]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
[AArch64] Implement -m{cpu,tune,arch}=native using only /proc/cpuinfo
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2015 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75
76 Other options are passed on to one stage of processing. Some options
77 control the preprocessor and others the compiler itself. Yet other
78 options control the assembler and linker; most of these are not
79 documented here, since you rarely need to use any of them.
80
81 @cindex C compilation options
82 Most of the command-line options that you can use with GCC are useful
83 for C programs; when an option is only useful with another language
84 (usually C++), the explanation says so explicitly. If the description
85 for a particular option does not mention a source language, you can use
86 that option with all supported languages.
87
88 @cindex C++ compilation options
89 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90 options for compiling C++ programs.
91
92 @cindex grouping options
93 @cindex options, grouping
94 The @command{gcc} program accepts options and file names as operands. Many
95 options have multi-letter names; therefore multiple single-letter options
96 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97 -v}}.
98
99 @cindex order of options
100 @cindex options, order
101 You can mix options and other arguments. For the most part, the order
102 you use doesn't matter. Order does matter when you use several
103 options of the same kind; for example, if you specify @option{-L} more
104 than once, the directories are searched in the order specified. Also,
105 the placement of the @option{-l} option is significant.
106
107 Many options have long names starting with @samp{-f} or with
108 @samp{-W}---for example,
109 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
110 these have both positive and negative forms; the negative form of
111 @option{-ffoo} is @option{-fno-foo}. This manual documents
112 only one of these two forms, whichever one is not the default.
113
114 @c man end
115
116 @xref{Option Index}, for an index to GCC's options.
117
118 @menu
119 * Option Summary:: Brief list of all options, without explanations.
120 * Overall Options:: Controlling the kind of output:
121 an executable, object files, assembler files,
122 or preprocessed source.
123 * Invoking G++:: Compiling C++ programs.
124 * C Dialect Options:: Controlling the variant of C language compiled.
125 * C++ Dialect Options:: Variations on C++.
126 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127 and Objective-C++.
128 * Language Independent Options:: Controlling how diagnostics should be
129 formatted.
130 * Warning Options:: How picky should the compiler be?
131 * Debugging Options:: Symbol tables, measurements, and debugging dumps.
132 * Optimize Options:: How much optimization?
133 * Preprocessor Options:: Controlling header files and macro definitions.
134 Also, getting dependency information for Make.
135 * Assembler Options:: Passing options to the assembler.
136 * Link Options:: Specifying libraries and so on.
137 * Directory Options:: Where to find header files and libraries.
138 Where to find the compiler executable files.
139 * Spec Files:: How to pass switches to sub-processes.
140 * Target Options:: Running a cross-compiler, or an old version of GCC.
141 * Submodel Options:: Specifying minor hardware or convention variations,
142 such as 68010 vs 68020.
143 * Code Gen Options:: Specifying conventions for function calls, data layout
144 and register usage.
145 * Environment Variables:: Env vars that affect GCC.
146 * Precompiled Headers:: Compiling a header once, and using it many times.
147 @end menu
148
149 @c man begin OPTIONS
150
151 @node Option Summary
152 @section Option Summary
153
154 Here is a summary of all the options, grouped by type. Explanations are
155 in the following sections.
156
157 @table @emph
158 @item Overall Options
159 @xref{Overall Options,,Options Controlling the Kind of Output}.
160 @gccoptlist{-c -S -E -o @var{file} -no-canonical-prefixes @gol
161 -pipe -pass-exit-codes @gol
162 -x @var{language} -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help @gol
163 --version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
164 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166 @item C Language Options
167 @xref{C Dialect Options,,Options Controlling C Dialect}.
168 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
169 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170 -fno-asm -fno-builtin -fno-builtin-@var{function} @gol
171 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172 -fms-extensions -fplan9-extensions -trigraphs -traditional -traditional-cpp @gol
173 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
174 -fsigned-bitfields -fsigned-char @gol
175 -funsigned-bitfields -funsigned-char}
176
177 @item C++ Language Options
178 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
179 @gccoptlist{-fabi-version=@var{n} -fno-access-control -fcheck-new @gol
180 -fconstexpr-depth=@var{n} -ffriend-injection @gol
181 -fno-elide-constructors @gol
182 -fno-enforce-eh-specs @gol
183 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
184 -fno-implicit-templates @gol
185 -fno-implicit-inline-templates @gol
186 -fno-implement-inlines -fms-extensions @gol
187 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
188 -fno-optional-diags -fpermissive @gol
189 -fno-pretty-templates @gol
190 -frepo -fno-rtti -fsized-deallocation @gol
191 -fstats -ftemplate-backtrace-limit=@var{n} @gol
192 -ftemplate-depth=@var{n} @gol
193 -fno-threadsafe-statics -fuse-cxa-atexit @gol
194 -fno-weak -nostdinc++ @gol
195 -fvisibility-inlines-hidden @gol
196 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
197 -fvtv-counts -fvtv-debug @gol
198 -fvisibility-ms-compat @gol
199 -fext-numeric-literals @gol
200 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
201 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing @gol
202 -Wnoexcept -Wnon-virtual-dtor -Wreorder @gol
203 -Weffc++ -Wstrict-null-sentinel @gol
204 -Wno-non-template-friend -Wold-style-cast @gol
205 -Woverloaded-virtual -Wno-pmf-conversions @gol
206 -Wsign-promo}
207
208 @item Objective-C and Objective-C++ Language Options
209 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
210 Objective-C and Objective-C++ Dialects}.
211 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
212 -fgnu-runtime -fnext-runtime @gol
213 -fno-nil-receivers @gol
214 -fobjc-abi-version=@var{n} @gol
215 -fobjc-call-cxx-cdtors @gol
216 -fobjc-direct-dispatch @gol
217 -fobjc-exceptions @gol
218 -fobjc-gc @gol
219 -fobjc-nilcheck @gol
220 -fobjc-std=objc1 @gol
221 -fno-local-ivars @gol
222 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
223 -freplace-objc-classes @gol
224 -fzero-link @gol
225 -gen-decls @gol
226 -Wassign-intercept @gol
227 -Wno-protocol -Wselector @gol
228 -Wstrict-selector-match @gol
229 -Wundeclared-selector}
230
231 @item Language Independent Options
232 @xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
233 @gccoptlist{-fmessage-length=@var{n} @gol
234 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
235 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
236 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
237
238 @item Warning Options
239 @xref{Warning Options,,Options to Request or Suppress Warnings}.
240 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
241 -pedantic-errors @gol
242 -w -Wextra -Wall -Waddress -Waggregate-return @gol
243 -Waggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
244 -Wbool-compare @gol
245 -Wno-attributes -Wno-builtin-macro-redefined @gol
246 -Wc90-c99-compat -Wc99-c11-compat @gol
247 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
248 -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
249 -Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp @gol
250 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
251 -Wdisabled-optimization @gol
252 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
253 -Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare @gol
254 -Wno-endif-labels -Werror -Werror=* @gol
255 -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
256 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
257 -Wformat-security -Wformat-signedness -Wformat-y2k @gol
258 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
259 -Wignored-qualifiers -Wincompatible-pointer-types @gol
260 -Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol
261 -Winit-self -Winline -Wno-int-conversion @gol
262 -Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
263 -Winvalid-pch -Wlarger-than=@var{len} -Wunsafe-loop-optimizations @gol
264 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
265 -Wmain -Wmaybe-uninitialized -Wmemset-transposed-args -Wmissing-braces @gol
266 -Wmissing-field-initializers -Wmissing-include-dirs @gol
267 -Wno-multichar -Wnonnull -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
268 -Wodr -Wno-overflow -Wopenmp-simd @gol
269 -Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
270 -Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
271 -Wpointer-arith -Wno-pointer-to-int-cast @gol
272 -Wredundant-decls -Wno-return-local-addr @gol
273 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
274 -Wshift-count-negative -Wshift-count-overflow @gol
275 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
276 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
277 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
278 -Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
279 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
280 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
281 -Wmissing-format-attribute @gol
282 -Wswitch -Wswitch-default -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
283 -Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef @gol
284 -Wuninitialized -Wunknown-pragmas -Wno-pragmas @gol
285 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
286 -Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
287 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
288 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
289 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
290 -Wvla -Wvolatile-register-var -Wwrite-strings @gol
291 -Wzero-as-null-pointer-constant}
292
293 @item C and Objective-C-only Warning Options
294 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
295 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
296 -Wold-style-declaration -Wold-style-definition @gol
297 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
298 -Wdeclaration-after-statement -Wpointer-sign}
299
300 @item Debugging Options
301 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
302 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
303 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
304 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1,s2,...} @gol
305 -fsanitize-undefined-trap-on-error @gol
306 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
307 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
308 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
309 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
310 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
311 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
312 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
313 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
314 -fchkp-use-wrappers @gol
315 -fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
316 -fdisable-ipa-@var{pass_name} @gol
317 -fdisable-rtl-@var{pass_name} @gol
318 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
319 -fdisable-tree-@var{pass_name} @gol
320 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
321 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
322 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
323 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
324 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
325 -fdump-passes @gol
326 -fdump-statistics @gol
327 -fdump-tree-all @gol
328 -fdump-tree-original@r{[}-@var{n}@r{]} @gol
329 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
330 -fdump-tree-cfg -fdump-tree-alias @gol
331 -fdump-tree-ch @gol
332 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
333 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
334 -fdump-tree-gimple@r{[}-raw@r{]} @gol
335 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
336 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
337 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
338 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
339 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
340 -fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
341 -fdump-tree-nrv -fdump-tree-vect @gol
342 -fdump-tree-sink @gol
343 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
344 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
345 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
346 -fdump-tree-vtable-verify @gol
347 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
348 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
349 -fdump-final-insns=@var{file} @gol
350 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
351 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
352 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
353 -fenable-@var{kind}-@var{pass} @gol
354 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
355 -fdebug-types-section -fmem-report-wpa @gol
356 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
357 -fopt-info @gol
358 -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
359 -frandom-seed=@var{number} -fsched-verbose=@var{n} @gol
360 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
361 -fstack-usage -ftest-coverage -ftime-report -fvar-tracking @gol
362 -fvar-tracking-assignments -fvar-tracking-assignments-toggle @gol
363 -g -g@var{level} -gtoggle -gcoff -gdwarf-@var{version} @gol
364 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
365 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
366 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
367 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
368 -fdebug-prefix-map=@var{old}=@var{new} @gol
369 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
370 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
371 -p -pg -print-file-name=@var{library} -print-libgcc-file-name @gol
372 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
373 -print-prog-name=@var{program} -print-search-dirs -Q @gol
374 -print-sysroot -print-sysroot-headers-suffix @gol
375 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
376
377 @item Optimization Options
378 @xref{Optimize Options,,Options that Control Optimization}.
379 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
380 -falign-jumps[=@var{n}] @gol
381 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
382 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
383 -fauto-inc-dec -fbranch-probabilities @gol
384 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
385 -fbtr-bb-exclusive -fcaller-saves @gol
386 -fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack @gol
387 -fcompare-elim -fcprop-registers -fcrossjumping @gol
388 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
389 -fcx-limited-range @gol
390 -fdata-sections -fdce -fdelayed-branch @gol
391 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
392 -fdevirtualize-at-ltrans -fdse @gol
393 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
394 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
395 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
396 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
397 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
398 -fif-conversion2 -findirect-inlining @gol
399 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
400 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
401 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
402 -fira-algorithm=@var{algorithm} @gol
403 -fira-region=@var{region} -fira-hoist-pressure @gol
404 -fira-loop-pressure -fno-ira-share-save-slots @gol
405 -fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
406 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
407 -fivopts -fkeep-inline-functions -fkeep-static-consts @gol
408 -flive-range-shrinkage @gol
409 -floop-block -floop-interchange -floop-strip-mine @gol
410 -floop-unroll-and-jam -floop-nest-optimize @gol
411 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
412 -flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
413 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
414 -fmove-loop-invariants -fno-branch-count-reg @gol
415 -fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
416 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
417 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
418 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
419 -fomit-frame-pointer -foptimize-sibling-calls @gol
420 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
421 -fprefetch-loop-arrays -fprofile-report @gol
422 -fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
423 -fprofile-generate=@var{path} @gol
424 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
425 -fprofile-reorder-functions @gol
426 -freciprocal-math -free -frename-registers -freorder-blocks @gol
427 -freorder-blocks-and-partition -freorder-functions @gol
428 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
429 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
430 -fsched-spec-load -fsched-spec-load-dangerous @gol
431 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
432 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
433 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
434 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
435 -fschedule-fusion @gol
436 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
437 -fselective-scheduling -fselective-scheduling2 @gol
438 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
439 -fsemantic-interposition @gol
440 -fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
441 -fsplit-ivs-in-unroller -fsplit-wide-types -fssa-phiopt @gol
442 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
443 -fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
444 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
445 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
446 -ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop @gol
447 -ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse @gol
448 -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
449 -ftree-loop-if-convert-stores -ftree-loop-im @gol
450 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
451 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
452 -ftree-loop-vectorize @gol
453 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
454 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
455 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
456 -ftree-vectorize -ftree-vrp @gol
457 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
458 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
459 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
460 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
461 --param @var{name}=@var{value}
462 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
463
464 @item Preprocessor Options
465 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
466 @gccoptlist{-A@var{question}=@var{answer} @gol
467 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
468 -C -dD -dI -dM -dN @gol
469 -D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
470 -idirafter @var{dir} @gol
471 -include @var{file} -imacros @var{file} @gol
472 -iprefix @var{file} -iwithprefix @var{dir} @gol
473 -iwithprefixbefore @var{dir} -isystem @var{dir} @gol
474 -imultilib @var{dir} -isysroot @var{dir} @gol
475 -M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
476 -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
477 -remap -trigraphs -undef -U@var{macro} @gol
478 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
479
480 @item Assembler Option
481 @xref{Assembler Options,,Passing Options to the Assembler}.
482 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
483
484 @item Linker Options
485 @xref{Link Options,,Options for Linking}.
486 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
487 -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
488 -s -static -static-libgcc -static-libstdc++ @gol
489 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
490 -static-libmpx -static-libmpxwrappers @gol
491 -shared -shared-libgcc -symbolic @gol
492 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
493 -u @var{symbol} -z @var{keyword}}
494
495 @item Directory Options
496 @xref{Directory Options,,Options for Directory Search}.
497 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
498 -iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
499 --sysroot=@var{dir} --no-sysroot-suffix}
500
501 @item Machine Dependent Options
502 @xref{Submodel Options,,Hardware Models and Configurations}.
503 @c This list is ordered alphanumerically by subsection name.
504 @c Try and put the significant identifier (CPU or system) first,
505 @c so users have a clue at guessing where the ones they want will be.
506
507 @emph{AArch64 Options}
508 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
509 -mgeneral-regs-only @gol
510 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
511 -mstrict-align @gol
512 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
513 -mtls-dialect=desc -mtls-dialect=traditional @gol
514 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
515 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
516
517 @emph{Adapteva Epiphany Options}
518 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
519 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
520 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
521 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
522 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
523 -msplit-vecmove-early -m1reg-@var{reg}}
524
525 @emph{ARC Options}
526 @gccoptlist{-mbarrel-shifter @gol
527 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
528 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
529 -mea -mno-mpy -mmul32x16 -mmul64 @gol
530 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
531 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
532 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
533 -mepilogue-cfi -mlong-calls -mmedium-calls -msdata @gol
534 -mucb-mcount -mvolatile-cache @gol
535 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
536 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
537 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
538 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
539 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
540 -mtune=@var{cpu} -mmultcost=@var{num} -munalign-prob-threshold=@var{probability}}
