rtl-bbpart
6681 Dump after partitioning hot and cold basic blocks.
6682
6683 @item -fdump-rtl-bbro
6684 @opindex fdump-rtl-bbro
6685 Dump after block reordering.
6686
6687 @item -fdump-rtl-btl1
6688 @itemx -fdump-rtl-btl2
6689 @opindex fdump-rtl-btl2
6690 @opindex fdump-rtl-btl2
6691 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6692 after the two branch
6693 target load optimization passes.
6694
6695 @item -fdump-rtl-bypass
6696 @opindex fdump-rtl-bypass
6697 Dump after jump bypassing and control flow optimizations.
6698
6699 @item -fdump-rtl-combine
6700 @opindex fdump-rtl-combine
6701 Dump after the RTL instruction combination pass.
6702
6703 @item -fdump-rtl-compgotos
6704 @opindex fdump-rtl-compgotos
6705 Dump after duplicating the computed gotos.
6706
6707 @item -fdump-rtl-ce1
6708 @itemx -fdump-rtl-ce2
6709 @itemx -fdump-rtl-ce3
6710 @opindex fdump-rtl-ce1
6711 @opindex fdump-rtl-ce2
6712 @opindex fdump-rtl-ce3
6713 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6714 @option{-fdump-rtl-ce3} enable dumping after the three
6715 if conversion passes.
6716
6717 @item -fdump-rtl-cprop_hardreg
6718 @opindex fdump-rtl-cprop_hardreg
6719 Dump after hard register copy propagation.
6720
6721 @item -fdump-rtl-csa
6722 @opindex fdump-rtl-csa
6723 Dump after combining stack adjustments.
6724
6725 @item -fdump-rtl-cse1
6726 @itemx -fdump-rtl-cse2
6727 @opindex fdump-rtl-cse1
6728 @opindex fdump-rtl-cse2
6729 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6730 the two common subexpression elimination passes.
6731
6732 @item -fdump-rtl-dce
6733 @opindex fdump-rtl-dce
6734 Dump after the standalone dead code elimination passes.
6735
6736 @item -fdump-rtl-dbr
6737 @opindex fdump-rtl-dbr
6738 Dump after delayed branch scheduling.
6739
6740 @item -fdump-rtl-dce1
6741 @itemx -fdump-rtl-dce2
6742 @opindex fdump-rtl-dce1
6743 @opindex fdump-rtl-dce2
6744 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6745 the two dead store elimination passes.
6746
6747 @item -fdump-rtl-eh
6748 @opindex fdump-rtl-eh
6749 Dump after finalization of EH handling code.
6750
6751 @item -fdump-rtl-eh_ranges
6752 @opindex fdump-rtl-eh_ranges
6753 Dump after conversion of EH handling range regions.
6754
6755 @item -fdump-rtl-expand
6756 @opindex fdump-rtl-expand
6757 Dump after RTL generation.
6758
6759 @item -fdump-rtl-fwprop1
6760 @itemx -fdump-rtl-fwprop2
6761 @opindex fdump-rtl-fwprop1
6762 @opindex fdump-rtl-fwprop2
6763 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6764 dumping after the two forward propagation passes.
6765
6766 @item -fdump-rtl-gcse1
6767 @itemx -fdump-rtl-gcse2
6768 @opindex fdump-rtl-gcse1
6769 @opindex fdump-rtl-gcse2
6770 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6771 after global common subexpression elimination.
6772
6773 @item -fdump-rtl-init-regs
6774 @opindex fdump-rtl-init-regs
6775 Dump after the initialization of the registers.
6776
6777 @item -fdump-rtl-initvals
6778 @opindex fdump-rtl-initvals
6779 Dump after the computation of the initial value sets.
6780
6781 @item -fdump-rtl-into_cfglayout
6782 @opindex fdump-rtl-into_cfglayout
6783 Dump after converting to cfglayout mode.
6784
6785 @item -fdump-rtl-ira
6786 @opindex fdump-rtl-ira
6787 Dump after iterated register allocation.
6788
6789 @item -fdump-rtl-jump
6790 @opindex fdump-rtl-jump
6791 Dump after the second jump optimization.
6792
6793 @item -fdump-rtl-loop2
6794 @opindex fdump-rtl-loop2
6795 @option{-fdump-rtl-loop2} enables dumping after the rtl
6796 loop optimization passes.
6797
6798 @item -fdump-rtl-mach
6799 @opindex fdump-rtl-mach
6800 Dump after performing the machine dependent reorganization pass, if that
6801 pass exists.
6802
6803 @item -fdump-rtl-mode_sw
6804 @opindex fdump-rtl-mode_sw
6805 Dump after removing redundant mode switches.
6806
6807 @item -fdump-rtl-rnreg
6808 @opindex fdump-rtl-rnreg
6809 Dump after register renumbering.
6810
6811 @item -fdump-rtl-outof_cfglayout
6812 @opindex fdump-rtl-outof_cfglayout
6813 Dump after converting from cfglayout mode.
6814
6815 @item -fdump-rtl-peephole2
6816 @opindex fdump-rtl-peephole2
6817 Dump after the peephole pass.
6818
6819 @item -fdump-rtl-postreload
6820 @opindex fdump-rtl-postreload
6821 Dump after post-reload optimizations.
6822
6823 @item -fdump-rtl-pro_and_epilogue
6824 @opindex fdump-rtl-pro_and_epilogue
6825 Dump after generating the function prologues and epilogues.
6826
6827 @item -fdump-rtl-sched1
6828 @itemx -fdump-rtl-sched2
6829 @opindex fdump-rtl-sched1
6830 @opindex fdump-rtl-sched2
6831 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6832 after the basic block scheduling passes.
6833
6834 @item -fdump-rtl-ree
6835 @opindex fdump-rtl-ree
6836 Dump after sign/zero extension elimination.
6837
6838 @item -fdump-rtl-seqabstr
6839 @opindex fdump-rtl-seqabstr
6840 Dump after common sequence discovery.
6841
6842 @item -fdump-rtl-shorten
6843 @opindex fdump-rtl-shorten
6844 Dump after shortening branches.
6845
6846 @item -fdump-rtl-sibling
6847 @opindex fdump-rtl-sibling
6848 Dump after sibling call optimizations.
6849
6850 @item -fdump-rtl-split1
6851 @itemx -fdump-rtl-split2
6852 @itemx -fdump-rtl-split3
6853 @itemx -fdump-rtl-split4
6854 @itemx -fdump-rtl-split5
6855 @opindex fdump-rtl-split1
6856 @opindex fdump-rtl-split2
6857 @opindex fdump-rtl-split3
6858 @opindex fdump-rtl-split4
6859 @opindex fdump-rtl-split5
6860 These options enable dumping after five rounds of
6861 instruction splitting.
6862
6863 @item -fdump-rtl-sms
6864 @opindex fdump-rtl-sms
6865 Dump after modulo scheduling. This pass is only run on some
6866 architectures.
6867
6868 @item -fdump-rtl-stack
6869 @opindex fdump-rtl-stack
6870 Dump after conversion from GCC's ``flat register file'' registers to the
6871 x87's stack-like registers. This pass is only run on x86 variants.
6872
6873 @item -fdump-rtl-subreg1
6874 @itemx -fdump-rtl-subreg2
6875 @opindex fdump-rtl-subreg1
6876 @opindex fdump-rtl-subreg2
6877 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6878 the two subreg expansion passes.
6879
6880 @item -fdump-rtl-unshare
6881 @opindex fdump-rtl-unshare
6882 Dump after all rtl has been unshared.
6883
6884 @item -fdump-rtl-vartrack
6885 @opindex fdump-rtl-vartrack
6886 Dump after variable tracking.
6887
6888 @item -fdump-rtl-vregs
6889 @opindex fdump-rtl-vregs
6890 Dump after converting virtual registers to hard registers.
6891
6892 @item -fdump-rtl-web
6893 @opindex fdump-rtl-web
6894 Dump after live range splitting.
6895
6896 @item -fdump-rtl-regclass
6897 @itemx -fdump-rtl-subregs_of_mode_init
6898 @itemx -fdump-rtl-subregs_of_mode_finish
6899 @itemx -fdump-rtl-dfinit
6900 @itemx -fdump-rtl-dfinish
6901 @opindex fdump-rtl-regclass
6902 @opindex fdump-rtl-subregs_of_mode_init
6903 @opindex fdump-rtl-subregs_of_mode_finish
6904 @opindex fdump-rtl-dfinit
6905 @opindex fdump-rtl-dfinish
6906 These dumps are defined but always produce empty files.
6907
6908 @item -da
6909 @itemx -fdump-rtl-all
6910 @opindex da
6911 @opindex fdump-rtl-all
6912 Produce all the dumps listed above.
6913
6914 @item -dA
6915 @opindex dA
6916 Annotate the assembler output with miscellaneous debugging information.
6917
6918 @item -dD
6919 @opindex dD
6920 Dump all macro definitions, at the end of preprocessing, in addition to
6921 normal output.
6922
6923 @item -dH
6924 @opindex dH
6925 Produce a core dump whenever an error occurs.
6926
6927 @item -dp
6928 @opindex dp
6929 Annotate the assembler output with a comment indicating which
6930 pattern and alternative is used. The length of each instruction is
6931 also printed.
6932
6933 @item -dP
6934 @opindex dP
6935 Dump the RTL in the assembler output as a comment before each instruction.
6936 Also turns on @option{-dp} annotation.
6937
6938 @item -dx
6939 @opindex dx
6940 Just generate RTL for a function instead of compiling it. Usually used
6941 with @option{-fdump-rtl-expand}.
6942 @end table
6943
6944 @item -fdump-noaddr
6945 @opindex fdump-noaddr
6946 When doing debugging dumps, suppress address output. This makes it more
6947 feasible to use diff on debugging dumps for compiler invocations with
6948 different compiler binaries and/or different
6949 text / bss / data / heap / stack / dso start locations.
6950
6951 @item -freport-bug
6952 @opindex freport-bug
6953 Collect and dump debug information into temporary file if ICE in C/C++
6954 compiler occured.
6955
6956 @item -fdump-unnumbered
6957 @opindex fdump-unnumbered
6958 When doing debugging dumps, suppress instruction numbers and address output.
6959 This makes it more feasible to use diff on debugging dumps for compiler
6960 invocations with different options, in particular with and without
6961 @option{-g}.
6962
6963 @item -fdump-unnumbered-links
6964 @opindex fdump-unnumbered-links
6965 When doing debugging dumps (see @option{-d} option above), suppress
6966 instruction numbers for the links to the previous and next instructions
6967 in a sequence.
6968
6969 @item -fdump-translation-unit @r{(C++ only)}
6970 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
6971 @opindex fdump-translation-unit
6972 Dump a representation of the tree structure for the entire translation
6973 unit to a file. The file name is made by appending @file{.tu} to the
6974 source file name, and the file is created in the same directory as the
6975 output file. If the @samp{-@var{options}} form is used, @var{options}
6976 controls the details of the dump as described for the
6977 @option{-fdump-tree} options.
6978
6979 @item -fdump-class-hierarchy @r{(C++ only)}
6980 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
6981 @opindex fdump-class-hierarchy
6982 Dump a representation of each class's hierarchy and virtual function
6983 table layout to a file. The file name is made by appending
6984 @file{.class} to the source file name, and the file is created in the
6985 same directory as the output file. If the @samp{-@var{options}} form
6986 is used, @var{options} controls the details of the dump as described
6987 for the @option{-fdump-tree} options.
6988
6989 @item -fdump-ipa-@var{switch}
6990 @opindex fdump-ipa
6991 Control the dumping at various stages of inter-procedural analysis
6992 language tree to a file. The file name is generated by appending a
6993 switch specific suffix to the source file name, and the file is created
6994 in the same directory as the output file. The following dumps are
6995 possible:
6996
6997 @table @samp
6998 @item all
6999 Enables all inter-procedural analysis dumps.
7000
7001 @item cgraph
7002 Dumps information about call-graph optimization, unused function removal,
7003 and inlining decisions.
7004
7005 @item inline
7006 Dump after function inlining.
7007
7008 @end table
7009
7010 @item -fdump-passes
7011 @opindex fdump-passes
7012 Dump the list of optimization passes that are turned on and off by
7013 the current command-line options.
7014
7015 @item -fdump-statistics-@var{option}
7016 @opindex fdump-statistics
7017 Enable and control dumping of pass statistics in a separate file. The
7018 file name is generated by appending a suffix ending in
7019 @samp{.statistics} to the source file name, and the file is created in
7020 the same directory as the output file. If the @samp{-@var{option}}
7021 form is used, @samp{-stats} causes counters to be summed over the
7022 whole compilation unit while @samp{-details} dumps every event as
7023 the passes generate them. The default with no option is to sum
7024 counters for each function compiled.
7025
7026 @item -fdump-tree-@var{switch}
7027 @itemx -fdump-tree-@var{switch}-@var{options}
7028 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
7029 @opindex fdump-tree
7030 Control the dumping at various stages of processing the intermediate
7031 language tree to a file. The file name is generated by appending a
7032 switch-specific suffix to the source file name, and the file is
7033 created in the same directory as the output file. In case of
7034 @option{=@var{filename}} option, the dump is output on the given file
7035 instead of the auto named dump files. If the @samp{-@var{options}}
7036 form is used, @var{options} is a list of @samp{-} separated options
7037 which control the details of the dump. Not all options are applicable
7038 to all dumps; those that are not meaningful are ignored. The
7039 following options are available
7040
7041 @table @samp
7042 @item address
7043 Print the address of each node. Usually this is not meaningful as it
7044 changes according to the environment and source file. Its primary use
7045 is for tying up a dump file with a debug environment.
7046 @item asmname
7047 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
7048 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
7049 use working backward from mangled names in the assembly file.
7050 @item slim
7051 When dumping front-end intermediate representations, inhibit dumping
7052 of members of a scope or body of a function merely because that scope
7053 has been reached. Only dump such items when they are directly reachable
7054 by some other path.
7055
7056 When dumping pretty-printed trees, this option inhibits dumping the
7057 bodies of control structures.
7058
7059 When dumping RTL, print the RTL in slim (condensed) form instead of
7060 the default LISP-like representation.
7061 @item raw
7062 Print a raw representation of the tree. By default, trees are
7063 pretty-printed into a C-like representation.
7064 @item details
7065 Enable more detailed dumps (not honored by every dump option). Also
7066 include information from the optimization passes.
7067 @item stats
7068 Enable dumping various statistics about the pass (not honored by every dump
7069 option).
7070 @item blocks
7071 Enable showing basic block boundaries (disabled in raw dumps).
7072 @item graph
7073 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
7074 dump a representation of the control flow graph suitable for viewing with
7075 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
7076 the file is pretty-printed as a subgraph, so that GraphViz can render them
7077 all in a single plot.
7078
7079 This option currently only works for RTL dumps, and the RTL is always
7080 dumped in slim form.
7081 @item vops
7082 Enable showing virtual operands for every statement.
7083 @item lineno
7084 Enable showing line numbers for statements.
7085 @item uid
7086 Enable showing the unique ID (@code{DECL_UID}) for each variable.
7087 @item verbose
7088 Enable showing the tree dump for each statement.
7089 @item eh
7090 Enable showing the EH region number holding each statement.
7091 @item scev
7092 Enable showing scalar evolution analysis details.
7093 @item optimized
7094 Enable showing optimization information (only available in certain
7095 passes).
7096 @item missed
7097 Enable showing missed optimization information (only available in certain
7098 passes).
7099 @item note
7100 Enable other detailed optimization information (only available in
7101 certain passes).
7102 @item =@var{filename}
7103 Instead of an auto named dump file, output into the given file
7104 name. The file names @file{stdout} and @file{stderr} are treated
7105 specially and are considered already open standard streams. For
7106 example,
7107
7108 @smallexample
7109 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
7110 -fdump-tree-pre=stderr file.c
7111 @end smallexample
7112
7113 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
7114 output on to @file{stderr}. If two conflicting dump filenames are
7115 given for the same pass, then the latter option overrides the earlier
7116 one.
7117
7118 @item all
7119 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
7120 and @option{lineno}.
7121
7122 @item optall
7123 Turn on all optimization options, i.e., @option{optimized},
7124 @option{missed}, and @option{note}.
7125 @end table
7126
7127 The following tree dumps are possible:
7128 @table @samp
7129
7130 @item original
7131 @opindex fdump-tree-original
7132 Dump before any tree based optimization, to @file{@var{file}.original}.
7133
7134 @item optimized
7135 @opindex fdump-tree-optimized
7136 Dump after all tree based optimization, to @file{@var{file}.optimized}.
7137
7138 @item gimple
7139 @opindex fdump-tree-gimple
7140 Dump each function before and after the gimplification pass to a file. The
7141 file name is made by appending @file{.gimple} to the source file name.
7142
7143 @item cfg
7144 @opindex fdump-tree-cfg
7145 Dump the control flow graph of each function to a file. The file name is
7146 made by appending @file{.cfg} to the source file name.
7147
7148 @item ch
7149 @opindex fdump-tree-ch
7150 Dump each function after copying loop headers. The file name is made by
7151 appending @file{.ch} to the source file name.
7152
7153 @item ssa
7154 @opindex fdump-tree-ssa
7155 Dump SSA related information to a file. The file name is made by appending
7156 @file{.ssa} to the source file name.
7157
7158 @item alias
7159 @opindex fdump-tree-alias
7160 Dump aliasing information for each function. The file name is made by
7161 appending @file{.alias} to the source file name.
7162
7163 @item ccp
7164 @opindex fdump-tree-ccp
7165 Dump each function after CCP@. The file name is made by appending
7166 @file{.ccp} to the source file name.
7167
7168 @item storeccp
7169 @opindex fdump-tree-storeccp
7170 Dump each function after STORE-CCP@. The file name is made by appending
7171 @file{.storeccp} to the source file name.
7172
7173 @item pre
7174 @opindex fdump-tree-pre
7175 Dump trees after partial redundancy elimination. The file name is made
7176 by appending @file{.pre} to the source file name.
7177
7178 @item fre
7179 @opindex fdump-tree-fre
7180 Dump trees after full redundancy elimination. The file name is made
7181 by appending @file{.fre} to the source file name.
7182
7183 @item copyprop
7184 @opindex fdump-tree-copyprop
7185 Dump trees after copy propagation. The file name is made
7186 by appending @file{.copyprop} to the source file name.
7187
7188 @item store_copyprop
7189 @opindex fdump-tree-store_copyprop
7190 Dump trees after store copy-propagation. The file name is made
7191 by appending @file{.store_copyprop} to the source file name.
7192
7193 @item dce
7194 @opindex fdump-tree-dce
7195 Dump each function after dead code elimination. The file name is made by
7196 appending @file{.dce} to the source file name.
7197
7198 @item sra
7199 @opindex fdump-tree-sra
7200 Dump each function after performing scalar replacement of aggregates. The
7201 file name is made by appending @file{.sra} to the source file name.
7202
7203 @item sink
7204 @opindex fdump-tree-sink
7205 Dump each function after performing code sinking. The file name is made
7206 by appending @file{.sink} to the source file name.
7207
7208 @item dom
7209 @opindex fdump-tree-dom
7210 Dump each function after applying dominator tree optimizations. The file
7211 name is made by appending @file{.dom} to the source file name.
7212
7213 @item dse
7214 @opindex fdump-tree-dse
7215 Dump each function after applying dead store elimination. The file
7216 name is made by appending @file{.dse} to the source file name.
7217
7218 @item phiopt
7219 @opindex fdump-tree-phiopt
7220 Dump each function after optimizing PHI nodes into straightline code. The file
7221 name is made by appending @file{.phiopt} to the source file name.
7222
7223 @item forwprop
7224 @opindex fdump-tree-forwprop
7225 Dump each function after forward propagating single use variables. The file
7226 name is made by appending @file{.forwprop} to the source file name.
7227
7228 @item nrv
7229 @opindex fdump-tree-nrv
7230 Dump each function after applying the named return value optimization on
7231 generic trees. The file name is made by appending @file{.nrv} to the source
7232 file name.
7233
7234 @item vect
7235 @opindex fdump-tree-vect
7236 Dump each function after applying vectorization of loops. The file name is
7237 made by appending @file{.vect} to the source file name.
7238
7239 @item slp
7240 @opindex fdump-tree-slp
7241 Dump each function after applying vectorization of basic blocks. The file name
7242 is made by appending @file{.slp} to the source file name.
7243
7244 @item vrp
7245 @opindex fdump-tree-vrp
7246 Dump each function after Value Range Propagation (VRP). The file name
7247 is made by appending @file{.vrp} to the source file name.
7248
7249 @item all
7250 @opindex fdump-tree-all
7251 Enable all the available tree dumps with the flags provided in this option.
7252 @end table
7253
7254 @item -fopt-info
7255 @itemx -fopt-info-@var{options}
7256 @itemx -fopt-info-@var{options}=@var{filename}
7257 @opindex fopt-info
7258 Controls optimization dumps from various optimization passes. If the
7259 @samp{-@var{options}} form is used, @var{options} is a list of
7260 @samp{-} separated option keywords to select the dump details and
7261 optimizations.
7262
7263 The @var{options} can be divided into two groups: options describing the
7264 verbosity of the dump, and options describing which optimizations
7265 should be included. The options from both the groups can be freely
7266 mixed as they are non-overlapping. However, in case of any conflicts,
7267 the later options override the earlier options on the command
7268 line.
7269
7270 The following options control the dump verbosity:
7271
7272 @table @samp
7273 @item optimized
7274 Print information when an optimization is successfully applied. It is
7275 up to a pass to decide which information is relevant. For example, the
7276 vectorizer passes print the source location of loops which are
7277 successfully vectorized.
7278 @item missed
7279 Print information about missed optimizations. Individual passes
7280 control which information to include in the output.
7281 @item note
7282 Print verbose information about optimizations, such as certain
7283 transformations, more detailed messages about decisions etc.
7284 @item all
7285 Print detailed optimization information. This includes
7286 @samp{optimized}, @samp{missed}, and @samp{note}.
7287 @end table
7288
7289 One or more of the following option keywords can be used to describe a
7290 group of optimizations:
7291
7292 @table @samp
7293 @item ipa
7294 Enable dumps from all interprocedural optimizations.
7295 @item loop
7296 Enable dumps from all loop optimizations.
7297 @item inline
7298 Enable dumps from all inlining optimizations.
7299 @item vec
7300 Enable dumps from all vectorization optimizations.
7301 @item optall
7302 Enable dumps from all optimizations. This is a superset of
7303 the optimization groups listed above.
7304 @end table
7305
7306 If @var{options} is
7307 omitted, it defaults to @samp{optimized-optall}, which means to dump all
7308 info about successful optimizations from all the passes.
7309
7310 If the @var{filename} is provided, then the dumps from all the
7311 applicable optimizations are concatenated into the @var{filename}.
7312 Otherwise the dump is output onto @file{stderr}. Though multiple
7313 @option{-fopt-info} options are accepted, only one of them can include
7314 a @var{filename}. If other filenames are provided then all but the
7315 first such option are ignored.
7316
7317 Note that the output @var{filename} is overwritten
7318 in case of multiple translation units. If a combined output from
7319 multiple translation units is desired, @file{stderr} should be used
7320 instead.
7321
7322 In the following example, the optimization info is output to
7323 @file{stderr}:
7324
7325 @smallexample
7326 gcc -O3 -fopt-info
7327 @end smallexample
7328
7329 This example:
7330 @smallexample
7331 gcc -O3 -fopt-info-missed=missed.all
7332 @end smallexample
7333
7334 @noindent
7335 outputs missed optimization report from all the passes into
7336 @file{missed.all}, and this one:
7337
7338 @smallexample
7339 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7340 @end smallexample
7341
7342 @noindent
7343 prints information about missed optimization opportunities from
7344 vectorization passes on @file{stderr}.
7345 Note that @option{-fopt-info-vec-missed} is equivalent to
7346 @option{-fopt-info-missed-vec}.
7347
7348 As another example,
7349 @smallexample
7350 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7351 @end smallexample
7352
7353 @noindent
7354 outputs information about missed optimizations as well as
7355 optimized locations from all the inlining passes into
7356 @file{inline.txt}.
7357
7358 Finally, consider:
7359
7360 @smallexample
7361 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7362 @end smallexample
7363
7364 @noindent
7365 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7366 in conflict since only one output file is allowed. In this case, only
7367 the first option takes effect and the subsequent options are
7368 ignored. Thus only @file{vec.miss} is produced which contains
7369 dumps from the vectorizer about missed opportunities.
7370
7371 @item -frandom-seed=@var{number}
7372 @opindex frandom-seed
7373 This option provides a seed that GCC uses in place of
7374 random numbers in generating certain symbol names
7375 that have to be different in every compiled file. It is also used to
7376 place unique stamps in coverage data files and the object files that
7377 produce them. You can use the @option{-frandom-seed} option to produce
7378 reproducibly identical object files.
7379
7380 The @var{number} should be different for every file you compile.
7381
7382 @item -fsched-verbose=@var{n}
7383 @opindex fsched-verbose
7384 On targets that use instruction scheduling, this option controls the
7385 amount of debugging output the scheduler prints. This information is
7386 written to standard error, unless @option{-fdump-rtl-sched1} or
7387 @option{-fdump-rtl-sched2} is specified, in which case it is output
7388 to the usual dump listing file, @file{.sched1} or @file{.sched2}
7389 respectively. However for @var{n} greater than nine, the output is
7390 always printed to standard error.
7391
7392 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7393 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7394 For @var{n} greater than one, it also output basic block probabilities,
7395 detailed ready list information and unit/insn info. For @var{n} greater
7396 than two, it includes RTL at abort point, control-flow and regions info.
7397 And for @var{n} over four, @option{-fsched-verbose} also includes
7398 dependence info.
7399
7400 @item -save-temps
7401 @itemx -save-temps=cwd
7402 @opindex save-temps
7403 Store the usual ``temporary'' intermediate files permanently; place them
7404 in the current directory and name them based on the source file. Thus,
7405 compiling @file{foo.c} with @option{-c -save-temps} produces files
7406 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
7407 preprocessed @file{foo.i} output file even though the compiler now
7408 normally uses an integrated preprocessor.
7409
7410 When used in combination with the @option{-x} command-line option,
7411 @option{-save-temps} is sensible enough to avoid over writing an
7412 input source file with the same extension as an intermediate file.
7413 The corresponding intermediate file may be obtained by renaming the
7414 source file before using @option{-save-temps}.
7415
7416 If you invoke GCC in parallel, compiling several different source
7417 files that share a common base name in different subdirectories or the
7418 same source file compiled for multiple output destinations, it is
7419 likely that the different parallel compilers will interfere with each
7420 other, and overwrite the temporary files. For instance:
7421
7422 @smallexample
7423 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7424 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7425 @end smallexample
7426
7427 may result in @file{foo.i} and @file{foo.o} being written to
7428 simultaneously by both compilers.
7429
7430 @item -save-temps=obj
7431 @opindex save-temps=obj
7432 Store the usual ``temporary'' intermediate files permanently. If the
7433 @option{-o} option is used, the temporary files are based on the
7434 object file. If the @option{-o} option is not used, the
7435 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
7436
7437 For example:
7438
7439 @smallexample
7440 gcc -save-temps=obj -c foo.c
7441 gcc -save-temps=obj -c bar.c -o dir/xbar.o
7442 gcc -save-temps=obj foobar.c -o dir2/yfoobar
7443 @end smallexample
7444
7445 @noindent
7446 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7447 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7448 @file{dir2/yfoobar.o}.
7449
7450 @item -time@r{[}=@var{file}@r{]}
7451 @opindex time
7452 Report the CPU time taken by each subprocess in the compilation
7453 sequence. For C source files, this is the compiler proper and assembler
7454 (plus the linker if linking is done).
7455
7456 Without the specification of an output file, the output looks like this:
7457
7458 @smallexample
7459 # cc1 0.12 0.01
7460 # as 0.00 0.01
7461 @end smallexample
7462
7463 The first number on each line is the ``user time'', that is time spent
7464 executing the program itself. The second number is ``system time'',
7465 time spent executing operating system routines on behalf of the program.
7466 Both numbers are in seconds.
7467
7468 With the specification of an output file, the output is appended to the
7469 named file, and it looks like this:
7470
7471 @smallexample
7472 0.12 0.01 cc1 @var{options}
7473 0.00 0.01 as @var{options}
7474 @end smallexample
7475
7476 The ``user time'' and the ``system time'' are moved before the program
7477 name, and the options passed to the program are displayed, so that one
7478 can later tell what file was being compiled, and with which options.
7479
7480 @item -fvar-tracking
7481 @opindex fvar-tracking
7482 Run variable tracking pass. It computes where variables are stored at each
7483 position in code. Better debugging information is then generated
7484 (if the debugging information format supports this information).
7485
7486 It is enabled by default when compiling with optimization (@option{-Os},
7487 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7488 the debug info format supports it.
7489
7490 @item -fvar-tracking-assignments
7491 @opindex fvar-tracking-assignments
7492 @opindex fno-var-tracking-assignments
7493 Annotate assignments to user variables early in the compilation and
7494 attempt to carry the annotations over throughout the compilation all the
7495 way to the end, in an attempt to improve debug information while
7496 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7497
7498 It can be enabled even if var-tracking is disabled, in which case
7499 annotations are created and maintained, but discarded at the end.
7500 By default, this flag is enabled together with @option{-fvar-tracking},
7501 except when selective scheduling is enabled.
7502
7503 @item -fvar-tracking-assignments-toggle
7504 @opindex fvar-tracking-assignments-toggle
7505 @opindex fno-var-tracking-assignments-toggle
7506 Toggle @option{-fvar-tracking-assignments}, in the same way that
7507 @option{-gtoggle} toggles @option{-g}.
7508
7509 @item -print-file-name=@var{library}
7510 @opindex print-file-name
7511 Print the full absolute name of the library file @var{library} that
7512 would be used when linking---and don't do anything else. With this
7513 option, GCC does not compile or link anything; it just prints the
7514 file name.
7515
7516 @item -print-multi-directory
7517 @opindex print-multi-directory
7518 Print the directory name corresponding to the multilib selected by any
7519 other switches present in the command line. This directory is supposed
7520 to exist in @env{GCC_EXEC_PREFIX}.
7521
7522 @item -print-multi-lib
7523 @opindex print-multi-lib
7524 Print the mapping from multilib directory names to compiler switches
7525 that enable them. The directory name is separated from the switches by
7526 @samp{;}, and each switch starts with an @samp{@@} instead of the
7527 @samp{-}, without spaces between multiple switches. This is supposed to
7528 ease shell processing.
7529
7530 @item -print-multi-os-directory
7531 @opindex print-multi-os-directory
7532 Print the path to OS libraries for the selected
7533 multilib, relative to some @file{lib} subdirectory. If OS libraries are
7534 present in the @file{lib} subdirectory and no multilibs are used, this is
7535 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7536 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7537 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7538 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7539
7540 @item -print-multiarch
7541 @opindex print-multiarch
7542 Print the path to OS libraries for the selected multiarch,
7543 relative to some @file{lib} subdirectory.
7544
7545 @item -print-prog-name=@var{program}
7546 @opindex print-prog-name
7547 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7548
7549 @item -print-libgcc-file-name
7550 @opindex print-libgcc-file-name
7551 Same as @option{-print-file-name=libgcc.a}.
7552
7553 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7554 but you do want to link with @file{libgcc.a}. You can do:
7555
7556 @smallexample
7557 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7558 @end smallexample
7559
7560 @item -print-search-dirs
7561 @opindex print-search-dirs
7562 Print the name of the configured installation directory and a list of
7563 program and library directories @command{gcc} searches---and don't do anything else.
7564
7565 This is useful when @command{gcc} prints the error message
7566 @samp{installation problem, cannot exec cpp0: No such file or directory}.
7567 To resolve this you either need to put @file{cpp0} and the other compiler
7568 components where @command{gcc} expects to find them, or you can set the environment
7569 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7570 Don't forget the trailing @samp{/}.
7571 @xref{Environment Variables}.
7572
7573 @item -print-sysroot
7574 @opindex print-sysroot
7575 Print the target sysroot directory that is used during
7576 compilation. This is the target sysroot specified either at configure
7577 time or using the @option{--sysroot} option, possibly with an extra
7578 suffix that depends on compilation options. If no target sysroot is
7579 specified, the option prints nothing.
7580
7581 @item -print-sysroot-headers-suffix
7582 @opindex print-sysroot-headers-suffix
7583 Print the suffix added to the target sysroot when searching for
7584 headers, or give an error if the compiler is not configured with such
7585 a suffix---and don't do anything else.
7586
7587 @item -dumpmachine
7588 @opindex dumpmachine
7589 Print the compiler's target machine (for example,
7590 @samp{i686-pc-linux-gnu})---and don't do anything else.
7591
7592 @item -dumpversion
7593 @opindex dumpversion
7594 Print the compiler version (for example, @code{3.0})---and don't do
7595 anything else.
7596
7597 @item -dumpspecs
7598 @opindex dumpspecs
7599 Print the compiler's built-in specs---and don't do anything else. (This
7600 is used when GCC itself is being built.) @xref{Spec Files}.
7601
7602 @item -fno-eliminate-unused-debug-types
7603 @opindex feliminate-unused-debug-types
7604 @opindex fno-eliminate-unused-debug-types
7605 Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
7606 output for types that are nowhere used in the source file being compiled.
7607 Sometimes it is useful to have GCC emit debugging
7608 information for all types declared in a compilation
7609 unit, regardless of whether or not they are actually used
7610 in that compilation unit, for example
7611 if, in the debugger, you want to cast a value to a type that is
7612 not actually used in your program (but is declared). More often,
7613 however, this results in a significant amount of wasted space.
7614 @end table
7615
7616 @node Optimize Options
7617 @section Options That Control Optimization
7618 @cindex optimize options
7619 @cindex options, optimization
7620
7621 These options control various sorts of optimizations.
7622
7623 Without any optimization option, the compiler's goal is to reduce the
7624 cost of compilation and to make debugging produce the expected
7625 results. Statements are independent: if you stop the program with a
7626 breakpoint between statements, you can then assign a new value to any
7627 variable or change the program counter to any other statement in the
7628 function and get exactly the results you expect from the source
7629 code.
7630
7631 Turning on optimization flags makes the compiler attempt to improve
7632 the performance and/or code size at the expense of compilation time
7633 and possibly the ability to debug the program.
7634
7635 The compiler performs optimization based on the knowledge it has of the
7636 program. Compiling multiple files at once to a single output file mode allows
7637 the compiler to use information gained from all of the files when compiling
7638 each of them.
7639
7640 Not all optimizations are controlled directly by a flag. Only
7641 optimizations that have a flag are listed in this section.
7642
7643 Most optimizations are only enabled if an @option{-O} level is set on
7644 the command line. Otherwise they are disabled, even if individual
7645 optimization flags are specified.
7646
7647 Depending on the target and how GCC was configured, a slightly different
7648 set of optimizations may be enabled at each @option{-O} level than
7649 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7650 to find out the exact set of optimizations that are enabled at each level.
7651 @xref{Overall Options}, for examples.
7652
7653 @table @gcctabopt
7654 @item -O
7655 @itemx -O1
7656 @opindex O
7657 @opindex O1
7658 Optimize. Optimizing compilation takes somewhat more time, and a lot
7659 more memory for a large function.
7660
7661 With @option{-O}, the compiler tries to reduce code size and execution
7662 time, without performing any optimizations that take a great deal of
7663 compilation time.
7664
7665 @option{-O} turns on the following optimization flags:
7666 @gccoptlist{
7667 -fauto-inc-dec @gol
7668 -fbranch-count-reg @gol
7669 -fcombine-stack-adjustments @gol
7670 -fcompare-elim @gol
7671 -fcprop-registers @gol
7672 -fdce @gol
7673 -fdefer-pop @gol
7674 -fdelayed-branch @gol
7675 -fdse @gol
7676 -fforward-propagate @gol
7677 -fguess-branch-probability @gol
7678 -fif-conversion2 @gol
7679 -fif-conversion @gol
7680 -finline-functions-called-once @gol
7681 -fipa-pure-const @gol
7682 -fipa-profile @gol
7683 -fipa-reference @gol
7684 -fmerge-constants @gol
7685 -fmove-loop-invariants @gol
7686 -fshrink-wrap @gol
7687 -fsplit-wide-types @gol
7688 -ftree-bit-ccp @gol
7689 -ftree-ccp @gol
7690 -fssa-phiopt @gol
7691 -ftree-ch @gol
7692 -ftree-coalesce-vars @gol
7693 -ftree-copy-prop @gol
7694 -ftree-dce @gol
7695 -ftree-dominator-opts @gol
7696 -ftree-dse @gol
7697 -ftree-forwprop @gol
7698 -ftree-fre @gol
7699 -ftree-phiprop @gol
7700 -ftree-sink @gol
7701 -ftree-slsr @gol
7702 -ftree-sra @gol
7703 -ftree-pta @gol
7704 -ftree-ter @gol
7705 -funit-at-a-time}
7706
7707 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7708 where doing so does not interfere with debugging.
7709
7710 @item -O2
7711 @opindex O2
7712 Optimize even more. GCC performs nearly all supported optimizations
7713 that do not involve a space-speed tradeoff.
7714 As compared to @option{-O}, this option increases both compilation time
7715 and the performance of the generated code.
7716
7717 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7718 also turns on the following optimization flags:
7719 @gccoptlist{-fthread-jumps @gol
7720 -falign-functions -falign-jumps @gol
7721 -falign-loops -falign-labels @gol
7722 -fcaller-saves @gol
7723 -fcrossjumping @gol
7724 -fcse-follow-jumps -fcse-skip-blocks @gol
7725 -fdelete-null-pointer-checks @gol
7726 -fdevirtualize -fdevirtualize-speculatively @gol
7727 -fexpensive-optimizations @gol
7728 -fgcse -fgcse-lm @gol
7729 -fhoist-adjacent-loads @gol
7730 -finline-small-functions @gol
7731 -findirect-inlining @gol
7732 -fipa-cp @gol
7733 -fipa-cp-alignment @gol
7734 -fipa-sra @gol
7735 -fipa-icf @gol
7736 -fisolate-erroneous-paths-dereference @gol
7737 -flra-remat @gol
7738 -foptimize-sibling-calls @gol
7739 -foptimize-strlen @gol
7740 -fpartial-inlining @gol
7741 -fpeephole2 @gol
7742 -freorder-blocks -freorder-blocks-and-partition -freorder-functions @gol
7743 -frerun-cse-after-loop @gol
7744 -fsched-interblock -fsched-spec @gol
7745 -fschedule-insns -fschedule-insns2 @gol
7746 -fstrict-aliasing -fstrict-overflow @gol
7747 -ftree-builtin-call-dce @gol
7748 -ftree-switch-conversion -ftree-tail-merge @gol
7749 -ftree-pre @gol
7750 -ftree-vrp @gol
7751 -fipa-ra}
7752
7753 Please note the warning under @option{-fgcse} about
7754 invoking @option{-O2} on programs that use computed gotos.
7755
7756 @item -O3
7757 @opindex O3
7758 Optimize yet more. @option{-O3} turns on all optimizations specified
7759 by @option{-O2} and also turns on the @option{-finline-functions},
7760 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7761 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7762 @option{-ftree-loop-distribute-patterns},
7763 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7764 @option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7765
7766 @item -O0
7767 @opindex O0
7768 Reduce compilation time and make debugging produce the expected
7769 results. This is the default.
7770
7771 @item -Os
7772 @opindex Os
7773 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7774 do not typically increase code size. It also performs further
7775 optimizations designed to reduce code size.
7776
7777 @option{-Os} disables the following optimization flags:
7778 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7779 -falign-labels -freorder-blocks -freorder-blocks-and-partition @gol
7780 -fprefetch-loop-arrays}
7781
7782 @item -Ofast
7783 @opindex Ofast
7784 Disregard strict standards compliance. @option{-Ofast} enables all
7785 @option{-O3} optimizations. It also enables optimizations that are not
7786 valid for all standard-compliant programs.
7787 It turns on @option{-ffast-math} and the Fortran-specific
7788 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7789
7790 @item -Og
7791 @opindex Og
7792 Optimize debugging experience. @option{-Og} enables optimizations
7793 that do not interfere with debugging. It should be the optimization
7794 level of choice for the standard edit-compile-debug cycle, offering
7795 a reasonable level of optimization while maintaining fast compilation
7796 and a good debugging experience.
7797
7798 If you use multiple @option{-O} options, with or without level numbers,
7799 the last such option is the one that is effective.
7800 @end table
7801
7802 Options of the form @option{-f@var{flag}} specify machine-independent
7803 flags. Most flags have both positive and negative forms; the negative
7804 form of @option{-ffoo} is @option{-fno-foo}. In the table
7805 below, only one of the forms is listed---the one you typically
7806 use. You can figure out the other form by either removing @samp{no-}
7807 or adding it.
7808
7809 The following options control specific optimizations. They are either
7810 activated by @option{-O} options or are related to ones that are. You
7811 can use the following flags in the rare cases when ``fine-tuning'' of
7812 optimizations to be performed is desired.
7813
7814 @table @gcctabopt
7815 @item -fno-defer-pop
7816 @opindex fno-defer-pop
7817 Always pop the arguments to each function call as soon as that function
7818 returns. For machines that must pop arguments after a function call,
7819 the compiler normally lets arguments accumulate on the stack for several
7820 function calls and pops them all at once.
7821
7822 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7823
7824 @item -fforward-propagate
7825 @opindex fforward-propagate
7826 Perform a forward propagation pass on RTL@. The pass tries to combine two
7827 instructions and checks if the result can be simplified. If loop unrolling
7828 is active, two passes are performed and the second is scheduled after
7829 loop unrolling.
7830
7831 This option is enabled by default at optimization levels @option{-O},
7832 @option{-O2}, @option{-O3}, @option{-Os}.
7833
7834 @item -ffp-contract=@var{style}
7835 @opindex ffp-contract
7836 @option{-ffp-contract=off} disables floating-point expression contraction.
7837 @option{-ffp-contract=fast} enables floating-point expression contraction
7838 such as forming of fused multiply-add operations if the target has
7839 native support for them.
7840 @option{-ffp-contract=on} enables floating-point expression contraction
7841 if allowed by the language standard. This is currently not implemented
7842 and treated equal to @option{-ffp-contract=off}.
7843
7844 The default is @option{-ffp-contract=fast}.
7845
7846 @item -fomit-frame-pointer
7847 @opindex fomit-frame-pointer
7848 Don't keep the frame pointer in a register for functions that
7849 don't need one. This avoids the instructions to save, set up and
7850 restore frame pointers; it also makes an extra register available
7851 in many functions. @strong{It also makes debugging impossible on
7852 some machines.}
7853
7854 On some machines, such as the VAX, this flag has no effect, because
7855 the standard calling sequence automatically handles the frame pointer
7856 and nothing is saved by pretending it doesn't exist. The
7857 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7858 whether a target machine supports this flag. @xref{Registers,,Register
7859 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7860
7861 The default setting (when not optimizing for
7862 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7863 @option{-fomit-frame-pointer}. You can configure GCC with the
7864 @option{--enable-frame-pointer} configure option to change the default.
7865
7866 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7867
7868 @item -foptimize-sibling-calls
7869 @opindex foptimize-sibling-calls
7870 Optimize sibling and tail recursive calls.
7871
7872 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7873
7874 @item -foptimize-strlen
7875 @opindex foptimize-strlen
7876 Optimize various standard C string functions (e.g. @code{strlen},
7877 @code{strchr} or @code{strcpy}) and
7878 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7879
7880 Enabled at levels @option{-O2}, @option{-O3}.
7881
7882 @item -fno-inline
7883 @opindex fno-inline
7884 Do not expand any functions inline apart from those marked with
7885 the @code{always_inline} attribute. This is the default when not
7886 optimizing.
7887
7888 Single functions can be exempted from inlining by marking them
7889 with the @code{noinline} attribute.
7890
7891 @item -finline-small-functions
7892 @opindex finline-small-functions
7893 Integrate functions into their callers when their body is smaller than expected
7894 function call code (so overall size of program gets smaller). The compiler
7895 heuristically decides which functions are simple enough to be worth integrating
7896 in this way. This inlining applies to all functions, even those not declared
7897 inline.
7898
7899 Enabled at level @option{-O2}.
7900
7901 @item -findirect-inlining
7902 @opindex findirect-inlining
7903 Inline also indirect calls that are discovered to be known at compile
7904 time thanks to previous inlining. This option has any effect only
7905 when inlining itself is turned on by the @option{-finline-functions}
7906 or @option{-finline-small-functions} options.
7907
7908 Enabled at level @option{-O2}.
7909
7910 @item -finline-functions
7911 @opindex finline-functions
7912 Consider all functions for inlining, even if they are not declared inline.
7913 The compiler heuristically decides which functions are worth integrating
7914 in this way.
7915
7916 If all calls to a given function are integrated, and the function is
7917 declared @code{static}, then the function is normally not output as
7918 assembler code in its own right.
7919
7920 Enabled at level @option{-O3}.
7921
7922 @item -finline-functions-called-once
7923 @opindex finline-functions-called-once
7924 Consider all @code{static} functions called once for inlining into their
7925 caller even if they are not marked @code{inline}. If a call to a given
7926 function is integrated, then the function is not output as assembler code
7927 in its own right.
7928
7929 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7930
7931 @item -fearly-inlining
7932 @opindex fearly-inlining
7933 Inline functions marked by @code{always_inline} and functions whose body seems
7934 smaller than the function call overhead early before doing
7935 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7936 makes profiling significantly cheaper and usually inlining faster on programs
7937 having large chains of nested wrapper functions.
7938
7939 Enabled by default.
7940
7941 @item -fipa-sra
7942 @opindex fipa-sra
7943 Perform interprocedural scalar replacement of aggregates, removal of
7944 unused parameters and replacement of parameters passed by reference
7945 by parameters passed by value.
7946
7947 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7948
7949 @item -finline-limit=@var{n}
7950 @opindex finline-limit
7951 By default, GCC limits the size of functions that can be inlined. This flag
7952 allows coarse control of this limit. @var{n} is the size of functions that
7953 can be inlined in number of pseudo instructions.
7954
7955 Inlining is actually controlled by a number of parameters, which may be
7956 specified individually by using @option{--param @var{name}=@var{value}}.
7957 The @option{-finline-limit=@var{n}} option sets some of these parameters
7958 as follows:
7959
7960 @table @gcctabopt
7961 @item max-inline-insns-single
7962 is set to @var{n}/2.
7963 @item max-inline-insns-auto
7964 is set to @var{n}/2.
7965 @end table
7966
7967 See below for a documentation of the individual
7968 parameters controlling inlining and for the defaults of these parameters.
7969
7970 @emph{Note:} there may be no value to @option{-finline-limit} that results
7971 in default behavior.
7972
7973 @emph{Note:} pseudo instruction represents, in this particular context, an
7974 abstract measurement of function's size. In no way does it represent a count
7975 of assembly instructions and as such its exact meaning might change from one
7976 release to an another.
7977
7978 @item -fno-keep-inline-dllexport
7979 @opindex fno-keep-inline-dllexport
7980 This is a more fine-grained version of @option{-fkeep-inline-functions},
7981 which applies only to functions that are declared using the @code{dllexport}
7982 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
7983 Functions}.)
7984
7985 @item -fkeep-inline-functions
7986 @opindex fkeep-inline-functions
7987 In C, emit @code{static} functions that are declared @code{inline}
7988 into the object file, even if the function has been inlined into all
7989 of its callers. This switch does not affect functions using the
7990 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7991 inline functions into the object file.
7992
7993 @item -fkeep-static-consts
7994 @opindex fkeep-static-consts
7995 Emit variables declared @code{static const} when optimization isn't turned
7996 on, even if the variables aren't referenced.
7997
7998 GCC enables this option by default. If you want to force the compiler to
7999 check if a variable is referenced, regardless of whether or not
8000 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8001
8002 @item -fmerge-constants
8003 @opindex fmerge-constants
8004 Attempt to merge identical constants (string constants and floating-point
8005 constants) across compilation units.
8006
8007 This option is the default for optimized compilation if the assembler and
8008 linker support it. Use @option{-fno-merge-constants} to inhibit this
8009 behavior.
8010
8011 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8012
8013 @item -fmerge-all-constants
8014 @opindex fmerge-all-constants
8015 Attempt to merge identical constants and identical variables.
8016
8017 This option implies @option{-fmerge-constants}. In addition to
8018 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8019 arrays or initialized constant variables with integral or floating-point
8020 types. Languages like C or C++ require each variable, including multiple
8021 instances of the same variable in recursive calls, to have distinct locations,
8022 so using this option results in non-conforming
8023 behavior.
8024
8025 @item -fmodulo-sched
8026 @opindex fmodulo-sched
8027 Perform swing modulo scheduling immediately before the first scheduling
8028 pass. This pass looks at innermost loops and reorders their
8029 instructions by overlapping different iterations.
8030
8031 @item -fmodulo-sched-allow-regmoves
8032 @opindex fmodulo-sched-allow-regmoves
8033 Perform more aggressive SMS-based modulo scheduling with register moves
8034 allowed. By setting this flag certain anti-dependences edges are
8035 deleted, which triggers the generation of reg-moves based on the
8036 life-range analysis. This option is effective only with
8037 @option{-fmodulo-sched} enabled.
8038
8039 @item -fno-branch-count-reg
8040 @opindex fno-branch-count-reg
8041 Do not use ``decrement and branch'' instructions on a count register,
8042 but instead generate a sequence of instructions that decrement a
8043 register, compare it against zero, then branch based upon the result.
8044 This option is only meaningful on architectures that support such
8045 instructions, which include x86, PowerPC, IA-64 and S/390.
8046
8047 Enabled by default at @option{-O1} and higher.
8048
8049 The default is @option{-fbranch-count-reg}.
8050
8051 @item -fno-function-cse
8052 @opindex fno-function-cse
8053 Do not put function addresses in registers; make each instruction that
8054 calls a constant function contain the function's address explicitly.
8055
8056 This option results in less efficient code, but some strange hacks
8057 that alter the assembler output may be confused by the optimizations
8058 performed when this option is not used.
8059
8060 The default is @option{-ffunction-cse}
8061
8062 @item -fno-zero-initialized-in-bss
8063 @opindex fno-zero-initialized-in-bss
8064 If the target supports a BSS section, GCC by default puts variables that
8065 are initialized to zero into BSS@. This can save space in the resulting
8066 code.
8067
8068 This option turns off this behavior because some programs explicitly
8069 rely on variables going to the data section---e.g., so that the
8070 resulting executable can find the beginning of that section and/or make
8071 assumptions based on that.
8072
8073 The default is @option{-fzero-initialized-in-bss}.
8074
8075 @item -fthread-jumps
8076 @opindex fthread-jumps
8077 Perform optimizations that check to see if a jump branches to a
8078 location where another comparison subsumed by the first is found. If
8079 so, the first branch is redirected to either the destination of the
8080 second branch or a point immediately following it, depending on whether
8081 the condition is known to be true or false.
8082
8083 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8084
8085 @item -fsplit-wide-types
8086 @opindex fsplit-wide-types
8087 When using a type that occupies multiple registers, such as @code{long
8088 long} on a 32-bit system, split the registers apart and allocate them
8089 independently. This normally generates better code for those types,
8090 but may make debugging more difficult.
8091
8092 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8093 @option{-Os}.
8094
8095 @item -fcse-follow-jumps
8096 @opindex fcse-follow-jumps
8097 In common subexpression elimination (CSE), scan through jump instructions
8098 when the target of the jump is not reached by any other path. For
8099 example, when CSE encounters an @code{if} statement with an
8100 @code{else} clause, CSE follows the jump when the condition
8101 tested is false.
8102
8103 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8104
8105 @item -fcse-skip-blocks
8106 @opindex fcse-skip-blocks
8107 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8108 follow jumps that conditionally skip over blocks. When CSE
8109 encounters a simple @code{if} statement with no else clause,
8110 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8111 body of the @code{if}.
8112
8113 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8114
8115 @item -frerun-cse-after-loop
8116 @opindex frerun-cse-after-loop
8117 Re-run common subexpression elimination after loop optimizations are
8118 performed.
8119
8120 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8121
8122 @item -fgcse
8123 @opindex fgcse
8124 Perform a global common subexpression elimination pass.
8125 This pass also performs global constant and copy propagation.
8126
8127 @emph{Note:} When compiling a program using computed gotos, a GCC
8128 extension, you may get better run-time performance if you disable
8129 the global common subexpression elimination pass by adding
8130 @option{-fno-gcse} to the command line.
8131
8132 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8133
8134 @item -fgcse-lm
8135 @opindex fgcse-lm
8136 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8137 attempts to move loads that are only killed by stores into themselves. This
8138 allows a loop containing a load/store sequence to be changed to a load outside
8139 the loop, and a copy/store within the loop.
8140
8141 Enabled by default when @option{-fgcse} is enabled.
8142
8143 @item -fgcse-sm
8144 @opindex fgcse-sm
8145 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8146 global common subexpression elimination. This pass attempts to move
8147 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8148 loops containing a load/store sequence can be changed to a load before
8149 the loop and a store after the loop.
8150
8151 Not enabled at any optimization level.
8152
8153 @item -fgcse-las
8154 @opindex fgcse-las
8155 When @option{-fgcse-las} is enabled, the global common subexpression
8156 elimination pass eliminates redundant loads that come after stores to the
8157 same memory location (both partial and full redundancies).
8158
8159 Not enabled at any optimization level.
8160
8161 @item -fgcse-after-reload
8162 @opindex fgcse-after-reload
8163 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8164 pass is performed after reload. The purpose of this pass is to clean up
8165 redundant spilling.
8166
8167 @item -faggressive-loop-optimizations
8168 @opindex faggressive-loop-optimizations
8169 This option tells the loop optimizer to use language constraints to
8170 derive bounds for the number of iterations of a loop. This assumes that
8171 loop code does not invoke undefined behavior by for example causing signed
8172 integer overflows or out-of-bound array accesses. The bounds for the
8173 number of iterations of a loop are used to guide loop unrolling and peeling
8174 and loop exit test optimizations.
8175 This option is enabled by default.
8176
8177 @item -funsafe-loop-optimizations
8178 @opindex funsafe-loop-optimizations
8179 This option tells the loop optimizer to assume that loop indices do not
8180 overflow, and that loops with nontrivial exit condition are not
8181 infinite. This enables a wider range of loop optimizations even if
8182 the loop optimizer itself cannot prove that these assumptions are valid.
8183 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
8184 if it finds this kind of loop.
8185
8186 @item -fcrossjumping
8187 @opindex fcrossjumping
8188 Perform cross-jumping transformation.
8189 This transformation unifies equivalent code and saves code size. The
8190 resulting code may or may not perform better than without cross-jumping.
8191
8192 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8193
8194 @item -fauto-inc-dec
8195 @opindex fauto-inc-dec
8196 Combine increments or decrements of addresses with memory accesses.
8197 This pass is always skipped on architectures that do not have
8198 instructions to support this. Enabled by default at @option{-O} and
8199 higher on architectures that support this.
8200
8201 @item -fdce
8202 @opindex fdce
8203 Perform dead code elimination (DCE) on RTL@.
8204 Enabled by default at @option{-O} and higher.
8205
8206 @item -fdse
8207 @opindex fdse
8208 Perform dead store elimination (DSE) on RTL@.
8209 Enabled by default at @option{-O} and higher.
8210
8211 @item -fif-conversion
8212 @opindex fif-conversion
8213 Attempt to transform conditional jumps into branch-less equivalents. This
8214 includes use of conditional moves, min, max, set flags and abs instructions, and
8215 some tricks doable by standard arithmetics. The use of conditional execution
8216 on chips where it is available is controlled by @option{-fif-conversion2}.
8217
8218 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8219
8220 @item -fif-conversion2
8221 @opindex fif-conversion2
8222 Use conditional execution (where available) to transform conditional jumps into
8223 branch-less equivalents.
8224
8225 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8226
8227 @item -fdeclone-ctor-dtor
8228 @opindex fdeclone-ctor-dtor
8229 The C++ ABI requires multiple entry points for constructors and
8230 destructors: one for a base subobject, one for a complete object, and
8231 one for a virtual destructor that calls operator delete afterwards.
8232 For a hierarchy with virtual bases, the base and complete variants are
8233 clones, which means two copies of the function. With this option, the
8234 base and complete variants are changed to be thunks that call a common
8235 implementation.
8236
8237 Enabled by @option{-Os}.
8238
8239 @item -fdelete-null-pointer-checks
8240 @opindex fdelete-null-pointer-checks
8241 Assume that programs cannot safely dereference null pointers, and that
8242 no code or data element resides at address zero.
8243 This option enables simple constant
8244 folding optimizations at all optimization levels. In addition, other
8245 optimization passes in GCC use this flag to control global dataflow
8246 analyses that eliminate useless checks for null pointers; these assume
8247 that a memory access to address zero always results in a trap, so
8248 that if a pointer is checked after it has already been dereferenced,
8249 it cannot be null.
8250
8251 Note however that in some environments this assumption is not true.
8252 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8253 for programs that depend on that behavior.
8254
8255 This option is enabled by default on most targets. On Nios II ELF, it
8256 defaults to off. On AVR and CR16, this option is completely disabled.
8257
8258 Passes that use the dataflow information
8259 are enabled independently at different optimization levels.
8260
8261 @item -fdevirtualize
8262 @opindex fdevirtualize
8263 Attempt to convert calls to virtual functions to direct calls. This
8264 is done both within a procedure and interprocedurally as part of
8265 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8266 propagation (@option{-fipa-cp}).
8267 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8268
8269 @item -fdevirtualize-speculatively
8270 @opindex fdevirtualize-speculatively
8271 Attempt to convert calls to virtual functions to speculative direct calls.
8272 Based on the analysis of the type inheritance graph, determine for a given call
8273 the set of likely targets. If the set is small, preferably of size 1, change
8274 the call into a conditional deciding between direct and indirect calls. The
8275 speculative calls enable more optimizations, such as inlining. When they seem
8276 useless after further optimization, they are converted back into original form.
8277
8278 @item -fdevirtualize-at-ltrans
8279 @opindex fdevirtualize-at-ltrans
8280 Stream extra information needed for aggressive devirtualization when running
8281 the link-time optimizer in local transformation mode.
8282 This option enables more devirtualization but
8283 significantly increases the size of streamed data. For this reason it is
8284 disabled by default.
8285
8286 @item -fexpensive-optimizations
8287 @opindex fexpensive-optimizations
8288 Perform a number of minor optimizations that are relatively expensive.
8289
8290 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8291
8292 @item -free
8293 @opindex free
8294 Attempt to remove redundant extension instructions. This is especially
8295 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8296 registers after writing to their lower 32-bit half.
8297
8298 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8299 @option{-O3}, @option{-Os}.
8300
8301 @item -fno-lifetime-dse
8302 @opindex fno-lifetime-dse
8303 In C++ the value of an object is only affected by changes within its
8304 lifetime: when the constructor begins, the object has an indeterminate
8305 value, and any changes during the lifetime of the object are dead when
8306 the object is destroyed. Normally dead store elimination will take
8307 advantage of this; if your code relies on the value of the object
8308 storage persisting beyond the lifetime of the object, you can use this
8309 flag to disable this optimization.
8310
8311 @item -flive-range-shrinkage
8312 @opindex flive-range-shrinkage
8313 Attempt to decrease register pressure through register live range
8314 shrinkage. This is helpful for fast processors with small or moderate
8315 size register sets.
8316
8317 @item -fira-algorithm=@var{algorithm}
8318 @opindex fira-algorithm
8319 Use the specified coloring algorithm for the integrated register
8320 allocator. The @var{algorithm} argument can be @samp{priority}, which
8321 specifies Chow's priority coloring, or @samp{CB}, which specifies
8322 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8323 for all architectures, but for those targets that do support it, it is
8324 the default because it generates better code.
8325
8326 @item -fira-region=@var{region}
8327 @opindex fira-region
8328 Use specified regions for the integrated register allocator. The
8329 @var{region} argument should be one of the following:
8330
8331 @table @samp
8332
8333 @item all
8334 Use all loops as register allocation regions.
8335 This can give the best results for machines with a small and/or
8336 irregular register set.
8337
8338 @item mixed
8339 Use all loops except for loops with small register pressure
8340 as the regions. This value usually gives
8341 the best results in most cases and for most architectures,
8342 and is enabled by default when compiling with optimization for speed
8343 (@option{-O}, @option{-O2}, @dots{}).
8344
8345 @item one
8346 Use all functions as a single region.
8347 This typically results in the smallest code size, and is enabled by default for
8348 @option{-Os} or @option{-O0}.
8349
8350 @end table
8351
8352 @item -fira-hoist-pressure
8353 @opindex fira-hoist-pressure
8354 Use IRA to evaluate register pressure in the code hoisting pass for
8355 decisions to hoist expressions. This option usually results in smaller
8356 code, but it can slow the compiler down.
8357
8358 This option is enabled at level @option{-Os} for all targets.
8359
8360 @item -fira-loop-pressure
8361 @opindex fira-loop-pressure
8362 Use IRA to evaluate register pressure in loops for decisions to move
8363 loop invariants. This option usually results in generation
8364 of faster and smaller code on machines with large register files (>= 32
8365 registers), but it can slow the compiler down.
8366
8367 This option is enabled at level @option{-O3} for some targets.
8368
8369 @item -fno-ira-share-save-slots
8370 @opindex fno-ira-share-save-slots
8371 Disable sharing of stack slots used for saving call-used hard
8372 registers living through a call. Each hard register gets a
8373 separate stack slot, and as a result function stack frames are
8374 larger.
8375
8376 @item -fno-ira-share-spill-slots
8377 @opindex fno-ira-share-spill-slots
8378 Disable sharing of stack slots allocated for pseudo-registers. Each
8379 pseudo-register that does not get a hard register gets a separate
8380 stack slot, and as a result function stack frames are larger.
8381
8382 @item -fira-verbose=@var{n}
8383 @opindex fira-verbose
8384 Control the verbosity of the dump file for the integrated register allocator.
8385 The default value is 5. If the value @var{n} is greater or equal to 10,
8386 the dump output is sent to stderr using the same format as @var{n} minus 10.
8387
8388 @item -flra-remat
8389 @opindex flra-remat
8390 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8391 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8392 values if it is profitable.
8393
8394 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8395
8396 @item -fdelayed-branch
8397 @opindex fdelayed-branch
8398 If supported for the target machine, attempt to reorder instructions
8399 to exploit instruction slots available after delayed branch
8400 instructions.
8401
8402 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8403
8404 @item -fschedule-insns
8405 @opindex fschedule-insns
8406 If supported for the target machine, attempt to reorder instructions to
8407 eliminate execution stalls due to required data being unavailable. This
8408 helps machines that have slow floating point or memory load instructions
8409 by allowing other instructions to be issued until the result of the load
8410 or floating-point instruction is required.
8411
8412 Enabled at levels @option{-O2}, @option{-O3}.
8413
8414 @item -fschedule-insns2
8415 @opindex fschedule-insns2
8416 Similar to @option{-fschedule-insns}, but requests an additional pass of
8417 instruction scheduling after register allocation has been done. This is
8418 especially useful on machines with a relatively small number of
8419 registers and where memory load instructions take more than one cycle.
8420
8421 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8422
8423 @item -fno-sched-interblock
8424 @opindex fno-sched-interblock
8425 Don't schedule instructions across basic blocks. This is normally
8426 enabled by default when scheduling before register allocation, i.e.@:
8427 with @option{-fschedule-insns} or at @option{-O2} or higher.
8428
8429 @item -fno-sched-spec
8430 @opindex fno-sched-spec
8431 Don't allow speculative motion of non-load instructions. This is normally
8432 enabled by default when scheduling before register allocation, i.e.@:
8433 with @option{-fschedule-insns} or at @option{-O2} or higher.
8434
8435 @item -fsched-pressure
8436 @opindex fsched-pressure
8437 Enable register pressure sensitive insn scheduling before register
8438 allocation. This only makes sense when scheduling before register
8439 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8440 @option{-O2} or higher. Usage of this option can improve the
8441 generated code and decrease its size by preventing register pressure
8442 increase above the number of available hard registers and subsequent
8443 spills in register allocation.
8444
8445 @item -fsched-spec-load
8446 @opindex fsched-spec-load
8447 Allow speculative motion of some load instructions. This only makes
8448 sense when scheduling before register allocation, i.e.@: with
8449 @option{-fschedule-insns} or at @option{-O2} or higher.
8450
8451 @item -fsched-spec-load-dangerous
8452 @opindex fsched-spec-load-dangerous
8453 Allow speculative motion of more load instructions. This only makes
8454 sense when scheduling before register allocation, i.e.@: with
8455 @option{-fschedule-insns} or at @option{-O2} or higher.
8456
8457 @item -fsched-stalled-insns
8458 @itemx -fsched-stalled-insns=@var{n}
8459 @opindex fsched-stalled-insns
8460 Define how many insns (if any) can be moved prematurely from the queue
8461 of stalled insns into the ready list during the second scheduling pass.
8462 @option{-fno-sched-stalled-insns} means that no insns are moved
8463 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8464 on how many queued insns can be moved prematurely.
8465 @option{-fsched-stalled-insns} without a value is equivalent to
8466 @option{-fsched-stalled-insns=1}.
8467
8468 @item -fsched-stalled-insns-dep
8469 @itemx -fsched-stalled-insns-dep=@var{n}
8470 @opindex fsched-stalled-insns-dep
8471 Define how many insn groups (cycles) are examined for a dependency
8472 on a stalled insn that is a candidate for premature removal from the queue
8473 of stalled insns. This has an effect only during the second scheduling pass,
8474 and only if @option{-fsched-stalled-insns} is used.
8475 @option{-fno-sched-stalled-insns-dep} is equivalent to
8476 @option{-fsched-stalled-insns-dep=0}.
8477 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8478 @option{-fsched-stalled-insns-dep=1}.
8479
8480 @item -fsched2-use-superblocks
8481 @opindex fsched2-use-superblocks
8482 When scheduling after register allocation, use superblock scheduling.
8483 This allows motion across basic block boundaries,
8484 resulting in faster schedules. This option is experimental, as not all machine
8485 descriptions used by GCC model the CPU closely enough to avoid unreliable
8486 results from the algorithm.
8487
8488 This only makes sense when scheduling after register allocation, i.e.@: with
8489 @option{-fschedule-insns2} or at @option{-O2} or higher.
8490
8491 @item -fsched-group-heuristic
8492 @opindex fsched-group-heuristic
8493 Enable the group heuristic in the scheduler. This heuristic favors
8494 the instruction that belongs to a schedule group. This is enabled
8495 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8496 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8497
8498 @item -fsched-critical-path-heuristic
8499 @opindex fsched-critical-path-heuristic
8500 Enable the critical-path heuristic in the scheduler. This heuristic favors
8501 instructions on the critical path. This is enabled by default when
8502 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8503 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8504
8505 @item -fsched-spec-insn-heuristic
8506 @opindex fsched-spec-insn-heuristic
8507 Enable the speculative instruction heuristic in the scheduler. This
8508 heuristic favors speculative instructions with greater dependency weakness.
8509 This is enabled by default when scheduling is enabled, i.e.@:
8510 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8511 or at @option{-O2} or higher.
8512
8513 @item -fsched-rank-heuristic
8514 @opindex fsched-rank-heuristic
8515 Enable the rank heuristic in the scheduler. This heuristic favors
8516 the instruction belonging to a basic block with greater size or frequency.
8517 This is enabled by default when scheduling is enabled, i.e.@:
8518 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8519 at @option{-O2} or higher.
8520
8521 @item -fsched-last-insn-heuristic
8522 @opindex fsched-last-insn-heuristic
8523 Enable the last-instruction heuristic in the scheduler. This heuristic
8524 favors the instruction that is less dependent on the last instruction
8525 scheduled. This is enabled by default when scheduling is enabled,
8526 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8527 at @option{-O2} or higher.
8528
8529 @item -fsched-dep-count-heuristic
8530 @opindex fsched-dep-count-heuristic
8531 Enable the dependent-count heuristic in the scheduler. This heuristic
8532 favors the instruction that has more instructions depending on it.
8533 This is enabled by default when scheduling is enabled, i.e.@:
8534 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8535 at @option{-O2} or higher.
8536
8537 @item -freschedule-modulo-scheduled-loops
8538 @opindex freschedule-modulo-scheduled-loops
8539 Modulo scheduling is performed before traditional scheduling. If a loop
8540 is modulo scheduled, later scheduling passes may change its schedule.
8541 Use this option to control that behavior.
8542
8543 @item -fselective-scheduling
8544 @opindex fselective-scheduling
8545 Schedule instructions using selective scheduling algorithm. Selective
8546 scheduling runs instead of the first scheduler pass.
8547
8548 @item -fselective-scheduling2
8549 @opindex fselective-scheduling2
8550 Schedule instructions using selective scheduling algorithm. Selective
8551 scheduling runs instead of the second scheduler pass.
8552
8553 @item -fsel-sched-pipelining
8554 @opindex fsel-sched-pipelining
8555 Enable software pipelining of innermost loops during selective scheduling.
8556 This option has no effect unless one of @option{-fselective-scheduling} or
8557 @option{-fselective-scheduling2} is turned on.
8558
8559 @item -fsel-sched-pipelining-outer-loops
8560 @opindex fsel-sched-pipelining-outer-loops
8561 When pipelining loops during selective scheduling, also pipeline outer loops.
8562 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8563
8564 @item -fsemantic-interposition
8565 @opindex fsemantic-interposition
8566 Some object formats, like ELF, allow interposing of symbols by the
8567 dynamic linker.
8568 This means that for symbols exported from the DSO, the compiler cannot perform
8569 interprocedural propagation, inlining and other optimizations in anticipation
8570 that the function or variable in question may change. While this feature is
8571 useful, for example, to rewrite memory allocation functions by a debugging
8572 implementation, it is expensive in the terms of code quality.
8573 With @option{-fno-semantic-interposition} the compiler assumes that
8574 if interposition happens for functions the overwriting function will have
8575 precisely the same semantics (and side effects).
8576 Similarly if interposition happens
8577 for variables, the constructor of the variable will be the same. The flag
8578 has no effect for functions explicitly declared inline
8579 (where it is never allowed for interposition to change semantics)
8580 and for symbols explicitly declared weak.
8581
8582 @item -fshrink-wrap
8583 @opindex fshrink-wrap
8584 Emit function prologues only before parts of the function that need it,
8585 rather than at the top of the function. This flag is enabled by default at
8586 @option{-O} and higher.
8587
8588 @item -fcaller-saves
8589 @opindex fcaller-saves
8590 Enable allocation of values to registers that are clobbered by
8591 function calls, by emitting extra instructions to save and restore the
8592 registers around such calls. Such allocation is done only when it
8593 seems to result in better code.
8594
8595 This option is always enabled by default on certain machines, usually
8596 those which have no call-preserved registers to use instead.
8597
8598 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8599
8600 @item -fcombine-stack-adjustments
8601 @opindex fcombine-stack-adjustments
8602 Tracks stack adjustments (pushes and pops) and stack memory references
8603 and then tries to find ways to combine them.
8604
8605 Enabled by default at @option{-O1} and higher.
8606
8607 @item -fipa-ra
8608 @opindex fipa-ra
8609 Use caller save registers for allocation if those registers are not used by
8610 any called function. In that case it is not necessary to save and restore
8611 them around calls. This is only possible if called functions are part of
8612 same compilation unit as current function and they are compiled before it.
8613
8614 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8615
8616 @item -fconserve-stack
8617 @opindex fconserve-stack
8618 Attempt to minimize stack usage. The compiler attempts to use less
8619 stack space, even if that makes the program slower. This option
8620 implies setting the @option{large-stack-frame} parameter to 100
8621 and the @option{large-stack-frame-growth} parameter to 400.
8622
8623 @item -ftree-reassoc
8624 @opindex ftree-reassoc
8625 Perform reassociation on trees. This flag is enabled by default
8626 at @option{-O} and higher.
8627
8628 @item -ftree-pre
8629 @opindex ftree-pre
8630 Perform partial redundancy elimination (PRE) on trees. This flag is
8631 enabled by default at @option{-O2} and @option{-O3}.
8632
8633 @item -ftree-partial-pre
8634 @opindex ftree-partial-pre
8635 Make partial redundancy elimination (PRE) more aggressive. This flag is
8636 enabled by default at @option{-O3}.
8637
8638 @item -ftree-forwprop
8639 @opindex ftree-forwprop
8640 Perform forward propagation on trees. This flag is enabled by default
8641 at @option{-O} and higher.
8642
8643 @item -ftree-fre
8644 @opindex ftree-fre
8645 Perform full redundancy elimination (FRE) on trees. The difference
8646 between FRE and PRE is that FRE only considers expressions
8647 that are computed on all paths leading to the redundant computation.
8648 This analysis is faster than PRE, though it exposes fewer redundancies.
8649 This flag is enabled by default at @option{-O} and higher.
8650
8651 @item -ftree-phiprop
8652 @opindex ftree-phiprop
8653 Perform hoisting of loads from conditional pointers on trees. This
8654 pass is enabled by default at @option{-O} and higher.
8655
8656 @item -fhoist-adjacent-loads
8657 @opindex fhoist-adjacent-loads
8658 Speculatively hoist loads from both branches of an if-then-else if the
8659 loads are from adjacent locations in the same structure and the target
8660 architecture has a conditional move instruction. This flag is enabled
8661 by default at @option{-O2} and higher.
8662
8663 @item -ftree-copy-prop
8664 @opindex ftree-copy-prop
8665 Perform copy propagation on trees. This pass eliminates unnecessary
8666 copy operations. This flag is enabled by default at @option{-O} and
8667 higher.
8668
8669 @item -fipa-pure-const
8670 @opindex fipa-pure-const
8671 Discover which functions are pure or constant.
8672 Enabled by default at @option{-O} and higher.
8673
8674 @item -fipa-reference
8675 @opindex fipa-reference
8676 Discover which static variables do not escape the
8677 compilation unit.
8678 Enabled by default at @option{-O} and higher.
8679
8680 @item -fipa-pta
8681 @opindex fipa-pta
8682 Perform interprocedural pointer analysis and interprocedural modification
8683 and reference analysis. This option can cause excessive memory and
8684 compile-time usage on large compilation units. It is not enabled by
8685 default at any optimization level.
8686
8687 @item -fipa-profile
8688 @opindex fipa-profile
8689 Perform interprocedural profile propagation. The functions called only from
8690 cold functions are marked as cold. Also functions executed once (such as
8691 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8692 functions and loop less parts of functions executed once are then optimized for
8693 size.
8694 Enabled by default at @option{-O} and higher.
8695
8696 @item -fipa-cp
8697 @opindex fipa-cp
8698 Perform interprocedural constant propagation.
8699 This optimization analyzes the program to determine when values passed
8700 to functions are constants and then optimizes accordingly.
8701 This optimization can substantially increase performance
8702 if the application has constants passed to functions.
8703 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8704
8705 @item -fipa-cp-clone
8706 @opindex fipa-cp-clone
8707 Perform function cloning to make interprocedural constant propagation stronger.
8708 When enabled, interprocedural constant propagation performs function cloning
8709 when externally visible function can be called with constant arguments.
8710 Because this optimization can create multiple copies of functions,
8711 it may significantly increase code size
8712 (see @option{--param ipcp-unit-growth=@var{value}}).
8713 This flag is enabled by default at @option{-O3}.
8714
8715 @item -fipa-cp-alignment
8716 @opindex -fipa-cp-alignment
8717 When enabled, this optimization propagates alignment of function
8718 parameters to support better vectorization and string operations.
8719
8720 This flag is enabled by default at @option{-O2} and @option{-Os}. It
8721 requires that @option{-fipa-cp} is enabled.
8722
8723 @item -fipa-icf
8724 @opindex fipa-icf
8725 Perform Identical Code Folding for functions and read-only variables.
8726 The optimization reduces code size and may disturb unwind stacks by replacing
8727 a function by equivalent one with a different name. The optimization works
8728 more effectively with link time optimization enabled.
8729
8730 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8731 works on different levels and thus the optimizations are not same - there are
8732 equivalences that are found only by GCC and equivalences found only by Gold.
8733
8734 This flag is enabled by default at @option{-O2} and @option{-Os}.
8735
8736 @item -fisolate-erroneous-paths-dereference
8737 @opindex fisolate-erroneous-paths-dereference
8738 Detect paths that trigger erroneous or undefined behavior due to
8739 dereferencing a null pointer. Isolate those paths from the main control
8740 flow and turn the statement with erroneous or undefined behavior into a trap.
8741 This flag is enabled by default at @option{-O2} and higher and depends on
8742 @option{-fdelete-null-pointer-checks} also being enabled.
8743
8744 @item -fisolate-erroneous-paths-attribute
8745 @opindex fisolate-erroneous-paths-attribute
8746 Detect paths that trigger erroneous or undefined behavior due a null value
8747 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8748 attribute. Isolate those paths from the main control flow and turn the
8749 statement with erroneous or undefined behavior into a trap. This is not
8750 currently enabled, but may be enabled by @option{-O2} in the future.
8751
8752 @item -ftree-sink
8753 @opindex ftree-sink
8754 Perform forward store motion on trees. This flag is
8755 enabled by default at @option{-O} and higher.
8756
8757 @item -ftree-bit-ccp
8758 @opindex ftree-bit-ccp
8759 Perform sparse conditional bit constant propagation on trees and propagate
8760 pointer alignment information.
8761 This pass only operates on local scalar variables and is enabled by default
8762 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8763
8764 @item -ftree-ccp
8765 @opindex ftree-ccp
8766 Perform sparse conditional constant propagation (CCP) on trees. This
8767 pass only operates on local scalar variables and is enabled by default
8768 at @option{-O} and higher.
8769
8770 @item -fssa-phiopt
8771 @opindex fssa-phiopt
8772 Perform pattern matching on SSA PHI nodes to optimize conditional
8773 code. This pass is enabled by default at @option{-O} and higher.
8774
8775 @item -ftree-switch-conversion
8776 @opindex ftree-switch-conversion
8777 Perform conversion of simple initializations in a switch to
8778 initializations from a scalar array. This flag is enabled by default
8779 at @option{-O2} and higher.
8780
8781 @item -ftree-tail-merge
8782 @opindex ftree-tail-merge
8783 Look for identical code sequences. When found, replace one with a jump to the
8784 other. This optimization is known as tail merging or cross jumping. This flag
8785 is enabled by default at @option{-O2} and higher. The compilation time
8786 in this pass can
8787 be limited using @option{max-tail-merge-comparisons} parameter and
8788 @option{max-tail-merge-iterations} parameter.
8789
8790 @item -ftree-dce
8791 @opindex ftree-dce
8792 Perform dead code elimination (DCE) on trees. This flag is enabled by
8793 default at @option{-O} and higher.
8794
8795 @item -ftree-builtin-call-dce
8796 @opindex ftree-builtin-call-dce
8797 Perform conditional dead code elimination (DCE) for calls to built-in functions
8798 that may set @code{errno} but are otherwise side-effect free. This flag is
8799 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8800 specified.
8801
8802 @item -ftree-dominator-opts
8803 @opindex ftree-dominator-opts
8804 Perform a variety of simple scalar cleanups (constant/copy
8805 propagation, redundancy elimination, range propagation and expression
8806 simplification) based on a dominator tree traversal. This also
8807 performs jump threading (to reduce jumps to jumps). This flag is
8808 enabled by default at @option{-O} and higher.
8809
8810 @item -ftree-dse
8811 @opindex ftree-dse
8812 Perform dead store elimination (DSE) on trees. A dead store is a store into
8813 a memory location that is later overwritten by another store without
8814 any intervening loads. In this case the earlier store can be deleted. This
8815 flag is enabled by default at @option{-O} and higher.
8816
8817 @item -ftree-ch
8818 @opindex ftree-ch
8819 Perform loop header copying on trees. This is beneficial since it increases
8820 effectiveness of code motion optimizations. It also saves one jump. This flag
8821 is enabled by default at @option{-O} and higher. It is not enabled
8822 for @option{-Os}, since it usually increases code size.
8823
8824 @item -ftree-loop-optimize
8825 @opindex ftree-loop-optimize
8826 Perform loop optimizations on trees. This flag is enabled by default
8827 at @option{-O} and higher.
8828
8829 @item -ftree-loop-linear
8830 @itemx -floop-interchange
8831 @itemx -floop-strip-mine
8832 @itemx -floop-block
8833 @itemx -floop-unroll-and-jam
8834 @opindex ftree-loop-linear
8835 @opindex floop-interchange
8836 @opindex floop-strip-mine
8837 @opindex floop-block
8838 @opindex floop-unroll-and-jam
8839 Perform loop nest optimizations. Same as
8840 @option{-floop-nest-optimize}. To use this code transformation, GCC has
8841 to be configured with @option{--with-isl} to enable the Graphite loop
8842 transformation infrastructure.
8843
8844 @item -fgraphite-identity
8845 @opindex fgraphite-identity
8846 Enable the identity transformation for graphite. For every SCoP we generate
8847 the polyhedral representation and transform it back to gimple. Using
8848 @option{-fgraphite-identity} we can check the costs or benefits of the
8849 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8850 are also performed by the code generator ISL, like index splitting and
8851 dead code elimination in loops.
8852
8853 @item -floop-nest-optimize
8854 @opindex floop-nest-optimize
8855 Enable the ISL based loop nest optimizer. This is a generic loop nest
8856 optimizer based on the Pluto optimization algorithms. It calculates a loop
8857 structure optimized for data-locality and parallelism. This option
8858 is experimental.