541
542 @emph{ARM Options}
543 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
544 -mabi=@var{name} @gol
545 -mapcs-stack-check -mno-apcs-stack-check @gol
546 -mapcs-float -mno-apcs-float @gol
547 -mapcs-reentrant -mno-apcs-reentrant @gol
548 -msched-prolog -mno-sched-prolog @gol
549 -mlittle-endian -mbig-endian @gol
550 -mfloat-abi=@var{name} @gol
551 -mfp16-format=@var{name}
552 -mthumb-interwork -mno-thumb-interwork @gol
553 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
554 -mtune=@var{name} -mprint-tune-info @gol
555 -mstructure-size-boundary=@var{n} @gol
556 -mabort-on-noreturn @gol
557 -mlong-calls -mno-long-calls @gol
558 -msingle-pic-base -mno-single-pic-base @gol
559 -mpic-register=@var{reg} @gol
560 -mnop-fun-dllimport @gol
561 -mpoke-function-name @gol
562 -mthumb -marm @gol
563 -mtpcs-frame -mtpcs-leaf-frame @gol
564 -mcaller-super-interworking -mcallee-super-interworking @gol
565 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
566 -mword-relocations @gol
567 -mfix-cortex-m3-ldrd @gol
568 -munaligned-access @gol
569 -mneon-for-64bits @gol
570 -mslow-flash-data @gol
571 -masm-syntax-unified @gol
572 -mrestrict-it}
573
574 @emph{AVR Options}
575 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
576 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
577 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
578
579 @emph{Blackfin Options}
580 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
581 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
582 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
583 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
584 -mno-id-shared-library -mshared-library-id=@var{n} @gol
585 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
586 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
587 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
588 -micplb}
589
590 @emph{C6X Options}
591 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
592 -msim -msdata=@var{sdata-type}}
593
594 @emph{CRIS Options}
595 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
596 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
597 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
598 -mstack-align -mdata-align -mconst-align @gol
599 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
600 -melf -maout -melinux -mlinux -sim -sim2 @gol
601 -mmul-bug-workaround -mno-mul-bug-workaround}
602
603 @emph{CR16 Options}
604 @gccoptlist{-mmac @gol
605 -mcr16cplus -mcr16c @gol
606 -msim -mint32 -mbit-ops
607 -mdata-model=@var{model}}
608
609 @emph{Darwin Options}
610 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
611 -arch_only -bind_at_load -bundle -bundle_loader @gol
612 -client_name -compatibility_version -current_version @gol
613 -dead_strip @gol
614 -dependency-file -dylib_file -dylinker_install_name @gol
615 -dynamic -dynamiclib -exported_symbols_list @gol
616 -filelist -flat_namespace -force_cpusubtype_ALL @gol
617 -force_flat_namespace -headerpad_max_install_names @gol
618 -iframework @gol
619 -image_base -init -install_name -keep_private_externs @gol
620 -multi_module -multiply_defined -multiply_defined_unused @gol
621 -noall_load -no_dead_strip_inits_and_terms @gol
622 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
623 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
624 -private_bundle -read_only_relocs -sectalign @gol
625 -sectobjectsymbols -whyload -seg1addr @gol
626 -sectcreate -sectobjectsymbols -sectorder @gol
627 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
628 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
629 -segprot -segs_read_only_addr -segs_read_write_addr @gol
630 -single_module -static -sub_library -sub_umbrella @gol
631 -twolevel_namespace -umbrella -undefined @gol
632 -unexported_symbols_list -weak_reference_mismatches @gol
633 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
634 -mkernel -mone-byte-bool}
635
636 @emph{DEC Alpha Options}
637 @gccoptlist{-mno-fp-regs -msoft-float @gol
638 -mieee -mieee-with-inexact -mieee-conformant @gol
639 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
640 -mtrap-precision=@var{mode} -mbuild-constants @gol
641 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
642 -mbwx -mmax -mfix -mcix @gol
643 -mfloat-vax -mfloat-ieee @gol
644 -mexplicit-relocs -msmall-data -mlarge-data @gol
645 -msmall-text -mlarge-text @gol
646 -mmemory-latency=@var{time}}
647
648 @emph{FR30 Options}
649 @gccoptlist{-msmall-model -mno-lsim}
650
651 @emph{FRV Options}
652 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
653 -mhard-float -msoft-float @gol
654 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
655 -mdouble -mno-double @gol
656 -mmedia -mno-media -mmuladd -mno-muladd @gol
657 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
658 -mlinked-fp -mlong-calls -malign-labels @gol
659 -mlibrary-pic -macc-4 -macc-8 @gol
660 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
661 -moptimize-membar -mno-optimize-membar @gol
662 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
663 -mvliw-branch -mno-vliw-branch @gol
664 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
665 -mno-nested-cond-exec -mtomcat-stats @gol
666 -mTLS -mtls @gol
667 -mcpu=@var{cpu}}
668
669 @emph{GNU/Linux Options}
670 @gccoptlist{-mglibc -muclibc -mbionic -mandroid @gol
671 -tno-android-cc -tno-android-ld}
672
673 @emph{H8/300 Options}
674 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
675
676 @emph{HPPA Options}
677 @gccoptlist{-march=@var{architecture-type} @gol
678 -mdisable-fpregs -mdisable-indexing @gol
679 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
680 -mfixed-range=@var{register-range} @gol
681 -mjump-in-delay -mlinker-opt -mlong-calls @gol
682 -mlong-load-store -mno-disable-fpregs @gol
683 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
684 -mno-jump-in-delay -mno-long-load-store @gol
685 -mno-portable-runtime -mno-soft-float @gol
686 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
687 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
688 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
689 -munix=@var{unix-std} -nolibdld -static -threads}
690
691 @emph{IA-64 Options}
692 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
693 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
694 -mconstant-gp -mauto-pic -mfused-madd @gol
695 -minline-float-divide-min-latency @gol
696 -minline-float-divide-max-throughput @gol
697 -mno-inline-float-divide @gol
698 -minline-int-divide-min-latency @gol
699 -minline-int-divide-max-throughput @gol
700 -mno-inline-int-divide @gol
701 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
702 -mno-inline-sqrt @gol
703 -mdwarf2-asm -mearly-stop-bits @gol
704 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
705 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
706 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
707 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
708 -msched-spec-ldc -msched-spec-control-ldc @gol
709 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
710 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
711 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
712 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
713
714 @emph{LM32 Options}
715 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
716 -msign-extend-enabled -muser-enabled}
717
718 @emph{M32R/D Options}
719 @gccoptlist{-m32r2 -m32rx -m32r @gol
720 -mdebug @gol
721 -malign-loops -mno-align-loops @gol
722 -missue-rate=@var{number} @gol
723 -mbranch-cost=@var{number} @gol
724 -mmodel=@var{code-size-model-type} @gol
725 -msdata=@var{sdata-type} @gol
726 -mno-flush-func -mflush-func=@var{name} @gol
727 -mno-flush-trap -mflush-trap=@var{number} @gol
728 -G @var{num}}
729
730 @emph{M32C Options}
731 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
732
733 @emph{M680x0 Options}
734 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
735 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
736 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
737 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
738 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
739 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
740 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
741 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
742 -mxgot -mno-xgot}
743
744 @emph{MCore Options}
745 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
746 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
747 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
748 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
749 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
750
751 @emph{MeP Options}
752 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
753 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
754 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
755 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
756 -mtiny=@var{n}}
757
758 @emph{MicroBlaze Options}
759 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
760 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
761 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
762 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
763 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
764
765 @emph{MIPS Options}
766 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
767 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
768 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
769 -mips16 -mno-mips16 -mflip-mips16 @gol
770 -minterlink-compressed -mno-interlink-compressed @gol
771 -minterlink-mips16 -mno-interlink-mips16 @gol
772 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
773 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
774 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
775 -mno-float -msingle-float -mdouble-float @gol
776 -modd-spreg -mno-odd-spreg @gol
777 -mabs=@var{mode} -mnan=@var{encoding} @gol
778 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
779 -mmcu -mmno-mcu @gol
780 -meva -mno-eva @gol
781 -mvirt -mno-virt @gol
782 -mxpa -mno-xpa @gol
783 -mmicromips -mno-micromips @gol
784 -mfpu=@var{fpu-type} @gol
785 -msmartmips -mno-smartmips @gol
786 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
787 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
788 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
789 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
790 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
791 -membedded-data -mno-embedded-data @gol
792 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
793 -mcode-readable=@var{setting} @gol
794 -msplit-addresses -mno-split-addresses @gol
795 -mexplicit-relocs -mno-explicit-relocs @gol
796 -mcheck-zero-division -mno-check-zero-division @gol
797 -mdivide-traps -mdivide-breaks @gol
798 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
799 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
800 -mfix-24k -mno-fix-24k @gol
801 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
802 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
803 -mfix-vr4120 -mno-fix-vr4120 @gol
804 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
805 -mflush-func=@var{func} -mno-flush-func @gol
806 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
807 -mfp-exceptions -mno-fp-exceptions @gol
808 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
809 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address}
810
811 @emph{MMIX Options}
812 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
813 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
814 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
815 -mno-base-addresses -msingle-exit -mno-single-exit}
816
817 @emph{MN10300 Options}
818 @gccoptlist{-mmult-bug -mno-mult-bug @gol
819 -mno-am33 -mam33 -mam33-2 -mam34 @gol
820 -mtune=@var{cpu-type} @gol
821 -mreturn-pointer-on-d0 @gol
822 -mno-crt0 -mrelax -mliw -msetlb}
823
824 @emph{Moxie Options}
825 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
826
827 @emph{MSP430 Options}
828 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
829 -mhwmult= -minrt}
830
831 @emph{NDS32 Options}
832 @gccoptlist{-mbig-endian -mlittle-endian @gol
833 -mreduced-regs -mfull-regs @gol
834 -mcmov -mno-cmov @gol
835 -mperf-ext -mno-perf-ext @gol
836 -mv3push -mno-v3push @gol
837 -m16bit -mno-16bit @gol
838 -misr-vector-size=@var{num} @gol
839 -mcache-block-size=@var{num} @gol
840 -march=@var{arch} @gol
841 -mcmodel=@var{code-model} @gol
842 -mctor-dtor -mrelax}
843
844 @emph{Nios II Options}
845 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
846 -mel -meb @gol
847 -mno-bypass-cache -mbypass-cache @gol
848 -mno-cache-volatile -mcache-volatile @gol
849 -mno-fast-sw-div -mfast-sw-div @gol
850 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
851 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
852 -mcustom-fpu-cfg=@var{name} @gol
853 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name}}
854
855 @emph{Nvidia PTX Options}
856 @gccoptlist{-m32 -m64 -mmainkernel}
857
858 @emph{PDP-11 Options}
859 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
860 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
861 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
862 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
863 -mbranch-expensive -mbranch-cheap @gol
864 -munix-asm -mdec-asm}
865
866 @emph{picoChip Options}
867 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
868 -msymbol-as-address -mno-inefficient-warnings}
869
870 @emph{PowerPC Options}
871 See RS/6000 and PowerPC Options.
872
873 @emph{RL78 Options}
874 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
875 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
876 -m64bit-doubles -m32bit-doubles}
877
878 @emph{RS/6000 and PowerPC Options}
879 @gccoptlist{-mcpu=@var{cpu-type} @gol
880 -mtune=@var{cpu-type} @gol
881 -mcmodel=@var{code-model} @gol
882 -mpowerpc64 @gol
883 -maltivec -mno-altivec @gol
884 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
885 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
886 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
887 -mfprnd -mno-fprnd @gol
888 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
889 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
890 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
891 -malign-power -malign-natural @gol
892 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
893 -msingle-float -mdouble-float -msimple-fpu @gol
894 -mstring -mno-string -mupdate -mno-update @gol
895 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
896 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
897 -mstrict-align -mno-strict-align -mrelocatable @gol
898 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
899 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
900 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
901 -mprioritize-restricted-insns=@var{priority} @gol
902 -msched-costly-dep=@var{dependence_type} @gol
903 -minsert-sched-nops=@var{scheme} @gol
904 -mcall-sysv -mcall-netbsd @gol
905 -maix-struct-return -msvr4-struct-return @gol
906 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
907 -mblock-move-inline-limit=@var{num} @gol
908 -misel -mno-isel @gol
909 -misel=yes -misel=no @gol
910 -mspe -mno-spe @gol
911 -mspe=yes -mspe=no @gol
912 -mpaired @gol
913 -mgen-cell-microcode -mwarn-cell-microcode @gol
914 -mvrsave -mno-vrsave @gol
915 -mmulhw -mno-mulhw @gol
916 -mdlmzb -mno-dlmzb @gol
917 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
918 -mprototype -mno-prototype @gol
919 -msim -mmvme -mads -myellowknife -memb -msdata @gol
920 -msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
921 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
922 -mno-recip-precision @gol
923 -mveclibabi=@var{type} -mfriz -mno-friz @gol
924 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
925 -msave-toc-indirect -mno-save-toc-indirect @gol
926 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
927 -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
928 -mquad-memory -mno-quad-memory @gol
929 -mquad-memory-atomic -mno-quad-memory-atomic @gol
930 -mcompat-align-parm -mno-compat-align-parm @gol
931 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
932 -mupper-regs -mno-upper-regs}
933
934 @emph{RX Options}
935 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
936 -mcpu=@gol
937 -mbig-endian-data -mlittle-endian-data @gol
938 -msmall-data @gol
939 -msim -mno-sim@gol
940 -mas100-syntax -mno-as100-syntax@gol
941 -mrelax@gol
942 -mmax-constant-size=@gol
943 -mint-register=@gol
944 -mpid@gol
945 -mallow-string-insns -mno-allow-string-insns@gol
946 -mno-warn-multiple-fast-interrupts@gol
947 -msave-acc-in-interrupts}
948
949 @emph{S/390 and zSeries Options}
950 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
951 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
952 -mlong-double-64 -mlong-double-128 @gol
953 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
954 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
955 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
956 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
957 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
958 -mhotpatch=@var{halfwords},@var{halfwords}}
959
960 @emph{Score Options}
961 @gccoptlist{-meb -mel @gol
962 -mnhwloop @gol
963 -muls @gol
964 -mmac @gol
965 -mscore5 -mscore5u -mscore7 -mscore7d}
966
967 @emph{SH Options}
968 @gccoptlist{-m1 -m2 -m2e @gol
969 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
970 -m3 -m3e @gol
971 -m4-nofpu -m4-single-only -m4-single -m4 @gol
972 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
973 -m5-64media -m5-64media-nofpu @gol
974 -m5-32media -m5-32media-nofpu @gol
975 -m5-compact -m5-compact-nofpu @gol
976 -mb -ml -mdalign -mrelax @gol
977 -mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
978 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
979 -mspace -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
980 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
981 -mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
982 -maccumulate-outgoing-args -minvalid-symbols @gol
983 -matomic-model=@var{atomic-model} @gol
984 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
985 -mcbranch-force-delay-slot @gol
986 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
987 -mpretend-cmove -mtas}
988
989 @emph{Solaris 2 Options}
990 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
991 -pthreads -pthread}
992
993 @emph{SPARC Options}
994 @gccoptlist{-mcpu=@var{cpu-type} @gol
995 -mtune=@var{cpu-type} @gol
996 -mcmodel=@var{code-model} @gol
997 -mmemory-model=@var{mem-model} @gol
998 -m32 -m64 -mapp-regs -mno-app-regs @gol
999 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1000 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1001 -mhard-quad-float -msoft-quad-float @gol
1002 -mstack-bias -mno-stack-bias @gol
1003 -munaligned-doubles -mno-unaligned-doubles @gol
1004 -muser-mode -mno-user-mode @gol
1005 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1006 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1007 -mcbcond -mno-cbcond @gol
1008 -mfmaf -mno-fmaf -mpopc -mno-popc @gol
1009 -mfix-at697f -mfix-ut699}
1010
1011 @emph{SPU Options}
1012 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1013 -msafe-dma -munsafe-dma @gol
1014 -mbranch-hints @gol
1015 -msmall-mem -mlarge-mem -mstdmain @gol
1016 -mfixed-range=@var{register-range} @gol
1017 -mea32 -mea64 @gol
1018 -maddress-space-conversion -mno-address-space-conversion @gol
1019 -mcache-size=@var{cache-size} @gol
1020 -matomic-updates -mno-atomic-updates}
1021
1022 @emph{System V Options}
1023 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1024
1025 @emph{TILE-Gx Options}
1026 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1027 -mcmodel=@var{code-model}}
1028
1029 @emph{TILEPro Options}
1030 @gccoptlist{-mcpu=@var{cpu} -m32}
1031
1032 @emph{V850 Options}
1033 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1034 -mprolog-function -mno-prolog-function -mspace @gol
1035 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1036 -mapp-regs -mno-app-regs @gol
1037 -mdisable-callt -mno-disable-callt @gol
1038 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1039 -mv850e -mv850 -mv850e3v5 @gol
1040 -mloop @gol
1041 -mrelax @gol
1042 -mlong-jumps @gol
1043 -msoft-float @gol
1044 -mhard-float @gol
1045 -mgcc-abi @gol
1046 -mrh850-abi @gol
1047 -mbig-switch}
1048
1049 @emph{VAX Options}
1050 @gccoptlist{-mg -mgnu -munix}
1051
1052 @emph{Visium Options}
1053 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1054 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1055
1056 @emph{VMS Options}
1057 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1058 -mpointer-size=@var{size}}
1059
1060 @emph{VxWorks Options}
1061 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1062 -Xbind-lazy -Xbind-now}
1063
1064 @emph{x86 Options}
1065 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1066 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1067 -mfpmath=@var{unit} @gol
1068 -masm=@var{dialect} -mno-fancy-math-387 @gol
1069 -mno-fp-ret-in-387 -msoft-float @gol
1070 -mno-wide-multiply -mrtd -malign-double @gol
1071 -mpreferred-stack-boundary=@var{num} @gol
1072 -mincoming-stack-boundary=@var{num} @gol
1073 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1074 -mrecip -mrecip=@var{opt} @gol
1075 -mvzeroupper -mprefer-avx128 @gol
1076 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1077 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha @gol
1078 -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1 @gol
1079 -mclflushopt -mxsavec -mxsaves @gol
1080 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1081 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mthreads @gol
1082 -mno-align-stringops -minline-all-stringops @gol
1083 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1084 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1085 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1086 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1087 -mregparm=@var{num} -msseregparm @gol
1088 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1089 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1090 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1091 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1092 -m32 -m64 -mx32 -m16 -mlarge-data-threshold=@var{num} @gol
1093 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1094 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1095 -malign-data=@var{type} -mstack-protector-guard=@var{guard}}
1096
1097 @emph{x86 Windows Options}
1098 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1099 -mnop-fun-dllimport -mthread @gol
1100 -municode -mwin32 -mwindows -fno-set-stack-executable}
1101
1102 @emph{Xstormy16 Options}
1103 @gccoptlist{-msim}
1104
1105 @emph{Xtensa Options}
1106 @gccoptlist{-mconst16 -mno-const16 @gol
1107 -mfused-madd -mno-fused-madd @gol
1108 -mforce-no-pic @gol
1109 -mserialize-volatile -mno-serialize-volatile @gol
1110 -mtext-section-literals -mno-text-section-literals @gol
1111 -mtarget-align -mno-target-align @gol
1112 -mlongcalls -mno-longcalls}
1113
1114 @emph{zSeries Options}
1115 See S/390 and zSeries Options.
1116
1117 @item Code Generation Options
1118 @xref{Code Gen Options,,Options for Code Generation Conventions}.
1119 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
1120 -ffixed-@var{reg} -fexceptions @gol
1121 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
1122 -fasynchronous-unwind-tables @gol
1123 -fno-gnu-unique @gol
1124 -finhibit-size-directive -finstrument-functions @gol
1125 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1126 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1127 -fno-common -fno-ident @gol
1128 -fpcc-struct-return -fpic -fPIC -fpie -fPIE @gol
1129 -fno-jump-tables @gol
1130 -frecord-gcc-switches @gol
1131 -freg-struct-return -fshort-enums @gol
1132 -fshort-double -fshort-wchar @gol
1133 -fverbose-asm -fpack-struct[=@var{n}] -fstack-check @gol
1134 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
1135 -fno-stack-limit -fsplit-stack @gol
1136 -fleading-underscore -ftls-model=@var{model} @gol
1137 -fstack-reuse=@var{reuse_level} @gol
1138 -ftrapv -fwrapv -fbounds-check @gol
1139 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1140 -fstrict-volatile-bitfields -fsync-libcalls}
1141 @end table
1142
1143
1144 @node Overall Options
1145 @section Options Controlling the Kind of Output
1146
1147 Compilation can involve up to four stages: preprocessing, compilation
1148 proper, assembly and linking, always in that order. GCC is capable of
1149 preprocessing and compiling several files either into several
1150 assembler input files, or into one assembler input file; then each
1151 assembler input file produces an object file, and linking combines all
1152 the object files (those newly compiled, and those specified as input)
1153 into an executable file.
1154
1155 @cindex file name suffix
1156 For any given input file, the file name suffix determines what kind of
1157 compilation is done:
1158
1159 @table @gcctabopt
1160 @item @var{file}.c
1161 C source code that must be preprocessed.
1162
1163 @item @var{file}.i
1164 C source code that should not be preprocessed.
1165
1166 @item @var{file}.ii
1167 C++ source code that should not be preprocessed.
1168
1169 @item @var{file}.m
1170 Objective-C source code. Note that you must link with the @file{libobjc}
1171 library to make an Objective-C program work.
1172
1173 @item @var{file}.mi
1174 Objective-C source code that should not be preprocessed.
1175
1176 @item @var{file}.mm
1177 @itemx @var{file}.M
1178 Objective-C++ source code. Note that you must link with the @file{libobjc}
1179 library to make an Objective-C++ program work. Note that @samp{.M} refers
1180 to a literal capital M@.
1181
1182 @item @var{file}.mii
1183 Objective-C++ source code that should not be preprocessed.
1184
1185 @item @var{file}.h
1186 C, C++, Objective-C or Objective-C++ header file to be turned into a
1187 precompiled header (default), or C, C++ header file to be turned into an
1188 Ada spec (via the @option{-fdump-ada-spec} switch).
1189
1190 @item @var{file}.cc
1191 @itemx @var{file}.cp
1192 @itemx @var{file}.cxx
1193 @itemx @var{file}.cpp
1194 @itemx @var{file}.CPP
1195 @itemx @var{file}.c++
1196 @itemx @var{file}.C
1197 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1198 the last two letters must both be literally @samp{x}. Likewise,
1199 @samp{.C} refers to a literal capital C@.
1200
1201 @item @var{file}.mm
1202 @itemx @var{file}.M
1203 Objective-C++ source code that must be preprocessed.
1204
1205 @item @var{file}.mii
1206 Objective-C++ source code that should not be preprocessed.
1207
1208 @item @var{file}.hh
1209 @itemx @var{file}.H
1210 @itemx @var{file}.hp
1211 @itemx @var{file}.hxx
1212 @itemx @var{file}.hpp
1213 @itemx @var{file}.HPP
1214 @itemx @var{file}.h++
1215 @itemx @var{file}.tcc
1216 C++ header file to be turned into a precompiled header or Ada spec.
1217
1218 @item @var{file}.f
1219 @itemx @var{file}.for
1220 @itemx @var{file}.ftn
1221 Fixed form Fortran source code that should not be preprocessed.
1222
1223 @item @var{file}.F
1224 @itemx @var{file}.FOR
1225 @itemx @var{file}.fpp
1226 @itemx @var{file}.FPP
1227 @itemx @var{file}.FTN
1228 Fixed form Fortran source code that must be preprocessed (with the traditional
1229 preprocessor).
1230
1231 @item @var{file}.f90
1232 @itemx @var{file}.f95
1233 @itemx @var{file}.f03
1234 @itemx @var{file}.f08
1235 Free form Fortran source code that should not be preprocessed.
1236
1237 @item @var{file}.F90
1238 @itemx @var{file}.F95
1239 @itemx @var{file}.F03
1240 @itemx @var{file}.F08
1241 Free form Fortran source code that must be preprocessed (with the
1242 traditional preprocessor).
1243
1244 @item @var{file}.go
1245 Go source code.
1246
1247 @c FIXME: Descriptions of Java file types.
1248 @c @var{file}.java
1249 @c @var{file}.class
1250 @c @var{file}.zip
1251 @c @var{file}.jar
1252
1253 @item @var{file}.ads
1254 Ada source code file that contains a library unit declaration (a
1255 declaration of a package, subprogram, or generic, or a generic
1256 instantiation), or a library unit renaming declaration (a package,
1257 generic, or subprogram renaming declaration). Such files are also
1258 called @dfn{specs}.
1259
1260 @item @var{file}.adb
1261 Ada source code file containing a library unit body (a subprogram or
1262 package body). Such files are also called @dfn{bodies}.
1263
1264 @c GCC also knows about some suffixes for languages not yet included:
1265 @c Pascal:
1266 @c @var{file}.p
1267 @c @var{file}.pas
1268 @c Ratfor:
1269 @c @var{file}.r
1270
1271 @item @var{file}.s
1272 Assembler code.
1273
1274 @item @var{file}.S
1275 @itemx @var{file}.sx
1276 Assembler code that must be preprocessed.
1277
1278 @item @var{other}
1279 An object file to be fed straight into linking.
1280 Any file name with no recognized suffix is treated this way.
1281 @end table
1282
1283 @opindex x
1284 You can specify the input language explicitly with the @option{-x} option:
1285
1286 @table @gcctabopt
1287 @item -x @var{language}
1288 Specify explicitly the @var{language} for the following input files
1289 (rather than letting the compiler choose a default based on the file
1290 name suffix). This option applies to all following input files until
1291 the next @option{-x} option. Possible values for @var{language} are:
1292 @smallexample
1293 c c-header cpp-output
1294 c++ c++-header c++-cpp-output
1295 objective-c objective-c-header objective-c-cpp-output
1296 objective-c++ objective-c++-header objective-c++-cpp-output
1297 assembler assembler-with-cpp
1298 ada
1299 f77 f77-cpp-input f95 f95-cpp-input
1300 go
1301 java
1302 @end smallexample
1303
1304 @item -x none
1305 Turn off any specification of a language, so that subsequent files are
1306 handled according to their file name suffixes (as they are if @option{-x}
1307 has not been used at all).
1308
1309 @item -pass-exit-codes
1310 @opindex pass-exit-codes
1311 Normally the @command{gcc} program exits with the code of 1 if any
1312 phase of the compiler returns a non-success return code. If you specify
1313 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1314 the numerically highest error produced by any phase returning an error
1315 indication. The C, C++, and Fortran front ends return 4 if an internal
1316 compiler error is encountered.
1317 @end table
1318
1319 If you only want some of the stages of compilation, you can use
1320 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1321 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1322 @command{gcc} is to stop. Note that some combinations (for example,
1323 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1324
1325 @table @gcctabopt
1326 @item -c
1327 @opindex c
1328 Compile or assemble the source files, but do not link. The linking
1329 stage simply is not done. The ultimate output is in the form of an
1330 object file for each source file.
1331
1332 By default, the object file name for a source file is made by replacing
1333 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1334
1335 Unrecognized input files, not requiring compilation or assembly, are
1336 ignored.
1337
1338 @item -S
1339 @opindex S
1340 Stop after the stage of compilation proper; do not assemble. The output
1341 is in the form of an assembler code file for each non-assembler input
1342 file specified.
1343
1344 By default, the assembler file name for a source file is made by
1345 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1346
1347 Input files that don't require compilation are ignored.
1348
1349 @item -E
1350 @opindex E
1351 Stop after the preprocessing stage; do not run the compiler proper. The
1352 output is in the form of preprocessed source code, which is sent to the
1353 standard output.
1354
1355 Input files that don't require preprocessing are ignored.
1356
1357 @cindex output file option
1358 @item -o @var{file}
1359 @opindex o
1360 Place output in file @var{file}. This applies to whatever
1361 sort of output is being produced, whether it be an executable file,
1362 an object file, an assembler file or preprocessed C code.
1363
1364 If @option{-o} is not specified, the default is to put an executable
1365 file in @file{a.out}, the object file for
1366 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1367 assembler file in @file{@var{source}.s}, a precompiled header file in
1368 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1369 standard output.
1370
1371 @item -v
1372 @opindex v
1373 Print (on standard error output) the commands executed to run the stages
1374 of compilation. Also print the version number of the compiler driver
1375 program and of the preprocessor and the compiler proper.
1376
1377 @item -###
1378 @opindex ###
1379 Like @option{-v} except the commands are not executed and arguments
1380 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1381 This is useful for shell scripts to capture the driver-generated command lines.
1382
1383 @item -pipe
1384 @opindex pipe
1385 Use pipes rather than temporary files for communication between the
1386 various stages of compilation. This fails to work on some systems where
1387 the assembler is unable to read from a pipe; but the GNU assembler has
1388 no trouble.
1389
1390 @item --help
1391 @opindex help
1392 Print (on the standard output) a description of the command-line options
1393 understood by @command{gcc}. If the @option{-v} option is also specified
1394 then @option{--help} is also passed on to the various processes
1395 invoked by @command{gcc}, so that they can display the command-line options
1396 they accept. If the @option{-Wextra} option has also been specified
1397 (prior to the @option{--help} option), then command-line options that
1398 have no documentation associated with them are also displayed.
1399
1400 @item --target-help
1401 @opindex target-help
1402 Print (on the standard output) a description of target-specific command-line
1403 options for each tool. For some targets extra target-specific
1404 information may also be printed.
1405
1406 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1407 Print (on the standard output) a description of the command-line
1408 options understood by the compiler that fit into all specified classes
1409 and qualifiers. These are the supported classes:
1410
1411 @table @asis
1412 @item @samp{optimizers}
1413 Display all of the optimization options supported by the
1414 compiler.
1415
1416 @item @samp{warnings}
1417 Display all of the options controlling warning messages
1418 produced by the compiler.
1419
1420 @item @samp{target}
1421 Display target-specific options. Unlike the
1422 @option{--target-help} option however, target-specific options of the
1423 linker and assembler are not displayed. This is because those
1424 tools do not currently support the extended @option{--help=} syntax.
1425
1426 @item @samp{params}
1427 Display the values recognized by the @option{--param}
1428 option.
1429
1430 @item @var{language}
1431 Display the options supported for @var{language}, where
1432 @var{language} is the name of one of the languages supported in this
1433 version of GCC@.
1434
1435 @item @samp{common}
1436 Display the options that are common to all languages.
1437 @end table
1438
1439 These are the supported qualifiers:
1440
1441 @table @asis
1442 @item @samp{undocumented}
1443 Display only those options that are undocumented.
1444
1445 @item @samp{joined}
1446 Display options taking an argument that appears after an equal
1447 sign in the same continuous piece of text, such as:
1448 @samp{--help=target}.
1449
1450 @item @samp{separate}
1451 Display options taking an argument that appears as a separate word
1452 following the original option, such as: @samp{-o output-file}.
1453 @end table
1454
1455 Thus for example to display all the undocumented target-specific
1456 switches supported by the compiler, use:
1457
1458 @smallexample
1459 --help=target,undocumented
1460 @end smallexample
1461
1462 The sense of a qualifier can be inverted by prefixing it with the
1463 @samp{^} character, so for example to display all binary warning
1464 options (i.e., ones that are either on or off and that do not take an
1465 argument) that have a description, use:
1466
1467 @smallexample
1468 --help=warnings,^joined,^undocumented
1469 @end smallexample
1470
1471 The argument to @option{--help=} should not consist solely of inverted
1472 qualifiers.
1473
1474 Combining several classes is possible, although this usually
1475 restricts the output so much that there is nothing to display. One
1476 case where it does work, however, is when one of the classes is
1477 @var{target}. For example, to display all the target-specific
1478 optimization options, use:
1479
1480 @smallexample
1481 --help=target,optimizers
1482 @end smallexample
1483
1484 The @option{--help=} option can be repeated on the command line. Each
1485 successive use displays its requested class of options, skipping
1486 those that have already been displayed.
1487
1488 If the @option{-Q} option appears on the command line before the
1489 @option{--help=} option, then the descriptive text displayed by
1490 @option{--help=} is changed. Instead of describing the displayed
1491 options, an indication is given as to whether the option is enabled,
1492 disabled or set to a specific value (assuming that the compiler
1493 knows this at the point where the @option{--help=} option is used).
1494
1495 Here is a truncated example from the ARM port of @command{gcc}:
1496
1497 @smallexample
1498 % gcc -Q -mabi=2 --help=target -c
1499 The following options are target specific:
1500 -mabi= 2
1501 -mabort-on-noreturn [disabled]
1502 -mapcs [disabled]
1503 @end smallexample
1504
1505 The output is sensitive to the effects of previous command-line
1506 options, so for example it is possible to find out which optimizations
1507 are enabled at @option{-O2} by using:
1508
1509 @smallexample
1510 -Q -O2 --help=optimizers
1511 @end smallexample
1512
1513 Alternatively you can discover which binary optimizations are enabled
1514 by @option{-O3} by using:
1515
1516 @smallexample
1517 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1518 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1519 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1520 @end smallexample
1521
1522 @item -no-canonical-prefixes
1523 @opindex no-canonical-prefixes
1524 Do not expand any symbolic links, resolve references to @samp{/../}
1525 or @samp{/./}, or make the path absolute when generating a relative
1526 prefix.
1527
1528 @item --version
1529 @opindex version
1530 Display the version number and copyrights of the invoked GCC@.
1531
1532 @item -wrapper
1533 @opindex wrapper
1534 Invoke all subcommands under a wrapper program. The name of the
1535 wrapper program and its parameters are passed as a comma separated
1536 list.
1537
1538 @smallexample
1539 gcc -c t.c -wrapper gdb,--args
1540 @end smallexample
1541
1542 @noindent
1543 This invokes all subprograms of @command{gcc} under
1544 @samp{gdb --args}, thus the invocation of @command{cc1} is
1545 @samp{gdb --args cc1 @dots{}}.
1546
1547 @item -fplugin=@var{name}.so
1548 @opindex fplugin
1549 Load the plugin code in file @var{name}.so, assumed to be a
1550 shared object to be dlopen'd by the compiler. The base name of
1551 the shared object file is used to identify the plugin for the
1552 purposes of argument parsing (See
1553 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1554 Each plugin should define the callback functions specified in the
1555 Plugins API.
1556
1557 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1558 @opindex fplugin-arg
1559 Define an argument called @var{key} with a value of @var{value}
1560 for the plugin called @var{name}.
1561
1562 @item -fdump-ada-spec@r{[}-slim@r{]}
1563 @opindex fdump-ada-spec
1564 For C and C++ source and include files, generate corresponding Ada specs.
1565 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1566 GNAT User's Guide}, which provides detailed documentation on this feature.
1567
1568 @item -fada-spec-parent=@var{unit}
1569 @opindex fada-spec-parent
1570 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1571 Ada specs as child units of parent @var{unit}.
1572
1573 @item -fdump-go-spec=@var{file}
1574 @opindex fdump-go-spec
1575 For input files in any language, generate corresponding Go
1576 declarations in @var{file}. This generates Go @code{const},
1577 @code{type}, @code{var}, and @code{func} declarations which may be a
1578 useful way to start writing a Go interface to code written in some
1579 other language.
1580
1581 @include @value{srcdir}/../libiberty/at-file.texi
1582 @end table
1583
1584 @node Invoking G++
1585 @section Compiling C++ Programs
1586
1587 @cindex suffixes for C++ source
1588 @cindex C++ source file suffixes
1589 C++ source files conventionally use one of the suffixes @samp{.C},
1590 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1591 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1592 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1593 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1594 files with these names and compiles them as C++ programs even if you
1595 call the compiler the same way as for compiling C programs (usually
1596 with the name @command{gcc}).
1597
1598 @findex g++
1599 @findex c++
1600 However, the use of @command{gcc} does not add the C++ library.
1601 @command{g++} is a program that calls GCC and automatically specifies linking
1602 against the C++ library. It treats @samp{.c},
1603 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1604 files unless @option{-x} is used. This program is also useful when
1605 precompiling a C header file with a @samp{.h} extension for use in C++
1606 compilations. On many systems, @command{g++} is also installed with
1607 the name @command{c++}.
1608
1609 @cindex invoking @command{g++}
1610 When you compile C++ programs, you may specify many of the same
1611 command-line options that you use for compiling programs in any
1612 language; or command-line options meaningful for C and related
1613 languages; or options that are meaningful only for C++ programs.
1614 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1615 explanations of options for languages related to C@.
1616 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1617 explanations of options that are meaningful only for C++ programs.
1618
1619 @node C Dialect Options
1620 @section Options Controlling C Dialect
1621 @cindex dialect options
1622 @cindex language dialect options
1623 @cindex options, dialect
1624
1625 The following options control the dialect of C (or languages derived
1626 from C, such as C++, Objective-C and Objective-C++) that the compiler
1627 accepts:
1628
1629 @table @gcctabopt
1630 @cindex ANSI support
1631 @cindex ISO support
1632 @item -ansi
1633 @opindex ansi
1634 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1635 equivalent to @option{-std=c++98}.
1636
1637 This turns off certain features of GCC that are incompatible with ISO
1638 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1639 such as the @code{asm} and @code{typeof} keywords, and
1640 predefined macros such as @code{unix} and @code{vax} that identify the
1641 type of system you are using. It also enables the undesirable and
1642 rarely used ISO trigraph feature. For the C compiler,
1643 it disables recognition of C++ style @samp{//} comments as well as
1644 the @code{inline} keyword.
1645
1646 The alternate keywords @code{__asm__}, @code{__extension__},
1647 @code{__inline__} and @code{__typeof__} continue to work despite
1648 @option{-ansi}. You would not want to use them in an ISO C program, of
1649 course, but it is useful to put them in header files that might be included
1650 in compilations done with @option{-ansi}. Alternate predefined macros
1651 such as @code{__unix__} and @code{__vax__} are also available, with or
1652 without @option{-ansi}.
1653
1654 The @option{-ansi} option does not cause non-ISO programs to be
1655 rejected gratuitously. For that, @option{-Wpedantic} is required in
1656 addition to @option{-ansi}. @xref{Warning Options}.
1657
1658 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1659 option is used. Some header files may notice this macro and refrain
1660 from declaring certain functions or defining certain macros that the
1661 ISO standard doesn't call for; this is to avoid interfering with any
1662 programs that might use these names for other things.
1663
1664 Functions that are normally built in but do not have semantics
1665 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1666 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1667 built-in functions provided by GCC}, for details of the functions
1668 affected.
1669
1670 @item -std=
1671 @opindex std
1672 Determine the language standard. @xref{Standards,,Language Standards
1673 Supported by GCC}, for details of these standard versions. This option
1674 is currently only supported when compiling C or C++.