8859
8860 @item -floop-parallelize-all
8861 @opindex floop-parallelize-all
8862 Use the Graphite data dependence analysis to identify loops that can
8863 be parallelized. Parallelize all the loops that can be analyzed to
8864 not contain loop carried dependences without checking that it is
8865 profitable to parallelize the loops.
8866
8867 @item -ftree-coalesce-vars
8868 @opindex ftree-coalesce-vars
8869 Tell the compiler to attempt to combine small user-defined variables
8870 too, instead of just compiler temporaries. This may severely limit the
8871 ability to debug an optimized program compiled with
8872 @option{-fno-var-tracking-assignments}. In the negated form, this flag
8873 prevents SSA coalescing of user variables. This option is enabled by
8874 default if optimization is enabled.
8875
8876 @item -ftree-loop-if-convert
8877 @opindex ftree-loop-if-convert
8878 Attempt to transform conditional jumps in the innermost loops to
8879 branch-less equivalents. The intent is to remove control-flow from
8880 the innermost loops in order to improve the ability of the
8881 vectorization pass to handle these loops. This is enabled by default
8882 if vectorization is enabled.
8883
8884 @item -ftree-loop-if-convert-stores
8885 @opindex ftree-loop-if-convert-stores
8886 Attempt to also if-convert conditional jumps containing memory writes.
8887 This transformation can be unsafe for multi-threaded programs as it
8888 transforms conditional memory writes into unconditional memory writes.
8889 For example,
8890 @smallexample
8891 for (i = 0; i < N; i++)
8892 if (cond)
8893 A[i] = expr;
8894 @end smallexample
8895 is transformed to
8896 @smallexample
8897 for (i = 0; i < N; i++)
8898 A[i] = cond ? expr : A[i];
8899 @end smallexample
8900 potentially producing data races.
8901
8902 @item -ftree-loop-distribution
8903 @opindex ftree-loop-distribution
8904 Perform loop distribution. This flag can improve cache performance on
8905 big loop bodies and allow further loop optimizations, like
8906 parallelization or vectorization, to take place. For example, the loop
8907 @smallexample
8908 DO I = 1, N
8909 A(I) = B(I) + C
8910 D(I) = E(I) * F
8911 ENDDO
8912 @end smallexample
8913 is transformed to
8914 @smallexample
8915 DO I = 1, N
8916 A(I) = B(I) + C
8917 ENDDO
8918 DO I = 1, N
8919 D(I) = E(I) * F
8920 ENDDO
8921 @end smallexample
8922
8923 @item -ftree-loop-distribute-patterns
8924 @opindex ftree-loop-distribute-patterns
8925 Perform loop distribution of patterns that can be code generated with
8926 calls to a library. This flag is enabled by default at @option{-O3}.
8927
8928 This pass distributes the initialization loops and generates a call to
8929 memset zero. For example, the loop
8930 @smallexample
8931 DO I = 1, N
8932 A(I) = 0
8933 B(I) = A(I) + I
8934 ENDDO
8935 @end smallexample
8936 is transformed to
8937 @smallexample
8938 DO I = 1, N
8939 A(I) = 0
8940 ENDDO
8941 DO I = 1, N
8942 B(I) = A(I) + I
8943 ENDDO
8944 @end smallexample
8945 and the initialization loop is transformed into a call to memset zero.
8946
8947 @item -ftree-loop-im
8948 @opindex ftree-loop-im
8949 Perform loop invariant motion on trees. This pass moves only invariants that
8950 are hard to handle at RTL level (function calls, operations that expand to
8951 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8952 operands of conditions that are invariant out of the loop, so that we can use
8953 just trivial invariantness analysis in loop unswitching. The pass also includes
8954 store motion.
8955
8956 @item -ftree-loop-ivcanon
8957 @opindex ftree-loop-ivcanon
8958 Create a canonical counter for number of iterations in loops for which
8959 determining number of iterations requires complicated analysis. Later
8960 optimizations then may determine the number easily. Useful especially
8961 in connection with unrolling.
8962
8963 @item -fivopts
8964 @opindex fivopts
8965 Perform induction variable optimizations (strength reduction, induction
8966 variable merging and induction variable elimination) on trees.
8967
8968 @item -ftree-parallelize-loops=n
8969 @opindex ftree-parallelize-loops
8970 Parallelize loops, i.e., split their iteration space to run in n threads.
8971 This is only possible for loops whose iterations are independent
8972 and can be arbitrarily reordered. The optimization is only
8973 profitable on multiprocessor machines, for loops that are CPU-intensive,
8974 rather than constrained e.g.@: by memory bandwidth. This option
8975 implies @option{-pthread}, and thus is only supported on targets
8976 that have support for @option{-pthread}.
8977
8978 @item -ftree-pta
8979 @opindex ftree-pta
8980 Perform function-local points-to analysis on trees. This flag is
8981 enabled by default at @option{-O} and higher.
8982
8983 @item -ftree-sra
8984 @opindex ftree-sra
8985 Perform scalar replacement of aggregates. This pass replaces structure
8986 references with scalars to prevent committing structures to memory too
8987 early. This flag is enabled by default at @option{-O} and higher.
8988
8989 @item -ftree-ter
8990 @opindex ftree-ter
8991 Perform temporary expression replacement during the SSA->normal phase. Single
8992 use/single def temporaries are replaced at their use location with their
8993 defining expression. This results in non-GIMPLE code, but gives the expanders
8994 much more complex trees to work on resulting in better RTL generation. This is
8995 enabled by default at @option{-O} and higher.
8996
8997 @item -ftree-slsr
8998 @opindex ftree-slsr
8999 Perform straight-line strength reduction on trees. This recognizes related
9000 expressions involving multiplications and replaces them by less expensive
9001 calculations when possible. This is enabled by default at @option{-O} and
9002 higher.
9003
9004 @item -ftree-vectorize
9005 @opindex ftree-vectorize
9006 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9007 and @option{-ftree-slp-vectorize} if not explicitly specified.
9008
9009 @item -ftree-loop-vectorize
9010 @opindex ftree-loop-vectorize
9011 Perform loop vectorization on trees. This flag is enabled by default at
9012 @option{-O3} and when @option{-ftree-vectorize} is enabled.
9013
9014 @item -ftree-slp-vectorize
9015 @opindex ftree-slp-vectorize
9016 Perform basic block vectorization on trees. This flag is enabled by default at
9017 @option{-O3} and when @option{-ftree-vectorize} is enabled.
9018
9019 @item -fvect-cost-model=@var{model}
9020 @opindex fvect-cost-model
9021 Alter the cost model used for vectorization. The @var{model} argument
9022 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9023 With the @samp{unlimited} model the vectorized code-path is assumed
9024 to be profitable while with the @samp{dynamic} model a runtime check
9025 guards the vectorized code-path to enable it only for iteration
9026 counts that will likely execute faster than when executing the original
9027 scalar loop. The @samp{cheap} model disables vectorization of
9028 loops where doing so would be cost prohibitive for example due to
9029 required runtime checks for data dependence or alignment but otherwise
9030 is equal to the @samp{dynamic} model.
9031 The default cost model depends on other optimization flags and is
9032 either @samp{dynamic} or @samp{cheap}.
9033
9034 @item -fsimd-cost-model=@var{model}
9035 @opindex fsimd-cost-model
9036 Alter the cost model used for vectorization of loops marked with the OpenMP
9037 or Cilk Plus simd directive. The @var{model} argument should be one of
9038 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9039 have the same meaning as described in @option{-fvect-cost-model} and by
9040 default a cost model defined with @option{-fvect-cost-model} is used.
9041
9042 @item -ftree-vrp
9043 @opindex ftree-vrp
9044 Perform Value Range Propagation on trees. This is similar to the
9045 constant propagation pass, but instead of values, ranges of values are
9046 propagated. This allows the optimizers to remove unnecessary range
9047 checks like array bound checks and null pointer checks. This is
9048 enabled by default at @option{-O2} and higher. Null pointer check
9049 elimination is only done if @option{-fdelete-null-pointer-checks} is
9050 enabled.
9051
9052 @item -fsplit-ivs-in-unroller
9053 @opindex fsplit-ivs-in-unroller
9054 Enables expression of values of induction variables in later iterations
9055 of the unrolled loop using the value in the first iteration. This breaks
9056 long dependency chains, thus improving efficiency of the scheduling passes.
9057
9058 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9059 same effect. However, that is not reliable in cases where the loop body
9060 is more complicated than a single basic block. It also does not work at all
9061 on some architectures due to restrictions in the CSE pass.
9062
9063 This optimization is enabled by default.
9064
9065 @item -fvariable-expansion-in-unroller
9066 @opindex fvariable-expansion-in-unroller
9067 With this option, the compiler creates multiple copies of some
9068 local variables when unrolling a loop, which can result in superior code.
9069
9070 @item -fpartial-inlining
9071 @opindex fpartial-inlining
9072 Inline parts of functions. This option has any effect only
9073 when inlining itself is turned on by the @option{-finline-functions}
9074 or @option{-finline-small-functions} options.
9075
9076 Enabled at level @option{-O2}.
9077
9078 @item -fpredictive-commoning
9079 @opindex fpredictive-commoning
9080 Perform predictive commoning optimization, i.e., reusing computations
9081 (especially memory loads and stores) performed in previous
9082 iterations of loops.
9083
9084 This option is enabled at level @option{-O3}.
9085
9086 @item -fprefetch-loop-arrays
9087 @opindex fprefetch-loop-arrays
9088 If supported by the target machine, generate instructions to prefetch
9089 memory to improve the performance of loops that access large arrays.
9090
9091 This option may generate better or worse code; results are highly
9092 dependent on the structure of loops within the source code.
9093
9094 Disabled at level @option{-Os}.
9095
9096 @item -fno-peephole
9097 @itemx -fno-peephole2
9098 @opindex fno-peephole
9099 @opindex fno-peephole2
9100 Disable any machine-specific peephole optimizations. The difference
9101 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9102 are implemented in the compiler; some targets use one, some use the
9103 other, a few use both.
9104
9105 @option{-fpeephole} is enabled by default.
9106 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9107
9108 @item -fno-guess-branch-probability
9109 @opindex fno-guess-branch-probability
9110 Do not guess branch probabilities using heuristics.
9111
9112 GCC uses heuristics to guess branch probabilities if they are
9113 not provided by profiling feedback (@option{-fprofile-arcs}). These
9114 heuristics are based on the control flow graph. If some branch probabilities
9115 are specified by @code{__builtin_expect}, then the heuristics are
9116 used to guess branch probabilities for the rest of the control flow graph,
9117 taking the @code{__builtin_expect} info into account. The interactions
9118 between the heuristics and @code{__builtin_expect} can be complex, and in
9119 some cases, it may be useful to disable the heuristics so that the effects
9120 of @code{__builtin_expect} are easier to understand.
9121
9122 The default is @option{-fguess-branch-probability} at levels
9123 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9124
9125 @item -freorder-blocks
9126 @opindex freorder-blocks
9127 Reorder basic blocks in the compiled function in order to reduce number of
9128 taken branches and improve code locality.
9129
9130 Enabled at levels @option{-O2}, @option{-O3}.
9131
9132 @item -freorder-blocks-and-partition
9133 @opindex freorder-blocks-and-partition
9134 In addition to reordering basic blocks in the compiled function, in order
9135 to reduce number of taken branches, partitions hot and cold basic blocks
9136 into separate sections of the assembly and .o files, to improve
9137 paging and cache locality performance.
9138
9139 This optimization is automatically turned off in the presence of
9140 exception handling, for linkonce sections, for functions with a user-defined
9141 section attribute and on any architecture that does not support named
9142 sections.
9143
9144 Enabled for x86 at levels @option{-O2}, @option{-O3}.
9145
9146 @item -freorder-functions
9147 @opindex freorder-functions
9148 Reorder functions in the object file in order to
9149 improve code locality. This is implemented by using special
9150 subsections @code{.text.hot} for most frequently executed functions and
9151 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9152 the linker so object file format must support named sections and linker must
9153 place them in a reasonable way.
9154
9155 Also profile feedback must be available to make this option effective. See
9156 @option{-fprofile-arcs} for details.
9157
9158 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9159
9160 @item -fstrict-aliasing
9161 @opindex fstrict-aliasing
9162 Allow the compiler to assume the strictest aliasing rules applicable to
9163 the language being compiled. For C (and C++), this activates
9164 optimizations based on the type of expressions. In particular, an
9165 object of one type is assumed never to reside at the same address as an
9166 object of a different type, unless the types are almost the same. For
9167 example, an @code{unsigned int} can alias an @code{int}, but not a
9168 @code{void*} or a @code{double}. A character type may alias any other
9169 type.
9170
9171 @anchor{Type-punning}Pay special attention to code like this:
9172 @smallexample
9173 union a_union @{
9174 int i;
9175 double d;
9176 @};
9177
9178 int f() @{
9179 union a_union t;
9180 t.d = 3.0;
9181 return t.i;
9182 @}
9183 @end smallexample
9184 The practice of reading from a different union member than the one most
9185 recently written to (called ``type-punning'') is common. Even with
9186 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9187 is accessed through the union type. So, the code above works as
9188 expected. @xref{Structures unions enumerations and bit-fields
9189 implementation}. However, this code might not:
9190 @smallexample
9191 int f() @{
9192 union a_union t;
9193 int* ip;
9194 t.d = 3.0;
9195 ip = &t.i;
9196 return *ip;
9197 @}
9198 @end smallexample
9199
9200 Similarly, access by taking the address, casting the resulting pointer
9201 and dereferencing the result has undefined behavior, even if the cast
9202 uses a union type, e.g.:
9203 @smallexample
9204 int f() @{
9205 double d = 3.0;
9206 return ((union a_union *) &d)->i;
9207 @}
9208 @end smallexample
9209
9210 The @option{-fstrict-aliasing} option is enabled at levels
9211 @option{-O2}, @option{-O3}, @option{-Os}.
9212
9213 @item -fstrict-overflow
9214 @opindex fstrict-overflow
9215 Allow the compiler to assume strict signed overflow rules, depending
9216 on the language being compiled. For C (and C++) this means that
9217 overflow when doing arithmetic with signed numbers is undefined, which
9218 means that the compiler may assume that it does not happen. This
9219 permits various optimizations. For example, the compiler assumes
9220 that an expression like @code{i + 10 > i} is always true for
9221 signed @code{i}. This assumption is only valid if signed overflow is
9222 undefined, as the expression is false if @code{i + 10} overflows when
9223 using twos complement arithmetic. When this option is in effect any
9224 attempt to determine whether an operation on signed numbers
9225 overflows must be written carefully to not actually involve overflow.
9226
9227 This option also allows the compiler to assume strict pointer
9228 semantics: given a pointer to an object, if adding an offset to that
9229 pointer does not produce a pointer to the same object, the addition is
9230 undefined. This permits the compiler to conclude that @code{p + u >
9231 p} is always true for a pointer @code{p} and unsigned integer
9232 @code{u}. This assumption is only valid because pointer wraparound is
9233 undefined, as the expression is false if @code{p + u} overflows using
9234 twos complement arithmetic.
9235
9236 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
9237 that integer signed overflow is fully defined: it wraps. When
9238 @option{-fwrapv} is used, there is no difference between
9239 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9240 integers. With @option{-fwrapv} certain types of overflow are
9241 permitted. For example, if the compiler gets an overflow when doing
9242 arithmetic on constants, the overflowed value can still be used with
9243 @option{-fwrapv}, but not otherwise.
9244
9245 The @option{-fstrict-overflow} option is enabled at levels
9246 @option{-O2}, @option{-O3}, @option{-Os}.
9247
9248 @item -falign-functions
9249 @itemx -falign-functions=@var{n}
9250 @opindex falign-functions
9251 Align the start of functions to the next power-of-two greater than
9252 @var{n}, skipping up to @var{n} bytes. For instance,
9253 @option{-falign-functions=32} aligns functions to the next 32-byte
9254 boundary, but @option{-falign-functions=24} aligns to the next
9255 32-byte boundary only if this can be done by skipping 23 bytes or less.
9256
9257 @option{-fno-align-functions} and @option{-falign-functions=1} are
9258 equivalent and mean that functions are not aligned.
9259
9260 Some assemblers only support this flag when @var{n} is a power of two;
9261 in that case, it is rounded up.
9262
9263 If @var{n} is not specified or is zero, use a machine-dependent default.
9264
9265 Enabled at levels @option{-O2}, @option{-O3}.
9266
9267 @item -falign-labels
9268 @itemx -falign-labels=@var{n}
9269 @opindex falign-labels
9270 Align all branch targets to a power-of-two boundary, skipping up to
9271 @var{n} bytes like @option{-falign-functions}. This option can easily
9272 make code slower, because it must insert dummy operations for when the
9273 branch target is reached in the usual flow of the code.
9274
9275 @option{-fno-align-labels} and @option{-falign-labels=1} are
9276 equivalent and mean that labels are not aligned.
9277
9278 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9279 are greater than this value, then their values are used instead.
9280
9281 If @var{n} is not specified or is zero, use a machine-dependent default
9282 which is very likely to be @samp{1}, meaning no alignment.
9283
9284 Enabled at levels @option{-O2}, @option{-O3}.
9285
9286 @item -falign-loops
9287 @itemx -falign-loops=@var{n}
9288 @opindex falign-loops
9289 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9290 like @option{-falign-functions}. If the loops are
9291 executed many times, this makes up for any execution of the dummy
9292 operations.
9293
9294 @option{-fno-align-loops} and @option{-falign-loops=1} are
9295 equivalent and mean that loops are not aligned.
9296
9297 If @var{n} is not specified or is zero, use a machine-dependent default.
9298
9299 Enabled at levels @option{-O2}, @option{-O3}.
9300
9301 @item -falign-jumps
9302 @itemx -falign-jumps=@var{n}
9303 @opindex falign-jumps
9304 Align branch targets to a power-of-two boundary, for branch targets
9305 where the targets can only be reached by jumping, skipping up to @var{n}
9306 bytes like @option{-falign-functions}. In this case, no dummy operations
9307 need be executed.
9308
9309 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9310 equivalent and mean that loops are not aligned.
9311
9312 If @var{n} is not specified or is zero, use a machine-dependent default.
9313
9314 Enabled at levels @option{-O2}, @option{-O3}.
9315
9316 @item -funit-at-a-time
9317 @opindex funit-at-a-time
9318 This option is left for compatibility reasons. @option{-funit-at-a-time}
9319 has no effect, while @option{-fno-unit-at-a-time} implies
9320 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9321
9322 Enabled by default.
9323
9324 @item -fno-toplevel-reorder
9325 @opindex fno-toplevel-reorder
9326 Do not reorder top-level functions, variables, and @code{asm}
9327 statements. Output them in the same order that they appear in the
9328 input file. When this option is used, unreferenced static variables
9329 are not removed. This option is intended to support existing code
9330 that relies on a particular ordering. For new code, it is better to
9331 use attributes when possible.
9332
9333 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9334 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9335 targets.
9336
9337 @item -fweb
9338 @opindex fweb
9339 Constructs webs as commonly used for register allocation purposes and assign
9340 each web individual pseudo register. This allows the register allocation pass
9341 to operate on pseudos directly, but also strengthens several other optimization
9342 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9343 however, make debugging impossible, since variables no longer stay in a
9344 ``home register''.
9345
9346 Enabled by default with @option{-funroll-loops}.
9347
9348 @item -fwhole-program
9349 @opindex fwhole-program
9350 Assume that the current compilation unit represents the whole program being
9351 compiled. All public functions and variables with the exception of @code{main}
9352 and those merged by attribute @code{externally_visible} become static functions
9353 and in effect are optimized more aggressively by interprocedural optimizers.
9354
9355 This option should not be used in combination with @option{-flto}.
9356 Instead relying on a linker plugin should provide safer and more precise
9357 information.
9358
9359 @item -flto[=@var{n}]
9360 @opindex flto
9361 This option runs the standard link-time optimizer. When invoked
9362 with source code, it generates GIMPLE (one of GCC's internal
9363 representations) and writes it to special ELF sections in the object
9364 file. When the object files are linked together, all the function
9365 bodies are read from these ELF sections and instantiated as if they
9366 had been part of the same translation unit.
9367
9368 To use the link-time optimizer, @option{-flto} and optimization
9369 options should be specified at compile time and during the final link.
9370 For example:
9371
9372 @smallexample
9373 gcc -c -O2 -flto foo.c
9374 gcc -c -O2 -flto bar.c
9375 gcc -o myprog -flto -O2 foo.o bar.o
9376 @end smallexample
9377
9378 The first two invocations to GCC save a bytecode representation
9379 of GIMPLE into special ELF sections inside @file{foo.o} and
9380 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9381 @file{foo.o} and @file{bar.o}, merges the two files into a single
9382 internal image, and compiles the result as usual. Since both
9383 @file{foo.o} and @file{bar.o} are merged into a single image, this
9384 causes all the interprocedural analyses and optimizations in GCC to
9385 work across the two files as if they were a single one. This means,
9386 for example, that the inliner is able to inline functions in
9387 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9388
9389 Another (simpler) way to enable link-time optimization is:
9390
9391 @smallexample
9392 gcc -o myprog -flto -O2 foo.c bar.c
9393 @end smallexample
9394
9395 The above generates bytecode for @file{foo.c} and @file{bar.c},
9396 merges them together into a single GIMPLE representation and optimizes
9397 them as usual to produce @file{myprog}.
9398
9399 The only important thing to keep in mind is that to enable link-time
9400 optimizations you need to use the GCC driver to perform the link-step.
9401 GCC then automatically performs link-time optimization if any of the
9402 objects involved were compiled with the @option{-flto} command-line option.
9403 You generally
9404 should specify the optimization options to be used for link-time
9405 optimization though GCC tries to be clever at guessing an
9406 optimization level to use from the options used at compile-time
9407 if you fail to specify one at link-time. You can always override
9408 the automatic decision to do link-time optimization at link-time
9409 by passing @option{-fno-lto} to the link command.
9410
9411 To make whole program optimization effective, it is necessary to make
9412 certain whole program assumptions. The compiler needs to know
9413 what functions and variables can be accessed by libraries and runtime
9414 outside of the link-time optimized unit. When supported by the linker,
9415 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9416 to the compiler about used and externally visible symbols. When
9417 the linker plugin is not available, @option{-fwhole-program} should be
9418 used to allow the compiler to make these assumptions, which leads
9419 to more aggressive optimization decisions.
9420
9421 When @option{-fuse-linker-plugin} is not enabled then, when a file is
9422 compiled with @option{-flto}, the generated object file is larger than
9423 a regular object file because it contains GIMPLE bytecodes and the usual
9424 final code (see @option{-ffat-lto-objects}. This means that
9425 object files with LTO information can be linked as normal object
9426 files; if @option{-fno-lto} is passed to the linker, no
9427 interprocedural optimizations are applied. Note that when
9428 @option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9429 but you cannot perform a regular, non-LTO link on them.
9430
9431 Additionally, the optimization flags used to compile individual files
9432 are not necessarily related to those used at link time. For instance,
9433
9434 @smallexample
9435 gcc -c -O0 -ffat-lto-objects -flto foo.c
9436 gcc -c -O0 -ffat-lto-objects -flto bar.c
9437 gcc -o myprog -O3 foo.o bar.o
9438 @end smallexample
9439
9440 This produces individual object files with unoptimized assembler
9441 code, but the resulting binary @file{myprog} is optimized at
9442 @option{-O3}. If, instead, the final binary is generated with
9443 @option{-fno-lto}, then @file{myprog} is not optimized.
9444
9445 When producing the final binary, GCC only
9446 applies link-time optimizations to those files that contain bytecode.
9447 Therefore, you can mix and match object files and libraries with
9448 GIMPLE bytecodes and final object code. GCC automatically selects
9449 which files to optimize in LTO mode and which files to link without
9450 further processing.
9451
9452 There are some code generation flags preserved by GCC when
9453 generating bytecodes, as they need to be used during the final link
9454 stage. Generally options specified at link-time override those
9455 specified at compile-time.
9456
9457 If you do not specify an optimization level option @option{-O} at
9458 link-time then GCC computes one based on the optimization levels
9459 used when compiling the object files. The highest optimization
9460 level wins here.
9461
9462 Currently, the following options and their setting are take from
9463 the first object file that explicitely specified it:
9464 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9465 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9466 and all the @option{-m} target flags.
9467
9468 Certain ABI changing flags are required to match in all compilation-units
9469 and trying to override this at link-time with a conflicting value
9470 is ignored. This includes options such as @option{-freg-struct-return}
9471 and @option{-fpcc-struct-return}.
9472
9473 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9474 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9475 are passed through to the link stage and merged conservatively for
9476 conflicting translation units. Specifically
9477 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9478 precedence and for example @option{-ffp-contract=off} takes precedence
9479 over @option{-ffp-contract=fast}. You can override them at linke-time.
9480
9481 It is recommended that you compile all the files participating in the
9482 same link with the same options and also specify those options at
9483 link time.
9484
9485 If LTO encounters objects with C linkage declared with incompatible
9486 types in separate translation units to be linked together (undefined
9487 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9488 issued. The behavior is still undefined at run time. Similar
9489 diagnostics may be raised for other languages.
9490
9491 Another feature of LTO is that it is possible to apply interprocedural
9492 optimizations on files written in different languages:
9493
9494 @smallexample
9495 gcc -c -flto foo.c
9496 g++ -c -flto bar.cc
9497 gfortran -c -flto baz.f90
9498 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9499 @end smallexample
9500
9501 Notice that the final link is done with @command{g++} to get the C++
9502 runtime libraries and @option{-lgfortran} is added to get the Fortran
9503 runtime libraries. In general, when mixing languages in LTO mode, you
9504 should use the same link command options as when mixing languages in a
9505 regular (non-LTO) compilation.
9506
9507 If object files containing GIMPLE bytecode are stored in a library archive, say
9508 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9509 are using a linker with plugin support. To create static libraries suitable
9510 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9511 and @command{ranlib};
9512 to show the symbols of object files with GIMPLE bytecode, use
9513 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9514 and @command{nm} have been compiled with plugin support. At link time, use the the
9515 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9516 the LTO optimization process:
9517
9518 @smallexample
9519 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9520 @end smallexample
9521
9522 With the linker plugin enabled, the linker extracts the needed
9523 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9524 to make them part of the aggregated GIMPLE image to be optimized.
9525
9526 If you are not using a linker with plugin support and/or do not
9527 enable the linker plugin, then the objects inside @file{libfoo.a}
9528 are extracted and linked as usual, but they do not participate
9529 in the LTO optimization process. In order to make a static library suitable
9530 for both LTO optimization and usual linkage, compile its object files with
9531 @option{-flto} @option{-ffat-lto-objects}.
9532
9533 Link-time optimizations do not require the presence of the whole program to
9534 operate. If the program does not require any symbols to be exported, it is
9535 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9536 the interprocedural optimizers to use more aggressive assumptions which may
9537 lead to improved optimization opportunities.
9538 Use of @option{-fwhole-program} is not needed when linker plugin is
9539 active (see @option{-fuse-linker-plugin}).
9540
9541 The current implementation of LTO makes no
9542 attempt to generate bytecode that is portable between different
9543 types of hosts. The bytecode files are versioned and there is a
9544 strict version check, so bytecode files generated in one version of
9545 GCC do not work with an older or newer version of GCC.
9546
9547 Link-time optimization does not work well with generation of debugging
9548 information. Combining @option{-flto} with
9549 @option{-g} is currently experimental and expected to produce unexpected
9550 results.
9551
9552 If you specify the optional @var{n}, the optimization and code
9553 generation done at link time is executed in parallel using @var{n}
9554 parallel jobs by utilizing an installed @command{make} program. The
9555 environment variable @env{MAKE} may be used to override the program
9556 used. The default value for @var{n} is 1.
9557
9558 You can also specify @option{-flto=jobserver} to use GNU make's
9559 job server mode to determine the number of parallel jobs. This
9560 is useful when the Makefile calling GCC is already executing in parallel.
9561 You must prepend a @samp{+} to the command recipe in the parent Makefile
9562 for this to work. This option likely only works if @env{MAKE} is
9563 GNU make.
9564
9565 @item -flto-partition=@var{alg}
9566 @opindex flto-partition
9567 Specify the partitioning algorithm used by the link-time optimizer.
9568 The value is either @samp{1to1} to specify a partitioning mirroring
9569 the original source files or @samp{balanced} to specify partitioning
9570 into equally sized chunks (whenever possible) or @samp{max} to create
9571 new partition for every symbol where possible. Specifying @samp{none}
9572 as an algorithm disables partitioning and streaming completely.
9573 The default value is @samp{balanced}. While @samp{1to1} can be used
9574 as an workaround for various code ordering issues, the @samp{max}
9575 partitioning is intended for internal testing only.
9576 The value @samp{one} specifies that exactly one partition should be
9577 used while the value @samp{none} bypasses partitioning and executes
9578 the link-time optimization step directly from the WPA phase.
9579
9580 @item -flto-odr-type-merging
9581 @opindex flto-odr-type-merging
9582 Enable streaming of mangled types names of C++ types and their unification
9583 at linktime. This increases size of LTO object files, but enable
9584 diagnostics about One Definition Rule violations.
9585
9586 @item -flto-compression-level=@var{n}
9587 @opindex flto-compression-level
9588 This option specifies the level of compression used for intermediate
9589 language written to LTO object files, and is only meaningful in
9590 conjunction with LTO mode (@option{-flto}). Valid
9591 values are 0 (no compression) to 9 (maximum compression). Values
9592 outside this range are clamped to either 0 or 9. If the option is not
9593 given, a default balanced compression setting is used.
9594
9595 @item -flto-report
9596 @opindex flto-report
9597 Prints a report with internal details on the workings of the link-time
9598 optimizer. The contents of this report vary from version to version.
9599 It is meant to be useful to GCC developers when processing object
9600 files in LTO mode (via @option{-flto}).
9601
9602 Disabled by default.
9603
9604 @item -flto-report-wpa
9605 @opindex flto-report-wpa
9606 Like @option{-flto-report}, but only print for the WPA phase of Link
9607 Time Optimization.
9608
9609 @item -fuse-linker-plugin
9610 @opindex fuse-linker-plugin
9611 Enables the use of a linker plugin during link-time optimization. This
9612 option relies on plugin support in the linker, which is available in gold
9613 or in GNU ld 2.21 or newer.
9614
9615 This option enables the extraction of object files with GIMPLE bytecode out
9616 of library archives. This improves the quality of optimization by exposing
9617 more code to the link-time optimizer. This information specifies what
9618 symbols can be accessed externally (by non-LTO object or during dynamic
9619 linking). Resulting code quality improvements on binaries (and shared
9620 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9621 See @option{-flto} for a description of the effect of this flag and how to
9622 use it.
9623
9624 This option is enabled by default when LTO support in GCC is enabled
9625 and GCC was configured for use with
9626 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9627
9628 @item -ffat-lto-objects
9629 @opindex ffat-lto-objects
9630 Fat LTO objects are object files that contain both the intermediate language
9631 and the object code. This makes them usable for both LTO linking and normal
9632 linking. This option is effective only when compiling with @option{-flto}
9633 and is ignored at link time.
9634
9635 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9636 requires the complete toolchain to be aware of LTO. It requires a linker with
9637 linker plugin support for basic functionality. Additionally,
9638 @command{nm}, @command{ar} and @command{ranlib}
9639 need to support linker plugins to allow a full-featured build environment
9640 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9641 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9642 to these tools. With non fat LTO makefiles need to be modified to use them.
9643
9644 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9645 support.
9646
9647 @item -fcompare-elim
9648 @opindex fcompare-elim
9649 After register allocation and post-register allocation instruction splitting,
9650 identify arithmetic instructions that compute processor flags similar to a
9651 comparison operation based on that arithmetic. If possible, eliminate the
9652 explicit comparison operation.
9653
9654 This pass only applies to certain targets that cannot explicitly represent
9655 the comparison operation before register allocation is complete.
9656
9657 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9658
9659 @item -fcprop-registers
9660 @opindex fcprop-registers
9661 After register allocation and post-register allocation instruction splitting,
9662 perform a copy-propagation pass to try to reduce scheduling dependencies
9663 and occasionally eliminate the copy.
9664
9665 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9666
9667 @item -fprofile-correction
9668 @opindex fprofile-correction
9669 Profiles collected using an instrumented binary for multi-threaded programs may
9670 be inconsistent due to missed counter updates. When this option is specified,
9671 GCC uses heuristics to correct or smooth out such inconsistencies. By
9672 default, GCC emits an error message when an inconsistent profile is detected.
9673
9674 @item -fprofile-dir=@var{path}
9675 @opindex fprofile-dir
9676
9677 Set the directory to search for the profile data files in to @var{path}.
9678 This option affects only the profile data generated by
9679 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9680 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9681 and its related options. Both absolute and relative paths can be used.
9682 By default, GCC uses the current directory as @var{path}, thus the
9683 profile data file appears in the same directory as the object file.
9684
9685 @item -fprofile-generate
9686 @itemx -fprofile-generate=@var{path}
9687 @opindex fprofile-generate
9688
9689 Enable options usually used for instrumenting application to produce
9690 profile useful for later recompilation with profile feedback based
9691 optimization. You must use @option{-fprofile-generate} both when
9692 compiling and when linking your program.
9693
9694 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9695
9696 If @var{path} is specified, GCC looks at the @var{path} to find
9697 the profile feedback data files. See @option{-fprofile-dir}.
9698
9699 @item -fprofile-use
9700 @itemx -fprofile-use=@var{path}
9701 @opindex fprofile-use
9702 Enable profile feedback-directed optimizations,
9703 and the following optimizations
9704 which are generally profitable only with profile feedback available:
9705 @option{-fbranch-probabilities}, @option{-fvpt},
9706 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9707 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9708
9709 By default, GCC emits an error message if the feedback profiles do not
9710 match the source code. This error can be turned into a warning by using
9711 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9712 code.
9713
9714 If @var{path} is specified, GCC looks at the @var{path} to find
9715 the profile feedback data files. See @option{-fprofile-dir}.
9716
9717 @item -fauto-profile
9718 @itemx -fauto-profile=@var{path}
9719 @opindex fauto-profile
9720 Enable sampling-based feedback-directed optimizations,
9721 and the following optimizations
9722 which are generally profitable only with profile feedback available:
9723 @option{-fbranch-probabilities}, @option{-fvpt},
9724 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9725 @option{-ftree-vectorize},
9726 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9727 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9728 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9729
9730 @var{path} is the name of a file containing AutoFDO profile information.
9731 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9732
9733 Producing an AutoFDO profile data file requires running your program
9734 with the @command{perf} utility on a supported GNU/Linux target system.
9735 For more information, see @uref{https://perf.wiki.kernel.org/}.
9736
9737 E.g.
9738 @smallexample
9739 perf record -e br_inst_retired:near_taken -b -o perf.data \
9740 -- your_program
9741 @end smallexample
9742
9743 Then use the @command{create_gcov} tool to convert the raw profile data
9744 to a format that can be used by GCC.@ You must also supply the
9745 unstripped binary for your program to this tool.
9746 See @uref{https://github.com/google/autofdo}.
9747
9748 E.g.
9749 @smallexample
9750 create_gcov --binary=your_program.unstripped --profile=perf.data \
9751 --gcov=profile.afdo
9752 @end smallexample
9753 @end table
9754
9755 The following options control compiler behavior regarding floating-point
9756 arithmetic. These options trade off between speed and
9757 correctness. All must be specifically enabled.
9758
9759 @table @gcctabopt
9760 @item -ffloat-store
9761 @opindex ffloat-store
9762 Do not store floating-point variables in registers, and inhibit other
9763 options that might change whether a floating-point value is taken from a
9764 register or memory.
9765
9766 @cindex floating-point precision
9767 This option prevents undesirable excess precision on machines such as
9768 the 68000 where the floating registers (of the 68881) keep more
9769 precision than a @code{double} is supposed to have. Similarly for the
9770 x86 architecture. For most programs, the excess precision does only
9771 good, but a few programs rely on the precise definition of IEEE floating
9772 point. Use @option{-ffloat-store} for such programs, after modifying
9773 them to store all pertinent intermediate computations into variables.
9774
9775 @item -fexcess-precision=@var{style}
9776 @opindex fexcess-precision
9777 This option allows further control over excess precision on machines
9778 where floating-point registers have more precision than the IEEE
9779 @code{float} and @code{double} types and the processor does not
9780 support operations rounding to those types. By default,
9781 @option{-fexcess-precision=fast} is in effect; this means that
9782 operations are carried out in the precision of the registers and that
9783 it is unpredictable when rounding to the types specified in the source
9784 code takes place. When compiling C, if
9785 @option{-fexcess-precision=standard} is specified then excess
9786 precision follows the rules specified in ISO C99; in particular,
9787 both casts and assignments cause values to be rounded to their
9788 semantic types (whereas @option{-ffloat-store} only affects
9789 assignments). This option is enabled by default for C if a strict
9790 conformance option such as @option{-std=c99} is used.
9791
9792 @opindex mfpmath
9793 @option{-fexcess-precision=standard} is not implemented for languages
9794 other than C, and has no effect if
9795 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
9796 specified. On the x86, it also has no effect if @option{-mfpmath=sse}
9797 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9798 semantics apply without excess precision, and in the latter, rounding
9799 is unpredictable.
9800
9801 @item -ffast-math
9802 @opindex ffast-math
9803 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9804 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9805 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9806
9807 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9808
9809 This option is not turned on by any @option{-O} option besides
9810 @option{-Ofast} since it can result in incorrect output for programs
9811 that depend on an exact implementation of IEEE or ISO rules/specifications
9812 for math functions. It may, however, yield faster code for programs
9813 that do not require the guarantees of these specifications.
9814
9815 @item -fno-math-errno
9816 @opindex fno-math-errno
9817 Do not set @code{errno} after calling math functions that are executed
9818 with a single instruction, e.g., @code{sqrt}. A program that relies on
9819 IEEE exceptions for math error handling may want to use this flag
9820 for speed while maintaining IEEE arithmetic compatibility.
9821
9822 This option is not turned on by any @option{-O} option since
9823 it can result in incorrect output for programs that depend on
9824 an exact implementation of IEEE or ISO rules/specifications for
9825 math functions. It may, however, yield faster code for programs
9826 that do not require the guarantees of these specifications.
9827
9828 The default is @option{-fmath-errno}.
9829
9830 On Darwin systems, the math library never sets @code{errno}. There is
9831 therefore no reason for the compiler to consider the possibility that
9832 it might, and @option{-fno-math-errno} is the default.
9833
9834 @item -funsafe-math-optimizations
9835 @opindex funsafe-math-optimizations
9836
9837 Allow optimizations for floating-point arithmetic that (a) assume
9838 that arguments and results are valid and (b) may violate IEEE or
9839 ANSI standards. When used at link-time, it may include libraries
9840 or startup files that change the default FPU control word or other
9841 similar optimizations.
9842
9843 This option is not turned on by any @option{-O} option since
9844 it can result in incorrect output for programs that depend on
9845 an exact implementation of IEEE or ISO rules/specifications for
9846 math functions. It may, however, yield faster code for programs
9847 that do not require the guarantees of these specifications.
9848 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9849 @option{-fassociative-math} and @option{-freciprocal-math}.
9850
9851 The default is @option{-fno-unsafe-math-optimizations}.
9852
9853 @item -fassociative-math
9854 @opindex fassociative-math
9855
9856 Allow re-association of operands in series of floating-point operations.
9857 This violates the ISO C and C++ language standard by possibly changing
9858 computation result. NOTE: re-ordering may change the sign of zero as
9859 well as ignore NaNs and inhibit or create underflow or overflow (and
9860 thus cannot be used on code that relies on rounding behavior like
9861 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9862 and thus may not be used when ordered comparisons are required.
9863 This option requires that both @option{-fno-signed-zeros} and
9864 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9865 much sense with @option{-frounding-math}. For Fortran the option
9866 is automatically enabled when both @option{-fno-signed-zeros} and
9867 @option{-fno-trapping-math} are in effect.
9868
9869 The default is @option{-fno-associative-math}.
9870
9871 @item -freciprocal-math
9872 @opindex freciprocal-math
9873
9874 Allow the reciprocal of a value to be used instead of dividing by
9875 the value if this enables optimizations. For example @code{x / y}
9876 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9877 is subject to common subexpression elimination. Note that this loses
9878 precision and increases the number of flops operating on the value.
9879
9880 The default is @option{-fno-reciprocal-math}.
9881
9882 @item -ffinite-math-only
9883 @opindex ffinite-math-only
9884 Allow optimizations for floating-point arithmetic that assume
9885 that arguments and results are not NaNs or +-Infs.
9886
9887 This option is not turned on by any @option{-O} option since
9888 it can result in incorrect output for programs that depend on
9889 an exact implementation of IEEE or ISO rules/specifications for
9890 math functions. It may, however, yield faster code for programs
9891 that do not require the guarantees of these specifications.
9892
9893 The default is @option{-fno-finite-math-only}.
9894
9895 @item -fno-signed-zeros
9896 @opindex fno-signed-zeros
9897 Allow optimizations for floating-point arithmetic that ignore the
9898 signedness of zero. IEEE arithmetic specifies the behavior of
9899 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9900 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9901 This option implies that the sign of a zero result isn't significant.
9902
9903 The default is @option{-fsigned-zeros}.
9904
9905 @item -fno-trapping-math
9906 @opindex fno-trapping-math
9907 Compile code assuming that floating-point operations cannot generate
9908 user-visible traps. These traps include division by zero, overflow,
9909 underflow, inexact result and invalid operation. This option requires
9910 that @option{-fno-signaling-nans} be in effect. Setting this option may
9911 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9912
9913 This option should never be turned on by any @option{-O} option since
9914 it can result in incorrect output for programs that depend on
9915 an exact implementation of IEEE or ISO rules/specifications for
9916 math functions.
9917
9918 The default is @option{-ftrapping-math}.
9919
9920 @item -frounding-math
9921 @opindex frounding-math
9922 Disable transformations and optimizations that assume default floating-point
9923 rounding behavior. This is round-to-zero for all floating point
9924 to integer conversions, and round-to-nearest for all other arithmetic
9925 truncations. This option should be specified for programs that change
9926 the FP rounding mode dynamically, or that may be executed with a
9927 non-default rounding mode. This option disables constant folding of
9928 floating-point expressions at compile time (which may be affected by
9929 rounding mode) and arithmetic transformations that are unsafe in the
9930 presence of sign-dependent rounding modes.
9931
9932 The default is @option{-fno-rounding-math}.
9933
9934 This option is experimental and does not currently guarantee to
9935 disable all GCC optimizations that are affected by rounding mode.
9936 Future versions of GCC may provide finer control of this setting
9937 using C99's @code{FENV_ACCESS} pragma. This command-line option
9938 will be used to specify the default state for @code{FENV_ACCESS}.
9939
9940 @item -fsignaling-nans
9941 @opindex fsignaling-nans
9942 Compile code assuming that IEEE signaling NaNs may generate user-visible
9943 traps during floating-point operations. Setting this option disables
9944 optimizations that may change the number of exceptions visible with
9945 signaling NaNs. This option implies @option{-ftrapping-math}.
9946
9947 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9948 be defined.
9949
9950 The default is @option{-fno-signaling-nans}.
9951
9952 This option is experimental and does not currently guarantee to
9953 disable all GCC optimizations that affect signaling NaN behavior.
9954
9955 @item -fsingle-precision-constant
9956 @opindex fsingle-precision-constant
9957 Treat floating-point constants as single precision instead of
9958 implicitly converting them to double-precision constants.
9959
9960 @item -fcx-limited-range
9961 @opindex fcx-limited-range
9962 When enabled, this option states that a range reduction step is not
9963 needed when performing complex division. Also, there is no checking
9964 whether the result of a complex multiplication or division is @code{NaN
9965 + I*NaN}, with an attempt to rescue the situation in that case. The
9966 default is @option{-fno-cx-limited-range}, but is enabled by
9967 @option{-ffast-math}.
9968
9969 This option controls the default setting of the ISO C99
9970 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9971 all languages.
9972
9973 @item -fcx-fortran-rules
9974 @opindex fcx-fortran-rules
9975 Complex multiplication and division follow Fortran rules. Range
9976 reduction is done as part of complex division, but there is no checking
9977 whether the result of a complex multiplication or division is @code{NaN
9978 + I*NaN}, with an attempt to rescue the situation in that case.
9979
9980 The default is @option{-fno-cx-fortran-rules}.
9981
9982 @end table
9983
9984 The following options control optimizations that may improve
9985 performance, but are not enabled by any @option{-O} options. This
9986 section includes experimental options that may produce broken code.
9987
9988 @table @gcctabopt
9989 @item -fbranch-probabilities
9990 @opindex fbranch-probabilities
9991 After running a program compiled with @option{-fprofile-arcs}
9992 (@pxref{Debugging Options,, Options for Debugging Your Program or
9993 @command{gcc}}), you can compile it a second time using
9994 @option{-fbranch-probabilities}, to improve optimizations based on
9995 the number of times each branch was taken. When a program
9996 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9997 counts to a file called @file{@var{sourcename}.gcda} for each source
9998 file. The information in this data file is very dependent on the
9999 structure of the generated code, so you must use the same source code
10000 and the same optimization options for both compilations.
10001
10002 With @option{-fbranch-probabilities}, GCC puts a
10003 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10004 These can be used to improve optimization. Currently, they are only
10005 used in one place: in @file{reorg.c}, instead of guessing which path a
10006 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10007 exactly determine which path is taken more often.
10008
10009 @item -fprofile-values
10010 @opindex fprofile-values
10011 If combined with @option{-fprofile-arcs}, it adds code so that some
10012 data about values of expressions in the program is gathered.
10013
10014 With @option{-fbranch-probabilities}, it reads back the data gathered
10015 from profiling values of expressions for usage in optimizations.
10016
10017 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
10018
10019 @item -fprofile-reorder-functions
10020 @opindex fprofile-reorder-functions
10021 Function reordering based on profile instrumentation collects
10022 first time of execution of a function and orders these functions
10023 in ascending order.
10024
10025 Enabled with @option{-fprofile-use}.
10026
10027 @item -fvpt
10028 @opindex fvpt
10029 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10030 to add code to gather information about values of expressions.
10031
10032 With @option{-fbranch-probabilities}, it reads back the data gathered
10033 and actually performs the optimizations based on them.
10034 Currently the optimizations include specialization of division operations
10035 using the knowledge about the value of the denominator.
10036
10037 @item -frename-registers
10038 @opindex frename-registers
10039 Attempt to avoid false dependencies in scheduled code by making use
10040 of registers left over after register allocation. This optimization
10041 most benefits processors with lots of registers. Depending on the
10042 debug information format adopted by the target, however, it can
10043 make debugging impossible, since variables no longer stay in
10044 a ``home register''.
10045
10046 Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
10047
10048 @item -fschedule-fusion
10049 @opindex fschedule-fusion
10050 Performs a target dependent pass over the instruction stream to schedule
10051 instructions of same type together because target machine can execute them
10052 more efficiently if they are adjacent to each other in the instruction flow.
10053
10054 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10055
10056 @item -ftracer
10057 @opindex ftracer
10058 Perform tail duplication to enlarge superblock size. This transformation
10059 simplifies the control flow of the function allowing other optimizations to do
10060 a better job.
10061
10062 Enabled with @option{-fprofile-use}.
10063
10064 @item -funroll-loops
10065 @opindex funroll-loops
10066 Unroll loops whose number of iterations can be determined at compile time or
10067 upon entry to the loop. @option{-funroll-loops} implies
10068 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10069 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10070 a small constant number of iterations). This option makes code larger, and may
10071 or may not make it run faster.
10072
10073 Enabled with @option{-fprofile-use}.
10074
10075 @item -funroll-all-loops
10076 @opindex funroll-all-loops
10077 Unroll all loops, even if their number of iterations is uncertain when
10078 the loop is entered. This usually makes programs run more slowly.
10079 @option{-funroll-all-loops} implies the same options as
10080 @option{-funroll-loops}.
10081
10082 @item -fpeel-loops
10083 @opindex fpeel-loops
10084 Peels loops for which there is enough information that they do not
10085 roll much (from profile feedback). It also turns on complete loop peeling
10086 (i.e.@: complete removal of loops with small constant number of iterations).
10087
10088 Enabled with @option{-fprofile-use}.
10089
10090 @item -fmove-loop-invariants
10091 @opindex fmove-loop-invariants
10092 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10093 at level @option{-O1}
10094
10095 @item -funswitch-loops
10096 @opindex funswitch-loops
10097 Move branches with loop invariant conditions out of the loop, with duplicates
10098 of the loop on both branches (modified according to result of the condition).
10099
10100 @item -ffunction-sections
10101 @itemx -fdata-sections
10102 @opindex ffunction-sections
10103 @opindex fdata-sections
10104 Place each function or data item into its own section in the output
10105 file if the target supports arbitrary sections. The name of the
10106 function or the name of the data item determines the section's name
10107 in the output file.
10108
10109 Use these options on systems where the linker can perform optimizations
10110 to improve locality of reference in the instruction space. Most systems
10111 using the ELF object format and SPARC processors running Solaris 2 have
10112 linkers with such optimizations. AIX may have these optimizations in
10113 the future.
10114
10115 Only use these options when there are significant benefits from doing
10116 so. When you specify these options, the assembler and linker
10117 create larger object and executable files and are also slower.
10118 You cannot use @command{gprof} on all systems if you
10119 specify this option, and you may have problems with debugging if
10120 you specify both this option and @option{-g}.
10121
10122 @item -fbranch-target-load-optimize
10123 @opindex fbranch-target-load-optimize
10124 Perform branch target register load optimization before prologue / epilogue
10125 threading.
10126 The use of target registers can typically be exposed only during reload,
10127 thus hoisting loads out of loops and doing inter-block scheduling needs
10128 a separate optimization pass.
10129
10130 @item -fbranch-target-load-optimize2
10131 @opindex fbranch-target-load-optimize2
10132 Perform branch target register load optimization after prologue / epilogue
10133 threading.
10134
10135 @item -fbtr-bb-exclusive
10136 @opindex fbtr-bb-exclusive
10137 When performing branch target register load optimization, don't reuse
10138 branch target registers within any basic block.
10139
10140 @item -fstack-protector
10141 @opindex fstack-protector
10142 Emit extra code to check for buffer overflows, such as stack smashing
10143 attacks. This is done by adding a guard variable to functions with
10144 vulnerable objects. This includes functions that call @code{alloca}, and
10145 functions with buffers larger than 8 bytes. The guards are initialized
10146 when a function is entered and then checked when the function exits.
10147 If a guard check fails, an error message is printed and the program exits.
10148
10149 @item -fstack-protector-all
10150 @opindex fstack-protector-all
10151 Like @option{-fstack-protector} except that all functions are protected.
10152
10153 @item -fstack-protector-strong
10154 @opindex fstack-protector-strong
10155 Like @option{-fstack-protector} but includes additional functions to
10156 be protected --- those that have local array definitions, or have
10157 references to local frame addresses.
10158
10159 @item -fstack-protector-explicit
10160 @opindex fstack-protector-explicit
10161 Like @option{-fstack-protector} but only protects those functions which
10162 have the @code{stack_protect} attribute
10163
10164 @item -fstdarg-opt
10165 @opindex fstdarg-opt
10166 Optimize the prologue of variadic argument functions with respect to usage of
10167 those arguments.
10168
10169 @item -fsection-anchors
10170 @opindex fsection-anchors
10171 Try to reduce the number of symbolic address calculations by using
10172 shared ``anchor'' symbols to address nearby objects. This transformation
10173 can help to reduce the number of GOT entries and GOT accesses on some
10174 targets.
10175
10176 For example, the implementation of the following function @code{foo}:
10177
10178 @smallexample
10179 static int a, b, c;
10180 int foo (void) @{ return a + b + c; @}
10181 @end smallexample
10182
10183 @noindent
10184 usually calculates the addresses of all three variables, but if you
10185 compile it with @option{-fsection-anchors}, it accesses the variables
10186 from a common anchor point instead. The effect is similar to the
10187 following pseudocode (which isn't valid C):
10188
10189 @smallexample
10190 int foo (void)
10191 @{
10192 register int *xr = &x;
10193 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10194 @}
10195 @end smallexample
10196
10197 Not all targets support this option.
10198
10199 @item --param @var{name}=@var{value}
10200 @opindex param
10201 In some places, GCC uses various constants to control the amount of
10202 optimization that is done. For example, GCC does not inline functions
10203 that contain more than a certain number of instructions. You can
10204 control some of these constants on the command line using the
10205 @option{--param} option.
10206
10207 The names of specific parameters, and the meaning of the values, are
10208 tied to the internals of the compiler, and are subject to change
10209 without notice in future releases.
10210
10211 In each case, the @var{value} is an integer. The allowable choices for
10212 @var{name} are:
10213
10214 @table @gcctabopt
10215 @item predictable-branch-outcome
10216 When branch is predicted to be taken with probability lower than this threshold
10217 (in percent), then it is considered well predictable. The default is 10.
10218
10219 @item max-crossjump-edges
10220 The maximum number of incoming edges to consider for cross-jumping.
10221 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10222 the number of edges incoming to each block. Increasing values mean
10223 more aggressive optimization, making the compilation time increase with
10224 probably small improvement in executable size.
10225
10226 @item min-crossjump-insns
10227 The minimum number of instructions that must be matched at the end
10228 of two blocks before cross-jumping is performed on them. This
10229 value is ignored in the case where all instructions in the block being
10230 cross-jumped from are matched. The default value is 5.
10231
10232 @item max-grow-copy-bb-insns
10233 The maximum code size expansion factor when copying basic blocks
10234 instead of jumping. The expansion is relative to a jump instruction.
10235 The default value is 8.
10236
10237 @item max-goto-duplication-insns
10238 The maximum number of instructions to duplicate to a block that jumps
10239 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10240 passes, GCC factors computed gotos early in the compilation process,
10241 and unfactors them as late as possible. Only computed jumps at the
10242 end of a basic blocks with no more than max-goto-duplication-insns are
10243 unfactored. The default value is 8.
10244
10245 @item max-delay-slot-insn-search
10246 The maximum number of instructions to consider when looking for an
10247 instruction to fill a delay slot. If more than this arbitrary number of
10248 instructions are searched, the time savings from filling the delay slot
10249 are minimal, so stop searching. Increasing values mean more
10250 aggressive optimization, making the compilation time increase with probably
10251 small improvement in execution time.
10252
10253 @item max-delay-slot-live-search
10254 When trying to fill delay slots, the maximum number of instructions to
10255 consider when searching for a block with valid live register
10256 information. Increasing this arbitrarily chosen value means more
10257 aggressive optimization, increasing the compilation time. This parameter
10258 should be removed when the delay slot code is rewritten to maintain the
10259 control-flow graph.
10260
10261 @item max-gcse-memory
10262 The approximate maximum amount of memory that can be allocated in
10263 order to perform the global common subexpression elimination
10264 optimization. If more memory than specified is required, the
10265 optimization is not done.
10266
10267 @item max-gcse-insertion-ratio
10268 If the ratio of expression insertions to deletions is larger than this value
10269 for any expression, then RTL PRE inserts or removes the expression and thus
10270 leaves partially redundant computations in the instruction stream. The default value is 20.
10271
10272 @item max-pending-list-length
10273 The maximum number of pending dependencies scheduling allows
10274 before flushing the current state and starting over. Large functions
10275 with few branches or calls can create excessively large lists which
10276 needlessly consume memory and resources.
10277
10278 @item max-modulo-backtrack-attempts
10279 The maximum number of backtrack attempts the scheduler should make
10280 when modulo scheduling a loop. Larger values can exponentially increase
10281 compilation time.
10282
10283 @item max-inline-insns-single
10284 Several parameters control the tree inliner used in GCC@.
10285 This number sets the maximum number of instructions (counted in GCC's
10286 internal representation) in a single function that the tree inliner
10287 considers for inlining. This only affects functions declared
10288 inline and methods implemented in a class declaration (C++).
10289 The default value is 400.
10290
10291 @item max-inline-insns-auto
10292 When you use @option{-finline-functions} (included in @option{-O3}),
10293 a lot of functions that would otherwise not be considered for inlining
10294 by the compiler are investigated. To those functions, a different
10295 (more restrictive) limit compared to functions declared inline can
10296 be applied.
10297 The default value is 40.
10298
10299 @item inline-min-speedup
10300 When estimated performance improvement of caller + callee runtime exceeds this
10301 threshold (in precent), the function can be inlined regardless the limit on
10302 @option{--param max-inline-insns-single} and @option{--param
10303 max-inline-insns-auto}.
10304
10305 @item large-function-insns
10306 The limit specifying really large functions. For functions larger than this
10307 limit after inlining, inlining is constrained by
10308 @option{--param large-function-growth}. This parameter is useful primarily
10309 to avoid extreme compilation time caused by non-linear algorithms used by the
10310 back end.
10311 The default value is 2700.
10312
10313 @item large-function-growth
10314 Specifies maximal growth of large function caused by inlining in percents.
10315 The default value is 100 which limits large function growth to 2.0 times
10316 the original size.
10317
10318 @item large-unit-insns
10319 The limit specifying large translation unit. Growth caused by inlining of
10320 units larger than this limit is limited by @option{--param inline-unit-growth}.
10321 For small units this might be too tight.
10322 For example, consider a unit consisting of function A
10323 that is inline and B that just calls A three times. If B is small relative to
10324 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10325 large units consisting of small inlineable functions, however, the overall unit
10326 growth limit is needed to avoid exponential explosion of code size. Thus for
10327 smaller units, the size is increased to @option{--param large-unit-insns}
10328 before applying @option{--param inline-unit-growth}. The default is 10000.
10329
10330 @item inline-unit-growth
10331 Specifies maximal overall growth of the compilation unit caused by inlining.
10332 The default value is 20 which limits unit growth to 1.2 times the original
10333 size. Cold functions (either marked cold via an attribute or by profile
10334 feedback) are not accounted into the unit size.
10335
10336 @item ipcp-unit-growth
10337 Specifies maximal overall growth of the compilation unit caused by
10338 interprocedural constant propagation. The default value is 10 which limits
10339 unit growth to 1.1 times the original size.
10340
10341 @item large-stack-frame
10342 The limit specifying large stack frames. While inlining the algorithm is trying
10343 to not grow past this limit too much. The default value is 256 bytes.
10344
10345 @item large-stack-frame-growth
10346 Specifies maximal growth of large stack frames caused by inlining in percents.
10347 The default value is 1000 which limits large stack frame growth to 11 times
10348 the original size.
10349
10350 @item max-inline-insns-recursive
10351 @itemx max-inline-insns-recursive-auto
10352 Specifies the maximum number of instructions an out-of-line copy of a
10353 self-recursive inline
10354 function can grow into by performing recursive inlining.
10355
10356 @option{--param max-inline-insns-recursive} applies to functions
10357 declared inline.
10358 For functions not declared inline, recursive inlining
10359 happens only when @option{-finline-functions} (included in @option{-O3}) is
10360 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10361 default value is 450.
10362
10363 @item max-inline-recursive-depth
10364 @itemx max-inline-recursive-depth-auto
10365 Specifies the maximum recursion depth used for recursive inlining.
10366
10367 @option{--param max-inline-recursive-depth} applies to functions
10368 declared inline. For functions not declared inline, recursive inlining
10369 happens only when @option{-finline-functions} (included in @option{-O3}) is
10370 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10371 default value is 8.
10372
10373 @item min-inline-recursive-probability
10374 Recursive inlining is profitable only for function having deep recursion
10375 in average and can hurt for function having little recursion depth by
10376 increasing the prologue size or complexity of function body to other
10377 optimizers.
10378
10379 When profile feedback is available (see @option{-fprofile-generate}) the actual
10380 recursion depth can be guessed from probability that function recurses via a
10381 given call expression. This parameter limits inlining only to call expressions
10382 whose probability exceeds the given threshold (in percents).
10383 The default value is 10.
10384
10385 @item early-inlining-insns
10386 Specify growth that the early inliner can make. In effect it increases
10387 the amount of inlining for code having a large abstraction penalty.
10388 The default value is 14.
10389
10390 @item max-early-inliner-iterations
10391 Limit of iterations of the early inliner. This basically bounds
10392 the number of nested indirect calls the early inliner can resolve.
10393 Deeper chains are still handled by late inlining.
10394
10395 @item comdat-sharing-probability
10396 Probability (in percent) that C++ inline function with comdat visibility
10397 are shared across multiple compilation units. The default value is 20.
10398
10399 @item profile-func-internal-id
10400 A parameter to control whether to use function internal id in profile
10401 database lookup. If the value is 0, the compiler uses an id that
10402 is based on function assembler name and filename, which makes old profile
10403 data more tolerant to source changes such as function reordering etc.
10404 The default value is 0.
10405
10406 @item min-vect-loop-bound
10407 The minimum number of iterations under which loops are not vectorized
10408 when @option{-ftree-vectorize} is used. The number of iterations after
10409 vectorization needs to be greater than the value specified by this option
10410 to allow vectorization. The default value is 0.
10411
10412 @item gcse-cost-distance-ratio
10413 Scaling factor in calculation of maximum distance an expression
10414 can be moved by GCSE optimizations. This is currently supported only in the
10415 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10416 is with simple expressions, i.e., the expressions that have cost
10417 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10418 hoisting of simple expressions. The default value is 10.
10419
10420 @item gcse-unrestricted-cost
10421 Cost, roughly measured as the cost of a single typical machine
10422 instruction, at which GCSE optimizations do not constrain
10423 the distance an expression can travel. This is currently
10424 supported only in the code hoisting pass. The lesser the cost,
10425 the more aggressive code hoisting is. Specifying 0
10426 allows all expressions to travel unrestricted distances.
10427 The default value is 3.
10428
10429 @item max-hoist-depth
10430 The depth of search in the dominator tree for expressions to hoist.
10431 This is used to avoid quadratic behavior in hoisting algorithm.
10432 The value of 0 does not limit on the search, but may slow down compilation
10433 of huge functions. The default value is 30.
10434
10435 @item max-tail-merge-comparisons
10436 The maximum amount of similar bbs to compare a bb with. This is used to
10437 avoid quadratic behavior in tree tail merging. The default value is 10.
10438
10439 @item max-tail-merge-iterations
10440 The maximum amount of iterations of the pass over the function. This is used to
10441 limit compilation time in tree tail merging. The default value is 2.
10442
10443 @item max-unrolled-insns
10444 The maximum number of instructions that a loop may have to be unrolled.
10445 If a loop is unrolled, this parameter also determines how many times
10446 the loop code is unrolled.
10447
10448 @item max-average-unrolled-insns
10449 The maximum number of instructions biased by probabilities of their execution
10450 that a loop may have to be unrolled. If a loop is unrolled,
10451 this parameter also determines how many times the loop code is unrolled.
10452
10453 @item max-unroll-times
10454 The maximum number of unrollings of a single loop.
10455
10456 @item max-peeled-insns
10457 The maximum number of instructions that a loop may have to be peeled.
10458 If a loop is peeled, this parameter also determines how many times
10459 the loop code is peeled.
10460
10461 @item max-peel-times
10462 The maximum number of peelings of a single loop.
10463
10464 @item max-peel-branches
10465 The maximum number of branches on the hot path through the peeled sequence.
10466
10467 @item max-completely-peeled-insns
10468 The maximum number of insns of a completely peeled loop.
10469
10470 @item max-completely-peel-times
10471 The maximum number of iterations of a loop to be suitable for complete peeling.
10472
10473 @item max-completely-peel-loop-nest-depth
10474 The maximum depth of a loop nest suitable for complete peeling.
10475
10476 @item max-unswitch-insns
10477 The maximum number of insns of an unswitched loop.
10478
10479 @item max-unswitch-level
10480 The maximum number of branches unswitched in a single loop.
10481
10482 @item lim-expensive
10483 The minimum cost of an expensive expression in the loop invariant motion.
10484
10485 @item iv-consider-all-candidates-bound
10486 Bound on number of candidates for induction variables, below which
10487 all candidates are considered for each use in induction variable
10488 optimizations. If there are more candidates than this,
10489 only the most relevant ones are considered to avoid quadratic time complexity.
10490
10491 @item iv-max-considered-uses
10492 The induction variable optimizations give up on loops that contain more
10493 induction variable uses.
10494
10495 @item iv-always-prune-cand-set-bound
10496 If the number of candidates in the set is smaller than this value,
10497 always try to remove unnecessary ivs from the set
10498 when adding a new one.
10499
10500 @item scev-max-expr-size
10501 Bound on size of expressions used in the scalar evolutions analyzer.
10502 Large expressions slow the analyzer.
10503
10504 @item scev-max-expr-complexity
10505 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10506 Complex expressions slow the analyzer.
10507
10508 @item vect-max-version-for-alignment-checks
10509 The maximum number of run-time checks that can be performed when
10510 doing loop versioning for alignment in the vectorizer.
10511
10512 @item vect-max-version-for-alias-checks
10513 The maximum number of run-time checks that can be performed when
10514 doing loop versioning for alias in the vectorizer.
10515
10516 @item vect-max-peeling-for-alignment
10517 The maximum number of loop peels to enhance access alignment
10518 for vectorizer. Value -1 means 'no limit'.
10519
10520 @item max-iterations-to-track
10521 The maximum number of iterations of a loop the brute-force algorithm
10522 for analysis of the number of iterations of the loop tries to evaluate.
10523
10524 @item hot-bb-count-ws-permille
10525 A basic block profile count is considered hot if it contributes to
10526 the given permillage (i.e. 0...1000) of the entire profiled execution.
10527
10528 @item hot-bb-frequency-fraction
10529 Select fraction of the entry block frequency of executions of basic block in
10530 function given basic block needs to have to be considered hot.
10531
10532 @item max-predicted-iterations
10533 The maximum number of loop iterations we predict statically. This is useful
10534 in cases where a function contains a single loop with known bound and
10535 another loop with unknown bound.
10536 The known number of iterations is predicted correctly, while
10537 the unknown number of iterations average to roughly 10. This means that the
10538 loop without bounds appears artificially cold relative to the other one.
10539
10540 @item builtin-expect-probability
10541 Control the probability of the expression having the specified value. This
10542 parameter takes a percentage (i.e. 0 ... 100) as input.
10543 The default probability of 90 is obtained empirically.
10544
10545 @item align-threshold
10546
10547 Select fraction of the maximal frequency of executions of a basic block in
10548 a function to align the basic block.
10549
10550 @item align-loop-iterations
10551
10552 A loop expected to iterate at least the selected number of iterations is
10553 aligned.
10554
10555 @item tracer-dynamic-coverage
10556 @itemx tracer-dynamic-coverage-feedback
10557
10558 This value is used to limit superblock formation once the given percentage of
10559 executed instructions is covered. This limits unnecessary code size
10560 expansion.
10561
10562 The @option{tracer-dynamic-coverage-feedback} parameter
10563 is used only when profile
10564 feedback is available. The real profiles (as opposed to statically estimated
10565 ones) are much less balanced allowing the threshold to be larger value.
10566
10567 @item tracer-max-code-growth
10568 Stop tail duplication once code growth has reached given percentage. This is
10569 a rather artificial limit, as most of the duplicates are eliminated later in
10570 cross jumping, so it may be set to much higher values than is the desired code
10571 growth.
10572
10573 @item tracer-min-branch-ratio
10574
10575 Stop reverse growth when the reverse probability of best edge is less than this
10576 threshold (in percent).
10577
10578 @item tracer-min-branch-ratio
10579 @itemx tracer-min-branch-ratio-feedback
10580
10581 Stop forward growth if the best edge has probability lower than this
10582 threshold.
10583
10584 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10585 compilation for profile feedback and one for compilation without. The value
10586 for compilation with profile feedback needs to be more conservative (higher) in
10587 order to make tracer effective.
10588
10589 @item max-cse-path-length
10590
10591 The maximum number of basic blocks on path that CSE considers.
10592 The default is 10.
10593
10594 @item max-cse-insns
10595 The maximum number of instructions CSE processes before flushing.
10596 The default is 1000.
10597
10598 @item ggc-min-expand
10599
10600 GCC uses a garbage collector to manage its own memory allocation. This
10601 parameter specifies the minimum percentage by which the garbage
10602 collector's heap should be allowed to expand between collections.
10603 Tuning this may improve compilation speed; it has no effect on code
10604 generation.
10605
10606 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10607 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10608 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10609 GCC is not able to calculate RAM on a particular platform, the lower
10610 bound of 30% is used. Setting this parameter and
10611 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10612 every opportunity. This is extremely slow, but can be useful for
10613 debugging.
10614
10615 @item ggc-min-heapsize
10616
10617 Minimum size of the garbage collector's heap before it begins bothering
10618 to collect garbage. The first collection occurs after the heap expands
10619 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10620 tuning this may improve compilation speed, and has no effect on code
10621 generation.
10622
10623 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10624 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10625 with a lower bound of 4096 (four megabytes) and an upper bound of
10626 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10627 particular platform, the lower bound is used. Setting this parameter
10628 very large effectively disables garbage collection. Setting this
10629 parameter and @option{ggc-min-expand} to zero causes a full collection
10630 to occur at every opportunity.
10631
10632 @item max-reload-search-insns
10633 The maximum number of instruction reload should look backward for equivalent
10634 register. Increasing values mean more aggressive optimization, making the
10635 compilation time increase with probably slightly better performance.
10636 The default value is 100.
10637
10638 @item max-cselib-memory-locations
10639 The maximum number of memory locations cselib should take into account.
10640 Increasing values mean more aggressive optimization, making the compilation time
10641 increase with probably slightly better performance. The default value is 500.
10642
10643 @item reorder-blocks-duplicate
10644 @itemx reorder-blocks-duplicate-feedback
10645
10646 Used by the basic block reordering pass to decide whether to use unconditional
10647 branch or duplicate the code on its destination. Code is duplicated when its
10648 estimated size is smaller than this value multiplied by the estimated size of
10649 unconditional jump in the hot spots of the program.
10650
10651 The @option{reorder-block-duplicate-feedback} parameter
10652 is used only when profile
10653 feedback is available. It may be set to higher values than
10654 @option{reorder-block-duplicate} since information about the hot spots is more
10655 accurate.
10656
10657 @item max-sched-ready-insns
10658 The maximum number of instructions ready to be issued the scheduler should
10659 consider at any given time during the first scheduling pass. Increasing
10660 values mean more thorough searches, making the compilation time increase
10661 with probably little benefit. The default value is 100.
10662
10663 @item max-sched-region-blocks
10664 The maximum number of blocks in a region to be considered for
10665 interblock scheduling. The default value is 10.
10666
10667 @item max-pipeline-region-blocks
10668 The maximum number of blocks in a region to be considered for
10669 pipelining in the selective scheduler. The default value is 15.
10670
10671 @item max-sched-region-insns
10672 The maximum number of insns in a region to be considered for
10673 interblock scheduling. The default value is 100.
10674
10675 @item max-pipeline-region-insns
10676 The maximum number of insns in a region to be considered for
10677 pipelining in the selective scheduler. The default value is 200.
10678
10679 @item min-spec-prob
10680 The minimum probability (in percents) of reaching a source block
10681 for interblock speculative scheduling. The default value is 40.
10682
10683 @item max-sched-extend-regions-iters
10684 The maximum number of iterations through CFG to extend regions.
10685 A value of 0 (the default) disables region extensions.
10686
10687 @item max-sched-insn-conflict-delay
10688 The maximum conflict delay for an insn to be considered for speculative motion.
10689 The default value is 3.
10690
10691 @item sched-spec-prob-cutoff
10692 The minimal probability of speculation success (in percents), so that
10693 speculative insns are scheduled.
10694 The default value is 40.
10695
10696 @item sched-spec-state-edge-prob-cutoff
10697 The minimum probability an edge must have for the scheduler to save its
10698 state across it.
10699 The default value is 10.
10700
10701 @item sched-mem-true-dep-cost
10702 Minimal distance (in CPU cycles) between store and load targeting same
10703 memory locations. The default value is 1.
10704
10705 @item selsched-max-lookahead
10706 The maximum size of the lookahead window of selective scheduling. It is a
10707 depth of search for available instructions.
10708 The default value is 50.
10709
10710 @item selsched-max-sched-times
10711 The maximum number of times that an instruction is scheduled during
10712 selective scheduling. This is the limit on the number of iterations
10713 through which the instruction may be pipelined. The default value is 2.
10714
10715 @item selsched-max-insns-to-rename
10716 The maximum number of best instructions in the ready list that are considered
10717 for renaming in the selective scheduler. The default value is 2.
10718
10719 @item sms-min-sc
10720 The minimum value of stage count that swing modulo scheduler
10721 generates. The default value is 2.
10722
10723 @item max-last-value-rtl
10724 The maximum size measured as number of RTLs that can be recorded in an expression
10725 in combiner for a pseudo register as last known value of that register. The default
10726 is 10000.
10727
10728 @item max-combine-insns
10729 The maximum number of instructions the RTL combiner tries to combine.
10730 The default value is 2 at @option{-Og} and 4 otherwise.
10731
10732 @item integer-share-limit
10733 Small integer constants can use a shared data structure, reducing the
10734 compiler's memory usage and increasing its speed. This sets the maximum
10735 value of a shared integer constant. The default value is 256.
10736
10737 @item ssp-buffer-size
10738 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10739 protection when @option{-fstack-protection} is used.
10740
10741 @item min-size-for-stack-sharing
10742 The minimum size of variables taking part in stack slot sharing when not
10743 optimizing. The default value is 32.
10744
10745 @item max-jump-thread-duplication-stmts
10746 Maximum number of statements allowed in a block that needs to be
10747 duplicated when threading jumps.
10748
10749 @item max-fields-for-field-sensitive
10750 Maximum number of fields in a structure treated in
10751 a field sensitive manner during pointer analysis. The default is zero
10752 for @option{-O0} and @option{-O1},
10753 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10754
10755 @item prefetch-latency
10756 Estimate on average number of instructions that are executed before
10757 prefetch finishes. The distance prefetched ahead is proportional
10758 to this constant. Increasing this number may also lead to less
10759 streams being prefetched (see @option{simultaneous-prefetches}).
10760
10761 @item simultaneous-prefetches
10762 Maximum number of prefetches that can run at the same time.
10763
10764 @item l1-cache-line-size
10765 The size of cache line in L1 cache, in bytes.
10766
10767 @item l1-cache-size
10768 The size of L1 cache, in kilobytes.
10769
10770 @item l2-cache-size
10771 The size of L2 cache, in kilobytes.
10772
10773 @item min-insn-to-prefetch-ratio
10774 The minimum ratio between the number of instructions and the
10775 number of prefetches to enable prefetching in a loop.
10776
10777 @item prefetch-min-insn-to-mem-ratio
10778 The minimum ratio between the number of instructions and the
10779 number of memory references to enable prefetching in a loop.
10780
10781 @item use-canonical-types
10782 Whether the compiler should use the ``canonical'' type system. By
10783 default, this should always be 1, which uses a more efficient internal
10784 mechanism for comparing types in C++ and Objective-C++. However, if
10785 bugs in the canonical type system are causing compilation failures,
10786 set this value to 0 to disable canonical types.
10787
10788 @item switch-conversion-max-branch-ratio
10789 Switch initialization conversion refuses to create arrays that are
10790 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10791 branches in the switch.
10792
10793 @item max-partial-antic-length
10794 Maximum length of the partial antic set computed during the tree
10795 partial redundancy elimination optimization (@option{-ftree-pre}) when
10796 optimizing at @option{-O3} and above. For some sorts of source code
10797 the enhanced partial redundancy elimination optimization can run away,
10798 consuming all of the memory available on the host machine. This
10799 parameter sets a limit on the length of the sets that are computed,
10800 which prevents the runaway behavior. Setting a value of 0 for
10801 this parameter allows an unlimited set length.
10802
10803 @item sccvn-max-scc-size
10804 Maximum size of a strongly connected component (SCC) during SCCVN
10805 processing. If this limit is hit, SCCVN processing for the whole
10806 function is not done and optimizations depending on it are
10807 disabled. The default maximum SCC size is 10000.
10808
10809 @item sccvn-max-alias-queries-per-access
10810 Maximum number of alias-oracle queries we perform when looking for
10811 redundancies for loads and stores. If this limit is hit the search
10812 is aborted and the load or store is not considered redundant. The
10813 number of queries is algorithmically limited to the number of
10814 stores on all paths from the load to the function entry.
10815 The default maxmimum number of queries is 1000.
10816
10817 @item ira-max-loops-num
10818 IRA uses regional register allocation by default. If a function
10819 contains more loops than the number given by this parameter, only at most
10820 the given number of the most frequently-executed loops form regions
10821 for regional register allocation. The default value of the
10822 parameter is 100.
10823
10824 @item ira-max-conflict-table-size
10825 Although IRA uses a sophisticated algorithm to compress the conflict
10826 table, the table can still require excessive amounts of memory for
10827 huge functions. If the conflict table for a function could be more
10828 than the size in MB given by this parameter, the register allocator
10829 instead uses a faster, simpler, and lower-quality
10830 algorithm that does not require building a pseudo-register conflict table.
10831 The default value of the parameter is 2000.
10832
10833 @item ira-loop-reserved-regs
10834 IRA can be used to evaluate more accurate register pressure in loops
10835 for decisions to move loop invariants (see @option{-O3}). The number
10836 of available registers reserved for some other purposes is given
10837 by this parameter. The default value of the parameter is 2, which is
10838 the minimal number of registers needed by typical instructions.
10839 This value is the best found from numerous experiments.
10840
10841 @item lra-inheritance-ebb-probability-cutoff
10842 LRA tries to reuse values reloaded in registers in subsequent insns.
10843 This optimization is called inheritance. EBB is used as a region to
10844 do this optimization. The parameter defines a minimal fall-through
10845 edge probability in percentage used to add BB to inheritance EBB in
10846 LRA. The default value of the parameter is 40. The value was chosen
10847 from numerous runs of SPEC2000 on x86-64.
10848
10849 @item loop-invariant-max-bbs-in-loop
10850 Loop invariant motion can be very expensive, both in compilation time and
10851 in amount of needed compile-time memory, with very large loops. Loops
10852 with more basic blocks than this parameter won't have loop invariant
10853 motion optimization performed on them. The default value of the
10854 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10855
10856 @item loop-max-datarefs-for-datadeps
10857 Building data dapendencies is expensive for very large loops. This
10858 parameter limits the number of data references in loops that are
10859 considered for data dependence analysis. These large loops are no
10860 handled by the optimizations using loop data dependencies.
10861 The default value is 1000.
10862
10863 @item max-vartrack-size
10864 Sets a maximum number of hash table slots to use during variable
10865 tracking dataflow analysis of any function. If this limit is exceeded
10866 with variable tracking at assignments enabled, analysis for that
10867 function is retried without it, after removing all debug insns from
10868 the function. If the limit is exceeded even without debug insns, var
10869 tracking analysis is completely disabled for the function. Setting
10870 the parameter to zero makes it unlimited.
10871
10872 @item max-vartrack-expr-depth
10873 Sets a maximum number of recursion levels when attempting to map
10874 variable names or debug temporaries to value expressions. This trades
10875 compilation time for more complete debug information. If this is set too
10876 low, value expressions that are available and could be represented in
10877 debug information may end up not being used; setting this higher may
10878 enable the compiler to find more complex debug expressions, but compile
10879 time and memory use may grow. The default is 12.
10880
10881 @item min-nondebug-insn-uid
10882 Use uids starting at this parameter for nondebug insns. The range below
10883 the parameter is reserved exclusively for debug insns created by
10884 @option{-fvar-tracking-assignments}, but debug insns may get
10885 (non-overlapping) uids above it if the reserved range is exhausted.
10886
10887 @item ipa-sra-ptr-growth-factor
10888 IPA-SRA replaces a pointer to an aggregate with one or more new
10889 parameters only when their cumulative size is less or equal to
10890 @option{ipa-sra-ptr-growth-factor} times the size of the original
10891 pointer parameter.
10892
10893 @item sra-max-scalarization-size-Ospeed
10894 @item sra-max-scalarization-size-Osize
10895 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10896 replace scalar parts of aggregates with uses of independent scalar
10897 variables. These parameters control the maximum size, in storage units,
10898 of aggregate which is considered for replacement when compiling for
10899 speed
10900 (@option{sra-max-scalarization-size-Ospeed}) or size
10901 (@option{sra-max-scalarization-size-Osize}) respectively.
10902
10903 @item tm-max-aggregate-size
10904 When making copies of thread-local variables in a transaction, this
10905 parameter specifies the size in bytes after which variables are
10906 saved with the logging functions as opposed to save/restore code
10907 sequence pairs. This option only applies when using
10908 @option{-fgnu-tm}.
10909
10910 @item graphite-max-nb-scop-params
10911 To avoid exponential effects in the Graphite loop transforms, the
10912 number of parameters in a Static Control Part (SCoP) is bounded. The
10913 default value is 10 parameters. A variable whose value is unknown at
10914 compilation time and defined outside a SCoP is a parameter of the SCoP.
10915
10916 @item graphite-max-bbs-per-function
10917 To avoid exponential effects in the detection of SCoPs, the size of
10918 the functions analyzed by Graphite is bounded. The default value is
10919 100 basic blocks.
10920
10921 @item loop-block-tile-size
10922 Loop blocking or strip mining transforms, enabled with
10923 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10924 loop in the loop nest by a given number of iterations. The strip
10925 length can be changed using the @option{loop-block-tile-size}
10926 parameter. The default value is 51 iterations.
10927
10928 @item loop-unroll-jam-size
10929 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10930 default value is 4.
10931
10932 @item loop-unroll-jam-depth
10933 Specify the dimension to be unrolled (counting from the most inner loop)
10934 for the @option{-floop-unroll-and-jam}. The default value is 2.