1675
1676 The compiler can accept several base standards, such as @samp{c90} or
1677 @samp{c++98}, and GNU dialects of those standards, such as
1678 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1679 compiler accepts all programs following that standard plus those
1680 using GNU extensions that do not contradict it. For example,
1681 @option{-std=c90} turns off certain features of GCC that are
1682 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1683 keywords, but not other GNU extensions that do not have a meaning in
1684 ISO C90, such as omitting the middle term of a @code{?:}
1685 expression. On the other hand, when a GNU dialect of a standard is
1686 specified, all features supported by the compiler are enabled, even when
1687 those features change the meaning of the base standard. As a result, some
1688 strict-conforming programs may be rejected. The particular standard
1689 is used by @option{-Wpedantic} to identify which features are GNU
1690 extensions given that version of the standard. For example
1691 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1692 comments, while @option{-std=gnu99 -Wpedantic} does not.
1693
1694 A value for this option must be provided; possible values are
1695
1696 @table @samp
1697 @item c90
1698 @itemx c89
1699 @itemx iso9899:1990
1700 Support all ISO C90 programs (certain GNU extensions that conflict
1701 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1702
1703 @item iso9899:199409
1704 ISO C90 as modified in amendment 1.
1705
1706 @item c99
1707 @itemx c9x
1708 @itemx iso9899:1999
1709 @itemx iso9899:199x
1710 ISO C99. This standard is substantially completely supported, modulo
1711 bugs and floating-point issues
1712 (mainly but not entirely relating to optional C99 features from
1713 Annexes F and G). See
1714 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1715 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1716
1717 @item c11
1718 @itemx c1x
1719 @itemx iso9899:2011
1720 ISO C11, the 2011 revision of the ISO C standard. This standard is
1721 substantially completely supported, modulo bugs, floating-point issues
1722 (mainly but not entirely relating to optional C11 features from
1723 Annexes F and G) and the optional Annexes K (Bounds-checking
1724 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1725
1726 @item gnu90
1727 @itemx gnu89
1728 GNU dialect of ISO C90 (including some C99 features).
1729
1730 @item gnu99
1731 @itemx gnu9x
1732 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1733
1734 @item gnu11
1735 @itemx gnu1x
1736 GNU dialect of ISO C11. This is the default for C code.
1737 The name @samp{gnu1x} is deprecated.
1738
1739 @item c++98
1740 @itemx c++03
1741 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1742 additional defect reports. Same as @option{-ansi} for C++ code.
1743
1744 @item gnu++98
1745 @itemx gnu++03
1746 GNU dialect of @option{-std=c++98}. This is the default for
1747 C++ code.
1748
1749 @item c++11
1750 @itemx c++0x
1751 The 2011 ISO C++ standard plus amendments.
1752 The name @samp{c++0x} is deprecated.
1753
1754 @item gnu++11
1755 @itemx gnu++0x
1756 GNU dialect of @option{-std=c++11}.
1757 The name @samp{gnu++0x} is deprecated.
1758
1759 @item c++14
1760 @itemx c++1y
1761 The 2014 ISO C++ standard plus amendments.
1762 The name @samp{c++1y} is deprecated.
1763
1764 @item gnu++14
1765 @itemx gnu++1y
1766 GNU dialect of @option{-std=c++14}.
1767 The name @samp{gnu++1y} is deprecated.
1768
1769 @item c++1z
1770 The next revision of the ISO C++ standard, tentatively planned for
1771 2017. Support is highly experimental, and will almost certainly
1772 change in incompatible ways in future releases.
1773
1774 @item gnu++1z
1775 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1776 and will almost certainly change in incompatible ways in future
1777 releases.
1778 @end table
1779
1780 @item -fgnu89-inline
1781 @opindex fgnu89-inline
1782 The option @option{-fgnu89-inline} tells GCC to use the traditional
1783 GNU semantics for @code{inline} functions when in C99 mode.
1784 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1785 Using this option is roughly equivalent to adding the
1786 @code{gnu_inline} function attribute to all inline functions
1787 (@pxref{Function Attributes}).
1788
1789 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1790 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1791 specifies the default behavior).
1792 This option is not supported in @option{-std=c90} or
1793 @option{-std=gnu90} mode.
1794
1795 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1796 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1797 in effect for @code{inline} functions. @xref{Common Predefined
1798 Macros,,,cpp,The C Preprocessor}.
1799
1800 @item -aux-info @var{filename}
1801 @opindex aux-info
1802 Output to the given filename prototyped declarations for all functions
1803 declared and/or defined in a translation unit, including those in header
1804 files. This option is silently ignored in any language other than C@.
1805
1806 Besides declarations, the file indicates, in comments, the origin of
1807 each declaration (source file and line), whether the declaration was
1808 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1809 @samp{O} for old, respectively, in the first character after the line
1810 number and the colon), and whether it came from a declaration or a
1811 definition (@samp{C} or @samp{F}, respectively, in the following
1812 character). In the case of function definitions, a K&R-style list of
1813 arguments followed by their declarations is also provided, inside
1814 comments, after the declaration.
1815
1816 @item -fallow-parameterless-variadic-functions
1817 @opindex fallow-parameterless-variadic-functions
1818 Accept variadic functions without named parameters.
1819
1820 Although it is possible to define such a function, this is not very
1821 useful as it is not possible to read the arguments. This is only
1822 supported for C as this construct is allowed by C++.
1823
1824 @item -fno-asm
1825 @opindex fno-asm
1826 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1827 keyword, so that code can use these words as identifiers. You can use
1828 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1829 instead. @option{-ansi} implies @option{-fno-asm}.
1830
1831 In C++, this switch only affects the @code{typeof} keyword, since
1832 @code{asm} and @code{inline} are standard keywords. You may want to
1833 use the @option{-fno-gnu-keywords} flag instead, which has the same
1834 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1835 switch only affects the @code{asm} and @code{typeof} keywords, since
1836 @code{inline} is a standard keyword in ISO C99.
1837
1838 @item -fno-builtin
1839 @itemx -fno-builtin-@var{function}
1840 @opindex fno-builtin
1841 @cindex built-in functions
1842 Don't recognize built-in functions that do not begin with
1843 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1844 functions provided by GCC}, for details of the functions affected,
1845 including those which are not built-in functions when @option{-ansi} or
1846 @option{-std} options for strict ISO C conformance are used because they
1847 do not have an ISO standard meaning.
1848
1849 GCC normally generates special code to handle certain built-in functions
1850 more efficiently; for instance, calls to @code{alloca} may become single
1851 instructions which adjust the stack directly, and calls to @code{memcpy}
1852 may become inline copy loops. The resulting code is often both smaller
1853 and faster, but since the function calls no longer appear as such, you
1854 cannot set a breakpoint on those calls, nor can you change the behavior
1855 of the functions by linking with a different library. In addition,
1856 when a function is recognized as a built-in function, GCC may use
1857 information about that function to warn about problems with calls to
1858 that function, or to generate more efficient code, even if the
1859 resulting code still contains calls to that function. For example,
1860 warnings are given with @option{-Wformat} for bad calls to
1861 @code{printf} when @code{printf} is built in and @code{strlen} is
1862 known not to modify global memory.
1863
1864 With the @option{-fno-builtin-@var{function}} option
1865 only the built-in function @var{function} is
1866 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1867 function is named that is not built-in in this version of GCC, this
1868 option is ignored. There is no corresponding
1869 @option{-fbuiltin-@var{function}} option; if you wish to enable
1870 built-in functions selectively when using @option{-fno-builtin} or
1871 @option{-ffreestanding}, you may define macros such as:
1872
1873 @smallexample
1874 #define abs(n) __builtin_abs ((n))
1875 #define strcpy(d, s) __builtin_strcpy ((d), (s))
1876 @end smallexample
1877
1878 @item -fhosted
1879 @opindex fhosted
1880 @cindex hosted environment
1881
1882 Assert that compilation targets a hosted environment. This implies
1883 @option{-fbuiltin}. A hosted environment is one in which the
1884 entire standard library is available, and in which @code{main} has a return
1885 type of @code{int}. Examples are nearly everything except a kernel.
1886 This is equivalent to @option{-fno-freestanding}.
1887
1888 @item -ffreestanding
1889 @opindex ffreestanding
1890 @cindex hosted environment
1891
1892 Assert that compilation targets a freestanding environment. This
1893 implies @option{-fno-builtin}. A freestanding environment
1894 is one in which the standard library may not exist, and program startup may
1895 not necessarily be at @code{main}. The most obvious example is an OS kernel.
1896 This is equivalent to @option{-fno-hosted}.
1897
1898 @xref{Standards,,Language Standards Supported by GCC}, for details of
1899 freestanding and hosted environments.
1900
1901 @item -fopenacc
1902 @opindex fopenacc
1903 @cindex OpenACC accelerator programming
1904 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1905 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
1906 compiler generates accelerated code according to the OpenACC Application
1907 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
1908 implies @option{-pthread}, and thus is only supported on targets that
1909 have support for @option{-pthread}.
1910
1911 Note that this is an experimental feature, incomplete, and subject to
1912 change in future versions of GCC. See
1913 @w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1914
1915 @item -fopenmp
1916 @opindex fopenmp
1917 @cindex OpenMP parallel
1918 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1919 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
1920 compiler generates parallel code according to the OpenMP Application
1921 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}. This option
1922 implies @option{-pthread}, and thus is only supported on targets that
1923 have support for @option{-pthread}. @option{-fopenmp} implies
1924 @option{-fopenmp-simd}.
1925
1926 @item -fopenmp-simd
1927 @opindex fopenmp-simd
1928 @cindex OpenMP SIMD
1929 @cindex SIMD
1930 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1931 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1932 are ignored.
1933
1934 @item -fcilkplus
1935 @opindex fcilkplus
1936 @cindex Enable Cilk Plus
1937 Enable the usage of Cilk Plus language extension features for C/C++.
1938 When the option @option{-fcilkplus} is specified, enable the usage of
1939 the Cilk Plus Language extension features for C/C++. The present
1940 implementation follows ABI version 1.2. This is an experimental
1941 feature that is only partially complete, and whose interface may
1942 change in future versions of GCC as the official specification
1943 changes. Currently, all features but @code{_Cilk_for} have been
1944 implemented.
1945
1946 @item -fgnu-tm
1947 @opindex fgnu-tm
1948 When the option @option{-fgnu-tm} is specified, the compiler
1949 generates code for the Linux variant of Intel's current Transactional
1950 Memory ABI specification document (Revision 1.1, May 6 2009). This is
1951 an experimental feature whose interface may change in future versions
1952 of GCC, as the official specification changes. Please note that not
1953 all architectures are supported for this feature.
1954
1955 For more information on GCC's support for transactional memory,
1956 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1957 Transactional Memory Library}.
1958
1959 Note that the transactional memory feature is not supported with
1960 non-call exceptions (@option{-fnon-call-exceptions}).
1961
1962 @item -fms-extensions
1963 @opindex fms-extensions
1964 Accept some non-standard constructs used in Microsoft header files.
1965
1966 In C++ code, this allows member names in structures to be similar
1967 to previous types declarations.
1968
1969 @smallexample
1970 typedef int UOW;
1971 struct ABC @{
1972 UOW UOW;
1973 @};
1974 @end smallexample
1975
1976 Some cases of unnamed fields in structures and unions are only
1977 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
1978 fields within structs/unions}, for details.
1979
1980 Note that this option is off for all targets but x86
1981 targets using ms-abi.
1982
1983 @item -fplan9-extensions
1984 @opindex fplan9-extensions
1985 Accept some non-standard constructs used in Plan 9 code.
1986
1987 This enables @option{-fms-extensions}, permits passing pointers to
1988 structures with anonymous fields to functions that expect pointers to
1989 elements of the type of the field, and permits referring to anonymous
1990 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
1991 struct/union fields within structs/unions}, for details. This is only
1992 supported for C, not C++.
1993
1994 @item -trigraphs
1995 @opindex trigraphs
1996 Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
1997 options for strict ISO C conformance) implies @option{-trigraphs}.
1998
1999 @cindex traditional C language
2000 @cindex C language, traditional
2001 @item -traditional
2002 @itemx -traditional-cpp
2003 @opindex traditional-cpp
2004 @opindex traditional
2005 Formerly, these options caused GCC to attempt to emulate a pre-standard
2006 C compiler. They are now only supported with the @option{-E} switch.
2007 The preprocessor continues to support a pre-standard mode. See the GNU
2008 CPP manual for details.
2009
2010 @item -fcond-mismatch
2011 @opindex fcond-mismatch
2012 Allow conditional expressions with mismatched types in the second and
2013 third arguments. The value of such an expression is void. This option
2014 is not supported for C++.
2015
2016 @item -flax-vector-conversions
2017 @opindex flax-vector-conversions
2018 Allow implicit conversions between vectors with differing numbers of
2019 elements and/or incompatible element types. This option should not be
2020 used for new code.
2021
2022 @item -funsigned-char
2023 @opindex funsigned-char
2024 Let the type @code{char} be unsigned, like @code{unsigned char}.
2025
2026 Each kind of machine has a default for what @code{char} should
2027 be. It is either like @code{unsigned char} by default or like
2028 @code{signed char} by default.
2029
2030 Ideally, a portable program should always use @code{signed char} or
2031 @code{unsigned char} when it depends on the signedness of an object.
2032 But many programs have been written to use plain @code{char} and
2033 expect it to be signed, or expect it to be unsigned, depending on the
2034 machines they were written for. This option, and its inverse, let you
2035 make such a program work with the opposite default.
2036
2037 The type @code{char} is always a distinct type from each of
2038 @code{signed char} or @code{unsigned char}, even though its behavior
2039 is always just like one of those two.
2040
2041 @item -fsigned-char
2042 @opindex fsigned-char
2043 Let the type @code{char} be signed, like @code{signed char}.
2044
2045 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2046 the negative form of @option{-funsigned-char}. Likewise, the option
2047 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2048
2049 @item -fsigned-bitfields
2050 @itemx -funsigned-bitfields
2051 @itemx -fno-signed-bitfields
2052 @itemx -fno-unsigned-bitfields
2053 @opindex fsigned-bitfields
2054 @opindex funsigned-bitfields
2055 @opindex fno-signed-bitfields
2056 @opindex fno-unsigned-bitfields
2057 These options control whether a bit-field is signed or unsigned, when the
2058 declaration does not use either @code{signed} or @code{unsigned}. By
2059 default, such a bit-field is signed, because this is consistent: the
2060 basic integer types such as @code{int} are signed types.
2061 @end table
2062
2063 @node C++ Dialect Options
2064 @section Options Controlling C++ Dialect
2065
2066 @cindex compiler options, C++
2067 @cindex C++ options, command-line
2068 @cindex options, C++
2069 This section describes the command-line options that are only meaningful
2070 for C++ programs. You can also use most of the GNU compiler options
2071 regardless of what language your program is in. For example, you
2072 might compile a file @file{firstClass.C} like this:
2073
2074 @smallexample
2075 g++ -g -frepo -O -c firstClass.C
2076 @end smallexample
2077
2078 @noindent
2079 In this example, only @option{-frepo} is an option meant
2080 only for C++ programs; you can use the other options with any
2081 language supported by GCC@.
2082
2083 Here is a list of options that are @emph{only} for compiling C++ programs:
2084
2085 @table @gcctabopt
2086
2087 @item -fabi-version=@var{n}
2088 @opindex fabi-version
2089 Use version @var{n} of the C++ ABI@. The default is version 0.
2090
2091 Version 0 refers to the version conforming most closely to
2092 the C++ ABI specification. Therefore, the ABI obtained using version 0
2093 will change in different versions of G++ as ABI bugs are fixed.
2094
2095 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2096
2097 Version 2 is the version of the C++ ABI that first appeared in G++
2098 3.4, and was the default through G++ 4.9.
2099
2100 Version 3 corrects an error in mangling a constant address as a
2101 template argument.
2102
2103 Version 4, which first appeared in G++ 4.5, implements a standard
2104 mangling for vector types.
2105
2106 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2107 attribute const/volatile on function pointer types, decltype of a
2108 plain decl, and use of a function parameter in the declaration of
2109 another parameter.
2110
2111 Version 6, which first appeared in G++ 4.7, corrects the promotion
2112 behavior of C++11 scoped enums and the mangling of template argument
2113 packs, const/static_cast, prefix ++ and --, and a class scope function
2114 used as a template argument.
2115
2116 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2117 builtin type and corrects the mangling of lambdas in default argument
2118 scope.
2119
2120 Version 8, which first appeared in G++ 4.9, corrects the substitution
2121 behavior of function types with function-cv-qualifiers.
2122
2123 See also @option{-Wabi}.
2124
2125 @item -fabi-compat-version=@var{n}
2126 @opindex fabi-compat-version
2127 On targets that support strong aliases, G++
2128 works around mangling changes by creating an alias with the correct
2129 mangled name when defining a symbol with an incorrect mangled name.
2130 This switch specifies which ABI version to use for the alias.
2131
2132 With @option{-fabi-version=0} (the default), this defaults to 2. If
2133 another ABI version is explicitly selected, this defaults to 0.
2134
2135 The compatibility version is also set by @option{-Wabi=@var{n}}.
2136
2137 @item -fno-access-control
2138 @opindex fno-access-control
2139 Turn off all access checking. This switch is mainly useful for working
2140 around bugs in the access control code.
2141
2142 @item -fcheck-new
2143 @opindex fcheck-new
2144 Check that the pointer returned by @code{operator new} is non-null
2145 before attempting to modify the storage allocated. This check is
2146 normally unnecessary because the C++ standard specifies that
2147 @code{operator new} only returns @code{0} if it is declared
2148 @code{throw()}, in which case the compiler always checks the
2149 return value even without this option. In all other cases, when
2150 @code{operator new} has a non-empty exception specification, memory
2151 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2152 @samp{new (nothrow)}.
2153
2154 @item -fconstexpr-depth=@var{n}
2155 @opindex fconstexpr-depth
2156 Set the maximum nested evaluation depth for C++11 constexpr functions
2157 to @var{n}. A limit is needed to detect endless recursion during
2158 constant expression evaluation. The minimum specified by the standard
2159 is 512.
2160
2161 @item -fdeduce-init-list
2162 @opindex fdeduce-init-list
2163 Enable deduction of a template type parameter as
2164 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2165
2166 @smallexample
2167 template <class T> auto forward(T t) -> decltype (realfn (t))
2168 @{
2169 return realfn (t);
2170 @}
2171
2172 void f()
2173 @{
2174 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2175 @}
2176 @end smallexample
2177
2178 This deduction was implemented as a possible extension to the
2179 originally proposed semantics for the C++11 standard, but was not part
2180 of the final standard, so it is disabled by default. This option is
2181 deprecated, and may be removed in a future version of G++.
2182
2183 @item -ffriend-injection
2184 @opindex ffriend-injection
2185 Inject friend functions into the enclosing namespace, so that they are
2186 visible outside the scope of the class in which they are declared.
2187 Friend functions were documented to work this way in the old Annotated
2188 C++ Reference Manual.
2189 However, in ISO C++ a friend function that is not declared
2190 in an enclosing scope can only be found using argument dependent
2191 lookup. GCC defaults to the standard behavior.
2192
2193 This option is for compatibility, and may be removed in a future
2194 release of G++.
2195
2196 @item -fno-elide-constructors
2197 @opindex fno-elide-constructors
2198 The C++ standard allows an implementation to omit creating a temporary
2199 that is only used to initialize another object of the same type.
2200 Specifying this option disables that optimization, and forces G++ to
2201 call the copy constructor in all cases.
2202
2203 @item -fno-enforce-eh-specs
2204 @opindex fno-enforce-eh-specs
2205 Don't generate code to check for violation of exception specifications
2206 at run time. This option violates the C++ standard, but may be useful
2207 for reducing code size in production builds, much like defining
2208 @code{NDEBUG}. This does not give user code permission to throw
2209 exceptions in violation of the exception specifications; the compiler
2210 still optimizes based on the specifications, so throwing an
2211 unexpected exception results in undefined behavior at run time.
2212
2213 @item -fextern-tls-init
2214 @itemx -fno-extern-tls-init
2215 @opindex fextern-tls-init
2216 @opindex fno-extern-tls-init
2217 The C++11 and OpenMP standards allow @code{thread_local} and
2218 @code{threadprivate} variables to have dynamic (runtime)
2219 initialization. To support this, any use of such a variable goes
2220 through a wrapper function that performs any necessary initialization.
2221 When the use and definition of the variable are in the same
2222 translation unit, this overhead can be optimized away, but when the
2223 use is in a different translation unit there is significant overhead
2224 even if the variable doesn't actually need dynamic initialization. If
2225 the programmer can be sure that no use of the variable in a
2226 non-defining TU needs to trigger dynamic initialization (either
2227 because the variable is statically initialized, or a use of the
2228 variable in the defining TU will be executed before any uses in
2229 another TU), they can avoid this overhead with the
2230 @option{-fno-extern-tls-init} option.
2231
2232 On targets that support symbol aliases, the default is
2233 @option{-fextern-tls-init}. On targets that do not support symbol
2234 aliases, the default is @option{-fno-extern-tls-init}.
2235
2236 @item -ffor-scope
2237 @itemx -fno-for-scope
2238 @opindex ffor-scope
2239 @opindex fno-for-scope
2240 If @option{-ffor-scope} is specified, the scope of variables declared in
2241 a @i{for-init-statement} is limited to the @code{for} loop itself,
2242 as specified by the C++ standard.
2243 If @option{-fno-for-scope} is specified, the scope of variables declared in
2244 a @i{for-init-statement} extends to the end of the enclosing scope,
2245 as was the case in old versions of G++, and other (traditional)
2246 implementations of C++.
2247
2248 If neither flag is given, the default is to follow the standard,
2249 but to allow and give a warning for old-style code that would
2250 otherwise be invalid, or have different behavior.
2251
2252 @item -fno-gnu-keywords
2253 @opindex fno-gnu-keywords
2254 Do not recognize @code{typeof} as a keyword, so that code can use this
2255 word as an identifier. You can use the keyword @code{__typeof__} instead.
2256 @option{-ansi} implies @option{-fno-gnu-keywords}.
2257
2258 @item -fno-implicit-templates
2259 @opindex fno-implicit-templates
2260 Never emit code for non-inline templates that are instantiated
2261 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2262 @xref{Template Instantiation}, for more information.
2263
2264 @item -fno-implicit-inline-templates
2265 @opindex fno-implicit-inline-templates
2266 Don't emit code for implicit instantiations of inline templates, either.
2267 The default is to handle inlines differently so that compiles with and
2268 without optimization need the same set of explicit instantiations.
2269
2270 @item -fno-implement-inlines
2271 @opindex fno-implement-inlines
2272 To save space, do not emit out-of-line copies of inline functions
2273 controlled by @code{#pragma implementation}. This causes linker
2274 errors if these functions are not inlined everywhere they are called.
2275
2276 @item -fms-extensions
2277 @opindex fms-extensions
2278 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2279 int and getting a pointer to member function via non-standard syntax.
2280
2281 @item -fno-nonansi-builtins
2282 @opindex fno-nonansi-builtins
2283 Disable built-in declarations of functions that are not mandated by
2284 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2285 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2286
2287 @item -fnothrow-opt
2288 @opindex fnothrow-opt
2289 Treat a @code{throw()} exception specification as if it were a
2290 @code{noexcept} specification to reduce or eliminate the text size
2291 overhead relative to a function with no exception specification. If
2292 the function has local variables of types with non-trivial
2293 destructors, the exception specification actually makes the
2294 function smaller because the EH cleanups for those variables can be
2295 optimized away. The semantic effect is that an exception thrown out of
2296 a function with such an exception specification results in a call
2297 to @code{terminate} rather than @code{unexpected}.
2298
2299 @item -fno-operator-names
2300 @opindex fno-operator-names
2301 Do not treat the operator name keywords @code{and}, @code{bitand},
2302 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2303 synonyms as keywords.
2304
2305 @item -fno-optional-diags
2306 @opindex fno-optional-diags
2307 Disable diagnostics that the standard says a compiler does not need to
2308 issue. Currently, the only such diagnostic issued by G++ is the one for
2309 a name having multiple meanings within a class.
2310
2311 @item -fpermissive
2312 @opindex fpermissive
2313 Downgrade some diagnostics about nonconformant code from errors to
2314 warnings. Thus, using @option{-fpermissive} allows some
2315 nonconforming code to compile.
2316
2317 @item -fno-pretty-templates
2318 @opindex fno-pretty-templates
2319 When an error message refers to a specialization of a function
2320 template, the compiler normally prints the signature of the
2321 template followed by the template arguments and any typedefs or
2322 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2323 rather than @code{void f(int)}) so that it's clear which template is
2324 involved. When an error message refers to a specialization of a class
2325 template, the compiler omits any template arguments that match
2326 the default template arguments for that template. If either of these
2327 behaviors make it harder to understand the error message rather than
2328 easier, you can use @option{-fno-pretty-templates} to disable them.
2329
2330 @item -frepo
2331 @opindex frepo
2332 Enable automatic template instantiation at link time. This option also
2333 implies @option{-fno-implicit-templates}. @xref{Template
2334 Instantiation}, for more information.
2335
2336 @item -fno-rtti
2337 @opindex fno-rtti
2338 Disable generation of information about every class with virtual
2339 functions for use by the C++ run-time type identification features
2340 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2341 of the language, you can save some space by using this flag. Note that
2342 exception handling uses the same information, but G++ generates it as
2343 needed. The @code{dynamic_cast} operator can still be used for casts that
2344 do not require run-time type information, i.e.@: casts to @code{void *} or to
2345 unambiguous base classes.
2346
2347 @item -fsized-deallocation
2348 @opindex fsized-deallocation
2349 Enable the built-in global declarations
2350 @smallexample
2351 void operator delete (void *, std::size_t) noexcept;
2352 void operator delete[] (void *, std::size_t) noexcept;
2353 @end smallexample
2354 as introduced in C++14. This is useful for user-defined replacement
2355 deallocation functions that, for example, use the size of the object
2356 to make deallocation faster. Enabled by default under
2357 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2358 warns about places that might want to add a definition.
2359
2360 @item -fstats
2361 @opindex fstats
2362 Emit statistics about front-end processing at the end of the compilation.
2363 This information is generally only useful to the G++ development team.
2364
2365 @item -fstrict-enums
2366 @opindex fstrict-enums
2367 Allow the compiler to optimize using the assumption that a value of
2368 enumerated type can only be one of the values of the enumeration (as
2369 defined in the C++ standard; basically, a value that can be
2370 represented in the minimum number of bits needed to represent all the
2371 enumerators). This assumption may not be valid if the program uses a
2372 cast to convert an arbitrary integer value to the enumerated type.
2373
2374 @item -ftemplate-backtrace-limit=@var{n}
2375 @opindex ftemplate-backtrace-limit
2376 Set the maximum number of template instantiation notes for a single
2377 warning or error to @var{n}. The default value is 10.
2378
2379 @item -ftemplate-depth=@var{n}
2380 @opindex ftemplate-depth
2381 Set the maximum instantiation depth for template classes to @var{n}.
2382 A limit on the template instantiation depth is needed to detect
2383 endless recursions during template class instantiation. ANSI/ISO C++
2384 conforming programs must not rely on a maximum depth greater than 17
2385 (changed to 1024 in C++11). The default value is 900, as the compiler
2386 can run out of stack space before hitting 1024 in some situations.
2387
2388 @item -fno-threadsafe-statics
2389 @opindex fno-threadsafe-statics
2390 Do not emit the extra code to use the routines specified in the C++
2391 ABI for thread-safe initialization of local statics. You can use this
2392 option to reduce code size slightly in code that doesn't need to be
2393 thread-safe.
2394
2395 @item -fuse-cxa-atexit
2396 @opindex fuse-cxa-atexit
2397 Register destructors for objects with static storage duration with the
2398 @code{__cxa_atexit} function rather than the @code{atexit} function.