10935
10936 @item ipa-cp-value-list-size
10937 IPA-CP attempts to track all possible values and types passed to a function's
10938 parameter in order to propagate them and perform devirtualization.
10939 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10940 stores per one formal parameter of a function.
10941
10942 @item ipa-cp-eval-threshold
10943 IPA-CP calculates its own score of cloning profitability heuristics
10944 and performs those cloning opportunities with scores that exceed
10945 @option{ipa-cp-eval-threshold}.
10946
10947 @item ipa-cp-recursion-penalty
10948 Percentage penalty the recursive functions will receive when they
10949 are evaluated for cloning.
10950
10951 @item ipa-cp-single-call-penalty
10952 Percentage penalty functions containg a single call to another
10953 function will receive when they are evaluated for cloning.
10954
10955
10956 @item ipa-max-agg-items
10957 IPA-CP is also capable to propagate a number of scalar values passed
10958 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10959 number of such values per one parameter.
10960
10961 @item ipa-cp-loop-hint-bonus
10962 When IPA-CP determines that a cloning candidate would make the number
10963 of iterations of a loop known, it adds a bonus of
10964 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10965 the candidate.
10966
10967 @item ipa-cp-array-index-hint-bonus
10968 When IPA-CP determines that a cloning candidate would make the index of
10969 an array access known, it adds a bonus of
10970 @option{ipa-cp-array-index-hint-bonus} to the profitability
10971 score of the candidate.
10972
10973 @item ipa-max-aa-steps
10974 During its analysis of function bodies, IPA-CP employs alias analysis
10975 in order to track values pointed to by function parameters. In order
10976 not spend too much time analyzing huge functions, it gives up and
10977 consider all memory clobbered after examining
10978 @option{ipa-max-aa-steps} statements modifying memory.
10979
10980 @item lto-partitions
10981 Specify desired number of partitions produced during WHOPR compilation.
10982 The number of partitions should exceed the number of CPUs used for compilation.
10983 The default value is 32.
10984
10985 @item lto-minpartition
10986 Size of minimal partition for WHOPR (in estimated instructions).
10987 This prevents expenses of splitting very small programs into too many
10988 partitions.
10989
10990 @item cxx-max-namespaces-for-diagnostic-help
10991 The maximum number of namespaces to consult for suggestions when C++
10992 name lookup fails for an identifier. The default is 1000.
10993
10994 @item sink-frequency-threshold
10995 The maximum relative execution frequency (in percents) of the target block
10996 relative to a statement's original block to allow statement sinking of a
10997 statement. Larger numbers result in more aggressive statement sinking.
10998 The default value is 75. A small positive adjustment is applied for
10999 statements with memory operands as those are even more profitable so sink.
11000
11001 @item max-stores-to-sink
11002 The maximum number of conditional stores paires that can be sunk. Set to 0
11003 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11004 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
11005
11006 @item allow-store-data-races
11007 Allow optimizers to introduce new data races on stores.
11008 Set to 1 to allow, otherwise to 0. This option is enabled by default
11009 at optimization level @option{-Ofast}.
11010
11011 @item case-values-threshold
11012 The smallest number of different values for which it is best to use a
11013 jump-table instead of a tree of conditional branches. If the value is
11014 0, use the default for the machine. The default is 0.
11015
11016 @item tree-reassoc-width
11017 Set the maximum number of instructions executed in parallel in
11018 reassociated tree. This parameter overrides target dependent
11019 heuristics used by default if has non zero value.
11020
11021 @item sched-pressure-algorithm
11022 Choose between the two available implementations of
11023 @option{-fsched-pressure}. Algorithm 1 is the original implementation
11024 and is the more likely to prevent instructions from being reordered.
11025 Algorithm 2 was designed to be a compromise between the relatively
11026 conservative approach taken by algorithm 1 and the rather aggressive
11027 approach taken by the default scheduler. It relies more heavily on
11028 having a regular register file and accurate register pressure classes.
11029 See @file{haifa-sched.c} in the GCC sources for more details.
11030
11031 The default choice depends on the target.
11032
11033 @item max-slsr-cand-scan
11034 Set the maximum number of existing candidates that are considered when
11035 seeking a basis for a new straight-line strength reduction candidate.
11036
11037 @item asan-globals
11038 Enable buffer overflow detection for global objects. This kind
11039 of protection is enabled by default if you are using
11040 @option{-fsanitize=address} option.
11041 To disable global objects protection use @option{--param asan-globals=0}.
11042
11043 @item asan-stack
11044 Enable buffer overflow detection for stack objects. This kind of
11045 protection is enabled by default when using @option{-fsanitize=address}.
11046 To disable stack protection use @option{--param asan-stack=0} option.
11047
11048 @item asan-instrument-reads
11049 Enable buffer overflow detection for memory reads. This kind of
11050 protection is enabled by default when using @option{-fsanitize=address}.
11051 To disable memory reads protection use
11052 @option{--param asan-instrument-reads=0}.
11053
11054 @item asan-instrument-writes
11055 Enable buffer overflow detection for memory writes. This kind of
11056 protection is enabled by default when using @option{-fsanitize=address}.
11057 To disable memory writes protection use
11058 @option{--param asan-instrument-writes=0} option.
11059
11060 @item asan-memintrin
11061 Enable detection for built-in functions. This kind of protection
11062 is enabled by default when using @option{-fsanitize=address}.
11063 To disable built-in functions protection use
11064 @option{--param asan-memintrin=0}.
11065
11066 @item asan-use-after-return
11067 Enable detection of use-after-return. This kind of protection
11068 is enabled by default when using @option{-fsanitize=address} option.
11069 To disable use-after-return detection use
11070 @option{--param asan-use-after-return=0}.
11071
11072 @item asan-instrumentation-with-call-threshold
11073 If number of memory accesses in function being instrumented
11074 is greater or equal to this number, use callbacks instead of inline checks.
11075 E.g. to disable inline code use
11076 @option{--param asan-instrumentation-with-call-threshold=0}.
11077
11078 @item chkp-max-ctor-size
11079 Static constructors generated by Pointer Bounds Checker may become very
11080 large and significantly increase compile time at optimization level
11081 @option{-O1} and higher. This parameter is a maximum nubmer of statements
11082 in a single generated constructor. Default value is 5000.
11083
11084 @item max-fsm-thread-path-insns
11085 Maximum number of instructions to copy when duplicating blocks on a
11086 finite state automaton jump thread path. The default is 100.
11087
11088 @item max-fsm-thread-length
11089 Maximum number of basic blocks on a finite state automaton jump thread
11090 path. The default is 10.
11091
11092 @item max-fsm-thread-paths
11093 Maximum number of new jump thread paths to create for a finite state
11094 automaton. The default is 50.
11095
11096 @item parloops-chunk-size
11097 Chunk size of omp schedule for loops parallelized by parloops. The default
11098 is 0.
11099
11100 @end table
11101 @end table
11102
11103 @node Preprocessor Options
11104 @section Options Controlling the Preprocessor
11105 @cindex preprocessor options
11106 @cindex options, preprocessor
11107
11108 These options control the C preprocessor, which is run on each C source
11109 file before actual compilation.
11110
11111 If you use the @option{-E} option, nothing is done except preprocessing.
11112 Some of these options make sense only together with @option{-E} because
11113 they cause the preprocessor output to be unsuitable for actual
11114 compilation.
11115
11116 @table @gcctabopt
11117 @item -Wp,@var{option}
11118 @opindex Wp
11119 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11120 and pass @var{option} directly through to the preprocessor. If
11121 @var{option} contains commas, it is split into multiple options at the
11122 commas. However, many options are modified, translated or interpreted
11123 by the compiler driver before being passed to the preprocessor, and
11124 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11125 interface is undocumented and subject to change, so whenever possible
11126 you should avoid using @option{-Wp} and let the driver handle the
11127 options instead.
11128
11129 @item -Xpreprocessor @var{option}
11130 @opindex Xpreprocessor
11131 Pass @var{option} as an option to the preprocessor. You can use this to
11132 supply system-specific preprocessor options that GCC does not
11133 recognize.
11134
11135 If you want to pass an option that takes an argument, you must use
11136 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11137
11138 @item -no-integrated-cpp
11139 @opindex no-integrated-cpp
11140 Perform preprocessing as a separate pass before compilation.
11141 By default, GCC performs preprocessing as an integrated part of
11142 input tokenization and parsing.
11143 If this option is provided, the appropriate language front end
11144 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11145 and Objective-C, respectively) is instead invoked twice,
11146 once for preprocessing only and once for actual compilation
11147 of the preprocessed input.
11148 This option may be useful in conjunction with the @option{-B} or
11149 @option{-wrapper} options to specify an alternate preprocessor or
11150 perform additional processing of the program source between
11151 normal preprocessing and compilation.
11152 @end table
11153
11154 @include cppopts.texi
11155
11156 @node Assembler Options
11157 @section Passing Options to the Assembler
11158
11159 @c prevent bad page break with this line
11160 You can pass options to the assembler.
11161
11162 @table @gcctabopt
11163 @item -Wa,@var{option}
11164 @opindex Wa
11165 Pass @var{option} as an option to the assembler. If @var{option}
11166 contains commas, it is split into multiple options at the commas.
11167
11168 @item -Xassembler @var{option}
11169 @opindex Xassembler
11170 Pass @var{option} as an option to the assembler. You can use this to
11171 supply system-specific assembler options that GCC does not
11172 recognize.
11173
11174 If you want to pass an option that takes an argument, you must use
11175 @option{-Xassembler} twice, once for the option and once for the argument.
11176
11177 @end table
11178
11179 @node Link Options
11180 @section Options for Linking
11181 @cindex link options
11182 @cindex options, linking
11183
11184 These options come into play when the compiler links object files into
11185 an executable output file. They are meaningless if the compiler is
11186 not doing a link step.
11187
11188 @table @gcctabopt
11189 @cindex file names
11190 @item @var{object-file-name}
11191 A file name that does not end in a special recognized suffix is
11192 considered to name an object file or library. (Object files are
11193 distinguished from libraries by the linker according to the file
11194 contents.) If linking is done, these object files are used as input
11195 to the linker.
11196
11197 @item -c
11198 @itemx -S
11199 @itemx -E
11200 @opindex c
11201 @opindex S
11202 @opindex E
11203 If any of these options is used, then the linker is not run, and
11204 object file names should not be used as arguments. @xref{Overall
11205 Options}.
11206
11207 @item -fuse-ld=bfd
11208 @opindex fuse-ld=bfd
11209 Use the @command{bfd} linker instead of the default linker.
11210
11211 @item -fuse-ld=gold
11212 @opindex fuse-ld=gold
11213 Use the @command{gold} linker instead of the default linker.
11214
11215 @cindex Libraries
11216 @item -l@var{library}
11217 @itemx -l @var{library}
11218 @opindex l
11219 Search the library named @var{library} when linking. (The second
11220 alternative with the library as a separate argument is only for
11221 POSIX compliance and is not recommended.)
11222
11223 It makes a difference where in the command you write this option; the
11224 linker searches and processes libraries and object files in the order they
11225 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11226 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11227 to functions in @samp{z}, those functions may not be loaded.
11228
11229 The linker searches a standard list of directories for the library,
11230 which is actually a file named @file{lib@var{library}.a}. The linker
11231 then uses this file as if it had been specified precisely by name.
11232
11233 The directories searched include several standard system directories
11234 plus any that you specify with @option{-L}.
11235
11236 Normally the files found this way are library files---archive files
11237 whose members are object files. The linker handles an archive file by
11238 scanning through it for members which define symbols that have so far
11239 been referenced but not defined. But if the file that is found is an
11240 ordinary object file, it is linked in the usual fashion. The only
11241 difference between using an @option{-l} option and specifying a file name
11242 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11243 and searches several directories.
11244
11245 @item -lobjc
11246 @opindex lobjc
11247 You need this special case of the @option{-l} option in order to
11248 link an Objective-C or Objective-C++ program.
11249
11250 @item -nostartfiles
11251 @opindex nostartfiles
11252 Do not use the standard system startup files when linking.
11253 The standard system libraries are used normally, unless @option{-nostdlib}
11254 or @option{-nodefaultlibs} is used.
11255
11256 @item -nodefaultlibs
11257 @opindex nodefaultlibs
11258 Do not use the standard system libraries when linking.
11259 Only the libraries you specify are passed to the linker, and options
11260 specifying linkage of the system libraries, such as @option{-static-libgcc}
11261 or @option{-shared-libgcc}, are ignored.
11262 The standard startup files are used normally, unless @option{-nostartfiles}
11263 is used.
11264
11265 The compiler may generate calls to @code{memcmp},
11266 @code{memset}, @code{memcpy} and @code{memmove}.
11267 These entries are usually resolved by entries in
11268 libc. These entry points should be supplied through some other
11269 mechanism when this option is specified.
11270
11271 @item -nostdlib
11272 @opindex nostdlib
11273 Do not use the standard system startup files or libraries when linking.
11274 No startup files and only the libraries you specify are passed to
11275 the linker, and options specifying linkage of the system libraries, such as
11276 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11277
11278 The compiler may generate calls to @code{memcmp}, @code{memset},
11279 @code{memcpy} and @code{memmove}.
11280 These entries are usually resolved by entries in
11281 libc. These entry points should be supplied through some other
11282 mechanism when this option is specified.
11283
11284 @cindex @option{-lgcc}, use with @option{-nostdlib}
11285 @cindex @option{-nostdlib} and unresolved references
11286 @cindex unresolved references and @option{-nostdlib}
11287 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11288 @cindex @option{-nodefaultlibs} and unresolved references
11289 @cindex unresolved references and @option{-nodefaultlibs}
11290 One of the standard libraries bypassed by @option{-nostdlib} and
11291 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11292 which GCC uses to overcome shortcomings of particular machines, or special
11293 needs for some languages.
11294 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11295 Collection (GCC) Internals},
11296 for more discussion of @file{libgcc.a}.)
11297 In most cases, you need @file{libgcc.a} even when you want to avoid
11298 other standard libraries. In other words, when you specify @option{-nostdlib}
11299 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11300 This ensures that you have no unresolved references to internal GCC
11301 library subroutines.
11302 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11303 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11304 GNU Compiler Collection (GCC) Internals}.)
11305
11306 @item -pie
11307 @opindex pie
11308 Produce a position independent executable on targets that support it.
11309 For predictable results, you must also specify the same set of options
11310 used for compilation (@option{-fpie}, @option{-fPIE},
11311 or model suboptions) when you specify this linker option.
11312
11313 @item -no-pie
11314 @opindex no-pie
11315 Don't produce a position independent executable.
11316
11317 @item -rdynamic
11318 @opindex rdynamic
11319 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11320 that support it. This instructs the linker to add all symbols, not
11321 only used ones, to the dynamic symbol table. This option is needed
11322 for some uses of @code{dlopen} or to allow obtaining backtraces
11323 from within a program.
11324
11325 @item -s
11326 @opindex s
11327 Remove all symbol table and relocation information from the executable.
11328
11329 @item -static
11330 @opindex static
11331 On systems that support dynamic linking, this prevents linking with the shared
11332 libraries. On other systems, this option has no effect.
11333
11334 @item -shared
11335 @opindex shared
11336 Produce a shared object which can then be linked with other objects to
11337 form an executable. Not all systems support this option. For predictable
11338 results, you must also specify the same set of options used for compilation
11339 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11340 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11341 needs to build supplementary stub code for constructors to work. On
11342 multi-libbed systems, @samp{gcc -shared} must select the correct support
11343 libraries to link against. Failing to supply the correct flags may lead
11344 to subtle defects. Supplying them in cases where they are not necessary
11345 is innocuous.}
11346
11347 @item -shared-libgcc
11348 @itemx -static-libgcc
11349 @opindex shared-libgcc
11350 @opindex static-libgcc
11351 On systems that provide @file{libgcc} as a shared library, these options
11352 force the use of either the shared or static version, respectively.
11353 If no shared version of @file{libgcc} was built when the compiler was
11354 configured, these options have no effect.
11355
11356 There are several situations in which an application should use the
11357 shared @file{libgcc} instead of the static version. The most common
11358 of these is when the application wishes to throw and catch exceptions
11359 across different shared libraries. In that case, each of the libraries
11360 as well as the application itself should use the shared @file{libgcc}.
11361
11362 Therefore, the G++ and GCJ drivers automatically add
11363 @option{-shared-libgcc} whenever you build a shared library or a main
11364 executable, because C++ and Java programs typically use exceptions, so
11365 this is the right thing to do.
11366
11367 If, instead, you use the GCC driver to create shared libraries, you may
11368 find that they are not always linked with the shared @file{libgcc}.
11369 If GCC finds, at its configuration time, that you have a non-GNU linker
11370 or a GNU linker that does not support option @option{--eh-frame-hdr},
11371 it links the shared version of @file{libgcc} into shared libraries
11372 by default. Otherwise, it takes advantage of the linker and optimizes
11373 away the linking with the shared version of @file{libgcc}, linking with
11374 the static version of libgcc by default. This allows exceptions to
11375 propagate through such shared libraries, without incurring relocation
11376 costs at library load time.
11377
11378 However, if a library or main executable is supposed to throw or catch
11379 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11380 for the languages used in the program, or using the option
11381 @option{-shared-libgcc}, such that it is linked with the shared
11382 @file{libgcc}.
11383
11384 @item -static-libasan
11385 @opindex static-libasan
11386 When the @option{-fsanitize=address} option is used to link a program,
11387 the GCC driver automatically links against @option{libasan}. If
11388 @file{libasan} is available as a shared library, and the @option{-static}
11389 option is not used, then this links against the shared version of
11390 @file{libasan}. The @option{-static-libasan} option directs the GCC
11391 driver to link @file{libasan} statically, without necessarily linking
11392 other libraries statically.
11393
11394 @item -static-libtsan
11395 @opindex static-libtsan
11396 When the @option{-fsanitize=thread} option is used to link a program,
11397 the GCC driver automatically links against @option{libtsan}. If
11398 @file{libtsan} is available as a shared library, and the @option{-static}
11399 option is not used, then this links against the shared version of
11400 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11401 driver to link @file{libtsan} statically, without necessarily linking
11402 other libraries statically.
11403
11404 @item -static-liblsan
11405 @opindex static-liblsan
11406 When the @option{-fsanitize=leak} option is used to link a program,
11407 the GCC driver automatically links against @option{liblsan}. If
11408 @file{liblsan} is available as a shared library, and the @option{-static}
11409 option is not used, then this links against the shared version of
11410 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11411 driver to link @file{liblsan} statically, without necessarily linking
11412 other libraries statically.
11413
11414 @item -static-libubsan
11415 @opindex static-libubsan
11416 When the @option{-fsanitize=undefined} option is used to link a program,
11417 the GCC driver automatically links against @option{libubsan}. If
11418 @file{libubsan} is available as a shared library, and the @option{-static}
11419 option is not used, then this links against the shared version of
11420 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11421 driver to link @file{libubsan} statically, without necessarily linking
11422 other libraries statically.
11423
11424 @item -static-libmpx
11425 @opindex static-libmpx
11426 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11427 used to link a program, the GCC driver automatically links against
11428 @file{libmpx}. If @file{libmpx} is available as a shared library,
11429 and the @option{-static} option is not used, then this links against
11430 the shared version of @file{libmpx}. The @option{-static-libmpx}
11431 option directs the GCC driver to link @file{libmpx} statically,
11432 without necessarily linking other libraries statically.
11433
11434 @item -static-libmpxwrappers
11435 @opindex static-libmpxwrappers
11436 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11437 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11438 GCC driver automatically links against @file{libmpxwrappers}. If
11439 @file{libmpxwrappers} is available as a shared library, and the
11440 @option{-static} option is not used, then this links against the shared
11441 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11442 option directs the GCC driver to link @file{libmpxwrappers} statically,
11443 without necessarily linking other libraries statically.
11444
11445 @item -static-libstdc++
11446 @opindex static-libstdc++
11447 When the @command{g++} program is used to link a C++ program, it
11448 normally automatically links against @option{libstdc++}. If
11449 @file{libstdc++} is available as a shared library, and the
11450 @option{-static} option is not used, then this links against the
11451 shared version of @file{libstdc++}. That is normally fine. However, it
11452 is sometimes useful to freeze the version of @file{libstdc++} used by
11453 the program without going all the way to a fully static link. The
11454 @option{-static-libstdc++} option directs the @command{g++} driver to
11455 link @file{libstdc++} statically, without necessarily linking other
11456 libraries statically.
11457
11458 @item -symbolic
11459 @opindex symbolic
11460 Bind references to global symbols when building a shared object. Warn
11461 about any unresolved references (unless overridden by the link editor
11462 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11463 this option.
11464
11465 @item -T @var{script}
11466 @opindex T
11467 @cindex linker script
11468 Use @var{script} as the linker script. This option is supported by most
11469 systems using the GNU linker. On some targets, such as bare-board
11470 targets without an operating system, the @option{-T} option may be required
11471 when linking to avoid references to undefined symbols.
11472
11473 @item -Xlinker @var{option}
11474 @opindex Xlinker
11475 Pass @var{option} as an option to the linker. You can use this to
11476 supply system-specific linker options that GCC does not recognize.
11477
11478 If you want to pass an option that takes a separate argument, you must use
11479 @option{-Xlinker} twice, once for the option and once for the argument.
11480 For example, to pass @option{-assert definitions}, you must write
11481 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11482 @option{-Xlinker "-assert definitions"}, because this passes the entire
11483 string as a single argument, which is not what the linker expects.
11484
11485 When using the GNU linker, it is usually more convenient to pass
11486 arguments to linker options using the @option{@var{option}=@var{value}}
11487 syntax than as separate arguments. For example, you can specify
11488 @option{-Xlinker -Map=output.map} rather than
11489 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11490 this syntax for command-line options.
11491
11492 @item -Wl,@var{option}
11493 @opindex Wl
11494 Pass @var{option} as an option to the linker. If @var{option} contains
11495 commas, it is split into multiple options at the commas. You can use this
11496 syntax to pass an argument to the option.
11497 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11498 linker. When using the GNU linker, you can also get the same effect with
11499 @option{-Wl,-Map=output.map}.
11500
11501 @item -u @var{symbol}
11502 @opindex u
11503 Pretend the symbol @var{symbol} is undefined, to force linking of
11504 library modules to define it. You can use @option{-u} multiple times with
11505 different symbols to force loading of additional library modules.
11506
11507 @item -z @var{keyword}
11508 @opindex z
11509 @option{-z} is passed directly on to the linker along with the keyword
11510 @var{keyword}. See the section in the documentation of your linker for
11511 permitted values and their meanings.
11512 @end table
11513
11514 @node Directory Options
11515 @section Options for Directory Search
11516 @cindex directory options
11517 @cindex options, directory search
11518 @cindex search path
11519
11520 These options specify directories to search for header files, for
11521 libraries and for parts of the compiler:
11522
11523 @table @gcctabopt
11524 @item -I@var{dir}
11525 @opindex I
11526 Add the directory @var{dir} to the head of the list of directories to be
11527 searched for header files. This can be used to override a system header
11528 file, substituting your own version, since these directories are
11529 searched before the system header file directories. However, you should
11530 not use this option to add directories that contain vendor-supplied
11531 system header files (use @option{-isystem} for that). If you use more than
11532 one @option{-I} option, the directories are scanned in left-to-right
11533 order; the standard system directories come after.
11534
11535 If a standard system include directory, or a directory specified with
11536 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11537 option is ignored. The directory is still searched but as a
11538 system directory at its normal position in the system include chain.
11539 This is to ensure that GCC's procedure to fix buggy system headers and
11540 the ordering for the @code{include_next} directive are not inadvertently changed.
11541 If you really need to change the search order for system directories,
11542 use the @option{-nostdinc} and/or @option{-isystem} options.
11543
11544 @item -iplugindir=@var{dir}
11545 @opindex iplugindir=
11546 Set the directory to search for plugins that are passed
11547 by @option{-fplugin=@var{name}} instead of
11548 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11549 to be used by the user, but only passed by the driver.
11550
11551 @item -iquote@var{dir}
11552 @opindex iquote
11553 Add the directory @var{dir} to the head of the list of directories to
11554 be searched for header files only for the case of @code{#include
11555 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11556 otherwise just like @option{-I}.
11557
11558 @item -L@var{dir}
11559 @opindex L
11560 Add directory @var{dir} to the list of directories to be searched
11561 for @option{-l}.
11562
11563 @item -B@var{prefix}
11564 @opindex B
11565 This option specifies where to find the executables, libraries,
11566 include files, and data files of the compiler itself.
11567
11568 The compiler driver program runs one or more of the subprograms
11569 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11570 @var{prefix} as a prefix for each program it tries to run, both with and
11571 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11572
11573 For each subprogram to be run, the compiler driver first tries the
11574 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11575 is not specified, the driver tries two standard prefixes,
11576 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11577 those results in a file name that is found, the unmodified program
11578 name is searched for using the directories specified in your
11579 @env{PATH} environment variable.
11580
11581 The compiler checks to see if the path provided by @option{-B}
11582 refers to a directory, and if necessary it adds a directory
11583 separator character at the end of the path.
11584
11585 @option{-B} prefixes that effectively specify directory names also apply
11586 to libraries in the linker, because the compiler translates these
11587 options into @option{-L} options for the linker. They also apply to
11588 include files in the preprocessor, because the compiler translates these
11589 options into @option{-isystem} options for the preprocessor. In this case,
11590 the compiler appends @samp{include} to the prefix.
11591
11592 The runtime support file @file{libgcc.a} can also be searched for using
11593 the @option{-B} prefix, if needed. If it is not found there, the two
11594 standard prefixes above are tried, and that is all. The file is left
11595 out of the link if it is not found by those means.
11596
11597 Another way to specify a prefix much like the @option{-B} prefix is to use
11598 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
11599 Variables}.
11600
11601 As a special kludge, if the path provided by @option{-B} is
11602 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11603 9, then it is replaced by @file{[dir/]include}. This is to help
11604 with boot-strapping the compiler.
11605
11606 @item -specs=@var{file}
11607 @opindex specs
11608 Process @var{file} after the compiler reads in the standard @file{specs}
11609 file, in order to override the defaults which the @command{gcc} driver
11610 program uses when determining what switches to pass to @command{cc1},
11611 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
11612 @option{-specs=@var{file}} can be specified on the command line, and they
11613 are processed in order, from left to right.
11614
11615 @item --sysroot=@var{dir}
11616 @opindex sysroot
11617 Use @var{dir} as the logical root directory for headers and libraries.
11618 For example, if the compiler normally searches for headers in
11619 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11620 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11621
11622 If you use both this option and the @option{-isysroot} option, then
11623 the @option{--sysroot} option applies to libraries, but the
11624 @option{-isysroot} option applies to header files.
11625
11626 The GNU linker (beginning with version 2.16) has the necessary support
11627 for this option. If your linker does not support this option, the
11628 header file aspect of @option{--sysroot} still works, but the
11629 library aspect does not.
11630
11631 @item --no-sysroot-suffix
11632 @opindex no-sysroot-suffix
11633 For some targets, a suffix is added to the root directory specified
11634 with @option{--sysroot}, depending on the other options used, so that
11635 headers may for example be found in
11636 @file{@var{dir}/@var{suffix}/usr/include} instead of
11637 @file{@var{dir}/usr/include}. This option disables the addition of
11638 such a suffix.
11639
11640 @item -I-
11641 @opindex I-
11642 This option has been deprecated. Please use @option{-iquote} instead for
11643 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11644 option.
11645 Any directories you specify with @option{-I} options before the @option{-I-}
11646 option are searched only for the case of @code{#include "@var{file}"};
11647 they are not searched for @code{#include <@var{file}>}.
11648
11649 If additional directories are specified with @option{-I} options after
11650 the @option{-I-} option, these directories are searched for all @code{#include}
11651 directives. (Ordinarily @emph{all} @option{-I} directories are used
11652 this way.)
11653
11654 In addition, the @option{-I-} option inhibits the use of the current
11655 directory (where the current input file came from) as the first search
11656 directory for @code{#include "@var{file}"}. There is no way to
11657 override this effect of @option{-I-}. With @option{-I.} you can specify
11658 searching the directory that is current when the compiler is
11659 invoked. That is not exactly the same as what the preprocessor does
11660 by default, but it is often satisfactory.
11661
11662 @option{-I-} does not inhibit the use of the standard system directories
11663 for header files. Thus, @option{-I-} and @option{-nostdinc} are
11664 independent.
11665 @end table
11666
11667 @c man end
11668
11669 @node Spec Files
11670 @section Specifying Subprocesses and the Switches to Pass to Them
11671 @cindex Spec Files
11672
11673 @command{gcc} is a driver program. It performs its job by invoking a
11674 sequence of other programs to do the work of compiling, assembling and
11675 linking. GCC interprets its command-line parameters and uses these to
11676 deduce which programs it should invoke, and which command-line options
11677 it ought to place on their command lines. This behavior is controlled
11678 by @dfn{spec strings}. In most cases there is one spec string for each
11679 program that GCC can invoke, but a few programs have multiple spec
11680 strings to control their behavior. The spec strings built into GCC can
11681 be overridden by using the @option{-specs=} command-line switch to specify
11682 a spec file.
11683
11684 @dfn{Spec files} are plaintext files that are used to construct spec
11685 strings. They consist of a sequence of directives separated by blank
11686 lines. The type of directive is determined by the first non-whitespace
11687 character on the line, which can be one of the following:
11688
11689 @table @code
11690 @item %@var{command}
11691 Issues a @var{command} to the spec file processor. The commands that can
11692 appear here are:
11693
11694 @table @code
11695 @item %include <@var{file}>
11696 @cindex @code{%include}
11697 Search for @var{file} and insert its text at the current point in the
11698 specs file.
11699
11700 @item %include_noerr <@var{file}>
11701 @cindex @code{%include_noerr}
11702 Just like @samp{%include}, but do not generate an error message if the include
11703 file cannot be found.
11704
11705 @item %rename @var{old_name} @var{new_name}
11706 @cindex @code{%rename}
11707 Rename the spec string @var{old_name} to @var{new_name}.
11708
11709 @end table
11710
11711 @item *[@var{spec_name}]:
11712 This tells the compiler to create, override or delete the named spec
11713 string. All lines after this directive up to the next directive or
11714 blank line are considered to be the text for the spec string. If this
11715 results in an empty string then the spec is deleted. (Or, if the
11716 spec did not exist, then nothing happens.) Otherwise, if the spec
11717 does not currently exist a new spec is created. If the spec does
11718 exist then its contents are overridden by the text of this
11719 directive, unless the first character of that text is the @samp{+}
11720 character, in which case the text is appended to the spec.
11721
11722 @item [@var{suffix}]:
11723 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
11724 and up to the next directive or blank line are considered to make up the
11725 spec string for the indicated suffix. When the compiler encounters an
11726 input file with the named suffix, it processes the spec string in
11727 order to work out how to compile that file. For example:
11728
11729 @smallexample
11730 .ZZ:
11731 z-compile -input %i
11732 @end smallexample
11733
11734 This says that any input file whose name ends in @samp{.ZZ} should be
11735 passed to the program @samp{z-compile}, which should be invoked with the
11736 command-line switch @option{-input} and with the result of performing the
11737 @samp{%i} substitution. (See below.)
11738
11739 As an alternative to providing a spec string, the text following a
11740 suffix directive can be one of the following:
11741
11742 @table @code
11743 @item @@@var{language}
11744 This says that the suffix is an alias for a known @var{language}. This is
11745 similar to using the @option{-x} command-line switch to GCC to specify a
11746 language explicitly. For example:
11747
11748 @smallexample
11749 .ZZ:
11750 @@c++
11751 @end smallexample
11752
11753 Says that .ZZ files are, in fact, C++ source files.
11754
11755 @item #@var{name}
11756 This causes an error messages saying:
11757
11758 @smallexample
11759 @var{name} compiler not installed on this system.
11760 @end smallexample
11761 @end table
11762
11763 GCC already has an extensive list of suffixes built into it.
11764 This directive adds an entry to the end of the list of suffixes, but
11765 since the list is searched from the end backwards, it is effectively
11766 possible to override earlier entries using this technique.
11767
11768 @end table
11769
11770 GCC has the following spec strings built into it. Spec files can
11771 override these strings or create their own. Note that individual
11772 targets can also add their own spec strings to this list.
11773
11774 @smallexample
11775 asm Options to pass to the assembler
11776 asm_final Options to pass to the assembler post-processor
11777 cpp Options to pass to the C preprocessor
11778 cc1 Options to pass to the C compiler
11779 cc1plus Options to pass to the C++ compiler
11780 endfile Object files to include at the end of the link
11781 link Options to pass to the linker
11782 lib Libraries to include on the command line to the linker
11783 libgcc Decides which GCC support library to pass to the linker
11784 linker Sets the name of the linker
11785 predefines Defines to be passed to the C preprocessor
11786 signed_char Defines to pass to CPP to say whether @code{char} is signed
11787 by default
11788 startfile Object files to include at the start of the link
11789 @end smallexample
11790
11791 Here is a small example of a spec file:
11792
11793 @smallexample
11794 %rename lib old_lib
11795
11796 *lib:
11797 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
11798 @end smallexample
11799
11800 This example renames the spec called @samp{lib} to @samp{old_lib} and
11801 then overrides the previous definition of @samp{lib} with a new one.
11802 The new definition adds in some extra command-line options before
11803 including the text of the old definition.
11804
11805 @dfn{Spec strings} are a list of command-line options to be passed to their
11806 corresponding program. In addition, the spec strings can contain
11807 @samp{%}-prefixed sequences to substitute variable text or to
11808 conditionally insert text into the command line. Using these constructs
11809 it is possible to generate quite complex command lines.
11810
11811 Here is a table of all defined @samp{%}-sequences for spec
11812 strings. Note that spaces are not generated automatically around the
11813 results of expanding these sequences. Therefore you can concatenate them
11814 together or combine them with constant text in a single argument.
11815
11816 @table @code
11817 @item %%
11818 Substitute one @samp{%} into the program name or argument.
11819
11820 @item %i
11821 Substitute the name of the input file being processed.
11822
11823 @item %b
11824 Substitute the basename of the input file being processed.
11825 This is the substring up to (and not including) the last period
11826 and not including the directory.
11827
11828 @item %B
11829 This is the same as @samp{%b}, but include the file suffix (text after
11830 the last period).
11831
11832 @item %d
11833 Marks the argument containing or following the @samp{%d} as a
11834 temporary file name, so that that file is deleted if GCC exits
11835 successfully. Unlike @samp{%g}, this contributes no text to the
11836 argument.
11837
11838 @item %g@var{suffix}
11839 Substitute a file name that has suffix @var{suffix} and is chosen
11840 once per compilation, and mark the argument in the same way as
11841 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
11842 name is now chosen in a way that is hard to predict even when previously
11843 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
11844 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
11845 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
11846 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
11847 was simply substituted with a file name chosen once per compilation,
11848 without regard to any appended suffix (which was therefore treated
11849 just like ordinary text), making such attacks more likely to succeed.
11850
11851 @item %u@var{suffix}
11852 Like @samp{%g}, but generates a new temporary file name
11853 each time it appears instead of once per compilation.
11854
11855 @item %U@var{suffix}
11856 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
11857 new one if there is no such last file name. In the absence of any
11858 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
11859 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
11860 involves the generation of two distinct file names, one
11861 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
11862 simply substituted with a file name chosen for the previous @samp{%u},
11863 without regard to any appended suffix.
11864
11865 @item %j@var{suffix}
11866 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
11867 writable, and if @option{-save-temps} is not used;
11868 otherwise, substitute the name
11869 of a temporary file, just like @samp{%u}. This temporary file is not
11870 meant for communication between processes, but rather as a junk
11871 disposal mechanism.
11872
11873 @item %|@var{suffix}
11874 @itemx %m@var{suffix}
11875 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
11876 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
11877 all. These are the two most common ways to instruct a program that it
11878 should read from standard input or write to standard output. If you
11879 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
11880 construct: see for example @file{f/lang-specs.h}.
11881
11882 @item %.@var{SUFFIX}
11883 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
11884 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
11885 terminated by the next space or %.
11886
11887 @item %w
11888 Marks the argument containing or following the @samp{%w} as the
11889 designated output file of this compilation. This puts the argument
11890 into the sequence of arguments that @samp{%o} substitutes.
11891
11892 @item %o
11893 Substitutes the names of all the output files, with spaces
11894 automatically placed around them. You should write spaces
11895 around the @samp{%o} as well or the results are undefined.
11896 @samp{%o} is for use in the specs for running the linker.
11897 Input files whose names have no recognized suffix are not compiled
11898 at all, but they are included among the output files, so they are
11899 linked.
11900
11901 @item %O
11902 Substitutes the suffix for object files. Note that this is
11903 handled specially when it immediately follows @samp{%g, %u, or %U},
11904 because of the need for those to form complete file names. The
11905 handling is such that @samp{%O} is treated exactly as if it had already
11906 been substituted, except that @samp{%g, %u, and %U} do not currently
11907 support additional @var{suffix} characters following @samp{%O} as they do
11908 following, for example, @samp{.o}.
11909
11910 @item %p
11911 Substitutes the standard macro predefinitions for the
11912 current target machine. Use this when running @command{cpp}.
11913
11914 @item %P
11915 Like @samp{%p}, but puts @samp{__} before and after the name of each
11916 predefined macro, except for macros that start with @samp{__} or with
11917 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
11918 C@.
11919
11920 @item %I
11921 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
11922 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
11923 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
11924 and @option{-imultilib} as necessary.
11925
11926 @item %s
11927 Current argument is the name of a library or startup file of some sort.
11928 Search for that file in a standard list of directories and substitute
11929 the full name found. The current working directory is included in the
11930 list of directories scanned.
11931
11932 @item %T
11933 Current argument is the name of a linker script. Search for that file
11934 in the current list of directories to scan for libraries. If the file
11935 is located insert a @option{--script} option into the command line
11936 followed by the full path name found. If the file is not found then
11937 generate an error message. Note: the current working directory is not
11938 searched.
11939
11940 @item %e@var{str}
11941 Print @var{str} as an error message. @var{str} is terminated by a newline.
11942 Use this when inconsistent options are detected.
11943
11944 @item %(@var{name})
11945 Substitute the contents of spec string @var{name} at this point.
11946
11947 @item %x@{@var{option}@}
11948 Accumulate an option for @samp{%X}.
11949
11950 @item %X
11951 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
11952 spec string.
11953
11954 @item %Y
11955 Output the accumulated assembler options specified by @option{-Wa}.
11956
11957 @item %Z
11958 Output the accumulated preprocessor options specified by @option{-Wp}.
11959
11960 @item %a
11961 Process the @code{asm} spec. This is used to compute the
11962 switches to be passed to the assembler.
11963
11964 @item %A
11965 Process the @code{asm_final} spec. This is a spec string for
11966 passing switches to an assembler post-processor, if such a program is
11967 needed.
11968
11969 @item %l
11970 Process the @code{link} spec. This is the spec for computing the
11971 command line passed to the linker. Typically it makes use of the
11972 @samp{%L %G %S %D and %E} sequences.
11973
11974 @item %D
11975 Dump out a @option{-L} option for each directory that GCC believes might
11976 contain startup files. If the target supports multilibs then the
11977 current multilib directory is prepended to each of these paths.
11978
11979 @item %L
11980 Process the @code{lib} spec. This is a spec string for deciding which
11981 libraries are included on the command line to the linker.
11982
11983 @item %G
11984 Process the @code{libgcc} spec. This is a spec string for deciding
11985 which GCC support library is included on the command line to the linker.
11986
11987 @item %S
11988 Process the @code{startfile} spec. This is a spec for deciding which
11989 object files are the first ones passed to the linker. Typically
11990 this might be a file named @file{crt0.o}.
11991
11992 @item %E
11993 Process the @code{endfile} spec. This is a spec string that specifies
11994 the last object files that are passed to the linker.
11995
11996 @item %C
11997 Process the @code{cpp} spec. This is used to construct the arguments
11998 to be passed to the C preprocessor.
11999
12000 @item %1
12001 Process the @code{cc1} spec. This is used to construct the options to be
12002 passed to the actual C compiler (@command{cc1}).
12003
12004 @item %2
12005 Process the @code{cc1plus} spec. This is used to construct the options to be
12006 passed to the actual C++ compiler (@command{cc1plus}).
12007
12008 @item %*
12009 Substitute the variable part of a matched option. See below.
12010 Note that each comma in the substituted string is replaced by
12011 a single space.
12012
12013 @item %<@code{S}
12014 Remove all occurrences of @code{-S} from the command line. Note---this
12015 command is position dependent. @samp{%} commands in the spec string
12016 before this one see @code{-S}, @samp{%} commands in the spec string
12017 after this one do not.
12018
12019 @item %:@var{function}(@var{args})
12020 Call the named function @var{function}, passing it @var{args}.
12021 @var{args} is first processed as a nested spec string, then split
12022 into an argument vector in the usual fashion. The function returns
12023 a string which is processed as if it had appeared literally as part
12024 of the current spec.
12025
12026 The following built-in spec functions are provided:
12027
12028 @table @code
12029 @item @code{getenv}
12030 The @code{getenv} spec function takes two arguments: an environment
12031 variable name and a string. If the environment variable is not
12032 defined, a fatal error is issued. Otherwise, the return value is the
12033 value of the environment variable concatenated with the string. For
12034 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
12035
12036 @smallexample
12037 %:getenv(TOPDIR /include)
12038 @end smallexample
12039
12040 expands to @file{/path/to/top/include}.
12041
12042 @item @code{if-exists}
12043 The @code{if-exists} spec function takes one argument, an absolute
12044 pathname to a file. If the file exists, @code{if-exists} returns the
12045 pathname. Here is a small example of its usage:
12046
12047 @smallexample
12048 *startfile:
12049 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
12050 @end smallexample
12051
12052 @item @code{if-exists-else}
12053 The @code{if-exists-else} spec function is similar to the @code{if-exists}
12054 spec function, except that it takes two arguments. The first argument is
12055 an absolute pathname to a file. If the file exists, @code{if-exists-else}
12056 returns the pathname. If it does not exist, it returns the second argument.
12057 This way, @code{if-exists-else} can be used to select one file or another,
12058 based on the existence of the first. Here is a small example of its usage:
12059
12060 @smallexample
12061 *startfile:
12062 crt0%O%s %:if-exists(crti%O%s) \
12063 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
12064 @end smallexample
12065
12066 @item @code{replace-outfile}
12067 The @code{replace-outfile} spec function takes two arguments. It looks for the
12068 first argument in the outfiles array and replaces it with the second argument. Here
12069 is a small example of its usage:
12070
12071 @smallexample
12072 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
12073 @end smallexample
12074
12075 @item @code{remove-outfile}
12076 The @code{remove-outfile} spec function takes one argument. It looks for the
12077 first argument in the outfiles array and removes it. Here is a small example
12078 its usage:
12079
12080 @smallexample
12081 %:remove-outfile(-lm)
12082 @end smallexample
12083
12084 @item @code{pass-through-libs}
12085 The @code{pass-through-libs} spec function takes any number of arguments. It
12086 finds any @option{-l} options and any non-options ending in @file{.a} (which it
12087 assumes are the names of linker input library archive files) and returns a
12088 result containing all the found arguments each prepended by
12089 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
12090 intended to be passed to the LTO linker plugin.
12091
12092 @smallexample
12093 %:pass-through-libs(%G %L %G)
12094 @end smallexample
12095
12096 @item @code{print-asm-header}
12097 The @code{print-asm-header} function takes no arguments and simply
12098 prints a banner like:
12099
12100 @smallexample
12101 Assembler options
12102 =================
12103
12104 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12105 @end smallexample
12106
12107 It is used to separate compiler options from assembler options
12108 in the @option{--target-help} output.
12109 @end table
12110
12111 @item %@{@code{S}@}
12112 Substitutes the @code{-S} switch, if that switch is given to GCC@.
12113 If that switch is not specified, this substitutes nothing. Note that
12114 the leading dash is omitted when specifying this option, and it is
12115 automatically inserted if the substitution is performed. Thus the spec
12116 string @samp{%@{foo@}} matches the command-line option @option{-foo}
12117 and outputs the command-line option @option{-foo}.
12118
12119 @item %W@{@code{S}@}
12120 Like %@{@code{S}@} but mark last argument supplied within as a file to be
12121 deleted on failure.
12122
12123 @item %@{@code{S}*@}
12124 Substitutes all the switches specified to GCC whose names start
12125 with @code{-S}, but which also take an argument. This is used for
12126 switches like @option{-o}, @option{-D}, @option{-I}, etc.
12127 GCC considers @option{-o foo} as being
12128 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
12129 text, including the space. Thus two arguments are generated.
12130
12131 @item %@{@code{S}*&@code{T}*@}
12132 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12133 (the order of @code{S} and @code{T} in the spec is not significant).
12134 There can be any number of ampersand-separated variables; for each the
12135 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
12136
12137 @item %@{@code{S}:@code{X}@}
12138 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12139
12140 @item %@{!@code{S}:@code{X}@}
12141 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12142
12143 @item %@{@code{S}*:@code{X}@}
12144 Substitutes @code{X} if one or more switches whose names start with
12145 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
12146 once, no matter how many such switches appeared. However, if @code{%*}
12147 appears somewhere in @code{X}, then @code{X} is substituted once
12148 for each matching switch, with the @code{%*} replaced by the part of
12149 that switch matching the @code{*}.
12150
12151 If @code{%*} appears as the last part of a spec sequence then a space
12152 is added after the end of the last substitution. If there is more
12153 text in the sequence, however, then a space is not generated. This
12154 allows the @code{%*} substitution to be used as part of a larger
12155 string. For example, a spec string like this:
12156
12157 @smallexample
12158 %@{mcu=*:--script=%*/memory.ld@}
12159 @end smallexample
12160
12161 @noindent
12162 when matching an option like @option{-mcu=newchip} produces:
12163
12164 @smallexample
12165 --script=newchip/memory.ld
12166 @end smallexample
12167
12168 @item %@{.@code{S}:@code{X}@}
12169 Substitutes @code{X}, if processing a file with suffix @code{S}.
12170
12171 @item %@{!.@code{S}:@code{X}@}
12172 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12173
12174 @item %@{,@code{S}:@code{X}@}
12175 Substitutes @code{X}, if processing a file for language @code{S}.
12176
12177 @item %@{!,@code{S}:@code{X}@}
12178 Substitutes @code{X}, if not processing a file for language @code{S}.
12179
12180 @item %@{@code{S}|@code{P}:@code{X}@}
12181 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12182 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12183 @code{*} sequences as well, although they have a stronger binding than
12184 the @samp{|}. If @code{%*} appears in @code{X}, all of the
12185 alternatives must be starred, and only the first matching alternative
12186 is substituted.
12187
12188 For example, a spec string like this:
12189
12190 @smallexample
12191 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12192 @end smallexample
12193
12194 @noindent
12195 outputs the following command-line options from the following input
12196 command-line options:
12197
12198 @smallexample
12199 fred.c -foo -baz
12200 jim.d -bar -boggle
12201 -d fred.c -foo -baz -boggle
12202 -d jim.d -bar -baz -boggle
12203 @end smallexample
12204
12205 @item %@{S:X; T:Y; :D@}
12206
12207 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12208 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
12209 be as many clauses as you need. This may be combined with @code{.},
12210 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
12211
12212
12213 @end table
12214
12215 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12216 construct may contain other nested @samp{%} constructs or spaces, or
12217 even newlines. They are processed as usual, as described above.
12218 Trailing white space in @code{X} is ignored. White space may also
12219 appear anywhere on the left side of the colon in these constructs,
12220 except between @code{.} or @code{*} and the corresponding word.
12221
12222 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12223 handled specifically in these constructs. If another value of
12224 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
12225 @option{-W} switch is found later in the command line, the earlier
12226 switch value is ignored, except with @{@code{S}*@} where @code{S} is
12227 just one letter, which passes all matching options.
12228
12229 The character @samp{|} at the beginning of the predicate text is used to
12230 indicate that a command should be piped to the following command, but
12231 only if @option{-pipe} is specified.
12232
12233 It is built into GCC which switches take arguments and which do not.
12234 (You might think it would be useful to generalize this to allow each
12235 compiler's spec to say which switches take arguments. But this cannot
12236 be done in a consistent fashion. GCC cannot even decide which input
12237 files have been specified without knowing which switches take arguments,
12238 and it must know which input files to compile in order to tell which
12239 compilers to run).
12240
12241 GCC also knows implicitly that arguments starting in @option{-l} are to be
12242 treated as compiler output files, and passed to the linker in their
12243 proper position among the other output files.
12244
12245 @c man begin OPTIONS
12246
12247 @node Target Options
12248 @section Specifying Target Machine and Compiler Version
12249 @cindex target options
12250 @cindex cross compiling
12251 @cindex specifying machine version
12252 @cindex specifying compiler version and target machine
12253 @cindex compiler version, specifying
12254 @cindex target machine, specifying
12255
12256 The usual way to run GCC is to run the executable called @command{gcc}, or
12257 @command{@var{machine}-gcc} when cross-compiling, or
12258 @command{@var{machine}-gcc-@var{version}} to run a version other than the
12259 one that was installed last.
12260
12261 @node Submodel Options
12262 @section Hardware Models and Configurations
12263 @cindex submodel options
12264 @cindex specifying hardware config
12265 @cindex hardware models and configurations, specifying
12266 @cindex machine dependent options
12267
12268 Each target machine types can have its own
12269 special options, starting with @samp{-m}, to choose among various
12270 hardware models or configurations---for example, 68010 vs 68020,
12271 floating coprocessor or none. A single installed version of the
12272 compiler can compile for any model or configuration, according to the
12273 options specified.
12274
12275 Some configurations of the compiler also support additional special
12276 options, usually for compatibility with other compilers on the same
12277 platform.
12278
12279 @c This list is ordered alphanumerically by subsection name.
12280 @c It should be the same order and spelling as these options are listed
12281 @c in Machine Dependent Options
12282
12283 @menu
12284 * AArch64 Options::
12285 * Adapteva Epiphany Options::
12286 * ARC Options::
12287 * ARM Options::
12288 * AVR Options::
12289 * Blackfin Options::
12290 * C6X Options::
12291 * CRIS Options::
12292 * CR16 Options::
12293 * Darwin Options::
12294 * DEC Alpha Options::
12295 * FR30 Options::
12296 * FT32 Options::
12297 * FRV Options::
12298 * GNU/Linux Options::
12299 * H8/300 Options::
12300 * HPPA Options::
12301 * IA-64 Options::
12302 * LM32 Options::
12303 * M32C Options::
12304 * M32R/D Options::
12305 * M680x0 Options::
12306 * MCore Options::
12307 * MeP Options::
12308 * MicroBlaze Options::
12309 * MIPS Options::
12310 * MMIX Options::
12311 * MN10300 Options::
12312 * Moxie Options::
12313 * MSP430 Options::
12314 * NDS32 Options::
12315 * Nios II Options::
12316 * Nvidia PTX Options::
12317 * PDP-11 Options::
12318 * picoChip Options::
12319 * PowerPC Options::
12320 * RL78 Options::
12321 * RS/6000 and PowerPC Options::
12322 * RX Options::
12323 * S/390 and zSeries Options::
12324 * Score Options::
12325 * SH Options::
12326 * Solaris 2 Options::
12327 * SPARC Options::
12328 * SPU Options::
12329 * System V Options::
12330 * TILE-Gx Options::
12331 * TILEPro Options::
12332 * V850 Options::
12333 * VAX Options::
12334 * Visium Options::
12335 * VMS Options::
12336 * VxWorks Options::
12337 * x86 Options::
12338 * x86 Windows Options::
12339 * Xstormy16 Options::
12340 * Xtensa Options::
12341 * zSeries Options::
12342 @end menu
12343
12344 @node AArch64 Options
12345 @subsection AArch64 Options
12346 @cindex AArch64 Options
12347
12348 These options are defined for AArch64 implementations:
12349
12350 @table @gcctabopt
12351
12352 @item -mabi=@var{name}
12353 @opindex mabi
12354 Generate code for the specified data model. Permissible values
12355 are @samp{ilp32} for SysV-like data model where int, long int and pointer
12356 are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12357 but long int and pointer are 64-bit.
12358
12359 The default depends on the specific target configuration. Note that
12360 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12361 entire program with the same ABI, and link with a compatible set of libraries.
12362
12363 @item -mbig-endian
12364 @opindex mbig-endian
12365 Generate big-endian code. This is the default when GCC is configured for an
12366 @samp{aarch64_be-*-*} target.
12367
12368 @item -mgeneral-regs-only
12369 @opindex mgeneral-regs-only
12370 Generate code which uses only the general-purpose registers. This is equivalent
12371 to feature modifier @option{nofp} of @option{-march} or @option{-mcpu}, except
12372 that @option{-mgeneral-regs-only} takes precedence over any conflicting feature
12373 modifier regardless of sequence.
12374
12375 @item -mlittle-endian
12376 @opindex mlittle-endian
12377 Generate little-endian code. This is the default when GCC is configured for an
12378 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12379
12380 @item -mcmodel=tiny
12381 @opindex mcmodel=tiny
12382 Generate code for the tiny code model. The program and its statically defined
12383 symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
12384 be statically or dynamically linked. This model is not fully implemented and
12385 mostly treated as @samp{small}.
12386
12387 @item -mcmodel=small
12388 @opindex mcmodel=small
12389 Generate code for the small code model. The program and its statically defined
12390 symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
12391 be statically or dynamically linked. This is the default code model.
12392
12393 @item -mcmodel=large
12394 @opindex mcmodel=large
12395 Generate code for the large code model. This makes no assumptions about
12396 addresses and sizes of sections. Pointers are 64 bits. Programs can be
12397 statically linked only.
12398
12399 @item -mstrict-align
12400 @opindex mstrict-align
12401 Do not assume that unaligned memory references are handled by the system.
12402
12403 @item -momit-leaf-frame-pointer
12404 @itemx -mno-omit-leaf-frame-pointer
12405 @opindex momit-leaf-frame-pointer
12406 @opindex mno-omit-leaf-frame-pointer
12407 Omit or keep the frame pointer in leaf functions. The former behaviour is the
12408 default.
12409
12410 @item -mtls-dialect=desc
12411 @opindex mtls-dialect=desc
12412 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12413 of TLS variables. This is the default.
12414
12415 @item -mtls-dialect=traditional
12416 @opindex mtls-dialect=traditional
12417 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12418 of TLS variables.
12419
12420 @item -mtls-size=@var{size}
12421 @opindex mtls-size
12422 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
12423 This option depends on binutils higher than 2.25.
12424
12425 @item -mfix-cortex-a53-835769
12426 @itemx -mno-fix-cortex-a53-835769
12427 @opindex mfix-cortex-a53-835769
12428 @opindex mno-fix-cortex-a53-835769
12429 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12430 This involves inserting a NOP instruction between memory instructions and
12431 64-bit integer multiply-accumulate instructions.
12432
12433 @item -mfix-cortex-a53-843419
12434 @itemx -mno-fix-cortex-a53-843419
12435 @opindex mfix-cortex-a53-843419
12436 @opindex mno-fix-cortex-a53-843419
12437 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12438 This erratum workaround is made at link time and this will only pass the
12439 corresponding flag to the linker.
12440
12441 @item -march=@var{name}
12442 @opindex march
12443 Specify the name of the target architecture, optionally suffixed by one or
12444 more feature modifiers. This option has the form
12445 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
12446
12447 The permissible values for @var{arch} are @samp{armv8-a} or
12448 @samp{armv8.1-a}.
12449
12450 For the permissible values for @var{feature}, see the sub-section on
12451 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12452 Feature Modifiers}. Where conflicting feature modifiers are
12453 specified, the right-most feature is used.
12454
12455 Additionally on native AArch64 GNU/Linux systems the value
12456 @samp{native} is available. This option causes the compiler to pick the
12457 architecture of the host system. If the compiler is unable to recognize the
12458 architecture of the host system this option has no effect.
12459
12460 GCC uses @var{name} to determine what kind of instructions it can emit
12461 when generating assembly code. If @option{-march} is specified
12462 without either of @option{-mtune} or @option{-mcpu} also being
12463 specified, the code is tuned to perform well across a range of target
12464 processors implementing the target architecture.
12465
12466 @item -mtune=@var{name}
12467 @opindex mtune
12468 Specify the name of the target processor for which GCC should tune the
12469 performance of the code. Permissible values for this option are:
12470 @samp{generic}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
12471 @samp{exynos-m1}, @samp{thunderx}, @samp{xgene1}.
12472
12473 Additionally, this option can specify that GCC should tune the performance
12474 of the code for a big.LITTLE system. Permissible values for this
12475 option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12476
12477 Additionally on native AArch64 GNU/Linux systems the value
12478 @samp{native} is available. This option causes the compiler to pick
12479 the architecture of and tune the performance of the code for the
12480 processor of the host system. If the compiler is unable to recognize
12481 the processor of the host system this option has no effect.
12482
12483 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12484 are specified, the code is tuned to perform well across a range
12485 of target processors.
12486
12487 This option cannot be suffixed by feature modifiers.
12488
12489 @item -mcpu=@var{name}
12490 @opindex mcpu
12491 Specify the name of the target processor, optionally suffixed by one
12492 or more feature modifiers. This option has the form
12493 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
12494 the permissible values for @var{cpu} are the same as those available
12495 for @option{-mtune}. The permissible values for @var{feature} are
12496 documented in the sub-section on
12497 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
12498 Feature Modifiers}. Where conflicting feature modifiers are
12499 specified, the right-most feature is used.
12500
12501 Additionally on native AArch64 GNU/Linux systems the value
12502 @samp{native} is available. This option causes the compiler to tune
12503 the performance of the code for the processor of the host system. If
12504 the compiler is unable to recognize the processor of the host system
12505 this option has no effect.
12506
12507 GCC uses @var{name} to determine what kind of instructions it can emit when
12508 generating assembly code (as if by @option{-march}) and to determine
12509 the target processor for which to tune for performance (as if
12510 by @option{-mtune}). Where this option is used in conjunction
12511 with @option{-march} or @option{-mtune}, those options take precedence
12512 over the appropriate part of this option.
12513
12514 @item -moverride=@var{string}
12515 @opindex moverride
12516 Override tuning decisions made by the back-end in response to a
12517 @option{-mtune=} switch. The syntax, semantics, and accepted values
12518 for @var{string} in this option are not guaranteed to be consistent
12519 across releases.
12520
12521 This option is only intended to be useful when developing GCC.
12522
12523 @item -mpc-relative-literal-loads
12524 @opindex mpcrelativeliteralloads
12525 Enable PC relative literal loads. If this option is used, literal
12526 pools are assumed to have a range of up to 1MiB and an appropriate
12527 instruction sequence is used. This option has no impact when used
12528 with @option{-mcmodel=tiny}.
12529
12530 @end table
12531
12532 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12533 @anchor{aarch64-feature-modifiers}
12534 @cindex @option{-march} feature modifiers
12535 @cindex @option{-mcpu} feature modifiers
12536 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
12537 the following and their inverses @option{no@var{feature}}:
12538
12539 @table @samp
12540 @item crc
12541 Enable CRC extension.
12542 @item crypto
12543 Enable Crypto extension. This also enables Advanced SIMD and floating-point
12544 instructions.
12545 @item fp
12546 Enable floating-point instructions. This is on by default for all possible
12547 values for options @option{-march} and @option{-mcpu}.
12548 @item simd
12549 Enable Advanced SIMD instructions. This also enables floating-point
12550 instructions. This is on by default for all possible values for options
12551 @option{-march} and @option{-mcpu}.
12552 @item lse
12553 Enable Large System Extension instructions.
12554 @item pan
12555 Enable Privileged Access Never support.
12556 @item lor
12557 Enable Limited Ordering Regions support.
12558 @item rdma
12559 Enable ARMv8.1 Advanced SIMD instructions. This implies Advanced SIMD
12560 is enabled.
12561
12562 @end table
12563
12564 That is, @option{crypto} implies @option{simd} implies @option{fp}.
12565 Conversely, @option{nofp} (or equivalently, @option{-mgeneral-regs-only})
12566 implies @option{nosimd} implies @option{nocrypto}.
12567
12568 @node Adapteva Epiphany Options
12569 @subsection Adapteva Epiphany Options
12570
12571 These @samp{-m} options are defined for Adapteva Epiphany:
12572
12573 @table @gcctabopt
12574 @item -mhalf-reg-file
12575 @opindex mhalf-reg-file
12576 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12577 That allows code to run on hardware variants that lack these registers.
12578
12579 @item -mprefer-short-insn-regs
12580 @opindex mprefer-short-insn-regs
12581 Preferrentially allocate registers that allow short instruction generation.
12582 This can result in increased instruction count, so this may either reduce or
12583 increase overall code size.
12584
12585 @item -mbranch-cost=@var{num}
12586 @opindex mbranch-cost
12587 Set the cost of branches to roughly @var{num} ``simple'' instructions.
12588 This cost is only a heuristic and is not guaranteed to produce
12589 consistent results across releases.
12590
12591 @item -mcmove
12592 @opindex mcmove
12593 Enable the generation of conditional moves.
12594
12595 @item -mnops=@var{num}
12596 @opindex mnops
12597 Emit @var{num} NOPs before every other generated instruction.
12598
12599 @item -mno-soft-cmpsf
12600 @opindex mno-soft-cmpsf
12601 For single-precision floating-point comparisons, emit an @code{fsub} instruction
12602 and test the flags. This is faster than a software comparison, but can
12603 get incorrect results in the presence of NaNs, or when two different small
12604 numbers are compared such that their difference is calculated as zero.
12605 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12606 software comparisons.
12607
12608 @item -mstack-offset=@var{num}
12609 @opindex mstack-offset
12610 Set the offset between the top of the stack and the stack pointer.
12611 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12612 can be used by leaf functions without stack allocation.
12613 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12614 Note also that this option changes the ABI; compiling a program with a
12615 different stack offset than the libraries have been compiled with
12616 generally does not work.
12617 This option can be useful if you want to evaluate if a different stack
12618 offset would give you better code, but to actually use a different stack
12619 offset to build working programs, it is recommended to configure the
12620 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12621
12622 @item -mno-round-nearest
12623 @opindex mno-round-nearest
12624 Make the scheduler assume that the rounding mode has been set to
12625 truncating. The default is @option{-mround-nearest}.
12626
12627 @item -mlong-calls
12628 @opindex mlong-calls
12629 If not otherwise specified by an attribute, assume all calls might be beyond
12630 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12631 function address into a register before performing a (otherwise direct) call.
12632 This is the default.
12633
12634 @item -mshort-calls
12635 @opindex short-calls
12636 If not otherwise specified by an attribute, assume all direct calls are
12637 in the range of the @code{b} / @code{bl} instructions, so use these instructions
12638 for direct calls. The default is @option{-mlong-calls}.
12639
12640 @item -msmall16
12641 @opindex msmall16
12642 Assume addresses can be loaded as 16-bit unsigned values. This does not
12643 apply to function addresses for which @option{-mlong-calls} semantics
12644 are in effect.
12645
12646 @item -mfp-mode=@var{mode}
12647 @opindex mfp-mode
12648 Set the prevailing mode of the floating-point unit.
12649 This determines the floating-point mode that is provided and expected
12650 at function call and return time. Making this mode match the mode you
12651 predominantly need at function start can make your programs smaller and
12652 faster by avoiding unnecessary mode switches.
12653
12654 @var{mode} can be set to one the following values:
12655
12656 @table @samp
12657 @item caller
12658 Any mode at function entry is valid, and retained or restored when
12659 the function returns, and when it calls other functions.
12660 This mode is useful for compiling libraries or other compilation units
12661 you might want to incorporate into different programs with different
12662 prevailing FPU modes, and the convenience of being able to use a single
12663 object file outweighs the size and speed overhead for any extra
12664 mode switching that might be needed, compared with what would be needed
12665 with a more specific choice of prevailing FPU mode.
12666
12667 @item truncate
12668 This is the mode used for floating-point calculations with
12669 truncating (i.e.@: round towards zero) rounding mode. That includes
12670 conversion from floating point to integer.
12671
12672 @item round-nearest
12673 This is the mode used for floating-point calculations with
12674 round-to-nearest-or-even rounding mode.
12675
12676 @item int
12677 This is the mode used to perform integer calculations in the FPU, e.g.@:
12678 integer multiply, or integer multiply-and-accumulate.
12679 @end table
12680
12681 The default is @option{-mfp-mode=caller}
12682
12683 @item -mnosplit-lohi
12684 @itemx -mno-postinc
12685 @itemx -mno-postmodify
12686 @opindex mnosplit-lohi
12687 @opindex mno-postinc
12688 @opindex mno-postmodify
12689 Code generation tweaks that disable, respectively, splitting of 32-bit
12690 loads, generation of post-increment addresses, and generation of
12691 post-modify addresses. The defaults are @option{msplit-lohi},
12692 @option{-mpost-inc}, and @option{-mpost-modify}.
12693
12694 @item -mnovect-double
12695 @opindex mno-vect-double
12696 Change the preferred SIMD mode to SImode. The default is
12697 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
12698
12699 @item -max-vect-align=@var{num}
12700 @opindex max-vect-align
12701 The maximum alignment for SIMD vector mode types.
12702 @var{num} may be 4 or 8. The default is 8.
12703 Note that this is an ABI change, even though many library function
12704 interfaces are unaffected if they don't use SIMD vector modes
12705 in places that affect size and/or alignment of relevant types.
12706
12707 @item -msplit-vecmove-early
12708 @opindex msplit-vecmove-early
12709 Split vector moves into single word moves before reload. In theory this
12710 can give better register allocation, but so far the reverse seems to be
12711 generally the case.
12712
12713 @item -m1reg-@var{reg}
12714 @opindex m1reg-
12715 Specify a register to hold the constant @minus{}1, which makes loading small negative
12716 constants and certain bitmasks faster.
12717 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12718 which specify use of that register as a fixed register,
12719 and @samp{none}, which means that no register is used for this
12720 purpose. The default is @option{-m1reg-none}.
12721
12722 @end table
12723
12724 @node ARC Options
12725 @subsection ARC Options
12726 @cindex ARC options
12727
12728 The following options control the architecture variant for which code
12729 is being compiled:
12730
12731 @c architecture variants
12732 @table @gcctabopt
12733
12734 @item -mbarrel-shifter
12735 @opindex mbarrel-shifter
12736 Generate instructions supported by barrel shifter. This is the default
12737 unless @option{-mcpu=ARC601} is in effect.
12738
12739 @item -mcpu=@var{cpu}
12740 @opindex mcpu
12741 Set architecture type, register usage, and instruction scheduling
12742 parameters for @var{cpu}. There are also shortcut alias options
12743 available for backward compatibility and convenience. Supported
12744 values for @var{cpu} are
12745
12746 @table @samp
12747 @opindex mA6
12748 @opindex mARC600
12749 @item ARC600
12750 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
12751
12752 @item ARC601
12753 @opindex mARC601
12754 Compile for ARC601. Alias: @option{-mARC601}.
12755
12756 @item ARC700
12757 @opindex mA7
12758 @opindex mARC700
12759 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
12760 This is the default when configured with @option{--with-cpu=arc700}@.
12761 @end table
12762
12763 @item -mdpfp
12764 @opindex mdpfp
12765 @itemx -mdpfp-compact
12766 @opindex mdpfp-compact
12767 FPX: Generate Double Precision FPX instructions, tuned for the compact
12768 implementation.
12769
12770 @item -mdpfp-fast
12771 @opindex mdpfp-fast
12772 FPX: Generate Double Precision FPX instructions, tuned for the fast
12773 implementation.
12774
12775 @item -mno-dpfp-lrsr
12776 @opindex mno-dpfp-lrsr
12777 Disable LR and SR instructions from using FPX extension aux registers.
12778
12779 @item -mea
12780 @opindex mea
12781 Generate Extended arithmetic instructions. Currently only
12782 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12783 supported. This is always enabled for @option{-mcpu=ARC700}.
12784
12785 @item -mno-mpy
12786 @opindex mno-mpy
12787 Do not generate mpy instructions for ARC700.
12788
12789 @item -mmul32x16
12790 @opindex mmul32x16
12791 Generate 32x16 bit multiply and mac instructions.
12792
12793 @item -mmul64
12794 @opindex mmul64
12795 Generate mul64 and mulu64 instructions. Only valid for @option{-mcpu=ARC600}.
12796
12797 @item -mnorm
12798 @opindex mnorm
12799 Generate norm instruction. This is the default if @option{-mcpu=ARC700}
12800 is in effect.
12801
12802 @item -mspfp
12803 @opindex mspfp
12804 @itemx -mspfp-compact
12805 @opindex mspfp-compact
12806 FPX: Generate Single Precision FPX instructions, tuned for the compact
12807 implementation.
12808
12809 @item -mspfp-fast
12810 @opindex mspfp-fast
12811 FPX: Generate Single Precision FPX instructions, tuned for the fast
12812 implementation.
12813
12814 @item -msimd
12815 @opindex msimd
12816 Enable generation of ARC SIMD instructions via target-specific
12817 builtins. Only valid for @option{-mcpu=ARC700}.
12818
12819 @item -msoft-float
12820 @opindex msoft-float
12821 This option ignored; it is provided for compatibility purposes only.
12822 Software floating point code is emitted by default, and this default
12823 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
12824 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
12825 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
12826
12827 @item -mswap
12828 @opindex mswap
12829 Generate swap instructions.
12830
12831 @end table
12832
12833 The following options are passed through to the assembler, and also
12834 define preprocessor macro symbols.
12835
12836 @c Flags used by the assembler, but for which we define preprocessor
12837 @c macro symbols as well.
12838 @table @gcctabopt
12839 @item -mdsp-packa
12840 @opindex mdsp-packa
12841 Passed down to the assembler to enable the DSP Pack A extensions.
12842 Also sets the preprocessor symbol @code{__Xdsp_packa}.
12843
12844 @item -mdvbf
12845 @opindex mdvbf
12846 Passed down to the assembler to enable the dual viterbi butterfly
12847 extension. Also sets the preprocessor symbol @code{__Xdvbf}.
12848
12849 @c ARC700 4.10 extension instruction
12850 @item -mlock
12851 @opindex mlock
12852 Passed down to the assembler to enable the Locked Load/Store
12853 Conditional extension. Also sets the preprocessor symbol
12854 @code{__Xlock}.
12855
12856 @item -mmac-d16
12857 @opindex mmac-d16
12858 Passed down to the assembler. Also sets the preprocessor symbol
12859 @code{__Xxmac_d16}.
12860
12861 @item -mmac-24
12862 @opindex mmac-24
12863 Passed down to the assembler. Also sets the preprocessor symbol
12864 @code{__Xxmac_24}.
12865
12866 @c ARC700 4.10 extension instruction
12867 @item -mrtsc
12868 @opindex mrtsc
12869 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
12870 extension instruction. Also sets the preprocessor symbol
12871 @code{__Xrtsc}.
12872
12873 @c ARC700 4.10 extension instruction
12874 @item -mswape
12875 @opindex mswape
12876 Passed down to the assembler to enable the swap byte ordering
12877 extension instruction. Also sets the preprocessor symbol
12878 @code{__Xswape}.
12879
12880 @item -mtelephony
12881 @opindex mtelephony
12882 Passed down to the assembler to enable dual and single operand
12883 instructions for telephony. Also sets the preprocessor symbol
12884 @code{__Xtelephony}.
12885
12886 @item -mxy
12887 @opindex mxy
12888 Passed down to the assembler to enable the XY Memory extension. Also
12889 sets the preprocessor symbol @code{__Xxy}.
12890
12891 @end table
12892
12893 The following options control how the assembly code is annotated:
12894
12895 @c Assembly annotation options
12896 @table @gcctabopt
12897 @item -misize
12898 @opindex misize
12899 Annotate assembler instructions with estimated addresses.
12900
12901 @item -mannotate-align
12902 @opindex mannotate-align
12903 Explain what alignment considerations lead to the decision to make an
12904 instruction short or long.
12905
12906 @end table
12907
12908 The following options are passed through to the linker:
12909
12910 @c options passed through to the linker
12911 @table @gcctabopt
12912 @item -marclinux
12913 @opindex marclinux
12914 Passed through to the linker, to specify use of the @code{arclinux} emulation.
12915 This option is enabled by default in tool chains built for
12916 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
12917 when profiling is not requested.
12918
12919 @item -marclinux_prof
12920 @opindex marclinux_prof
12921 Passed through to the linker, to specify use of the
12922 @code{arclinux_prof} emulation. This option is enabled by default in
12923 tool chains built for @w{@code{arc-linux-uclibc}} and
12924 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
12925
12926 @end table
12927
12928 The following options control the semantics of generated code:
12929
12930 @c semantically relevant code generation options
12931 @table @gcctabopt
12932 @item -mepilogue-cfi
12933 @opindex mepilogue-cfi
12934 Enable generation of call frame information for epilogues.
12935
12936 @item -mno-epilogue-cfi
12937 @opindex mno-epilogue-cfi
12938 Disable generation of call frame information for epilogues.
12939
12940 @item -mlong-calls
12941 @opindex mlong-calls
12942 Generate call insns as register indirect calls, thus providing access
12943 to the full 32-bit address range.
12944
12945 @item -mmedium-calls
12946 @opindex mmedium-calls
12947 Don't use less than 25 bit addressing range for calls, which is the
12948 offset available for an unconditional branch-and-link
12949 instruction. Conditional execution of function calls is suppressed, to
12950 allow use of the 25-bit range, rather than the 21-bit range with
12951 conditional branch-and-link. This is the default for tool chains built
12952 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
12953
12954 @item -mno-sdata
12955 @opindex mno-sdata
12956 Do not generate sdata references. This is the default for tool chains
12957 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
12958 targets.
12959
12960 @item -mucb-mcount
12961 @opindex mucb-mcount
12962 Instrument with mcount calls as used in UCB code. I.e. do the
12963 counting in the callee, not the caller. By default ARC instrumentation
12964 counts in the caller.
12965
12966 @item -mvolatile-cache
12967 @opindex mvolatile-cache
12968 Use ordinarily cached memory accesses for volatile references. This is the
12969 default.
12970
12971 @item -mno-volatile-cache
12972 @opindex mno-volatile-cache
12973 Enable cache bypass for volatile references.
12974
12975 @end table
12976
12977 The following options fine tune code generation:
12978 @c code generation tuning options
12979 @table @gcctabopt
12980 @item -malign-call
12981 @opindex malign-call
12982 Do alignment optimizations for call instructions.
12983
12984 @item -mauto-modify-reg
12985 @opindex mauto-modify-reg
12986 Enable the use of pre/post modify with register displacement.
12987
12988 @item -mbbit-peephole
12989 @opindex mbbit-peephole
12990 Enable bbit peephole2.
12991
12992 @item -mno-brcc
12993 @opindex mno-brcc
12994 This option disables a target-specific pass in @file{arc_reorg} to
12995 generate @code{BRcc} instructions. It has no effect on @code{BRcc}
12996 generation driven by the combiner pass.
12997
12998 @item -mcase-vector-pcrel
12999 @opindex mcase-vector-pcrel
13000 Use pc-relative switch case tables - this enables case table shortening.
13001 This is the default for @option{-Os}.
13002
13003 @item -mcompact-casesi
13004 @opindex mcompact-casesi
13005 Enable compact casesi pattern.
13006 This is the default for @option{-Os}.
13007
13008 @item -mno-cond-exec
13009 @opindex mno-cond-exec
13010 Disable ARCompact specific pass to generate conditional execution instructions.
13011 Due to delay slot scheduling and interactions between operand numbers,
13012 literal sizes, instruction lengths, and the support for conditional execution,
13013 the target-independent pass to generate conditional execution is often lacking,
13014 so the ARC port has kept a special pass around that tries to find more
13015 conditional execution generating opportunities after register allocation,
13016 branch shortening, and delay slot scheduling have been done. This pass
13017 generally, but not always, improves performance and code size, at the cost of
13018 extra compilation time, which is why there is an option to switch it off.
13019 If you have a problem with call instructions exceeding their allowable
13020 offset range because they are conditionalized, you should consider using
13021 @option{-mmedium-calls} instead.
13022
13023 @item -mearly-cbranchsi
13024 @opindex mearly-cbranchsi
13025 Enable pre-reload use of the cbranchsi pattern.
13026
13027 @item -mexpand-adddi
13028 @opindex mexpand-adddi
13029 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
13030 @code{add.f}, @code{adc} etc.
13031
13032 @item -mindexed-loads
13033 @opindex mindexed-loads
13034 Enable the use of indexed loads. This can be problematic because some
13035 optimizers then assume that indexed stores exist, which is not
13036 the case.
13037
13038 @item -mlra
13039 @opindex mlra
13040 Enable Local Register Allocation. This is still experimental for ARC,
13041 so by default the compiler uses standard reload
13042 (i.e. @option{-mno-lra}).
13043
13044 @item -mlra-priority-none
13045 @opindex mlra-priority-none
13046 Don't indicate any priority for target registers.
13047
13048 @item -mlra-priority-compact
13049 @opindex mlra-priority-compact
13050 Indicate target register priority for r0..r3 / r12..r15.
13051
13052 @item -mlra-priority-noncompact
13053 @opindex mlra-priority-noncompact
13054 Reduce target regsiter priority for r0..r3 / r12..r15.
13055
13056 @item -mno-millicode
13057 @opindex mno-millicode
13058 When optimizing for size (using @option{-Os}), prologues and epilogues
13059 that have to save or restore a large number of registers are often
13060 shortened by using call to a special function in libgcc; this is
13061 referred to as a @emph{millicode} call. As these calls can pose
13062 performance issues, and/or cause linking issues when linking in a
13063 nonstandard way, this option is provided to turn off millicode call
13064 generation.
13065
13066 @item -mmixed-code
13067 @opindex mmixed-code
13068 Tweak register allocation to help 16-bit instruction generation.
13069 This generally has the effect of decreasing the average instruction size
13070 while increasing the instruction count.
13071
13072 @item -mq-class
13073 @opindex mq-class
13074 Enable 'q' instruction alternatives.
13075 This is the default for @option{-Os}.
13076
13077 @item -mRcq
13078 @opindex mRcq
13079 Enable Rcq constraint handling - most short code generation depends on this.
13080 This is the default.
13081
13082 @item -mRcw
13083 @opindex mRcw
13084 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
13085 This is the default.
13086
13087 @item -msize-level=@var{level}
13088 @opindex msize-level
13089 Fine-tune size optimization with regards to instruction lengths and alignment.
13090 The recognized values for @var{level} are:
13091 @table @samp
13092 @item 0
13093 No size optimization. This level is deprecated and treated like @samp{1}.
13094
13095 @item 1
13096 Short instructions are used opportunistically.
13097
13098 @item 2
13099 In addition, alignment of loops and of code after barriers are dropped.
13100
13101 @item 3
13102 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
13103
13104 @end table
13105
13106 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
13107 the behavior when this is not set is equivalent to level @samp{1}.
13108
13109 @item -mtune=@var{cpu}
13110 @opindex mtune
13111 Set instruction scheduling parameters for @var{cpu}, overriding any implied
13112 by @option{-mcpu=}.
13113
13114 Supported values for @var{cpu} are
13115
13116 @table @samp
13117 @item ARC600
13118 Tune for ARC600 cpu.
13119
13120 @item ARC601
13121 Tune for ARC601 cpu.
13122
13123 @item ARC700
13124 Tune for ARC700 cpu with standard multiplier block.
13125
13126 @item ARC700-xmac
13127 Tune for ARC700 cpu with XMAC block.
13128
13129 @item ARC725D
13130 Tune for ARC725D cpu.
13131
13132 @item ARC750D
13133 Tune for ARC750D cpu.
13134
13135 @end table
13136
13137 @item -mmultcost=@var{num}
13138 @opindex mmultcost
13139 Cost to assume for a multiply instruction, with @samp{4} being equal to a
13140 normal instruction.
13141
13142 @item -munalign-prob-threshold=@var{probability}
13143 @opindex munalign-prob-threshold
13144 Set probability threshold for unaligning branches.
13145 When tuning for @samp{ARC700} and optimizing for speed, branches without
13146 filled delay slot are preferably emitted unaligned and long, unless
13147 profiling indicates that the probability for the branch to be taken
13148 is below @var{probability}. @xref{Cross-profiling}.
13149 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13150
13151 @end table
13152
13153 The following options are maintained for backward compatibility, but
13154 are now deprecated and will be removed in a future release:
13155
13156 @c Deprecated options
13157 @table @gcctabopt
13158
13159 @item -margonaut
13160 @opindex margonaut
13161 Obsolete FPX.
13162
13163 @item -mbig-endian
13164 @opindex mbig-endian
13165 @itemx -EB
13166 @opindex EB
13167 Compile code for big endian targets. Use of these options is now
13168 deprecated. Users wanting big-endian code, should use the
13169 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13170 building the tool chain, for which big-endian is the default.
13171
13172 @item -mlittle-endian
13173 @opindex mlittle-endian
13174 @itemx -EL
13175 @opindex EL
13176 Compile code for little endian targets. Use of these options is now
13177 deprecated. Users wanting little-endian code should use the
13178 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13179 building the tool chain, for which little-endian is the default.
13180
13181 @item -mbarrel_shifter
13182 @opindex mbarrel_shifter
13183 Replaced by @option{-mbarrel-shifter}.
13184
13185 @item -mdpfp_compact
13186 @opindex mdpfp_compact
13187 Replaced by @option{-mdpfp-compact}.
13188
13189 @item -mdpfp_fast
13190 @opindex mdpfp_fast
13191 Replaced by @option{-mdpfp-fast}.
13192
13193 @item -mdsp_packa
13194 @opindex mdsp_packa
13195 Replaced by @option{-mdsp-packa}.
13196
13197 @item -mEA
13198 @opindex mEA
13199 Replaced by @option{-mea}.
13200
13201 @item -mmac_24
13202 @opindex mmac_24
13203 Replaced by @option{-mmac-24}.
13204
13205 @item -mmac_d16
13206 @opindex mmac_d16
13207 Replaced by @option{-mmac-d16}.
13208
13209 @item -mspfp_compact
13210 @opindex mspfp_compact
13211 Replaced by @option{-mspfp-compact}.
13212
13213 @item -mspfp_fast
13214 @opindex mspfp_fast
13215 Replaced by @option{-mspfp-fast}.
13216
13217 @item -mtune=@var{cpu}
13218 @opindex mtune
13219 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13220 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13221 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13222
13223 @item -multcost=@var{num}
13224 @opindex multcost
13225 Replaced by @option{-mmultcost}.
13226
13227 @end table
13228
13229 @node ARM Options
13230 @subsection ARM Options
13231 @cindex ARM options
13232
13233 These @samp{-m} options are defined for the ARM port:
13234
13235 @table @gcctabopt
13236 @item -mabi=@var{name}
13237 @opindex mabi
13238 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
13239 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13240
13241 @item -mapcs-frame
13242 @opindex mapcs-frame
13243 Generate a stack frame that is compliant with the ARM Procedure Call
13244 Standard for all functions, even if this is not strictly necessary for
13245 correct execution of the code. Specifying @option{-fomit-frame-pointer}
13246 with this option causes the stack frames not to be generated for
13247 leaf functions. The default is @option{-mno-apcs-frame}.
13248 This option is deprecated.
13249
13250 @item -mapcs
13251 @opindex mapcs
13252 This is a synonym for @option{-mapcs-frame} and is deprecated.
13253
13254 @ignore
13255 @c not currently implemented
13256 @item -mapcs-stack-check
13257 @opindex mapcs-stack-check
13258 Generate code to check the amount of stack space available upon entry to
13259 every function (that actually uses some stack space). If there is
13260 insufficient space available then either the function
13261 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13262 called, depending upon the amount of stack space required. The runtime
13263 system is required to provide these functions. The default is
13264 @option{-mno-apcs-stack-check}, since this produces smaller code.
13265
13266 @c not currently implemented
13267 @item -mapcs-float
13268 @opindex mapcs-float
13269 Pass floating-point arguments using the floating-point registers. This is
13270 one of the variants of the APCS@. This option is recommended if the
13271 target hardware has a floating-point unit or if a lot of floating-point
13272 arithmetic is going to be performed by the code. The default is
13273 @option{-mno-apcs-float}, since the size of integer-only code is
13274 slightly increased if @option{-mapcs-float} is used.
13275
13276 @c not currently implemented
13277 @item -mapcs-reentrant
13278 @opindex mapcs-reentrant
13279 Generate reentrant, position-independent code. The default is
13280 @option{-mno-apcs-reentrant}.
13281 @end ignore
13282
13283 @item -mthumb-interwork
13284 @opindex mthumb-interwork
13285 Generate code that supports calling between the ARM and Thumb
13286 instruction sets. Without this option, on pre-v5 architectures, the
13287 two instruction sets cannot be reliably used inside one program. The
13288 default is @option{-mno-thumb-interwork}, since slightly larger code
13289 is generated when @option{-mthumb-interwork} is specified. In AAPCS
13290 configurations this option is meaningless.
13291
13292 @item -mno-sched-prolog
13293 @opindex mno-sched-prolog
13294 Prevent the reordering of instructions in the function prologue, or the
13295 merging of those instruction with the instructions in the function's
13296 body. This means that all functions start with a recognizable set
13297 of instructions (or in fact one of a choice from a small set of
13298 different function prologues), and this information can be used to
13299 locate the start of functions inside an executable piece of code. The
13300 default is @option{-msched-prolog}.
13301
13302 @item -mfloat-abi=@var{name}
13303 @opindex mfloat-abi
13304 Specifies which floating-point ABI to use. Permissible values
13305 are: @samp{soft}, @samp{softfp} and @samp{hard}.
13306
13307 Specifying @samp{soft} causes GCC to generate output containing
13308 library calls for floating-point operations.
13309 @samp{softfp} allows the generation of code using hardware floating-point
13310 instructions, but still uses the soft-float calling conventions.
13311 @samp{hard} allows generation of floating-point instructions
13312 and uses FPU-specific calling conventions.
13313
13314 The default depends on the specific target configuration. Note that
13315 the hard-float and soft-float ABIs are not link-compatible; you must
13316 compile your entire program with the same ABI, and link with a
13317 compatible set of libraries.
13318
13319 @item -mlittle-endian
13320 @opindex mlittle-endian
13321 Generate code for a processor running in little-endian mode. This is
13322 the default for all standard configurations.
13323
13324 @item -mbig-endian
13325 @opindex mbig-endian
13326 Generate code for a processor running in big-endian mode; the default is
13327 to compile code for a little-endian processor.
13328
13329 @item -march=@var{name}
13330 @opindex march
13331 This specifies the name of the target ARM architecture. GCC uses this
13332 name to determine what kind of instructions it can emit when generating
13333 assembly code. This option can be used in conjunction with or instead
13334 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
13335 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13336 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13337 @samp{armv6}, @samp{armv6j},
13338 @samp{armv6t2}, @samp{armv6z}, @samp{armv6kz}, @samp{armv6-m},
13339 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13340 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc},
13341 @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13342
13343 @option{-march=armv7ve} is the armv7-a architecture with virtualization
13344 extensions.
13345
13346 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13347 architecture together with the optional CRC32 extensions.
13348
13349 @option{-march=native} causes the compiler to auto-detect the architecture
13350 of the build computer. At present, this feature is only supported on
13351 GNU/Linux, and not all architectures are recognized. If the auto-detect
13352 is unsuccessful the option has no effect.
13353
13354 @item -mtune=@var{name}
13355 @opindex mtune
13356 This option specifies the name of the target ARM processor for
13357 which GCC should tune the performance of the code.
13358 For some ARM implementations better performance can be obtained by using
13359 this option.
13360 Permissible names are: @samp{arm2}, @samp{arm250},
13361 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13362 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13363 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13364 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13365 @samp{arm720},
13366 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13367 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13368 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13369 @samp{strongarm1110},
13370 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13371 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13372 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13373 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13374 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13375 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13376 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13377 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
13378 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
13379 @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
13380 @samp{cortex-r4},
13381 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13382 @samp{cortex-m4},
13383 @samp{cortex-m3},
13384 @samp{cortex-m1},
13385 @samp{cortex-m0},
13386 @samp{cortex-m0plus},
13387 @samp{cortex-m1.small-multiply},
13388 @samp{cortex-m0.small-multiply},
13389 @samp{cortex-m0plus.small-multiply},
13390 @samp{exynos-m1},
13391 @samp{marvell-pj4},
13392 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13393 @samp{fa526}, @samp{fa626},
13394 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13395 @samp{xgene1}.
13396
13397 Additionally, this option can specify that GCC should tune the performance
13398 of the code for a big.LITTLE system. Permissible names are:
13399 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
13400 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
13401
13402 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13403 performance for a blend of processors within architecture @var{arch}.
13404 The aim is to generate code that run well on the current most popular
13405 processors, balancing between optimizations that benefit some CPUs in the
13406 range, and avoiding performance pitfalls of other CPUs. The effects of
13407 this option may change in future GCC versions as CPU models come and go.
13408
13409 @option{-mtune=native} causes the compiler to auto-detect the CPU
13410 of the build computer. At present, this feature is only supported on
13411 GNU/Linux, and not all architectures are recognized. If the auto-detect is
13412 unsuccessful the option has no effect.
13413
13414 @item -mcpu=@var{name}
13415 @opindex mcpu
13416 This specifies the name of the target ARM processor. GCC uses this name
13417 to derive the name of the target ARM architecture (as if specified
13418 by @option{-march}) and the ARM processor type for which to tune for
13419 performance (as if specified by @option{-mtune}). Where this option
13420 is used in conjunction with @option{-march} or @option{-mtune},
13421 those options take precedence over the appropriate part of this option.
13422
13423 Permissible names for this option are the same as those for
13424 @option{-mtune}.
13425
13426 @option{-mcpu=generic-@var{arch}} is also permissible, and is
13427 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13428 See @option{-mtune} for more information.
13429
13430 @option{-mcpu=native} causes the compiler to auto-detect the CPU
13431 of the build computer. At present, this feature is only supported on
13432 GNU/Linux, and not all architectures are recognized. If the auto-detect
13433 is unsuccessful the option has no effect.
13434
13435 @item -mfpu=@var{name}
13436 @opindex mfpu
13437 This specifies what floating-point hardware (or hardware emulation) is
13438 available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
13439 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13440 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13441 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13442 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
13443 @samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
13444
13445 If @option{-msoft-float} is specified this specifies the format of
13446 floating-point values.
13447
13448 If the selected floating-point hardware includes the NEON extension
13449 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13450 operations are not generated by GCC's auto-vectorization pass unless
13451 @option{-funsafe-math-optimizations} is also specified. This is
13452 because NEON hardware does not fully implement the IEEE 754 standard for
13453 floating-point arithmetic (in particular denormal values are treated as
13454 zero), so the use of NEON instructions may lead to a loss of precision.
13455
13456 @item -mfp16-format=@var{name}
13457 @opindex mfp16-format
13458 Specify the format of the @code{__fp16} half-precision floating-point type.
13459 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13460 the default is @samp{none}, in which case the @code{__fp16} type is not
13461 defined. @xref{Half-Precision}, for more information.
13462
13463 @item -mstructure-size-boundary=@var{n}
13464 @opindex mstructure-size-boundary
13465 The sizes of all structures and unions are rounded up to a multiple
13466 of the number of bits set by this option. Permissible values are 8, 32
13467 and 64. The default value varies for different toolchains. For the COFF
13468 targeted toolchain the default value is 8. A value of 64 is only allowed
13469 if the underlying ABI supports it.
13470
13471 Specifying a larger number can produce faster, more efficient code, but
13472 can also increase the size of the program. Different values are potentially
13473 incompatible. Code compiled with one value cannot necessarily expect to
13474 work with code or libraries compiled with another value, if they exchange
13475 information using structures or unions.
13476
13477 @item -mabort-on-noreturn
13478 @opindex mabort-on-noreturn
13479 Generate a call to the function @code{abort} at the end of a
13480 @code{noreturn} function. It is executed if the function tries to
13481 return.
13482
13483 @item -mlong-calls
13484 @itemx -mno-long-calls
13485 @opindex mlong-calls
13486 @opindex mno-long-calls
13487 Tells the compiler to perform function calls by first loading the
13488 address of the function into a register and then performing a subroutine
13489 call on this register. This switch is needed if the target function
13490 lies outside of the 64-megabyte addressing range of the offset-based
13491 version of subroutine call instruction.
13492
13493 Even if this switch is enabled, not all function calls are turned
13494 into long calls. The heuristic is that static functions, functions
13495 that have the @code{short_call} attribute, functions that are inside
13496 the scope of a @code{#pragma no_long_calls} directive, and functions whose
13497 definitions have already been compiled within the current compilation
13498 unit are not turned into long calls. The exceptions to this rule are
13499 that weak function definitions, functions with the @code{long_call}
13500 attribute or the @code{section} attribute, and functions that are within
13501 the scope of a @code{#pragma long_calls} directive are always
13502 turned into long calls.
13503
13504 This feature is not enabled by default. Specifying
13505 @option{-mno-long-calls} restores the default behavior, as does
13506 placing the function calls within the scope of a @code{#pragma
13507 long_calls_off} directive. Note these switches have no effect on how
13508 the compiler generates code to handle function calls via function
13509 pointers.
13510
13511 @item -msingle-pic-base
13512 @opindex msingle-pic-base
13513 Treat the register used for PIC addressing as read-only, rather than
13514 loading it in the prologue for each function. The runtime system is
13515 responsible for initializing this register with an appropriate value
13516 before execution begins.
13517
13518 @item -mpic-register=@var{reg}
13519 @opindex mpic-register
13520 Specify the register to be used for PIC addressing.
13521 For standard PIC base case, the default is any suitable register
13522 determined by compiler. For single PIC base case, the default is
13523 @samp{R9} if target is EABI based or stack-checking is enabled,
13524 otherwise the default is @samp{R10}.
13525
13526 @item -mpic-data-is-text-relative
13527 @opindex mpic-data-is-text-relative
13528 Assume that each data segments are relative to text segment at load time.
13529 Therefore, it permits addressing data using PC-relative operations.
13530 This option is on by default for targets other than VxWorks RTP.
13531
13532 @item -mpoke-function-name
13533 @opindex mpoke-function-name
13534 Write the name of each function into the text section, directly
13535 preceding the function prologue. The generated code is similar to this:
13536
13537 @smallexample
13538 t0
13539 .ascii "arm_poke_function_name", 0
13540 .align
13541 t1
13542 .word 0xff000000 + (t1 - t0)
13543 arm_poke_function_name
13544 mov ip, sp
13545 stmfd sp!, @{fp, ip, lr, pc@}
13546 sub fp, ip, #4
13547 @end smallexample
13548
13549 When performing a stack backtrace, code can inspect the value of
13550 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
13551 location @code{pc - 12} and the top 8 bits are set, then we know that
13552 there is a function name embedded immediately preceding this location
13553 and has length @code{((pc[-3]) & 0xff000000)}.
13554
13555 @item -mthumb
13556 @itemx -marm
13557 @opindex marm
13558 @opindex mthumb
13559
13560 Select between generating code that executes in ARM and Thumb
13561 states. The default for most configurations is to generate code
13562 that executes in ARM state, but the default can be changed by
13563 configuring GCC with the @option{--with-mode=}@var{state}
13564 configure option.
13565
13566 You can also override the ARM and Thumb mode for each function
13567 by using the @code{target("thumb")} and @code{target("arm")} function attributes
13568 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
13569
13570 @item -mtpcs-frame
13571 @opindex mtpcs-frame
13572 Generate a stack frame that is compliant with the Thumb Procedure Call
13573 Standard for all non-leaf functions. (A leaf function is one that does
13574 not call any other functions.) The default is @option{-mno-tpcs-frame}.
13575
13576 @item -mtpcs-leaf-frame
13577 @opindex mtpcs-leaf-frame
13578 Generate a stack frame that is compliant with the Thumb Procedure Call
13579 Standard for all leaf functions. (A leaf function is one that does
13580 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
13581
13582 @item -mcallee-super-interworking
13583 @opindex mcallee-super-interworking
13584 Gives all externally visible functions in the file being compiled an ARM
13585 instruction set header which switches to Thumb mode before executing the
13586 rest of the function. This allows these functions to be called from
13587 non-interworking code. This option is not valid in AAPCS configurations
13588 because interworking is enabled by default.
13589
13590 @item -mcaller-super-interworking
13591 @opindex mcaller-super-interworking
13592 Allows calls via function pointers (including virtual functions) to
13593 execute correctly regardless of whether the target code has been
13594 compiled for interworking or not. There is a small overhead in the cost
13595 of executing a function pointer if this option is enabled. This option
13596 is not valid in AAPCS configurations because interworking is enabled
13597 by default.
13598
13599 @item -mtp=@var{name}
13600 @opindex mtp
13601 Specify the access model for the thread local storage pointer. The valid
13602 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13603 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13604 (supported in the arm6k architecture), and @samp{auto}, which uses the
13605 best available method for the selected processor. The default setting is
13606 @samp{auto}.
13607
13608 @item -mtls-dialect=@var{dialect}
13609 @opindex mtls-dialect
13610 Specify the dialect to use for accessing thread local storage. Two
13611 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
13612 @samp{gnu} dialect selects the original GNU scheme for supporting
13613 local and global dynamic TLS models. The @samp{gnu2} dialect
13614 selects the GNU descriptor scheme, which provides better performance
13615 for shared libraries. The GNU descriptor scheme is compatible with
13616 the original scheme, but does require new assembler, linker and
13617 library support. Initial and local exec TLS models are unaffected by
13618 this option and always use the original scheme.
13619
13620 @item -mword-relocations
13621 @opindex mword-relocations
13622 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13623 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13624 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13625 is specified.
13626
13627 @item -mfix-cortex-m3-ldrd
13628 @opindex mfix-cortex-m3-ldrd
13629 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13630 with overlapping destination and base registers are used. This option avoids
13631 generating these instructions. This option is enabled by default when
13632 @option{-mcpu=cortex-m3} is specified.
13633
13634 @item -munaligned-access
13635 @itemx -mno-unaligned-access
13636 @opindex munaligned-access
13637 @opindex mno-unaligned-access
13638 Enables (or disables) reading and writing of 16- and 32- bit values
13639 from addresses that are not 16- or 32- bit aligned. By default
13640 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13641 architectures, and enabled for all other architectures. If unaligned
13642 access is not enabled then words in packed data structures are
13643 accessed a byte at a time.
13644
13645 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13646 generated object file to either true or false, depending upon the
13647 setting of this option. If unaligned access is enabled then the
13648 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13649 defined.
13650
13651 @item -mneon-for-64bits
13652 @opindex mneon-for-64bits
13653 Enables using Neon to handle scalar 64-bits operations. This is
13654 disabled by default since the cost of moving data from core registers
13655 to Neon is high.
13656
13657 @item -mslow-flash-data
13658 @opindex mslow-flash-data
13659 Assume loading data from flash is slower than fetching instruction.
13660 Therefore literal load is minimized for better performance.
13661 This option is only supported when compiling for ARMv7 M-profile and
13662 off by default.
13663
13664 @item -masm-syntax-unified
13665 @opindex masm-syntax-unified
13666 Assume inline assembler is using unified asm syntax. The default is
13667 currently off which implies divided syntax. Currently this option is
13668 available only for Thumb1 and has no effect on ARM state and Thumb2.
13669 However, this may change in future releases of GCC. Divided syntax
13670 should be considered deprecated.
13671
13672 @item -mrestrict-it
13673 @opindex mrestrict-it
13674 Restricts generation of IT blocks to conform to the rules of ARMv8.
13675 IT blocks can only contain a single 16-bit instruction from a select
13676 set of instructions. This option is on by default for ARMv8 Thumb mode.
13677
13678 @item -mprint-tune-info
13679 @opindex mprint-tune-info
13680 Print CPU tuning information as comment in assembler file. This is
13681 an option used only for regression testing of the compiler and not
13682 intended for ordinary use in compiling code. This option is disabled
13683 by default.
13684 @end table
13685
13686 @node AVR Options
13687 @subsection AVR Options
13688 @cindex AVR Options
13689
13690 These options are defined for AVR implementations:
13691
13692 @table @gcctabopt
13693 @item -mmcu=@var{mcu}
13694 @opindex mmcu
13695 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13696
13697 The default for this option is@tie{}@samp{avr2}.
13698
13699 GCC supports the following AVR devices and ISAs:
13700
13701 @include avr-mmcu.texi
13702
13703 @item -maccumulate-args
13704 @opindex maccumulate-args
13705 Accumulate outgoing function arguments and acquire/release the needed
13706 stack space for outgoing function arguments once in function
13707 prologue/epilogue. Without this option, outgoing arguments are pushed
13708 before calling a function and popped afterwards.
13709
13710 Popping the arguments after the function call can be expensive on
13711 AVR so that accumulating the stack space might lead to smaller
13712 executables because arguments need not to be removed from the
13713 stack after such a function call.
13714
13715 This option can lead to reduced code size for functions that perform
13716 several calls to functions that get their arguments on the stack like
13717 calls to printf-like functions.
13718
13719 @item -mbranch-cost=@var{cost}
13720 @opindex mbranch-cost
13721 Set the branch costs for conditional branch instructions to
13722 @var{cost}. Reasonable values for @var{cost} are small, non-negative
13723 integers. The default branch cost is 0.
13724
13725 @item -mcall-prologues
13726 @opindex mcall-prologues
13727 Functions prologues/epilogues are expanded as calls to appropriate
13728 subroutines. Code size is smaller.
13729
13730 @item -mint8
13731 @opindex mint8
13732 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
13733 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13734 and @code{long long} is 4 bytes. Please note that this option does not
13735 conform to the C standards, but it results in smaller code
13736 size.
13737
13738 @item -mn-flash=@var{num}
13739 @opindex mn-flash
13740 Assume that the flash memory has a size of
13741 @var{num} times 64@tie{}KiB.
13742
13743 @item -mno-interrupts
13744 @opindex mno-interrupts
13745 Generated code is not compatible with hardware interrupts.
13746 Code size is smaller.
13747
13748 @item -mrelax
13749 @opindex mrelax
13750 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13751 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13752 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13753 the assembler's command line and the @option{--relax} option to the
13754 linker's command line.
13755
13756 Jump relaxing is performed by the linker because jump offsets are not
13757 known before code is located. Therefore, the assembler code generated by the
13758 compiler is the same, but the instructions in the executable may
13759 differ from instructions in the assembler code.
13760
13761 Relaxing must be turned on if linker stubs are needed, see the
13762 section on @code{EIND} and linker stubs below.
13763
13764 @item -mrmw
13765 @opindex mrmw
13766 Assume that the device supports the Read-Modify-Write
13767 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
13768
13769 @item -msp8
13770 @opindex msp8
13771 Treat the stack pointer register as an 8-bit register,
13772 i.e.@: assume the high byte of the stack pointer is zero.
13773 In general, you don't need to set this option by hand.
13774
13775 This option is used internally by the compiler to select and
13776 build multilibs for architectures @code{avr2} and @code{avr25}.
13777 These architectures mix devices with and without @code{SPH}.
13778 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
13779 the compiler driver adds or removes this option from the compiler
13780 proper's command line, because the compiler then knows if the device
13781 or architecture has an 8-bit stack pointer and thus no @code{SPH}
13782 register or not.
13783
13784 @item -mstrict-X
13785 @opindex mstrict-X
13786 Use address register @code{X} in a way proposed by the hardware. This means
13787 that @code{X} is only used in indirect, post-increment or
13788 pre-decrement addressing.
13789
13790 Without this option, the @code{X} register may be used in the same way
13791 as @code{Y} or @code{Z} which then is emulated by additional
13792 instructions.
13793 For example, loading a value with @code{X+const} addressing with a
13794 small non-negative @code{const < 64} to a register @var{Rn} is
13795 performed as
13796
13797 @example
13798 adiw r26, const ; X += const
13799 ld @var{Rn}, X ; @var{Rn} = *X
13800 sbiw r26, const ; X -= const
13801 @end example
13802
13803 @item -mtiny-stack
13804 @opindex mtiny-stack
13805 Only change the lower 8@tie{}bits of the stack pointer.
13806
13807 @item -nodevicelib
13808 @opindex nodevicelib
13809 Don't link against AVR-LibC's device specific library @code{libdev.a}.
13810
13811 @item -Waddr-space-convert
13812 @opindex Waddr-space-convert
13813 Warn about conversions between address spaces in the case where the
13814 resulting address space is not contained in the incoming address space.
13815 @end table
13816
13817 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
13818 @cindex @code{EIND}
13819 Pointers in the implementation are 16@tie{}bits wide.
13820 The address of a function or label is represented as word address so
13821 that indirect jumps and calls can target any code address in the
13822 range of 64@tie{}Ki words.
13823
13824 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
13825 bytes of program memory space, there is a special function register called
13826 @code{EIND} that serves as most significant part of the target address
13827 when @code{EICALL} or @code{EIJMP} instructions are used.
13828
13829 Indirect jumps and calls on these devices are handled as follows by
13830 the compiler and are subject to some limitations:
13831
13832 @itemize @bullet
13833
13834 @item
13835 The compiler never sets @code{EIND}.
13836
13837 @item
13838 The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
13839 instructions or might read @code{EIND} directly in order to emulate an
13840 indirect call/jump by means of a @code{RET} instruction.
13841
13842 @item
13843 The compiler assumes that @code{EIND} never changes during the startup
13844 code or during the application. In particular, @code{EIND} is not
13845 saved/restored in function or interrupt service routine
13846 prologue/epilogue.
13847
13848 @item
13849 For indirect calls to functions and computed goto, the linker
13850 generates @emph{stubs}. Stubs are jump pads sometimes also called
13851 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
13852 The stub contains a direct jump to the desired address.
13853
13854 @item
13855 Linker relaxation must be turned on so that the linker generates
13856 the stubs correctly in all situations. See the compiler option
13857 @option{-mrelax} and the linker option @option{--relax}.
13858 There are corner cases where the linker is supposed to generate stubs
13859 but aborts without relaxation and without a helpful error message.
13860
13861 @item
13862 The default linker script is arranged for code with @code{EIND = 0}.
13863 If code is supposed to work for a setup with @code{EIND != 0}, a custom
13864 linker script has to be used in order to place the sections whose
13865 name start with @code{.trampolines} into the segment where @code{EIND}
13866 points to.
13867
13868 @item
13869 The startup code from libgcc never sets @code{EIND}.
13870 Notice that startup code is a blend of code from libgcc and AVR-LibC.
13871 For the impact of AVR-LibC on @code{EIND}, see the
13872 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
13873
13874 @item
13875 It is legitimate for user-specific startup code to set up @code{EIND}
13876 early, for example by means of initialization code located in
13877 section @code{.init3}. Such code runs prior to general startup code
13878 that initializes RAM and calls constructors, but after the bit
13879 of startup code from AVR-LibC that sets @code{EIND} to the segment
13880 where the vector table is located.
13881 @example
13882 #include <avr/io.h>
13883
13884 static void
13885 __attribute__((section(".init3"),naked,used,no_instrument_function))
13886 init3_set_eind (void)
13887 @{
13888 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
13889 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
13890 @}
13891 @end example
13892
13893 @noindent
13894 The @code{__trampolines_start} symbol is defined in the linker script.
13895
13896 @item
13897 Stubs are generated automatically by the linker if
13898 the following two conditions are met:
13899 @itemize @minus
13900
13901 @item The address of a label is taken by means of the @code{gs} modifier
13902 (short for @emph{generate stubs}) like so:
13903 @example
13904 LDI r24, lo8(gs(@var{func}))
13905 LDI r25, hi8(gs(@var{func}))
13906 @end example
13907 @item The final location of that label is in a code segment
13908 @emph{outside} the segment where the stubs are located.
13909 @end itemize
13910
13911 @item
13912 The compiler emits such @code{gs} modifiers for code labels in the
13913 following situations:
13914 @itemize @minus
13915 @item Taking address of a function or code label.
13916 @item Computed goto.
13917 @item If prologue-save function is used, see @option{-mcall-prologues}
13918 command-line option.
13919 @item Switch/case dispatch tables. If you do not want such dispatch
13920 tables you can specify the @option{-fno-jump-tables} command-line option.
13921 @item C and C++ constructors/destructors called during startup/shutdown.
13922 @item If the tools hit a @code{gs()} modifier explained above.
13923 @end itemize
13924
13925 @item
13926 Jumping to non-symbolic addresses like so is @emph{not} supported:
13927
13928 @example
13929 int main (void)
13930 @{
13931 /* Call function at word address 0x2 */
13932 return ((int(*)(void)) 0x2)();
13933 @}
13934 @end example
13935
13936 Instead, a stub has to be set up, i.e.@: the function has to be called
13937 through a symbol (@code{func_4} in the example):
13938
13939 @example
13940 int main (void)
13941 @{
13942 extern int func_4 (void);
13943
13944 /* Call function at byte address 0x4 */
13945 return func_4();
13946 @}
13947 @end example
13948
13949 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
13950 Alternatively, @code{func_4} can be defined in the linker script.
13951 @end itemize
13952
13953 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
13954 @cindex @code{RAMPD}
13955 @cindex @code{RAMPX}
13956 @cindex @code{RAMPY}
13957 @cindex @code{RAMPZ}
13958 Some AVR devices support memories larger than the 64@tie{}KiB range
13959 that can be accessed with 16-bit pointers. To access memory locations
13960 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
13961 register is used as high part of the address:
13962 The @code{X}, @code{Y}, @code{Z} address register is concatenated
13963 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
13964 register, respectively, to get a wide address. Similarly,
13965 @code{RAMPD} is used together with direct addressing.
13966
13967 @itemize
13968 @item
13969 The startup code initializes the @code{RAMP} special function
13970 registers with zero.
13971
13972 @item
13973 If a @ref{AVR Named Address Spaces,named address space} other than
13974 generic or @code{__flash} is used, then @code{RAMPZ} is set
13975 as needed before the operation.
13976
13977 @item
13978 If the device supports RAM larger than 64@tie{}KiB and the compiler
13979 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
13980 is reset to zero after the operation.
13981
13982 @item
13983 If the device comes with a specific @code{RAMP} register, the ISR
13984 prologue/epilogue saves/restores that SFR and initializes it with
13985 zero in case the ISR code might (implicitly) use it.
13986
13987 @item
13988 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
13989 If you use inline assembler to read from locations outside the
13990 16-bit address range and change one of the @code{RAMP} registers,
13991 you must reset it to zero after the access.
13992
13993 @end itemize
13994
13995 @subsubsection AVR Built-in Macros
13996
13997 GCC defines several built-in macros so that the user code can test
13998 for the presence or absence of features. Almost any of the following
13999 built-in macros are deduced from device capabilities and thus
14000 triggered by the @option{-mmcu=} command-line option.
14001
14002 For even more AVR-specific built-in macros see
14003 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
14004
14005 @table @code
14006
14007 @item __AVR_ARCH__
14008 Build-in macro that resolves to a decimal number that identifies the
14009 architecture and depends on the @option{-mmcu=@var{mcu}} option.
14010 Possible values are:
14011
14012 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
14013 @code{4}, @code{5}, @code{51}, @code{6}
14014
14015 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
14016 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
14017
14018 respectively and
14019
14020 @code{100}, @code{102}, @code{104},
14021 @code{105}, @code{106}, @code{107}
14022
14023 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
14024 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
14025 If @var{mcu} specifies a device, this built-in macro is set
14026 accordingly. For example, with @option{-mmcu=atmega8} the macro is
14027 defined to @code{4}.
14028
14029 @item __AVR_@var{Device}__
14030 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
14031 the device's name. For example, @option{-mmcu=atmega8} defines the
14032 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
14033 @code{__AVR_ATtiny261A__}, etc.
14034
14035 The built-in macros' names follow
14036 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
14037 the device name as from the AVR user manual. The difference between
14038 @var{Device} in the built-in macro and @var{device} in
14039 @option{-mmcu=@var{device}} is that the latter is always lowercase.
14040
14041 If @var{device} is not a device but only a core architecture like
14042 @samp{avr51}, this macro is not defined.
14043
14044 @item __AVR_DEVICE_NAME__
14045 Setting @option{-mmcu=@var{device}} defines this built-in macro to
14046 the device's name. For example, with @option{-mmcu=atmega8} the macro
14047 is defined to @code{atmega8}.
14048
14049 If @var{device} is not a device but only a core architecture like
14050 @samp{avr51}, this macro is not defined.
14051
14052 @item __AVR_XMEGA__
14053 The device / architecture belongs to the XMEGA family of devices.
14054
14055 @item __AVR_HAVE_ELPM__
14056 The device has the @code{ELPM} instruction.
14057
14058 @item __AVR_HAVE_ELPMX__
14059 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
14060 R@var{n},Z+} instructions.
14061
14062 @item __AVR_HAVE_MOVW__
14063 The device has the @code{MOVW} instruction to perform 16-bit
14064 register-register moves.
14065
14066 @item __AVR_HAVE_LPMX__
14067 The device has the @code{LPM R@var{n},Z} and
14068 @code{LPM R@var{n},Z+} instructions.
14069
14070 @item __AVR_HAVE_MUL__
14071 The device has a hardware multiplier.
14072
14073 @item __AVR_HAVE_JMP_CALL__
14074 The device has the @code{JMP} and @code{CALL} instructions.
14075 This is the case for devices with at least 16@tie{}KiB of program
14076 memory.
14077
14078 @item __AVR_HAVE_EIJMP_EICALL__
14079 @itemx __AVR_3_BYTE_PC__
14080 The device has the @code{EIJMP} and @code{EICALL} instructions.
14081 This is the case for devices with more than 128@tie{}KiB of program memory.
14082 This also means that the program counter
14083 (PC) is 3@tie{}bytes wide.
14084
14085 @item __AVR_2_BYTE_PC__
14086 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
14087 with up to 128@tie{}KiB of program memory.
14088
14089 @item __AVR_HAVE_8BIT_SP__
14090 @itemx __AVR_HAVE_16BIT_SP__
14091 The stack pointer (SP) register is treated as 8-bit respectively
14092 16-bit register by the compiler.
14093 The definition of these macros is affected by @option{-mtiny-stack}.
14094
14095 @item __AVR_HAVE_SPH__
14096 @itemx __AVR_SP8__
14097 The device has the SPH (high part of stack pointer) special function
14098 register or has an 8-bit stack pointer, respectively.
14099 The definition of these macros is affected by @option{-mmcu=} and
14100 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
14101 by @option{-msp8}.
14102
14103 @item __AVR_HAVE_RAMPD__
14104 @itemx __AVR_HAVE_RAMPX__
14105 @itemx __AVR_HAVE_RAMPY__
14106 @itemx __AVR_HAVE_RAMPZ__
14107 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
14108 @code{RAMPZ} special function register, respectively.
14109
14110 @item __NO_INTERRUPTS__
14111 This macro reflects the @option{-mno-interrupts} command-line option.
14112
14113 @item __AVR_ERRATA_SKIP__
14114 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
14115 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
14116 instructions because of a hardware erratum. Skip instructions are
14117 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
14118 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
14119 set.
14120
14121 @item __AVR_ISA_RMW__
14122 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
14123
14124 @item __AVR_SFR_OFFSET__=@var{offset}
14125 Instructions that can address I/O special function registers directly
14126 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
14127 address as if addressed by an instruction to access RAM like @code{LD}
14128 or @code{STS}. This offset depends on the device architecture and has
14129 to be subtracted from the RAM address in order to get the
14130 respective I/O@tie{}address.
14131
14132 @item __WITH_AVRLIBC__
14133 The compiler is configured to be used together with AVR-Libc.
14134 See the @option{--with-avrlibc} configure option.
14135
14136 @end table
14137
14138 @node Blackfin Options
14139 @subsection Blackfin Options
14140 @cindex Blackfin Options
14141
14142 @table @gcctabopt
14143 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14144 @opindex mcpu=
14145 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
14146 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14147 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14148 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14149 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14150 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14151 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14152 @samp{bf561}, @samp{bf592}.
14153
14154 The optional @var{sirevision} specifies the silicon revision of the target
14155 Blackfin processor. Any workarounds available for the targeted silicon revision
14156 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
14157 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14158 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
14159 hexadecimal digits representing the major and minor numbers in the silicon
14160 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14161 is not defined. If @var{sirevision} is @samp{any}, the
14162 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14163 If this optional @var{sirevision} is not used, GCC assumes the latest known
14164 silicon revision of the targeted Blackfin processor.
14165
14166 GCC defines a preprocessor macro for the specified @var{cpu}.
14167 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14168 provided by libgloss to be linked in if @option{-msim} is not given.
14169
14170 Without this option, @samp{bf532} is used as the processor by default.
14171
14172 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
14173 only the preprocessor macro is defined.
14174
14175 @item -msim
14176 @opindex msim
14177 Specifies that the program will be run on the simulator. This causes
14178 the simulator BSP provided by libgloss to be linked in. This option
14179 has effect only for @samp{bfin-elf} toolchain.
14180 Certain other options, such as @option{-mid-shared-library} and
14181 @option{-mfdpic}, imply @option{-msim}.
14182
14183 @item -momit-leaf-frame-pointer
14184 @opindex momit-leaf-frame-pointer
14185 Don't keep the frame pointer in a register for leaf functions. This
14186 avoids the instructions to save, set up and restore frame pointers and
14187 makes an extra register available in leaf functions. The option
14188 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14189 which might make debugging harder.
14190
14191 @item -mspecld-anomaly
14192 @opindex mspecld-anomaly
14193 When enabled, the compiler ensures that the generated code does not
14194 contain speculative loads after jump instructions. If this option is used,
14195 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14196
14197 @item -mno-specld-anomaly
14198 @opindex mno-specld-anomaly
14199 Don't generate extra code to prevent speculative loads from occurring.
14200
14201 @item -mcsync-anomaly
14202 @opindex mcsync-anomaly
14203 When enabled, the compiler ensures that the generated code does not
14204 contain CSYNC or SSYNC instructions too soon after conditional branches.
14205 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14206
14207 @item -mno-csync-anomaly
14208 @opindex mno-csync-anomaly
14209 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14210 occurring too soon after a conditional branch.
14211
14212 @item -mlow-64k
14213 @opindex mlow-64k
14214 When enabled, the compiler is free to take advantage of the knowledge that
14215 the entire program fits into the low 64k of memory.
14216
14217 @item -mno-low-64k
14218 @opindex mno-low-64k
14219 Assume that the program is arbitrarily large. This is the default.
14220
14221 @item -mstack-check-l1
14222 @opindex mstack-check-l1
14223 Do stack checking using information placed into L1 scratchpad memory by the
14224 uClinux kernel.
14225
14226 @item -mid-shared-library
14227 @opindex mid-shared-library
14228 Generate code that supports shared libraries via the library ID method.
14229 This allows for execute in place and shared libraries in an environment
14230 without virtual memory management. This option implies @option{-fPIC}.
14231 With a @samp{bfin-elf} target, this option implies @option{-msim}.
14232
14233 @item -mno-id-shared-library
14234 @opindex mno-id-shared-library
14235 Generate code that doesn't assume ID-based shared libraries are being used.
14236 This is the default.
14237
14238 @item -mleaf-id-shared-library
14239 @opindex mleaf-id-shared-library
14240 Generate code that supports shared libraries via the library ID method,
14241 but assumes that this library or executable won't link against any other
14242 ID shared libraries. That allows the compiler to use faster code for jumps
14243 and calls.
14244
14245 @item -mno-leaf-id-shared-library
14246 @opindex mno-leaf-id-shared-library
14247 Do not assume that the code being compiled won't link against any ID shared
14248 libraries. Slower code is generated for jump and call insns.
14249
14250 @item -mshared-library-id=n
14251 @opindex mshared-library-id
14252 Specifies the identification number of the ID-based shared library being
14253 compiled. Specifying a value of 0 generates more compact code; specifying
14254 other values forces the allocation of that number to the current
14255 library but is no more space- or time-efficient than omitting this option.
14256
14257 @item -msep-data
14258 @opindex msep-data
14259 Generate code that allows the data segment to be located in a different
14260 area of memory from the text segment. This allows for execute in place in
14261 an environment without virtual memory management by eliminating relocations
14262 against the text section.
14263
14264 @item -mno-sep-data
14265 @opindex mno-sep-data
14266 Generate code that assumes that the data segment follows the text segment.
14267 This is the default.
14268
14269 @item -mlong-calls
14270 @itemx -mno-long-calls
14271 @opindex mlong-calls
14272 @opindex mno-long-calls
14273 Tells the compiler to perform function calls by first loading the
14274 address of the function into a register and then performing a subroutine
14275 call on this register. This switch is needed if the target function
14276 lies outside of the 24-bit addressing range of the offset-based
14277 version of subroutine call instruction.
14278
14279 This feature is not enabled by default. Specifying
14280 @option{-mno-long-calls} restores the default behavior. Note these
14281 switches have no effect on how the compiler generates code to handle
14282 function calls via function pointers.
14283
14284 @item -mfast-fp
14285 @opindex mfast-fp
14286 Link with the fast floating-point library. This library relaxes some of
14287 the IEEE floating-point standard's rules for checking inputs against
14288 Not-a-Number (NAN), in the interest of performance.
14289
14290 @item -minline-plt
14291 @opindex minline-plt
14292 Enable inlining of PLT entries in function calls to functions that are
14293 not known to bind locally. It has no effect without @option{-mfdpic}.
14294
14295 @item -mmulticore
14296 @opindex mmulticore
14297 Build a standalone application for multicore Blackfin processors.
14298 This option causes proper start files and link scripts supporting
14299 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
14300 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
14301
14302 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14303 selects the one-application-per-core programming model. Without
14304 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14305 programming model is used. In this model, the main function of Core B
14306 should be named as @code{coreb_main}.
14307
14308 If this option is not used, the single-core application programming
14309 model is used.
14310
14311 @item -mcorea
14312 @opindex mcorea
14313 Build a standalone application for Core A of BF561 when using
14314 the one-application-per-core programming model. Proper start files
14315 and link scripts are used to support Core A, and the macro
14316 @code{__BFIN_COREA} is defined.
14317 This option can only be used in conjunction with @option{-mmulticore}.
14318
14319 @item -mcoreb
14320 @opindex mcoreb
14321 Build a standalone application for Core B of BF561 when using
14322 the one-application-per-core programming model. Proper start files
14323 and link scripts are used to support Core B, and the macro
14324 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14325 should be used instead of @code{main}.
14326 This option can only be used in conjunction with @option{-mmulticore}.
14327
14328 @item -msdram
14329 @opindex msdram
14330 Build a standalone application for SDRAM. Proper start files and
14331 link scripts are used to put the application into SDRAM, and the macro
14332 @code{__BFIN_SDRAM} is defined.
14333 The loader should initialize SDRAM before loading the application.
14334
14335 @item -micplb
14336 @opindex micplb
14337 Assume that ICPLBs are enabled at run time. This has an effect on certain
14338 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
14339 are enabled; for standalone applications the default is off.
14340 @end table
14341
14342 @node C6X Options
14343 @subsection C6X Options
14344 @cindex C6X Options
14345
14346 @table @gcctabopt
14347 @item -march=@var{name}
14348 @opindex march
14349 This specifies the name of the target architecture. GCC uses this
14350 name to determine what kind of instructions it can emit when generating
14351 assembly code. Permissible names are: @samp{c62x},
14352 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14353
14354 @item -mbig-endian
14355 @opindex mbig-endian
14356 Generate code for a big-endian target.
14357
14358 @item -mlittle-endian
14359 @opindex mlittle-endian
14360 Generate code for a little-endian target. This is the default.
14361
14362 @item -msim
14363 @opindex msim
14364 Choose startup files and linker script suitable for the simulator.
14365
14366 @item -msdata=default
14367 @opindex msdata=default
14368 Put small global and static data in the @code{.neardata} section,
14369 which is pointed to by register @code{B14}. Put small uninitialized
14370 global and static data in the @code{.bss} section, which is adjacent
14371 to the @code{.neardata} section. Put small read-only data into the
14372 @code{.rodata} section. The corresponding sections used for large
14373 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14374
14375 @item -msdata=all
14376 @opindex msdata=all
14377 Put all data, not just small objects, into the sections reserved for
14378 small data, and use addressing relative to the @code{B14} register to
14379 access them.
14380
14381 @item -msdata=none
14382 @opindex msdata=none
14383 Make no use of the sections reserved for small data, and use absolute
14384 addresses to access all data. Put all initialized global and static
14385 data in the @code{.fardata} section, and all uninitialized data in the
14386 @code{.far} section. Put all constant data into the @code{.const}
14387 section.
14388 @end table
14389
14390 @node CRIS Options
14391 @subsection CRIS Options
14392 @cindex CRIS Options
14393
14394 These options are defined specifically for the CRIS ports.
14395
14396 @table @gcctabopt
14397 @item -march=@var{architecture-type}
14398 @itemx -mcpu=@var{architecture-type}
14399 @opindex march
14400 @opindex mcpu
14401 Generate code for the specified architecture. The choices for
14402 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14403 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14404 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14405 @samp{v10}.
14406
14407 @item -mtune=@var{architecture-type}
14408 @opindex mtune
14409 Tune to @var{architecture-type} everything applicable about the generated
14410 code, except for the ABI and the set of available instructions. The
14411 choices for @var{architecture-type} are the same as for
14412 @option{-march=@var{architecture-type}}.
14413
14414 @item -mmax-stack-frame=@var{n}
14415 @opindex mmax-stack-frame
14416 Warn when the stack frame of a function exceeds @var{n} bytes.
14417
14418 @item -metrax4
14419 @itemx -metrax100
14420 @opindex metrax4
14421 @opindex metrax100
14422 The options @option{-metrax4} and @option{-metrax100} are synonyms for
14423 @option{-march=v3} and @option{-march=v8} respectively.
14424
14425 @item -mmul-bug-workaround
14426 @itemx -mno-mul-bug-workaround
14427 @opindex mmul-bug-workaround
14428 @opindex mno-mul-bug-workaround
14429 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14430 models where it applies. This option is active by default.
14431
14432 @item -mpdebug
14433 @opindex mpdebug
14434 Enable CRIS-specific verbose debug-related information in the assembly
14435 code. This option also has the effect of turning off the @samp{#NO_APP}
14436 formatted-code indicator to the assembler at the beginning of the
14437 assembly file.
14438
14439 @item -mcc-init
14440 @opindex mcc-init
14441 Do not use condition-code results from previous instruction; always emit
14442 compare and test instructions before use of condition codes.
14443
14444 @item -mno-side-effects
14445 @opindex mno-side-effects
14446 Do not emit instructions with side effects in addressing modes other than
14447 post-increment.
14448
14449 @item -mstack-align
14450 @itemx -mno-stack-align
14451 @itemx -mdata-align
14452 @itemx -mno-data-align
14453 @itemx -mconst-align
14454 @itemx -mno-const-align
14455 @opindex mstack-align
14456 @opindex mno-stack-align
14457 @opindex mdata-align
14458 @opindex mno-data-align
14459 @opindex mconst-align
14460 @opindex mno-const-align
14461 These options (@samp{no-} options) arrange (eliminate arrangements) for the
14462 stack frame, individual data and constants to be aligned for the maximum
14463 single data access size for the chosen CPU model. The default is to
14464 arrange for 32-bit alignment. ABI details such as structure layout are
14465 not affected by these options.
14466
14467 @item -m32-bit
14468 @itemx -m16-bit
14469 @itemx -m8-bit
14470 @opindex m32-bit
14471 @opindex m16-bit
14472 @opindex m8-bit
14473 Similar to the stack- data- and const-align options above, these options
14474 arrange for stack frame, writable data and constants to all be 32-bit,
14475 16-bit or 8-bit aligned. The default is 32-bit alignment.
14476
14477 @item -mno-prologue-epilogue
14478 @itemx -mprologue-epilogue
14479 @opindex mno-prologue-epilogue
14480 @opindex mprologue-epilogue
14481 With @option{-mno-prologue-epilogue}, the normal function prologue and
14482 epilogue which set up the stack frame are omitted and no return
14483 instructions or return sequences are generated in the code. Use this
14484 option only together with visual inspection of the compiled code: no
14485 warnings or errors are generated when call-saved registers must be saved,
14486 or storage for local variables needs to be allocated.
14487
14488 @item -mno-gotplt
14489 @itemx -mgotplt
14490 @opindex mno-gotplt
14491 @opindex mgotplt
14492 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14493 instruction sequences that load addresses for functions from the PLT part
14494 of the GOT rather than (traditional on other architectures) calls to the
14495 PLT@. The default is @option{-mgotplt}.
14496
14497 @item -melf
14498 @opindex melf
14499 Legacy no-op option only recognized with the cris-axis-elf and
14500 cris-axis-linux-gnu targets.
14501
14502 @item -mlinux
14503 @opindex mlinux
14504 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14505
14506 @item -sim
14507 @opindex sim
14508 This option, recognized for the cris-axis-elf, arranges
14509 to link with input-output functions from a simulator library. Code,
14510 initialized data and zero-initialized data are allocated consecutively.
14511
14512 @item -sim2
14513 @opindex sim2
14514 Like @option{-sim}, but pass linker options to locate initialized data at
14515 0x40000000 and zero-initialized data at 0x80000000.
14516 @end table
14517
14518 @node CR16 Options
14519 @subsection CR16 Options
14520 @cindex CR16 Options
14521
14522 These options are defined specifically for the CR16 ports.
14523
14524 @table @gcctabopt
14525
14526 @item -mmac
14527 @opindex mmac
14528 Enable the use of multiply-accumulate instructions. Disabled by default.
14529
14530 @item -mcr16cplus
14531 @itemx -mcr16c
14532 @opindex mcr16cplus
14533 @opindex mcr16c
14534 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
14535 is default.
14536
14537 @item -msim
14538 @opindex msim
14539 Links the library libsim.a which is in compatible with simulator. Applicable
14540 to ELF compiler only.
14541
14542 @item -mint32
14543 @opindex mint32
14544 Choose integer type as 32-bit wide.
14545
14546 @item -mbit-ops
14547 @opindex mbit-ops
14548 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14549
14550 @item -mdata-model=@var{model}
14551 @opindex mdata-model
14552 Choose a data model. The choices for @var{model} are @samp{near},
14553 @samp{far} or @samp{medium}. @samp{medium} is default.
14554 However, @samp{far} is not valid with @option{-mcr16c}, as the
14555 CR16C architecture does not support the far data model.
14556 @end table
14557
14558 @node Darwin Options
14559 @subsection Darwin Options
14560 @cindex Darwin options
14561
14562 These options are defined for all architectures running the Darwin operating
14563 system.
14564
14565 FSF GCC on Darwin does not create ``fat'' object files; it creates
14566 an object file for the single architecture that GCC was built to
14567 target. Apple's GCC on Darwin does create ``fat'' files if multiple
14568 @option{-arch} options are used; it does so by running the compiler or
14569 linker multiple times and joining the results together with
14570 @file{lipo}.
14571
14572 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14573 @samp{i686}) is determined by the flags that specify the ISA
14574 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
14575 @option{-force_cpusubtype_ALL} option can be used to override this.
14576
14577 The Darwin tools vary in their behavior when presented with an ISA
14578 mismatch. The assembler, @file{as}, only permits instructions to
14579 be used that are valid for the subtype of the file it is generating,
14580 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14581 The linker for shared libraries, @file{/usr/bin/libtool}, fails
14582 and prints an error if asked to create a shared library with a less
14583 restrictive subtype than its input files (for instance, trying to put
14584 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
14585 for executables, @command{ld}, quietly gives the executable the most
14586 restrictive subtype of any of its input files.
14587
14588 @table @gcctabopt
14589 @item -F@var{dir}
14590 @opindex F
14591 Add the framework directory @var{dir} to the head of the list of
14592 directories to be searched for header files. These directories are
14593 interleaved with those specified by @option{-I} options and are
14594 scanned in a left-to-right order.
14595
14596 A framework directory is a directory with frameworks in it. A
14597 framework is a directory with a @file{Headers} and/or
14598 @file{PrivateHeaders} directory contained directly in it that ends
14599 in @file{.framework}. The name of a framework is the name of this
14600 directory excluding the @file{.framework}. Headers associated with
14601 the framework are found in one of those two directories, with
14602 @file{Headers} being searched first. A subframework is a framework
14603 directory that is in a framework's @file{Frameworks} directory.
14604 Includes of subframework headers can only appear in a header of a
14605 framework that contains the subframework, or in a sibling subframework
14606 header. Two subframeworks are siblings if they occur in the same
14607 framework. A subframework should not have the same name as a
14608 framework; a warning is issued if this is violated. Currently a
14609 subframework cannot have subframeworks; in the future, the mechanism
14610 may be extended to support this. The standard frameworks can be found
14611 in @file{/System/Library/Frameworks} and
14612 @file{/Library/Frameworks}. An example include looks like
14613 @code{#include <Framework/header.h>}, where @file{Framework} denotes
14614 the name of the framework and @file{header.h} is found in the
14615 @file{PrivateHeaders} or @file{Headers} directory.
14616
14617 @item -iframework@var{dir}
14618 @opindex iframework
14619 Like @option{-F} except the directory is a treated as a system
14620 directory. The main difference between this @option{-iframework} and
14621 @option{-F} is that with @option{-iframework} the compiler does not
14622 warn about constructs contained within header files found via
14623 @var{dir}. This option is valid only for the C family of languages.
14624
14625 @item -gused
14626 @opindex gused
14627 Emit debugging information for symbols that are used. For stabs
14628 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14629 This is by default ON@.
14630
14631 @item -gfull
14632 @opindex gfull
14633 Emit debugging information for all symbols and types.
14634
14635 @item -mmacosx-version-min=@var{version}
14636 The earliest version of MacOS X that this executable will run on
14637 is @var{version}. Typical values of @var{version} include @code{10.1},
14638 @code{10.2}, and @code{10.3.9}.
14639
14640 If the compiler was built to use the system's headers by default,
14641 then the default for this option is the system version on which the
14642 compiler is running, otherwise the default is to make choices that
14643 are compatible with as many systems and code bases as possible.
14644
14645 @item -mkernel
14646 @opindex mkernel
14647 Enable kernel development mode. The @option{-mkernel} option sets
14648 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14649 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14650 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14651 applicable. This mode also sets @option{-mno-altivec},
14652 @option{-msoft-float}, @option{-fno-builtin} and
14653 @option{-mlong-branch} for PowerPC targets.
14654
14655 @item -mone-byte-bool
14656 @opindex mone-byte-bool
14657 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14658 By default @code{sizeof(bool)} is @code{4} when compiling for
14659 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14660 option has no effect on x86.
14661
14662 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14663 to generate code that is not binary compatible with code generated
14664 without that switch. Using this switch may require recompiling all
14665 other modules in a program, including system libraries. Use this
14666 switch to conform to a non-default data model.
14667
14668 @item -mfix-and-continue
14669 @itemx -ffix-and-continue
14670 @itemx -findirect-data
14671 @opindex mfix-and-continue
14672 @opindex ffix-and-continue
14673 @opindex findirect-data
14674 Generate code suitable for fast turnaround development, such as to
14675 allow GDB to dynamically load @file{.o} files into already-running
14676 programs. @option{-findirect-data} and @option{-ffix-and-continue}
14677 are provided for backwards compatibility.
14678
14679 @item -all_load
14680 @opindex all_load
14681 Loads all members of static archive libraries.
14682 See man ld(1) for more information.
14683
14684 @item -arch_errors_fatal
14685 @opindex arch_errors_fatal
14686 Cause the errors having to do with files that have the wrong architecture
14687 to be fatal.
14688
14689 @item -bind_at_load
14690 @opindex bind_at_load
14691 Causes the output file to be marked such that the dynamic linker will
14692 bind all undefined references when the file is loaded or launched.
14693
14694 @item -bundle
14695 @opindex bundle
14696 Produce a Mach-o bundle format file.
14697 See man ld(1) for more information.
14698
14699 @item -bundle_loader @var{executable}
14700 @opindex bundle_loader
14701 This option specifies the @var{executable} that will load the build
14702 output file being linked. See man ld(1) for more information.
14703
14704 @item -dynamiclib
14705 @opindex dynamiclib
14706 When passed this option, GCC produces a dynamic library instead of
14707 an executable when linking, using the Darwin @file{libtool} command.
14708
14709 @item -force_cpusubtype_ALL
14710 @opindex force_cpusubtype_ALL
14711 This causes GCC's output file to have the @samp{ALL} subtype, instead of
14712 one controlled by the @option{-mcpu} or @option{-march} option.
14713
14714 @item -allowable_client @var{client_name}
14715 @itemx -client_name
14716 @itemx -compatibility_version
14717 @itemx -current_version
14718 @itemx -dead_strip
14719 @itemx -dependency-file
14720 @itemx -dylib_file
14721 @itemx -dylinker_install_name
14722 @itemx -dynamic
14723 @itemx -exported_symbols_list
14724 @itemx -filelist
14725 @need 800
14726 @itemx -flat_namespace
14727 @itemx -force_flat_namespace
14728 @itemx -headerpad_max_install_names
14729 @itemx -image_base
14730 @itemx -init
14731 @itemx -install_name
14732 @itemx -keep_private_externs
14733 @itemx -multi_module
14734 @itemx -multiply_defined
14735 @itemx -multiply_defined_unused
14736 @need 800
14737 @itemx -noall_load
14738 @itemx -no_dead_strip_inits_and_terms
14739 @itemx -nofixprebinding
14740 @itemx -nomultidefs
14741 @itemx -noprebind
14742 @itemx -noseglinkedit
14743 @itemx -pagezero_size
14744 @itemx -prebind
14745 @itemx -prebind_all_twolevel_modules
14746 @itemx -private_bundle
14747 @need 800
14748 @itemx -read_only_relocs
14749 @itemx -sectalign
14750 @itemx -sectobjectsymbols
14751 @itemx -whyload
14752 @itemx -seg1addr
14753 @itemx -sectcreate
14754 @itemx -sectobjectsymbols
14755 @itemx -sectorder
14756 @itemx -segaddr
14757 @itemx -segs_read_only_addr
14758 @need 800
14759 @itemx -segs_read_write_addr
14760 @itemx -seg_addr_table
14761 @itemx -seg_addr_table_filename
14762 @itemx -seglinkedit
14763 @itemx -segprot
14764 @itemx -segs_read_only_addr
14765 @itemx -segs_read_write_addr
14766 @itemx -single_module
14767 @itemx -static
14768 @itemx -sub_library
14769 @need 800
14770 @itemx -sub_umbrella
14771 @itemx -twolevel_namespace
14772 @itemx -umbrella
14773 @itemx -undefined
14774 @itemx -unexported_symbols_list
14775 @itemx -weak_reference_mismatches
14776 @itemx -whatsloaded
14777 @opindex allowable_client
14778 @opindex client_name
14779 @opindex compatibility_version
14780 @opindex current_version
14781 @opindex dead_strip
14782 @opindex dependency-file
14783 @opindex dylib_file
14784 @opindex dylinker_install_name
14785 @opindex dynamic
14786 @opindex exported_symbols_list
14787 @opindex filelist
14788 @opindex flat_namespace
14789 @opindex force_flat_namespace
14790 @opindex headerpad_max_install_names
14791 @opindex image_base
14792 @opindex init
14793 @opindex install_name
14794 @opindex keep_private_externs
14795 @opindex multi_module
14796 @opindex multiply_defined
14797 @opindex multiply_defined_unused
14798 @opindex noall_load
14799 @opindex no_dead_strip_inits_and_terms
14800 @opindex nofixprebinding
14801 @opindex nomultidefs
14802 @opindex noprebind
14803 @opindex noseglinkedit
14804 @opindex pagezero_size
14805 @opindex prebind
14806 @opindex prebind_all_twolevel_modules
14807 @opindex private_bundle
14808 @opindex read_only_relocs
14809 @opindex sectalign
14810 @opindex sectobjectsymbols
14811 @opindex whyload
14812 @opindex seg1addr
14813 @opindex sectcreate
14814 @opindex sectobjectsymbols
14815 @opindex sectorder
14816 @opindex segaddr
14817 @opindex segs_read_only_addr
14818 @opindex segs_read_write_addr
14819 @opindex seg_addr_table
14820 @opindex seg_addr_table_filename
14821 @opindex seglinkedit
14822 @opindex segprot
14823 @opindex segs_read_only_addr
14824 @opindex segs_read_write_addr
14825 @opindex single_module
14826 @opindex static
14827 @opindex sub_library
14828 @opindex sub_umbrella
14829 @opindex twolevel_namespace
14830 @opindex umbrella
14831 @opindex undefined
14832 @opindex unexported_symbols_list
14833 @opindex weak_reference_mismatches
14834 @opindex whatsloaded
14835 These options are passed to the Darwin linker. The Darwin linker man page
14836 describes them in detail.
14837 @end table
14838
14839 @node DEC Alpha Options
14840 @subsection DEC Alpha Options
14841
14842 These @samp{-m} options are defined for the DEC Alpha implementations:
14843
14844 @table @gcctabopt
14845 @item -mno-soft-float
14846 @itemx -msoft-float
14847 @opindex mno-soft-float
14848 @opindex msoft-float
14849 Use (do not use) the hardware floating-point instructions for
14850 floating-point operations. When @option{-msoft-float} is specified,
14851 functions in @file{libgcc.a} are used to perform floating-point
14852 operations. Unless they are replaced by routines that emulate the
14853 floating-point operations, or compiled in such a way as to call such
14854 emulations routines, these routines issue floating-point
14855 operations. If you are compiling for an Alpha without floating-point
14856 operations, you must ensure that the library is built so as not to call
14857 them.
14858
14859 Note that Alpha implementations without floating-point operations are
14860 required to have floating-point registers.
14861
14862 @item -mfp-reg
14863 @itemx -mno-fp-regs
14864 @opindex mfp-reg
14865 @opindex mno-fp-regs
14866 Generate code that uses (does not use) the floating-point register set.
14867 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
14868 register set is not used, floating-point operands are passed in integer
14869 registers as if they were integers and floating-point results are passed
14870 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
14871 so any function with a floating-point argument or return value called by code
14872 compiled with @option{-mno-fp-regs} must also be compiled with that
14873 option.
14874
14875 A typical use of this option is building a kernel that does not use,
14876 and hence need not save and restore, any floating-point registers.
14877
14878 @item -mieee
14879 @opindex mieee
14880 The Alpha architecture implements floating-point hardware optimized for
14881 maximum performance. It is mostly compliant with the IEEE floating-point
14882 standard. However, for full compliance, software assistance is
14883 required. This option generates code fully IEEE-compliant code
14884 @emph{except} that the @var{inexact-flag} is not maintained (see below).
14885 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
14886 defined during compilation. The resulting code is less efficient but is
14887 able to correctly support denormalized numbers and exceptional IEEE
14888 values such as not-a-number and plus/minus infinity. Other Alpha
14889 compilers call this option @option{-ieee_with_no_inexact}.
14890
14891 @item -mieee-with-inexact
14892 @opindex mieee-with-inexact
14893 This is like @option{-mieee} except the generated code also maintains
14894 the IEEE @var{inexact-flag}. Turning on this option causes the
14895 generated code to implement fully-compliant IEEE math. In addition to
14896 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
14897 macro. On some Alpha implementations the resulting code may execute
14898 significantly slower than the code generated by default. Since there is
14899 very little code that depends on the @var{inexact-flag}, you should
14900 normally not specify this option. Other Alpha compilers call this
14901 option @option{-ieee_with_inexact}.
14902
14903 @item -mfp-trap-mode=@var{trap-mode}
14904 @opindex mfp-trap-mode
14905 This option controls what floating-point related traps are enabled.
14906 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
14907 The trap mode can be set to one of four values:
14908
14909 @table @samp
14910 @item n
14911 This is the default (normal) setting. The only traps that are enabled
14912 are the ones that cannot be disabled in software (e.g., division by zero
14913 trap).
14914
14915 @item u
14916 In addition to the traps enabled by @samp{n}, underflow traps are enabled
14917 as well.
14918
14919 @item su
14920 Like @samp{u}, but the instructions are marked to be safe for software
14921 completion (see Alpha architecture manual for details).
14922
14923 @item sui
14924 Like @samp{su}, but inexact traps are enabled as well.
14925 @end table
14926
14927 @item -mfp-rounding-mode=@var{rounding-mode}
14928 @opindex mfp-rounding-mode
14929 Selects the IEEE rounding mode. Other Alpha compilers call this option
14930 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
14931 of:
14932
14933 @table @samp
14934 @item n
14935 Normal IEEE rounding mode. Floating-point numbers are rounded towards
14936 the nearest machine number or towards the even machine number in case
14937 of a tie.
14938
14939 @item m
14940 Round towards minus infinity.
14941
14942 @item c
14943 Chopped rounding mode. Floating-point numbers are rounded towards zero.
14944
14945 @item d
14946 Dynamic rounding mode. A field in the floating-point control register
14947 (@var{fpcr}, see Alpha architecture reference manual) controls the
14948 rounding mode in effect. The C library initializes this register for
14949 rounding towards plus infinity. Thus, unless your program modifies the
14950 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
14951 @end table
14952
14953 @item -mtrap-precision=@var{trap-precision}
14954 @opindex mtrap-precision
14955 In the Alpha architecture, floating-point traps are imprecise. This
14956 means without software assistance it is impossible to recover from a
14957 floating trap and program execution normally needs to be terminated.
14958 GCC can generate code that can assist operating system trap handlers
14959 in determining the exact location that caused a floating-point trap.
14960 Depending on the requirements of an application, different levels of
14961 precisions can be selected:
14962
14963 @table @samp
14964 @item p
14965 Program precision. This option is the default and means a trap handler
14966 can only identify which program caused a floating-point exception.
14967
14968 @item f
14969 Function precision. The trap handler can determine the function that
14970 caused a floating-point exception.
14971
14972 @item i
14973 Instruction precision. The trap handler can determine the exact
14974 instruction that caused a floating-point exception.
14975 @end table
14976
14977 Other Alpha compilers provide the equivalent options called
14978 @option{-scope_safe} and @option{-resumption_safe}.
14979
14980 @item -mieee-conformant
14981 @opindex mieee-conformant
14982 This option marks the generated code as IEEE conformant. You must not
14983 use this option unless you also specify @option{-mtrap-precision=i} and either
14984 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
14985 is to emit the line @samp{.eflag 48} in the function prologue of the
14986 generated assembly file.
14987
14988 @item -mbuild-constants
14989 @opindex mbuild-constants
14990 Normally GCC examines a 32- or 64-bit integer constant to
14991 see if it can construct it from smaller constants in two or three
14992 instructions. If it cannot, it outputs the constant as a literal and
14993 generates code to load it from the data segment at run time.
14994
14995 Use this option to require GCC to construct @emph{all} integer constants
14996 using code, even if it takes more instructions (the maximum is six).
14997
14998 You typically use this option to build a shared library dynamic
14999 loader. Itself a shared library, it must relocate itself in memory
15000 before it can find the variables and constants in its own data segment.
15001
15002 @item -mbwx
15003 @itemx -mno-bwx
15004 @itemx -mcix
15005 @itemx -mno-cix
15006 @itemx -mfix
15007 @itemx -mno-fix
15008 @itemx -mmax
15009 @itemx -mno-max
15010 @opindex mbwx
15011 @opindex mno-bwx
15012 @opindex mcix
15013 @opindex mno-cix
15014 @opindex mfix
15015 @opindex mno-fix
15016 @opindex mmax
15017 @opindex mno-max
15018 Indicate whether GCC should generate code to use the optional BWX,
15019 CIX, FIX and MAX instruction sets. The default is to use the instruction
15020 sets supported by the CPU type specified via @option{-mcpu=} option or that
15021 of the CPU on which GCC was built if none is specified.
15022
15023 @item -mfloat-vax
15024 @itemx -mfloat-ieee
15025 @opindex mfloat-vax
15026 @opindex mfloat-ieee
15027 Generate code that uses (does not use) VAX F and G floating-point
15028 arithmetic instead of IEEE single and double precision.
15029
15030 @item -mexplicit-relocs
15031 @itemx -mno-explicit-relocs
15032 @opindex mexplicit-relocs
15033 @opindex mno-explicit-relocs
15034 Older Alpha assemblers provided no way to generate symbol relocations
15035 except via assembler macros. Use of these macros does not allow
15036 optimal instruction scheduling. GNU binutils as of version 2.12
15037 supports a new syntax that allows the compiler to explicitly mark
15038 which relocations should apply to which instructions. This option
15039 is mostly useful for debugging, as GCC detects the capabilities of
15040 the assembler when it is built and sets the default accordingly.
15041
15042 @item -msmall-data
15043 @itemx -mlarge-data
15044 @opindex msmall-data
15045 @opindex mlarge-data
15046 When @option{-mexplicit-relocs} is in effect, static data is
15047 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
15048 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
15049 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
15050 16-bit relocations off of the @code{$gp} register. This limits the
15051 size of the small data area to 64KB, but allows the variables to be
15052 directly accessed via a single instruction.
15053
15054 The default is @option{-mlarge-data}. With this option the data area
15055 is limited to just below 2GB@. Programs that require more than 2GB of
15056 data must use @code{malloc} or @code{mmap} to allocate the data in the
15057 heap instead of in the program's data segment.
15058
15059 When generating code for shared libraries, @option{-fpic} implies
15060 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
15061
15062 @item -msmall-text
15063 @itemx -mlarge-text
15064 @opindex msmall-text
15065 @opindex mlarge-text
15066 When @option{-msmall-text} is used, the compiler assumes that the
15067 code of the entire program (or shared library) fits in 4MB, and is
15068 thus reachable with a branch instruction. When @option{-msmall-data}
15069 is used, the compiler can assume that all local symbols share the
15070 same @code{$gp} value, and thus reduce the number of instructions
15071 required for a function call from 4 to 1.
15072
15073 The default is @option{-mlarge-text}.
15074
15075 @item -mcpu=@var{cpu_type}
15076 @opindex mcpu
15077 Set the instruction set and instruction scheduling parameters for
15078 machine type @var{cpu_type}. You can specify either the @samp{EV}
15079 style name or the corresponding chip number. GCC supports scheduling
15080 parameters for the EV4, EV5 and EV6 family of processors and
15081 chooses the default values for the instruction set from the processor
15082 you specify. If you do not specify a processor type, GCC defaults
15083 to the processor on which the compiler was built.
15084
15085 Supported values for @var{cpu_type} are
15086
15087 @table @samp
15088 @item ev4
15089 @itemx ev45
15090 @itemx 21064
15091 Schedules as an EV4 and has no instruction set extensions.
15092
15093 @item ev5
15094 @itemx 21164
15095 Schedules as an EV5 and has no instruction set extensions.
15096
15097 @item ev56
15098 @itemx 21164a
15099 Schedules as an EV5 and supports the BWX extension.
15100
15101 @item pca56
15102 @itemx 21164pc
15103 @itemx 21164PC
15104 Schedules as an EV5 and supports the BWX and MAX extensions.
15105
15106 @item ev6
15107 @itemx 21264
15108 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
15109
15110 @item ev67
15111 @itemx 21264a
15112 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
15113 @end table
15114
15115 Native toolchains also support the value @samp{native},
15116 which selects the best architecture option for the host processor.
15117 @option{-mcpu=native} has no effect if GCC does not recognize
15118 the processor.
15119
15120 @item -mtune=@var{cpu_type}
15121 @opindex mtune
15122 Set only the instruction scheduling parameters for machine type
15123 @var{cpu_type}. The instruction set is not changed.
15124
15125 Native toolchains also support the value @samp{native},
15126 which selects the best architecture option for the host processor.
15127 @option{-mtune=native} has no effect if GCC does not recognize
15128 the processor.
15129
15130 @item -mmemory-latency=@var{time}
15131 @opindex mmemory-latency
15132 Sets the latency the scheduler should assume for typical memory
15133 references as seen by the application. This number is highly
15134 dependent on the memory access patterns used by the application
15135 and the size of the external cache on the machine.
15136
15137 Valid options for @var{time} are
15138
15139 @table @samp
15140 @item @var{number}
15141 A decimal number representing clock cycles.
15142
15143 @item L1
15144 @itemx L2
15145 @itemx L3
15146 @itemx main
15147 The compiler contains estimates of the number of clock cycles for
15148 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15149 (also called Dcache, Scache, and Bcache), as well as to main memory.
15150 Note that L3 is only valid for EV5.
15151
15152 @end table
15153 @end table
15154
15155 @node FR30 Options
15156 @subsection FR30 Options
15157 @cindex FR30 Options
15158
15159 These options are defined specifically for the FR30 port.
15160
15161 @table @gcctabopt
15162
15163 @item -msmall-model
15164 @opindex msmall-model
15165 Use the small address space model. This can produce smaller code, but
15166 it does assume that all symbolic values and addresses fit into a
15167 20-bit range.
15168
15169 @item -mno-lsim
15170 @opindex mno-lsim
15171 Assume that runtime support has been provided and so there is no need
15172 to include the simulator library (@file{libsim.a}) on the linker
15173 command line.
15174
15175 @end table
15176
15177 @node FT32 Options
15178 @subsection FT32 Options
15179 @cindex FT32 Options
15180
15181 These options are defined specifically for the FT32 port.
15182
15183 @table @gcctabopt
15184
15185 @item -msim
15186 @opindex msim
15187 Specifies that the program will be run on the simulator. This causes
15188 an alternate runtime startup and library to be linked.
15189 You must not use this option when generating programs that will run on
15190 real hardware; you must provide your own runtime library for whatever
15191 I/O functions are needed.
15192
15193 @item -mlra
15194 @opindex mlra
15195 Enable Local Register Allocation. This is still experimental for FT32,
15196 so by default the compiler uses standard reload.
15197
15198 @end table
15199
15200 @node FRV Options
15201 @subsection FRV Options
15202 @cindex FRV Options
15203
15204 @table @gcctabopt
15205 @item -mgpr-32
15206 @opindex mgpr-32
15207
15208 Only use the first 32 general-purpose registers.
15209
15210 @item -mgpr-64
15211 @opindex mgpr-64
15212
15213 Use all 64 general-purpose registers.
15214
15215 @item -mfpr-32
15216 @opindex mfpr-32
15217
15218 Use only the first 32 floating-point registers.
15219
15220 @item -mfpr-64
15221 @opindex mfpr-64
15222
15223 Use all 64 floating-point registers.
15224
15225 @item -mhard-float
15226 @opindex mhard-float
15227
15228 Use hardware instructions for floating-point operations.
15229
15230 @item -msoft-float
15231 @opindex msoft-float
15232
15233 Use library routines for floating-point operations.
15234
15235 @item -malloc-cc
15236 @opindex malloc-cc
15237
15238 Dynamically allocate condition code registers.
15239
15240 @item -mfixed-cc
15241 @opindex mfixed-cc
15242
15243 Do not try to dynamically allocate condition code registers, only
15244 use @code{icc0} and @code{fcc0}.
15245
15246 @item -mdword
15247 @opindex mdword
15248
15249 Change ABI to use double word insns.
15250
15251 @item -mno-dword
15252 @opindex mno-dword
15253
15254 Do not use double word instructions.
15255
15256 @item -mdouble
15257 @opindex mdouble
15258
15259 Use floating-point double instructions.
15260
15261 @item -mno-double
15262 @opindex mno-double
15263
15264 Do not use floating-point double instructions.
15265
15266 @item -mmedia
15267 @opindex mmedia
15268
15269 Use media instructions.
15270
15271 @item -mno-media
15272 @opindex mno-media
15273
15274 Do not use media instructions.
15275
15276 @item -mmuladd
15277 @opindex mmuladd
15278
15279 Use multiply and add/subtract instructions.
15280
15281 @item -mno-muladd
15282 @opindex mno-muladd
15283
15284 Do not use multiply and add/subtract instructions.
15285
15286 @item -mfdpic
15287 @opindex mfdpic
15288
15289 Select the FDPIC ABI, which uses function descriptors to represent
15290 pointers to functions. Without any PIC/PIE-related options, it
15291 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
15292 assumes GOT entries and small data are within a 12-bit range from the
15293 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15294 are computed with 32 bits.
15295 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15296
15297 @item -minline-plt
15298 @opindex minline-plt
15299
15300 Enable inlining of PLT entries in function calls to functions that are
15301 not known to bind locally. It has no effect without @option{-mfdpic}.
15302 It's enabled by default if optimizing for speed and compiling for
15303 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15304 optimization option such as @option{-O3} or above is present in the
15305 command line.
15306
15307 @item -mTLS
15308 @opindex mTLS
15309
15310 Assume a large TLS segment when generating thread-local code.
15311
15312 @item -mtls
15313 @opindex mtls
15314
15315 Do not assume a large TLS segment when generating thread-local code.
15316
15317 @item -mgprel-ro
15318 @opindex mgprel-ro
15319
15320 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15321 that is known to be in read-only sections. It's enabled by default,
15322 except for @option{-fpic} or @option{-fpie}: even though it may help
15323 make the global offset table smaller, it trades 1 instruction for 4.
15324 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15325 one of which may be shared by multiple symbols, and it avoids the need
15326 for a GOT entry for the referenced symbol, so it's more likely to be a
15327 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
15328
15329 @item -multilib-library-pic
15330 @opindex multilib-library-pic
15331
15332 Link with the (library, not FD) pic libraries. It's implied by
15333 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
15334 @option{-fpic} without @option{-mfdpic}. You should never have to use
15335 it explicitly.
15336
15337 @item -mlinked-fp
15338 @opindex mlinked-fp
15339
15340 Follow the EABI requirement of always creating a frame pointer whenever
15341 a stack frame is allocated. This option is enabled by default and can
15342 be disabled with @option{-mno-linked-fp}.
15343
15344 @item -mlong-calls
15345 @opindex mlong-calls
15346
15347 Use indirect addressing to call functions outside the current
15348 compilation unit. This allows the functions to be placed anywhere
15349 within the 32-bit address space.
15350
15351 @item -malign-labels
15352 @opindex malign-labels
15353
15354 Try to align labels to an 8-byte boundary by inserting NOPs into the
15355 previous packet. This option only has an effect when VLIW packing
15356 is enabled. It doesn't create new packets; it merely adds NOPs to
15357 existing ones.
15358
15359 @item -mlibrary-pic
15360 @opindex mlibrary-pic
15361
15362 Generate position-independent EABI code.
15363
15364 @item -macc-4
15365 @opindex macc-4
15366
15367 Use only the first four media accumulator registers.
15368
15369 @item -macc-8
15370 @opindex macc-8
15371
15372 Use all eight media accumulator registers.
15373
15374 @item -mpack
15375 @opindex mpack
15376
15377 Pack VLIW instructions.
15378
15379 @item -mno-pack
15380 @opindex mno-pack
15381
15382 Do not pack VLIW instructions.
15383
15384 @item -mno-eflags
15385 @opindex mno-eflags
15386
15387 Do not mark ABI switches in e_flags.
15388
15389 @item -mcond-move
15390 @opindex mcond-move
15391
15392 Enable the use of conditional-move instructions (default).
15393
15394 This switch is mainly for debugging the compiler and will likely be removed
15395 in a future version.
15396
15397 @item -mno-cond-move
15398 @opindex mno-cond-move
15399
15400 Disable the use of conditional-move instructions.
15401
15402 This switch is mainly for debugging the compiler and will likely be removed
15403 in a future version.
15404
15405 @item -mscc
15406 @opindex mscc
15407
15408 Enable the use of conditional set instructions (default).
15409
15410 This switch is mainly for debugging the compiler and will likely be removed
15411 in a future version.
15412
15413 @item -mno-scc
15414 @opindex mno-scc
15415
15416 Disable the use of conditional set instructions.
15417
15418 This switch is mainly for debugging the compiler and will likely be removed
15419 in a future version.
15420
15421 @item -mcond-exec
15422 @opindex mcond-exec
15423
15424 Enable the use of conditional execution (default).
15425
15426 This switch is mainly for debugging the compiler and will likely be removed
15427 in a future version.
15428
15429 @item -mno-cond-exec
15430 @opindex mno-cond-exec
15431
15432 Disable the use of conditional execution.
15433
15434 This switch is mainly for debugging the compiler and will likely be removed
15435 in a future version.
15436
15437 @item -mvliw-branch
15438 @opindex mvliw-branch
15439
15440 Run a pass to pack branches into VLIW instructions (default).
15441
15442 This switch is mainly for debugging the compiler and will likely be removed
15443 in a future version.
15444
15445 @item -mno-vliw-branch
15446 @opindex mno-vliw-branch
15447
15448 Do not run a pass to pack branches into VLIW instructions.
15449
15450 This switch is mainly for debugging the compiler and will likely be removed
15451 in a future version.
15452
15453 @item -mmulti-cond-exec
15454 @opindex mmulti-cond-exec
15455
15456 Enable optimization of @code{&&} and @code{||} in conditional execution
15457 (default).
15458
15459 This switch is mainly for debugging the compiler and will likely be removed
15460 in a future version.
15461
15462 @item -mno-multi-cond-exec
15463 @opindex mno-multi-cond-exec
15464
15465 Disable optimization of @code{&&} and @code{||} in conditional execution.
15466
15467 This switch is mainly for debugging the compiler and will likely be removed
15468 in a future version.
15469
15470 @item -mnested-cond-exec
15471 @opindex mnested-cond-exec
15472
15473 Enable nested conditional execution optimizations (default).
15474
15475 This switch is mainly for debugging the compiler and will likely be removed
15476 in a future version.
15477
15478 @item -mno-nested-cond-exec
15479 @opindex mno-nested-cond-exec
15480
15481 Disable nested conditional execution optimizations.
15482
15483 This switch is mainly for debugging the compiler and will likely be removed
15484 in a future version.
15485
15486 @item -moptimize-membar
15487 @opindex moptimize-membar
15488
15489 This switch removes redundant @code{membar} instructions from the
15490 compiler-generated code. It is enabled by default.
15491
15492 @item -mno-optimize-membar
15493 @opindex mno-optimize-membar
15494
15495 This switch disables the automatic removal of redundant @code{membar}
15496 instructions from the generated code.
15497
15498 @item -mtomcat-stats
15499 @opindex mtomcat-stats
15500
15501 Cause gas to print out tomcat statistics.
15502
15503 @item -mcpu=@var{cpu}
15504 @opindex mcpu
15505
15506 Select the processor type for which to generate code. Possible values are
15507 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15508 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15509
15510 @end table
15511
15512 @node GNU/Linux Options
15513 @subsection GNU/Linux Options
15514
15515 These @samp{-m} options are defined for GNU/Linux targets:
15516
15517 @table @gcctabopt
15518 @item -mglibc
15519 @opindex mglibc
15520 Use the GNU C library. This is the default except
15521 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
15522 @samp{*-*-linux-*android*} targets.
15523
15524 @item -muclibc
15525 @opindex muclibc
15526 Use uClibc C library. This is the default on
15527 @samp{*-*-linux-*uclibc*} targets.
15528
15529 @item -mmusl
15530 @opindex mmusl
15531 Use the musl C library. This is the default on
15532 @samp{*-*-linux-*musl*} targets.
15533
15534 @item -mbionic
15535 @opindex mbionic
15536 Use Bionic C library. This is the default on
15537 @samp{*-*-linux-*android*} targets.