2399 This option is required for fully standards-compliant handling of static
2400 destructors, but only works if your C library supports
2401 @code{__cxa_atexit}.
2402
2403 @item -fno-use-cxa-get-exception-ptr
2404 @opindex fno-use-cxa-get-exception-ptr
2405 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2406 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2407 if the runtime routine is not available.
2408
2409 @item -fvisibility-inlines-hidden
2410 @opindex fvisibility-inlines-hidden
2411 This switch declares that the user does not attempt to compare
2412 pointers to inline functions or methods where the addresses of the two functions
2413 are taken in different shared objects.
2414
2415 The effect of this is that GCC may, effectively, mark inline methods with
2416 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2417 appear in the export table of a DSO and do not require a PLT indirection
2418 when used within the DSO@. Enabling this option can have a dramatic effect
2419 on load and link times of a DSO as it massively reduces the size of the
2420 dynamic export table when the library makes heavy use of templates.
2421
2422 The behavior of this switch is not quite the same as marking the
2423 methods as hidden directly, because it does not affect static variables
2424 local to the function or cause the compiler to deduce that
2425 the function is defined in only one shared object.
2426
2427 You may mark a method as having a visibility explicitly to negate the
2428 effect of the switch for that method. For example, if you do want to
2429 compare pointers to a particular inline method, you might mark it as
2430 having default visibility. Marking the enclosing class with explicit
2431 visibility has no effect.
2432
2433 Explicitly instantiated inline methods are unaffected by this option
2434 as their linkage might otherwise cross a shared library boundary.
2435 @xref{Template Instantiation}.
2436
2437 @item -fvisibility-ms-compat
2438 @opindex fvisibility-ms-compat
2439 This flag attempts to use visibility settings to make GCC's C++
2440 linkage model compatible with that of Microsoft Visual Studio.
2441
2442 The flag makes these changes to GCC's linkage model:
2443
2444 @enumerate
2445 @item
2446 It sets the default visibility to @code{hidden}, like
2447 @option{-fvisibility=hidden}.
2448
2449 @item
2450 Types, but not their members, are not hidden by default.
2451
2452 @item
2453 The One Definition Rule is relaxed for types without explicit
2454 visibility specifications that are defined in more than one
2455 shared object: those declarations are permitted if they are
2456 permitted when this option is not used.
2457 @end enumerate
2458
2459 In new code it is better to use @option{-fvisibility=hidden} and
2460 export those classes that are intended to be externally visible.
2461 Unfortunately it is possible for code to rely, perhaps accidentally,
2462 on the Visual Studio behavior.
2463
2464 Among the consequences of these changes are that static data members
2465 of the same type with the same name but defined in different shared
2466 objects are different, so changing one does not change the other;
2467 and that pointers to function members defined in different shared
2468 objects may not compare equal. When this flag is given, it is a
2469 violation of the ODR to define types with the same name differently.
2470
2471 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2472 @opindex fvtable-verify
2473 Turn on (or off, if using @option{-fvtable-verify=none}) the security
2474 feature that verifies at run time, for every virtual call, that
2475 the vtable pointer through which the call is made is valid for the type of
2476 the object, and has not been corrupted or overwritten. If an invalid vtable
2477 pointer is detected at run time, an error is reported and execution of the
2478 program is immediately halted.
2479
2480 This option causes run-time data structures to be built at program startup,
2481 which are used for verifying the vtable pointers.
2482 The options @samp{std} and @samp{preinit}
2483 control the timing of when these data structures are built. In both cases the
2484 data structures are built before execution reaches @code{main}. Using
2485 @option{-fvtable-verify=std} causes the data structures to be built after
2486 shared libraries have been loaded and initialized.
2487 @option{-fvtable-verify=preinit} causes them to be built before shared
2488 libraries have been loaded and initialized.
2489
2490 If this option appears multiple times in the command line with different
2491 values specified, @samp{none} takes highest priority over both @samp{std} and
2492 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2493
2494 @item -fvtv-debug
2495 @opindex fvtv-debug
2496 When used in conjunction with @option{-fvtable-verify=std} or
2497 @option{-fvtable-verify=preinit}, causes debug versions of the
2498 runtime functions for the vtable verification feature to be called.
2499 This flag also causes the compiler to log information about which
2500 vtable pointers it finds for each class.
2501 This information is written to a file named @file{vtv_set_ptr_data.log}
2502 in the directory named by the environment variable @env{VTV_LOGS_DIR}
2503 if that is defined or the current working directory otherwise.
2504
2505 Note: This feature @emph{appends} data to the log file. If you want a fresh log
2506 file, be sure to delete any existing one.
2507
2508 @item -fvtv-counts
2509 @opindex fvtv-counts
2510 This is a debugging flag. When used in conjunction with
2511 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2512 causes the compiler to keep track of the total number of virtual calls
2513 it encounters and the number of verifications it inserts. It also
2514 counts the number of calls to certain run-time library functions
2515 that it inserts and logs this information for each compilation unit.
2516 The compiler writes this information to a file named
2517 @file{vtv_count_data.log} in the directory named by the environment
2518 variable @env{VTV_LOGS_DIR} if that is defined or the current working
2519 directory otherwise. It also counts the size of the vtable pointer sets
2520 for each class, and writes this information to @file{vtv_class_set_sizes.log}
2521 in the same directory.
2522
2523 Note: This feature @emph{appends} data to the log files. To get fresh log
2524 files, be sure to delete any existing ones.
2525
2526 @item -fno-weak
2527 @opindex fno-weak
2528 Do not use weak symbol support, even if it is provided by the linker.
2529 By default, G++ uses weak symbols if they are available. This
2530 option exists only for testing, and should not be used by end-users;
2531 it results in inferior code and has no benefits. This option may
2532 be removed in a future release of G++.
2533
2534 @item -nostdinc++
2535 @opindex nostdinc++
2536 Do not search for header files in the standard directories specific to
2537 C++, but do still search the other standard directories. (This option
2538 is used when building the C++ library.)
2539 @end table
2540
2541 In addition, these optimization, warning, and code generation options
2542 have meanings only for C++ programs:
2543
2544 @table @gcctabopt
2545 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2546 @opindex Wabi
2547 @opindex Wno-abi
2548 When an explicit @option{-fabi-version=@var{n}} option is used, causes
2549 G++ to warn when it generates code that is probably not compatible with the
2550 vendor-neutral C++ ABI@. Since G++ now defaults to
2551 @option{-fabi-version=0}, @option{-Wabi} has no effect unless either
2552 an older ABI version is selected (with @option{-fabi-version=@var{n}})
2553 or an older compatibility version is selected (with
2554 @option{-Wabi=@var{n}} or @option{-fabi-compat-version=@var{n}}).
2555
2556 Although an effort has been made to warn about
2557 all such cases, there are probably some cases that are not warned about,
2558 even though G++ is generating incompatible code. There may also be
2559 cases where warnings are emitted even though the code that is generated
2560 is compatible.
2561
2562 You should rewrite your code to avoid these warnings if you are
2563 concerned about the fact that code generated by G++ may not be binary
2564 compatible with code generated by other compilers.
2565
2566 @option{-Wabi} can also be used with an explicit version number to
2567 warn about compatibility with a particular @option{-fabi-version}
2568 level, e.g. @option{-Wabi=2} to warn about changes relative to
2569 @option{-fabi-version=2}. Specifying a version number also sets
2570 @option{-fabi-compat-version=@var{n}}.
2571
2572 The known incompatibilities in @option{-fabi-version=2} (which was the
2573 default from GCC 3.4 to 4.9) include:
2574
2575 @itemize @bullet
2576
2577 @item
2578 A template with a non-type template parameter of reference type was
2579 mangled incorrectly:
2580 @smallexample
2581 extern int N;
2582 template <int &> struct S @{@};
2583 void n (S<N>) @{2@}
2584 @end smallexample
2585
2586 This was fixed in @option{-fabi-version=3}.
2587
2588 @item
2589 SIMD vector types declared using @code{__attribute ((vector_size))} were
2590 mangled in a non-standard way that does not allow for overloading of
2591 functions taking vectors of different sizes.
2592
2593 The mangling was changed in @option{-fabi-version=4}.
2594
2595 @item
2596 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2597 qualifiers, and @code{decltype} of a plain declaration was folded away.
2598
2599 These mangling issues were fixed in @option{-fabi-version=5}.
2600
2601 @item
2602 Scoped enumerators passed as arguments to a variadic function are
2603 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2604 On most targets this does not actually affect the parameter passing
2605 ABI, as there is no way to pass an argument smaller than @code{int}.
2606
2607 Also, the ABI changed the mangling of template argument packs,
2608 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2609 a class scope function used as a template argument.
2610
2611 These issues were corrected in @option{-fabi-version=6}.
2612
2613 @item
2614 Lambdas in default argument scope were mangled incorrectly, and the
2615 ABI changed the mangling of @code{nullptr_t}.
2616
2617 These issues were corrected in @option{-fabi-version=7}.
2618
2619 @item
2620 When mangling a function type with function-cv-qualifiers, the
2621 un-qualified function type was incorrectly treated as a substitution
2622 candidate.
2623
2624 This was fixed in @option{-fabi-version=8}.
2625 @end itemize
2626
2627 It also warns about psABI-related changes. The known psABI changes at this
2628 point include:
2629
2630 @itemize @bullet
2631
2632 @item
2633 For SysV/x86-64, unions with @code{long double} members are
2634 passed in memory as specified in psABI. For example:
2635
2636 @smallexample
2637 union U @{
2638 long double ld;
2639 int i;
2640 @};
2641 @end smallexample
2642
2643 @noindent
2644 @code{union U} is always passed in memory.
2645
2646 @end itemize
2647
2648 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2649 @opindex Wabi-tag
2650 @opindex -Wabi-tag
2651 Warn when a type with an ABI tag is used in a context that does not
2652 have that ABI tag. See @ref{C++ Attributes} for more information
2653 about ABI tags.
2654
2655 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2656 @opindex Wctor-dtor-privacy
2657 @opindex Wno-ctor-dtor-privacy
2658 Warn when a class seems unusable because all the constructors or
2659 destructors in that class are private, and it has neither friends nor
2660 public static member functions. Also warn if there are no non-private
2661 methods, and there's at least one private member function that isn't
2662 a constructor or destructor.
2663
2664 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2665 @opindex Wdelete-non-virtual-dtor
2666 @opindex Wno-delete-non-virtual-dtor
2667 Warn when @code{delete} is used to destroy an instance of a class that
2668 has virtual functions and non-virtual destructor. It is unsafe to delete
2669 an instance of a derived class through a pointer to a base class if the
2670 base class does not have a virtual destructor. This warning is enabled
2671 by @option{-Wall}.
2672
2673 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2674 @opindex Wliteral-suffix
2675 @opindex Wno-literal-suffix
2676 Warn when a string or character literal is followed by a ud-suffix which does
2677 not begin with an underscore. As a conforming extension, GCC treats such
2678 suffixes as separate preprocessing tokens in order to maintain backwards
2679 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2680 For example:
2681
2682 @smallexample
2683 #define __STDC_FORMAT_MACROS
2684 #include <inttypes.h>
2685 #include <stdio.h>
2686
2687 int main() @{
2688 int64_t i64 = 123;
2689 printf("My int64: %"PRId64"\n", i64);
2690 @}
2691 @end smallexample
2692
2693 In this case, @code{PRId64} is treated as a separate preprocessing token.
2694
2695 This warning is enabled by default.
2696
2697 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2698 @opindex Wnarrowing
2699 @opindex Wno-narrowing
2700 Warn when a narrowing conversion prohibited by C++11 occurs within
2701 @samp{@{ @}}, e.g.
2702
2703 @smallexample
2704 int i = @{ 2.2 @}; // error: narrowing from double to int
2705 @end smallexample
2706
2707 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2708
2709 With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2710 required by the standard. Note that this does not affect the meaning
2711 of well-formed code; narrowing conversions are still considered
2712 ill-formed in SFINAE context.
2713
2714 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2715 @opindex Wnoexcept
2716 @opindex Wno-noexcept
2717 Warn when a noexcept-expression evaluates to false because of a call
2718 to a function that does not have a non-throwing exception
2719 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2720 the compiler to never throw an exception.
2721
2722 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2723 @opindex Wnon-virtual-dtor
2724 @opindex Wno-non-virtual-dtor
2725 Warn when a class has virtual functions and an accessible non-virtual
2726 destructor itself or in an accessible polymorphic base class, in which
2727 case it is possible but unsafe to delete an instance of a derived
2728 class through a pointer to the class itself or base class. This
2729 warning is automatically enabled if @option{-Weffc++} is specified.
2730
2731 @item -Wreorder @r{(C++ and Objective-C++ only)}
2732 @opindex Wreorder
2733 @opindex Wno-reorder
2734 @cindex reordering, warning
2735 @cindex warning for reordering of member initializers
2736 Warn when the order of member initializers given in the code does not
2737 match the order in which they must be executed. For instance:
2738
2739 @smallexample
2740 struct A @{
2741 int i;
2742 int j;
2743 A(): j (0), i (1) @{ @}
2744 @};
2745 @end smallexample
2746
2747 @noindent
2748 The compiler rearranges the member initializers for @code{i}
2749 and @code{j} to match the declaration order of the members, emitting
2750 a warning to that effect. This warning is enabled by @option{-Wall}.
2751
2752 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2753 @opindex fext-numeric-literals
2754 @opindex fno-ext-numeric-literals
2755 Accept imaginary, fixed-point, or machine-defined
2756 literal number suffixes as GNU extensions.
2757 When this option is turned off these suffixes are treated
2758 as C++11 user-defined literal numeric suffixes.
2759 This is on by default for all pre-C++11 dialects and all GNU dialects:
2760 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2761 @option{-std=gnu++14}.
2762 This option is off by default
2763 for ISO C++11 onwards (@option{-std=c++11}, ...).
2764 @end table
2765
2766 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2767
2768 @table @gcctabopt
2769 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2770 @opindex Weffc++
2771 @opindex Wno-effc++
2772 Warn about violations of the following style guidelines from Scott Meyers'
2773 @cite{Effective C++} series of books:
2774
2775 @itemize @bullet
2776 @item
2777 Define a copy constructor and an assignment operator for classes
2778 with dynamically-allocated memory.
2779
2780 @item
2781 Prefer initialization to assignment in constructors.
2782
2783 @item
2784 Have @code{operator=} return a reference to @code{*this}.
2785
2786 @item
2787 Don't try to return a reference when you must return an object.
2788
2789 @item
2790 Distinguish between prefix and postfix forms of increment and
2791 decrement operators.
2792
2793 @item
2794 Never overload @code{&&}, @code{||}, or @code{,}.
2795
2796 @end itemize
2797
2798 This option also enables @option{-Wnon-virtual-dtor}, which is also
2799 one of the effective C++ recommendations. However, the check is
2800 extended to warn about the lack of virtual destructor in accessible
2801 non-polymorphic bases classes too.
2802
2803 When selecting this option, be aware that the standard library
2804 headers do not obey all of these guidelines; use @samp{grep -v}
2805 to filter out those warnings.
2806
2807 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2808 @opindex Wstrict-null-sentinel
2809 @opindex Wno-strict-null-sentinel
2810 Warn about the use of an uncasted @code{NULL} as sentinel. When
2811 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2812 to @code{__null}. Although it is a null pointer constant rather than a
2813 null pointer, it is guaranteed to be of the same size as a pointer.
2814 But this use is not portable across different compilers.
2815
2816 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2817 @opindex Wno-non-template-friend
2818 @opindex Wnon-template-friend
2819 Disable warnings when non-templatized friend functions are declared
2820 within a template. Since the advent of explicit template specification
2821 support in G++, if the name of the friend is an unqualified-id (i.e.,
2822 @samp{friend foo(int)}), the C++ language specification demands that the
2823 friend declare or define an ordinary, nontemplate function. (Section
2824 14.5.3). Before G++ implemented explicit specification, unqualified-ids
2825 could be interpreted as a particular specialization of a templatized
2826 function. Because this non-conforming behavior is no longer the default
2827 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2828 check existing code for potential trouble spots and is on by default.
2829 This new compiler behavior can be turned off with
2830 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2831 but disables the helpful warning.
2832
2833 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2834 @opindex Wold-style-cast
2835 @opindex Wno-old-style-cast
2836 Warn if an old-style (C-style) cast to a non-void type is used within
2837 a C++ program. The new-style casts (@code{dynamic_cast},
2838 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2839 less vulnerable to unintended effects and much easier to search for.
2840
2841 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2842 @opindex Woverloaded-virtual
2843 @opindex Wno-overloaded-virtual
2844 @cindex overloaded virtual function, warning
2845 @cindex warning for overloaded virtual function
2846 Warn when a function declaration hides virtual functions from a
2847 base class. For example, in:
2848
2849 @smallexample
2850 struct A @{
2851 virtual void f();
2852 @};
2853
2854 struct B: public A @{
2855 void f(int);
2856 @};
2857 @end smallexample
2858
2859 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2860 like:
2861
2862 @smallexample
2863 B* b;
2864 b->f();
2865 @end smallexample
2866
2867 @noindent
2868 fails to compile.
2869
2870 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2871 @opindex Wno-pmf-conversions
2872 @opindex Wpmf-conversions
2873 Disable the diagnostic for converting a bound pointer to member function
2874 to a plain pointer.
2875
2876 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2877 @opindex Wsign-promo
2878 @opindex Wno-sign-promo
2879 Warn when overload resolution chooses a promotion from unsigned or
2880 enumerated type to a signed type, over a conversion to an unsigned type of
2881 the same size. Previous versions of G++ tried to preserve
2882 unsignedness, but the standard mandates the current behavior.
2883 @end table
2884
2885 @node Objective-C and Objective-C++ Dialect Options
2886 @section Options Controlling Objective-C and Objective-C++ Dialects
2887
2888 @cindex compiler options, Objective-C and Objective-C++
2889 @cindex Objective-C and Objective-C++ options, command-line
2890 @cindex options, Objective-C and Objective-C++
2891 (NOTE: This manual does not describe the Objective-C and Objective-C++
2892 languages themselves. @xref{Standards,,Language Standards
2893 Supported by GCC}, for references.)
2894
2895 This section describes the command-line options that are only meaningful
2896 for Objective-C and Objective-C++ programs. You can also use most of
2897 the language-independent GNU compiler options.
2898 For example, you might compile a file @file{some_class.m} like this:
2899
2900 @smallexample
2901 gcc -g -fgnu-runtime -O -c some_class.m
2902 @end smallexample
2903
2904 @noindent
2905 In this example, @option{-fgnu-runtime} is an option meant only for
2906 Objective-C and Objective-C++ programs; you can use the other options with
2907 any language supported by GCC@.
2908
2909 Note that since Objective-C is an extension of the C language, Objective-C
2910 compilations may also use options specific to the C front-end (e.g.,
2911 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
2912 C++-specific options (e.g., @option{-Wabi}).
2913
2914 Here is a list of options that are @emph{only} for compiling Objective-C
2915 and Objective-C++ programs:
2916
2917 @table @gcctabopt
2918 @item -fconstant-string-class=@var{class-name}
2919 @opindex fconstant-string-class
2920 Use @var{class-name} as the name of the class to instantiate for each
2921 literal string specified with the syntax @code{@@"@dots{}"}. The default
2922 class name is @code{NXConstantString} if the GNU runtime is being used, and
2923 @code{NSConstantString} if the NeXT runtime is being used (see below). The
2924 @option{-fconstant-cfstrings} option, if also present, overrides the
2925 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
2926 to be laid out as constant CoreFoundation strings.
2927
2928 @item -fgnu-runtime
2929 @opindex fgnu-runtime
2930 Generate object code compatible with the standard GNU Objective-C
2931 runtime. This is the default for most types of systems.
2932
2933 @item -fnext-runtime
2934 @opindex fnext-runtime
2935 Generate output compatible with the NeXT runtime. This is the default
2936 for NeXT-based systems, including Darwin and Mac OS X@. The macro
2937 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
2938 used.
2939
2940 @item -fno-nil-receivers
2941 @opindex fno-nil-receivers
2942 Assume that all Objective-C message dispatches (@code{[receiver
2943 message:arg]}) in this translation unit ensure that the receiver is
2944 not @code{nil}. This allows for more efficient entry points in the
2945 runtime to be used. This option is only available in conjunction with
2946 the NeXT runtime and ABI version 0 or 1.
2947
2948 @item -fobjc-abi-version=@var{n}
2949 @opindex fobjc-abi-version
2950 Use version @var{n} of the Objective-C ABI for the selected runtime.
2951 This option is currently supported only for the NeXT runtime. In that
2952 case, Version 0 is the traditional (32-bit) ABI without support for
2953 properties and other Objective-C 2.0 additions. Version 1 is the
2954 traditional (32-bit) ABI with support for properties and other
2955 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
2956 nothing is specified, the default is Version 0 on 32-bit target
2957 machines, and Version 2 on 64-bit target machines.
2958
2959 @item -fobjc-call-cxx-cdtors
2960 @opindex fobjc-call-cxx-cdtors
2961 For each Objective-C class, check if any of its instance variables is a
2962 C++ object with a non-trivial default constructor. If so, synthesize a
2963 special @code{- (id) .cxx_construct} instance method which runs
2964 non-trivial default constructors on any such instance variables, in order,
2965 and then return @code{self}. Similarly, check if any instance variable
2966 is a C++ object with a non-trivial destructor, and if so, synthesize a
2967 special @code{- (void) .cxx_destruct} method which runs
2968 all such default destructors, in reverse order.
2969
2970 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
2971 methods thusly generated only operate on instance variables
2972 declared in the current Objective-C class, and not those inherited
2973 from superclasses. It is the responsibility of the Objective-C
2974 runtime to invoke all such methods in an object's inheritance
2975 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
2976 by the runtime immediately after a new object instance is allocated;
2977 the @code{- (void) .cxx_destruct} methods are invoked immediately
2978 before the runtime deallocates an object instance.
2979
2980 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
2981 support for invoking the @code{- (id) .cxx_construct} and
2982 @code{- (void) .cxx_destruct} methods.
2983
2984 @item -fobjc-direct-dispatch
2985 @opindex fobjc-direct-dispatch
2986 Allow fast jumps to the message dispatcher. On Darwin this is
2987 accomplished via the comm page.
2988
2989 @item -fobjc-exceptions
2990 @opindex fobjc-exceptions
2991 Enable syntactic support for structured exception handling in
2992 Objective-C, similar to what is offered by C++ and Java. This option
2993 is required to use the Objective-C keywords @code{@@try},
2994 @code{@@throw}, @code{@@catch}, @code{@@finally} and
2995 @code{@@synchronized}. This option is available with both the GNU
2996 runtime and the NeXT runtime (but not available in conjunction with
2997 the NeXT runtime on Mac OS X 10.2 and earlier).
2998
2999 @item -fobjc-gc
3000 @opindex fobjc-gc
3001 Enable garbage collection (GC) in Objective-C and Objective-C++
3002 programs. This option is only available with the NeXT runtime; the
3003 GNU runtime has a different garbage collection implementation that
3004 does not require special compiler flags.
3005
3006 @item -fobjc-nilcheck
3007 @opindex fobjc-nilcheck
3008 For the NeXT runtime with version 2 of the ABI, check for a nil
3009 receiver in method invocations before doing the actual method call.
3010 This is the default and can be disabled using
3011 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3012 checked for nil in this way no matter what this flag is set to.
3013 Currently this flag does nothing when the GNU runtime, or an older
3014 version of the NeXT runtime ABI, is used.
3015
3016 @item -fobjc-std=objc1
3017 @opindex fobjc-std
3018 Conform to the language syntax of Objective-C 1.0, the language
3019 recognized by GCC 4.0. This only affects the Objective-C additions to
3020 the C/C++ language; it does not affect conformance to C/C++ standards,
3021 which is controlled by the separate C/C++ dialect option flags. When
3022 this option is used with the Objective-C or Objective-C++ compiler,
3023 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3024 This is useful if you need to make sure that your Objective-C code can
3025 be compiled with older versions of GCC@.
3026
3027 @item -freplace-objc-classes
3028 @opindex freplace-objc-classes
3029 Emit a special marker instructing @command{ld(1)} not to statically link in
3030 the resulting object file, and allow @command{dyld(1)} to load it in at
3031 run time instead. This is used in conjunction with the Fix-and-Continue
3032 debugging mode, where the object file in question may be recompiled and
3033 dynamically reloaded in the course of program execution, without the need
3034 to restart the program itself. Currently, Fix-and-Continue functionality
3035 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3036 and later.
3037
3038 @item -fzero-link
3039 @opindex fzero-link
3040 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3041 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3042 compile time) with static class references that get initialized at load time,
3043 which improves run-time performance. Specifying the @option{-fzero-link} flag
3044 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3045 to be retained. This is useful in Zero-Link debugging mode, since it allows
3046 for individual class implementations to be modified during program execution.
3047 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3048 regardless of command-line options.
3049
3050 @item -fno-local-ivars
3051 @opindex fno-local-ivars
3052 @opindex flocal-ivars
3053 By default instance variables in Objective-C can be accessed as if
3054 they were local variables from within the methods of the class they're
3055 declared in. This can lead to shadowing between instance variables
3056 and other variables declared either locally inside a class method or
3057 globally with the same name. Specifying the @option{-fno-local-ivars}
3058 flag disables this behavior thus avoiding variable shadowing issues.
3059
3060 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3061 @opindex fivar-visibility
3062 Set the default instance variable visibility to the specified option
3063 so that instance variables declared outside the scope of any access
3064 modifier directives default to the specified visibility.
3065
3066 @item -gen-decls
3067 @opindex gen-decls
3068 Dump interface declarations for all classes seen in the source file to a
3069 file named @file{@var{sourcename}.decl}.
3070
3071 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3072 @opindex Wassign-intercept
3073 @opindex Wno-assign-intercept
3074 Warn whenever an Objective-C assignment is being intercepted by the
3075 garbage collector.
3076
3077 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3078 @opindex Wno-protocol
3079 @opindex Wprotocol
3080 If a class is declared to implement a protocol, a warning is issued for
3081 every method in the protocol that is not implemented by the class. The
3082 default behavior is to issue a warning for every method not explicitly
3083 implemented in the class, even if a method implementation is inherited
3084 from the superclass. If you use the @option{-Wno-protocol} option, then
3085 methods inherited from the superclass are considered to be implemented,
3086 and no warning is issued for them.
3087
3088 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3089 @opindex Wselector
3090 @opindex Wno-selector
3091 Warn if multiple methods of different types for the same selector are
3092 found during compilation. The check is performed on the list of methods
3093 in the final stage of compilation. Additionally, a check is performed
3094 for each selector appearing in a @code{@@selector(@dots{})}
3095 expression, and a corresponding method for that selector has been found
3096 during compilation. Because these checks scan the method table only at
3097 the end of compilation, these warnings are not produced if the final
3098 stage of compilation is not reached, for example because an error is
3099 found during compilation, or because the @option{-fsyntax-only} option is
3100 being used.
3101
3102 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3103 @opindex Wstrict-selector-match
3104 @opindex Wno-strict-selector-match
3105 Warn if multiple methods with differing argument and/or return types are
3106 found for a given selector when attempting to send a message using this
3107 selector to a receiver of type @code{id} or @code{Class}. When this flag
3108 is off (which is the default behavior), the compiler omits such warnings
3109 if any differences found are confined to types that share the same size
3110 and alignment.