15538
15539 @item -mandroid
15540 @opindex mandroid
15541 Compile code compatible with Android platform. This is the default on
15542 @samp{*-*-linux-*android*} targets.
15543
15544 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15545 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
15546 this option makes the GCC driver pass Android-specific options to the linker.
15547 Finally, this option causes the preprocessor macro @code{__ANDROID__}
15548 to be defined.
15549
15550 @item -tno-android-cc
15551 @opindex tno-android-cc
15552 Disable compilation effects of @option{-mandroid}, i.e., do not enable
15553 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15554 @option{-fno-rtti} by default.
15555
15556 @item -tno-android-ld
15557 @opindex tno-android-ld
15558 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15559 linking options to the linker.
15560
15561 @end table
15562
15563 @node H8/300 Options
15564 @subsection H8/300 Options
15565
15566 These @samp{-m} options are defined for the H8/300 implementations:
15567
15568 @table @gcctabopt
15569 @item -mrelax
15570 @opindex mrelax
15571 Shorten some address references at link time, when possible; uses the
15572 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
15573 ld, Using ld}, for a fuller description.
15574
15575 @item -mh
15576 @opindex mh
15577 Generate code for the H8/300H@.
15578
15579 @item -ms
15580 @opindex ms
15581 Generate code for the H8S@.
15582
15583 @item -mn
15584 @opindex mn
15585 Generate code for the H8S and H8/300H in the normal mode. This switch
15586 must be used either with @option{-mh} or @option{-ms}.
15587
15588 @item -ms2600
15589 @opindex ms2600
15590 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
15591
15592 @item -mexr
15593 @opindex mexr
15594 Extended registers are stored on stack before execution of function
15595 with monitor attribute. Default option is @option{-mexr}.
15596 This option is valid only for H8S targets.
15597
15598 @item -mno-exr
15599 @opindex mno-exr
15600 Extended registers are not stored on stack before execution of function
15601 with monitor attribute. Default option is @option{-mno-exr}.
15602 This option is valid only for H8S targets.
15603
15604 @item -mint32
15605 @opindex mint32
15606 Make @code{int} data 32 bits by default.
15607
15608 @item -malign-300
15609 @opindex malign-300
15610 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15611 The default for the H8/300H and H8S is to align longs and floats on
15612 4-byte boundaries.
15613 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
15614 This option has no effect on the H8/300.
15615 @end table
15616
15617 @node HPPA Options
15618 @subsection HPPA Options
15619 @cindex HPPA Options
15620
15621 These @samp{-m} options are defined for the HPPA family of computers:
15622
15623 @table @gcctabopt
15624 @item -march=@var{architecture-type}
15625 @opindex march
15626 Generate code for the specified architecture. The choices for
15627 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
15628 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
15629 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15630 architecture option for your machine. Code compiled for lower numbered
15631 architectures runs on higher numbered architectures, but not the
15632 other way around.
15633
15634 @item -mpa-risc-1-0
15635 @itemx -mpa-risc-1-1
15636 @itemx -mpa-risc-2-0
15637 @opindex mpa-risc-1-0
15638 @opindex mpa-risc-1-1
15639 @opindex mpa-risc-2-0
15640 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15641
15642 @item -mjump-in-delay
15643 @opindex mjump-in-delay
15644 This option is ignored and provided for compatibility purposes only.
15645
15646 @item -mdisable-fpregs
15647 @opindex mdisable-fpregs
15648 Prevent floating-point registers from being used in any manner. This is
15649 necessary for compiling kernels that perform lazy context switching of
15650 floating-point registers. If you use this option and attempt to perform
15651 floating-point operations, the compiler aborts.
15652
15653 @item -mdisable-indexing
15654 @opindex mdisable-indexing
15655 Prevent the compiler from using indexing address modes. This avoids some
15656 rather obscure problems when compiling MIG generated code under MACH@.
15657
15658 @item -mno-space-regs
15659 @opindex mno-space-regs
15660 Generate code that assumes the target has no space registers. This allows
15661 GCC to generate faster indirect calls and use unscaled index address modes.
15662
15663 Such code is suitable for level 0 PA systems and kernels.
15664
15665 @item -mfast-indirect-calls
15666 @opindex mfast-indirect-calls
15667 Generate code that assumes calls never cross space boundaries. This
15668 allows GCC to emit code that performs faster indirect calls.
15669
15670 This option does not work in the presence of shared libraries or nested
15671 functions.
15672
15673 @item -mfixed-range=@var{register-range}
15674 @opindex mfixed-range
15675 Generate code treating the given register range as fixed registers.
15676 A fixed register is one that the register allocator cannot use. This is
15677 useful when compiling kernel code. A register range is specified as
15678 two registers separated by a dash. Multiple register ranges can be
15679 specified separated by a comma.
15680
15681 @item -mlong-load-store
15682 @opindex mlong-load-store
15683 Generate 3-instruction load and store sequences as sometimes required by
15684 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
15685 the HP compilers.
15686
15687 @item -mportable-runtime
15688 @opindex mportable-runtime
15689 Use the portable calling conventions proposed by HP for ELF systems.
15690
15691 @item -mgas
15692 @opindex mgas
15693 Enable the use of assembler directives only GAS understands.
15694
15695 @item -mschedule=@var{cpu-type}
15696 @opindex mschedule
15697 Schedule code according to the constraints for the machine type
15698 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
15699 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
15700 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15701 proper scheduling option for your machine. The default scheduling is
15702 @samp{8000}.
15703
15704 @item -mlinker-opt
15705 @opindex mlinker-opt
15706 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
15707 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
15708 linkers in which they give bogus error messages when linking some programs.
15709
15710 @item -msoft-float
15711 @opindex msoft-float
15712 Generate output containing library calls for floating point.
15713 @strong{Warning:} the requisite libraries are not available for all HPPA
15714 targets. Normally the facilities of the machine's usual C compiler are
15715 used, but this cannot be done directly in cross-compilation. You must make
15716 your own arrangements to provide suitable library functions for
15717 cross-compilation.
15718
15719 @option{-msoft-float} changes the calling convention in the output file;
15720 therefore, it is only useful if you compile @emph{all} of a program with
15721 this option. In particular, you need to compile @file{libgcc.a}, the
15722 library that comes with GCC, with @option{-msoft-float} in order for
15723 this to work.
15724
15725 @item -msio
15726 @opindex msio
15727 Generate the predefine, @code{_SIO}, for server IO@. The default is
15728 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
15729 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
15730 options are available under HP-UX and HI-UX@.
15731
15732 @item -mgnu-ld
15733 @opindex mgnu-ld
15734 Use options specific to GNU @command{ld}.
15735 This passes @option{-shared} to @command{ld} when
15736 building a shared library. It is the default when GCC is configured,
15737 explicitly or implicitly, with the GNU linker. This option does not
15738 affect which @command{ld} is called; it only changes what parameters
15739 are passed to that @command{ld}.
15740 The @command{ld} that is called is determined by the
15741 @option{--with-ld} configure option, GCC's program search path, and
15742 finally by the user's @env{PATH}. The linker used by GCC can be printed
15743 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
15744 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15745
15746 @item -mhp-ld
15747 @opindex mhp-ld
15748 Use options specific to HP @command{ld}.
15749 This passes @option{-b} to @command{ld} when building
15750 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15751 links. It is the default when GCC is configured, explicitly or
15752 implicitly, with the HP linker. This option does not affect
15753 which @command{ld} is called; it only changes what parameters are passed to that
15754 @command{ld}.
15755 The @command{ld} that is called is determined by the @option{--with-ld}
15756 configure option, GCC's program search path, and finally by the user's
15757 @env{PATH}. The linker used by GCC can be printed using @samp{which
15758 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
15759 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15760
15761 @item -mlong-calls
15762 @opindex mno-long-calls
15763 Generate code that uses long call sequences. This ensures that a call
15764 is always able to reach linker generated stubs. The default is to generate
15765 long calls only when the distance from the call site to the beginning
15766 of the function or translation unit, as the case may be, exceeds a
15767 predefined limit set by the branch type being used. The limits for
15768 normal calls are 7,600,000 and 240,000 bytes, respectively for the
15769 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
15770 240,000 bytes.
15771
15772 Distances are measured from the beginning of functions when using the
15773 @option{-ffunction-sections} option, or when using the @option{-mgas}
15774 and @option{-mno-portable-runtime} options together under HP-UX with
15775 the SOM linker.
15776
15777 It is normally not desirable to use this option as it degrades
15778 performance. However, it may be useful in large applications,
15779 particularly when partial linking is used to build the application.
15780
15781 The types of long calls used depends on the capabilities of the
15782 assembler and linker, and the type of code being generated. The
15783 impact on systems that support long absolute calls, and long pic
15784 symbol-difference or pc-relative calls should be relatively small.
15785 However, an indirect call is used on 32-bit ELF systems in pic code
15786 and it is quite long.
15787
15788 @item -munix=@var{unix-std}
15789 @opindex march
15790 Generate compiler predefines and select a startfile for the specified
15791 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
15792 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
15793 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
15794 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
15795 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
15796 and later.
15797
15798 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
15799 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
15800 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
15801 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
15802 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
15803 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
15804
15805 It is @emph{important} to note that this option changes the interfaces
15806 for various library routines. It also affects the operational behavior
15807 of the C library. Thus, @emph{extreme} care is needed in using this
15808 option.
15809
15810 Library code that is intended to operate with more than one UNIX
15811 standard must test, set and restore the variable @code{__xpg4_extended_mask}
15812 as appropriate. Most GNU software doesn't provide this capability.
15813
15814 @item -nolibdld
15815 @opindex nolibdld
15816 Suppress the generation of link options to search libdld.sl when the
15817 @option{-static} option is specified on HP-UX 10 and later.
15818
15819 @item -static
15820 @opindex static
15821 The HP-UX implementation of setlocale in libc has a dependency on
15822 libdld.sl. There isn't an archive version of libdld.sl. Thus,
15823 when the @option{-static} option is specified, special link options
15824 are needed to resolve this dependency.
15825
15826 On HP-UX 10 and later, the GCC driver adds the necessary options to
15827 link with libdld.sl when the @option{-static} option is specified.
15828 This causes the resulting binary to be dynamic. On the 64-bit port,
15829 the linkers generate dynamic binaries by default in any case. The
15830 @option{-nolibdld} option can be used to prevent the GCC driver from
15831 adding these link options.
15832
15833 @item -threads
15834 @opindex threads
15835 Add support for multithreading with the @dfn{dce thread} library
15836 under HP-UX@. This option sets flags for both the preprocessor and
15837 linker.
15838 @end table
15839
15840 @node IA-64 Options
15841 @subsection IA-64 Options
15842 @cindex IA-64 Options
15843
15844 These are the @samp{-m} options defined for the Intel IA-64 architecture.
15845
15846 @table @gcctabopt
15847 @item -mbig-endian
15848 @opindex mbig-endian
15849 Generate code for a big-endian target. This is the default for HP-UX@.
15850
15851 @item -mlittle-endian
15852 @opindex mlittle-endian
15853 Generate code for a little-endian target. This is the default for AIX5
15854 and GNU/Linux.
15855
15856 @item -mgnu-as
15857 @itemx -mno-gnu-as
15858 @opindex mgnu-as
15859 @opindex mno-gnu-as
15860 Generate (or don't) code for the GNU assembler. This is the default.
15861 @c Also, this is the default if the configure option @option{--with-gnu-as}
15862 @c is used.
15863
15864 @item -mgnu-ld
15865 @itemx -mno-gnu-ld
15866 @opindex mgnu-ld
15867 @opindex mno-gnu-ld
15868 Generate (or don't) code for the GNU linker. This is the default.
15869 @c Also, this is the default if the configure option @option{--with-gnu-ld}
15870 @c is used.
15871
15872 @item -mno-pic
15873 @opindex mno-pic
15874 Generate code that does not use a global pointer register. The result
15875 is not position independent code, and violates the IA-64 ABI@.
15876
15877 @item -mvolatile-asm-stop
15878 @itemx -mno-volatile-asm-stop
15879 @opindex mvolatile-asm-stop
15880 @opindex mno-volatile-asm-stop
15881 Generate (or don't) a stop bit immediately before and after volatile asm
15882 statements.
15883
15884 @item -mregister-names
15885 @itemx -mno-register-names
15886 @opindex mregister-names
15887 @opindex mno-register-names
15888 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
15889 the stacked registers. This may make assembler output more readable.
15890
15891 @item -mno-sdata
15892 @itemx -msdata
15893 @opindex mno-sdata
15894 @opindex msdata
15895 Disable (or enable) optimizations that use the small data section. This may
15896 be useful for working around optimizer bugs.
15897
15898 @item -mconstant-gp
15899 @opindex mconstant-gp
15900 Generate code that uses a single constant global pointer value. This is
15901 useful when compiling kernel code.
15902
15903 @item -mauto-pic
15904 @opindex mauto-pic
15905 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
15906 This is useful when compiling firmware code.
15907
15908 @item -minline-float-divide-min-latency
15909 @opindex minline-float-divide-min-latency
15910 Generate code for inline divides of floating-point values
15911 using the minimum latency algorithm.
15912
15913 @item -minline-float-divide-max-throughput
15914 @opindex minline-float-divide-max-throughput
15915 Generate code for inline divides of floating-point values
15916 using the maximum throughput algorithm.
15917
15918 @item -mno-inline-float-divide
15919 @opindex mno-inline-float-divide
15920 Do not generate inline code for divides of floating-point values.
15921
15922 @item -minline-int-divide-min-latency
15923 @opindex minline-int-divide-min-latency
15924 Generate code for inline divides of integer values
15925 using the minimum latency algorithm.
15926
15927 @item -minline-int-divide-max-throughput
15928 @opindex minline-int-divide-max-throughput
15929 Generate code for inline divides of integer values
15930 using the maximum throughput algorithm.
15931
15932 @item -mno-inline-int-divide
15933 @opindex mno-inline-int-divide
15934 Do not generate inline code for divides of integer values.
15935
15936 @item -minline-sqrt-min-latency
15937 @opindex minline-sqrt-min-latency
15938 Generate code for inline square roots
15939 using the minimum latency algorithm.
15940
15941 @item -minline-sqrt-max-throughput
15942 @opindex minline-sqrt-max-throughput
15943 Generate code for inline square roots
15944 using the maximum throughput algorithm.
15945
15946 @item -mno-inline-sqrt
15947 @opindex mno-inline-sqrt
15948 Do not generate inline code for @code{sqrt}.
15949
15950 @item -mfused-madd
15951 @itemx -mno-fused-madd
15952 @opindex mfused-madd
15953 @opindex mno-fused-madd
15954 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
15955 instructions. The default is to use these instructions.
15956
15957 @item -mno-dwarf2-asm
15958 @itemx -mdwarf2-asm
15959 @opindex mno-dwarf2-asm
15960 @opindex mdwarf2-asm
15961 Don't (or do) generate assembler code for the DWARF 2 line number debugging
15962 info. This may be useful when not using the GNU assembler.
15963
15964 @item -mearly-stop-bits
15965 @itemx -mno-early-stop-bits
15966 @opindex mearly-stop-bits
15967 @opindex mno-early-stop-bits
15968 Allow stop bits to be placed earlier than immediately preceding the
15969 instruction that triggered the stop bit. This can improve instruction
15970 scheduling, but does not always do so.
15971
15972 @item -mfixed-range=@var{register-range}
15973 @opindex mfixed-range
15974 Generate code treating the given register range as fixed registers.
15975 A fixed register is one that the register allocator cannot use. This is
15976 useful when compiling kernel code. A register range is specified as
15977 two registers separated by a dash. Multiple register ranges can be
15978 specified separated by a comma.
15979
15980 @item -mtls-size=@var{tls-size}
15981 @opindex mtls-size
15982 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
15983 64.
15984
15985 @item -mtune=@var{cpu-type}
15986 @opindex mtune
15987 Tune the instruction scheduling for a particular CPU, Valid values are
15988 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
15989 and @samp{mckinley}.
15990
15991 @item -milp32
15992 @itemx -mlp64
15993 @opindex milp32
15994 @opindex mlp64
15995 Generate code for a 32-bit or 64-bit environment.
15996 The 32-bit environment sets int, long and pointer to 32 bits.
15997 The 64-bit environment sets int to 32 bits and long and pointer
15998 to 64 bits. These are HP-UX specific flags.
15999
16000 @item -mno-sched-br-data-spec
16001 @itemx -msched-br-data-spec
16002 @opindex mno-sched-br-data-spec
16003 @opindex msched-br-data-spec
16004 (Dis/En)able data speculative scheduling before reload.
16005 This results in generation of @code{ld.a} instructions and
16006 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16007 The default is 'disable'.
16008
16009 @item -msched-ar-data-spec
16010 @itemx -mno-sched-ar-data-spec
16011 @opindex msched-ar-data-spec
16012 @opindex mno-sched-ar-data-spec
16013 (En/Dis)able data speculative scheduling after reload.
16014 This results in generation of @code{ld.a} instructions and
16015 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16016 The default is 'enable'.
16017
16018 @item -mno-sched-control-spec
16019 @itemx -msched-control-spec
16020 @opindex mno-sched-control-spec
16021 @opindex msched-control-spec
16022 (Dis/En)able control speculative scheduling. This feature is
16023 available only during region scheduling (i.e.@: before reload).
16024 This results in generation of the @code{ld.s} instructions and
16025 the corresponding check instructions @code{chk.s}.
16026 The default is 'disable'.
16027
16028 @item -msched-br-in-data-spec
16029 @itemx -mno-sched-br-in-data-spec
16030 @opindex msched-br-in-data-spec
16031 @opindex mno-sched-br-in-data-spec
16032 (En/Dis)able speculative scheduling of the instructions that
16033 are dependent on the data speculative loads before reload.
16034 This is effective only with @option{-msched-br-data-spec} enabled.
16035 The default is 'enable'.
16036
16037 @item -msched-ar-in-data-spec
16038 @itemx -mno-sched-ar-in-data-spec
16039 @opindex msched-ar-in-data-spec
16040 @opindex mno-sched-ar-in-data-spec
16041 (En/Dis)able speculative scheduling of the instructions that
16042 are dependent on the data speculative loads after reload.
16043 This is effective only with @option{-msched-ar-data-spec} enabled.
16044 The default is 'enable'.
16045
16046 @item -msched-in-control-spec
16047 @itemx -mno-sched-in-control-spec
16048 @opindex msched-in-control-spec
16049 @opindex mno-sched-in-control-spec
16050 (En/Dis)able speculative scheduling of the instructions that
16051 are dependent on the control speculative loads.
16052 This is effective only with @option{-msched-control-spec} enabled.
16053 The default is 'enable'.
16054
16055 @item -mno-sched-prefer-non-data-spec-insns
16056 @itemx -msched-prefer-non-data-spec-insns
16057 @opindex mno-sched-prefer-non-data-spec-insns
16058 @opindex msched-prefer-non-data-spec-insns
16059 If enabled, data-speculative instructions are chosen for schedule
16060 only if there are no other choices at the moment. This makes
16061 the use of the data speculation much more conservative.
16062 The default is 'disable'.
16063
16064 @item -mno-sched-prefer-non-control-spec-insns
16065 @itemx -msched-prefer-non-control-spec-insns
16066 @opindex mno-sched-prefer-non-control-spec-insns
16067 @opindex msched-prefer-non-control-spec-insns
16068 If enabled, control-speculative instructions are chosen for schedule
16069 only if there are no other choices at the moment. This makes
16070 the use of the control speculation much more conservative.
16071 The default is 'disable'.
16072
16073 @item -mno-sched-count-spec-in-critical-path
16074 @itemx -msched-count-spec-in-critical-path
16075 @opindex mno-sched-count-spec-in-critical-path
16076 @opindex msched-count-spec-in-critical-path
16077 If enabled, speculative dependencies are considered during
16078 computation of the instructions priorities. This makes the use of the
16079 speculation a bit more conservative.
16080 The default is 'disable'.
16081
16082 @item -msched-spec-ldc
16083 @opindex msched-spec-ldc
16084 Use a simple data speculation check. This option is on by default.
16085
16086 @item -msched-control-spec-ldc
16087 @opindex msched-spec-ldc
16088 Use a simple check for control speculation. This option is on by default.
16089
16090 @item -msched-stop-bits-after-every-cycle
16091 @opindex msched-stop-bits-after-every-cycle
16092 Place a stop bit after every cycle when scheduling. This option is on
16093 by default.
16094
16095 @item -msched-fp-mem-deps-zero-cost
16096 @opindex msched-fp-mem-deps-zero-cost
16097 Assume that floating-point stores and loads are not likely to cause a conflict
16098 when placed into the same instruction group. This option is disabled by
16099 default.
16100
16101 @item -msel-sched-dont-check-control-spec
16102 @opindex msel-sched-dont-check-control-spec
16103 Generate checks for control speculation in selective scheduling.
16104 This flag is disabled by default.
16105
16106 @item -msched-max-memory-insns=@var{max-insns}
16107 @opindex msched-max-memory-insns
16108 Limit on the number of memory insns per instruction group, giving lower
16109 priority to subsequent memory insns attempting to schedule in the same
16110 instruction group. Frequently useful to prevent cache bank conflicts.
16111 The default value is 1.
16112
16113 @item -msched-max-memory-insns-hard-limit
16114 @opindex msched-max-memory-insns-hard-limit
16115 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
16116 disallowing more than that number in an instruction group.
16117 Otherwise, the limit is ``soft'', meaning that non-memory operations
16118 are preferred when the limit is reached, but memory operations may still
16119 be scheduled.
16120
16121 @end table
16122
16123 @node LM32 Options
16124 @subsection LM32 Options
16125 @cindex LM32 options
16126
16127 These @option{-m} options are defined for the LatticeMico32 architecture:
16128
16129 @table @gcctabopt
16130 @item -mbarrel-shift-enabled
16131 @opindex mbarrel-shift-enabled
16132 Enable barrel-shift instructions.
16133
16134 @item -mdivide-enabled
16135 @opindex mdivide-enabled
16136 Enable divide and modulus instructions.
16137
16138 @item -mmultiply-enabled
16139 @opindex multiply-enabled
16140 Enable multiply instructions.
16141
16142 @item -msign-extend-enabled
16143 @opindex msign-extend-enabled
16144 Enable sign extend instructions.
16145
16146 @item -muser-enabled
16147 @opindex muser-enabled
16148 Enable user-defined instructions.
16149
16150 @end table
16151
16152 @node M32C Options
16153 @subsection M32C Options
16154 @cindex M32C options
16155
16156 @table @gcctabopt
16157 @item -mcpu=@var{name}
16158 @opindex mcpu=
16159 Select the CPU for which code is generated. @var{name} may be one of
16160 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16161 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16162 the M32C/80 series.
16163
16164 @item -msim
16165 @opindex msim
16166 Specifies that the program will be run on the simulator. This causes
16167 an alternate runtime library to be linked in which supports, for
16168 example, file I/O@. You must not use this option when generating
16169 programs that will run on real hardware; you must provide your own
16170 runtime library for whatever I/O functions are needed.
16171
16172 @item -memregs=@var{number}
16173 @opindex memregs=
16174 Specifies the number of memory-based pseudo-registers GCC uses
16175 during code generation. These pseudo-registers are used like real
16176 registers, so there is a tradeoff between GCC's ability to fit the
16177 code into available registers, and the performance penalty of using
16178 memory instead of registers. Note that all modules in a program must
16179 be compiled with the same value for this option. Because of that, you
16180 must not use this option with GCC's default runtime libraries.
16181
16182 @end table
16183
16184 @node M32R/D Options
16185 @subsection M32R/D Options
16186 @cindex M32R/D options
16187
16188 These @option{-m} options are defined for Renesas M32R/D architectures:
16189
16190 @table @gcctabopt
16191 @item -m32r2
16192 @opindex m32r2
16193 Generate code for the M32R/2@.
16194
16195 @item -m32rx
16196 @opindex m32rx
16197 Generate code for the M32R/X@.
16198
16199 @item -m32r
16200 @opindex m32r
16201 Generate code for the M32R@. This is the default.
16202
16203 @item -mmodel=small
16204 @opindex mmodel=small
16205 Assume all objects live in the lower 16MB of memory (so that their addresses
16206 can be loaded with the @code{ld24} instruction), and assume all subroutines
16207 are reachable with the @code{bl} instruction.
16208 This is the default.
16209
16210 The addressability of a particular object can be set with the
16211 @code{model} attribute.
16212
16213 @item -mmodel=medium
16214 @opindex mmodel=medium
16215 Assume objects may be anywhere in the 32-bit address space (the compiler
16216 generates @code{seth/add3} instructions to load their addresses), and
16217 assume all subroutines are reachable with the @code{bl} instruction.
16218
16219 @item -mmodel=large
16220 @opindex mmodel=large
16221 Assume objects may be anywhere in the 32-bit address space (the compiler
16222 generates @code{seth/add3} instructions to load their addresses), and
16223 assume subroutines may not be reachable with the @code{bl} instruction
16224 (the compiler generates the much slower @code{seth/add3/jl}
16225 instruction sequence).
16226
16227 @item -msdata=none
16228 @opindex msdata=none
16229 Disable use of the small data area. Variables are put into
16230 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16231 @code{section} attribute has been specified).
16232 This is the default.
16233
16234 The small data area consists of sections @code{.sdata} and @code{.sbss}.
16235 Objects may be explicitly put in the small data area with the
16236 @code{section} attribute using one of these sections.
16237
16238 @item -msdata=sdata
16239 @opindex msdata=sdata
16240 Put small global and static data in the small data area, but do not
16241 generate special code to reference them.
16242
16243 @item -msdata=use
16244 @opindex msdata=use
16245 Put small global and static data in the small data area, and generate
16246 special instructions to reference them.
16247
16248 @item -G @var{num}
16249 @opindex G
16250 @cindex smaller data references
16251 Put global and static objects less than or equal to @var{num} bytes
16252 into the small data or BSS sections instead of the normal data or BSS
16253 sections. The default value of @var{num} is 8.
16254 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16255 for this option to have any effect.
16256
16257 All modules should be compiled with the same @option{-G @var{num}} value.
16258 Compiling with different values of @var{num} may or may not work; if it
16259 doesn't the linker gives an error message---incorrect code is not
16260 generated.
16261
16262 @item -mdebug
16263 @opindex mdebug
16264 Makes the M32R-specific code in the compiler display some statistics
16265 that might help in debugging programs.
16266
16267 @item -malign-loops
16268 @opindex malign-loops
16269 Align all loops to a 32-byte boundary.
16270
16271 @item -mno-align-loops
16272 @opindex mno-align-loops
16273 Do not enforce a 32-byte alignment for loops. This is the default.
16274
16275 @item -missue-rate=@var{number}
16276 @opindex missue-rate=@var{number}
16277 Issue @var{number} instructions per cycle. @var{number} can only be 1
16278 or 2.
16279
16280 @item -mbranch-cost=@var{number}
16281 @opindex mbranch-cost=@var{number}
16282 @var{number} can only be 1 or 2. If it is 1 then branches are
16283 preferred over conditional code, if it is 2, then the opposite applies.
16284
16285 @item -mflush-trap=@var{number}
16286 @opindex mflush-trap=@var{number}
16287 Specifies the trap number to use to flush the cache. The default is
16288 12. Valid numbers are between 0 and 15 inclusive.
16289
16290 @item -mno-flush-trap
16291 @opindex mno-flush-trap
16292 Specifies that the cache cannot be flushed by using a trap.
16293
16294 @item -mflush-func=@var{name}
16295 @opindex mflush-func=@var{name}
16296 Specifies the name of the operating system function to call to flush
16297 the cache. The default is @samp{_flush_cache}, but a function call
16298 is only used if a trap is not available.
16299
16300 @item -mno-flush-func
16301 @opindex mno-flush-func
16302 Indicates that there is no OS function for flushing the cache.
16303
16304 @end table
16305
16306 @node M680x0 Options
16307 @subsection M680x0 Options
16308 @cindex M680x0 options
16309
16310 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16311 The default settings depend on which architecture was selected when
16312 the compiler was configured; the defaults for the most common choices
16313 are given below.
16314
16315 @table @gcctabopt
16316 @item -march=@var{arch}
16317 @opindex march
16318 Generate code for a specific M680x0 or ColdFire instruction set
16319 architecture. Permissible values of @var{arch} for M680x0
16320 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16321 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
16322 architectures are selected according to Freescale's ISA classification
16323 and the permissible values are: @samp{isaa}, @samp{isaaplus},
16324 @samp{isab} and @samp{isac}.
16325
16326 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16327 code for a ColdFire target. The @var{arch} in this macro is one of the
16328 @option{-march} arguments given above.
16329
16330 When used together, @option{-march} and @option{-mtune} select code
16331 that runs on a family of similar processors but that is optimized
16332 for a particular microarchitecture.
16333
16334 @item -mcpu=@var{cpu}
16335 @opindex mcpu
16336 Generate code for a specific M680x0 or ColdFire processor.
16337 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16338 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16339 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
16340 below, which also classifies the CPUs into families:
16341
16342 @multitable @columnfractions 0.20 0.80
16343 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16344 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16345 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16346 @item @samp{5206e} @tab @samp{5206e}
16347 @item @samp{5208} @tab @samp{5207} @samp{5208}
16348 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16349 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16350 @item @samp{5216} @tab @samp{5214} @samp{5216}
16351 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16352 @item @samp{5225} @tab @samp{5224} @samp{5225}
16353 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16354 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16355 @item @samp{5249} @tab @samp{5249}
16356 @item @samp{5250} @tab @samp{5250}
16357 @item @samp{5271} @tab @samp{5270} @samp{5271}
16358 @item @samp{5272} @tab @samp{5272}
16359 @item @samp{5275} @tab @samp{5274} @samp{5275}
16360 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16361 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16362 @item @samp{5307} @tab @samp{5307}
16363 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16364 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16365 @item @samp{5407} @tab @samp{5407}
16366 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16367 @end multitable
16368
16369 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16370 @var{arch} is compatible with @var{cpu}. Other combinations of
16371 @option{-mcpu} and @option{-march} are rejected.
16372
16373 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16374 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
16375 where the value of @var{family} is given by the table above.
16376
16377 @item -mtune=@var{tune}
16378 @opindex mtune
16379 Tune the code for a particular microarchitecture within the
16380 constraints set by @option{-march} and @option{-mcpu}.
16381 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16382 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16383 and @samp{cpu32}. The ColdFire microarchitectures
16384 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16385
16386 You can also use @option{-mtune=68020-40} for code that needs
16387 to run relatively well on 68020, 68030 and 68040 targets.
16388 @option{-mtune=68020-60} is similar but includes 68060 targets
16389 as well. These two options select the same tuning decisions as
16390 @option{-m68020-40} and @option{-m68020-60} respectively.
16391
16392 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16393 when tuning for 680x0 architecture @var{arch}. It also defines
16394 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16395 option is used. If GCC is tuning for a range of architectures,
16396 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16397 it defines the macros for every architecture in the range.
16398
16399 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16400 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16401 of the arguments given above.
16402
16403 @item -m68000
16404 @itemx -mc68000
16405 @opindex m68000
16406 @opindex mc68000
16407 Generate output for a 68000. This is the default
16408 when the compiler is configured for 68000-based systems.
16409 It is equivalent to @option{-march=68000}.
16410
16411 Use this option for microcontrollers with a 68000 or EC000 core,
16412 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16413
16414 @item -m68010
16415 @opindex m68010
16416 Generate output for a 68010. This is the default
16417 when the compiler is configured for 68010-based systems.
16418 It is equivalent to @option{-march=68010}.
16419
16420 @item -m68020
16421 @itemx -mc68020
16422 @opindex m68020
16423 @opindex mc68020
16424 Generate output for a 68020. This is the default
16425 when the compiler is configured for 68020-based systems.
16426 It is equivalent to @option{-march=68020}.
16427
16428 @item -m68030
16429 @opindex m68030
16430 Generate output for a 68030. This is the default when the compiler is
16431 configured for 68030-based systems. It is equivalent to
16432 @option{-march=68030}.
16433
16434 @item -m68040
16435 @opindex m68040
16436 Generate output for a 68040. This is the default when the compiler is
16437 configured for 68040-based systems. It is equivalent to
16438 @option{-march=68040}.
16439
16440 This option inhibits the use of 68881/68882 instructions that have to be
16441 emulated by software on the 68040. Use this option if your 68040 does not
16442 have code to emulate those instructions.
16443
16444 @item -m68060
16445 @opindex m68060
16446 Generate output for a 68060. This is the default when the compiler is
16447 configured for 68060-based systems. It is equivalent to
16448 @option{-march=68060}.
16449
16450 This option inhibits the use of 68020 and 68881/68882 instructions that
16451 have to be emulated by software on the 68060. Use this option if your 68060
16452 does not have code to emulate those instructions.
16453
16454 @item -mcpu32
16455 @opindex mcpu32
16456 Generate output for a CPU32. This is the default
16457 when the compiler is configured for CPU32-based systems.
16458 It is equivalent to @option{-march=cpu32}.
16459
16460 Use this option for microcontrollers with a
16461 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
16462 68336, 68340, 68341, 68349 and 68360.
16463
16464 @item -m5200
16465 @opindex m5200
16466 Generate output for a 520X ColdFire CPU@. This is the default
16467 when the compiler is configured for 520X-based systems.
16468 It is equivalent to @option{-mcpu=5206}, and is now deprecated
16469 in favor of that option.
16470
16471 Use this option for microcontroller with a 5200 core, including
16472 the MCF5202, MCF5203, MCF5204 and MCF5206.
16473
16474 @item -m5206e
16475 @opindex m5206e
16476 Generate output for a 5206e ColdFire CPU@. The option is now
16477 deprecated in favor of the equivalent @option{-mcpu=5206e}.
16478
16479 @item -m528x
16480 @opindex m528x
16481 Generate output for a member of the ColdFire 528X family.
16482 The option is now deprecated in favor of the equivalent
16483 @option{-mcpu=528x}.
16484
16485 @item -m5307
16486 @opindex m5307
16487 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
16488 in favor of the equivalent @option{-mcpu=5307}.
16489
16490 @item -m5407
16491 @opindex m5407
16492 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
16493 in favor of the equivalent @option{-mcpu=5407}.
16494
16495 @item -mcfv4e
16496 @opindex mcfv4e
16497 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16498 This includes use of hardware floating-point instructions.
16499 The option is equivalent to @option{-mcpu=547x}, and is now
16500 deprecated in favor of that option.
16501
16502 @item -m68020-40
16503 @opindex m68020-40
16504 Generate output for a 68040, without using any of the new instructions.
16505 This results in code that can run relatively efficiently on either a
16506 68020/68881 or a 68030 or a 68040. The generated code does use the
16507 68881 instructions that are emulated on the 68040.
16508
16509 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16510
16511 @item -m68020-60
16512 @opindex m68020-60
16513 Generate output for a 68060, without using any of the new instructions.
16514 This results in code that can run relatively efficiently on either a
16515 68020/68881 or a 68030 or a 68040. The generated code does use the
16516 68881 instructions that are emulated on the 68060.
16517
16518 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16519
16520 @item -mhard-float
16521 @itemx -m68881
16522 @opindex mhard-float
16523 @opindex m68881
16524 Generate floating-point instructions. This is the default for 68020
16525 and above, and for ColdFire devices that have an FPU@. It defines the
16526 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16527 on ColdFire targets.
16528
16529 @item -msoft-float
16530 @opindex msoft-float
16531 Do not generate floating-point instructions; use library calls instead.
16532 This is the default for 68000, 68010, and 68832 targets. It is also
16533 the default for ColdFire devices that have no FPU.
16534
16535 @item -mdiv
16536 @itemx -mno-div
16537 @opindex mdiv
16538 @opindex mno-div
16539 Generate (do not generate) ColdFire hardware divide and remainder
16540 instructions. If @option{-march} is used without @option{-mcpu},
16541 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16542 architectures. Otherwise, the default is taken from the target CPU
16543 (either the default CPU, or the one specified by @option{-mcpu}). For
16544 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16545 @option{-mcpu=5206e}.
16546
16547 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16548
16549 @item -mshort
16550 @opindex mshort
16551 Consider type @code{int} to be 16 bits wide, like @code{short int}.
16552 Additionally, parameters passed on the stack are also aligned to a
16553 16-bit boundary even on targets whose API mandates promotion to 32-bit.
16554
16555 @item -mno-short
16556 @opindex mno-short
16557 Do not consider type @code{int} to be 16 bits wide. This is the default.
16558
16559 @item -mnobitfield
16560 @itemx -mno-bitfield
16561 @opindex mnobitfield
16562 @opindex mno-bitfield
16563 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
16564 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16565
16566 @item -mbitfield
16567 @opindex mbitfield
16568 Do use the bit-field instructions. The @option{-m68020} option implies
16569 @option{-mbitfield}. This is the default if you use a configuration
16570 designed for a 68020.
16571
16572 @item -mrtd
16573 @opindex mrtd
16574 Use a different function-calling convention, in which functions
16575 that take a fixed number of arguments return with the @code{rtd}
16576 instruction, which pops their arguments while returning. This
16577 saves one instruction in the caller since there is no need to pop
16578 the arguments there.
16579
16580 This calling convention is incompatible with the one normally
16581 used on Unix, so you cannot use it if you need to call libraries
16582 compiled with the Unix compiler.
16583
16584 Also, you must provide function prototypes for all functions that
16585 take variable numbers of arguments (including @code{printf});
16586 otherwise incorrect code is generated for calls to those
16587 functions.
16588
16589 In addition, seriously incorrect code results if you call a
16590 function with too many arguments. (Normally, extra arguments are
16591 harmlessly ignored.)
16592
16593 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
16594 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16595
16596 @item -mno-rtd
16597 @opindex mno-rtd
16598 Do not use the calling conventions selected by @option{-mrtd}.
16599 This is the default.
16600
16601 @item -malign-int
16602 @itemx -mno-align-int
16603 @opindex malign-int
16604 @opindex mno-align-int
16605 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16606 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
16607 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16608 Aligning variables on 32-bit boundaries produces code that runs somewhat
16609 faster on processors with 32-bit busses at the expense of more memory.
16610
16611 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
16612 aligns structures containing the above types differently than
16613 most published application binary interface specifications for the m68k.
16614
16615 @item -mpcrel
16616 @opindex mpcrel
16617 Use the pc-relative addressing mode of the 68000 directly, instead of
16618 using a global offset table. At present, this option implies @option{-fpic},
16619 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
16620 not presently supported with @option{-mpcrel}, though this could be supported for
16621 68020 and higher processors.
16622
16623 @item -mno-strict-align
16624 @itemx -mstrict-align
16625 @opindex mno-strict-align
16626 @opindex mstrict-align
16627 Do not (do) assume that unaligned memory references are handled by
16628 the system.
16629
16630 @item -msep-data
16631 Generate code that allows the data segment to be located in a different
16632 area of memory from the text segment. This allows for execute-in-place in
16633 an environment without virtual memory management. This option implies
16634 @option{-fPIC}.
16635
16636 @item -mno-sep-data
16637 Generate code that assumes that the data segment follows the text segment.
16638 This is the default.
16639
16640 @item -mid-shared-library
16641 Generate code that supports shared libraries via the library ID method.
16642 This allows for execute-in-place and shared libraries in an environment
16643 without virtual memory management. This option implies @option{-fPIC}.
16644
16645 @item -mno-id-shared-library
16646 Generate code that doesn't assume ID-based shared libraries are being used.
16647 This is the default.
16648
16649 @item -mshared-library-id=n
16650 Specifies the identification number of the ID-based shared library being
16651 compiled. Specifying a value of 0 generates more compact code; specifying
16652 other values forces the allocation of that number to the current
16653 library, but is no more space- or time-efficient than omitting this option.
16654
16655 @item -mxgot
16656 @itemx -mno-xgot
16657 @opindex mxgot
16658 @opindex mno-xgot
16659 When generating position-independent code for ColdFire, generate code
16660 that works if the GOT has more than 8192 entries. This code is
16661 larger and slower than code generated without this option. On M680x0
16662 processors, this option is not needed; @option{-fPIC} suffices.
16663
16664 GCC normally uses a single instruction to load values from the GOT@.
16665 While this is relatively efficient, it only works if the GOT
16666 is smaller than about 64k. Anything larger causes the linker
16667 to report an error such as:
16668
16669 @cindex relocation truncated to fit (ColdFire)
16670 @smallexample
16671 relocation truncated to fit: R_68K_GOT16O foobar
16672 @end smallexample
16673
16674 If this happens, you should recompile your code with @option{-mxgot}.
16675 It should then work with very large GOTs. However, code generated with
16676 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16677 the value of a global symbol.
16678
16679 Note that some linkers, including newer versions of the GNU linker,
16680 can create multiple GOTs and sort GOT entries. If you have such a linker,
16681 you should only need to use @option{-mxgot} when compiling a single
16682 object file that accesses more than 8192 GOT entries. Very few do.
16683
16684 These options have no effect unless GCC is generating
16685 position-independent code.
16686
16687 @end table
16688
16689 @node MCore Options
16690 @subsection MCore Options
16691 @cindex MCore options
16692
16693 These are the @samp{-m} options defined for the Motorola M*Core
16694 processors.
16695
16696 @table @gcctabopt
16697
16698 @item -mhardlit
16699 @itemx -mno-hardlit
16700 @opindex mhardlit
16701 @opindex mno-hardlit
16702 Inline constants into the code stream if it can be done in two
16703 instructions or less.
16704
16705 @item -mdiv
16706 @itemx -mno-div
16707 @opindex mdiv
16708 @opindex mno-div
16709 Use the divide instruction. (Enabled by default).
16710
16711 @item -mrelax-immediate
16712 @itemx -mno-relax-immediate
16713 @opindex mrelax-immediate
16714 @opindex mno-relax-immediate
16715 Allow arbitrary-sized immediates in bit operations.
16716
16717 @item -mwide-bitfields
16718 @itemx -mno-wide-bitfields
16719 @opindex mwide-bitfields
16720 @opindex mno-wide-bitfields
16721 Always treat bit-fields as @code{int}-sized.
16722
16723 @item -m4byte-functions
16724 @itemx -mno-4byte-functions
16725 @opindex m4byte-functions
16726 @opindex mno-4byte-functions
16727 Force all functions to be aligned to a 4-byte boundary.
16728
16729 @item -mcallgraph-data
16730 @itemx -mno-callgraph-data
16731 @opindex mcallgraph-data
16732 @opindex mno-callgraph-data
16733 Emit callgraph information.
16734
16735 @item -mslow-bytes
16736 @itemx -mno-slow-bytes
16737 @opindex mslow-bytes
16738 @opindex mno-slow-bytes
16739 Prefer word access when reading byte quantities.
16740
16741 @item -mlittle-endian
16742 @itemx -mbig-endian
16743 @opindex mlittle-endian
16744 @opindex mbig-endian
16745 Generate code for a little-endian target.
16746
16747 @item -m210
16748 @itemx -m340
16749 @opindex m210
16750 @opindex m340
16751 Generate code for the 210 processor.
16752
16753 @item -mno-lsim
16754 @opindex mno-lsim
16755 Assume that runtime support has been provided and so omit the
16756 simulator library (@file{libsim.a)} from the linker command line.
16757
16758 @item -mstack-increment=@var{size}
16759 @opindex mstack-increment
16760 Set the maximum amount for a single stack increment operation. Large
16761 values can increase the speed of programs that contain functions
16762 that need a large amount of stack space, but they can also trigger a
16763 segmentation fault if the stack is extended too much. The default
16764 value is 0x1000.
16765
16766 @end table
16767
16768 @node MeP Options
16769 @subsection MeP Options
16770 @cindex MeP options
16771
16772 @table @gcctabopt
16773
16774 @item -mabsdiff
16775 @opindex mabsdiff
16776 Enables the @code{abs} instruction, which is the absolute difference
16777 between two registers.
16778
16779 @item -mall-opts
16780 @opindex mall-opts
16781 Enables all the optional instructions---average, multiply, divide, bit
16782 operations, leading zero, absolute difference, min/max, clip, and
16783 saturation.
16784
16785
16786 @item -maverage
16787 @opindex maverage
16788 Enables the @code{ave} instruction, which computes the average of two
16789 registers.
16790
16791 @item -mbased=@var{n}
16792 @opindex mbased=
16793 Variables of size @var{n} bytes or smaller are placed in the
16794 @code{.based} section by default. Based variables use the @code{$tp}
16795 register as a base register, and there is a 128-byte limit to the
16796 @code{.based} section.
16797
16798 @item -mbitops
16799 @opindex mbitops
16800 Enables the bit operation instructions---bit test (@code{btstm}), set
16801 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
16802 test-and-set (@code{tas}).
16803
16804 @item -mc=@var{name}
16805 @opindex mc=
16806 Selects which section constant data is placed in. @var{name} may
16807 be @samp{tiny}, @samp{near}, or @samp{far}.
16808
16809 @item -mclip
16810 @opindex mclip
16811 Enables the @code{clip} instruction. Note that @option{-mclip} is not
16812 useful unless you also provide @option{-mminmax}.
16813
16814 @item -mconfig=@var{name}
16815 @opindex mconfig=
16816 Selects one of the built-in core configurations. Each MeP chip has
16817 one or more modules in it; each module has a core CPU and a variety of
16818 coprocessors, optional instructions, and peripherals. The
16819 @code{MeP-Integrator} tool, not part of GCC, provides these
16820 configurations through this option; using this option is the same as
16821 using all the corresponding command-line options. The default
16822 configuration is @samp{default}.
16823
16824 @item -mcop
16825 @opindex mcop
16826 Enables the coprocessor instructions. By default, this is a 32-bit
16827 coprocessor. Note that the coprocessor is normally enabled via the
16828 @option{-mconfig=} option.
16829
16830 @item -mcop32
16831 @opindex mcop32
16832 Enables the 32-bit coprocessor's instructions.
16833
16834 @item -mcop64
16835 @opindex mcop64
16836 Enables the 64-bit coprocessor's instructions.
16837
16838 @item -mivc2
16839 @opindex mivc2
16840 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
16841
16842 @item -mdc
16843 @opindex mdc
16844 Causes constant variables to be placed in the @code{.near} section.
16845
16846 @item -mdiv
16847 @opindex mdiv
16848 Enables the @code{div} and @code{divu} instructions.
16849
16850 @item -meb
16851 @opindex meb
16852 Generate big-endian code.
16853
16854 @item -mel
16855 @opindex mel
16856 Generate little-endian code.
16857
16858 @item -mio-volatile
16859 @opindex mio-volatile
16860 Tells the compiler that any variable marked with the @code{io}
16861 attribute is to be considered volatile.
16862
16863 @item -ml
16864 @opindex ml
16865 Causes variables to be assigned to the @code{.far} section by default.
16866
16867 @item -mleadz
16868 @opindex mleadz
16869 Enables the @code{leadz} (leading zero) instruction.
16870
16871 @item -mm
16872 @opindex mm
16873 Causes variables to be assigned to the @code{.near} section by default.
16874
16875 @item -mminmax
16876 @opindex mminmax
16877 Enables the @code{min} and @code{max} instructions.
16878
16879 @item -mmult
16880 @opindex mmult
16881 Enables the multiplication and multiply-accumulate instructions.
16882
16883 @item -mno-opts
16884 @opindex mno-opts
16885 Disables all the optional instructions enabled by @option{-mall-opts}.
16886
16887 @item -mrepeat
16888 @opindex mrepeat
16889 Enables the @code{repeat} and @code{erepeat} instructions, used for
16890 low-overhead looping.
16891
16892 @item -ms
16893 @opindex ms
16894 Causes all variables to default to the @code{.tiny} section. Note
16895 that there is a 65536-byte limit to this section. Accesses to these
16896 variables use the @code{%gp} base register.
16897
16898 @item -msatur
16899 @opindex msatur
16900 Enables the saturation instructions. Note that the compiler does not
16901 currently generate these itself, but this option is included for
16902 compatibility with other tools, like @code{as}.
16903
16904 @item -msdram
16905 @opindex msdram
16906 Link the SDRAM-based runtime instead of the default ROM-based runtime.
16907
16908 @item -msim
16909 @opindex msim
16910 Link the simulator run-time libraries.
16911
16912 @item -msimnovec
16913 @opindex msimnovec
16914 Link the simulator runtime libraries, excluding built-in support
16915 for reset and exception vectors and tables.
16916
16917 @item -mtf
16918 @opindex mtf
16919 Causes all functions to default to the @code{.far} section. Without
16920 this option, functions default to the @code{.near} section.
16921
16922 @item -mtiny=@var{n}
16923 @opindex mtiny=
16924 Variables that are @var{n} bytes or smaller are allocated to the
16925 @code{.tiny} section. These variables use the @code{$gp} base
16926 register. The default for this option is 4, but note that there's a
16927 65536-byte limit to the @code{.tiny} section.
16928
16929 @end table
16930
16931 @node MicroBlaze Options
16932 @subsection MicroBlaze Options
16933 @cindex MicroBlaze Options
16934
16935 @table @gcctabopt
16936
16937 @item -msoft-float
16938 @opindex msoft-float
16939 Use software emulation for floating point (default).
16940
16941 @item -mhard-float
16942 @opindex mhard-float
16943 Use hardware floating-point instructions.
16944
16945 @item -mmemcpy
16946 @opindex mmemcpy
16947 Do not optimize block moves, use @code{memcpy}.
16948
16949 @item -mno-clearbss
16950 @opindex mno-clearbss
16951 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
16952
16953 @item -mcpu=@var{cpu-type}
16954 @opindex mcpu=
16955 Use features of, and schedule code for, the given CPU.
16956 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
16957 where @var{X} is a major version, @var{YY} is the minor version, and
16958 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
16959 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
16960
16961 @item -mxl-soft-mul
16962 @opindex mxl-soft-mul
16963 Use software multiply emulation (default).
16964
16965 @item -mxl-soft-div
16966 @opindex mxl-soft-div
16967 Use software emulation for divides (default).
16968
16969 @item -mxl-barrel-shift
16970 @opindex mxl-barrel-shift
16971 Use the hardware barrel shifter.
16972
16973 @item -mxl-pattern-compare
16974 @opindex mxl-pattern-compare
16975 Use pattern compare instructions.
16976
16977 @item -msmall-divides
16978 @opindex msmall-divides
16979 Use table lookup optimization for small signed integer divisions.
16980
16981 @item -mxl-stack-check
16982 @opindex mxl-stack-check
16983 This option is deprecated. Use @option{-fstack-check} instead.
16984
16985 @item -mxl-gp-opt
16986 @opindex mxl-gp-opt
16987 Use GP-relative @code{.sdata}/@code{.sbss} sections.
16988
16989 @item -mxl-multiply-high
16990 @opindex mxl-multiply-high
16991 Use multiply high instructions for high part of 32x32 multiply.
16992
16993 @item -mxl-float-convert
16994 @opindex mxl-float-convert
16995 Use hardware floating-point conversion instructions.
16996
16997 @item -mxl-float-sqrt
16998 @opindex mxl-float-sqrt
16999 Use hardware floating-point square root instruction.
17000
17001 @item -mbig-endian
17002 @opindex mbig-endian
17003 Generate code for a big-endian target.
17004
17005 @item -mlittle-endian
17006 @opindex mlittle-endian
17007 Generate code for a little-endian target.
17008
17009 @item -mxl-reorder
17010 @opindex mxl-reorder
17011 Use reorder instructions (swap and byte reversed load/store).
17012
17013 @item -mxl-mode-@var{app-model}
17014 Select application model @var{app-model}. Valid models are
17015 @table @samp
17016 @item executable
17017 normal executable (default), uses startup code @file{crt0.o}.
17018
17019 @item xmdstub
17020 for use with Xilinx Microprocessor Debugger (XMD) based
17021 software intrusive debug agent called xmdstub. This uses startup file
17022 @file{crt1.o} and sets the start address of the program to 0x800.
17023
17024 @item bootstrap
17025 for applications that are loaded using a bootloader.
17026 This model uses startup file @file{crt2.o} which does not contain a processor
17027 reset vector handler. This is suitable for transferring control on a
17028 processor reset to the bootloader rather than the application.
17029
17030 @item novectors
17031 for applications that do not require any of the
17032 MicroBlaze vectors. This option may be useful for applications running
17033 within a monitoring application. This model uses @file{crt3.o} as a startup file.
17034 @end table
17035
17036 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
17037 @option{-mxl-mode-@var{app-model}}.
17038
17039 @end table
17040
17041 @node MIPS Options
17042 @subsection MIPS Options
17043 @cindex MIPS options
17044
17045 @table @gcctabopt
17046
17047 @item -EB
17048 @opindex EB
17049 Generate big-endian code.
17050
17051 @item -EL
17052 @opindex EL
17053 Generate little-endian code. This is the default for @samp{mips*el-*-*}
17054 configurations.
17055
17056 @item -march=@var{arch}
17057 @opindex march
17058 Generate code that runs on @var{arch}, which can be the name of a
17059 generic MIPS ISA, or the name of a particular processor.
17060 The ISA names are:
17061 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
17062 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
17063 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
17064 @samp{mips64r5} and @samp{mips64r6}.
17065 The processor names are:
17066 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
17067 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
17068 @samp{5kc}, @samp{5kf},
17069 @samp{20kc},
17070 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
17071 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
17072 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
17073 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
17074 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
17075 @samp{i6400},
17076 @samp{interaptiv},
17077 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
17078 @samp{m4k},
17079 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
17080 @samp{m5100}, @samp{m5101},
17081 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
17082 @samp{orion},
17083 @samp{p5600},
17084 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
17085 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
17086 @samp{rm7000}, @samp{rm9000},
17087 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
17088 @samp{sb1},
17089 @samp{sr71000},
17090 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
17091 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
17092 @samp{xlr} and @samp{xlp}.
17093 The special value @samp{from-abi} selects the
17094 most compatible architecture for the selected ABI (that is,
17095 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
17096
17097 The native Linux/GNU toolchain also supports the value @samp{native},
17098 which selects the best architecture option for the host processor.
17099 @option{-march=native} has no effect if GCC does not recognize
17100 the processor.
17101
17102 In processor names, a final @samp{000} can be abbreviated as @samp{k}
17103 (for example, @option{-march=r2k}). Prefixes are optional, and
17104 @samp{vr} may be written @samp{r}.
17105
17106 Names of the form @samp{@var{n}f2_1} refer to processors with
17107 FPUs clocked at half the rate of the core, names of the form
17108 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
17109 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
17110 processors with FPUs clocked a ratio of 3:2 with respect to the core.
17111 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
17112 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
17113 accepted as synonyms for @samp{@var{n}f1_1}.
17114
17115 GCC defines two macros based on the value of this option. The first
17116 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
17117 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
17118 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
17119 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
17120 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
17121
17122 Note that the @code{_MIPS_ARCH} macro uses the processor names given
17123 above. In other words, it has the full prefix and does not
17124 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
17125 the macro names the resolved architecture (either @code{"mips1"} or
17126 @code{"mips3"}). It names the default architecture when no
17127 @option{-march} option is given.
17128
17129 @item -mtune=@var{arch}
17130 @opindex mtune
17131 Optimize for @var{arch}. Among other things, this option controls
17132 the way instructions are scheduled, and the perceived cost of arithmetic
17133 operations. The list of @var{arch} values is the same as for
17134 @option{-march}.
17135
17136 When this option is not used, GCC optimizes for the processor
17137 specified by @option{-march}. By using @option{-march} and
17138 @option{-mtune} together, it is possible to generate code that
17139 runs on a family of processors, but optimize the code for one
17140 particular member of that family.
17141
17142 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
17143 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
17144 @option{-march} ones described above.
17145
17146 @item -mips1
17147 @opindex mips1
17148 Equivalent to @option{-march=mips1}.
17149
17150 @item -mips2
17151 @opindex mips2
17152 Equivalent to @option{-march=mips2}.
17153
17154 @item -mips3
17155 @opindex mips3
17156 Equivalent to @option{-march=mips3}.
17157
17158 @item -mips4
17159 @opindex mips4
17160 Equivalent to @option{-march=mips4}.
17161
17162 @item -mips32
17163 @opindex mips32
17164 Equivalent to @option{-march=mips32}.
17165
17166 @item -mips32r3
17167 @opindex mips32r3
17168 Equivalent to @option{-march=mips32r3}.
17169
17170 @item -mips32r5
17171 @opindex mips32r5
17172 Equivalent to @option{-march=mips32r5}.
17173
17174 @item -mips32r6
17175 @opindex mips32r6
17176 Equivalent to @option{-march=mips32r6}.
17177
17178 @item -mips64
17179 @opindex mips64
17180 Equivalent to @option{-march=mips64}.
17181
17182 @item -mips64r2
17183 @opindex mips64r2
17184 Equivalent to @option{-march=mips64r2}.
17185
17186 @item -mips64r3
17187 @opindex mips64r3
17188 Equivalent to @option{-march=mips64r3}.
17189
17190 @item -mips64r5
17191 @opindex mips64r5
17192 Equivalent to @option{-march=mips64r5}.
17193
17194 @item -mips64r6
17195 @opindex mips64r6
17196 Equivalent to @option{-march=mips64r6}.
17197
17198 @item -mips16
17199 @itemx -mno-mips16
17200 @opindex mips16
17201 @opindex mno-mips16
17202 Generate (do not generate) MIPS16 code. If GCC is targeting a
17203 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17204
17205 MIPS16 code generation can also be controlled on a per-function basis
17206 by means of @code{mips16} and @code{nomips16} attributes.
17207 @xref{Function Attributes}, for more information.
17208
17209 @item -mflip-mips16
17210 @opindex mflip-mips16
17211 Generate MIPS16 code on alternating functions. This option is provided
17212 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17213 not intended for ordinary use in compiling user code.
17214
17215 @item -minterlink-compressed
17216 @item -mno-interlink-compressed
17217 @opindex minterlink-compressed
17218 @opindex mno-interlink-compressed
17219 Require (do not require) that code using the standard (uncompressed) MIPS ISA
17220 be link-compatible with MIPS16 and microMIPS code, and vice versa.
17221
17222 For example, code using the standard ISA encoding cannot jump directly
17223 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17224 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
17225 knows that the target of the jump is not compressed.
17226
17227 @item -minterlink-mips16
17228 @itemx -mno-interlink-mips16
17229 @opindex minterlink-mips16
17230 @opindex mno-interlink-mips16
17231 Aliases of @option{-minterlink-compressed} and
17232 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
17233 and are retained for backwards compatibility.
17234
17235 @item -mabi=32
17236 @itemx -mabi=o64
17237 @itemx -mabi=n32
17238 @itemx -mabi=64
17239 @itemx -mabi=eabi
17240 @opindex mabi=32
17241 @opindex mabi=o64
17242 @opindex mabi=n32
17243 @opindex mabi=64
17244 @opindex mabi=eabi
17245 Generate code for the given ABI@.
17246
17247 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
17248 generates 64-bit code when you select a 64-bit architecture, but you
17249 can use @option{-mgp32} to get 32-bit code instead.
17250
17251 For information about the O64 ABI, see
17252 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17253
17254 GCC supports a variant of the o32 ABI in which floating-point registers
17255 are 64 rather than 32 bits wide. You can select this combination with
17256 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
17257 and @code{mfhc1} instructions and is therefore only supported for
17258 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17259
17260 The register assignments for arguments and return values remain the
17261 same, but each scalar value is passed in a single 64-bit register
17262 rather than a pair of 32-bit registers. For example, scalar
17263 floating-point values are returned in @samp{$f0} only, not a
17264 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
17265 remains the same in that the even-numbered double-precision registers
17266 are saved.
17267
17268 Two additional variants of the o32 ABI are supported to enable
17269 a transition from 32-bit to 64-bit registers. These are FPXX
17270 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17271 The FPXX extension mandates that all code must execute correctly
17272 when run using 32-bit or 64-bit registers. The code can be interlinked
17273 with either FP32 or FP64, but not both.
17274 The FP64A extension is similar to the FP64 extension but forbids the
17275 use of odd-numbered single-precision registers. This can be used
17276 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17277 processors and allows both FP32 and FP64A code to interlink and
17278 run in the same process without changing FPU modes.
17279
17280 @item -mabicalls
17281 @itemx -mno-abicalls
17282 @opindex mabicalls
17283 @opindex mno-abicalls
17284 Generate (do not generate) code that is suitable for SVR4-style
17285 dynamic objects. @option{-mabicalls} is the default for SVR4-based
17286 systems.
17287
17288 @item -mshared
17289 @itemx -mno-shared
17290 Generate (do not generate) code that is fully position-independent,
17291 and that can therefore be linked into shared libraries. This option
17292 only affects @option{-mabicalls}.
17293
17294 All @option{-mabicalls} code has traditionally been position-independent,
17295 regardless of options like @option{-fPIC} and @option{-fpic}. However,
17296 as an extension, the GNU toolchain allows executables to use absolute
17297 accesses for locally-binding symbols. It can also use shorter GP
17298 initialization sequences and generate direct calls to locally-defined
17299 functions. This mode is selected by @option{-mno-shared}.
17300
17301 @option{-mno-shared} depends on binutils 2.16 or higher and generates
17302 objects that can only be linked by the GNU linker. However, the option
17303 does not affect the ABI of the final executable; it only affects the ABI
17304 of relocatable objects. Using @option{-mno-shared} generally makes
17305 executables both smaller and quicker.
17306
17307 @option{-mshared} is the default.
17308
17309 @item -mplt
17310 @itemx -mno-plt
17311 @opindex mplt
17312 @opindex mno-plt
17313 Assume (do not assume) that the static and dynamic linkers
17314 support PLTs and copy relocations. This option only affects
17315 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
17316 has no effect without @option{-msym32}.
17317
17318 You can make @option{-mplt} the default by configuring
17319 GCC with @option{--with-mips-plt}. The default is
17320 @option{-mno-plt} otherwise.
17321
17322 @item -mxgot
17323 @itemx -mno-xgot
17324 @opindex mxgot
17325 @opindex mno-xgot
17326 Lift (do not lift) the usual restrictions on the size of the global
17327 offset table.
17328
17329 GCC normally uses a single instruction to load values from the GOT@.
17330 While this is relatively efficient, it only works if the GOT
17331 is smaller than about 64k. Anything larger causes the linker
17332 to report an error such as:
17333
17334 @cindex relocation truncated to fit (MIPS)
17335 @smallexample
17336 relocation truncated to fit: R_MIPS_GOT16 foobar
17337 @end smallexample
17338
17339 If this happens, you should recompile your code with @option{-mxgot}.
17340 This works with very large GOTs, although the code is also
17341 less efficient, since it takes three instructions to fetch the
17342 value of a global symbol.
17343
17344 Note that some linkers can create multiple GOTs. If you have such a
17345 linker, you should only need to use @option{-mxgot} when a single object
17346 file accesses more than 64k's worth of GOT entries. Very few do.
17347
17348 These options have no effect unless GCC is generating position
17349 independent code.
17350
17351 @item -mgp32
17352 @opindex mgp32
17353 Assume that general-purpose registers are 32 bits wide.
17354
17355 @item -mgp64
17356 @opindex mgp64
17357 Assume that general-purpose registers are 64 bits wide.
17358
17359 @item -mfp32
17360 @opindex mfp32
17361 Assume that floating-point registers are 32 bits wide.
17362
17363 @item -mfp64
17364 @opindex mfp64
17365 Assume that floating-point registers are 64 bits wide.
17366
17367 @item -mfpxx
17368 @opindex mfpxx
17369 Do not assume the width of floating-point registers.
17370
17371 @item -mhard-float
17372 @opindex mhard-float
17373 Use floating-point coprocessor instructions.
17374
17375 @item -msoft-float
17376 @opindex msoft-float
17377 Do not use floating-point coprocessor instructions. Implement
17378 floating-point calculations using library calls instead.
17379
17380 @item -mno-float
17381 @opindex mno-float
17382 Equivalent to @option{-msoft-float}, but additionally asserts that the
17383 program being compiled does not perform any floating-point operations.
17384 This option is presently supported only by some bare-metal MIPS
17385 configurations, where it may select a special set of libraries
17386 that lack all floating-point support (including, for example, the
17387 floating-point @code{printf} formats).
17388 If code compiled with @option{-mno-float} accidentally contains
17389 floating-point operations, it is likely to suffer a link-time
17390 or run-time failure.
17391
17392 @item -msingle-float
17393 @opindex msingle-float
17394 Assume that the floating-point coprocessor only supports single-precision
17395 operations.
17396
17397 @item -mdouble-float
17398 @opindex mdouble-float
17399 Assume that the floating-point coprocessor supports double-precision
17400 operations. This is the default.
17401
17402 @item -modd-spreg
17403 @itemx -mno-odd-spreg
17404 @opindex modd-spreg
17405 @opindex mno-odd-spreg
17406 Enable the use of odd-numbered single-precision floating-point registers
17407 for the o32 ABI. This is the default for processors that are known to
17408 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17409 is set by default.
17410
17411 @item -mcompact-branches=never
17412 @itemx -mcompact-branches=optimal
17413 @itemx -mcompact-branches=always
17414 @opindex mcompact-branches=never
17415 @opindex mcompact-branches=optimal
17416 @opindex mcompact-branches=always
17417 These options control which form of branches will be generated. The
17418 default is @option{-mcompact-branches=optimal}.
17419
17420 The @option{-mcompact-branches=never} option ensures that compact branch
17421 instructions will never be generated.
17422
17423 The @option{-mcompact-branches=always} option ensures that a compact
17424 branch instruction will be generated if available. If a compact branch
17425 instruction is not available, a delay slot form of the branch will be
17426 used instead.
17427
17428 This option is supported from MIPS Release 6 onwards.
17429
17430 The @option{-mcompact-branches=optimal} option will cause a delay slot
17431 branch to be used if one is available in the current ISA and the delay
17432 slot is successfully filled. If the delay slot is not filled, a compact
17433 branch will be chosen if one is available.
17434
17435 @item -mabs=2008
17436 @itemx -mabs=legacy
17437 @opindex mabs=2008
17438 @opindex mabs=legacy
17439 These options control the treatment of the special not-a-number (NaN)
17440 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17441 @code{neg.@i{fmt}} machine instructions.
17442
17443 By default or when @option{-mabs=legacy} is used the legacy
17444 treatment is selected. In this case these instructions are considered
17445 arithmetic and avoided where correct operation is required and the
17446 input operand might be a NaN. A longer sequence of instructions that
17447 manipulate the sign bit of floating-point datum manually is used
17448 instead unless the @option{-ffinite-math-only} option has also been
17449 specified.
17450
17451 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
17452 this case these instructions are considered non-arithmetic and therefore
17453 operating correctly in all cases, including in particular where the
17454 input operand is a NaN. These instructions are therefore always used
17455 for the respective operations.
17456
17457 @item -mnan=2008
17458 @itemx -mnan=legacy
17459 @opindex mnan=2008
17460 @opindex mnan=legacy
17461 These options control the encoding of the special not-a-number (NaN)
17462 IEEE 754 floating-point data.
17463
17464 The @option{-mnan=legacy} option selects the legacy encoding. In this
17465 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17466 significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17467 by the first bit of their trailing significand field being 1.
17468
17469 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
17470 this case qNaNs are denoted by the first bit of their trailing
17471 significand field being 1, whereas sNaNs are denoted by the first bit of
17472 their trailing significand field being 0.
17473
17474 The default is @option{-mnan=legacy} unless GCC has been configured with
17475 @option{--with-nan=2008}.
17476
17477 @item -mllsc
17478 @itemx -mno-llsc
17479 @opindex mllsc
17480 @opindex mno-llsc
17481 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17482 implement atomic memory built-in functions. When neither option is
17483 specified, GCC uses the instructions if the target architecture
17484 supports them.
17485
17486 @option{-mllsc} is useful if the runtime environment can emulate the
17487 instructions and @option{-mno-llsc} can be useful when compiling for
17488 nonstandard ISAs. You can make either option the default by
17489 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17490 respectively. @option{--with-llsc} is the default for some
17491 configurations; see the installation documentation for details.
17492
17493 @item -mdsp
17494 @itemx -mno-dsp
17495 @opindex mdsp
17496 @opindex mno-dsp
17497 Use (do not use) revision 1 of the MIPS DSP ASE@.
17498 @xref{MIPS DSP Built-in Functions}. This option defines the
17499 preprocessor macro @code{__mips_dsp}. It also defines
17500 @code{__mips_dsp_rev} to 1.
17501
17502 @item -mdspr2
17503 @itemx -mno-dspr2
17504 @opindex mdspr2
17505 @opindex mno-dspr2
17506 Use (do not use) revision 2 of the MIPS DSP ASE@.
17507 @xref{MIPS DSP Built-in Functions}. This option defines the
17508 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17509 It also defines @code{__mips_dsp_rev} to 2.
17510
17511 @item -msmartmips
17512 @itemx -mno-smartmips
17513 @opindex msmartmips
17514 @opindex mno-smartmips
17515 Use (do not use) the MIPS SmartMIPS ASE.
17516
17517 @item -mpaired-single
17518 @itemx -mno-paired-single
17519 @opindex mpaired-single
17520 @opindex mno-paired-single
17521 Use (do not use) paired-single floating-point instructions.
17522 @xref{MIPS Paired-Single Support}. This option requires
17523 hardware floating-point support to be enabled.
17524
17525 @item -mdmx
17526 @itemx -mno-mdmx
17527 @opindex mdmx
17528 @opindex mno-mdmx
17529 Use (do not use) MIPS Digital Media Extension instructions.
17530 This option can only be used when generating 64-bit code and requires
17531 hardware floating-point support to be enabled.
17532
17533 @item -mips3d
17534 @itemx -mno-mips3d
17535 @opindex mips3d
17536 @opindex mno-mips3d
17537 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
17538 The option @option{-mips3d} implies @option{-mpaired-single}.
17539
17540 @item -mmicromips
17541 @itemx -mno-micromips
17542 @opindex mmicromips
17543 @opindex mno-mmicromips
17544 Generate (do not generate) microMIPS code.
17545
17546 MicroMIPS code generation can also be controlled on a per-function basis
17547 by means of @code{micromips} and @code{nomicromips} attributes.
17548 @xref{Function Attributes}, for more information.
17549
17550 @item -mmt
17551 @itemx -mno-mt
17552 @opindex mmt
17553 @opindex mno-mt
17554 Use (do not use) MT Multithreading instructions.
17555
17556 @item -mmcu
17557 @itemx -mno-mcu
17558 @opindex mmcu
17559 @opindex mno-mcu
17560 Use (do not use) the MIPS MCU ASE instructions.
17561
17562 @item -meva
17563 @itemx -mno-eva
17564 @opindex meva
17565 @opindex mno-eva
17566 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17567
17568 @item -mvirt
17569 @itemx -mno-virt
17570 @opindex mvirt
17571 @opindex mno-virt
17572 Use (do not use) the MIPS Virtualization Application Specific instructions.
17573
17574 @item -mxpa
17575 @itemx -mno-xpa
17576 @opindex mxpa
17577 @opindex mno-xpa
17578 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17579
17580 @item -mlong64
17581 @opindex mlong64
17582 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
17583 an explanation of the default and the way that the pointer size is
17584 determined.
17585
17586 @item -mlong32
17587 @opindex mlong32
17588 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17589
17590 The default size of @code{int}s, @code{long}s and pointers depends on
17591 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
17592 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
17593 32-bit @code{long}s. Pointers are the same size as @code{long}s,
17594 or the same size as integer registers, whichever is smaller.
17595
17596 @item -msym32
17597 @itemx -mno-sym32
17598 @opindex msym32
17599 @opindex mno-sym32
17600 Assume (do not assume) that all symbols have 32-bit values, regardless
17601 of the selected ABI@. This option is useful in combination with
17602 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17603 to generate shorter and faster references to symbolic addresses.
17604
17605 @item -G @var{num}
17606 @opindex G
17607 Put definitions of externally-visible data in a small data section
17608 if that data is no bigger than @var{num} bytes. GCC can then generate
17609 more efficient accesses to the data; see @option{-mgpopt} for details.
17610
17611 The default @option{-G} option depends on the configuration.
17612
17613 @item -mlocal-sdata
17614 @itemx -mno-local-sdata
17615 @opindex mlocal-sdata
17616 @opindex mno-local-sdata
17617 Extend (do not extend) the @option{-G} behavior to local data too,
17618 such as to static variables in C@. @option{-mlocal-sdata} is the
17619 default for all configurations.
17620
17621 If the linker complains that an application is using too much small data,
17622 you might want to try rebuilding the less performance-critical parts with
17623 @option{-mno-local-sdata}. You might also want to build large
17624 libraries with @option{-mno-local-sdata}, so that the libraries leave
17625 more room for the main program.
17626
17627 @item -mextern-sdata
17628 @itemx -mno-extern-sdata
17629 @opindex mextern-sdata
17630 @opindex mno-extern-sdata
17631 Assume (do not assume) that externally-defined data is in
17632 a small data section if the size of that data is within the @option{-G} limit.
17633 @option{-mextern-sdata} is the default for all configurations.
17634
17635 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17636 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17637 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17638 is placed in a small data section. If @var{Var} is defined by another
17639 module, you must either compile that module with a high-enough
17640 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17641 definition. If @var{Var} is common, you must link the application
17642 with a high-enough @option{-G} setting.
17643
17644 The easiest way of satisfying these restrictions is to compile
17645 and link every module with the same @option{-G} option. However,
17646 you may wish to build a library that supports several different
17647 small data limits. You can do this by compiling the library with
17648 the highest supported @option{-G} setting and additionally using
17649 @option{-mno-extern-sdata} to stop the library from making assumptions
17650 about externally-defined data.
17651
17652 @item -mgpopt
17653 @itemx -mno-gpopt
17654 @opindex mgpopt
17655 @opindex mno-gpopt
17656 Use (do not use) GP-relative accesses for symbols that are known to be
17657 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17658 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
17659 configurations.
17660
17661 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
17662 might not hold the value of @code{_gp}. For example, if the code is
17663 part of a library that might be used in a boot monitor, programs that
17664 call boot monitor routines pass an unknown value in @code{$gp}.
17665 (In such situations, the boot monitor itself is usually compiled
17666 with @option{-G0}.)
17667
17668 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
17669 @option{-mno-extern-sdata}.
17670
17671 @item -membedded-data
17672 @itemx -mno-embedded-data
17673 @opindex membedded-data
17674 @opindex mno-embedded-data
17675 Allocate variables to the read-only data section first if possible, then
17676 next in the small data section if possible, otherwise in data. This gives
17677 slightly slower code than the default, but reduces the amount of RAM required
17678 when executing, and thus may be preferred for some embedded systems.
17679
17680 @item -muninit-const-in-rodata
17681 @itemx -mno-uninit-const-in-rodata
17682 @opindex muninit-const-in-rodata
17683 @opindex mno-uninit-const-in-rodata
17684 Put uninitialized @code{const} variables in the read-only data section.
17685 This option is only meaningful in conjunction with @option{-membedded-data}.
17686
17687 @item -mcode-readable=@var{setting}
17688 @opindex mcode-readable
17689 Specify whether GCC may generate code that reads from executable sections.
17690 There are three possible settings:
17691
17692 @table @gcctabopt
17693 @item -mcode-readable=yes
17694 Instructions may freely access executable sections. This is the
17695 default setting.
17696
17697 @item -mcode-readable=pcrel
17698 MIPS16 PC-relative load instructions can access executable sections,
17699 but other instructions must not do so. This option is useful on 4KSc
17700 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17701 It is also useful on processors that can be configured to have a dual
17702 instruction/data SRAM interface and that, like the M4K, automatically
17703 redirect PC-relative loads to the instruction RAM.
17704
17705 @item -mcode-readable=no
17706 Instructions must not access executable sections. This option can be
17707 useful on targets that are configured to have a dual instruction/data
17708 SRAM interface but that (unlike the M4K) do not automatically redirect
17709 PC-relative loads to the instruction RAM.
17710 @end table
17711
17712 @item -msplit-addresses
17713 @itemx -mno-split-addresses
17714 @opindex msplit-addresses
17715 @opindex mno-split-addresses
17716 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17717 relocation operators. This option has been superseded by
17718 @option{-mexplicit-relocs} but is retained for backwards compatibility.
17719
17720 @item -mexplicit-relocs
17721 @itemx -mno-explicit-relocs
17722 @opindex mexplicit-relocs
17723 @opindex mno-explicit-relocs
17724 Use (do not use) assembler relocation operators when dealing with symbolic
17725 addresses. The alternative, selected by @option{-mno-explicit-relocs},
17726 is to use assembler macros instead.
17727
17728 @option{-mexplicit-relocs} is the default if GCC was configured
17729 to use an assembler that supports relocation operators.
17730
17731 @item -mcheck-zero-division
17732 @itemx -mno-check-zero-division
17733 @opindex mcheck-zero-division
17734 @opindex mno-check-zero-division
17735 Trap (do not trap) on integer division by zero.
17736
17737 The default is @option{-mcheck-zero-division}.
17738
17739 @item -mdivide-traps
17740 @itemx -mdivide-breaks
17741 @opindex mdivide-traps
17742 @opindex mdivide-breaks
17743 MIPS systems check for division by zero by generating either a
17744 conditional trap or a break instruction. Using traps results in
17745 smaller code, but is only supported on MIPS II and later. Also, some
17746 versions of the Linux kernel have a bug that prevents trap from
17747 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
17748 allow conditional traps on architectures that support them and
17749 @option{-mdivide-breaks} to force the use of breaks.
17750
17751 The default is usually @option{-mdivide-traps}, but this can be
17752 overridden at configure time using @option{--with-divide=breaks}.
17753 Divide-by-zero checks can be completely disabled using
17754 @option{-mno-check-zero-division}.
17755
17756 @item -mmemcpy
17757 @itemx -mno-memcpy
17758 @opindex mmemcpy
17759 @opindex mno-memcpy
17760 Force (do not force) the use of @code{memcpy} for non-trivial block
17761 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
17762 most constant-sized copies.
17763
17764 @item -mlong-calls
17765 @itemx -mno-long-calls
17766 @opindex mlong-calls
17767 @opindex mno-long-calls
17768 Disable (do not disable) use of the @code{jal} instruction. Calling
17769 functions using @code{jal} is more efficient but requires the caller
17770 and callee to be in the same 256 megabyte segment.
17771
17772 This option has no effect on abicalls code. The default is
17773 @option{-mno-long-calls}.
17774
17775 @item -mmad
17776 @itemx -mno-mad
17777 @opindex mmad
17778 @opindex mno-mad
17779 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17780 instructions, as provided by the R4650 ISA@.
17781
17782 @item -mimadd
17783 @itemx -mno-imadd
17784 @opindex mimadd
17785 @opindex mno-imadd
17786 Enable (disable) use of the @code{madd} and @code{msub} integer
17787 instructions. The default is @option{-mimadd} on architectures
17788 that support @code{madd} and @code{msub} except for the 74k
17789 architecture where it was found to generate slower code.
17790
17791 @item -mfused-madd
17792 @itemx -mno-fused-madd
17793 @opindex mfused-madd
17794 @opindex mno-fused-madd
17795 Enable (disable) use of the floating-point multiply-accumulate
17796 instructions, when they are available. The default is
17797 @option{-mfused-madd}.
17798
17799 On the R8000 CPU when multiply-accumulate instructions are used,
17800 the intermediate product is calculated to infinite precision
17801 and is not subject to the FCSR Flush to Zero bit. This may be
17802 undesirable in some circumstances. On other processors the result
17803 is numerically identical to the equivalent computation using
17804 separate multiply, add, subtract and negate instructions.
17805
17806 @item -nocpp
17807 @opindex nocpp
17808 Tell the MIPS assembler to not run its preprocessor over user
17809 assembler files (with a @samp{.s} suffix) when assembling them.
17810
17811 @item -mfix-24k
17812 @item -mno-fix-24k
17813 @opindex mfix-24k
17814 @opindex mno-fix-24k
17815 Work around the 24K E48 (lost data on stores during refill) errata.
17816 The workarounds are implemented by the assembler rather than by GCC@.
17817
17818 @item -mfix-r4000
17819 @itemx -mno-fix-r4000
17820 @opindex mfix-r4000
17821 @opindex mno-fix-r4000
17822 Work around certain R4000 CPU errata:
17823 @itemize @minus
17824 @item
17825 A double-word or a variable shift may give an incorrect result if executed
17826 immediately after starting an integer division.
17827 @item
17828 A double-word or a variable shift may give an incorrect result if executed
17829 while an integer multiplication is in progress.
17830 @item
17831 An integer division may give an incorrect result if started in a delay slot
17832 of a taken branch or a jump.
17833 @end itemize
17834
17835 @item -mfix-r4400
17836 @itemx -mno-fix-r4400
17837 @opindex mfix-r4400
17838 @opindex mno-fix-r4400
17839 Work around certain R4400 CPU errata:
17840 @itemize @minus
17841 @item
17842 A double-word or a variable shift may give an incorrect result if executed
17843 immediately after starting an integer division.
17844 @end itemize
17845
17846 @item -mfix-r10000
17847 @itemx -mno-fix-r10000
17848 @opindex mfix-r10000
17849 @opindex mno-fix-r10000
17850 Work around certain R10000 errata:
17851 @itemize @minus
17852 @item
17853 @code{ll}/@code{sc} sequences may not behave atomically on revisions
17854 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
17855 @end itemize
17856
17857 This option can only be used if the target architecture supports
17858 branch-likely instructions. @option{-mfix-r10000} is the default when
17859 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
17860 otherwise.
17861
17862 @item -mfix-rm7000
17863 @itemx -mno-fix-rm7000
17864 @opindex mfix-rm7000
17865 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
17866 workarounds are implemented by the assembler rather than by GCC@.
17867
17868 @item -mfix-vr4120
17869 @itemx -mno-fix-vr4120
17870 @opindex mfix-vr4120
17871 Work around certain VR4120 errata:
17872 @itemize @minus
17873 @item
17874 @code{dmultu} does not always produce the correct result.
17875 @item
17876 @code{div} and @code{ddiv} do not always produce the correct result if one
17877 of the operands is negative.
17878 @end itemize
17879 The workarounds for the division errata rely on special functions in
17880 @file{libgcc.a}. At present, these functions are only provided by
17881 the @code{mips64vr*-elf} configurations.
17882
17883 Other VR4120 errata require a NOP to be inserted between certain pairs of
17884 instructions. These errata are handled by the assembler, not by GCC itself.
17885
17886 @item -mfix-vr4130
17887 @opindex mfix-vr4130
17888 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
17889 workarounds are implemented by the assembler rather than by GCC,
17890 although GCC avoids using @code{mflo} and @code{mfhi} if the
17891 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
17892 instructions are available instead.
17893
17894 @item -mfix-sb1
17895 @itemx -mno-fix-sb1
17896 @opindex mfix-sb1
17897 Work around certain SB-1 CPU core errata.
17898 (This flag currently works around the SB-1 revision 2
17899 ``F1'' and ``F2'' floating-point errata.)
17900
17901 @item -mr10k-cache-barrier=@var{setting}
17902 @opindex mr10k-cache-barrier
17903 Specify whether GCC should insert cache barriers to avoid the
17904 side-effects of speculation on R10K processors.
17905
17906 In common with many processors, the R10K tries to predict the outcome
17907 of a conditional branch and speculatively executes instructions from
17908 the ``taken'' branch. It later aborts these instructions if the
17909 predicted outcome is wrong. However, on the R10K, even aborted
17910 instructions can have side effects.
17911
17912 This problem only affects kernel stores and, depending on the system,
17913 kernel loads. As an example, a speculatively-executed store may load
17914 the target memory into cache and mark the cache line as dirty, even if
17915 the store itself is later aborted. If a DMA operation writes to the
17916 same area of memory before the ``dirty'' line is flushed, the cached
17917 data overwrites the DMA-ed data. See the R10K processor manual
17918 for a full description, including other potential problems.
17919
17920 One workaround is to insert cache barrier instructions before every memory
17921 access that might be speculatively executed and that might have side
17922 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
17923 controls GCC's implementation of this workaround. It assumes that
17924 aborted accesses to any byte in the following regions does not have
17925 side effects:
17926
17927 @enumerate
17928 @item
17929 the memory occupied by the current function's stack frame;
17930
17931 @item
17932 the memory occupied by an incoming stack argument;
17933
17934 @item
17935 the memory occupied by an object with a link-time-constant address.
17936 @end enumerate
17937
17938 It is the kernel's responsibility to ensure that speculative
17939 accesses to these regions are indeed safe.
17940
17941 If the input program contains a function declaration such as:
17942
17943 @smallexample
17944 void foo (void);
17945 @end smallexample
17946
17947 then the implementation of @code{foo} must allow @code{j foo} and
17948 @code{jal foo} to be executed speculatively. GCC honors this
17949 restriction for functions it compiles itself. It expects non-GCC
17950 functions (such as hand-written assembly code) to do the same.
17951
17952 The option has three forms:
17953
17954 @table @gcctabopt
17955 @item -mr10k-cache-barrier=load-store
17956 Insert a cache barrier before a load or store that might be
17957 speculatively executed and that might have side effects even
17958 if aborted.
17959
17960 @item -mr10k-cache-barrier=store
17961 Insert a cache barrier before a store that might be speculatively
17962 executed and that might have side effects even if aborted.
17963
17964 @item -mr10k-cache-barrier=none
17965 Disable the insertion of cache barriers. This is the default setting.
17966 @end table
17967
17968 @item -mflush-func=@var{func}
17969 @itemx -mno-flush-func
17970 @opindex mflush-func
17971 Specifies the function to call to flush the I and D caches, or to not
17972 call any such function. If called, the function must take the same
17973 arguments as the common @code{_flush_func}, that is, the address of the
17974 memory range for which the cache is being flushed, the size of the
17975 memory range, and the number 3 (to flush both caches). The default
17976 depends on the target GCC was configured for, but commonly is either
17977 @code{_flush_func} or @code{__cpu_flush}.
17978
17979 @item mbranch-cost=@var{num}
17980 @opindex mbranch-cost
17981 Set the cost of branches to roughly @var{num} ``simple'' instructions.
17982 This cost is only a heuristic and is not guaranteed to produce
17983 consistent results across releases. A zero cost redundantly selects
17984 the default, which is based on the @option{-mtune} setting.
17985
17986 @item -mbranch-likely
17987 @itemx -mno-branch-likely
17988 @opindex mbranch-likely
17989 @opindex mno-branch-likely
17990 Enable or disable use of Branch Likely instructions, regardless of the
17991 default for the selected architecture. By default, Branch Likely
17992 instructions may be generated if they are supported by the selected
17993 architecture. An exception is for the MIPS32 and MIPS64 architectures
17994 and processors that implement those architectures; for those, Branch
17995 Likely instructions are not be generated by default because the MIPS32
17996 and MIPS64 architectures specifically deprecate their use.
17997
17998 @item -mfp-exceptions
17999 @itemx -mno-fp-exceptions
18000 @opindex mfp-exceptions
18001 Specifies whether FP exceptions are enabled. This affects how
18002 FP instructions are scheduled for some processors.
18003 The default is that FP exceptions are
18004 enabled.
18005
18006 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
18007 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
18008 FP pipe.
18009
18010 @item -mvr4130-align
18011 @itemx -mno-vr4130-align
18012 @opindex mvr4130-align
18013 The VR4130 pipeline is two-way superscalar, but can only issue two
18014 instructions together if the first one is 8-byte aligned. When this
18015 option is enabled, GCC aligns pairs of instructions that it
18016 thinks should execute in parallel.
18017
18018 This option only has an effect when optimizing for the VR4130.
18019 It normally makes code faster, but at the expense of making it bigger.
18020 It is enabled by default at optimization level @option{-O3}.
18021
18022 @item -msynci
18023 @itemx -mno-synci
18024 @opindex msynci
18025 Enable (disable) generation of @code{synci} instructions on
18026 architectures that support it. The @code{synci} instructions (if
18027 enabled) are generated when @code{__builtin___clear_cache} is
18028 compiled.
18029
18030 This option defaults to @option{-mno-synci}, but the default can be
18031 overridden by configuring GCC with @option{--with-synci}.
18032
18033 When compiling code for single processor systems, it is generally safe
18034 to use @code{synci}. However, on many multi-core (SMP) systems, it
18035 does not invalidate the instruction caches on all cores and may lead
18036 to undefined behavior.
18037
18038 @item -mrelax-pic-calls
18039 @itemx -mno-relax-pic-calls
18040 @opindex mrelax-pic-calls
18041 Try to turn PIC calls that are normally dispatched via register
18042 @code{$25} into direct calls. This is only possible if the linker can
18043 resolve the destination at link-time and if the destination is within
18044 range for a direct call.
18045
18046 @option{-mrelax-pic-calls} is the default if GCC was configured to use
18047 an assembler and a linker that support the @code{.reloc} assembly
18048 directive and @option{-mexplicit-relocs} is in effect. With
18049 @option{-mno-explicit-relocs}, this optimization can be performed by the
18050 assembler and the linker alone without help from the compiler.
18051
18052 @item -mmcount-ra-address
18053 @itemx -mno-mcount-ra-address
18054 @opindex mmcount-ra-address
18055 @opindex mno-mcount-ra-address
18056 Emit (do not emit) code that allows @code{_mcount} to modify the
18057 calling function's return address. When enabled, this option extends
18058 the usual @code{_mcount} interface with a new @var{ra-address}
18059 parameter, which has type @code{intptr_t *} and is passed in register
18060 @code{$12}. @code{_mcount} can then modify the return address by
18061 doing both of the following:
18062 @itemize
18063 @item
18064 Returning the new address in register @code{$31}.
18065 @item
18066 Storing the new address in @code{*@var{ra-address}},
18067 if @var{ra-address} is nonnull.
18068 @end itemize
18069
18070 The default is @option{-mno-mcount-ra-address}.
18071
18072 @end table
18073
18074 @node MMIX Options
18075 @subsection MMIX Options
18076 @cindex MMIX Options
18077
18078 These options are defined for the MMIX:
18079
18080 @table @gcctabopt
18081 @item -mlibfuncs
18082 @itemx -mno-libfuncs
18083 @opindex mlibfuncs
18084 @opindex mno-libfuncs
18085 Specify that intrinsic library functions are being compiled, passing all
18086 values in registers, no matter the size.
18087
18088 @item -mepsilon
18089 @itemx -mno-epsilon
18090 @opindex mepsilon
18091 @opindex mno-epsilon
18092 Generate floating-point comparison instructions that compare with respect
18093 to the @code{rE} epsilon register.
18094
18095 @item -mabi=mmixware
18096 @itemx -mabi=gnu
18097 @opindex mabi=mmixware
18098 @opindex mabi=gnu
18099 Generate code that passes function parameters and return values that (in
18100 the called function) are seen as registers @code{$0} and up, as opposed to
18101 the GNU ABI which uses global registers @code{$231} and up.
18102
18103 @item -mzero-extend
18104 @itemx -mno-zero-extend
18105 @opindex mzero-extend
18106 @opindex mno-zero-extend
18107 When reading data from memory in sizes shorter than 64 bits, use (do not
18108 use) zero-extending load instructions by default, rather than
18109 sign-extending ones.
18110
18111 @item -mknuthdiv
18112 @itemx -mno-knuthdiv
18113 @opindex mknuthdiv
18114 @opindex mno-knuthdiv
18115 Make the result of a division yielding a remainder have the same sign as
18116 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
18117 remainder follows the sign of the dividend. Both methods are
18118 arithmetically valid, the latter being almost exclusively used.
18119
18120 @item -mtoplevel-symbols
18121 @itemx -mno-toplevel-symbols
18122 @opindex mtoplevel-symbols
18123 @opindex mno-toplevel-symbols
18124 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
18125 code can be used with the @code{PREFIX} assembly directive.
18126
18127 @item -melf
18128 @opindex melf
18129 Generate an executable in the ELF format, rather than the default
18130 @samp{mmo} format used by the @command{mmix} simulator.
18131
18132 @item -mbranch-predict
18133 @itemx -mno-branch-predict
18134 @opindex mbranch-predict
18135 @opindex mno-branch-predict
18136 Use (do not use) the probable-branch instructions, when static branch
18137 prediction indicates a probable branch.
18138
18139 @item -mbase-addresses
18140 @itemx -mno-base-addresses
18141 @opindex mbase-addresses
18142 @opindex mno-base-addresses
18143 Generate (do not generate) code that uses @emph{base addresses}. Using a
18144 base address automatically generates a request (handled by the assembler
18145 and the linker) for a constant to be set up in a global register. The
18146 register is used for one or more base address requests within the range 0
18147 to 255 from the value held in the register. The generally leads to short
18148 and fast code, but the number of different data items that can be
18149 addressed is limited. This means that a program that uses lots of static
18150 data may require @option{-mno-base-addresses}.
18151
18152 @item -msingle-exit
18153 @itemx -mno-single-exit
18154 @opindex msingle-exit
18155 @opindex mno-single-exit
18156 Force (do not force) generated code to have a single exit point in each
18157 function.
18158 @end table
18159
18160 @node MN10300 Options
18161 @subsection MN10300 Options
18162 @cindex MN10300 options
18163
18164 These @option{-m} options are defined for Matsushita MN10300 architectures:
18165
18166 @table @gcctabopt
18167 @item -mmult-bug
18168 @opindex mmult-bug
18169 Generate code to avoid bugs in the multiply instructions for the MN10300
18170 processors. This is the default.
18171
18172 @item -mno-mult-bug
18173 @opindex mno-mult-bug
18174 Do not generate code to avoid bugs in the multiply instructions for the
18175 MN10300 processors.
18176
18177 @item -mam33
18178 @opindex mam33
18179 Generate code using features specific to the AM33 processor.
18180
18181 @item -mno-am33
18182 @opindex mno-am33
18183 Do not generate code using features specific to the AM33 processor. This
18184 is the default.
18185
18186 @item -mam33-2
18187 @opindex mam33-2
18188 Generate code using features specific to the AM33/2.0 processor.
18189
18190 @item -mam34
18191 @opindex mam34
18192 Generate code using features specific to the AM34 processor.
18193
18194 @item -mtune=@var{cpu-type}
18195 @opindex mtune
18196 Use the timing characteristics of the indicated CPU type when
18197 scheduling instructions. This does not change the targeted processor
18198 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
18199 @samp{am33-2} or @samp{am34}.
18200
18201 @item -mreturn-pointer-on-d0
18202 @opindex mreturn-pointer-on-d0
18203 When generating a function that returns a pointer, return the pointer
18204 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
18205 only in @code{a0}, and attempts to call such functions without a prototype
18206 result in errors. Note that this option is on by default; use
18207 @option{-mno-return-pointer-on-d0} to disable it.
18208
18209 @item -mno-crt0
18210 @opindex mno-crt0
18211 Do not link in the C run-time initialization object file.
18212
18213 @item -mrelax
18214 @opindex mrelax
18215 Indicate to the linker that it should perform a relaxation optimization pass
18216 to shorten branches, calls and absolute memory addresses. This option only
18217 has an effect when used on the command line for the final link step.
18218
18219 This option makes symbolic debugging impossible.
18220
18221 @item -mliw
18222 @opindex mliw
18223 Allow the compiler to generate @emph{Long Instruction Word}
18224 instructions if the target is the @samp{AM33} or later. This is the
18225 default. This option defines the preprocessor macro @code{__LIW__}.
18226
18227 @item -mnoliw
18228 @opindex mnoliw
18229 Do not allow the compiler to generate @emph{Long Instruction Word}
18230 instructions. This option defines the preprocessor macro
18231 @code{__NO_LIW__}.
18232
18233 @item -msetlb
18234 @opindex msetlb
18235 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18236 instructions if the target is the @samp{AM33} or later. This is the
18237 default. This option defines the preprocessor macro @code{__SETLB__}.
18238
18239 @item -mnosetlb
18240 @opindex mnosetlb
18241 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18242 instructions. This option defines the preprocessor macro
18243 @code{__NO_SETLB__}.
18244
18245 @end table
18246
18247 @node Moxie Options
18248 @subsection Moxie Options
18249 @cindex Moxie Options
18250
18251 @table @gcctabopt
18252
18253 @item -meb
18254 @opindex meb
18255 Generate big-endian code. This is the default for @samp{moxie-*-*}
18256 configurations.
18257
18258 @item -mel
18259 @opindex mel
18260 Generate little-endian code.
18261
18262 @item -mmul.x
18263 @opindex mmul.x
18264 Generate mul.x and umul.x instructions. This is the default for
18265 @samp{moxiebox-*-*} configurations.
18266
18267 @item -mno-crt0
18268 @opindex mno-crt0
18269 Do not link in the C run-time initialization object file.
18270
18271 @end table
18272
18273 @node MSP430 Options
18274 @subsection MSP430 Options
18275 @cindex MSP430 Options
18276
18277 These options are defined for the MSP430:
18278
18279 @table @gcctabopt
18280
18281 @item -masm-hex
18282 @opindex masm-hex
18283 Force assembly output to always use hex constants. Normally such
18284 constants are signed decimals, but this option is available for
18285 testsuite and/or aesthetic purposes.
18286
18287 @item -mmcu=
18288 @opindex mmcu=
18289 Select the MCU to target. This is used to create a C preprocessor
18290 symbol based upon the MCU name, converted to upper case and pre- and
18291 post-fixed with @samp{__}. This in turn is used by the
18292 @file{msp430.h} header file to select an MCU-specific supplementary
18293 header file.
18294
18295 The option also sets the ISA to use. If the MCU name is one that is
18296 known to only support the 430 ISA then that is selected, otherwise the
18297 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
18298 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
18299 name selects the 430X ISA.
18300
18301 In addition an MCU-specific linker script is added to the linker
18302 command line. The script's name is the name of the MCU with
18303 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18304 command line defines the C preprocessor symbol @code{__XXX__} and
18305 cause the linker to search for a script called @file{xxx.ld}.
18306
18307 This option is also passed on to the assembler.
18308
18309 @item -mcpu=
18310 @opindex mcpu=
18311 Specifies the ISA to use. Accepted values are @samp{msp430},
18312 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
18313 @option{-mmcu=} option should be used to select the ISA.
18314
18315 @item -msim
18316 @opindex msim
18317 Link to the simulator runtime libraries and linker script. Overrides
18318 any scripts that would be selected by the @option{-mmcu=} option.
18319
18320 @item -mlarge
18321 @opindex mlarge
18322 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18323
18324 @item -msmall
18325 @opindex msmall
18326 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18327
18328 @item -mrelax
18329 @opindex mrelax
18330 This option is passed to the assembler and linker, and allows the
18331 linker to perform certain optimizations that cannot be done until
18332 the final link.
18333
18334 @item mhwmult=
18335 @opindex mhwmult=
18336 Describes the type of hardware multiply supported by the target.
18337 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18338 for the original 16-bit-only multiply supported by early MCUs.
18339 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18340 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18341 A value of @samp{auto} can also be given. This tells GCC to deduce
18342 the hardware multiply support based upon the MCU name provided by the
18343 @option{-mmcu} option. If no @option{-mmcu} option is specified then
18344 @samp{32bit} hardware multiply support is assumed. @samp{auto} is the
18345 default setting.
18346
18347 Hardware multiplies are normally performed by calling a library
18348 routine. This saves space in the generated code. When compiling at
18349 @option{-O3} or higher however the hardware multiplier is invoked
18350 inline. This makes for bigger, but faster code.
18351
18352 The hardware multiply routines disable interrupts whilst running and
18353 restore the previous interrupt state when they finish. This makes
18354 them safe to use inside interrupt handlers as well as in normal code.
18355
18356 @item -minrt
18357 @opindex minrt
18358 Enable the use of a minimum runtime environment - no static
18359 initializers or constructors. This is intended for memory-constrained
18360 devices. The compiler includes special symbols in some objects
18361 that tell the linker and runtime which code fragments are required.
18362
18363 @item -mcode-region=
18364 @itemx -mdata-region=
18365 @opindex mcode-region
18366 @opindex mdata-region
18367 These options tell the compiler where to place functions and data that
18368 do not have one of the @code{lower}, @code{upper}, @code{either} or
18369 @code{section} attributes. Possible values are @code{lower},
18370 @code{upper}, @code{either} or @code{any}. The first three behave
18371 like the corresponding attribute. The fourth possible value -
18372 @code{any} - is the default. It leaves placement entirely up to the
18373 linker script and how it assigns the standard sections (.text, .data
18374 etc) to the memory regions.
18375
18376 @end table
18377
18378 @node NDS32 Options
18379 @subsection NDS32 Options
18380 @cindex NDS32 Options
18381
18382 These options are defined for NDS32 implementations:
18383
18384 @table @gcctabopt
18385
18386 @item -mbig-endian
18387 @opindex mbig-endian
18388 Generate code in big-endian mode.
18389
18390 @item -mlittle-endian
18391 @opindex mlittle-endian
18392 Generate code in little-endian mode.
18393
18394 @item -mreduced-regs
18395 @opindex mreduced-regs
18396 Use reduced-set registers for register allocation.
18397
18398 @item -mfull-regs
18399 @opindex mfull-regs
18400 Use full-set registers for register allocation.
18401
18402 @item -mcmov
18403 @opindex mcmov
18404 Generate conditional move instructions.
18405
18406 @item -mno-cmov
18407 @opindex mno-cmov
18408 Do not generate conditional move instructions.
18409
18410 @item -mperf-ext
18411 @opindex mperf-ext
18412 Generate performance extension instructions.
18413
18414 @item -mno-perf-ext
18415 @opindex mno-perf-ext
18416 Do not generate performance extension instructions.
18417
18418 @item -mv3push
18419 @opindex mv3push
18420 Generate v3 push25/pop25 instructions.
18421
18422 @item -mno-v3push
18423 @opindex mno-v3push
18424 Do not generate v3 push25/pop25 instructions.
18425
18426 @item -m16-bit
18427 @opindex m16-bit
18428 Generate 16-bit instructions.
18429
18430 @item -mno-16-bit
18431 @opindex mno-16-bit
18432 Do not generate 16-bit instructions.
18433
18434 @item -misr-vector-size=@var{num}
18435 @opindex misr-vector-size
18436 Specify the size of each interrupt vector, which must be 4 or 16.
18437
18438 @item -mcache-block-size=@var{num}
18439 @opindex mcache-block-size
18440 Specify the size of each cache block,
18441 which must be a power of 2 between 4 and 512.
18442
18443 @item -march=@var{arch}
18444 @opindex march
18445 Specify the name of the target architecture.
18446
18447 @item -mcmodel=@var{code-model}
18448 @opindex mcmodel
18449 Set the code model to one of
18450 @table @asis
18451 @item @samp{small}
18452 All the data and read-only data segments must be within 512KB addressing space.
18453 The text segment must be within 16MB addressing space.
18454 @item @samp{medium}
18455 The data segment must be within 512KB while the read-only data segment can be
18456 within 4GB addressing space. The text segment should be still within 16MB
18457 addressing space.
18458 @item @samp{large}
18459 All the text and data segments can be within 4GB addressing space.
18460 @end table
18461
18462 @item -mctor-dtor
18463 @opindex mctor-dtor
18464 Enable constructor/destructor feature.
18465
18466 @item -mrelax
18467 @opindex mrelax
18468 Guide linker to relax instructions.
18469
18470 @end table
18471
18472 @node Nios II Options
18473 @subsection Nios II Options
18474 @cindex Nios II options
18475 @cindex Altera Nios II options
18476
18477 These are the options defined for the Altera Nios II processor.
18478
18479 @table @gcctabopt
18480
18481 @item -G @var{num}
18482 @opindex G
18483 @cindex smaller data references
18484 Put global and static objects less than or equal to @var{num} bytes
18485 into the small data or BSS sections instead of the normal data or BSS
18486 sections. The default value of @var{num} is 8.
18487
18488 @item -mgpopt=@var{option}
18489 @item -mgpopt
18490 @itemx -mno-gpopt
18491 @opindex mgpopt
18492 @opindex mno-gpopt
18493 Generate (do not generate) GP-relative accesses. The following
18494 @var{option} names are recognized:
18495
18496 @table @samp
18497
18498 @item none
18499 Do not generate GP-relative accesses.
18500
18501 @item local
18502 Generate GP-relative accesses for small data objects that are not
18503 external or weak. Also use GP-relative addressing for objects that
18504 have been explicitly placed in a small data section via a @code{section}
18505 attribute.
18506
18507 @item global
18508 As for @samp{local}, but also generate GP-relative accesses for
18509 small data objects that are external or weak. If you use this option,
18510 you must ensure that all parts of your program (including libraries) are
18511 compiled with the same @option{-G} setting.
18512
18513 @item data
18514 Generate GP-relative accesses for all data objects in the program. If you
18515 use this option, the entire data and BSS segments
18516 of your program must fit in 64K of memory and you must use an appropriate
18517 linker script to allocate them within the addressible range of the
18518 global pointer.
18519
18520 @item all
18521 Generate GP-relative addresses for function pointers as well as data
18522 pointers. If you use this option, the entire text, data, and BSS segments
18523 of your program must fit in 64K of memory and you must use an appropriate
18524 linker script to allocate them within the addressible range of the
18525 global pointer.
18526
18527 @end table
18528
18529 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18530 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18531
18532 The default is @option{-mgpopt} except when @option{-fpic} or
18533 @option{-fPIC} is specified to generate position-independent code.
18534 Note that the Nios II ABI does not permit GP-relative accesses from
18535 shared libraries.
18536
18537 You may need to specify @option{-mno-gpopt} explicitly when building
18538 programs that include large amounts of small data, including large
18539 GOT data sections. In this case, the 16-bit offset for GP-relative
18540 addressing may not be large enough to allow access to the entire
18541 small data section.
18542
18543 @item -mel
18544 @itemx -meb
18545 @opindex mel
18546 @opindex meb
18547 Generate little-endian (default) or big-endian (experimental) code,
18548 respectively.
18549
18550 @item -march=@var{arch}
18551 @opindex march
18552 This specifies the name of the target Nios II architecture. GCC uses this
18553 name to determine what kind of instructions it can emit when generating
18554 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
18555
18556 The preprocessor macro @code{__nios2_arch__} is available to programs,
18557 with value 1 or 2, indicating the targeted ISA level.
18558
18559 @item -mbypass-cache
18560 @itemx -mno-bypass-cache
18561 @opindex mno-bypass-cache
18562 @opindex mbypass-cache
18563 Force all load and store instructions to always bypass cache by
18564 using I/O variants of the instructions. The default is not to
18565 bypass the cache.
18566
18567 @item -mno-cache-volatile
18568 @itemx -mcache-volatile
18569 @opindex mcache-volatile
18570 @opindex mno-cache-volatile
18571 Volatile memory access bypass the cache using the I/O variants of
18572 the load and store instructions. The default is not to bypass the cache.
18573
18574 @item -mno-fast-sw-div
18575 @itemx -mfast-sw-div
18576 @opindex mno-fast-sw-div
18577 @opindex mfast-sw-div
18578 Do not use table-based fast divide for small numbers. The default
18579 is to use the fast divide at @option{-O3} and above.
18580
18581 @item -mno-hw-mul
18582 @itemx -mhw-mul
18583 @itemx -mno-hw-mulx
18584 @itemx -mhw-mulx
18585 @itemx -mno-hw-div
18586 @itemx -mhw-div
18587 @opindex mno-hw-mul
18588 @opindex mhw-mul
18589 @opindex mno-hw-mulx
18590 @opindex mhw-mulx
18591 @opindex mno-hw-div
18592 @opindex mhw-div
18593 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
18594 instructions by the compiler. The default is to emit @code{mul}
18595 and not emit @code{div} and @code{mulx}.
18596
18597 @item -mbmx
18598 @itemx -mno-bmx
18599 @itemx -mcdx
18600 @itemx -mno-cdx
18601 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
18602 CDX (code density) instructions. Enabling these instructions also
18603 requires @option{-march=r2}. Since these instructions are optional
18604 extensions to the R2 architecture, the default is not to emit them.
18605
18606 @item -mcustom-@var{insn}=@var{N}
18607 @itemx -mno-custom-@var{insn}
18608 @opindex mcustom-@var{insn}
18609 @opindex mno-custom-@var{insn}
18610 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18611 custom instruction with encoding @var{N} when generating code that uses
18612 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
18613 instruction 253 for single-precision floating-point add operations instead
18614 of the default behavior of using a library call.
18615
18616 The following values of @var{insn} are supported. Except as otherwise
18617 noted, floating-point operations are expected to be implemented with
18618 normal IEEE 754 semantics and correspond directly to the C operators or the
18619 equivalent GCC built-in functions (@pxref{Other Builtins}).
18620
18621 Single-precision floating point:
18622 @table @asis
18623
18624 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18625 Binary arithmetic operations.
18626
18627 @item @samp{fnegs}
18628 Unary negation.
18629
18630 @item @samp{fabss}
18631 Unary absolute value.
18632
18633 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18634 Comparison operations.
18635
18636 @item @samp{fmins}, @samp{fmaxs}
18637 Floating-point minimum and maximum. These instructions are only
18638 generated if @option{-ffinite-math-only} is specified.
18639
18640 @item @samp{fsqrts}
18641 Unary square root operation.
18642
18643 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18644 Floating-point trigonometric and exponential functions. These instructions
18645 are only generated if @option{-funsafe-math-optimizations} is also specified.
18646
18647 @end table
18648
18649 Double-precision floating point:
18650 @table @asis
18651
18652 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18653 Binary arithmetic operations.
18654
18655 @item @samp{fnegd}
18656 Unary negation.
18657
18658 @item @samp{fabsd}
18659 Unary absolute value.
18660
18661 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18662 Comparison operations.
18663
18664 @item @samp{fmind}, @samp{fmaxd}
18665 Double-precision minimum and maximum. These instructions are only
18666 generated if @option{-ffinite-math-only} is specified.
18667
18668 @item @samp{fsqrtd}
18669 Unary square root operation.
18670
18671 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18672 Double-precision trigonometric and exponential functions. These instructions
18673 are only generated if @option{-funsafe-math-optimizations} is also specified.
18674
18675 @end table
18676
18677 Conversions:
18678 @table @asis
18679 @item @samp{fextsd}
18680 Conversion from single precision to double precision.
18681
18682 @item @samp{ftruncds}
18683 Conversion from double precision to single precision.
18684
18685 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18686 Conversion from floating point to signed or unsigned integer types, with
18687 truncation towards zero.
18688
18689 @item @samp{round}
18690 Conversion from single-precision floating point to signed integer,
18691 rounding to the nearest integer and ties away from zero.
18692 This corresponds to the @code{__builtin_lroundf} function when
18693 @option{-fno-math-errno} is used.
18694
18695 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18696 Conversion from signed or unsigned integer types to floating-point types.
18697
18698 @end table
18699
18700 In addition, all of the following transfer instructions for internal
18701 registers X and Y must be provided to use any of the double-precision
18702 floating-point instructions. Custom instructions taking two
18703 double-precision source operands expect the first operand in the
18704 64-bit register X. The other operand (or only operand of a unary
18705 operation) is given to the custom arithmetic instruction with the
18706 least significant half in source register @var{src1} and the most
18707 significant half in @var{src2}. A custom instruction that returns a
18708 double-precision result returns the most significant 32 bits in the
18709 destination register and the other half in 32-bit register Y.
18710 GCC automatically generates the necessary code sequences to write
18711 register X and/or read register Y when double-precision floating-point
18712 instructions are used.
18713
18714 @table @asis
18715
18716 @item @samp{fwrx}
18717 Write @var{src1} into the least significant half of X and @var{src2} into
18718 the most significant half of X.
18719
18720 @item @samp{fwry}
18721 Write @var{src1} into Y.
18722
18723 @item @samp{frdxhi}, @samp{frdxlo}
18724 Read the most or least (respectively) significant half of X and store it in
18725 @var{dest}.
18726
18727 @item @samp{frdy}
18728 Read the value of Y and store it into @var{dest}.
18729 @end table
18730
18731 Note that you can gain more local control over generation of Nios II custom
18732 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18733 and @code{target("no-custom-@var{insn}")} function attributes
18734 (@pxref{Function Attributes})
18735 or pragmas (@pxref{Function Specific Option Pragmas}).
18736
18737 @item -mcustom-fpu-cfg=@var{name}
18738 @opindex mcustom-fpu-cfg
18739
18740 This option enables a predefined, named set of custom instruction encodings
18741 (see @option{-mcustom-@var{insn}} above).
18742 Currently, the following sets are defined:
18743
18744 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
18745 @gccoptlist{-mcustom-fmuls=252 @gol
18746 -mcustom-fadds=253 @gol
18747 -mcustom-fsubs=254 @gol
18748 -fsingle-precision-constant}
18749
18750 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
18751 @gccoptlist{-mcustom-fmuls=252 @gol
18752 -mcustom-fadds=253 @gol
18753 -mcustom-fsubs=254 @gol
18754 -mcustom-fdivs=255 @gol
18755 -fsingle-precision-constant}
18756
18757 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
18758 @gccoptlist{-mcustom-floatus=243 @gol
18759 -mcustom-fixsi=244 @gol
18760 -mcustom-floatis=245 @gol
18761 -mcustom-fcmpgts=246 @gol
18762 -mcustom-fcmples=249 @gol
18763 -mcustom-fcmpeqs=250 @gol
18764 -mcustom-fcmpnes=251 @gol
18765 -mcustom-fmuls=252 @gol
18766 -mcustom-fadds=253 @gol
18767 -mcustom-fsubs=254 @gol
18768 -mcustom-fdivs=255 @gol
18769 -fsingle-precision-constant}
18770
18771 Custom instruction assignments given by individual
18772 @option{-mcustom-@var{insn}=} options override those given by
18773 @option{-mcustom-fpu-cfg=}, regardless of the
18774 order of the options on the command line.
18775
18776 Note that you can gain more local control over selection of a FPU
18777 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
18778 function attribute (@pxref{Function Attributes})
18779 or pragma (@pxref{Function Specific Option Pragmas}).
18780
18781 @end table
18782
18783 These additional @samp{-m} options are available for the Altera Nios II
18784 ELF (bare-metal) target:
18785
18786 @table @gcctabopt
18787
18788 @item -mhal
18789 @opindex mhal
18790 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
18791 startup and termination code, and is typically used in conjunction with
18792 @option{-msys-crt0=} to specify the location of the alternate startup code
18793 provided by the HAL BSP.
18794
18795 @item -msmallc
18796 @opindex msmallc
18797 Link with a limited version of the C library, @option{-lsmallc}, rather than
18798 Newlib.
18799
18800 @item -msys-crt0=@var{startfile}
18801 @opindex msys-crt0
18802 @var{startfile} is the file name of the startfile (crt0) to use
18803 when linking. This option is only useful in conjunction with @option{-mhal}.
18804
18805 @item -msys-lib=@var{systemlib}
18806 @opindex msys-lib
18807 @var{systemlib} is the library name of the library that provides
18808 low-level system calls required by the C library,
18809 e.g. @code{read} and @code{write}.
18810 This option is typically used to link with a library provided by a HAL BSP.
18811
18812 @end table
18813
18814 @node Nvidia PTX Options
18815 @subsection Nvidia PTX Options
18816 @cindex Nvidia PTX options
18817 @cindex nvptx options
18818
18819 These options are defined for Nvidia PTX:
18820
18821 @table @gcctabopt
18822
18823 @item -m32
18824 @itemx -m64
18825 @opindex m32
18826 @opindex m64
18827 Generate code for 32-bit or 64-bit ABI.
18828
18829 @item -mmainkernel
18830 @opindex mmainkernel
18831 Link in code for a __main kernel. This is for stand-alone instead of
18832 offloading execution.
18833
18834 @end table
18835
18836 @node PDP-11 Options
18837 @subsection PDP-11 Options
18838 @cindex PDP-11 Options
18839
18840 These options are defined for the PDP-11:
18841
18842 @table @gcctabopt
18843 @item -mfpu
18844 @opindex mfpu
18845 Use hardware FPP floating point. This is the default. (FIS floating
18846 point on the PDP-11/40 is not supported.)
18847
18848 @item -msoft-float
18849 @opindex msoft-float
18850 Do not use hardware floating point.
18851
18852 @item -mac0
18853 @opindex mac0
18854 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
18855
18856 @item -mno-ac0
18857 @opindex mno-ac0
18858 Return floating-point results in memory. This is the default.
18859
18860 @item -m40
18861 @opindex m40
18862 Generate code for a PDP-11/40.
18863
18864 @item -m45
18865 @opindex m45
18866 Generate code for a PDP-11/45. This is the default.
18867
18868 @item -m10
18869 @opindex m10
18870 Generate code for a PDP-11/10.
18871
18872 @item -mbcopy-builtin
18873 @opindex mbcopy-builtin
18874 Use inline @code{movmemhi} patterns for copying memory. This is the
18875 default.
18876
18877 @item -mbcopy
18878 @opindex mbcopy
18879 Do not use inline @code{movmemhi} patterns for copying memory.
18880
18881 @item -mint16
18882 @itemx -mno-int32
18883 @opindex mint16
18884 @opindex mno-int32
18885 Use 16-bit @code{int}. This is the default.
18886
18887 @item -mint32
18888 @itemx -mno-int16
18889 @opindex mint32
18890 @opindex mno-int16
18891 Use 32-bit @code{int}.
18892
18893 @item -mfloat64
18894 @itemx -mno-float32
18895 @opindex mfloat64
18896 @opindex mno-float32
18897 Use 64-bit @code{float}. This is the default.
18898
18899 @item -mfloat32
18900 @itemx -mno-float64
18901 @opindex mfloat32
18902 @opindex mno-float64
18903 Use 32-bit @code{float}.
18904
18905 @item -mabshi
18906 @opindex mabshi
18907 Use @code{abshi2} pattern. This is the default.
18908
18909 @item -mno-abshi
18910 @opindex mno-abshi
18911 Do not use @code{abshi2} pattern.
18912
18913 @item -mbranch-expensive
18914 @opindex mbranch-expensive
18915 Pretend that branches are expensive. This is for experimenting with
18916 code generation only.
18917
18918 @item -mbranch-cheap
18919 @opindex mbranch-cheap
18920 Do not pretend that branches are expensive. This is the default.
18921
18922 @item -munix-asm
18923 @opindex munix-asm
18924 Use Unix assembler syntax. This is the default when configured for
18925 @samp{pdp11-*-bsd}.
18926
18927 @item -mdec-asm
18928 @opindex mdec-asm
18929 Use DEC assembler syntax. This is the default when configured for any
18930 PDP-11 target other than @samp{pdp11-*-bsd}.
18931 @end table
18932
18933 @node picoChip Options
18934 @subsection picoChip Options
18935 @cindex picoChip options
18936
18937 These @samp{-m} options are defined for picoChip implementations:
18938
18939 @table @gcctabopt
18940
18941 @item -mae=@var{ae_type}
18942 @opindex mcpu
18943 Set the instruction set, register set, and instruction scheduling
18944 parameters for array element type @var{ae_type}. Supported values
18945 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
18946
18947 @option{-mae=ANY} selects a completely generic AE type. Code
18948 generated with this option runs on any of the other AE types. The
18949 code is not as efficient as it would be if compiled for a specific
18950 AE type, and some types of operation (e.g., multiplication) do not
18951 work properly on all types of AE.
18952
18953 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
18954 for compiled code, and is the default.
18955
18956 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
18957 option may suffer from poor performance of byte (char) manipulation,
18958 since the DSP AE does not provide hardware support for byte load/stores.
18959
18960 @item -msymbol-as-address
18961 Enable the compiler to directly use a symbol name as an address in a
18962 load/store instruction, without first loading it into a
18963 register. Typically, the use of this option generates larger
18964 programs, which run faster than when the option isn't used. However, the
18965 results vary from program to program, so it is left as a user option,
18966 rather than being permanently enabled.
18967
18968 @item -mno-inefficient-warnings
18969 Disables warnings about the generation of inefficient code. These
18970 warnings can be generated, for example, when compiling code that
18971 performs byte-level memory operations on the MAC AE type. The MAC AE has
18972 no hardware support for byte-level memory operations, so all byte
18973 load/stores must be synthesized from word load/store operations. This is
18974 inefficient and a warning is generated to indicate
18975 that you should rewrite the code to avoid byte operations, or to target
18976 an AE type that has the necessary hardware support. This option disables
18977 these warnings.
18978
18979 @end table
18980
18981 @node PowerPC Options
18982 @subsection PowerPC Options
18983 @cindex PowerPC options
18984
18985 These are listed under @xref{RS/6000 and PowerPC Options}.
18986
18987 @node RL78 Options
18988 @subsection RL78 Options
18989 @cindex RL78 Options
18990
18991 @table @gcctabopt
18992
18993 @item -msim
18994 @opindex msim
18995 Links in additional target libraries to support operation within a
18996 simulator.
18997
18998 @item -mmul=none
18999 @itemx -mmul=g10
19000 @itemx -mmul=g13
19001 @itemx -mmul=g14
19002 @itemx -mmul=rl78
19003 @opindex mmul
19004 Specifies the type of hardware multiplication and division support to
19005 be used. The simplest is @code{none}, which uses software for both
19006 multiplication and division. This is the default. The @code{g13}
19007 value is for the hardware multiply/divide peripheral found on the
19008 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
19009 the multiplication and division instructions supported by the RL78/G14
19010 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
19011 the value @code{mg10} is an alias for @code{none}.
19012
19013 In addition a C preprocessor macro is defined, based upon the setting
19014 of this option. Possible values are: @code{__RL78_MUL_NONE__},
19015 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
19016
19017 @item -mcpu=g10
19018 @itemx -mcpu=g13
19019 @itemx -mcpu=g14
19020 @itemx -mcpu=rl78
19021 @opindex mcpu
19022 Specifies the RL78 core to target. The default is the G14 core, also
19023 known as an S3 core or just RL78. The G13 or S2 core does not have
19024 multiply or divide instructions, instead it uses a hardware peripheral
19025 for these operations. The G10 or S1 core does not have register
19026 banks, so it uses a different calling convention.
19027
19028 If this option is set it also selects the type of hardware multiply
19029 support to use, unless this is overridden by an explicit
19030 @option{-mmul=none} option on the command line. Thus specifying
19031 @option{-mcpu=g13} enables the use of the G13 hardware multiply
19032 peripheral and specifying @option{-mcpu=g10} disables the use of
19033 hardware multipications altogether.
19034
19035 Note, although the RL78/G14 core is the default target, specifying
19036 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
19037 change the behaviour of the toolchain since it also enables G14
19038 hardware multiply support. If these options are not specified on the
19039 command line then software multiplication routines will be used even
19040 though the code targets the RL78 core. This is for backwards
19041 compatibility with older toolchains which did not have hardware
19042 multiply and divide support.
19043
19044 In addition a C preprocessor macro is defined, based upon the setting
19045 of this option. Possible values are: @code{__RL78_G10__},
19046 @code{__RL78_G13__} or @code{__RL78_G14__}.
19047
19048 @item -mg10
19049 @itemx -mg13
19050 @itemx -mg14
19051 @itemx -mrl78
19052 @opindex mg10
19053 @opindex mg13
19054 @opindex mg14
19055 @opindex mrl78
19056 These are aliases for the corresponding @option{-mcpu=} option. They
19057 are provided for backwards compatibility.
19058
19059 @item -mallregs
19060 @opindex mallregs
19061 Allow the compiler to use all of the available registers. By default
19062 registers @code{r24..r31} are reserved for use in interrupt handlers.
19063 With this option enabled these registers can be used in ordinary
19064 functions as well.
19065
19066 @item -m64bit-doubles
19067 @itemx -m32bit-doubles
19068 @opindex m64bit-doubles
19069 @opindex m32bit-doubles
19070 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
19071 or 32 bits (@option{-m32bit-doubles}) in size. The default is
19072 @option{-m32bit-doubles}.
19073
19074 @end table
19075
19076 @node RS/6000 and PowerPC Options
19077 @subsection IBM RS/6000 and PowerPC Options
19078 @cindex RS/6000 and PowerPC Options
19079 @cindex IBM RS/6000 and PowerPC Options
19080
19081 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
19082 @table @gcctabopt
19083 @item -mpowerpc-gpopt
19084 @itemx -mno-powerpc-gpopt
19085 @itemx -mpowerpc-gfxopt
19086 @itemx -mno-powerpc-gfxopt
19087 @need 800
19088 @itemx -mpowerpc64
19089 @itemx -mno-powerpc64
19090 @itemx -mmfcrf
19091 @itemx -mno-mfcrf
19092 @itemx -mpopcntb
19093 @itemx -mno-popcntb
19094 @itemx -mpopcntd
19095 @itemx -mno-popcntd
19096 @itemx -mfprnd
19097 @itemx -mno-fprnd
19098 @need 800
19099 @itemx -mcmpb
19100 @itemx -mno-cmpb
19101 @itemx -mmfpgpr
19102 @itemx -mno-mfpgpr
19103 @itemx -mhard-dfp
19104 @itemx -mno-hard-dfp
19105 @opindex mpowerpc-gpopt
19106 @opindex mno-powerpc-gpopt
19107 @opindex mpowerpc-gfxopt
19108 @opindex mno-powerpc-gfxopt
19109 @opindex mpowerpc64
19110 @opindex mno-powerpc64
19111 @opindex mmfcrf
19112 @opindex mno-mfcrf
19113 @opindex mpopcntb
19114 @opindex mno-popcntb
19115 @opindex mpopcntd
19116 @opindex mno-popcntd
19117 @opindex mfprnd
19118 @opindex mno-fprnd
19119 @opindex mcmpb
19120 @opindex mno-cmpb
19121 @opindex mmfpgpr
19122 @opindex mno-mfpgpr
19123 @opindex mhard-dfp
19124 @opindex mno-hard-dfp
19125 You use these options to specify which instructions are available on the
19126 processor you are using. The default value of these options is
19127 determined when configuring GCC@. Specifying the
19128 @option{-mcpu=@var{cpu_type}} overrides the specification of these
19129 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
19130 rather than the options listed above.
19131
19132 Specifying @option{-mpowerpc-gpopt} allows
19133 GCC to use the optional PowerPC architecture instructions in the
19134 General Purpose group, including floating-point square root. Specifying
19135 @option{-mpowerpc-gfxopt} allows GCC to
19136 use the optional PowerPC architecture instructions in the Graphics
19137 group, including floating-point select.
19138
19139 The @option{-mmfcrf} option allows GCC to generate the move from
19140 condition register field instruction implemented on the POWER4
19141 processor and other processors that support the PowerPC V2.01
19142 architecture.
19143 The @option{-mpopcntb} option allows GCC to generate the popcount and
19144 double-precision FP reciprocal estimate instruction implemented on the
19145 POWER5 processor and other processors that support the PowerPC V2.02
19146 architecture.
19147 The @option{-mpopcntd} option allows GCC to generate the popcount
19148 instruction implemented on the POWER7 processor and other processors
19149 that support the PowerPC V2.06 architecture.
19150 The @option{-mfprnd} option allows GCC to generate the FP round to
19151 integer instructions implemented on the POWER5+ processor and other
19152 processors that support the PowerPC V2.03 architecture.
19153 The @option{-mcmpb} option allows GCC to generate the compare bytes
19154 instruction implemented on the POWER6 processor and other processors
19155 that support the PowerPC V2.05 architecture.
19156 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
19157 general-purpose register instructions implemented on the POWER6X
19158 processor and other processors that support the extended PowerPC V2.05
19159 architecture.
19160 The @option{-mhard-dfp} option allows GCC to generate the decimal
19161 floating-point instructions implemented on some POWER processors.
19162
19163 The @option{-mpowerpc64} option allows GCC to generate the additional
19164 64-bit instructions that are found in the full PowerPC64 architecture
19165 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
19166 @option{-mno-powerpc64}.
19167
19168 @item -mcpu=@var{cpu_type}
19169 @opindex mcpu
19170 Set architecture type, register usage, and
19171 instruction scheduling parameters for machine type @var{cpu_type}.
19172 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
19173 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
19174 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
19175 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
19176 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
19177 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
19178 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
19179 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
19180 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
19181 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
19182 @samp{powerpc64}, @samp{powerpc64le}, and @samp{rs64}.
19183
19184 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
19185 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
19186 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
19187 architecture machine types, with an appropriate, generic processor
19188 model assumed for scheduling purposes.
19189
19190 The other options specify a specific processor. Code generated under
19191 those options runs best on that processor, and may not run at all on
19192 others.
19193
19194 The @option{-mcpu} options automatically enable or disable the
19195 following options:
19196
19197 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
19198 -mpopcntb -mpopcntd -mpowerpc64 @gol
19199 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
19200 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
19201 -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
19202 -mquad-memory -mquad-memory-atomic}
19203
19204 The particular options set for any particular CPU varies between
19205 compiler versions, depending on what setting seems to produce optimal
19206 code for that CPU; it doesn't necessarily reflect the actual hardware's
19207 capabilities. If you wish to set an individual option to a particular
19208 value, you may specify it after the @option{-mcpu} option, like
19209 @option{-mcpu=970 -mno-altivec}.
19210
19211 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
19212 not enabled or disabled by the @option{-mcpu} option at present because
19213 AIX does not have full support for these options. You may still
19214 enable or disable them individually if you're sure it'll work in your
19215 environment.
19216
19217 @item -mtune=@var{cpu_type}
19218 @opindex mtune
19219 Set the instruction scheduling parameters for machine type
19220 @var{cpu_type}, but do not set the architecture type or register usage,
19221 as @option{-mcpu=@var{cpu_type}} does. The same
19222 values for @var{cpu_type} are used for @option{-mtune} as for
19223 @option{-mcpu}. If both are specified, the code generated uses the
19224 architecture and registers set by @option{-mcpu}, but the
19225 scheduling parameters set by @option{-mtune}.
19226
19227 @item -mcmodel=small
19228 @opindex mcmodel=small
19229 Generate PowerPC64 code for the small model: The TOC is limited to
19230 64k.
19231
19232 @item -mcmodel=medium
19233 @opindex mcmodel=medium
19234 Generate PowerPC64 code for the medium model: The TOC and other static
19235 data may be up to a total of 4G in size.
19236
19237 @item -mcmodel=large
19238 @opindex mcmodel=large
19239 Generate PowerPC64 code for the large model: The TOC may be up to 4G
19240 in size. Other data and code is only limited by the 64-bit address
19241 space.
19242
19243 @item -maltivec
19244 @itemx -mno-altivec
19245 @opindex maltivec
19246 @opindex mno-altivec
19247 Generate code that uses (does not use) AltiVec instructions, and also
19248 enable the use of built-in functions that allow more direct access to
19249 the AltiVec instruction set. You may also need to set
19250 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
19251 enhancements.
19252
19253 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
19254 @option{-maltivec=be}, the element order for Altivec intrinsics such
19255 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
19256 match array element order corresponding to the endianness of the
19257 target. That is, element zero identifies the leftmost element in a
19258 vector register when targeting a big-endian platform, and identifies
19259 the rightmost element in a vector register when targeting a
19260 little-endian platform.
19261
19262 @item -maltivec=be
19263 @opindex maltivec=be
19264 Generate Altivec instructions using big-endian element order,
19265 regardless of whether the target is big- or little-endian. This is
19266 the default when targeting a big-endian platform.
19267
19268 The element order is used to interpret element numbers in Altivec
19269 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19270 @code{vec_insert}. By default, these match array element order
19271 corresponding to the endianness for the target.
19272
19273 @item -maltivec=le
19274 @opindex maltivec=le
19275 Generate Altivec instructions using little-endian element order,
19276 regardless of whether the target is big- or little-endian. This is
19277 the default when targeting a little-endian platform. This option is
19278 currently ignored when targeting a big-endian platform.
19279
19280 The element order is used to interpret element numbers in Altivec
19281 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19282 @code{vec_insert}. By default, these match array element order
19283 corresponding to the endianness for the target.
19284
19285 @item -mvrsave
19286 @itemx -mno-vrsave
19287 @opindex mvrsave
19288 @opindex mno-vrsave
19289 Generate VRSAVE instructions when generating AltiVec code.
19290
19291 @item -mgen-cell-microcode
19292 @opindex mgen-cell-microcode
19293 Generate Cell microcode instructions.
19294
19295 @item -mwarn-cell-microcode
19296 @opindex mwarn-cell-microcode
19297 Warn when a Cell microcode instruction is emitted. An example
19298 of a Cell microcode instruction is a variable shift.
19299
19300 @item -msecure-plt
19301 @opindex msecure-plt
19302 Generate code that allows @command{ld} and @command{ld.so}
19303 to build executables and shared
19304 libraries with non-executable @code{.plt} and @code{.got} sections.
19305 This is a PowerPC
19306 32-bit SYSV ABI option.
19307
19308 @item -mbss-plt
19309 @opindex mbss-plt
19310 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19311 fills in, and
19312 requires @code{.plt} and @code{.got}
19313 sections that are both writable and executable.
19314 This is a PowerPC 32-bit SYSV ABI option.
19315
19316 @item -misel
19317 @itemx -mno-isel
19318 @opindex misel
19319 @opindex mno-isel
19320 This switch enables or disables the generation of ISEL instructions.
19321
19322 @item -misel=@var{yes/no}
19323 This switch has been deprecated. Use @option{-misel} and
19324 @option{-mno-isel} instead.
19325
19326 @item -mspe
19327 @itemx -mno-spe
19328 @opindex mspe
19329 @opindex mno-spe
19330 This switch enables or disables the generation of SPE simd
19331 instructions.
19332
19333 @item -mpaired
19334 @itemx -mno-paired
19335 @opindex mpaired
19336 @opindex mno-paired
19337 This switch enables or disables the generation of PAIRED simd
19338 instructions.
19339
19340 @item -mspe=@var{yes/no}
19341 This option has been deprecated. Use @option{-mspe} and
19342 @option{-mno-spe} instead.
19343
19344 @item -mvsx
19345 @itemx -mno-vsx
19346 @opindex mvsx
19347 @opindex mno-vsx
19348 Generate code that uses (does not use) vector/scalar (VSX)
19349 instructions, and also enable the use of built-in functions that allow
19350 more direct access to the VSX instruction set.
19351
19352 @item -mcrypto
19353 @itemx -mno-crypto
19354 @opindex mcrypto
19355 @opindex mno-crypto
19356 Enable the use (disable) of the built-in functions that allow direct
19357 access to the cryptographic instructions that were added in version
19358 2.07 of the PowerPC ISA.
19359
19360 @item -mdirect-move
19361 @itemx -mno-direct-move
19362 @opindex mdirect-move
19363 @opindex mno-direct-move
19364 Generate code that uses (does not use) the instructions to move data
19365 between the general purpose registers and the vector/scalar (VSX)
19366 registers that were added in version 2.07 of the PowerPC ISA.
19367
19368 @item -mpower8-fusion
19369 @itemx -mno-power8-fusion
19370 @opindex mpower8-fusion
19371 @opindex mno-power8-fusion
19372 Generate code that keeps (does not keeps) some integer operations
19373 adjacent so that the instructions can be fused together on power8 and
19374 later processors.
19375
19376 @item -mpower8-vector
19377 @itemx -mno-power8-vector
19378 @opindex mpower8-vector
19379 @opindex mno-power8-vector
19380 Generate code that uses (does not use) the vector and scalar
19381 instructions that were added in version 2.07 of the PowerPC ISA. Also
19382 enable the use of built-in functions that allow more direct access to
19383 the vector instructions.
19384
19385 @item -mquad-memory
19386 @itemx -mno-quad-memory
19387 @opindex mquad-memory
19388 @opindex mno-quad-memory
19389 Generate code that uses (does not use) the non-atomic quad word memory
19390 instructions. The @option{-mquad-memory} option requires use of
19391 64-bit mode.
19392
19393 @item -mquad-memory-atomic
19394 @itemx -mno-quad-memory-atomic
19395 @opindex mquad-memory-atomic
19396 @opindex mno-quad-memory-atomic
19397 Generate code that uses (does not use) the atomic quad word memory
19398 instructions. The @option{-mquad-memory-atomic} option requires use of
19399 64-bit mode.
19400
19401 @item -mupper-regs-df
19402 @itemx -mno-upper-regs-df
19403 @opindex mupper-regs-df
19404 @opindex mno-upper-regs-df
19405 Generate code that uses (does not use) the scalar double precision
19406 instructions that target all 64 registers in the vector/scalar
19407 floating point register set that were added in version 2.06 of the
19408 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
19409 use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19410 @option{-mvsx} options.
19411
19412 @item -mupper-regs-sf
19413 @itemx -mno-upper-regs-sf
19414 @opindex mupper-regs-sf
19415 @opindex mno-upper-regs-sf
19416 Generate code that uses (does not use) the scalar single precision
19417 instructions that target all 64 registers in the vector/scalar
19418 floating point register set that were added in version 2.07 of the
19419 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
19420 use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19421 options.
19422
19423 @item -mupper-regs
19424 @itemx -mno-upper-regs
19425 @opindex mupper-regs
19426 @opindex mno-upper-regs
19427 Generate code that uses (does not use) the scalar
19428 instructions that target all 64 registers in the vector/scalar
19429 floating point register set, depending on the model of the machine.
19430
19431 If the @option{-mno-upper-regs} option is used, it turns off both
19432 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19433
19434 @item -mfloat-gprs=@var{yes/single/double/no}
19435 @itemx -mfloat-gprs
19436 @opindex mfloat-gprs
19437 This switch enables or disables the generation of floating-point
19438 operations on the general-purpose registers for architectures that
19439 support it.
19440
19441 The argument @samp{yes} or @samp{single} enables the use of
19442 single-precision floating-point operations.
19443
19444 The argument @samp{double} enables the use of single and
19445 double-precision floating-point operations.
19446
19447 The argument @samp{no} disables floating-point operations on the
19448 general-purpose registers.
19449
19450 This option is currently only available on the MPC854x.
19451
19452 @item -m32
19453 @itemx -m64
19454 @opindex m32
19455 @opindex m64
19456 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19457 targets (including GNU/Linux). The 32-bit environment sets int, long
19458 and pointer to 32 bits and generates code that runs on any PowerPC
19459 variant. The 64-bit environment sets int to 32 bits and long and
19460 pointer to 64 bits, and generates code for PowerPC64, as for
19461 @option{-mpowerpc64}.
19462
19463 @item -mfull-toc
19464 @itemx -mno-fp-in-toc
19465 @itemx -mno-sum-in-toc
19466 @itemx -mminimal-toc
19467 @opindex mfull-toc
19468 @opindex mno-fp-in-toc
19469 @opindex mno-sum-in-toc
19470 @opindex mminimal-toc
19471 Modify generation of the TOC (Table Of Contents), which is created for
19472 every executable file. The @option{-mfull-toc} option is selected by
19473 default. In that case, GCC allocates at least one TOC entry for
19474 each unique non-automatic variable reference in your program. GCC
19475 also places floating-point constants in the TOC@. However, only
19476 16,384 entries are available in the TOC@.
19477
19478 If you receive a linker error message that saying you have overflowed
19479 the available TOC space, you can reduce the amount of TOC space used
19480 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19481 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
19482 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19483 generate code to calculate the sum of an address and a constant at
19484 run time instead of putting that sum into the TOC@. You may specify one
19485 or both of these options. Each causes GCC to produce very slightly
19486 slower and larger code at the expense of conserving TOC space.
19487
19488 If you still run out of space in the TOC even when you specify both of
19489 these options, specify @option{-mminimal-toc} instead. This option causes
19490 GCC to make only one TOC entry for every file. When you specify this
19491 option, GCC produces code that is slower and larger but which
19492 uses extremely little TOC space. You may wish to use this option
19493 only on files that contain less frequently-executed code.
19494
19495 @item -maix64
19496 @itemx -maix32
19497 @opindex maix64
19498 @opindex maix32
19499 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19500 @code{long} type, and the infrastructure needed to support them.
19501 Specifying @option{-maix64} implies @option{-mpowerpc64},
19502 while @option{-maix32} disables the 64-bit ABI and
19503 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
19504
19505 @item -mxl-compat
19506 @itemx -mno-xl-compat
19507 @opindex mxl-compat
19508 @opindex mno-xl-compat
19509 Produce code that conforms more closely to IBM XL compiler semantics
19510 when using AIX-compatible ABI@. Pass floating-point arguments to
19511 prototyped functions beyond the register save area (RSA) on the stack
19512 in addition to argument FPRs. Do not assume that most significant
19513 double in 128-bit long double value is properly rounded when comparing
19514 values and converting to double. Use XL symbol names for long double
19515 support routines.
19516
19517 The AIX calling convention was extended but not initially documented to
19518 handle an obscure K&R C case of calling a function that takes the
19519 address of its arguments with fewer arguments than declared. IBM XL
19520 compilers access floating-point arguments that do not fit in the
19521 RSA from the stack when a subroutine is compiled without
19522 optimization. Because always storing floating-point arguments on the
19523 stack is inefficient and rarely needed, this option is not enabled by
19524 default and only is necessary when calling subroutines compiled by IBM
19525 XL compilers without optimization.
19526
19527 @item -mpe
19528 @opindex mpe
19529 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
19530 application written to use message passing with special startup code to
19531 enable the application to run. The system must have PE installed in the
19532 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19533 must be overridden with the @option{-specs=} option to specify the
19534 appropriate directory location. The Parallel Environment does not
19535 support threads, so the @option{-mpe} option and the @option{-pthread}
19536 option are incompatible.
19537
19538 @item -malign-natural
19539 @itemx -malign-power
19540 @opindex malign-natural
19541 @opindex malign-power
19542 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19543 @option{-malign-natural} overrides the ABI-defined alignment of larger
19544 types, such as floating-point doubles, on their natural size-based boundary.
19545 The option @option{-malign-power} instructs GCC to follow the ABI-specified
19546 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
19547
19548 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19549 is not supported.
19550
19551 @item -msoft-float
19552 @itemx -mhard-float
19553 @opindex msoft-float
19554 @opindex mhard-float
19555 Generate code that does not use (uses) the floating-point register set.
19556 Software floating-point emulation is provided if you use the
19557 @option{-msoft-float} option, and pass the option to GCC when linking.
19558
19559 @item -msingle-float
19560 @itemx -mdouble-float
19561 @opindex msingle-float
19562 @opindex mdouble-float
19563 Generate code for single- or double-precision floating-point operations.
19564 @option{-mdouble-float} implies @option{-msingle-float}.
19565
19566 @item -msimple-fpu
19567 @opindex msimple-fpu
19568 Do not generate @code{sqrt} and @code{div} instructions for hardware
19569 floating-point unit.
19570
19571 @item -mfpu=@var{name}
19572 @opindex mfpu
19573 Specify type of floating-point unit. Valid values for @var{name} are
19574 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19575 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19576 @samp{sp_full} (equivalent to @option{-msingle-float}),
19577 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19578
19579 @item -mxilinx-fpu
19580 @opindex mxilinx-fpu
19581 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19582
19583 @item -mmultiple
19584 @itemx -mno-multiple
19585 @opindex mmultiple
19586 @opindex mno-multiple
19587 Generate code that uses (does not use) the load multiple word
19588 instructions and the store multiple word instructions. These
19589 instructions are generated by default on POWER systems, and not
19590 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
19591 PowerPC systems, since those instructions do not work when the
19592 processor is in little-endian mode. The exceptions are PPC740 and
19593 PPC750 which permit these instructions in little-endian mode.
19594
19595 @item -mstring
19596 @itemx -mno-string
19597 @opindex mstring
19598 @opindex mno-string
19599 Generate code that uses (does not use) the load string instructions
19600 and the store string word instructions to save multiple registers and
19601 do small block moves. These instructions are generated by default on
19602 POWER systems, and not generated on PowerPC systems. Do not use
19603 @option{-mstring} on little-endian PowerPC systems, since those
19604 instructions do not work when the processor is in little-endian mode.
19605 The exceptions are PPC740 and PPC750 which permit these instructions
19606 in little-endian mode.
19607
19608 @item -mupdate
19609 @itemx -mno-update
19610 @opindex mupdate
19611 @opindex mno-update
19612 Generate code that uses (does not use) the load or store instructions
19613 that update the base register to the address of the calculated memory
19614 location. These instructions are generated by default. If you use
19615 @option{-mno-update}, there is a small window between the time that the
19616 stack pointer is updated and the address of the previous frame is
19617 stored, which means code that walks the stack frame across interrupts or
19618 signals may get corrupted data.
19619
19620 @item -mavoid-indexed-addresses
19621 @itemx -mno-avoid-indexed-addresses
19622 @opindex mavoid-indexed-addresses
19623 @opindex mno-avoid-indexed-addresses
19624 Generate code that tries to avoid (not avoid) the use of indexed load
19625 or store instructions. These instructions can incur a performance
19626 penalty on Power6 processors in certain situations, such as when
19627 stepping through large arrays that cross a 16M boundary. This option
19628 is enabled by default when targeting Power6 and disabled otherwise.
19629
19630 @item -mfused-madd
19631 @itemx -mno-fused-madd
19632 @opindex mfused-madd
19633 @opindex mno-fused-madd
19634 Generate code that uses (does not use) the floating-point multiply and
19635 accumulate instructions. These instructions are generated by default
19636 if hardware floating point is used. The machine-dependent
19637 @option{-mfused-madd} option is now mapped to the machine-independent
19638 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19639 mapped to @option{-ffp-contract=off}.
19640
19641 @item -mmulhw
19642 @itemx -mno-mulhw
19643 @opindex mmulhw
19644 @opindex mno-mulhw
19645 Generate code that uses (does not use) the half-word multiply and
19646 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19647 These instructions are generated by default when targeting those
19648 processors.
19649
19650 @item -mdlmzb
19651 @itemx -mno-dlmzb
19652 @opindex mdlmzb
19653 @opindex mno-dlmzb
19654 Generate code that uses (does not use) the string-search @samp{dlmzb}
19655 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
19656 generated by default when targeting those processors.
19657
19658 @item -mno-bit-align
19659 @itemx -mbit-align
19660 @opindex mno-bit-align
19661 @opindex mbit-align
19662 On System V.4 and embedded PowerPC systems do not (do) force structures
19663 and unions that contain bit-fields to be aligned to the base type of the
19664 bit-field.
19665
19666 For example, by default a structure containing nothing but 8
19667 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19668 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
19669 the structure is aligned to a 1-byte boundary and is 1 byte in
19670 size.
19671
19672 @item -mno-strict-align
19673 @itemx -mstrict-align
19674 @opindex mno-strict-align
19675 @opindex mstrict-align
19676 On System V.4 and embedded PowerPC systems do not (do) assume that
19677 unaligned memory references are handled by the system.
19678
19679 @item -mrelocatable
19680 @itemx -mno-relocatable
19681 @opindex mrelocatable
19682 @opindex mno-relocatable
19683 Generate code that allows (does not allow) a static executable to be
19684 relocated to a different address at run time. A simple embedded
19685 PowerPC system loader should relocate the entire contents of
19686 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
19687 a table of 32-bit addresses generated by this option. For this to
19688 work, all objects linked together must be compiled with
19689 @option{-mrelocatable} or @option{-mrelocatable-lib}.
19690 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
19691
19692 @item -mrelocatable-lib
19693 @itemx -mno-relocatable-lib
19694 @opindex mrelocatable-lib
19695 @opindex mno-relocatable-lib
19696 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
19697 @code{.fixup} section to allow static executables to be relocated at
19698 run time, but @option{-mrelocatable-lib} does not use the smaller stack
19699 alignment of @option{-mrelocatable}. Objects compiled with
19700 @option{-mrelocatable-lib} may be linked with objects compiled with
19701 any combination of the @option{-mrelocatable} options.
19702
19703 @item -mno-toc
19704 @itemx -mtoc
19705 @opindex mno-toc
19706 @opindex mtoc
19707 On System V.4 and embedded PowerPC systems do not (do) assume that
19708 register 2 contains a pointer to a global area pointing to the addresses
19709 used in the program.
19710
19711 @item -mlittle
19712 @itemx -mlittle-endian
19713 @opindex mlittle
19714 @opindex mlittle-endian
19715 On System V.4 and embedded PowerPC systems compile code for the
19716 processor in little-endian mode. The @option{-mlittle-endian} option is
19717 the same as @option{-mlittle}.
19718
19719 @item -mbig
19720 @itemx -mbig-endian
19721 @opindex mbig
19722 @opindex mbig-endian
19723 On System V.4 and embedded PowerPC systems compile code for the
19724 processor in big-endian mode. The @option{-mbig-endian} option is
19725 the same as @option{-mbig}.
19726
19727 @item -mdynamic-no-pic
19728 @opindex mdynamic-no-pic
19729 On Darwin and Mac OS X systems, compile code so that it is not
19730 relocatable, but that its external references are relocatable. The
19731 resulting code is suitable for applications, but not shared
19732 libraries.
19733
19734 @item -msingle-pic-base
19735 @opindex msingle-pic-base
19736 Treat the register used for PIC addressing as read-only, rather than
19737 loading it in the prologue for each function. The runtime system is
19738 responsible for initializing this register with an appropriate value
19739 before execution begins.
19740
19741 @item -mprioritize-restricted-insns=@var{priority}
19742 @opindex mprioritize-restricted-insns
19743 This option controls the priority that is assigned to
19744 dispatch-slot restricted instructions during the second scheduling
19745 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
19746 or @samp{2} to assign no, highest, or second-highest (respectively)
19747 priority to dispatch-slot restricted
19748 instructions.
19749
19750 @item -msched-costly-dep=@var{dependence_type}
19751 @opindex msched-costly-dep
19752 This option controls which dependences are considered costly
19753 by the target during instruction scheduling. The argument
19754 @var{dependence_type} takes one of the following values:
19755
19756 @table @asis
19757 @item @samp{no}
19758 No dependence is costly.
19759
19760 @item @samp{all}
19761 All dependences are costly.
19762
19763 @item @samp{true_store_to_load}
19764 A true dependence from store to load is costly.
19765
19766 @item @samp{store_to_load}
19767 Any dependence from store to load is costly.
19768
19769 @item @var{number}
19770 Any dependence for which the latency is greater than or equal to
19771 @var{number} is costly.
19772 @end table
19773
19774 @item -minsert-sched-nops=@var{scheme}
19775 @opindex minsert-sched-nops
19776 This option controls which NOP insertion scheme is used during
19777 the second scheduling pass. The argument @var{scheme} takes one of the
19778 following values:
19779
19780 @table @asis
19781 @item @samp{no}
19782 Don't insert NOPs.
19783
19784 @item @samp{pad}
19785 Pad with NOPs any dispatch group that has vacant issue slots,
19786 according to the scheduler's grouping.
19787
19788 @item @samp{regroup_exact}
19789 Insert NOPs to force costly dependent insns into
19790 separate groups. Insert exactly as many NOPs as needed to force an insn
19791 to a new group, according to the estimated processor grouping.
19792
19793 @item @var{number}
19794 Insert NOPs to force costly dependent insns into
19795 separate groups. Insert @var{number} NOPs to force an insn to a new group.
19796 @end table
19797
19798 @item -mcall-sysv
19799 @opindex mcall-sysv
19800 On System V.4 and embedded PowerPC systems compile code using calling
19801 conventions that adhere to the March 1995 draft of the System V
19802 Application Binary Interface, PowerPC processor supplement. This is the
19803 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19804
19805 @item -mcall-sysv-eabi
19806 @itemx -mcall-eabi
19807 @opindex mcall-sysv-eabi
19808 @opindex mcall-eabi
19809 Specify both @option{-mcall-sysv} and @option{-meabi} options.
19810
19811 @item -mcall-sysv-noeabi
19812 @opindex mcall-sysv-noeabi
19813 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
19814
19815 @item -mcall-aixdesc
19816 @opindex m
19817 On System V.4 and embedded PowerPC systems compile code for the AIX
19818 operating system.
19819
19820 @item -mcall-linux
19821 @opindex mcall-linux
19822 On System V.4 and embedded PowerPC systems compile code for the
19823 Linux-based GNU system.
19824
19825 @item -mcall-freebsd
19826 @opindex mcall-freebsd
19827 On System V.4 and embedded PowerPC systems compile code for the
19828 FreeBSD operating system.
19829
19830 @item -mcall-netbsd
19831 @opindex mcall-netbsd
19832 On System V.4 and embedded PowerPC systems compile code for the
19833 NetBSD operating system.
19834
19835 @item -mcall-openbsd
19836 @opindex mcall-netbsd
19837 On System V.4 and embedded PowerPC systems compile code for the
19838 OpenBSD operating system.
19839
19840 @item -maix-struct-return
19841 @opindex maix-struct-return
19842 Return all structures in memory (as specified by the AIX ABI)@.
19843
19844 @item -msvr4-struct-return
19845 @opindex msvr4-struct-return
19846 Return structures smaller than 8 bytes in registers (as specified by the
19847 SVR4 ABI)@.
19848
19849 @item -mabi=@var{abi-type}
19850 @opindex mabi
19851 Extend the current ABI with a particular extension, or remove such extension.
19852 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
19853 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
19854 @samp{elfv1}, @samp{elfv2}@.
19855
19856 @item -mabi=spe
19857 @opindex mabi=spe
19858 Extend the current ABI with SPE ABI extensions. This does not change
19859 the default ABI, instead it adds the SPE ABI extensions to the current
19860 ABI@.
19861
19862 @item -mabi=no-spe
19863 @opindex mabi=no-spe
19864 Disable Book-E SPE ABI extensions for the current ABI@.
19865
19866 @item -mabi=ibmlongdouble
19867 @opindex mabi=ibmlongdouble
19868 Change the current ABI to use IBM extended-precision long double.
19869 This is a PowerPC 32-bit SYSV ABI option.
19870
19871 @item -mabi=ieeelongdouble
19872 @opindex mabi=ieeelongdouble
19873 Change the current ABI to use IEEE extended-precision long double.
19874 This is a PowerPC 32-bit Linux ABI option.
19875
19876 @item -mabi=elfv1
19877 @opindex mabi=elfv1
19878 Change the current ABI to use the ELFv1 ABI.
19879 This is the default ABI for big-endian PowerPC 64-bit Linux.
19880 Overriding the default ABI requires special system support and is
19881 likely to fail in spectacular ways.
19882
19883 @item -mabi=elfv2
19884 @opindex mabi=elfv2
19885 Change the current ABI to use the ELFv2 ABI.
19886 This is the default ABI for little-endian PowerPC 64-bit Linux.
19887 Overriding the default ABI requires special system support and is
19888 likely to fail in spectacular ways.
19889
19890 @item -mprototype
19891 @itemx -mno-prototype
19892 @opindex mprototype
19893 @opindex mno-prototype
19894 On System V.4 and embedded PowerPC systems assume that all calls to
19895 variable argument functions are properly prototyped. Otherwise, the
19896 compiler must insert an instruction before every non-prototyped call to
19897 set or clear bit 6 of the condition code register (@code{CR}) to
19898 indicate whether floating-point values are passed in the floating-point
19899 registers in case the function takes variable arguments. With
19900 @option{-mprototype}, only calls to prototyped variable argument functions
19901 set or clear the bit.
19902
19903 @item -msim
19904 @opindex msim
19905 On embedded PowerPC systems, assume that the startup module is called
19906 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
19907 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
19908 configurations.
19909
19910 @item -mmvme
19911 @opindex mmvme
19912 On embedded PowerPC systems, assume that the startup module is called
19913 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
19914 @file{libc.a}.
19915
19916 @item -mads
19917 @opindex mads
19918 On embedded PowerPC systems, assume that the startup module is called
19919 @file{crt0.o} and the standard C libraries are @file{libads.a} and
19920 @file{libc.a}.
19921
19922 @item -myellowknife
19923 @opindex myellowknife
19924 On embedded PowerPC systems, assume that the startup module is called
19925 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
19926 @file{libc.a}.
19927
19928 @item -mvxworks
19929 @opindex mvxworks
19930 On System V.4 and embedded PowerPC systems, specify that you are
19931 compiling for a VxWorks system.
19932
19933 @item -memb
19934 @opindex memb
19935 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
19936 header to indicate that @samp{eabi} extended relocations are used.
19937
19938 @item -meabi
19939 @itemx -mno-eabi
19940 @opindex meabi
19941 @opindex mno-eabi
19942 On System V.4 and embedded PowerPC systems do (do not) adhere to the
19943 Embedded Applications Binary Interface (EABI), which is a set of
19944 modifications to the System V.4 specifications. Selecting @option{-meabi}
19945 means that the stack is aligned to an 8-byte boundary, a function
19946 @code{__eabi} is called from @code{main} to set up the EABI
19947 environment, and the @option{-msdata} option can use both @code{r2} and
19948 @code{r13} to point to two separate small data areas. Selecting
19949 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
19950 no EABI initialization function is called from @code{main}, and the
19951 @option{-msdata} option only uses @code{r13} to point to a single
19952 small data area. The @option{-meabi} option is on by default if you
19953 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
19954
19955 @item -msdata=eabi
19956 @opindex msdata=eabi
19957 On System V.4 and embedded PowerPC systems, put small initialized
19958 @code{const} global and static data in the @code{.sdata2} section, which
19959 is pointed to by register @code{r2}. Put small initialized
19960 non-@code{const} global and static data in the @code{.sdata} section,
19961 which is pointed to by register @code{r13}. Put small uninitialized
19962 global and static data in the @code{.sbss} section, which is adjacent to
19963 the @code{.sdata} section. The @option{-msdata=eabi} option is
19964 incompatible with the @option{-mrelocatable} option. The
19965 @option{-msdata=eabi} option also sets the @option{-memb} option.
19966
19967 @item -msdata=sysv
19968 @opindex msdata=sysv
19969 On System V.4 and embedded PowerPC systems, put small global and static
19970 data in the @code{.sdata} section, which is pointed to by register
19971 @code{r13}. Put small uninitialized global and static data in the
19972 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
19973 The @option{-msdata=sysv} option is incompatible with the
19974 @option{-mrelocatable} option.
19975
19976 @item -msdata=default
19977 @itemx -msdata
19978 @opindex msdata=default
19979 @opindex msdata
19980 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
19981 compile code the same as @option{-msdata=eabi}, otherwise compile code the
19982 same as @option{-msdata=sysv}.
19983
19984 @item -msdata=data
19985 @opindex msdata=data
19986 On System V.4 and embedded PowerPC systems, put small global
19987 data in the @code{.sdata} section. Put small uninitialized global
19988 data in the @code{.sbss} section. Do not use register @code{r13}
19989 to address small data however. This is the default behavior unless
19990 other @option{-msdata} options are used.
19991
19992 @item -msdata=none
19993 @itemx -mno-sdata
19994 @opindex msdata=none
19995 @opindex mno-sdata
19996 On embedded PowerPC systems, put all initialized global and static data
19997 in the @code{.data} section, and all uninitialized data in the
19998 @code{.bss} section.
19999
20000 @item -mblock-move-inline-limit=@var{num}
20001 @opindex mblock-move-inline-limit
20002 Inline all block moves (such as calls to @code{memcpy} or structure
20003 copies) less than or equal to @var{num} bytes. The minimum value for
20004 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
20005 targets. The default value is target-specific.
20006
20007 @item -G @var{num}
20008 @opindex G
20009 @cindex smaller data references (PowerPC)
20010 @cindex .sdata/.sdata2 references (PowerPC)
20011 On embedded PowerPC systems, put global and static items less than or
20012 equal to @var{num} bytes into the small data or BSS sections instead of
20013 the normal data or BSS section. By default, @var{num} is 8. The
20014 @option{-G @var{num}} switch is also passed to the linker.
20015 All modules should be compiled with the same @option{-G @var{num}} value.
20016
20017 @item -mregnames
20018 @itemx -mno-regnames
20019 @opindex mregnames
20020 @opindex mno-regnames
20021 On System V.4 and embedded PowerPC systems do (do not) emit register
20022 names in the assembly language output using symbolic forms.
20023
20024 @item -mlongcall
20025 @itemx -mno-longcall
20026 @opindex mlongcall
20027 @opindex mno-longcall
20028 By default assume that all calls are far away so that a longer and more
20029 expensive calling sequence is required. This is required for calls
20030 farther than 32 megabytes (33,554,432 bytes) from the current location.
20031 A short call is generated if the compiler knows
20032 the call cannot be that far away. This setting can be overridden by
20033 the @code{shortcall} function attribute, or by @code{#pragma
20034 longcall(0)}.
20035
20036 Some linkers are capable of detecting out-of-range calls and generating
20037 glue code on the fly. On these systems, long calls are unnecessary and
20038 generate slower code. As of this writing, the AIX linker can do this,
20039 as can the GNU linker for PowerPC/64. It is planned to add this feature
20040 to the GNU linker for 32-bit PowerPC systems as well.
20041
20042 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
20043 callee, L42}, plus a @dfn{branch island} (glue code). The two target
20044 addresses represent the callee and the branch island. The
20045 Darwin/PPC linker prefers the first address and generates a @code{bl
20046 callee} if the PPC @code{bl} instruction reaches the callee directly;
20047 otherwise, the linker generates @code{bl L42} to call the branch
20048 island. The branch island is appended to the body of the
20049 calling function; it computes the full 32-bit address of the callee
20050 and jumps to it.
20051
20052 On Mach-O (Darwin) systems, this option directs the compiler emit to
20053 the glue for every direct call, and the Darwin linker decides whether
20054 to use or discard it.
20055
20056 In the future, GCC may ignore all longcall specifications
20057 when the linker is known to generate glue.
20058
20059 @item -mtls-markers
20060 @itemx -mno-tls-markers
20061 @opindex mtls-markers
20062 @opindex mno-tls-markers
20063 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
20064 specifying the function argument. The relocation allows the linker to
20065 reliably associate function call with argument setup instructions for
20066 TLS optimization, which in turn allows GCC to better schedule the
20067 sequence.
20068
20069 @item -pthread
20070 @opindex pthread
20071 Adds support for multithreading with the @dfn{pthreads} library.
20072 This option sets flags for both the preprocessor and linker.
20073
20074 @item -mrecip
20075 @itemx -mno-recip
20076 @opindex mrecip
20077 This option enables use of the reciprocal estimate and
20078 reciprocal square root estimate instructions with additional
20079 Newton-Raphson steps to increase precision instead of doing a divide or
20080 square root and divide for floating-point arguments. You should use
20081 the @option{-ffast-math} option when using @option{-mrecip} (or at
20082 least @option{-funsafe-math-optimizations},
20083 @option{-finite-math-only}, @option{-freciprocal-math} and
20084 @option{-fno-trapping-math}). Note that while the throughput of the
20085 sequence is generally higher than the throughput of the non-reciprocal
20086 instruction, the precision of the sequence can be decreased by up to 2
20087 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
20088 roots.
20089
20090 @item -mrecip=@var{opt}
20091 @opindex mrecip=opt
20092 This option controls which reciprocal estimate instructions
20093 may be used. @var{opt} is a comma-separated list of options, which may
20094 be preceded by a @code{!} to invert the option:
20095
20096 @table @samp
20097
20098 @item all
20099 Enable all estimate instructions.
20100
20101 @item default
20102 Enable the default instructions, equivalent to @option{-mrecip}.
20103
20104 @item none
20105 Disable all estimate instructions, equivalent to @option{-mno-recip}.
20106
20107 @item div
20108 Enable the reciprocal approximation instructions for both
20109 single and double precision.
20110
20111 @item divf
20112 Enable the single-precision reciprocal approximation instructions.
20113
20114 @item divd
20115 Enable the double-precision reciprocal approximation instructions.
20116
20117 @item rsqrt
20118 Enable the reciprocal square root approximation instructions for both
20119 single and double precision.