3111
3112 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3113 @opindex Wundeclared-selector
3114 @opindex Wno-undeclared-selector
3115 Warn if a @code{@@selector(@dots{})} expression referring to an
3116 undeclared selector is found. A selector is considered undeclared if no
3117 method with that name has been declared before the
3118 @code{@@selector(@dots{})} expression, either explicitly in an
3119 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3120 an @code{@@implementation} section. This option always performs its
3121 checks as soon as a @code{@@selector(@dots{})} expression is found,
3122 while @option{-Wselector} only performs its checks in the final stage of
3123 compilation. This also enforces the coding style convention
3124 that methods and selectors must be declared before being used.
3125
3126 @item -print-objc-runtime-info
3127 @opindex print-objc-runtime-info
3128 Generate C header describing the largest structure that is passed by
3129 value, if any.
3130
3131 @end table
3132
3133 @node Language Independent Options
3134 @section Options to Control Diagnostic Messages Formatting
3135 @cindex options to control diagnostics formatting
3136 @cindex diagnostic messages
3137 @cindex message formatting
3138
3139 Traditionally, diagnostic messages have been formatted irrespective of
3140 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3141 options described below
3142 to control the formatting algorithm for diagnostic messages,
3143 e.g.@: how many characters per line, how often source location
3144 information should be reported. Note that some language front ends may not
3145 honor these options.
3146
3147 @table @gcctabopt
3148 @item -fmessage-length=@var{n}
3149 @opindex fmessage-length
3150 Try to format error messages so that they fit on lines of about
3151 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3152 done; each error message appears on a single line. This is the
3153 default for all front ends.
3154
3155 @item -fdiagnostics-show-location=once
3156 @opindex fdiagnostics-show-location
3157 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3158 reporter to emit source location information @emph{once}; that is, in
3159 case the message is too long to fit on a single physical line and has to
3160 be wrapped, the source location won't be emitted (as prefix) again,
3161 over and over, in subsequent continuation lines. This is the default
3162 behavior.
3163
3164 @item -fdiagnostics-show-location=every-line
3165 Only meaningful in line-wrapping mode. Instructs the diagnostic
3166 messages reporter to emit the same source location information (as
3167 prefix) for physical lines that result from the process of breaking
3168 a message which is too long to fit on a single line.
3169
3170 @item -fdiagnostics-color[=@var{WHEN}]
3171 @itemx -fno-diagnostics-color
3172 @opindex fdiagnostics-color
3173 @cindex highlight, color, colour
3174 @vindex GCC_COLORS @r{environment variable}
3175 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3176 or @samp{auto}. The default depends on how the compiler has been configured,
3177 it can be any of the above @var{WHEN} options or also @samp{never}
3178 if @env{GCC_COLORS} environment variable isn't present in the environment,
3179 and @samp{auto} otherwise.
3180 @samp{auto} means to use color only when the standard error is a terminal.
3181 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3182 aliases for @option{-fdiagnostics-color=always} and
3183 @option{-fdiagnostics-color=never}, respectively.
3184
3185 The colors are defined by the environment variable @env{GCC_COLORS}.
3186 Its value is a colon-separated list of capabilities and Select Graphic
3187 Rendition (SGR) substrings. SGR commands are interpreted by the
3188 terminal or terminal emulator. (See the section in the documentation
3189 of your text terminal for permitted values and their meanings as
3190 character attributes.) These substring values are integers in decimal
3191 representation and can be concatenated with semicolons.
3192 Common values to concatenate include
3193 @samp{1} for bold,
3194 @samp{4} for underline,
3195 @samp{5} for blink,
3196 @samp{7} for inverse,
3197 @samp{39} for default foreground color,
3198 @samp{30} to @samp{37} for foreground colors,
3199 @samp{90} to @samp{97} for 16-color mode foreground colors,
3200 @samp{38;5;0} to @samp{38;5;255}
3201 for 88-color and 256-color modes foreground colors,
3202 @samp{49} for default background color,
3203 @samp{40} to @samp{47} for background colors,
3204 @samp{100} to @samp{107} for 16-color mode background colors,
3205 and @samp{48;5;0} to @samp{48;5;255}
3206 for 88-color and 256-color modes background colors.
3207
3208 The default @env{GCC_COLORS} is
3209 @smallexample
3210 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3211 @end smallexample
3212 @noindent
3213 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3214 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3215 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3216 string disables colors.
3217 Supported capabilities are as follows.
3218
3219 @table @code
3220 @item error=
3221 @vindex error GCC_COLORS @r{capability}
3222 SGR substring for error: markers.
3223
3224 @item warning=
3225 @vindex warning GCC_COLORS @r{capability}
3226 SGR substring for warning: markers.
3227
3228 @item note=
3229 @vindex note GCC_COLORS @r{capability}
3230 SGR substring for note: markers.
3231
3232 @item caret=
3233 @vindex caret GCC_COLORS @r{capability}
3234 SGR substring for caret line.
3235
3236 @item locus=
3237 @vindex locus GCC_COLORS @r{capability}
3238 SGR substring for location information, @samp{file:line} or
3239 @samp{file:line:column} etc.
3240
3241 @item quote=
3242 @vindex quote GCC_COLORS @r{capability}
3243 SGR substring for information printed within quotes.
3244 @end table
3245
3246 @item -fno-diagnostics-show-option
3247 @opindex fno-diagnostics-show-option
3248 @opindex fdiagnostics-show-option
3249 By default, each diagnostic emitted includes text indicating the
3250 command-line option that directly controls the diagnostic (if such an
3251 option is known to the diagnostic machinery). Specifying the
3252 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3253
3254 @item -fno-diagnostics-show-caret
3255 @opindex fno-diagnostics-show-caret
3256 @opindex fdiagnostics-show-caret
3257 By default, each diagnostic emitted includes the original source line
3258 and a caret '^' indicating the column. This option suppresses this
3259 information. The source line is truncated to @var{n} characters, if
3260 the @option{-fmessage-length=n} option is given. When the output is done
3261 to the terminal, the width is limited to the width given by the
3262 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3263
3264 @end table
3265
3266 @node Warning Options
3267 @section Options to Request or Suppress Warnings
3268 @cindex options to control warnings
3269 @cindex warning messages
3270 @cindex messages, warning
3271 @cindex suppressing warnings
3272
3273 Warnings are diagnostic messages that report constructions that
3274 are not inherently erroneous but that are risky or suggest there
3275 may have been an error.
3276
3277 The following language-independent options do not enable specific
3278 warnings but control the kinds of diagnostics produced by GCC@.
3279
3280 @table @gcctabopt
3281 @cindex syntax checking
3282 @item -fsyntax-only
3283 @opindex fsyntax-only
3284 Check the code for syntax errors, but don't do anything beyond that.
3285
3286 @item -fmax-errors=@var{n}
3287 @opindex fmax-errors
3288 Limits the maximum number of error messages to @var{n}, at which point
3289 GCC bails out rather than attempting to continue processing the source
3290 code. If @var{n} is 0 (the default), there is no limit on the number
3291 of error messages produced. If @option{-Wfatal-errors} is also
3292 specified, then @option{-Wfatal-errors} takes precedence over this
3293 option.
3294
3295 @item -w
3296 @opindex w
3297 Inhibit all warning messages.
3298
3299 @item -Werror
3300 @opindex Werror
3301 @opindex Wno-error
3302 Make all warnings into errors.
3303
3304 @item -Werror=
3305 @opindex Werror=
3306 @opindex Wno-error=
3307 Make the specified warning into an error. The specifier for a warning
3308 is appended; for example @option{-Werror=switch} turns the warnings
3309 controlled by @option{-Wswitch} into errors. This switch takes a
3310 negative form, to be used to negate @option{-Werror} for specific
3311 warnings; for example @option{-Wno-error=switch} makes
3312 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3313 is in effect.
3314
3315 The warning message for each controllable warning includes the
3316 option that controls the warning. That option can then be used with
3317 @option{-Werror=} and @option{-Wno-error=} as described above.
3318 (Printing of the option in the warning message can be disabled using the
3319 @option{-fno-diagnostics-show-option} flag.)
3320
3321 Note that specifying @option{-Werror=}@var{foo} automatically implies
3322 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3323 imply anything.
3324
3325 @item -Wfatal-errors
3326 @opindex Wfatal-errors
3327 @opindex Wno-fatal-errors
3328 This option causes the compiler to abort compilation on the first error
3329 occurred rather than trying to keep going and printing further error
3330 messages.
3331
3332 @end table
3333
3334 You can request many specific warnings with options beginning with
3335 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3336 implicit declarations. Each of these specific warning options also
3337 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3338 example, @option{-Wno-implicit}. This manual lists only one of the
3339 two forms, whichever is not the default. For further
3340 language-specific options also refer to @ref{C++ Dialect Options} and
3341 @ref{Objective-C and Objective-C++ Dialect Options}.
3342
3343 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3344 options, such as @option{-Wunused}, which may turn on further options,
3345 such as @option{-Wunused-value}. The combined effect of positive and
3346 negative forms is that more specific options have priority over less
3347 specific ones, independently of their position in the command-line. For
3348 options of the same specificity, the last one takes effect. Options
3349 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3350 as if they appeared at the end of the command-line.
3351
3352 When an unrecognized warning option is requested (e.g.,
3353 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3354 that the option is not recognized. However, if the @option{-Wno-} form
3355 is used, the behavior is slightly different: no diagnostic is
3356 produced for @option{-Wno-unknown-warning} unless other diagnostics
3357 are being produced. This allows the use of new @option{-Wno-} options
3358 with old compilers, but if something goes wrong, the compiler
3359 warns that an unrecognized option is present.
3360
3361 @table @gcctabopt
3362 @item -Wpedantic
3363 @itemx -pedantic
3364 @opindex pedantic
3365 @opindex Wpedantic
3366 Issue all the warnings demanded by strict ISO C and ISO C++;
3367 reject all programs that use forbidden extensions, and some other
3368 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3369 version of the ISO C standard specified by any @option{-std} option used.
3370
3371 Valid ISO C and ISO C++ programs should compile properly with or without
3372 this option (though a rare few require @option{-ansi} or a
3373 @option{-std} option specifying the required version of ISO C)@. However,
3374 without this option, certain GNU extensions and traditional C and C++
3375 features are supported as well. With this option, they are rejected.
3376
3377 @option{-Wpedantic} does not cause warning messages for use of the
3378 alternate keywords whose names begin and end with @samp{__}. Pedantic
3379 warnings are also disabled in the expression that follows
3380 @code{__extension__}. However, only system header files should use
3381 these escape routes; application programs should avoid them.
3382 @xref{Alternate Keywords}.
3383
3384 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3385 C conformance. They soon find that it does not do quite what they want:
3386 it finds some non-ISO practices, but not all---only those for which
3387 ISO C @emph{requires} a diagnostic, and some others for which
3388 diagnostics have been added.
3389
3390 A feature to report any failure to conform to ISO C might be useful in
3391 some instances, but would require considerable additional work and would
3392 be quite different from @option{-Wpedantic}. We don't have plans to
3393 support such a feature in the near future.
3394
3395 Where the standard specified with @option{-std} represents a GNU
3396 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3397 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3398 extended dialect is based. Warnings from @option{-Wpedantic} are given
3399 where they are required by the base standard. (It does not make sense
3400 for such warnings to be given only for features not in the specified GNU
3401 C dialect, since by definition the GNU dialects of C include all
3402 features the compiler supports with the given option, and there would be
3403 nothing to warn about.)
3404
3405 @item -pedantic-errors
3406 @opindex pedantic-errors
3407 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3408 requires a diagnostic, in some cases where there is undefined behavior
3409 at compile-time and in some other cases that do not prevent compilation
3410 of programs that are valid according to the standard. This is not
3411 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3412 by this option and not enabled by the latter and vice versa.
3413
3414 @item -Wall
3415 @opindex Wall
3416 @opindex Wno-all
3417 This enables all the warnings about constructions that some users
3418 consider questionable, and that are easy to avoid (or modify to
3419 prevent the warning), even in conjunction with macros. This also
3420 enables some language-specific warnings described in @ref{C++ Dialect
3421 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3422
3423 @option{-Wall} turns on the following warning flags:
3424
3425 @gccoptlist{-Waddress @gol
3426 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3427 -Wc++11-compat -Wc++14-compat@gol
3428 -Wchar-subscripts @gol
3429 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3430 -Wimplicit-int @r{(C and Objective-C only)} @gol
3431 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3432 -Wcomment @gol
3433 -Wformat @gol
3434 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3435 -Wmaybe-uninitialized @gol
3436 -Wmissing-braces @r{(only for C/ObjC)} @gol
3437 -Wnonnull @gol
3438 -Wopenmp-simd @gol
3439 -Wparentheses @gol
3440 -Wpointer-sign @gol
3441 -Wreorder @gol
3442 -Wreturn-type @gol
3443 -Wsequence-point @gol
3444 -Wsign-compare @r{(only in C++)} @gol
3445 -Wstrict-aliasing @gol
3446 -Wstrict-overflow=1 @gol
3447 -Wswitch @gol
3448 -Wtrigraphs @gol
3449 -Wuninitialized @gol
3450 -Wunknown-pragmas @gol
3451 -Wunused-function @gol
3452 -Wunused-label @gol
3453 -Wunused-value @gol
3454 -Wunused-variable @gol
3455 -Wvolatile-register-var @gol
3456 }
3457
3458 Note that some warning flags are not implied by @option{-Wall}. Some of
3459 them warn about constructions that users generally do not consider
3460 questionable, but which occasionally you might wish to check for;
3461 others warn about constructions that are necessary or hard to avoid in
3462 some cases, and there is no simple way to modify the code to suppress
3463 the warning. Some of them are enabled by @option{-Wextra} but many of
3464 them must be enabled individually.
3465
3466 @item -Wextra
3467 @opindex W
3468 @opindex Wextra
3469 @opindex Wno-extra
3470 This enables some extra warning flags that are not enabled by
3471 @option{-Wall}. (This option used to be called @option{-W}. The older
3472 name is still supported, but the newer name is more descriptive.)
3473
3474 @gccoptlist{-Wclobbered @gol
3475 -Wempty-body @gol
3476 -Wignored-qualifiers @gol
3477 -Wmissing-field-initializers @gol
3478 -Wmissing-parameter-type @r{(C only)} @gol
3479 -Wold-style-declaration @r{(C only)} @gol
3480 -Woverride-init @gol
3481 -Wsign-compare @gol
3482 -Wtype-limits @gol
3483 -Wuninitialized @gol
3484 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3485 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3486 }
3487
3488 The option @option{-Wextra} also prints warning messages for the
3489 following cases:
3490
3491 @itemize @bullet
3492
3493 @item
3494 A pointer is compared against integer zero with @code{<}, @code{<=},
3495 @code{>}, or @code{>=}.
3496
3497 @item
3498 (C++ only) An enumerator and a non-enumerator both appear in a
3499 conditional expression.
3500
3501 @item
3502 (C++ only) Ambiguous virtual bases.
3503
3504 @item
3505 (C++ only) Subscripting an array that has been declared @code{register}.
3506
3507 @item
3508 (C++ only) Taking the address of a variable that has been declared
3509 @code{register}.
3510
3511 @item
3512 (C++ only) A base class is not initialized in a derived class's copy
3513 constructor.
3514
3515 @end itemize
3516
3517 @item -Wchar-subscripts
3518 @opindex Wchar-subscripts
3519 @opindex Wno-char-subscripts
3520 Warn if an array subscript has type @code{char}. This is a common cause
3521 of error, as programmers often forget that this type is signed on some
3522 machines.
3523 This warning is enabled by @option{-Wall}.
3524
3525 @item -Wcomment
3526 @opindex Wcomment
3527 @opindex Wno-comment
3528 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3529 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3530 This warning is enabled by @option{-Wall}.
3531
3532 @item -Wno-coverage-mismatch
3533 @opindex Wno-coverage-mismatch
3534 Warn if feedback profiles do not match when using the
3535 @option{-fprofile-use} option.
3536 If a source file is changed between compiling with @option{-fprofile-gen} and
3537 with @option{-fprofile-use}, the files with the profile feedback can fail
3538 to match the source file and GCC cannot use the profile feedback
3539 information. By default, this warning is enabled and is treated as an
3540 error. @option{-Wno-coverage-mismatch} can be used to disable the
3541 warning or @option{-Wno-error=coverage-mismatch} can be used to
3542 disable the error. Disabling the error for this warning can result in
3543 poorly optimized code and is useful only in the
3544 case of very minor changes such as bug fixes to an existing code-base.
3545 Completely disabling the warning is not recommended.
3546
3547 @item -Wno-cpp
3548 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3549
3550 Suppress warning messages emitted by @code{#warning} directives.
3551
3552 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3553 @opindex Wdouble-promotion
3554 @opindex Wno-double-promotion
3555 Give a warning when a value of type @code{float} is implicitly
3556 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3557 floating-point unit implement @code{float} in hardware, but emulate
3558 @code{double} in software. On such a machine, doing computations
3559 using @code{double} values is much more expensive because of the
3560 overhead required for software emulation.
3561
3562 It is easy to accidentally do computations with @code{double} because
3563 floating-point literals are implicitly of type @code{double}. For
3564 example, in:
3565 @smallexample
3566 @group
3567 float area(float radius)
3568 @{
3569 return 3.14159 * radius * radius;
3570 @}
3571 @end group
3572 @end smallexample
3573 the compiler performs the entire computation with @code{double}
3574 because the floating-point literal is a @code{double}.
3575
3576 @item -Wformat
3577 @itemx -Wformat=@var{n}
3578 @opindex Wformat
3579 @opindex Wno-format
3580 @opindex ffreestanding
3581 @opindex fno-builtin
3582 @opindex Wformat=
3583 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3584 the arguments supplied have types appropriate to the format string
3585 specified, and that the conversions specified in the format string make
3586 sense. This includes standard functions, and others specified by format
3587 attributes (@pxref{Function Attributes}), in the @code{printf},
3588 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3589 not in the C standard) families (or other target-specific families).
3590 Which functions are checked without format attributes having been
3591 specified depends on the standard version selected, and such checks of
3592 functions without the attribute specified are disabled by
3593 @option{-ffreestanding} or @option{-fno-builtin}.
3594
3595 The formats are checked against the format features supported by GNU
3596 libc version 2.2. These include all ISO C90 and C99 features, as well
3597 as features from the Single Unix Specification and some BSD and GNU
3598 extensions. Other library implementations may not support all these
3599 features; GCC does not support warning about features that go beyond a
3600 particular library's limitations. However, if @option{-Wpedantic} is used
3601 with @option{-Wformat}, warnings are given about format features not
3602 in the selected standard version (but not for @code{strfmon} formats,
3603 since those are not in any version of the C standard). @xref{C Dialect
3604 Options,,Options Controlling C Dialect}.
3605
3606 @table @gcctabopt
3607 @item -Wformat=1
3608 @itemx -Wformat
3609 @opindex Wformat
3610 @opindex Wformat=1
3611 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3612 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
3613 @option{-Wformat} also checks for null format arguments for several
3614 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
3615 aspects of this level of format checking can be disabled by the
3616 options: @option{-Wno-format-contains-nul},
3617 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3618 @option{-Wformat} is enabled by @option{-Wall}.
3619
3620 @item -Wno-format-contains-nul
3621 @opindex Wno-format-contains-nul
3622 @opindex Wformat-contains-nul
3623 If @option{-Wformat} is specified, do not warn about format strings that
3624 contain NUL bytes.
3625
3626 @item -Wno-format-extra-args
3627 @opindex Wno-format-extra-args
3628 @opindex Wformat-extra-args
3629 If @option{-Wformat} is specified, do not warn about excess arguments to a
3630 @code{printf} or @code{scanf} format function. The C standard specifies
3631 that such arguments are ignored.
3632
3633 Where the unused arguments lie between used arguments that are
3634 specified with @samp{$} operand number specifications, normally
3635 warnings are still given, since the implementation could not know what
3636 type to pass to @code{va_arg} to skip the unused arguments. However,
3637 in the case of @code{scanf} formats, this option suppresses the
3638 warning if the unused arguments are all pointers, since the Single
3639 Unix Specification says that such unused arguments are allowed.
3640
3641 @item -Wno-format-zero-length
3642 @opindex Wno-format-zero-length
3643 @opindex Wformat-zero-length
3644 If @option{-Wformat} is specified, do not warn about zero-length formats.
3645 The C standard specifies that zero-length formats are allowed.
3646
3647
3648 @item -Wformat=2
3649 @opindex Wformat=2
3650 Enable @option{-Wformat} plus additional format checks. Currently
3651 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3652 -Wformat-y2k}.
3653
3654 @item -Wformat-nonliteral
3655 @opindex Wformat-nonliteral
3656 @opindex Wno-format-nonliteral
3657 If @option{-Wformat} is specified, also warn if the format string is not a
3658 string literal and so cannot be checked, unless the format function
3659 takes its format arguments as a @code{va_list}.
3660
3661 @item -Wformat-security
3662 @opindex Wformat-security
3663 @opindex Wno-format-security
3664 If @option{-Wformat} is specified, also warn about uses of format
3665 functions that represent possible security problems. At present, this
3666 warns about calls to @code{printf} and @code{scanf} functions where the
3667 format string is not a string literal and there are no format arguments,
3668 as in @code{printf (foo);}. This may be a security hole if the format
3669 string came from untrusted input and contains @samp{%n}. (This is
3670 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3671 in future warnings may be added to @option{-Wformat-security} that are not
3672 included in @option{-Wformat-nonliteral}.)
3673
3674 @item -Wformat-signedness
3675 @opindex Wformat-signedness
3676 @opindex Wno-format-signedness
3677 If @option{-Wformat} is specified, also warn if the format string
3678 requires an unsigned argument and the argument is signed and vice versa.
3679
3680 @item -Wformat-y2k
3681 @opindex Wformat-y2k
3682 @opindex Wno-format-y2k
3683 If @option{-Wformat} is specified, also warn about @code{strftime}
3684 formats that may yield only a two-digit year.
3685 @end table
3686
3687 @item -Wnonnull
3688 @opindex Wnonnull
3689 @opindex Wno-nonnull
3690 Warn about passing a null pointer for arguments marked as
3691 requiring a non-null value by the @code{nonnull} function attribute.
3692
3693 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
3694 can be disabled with the @option{-Wno-nonnull} option.
3695
3696 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3697 @opindex Winit-self
3698 @opindex Wno-init-self
3699 Warn about uninitialized variables that are initialized with themselves.
3700 Note this option can only be used with the @option{-Wuninitialized} option.
3701
3702 For example, GCC warns about @code{i} being uninitialized in the
3703 following snippet only when @option{-Winit-self} has been specified:
3704 @smallexample
3705 @group
3706 int f()
3707 @{
3708 int i = i;
3709 return i;
3710 @}
3711 @end group
3712 @end smallexample
3713
3714 This warning is enabled by @option{-Wall} in C++.
3715
3716 @item -Wimplicit-int @r{(C and Objective-C only)}
3717 @opindex Wimplicit-int
3718 @opindex Wno-implicit-int
3719 Warn when a declaration does not specify a type.
3720 This warning is enabled by @option{-Wall}.
3721
3722 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3723 @opindex Wimplicit-function-declaration
3724 @opindex Wno-implicit-function-declaration
3725 Give a warning whenever a function is used before being declared. In
3726 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3727 enabled by default and it is made into an error by
3728 @option{-pedantic-errors}. This warning is also enabled by
3729 @option{-Wall}.
3730
3731 @item -Wimplicit @r{(C and Objective-C only)}
3732 @opindex Wimplicit
3733 @opindex Wno-implicit
3734 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3735 This warning is enabled by @option{-Wall}.
3736
3737 @item -Wignored-qualifiers @r{(C and C++ only)}
3738 @opindex Wignored-qualifiers
3739 @opindex Wno-ignored-qualifiers
3740 Warn if the return type of a function has a type qualifier
3741 such as @code{const}. For ISO C such a type qualifier has no effect,
3742 since the value returned by a function is not an lvalue.
3743 For C++, the warning is only emitted for scalar types or @code{void}.
3744 ISO C prohibits qualified @code{void} return types on function
3745 definitions, so such return types always receive a warning
3746 even without this option.
3747
3748 This warning is also enabled by @option{-Wextra}.
3749
3750 @item -Wmain
3751 @opindex Wmain
3752 @opindex Wno-main
3753 Warn if the type of @code{main} is suspicious. @code{main} should be
3754 a function with external linkage, returning int, taking either zero
3755 arguments, two, or three arguments of appropriate types. This warning
3756 is enabled by default in C++ and is enabled by either @option{-Wall}
3757 or @option{-Wpedantic}.
3758
3759 @item -Wmissing-braces
3760 @opindex Wmissing-braces
3761 @opindex Wno-missing-braces
3762 Warn if an aggregate or union initializer is not fully bracketed. In
3763 the following example, the initializer for @code{a} is not fully
3764 bracketed, but that for @code{b} is fully bracketed. This warning is
3765 enabled by @option{-Wall} in C.
3766
3767 @smallexample
3768 int a[2][2] = @{ 0, 1, 2, 3 @};
3769 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3770 @end smallexample
3771
3772 This warning is enabled by @option{-Wall}.
3773
3774 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3775 @opindex Wmissing-include-dirs
3776 @opindex Wno-missing-include-dirs
3777 Warn if a user-supplied include directory does not exist.
3778
3779 @item -Wparentheses
3780 @opindex Wparentheses
3781 @opindex Wno-parentheses
3782 Warn if parentheses are omitted in certain contexts, such
3783 as when there is an assignment in a context where a truth value
3784 is expected, or when operators are nested whose precedence people
3785 often get confused about.
3786
3787 Also warn if a comparison like @code{x<=y<=z} appears; this is
3788 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3789 interpretation from that of ordinary mathematical notation.
3790
3791 Also warn about constructions where there may be confusion to which
3792 @code{if} statement an @code{else} branch belongs. Here is an example of
3793 such a case:
3794
3795 @smallexample
3796 @group
3797 @{
3798 if (a)
3799 if (b)
3800 foo ();
3801 else
3802 bar ();
3803 @}
3804 @end group
3805 @end smallexample
3806
3807 In C/C++, every @code{else} branch belongs to the innermost possible
3808 @code{if} statement, which in this example is @code{if (b)}. This is
3809 often not what the programmer expected, as illustrated in the above
3810 example by indentation the programmer chose. When there is the
3811 potential for this confusion, GCC issues a warning when this flag
3812 is specified. To eliminate the warning, add explicit braces around
3813 the innermost @code{if} statement so there is no way the @code{else}
3814 can belong to the enclosing @code{if}. The resulting code
3815 looks like this:
3816
3817 @smallexample
3818 @group
3819 @{
3820 if (a)
3821 @{
3822 if (b)
3823 foo ();
3824 else
3825 bar ();
3826 @}
3827 @}
3828 @end group
3829 @end smallexample
3830
3831 Also warn for dangerous uses of the GNU extension to
3832 @code{?:} with omitted middle operand. When the condition
3833 in the @code{?}: operator is a boolean expression, the omitted value is
3834 always 1. Often programmers expect it to be a value computed
3835 inside the conditional expression instead.
3836
3837 This warning is enabled by @option{-Wall}.
3838
3839 @item -Wsequence-point
3840 @opindex Wsequence-point
3841 @opindex Wno-sequence-point
3842 Warn about code that may have undefined semantics because of violations
3843 of sequence point rules in the C and C++ standards.
3844
3845 The C and C++ standards define the order in which expressions in a C/C++
3846 program are evaluated in terms of @dfn{sequence points}, which represent
3847 a partial ordering between the execution of parts of the program: those
3848 executed before the sequence point, and those executed after it. These
3849 occur after the evaluation of a full expression (one which is not part
3850 of a larger expression), after the evaluation of the first operand of a
3851 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
3852 function is called (but after the evaluation of its arguments and the
3853 expression denoting the called function), and in certain other places.
3854 Other than as expressed by the sequence point rules, the order of
3855 evaluation of subexpressions of an expression is not specified. All
3856 these rules describe only a partial order rather than a total order,
3857 since, for example, if two functions are called within one expression
3858 with no sequence point between them, the order in which the functions
3859 are called is not specified. However, the standards committee have
3860 ruled that function calls do not overlap.
3861
3862 It is not specified when between sequence points modifications to the
3863 values of objects take effect. Programs whose behavior depends on this
3864 have undefined behavior; the C and C++ standards specify that ``Between
3865 the previous and next sequence point an object shall have its stored
3866 value modified at most once by the evaluation of an expression.
3867 Furthermore, the prior value shall be read only to determine the value
3868 to be stored.''. If a program breaks these rules, the results on any
3869 particular implementation are entirely unpredictable.
3870
3871 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
3872 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
3873 diagnosed by this option, and it may give an occasional false positive
3874 result, but in general it has been found fairly effective at detecting
3875 this sort of problem in programs.
3876
3877 The standard is worded confusingly, therefore there is some debate
3878 over the precise meaning of the sequence point rules in subtle cases.
3879 Links to discussions of the problem, including proposed formal
3880 definitions, may be found on the GCC readings page, at
3881 @uref{http://gcc.gnu.org/@/readings.html}.
3882
3883 This warning is enabled by @option{-Wall} for C and C++.
3884
3885 @item -Wno-return-local-addr
3886 @opindex Wno-return-local-addr
3887 @opindex Wreturn-local-addr
3888 Do not warn about returning a pointer (or in C++, a reference) to a
3889 variable that goes out of scope after the function returns.
3890
3891 @item -Wreturn-type
3892 @opindex Wreturn-type
3893 @opindex Wno-return-type
3894 Warn whenever a function is defined with a return type that defaults
3895 to @code{int}. Also warn about any @code{return} statement with no
3896 return value in a function whose return type is not @code{void}
3897 (falling off the end of the function body is considered returning
3898 without a value), and about a @code{return} statement with an
3899 expression in a function whose return type is @code{void}.
3900
3901 For C++, a function without return type always produces a diagnostic
3902 message, even when @option{-Wno-return-type} is specified. The only
3903 exceptions are @code{main} and functions defined in system headers.
3904
3905 This warning is enabled by @option{-Wall}.
3906
3907 @item -Wshift-count-negative
3908 @opindex Wshift-count-negative
3909 @opindex Wno-shift-count-negative
3910 Warn if shift count is negative. This warning is enabled by default.
3911
3912 @item -Wshift-count-overflow
3913 @opindex Wshift-count-overflow
3914 @opindex Wno-shift-count-overflow
3915 Warn if shift count >= width of type. This warning is enabled by default.
3916
3917 @item -Wswitch
3918 @opindex Wswitch
3919 @opindex Wno-switch
3920 Warn whenever a @code{switch} statement has an index of enumerated type
3921 and lacks a @code{case} for one or more of the named codes of that
3922 enumeration. (The presence of a @code{default} label prevents this
3923 warning.) @code{case} labels outside the enumeration range also
3924 provoke warnings when this option is used (even if there is a
3925 @code{default} label).
3926 This warning is enabled by @option{-Wall}.
3927
3928 @item -Wswitch-default
3929 @opindex Wswitch-default
3930 @opindex Wno-switch-default
3931 Warn whenever a @code{switch} statement does not have a @code{default}
3932 case.
3933
3934 @item -Wswitch-enum
3935 @opindex Wswitch-enum
3936 @opindex Wno-switch-enum
3937 Warn whenever a @code{switch} statement has an index of enumerated type
3938 and lacks a @code{case} for one or more of the named codes of that
3939 enumeration. @code{case} labels outside the enumeration range also
3940 provoke warnings when this option is used. The only difference
3941 between @option{-Wswitch} and this option is that this option gives a
3942 warning about an omitted enumeration code even if there is a
3943 @code{default} label.
3944
3945 @item -Wswitch-bool
3946 @opindex Wswitch-bool
3947 @opindex Wno-switch-bool
3948 Warn whenever a @code{switch} statement has an index of boolean type.
3949 It is possible to suppress this warning by casting the controlling
3950 expression to a type other than @code{bool}. For example:
3951 @smallexample
3952 @group
3953 switch ((int) (a == 4))
3954 @{
3955 @dots{}
3956 @}
3957 @end group
3958 @end smallexample
3959 This warning is enabled by default for C and C++ programs.
3960
3961 @item -Wsync-nand @r{(C and C++ only)}
3962 @opindex Wsync-nand
3963 @opindex Wno-sync-nand
3964 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
3965 built-in functions are used. These functions changed semantics in GCC 4.4.
3966
3967 @item -Wtrigraphs
3968 @opindex Wtrigraphs
3969 @opindex Wno-trigraphs
3970 Warn if any trigraphs are encountered that might change the meaning of
3971 the program (trigraphs within comments are not warned about).
3972 This warning is enabled by @option{-Wall}.
3973
3974 @item -Wunused-but-set-parameter
3975 @opindex Wunused-but-set-parameter
3976 @opindex Wno-unused-but-set-parameter
3977 Warn whenever a function parameter is assigned to, but otherwise unused
3978 (aside from its declaration).
3979
3980 To suppress this warning use the @code{unused} attribute
3981 (@pxref{Variable Attributes}).
3982
3983 This warning is also enabled by @option{-Wunused} together with
3984 @option{-Wextra}.
3985
3986 @item -Wunused-but-set-variable
3987 @opindex Wunused-but-set-variable
3988 @opindex Wno-unused-but-set-variable
3989 Warn whenever a local variable is assigned to, but otherwise unused
3990 (aside from its declaration).
3991 This warning is enabled by @option{-Wall}.
3992
3993 To suppress this warning use the @code{unused} attribute
3994 (@pxref{Variable Attributes}).
3995
3996 This warning is also enabled by @option{-Wunused}, which is enabled
3997 by @option{-Wall}.
3998
3999 @item -Wunused-function
4000 @opindex Wunused-function
4001 @opindex Wno-unused-function
4002 Warn whenever a static function is declared but not defined or a
4003 non-inline static function is unused.
4004 This warning is enabled by @option{-Wall}.
4005
4006 @item -Wunused-label
4007 @opindex Wunused-label
4008 @opindex Wno-unused-label
4009 Warn whenever a label is declared but not used.
4010 This warning is enabled by @option{-Wall}.
4011
4012 To suppress this warning use the @code{unused} attribute
4013 (@pxref{Variable Attributes}).
4014
4015 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4016 @opindex Wunused-local-typedefs
4017 Warn when a typedef locally defined in a function is not used.
4018 This warning is enabled by @option{-Wall}.
4019
4020 @item -Wunused-parameter
4021 @opindex Wunused-parameter
4022 @opindex Wno-unused-parameter
4023 Warn whenever a function parameter is unused aside from its declaration.
4024
4025 To suppress this warning use the @code{unused} attribute
4026 (@pxref{Variable Attributes}).
4027
4028 @item -Wno-unused-result
4029 @opindex Wunused-result
4030 @opindex Wno-unused-result
4031 Do not warn if a caller of a function marked with attribute
4032 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4033 its return value. The default is @option{-Wunused-result}.
4034
4035 @item -Wunused-variable
4036 @opindex Wunused-variable
4037 @opindex Wno-unused-variable
4038 Warn whenever a local variable or non-constant static variable is unused
4039 aside from its declaration.
4040 This warning is enabled by @option{-Wall}.
4041
4042 To suppress this warning use the @code{unused} attribute
4043 (@pxref{Variable Attributes}).
4044
4045 @item -Wunused-value
4046 @opindex Wunused-value
4047 @opindex Wno-unused-value
4048 Warn whenever a statement computes a result that is explicitly not
4049 used. To suppress this warning cast the unused expression to
4050 @code{void}. This includes an expression-statement or the left-hand
4051 side of a comma expression that contains no side effects. For example,
4052 an expression such as @code{x[i,j]} causes a warning, while
4053 @code{x[(void)i,j]} does not.
4054
4055 This warning is enabled by @option{-Wall}.
4056
4057 @item -Wunused
4058 @opindex Wunused
4059 @opindex Wno-unused
4060 All the above @option{-Wunused} options combined.
4061
4062 In order to get a warning about an unused function parameter, you must
4063 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4064 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4065
4066 @item -Wuninitialized
4067 @opindex Wuninitialized
4068 @opindex Wno-uninitialized
4069 Warn if an automatic variable is used without first being initialized
4070 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4071 warn if a non-static reference or non-static @code{const} member
4072 appears in a class without constructors.
4073
4074 If you want to warn about code that uses the uninitialized value of the
4075 variable in its own initializer, use the @option{-Winit-self} option.
4076
4077 These warnings occur for individual uninitialized or clobbered
4078 elements of structure, union or array variables as well as for
4079 variables that are uninitialized or clobbered as a whole. They do
4080 not occur for variables or elements declared @code{volatile}. Because
4081 these warnings depend on optimization, the exact variables or elements
4082 for which there are warnings depends on the precise optimization
4083 options and version of GCC used.
4084
4085 Note that there may be no warning about a variable that is used only
4086 to compute a value that itself is never used, because such
4087 computations may be deleted by data flow analysis before the warnings
4088 are printed.
4089
4090 @item -Wmaybe-uninitialized
4091 @opindex Wmaybe-uninitialized
4092 @opindex Wno-maybe-uninitialized
4093 For an automatic variable, if there exists a path from the function
4094 entry to a use of the variable that is initialized, but there exist
4095 some other paths for which the variable is not initialized, the compiler
4096 emits a warning if it cannot prove the uninitialized paths are not
4097 executed at run time. These warnings are made optional because GCC is
4098 not smart enough to see all the reasons why the code might be correct
4099 in spite of appearing to have an error. Here is one example of how
4100 this can happen:
4101
4102 @smallexample
4103 @group
4104 @{
4105 int x;
4106 switch (y)
4107 @{
4108 case 1: x = 1;
4109 break;
4110 case 2: x = 4;
4111 break;
4112 case 3: x = 5;
4113 @}
4114 foo (x);
4115 @}
4116 @end group
4117 @end smallexample
4118
4119 @noindent
4120 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4121 always initialized, but GCC doesn't know this. To suppress the
4122 warning, you need to provide a default case with assert(0) or
4123 similar code.
4124
4125 @cindex @code{longjmp} warnings
4126 This option also warns when a non-volatile automatic variable might be
4127 changed by a call to @code{longjmp}. These warnings as well are possible
4128 only in optimizing compilation.
4129
4130 The compiler sees only the calls to @code{setjmp}. It cannot know
4131 where @code{longjmp} will be called; in fact, a signal handler could
4132 call it at any point in the code. As a result, you may get a warning
4133 even when there is in fact no problem because @code{longjmp} cannot
4134 in fact be called at the place that would cause a problem.
4135
4136 Some spurious warnings can be avoided if you declare all the functions
4137 you use that never return as @code{noreturn}. @xref{Function
4138 Attributes}.
4139
4140 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4141
4142 @item -Wunknown-pragmas
4143 @opindex Wunknown-pragmas
4144 @opindex Wno-unknown-pragmas
4145 @cindex warning for unknown pragmas
4146 @cindex unknown pragmas, warning
4147 @cindex pragmas, warning of unknown
4148 Warn when a @code{#pragma} directive is encountered that is not understood by
4149 GCC@. If this command-line option is used, warnings are even issued
4150 for unknown pragmas in system header files. This is not the case if
4151 the warnings are only enabled by the @option{-Wall} command-line option.
4152
4153 @item -Wno-pragmas
4154 @opindex Wno-pragmas
4155 @opindex Wpragmas
4156 Do not warn about misuses of pragmas, such as incorrect parameters,
4157 invalid syntax, or conflicts between pragmas. See also
4158 @option{-Wunknown-pragmas}.
4159
4160 @item -Wstrict-aliasing
4161 @opindex Wstrict-aliasing
4162 @opindex Wno-strict-aliasing
4163 This option is only active when @option{-fstrict-aliasing} is active.
4164 It warns about code that might break the strict aliasing rules that the
4165 compiler is using for optimization. The warning does not catch all
4166 cases, but does attempt to catch the more common pitfalls. It is
4167 included in @option{-Wall}.
4168 It is equivalent to @option{-Wstrict-aliasing=3}
4169
4170 @item -Wstrict-aliasing=n
4171 @opindex Wstrict-aliasing=n
4172 This option is only active when @option{-fstrict-aliasing} is active.
4173 It warns about code that might break the strict aliasing rules that the
4174 compiler is using for optimization.
4175 Higher levels correspond to higher accuracy (fewer false positives).
4176 Higher levels also correspond to more effort, similar to the way @option{-O}
4177 works.
4178 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4179
4180 Level 1: Most aggressive, quick, least accurate.
4181 Possibly useful when higher levels
4182 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4183 false negatives. However, it has many false positives.
4184 Warns for all pointer conversions between possibly incompatible types,
4185 even if never dereferenced. Runs in the front end only.
4186
4187 Level 2: Aggressive, quick, not too precise.
4188 May still have many false positives (not as many as level 1 though),
4189 and few false negatives (but possibly more than level 1).
4190 Unlike level 1, it only warns when an address is taken. Warns about
4191 incomplete types. Runs in the front end only.
4192
4193 Level 3 (default for @option{-Wstrict-aliasing}):
4194 Should have very few false positives and few false
4195 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
4196 Takes care of the common pun+dereference pattern in the front end:
4197 @code{*(int*)&some_float}.
4198 If optimization is enabled, it also runs in the back end, where it deals
4199 with multiple statement cases using flow-sensitive points-to information.
4200 Only warns when the converted pointer is dereferenced.
4201 Does not warn about incomplete types.
4202
4203 @item -Wstrict-overflow
4204 @itemx -Wstrict-overflow=@var{n}
4205 @opindex Wstrict-overflow
4206 @opindex Wno-strict-overflow
4207 This option is only active when @option{-fstrict-overflow} is active.
4208 It warns about cases where the compiler optimizes based on the
4209 assumption that signed overflow does not occur. Note that it does not
4210 warn about all cases where the code might overflow: it only warns
4211 about cases where the compiler implements some optimization. Thus
4212 this warning depends on the optimization level.
4213
4214 An optimization that assumes that signed overflow does not occur is
4215 perfectly safe if the values of the variables involved are such that
4216 overflow never does, in fact, occur. Therefore this warning can
4217 easily give a false positive: a warning about code that is not
4218 actually a problem. To help focus on important issues, several
4219 warning levels are defined. No warnings are issued for the use of
4220 undefined signed overflow when estimating how many iterations a loop
4221 requires, in particular when determining whether a loop will be
4222 executed at all.
4223
4224 @table @gcctabopt
4225 @item -Wstrict-overflow=1
4226 Warn about cases that are both questionable and easy to avoid. For
4227 example, with @option{-fstrict-overflow}, the compiler simplifies
4228 @code{x + 1 > x} to @code{1}. This level of
4229 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4230 are not, and must be explicitly requested.
4231
4232 @item -Wstrict-overflow=2
4233 Also warn about other cases where a comparison is simplified to a
4234 constant. For example: @code{abs (x) >= 0}. This can only be
4235 simplified when @option{-fstrict-overflow} is in effect, because
4236 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4237 zero. @option{-Wstrict-overflow} (with no level) is the same as
4238 @option{-Wstrict-overflow=2}.
4239
4240 @item -Wstrict-overflow=3
4241 Also warn about other cases where a comparison is simplified. For
4242 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4243
4244 @item -Wstrict-overflow=4
4245 Also warn about other simplifications not covered by the above cases.
4246 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4247
4248 @item -Wstrict-overflow=5
4249 Also warn about cases where the compiler reduces the magnitude of a
4250 constant involved in a comparison. For example: @code{x + 2 > y} is
4251 simplified to @code{x + 1 >= y}. This is reported only at the
4252 highest warning level because this simplification applies to many
4253 comparisons, so this warning level gives a very large number of
4254 false positives.
4255 @end table
4256
4257 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4258 @opindex Wsuggest-attribute=
4259 @opindex Wno-suggest-attribute=
4260 Warn for cases where adding an attribute may be beneficial. The
4261 attributes currently supported are listed below.
4262
4263 @table @gcctabopt
4264 @item -Wsuggest-attribute=pure
4265 @itemx -Wsuggest-attribute=const
4266 @itemx -Wsuggest-attribute=noreturn
4267 @opindex Wsuggest-attribute=pure
4268 @opindex Wno-suggest-attribute=pure
4269 @opindex Wsuggest-attribute=const
4270 @opindex Wno-suggest-attribute=const
4271 @opindex Wsuggest-attribute=noreturn
4272 @opindex Wno-suggest-attribute=noreturn
4273
4274 Warn about functions that might be candidates for attributes
4275 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
4276 functions visible in other compilation units or (in the case of @code{pure} and
4277 @code{const}) if it cannot prove that the function returns normally. A function
4278 returns normally if it doesn't contain an infinite loop or return abnormally
4279 by throwing, calling @code{abort} or trapping. This analysis requires option
4280 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4281 higher. Higher optimization levels improve the accuracy of the analysis.
4282
4283 @item -Wsuggest-attribute=format
4284 @itemx -Wmissing-format-attribute
4285 @opindex Wsuggest-attribute=format
4286 @opindex Wmissing-format-attribute
4287 @opindex Wno-suggest-attribute=format
4288 @opindex Wno-missing-format-attribute
4289 @opindex Wformat
4290 @opindex Wno-format
4291
4292 Warn about function pointers that might be candidates for @code{format}
4293 attributes. Note these are only possible candidates, not absolute ones.
4294 GCC guesses that function pointers with @code{format} attributes that
4295 are used in assignment, initialization, parameter passing or return
4296 statements should have a corresponding @code{format} attribute in the
4297 resulting type. I.e.@: the left-hand side of the assignment or
4298 initialization, the type of the parameter variable, or the return type
4299 of the containing function respectively should also have a @code{format}
4300 attribute to avoid the warning.
4301
4302 GCC also warns about function definitions that might be
4303 candidates for @code{format} attributes. Again, these are only
4304 possible candidates. GCC guesses that @code{format} attributes
4305 might be appropriate for any function that calls a function like
4306 @code{vprintf} or @code{vscanf}, but this might not always be the
4307 case, and some functions for which @code{format} attributes are
4308 appropriate may not be detected.
4309 @end table
4310
4311 @item -Wsuggest-final-types
4312 @opindex Wno-suggest-final-types
4313 @opindex Wsuggest-final-types
4314 Warn about types with virtual methods where code quality would be improved
4315 if the type were declared with the C++11 @code{final} specifier,
4316 or, if possible,
4317 declared in an anonymous namespace. This allows GCC to more aggressively
4318 devirtualize the polymorphic calls. This warning is more effective with link
4319 time optimization, where the information about the class hierarchy graph is
4320 more complete.
4321
4322 @item -Wsuggest-final-methods
4323 @opindex Wno-suggest-final-methods
4324 @opindex Wsuggest-final-methods
4325 Warn about virtual methods where code quality would be improved if the method
4326 were declared with the C++11 @code{final} specifier,
4327 or, if possible, its type were
4328 declared in an anonymous namespace or with the @code{final} specifier.
4329 This warning is
4330 more effective with link time optimization, where the information about the
4331 class hierarchy graph is more complete. It is recommended to first consider
4332 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4333 annotations.
4334
4335 @item -Wsuggest-override
4336 Warn about overriding virtual functions that are not marked with the override
4337 keyword.
4338
4339 @item -Warray-bounds
4340 @itemx -Warray-bounds=@var{n}
4341 @opindex Wno-array-bounds
4342 @opindex Warray-bounds
4343 This option is only active when @option{-ftree-vrp} is active
4344 (default for @option{-O2} and above). It warns about subscripts to arrays
4345 that are always out of bounds. This warning is enabled by @option{-Wall}.
4346
4347 @table @gcctabopt
4348 @item -Warray-bounds=1
4349 This is the warning level of @option{-Warray-bounds} and is enabled
4350 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4351
4352 @item -Warray-bounds=2
4353 This warning level also warns about out of bounds access for
4354 arrays at the end of a struct and for arrays accessed through
4355 pointers. This warning level may give a larger number of
4356 false positives and is deactivated by default.
4357 @end table
4358
4359 @item -Wbool-compare
4360 @opindex Wno-bool-compare
4361 @opindex Wbool-compare
4362 Warn about boolean expression compared with an integer value different from
4363 @code{true}/@code{false}. For instance, the following comparison is
4364 always false:
4365 @smallexample
4366 int n = 5;
4367 @dots{}
4368 if ((n > 1) == 2) @{ @dots{} @}
4369 @end smallexample
4370 This warning is enabled by @option{-Wall}.
4371
4372 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4373 @opindex Wno-discarded-qualifiers
4374 @opindex Wdiscarded-qualifiers
4375 Do not warn if type qualifiers on pointers are being discarded.
4376 Typically, the compiler warns if a @code{const char *} variable is
4377 passed to a function that takes a @code{char *} parameter. This option
4378 can be used to suppress such a warning.
4379
4380 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4381 @opindex Wno-discarded-array-qualifiers
4382 @opindex Wdiscarded-array-qualifiers
4383 Do not warn if type qualifiers on arrays which are pointer targets
4384 are being discarded. Typically, the compiler warns if a
4385 @code{const int (*)[]} variable is passed to a function that
4386 takes a @code{int (*)[]} parameter. This option can be used to
4387 suppress such a warning.
4388
4389 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4390 @opindex Wno-incompatible-pointer-types
4391 @opindex Wincompatible-pointer-types
4392 Do not warn when there is a conversion between pointers that have incompatible
4393 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
4394 which warns for pointer argument passing or assignment with different
4395 signedness.
4396
4397 @item -Wno-int-conversion @r{(C and Objective-C only)}
4398 @opindex Wno-int-conversion
4399 @opindex Wint-conversion
4400 Do not warn about incompatible integer to pointer and pointer to integer
4401 conversions. This warning is about implicit conversions; for explicit
4402 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4403 @option{-Wno-pointer-to-int-cast} may be used.
4404
4405 @item -Wno-div-by-zero
4406 @opindex Wno-div-by-zero
4407 @opindex Wdiv-by-zero
4408 Do not warn about compile-time integer division by zero. Floating-point
4409 division by zero is not warned about, as it can be a legitimate way of
4410 obtaining infinities and NaNs.
4411
4412 @item -Wsystem-headers
4413 @opindex Wsystem-headers
4414 @opindex Wno-system-headers
4415 @cindex warnings from system headers
4416 @cindex system headers, warnings from
4417 Print warning messages for constructs found in system header files.
4418 Warnings from system headers are normally suppressed, on the assumption
4419 that they usually do not indicate real problems and would only make the
4420 compiler output harder to read. Using this command-line option tells
4421 GCC to emit warnings from system headers as if they occurred in user
4422 code. However, note that using @option{-Wall} in conjunction with this
4423 option does @emph{not} warn about unknown pragmas in system
4424 headers---for that, @option{-Wunknown-pragmas} must also be used.
4425
4426 @item -Wtrampolines
4427 @opindex Wtrampolines
4428 @opindex Wno-trampolines
4429 Warn about trampolines generated for pointers to nested functions.
4430 A trampoline is a small piece of data or code that is created at run
4431 time on the stack when the address of a nested function is taken, and is
4432 used to call the nested function indirectly. For some targets, it is
4433 made up of data only and thus requires no special treatment. But, for
4434 most targets, it is made up of code and thus requires the stack to be
4435 made executable in order for the program to work properly.
4436
4437 @item -Wfloat-equal
4438 @opindex Wfloat-equal
4439 @opindex Wno-float-equal
4440 Warn if floating-point values are used in equality comparisons.
4441
4442 The idea behind this is that sometimes it is convenient (for the
4443 programmer) to consider floating-point values as approximations to
4444 infinitely precise real numbers. If you are doing this, then you need
4445 to compute (by analyzing the code, or in some other way) the maximum or
4446 likely maximum error that the computation introduces, and allow for it
4447 when performing comparisons (and when producing output, but that's a
4448 different problem). In particular, instead of testing for equality, you
4449 should check to see whether the two values have ranges that overlap; and
4450 this is done with the relational operators, so equality comparisons are
4451 probably mistaken.
4452
4453 @item -Wtraditional @r{(C and Objective-C only)}
4454 @opindex Wtraditional
4455 @opindex Wno-traditional
4456 Warn about certain constructs that behave differently in traditional and
4457 ISO C@. Also warn about ISO C constructs that have no traditional C
4458 equivalent, and/or problematic constructs that should be avoided.
4459
4460 @itemize @bullet
4461 @item
4462 Macro parameters that appear within string literals in the macro body.
4463 In traditional C macro replacement takes place within string literals,
4464 but in ISO C it does not.
4465
4466 @item
4467 In traditional C, some preprocessor directives did not exist.
4468 Traditional preprocessors only considered a line to be a directive
4469 if the @samp{#} appeared in column 1 on the line. Therefore
4470 @option{-Wtraditional} warns about directives that traditional C
4471 understands but ignores because the @samp{#} does not appear as the
4472 first character on the line. It also suggests you hide directives like
4473 @code{#pragma} not understood by traditional C by indenting them. Some
4474 traditional implementations do not recognize @code{#elif}, so this option
4475 suggests avoiding it altogether.
4476
4477 @item
4478 A function-like macro that appears without arguments.
4479
4480 @item
4481 The unary plus operator.
4482
4483 @item
4484 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4485 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
4486 constants.) Note, these suffixes appear in macros defined in the system
4487 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4488 Use of these macros in user code might normally lead to spurious
4489 warnings, however GCC's integrated preprocessor has enough context to
4490 avoid warning in these cases.
4491
4492 @item
4493 A function declared external in one block and then used after the end of
4494 the block.
4495
4496 @item
4497 A @code{switch} statement has an operand of type @code{long}.
4498
4499 @item
4500 A non-@code{static} function declaration follows a @code{static} one.
4501 This construct is not accepted by some traditional C compilers.
4502
4503 @item
4504 The ISO type of an integer constant has a different width or
4505 signedness from its traditional type. This warning is only issued if
4506 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
4507 typically represent bit patterns, are not warned about.
4508
4509 @item
4510 Usage of ISO string concatenation is detected.
4511
4512 @item
4513 Initialization of automatic aggregates.
4514
4515 @item
4516 Identifier conflicts with labels. Traditional C lacks a separate
4517 namespace for labels.
4518
4519 @item
4520 Initialization of unions. If the initializer is zero, the warning is
4521 omitted. This is done under the assumption that the zero initializer in
4522 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4523 initializer warnings and relies on default initialization to zero in the
4524 traditional C case.