20120
20121 @item rsqrtf
20122 Enable the single-precision reciprocal square root approximation instructions.
20123
20124 @item rsqrtd
20125 Enable the double-precision reciprocal square root approximation instructions.
20126
20127 @end table
20128
20129 So, for example, @option{-mrecip=all,!rsqrtd} enables
20130 all of the reciprocal estimate instructions, except for the
20131 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
20132 which handle the double-precision reciprocal square root calculations.
20133
20134 @item -mrecip-precision
20135 @itemx -mno-recip-precision
20136 @opindex mrecip-precision
20137 Assume (do not assume) that the reciprocal estimate instructions
20138 provide higher-precision estimates than is mandated by the PowerPC
20139 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
20140 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
20141 The double-precision square root estimate instructions are not generated by
20142 default on low-precision machines, since they do not provide an
20143 estimate that converges after three steps.
20144
20145 @item -mveclibabi=@var{type}
20146 @opindex mveclibabi
20147 Specifies the ABI type to use for vectorizing intrinsics using an
20148 external library. The only type supported at present is @samp{mass},
20149 which specifies to use IBM's Mathematical Acceleration Subsystem
20150 (MASS) libraries for vectorizing intrinsics using external libraries.
20151 GCC currently emits calls to @code{acosd2}, @code{acosf4},
20152 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
20153 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
20154 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
20155 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
20156 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
20157 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
20158 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
20159 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
20160 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
20161 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
20162 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
20163 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
20164 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
20165 for power7. Both @option{-ftree-vectorize} and
20166 @option{-funsafe-math-optimizations} must also be enabled. The MASS
20167 libraries must be specified at link time.
20168
20169 @item -mfriz
20170 @itemx -mno-friz
20171 @opindex mfriz
20172 Generate (do not generate) the @code{friz} instruction when the
20173 @option{-funsafe-math-optimizations} option is used to optimize
20174 rounding of floating-point values to 64-bit integer and back to floating
20175 point. The @code{friz} instruction does not return the same value if
20176 the floating-point number is too large to fit in an integer.
20177
20178 @item -mpointers-to-nested-functions
20179 @itemx -mno-pointers-to-nested-functions
20180 @opindex mpointers-to-nested-functions
20181 Generate (do not generate) code to load up the static chain register
20182 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
20183 systems where a function pointer points to a 3-word descriptor giving
20184 the function address, TOC value to be loaded in register @code{r2}, and
20185 static chain value to be loaded in register @code{r11}. The
20186 @option{-mpointers-to-nested-functions} is on by default. You cannot
20187 call through pointers to nested functions or pointers
20188 to functions compiled in other languages that use the static chain if
20189 you use @option{-mno-pointers-to-nested-functions}.
20190
20191 @item -msave-toc-indirect
20192 @itemx -mno-save-toc-indirect
20193 @opindex msave-toc-indirect
20194 Generate (do not generate) code to save the TOC value in the reserved
20195 stack location in the function prologue if the function calls through
20196 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
20197 saved in the prologue, it is saved just before the call through the
20198 pointer. The @option{-mno-save-toc-indirect} option is the default.
20199
20200 @item -mcompat-align-parm
20201 @itemx -mno-compat-align-parm
20202 @opindex mcompat-align-parm
20203 Generate (do not generate) code to pass structure parameters with a
20204 maximum alignment of 64 bits, for compatibility with older versions
20205 of GCC.
20206
20207 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
20208 structure parameter on a 128-bit boundary when that structure contained
20209 a member requiring 128-bit alignment. This is corrected in more
20210 recent versions of GCC. This option may be used to generate code
20211 that is compatible with functions compiled with older versions of
20212 GCC.
20213
20214 The @option{-mno-compat-align-parm} option is the default.
20215 @end table
20216
20217 @node RX Options
20218 @subsection RX Options
20219 @cindex RX Options
20220
20221 These command-line options are defined for RX targets:
20222
20223 @table @gcctabopt
20224 @item -m64bit-doubles
20225 @itemx -m32bit-doubles
20226 @opindex m64bit-doubles
20227 @opindex m32bit-doubles
20228 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
20229 or 32 bits (@option{-m32bit-doubles}) in size. The default is
20230 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
20231 works on 32-bit values, which is why the default is
20232 @option{-m32bit-doubles}.
20233
20234 @item -fpu
20235 @itemx -nofpu
20236 @opindex fpu
20237 @opindex nofpu
20238 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
20239 floating-point hardware. The default is enabled for the RX600
20240 series and disabled for the RX200 series.
20241
20242 Floating-point instructions are only generated for 32-bit floating-point
20243 values, however, so the FPU hardware is not used for doubles if the
20244 @option{-m64bit-doubles} option is used.
20245
20246 @emph{Note} If the @option{-fpu} option is enabled then
20247 @option{-funsafe-math-optimizations} is also enabled automatically.
20248 This is because the RX FPU instructions are themselves unsafe.
20249
20250 @item -mcpu=@var{name}
20251 @opindex mcpu
20252 Selects the type of RX CPU to be targeted. Currently three types are
20253 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
20254 the specific @samp{RX610} CPU. The default is @samp{RX600}.
20255
20256 The only difference between @samp{RX600} and @samp{RX610} is that the
20257 @samp{RX610} does not support the @code{MVTIPL} instruction.
20258
20259 The @samp{RX200} series does not have a hardware floating-point unit
20260 and so @option{-nofpu} is enabled by default when this type is
20261 selected.
20262
20263 @item -mbig-endian-data
20264 @itemx -mlittle-endian-data
20265 @opindex mbig-endian-data
20266 @opindex mlittle-endian-data
20267 Store data (but not code) in the big-endian format. The default is
20268 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20269 format.
20270
20271 @item -msmall-data-limit=@var{N}
20272 @opindex msmall-data-limit
20273 Specifies the maximum size in bytes of global and static variables
20274 which can be placed into the small data area. Using the small data
20275 area can lead to smaller and faster code, but the size of area is
20276 limited and it is up to the programmer to ensure that the area does
20277 not overflow. Also when the small data area is used one of the RX's
20278 registers (usually @code{r13}) is reserved for use pointing to this
20279 area, so it is no longer available for use by the compiler. This
20280 could result in slower and/or larger code if variables are pushed onto
20281 the stack instead of being held in this register.
20282
20283 Note, common variables (variables that have not been initialized) and
20284 constants are not placed into the small data area as they are assigned
20285 to other sections in the output executable.
20286
20287 The default value is zero, which disables this feature. Note, this
20288 feature is not enabled by default with higher optimization levels
20289 (@option{-O2} etc) because of the potentially detrimental effects of
20290 reserving a register. It is up to the programmer to experiment and
20291 discover whether this feature is of benefit to their program. See the
20292 description of the @option{-mpid} option for a description of how the
20293 actual register to hold the small data area pointer is chosen.
20294
20295 @item -msim
20296 @itemx -mno-sim
20297 @opindex msim
20298 @opindex mno-sim
20299 Use the simulator runtime. The default is to use the libgloss
20300 board-specific runtime.
20301
20302 @item -mas100-syntax
20303 @itemx -mno-as100-syntax
20304 @opindex mas100-syntax
20305 @opindex mno-as100-syntax
20306 When generating assembler output use a syntax that is compatible with
20307 Renesas's AS100 assembler. This syntax can also be handled by the GAS
20308 assembler, but it has some restrictions so it is not generated by default.
20309
20310 @item -mmax-constant-size=@var{N}
20311 @opindex mmax-constant-size
20312 Specifies the maximum size, in bytes, of a constant that can be used as
20313 an operand in a RX instruction. Although the RX instruction set does
20314 allow constants of up to 4 bytes in length to be used in instructions,
20315 a longer value equates to a longer instruction. Thus in some
20316 circumstances it can be beneficial to restrict the size of constants
20317 that are used in instructions. Constants that are too big are instead
20318 placed into a constant pool and referenced via register indirection.
20319
20320 The value @var{N} can be between 0 and 4. A value of 0 (the default)
20321 or 4 means that constants of any size are allowed.
20322
20323 @item -mrelax
20324 @opindex mrelax
20325 Enable linker relaxation. Linker relaxation is a process whereby the
20326 linker attempts to reduce the size of a program by finding shorter
20327 versions of various instructions. Disabled by default.
20328
20329 @item -mint-register=@var{N}
20330 @opindex mint-register
20331 Specify the number of registers to reserve for fast interrupt handler
20332 functions. The value @var{N} can be between 0 and 4. A value of 1
20333 means that register @code{r13} is reserved for the exclusive use
20334 of fast interrupt handlers. A value of 2 reserves @code{r13} and
20335 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
20336 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20337 A value of 0, the default, does not reserve any registers.
20338
20339 @item -msave-acc-in-interrupts
20340 @opindex msave-acc-in-interrupts
20341 Specifies that interrupt handler functions should preserve the
20342 accumulator register. This is only necessary if normal code might use
20343 the accumulator register, for example because it performs 64-bit
20344 multiplications. The default is to ignore the accumulator as this
20345 makes the interrupt handlers faster.
20346
20347 @item -mpid
20348 @itemx -mno-pid
20349 @opindex mpid
20350 @opindex mno-pid
20351 Enables the generation of position independent data. When enabled any
20352 access to constant data is done via an offset from a base address
20353 held in a register. This allows the location of constant data to be
20354 determined at run time without requiring the executable to be
20355 relocated, which is a benefit to embedded applications with tight
20356 memory constraints. Data that can be modified is not affected by this
20357 option.
20358
20359 Note, using this feature reserves a register, usually @code{r13}, for
20360 the constant data base address. This can result in slower and/or
20361 larger code, especially in complicated functions.
20362
20363 The actual register chosen to hold the constant data base address
20364 depends upon whether the @option{-msmall-data-limit} and/or the
20365 @option{-mint-register} command-line options are enabled. Starting
20366 with register @code{r13} and proceeding downwards, registers are
20367 allocated first to satisfy the requirements of @option{-mint-register},
20368 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
20369 is possible for the small data area register to be @code{r8} if both
20370 @option{-mint-register=4} and @option{-mpid} are specified on the
20371 command line.
20372
20373 By default this feature is not enabled. The default can be restored
20374 via the @option{-mno-pid} command-line option.
20375
20376 @item -mno-warn-multiple-fast-interrupts
20377 @itemx -mwarn-multiple-fast-interrupts
20378 @opindex mno-warn-multiple-fast-interrupts
20379 @opindex mwarn-multiple-fast-interrupts
20380 Prevents GCC from issuing a warning message if it finds more than one
20381 fast interrupt handler when it is compiling a file. The default is to
20382 issue a warning for each extra fast interrupt handler found, as the RX
20383 only supports one such interrupt.
20384
20385 @item -mallow-string-insns
20386 @itemx -mno-allow-string-insns
20387 @opindex mallow-string-insns
20388 @opindex mno-allow-string-insns
20389 Enables or disables the use of the string manipulation instructions
20390 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
20391 @code{SWHILE} and also the @code{RMPA} instruction. These
20392 instructions may prefetch data, which is not safe to do if accessing
20393 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
20394 for more information).
20395
20396 The default is to allow these instructions, but it is not possible for
20397 GCC to reliably detect all circumstances where a string instruction
20398 might be used to access an I/O register, so their use cannot be
20399 disabled automatically. Instead it is reliant upon the programmer to
20400 use the @option{-mno-allow-string-insns} option if their program
20401 accesses I/O space.
20402
20403 When the instructions are enabled GCC defines the C preprocessor
20404 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
20405 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
20406 @end table
20407
20408 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20409 has special significance to the RX port when used with the
20410 @code{interrupt} function attribute. This attribute indicates a
20411 function intended to process fast interrupts. GCC ensures
20412 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20413 and/or @code{r13} and only provided that the normal use of the
20414 corresponding registers have been restricted via the
20415 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20416 options.
20417
20418 @node S/390 and zSeries Options
20419 @subsection S/390 and zSeries Options
20420 @cindex S/390 and zSeries Options
20421
20422 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20423
20424 @table @gcctabopt
20425 @item -mhard-float
20426 @itemx -msoft-float
20427 @opindex mhard-float
20428 @opindex msoft-float
20429 Use (do not use) the hardware floating-point instructions and registers
20430 for floating-point operations. When @option{-msoft-float} is specified,
20431 functions in @file{libgcc.a} are used to perform floating-point
20432 operations. When @option{-mhard-float} is specified, the compiler
20433 generates IEEE floating-point instructions. This is the default.
20434
20435 @item -mhard-dfp
20436 @itemx -mno-hard-dfp
20437 @opindex mhard-dfp
20438 @opindex mno-hard-dfp
20439 Use (do not use) the hardware decimal-floating-point instructions for
20440 decimal-floating-point operations. When @option{-mno-hard-dfp} is
20441 specified, functions in @file{libgcc.a} are used to perform
20442 decimal-floating-point operations. When @option{-mhard-dfp} is
20443 specified, the compiler generates decimal-floating-point hardware
20444 instructions. This is the default for @option{-march=z9-ec} or higher.
20445
20446 @item -mlong-double-64
20447 @itemx -mlong-double-128
20448 @opindex mlong-double-64
20449 @opindex mlong-double-128
20450 These switches control the size of @code{long double} type. A size
20451 of 64 bits makes the @code{long double} type equivalent to the @code{double}
20452 type. This is the default.
20453
20454 @item -mbackchain
20455 @itemx -mno-backchain
20456 @opindex mbackchain
20457 @opindex mno-backchain
20458 Store (do not store) the address of the caller's frame as backchain pointer
20459 into the callee's stack frame.
20460 A backchain may be needed to allow debugging using tools that do not understand
20461 DWARF 2 call frame information.
20462 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20463 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20464 the backchain is placed into the topmost word of the 96/160 byte register
20465 save area.
20466
20467 In general, code compiled with @option{-mbackchain} is call-compatible with
20468 code compiled with @option{-mmo-backchain}; however, use of the backchain
20469 for debugging purposes usually requires that the whole binary is built with
20470 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
20471 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20472 to build a linux kernel use @option{-msoft-float}.
20473
20474 The default is to not maintain the backchain.
20475
20476 @item -mpacked-stack
20477 @itemx -mno-packed-stack
20478 @opindex mpacked-stack
20479 @opindex mno-packed-stack
20480 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
20481 specified, the compiler uses the all fields of the 96/160 byte register save
20482 area only for their default purpose; unused fields still take up stack space.
20483 When @option{-mpacked-stack} is specified, register save slots are densely
20484 packed at the top of the register save area; unused space is reused for other
20485 purposes, allowing for more efficient use of the available stack space.
20486 However, when @option{-mbackchain} is also in effect, the topmost word of
20487 the save area is always used to store the backchain, and the return address
20488 register is always saved two words below the backchain.
20489
20490 As long as the stack frame backchain is not used, code generated with
20491 @option{-mpacked-stack} is call-compatible with code generated with
20492 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
20493 S/390 or zSeries generated code that uses the stack frame backchain at run
20494 time, not just for debugging purposes. Such code is not call-compatible
20495 with code compiled with @option{-mpacked-stack}. Also, note that the
20496 combination of @option{-mbackchain},
20497 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20498 to build a linux kernel use @option{-msoft-float}.
20499
20500 The default is to not use the packed stack layout.
20501
20502 @item -msmall-exec
20503 @itemx -mno-small-exec
20504 @opindex msmall-exec
20505 @opindex mno-small-exec
20506 Generate (or do not generate) code using the @code{bras} instruction
20507 to do subroutine calls.
20508 This only works reliably if the total executable size does not
20509 exceed 64k. The default is to use the @code{basr} instruction instead,
20510 which does not have this limitation.
20511
20512 @item -m64
20513 @itemx -m31
20514 @opindex m64
20515 @opindex m31
20516 When @option{-m31} is specified, generate code compliant to the
20517 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
20518 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
20519 particular to generate 64-bit instructions. For the @samp{s390}
20520 targets, the default is @option{-m31}, while the @samp{s390x}
20521 targets default to @option{-m64}.
20522
20523 @item -mzarch
20524 @itemx -mesa
20525 @opindex mzarch
20526 @opindex mesa
20527 When @option{-mzarch} is specified, generate code using the
20528 instructions available on z/Architecture.
20529 When @option{-mesa} is specified, generate code using the
20530 instructions available on ESA/390. Note that @option{-mesa} is
20531 not possible with @option{-m64}.
20532 When generating code compliant to the GNU/Linux for S/390 ABI,
20533 the default is @option{-mesa}. When generating code compliant
20534 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20535
20536 @item -mhtm
20537 @itemx -mno-htm
20538 @opindex mhtm
20539 @opindex mno-htm
20540 The @option{-mhtm} option enables a set of builtins making use of
20541 instructions available with the transactional execution facility
20542 introduced with the IBM zEnterprise EC12 machine generation
20543 @ref{S/390 System z Built-in Functions}.
20544 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
20545
20546 @item -mvx
20547 @itemx -mno-vx
20548 @opindex mvx
20549 @opindex mno-vx
20550 When @option{-mvx} is specified, generate code using the instructions
20551 available with the vector extension facility introduced with the IBM
20552 z13 machine generation.
20553 This option changes the ABI for some vector type values with regard to
20554 alignment and calling conventions. In case vector type values are
20555 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
20556 command will be added to mark the resulting binary with the ABI used.
20557 @option{-mvx} is enabled by default when using @option{-march=z13}.
20558
20559 @item -mzvector
20560 @itemx -mno-zvector
20561 @opindex mzvector
20562 @opindex mno-zvector
20563 The @option{-mzvector} option enables vector language extensions and
20564 builtins using instructions available with the vector extension
20565 facility introduced with the IBM z13 machine generation.
20566 This option adds support for @samp{vector} to be used as a keyword to
20567 define vector type variables and arguments. @samp{vector} is only
20568 available when GNU extensions are enabled. It will not be expanded
20569 when requesting strict standard compliance e.g. with @option{-std=c99}.
20570 In addition to the GCC low-level builtins @option{-mzvector} enables
20571 a set of builtins added for compatibility with Altivec-style
20572 implementations like Power and Cell. In order to make use of these
20573 builtins the header file @file{vecintrin.h} needs to be included.
20574 @option{-mzvector} is disabled by default.
20575
20576 @item -mmvcle
20577 @itemx -mno-mvcle
20578 @opindex mmvcle
20579 @opindex mno-mvcle
20580 Generate (or do not generate) code using the @code{mvcle} instruction
20581 to perform block moves. When @option{-mno-mvcle} is specified,
20582 use a @code{mvc} loop instead. This is the default unless optimizing for
20583 size.
20584
20585 @item -mdebug
20586 @itemx -mno-debug
20587 @opindex mdebug
20588 @opindex mno-debug
20589 Print (or do not print) additional debug information when compiling.
20590 The default is to not print debug information.
20591
20592 @item -march=@var{cpu-type}
20593 @opindex march
20594 Generate code that runs on @var{cpu-type}, which is the name of a system
20595 representing a certain processor type. Possible values for
20596 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
20597 @samp{z9-109}, @samp{z9-ec}, @samp{z10}, @samp{z196}, @samp{zEC12},
20598 and @samp{z13}.
20599 When generating code using the instructions available on z/Architecture,
20600 the default is @option{-march=z900}. Otherwise, the default is
20601 @option{-march=g5}.
20602
20603 @item -mtune=@var{cpu-type}
20604 @opindex mtune
20605 Tune to @var{cpu-type} everything applicable about the generated code,
20606 except for the ABI and the set of available instructions.
20607 The list of @var{cpu-type} values is the same as for @option{-march}.
20608 The default is the value used for @option{-march}.
20609
20610 @item -mtpf-trace
20611 @itemx -mno-tpf-trace
20612 @opindex mtpf-trace
20613 @opindex mno-tpf-trace
20614 Generate code that adds (does not add) in TPF OS specific branches to trace
20615 routines in the operating system. This option is off by default, even
20616 when compiling for the TPF OS@.
20617
20618 @item -mfused-madd
20619 @itemx -mno-fused-madd
20620 @opindex mfused-madd
20621 @opindex mno-fused-madd
20622 Generate code that uses (does not use) the floating-point multiply and
20623 accumulate instructions. These instructions are generated by default if
20624 hardware floating point is used.
20625
20626 @item -mwarn-framesize=@var{framesize}
20627 @opindex mwarn-framesize
20628 Emit a warning if the current function exceeds the given frame size. Because
20629 this is a compile-time check it doesn't need to be a real problem when the program
20630 runs. It is intended to identify functions that most probably cause
20631 a stack overflow. It is useful to be used in an environment with limited stack
20632 size e.g.@: the linux kernel.
20633
20634 @item -mwarn-dynamicstack
20635 @opindex mwarn-dynamicstack
20636 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20637 arrays. This is generally a bad idea with a limited stack size.
20638
20639 @item -mstack-guard=@var{stack-guard}
20640 @itemx -mstack-size=@var{stack-size}
20641 @opindex mstack-guard
20642 @opindex mstack-size
20643 If these options are provided the S/390 back end emits additional instructions in
20644 the function prologue that trigger a trap if the stack size is @var{stack-guard}
20645 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20646 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20647 the frame size of the compiled function is chosen.
20648 These options are intended to be used to help debugging stack overflow problems.
20649 The additionally emitted code causes only little overhead and hence can also be
20650 used in production-like systems without greater performance degradation. The given
20651 values have to be exact powers of 2 and @var{stack-size} has to be greater than
20652 @var{stack-guard} without exceeding 64k.
20653 In order to be efficient the extra code makes the assumption that the stack starts
20654 at an address aligned to the value given by @var{stack-size}.
20655 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20656
20657 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20658 @opindex mhotpatch
20659 If the hotpatch option is enabled, a ``hot-patching'' function
20660 prologue is generated for all functions in the compilation unit.
20661 The funtion label is prepended with the given number of two-byte
20662 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
20663 the label, 2 * @var{post-halfwords} bytes are appended, using the
20664 largest NOP like instructions the architecture allows (maximum
20665 1000000).
20666
20667 If both arguments are zero, hotpatching is disabled.
20668
20669 This option can be overridden for individual functions with the
20670 @code{hotpatch} attribute.
20671 @end table
20672
20673 @node Score Options
20674 @subsection Score Options
20675 @cindex Score Options
20676
20677 These options are defined for Score implementations:
20678
20679 @table @gcctabopt
20680 @item -meb
20681 @opindex meb
20682 Compile code for big-endian mode. This is the default.
20683
20684 @item -mel
20685 @opindex mel
20686 Compile code for little-endian mode.
20687
20688 @item -mnhwloop
20689 @opindex mnhwloop
20690 Disable generation of @code{bcnz} instructions.
20691
20692 @item -muls
20693 @opindex muls
20694 Enable generation of unaligned load and store instructions.
20695
20696 @item -mmac
20697 @opindex mmac
20698 Enable the use of multiply-accumulate instructions. Disabled by default.
20699
20700 @item -mscore5
20701 @opindex mscore5
20702 Specify the SCORE5 as the target architecture.
20703
20704 @item -mscore5u
20705 @opindex mscore5u
20706 Specify the SCORE5U of the target architecture.
20707
20708 @item -mscore7
20709 @opindex mscore7
20710 Specify the SCORE7 as the target architecture. This is the default.
20711
20712 @item -mscore7d
20713 @opindex mscore7d
20714 Specify the SCORE7D as the target architecture.
20715 @end table
20716
20717 @node SH Options
20718 @subsection SH Options
20719
20720 These @samp{-m} options are defined for the SH implementations:
20721
20722 @table @gcctabopt
20723 @item -m1
20724 @opindex m1
20725 Generate code for the SH1.
20726
20727 @item -m2
20728 @opindex m2
20729 Generate code for the SH2.
20730
20731 @item -m2e
20732 Generate code for the SH2e.
20733
20734 @item -m2a-nofpu
20735 @opindex m2a-nofpu
20736 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
20737 that the floating-point unit is not used.
20738
20739 @item -m2a-single-only
20740 @opindex m2a-single-only
20741 Generate code for the SH2a-FPU, in such a way that no double-precision
20742 floating-point operations are used.
20743
20744 @item -m2a-single
20745 @opindex m2a-single
20746 Generate code for the SH2a-FPU assuming the floating-point unit is in
20747 single-precision mode by default.
20748
20749 @item -m2a
20750 @opindex m2a
20751 Generate code for the SH2a-FPU assuming the floating-point unit is in
20752 double-precision mode by default.
20753
20754 @item -m3
20755 @opindex m3
20756 Generate code for the SH3.
20757
20758 @item -m3e
20759 @opindex m3e
20760 Generate code for the SH3e.
20761
20762 @item -m4-nofpu
20763 @opindex m4-nofpu
20764 Generate code for the SH4 without a floating-point unit.
20765
20766 @item -m4-single-only
20767 @opindex m4-single-only
20768 Generate code for the SH4 with a floating-point unit that only
20769 supports single-precision arithmetic.
20770
20771 @item -m4-single
20772 @opindex m4-single
20773 Generate code for the SH4 assuming the floating-point unit is in
20774 single-precision mode by default.
20775
20776 @item -m4
20777 @opindex m4
20778 Generate code for the SH4.
20779
20780 @item -m4-100
20781 @opindex m4-100
20782 Generate code for SH4-100.
20783
20784 @item -m4-100-nofpu
20785 @opindex m4-100-nofpu
20786 Generate code for SH4-100 in such a way that the
20787 floating-point unit is not used.
20788
20789 @item -m4-100-single
20790 @opindex m4-100-single
20791 Generate code for SH4-100 assuming the floating-point unit is in
20792 single-precision mode by default.
20793
20794 @item -m4-100-single-only
20795 @opindex m4-100-single-only
20796 Generate code for SH4-100 in such a way that no double-precision
20797 floating-point operations are used.
20798
20799 @item -m4-200
20800 @opindex m4-200
20801 Generate code for SH4-200.
20802
20803 @item -m4-200-nofpu
20804 @opindex m4-200-nofpu
20805 Generate code for SH4-200 without in such a way that the
20806 floating-point unit is not used.
20807
20808 @item -m4-200-single
20809 @opindex m4-200-single
20810 Generate code for SH4-200 assuming the floating-point unit is in
20811 single-precision mode by default.
20812
20813 @item -m4-200-single-only
20814 @opindex m4-200-single-only
20815 Generate code for SH4-200 in such a way that no double-precision
20816 floating-point operations are used.
20817
20818 @item -m4-300
20819 @opindex m4-300
20820 Generate code for SH4-300.
20821
20822 @item -m4-300-nofpu
20823 @opindex m4-300-nofpu
20824 Generate code for SH4-300 without in such a way that the
20825 floating-point unit is not used.
20826
20827 @item -m4-300-single
20828 @opindex m4-300-single
20829 Generate code for SH4-300 in such a way that no double-precision
20830 floating-point operations are used.
20831
20832 @item -m4-300-single-only
20833 @opindex m4-300-single-only
20834 Generate code for SH4-300 in such a way that no double-precision
20835 floating-point operations are used.
20836
20837 @item -m4-340
20838 @opindex m4-340
20839 Generate code for SH4-340 (no MMU, no FPU).
20840
20841 @item -m4-500
20842 @opindex m4-500
20843 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
20844 assembler.
20845
20846 @item -m4a-nofpu
20847 @opindex m4a-nofpu
20848 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
20849 floating-point unit is not used.
20850
20851 @item -m4a-single-only
20852 @opindex m4a-single-only
20853 Generate code for the SH4a, in such a way that no double-precision
20854 floating-point operations are used.
20855
20856 @item -m4a-single
20857 @opindex m4a-single
20858 Generate code for the SH4a assuming the floating-point unit is in
20859 single-precision mode by default.
20860
20861 @item -m4a
20862 @opindex m4a
20863 Generate code for the SH4a.
20864
20865 @item -m4al
20866 @opindex m4al
20867 Same as @option{-m4a-nofpu}, except that it implicitly passes
20868 @option{-dsp} to the assembler. GCC doesn't generate any DSP
20869 instructions at the moment.
20870
20871 @item -mb
20872 @opindex mb
20873 Compile code for the processor in big-endian mode.
20874
20875 @item -ml
20876 @opindex ml
20877 Compile code for the processor in little-endian mode.
20878
20879 @item -mdalign
20880 @opindex mdalign
20881 Align doubles at 64-bit boundaries. Note that this changes the calling
20882 conventions, and thus some functions from the standard C library do
20883 not work unless you recompile it first with @option{-mdalign}.
20884
20885 @item -mrelax
20886 @opindex mrelax
20887 Shorten some address references at link time, when possible; uses the
20888 linker option @option{-relax}.
20889
20890 @item -mbigtable
20891 @opindex mbigtable
20892 Use 32-bit offsets in @code{switch} tables. The default is to use
20893 16-bit offsets.
20894
20895 @item -mbitops
20896 @opindex mbitops
20897 Enable the use of bit manipulation instructions on SH2A.
20898
20899 @item -mfmovd
20900 @opindex mfmovd
20901 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
20902 alignment constraints.
20903
20904 @item -mrenesas
20905 @opindex mrenesas
20906 Comply with the calling conventions defined by Renesas.
20907
20908 @item -mno-renesas
20909 @opindex mno-renesas
20910 Comply with the calling conventions defined for GCC before the Renesas
20911 conventions were available. This option is the default for all
20912 targets of the SH toolchain.
20913
20914 @item -mnomacsave
20915 @opindex mnomacsave
20916 Mark the @code{MAC} register as call-clobbered, even if
20917 @option{-mrenesas} is given.
20918
20919 @item -mieee
20920 @itemx -mno-ieee
20921 @opindex mieee
20922 @opindex mno-ieee
20923 Control the IEEE compliance of floating-point comparisons, which affects the
20924 handling of cases where the result of a comparison is unordered. By default
20925 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
20926 enabled @option{-mno-ieee} is implicitly set, which results in faster
20927 floating-point greater-equal and less-equal comparisons. The implcit settings
20928 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
20929
20930 @item -minline-ic_invalidate
20931 @opindex minline-ic_invalidate
20932 Inline code to invalidate instruction cache entries after setting up
20933 nested function trampolines.
20934 This option has no effect if @option{-musermode} is in effect and the selected
20935 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
20936 instruction.
20937 If the selected code generation option does not allow the use of the @code{icbi}
20938 instruction, and @option{-musermode} is not in effect, the inlined code
20939 manipulates the instruction cache address array directly with an associative
20940 write. This not only requires privileged mode at run time, but it also
20941 fails if the cache line had been mapped via the TLB and has become unmapped.
20942
20943 @item -misize
20944 @opindex misize
20945 Dump instruction size and location in the assembly code.
20946
20947 @item -mpadstruct
20948 @opindex mpadstruct
20949 This option is deprecated. It pads structures to multiple of 4 bytes,
20950 which is incompatible with the SH ABI@.
20951
20952 @item -matomic-model=@var{model}
20953 @opindex matomic-model=@var{model}
20954 Sets the model of atomic operations and additional parameters as a comma
20955 separated list. For details on the atomic built-in functions see
20956 @ref{__atomic Builtins}. The following models and parameters are supported:
20957
20958 @table @samp
20959
20960 @item none
20961 Disable compiler generated atomic sequences and emit library calls for atomic
20962 operations. This is the default if the target is not @code{sh*-*-linux*}.
20963
20964 @item soft-gusa
20965 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
20966 built-in functions. The generated atomic sequences require additional support
20967 from the interrupt/exception handling code of the system and are only suitable
20968 for SH3* and SH4* single-core systems. This option is enabled by default when
20969 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
20970 this option also partially utilizes the hardware atomic instructions
20971 @code{movli.l} and @code{movco.l} to create more efficient code, unless
20972 @samp{strict} is specified.
20973
20974 @item soft-tcb
20975 Generate software atomic sequences that use a variable in the thread control
20976 block. This is a variation of the gUSA sequences which can also be used on
20977 SH1* and SH2* targets. The generated atomic sequences require additional
20978 support from the interrupt/exception handling code of the system and are only
20979 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
20980 parameter has to be specified as well.
20981
20982 @item soft-imask
20983 Generate software atomic sequences that temporarily disable interrupts by
20984 setting @code{SR.IMASK = 1111}. This model works only when the program runs
20985 in privileged mode and is only suitable for single-core systems. Additional
20986 support from the interrupt/exception handling code of the system is not
20987 required. This model is enabled by default when the target is
20988 @code{sh*-*-linux*} and SH1* or SH2*.
20989
20990 @item hard-llcs
20991 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
20992 instructions only. This is only available on SH4A and is suitable for
20993 multi-core systems. Since the hardware instructions support only 32 bit atomic
20994 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
20995 Code compiled with this option is also compatible with other software
20996 atomic model interrupt/exception handling systems if executed on an SH4A
20997 system. Additional support from the interrupt/exception handling code of the
20998 system is not required for this model.
20999
21000 @item gbr-offset=
21001 This parameter specifies the offset in bytes of the variable in the thread
21002 control block structure that should be used by the generated atomic sequences
21003 when the @samp{soft-tcb} model has been selected. For other models this
21004 parameter is ignored. The specified value must be an integer multiple of four
21005 and in the range 0-1020.
21006
21007 @item strict
21008 This parameter prevents mixed usage of multiple atomic models, even if they
21009 are compatible, and makes the compiler generate atomic sequences of the
21010 specified model only.
21011
21012 @end table
21013
21014 @item -mtas
21015 @opindex mtas
21016 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
21017 Notice that depending on the particular hardware and software configuration
21018 this can degrade overall performance due to the operand cache line flushes
21019 that are implied by the @code{tas.b} instruction. On multi-core SH4A
21020 processors the @code{tas.b} instruction must be used with caution since it
21021 can result in data corruption for certain cache configurations.
21022
21023 @item -mprefergot
21024 @opindex mprefergot
21025 When generating position-independent code, emit function calls using
21026 the Global Offset Table instead of the Procedure Linkage Table.
21027
21028 @item -musermode
21029 @itemx -mno-usermode
21030 @opindex musermode
21031 @opindex mno-usermode
21032 Don't allow (allow) the compiler generating privileged mode code. Specifying
21033 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
21034 inlined code would not work in user mode. @option{-musermode} is the default
21035 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
21036 @option{-musermode} has no effect, since there is no user mode.
21037
21038 @item -multcost=@var{number}
21039 @opindex multcost=@var{number}
21040 Set the cost to assume for a multiply insn.
21041
21042 @item -mdiv=@var{strategy}
21043 @opindex mdiv=@var{strategy}
21044 Set the division strategy to be used for integer division operations.
21045 @var{strategy} can be one of:
21046
21047 @table @samp
21048
21049 @item call-div1
21050 Calls a library function that uses the single-step division instruction
21051 @code{div1} to perform the operation. Division by zero calculates an
21052 unspecified result and does not trap. This is the default except for SH4,
21053 SH2A and SHcompact.
21054
21055 @item call-fp
21056 Calls a library function that performs the operation in double precision
21057 floating point. Division by zero causes a floating-point exception. This is
21058 the default for SHcompact with FPU. Specifying this for targets that do not
21059 have a double precision FPU defaults to @code{call-div1}.
21060
21061 @item call-table
21062 Calls a library function that uses a lookup table for small divisors and
21063 the @code{div1} instruction with case distinction for larger divisors. Division
21064 by zero calculates an unspecified result and does not trap. This is the default
21065 for SH4. Specifying this for targets that do not have dynamic shift
21066 instructions defaults to @code{call-div1}.
21067
21068 @end table
21069
21070 When a division strategy has not been specified the default strategy is
21071 selected based on the current target. For SH2A the default strategy is to
21072 use the @code{divs} and @code{divu} instructions instead of library function
21073 calls.
21074
21075 @item -maccumulate-outgoing-args
21076 @opindex maccumulate-outgoing-args
21077 Reserve space once for outgoing arguments in the function prologue rather
21078 than around each call. Generally beneficial for performance and size. Also
21079 needed for unwinding to avoid changing the stack frame around conditional code.
21080
21081 @item -mdivsi3_libfunc=@var{name}
21082 @opindex mdivsi3_libfunc=@var{name}
21083 Set the name of the library function used for 32-bit signed division to
21084 @var{name}.
21085 This only affects the name used in the @samp{call} division strategies, and
21086 the compiler still expects the same sets of input/output/clobbered registers as
21087 if this option were not present.
21088
21089 @item -mfixed-range=@var{register-range}
21090 @opindex mfixed-range
21091 Generate code treating the given register range as fixed registers.
21092 A fixed register is one that the register allocator can not use. This is
21093 useful when compiling kernel code. A register range is specified as
21094 two registers separated by a dash. Multiple register ranges can be
21095 specified separated by a comma.
21096
21097 @item -mbranch-cost=@var{num}
21098 @opindex mbranch-cost=@var{num}
21099 Assume @var{num} to be the cost for a branch instruction. Higher numbers
21100 make the compiler try to generate more branch-free code if possible.
21101 If not specified the value is selected depending on the processor type that
21102 is being compiled for.
21103
21104 @item -mzdcbranch
21105 @itemx -mno-zdcbranch
21106 @opindex mzdcbranch
21107 @opindex mno-zdcbranch
21108 Assume (do not assume) that zero displacement conditional branch instructions
21109 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
21110 compiler prefers zero displacement branch code sequences. This is
21111 enabled by default when generating code for SH4 and SH4A. It can be explicitly
21112 disabled by specifying @option{-mno-zdcbranch}.
21113
21114 @item -mcbranch-force-delay-slot
21115 @opindex mcbranch-force-delay-slot
21116 Force the usage of delay slots for conditional branches, which stuffs the delay
21117 slot with a @code{nop} if a suitable instruction can't be found. By default
21118 this option is disabled. It can be enabled to work around hardware bugs as
21119 found in the original SH7055.
21120
21121 @item -mfused-madd
21122 @itemx -mno-fused-madd
21123 @opindex mfused-madd
21124 @opindex mno-fused-madd
21125 Generate code that uses (does not use) the floating-point multiply and
21126 accumulate instructions. These instructions are generated by default
21127 if hardware floating point is used. The machine-dependent
21128 @option{-mfused-madd} option is now mapped to the machine-independent
21129 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
21130 mapped to @option{-ffp-contract=off}.
21131
21132 @item -mfsca
21133 @itemx -mno-fsca
21134 @opindex mfsca
21135 @opindex mno-fsca
21136 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
21137 and cosine approximations. The option @option{-mfsca} must be used in
21138 combination with @option{-funsafe-math-optimizations}. It is enabled by default
21139 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
21140 approximations even if @option{-funsafe-math-optimizations} is in effect.
21141
21142 @item -mfsrra
21143 @itemx -mno-fsrra
21144 @opindex mfsrra
21145 @opindex mno-fsrra
21146 Allow or disallow the compiler to emit the @code{fsrra} instruction for
21147 reciprocal square root approximations. The option @option{-mfsrra} must be used
21148 in combination with @option{-funsafe-math-optimizations} and
21149 @option{-ffinite-math-only}. It is enabled by default when generating code for
21150 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
21151 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
21152 in effect.
21153
21154 @item -mpretend-cmove
21155 @opindex mpretend-cmove
21156 Prefer zero-displacement conditional branches for conditional move instruction
21157 patterns. This can result in faster code on the SH4 processor.
21158
21159 @end table
21160
21161 @node Solaris 2 Options
21162 @subsection Solaris 2 Options
21163 @cindex Solaris 2 options
21164
21165 These @samp{-m} options are supported on Solaris 2:
21166
21167 @table @gcctabopt
21168 @item -mclear-hwcap
21169 @opindex mclear-hwcap
21170 @option{-mclear-hwcap} tells the compiler to remove the hardware
21171 capabilities generated by the Solaris assembler. This is only necessary
21172 when object files use ISA extensions not supported by the current
21173 machine, but check at runtime whether or not to use them.
21174
21175 @item -mimpure-text
21176 @opindex mimpure-text
21177 @option{-mimpure-text}, used in addition to @option{-shared}, tells
21178 the compiler to not pass @option{-z text} to the linker when linking a
21179 shared object. Using this option, you can link position-dependent
21180 code into a shared object.
21181
21182 @option{-mimpure-text} suppresses the ``relocations remain against
21183 allocatable but non-writable sections'' linker error message.
21184 However, the necessary relocations trigger copy-on-write, and the
21185 shared object is not actually shared across processes. Instead of
21186 using @option{-mimpure-text}, you should compile all source code with
21187 @option{-fpic} or @option{-fPIC}.
21188
21189 @end table
21190
21191 These switches are supported in addition to the above on Solaris 2:
21192
21193 @table @gcctabopt
21194 @item -pthreads
21195 @opindex pthreads
21196 Add support for multithreading using the POSIX threads library. This
21197 option sets flags for both the preprocessor and linker. This option does
21198 not affect the thread safety of object code produced by the compiler or
21199 that of libraries supplied with it.
21200
21201 @item -pthread
21202 @opindex pthread
21203 This is a synonym for @option{-pthreads}.
21204 @end table
21205
21206 @node SPARC Options
21207 @subsection SPARC Options
21208 @cindex SPARC options
21209
21210 These @samp{-m} options are supported on the SPARC:
21211
21212 @table @gcctabopt
21213 @item -mno-app-regs
21214 @itemx -mapp-regs
21215 @opindex mno-app-regs
21216 @opindex mapp-regs
21217 Specify @option{-mapp-regs} to generate output using the global registers
21218 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
21219 global register 1, each global register 2 through 4 is then treated as an
21220 allocable register that is clobbered by function calls. This is the default.
21221
21222 To be fully SVR4 ABI-compliant at the cost of some performance loss,
21223 specify @option{-mno-app-regs}. You should compile libraries and system
21224 software with this option.
21225
21226 @item -mflat
21227 @itemx -mno-flat
21228 @opindex mflat
21229 @opindex mno-flat
21230 With @option{-mflat}, the compiler does not generate save/restore instructions
21231 and uses a ``flat'' or single register window model. This model is compatible
21232 with the regular register window model. The local registers and the input
21233 registers (0--5) are still treated as ``call-saved'' registers and are
21234 saved on the stack as needed.
21235
21236 With @option{-mno-flat} (the default), the compiler generates save/restore
21237 instructions (except for leaf functions). This is the normal operating mode.
21238
21239 @item -mfpu
21240 @itemx -mhard-float
21241 @opindex mfpu
21242 @opindex mhard-float
21243 Generate output containing floating-point instructions. This is the
21244 default.
21245
21246 @item -mno-fpu
21247 @itemx -msoft-float
21248 @opindex mno-fpu
21249 @opindex msoft-float
21250 Generate output containing library calls for floating point.
21251 @strong{Warning:} the requisite libraries are not available for all SPARC
21252 targets. Normally the facilities of the machine's usual C compiler are
21253 used, but this cannot be done directly in cross-compilation. You must make
21254 your own arrangements to provide suitable library functions for
21255 cross-compilation. The embedded targets @samp{sparc-*-aout} and
21256 @samp{sparclite-*-*} do provide software floating-point support.
21257
21258 @option{-msoft-float} changes the calling convention in the output file;
21259 therefore, it is only useful if you compile @emph{all} of a program with
21260 this option. In particular, you need to compile @file{libgcc.a}, the
21261 library that comes with GCC, with @option{-msoft-float} in order for
21262 this to work.
21263
21264 @item -mhard-quad-float
21265 @opindex mhard-quad-float
21266 Generate output containing quad-word (long double) floating-point
21267 instructions.
21268
21269 @item -msoft-quad-float
21270 @opindex msoft-quad-float
21271 Generate output containing library calls for quad-word (long double)
21272 floating-point instructions. The functions called are those specified
21273 in the SPARC ABI@. This is the default.
21274
21275 As of this writing, there are no SPARC implementations that have hardware
21276 support for the quad-word floating-point instructions. They all invoke
21277 a trap handler for one of these instructions, and then the trap handler
21278 emulates the effect of the instruction. Because of the trap handler overhead,
21279 this is much slower than calling the ABI library routines. Thus the
21280 @option{-msoft-quad-float} option is the default.
21281
21282 @item -mno-unaligned-doubles
21283 @itemx -munaligned-doubles
21284 @opindex mno-unaligned-doubles
21285 @opindex munaligned-doubles
21286 Assume that doubles have 8-byte alignment. This is the default.
21287
21288 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21289 alignment only if they are contained in another type, or if they have an
21290 absolute address. Otherwise, it assumes they have 4-byte alignment.
21291 Specifying this option avoids some rare compatibility problems with code
21292 generated by other compilers. It is not the default because it results
21293 in a performance loss, especially for floating-point code.
21294
21295 @item -muser-mode
21296 @itemx -mno-user-mode
21297 @opindex muser-mode
21298 @opindex mno-user-mode
21299 Do not generate code that can only run in supervisor mode. This is relevant
21300 only for the @code{casa} instruction emitted for the LEON3 processor. The
21301 default is @option{-mno-user-mode}.
21302
21303 @item -mno-faster-structs
21304 @itemx -mfaster-structs
21305 @opindex mno-faster-structs
21306 @opindex mfaster-structs
21307 With @option{-mfaster-structs}, the compiler assumes that structures
21308 should have 8-byte alignment. This enables the use of pairs of
21309 @code{ldd} and @code{std} instructions for copies in structure
21310 assignment, in place of twice as many @code{ld} and @code{st} pairs.
21311 However, the use of this changed alignment directly violates the SPARC
21312 ABI@. Thus, it's intended only for use on targets where the developer
21313 acknowledges that their resulting code is not directly in line with
21314 the rules of the ABI@.
21315
21316 @item -mcpu=@var{cpu_type}
21317 @opindex mcpu
21318 Set the instruction set, register set, and instruction scheduling parameters
21319 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
21320 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21321 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21322 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21323 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21324 @samp{niagara3} and @samp{niagara4}.
21325
21326 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21327 which selects the best architecture option for the host processor.
21328 @option{-mcpu=native} has no effect if GCC does not recognize
21329 the processor.
21330
21331 Default instruction scheduling parameters are used for values that select
21332 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
21333 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
21334
21335 Here is a list of each supported architecture and their supported
21336 implementations.
21337
21338 @table @asis
21339 @item v7
21340 cypress, leon3v7
21341
21342 @item v8
21343 supersparc, hypersparc, leon, leon3
21344
21345 @item sparclite
21346 f930, f934, sparclite86x
21347
21348 @item sparclet
21349 tsc701
21350
21351 @item v9
21352 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21353 @end table
21354
21355 By default (unless configured otherwise), GCC generates code for the V7
21356 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
21357 additionally optimizes it for the Cypress CY7C602 chip, as used in the
21358 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
21359 SPARCStation 1, 2, IPX etc.
21360
21361 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21362 architecture. The only difference from V7 code is that the compiler emits
21363 the integer multiply and integer divide instructions which exist in SPARC-V8
21364 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
21365 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
21366 2000 series.
21367
21368 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21369 the SPARC architecture. This adds the integer multiply, integer divide step
21370 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21371 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21372 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
21373 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21374 MB86934 chip, which is the more recent SPARClite with FPU@.
21375
21376 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21377 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
21378 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21379 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
21380 optimizes it for the TEMIC SPARClet chip.
21381
21382 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21383 architecture. This adds 64-bit integer and floating-point move instructions,
21384 3 additional floating-point condition code registers and conditional move
21385 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
21386 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
21387 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21388 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
21389 @option{-mcpu=niagara}, the compiler additionally optimizes it for
21390 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
21391 additionally optimizes it for Sun UltraSPARC T2 chips. With
21392 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21393 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
21394 additionally optimizes it for Sun UltraSPARC T4 chips.
21395
21396 @item -mtune=@var{cpu_type}
21397 @opindex mtune
21398 Set the instruction scheduling parameters for machine type
21399 @var{cpu_type}, but do not set the instruction set or register set that the
21400 option @option{-mcpu=@var{cpu_type}} does.
21401
21402 The same values for @option{-mcpu=@var{cpu_type}} can be used for
21403 @option{-mtune=@var{cpu_type}}, but the only useful values are those
21404 that select a particular CPU implementation. Those are @samp{cypress},
21405 @samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21406 @samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21407 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21408 @samp{niagara3} and @samp{niagara4}. With native Solaris and GNU/Linux
21409 toolchains, @samp{native} can also be used.
21410
21411 @item -mv8plus
21412 @itemx -mno-v8plus
21413 @opindex mv8plus
21414 @opindex mno-v8plus
21415 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
21416 difference from the V8 ABI is that the global and out registers are
21417 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
21418 mode for all SPARC-V9 processors.
21419
21420 @item -mvis
21421 @itemx -mno-vis
21422 @opindex mvis
21423 @opindex mno-vis
21424 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21425 Visual Instruction Set extensions. The default is @option{-mno-vis}.
21426
21427 @item -mvis2
21428 @itemx -mno-vis2
21429 @opindex mvis2
21430 @opindex mno-vis2
21431 With @option{-mvis2}, GCC generates code that takes advantage of
21432 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
21433 default is @option{-mvis2} when targeting a cpu that supports such
21434 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
21435 also sets @option{-mvis}.
21436
21437 @item -mvis3
21438 @itemx -mno-vis3
21439 @opindex mvis3
21440 @opindex mno-vis3
21441 With @option{-mvis3}, GCC generates code that takes advantage of
21442 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
21443 default is @option{-mvis3} when targeting a cpu that supports such
21444 instructions, such as niagara-3 and later. Setting @option{-mvis3}
21445 also sets @option{-mvis2} and @option{-mvis}.
21446
21447 @item -mcbcond
21448 @itemx -mno-cbcond
21449 @opindex mcbcond
21450 @opindex mno-cbcond
21451 With @option{-mcbcond}, GCC generates code that takes advantage of
21452 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21453 The default is @option{-mcbcond} when targeting a cpu that supports such
21454 instructions, such as niagara-4 and later.
21455
21456 @item -mpopc
21457 @itemx -mno-popc
21458 @opindex mpopc
21459 @opindex mno-popc
21460 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21461 population count instruction. The default is @option{-mpopc}
21462 when targeting a cpu that supports such instructions, such as Niagara-2 and
21463 later.
21464
21465 @item -mfmaf
21466 @itemx -mno-fmaf
21467 @opindex mfmaf
21468 @opindex mno-fmaf
21469 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21470 Fused Multiply-Add Floating-point extensions. The default is @option{-mfmaf}
21471 when targeting a cpu that supports such instructions, such as Niagara-3 and
21472 later.
21473
21474 @item -mfix-at697f
21475 @opindex mfix-at697f
21476 Enable the documented workaround for the single erratum of the Atmel AT697F
21477 processor (which corresponds to erratum #13 of the AT697E processor).
21478
21479 @item -mfix-ut699
21480 @opindex mfix-ut699
21481 Enable the documented workarounds for the floating-point errata and the data
21482 cache nullify errata of the UT699 processor.
21483 @end table
21484
21485 These @samp{-m} options are supported in addition to the above
21486 on SPARC-V9 processors in 64-bit environments:
21487
21488 @table @gcctabopt
21489 @item -m32
21490 @itemx -m64
21491 @opindex m32
21492 @opindex m64
21493 Generate code for a 32-bit or 64-bit environment.
21494 The 32-bit environment sets int, long and pointer to 32 bits.
21495 The 64-bit environment sets int to 32 bits and long and pointer
21496 to 64 bits.
21497
21498 @item -mcmodel=@var{which}
21499 @opindex mcmodel
21500 Set the code model to one of
21501
21502 @table @samp
21503 @item medlow
21504 The Medium/Low code model: 64-bit addresses, programs
21505 must be linked in the low 32 bits of memory. Programs can be statically
21506 or dynamically linked.
21507
21508 @item medmid
21509 The Medium/Middle code model: 64-bit addresses, programs
21510 must be linked in the low 44 bits of memory, the text and data segments must
21511 be less than 2GB in size and the data segment must be located within 2GB of
21512 the text segment.
21513
21514 @item medany
21515 The Medium/Anywhere code model: 64-bit addresses, programs
21516 may be linked anywhere in memory, the text and data segments must be less
21517 than 2GB in size and the data segment must be located within 2GB of the
21518 text segment.
21519
21520 @item embmedany
21521 The Medium/Anywhere code model for embedded systems:
21522 64-bit addresses, the text and data segments must be less than 2GB in
21523 size, both starting anywhere in memory (determined at link time). The
21524 global register %g4 points to the base of the data segment. Programs
21525 are statically linked and PIC is not supported.
21526 @end table
21527
21528 @item -mmemory-model=@var{mem-model}
21529 @opindex mmemory-model
21530 Set the memory model in force on the processor to one of
21531
21532 @table @samp
21533 @item default
21534 The default memory model for the processor and operating system.
21535
21536 @item rmo
21537 Relaxed Memory Order
21538
21539 @item pso
21540 Partial Store Order
21541
21542 @item tso
21543 Total Store Order
21544
21545 @item sc
21546 Sequential Consistency
21547 @end table
21548
21549 These memory models are formally defined in Appendix D of the Sparc V9
21550 architecture manual, as set in the processor's @code{PSTATE.MM} field.
21551
21552 @item -mstack-bias
21553 @itemx -mno-stack-bias
21554 @opindex mstack-bias
21555 @opindex mno-stack-bias
21556 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21557 frame pointer if present, are offset by @minus{}2047 which must be added back
21558 when making stack frame references. This is the default in 64-bit mode.
21559 Otherwise, assume no such offset is present.
21560 @end table
21561
21562 @node SPU Options
21563 @subsection SPU Options
21564 @cindex SPU options
21565
21566 These @samp{-m} options are supported on the SPU:
21567
21568 @table @gcctabopt
21569 @item -mwarn-reloc
21570 @itemx -merror-reloc
21571 @opindex mwarn-reloc
21572 @opindex merror-reloc
21573
21574 The loader for SPU does not handle dynamic relocations. By default, GCC
21575 gives an error when it generates code that requires a dynamic
21576 relocation. @option{-mno-error-reloc} disables the error,
21577 @option{-mwarn-reloc} generates a warning instead.
21578
21579 @item -msafe-dma
21580 @itemx -munsafe-dma
21581 @opindex msafe-dma
21582 @opindex munsafe-dma
21583
21584 Instructions that initiate or test completion of DMA must not be
21585 reordered with respect to loads and stores of the memory that is being
21586 accessed.
21587 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21588 memory accesses, but that can lead to inefficient code in places where the
21589 memory is known to not change. Rather than mark the memory as volatile,
21590 you can use @option{-msafe-dma} to tell the compiler to treat
21591 the DMA instructions as potentially affecting all memory.
21592
21593 @item -mbranch-hints
21594 @opindex mbranch-hints
21595
21596 By default, GCC generates a branch hint instruction to avoid
21597 pipeline stalls for always-taken or probably-taken branches. A hint
21598 is not generated closer than 8 instructions away from its branch.
21599 There is little reason to disable them, except for debugging purposes,
21600 or to make an object a little bit smaller.
21601
21602 @item -msmall-mem
21603 @itemx -mlarge-mem
21604 @opindex msmall-mem
21605 @opindex mlarge-mem
21606
21607 By default, GCC generates code assuming that addresses are never larger
21608 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
21609 a full 32-bit address.
21610
21611 @item -mstdmain
21612 @opindex mstdmain
21613
21614 By default, GCC links against startup code that assumes the SPU-style
21615 main function interface (which has an unconventional parameter list).
21616 With @option{-mstdmain}, GCC links your program against startup
21617 code that assumes a C99-style interface to @code{main}, including a
21618 local copy of @code{argv} strings.
21619
21620 @item -mfixed-range=@var{register-range}
21621 @opindex mfixed-range
21622 Generate code treating the given register range as fixed registers.
21623 A fixed register is one that the register allocator cannot use. This is
21624 useful when compiling kernel code. A register range is specified as
21625 two registers separated by a dash. Multiple register ranges can be
21626 specified separated by a comma.
21627
21628 @item -mea32
21629 @itemx -mea64
21630 @opindex mea32
21631 @opindex mea64
21632 Compile code assuming that pointers to the PPU address space accessed
21633 via the @code{__ea} named address space qualifier are either 32 or 64
21634 bits wide. The default is 32 bits. As this is an ABI-changing option,
21635 all object code in an executable must be compiled with the same setting.
21636
21637 @item -maddress-space-conversion
21638 @itemx -mno-address-space-conversion
21639 @opindex maddress-space-conversion
21640 @opindex mno-address-space-conversion
21641 Allow/disallow treating the @code{__ea} address space as superset
21642 of the generic address space. This enables explicit type casts
21643 between @code{__ea} and generic pointer as well as implicit
21644 conversions of generic pointers to @code{__ea} pointers. The
21645 default is to allow address space pointer conversions.
21646
21647 @item -mcache-size=@var{cache-size}
21648 @opindex mcache-size
21649 This option controls the version of libgcc that the compiler links to an
21650 executable and selects a software-managed cache for accessing variables
21651 in the @code{__ea} address space with a particular cache size. Possible
21652 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21653 and @samp{128}. The default cache size is 64KB.
21654
21655 @item -matomic-updates
21656 @itemx -mno-atomic-updates
21657 @opindex matomic-updates
21658 @opindex mno-atomic-updates
21659 This option controls the version of libgcc that the compiler links to an
21660 executable and selects whether atomic updates to the software-managed
21661 cache of PPU-side variables are used. If you use atomic updates, changes
21662 to a PPU variable from SPU code using the @code{__ea} named address space
21663 qualifier do not interfere with changes to other PPU variables residing
21664 in the same cache line from PPU code. If you do not use atomic updates,
21665 such interference may occur; however, writing back cache lines is
21666 more efficient. The default behavior is to use atomic updates.
21667
21668 @item -mdual-nops
21669 @itemx -mdual-nops=@var{n}
21670 @opindex mdual-nops
21671 By default, GCC inserts nops to increase dual issue when it expects
21672 it to increase performance. @var{n} can be a value from 0 to 10. A
21673 smaller @var{n} inserts fewer nops. 10 is the default, 0 is the
21674 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
21675
21676 @item -mhint-max-nops=@var{n}
21677 @opindex mhint-max-nops
21678 Maximum number of nops to insert for a branch hint. A branch hint must
21679 be at least 8 instructions away from the branch it is affecting. GCC
21680 inserts up to @var{n} nops to enforce this, otherwise it does not
21681 generate the branch hint.
21682
21683 @item -mhint-max-distance=@var{n}
21684 @opindex mhint-max-distance
21685 The encoding of the branch hint instruction limits the hint to be within
21686 256 instructions of the branch it is affecting. By default, GCC makes
21687 sure it is within 125.
21688
21689 @item -msafe-hints
21690 @opindex msafe-hints
21691 Work around a hardware bug that causes the SPU to stall indefinitely.
21692 By default, GCC inserts the @code{hbrp} instruction to make sure
21693 this stall won't happen.
21694
21695 @end table
21696
21697 @node System V Options
21698 @subsection Options for System V
21699
21700 These additional options are available on System V Release 4 for
21701 compatibility with other compilers on those systems:
21702
21703 @table @gcctabopt
21704 @item -G
21705 @opindex G
21706 Create a shared object.
21707 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
21708
21709 @item -Qy
21710 @opindex Qy
21711 Identify the versions of each tool used by the compiler, in a
21712 @code{.ident} assembler directive in the output.
21713
21714 @item -Qn
21715 @opindex Qn
21716 Refrain from adding @code{.ident} directives to the output file (this is
21717 the default).
21718
21719 @item -YP,@var{dirs}
21720 @opindex YP
21721 Search the directories @var{dirs}, and no others, for libraries
21722 specified with @option{-l}.
21723
21724 @item -Ym,@var{dir}
21725 @opindex Ym
21726 Look in the directory @var{dir} to find the M4 preprocessor.
21727 The assembler uses this option.
21728 @c This is supposed to go with a -Yd for predefined M4 macro files, but
21729 @c the generic assembler that comes with Solaris takes just -Ym.
21730 @end table
21731
21732 @node TILE-Gx Options
21733 @subsection TILE-Gx Options
21734 @cindex TILE-Gx options
21735
21736 These @samp{-m} options are supported on the TILE-Gx:
21737
21738 @table @gcctabopt
21739 @item -mcmodel=small
21740 @opindex mcmodel=small
21741 Generate code for the small model. The distance for direct calls is
21742 limited to 500M in either direction. PC-relative addresses are 32
21743 bits. Absolute addresses support the full address range.
21744
21745 @item -mcmodel=large
21746 @opindex mcmodel=large
21747 Generate code for the large model. There is no limitation on call
21748 distance, pc-relative addresses, or absolute addresses.
21749
21750 @item -mcpu=@var{name}
21751 @opindex mcpu
21752 Selects the type of CPU to be targeted. Currently the only supported
21753 type is @samp{tilegx}.
21754
21755 @item -m32
21756 @itemx -m64
21757 @opindex m32
21758 @opindex m64
21759 Generate code for a 32-bit or 64-bit environment. The 32-bit
21760 environment sets int, long, and pointer to 32 bits. The 64-bit
21761 environment sets int to 32 bits and long and pointer to 64 bits.
21762
21763 @item -mbig-endian
21764 @itemx -mlittle-endian
21765 @opindex mbig-endian
21766 @opindex mlittle-endian
21767 Generate code in big/little endian mode, respectively.
21768 @end table
21769
21770 @node TILEPro Options
21771 @subsection TILEPro Options
21772 @cindex TILEPro options
21773
21774 These @samp{-m} options are supported on the TILEPro:
21775
21776 @table @gcctabopt
21777 @item -mcpu=@var{name}
21778 @opindex mcpu
21779 Selects the type of CPU to be targeted. Currently the only supported
21780 type is @samp{tilepro}.
21781
21782 @item -m32
21783 @opindex m32
21784 Generate code for a 32-bit environment, which sets int, long, and
21785 pointer to 32 bits. This is the only supported behavior so the flag
21786 is essentially ignored.
21787 @end table
21788
21789 @node V850 Options
21790 @subsection V850 Options
21791 @cindex V850 Options
21792
21793 These @samp{-m} options are defined for V850 implementations:
21794
21795 @table @gcctabopt
21796 @item -mlong-calls
21797 @itemx -mno-long-calls
21798 @opindex mlong-calls
21799 @opindex mno-long-calls
21800 Treat all calls as being far away (near). If calls are assumed to be
21801 far away, the compiler always loads the function's address into a
21802 register, and calls indirect through the pointer.
21803
21804 @item -mno-ep
21805 @itemx -mep
21806 @opindex mno-ep
21807 @opindex mep
21808 Do not optimize (do optimize) basic blocks that use the same index
21809 pointer 4 or more times to copy pointer into the @code{ep} register, and
21810 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
21811 option is on by default if you optimize.
21812
21813 @item -mno-prolog-function
21814 @itemx -mprolog-function
21815 @opindex mno-prolog-function
21816 @opindex mprolog-function
21817 Do not use (do use) external functions to save and restore registers
21818 at the prologue and epilogue of a function. The external functions
21819 are slower, but use less code space if more than one function saves
21820 the same number of registers. The @option{-mprolog-function} option
21821 is on by default if you optimize.
21822
21823 @item -mspace
21824 @opindex mspace
21825 Try to make the code as small as possible. At present, this just turns
21826 on the @option{-mep} and @option{-mprolog-function} options.
21827
21828 @item -mtda=@var{n}
21829 @opindex mtda
21830 Put static or global variables whose size is @var{n} bytes or less into
21831 the tiny data area that register @code{ep} points to. The tiny data
21832 area can hold up to 256 bytes in total (128 bytes for byte references).
21833
21834 @item -msda=@var{n}
21835 @opindex msda
21836 Put static or global variables whose size is @var{n} bytes or less into
21837 the small data area that register @code{gp} points to. The small data
21838 area can hold up to 64 kilobytes.
21839
21840 @item -mzda=@var{n}
21841 @opindex mzda
21842 Put static or global variables whose size is @var{n} bytes or less into
21843 the first 32 kilobytes of memory.
21844
21845 @item -mv850
21846 @opindex mv850
21847 Specify that the target processor is the V850.
21848
21849 @item -mv850e3v5
21850 @opindex mv850e3v5
21851 Specify that the target processor is the V850E3V5. The preprocessor
21852 constant @code{__v850e3v5__} is defined if this option is used.
21853
21854 @item -mv850e2v4
21855 @opindex mv850e2v4
21856 Specify that the target processor is the V850E3V5. This is an alias for
21857 the @option{-mv850e3v5} option.
21858
21859 @item -mv850e2v3
21860 @opindex mv850e2v3
21861 Specify that the target processor is the V850E2V3. The preprocessor
21862 constant @code{__v850e2v3__} is defined if this option is used.
21863
21864 @item -mv850e2
21865 @opindex mv850e2
21866 Specify that the target processor is the V850E2. The preprocessor
21867 constant @code{__v850e2__} is defined if this option is used.
21868
21869 @item -mv850e1
21870 @opindex mv850e1
21871 Specify that the target processor is the V850E1. The preprocessor
21872 constants @code{__v850e1__} and @code{__v850e__} are defined if
21873 this option is used.
21874
21875 @item -mv850es
21876 @opindex mv850es
21877 Specify that the target processor is the V850ES. This is an alias for
21878 the @option{-mv850e1} option.
21879
21880 @item -mv850e
21881 @opindex mv850e
21882 Specify that the target processor is the V850E@. The preprocessor
21883 constant @code{__v850e__} is defined if this option is used.
21884
21885 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
21886 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
21887 are defined then a default target processor is chosen and the
21888 relevant @samp{__v850*__} preprocessor constant is defined.
21889
21890 The preprocessor constants @code{__v850} and @code{__v851__} are always
21891 defined, regardless of which processor variant is the target.
21892
21893 @item -mdisable-callt
21894 @itemx -mno-disable-callt
21895 @opindex mdisable-callt
21896 @opindex mno-disable-callt
21897 This option suppresses generation of the @code{CALLT} instruction for the
21898 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
21899 architecture.
21900
21901 This option is enabled by default when the RH850 ABI is
21902 in use (see @option{-mrh850-abi}), and disabled by default when the
21903 GCC ABI is in use. If @code{CALLT} instructions are being generated
21904 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
21905
21906 @item -mrelax
21907 @itemx -mno-relax
21908 @opindex mrelax
21909 @opindex mno-relax
21910 Pass on (or do not pass on) the @option{-mrelax} command-line option
21911 to the assembler.
21912
21913 @item -mlong-jumps
21914 @itemx -mno-long-jumps
21915 @opindex mlong-jumps
21916 @opindex mno-long-jumps
21917 Disable (or re-enable) the generation of PC-relative jump instructions.
21918
21919 @item -msoft-float
21920 @itemx -mhard-float
21921 @opindex msoft-float
21922 @opindex mhard-float
21923 Disable (or re-enable) the generation of hardware floating point
21924 instructions. This option is only significant when the target
21925 architecture is @samp{V850E2V3} or higher. If hardware floating point
21926 instructions are being generated then the C preprocessor symbol
21927 @code{__FPU_OK__} is defined, otherwise the symbol
21928 @code{__NO_FPU__} is defined.
21929
21930 @item -mloop
21931 @opindex mloop
21932 Enables the use of the e3v5 LOOP instruction. The use of this
21933 instruction is not enabled by default when the e3v5 architecture is
21934 selected because its use is still experimental.
21935
21936 @item -mrh850-abi
21937 @itemx -mghs
21938 @opindex mrh850-abi
21939 @opindex mghs
21940 Enables support for the RH850 version of the V850 ABI. This is the
21941 default. With this version of the ABI the following rules apply:
21942
21943 @itemize
21944 @item
21945 Integer sized structures and unions are returned via a memory pointer
21946 rather than a register.
21947
21948 @item
21949 Large structures and unions (more than 8 bytes in size) are passed by
21950 value.
21951
21952 @item
21953 Functions are aligned to 16-bit boundaries.
21954
21955 @item
21956 The @option{-m8byte-align} command-line option is supported.
21957
21958 @item
21959 The @option{-mdisable-callt} command-line option is enabled by
21960 default. The @option{-mno-disable-callt} command-line option is not
21961 supported.
21962 @end itemize
21963
21964 When this version of the ABI is enabled the C preprocessor symbol
21965 @code{__V850_RH850_ABI__} is defined.
21966
21967 @item -mgcc-abi
21968 @opindex mgcc-abi
21969 Enables support for the old GCC version of the V850 ABI. With this
21970 version of the ABI the following rules apply:
21971
21972 @itemize
21973 @item
21974 Integer sized structures and unions are returned in register @code{r10}.
21975
21976 @item
21977 Large structures and unions (more than 8 bytes in size) are passed by
21978 reference.
21979
21980 @item
21981 Functions are aligned to 32-bit boundaries, unless optimizing for
21982 size.
21983
21984 @item
21985 The @option{-m8byte-align} command-line option is not supported.
21986
21987 @item
21988 The @option{-mdisable-callt} command-line option is supported but not
21989 enabled by default.
21990 @end itemize
21991
21992 When this version of the ABI is enabled the C preprocessor symbol
21993 @code{__V850_GCC_ABI__} is defined.
21994
21995 @item -m8byte-align
21996 @itemx -mno-8byte-align
21997 @opindex m8byte-align
21998 @opindex mno-8byte-align
21999 Enables support for @code{double} and @code{long long} types to be
22000 aligned on 8-byte boundaries. The default is to restrict the
22001 alignment of all objects to at most 4-bytes. When
22002 @option{-m8byte-align} is in effect the C preprocessor symbol
22003 @code{__V850_8BYTE_ALIGN__} is defined.
22004
22005 @item -mbig-switch
22006 @opindex mbig-switch
22007 Generate code suitable for big switch tables. Use this option only if
22008 the assembler/linker complain about out of range branches within a switch
22009 table.
22010
22011 @item -mapp-regs
22012 @opindex mapp-regs
22013 This option causes r2 and r5 to be used in the code generated by
22014 the compiler. This setting is the default.
22015
22016 @item -mno-app-regs
22017 @opindex mno-app-regs
22018 This option causes r2 and r5 to be treated as fixed registers.
22019
22020 @end table
22021
22022 @node VAX Options
22023 @subsection VAX Options
22024 @cindex VAX options
22025
22026 These @samp{-m} options are defined for the VAX:
22027
22028 @table @gcctabopt
22029 @item -munix
22030 @opindex munix
22031 Do not output certain jump instructions (@code{aobleq} and so on)
22032 that the Unix assembler for the VAX cannot handle across long
22033 ranges.
22034
22035 @item -mgnu
22036 @opindex mgnu
22037 Do output those jump instructions, on the assumption that the
22038 GNU assembler is being used.
22039
22040 @item -mg
22041 @opindex mg
22042 Output code for G-format floating-point numbers instead of D-format.
22043 @end table
22044
22045 @node Visium Options
22046 @subsection Visium Options
22047 @cindex Visium options
22048
22049 @table @gcctabopt
22050
22051 @item -mdebug
22052 @opindex mdebug
22053 A program which performs file I/O and is destined to run on an MCM target
22054 should be linked with this option. It causes the libraries libc.a and
22055 libdebug.a to be linked. The program should be run on the target under
22056 the control of the GDB remote debugging stub.
22057
22058 @item -msim
22059 @opindex msim
22060 A program which performs file I/O and is destined to run on the simulator
22061 should be linked with option. This causes libraries libc.a and libsim.a to
22062 be linked.
22063
22064 @item -mfpu
22065 @itemx -mhard-float
22066 @opindex mfpu
22067 @opindex mhard-float
22068 Generate code containing floating-point instructions. This is the
22069 default.
22070
22071 @item -mno-fpu
22072 @itemx -msoft-float
22073 @opindex mno-fpu
22074 @opindex msoft-float
22075 Generate code containing library calls for floating-point.
22076
22077 @option{-msoft-float} changes the calling convention in the output file;
22078 therefore, it is only useful if you compile @emph{all} of a program with
22079 this option. In particular, you need to compile @file{libgcc.a}, the
22080 library that comes with GCC, with @option{-msoft-float} in order for
22081 this to work.
22082
22083 @item -mcpu=@var{cpu_type}
22084 @opindex mcpu
22085 Set the instruction set, register set, and instruction scheduling parameters
22086 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
22087 @samp{mcm}, @samp{gr5} and @samp{gr6}.
22088
22089 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
22090
22091 By default (unless configured otherwise), GCC generates code for the GR5
22092 variant of the Visium architecture.
22093
22094 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
22095 architecture. The only difference from GR5 code is that the compiler will
22096 generate block move instructions.
22097
22098 @item -mtune=@var{cpu_type}
22099 @opindex mtune
22100 Set the instruction scheduling parameters for machine type @var{cpu_type},
22101 but do not set the instruction set or register set that the option
22102 @option{-mcpu=@var{cpu_type}} would.
22103
22104 @item -msv-mode
22105 @opindex msv-mode
22106 Generate code for the supervisor mode, where there are no restrictions on
22107 the access to general registers. This is the default.
22108
22109 @item -muser-mode
22110 @opindex muser-mode
22111 Generate code for the user mode, where the access to some general registers
22112 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
22113 mode; on the GR6, only registers r29 to r31 are affected.
22114 @end table
22115
22116 @node VMS Options
22117 @subsection VMS Options
22118
22119 These @samp{-m} options are defined for the VMS implementations:
22120
22121 @table @gcctabopt
22122 @item -mvms-return-codes
22123 @opindex mvms-return-codes
22124 Return VMS condition codes from @code{main}. The default is to return POSIX-style
22125 condition (e.g.@ error) codes.
22126
22127 @item -mdebug-main=@var{prefix}
22128 @opindex mdebug-main=@var{prefix}
22129 Flag the first routine whose name starts with @var{prefix} as the main
22130 routine for the debugger.
22131
22132 @item -mmalloc64
22133 @opindex mmalloc64
22134 Default to 64-bit memory allocation routines.
22135
22136 @item -mpointer-size=@var{size}
22137 @opindex mpointer-size=@var{size}
22138 Set the default size of pointers. Possible options for @var{size} are
22139 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
22140 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
22141 The later option disables @code{pragma pointer_size}.
22142 @end table
22143
22144 @node VxWorks Options
22145 @subsection VxWorks Options
22146 @cindex VxWorks Options
22147
22148 The options in this section are defined for all VxWorks targets.
22149 Options specific to the target hardware are listed with the other
22150 options for that target.
22151
22152 @table @gcctabopt
22153 @item -mrtp
22154 @opindex mrtp
22155 GCC can generate code for both VxWorks kernels and real time processes
22156 (RTPs). This option switches from the former to the latter. It also
22157 defines the preprocessor macro @code{__RTP__}.
22158
22159 @item -non-static
22160 @opindex non-static
22161 Link an RTP executable against shared libraries rather than static
22162 libraries. The options @option{-static} and @option{-shared} can
22163 also be used for RTPs (@pxref{Link Options}); @option{-static}
22164 is the default.
22165
22166 @item -Bstatic
22167 @itemx -Bdynamic
22168 @opindex Bstatic
22169 @opindex Bdynamic
22170 These options are passed down to the linker. They are defined for
22171 compatibility with Diab.
22172
22173 @item -Xbind-lazy
22174 @opindex Xbind-lazy
22175 Enable lazy binding of function calls. This option is equivalent to
22176 @option{-Wl,-z,now} and is defined for compatibility with Diab.
22177
22178 @item -Xbind-now
22179 @opindex Xbind-now
22180 Disable lazy binding of function calls. This option is the default and
22181 is defined for compatibility with Diab.
22182 @end table
22183
22184 @node x86 Options
22185 @subsection x86 Options
22186 @cindex x86 Options
22187
22188 These @samp{-m} options are defined for the x86 family of computers.
22189
22190 @table @gcctabopt
22191
22192 @item -march=@var{cpu-type}
22193 @opindex march
22194 Generate instructions for the machine type @var{cpu-type}. In contrast to
22195 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
22196 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22197 to generate code that may not run at all on processors other than the one
22198 indicated. Specifying @option{-march=@var{cpu-type}} implies
22199 @option{-mtune=@var{cpu-type}}.
22200
22201 The choices for @var{cpu-type} are:
22202
22203 @table @samp
22204 @item native
22205 This selects the CPU to generate code for at compilation time by determining
22206 the processor type of the compiling machine. Using @option{-march=native}
22207 enables all instruction subsets supported by the local machine (hence
22208 the result might not run on different machines). Using @option{-mtune=native}
22209 produces code optimized for the local machine under the constraints
22210 of the selected instruction set.
22211
22212 @item i386
22213 Original Intel i386 CPU@.
22214
22215 @item i486
22216 Intel i486 CPU@. (No scheduling is implemented for this chip.)
22217
22218 @item i586
22219 @itemx pentium
22220 Intel Pentium CPU with no MMX support.
22221
22222 @item iamcu
22223 Intel MCU, based on Intel Pentium CPU.
22224
22225 @item pentium-mmx
22226 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22227
22228 @item pentiumpro
22229 Intel Pentium Pro CPU@.
22230
22231 @item i686
22232 When used with @option{-march}, the Pentium Pro
22233 instruction set is used, so the code runs on all i686 family chips.
22234 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22235
22236 @item pentium2
22237 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22238 support.
22239
22240 @item pentium3
22241 @itemx pentium3m
22242 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22243 set support.
22244
22245 @item pentium-m
22246 Intel Pentium M; low-power version of Intel Pentium III CPU
22247 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
22248
22249 @item pentium4
22250 @itemx pentium4m
22251 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22252
22253 @item prescott
22254 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22255 set support.
22256
22257 @item nocona
22258 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22259 SSE2 and SSE3 instruction set support.
22260
22261 @item core2
22262 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22263 instruction set support.
22264
22265 @item nehalem
22266 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22267 SSE4.1, SSE4.2 and POPCNT instruction set support.
22268
22269 @item westmere
22270 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22271 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22272
22273 @item sandybridge
22274 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22275 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22276
22277 @item ivybridge
22278 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22279 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22280 instruction set support.
22281
22282 @item haswell
22283 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22284 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22285 BMI, BMI2 and F16C instruction set support.
22286
22287 @item broadwell
22288 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22289 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22290 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22291
22292 @item skylake
22293 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22294 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22295 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
22296 XSAVES instruction set support.
22297
22298 @item bonnell
22299 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22300 instruction set support.
22301
22302 @item silvermont
22303 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22304 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22305
22306 @item knl
22307 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22308 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22309 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22310 AVX512CD instruction set support.
22311
22312 @item skylake-avx512
22313 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22314 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22315 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
22316 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
22317
22318 @item k6
22319 AMD K6 CPU with MMX instruction set support.
22320
22321 @item k6-2
22322 @itemx k6-3
22323 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22324
22325 @item athlon
22326 @itemx athlon-tbird
22327 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22328 support.
22329
22330 @item athlon-4
22331 @itemx athlon-xp
22332 @itemx athlon-mp
22333 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22334 instruction set support.
22335
22336 @item k8
22337 @itemx opteron
22338 @itemx athlon64
22339 @itemx athlon-fx
22340 Processors based on the AMD K8 core with x86-64 instruction set support,
22341 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22342 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22343 instruction set extensions.)
22344
22345 @item k8-sse3
22346 @itemx opteron-sse3
22347 @itemx athlon64-sse3
22348 Improved versions of AMD K8 cores with SSE3 instruction set support.
22349
22350 @item amdfam10
22351 @itemx barcelona
22352 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
22353 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22354 instruction set extensions.)
22355
22356 @item bdver1
22357 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
22358 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22359 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22360 @item bdver2
22361 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22362 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22363 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
22364 extensions.)
22365 @item bdver3
22366 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22367 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
22368 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
22369 64-bit instruction set extensions.
22370 @item bdver4
22371 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22372 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
22373 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
22374 SSE4.2, ABM and 64-bit instruction set extensions.
22375
22376 @item btver1
22377 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
22378 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22379 instruction set extensions.)
22380
22381 @item btver2
22382 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22383 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22384 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22385
22386 @item winchip-c6
22387 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22388 set support.
22389
22390 @item winchip2
22391 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22392 instruction set support.
22393
22394 @item c3
22395 VIA C3 CPU with MMX and 3DNow!@: instruction set support. (No scheduling is
22396 implemented for this chip.)
22397
22398 @item c3-2
22399 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22400 (No scheduling is
22401 implemented for this chip.)
22402
22403 @item geode
22404 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22405 @end table
22406
22407 @item -mtune=@var{cpu-type}
22408 @opindex mtune
22409 Tune to @var{cpu-type} everything applicable about the generated code, except
22410 for the ABI and the set of available instructions.
22411 While picking a specific @var{cpu-type} schedules things appropriately
22412 for that particular chip, the compiler does not generate any code that
22413 cannot run on the default machine type unless you use a
22414 @option{-march=@var{cpu-type}} option.
22415 For example, if GCC is configured for i686-pc-linux-gnu
22416 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22417 but still runs on i686 machines.
22418
22419 The choices for @var{cpu-type} are the same as for @option{-march}.
22420 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22421
22422 @table @samp
22423 @item generic
22424 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22425 If you know the CPU on which your code will run, then you should use
22426 the corresponding @option{-mtune} or @option{-march} option instead of
22427 @option{-mtune=generic}. But, if you do not know exactly what CPU users
22428 of your application will have, then you should use this option.
22429
22430 As new processors are deployed in the marketplace, the behavior of this
22431 option will change. Therefore, if you upgrade to a newer version of
22432 GCC, code generation controlled by this option will change to reflect
22433 the processors
22434 that are most common at the time that version of GCC is released.
22435
22436 There is no @option{-march=generic} option because @option{-march}
22437 indicates the instruction set the compiler can use, and there is no
22438 generic instruction set applicable to all processors. In contrast,
22439 @option{-mtune} indicates the processor (or, in this case, collection of
22440 processors) for which the code is optimized.