4525
4526 @item
4527 Conversions by prototypes between fixed/floating-point values and vice
4528 versa. The absence of these prototypes when compiling with traditional
4529 C causes serious problems. This is a subset of the possible
4530 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4531
4532 @item
4533 Use of ISO C style function definitions. This warning intentionally is
4534 @emph{not} issued for prototype declarations or variadic functions
4535 because these ISO C features appear in your code when using
4536 libiberty's traditional C compatibility macros, @code{PARAMS} and
4537 @code{VPARAMS}. This warning is also bypassed for nested functions
4538 because that feature is already a GCC extension and thus not relevant to
4539 traditional C compatibility.
4540 @end itemize
4541
4542 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4543 @opindex Wtraditional-conversion
4544 @opindex Wno-traditional-conversion
4545 Warn if a prototype causes a type conversion that is different from what
4546 would happen to the same argument in the absence of a prototype. This
4547 includes conversions of fixed point to floating and vice versa, and
4548 conversions changing the width or signedness of a fixed-point argument
4549 except when the same as the default promotion.
4550
4551 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4552 @opindex Wdeclaration-after-statement
4553 @opindex Wno-declaration-after-statement
4554 Warn when a declaration is found after a statement in a block. This
4555 construct, known from C++, was introduced with ISO C99 and is by default
4556 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
4557
4558 @item -Wundef
4559 @opindex Wundef
4560 @opindex Wno-undef
4561 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4562
4563 @item -Wno-endif-labels
4564 @opindex Wno-endif-labels
4565 @opindex Wendif-labels
4566 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4567
4568 @item -Wshadow
4569 @opindex Wshadow
4570 @opindex Wno-shadow
4571 Warn whenever a local variable or type declaration shadows another
4572 variable, parameter, type, class member (in C++), or instance variable
4573 (in Objective-C) or whenever a built-in function is shadowed. Note
4574 that in C++, the compiler warns if a local variable shadows an
4575 explicit typedef, but not if it shadows a struct/class/enum.
4576
4577 @item -Wno-shadow-ivar @r{(Objective-C only)}
4578 @opindex Wno-shadow-ivar
4579 @opindex Wshadow-ivar
4580 Do not warn whenever a local variable shadows an instance variable in an
4581 Objective-C method.
4582
4583 @item -Wlarger-than=@var{len}
4584 @opindex Wlarger-than=@var{len}
4585 @opindex Wlarger-than-@var{len}
4586 Warn whenever an object of larger than @var{len} bytes is defined.
4587
4588 @item -Wframe-larger-than=@var{len}
4589 @opindex Wframe-larger-than
4590 Warn if the size of a function frame is larger than @var{len} bytes.
4591 The computation done to determine the stack frame size is approximate
4592 and not conservative.
4593 The actual requirements may be somewhat greater than @var{len}
4594 even if you do not get a warning. In addition, any space allocated
4595 via @code{alloca}, variable-length arrays, or related constructs
4596 is not included by the compiler when determining
4597 whether or not to issue a warning.
4598
4599 @item -Wno-free-nonheap-object
4600 @opindex Wno-free-nonheap-object
4601 @opindex Wfree-nonheap-object
4602 Do not warn when attempting to free an object that was not allocated
4603 on the heap.
4604
4605 @item -Wstack-usage=@var{len}
4606 @opindex Wstack-usage
4607 Warn if the stack usage of a function might be larger than @var{len} bytes.
4608 The computation done to determine the stack usage is conservative.
4609 Any space allocated via @code{alloca}, variable-length arrays, or related
4610 constructs is included by the compiler when determining whether or not to
4611 issue a warning.
4612
4613 The message is in keeping with the output of @option{-fstack-usage}.
4614
4615 @itemize
4616 @item
4617 If the stack usage is fully static but exceeds the specified amount, it's:
4618
4619 @smallexample
4620 warning: stack usage is 1120 bytes
4621 @end smallexample
4622 @item
4623 If the stack usage is (partly) dynamic but bounded, it's:
4624
4625 @smallexample
4626 warning: stack usage might be 1648 bytes
4627 @end smallexample
4628 @item
4629 If the stack usage is (partly) dynamic and not bounded, it's:
4630
4631 @smallexample
4632 warning: stack usage might be unbounded
4633 @end smallexample
4634 @end itemize
4635
4636 @item -Wunsafe-loop-optimizations
4637 @opindex Wunsafe-loop-optimizations
4638 @opindex Wno-unsafe-loop-optimizations
4639 Warn if the loop cannot be optimized because the compiler cannot
4640 assume anything on the bounds of the loop indices. With
4641 @option{-funsafe-loop-optimizations} warn if the compiler makes
4642 such assumptions.
4643
4644 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4645 @opindex Wno-pedantic-ms-format
4646 @opindex Wpedantic-ms-format
4647 When used in combination with @option{-Wformat}
4648 and @option{-pedantic} without GNU extensions, this option
4649 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4650 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4651 which depend on the MS runtime.
4652
4653 @item -Wpointer-arith
4654 @opindex Wpointer-arith
4655 @opindex Wno-pointer-arith
4656 Warn about anything that depends on the ``size of'' a function type or
4657 of @code{void}. GNU C assigns these types a size of 1, for
4658 convenience in calculations with @code{void *} pointers and pointers
4659 to functions. In C++, warn also when an arithmetic operation involves
4660 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
4661
4662 @item -Wtype-limits
4663 @opindex Wtype-limits
4664 @opindex Wno-type-limits
4665 Warn if a comparison is always true or always false due to the limited
4666 range of the data type, but do not warn for constant expressions. For
4667 example, warn if an unsigned variable is compared against zero with
4668 @code{<} or @code{>=}. This warning is also enabled by
4669 @option{-Wextra}.
4670
4671 @item -Wbad-function-cast @r{(C and Objective-C only)}
4672 @opindex Wbad-function-cast
4673 @opindex Wno-bad-function-cast
4674 Warn when a function call is cast to a non-matching type.
4675 For example, warn if a call to a function returning an integer type
4676 is cast to a pointer type.
4677
4678 @item -Wc90-c99-compat @r{(C and Objective-C only)}
4679 @opindex Wc90-c99-compat
4680 @opindex Wno-c90-c99-compat
4681 Warn about features not present in ISO C90, but present in ISO C99.
4682 For instance, warn about use of variable length arrays, @code{long long}
4683 type, @code{bool} type, compound literals, designated initializers, and so
4684 on. This option is independent of the standards mode. Warnings are disabled
4685 in the expression that follows @code{__extension__}.
4686
4687 @item -Wc99-c11-compat @r{(C and Objective-C only)}
4688 @opindex Wc99-c11-compat
4689 @opindex Wno-c99-c11-compat
4690 Warn about features not present in ISO C99, but present in ISO C11.
4691 For instance, warn about use of anonymous structures and unions,
4692 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4693 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4694 and so on. This option is independent of the standards mode. Warnings are
4695 disabled in the expression that follows @code{__extension__}.
4696
4697 @item -Wc++-compat @r{(C and Objective-C only)}
4698 @opindex Wc++-compat
4699 Warn about ISO C constructs that are outside of the common subset of
4700 ISO C and ISO C++, e.g.@: request for implicit conversion from
4701 @code{void *} to a pointer to non-@code{void} type.
4702
4703 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4704 @opindex Wc++11-compat
4705 Warn about C++ constructs whose meaning differs between ISO C++ 1998
4706 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4707 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
4708 enabled by @option{-Wall}.
4709
4710 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4711 @opindex Wc++14-compat
4712 Warn about C++ constructs whose meaning differs between ISO C++ 2011
4713 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
4714
4715 @item -Wcast-qual
4716 @opindex Wcast-qual
4717 @opindex Wno-cast-qual
4718 Warn whenever a pointer is cast so as to remove a type qualifier from
4719 the target type. For example, warn if a @code{const char *} is cast
4720 to an ordinary @code{char *}.
4721
4722 Also warn when making a cast that introduces a type qualifier in an
4723 unsafe way. For example, casting @code{char **} to @code{const char **}
4724 is unsafe, as in this example:
4725
4726 @smallexample
4727 /* p is char ** value. */
4728 const char **q = (const char **) p;
4729 /* Assignment of readonly string to const char * is OK. */
4730 *q = "string";
4731 /* Now char** pointer points to read-only memory. */
4732 **p = 'b';
4733 @end smallexample
4734
4735 @item -Wcast-align
4736 @opindex Wcast-align
4737 @opindex Wno-cast-align
4738 Warn whenever a pointer is cast such that the required alignment of the
4739 target is increased. For example, warn if a @code{char *} is cast to
4740 an @code{int *} on machines where integers can only be accessed at
4741 two- or four-byte boundaries.
4742
4743 @item -Wwrite-strings
4744 @opindex Wwrite-strings
4745 @opindex Wno-write-strings
4746 When compiling C, give string constants the type @code{const
4747 char[@var{length}]} so that copying the address of one into a
4748 non-@code{const} @code{char *} pointer produces a warning. These
4749 warnings help you find at compile time code that can try to write
4750 into a string constant, but only if you have been very careful about
4751 using @code{const} in declarations and prototypes. Otherwise, it is
4752 just a nuisance. This is why we did not make @option{-Wall} request
4753 these warnings.
4754
4755 When compiling C++, warn about the deprecated conversion from string
4756 literals to @code{char *}. This warning is enabled by default for C++
4757 programs.
4758
4759 @item -Wclobbered
4760 @opindex Wclobbered
4761 @opindex Wno-clobbered
4762 Warn for variables that might be changed by @code{longjmp} or
4763 @code{vfork}. This warning is also enabled by @option{-Wextra}.
4764
4765 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4766 @opindex Wconditionally-supported
4767 @opindex Wno-conditionally-supported
4768 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4769
4770 @item -Wconversion
4771 @opindex Wconversion
4772 @opindex Wno-conversion
4773 Warn for implicit conversions that may alter a value. This includes
4774 conversions between real and integer, like @code{abs (x)} when
4775 @code{x} is @code{double}; conversions between signed and unsigned,
4776 like @code{unsigned ui = -1}; and conversions to smaller types, like
4777 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
4778 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
4779 changed by the conversion like in @code{abs (2.0)}. Warnings about
4780 conversions between signed and unsigned integers can be disabled by
4781 using @option{-Wno-sign-conversion}.
4782
4783 For C++, also warn for confusing overload resolution for user-defined
4784 conversions; and conversions that never use a type conversion
4785 operator: conversions to @code{void}, the same type, a base class or a
4786 reference to them. Warnings about conversions between signed and
4787 unsigned integers are disabled by default in C++ unless
4788 @option{-Wsign-conversion} is explicitly enabled.
4789
4790 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4791 @opindex Wconversion-null
4792 @opindex Wno-conversion-null
4793 Do not warn for conversions between @code{NULL} and non-pointer
4794 types. @option{-Wconversion-null} is enabled by default.
4795
4796 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4797 @opindex Wzero-as-null-pointer-constant
4798 @opindex Wno-zero-as-null-pointer-constant
4799 Warn when a literal '0' is used as null pointer constant. This can
4800 be useful to facilitate the conversion to @code{nullptr} in C++11.
4801
4802 @item -Wdate-time
4803 @opindex Wdate-time
4804 @opindex Wno-date-time
4805 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
4806 are encountered as they might prevent bit-wise-identical reproducible
4807 compilations.
4808
4809 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
4810 @opindex Wdelete-incomplete
4811 @opindex Wno-delete-incomplete
4812 Warn when deleting a pointer to incomplete type, which may cause
4813 undefined behavior at runtime. This warning is enabled by default.
4814
4815 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
4816 @opindex Wuseless-cast
4817 @opindex Wno-useless-cast
4818 Warn when an expression is casted to its own type.
4819
4820 @item -Wempty-body
4821 @opindex Wempty-body
4822 @opindex Wno-empty-body
4823 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
4824 while} statement. This warning is also enabled by @option{-Wextra}.
4825
4826 @item -Wenum-compare
4827 @opindex Wenum-compare
4828 @opindex Wno-enum-compare
4829 Warn about a comparison between values of different enumerated types.
4830 In C++ enumeral mismatches in conditional expressions are also
4831 diagnosed and the warning is enabled by default. In C this warning is
4832 enabled by @option{-Wall}.
4833
4834 @item -Wjump-misses-init @r{(C, Objective-C only)}
4835 @opindex Wjump-misses-init
4836 @opindex Wno-jump-misses-init
4837 Warn if a @code{goto} statement or a @code{switch} statement jumps
4838 forward across the initialization of a variable, or jumps backward to a
4839 label after the variable has been initialized. This only warns about
4840 variables that are initialized when they are declared. This warning is
4841 only supported for C and Objective-C; in C++ this sort of branch is an
4842 error in any case.
4843
4844 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
4845 can be disabled with the @option{-Wno-jump-misses-init} option.
4846
4847 @item -Wsign-compare
4848 @opindex Wsign-compare
4849 @opindex Wno-sign-compare
4850 @cindex warning for comparison of signed and unsigned values
4851 @cindex comparison of signed and unsigned values, warning
4852 @cindex signed and unsigned values, comparison warning
4853 Warn when a comparison between signed and unsigned values could produce
4854 an incorrect result when the signed value is converted to unsigned.
4855 This warning is also enabled by @option{-Wextra}; to get the other warnings
4856 of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
4857
4858 @item -Wsign-conversion
4859 @opindex Wsign-conversion
4860 @opindex Wno-sign-conversion
4861 Warn for implicit conversions that may change the sign of an integer
4862 value, like assigning a signed integer expression to an unsigned
4863 integer variable. An explicit cast silences the warning. In C, this
4864 option is enabled also by @option{-Wconversion}.
4865
4866 @item -Wfloat-conversion
4867 @opindex Wfloat-conversion
4868 @opindex Wno-float-conversion
4869 Warn for implicit conversions that reduce the precision of a real value.
4870 This includes conversions from real to integer, and from higher precision
4871 real to lower precision real values. This option is also enabled by
4872 @option{-Wconversion}.
4873
4874 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
4875 @opindex Wsized-deallocation
4876 @opindex Wno-sized-deallocation
4877 Warn about a definition of an unsized deallocation function
4878 @smallexample
4879 void operator delete (void *) noexcept;
4880 void operator delete[] (void *) noexcept;
4881 @end smallexample
4882 without a definition of the corresponding sized deallocation function
4883 @smallexample
4884 void operator delete (void *, std::size_t) noexcept;
4885 void operator delete[] (void *, std::size_t) noexcept;
4886 @end smallexample
4887 or vice versa. Enabled by @option{-Wextra} along with
4888 @option{-fsized-deallocation}.
4889
4890 @item -Wsizeof-pointer-memaccess
4891 @opindex Wsizeof-pointer-memaccess
4892 @opindex Wno-sizeof-pointer-memaccess
4893 Warn for suspicious length parameters to certain string and memory built-in
4894 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
4895 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
4896 but a pointer, and suggests a possible fix, or about
4897 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
4898 @option{-Wall}.
4899
4900 @item -Wsizeof-array-argument
4901 @opindex Wsizeof-array-argument
4902 @opindex Wno-sizeof-array-argument
4903 Warn when the @code{sizeof} operator is applied to a parameter that is
4904 declared as an array in a function definition. This warning is enabled by
4905 default for C and C++ programs.
4906
4907 @item -Wmemset-transposed-args
4908 @opindex Wmemset-transposed-args
4909 @opindex Wno-memset-transposed-args
4910 Warn for suspicious calls to the @code{memset} built-in function, if the
4911 second argument is not zero and the third argument is zero. This warns e.g.@
4912 about @code{memset (buf, sizeof buf, 0)} where most probably
4913 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
4914 is only emitted if the third argument is literal zero. If it is some
4915 expression that is folded to zero, a cast of zero to some type, etc.,
4916 it is far less likely that the user has mistakenly exchanged the arguments
4917 and no warning is emitted. This warning is enabled by @option{-Wall}.
4918
4919 @item -Waddress
4920 @opindex Waddress
4921 @opindex Wno-address
4922 Warn about suspicious uses of memory addresses. These include using
4923 the address of a function in a conditional expression, such as
4924 @code{void func(void); if (func)}, and comparisons against the memory
4925 address of a string literal, such as @code{if (x == "abc")}. Such
4926 uses typically indicate a programmer error: the address of a function
4927 always evaluates to true, so their use in a conditional usually
4928 indicate that the programmer forgot the parentheses in a function
4929 call; and comparisons against string literals result in unspecified
4930 behavior and are not portable in C, so they usually indicate that the
4931 programmer intended to use @code{strcmp}. This warning is enabled by
4932 @option{-Wall}.
4933
4934 @item -Wlogical-op
4935 @opindex Wlogical-op
4936 @opindex Wno-logical-op
4937 Warn about suspicious uses of logical operators in expressions.
4938 This includes using logical operators in contexts where a
4939 bit-wise operator is likely to be expected. Also warns when
4940 the operands of a logical operator are the same:
4941 @smallexample
4942 extern int a;
4943 if (a < 0 && a < 0) @{ @dots{} @}
4944 @end smallexample
4945
4946 @item -Wlogical-not-parentheses
4947 @opindex Wlogical-not-parentheses
4948 @opindex Wno-logical-not-parentheses
4949 Warn about logical not used on the left hand side operand of a comparison.
4950 This option does not warn if the RHS operand is of a boolean type. Its
4951 purpose is to detect suspicious code like the following:
4952 @smallexample
4953 int a;
4954 @dots{}
4955 if (!a > 1) @{ @dots{} @}
4956 @end smallexample
4957
4958 It is possible to suppress the warning by wrapping the LHS into
4959 parentheses:
4960 @smallexample
4961 if ((!a) > 1) @{ @dots{} @}
4962 @end smallexample
4963
4964 This warning is enabled by @option{-Wall}.
4965
4966 @item -Waggregate-return
4967 @opindex Waggregate-return
4968 @opindex Wno-aggregate-return
4969 Warn if any functions that return structures or unions are defined or
4970 called. (In languages where you can return an array, this also elicits
4971 a warning.)
4972
4973 @item -Wno-aggressive-loop-optimizations
4974 @opindex Wno-aggressive-loop-optimizations
4975 @opindex Waggressive-loop-optimizations
4976 Warn if in a loop with constant number of iterations the compiler detects
4977 undefined behavior in some statement during one or more of the iterations.
4978
4979 @item -Wno-attributes
4980 @opindex Wno-attributes
4981 @opindex Wattributes
4982 Do not warn if an unexpected @code{__attribute__} is used, such as
4983 unrecognized attributes, function attributes applied to variables,
4984 etc. This does not stop errors for incorrect use of supported
4985 attributes.
4986
4987 @item -Wno-builtin-macro-redefined
4988 @opindex Wno-builtin-macro-redefined
4989 @opindex Wbuiltin-macro-redefined
4990 Do not warn if certain built-in macros are redefined. This suppresses
4991 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
4992 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
4993
4994 @item -Wstrict-prototypes @r{(C and Objective-C only)}
4995 @opindex Wstrict-prototypes
4996 @opindex Wno-strict-prototypes
4997 Warn if a function is declared or defined without specifying the
4998 argument types. (An old-style function definition is permitted without
4999 a warning if preceded by a declaration that specifies the argument
5000 types.)
5001
5002 @item -Wold-style-declaration @r{(C and Objective-C only)}
5003 @opindex Wold-style-declaration
5004 @opindex Wno-old-style-declaration
5005 Warn for obsolescent usages, according to the C Standard, in a
5006 declaration. For example, warn if storage-class specifiers like
5007 @code{static} are not the first things in a declaration. This warning
5008 is also enabled by @option{-Wextra}.
5009
5010 @item -Wold-style-definition @r{(C and Objective-C only)}
5011 @opindex Wold-style-definition
5012 @opindex Wno-old-style-definition
5013 Warn if an old-style function definition is used. A warning is given
5014 even if there is a previous prototype.
5015
5016 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5017 @opindex Wmissing-parameter-type
5018 @opindex Wno-missing-parameter-type
5019 A function parameter is declared without a type specifier in K&R-style
5020 functions:
5021
5022 @smallexample
5023 void foo(bar) @{ @}
5024 @end smallexample
5025
5026 This warning is also enabled by @option{-Wextra}.
5027
5028 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5029 @opindex Wmissing-prototypes
5030 @opindex Wno-missing-prototypes
5031 Warn if a global function is defined without a previous prototype
5032 declaration. This warning is issued even if the definition itself
5033 provides a prototype. Use this option to detect global functions
5034 that do not have a matching prototype declaration in a header file.
5035 This option is not valid for C++ because all function declarations
5036 provide prototypes and a non-matching declaration declares an
5037 overload rather than conflict with an earlier declaration.
5038 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5039
5040 @item -Wmissing-declarations
5041 @opindex Wmissing-declarations
5042 @opindex Wno-missing-declarations
5043 Warn if a global function is defined without a previous declaration.
5044 Do so even if the definition itself provides a prototype.
5045 Use this option to detect global functions that are not declared in
5046 header files. In C, no warnings are issued for functions with previous
5047 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5048 missing prototypes. In C++, no warnings are issued for function templates,
5049 or for inline functions, or for functions in anonymous namespaces.
5050
5051 @item -Wmissing-field-initializers
5052 @opindex Wmissing-field-initializers
5053 @opindex Wno-missing-field-initializers
5054 @opindex W
5055 @opindex Wextra
5056 @opindex Wno-extra
5057 Warn if a structure's initializer has some fields missing. For
5058 example, the following code causes such a warning, because
5059 @code{x.h} is implicitly zero:
5060
5061 @smallexample
5062 struct s @{ int f, g, h; @};
5063 struct s x = @{ 3, 4 @};
5064 @end smallexample
5065
5066 This option does not warn about designated initializers, so the following
5067 modification does not trigger a warning:
5068
5069 @smallexample
5070 struct s @{ int f, g, h; @};
5071 struct s x = @{ .f = 3, .g = 4 @};
5072 @end smallexample
5073
5074 In C++ this option does not warn either about the empty @{ @}
5075 initializer, for example:
5076
5077 @smallexample
5078 struct s @{ int f, g, h; @};
5079 s x = @{ @};
5080 @end smallexample
5081
5082 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
5083 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5084
5085 @item -Wno-multichar
5086 @opindex Wno-multichar
5087 @opindex Wmultichar
5088 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5089 Usually they indicate a typo in the user's code, as they have
5090 implementation-defined values, and should not be used in portable code.
5091
5092 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5093 @opindex Wnormalized=
5094 @opindex Wnormalized
5095 @opindex Wno-normalized
5096 @cindex NFC
5097 @cindex NFKC
5098 @cindex character set, input normalization
5099 In ISO C and ISO C++, two identifiers are different if they are
5100 different sequences of characters. However, sometimes when characters
5101 outside the basic ASCII character set are used, you can have two
5102 different character sequences that look the same. To avoid confusion,
5103 the ISO 10646 standard sets out some @dfn{normalization rules} which
5104 when applied ensure that two sequences that look the same are turned into
5105 the same sequence. GCC can warn you if you are using identifiers that
5106 have not been normalized; this option controls that warning.
5107
5108 There are four levels of warning supported by GCC@. The default is
5109 @option{-Wnormalized=nfc}, which warns about any identifier that is
5110 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
5111 recommended form for most uses. It is equivalent to
5112 @option{-Wnormalized}.
5113
5114 Unfortunately, there are some characters allowed in identifiers by
5115 ISO C and ISO C++ that, when turned into NFC, are not allowed in
5116 identifiers. That is, there's no way to use these symbols in portable
5117 ISO C or C++ and have all your identifiers in NFC@.
5118 @option{-Wnormalized=id} suppresses the warning for these characters.
5119 It is hoped that future versions of the standards involved will correct
5120 this, which is why this option is not the default.
5121
5122 You can switch the warning off for all characters by writing
5123 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
5124 only do this if you are using some other normalization scheme (like
5125 ``D''), because otherwise you can easily create bugs that are
5126 literally impossible to see.
5127
5128 Some characters in ISO 10646 have distinct meanings but look identical
5129 in some fonts or display methodologies, especially once formatting has
5130 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5131 LETTER N'', displays just like a regular @code{n} that has been
5132 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
5133 normalization scheme to convert all these into a standard form as
5134 well, and GCC warns if your code is not in NFKC if you use
5135 @option{-Wnormalized=nfkc}. This warning is comparable to warning
5136 about every identifier that contains the letter O because it might be
5137 confused with the digit 0, and so is not the default, but may be
5138 useful as a local coding convention if the programming environment
5139 cannot be fixed to display these characters distinctly.
5140
5141 @item -Wno-deprecated
5142 @opindex Wno-deprecated
5143 @opindex Wdeprecated
5144 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
5145
5146 @item -Wno-deprecated-declarations
5147 @opindex Wno-deprecated-declarations
5148 @opindex Wdeprecated-declarations
5149 Do not warn about uses of functions (@pxref{Function Attributes}),
5150 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5151 Attributes}) marked as deprecated by using the @code{deprecated}
5152 attribute.
5153
5154 @item -Wno-overflow
5155 @opindex Wno-overflow
5156 @opindex Woverflow
5157 Do not warn about compile-time overflow in constant expressions.
5158
5159 @item -Wno-odr
5160 @opindex Wno-odr
5161 @opindex Wodr
5162 Warn about One Definition Rule violations during link-time optimization.
5163 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
5164
5165 @item -Wopenmp-simd
5166 @opindex Wopenm-simd
5167 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5168 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
5169 option can be used to relax the cost model.
5170
5171 @item -Woverride-init @r{(C and Objective-C only)}
5172 @opindex Woverride-init
5173 @opindex Wno-override-init
5174 @opindex W
5175 @opindex Wextra
5176 @opindex Wno-extra
5177 Warn if an initialized field without side effects is overridden when
5178 using designated initializers (@pxref{Designated Inits, , Designated
5179 Initializers}).
5180
5181 This warning is included in @option{-Wextra}. To get other
5182 @option{-Wextra} warnings without this one, use @option{-Wextra
5183 -Wno-override-init}.
5184
5185 @item -Wpacked
5186 @opindex Wpacked
5187 @opindex Wno-packed
5188 Warn if a structure is given the packed attribute, but the packed
5189 attribute has no effect on the layout or size of the structure.
5190 Such structures may be mis-aligned for little benefit. For
5191 instance, in this code, the variable @code{f.x} in @code{struct bar}
5192 is misaligned even though @code{struct bar} does not itself
5193 have the packed attribute:
5194
5195 @smallexample
5196 @group
5197 struct foo @{
5198 int x;
5199 char a, b, c, d;
5200 @} __attribute__((packed));
5201 struct bar @{
5202 char z;
5203 struct foo f;
5204 @};
5205 @end group
5206 @end smallexample
5207
5208 @item -Wpacked-bitfield-compat
5209 @opindex Wpacked-bitfield-compat
5210 @opindex Wno-packed-bitfield-compat
5211 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5212 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
5213 the change can lead to differences in the structure layout. GCC
5214 informs you when the offset of such a field has changed in GCC 4.4.
5215 For example there is no longer a 4-bit padding between field @code{a}
5216 and @code{b} in this structure:
5217
5218 @smallexample
5219 struct foo
5220 @{
5221 char a:4;
5222 char b:8;
5223 @} __attribute__ ((packed));
5224 @end smallexample
5225
5226 This warning is enabled by default. Use
5227 @option{-Wno-packed-bitfield-compat} to disable this warning.