22441
22442 @item intel
22443 Produce code optimized for the most current Intel processors, which are
22444 Haswell and Silvermont for this version of GCC. If you know the CPU
22445 on which your code will run, then you should use the corresponding
22446 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22447 But, if you want your application performs better on both Haswell and
22448 Silvermont, then you should use this option.
22449
22450 As new Intel processors are deployed in the marketplace, the behavior of
22451 this option will change. Therefore, if you upgrade to a newer version of
22452 GCC, code generation controlled by this option will change to reflect
22453 the most current Intel processors at the time that version of GCC is
22454 released.
22455
22456 There is no @option{-march=intel} option because @option{-march} indicates
22457 the instruction set the compiler can use, and there is no common
22458 instruction set applicable to all processors. In contrast,
22459 @option{-mtune} indicates the processor (or, in this case, collection of
22460 processors) for which the code is optimized.
22461 @end table
22462
22463 @item -mcpu=@var{cpu-type}
22464 @opindex mcpu
22465 A deprecated synonym for @option{-mtune}.
22466
22467 @item -mfpmath=@var{unit}
22468 @opindex mfpmath
22469 Generate floating-point arithmetic for selected unit @var{unit}. The choices
22470 for @var{unit} are:
22471
22472 @table @samp
22473 @item 387
22474 Use the standard 387 floating-point coprocessor present on the majority of chips and
22475 emulated otherwise. Code compiled with this option runs almost everywhere.
22476 The temporary results are computed in 80-bit precision instead of the precision
22477 specified by the type, resulting in slightly different results compared to most
22478 of other chips. See @option{-ffloat-store} for more detailed description.
22479
22480 This is the default choice for x86-32 targets.
22481
22482 @item sse
22483 Use scalar floating-point instructions present in the SSE instruction set.
22484 This instruction set is supported by Pentium III and newer chips,
22485 and in the AMD line
22486 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
22487 instruction set supports only single-precision arithmetic, thus the double and
22488 extended-precision arithmetic are still done using 387. A later version, present
22489 only in Pentium 4 and AMD x86-64 chips, supports double-precision
22490 arithmetic too.
22491
22492 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22493 or @option{-msse2} switches to enable SSE extensions and make this option
22494 effective. For the x86-64 compiler, these extensions are enabled by default.
22495
22496 The resulting code should be considerably faster in the majority of cases and avoid
22497 the numerical instability problems of 387 code, but may break some existing
22498 code that expects temporaries to be 80 bits.
22499
22500 This is the default choice for the x86-64 compiler.
22501
22502 @item sse,387
22503 @itemx sse+387
22504 @itemx both
22505 Attempt to utilize both instruction sets at once. This effectively doubles the
22506 amount of available registers, and on chips with separate execution units for
22507 387 and SSE the execution resources too. Use this option with care, as it is
22508 still experimental, because the GCC register allocator does not model separate
22509 functional units well, resulting in unstable performance.
22510 @end table
22511
22512 @item -masm=@var{dialect}
22513 @opindex masm=@var{dialect}
22514 Output assembly instructions using selected @var{dialect}. Also affects
22515 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22516 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22517 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22518 not support @samp{intel}.
22519
22520 @item -mieee-fp
22521 @itemx -mno-ieee-fp
22522 @opindex mieee-fp
22523 @opindex mno-ieee-fp
22524 Control whether or not the compiler uses IEEE floating-point
22525 comparisons. These correctly handle the case where the result of a
22526 comparison is unordered.
22527
22528 @item -msoft-float
22529 @opindex msoft-float
22530 Generate output containing library calls for floating point.
22531
22532 @strong{Warning:} the requisite libraries are not part of GCC@.
22533 Normally the facilities of the machine's usual C compiler are used, but
22534 this can't be done directly in cross-compilation. You must make your
22535 own arrangements to provide suitable library functions for
22536 cross-compilation.
22537
22538 On machines where a function returns floating-point results in the 80387
22539 register stack, some floating-point opcodes may be emitted even if
22540 @option{-msoft-float} is used.
22541
22542 @item -mno-fp-ret-in-387
22543 @opindex mno-fp-ret-in-387
22544 Do not use the FPU registers for return values of functions.
22545
22546 The usual calling convention has functions return values of types
22547 @code{float} and @code{double} in an FPU register, even if there
22548 is no FPU@. The idea is that the operating system should emulate
22549 an FPU@.
22550
22551 The option @option{-mno-fp-ret-in-387} causes such values to be returned
22552 in ordinary CPU registers instead.
22553
22554 @item -mno-fancy-math-387
22555 @opindex mno-fancy-math-387
22556 Some 387 emulators do not support the @code{sin}, @code{cos} and
22557 @code{sqrt} instructions for the 387. Specify this option to avoid
22558 generating those instructions. This option is the default on
22559 OpenBSD and NetBSD@. This option is overridden when @option{-march}
22560 indicates that the target CPU always has an FPU and so the
22561 instruction does not need emulation. These
22562 instructions are not generated unless you also use the
22563 @option{-funsafe-math-optimizations} switch.
22564
22565 @item -malign-double
22566 @itemx -mno-align-double
22567 @opindex malign-double
22568 @opindex mno-align-double
22569 Control whether GCC aligns @code{double}, @code{long double}, and
22570 @code{long long} variables on a two-word boundary or a one-word
22571 boundary. Aligning @code{double} variables on a two-word boundary
22572 produces code that runs somewhat faster on a Pentium at the
22573 expense of more memory.
22574
22575 On x86-64, @option{-malign-double} is enabled by default.
22576
22577 @strong{Warning:} if you use the @option{-malign-double} switch,
22578 structures containing the above types are aligned differently than
22579 the published application binary interface specifications for the x86-32
22580 and are not binary compatible with structures in code compiled
22581 without that switch.
22582
22583 @item -m96bit-long-double
22584 @itemx -m128bit-long-double
22585 @opindex m96bit-long-double
22586 @opindex m128bit-long-double
22587 These switches control the size of @code{long double} type. The x86-32
22588 application binary interface specifies the size to be 96 bits,
22589 so @option{-m96bit-long-double} is the default in 32-bit mode.
22590
22591 Modern architectures (Pentium and newer) prefer @code{long double}
22592 to be aligned to an 8- or 16-byte boundary. In arrays or structures
22593 conforming to the ABI, this is not possible. So specifying
22594 @option{-m128bit-long-double} aligns @code{long double}
22595 to a 16-byte boundary by padding the @code{long double} with an additional
22596 32-bit zero.
22597
22598 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22599 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22600
22601 Notice that neither of these options enable any extra precision over the x87
22602 standard of 80 bits for a @code{long double}.
22603
22604 @strong{Warning:} if you override the default value for your target ABI, this
22605 changes the size of
22606 structures and arrays containing @code{long double} variables,
22607 as well as modifying the function calling convention for functions taking
22608 @code{long double}. Hence they are not binary-compatible
22609 with code compiled without that switch.
22610
22611 @item -mlong-double-64
22612 @itemx -mlong-double-80
22613 @itemx -mlong-double-128
22614 @opindex mlong-double-64
22615 @opindex mlong-double-80
22616 @opindex mlong-double-128
22617 These switches control the size of @code{long double} type. A size
22618 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22619 type. This is the default for 32-bit Bionic C library. A size
22620 of 128 bits makes the @code{long double} type equivalent to the
22621 @code{__float128} type. This is the default for 64-bit Bionic C library.
22622
22623 @strong{Warning:} if you override the default value for your target ABI, this
22624 changes the size of
22625 structures and arrays containing @code{long double} variables,
22626 as well as modifying the function calling convention for functions taking
22627 @code{long double}. Hence they are not binary-compatible
22628 with code compiled without that switch.
22629
22630 @item -malign-data=@var{type}
22631 @opindex malign-data
22632 Control how GCC aligns variables. Supported values for @var{type} are
22633 @samp{compat} uses increased alignment value compatible uses GCC 4.8
22634 and earlier, @samp{abi} uses alignment value as specified by the
22635 psABI, and @samp{cacheline} uses increased alignment value to match
22636 the cache line size. @samp{compat} is the default.
22637
22638 @item -mlarge-data-threshold=@var{threshold}
22639 @opindex mlarge-data-threshold
22640 When @option{-mcmodel=medium} is specified, data objects larger than
22641 @var{threshold} are placed in the large data section. This value must be the
22642 same across all objects linked into the binary, and defaults to 65535.
22643
22644 @item -mrtd
22645 @opindex mrtd
22646 Use a different function-calling convention, in which functions that
22647 take a fixed number of arguments return with the @code{ret @var{num}}
22648 instruction, which pops their arguments while returning. This saves one
22649 instruction in the caller since there is no need to pop the arguments
22650 there.
22651
22652 You can specify that an individual function is called with this calling
22653 sequence with the function attribute @code{stdcall}. You can also
22654 override the @option{-mrtd} option by using the function attribute
22655 @code{cdecl}. @xref{Function Attributes}.
22656
22657 @strong{Warning:} this calling convention is incompatible with the one
22658 normally used on Unix, so you cannot use it if you need to call
22659 libraries compiled with the Unix compiler.
22660
22661 Also, you must provide function prototypes for all functions that
22662 take variable numbers of arguments (including @code{printf});
22663 otherwise incorrect code is generated for calls to those
22664 functions.
22665
22666 In addition, seriously incorrect code results if you call a
22667 function with too many arguments. (Normally, extra arguments are
22668 harmlessly ignored.)
22669
22670 @item -mregparm=@var{num}
22671 @opindex mregparm
22672 Control how many registers are used to pass integer arguments. By
22673 default, no registers are used to pass arguments, and at most 3
22674 registers can be used. You can control this behavior for a specific
22675 function by using the function attribute @code{regparm}.
22676 @xref{Function Attributes}.
22677
22678 @strong{Warning:} if you use this switch, and
22679 @var{num} is nonzero, then you must build all modules with the same
22680 value, including any libraries. This includes the system libraries and
22681 startup modules.
22682
22683 @item -msseregparm
22684 @opindex msseregparm
22685 Use SSE register passing conventions for float and double arguments
22686 and return values. You can control this behavior for a specific
22687 function by using the function attribute @code{sseregparm}.
22688 @xref{Function Attributes}.
22689
22690 @strong{Warning:} if you use this switch then you must build all
22691 modules with the same value, including any libraries. This includes
22692 the system libraries and startup modules.
22693
22694 @item -mvect8-ret-in-mem
22695 @opindex mvect8-ret-in-mem
22696 Return 8-byte vectors in memory instead of MMX registers. This is the
22697 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
22698 Studio compilers until version 12. Later compiler versions (starting
22699 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
22700 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
22701 you need to remain compatible with existing code produced by those
22702 previous compiler versions or older versions of GCC@.
22703
22704 @item -mpc32
22705 @itemx -mpc64
22706 @itemx -mpc80
22707 @opindex mpc32
22708 @opindex mpc64
22709 @opindex mpc80
22710
22711 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
22712 is specified, the significands of results of floating-point operations are
22713 rounded to 24 bits (single precision); @option{-mpc64} rounds the
22714 significands of results of floating-point operations to 53 bits (double
22715 precision) and @option{-mpc80} rounds the significands of results of
22716 floating-point operations to 64 bits (extended double precision), which is
22717 the default. When this option is used, floating-point operations in higher
22718 precisions are not available to the programmer without setting the FPU
22719 control word explicitly.
22720
22721 Setting the rounding of floating-point operations to less than the default
22722 80 bits can speed some programs by 2% or more. Note that some mathematical
22723 libraries assume that extended-precision (80-bit) floating-point operations
22724 are enabled by default; routines in such libraries could suffer significant
22725 loss of accuracy, typically through so-called ``catastrophic cancellation'',
22726 when this option is used to set the precision to less than extended precision.
22727
22728 @item -mstackrealign
22729 @opindex mstackrealign
22730 Realign the stack at entry. On the x86, the @option{-mstackrealign}
22731 option generates an alternate prologue and epilogue that realigns the
22732 run-time stack if necessary. This supports mixing legacy codes that keep
22733 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
22734 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
22735 applicable to individual functions.
22736
22737 @item -mpreferred-stack-boundary=@var{num}
22738 @opindex mpreferred-stack-boundary
22739 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22740 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
22741 the default is 4 (16 bytes or 128 bits).
22742
22743 @strong{Warning:} When generating code for the x86-64 architecture with
22744 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
22745 used to keep the stack boundary aligned to 8 byte boundary. Since
22746 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
22747 intended to be used in controlled environment where stack space is
22748 important limitation. This option leads to wrong code when functions
22749 compiled with 16 byte stack alignment (such as functions from a standard
22750 library) are called with misaligned stack. In this case, SSE
22751 instructions may lead to misaligned memory access traps. In addition,
22752 variable arguments are handled incorrectly for 16 byte aligned
22753 objects (including x87 long double and __int128), leading to wrong
22754 results. You must build all modules with
22755 @option{-mpreferred-stack-boundary=3}, including any libraries. This
22756 includes the system libraries and startup modules.
22757
22758 @item -mincoming-stack-boundary=@var{num}
22759 @opindex mincoming-stack-boundary
22760 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
22761 boundary. If @option{-mincoming-stack-boundary} is not specified,
22762 the one specified by @option{-mpreferred-stack-boundary} is used.
22763
22764 On Pentium and Pentium Pro, @code{double} and @code{long double} values
22765 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
22766 suffer significant run time performance penalties. On Pentium III, the
22767 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
22768 properly if it is not 16-byte aligned.
22769
22770 To ensure proper alignment of this values on the stack, the stack boundary
22771 must be as aligned as that required by any value stored on the stack.
22772 Further, every function must be generated such that it keeps the stack
22773 aligned. Thus calling a function compiled with a higher preferred
22774 stack boundary from a function compiled with a lower preferred stack
22775 boundary most likely misaligns the stack. It is recommended that
22776 libraries that use callbacks always use the default setting.
22777
22778 This extra alignment does consume extra stack space, and generally
22779 increases code size. Code that is sensitive to stack space usage, such
22780 as embedded systems and operating system kernels, may want to reduce the
22781 preferred alignment to @option{-mpreferred-stack-boundary=2}.
22782
22783 @need 200
22784 @item -mmmx
22785 @opindex mmmx
22786 @need 200
22787 @itemx -msse
22788 @opindex msse
22789 @need 200
22790 @itemx -msse2
22791 @need 200
22792 @itemx -msse3
22793 @need 200
22794 @itemx -mssse3
22795 @need 200
22796 @itemx -msse4
22797 @need 200
22798 @itemx -msse4a
22799 @need 200
22800 @itemx -msse4.1
22801 @need 200
22802 @itemx -msse4.2
22803 @need 200
22804 @itemx -mavx
22805 @opindex mavx
22806 @need 200
22807 @itemx -mavx2
22808 @need 200
22809 @itemx -mavx512f
22810 @need 200
22811 @itemx -mavx512pf
22812 @need 200
22813 @itemx -mavx512er
22814 @need 200
22815 @itemx -mavx512cd
22816 @need 200
22817 @itemx -msha
22818 @opindex msha
22819 @need 200
22820 @itemx -maes
22821 @opindex maes
22822 @need 200
22823 @itemx -mpclmul
22824 @opindex mpclmul
22825 @need 200
22826 @itemx -mclfushopt
22827 @opindex mclfushopt
22828 @need 200
22829 @itemx -mfsgsbase
22830 @opindex mfsgsbase
22831 @need 200
22832 @itemx -mrdrnd
22833 @opindex mrdrnd
22834 @need 200
22835 @itemx -mf16c
22836 @opindex mf16c
22837 @need 200
22838 @itemx -mfma
22839 @opindex mfma
22840 @need 200
22841 @itemx -mfma4
22842 @need 200
22843 @itemx -mno-fma4
22844 @need 200
22845 @itemx -mprefetchwt1
22846 @opindex mprefetchwt1
22847 @need 200
22848 @itemx -mxop
22849 @opindex mxop
22850 @need 200
22851 @itemx -mlwp
22852 @opindex mlwp
22853 @need 200
22854 @itemx -m3dnow
22855 @opindex m3dnow
22856 @need 200
22857 @itemx -mpopcnt
22858 @opindex mpopcnt
22859 @need 200
22860 @itemx -mabm
22861 @opindex mabm
22862 @need 200
22863 @itemx -mbmi
22864 @opindex mbmi
22865 @need 200
22866 @itemx -mbmi2
22867 @need 200
22868 @itemx -mlzcnt
22869 @opindex mlzcnt
22870 @need 200
22871 @itemx -mfxsr
22872 @opindex mfxsr
22873 @need 200
22874 @itemx -mxsave
22875 @opindex mxsave
22876 @need 200
22877 @itemx -mxsaveopt
22878 @opindex mxsaveopt
22879 @need 200
22880 @itemx -mxsavec
22881 @opindex mxsavec
22882 @need 200
22883 @itemx -mxsaves
22884 @opindex mxsaves
22885 @need 200
22886 @itemx -mrtm
22887 @opindex mrtm
22888 @need 200
22889 @itemx -mtbm
22890 @opindex mtbm
22891 @need 200
22892 @itemx -mmpx
22893 @opindex mmpx
22894 @need 200
22895 @itemx -mmwaitx
22896 @opindex mmwaitx
22897 These switches enable the use of instructions in the MMX, SSE,
22898 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
22899 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
22900 BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX or 3DNow!@:
22901 extended instruction sets. Each has a corresponding @option{-mno-} option
22902 to disable use of these instructions.
22903
22904 These extensions are also available as built-in functions: see
22905 @ref{x86 Built-in Functions}, for details of the functions enabled and
22906 disabled by these switches.
22907
22908 To generate SSE/SSE2 instructions automatically from floating-point
22909 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
22910
22911 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
22912 generates new AVX instructions or AVX equivalence for all SSEx instructions
22913 when needed.
22914
22915 These options enable GCC to use these extended instructions in
22916 generated code, even without @option{-mfpmath=sse}. Applications that
22917 perform run-time CPU detection must compile separate files for each
22918 supported architecture, using the appropriate flags. In particular,
22919 the file containing the CPU detection code should be compiled without
22920 these options.
22921
22922 @item -mdump-tune-features
22923 @opindex mdump-tune-features
22924 This option instructs GCC to dump the names of the x86 performance
22925 tuning features and default settings. The names can be used in
22926 @option{-mtune-ctrl=@var{feature-list}}.
22927
22928 @item -mtune-ctrl=@var{feature-list}
22929 @opindex mtune-ctrl=@var{feature-list}
22930 This option is used to do fine grain control of x86 code generation features.
22931 @var{feature-list} is a comma separated list of @var{feature} names. See also
22932 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
22933 on if it is not preceded with @samp{^}, otherwise, it is turned off.
22934 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
22935 developers. Using it may lead to code paths not covered by testing and can
22936 potentially result in compiler ICEs or runtime errors.
22937
22938 @item -mno-default
22939 @opindex mno-default
22940 This option instructs GCC to turn off all tunable features. See also
22941 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
22942
22943 @item -mcld
22944 @opindex mcld
22945 This option instructs GCC to emit a @code{cld} instruction in the prologue
22946 of functions that use string instructions. String instructions depend on
22947 the DF flag to select between autoincrement or autodecrement mode. While the
22948 ABI specifies the DF flag to be cleared on function entry, some operating
22949 systems violate this specification by not clearing the DF flag in their
22950 exception dispatchers. The exception handler can be invoked with the DF flag
22951 set, which leads to wrong direction mode when string instructions are used.
22952 This option can be enabled by default on 32-bit x86 targets by configuring
22953 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
22954 instructions can be suppressed with the @option{-mno-cld} compiler option
22955 in this case.
22956
22957 @item -mvzeroupper
22958 @opindex mvzeroupper
22959 This option instructs GCC to emit a @code{vzeroupper} instruction
22960 before a transfer of control flow out of the function to minimize
22961 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
22962 intrinsics.
22963
22964 @item -mprefer-avx128
22965 @opindex mprefer-avx128
22966 This option instructs GCC to use 128-bit AVX instructions instead of
22967 256-bit AVX instructions in the auto-vectorizer.
22968
22969 @item -mcx16
22970 @opindex mcx16
22971 This option enables GCC to generate @code{CMPXCHG16B} instructions.
22972 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
22973 (or oword) data types.
22974 This is useful for high-resolution counters that can be updated
22975 by multiple processors (or cores). This instruction is generated as part of
22976 atomic built-in functions: see @ref{__sync Builtins} or
22977 @ref{__atomic Builtins} for details.
22978
22979 @item -msahf
22980 @opindex msahf
22981 This option enables generation of @code{SAHF} instructions in 64-bit code.
22982 Early Intel Pentium 4 CPUs with Intel 64 support,
22983 prior to the introduction of Pentium 4 G1 step in December 2005,
22984 lacked the @code{LAHF} and @code{SAHF} instructions
22985 which are supported by AMD64.
22986 These are load and store instructions, respectively, for certain status flags.
22987 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
22988 @code{drem}, and @code{remainder} built-in functions;
22989 see @ref{Other Builtins} for details.
22990
22991 @item -mmovbe
22992 @opindex mmovbe
22993 This option enables use of the @code{movbe} instruction to implement
22994 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
22995
22996 @item -mcrc32
22997 @opindex mcrc32
22998 This option enables built-in functions @code{__builtin_ia32_crc32qi},
22999 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
23000 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
23001
23002 @item -mrecip
23003 @opindex mrecip
23004 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
23005 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
23006 with an additional Newton-Raphson step
23007 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
23008 (and their vectorized
23009 variants) for single-precision floating-point arguments. These instructions
23010 are generated only when @option{-funsafe-math-optimizations} is enabled
23011 together with @option{-finite-math-only} and @option{-fno-trapping-math}.
23012 Note that while the throughput of the sequence is higher than the throughput
23013 of the non-reciprocal instruction, the precision of the sequence can be
23014 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
23015
23016 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
23017 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
23018 combination), and doesn't need @option{-mrecip}.
23019
23020 Also note that GCC emits the above sequence with additional Newton-Raphson step
23021 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
23022 already with @option{-ffast-math} (or the above option combination), and
23023 doesn't need @option{-mrecip}.
23024
23025 @item -mrecip=@var{opt}
23026 @opindex mrecip=opt
23027 This option controls which reciprocal estimate instructions
23028 may be used. @var{opt} is a comma-separated list of options, which may
23029 be preceded by a @samp{!} to invert the option:
23030
23031 @table @samp
23032 @item all
23033 Enable all estimate instructions.
23034
23035 @item default
23036 Enable the default instructions, equivalent to @option{-mrecip}.
23037
23038 @item none
23039 Disable all estimate instructions, equivalent to @option{-mno-recip}.
23040
23041 @item div
23042 Enable the approximation for scalar division.
23043
23044 @item vec-div
23045 Enable the approximation for vectorized division.
23046
23047 @item sqrt
23048 Enable the approximation for scalar square root.
23049
23050 @item vec-sqrt
23051 Enable the approximation for vectorized square root.
23052 @end table
23053
23054 So, for example, @option{-mrecip=all,!sqrt} enables
23055 all of the reciprocal approximations, except for square root.
23056
23057 @item -mveclibabi=@var{type}
23058 @opindex mveclibabi
23059 Specifies the ABI type to use for vectorizing intrinsics using an
23060 external library. Supported values for @var{type} are @samp{svml}
23061 for the Intel short
23062 vector math library and @samp{acml} for the AMD math core library.
23063 To use this option, both @option{-ftree-vectorize} and
23064 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
23065 ABI-compatible library must be specified at link time.
23066
23067 GCC currently emits calls to @code{vmldExp2},
23068 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
23069 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
23070 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
23071 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
23072 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
23073 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
23074 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
23075 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
23076 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
23077 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
23078 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
23079 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
23080 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
23081 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
23082 when @option{-mveclibabi=acml} is used.
23083
23084 @item -mabi=@var{name}
23085 @opindex mabi
23086 Generate code for the specified calling convention. Permissible values
23087 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
23088 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
23089 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
23090 You can control this behavior for specific functions by
23091 using the function attributes @code{ms_abi} and @code{sysv_abi}.
23092 @xref{Function Attributes}.
23093
23094 @item -mtls-dialect=@var{type}
23095 @opindex mtls-dialect
23096 Generate code to access thread-local storage using the @samp{gnu} or
23097 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
23098 @samp{gnu2} is more efficient, but it may add compile- and run-time
23099 requirements that cannot be satisfied on all systems.
23100
23101 @item -mpush-args
23102 @itemx -mno-push-args
23103 @opindex mpush-args
23104 @opindex mno-push-args
23105 Use PUSH operations to store outgoing parameters. This method is shorter
23106 and usually equally fast as method using SUB/MOV operations and is enabled
23107 by default. In some cases disabling it may improve performance because of
23108 improved scheduling and reduced dependencies.
23109
23110 @item -maccumulate-outgoing-args
23111 @opindex maccumulate-outgoing-args
23112 If enabled, the maximum amount of space required for outgoing arguments is
23113 computed in the function prologue. This is faster on most modern CPUs
23114 because of reduced dependencies, improved scheduling and reduced stack usage
23115 when the preferred stack boundary is not equal to 2. The drawback is a notable
23116 increase in code size. This switch implies @option{-mno-push-args}.
23117
23118 @item -mthreads
23119 @opindex mthreads
23120 Support thread-safe exception handling on MinGW. Programs that rely
23121 on thread-safe exception handling must compile and link all code with the
23122 @option{-mthreads} option. When compiling, @option{-mthreads} defines
23123 @option{-D_MT}; when linking, it links in a special thread helper library
23124 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
23125
23126 @item -mno-align-stringops
23127 @opindex mno-align-stringops
23128 Do not align the destination of inlined string operations. This switch reduces
23129 code size and improves performance in case the destination is already aligned,
23130 but GCC doesn't know about it.
23131
23132 @item -minline-all-stringops
23133 @opindex minline-all-stringops
23134 By default GCC inlines string operations only when the destination is
23135 known to be aligned to least a 4-byte boundary.
23136 This enables more inlining and increases code
23137 size, but may improve performance of code that depends on fast
23138 @code{memcpy}, @code{strlen},
23139 and @code{memset} for short lengths.
23140
23141 @item -minline-stringops-dynamically
23142 @opindex minline-stringops-dynamically
23143 For string operations of unknown size, use run-time checks with
23144 inline code for small blocks and a library call for large blocks.
23145
23146 @item -mstringop-strategy=@var{alg}
23147 @opindex mstringop-strategy=@var{alg}
23148 Override the internal decision heuristic for the particular algorithm to use
23149 for inlining string operations. The allowed values for @var{alg} are:
23150
23151 @table @samp
23152 @item rep_byte
23153 @itemx rep_4byte
23154 @itemx rep_8byte
23155 Expand using i386 @code{rep} prefix of the specified size.
23156
23157 @item byte_loop
23158 @itemx loop
23159 @itemx unrolled_loop
23160 Expand into an inline loop.
23161
23162 @item libcall
23163 Always use a library call.
23164 @end table
23165
23166 @item -mmemcpy-strategy=@var{strategy}
23167 @opindex mmemcpy-strategy=@var{strategy}
23168 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
23169 should be inlined and what inline algorithm to use when the expected size
23170 of the copy operation is known. @var{strategy}
23171 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
23172 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
23173 the max byte size with which inline algorithm @var{alg} is allowed. For the last
23174 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
23175 in the list must be specified in increasing order. The minimal byte size for
23176 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
23177 preceding range.
23178
23179 @item -mmemset-strategy=@var{strategy}
23180 @opindex mmemset-strategy=@var{strategy}
23181 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
23182 @code{__builtin_memset} expansion.
23183
23184 @item -momit-leaf-frame-pointer
23185 @opindex momit-leaf-frame-pointer
23186 Don't keep the frame pointer in a register for leaf functions. This
23187 avoids the instructions to save, set up, and restore frame pointers and
23188 makes an extra register available in leaf functions. The option
23189 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
23190 which might make debugging harder.
23191
23192 @item -mtls-direct-seg-refs
23193 @itemx -mno-tls-direct-seg-refs
23194 @opindex mtls-direct-seg-refs
23195 Controls whether TLS variables may be accessed with offsets from the
23196 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
23197 or whether the thread base pointer must be added. Whether or not this
23198 is valid depends on the operating system, and whether it maps the
23199 segment to cover the entire TLS area.
23200
23201 For systems that use the GNU C Library, the default is on.
23202
23203 @item -msse2avx
23204 @itemx -mno-sse2avx
23205 @opindex msse2avx
23206 Specify that the assembler should encode SSE instructions with VEX
23207 prefix. The option @option{-mavx} turns this on by default.
23208
23209 @item -mfentry
23210 @itemx -mno-fentry
23211 @opindex mfentry
23212 If profiling is active (@option{-pg}), put the profiling
23213 counter call before the prologue.
23214 Note: On x86 architectures the attribute @code{ms_hook_prologue}
23215 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23216
23217 @item -mrecord-mcount
23218 @itemx -mno-record-mcount
23219 @opindex mrecord-mcount
23220 If profiling is active (@option{-pg}), generate a __mcount_loc section
23221 that contains pointers to each profiling call. This is useful for
23222 automatically patching and out calls.
23223
23224 @item -mnop-mcount
23225 @itemx -mno-nop-mcount
23226 @opindex mnop-mcount
23227 If profiling is active (@option{-pg}), generate the calls to
23228 the profiling functions as nops. This is useful when they
23229 should be patched in later dynamically. This is likely only
23230 useful together with @option{-mrecord-mcount}.
23231
23232 @item -mskip-rax-setup
23233 @itemx -mno-skip-rax-setup
23234 @opindex mskip-rax-setup
23235 When generating code for the x86-64 architecture with SSE extensions
23236 disabled, @option{-skip-rax-setup} can be used to skip setting up RAX
23237 register when there are no variable arguments passed in vector registers.
23238
23239 @strong{Warning:} Since RAX register is used to avoid unnecessarily
23240 saving vector registers on stack when passing variable arguments, the
23241 impacts of this option are callees may waste some stack space,
23242 misbehave or jump to a random location. GCC 4.4 or newer don't have
23243 those issues, regardless the RAX register value.
23244
23245 @item -m8bit-idiv
23246 @itemx -mno-8bit-idiv
23247 @opindex m8bit-idiv
23248 On some processors, like Intel Atom, 8-bit unsigned integer divide is
23249 much faster than 32-bit/64-bit integer divide. This option generates a
23250 run-time check. If both dividend and divisor are within range of 0
23251 to 255, 8-bit unsigned integer divide is used instead of
23252 32-bit/64-bit integer divide.
23253
23254 @item -mavx256-split-unaligned-load
23255 @itemx -mavx256-split-unaligned-store
23256 @opindex mavx256-split-unaligned-load
23257 @opindex mavx256-split-unaligned-store
23258 Split 32-byte AVX unaligned load and store.
23259
23260 @item -mstack-protector-guard=@var{guard}
23261 @opindex mstack-protector-guard=@var{guard}
23262 Generate stack protection code using canary at @var{guard}. Supported
23263 locations are @samp{global} for global canary or @samp{tls} for per-thread
23264 canary in the TLS block (the default). This option has effect only when
23265 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23266
23267 @end table
23268
23269 These @samp{-m} switches are supported in addition to the above
23270 on x86-64 processors in 64-bit environments.
23271
23272 @table @gcctabopt
23273 @item -m32
23274 @itemx -m64
23275 @itemx -mx32
23276 @itemx -m16
23277 @itemx -miamcu
23278 @opindex m32
23279 @opindex m64
23280 @opindex mx32
23281 @opindex m16
23282 @opindex miamcu
23283 Generate code for a 16-bit, 32-bit or 64-bit environment.
23284 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23285 to 32 bits, and
23286 generates code that runs on any i386 system.
23287
23288 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23289 types to 64 bits, and generates code for the x86-64 architecture.
23290 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23291 and @option{-mdynamic-no-pic} options.
23292
23293 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23294 to 32 bits, and
23295 generates code for the x86-64 architecture.
23296
23297 The @option{-m16} option is the same as @option{-m32}, except for that
23298 it outputs the @code{.code16gcc} assembly directive at the beginning of
23299 the assembly output so that the binary can run in 16-bit mode.
23300
23301 The @option{-miamcu} option generates code which conforms to Intel MCU
23302 psABI. It requires the @option{-m32} option to be turned on.
23303
23304 @item -mno-red-zone
23305 @opindex mno-red-zone
23306 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
23307 by the x86-64 ABI; it is a 128-byte area beyond the location of the
23308 stack pointer that is not modified by signal or interrupt handlers
23309 and therefore can be used for temporary data without adjusting the stack
23310 pointer. The flag @option{-mno-red-zone} disables this red zone.
23311
23312 @item -mcmodel=small
23313 @opindex mcmodel=small
23314 Generate code for the small code model: the program and its symbols must
23315 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
23316 Programs can be statically or dynamically linked. This is the default
23317 code model.
23318
23319 @item -mcmodel=kernel
23320 @opindex mcmodel=kernel
23321 Generate code for the kernel code model. The kernel runs in the
23322 negative 2 GB of the address space.
23323 This model has to be used for Linux kernel code.
23324
23325 @item -mcmodel=medium
23326 @opindex mcmodel=medium
23327 Generate code for the medium model: the program is linked in the lower 2
23328 GB of the address space. Small symbols are also placed there. Symbols
23329 with sizes larger than @option{-mlarge-data-threshold} are put into
23330 large data or BSS sections and can be located above 2GB. Programs can
23331 be statically or dynamically linked.
23332
23333 @item -mcmodel=large
23334 @opindex mcmodel=large
23335 Generate code for the large model. This model makes no assumptions
23336 about addresses and sizes of sections.
23337
23338 @item -maddress-mode=long
23339 @opindex maddress-mode=long
23340 Generate code for long address mode. This is only supported for 64-bit
23341 and x32 environments. It is the default address mode for 64-bit
23342 environments.
23343
23344 @item -maddress-mode=short
23345 @opindex maddress-mode=short
23346 Generate code for short address mode. This is only supported for 32-bit
23347 and x32 environments. It is the default address mode for 32-bit and
23348 x32 environments.
23349 @end table
23350
23351 @node x86 Windows Options
23352 @subsection x86 Windows Options
23353 @cindex x86 Windows Options
23354 @cindex Windows Options for x86
23355
23356 These additional options are available for Microsoft Windows targets:
23357
23358 @table @gcctabopt
23359 @item -mconsole
23360 @opindex mconsole
23361 This option
23362 specifies that a console application is to be generated, by
23363 instructing the linker to set the PE header subsystem type
23364 required for console applications.
23365 This option is available for Cygwin and MinGW targets and is
23366 enabled by default on those targets.
23367
23368 @item -mdll
23369 @opindex mdll
23370 This option is available for Cygwin and MinGW targets. It
23371 specifies that a DLL---a dynamic link library---is to be
23372 generated, enabling the selection of the required runtime
23373 startup object and entry point.
23374
23375 @item -mnop-fun-dllimport
23376 @opindex mnop-fun-dllimport
23377 This option is available for Cygwin and MinGW targets. It
23378 specifies that the @code{dllimport} attribute should be ignored.
23379
23380 @item -mthread
23381 @opindex mthread
23382 This option is available for MinGW targets. It specifies
23383 that MinGW-specific thread support is to be used.
23384
23385 @item -municode
23386 @opindex municode
23387 This option is available for MinGW-w64 targets. It causes
23388 the @code{UNICODE} preprocessor macro to be predefined, and
23389 chooses Unicode-capable runtime startup code.
23390
23391 @item -mwin32
23392 @opindex mwin32
23393 This option is available for Cygwin and MinGW targets. It
23394 specifies that the typical Microsoft Windows predefined macros are to
23395 be set in the pre-processor, but does not influence the choice
23396 of runtime library/startup code.
23397
23398 @item -mwindows
23399 @opindex mwindows
23400 This option is available for Cygwin and MinGW targets. It
23401 specifies that a GUI application is to be generated by
23402 instructing the linker to set the PE header subsystem type
23403 appropriately.
23404
23405 @item -fno-set-stack-executable
23406 @opindex fno-set-stack-executable
23407 This option is available for MinGW targets. It specifies that
23408 the executable flag for the stack used by nested functions isn't
23409 set. This is necessary for binaries running in kernel mode of
23410 Microsoft Windows, as there the User32 API, which is used to set executable
23411 privileges, isn't available.
23412
23413 @item -fwritable-relocated-rdata
23414 @opindex fno-writable-relocated-rdata
23415 This option is available for MinGW and Cygwin targets. It specifies
23416 that relocated-data in read-only section is put into .data
23417 section. This is a necessary for older runtimes not supporting
23418 modification of .rdata sections for pseudo-relocation.
23419
23420 @item -mpe-aligned-commons
23421 @opindex mpe-aligned-commons
23422 This option is available for Cygwin and MinGW targets. It
23423 specifies that the GNU extension to the PE file format that
23424 permits the correct alignment of COMMON variables should be
23425 used when generating code. It is enabled by default if
23426 GCC detects that the target assembler found during configuration
23427 supports the feature.
23428 @end table
23429
23430 See also under @ref{x86 Options} for standard options.
23431
23432 @node Xstormy16 Options
23433 @subsection Xstormy16 Options
23434 @cindex Xstormy16 Options
23435
23436 These options are defined for Xstormy16:
23437
23438 @table @gcctabopt
23439 @item -msim
23440 @opindex msim
23441 Choose startup files and linker script suitable for the simulator.
23442 @end table
23443
23444 @node Xtensa Options
23445 @subsection Xtensa Options
23446 @cindex Xtensa Options
23447
23448 These options are supported for Xtensa targets:
23449
23450 @table @gcctabopt
23451 @item -mconst16
23452 @itemx -mno-const16
23453 @opindex mconst16
23454 @opindex mno-const16
23455 Enable or disable use of @code{CONST16} instructions for loading
23456 constant values. The @code{CONST16} instruction is currently not a
23457 standard option from Tensilica. When enabled, @code{CONST16}
23458 instructions are always used in place of the standard @code{L32R}
23459 instructions. The use of @code{CONST16} is enabled by default only if
23460 the @code{L32R} instruction is not available.
23461
23462 @item -mfused-madd
23463 @itemx -mno-fused-madd
23464 @opindex mfused-madd
23465 @opindex mno-fused-madd
23466 Enable or disable use of fused multiply/add and multiply/subtract
23467 instructions in the floating-point option. This has no effect if the
23468 floating-point option is not also enabled. Disabling fused multiply/add
23469 and multiply/subtract instructions forces the compiler to use separate
23470 instructions for the multiply and add/subtract operations. This may be
23471 desirable in some cases where strict IEEE 754-compliant results are
23472 required: the fused multiply add/subtract instructions do not round the
23473 intermediate result, thereby producing results with @emph{more} bits of
23474 precision than specified by the IEEE standard. Disabling fused multiply
23475 add/subtract instructions also ensures that the program output is not
23476 sensitive to the compiler's ability to combine multiply and add/subtract
23477 operations.
23478
23479 @item -mserialize-volatile
23480 @itemx -mno-serialize-volatile
23481 @opindex mserialize-volatile
23482 @opindex mno-serialize-volatile
23483 When this option is enabled, GCC inserts @code{MEMW} instructions before
23484 @code{volatile} memory references to guarantee sequential consistency.
23485 The default is @option{-mserialize-volatile}. Use
23486 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
23487
23488 @item -mforce-no-pic
23489 @opindex mforce-no-pic
23490 For targets, like GNU/Linux, where all user-mode Xtensa code must be
23491 position-independent code (PIC), this option disables PIC for compiling
23492 kernel code.
23493
23494 @item -mtext-section-literals
23495 @itemx -mno-text-section-literals
23496 @opindex mtext-section-literals
23497 @opindex mno-text-section-literals
23498 These options control the treatment of literal pools. The default is
23499 @option{-mno-text-section-literals}, which places literals in a separate
23500 section in the output file. This allows the literal pool to be placed
23501 in a data RAM/ROM, and it also allows the linker to combine literal
23502 pools from separate object files to remove redundant literals and
23503 improve code size. With @option{-mtext-section-literals}, the literals
23504 are interspersed in the text section in order to keep them as close as
23505 possible to their references. This may be necessary for large assembly
23506 files. Literals for each function are placed right before that function.
23507
23508 @item -mauto-litpools
23509 @itemx -mno-auto-litpools
23510 @opindex mauto-litpools
23511 @opindex mno-auto-litpools
23512 These options control the treatment of literal pools. The default is
23513 @option{-mno-auto-litpools}, which places literals in a separate
23514 section in the output file unless @option{-mtext-section-literals} is
23515 used. With @option{-mauto-litpools} the literals are interspersed in
23516 the text section by the assembler. Compiler does not produce explicit
23517 @code{.literal} directives and loads literals into registers with
23518 @code{MOVI} instructions instead of @code{L32R} to let the assembler
23519 do relaxation and place literals as necessary. This option allows
23520 assembler to create several literal pools per function and assemble
23521 very big functions, which may not be possible with
23522 @option{-mtext-section-literals}.
23523
23524 @item -mtarget-align
23525 @itemx -mno-target-align
23526 @opindex mtarget-align
23527 @opindex mno-target-align
23528 When this option is enabled, GCC instructs the assembler to
23529 automatically align instructions to reduce branch penalties at the
23530 expense of some code density. The assembler attempts to widen density
23531 instructions to align branch targets and the instructions following call
23532 instructions. If there are not enough preceding safe density
23533 instructions to align a target, no widening is performed. The
23534 default is @option{-mtarget-align}. These options do not affect the
23535 treatment of auto-aligned instructions like @code{LOOP}, which the
23536 assembler always aligns, either by widening density instructions or
23537 by inserting NOP instructions.
23538
23539 @item -mlongcalls
23540 @itemx -mno-longcalls
23541 @opindex mlongcalls
23542 @opindex mno-longcalls
23543 When this option is enabled, GCC instructs the assembler to translate
23544 direct calls to indirect calls unless it can determine that the target
23545 of a direct call is in the range allowed by the call instruction. This
23546 translation typically occurs for calls to functions in other source
23547 files. Specifically, the assembler translates a direct @code{CALL}
23548 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
23549 The default is @option{-mno-longcalls}. This option should be used in
23550 programs where the call target can potentially be out of range. This
23551 option is implemented in the assembler, not the compiler, so the
23552 assembly code generated by GCC still shows direct call
23553 instructions---look at the disassembled object code to see the actual
23554 instructions. Note that the assembler uses an indirect call for
23555 every cross-file call, not just those that really are out of range.
23556 @end table
23557
23558 @node zSeries Options
23559 @subsection zSeries Options
23560 @cindex zSeries options
23561
23562 These are listed under @xref{S/390 and zSeries Options}.
23563
23564 @node Code Gen Options
23565 @section Options for Code Generation Conventions
23566 @cindex code generation conventions
23567 @cindex options, code generation
23568 @cindex run-time options
23569
23570 These machine-independent options control the interface conventions
23571 used in code generation.
23572
23573 Most of them have both positive and negative forms; the negative form
23574 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
23575 one of the forms is listed---the one that is not the default. You
23576 can figure out the other form by either removing @samp{no-} or adding
23577 it.
23578
23579 @table @gcctabopt
23580 @item -fbounds-check
23581 @opindex fbounds-check
23582 For front ends that support it, generate additional code to check that
23583 indices used to access arrays are within the declared range. This is
23584 currently only supported by the Java and Fortran front ends, where
23585 this option defaults to true and false respectively.
23586
23587 @item -fstack-reuse=@var{reuse-level}
23588 @opindex fstack_reuse
23589 This option controls stack space reuse for user declared local/auto variables
23590 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
23591 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
23592 local variables and temporaries, @samp{named_vars} enables the reuse only for
23593 user defined local variables with names, and @samp{none} disables stack reuse
23594 completely. The default value is @samp{all}. The option is needed when the
23595 program extends the lifetime of a scoped local variable or a compiler generated
23596 temporary beyond the end point defined by the language. When a lifetime of
23597 a variable ends, and if the variable lives in memory, the optimizing compiler
23598 has the freedom to reuse its stack space with other temporaries or scoped
23599 local variables whose live range does not overlap with it. Legacy code extending
23600 local lifetime is likely to break with the stack reuse optimization.
23601
23602 For example,
23603
23604 @smallexample
23605 int *p;
23606 @{
23607 int local1;
23608
23609 p = &local1;
23610 local1 = 10;
23611 ....
23612 @}
23613 @{
23614 int local2;
23615 local2 = 20;
23616 ...
23617 @}
23618
23619 if (*p == 10) // out of scope use of local1
23620 @{
23621
23622 @}
23623 @end smallexample
23624
23625 Another example:
23626 @smallexample
23627
23628 struct A
23629 @{
23630 A(int k) : i(k), j(k) @{ @}
23631 int i;
23632 int j;
23633 @};
23634
23635 A *ap;
23636
23637 void foo(const A& ar)
23638 @{
23639 ap = &ar;
23640 @}
23641
23642 void bar()
23643 @{
23644 foo(A(10)); // temp object's lifetime ends when foo returns
23645
23646 @{
23647 A a(20);
23648 ....
23649 @}
23650 ap->i+= 10; // ap references out of scope temp whose space
23651 // is reused with a. What is the value of ap->i?
23652 @}
23653
23654 @end smallexample
23655
23656 The lifetime of a compiler generated temporary is well defined by the C++
23657 standard. When a lifetime of a temporary ends, and if the temporary lives
23658 in memory, the optimizing compiler has the freedom to reuse its stack
23659 space with other temporaries or scoped local variables whose live range
23660 does not overlap with it. However some of the legacy code relies on
23661 the behavior of older compilers in which temporaries' stack space is
23662 not reused, the aggressive stack reuse can lead to runtime errors. This
23663 option is used to control the temporary stack reuse optimization.
23664
23665 @item -ftrapv
23666 @opindex ftrapv
23667 This option generates traps for signed overflow on addition, subtraction,
23668 multiplication operations.
23669 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
23670 @option{-ftrapv} @option{-fwrapv} on the command-line results in
23671 @option{-fwrapv} being effective. Note that only active options override, so
23672 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
23673 results in @option{-ftrapv} being effective.
23674
23675 @item -fwrapv
23676 @opindex fwrapv
23677 This option instructs the compiler to assume that signed arithmetic
23678 overflow of addition, subtraction and multiplication wraps around
23679 using twos-complement representation. This flag enables some optimizations
23680 and disables others. This option is enabled by default for the Java
23681 front end, as required by the Java language specification.
23682 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
23683 @option{-ftrapv} @option{-fwrapv} on the command-line results in
23684 @option{-fwrapv} being effective. Note that only active options override, so
23685 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
23686 results in @option{-ftrapv} being effective.
23687
23688 @item -fexceptions
23689 @opindex fexceptions
23690 Enable exception handling. Generates extra code needed to propagate
23691 exceptions. For some targets, this implies GCC generates frame
23692 unwind information for all functions, which can produce significant data
23693 size overhead, although it does not affect execution. If you do not
23694 specify this option, GCC enables it by default for languages like
23695 C++ that normally require exception handling, and disables it for
23696 languages like C that do not normally require it. However, you may need
23697 to enable this option when compiling C code that needs to interoperate
23698 properly with exception handlers written in C++. You may also wish to
23699 disable this option if you are compiling older C++ programs that don't
23700 use exception handling.
23701
23702 @item -fnon-call-exceptions
23703 @opindex fnon-call-exceptions
23704 Generate code that allows trapping instructions to throw exceptions.
23705 Note that this requires platform-specific runtime support that does
23706 not exist everywhere. Moreover, it only allows @emph{trapping}
23707 instructions to throw exceptions, i.e.@: memory references or floating-point
23708 instructions. It does not allow exceptions to be thrown from
23709 arbitrary signal handlers such as @code{SIGALRM}.
23710
23711 @item -fdelete-dead-exceptions
23712 @opindex fdelete-dead-exceptions
23713 Consider that instructions that may throw exceptions but don't otherwise
23714 contribute to the execution of the program can be optimized away.
23715 This option is enabled by default for the Ada front end, as permitted by
23716 the Ada language specification.
23717 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
23718
23719 @item -funwind-tables
23720 @opindex funwind-tables
23721 Similar to @option{-fexceptions}, except that it just generates any needed
23722 static data, but does not affect the generated code in any other way.
23723 You normally do not need to enable this option; instead, a language processor
23724 that needs this handling enables it on your behalf.
23725
23726 @item -fasynchronous-unwind-tables
23727 @opindex fasynchronous-unwind-tables
23728 Generate unwind table in DWARF 2 format, if supported by target machine. The
23729 table is exact at each instruction boundary, so it can be used for stack
23730 unwinding from asynchronous events (such as debugger or garbage collector).
23731
23732 @item -fno-gnu-unique
23733 @opindex fno-gnu-unique
23734 On systems with recent GNU assembler and C library, the C++ compiler
23735 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
23736 of template static data members and static local variables in inline
23737 functions are unique even in the presence of @code{RTLD_LOCAL}; this
23738 is necessary to avoid problems with a library used by two different
23739 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
23740 therefore disagreeing with the other one about the binding of the
23741 symbol. But this causes @code{dlclose} to be ignored for affected
23742 DSOs; if your program relies on reinitialization of a DSO via
23743 @code{dlclose} and @code{dlopen}, you can use
23744 @option{-fno-gnu-unique}.
23745
23746 @item -fpcc-struct-return
23747 @opindex fpcc-struct-return
23748 Return ``short'' @code{struct} and @code{union} values in memory like
23749 longer ones, rather than in registers. This convention is less
23750 efficient, but it has the advantage of allowing intercallability between
23751 GCC-compiled files and files compiled with other compilers, particularly
23752 the Portable C Compiler (pcc).
23753
23754 The precise convention for returning structures in memory depends
23755 on the target configuration macros.
23756
23757 Short structures and unions are those whose size and alignment match
23758 that of some integer type.
23759
23760 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
23761 switch is not binary compatible with code compiled with the
23762 @option{-freg-struct-return} switch.
23763 Use it to conform to a non-default application binary interface.
23764
23765 @item -freg-struct-return
23766 @opindex freg-struct-return
23767 Return @code{struct} and @code{union} values in registers when possible.
23768 This is more efficient for small structures than
23769 @option{-fpcc-struct-return}.
23770
23771 If you specify neither @option{-fpcc-struct-return} nor
23772 @option{-freg-struct-return}, GCC defaults to whichever convention is
23773 standard for the target. If there is no standard convention, GCC
23774 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
23775 the principal compiler. In those cases, we can choose the standard, and
23776 we chose the more efficient register return alternative.
23777
23778 @strong{Warning:} code compiled with the @option{-freg-struct-return}
23779 switch is not binary compatible with code compiled with the
23780 @option{-fpcc-struct-return} switch.
23781 Use it to conform to a non-default application binary interface.
23782
23783 @item -fshort-enums
23784 @opindex fshort-enums
23785 Allocate to an @code{enum} type only as many bytes as it needs for the
23786 declared range of possible values. Specifically, the @code{enum} type
23787 is equivalent to the smallest integer type that has enough room.
23788
23789 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
23790 code that is not binary compatible with code generated without that switch.
23791 Use it to conform to a non-default application binary interface.
23792
23793 @item -fshort-double
23794 @opindex fshort-double
23795 Use the same size for @code{double} as for @code{float}.
23796
23797 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
23798 code that is not binary compatible with code generated without that switch.
23799 Use it to conform to a non-default application binary interface.
23800
23801 @item -fshort-wchar
23802 @opindex fshort-wchar
23803 Override the underlying type for @code{wchar_t} to be @code{short
23804 unsigned int} instead of the default for the target. This option is
23805 useful for building programs to run under WINE@.
23806
23807 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
23808 code that is not binary compatible with code generated without that switch.
23809 Use it to conform to a non-default application binary interface.
23810
23811 @item -fno-common
23812 @opindex fno-common
23813 In C code, controls the placement of uninitialized global variables.
23814 Unix C compilers have traditionally permitted multiple definitions of
23815 such variables in different compilation units by placing the variables
23816 in a common block.
23817 This is the behavior specified by @option{-fcommon}, and is the default
23818 for GCC on most targets.
23819 On the other hand, this behavior is not required by ISO C, and on some
23820 targets may carry a speed or code size penalty on variable references.
23821 The @option{-fno-common} option specifies that the compiler should place
23822 uninitialized global variables in the data section of the object file,
23823 rather than generating them as common blocks.
23824 This has the effect that if the same variable is declared
23825 (without @code{extern}) in two different compilations,
23826 you get a multiple-definition error when you link them.
23827 In this case, you must compile with @option{-fcommon} instead.
23828 Compiling with @option{-fno-common} is useful on targets for which
23829 it provides better performance, or if you wish to verify that the
23830 program will work on other systems that always treat uninitialized
23831 variable declarations this way.
23832
23833 @item -fno-ident
23834 @opindex fno-ident
23835 Ignore the @code{#ident} directive.
23836
23837 @item -finhibit-size-directive
23838 @opindex finhibit-size-directive
23839 Don't output a @code{.size} assembler directive, or anything else that
23840 would cause trouble if the function is split in the middle, and the
23841 two halves are placed at locations far apart in memory. This option is
23842 used when compiling @file{crtstuff.c}; you should not need to use it
23843 for anything else.
23844
23845 @item -fverbose-asm
23846 @opindex fverbose-asm
23847 Put extra commentary information in the generated assembly code to
23848 make it more readable. This option is generally only of use to those
23849 who actually need to read the generated assembly code (perhaps while
23850 debugging the compiler itself).
23851
23852 @option{-fno-verbose-asm}, the default, causes the
23853 extra information to be omitted and is useful when comparing two assembler
23854 files.
23855
23856 @item -frecord-gcc-switches
23857 @opindex frecord-gcc-switches
23858 This switch causes the command line used to invoke the
23859 compiler to be recorded into the object file that is being created.
23860 This switch is only implemented on some targets and the exact format
23861 of the recording is target and binary file format dependent, but it
23862 usually takes the form of a section containing ASCII text. This
23863 switch is related to the @option{-fverbose-asm} switch, but that
23864 switch only records information in the assembler output file as
23865 comments, so it never reaches the object file.
23866 See also @option{-grecord-gcc-switches} for another
23867 way of storing compiler options into the object file.
23868
23869 @item -fpic
23870 @opindex fpic
23871 @cindex global offset table
23872 @cindex PIC
23873 Generate position-independent code (PIC) suitable for use in a shared
23874 library, if supported for the target machine. Such code accesses all
23875 constant addresses through a global offset table (GOT)@. The dynamic
23876 loader resolves the GOT entries when the program starts (the dynamic
23877 loader is not part of GCC; it is part of the operating system). If
23878 the GOT size for the linked executable exceeds a machine-specific
23879 maximum size, you get an error message from the linker indicating that
23880 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
23881 instead. (These maximums are 8k on the SPARC and 32k
23882 on the m68k and RS/6000. The x86 has no such limit.)
23883
23884 Position-independent code requires special support, and therefore works
23885 only on certain machines. For the x86, GCC supports PIC for System V
23886 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
23887 position-independent.
23888
23889 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23890 are defined to 1.
23891
23892 @item -fPIC
23893 @opindex fPIC
23894 If supported for the target machine, emit position-independent code,
23895 suitable for dynamic linking and avoiding any limit on the size of the
23896 global offset table. This option makes a difference on the m68k,
23897 PowerPC and SPARC@.
23898
23899 Position-independent code requires special support, and therefore works
23900 only on certain machines.
23901
23902 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23903 are defined to 2.
23904
23905 @item -fpie
23906 @itemx -fPIE
23907 @opindex fpie
23908 @opindex fPIE
23909 These options are similar to @option{-fpic} and @option{-fPIC}, but
23910 generated position independent code can be only linked into executables.
23911 Usually these options are used when @option{-pie} GCC option is
23912 used during linking.
23913
23914 @option{-fpie} and @option{-fPIE} both define the macros
23915 @code{__pie__} and @code{__PIE__}. The macros have the value 1
23916 for @option{-fpie} and 2 for @option{-fPIE}.
23917
23918 @item -fno-plt
23919 @opindex fno-plt
23920 Do not use PLT for external function calls in position-independent code.
23921 Instead, load callee address at call site from GOT and branch to it.
23922 This leads to more efficient code by eliminating PLT stubs and exposing
23923 GOT load to optimizations. On architectures such as 32-bit x86 where
23924 PLT stubs expect GOT pointer in a specific register, this gives more
23925 register allocation freedom to the compiler. Lazy binding requires PLT:
23926 with @option{-fno-plt} all external symbols are resolved at load time.
23927
23928 Alternatively, function attribute @code{noplt} can be used to avoid PLT
23929 for calls to specific external functions by marking those functions with
23930 this attribute.
23931
23932 Additionally, a few targets also convert calls to those functions that are
23933 marked to not use the PLT to use the GOT instead for non-position independent
23934 code.
23935
23936 @item -fno-jump-tables
23937 @opindex fno-jump-tables
23938 Do not use jump tables for switch statements even where it would be
23939 more efficient than other code generation strategies. This option is
23940 of use in conjunction with @option{-fpic} or @option{-fPIC} for
23941 building code that forms part of a dynamic linker and cannot
23942 reference the address of a jump table. On some targets, jump tables
23943 do not require a GOT and this option is not needed.
23944
23945 @item -ffixed-@var{reg}
23946 @opindex ffixed
23947 Treat the register named @var{reg} as a fixed register; generated code
23948 should never refer to it (except perhaps as a stack pointer, frame
23949 pointer or in some other fixed role).
23950
23951 @var{reg} must be the name of a register. The register names accepted
23952 are machine-specific and are defined in the @code{REGISTER_NAMES}
23953 macro in the machine description macro file.
23954
23955 This flag does not have a negative form, because it specifies a
23956 three-way choice.
23957
23958 @item -fcall-used-@var{reg}
23959 @opindex fcall-used
23960 Treat the register named @var{reg} as an allocable register that is
23961 clobbered by function calls. It may be allocated for temporaries or
23962 variables that do not live across a call. Functions compiled this way
23963 do not save and restore the register @var{reg}.
23964
23965 It is an error to use this flag with the frame pointer or stack pointer.
23966 Use of this flag for other registers that have fixed pervasive roles in
23967 the machine's execution model produces disastrous results.
23968
23969 This flag does not have a negative form, because it specifies a
23970 three-way choice.
23971
23972 @item -fcall-saved-@var{reg}
23973 @opindex fcall-saved
23974 Treat the register named @var{reg} as an allocable register saved by
23975 functions. It may be allocated even for temporaries or variables that
23976 live across a call. Functions compiled this way save and restore
23977 the register @var{reg} if they use it.
23978
23979 It is an error to use this flag with the frame pointer or stack pointer.
23980 Use of this flag for other registers that have fixed pervasive roles in
23981 the machine's execution model produces disastrous results.
23982
23983 A different sort of disaster results from the use of this flag for
23984 a register in which function values may be returned.
23985
23986 This flag does not have a negative form, because it specifies a
23987 three-way choice.
23988
23989 @item -fpack-struct[=@var{n}]
23990 @opindex fpack-struct
23991 Without a value specified, pack all structure members together without
23992 holes. When a value is specified (which must be a small power of two), pack
23993 structure members according to this value, representing the maximum
23994 alignment (that is, objects with default alignment requirements larger than
23995 this are output potentially unaligned at the next fitting location.
23996
23997 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
23998 code that is not binary compatible with code generated without that switch.
23999 Additionally, it makes the code suboptimal.
24000 Use it to conform to a non-default application binary interface.
24001
24002 @item -finstrument-functions
24003 @opindex finstrument-functions
24004 Generate instrumentation calls for entry and exit to functions. Just
24005 after function entry and just before function exit, the following
24006 profiling functions are called with the address of the current
24007 function and its call site. (On some platforms,
24008 @code{__builtin_return_address} does not work beyond the current
24009 function, so the call site information may not be available to the
24010 profiling functions otherwise.)
24011
24012 @smallexample
24013 void __cyg_profile_func_enter (void *this_fn,
24014 void *call_site);
24015 void __cyg_profile_func_exit (void *this_fn,
24016 void *call_site);
24017 @end smallexample
24018
24019 The first argument is the address of the start of the current function,
24020 which may be looked up exactly in the symbol table.
24021
24022 This instrumentation is also done for functions expanded inline in other
24023 functions. The profiling calls indicate where, conceptually, the
24024 inline function is entered and exited. This means that addressable
24025 versions of such functions must be available. If all your uses of a
24026 function are expanded inline, this may mean an additional expansion of
24027 code size. If you use @code{extern inline} in your C code, an
24028 addressable version of such functions must be provided. (This is
24029 normally the case anyway, but if you get lucky and the optimizer always
24030 expands the functions inline, you might have gotten away without
24031 providing static copies.)
24032
24033 A function may be given the attribute @code{no_instrument_function}, in
24034 which case this instrumentation is not done. This can be used, for
24035 example, for the profiling functions listed above, high-priority
24036 interrupt routines, and any functions from which the profiling functions
24037 cannot safely be called (perhaps signal handlers, if the profiling
24038 routines generate output or allocate memory).
24039
24040 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
24041 @opindex finstrument-functions-exclude-file-list
24042
24043 Set the list of functions that are excluded from instrumentation (see
24044 the description of @option{-finstrument-functions}). If the file that
24045 contains a function definition matches with one of @var{file}, then
24046 that function is not instrumented. The match is done on substrings:
24047 if the @var{file} parameter is a substring of the file name, it is
24048 considered to be a match.
24049
24050 For example:
24051
24052 @smallexample
24053 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
24054 @end smallexample
24055
24056 @noindent
24057 excludes any inline function defined in files whose pathnames
24058 contain @file{/bits/stl} or @file{include/sys}.
24059
24060 If, for some reason, you want to include letter @samp{,} in one of
24061 @var{sym}, write @samp{\,}. For example,
24062 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
24063 (note the single quote surrounding the option).
24064
24065 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
24066 @opindex finstrument-functions-exclude-function-list
24067
24068 This is similar to @option{-finstrument-functions-exclude-file-list},
24069 but this option sets the list of function names to be excluded from
24070 instrumentation. The function name to be matched is its user-visible
24071 name, such as @code{vector<int> blah(const vector<int> &)}, not the
24072 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
24073 match is done on substrings: if the @var{sym} parameter is a substring
24074 of the function name, it is considered to be a match. For C99 and C++
24075 extended identifiers, the function name must be given in UTF-8, not
24076 using universal character names.
24077
24078 @item -fstack-check
24079 @opindex fstack-check
24080 Generate code to verify that you do not go beyond the boundary of the
24081 stack. You should specify this flag if you are running in an
24082 environment with multiple threads, but you only rarely need to specify it in
24083 a single-threaded environment since stack overflow is automatically
24084 detected on nearly all systems if there is only one stack.
24085
24086 Note that this switch does not actually cause checking to be done; the
24087 operating system or the language runtime must do that. The switch causes
24088 generation of code to ensure that they see the stack being extended.
24089
24090 You can additionally specify a string parameter: @samp{no} means no
24091 checking, @samp{generic} means force the use of old-style checking,
24092 @samp{specific} means use the best checking method and is equivalent
24093 to bare @option{-fstack-check}.
24094
24095 Old-style checking is a generic mechanism that requires no specific
24096 target support in the compiler but comes with the following drawbacks:
24097
24098 @enumerate
24099 @item
24100 Modified allocation strategy for large objects: they are always
24101 allocated dynamically if their size exceeds a fixed threshold.
24102
24103 @item
24104 Fixed limit on the size of the static frame of functions: when it is
24105 topped by a particular function, stack checking is not reliable and
24106 a warning is issued by the compiler.
24107
24108 @item
24109 Inefficiency: because of both the modified allocation strategy and the
24110 generic implementation, code performance is hampered.
24111 @end enumerate
24112
24113 Note that old-style stack checking is also the fallback method for
24114 @samp{specific} if no target support has been added in the compiler.
24115
24116 @item -fstack-limit-register=@var{reg}
24117 @itemx -fstack-limit-symbol=@var{sym}
24118 @itemx -fno-stack-limit
24119 @opindex fstack-limit-register
24120 @opindex fstack-limit-symbol
24121 @opindex fno-stack-limit
24122 Generate code to ensure that the stack does not grow beyond a certain value,
24123 either the value of a register or the address of a symbol. If a larger
24124 stack is required, a signal is raised at run time. For most targets,
24125 the signal is raised before the stack overruns the boundary, so
24126 it is possible to catch the signal without taking special precautions.
24127
24128 For instance, if the stack starts at absolute address @samp{0x80000000}
24129 and grows downwards, you can use the flags
24130 @option{-fstack-limit-symbol=__stack_limit} and
24131 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
24132 of 128KB@. Note that this may only work with the GNU linker.
24133
24134 @item -fsplit-stack
24135 @opindex fsplit-stack
24136 Generate code to automatically split the stack before it overflows.
24137 The resulting program has a discontiguous stack which can only
24138 overflow if the program is unable to allocate any more memory. This
24139 is most useful when running threaded programs, as it is no longer
24140 necessary to calculate a good stack size to use for each thread. This
24141 is currently only implemented for the x86 targets running
24142 GNU/Linux.
24143
24144 When code compiled with @option{-fsplit-stack} calls code compiled
24145 without @option{-fsplit-stack}, there may not be much stack space
24146 available for the latter code to run. If compiling all code,
24147 including library code, with @option{-fsplit-stack} is not an option,
24148 then the linker can fix up these calls so that the code compiled
24149 without @option{-fsplit-stack} always has a large stack. Support for
24150 this is implemented in the gold linker in GNU binutils release 2.21
24151 and later.
24152
24153 @item -fleading-underscore
24154 @opindex fleading-underscore
24155 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
24156 change the way C symbols are represented in the object file. One use
24157 is to help link with legacy assembly code.
24158
24159 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
24160 generate code that is not binary compatible with code generated without that
24161 switch. Use it to conform to a non-default application binary interface.
24162 Not all targets provide complete support for this switch.
24163
24164 @item -ftls-model=@var{model}
24165 @opindex ftls-model
24166 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
24167 The @var{model} argument should be one of @samp{global-dynamic},
24168 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
24169 Note that the choice is subject to optimization: the compiler may use
24170 a more efficient model for symbols not visible outside of the translation
24171 unit, or if @option{-fpic} is not given on the command line.
24172
24173 The default without @option{-fpic} is @samp{initial-exec}; with
24174 @option{-fpic} the default is @samp{global-dynamic}.
24175
24176 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
24177 @opindex fvisibility
24178 Set the default ELF image symbol visibility to the specified option---all
24179 symbols are marked with this unless overridden within the code.
24180 Using this feature can very substantially improve linking and
24181 load times of shared object libraries, produce more optimized
24182 code, provide near-perfect API export and prevent symbol clashes.
24183 It is @strong{strongly} recommended that you use this in any shared objects
24184 you distribute.
24185
24186 Despite the nomenclature, @samp{default} always means public; i.e.,
24187 available to be linked against from outside the shared object.
24188 @samp{protected} and @samp{internal} are pretty useless in real-world
24189 usage so the only other commonly used option is @samp{hidden}.
24190 The default if @option{-fvisibility} isn't specified is
24191 @samp{default}, i.e., make every symbol public.
24192
24193 A good explanation of the benefits offered by ensuring ELF
24194 symbols have the correct visibility is given by ``How To Write
24195 Shared Libraries'' by Ulrich Drepper (which can be found at
24196 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
24197 solution made possible by this option to marking things hidden when
24198 the default is public is to make the default hidden and mark things
24199 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
24200 and @code{__attribute__ ((visibility("default")))} instead of
24201 @code{__declspec(dllexport)} you get almost identical semantics with
24202 identical syntax. This is a great boon to those working with
24203 cross-platform projects.
24204
24205 For those adding visibility support to existing code, you may find
24206 @code{#pragma GCC visibility} of use. This works by you enclosing
24207 the declarations you wish to set visibility for with (for example)
24208 @code{#pragma GCC visibility push(hidden)} and
24209 @code{#pragma GCC visibility pop}.
24210 Bear in mind that symbol visibility should be viewed @strong{as
24211 part of the API interface contract} and thus all new code should
24212 always specify visibility when it is not the default; i.e., declarations
24213 only for use within the local DSO should @strong{always} be marked explicitly
24214 as hidden as so to avoid PLT indirection overheads---making this
24215 abundantly clear also aids readability and self-documentation of the code.
24216 Note that due to ISO C++ specification requirements, @code{operator new} and
24217 @code{operator delete} must always be of default visibility.
24218
24219 Be aware that headers from outside your project, in particular system
24220 headers and headers from any other library you use, may not be
24221 expecting to be compiled with visibility other than the default. You
24222 may need to explicitly say @code{#pragma GCC visibility push(default)}
24223 before including any such headers.
24224
24225 @code{extern} declarations are not affected by @option{-fvisibility}, so
24226 a lot of code can be recompiled with @option{-fvisibility=hidden} with
24227 no modifications. However, this means that calls to @code{extern}
24228 functions with no explicit visibility use the PLT, so it is more
24229 effective to use @code{__attribute ((visibility))} and/or
24230 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
24231 declarations should be treated as hidden.
24232
24233 Note that @option{-fvisibility} does affect C++ vague linkage
24234 entities. This means that, for instance, an exception class that is
24235 be thrown between DSOs must be explicitly marked with default
24236 visibility so that the @samp{type_info} nodes are unified between
24237 the DSOs.
24238
24239 An overview of these techniques, their benefits and how to use them
24240 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
24241
24242 @item -fstrict-volatile-bitfields
24243 @opindex fstrict-volatile-bitfields
24244 This option should be used if accesses to volatile bit-fields (or other
24245 structure fields, although the compiler usually honors those types
24246 anyway) should use a single access of the width of the
24247 field's type, aligned to a natural alignment if possible. For
24248 example, targets with memory-mapped peripheral registers might require
24249 all such accesses to be 16 bits wide; with this flag you can
24250 declare all peripheral bit-fields as @code{unsigned short} (assuming short
24251 is 16 bits on these targets) to force GCC to use 16-bit accesses
24252 instead of, perhaps, a more efficient 32-bit access.
24253
24254 If this option is disabled, the compiler uses the most efficient
24255 instruction. In the previous example, that might be a 32-bit load
24256 instruction, even though that accesses bytes that do not contain
24257 any portion of the bit-field, or memory-mapped registers unrelated to
24258 the one being updated.
24259
24260 In some cases, such as when the @code{packed} attribute is applied to a
24261 structure field, it may not be possible to access the field with a single
24262 read or write that is correctly aligned for the target machine. In this
24263 case GCC falls back to generating multiple accesses rather than code that
24264 will fault or truncate the result at run time.
24265
24266 Note: Due to restrictions of the C/C++11 memory model, write accesses are
24267 not allowed to touch non bit-field members. It is therefore recommended
24268 to define all bits of the field's type as bit-field members.
24269
24270 The default value of this option is determined by the application binary
24271 interface for the target processor.
24272
24273 @item -fsync-libcalls
24274 @opindex fsync-libcalls
24275 This option controls whether any out-of-line instance of the @code{__sync}
24276 family of functions may be used to implement the C++11 @code{__atomic}
24277 family of functions.
24278
24279 The default value of this option is enabled, thus the only useful form
24280 of the option is @option{-fno-sync-libcalls}. This option is used in
24281 the implementation of the @file{libatomic} runtime library.
24282
24283 @end table
24284
24285 @c man end
24286
24287 @node Environment Variables
24288 @section Environment Variables Affecting GCC
24289 @cindex environment variables
24290
24291 @c man begin ENVIRONMENT
24292 This section describes several environment variables that affect how GCC
24293 operates. Some of them work by specifying directories or prefixes to use
24294 when searching for various kinds of files. Some are used to specify other
24295 aspects of the compilation environment.
24296
24297 Note that you can also specify places to search using options such as
24298 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
24299 take precedence over places specified using environment variables, which
24300 in turn take precedence over those specified by the configuration of GCC@.
24301 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24302 GNU Compiler Collection (GCC) Internals}.
24303
24304 @table @env
24305 @item LANG
24306 @itemx LC_CTYPE
24307 @c @itemx LC_COLLATE
24308 @itemx LC_MESSAGES
24309 @c @itemx LC_MONETARY
24310 @c @itemx LC_NUMERIC
24311 @c @itemx LC_TIME
24312 @itemx LC_ALL
24313 @findex LANG
24314 @findex LC_CTYPE
24315 @c @findex LC_COLLATE
24316 @findex LC_MESSAGES
24317 @c @findex LC_MONETARY
24318 @c @findex LC_NUMERIC
24319 @c @findex LC_TIME
24320 @findex LC_ALL
24321 @cindex locale
24322 These environment variables control the way that GCC uses
24323 localization information which allows GCC to work with different
24324 national conventions. GCC inspects the locale categories
24325 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24326 so. These locale categories can be set to any value supported by your
24327 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
24328 Kingdom encoded in UTF-8.
24329
24330 The @env{LC_CTYPE} environment variable specifies character
24331 classification. GCC uses it to determine the character boundaries in
24332 a string; this is needed for some multibyte encodings that contain quote
24333 and escape characters that are otherwise interpreted as a string
24334 end or escape.
24335
24336 The @env{LC_MESSAGES} environment variable specifies the language to
24337 use in diagnostic messages.
24338
24339 If the @env{LC_ALL} environment variable is set, it overrides the value
24340 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24341 and @env{LC_MESSAGES} default to the value of the @env{LANG}
24342 environment variable. If none of these variables are set, GCC
24343 defaults to traditional C English behavior.
24344
24345 @item TMPDIR
24346 @findex TMPDIR
24347 If @env{TMPDIR} is set, it specifies the directory to use for temporary
24348 files. GCC uses temporary files to hold the output of one stage of
24349 compilation which is to be used as input to the next stage: for example,
24350 the output of the preprocessor, which is the input to the compiler
24351 proper.
24352
24353 @item GCC_COMPARE_DEBUG
24354 @findex GCC_COMPARE_DEBUG
24355 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24356 @option{-fcompare-debug} to the compiler driver. See the documentation
24357 of this option for more details.
24358
24359 @item GCC_EXEC_PREFIX
24360 @findex GCC_EXEC_PREFIX
24361 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24362 names of the subprograms executed by the compiler. No slash is added
24363 when this prefix is combined with the name of a subprogram, but you can
24364 specify a prefix that ends with a slash if you wish.
24365
24366 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24367 an appropriate prefix to use based on the pathname it is invoked with.
24368
24369 If GCC cannot find the subprogram using the specified prefix, it
24370 tries looking in the usual places for the subprogram.
24371
24372 The default value of @env{GCC_EXEC_PREFIX} is
24373 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24374 the installed compiler. In many cases @var{prefix} is the value
24375 of @code{prefix} when you ran the @file{configure} script.
24376
24377 Other prefixes specified with @option{-B} take precedence over this prefix.
24378
24379 This prefix is also used for finding files such as @file{crt0.o} that are
24380 used for linking.
24381
24382 In addition, the prefix is used in an unusual way in finding the
24383 directories to search for header files. For each of the standard
24384 directories whose name normally begins with @samp{/usr/local/lib/gcc}
24385 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24386 replacing that beginning with the specified prefix to produce an
24387 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
24388 @file{foo/bar} just before it searches the standard directory
24389 @file{/usr/local/lib/bar}.
24390 If a standard directory begins with the configured
24391 @var{prefix} then the value of @var{prefix} is replaced by
24392 @env{GCC_EXEC_PREFIX} when looking for header files.
24393
24394 @item COMPILER_PATH
24395 @findex COMPILER_PATH
24396 The value of @env{COMPILER_PATH} is a colon-separated list of
24397 directories, much like @env{PATH}. GCC tries the directories thus
24398 specified when searching for subprograms, if it can't find the
24399 subprograms using @env{GCC_EXEC_PREFIX}.
24400
24401 @item LIBRARY_PATH
24402 @findex LIBRARY_PATH
24403 The value of @env{LIBRARY_PATH} is a colon-separated list of
24404 directories, much like @env{PATH}. When configured as a native compiler,
24405 GCC tries the directories thus specified when searching for special
24406 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
24407 using GCC also uses these directories when searching for ordinary
24408 libraries for the @option{-l} option (but directories specified with
24409 @option{-L} come first).
24410
24411 @item LANG
24412 @findex LANG
24413 @cindex locale definition
24414 This variable is used to pass locale information to the compiler. One way in
24415 which this information is used is to determine the character set to be used
24416 when character literals, string literals and comments are parsed in C and C++.
24417 When the compiler is configured to allow multibyte characters,
24418 the following values for @env{LANG} are recognized:
24419
24420 @table @samp
24421 @item C-JIS
24422 Recognize JIS characters.
24423 @item C-SJIS
24424 Recognize SJIS characters.
24425 @item C-EUCJP
24426 Recognize EUCJP characters.
24427 @end table
24428
24429 If @env{LANG} is not defined, or if it has some other value, then the
24430 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24431 recognize and translate multibyte characters.
24432 @end table
24433
24434 @noindent
24435 Some additional environment variables affect the behavior of the
24436 preprocessor.
24437
24438 @include cppenv.texi
24439
24440 @c man end
24441
24442 @node Precompiled Headers
24443 @section Using Precompiled Headers
24444 @cindex precompiled headers
24445 @cindex speed of compilation
24446
24447 Often large projects have many header files that are included in every
24448 source file. The time the compiler takes to process these header files
24449 over and over again can account for nearly all of the time required to
24450 build the project. To make builds faster, GCC allows you to
24451 @dfn{precompile} a header file.
24452
24453 To create a precompiled header file, simply compile it as you would any
24454 other file, if necessary using the @option{-x} option to make the driver
24455 treat it as a C or C++ header file. You may want to use a
24456 tool like @command{make} to keep the precompiled header up-to-date when
24457 the headers it contains change.
24458
24459 A precompiled header file is searched for when @code{#include} is
24460 seen in the compilation. As it searches for the included file
24461 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24462 compiler looks for a precompiled header in each directory just before it
24463 looks for the include file in that directory. The name searched for is
24464 the name specified in the @code{#include} with @samp{.gch} appended. If
24465 the precompiled header file can't be used, it is ignored.
24466
24467 For instance, if you have @code{#include "all.h"}, and you have
24468 @file{all.h.gch} in the same directory as @file{all.h}, then the
24469 precompiled header file is used if possible, and the original
24470 header is used otherwise.
24471
24472 Alternatively, you might decide to put the precompiled header file in a
24473 directory and use @option{-I} to ensure that directory is searched
24474 before (or instead of) the directory containing the original header.
24475 Then, if you want to check that the precompiled header file is always
24476 used, you can put a file of the same name as the original header in this
24477 directory containing an @code{#error} command.
24478
24479 This also works with @option{-include}. So yet another way to use
24480 precompiled headers, good for projects not designed with precompiled
24481 header files in mind, is to simply take most of the header files used by
24482 a project, include them from another header file, precompile that header
24483 file, and @option{-include} the precompiled header. If the header files
24484 have guards against multiple inclusion, they are skipped because
24485 they've already been included (in the precompiled header).
24486
24487 If you need to precompile the same header file for different
24488 languages, targets, or compiler options, you can instead make a
24489 @emph{directory} named like @file{all.h.gch}, and put each precompiled
24490 header in the directory, perhaps using @option{-o}. It doesn't matter
24491 what you call the files in the directory; every precompiled header in
24492 the directory is considered. The first precompiled header
24493 encountered in the directory that is valid for this compilation is
24494 used; they're searched in no particular order.
24495
24496 There are many other possibilities, limited only by your imagination,
24497 good sense, and the constraints of your build system.
24498
24499 A precompiled header file can be used only when these conditions apply:
24500
24501 @itemize
24502 @item
24503 Only one precompiled header can be used in a particular compilation.
24504
24505 @item
24506 A precompiled header can't be used once the first C token is seen. You
24507 can have preprocessor directives before a precompiled header; you cannot
24508 include a precompiled header from inside another header.
24509
24510 @item
24511 The precompiled header file must be produced for the same language as
24512 the current compilation. You can't use a C precompiled header for a C++
24513 compilation.
24514
24515 @item
24516 The precompiled header file must have been produced by the same compiler
24517 binary as the current compilation is using.
24518
24519 @item
24520 Any macros defined before the precompiled header is included must
24521 either be defined in the same way as when the precompiled header was
24522 generated, or must not affect the precompiled header, which usually
24523 means that they don't appear in the precompiled header at all.
24524
24525 The @option{-D} option is one way to define a macro before a
24526 precompiled header is included; using a @code{#define} can also do it.
24527 There are also some options that define macros implicitly, like
24528 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
24529 defined this way.
24530
24531 @item If debugging information is output when using the precompiled
24532 header, using @option{-g} or similar, the same kind of debugging information
24533 must have been output when building the precompiled header. However,
24534 a precompiled header built using @option{-g} can be used in a compilation
24535 when no debugging information is being output.
24536
24537 @item The same @option{-m} options must generally be used when building
24538 and using the precompiled header. @xref{Submodel Options},
24539 for any cases where this rule is relaxed.
24540
24541 @item Each of the following options must be the same when building and using
24542 the precompiled header:
24543
24544 @gccoptlist{-fexceptions}
24545
24546 @item
24547 Some other command-line options starting with @option{-f},
24548 @option{-p}, or @option{-O} must be defined in the same way as when
24549 the precompiled header was generated. At present, it's not clear
24550 which options are safe to change and which are not; the safest choice
24551 is to use exactly the same options when generating and using the
24552 precompiled header. The following are known to be safe:
24553
24554 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
24555 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
24556 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
24557 -pedantic-errors}
24558
24559 @end itemize
24560
24561 For all of these except the last, the compiler automatically
24562 ignores the precompiled header if the conditions aren't met. If you
24563 find an option combination that doesn't work and doesn't cause the
24564 precompiled header to be ignored, please consider filing a bug report,
24565 see @ref{Bugs}.
24566
24567 If you do use differing options when generating and using the
24568 precompiled header, the actual behavior is a mixture of the
24569 behavior for the options. For instance, if you use @option{-g} to
24570 generate the precompiled header but not when using it, you may or may
24571 not get debugging information for routines in the precompiled header.