5228
5229 @item -Wpadded
5230 @opindex Wpadded
5231 @opindex Wno-padded
5232 Warn if padding is included in a structure, either to align an element
5233 of the structure or to align the whole structure. Sometimes when this
5234 happens it is possible to rearrange the fields of the structure to
5235 reduce the padding and so make the structure smaller.
5236
5237 @item -Wredundant-decls
5238 @opindex Wredundant-decls
5239 @opindex Wno-redundant-decls
5240 Warn if anything is declared more than once in the same scope, even in
5241 cases where multiple declaration is valid and changes nothing.
5242
5243 @item -Wnested-externs @r{(C and Objective-C only)}
5244 @opindex Wnested-externs
5245 @opindex Wno-nested-externs
5246 Warn if an @code{extern} declaration is encountered within a function.
5247
5248 @item -Wno-inherited-variadic-ctor
5249 @opindex Winherited-variadic-ctor
5250 @opindex Wno-inherited-variadic-ctor
5251 Suppress warnings about use of C++11 inheriting constructors when the
5252 base class inherited from has a C variadic constructor; the warning is
5253 on by default because the ellipsis is not inherited.
5254
5255 @item -Winline
5256 @opindex Winline
5257 @opindex Wno-inline
5258 Warn if a function that is declared as inline cannot be inlined.
5259 Even with this option, the compiler does not warn about failures to
5260 inline functions declared in system headers.
5261
5262 The compiler uses a variety of heuristics to determine whether or not
5263 to inline a function. For example, the compiler takes into account
5264 the size of the function being inlined and the amount of inlining
5265 that has already been done in the current function. Therefore,
5266 seemingly insignificant changes in the source program can cause the
5267 warnings produced by @option{-Winline} to appear or disappear.
5268
5269 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5270 @opindex Wno-invalid-offsetof
5271 @opindex Winvalid-offsetof
5272 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5273 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
5274 to a non-standard-layout type is undefined. In existing C++ implementations,
5275 however, @code{offsetof} typically gives meaningful results.
5276 This flag is for users who are aware that they are
5277 writing nonportable code and who have deliberately chosen to ignore the
5278 warning about it.
5279
5280 The restrictions on @code{offsetof} may be relaxed in a future version
5281 of the C++ standard.
5282
5283 @item -Wno-int-to-pointer-cast
5284 @opindex Wno-int-to-pointer-cast
5285 @opindex Wint-to-pointer-cast
5286 Suppress warnings from casts to pointer type of an integer of a
5287 different size. In C++, casting to a pointer type of smaller size is
5288 an error. @option{Wint-to-pointer-cast} is enabled by default.
5289
5290
5291 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5292 @opindex Wno-pointer-to-int-cast
5293 @opindex Wpointer-to-int-cast
5294 Suppress warnings from casts from a pointer to an integer type of a
5295 different size.
5296
5297 @item -Winvalid-pch
5298 @opindex Winvalid-pch
5299 @opindex Wno-invalid-pch
5300 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5301 the search path but can't be used.
5302
5303 @item -Wlong-long
5304 @opindex Wlong-long
5305 @opindex Wno-long-long
5306 Warn if @code{long long} type is used. This is enabled by either
5307 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5308 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
5309
5310 @item -Wvariadic-macros
5311 @opindex Wvariadic-macros
5312 @opindex Wno-variadic-macros
5313 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5314 alternate syntax is used in ISO C99 mode. This is enabled by either
5315 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
5316 messages, use @option{-Wno-variadic-macros}.
5317
5318 @item -Wvarargs
5319 @opindex Wvarargs
5320 @opindex Wno-varargs
5321 Warn upon questionable usage of the macros used to handle variable
5322 arguments like @code{va_start}. This is default. To inhibit the
5323 warning messages, use @option{-Wno-varargs}.
5324
5325 @item -Wvector-operation-performance
5326 @opindex Wvector-operation-performance
5327 @opindex Wno-vector-operation-performance
5328 Warn if vector operation is not implemented via SIMD capabilities of the
5329 architecture. Mainly useful for the performance tuning.
5330 Vector operation can be implemented @code{piecewise}, which means that the
5331 scalar operation is performed on every vector element;
5332 @code{in parallel}, which means that the vector operation is implemented
5333 using scalars of wider type, which normally is more performance efficient;
5334 and @code{as a single scalar}, which means that vector fits into a
5335 scalar type.
5336
5337 @item -Wno-virtual-move-assign
5338 @opindex Wvirtual-move-assign
5339 @opindex Wno-virtual-move-assign
5340 Suppress warnings about inheriting from a virtual base with a
5341 non-trivial C++11 move assignment operator. This is dangerous because
5342 if the virtual base is reachable along more than one path, it is
5343 moved multiple times, which can mean both objects end up in the
5344 moved-from state. If the move assignment operator is written to avoid
5345 moving from a moved-from object, this warning can be disabled.
5346
5347 @item -Wvla
5348 @opindex Wvla
5349 @opindex Wno-vla
5350 Warn if variable length array is used in the code.
5351 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5352 the variable length array.
5353
5354 @item -Wvolatile-register-var
5355 @opindex Wvolatile-register-var
5356 @opindex Wno-volatile-register-var
5357 Warn if a register variable is declared volatile. The volatile
5358 modifier does not inhibit all optimizations that may eliminate reads
5359 and/or writes to register variables. This warning is enabled by
5360 @option{-Wall}.
5361
5362 @item -Wdisabled-optimization
5363 @opindex Wdisabled-optimization
5364 @opindex Wno-disabled-optimization
5365 Warn if a requested optimization pass is disabled. This warning does
5366 not generally indicate that there is anything wrong with your code; it
5367 merely indicates that GCC's optimizers are unable to handle the code
5368 effectively. Often, the problem is that your code is too big or too
5369 complex; GCC refuses to optimize programs when the optimization
5370 itself is likely to take inordinate amounts of time.
5371
5372 @item -Wpointer-sign @r{(C and Objective-C only)}
5373 @opindex Wpointer-sign
5374 @opindex Wno-pointer-sign
5375 Warn for pointer argument passing or assignment with different signedness.
5376 This option is only supported for C and Objective-C@. It is implied by
5377 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5378 @option{-Wno-pointer-sign}.
5379
5380 @item -Wstack-protector
5381 @opindex Wstack-protector
5382 @opindex Wno-stack-protector
5383 This option is only active when @option{-fstack-protector} is active. It
5384 warns about functions that are not protected against stack smashing.
5385
5386 @item -Woverlength-strings
5387 @opindex Woverlength-strings
5388 @opindex Wno-overlength-strings
5389 Warn about string constants that are longer than the ``minimum
5390 maximum'' length specified in the C standard. Modern compilers
5391 generally allow string constants that are much longer than the
5392 standard's minimum limit, but very portable programs should avoid
5393 using longer strings.
5394
5395 The limit applies @emph{after} string constant concatenation, and does
5396 not count the trailing NUL@. In C90, the limit was 509 characters; in
5397 C99, it was raised to 4095. C++98 does not specify a normative
5398 minimum maximum, so we do not diagnose overlength strings in C++@.
5399
5400 This option is implied by @option{-Wpedantic}, and can be disabled with
5401 @option{-Wno-overlength-strings}.
5402
5403 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5404 @opindex Wunsuffixed-float-constants
5405
5406 Issue a warning for any floating constant that does not have
5407 a suffix. When used together with @option{-Wsystem-headers} it
5408 warns about such constants in system header files. This can be useful
5409 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5410 from the decimal floating-point extension to C99.
5411
5412 @item -Wno-designated-init @r{(C and Objective-C only)}
5413 Suppress warnings when a positional initializer is used to initialize
5414 a structure that has been marked with the @code{designated_init}
5415 attribute.
5416
5417 @end table
5418
5419 @node Debugging Options
5420 @section Options for Debugging Your Program or GCC
5421 @cindex options, debugging
5422 @cindex debugging information options
5423
5424 GCC has various special options that are used for debugging
5425 either your program or GCC:
5426
5427 @table @gcctabopt
5428 @item -g
5429 @opindex g
5430 Produce debugging information in the operating system's native format
5431 (stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging
5432 information.
5433
5434 On most systems that use stabs format, @option{-g} enables use of extra
5435 debugging information that only GDB can use; this extra information
5436 makes debugging work better in GDB but probably makes other debuggers
5437 crash or
5438 refuse to read the program. If you want to control for certain whether
5439 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5440 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5441
5442 GCC allows you to use @option{-g} with
5443 @option{-O}. The shortcuts taken by optimized code may occasionally
5444 produce surprising results: some variables you declared may not exist
5445 at all; flow of control may briefly move where you did not expect it;
5446 some statements may not be executed because they compute constant
5447 results or their values are already at hand; some statements may
5448 execute in different places because they have been moved out of loops.
5449
5450 Nevertheless it proves possible to debug optimized output. This makes
5451 it reasonable to use the optimizer for programs that might have bugs.
5452
5453 The following options are useful when GCC is generated with the
5454 capability for more than one debugging format.
5455
5456 @item -gsplit-dwarf
5457 @opindex gsplit-dwarf
5458 Separate as much dwarf debugging information as possible into a
5459 separate output file with the extension .dwo. This option allows
5460 the build system to avoid linking files with debug information. To
5461 be useful, this option requires a debugger capable of reading .dwo
5462 files.
5463
5464 @item -ggdb
5465 @opindex ggdb
5466 Produce debugging information for use by GDB@. This means to use the
5467 most expressive format available (DWARF 2, stabs, or the native format
5468 if neither of those are supported), including GDB extensions if at all
5469 possible.
5470
5471 @item -gpubnames
5472 @opindex gpubnames
5473 Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5474
5475 @item -ggnu-pubnames
5476 @opindex ggnu-pubnames
5477 Generate .debug_pubnames and .debug_pubtypes sections in a format
5478 suitable for conversion into a GDB@ index. This option is only useful
5479 with a linker that can produce GDB@ index version 7.
5480
5481 @item -gstabs
5482 @opindex gstabs
5483 Produce debugging information in stabs format (if that is supported),
5484 without GDB extensions. This is the format used by DBX on most BSD
5485 systems. On MIPS, Alpha and System V Release 4 systems this option
5486 produces stabs debugging output that is not understood by DBX or SDB@.
5487 On System V Release 4 systems this option requires the GNU assembler.
5488
5489 @item -feliminate-unused-debug-symbols
5490 @opindex feliminate-unused-debug-symbols
5491 Produce debugging information in stabs format (if that is supported),
5492 for only symbols that are actually used.
5493
5494 @item -femit-class-debug-always
5495 @opindex femit-class-debug-always
5496 Instead of emitting debugging information for a C++ class in only one
5497 object file, emit it in all object files using the class. This option
5498 should be used only with debuggers that are unable to handle the way GCC
5499 normally emits debugging information for classes because using this
5500 option increases the size of debugging information by as much as a
5501 factor of two.
5502
5503 @item -fdebug-types-section
5504 @opindex fdebug-types-section
5505 @opindex fno-debug-types-section
5506 When using DWARF Version 4 or higher, type DIEs can be put into
5507 their own @code{.debug_types} section instead of making them part of the
5508 @code{.debug_info} section. It is more efficient to put them in a separate
5509 comdat sections since the linker can then remove duplicates.
5510 But not all DWARF consumers support @code{.debug_types} sections yet
5511 and on some objects @code{.debug_types} produces larger instead of smaller
5512 debugging information.
5513
5514 @item -gstabs+
5515 @opindex gstabs+
5516 Produce debugging information in stabs format (if that is supported),
5517 using GNU extensions understood only by the GNU debugger (GDB)@. The
5518 use of these extensions is likely to make other debuggers crash or
5519 refuse to read the program.
5520
5521 @item -gcoff
5522 @opindex gcoff
5523 Produce debugging information in COFF format (if that is supported).
5524 This is the format used by SDB on most System V systems prior to
5525 System V Release 4.
5526
5527 @item -gxcoff
5528 @opindex gxcoff
5529 Produce debugging information in XCOFF format (if that is supported).
5530 This is the format used by the DBX debugger on IBM RS/6000 systems.
5531
5532 @item -gxcoff+
5533 @opindex gxcoff+
5534 Produce debugging information in XCOFF format (if that is supported),
5535 using GNU extensions understood only by the GNU debugger (GDB)@. The
5536 use of these extensions is likely to make other debuggers crash or
5537 refuse to read the program, and may cause assemblers other than the GNU
5538 assembler (GAS) to fail with an error.
5539
5540 @item -gdwarf-@var{version}
5541 @opindex gdwarf-@var{version}
5542 Produce debugging information in DWARF format (if that is supported).
5543 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5544 for most targets is 4. DWARF Version 5 is only experimental.
5545
5546 Note that with DWARF Version 2, some ports require and always
5547 use some non-conflicting DWARF 3 extensions in the unwind tables.
5548
5549 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5550 for maximum benefit.
5551
5552 @item -grecord-gcc-switches
5553 @opindex grecord-gcc-switches
5554 This switch causes the command-line options used to invoke the
5555 compiler that may affect code generation to be appended to the
5556 DW_AT_producer attribute in DWARF debugging information. The options
5557 are concatenated with spaces separating them from each other and from
5558 the compiler version. See also @option{-frecord-gcc-switches} for another
5559 way of storing compiler options into the object file. This is the default.
5560
5561 @item -gno-record-gcc-switches
5562 @opindex gno-record-gcc-switches
5563 Disallow appending command-line options to the DW_AT_producer attribute
5564 in DWARF debugging information.
5565
5566 @item -gstrict-dwarf
5567 @opindex gstrict-dwarf
5568 Disallow using extensions of later DWARF standard version than selected
5569 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
5570 DWARF extensions from later standard versions is allowed.
5571
5572 @item -gno-strict-dwarf
5573 @opindex gno-strict-dwarf
5574 Allow using extensions of later DWARF standard version than selected with
5575 @option{-gdwarf-@var{version}}.
5576
5577 @item -gz@r{[}=@var{type}@r{]}
5578 @opindex gz
5579 Produce compressed debug sections in DWARF format, if that is supported.
5580 If @var{type} is not given, the default type depends on the capabilities
5581 of the assembler and linker used. @var{type} may be one of
5582 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5583 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5584 compression in traditional GNU format). If the linker doesn't support
5585 writing compressed debug sections, the option is rejected. Otherwise,
5586 if the assembler does not support them, @option{-gz} is silently ignored
5587 when producing object files.
5588
5589 @item -gvms
5590 @opindex gvms
5591 Produce debugging information in Alpha/VMS debug format (if that is
5592 supported). This is the format used by DEBUG on Alpha/VMS systems.
5593
5594 @item -g@var{level}
5595 @itemx -ggdb@var{level}
5596 @itemx -gstabs@var{level}
5597 @itemx -gcoff@var{level}
5598 @itemx -gxcoff@var{level}
5599 @itemx -gvms@var{level}
5600 Request debugging information and also use @var{level} to specify how
5601 much information. The default level is 2.
5602
5603 Level 0 produces no debug information at all. Thus, @option{-g0} negates
5604 @option{-g}.
5605
5606 Level 1 produces minimal information, enough for making backtraces in
5607 parts of the program that you don't plan to debug. This includes
5608 descriptions of functions and external variables, and line number
5609 tables, but no information about local variables.
5610
5611 Level 3 includes extra information, such as all the macro definitions
5612 present in the program. Some debuggers support macro expansion when
5613 you use @option{-g3}.
5614
5615 @option{-gdwarf-2} does not accept a concatenated debug level, because
5616 GCC used to support an option @option{-gdwarf} that meant to generate
5617 debug information in version 1 of the DWARF format (which is very
5618 different from version 2), and it would have been too confusing. That
5619 debug format is long obsolete, but the option cannot be changed now.
5620 Instead use an additional @option{-g@var{level}} option to change the
5621 debug level for DWARF.
5622
5623 @item -gtoggle
5624 @opindex gtoggle
5625 Turn off generation of debug info, if leaving out this option
5626 generates it, or turn it on at level 2 otherwise. The position of this
5627 argument in the command line does not matter; it takes effect after all
5628 other options are processed, and it does so only once, no matter how
5629 many times it is given. This is mainly intended to be used with
5630 @option{-fcompare-debug}.
5631
5632 @item -fsanitize=address
5633 @opindex fsanitize=address
5634 Enable AddressSanitizer, a fast memory error detector.
5635 Memory access instructions are instrumented to detect
5636 out-of-bounds and use-after-free bugs.
5637 See @uref{http://code.google.com/p/address-sanitizer/} for
5638 more details. The run-time behavior can be influenced using the
5639 @env{ASAN_OPTIONS} environment variable; see
5640 @url{https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags} for
5641 a list of supported options.
5642
5643 @item -fsanitize=kernel-address
5644 @opindex fsanitize=kernel-address
5645 Enable AddressSanitizer for Linux kernel.
5646 See @uref{http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel} for more details.
5647
5648 @item -fsanitize=thread
5649 @opindex fsanitize=thread
5650 Enable ThreadSanitizer, a fast data race detector.
5651 Memory access instructions are instrumented to detect
5652 data race bugs. See @uref{http://code.google.com/p/thread-sanitizer/} for more
5653 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5654 environment variable; see
5655 @url{https://code.google.com/p/thread-sanitizer/wiki/Flags} for a list of
5656 supported options.
5657
5658 @item -fsanitize=leak
5659 @opindex fsanitize=leak
5660 Enable LeakSanitizer, a memory leak detector.
5661 This option only matters for linking of executables and if neither
5662 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that
5663 case the executable is linked against a library that overrides @code{malloc}
5664 and other allocator functions. See
5665 @uref{https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer} for more
5666 details. The run-time behavior can be influenced using the
5667 @env{LSAN_OPTIONS} environment variable.
5668
5669 @item -fsanitize=undefined
5670 @opindex fsanitize=undefined
5671 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5672 Various computations are instrumented to detect undefined behavior
5673 at runtime. Current suboptions are:
5674
5675 @table @gcctabopt
5676
5677 @item -fsanitize=shift
5678 @opindex fsanitize=shift
5679 This option enables checking that the result of a shift operation is
5680 not undefined. Note that what exactly is considered undefined differs
5681 slightly between C and C++, as well as between ISO C90 and C99, etc.
5682
5683 @item -fsanitize=integer-divide-by-zero
5684 @opindex fsanitize=integer-divide-by-zero
5685 Detect integer division by zero as well as @code{INT_MIN / -1} division.
5686
5687 @item -fsanitize=unreachable
5688 @opindex fsanitize=unreachable
5689 With this option, the compiler turns the @code{__builtin_unreachable}
5690 call into a diagnostics message call instead. When reaching the
5691 @code{__builtin_unreachable} call, the behavior is undefined.
5692
5693 @item -fsanitize=vla-bound
5694 @opindex fsanitize=vla-bound
5695 This option instructs the compiler to check that the size of a variable
5696 length array is positive.
5697
5698 @item -fsanitize=null
5699 @opindex fsanitize=null
5700 This option enables pointer checking. Particularly, the application
5701 built with this option turned on will issue an error message when it
5702 tries to dereference a NULL pointer, or if a reference (possibly an
5703 rvalue reference) is bound to a NULL pointer, or if a method is invoked
5704 on an object pointed by a NULL pointer.
5705
5706 @item -fsanitize=return
5707 @opindex fsanitize=return
5708 This option enables return statement checking. Programs
5709 built with this option turned on will issue an error message
5710 when the end of a non-void function is reached without actually
5711 returning a value. This option works in C++ only.
5712
5713 @item -fsanitize=signed-integer-overflow
5714 @opindex fsanitize=signed-integer-overflow
5715 This option enables signed integer overflow checking. We check that
5716 the result of @code{+}, @code{*}, and both unary and binary @code{-}
5717 does not overflow in the signed arithmetics. Note, integer promotion
5718 rules must be taken into account. That is, the following is not an
5719 overflow:
5720 @smallexample
5721 signed char a = SCHAR_MAX;
5722 a++;
5723 @end smallexample
5724
5725 @item -fsanitize=bounds
5726 @opindex fsanitize=bounds
5727 This option enables instrumentation of array bounds. Various out of bounds
5728 accesses are detected. Flexible array members, flexible array member-like
5729 arrays, and initializers of variables with static storage are not instrumented.
5730
5731 @item -fsanitize=alignment
5732 @opindex fsanitize=alignment
5733
5734 This option enables checking of alignment of pointers when they are
5735 dereferenced, or when a reference is bound to insufficiently aligned target,
5736 or when a method or constructor is invoked on insufficiently aligned object.
5737
5738 @item -fsanitize=object-size
5739 @opindex fsanitize=object-size
5740 This option enables instrumentation of memory references using the
5741 @code{__builtin_object_size} function. Various out of bounds pointer
5742 accesses are detected.
5743
5744 @item -fsanitize=float-divide-by-zero
5745 @opindex fsanitize=float-divide-by-zero
5746 Detect floating-point division by zero. Unlike other similar options,
5747 @option{-fsanitize=float-divide-by-zero} is not enabled by
5748 @option{-fsanitize=undefined}, since floating-point division by zero can
5749 be a legitimate way of obtaining infinities and NaNs.
5750
5751 @item -fsanitize=float-cast-overflow
5752 @opindex fsanitize=float-cast-overflow
5753 This option enables floating-point type to integer conversion checking.
5754 We check that the result of the conversion does not overflow.
5755 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
5756 not enabled by @option{-fsanitize=undefined}.
5757 This option does not work well with @code{FE_INVALID} exceptions enabled.
5758
5759 @item -fsanitize=nonnull-attribute
5760 @opindex fsanitize=nonnull-attribute
5761
5762 This option enables instrumentation of calls, checking whether null values
5763 are not passed to arguments marked as requiring a non-null value by the
5764 @code{nonnull} function attribute.
5765
5766 @item -fsanitize=returns-nonnull-attribute
5767 @opindex fsanitize=returns-nonnull-attribute
5768
5769 This option enables instrumentation of return statements in functions
5770 marked with @code{returns_nonnull} function attribute, to detect returning
5771 of null values from such functions.
5772
5773 @item -fsanitize=bool
5774 @opindex fsanitize=bool
5775
5776 This option enables instrumentation of loads from bool. If a value other
5777 than 0/1 is loaded, a run-time error is issued.
5778
5779 @item -fsanitize=enum
5780 @opindex fsanitize=enum
5781
5782 This option enables instrumentation of loads from an enum type. If
5783 a value outside the range of values for the enum type is loaded,
5784 a run-time error is issued.
5785
5786 @item -fsanitize=vptr
5787 @opindex fsanitize=vptr
5788
5789 This option enables instrumentation of C++ member function calls, member
5790 accesses and some conversions between pointers to base and derived classes,
5791 to verify the referenced object has the correct dynamic type.
5792
5793 @end table
5794
5795 While @option{-ftrapv} causes traps for signed overflows to be emitted,
5796 @option{-fsanitize=undefined} gives a diagnostic message.
5797 This currently works only for the C family of languages.
5798
5799 @item -fno-sanitize=all
5800 @opindex fno-sanitize=all
5801
5802 This option disables all previously enabled sanitizers.
5803 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
5804 together.
5805
5806 @item -fasan-shadow-offset=@var{number}
5807 @opindex fasan-shadow-offset
5808 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
5809 It is useful for experimenting with different shadow memory layouts in
5810 Kernel AddressSanitizer.
5811
5812 @item -fsanitize-sections=@var{s1,s2,...}
5813 @opindex fsanitize-sections
5814 Sanitize global variables in selected user-defined sections. @var{si} may
5815 contain wildcards.
5816
5817 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
5818 @opindex fsanitize-recover
5819 @opindex fno-sanitize-recover
5820 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
5821 mentioned in comma-separated list of @var{opts}. Enabling this option
5822 for a sanitizer component causes it to attempt to continue
5823 running the program as if no error happened. This means multiple
5824 runtime errors can be reported in a single program run, and the exit
5825 code of the program may indicate success even when errors
5826 have been reported. The @option{-fno-sanitize-recover=} option
5827 can be used to alter
5828 this behavior: only the first detected error is reported
5829 and program then exits with a non-zero exit code.
5830
5831 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
5832 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
5833 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero} and
5834 @option{-fsanitize=kernel-address}. For these sanitizers error recovery is turned on by default.
5835 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
5836 accepted, the former enables recovery for all sanitizers that support it,
5837 the latter disables recovery for all sanitizers that support it.
5838
5839 Syntax without explicit @var{opts} parameter is deprecated. It is equivalent to
5840 @smallexample
5841 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5842 @end smallexample
5843 @noindent
5844 Similarly @option{-fno-sanitize-recover} is equivalent to
5845 @smallexample
5846 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5847 @end smallexample
5848
5849 @item -fsanitize-undefined-trap-on-error
5850 @opindex fsanitize-undefined-trap-on-error
5851 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
5852 report undefined behavior using @code{__builtin_trap} rather than
5853 a @code{libubsan} library routine. The advantage of this is that the
5854 @code{libubsan} library is not needed and is not linked in, so this
5855 is usable even in freestanding environments.
5856
5857 @item -fcheck-pointer-bounds
5858 @opindex fcheck-pointer-bounds
5859 @opindex fno-check-pointer-bounds
5860 @cindex Pointer Bounds Checker options
5861 Enable Pointer Bounds Checker instrumentation. Each memory reference
5862 is instrumented with checks of the pointer used for memory access against
5863 bounds associated with that pointer.
5864
5865 Currently there
5866 is only an implementation for Intel MPX available, thus x86 target
5867 and @option{-mmpx} are required to enable this feature.
5868 MPX-based instrumentation requires
5869 a runtime library to enable MPX in hardware and handle bounds
5870 violation signals. By default when @option{-fcheck-pointer-bounds}
5871 and @option{-mmpx} options are used to link a program, the GCC driver
5872 links against the @file{libmpx} runtime library and @file{libmpxwrappers}
5873 library. It also passes '-z bndplt' to a linker in case it supports this
5874 option (which is checked on libmpx configuration). Note that old versions
5875 of linker may ignore option. Gold linker doesn't support '-z bndplt'
5876 option. With no '-z bndplt' support in linker all calls to dynamic libraries
5877 lose passed bounds reducing overall protection level. It's highly
5878 recommended to use linker with '-z bndplt' support. In case such linker
5879 is not available it is adviced to always use @option{-static-libmpxwrappers}
5880 for better protection level or use @option{-static} to completely avoid
5881 external calls to dynamic libraries. MPX-based instrumentation
5882 may be used for debugging and also may be included in production code
5883 to increase program security. Depending on usage, you may
5884 have different requirements for the runtime library. The current version
5885 of the MPX runtime library is more oriented for use as a debugging
5886 tool. MPX runtime library usage implies @option{-lpthread}. See
5887 also @option{-static-libmpx}. The runtime library behavior can be
5888 influenced using various @env{CHKP_RT_*} environment variables. See
5889 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
5890 for more details.
5891
5892 Generated instrumentation may be controlled by various
5893 @option{-fchkp-*} options and by the @code{bnd_variable_size}
5894 structure field attribute (@pxref{Type Attributes}) and
5895 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
5896 (@pxref{Function Attributes}). GCC also provides a number of built-in
5897 functions for controlling the Pointer Bounds Checker. @xref{Pointer
5898 Bounds Checker builtins}, for more information.
5899
5900 @item -fchkp-check-incomplete-type
5901 @opindex fchkp-check-incomplete-type
5902 @opindex fno-chkp-check-incomplete-type
5903 Generate pointer bounds checks for variables with incomplete type.
5904 Enabled by default.
5905
5906 @item -fchkp-narrow-bounds
5907 @opindex fchkp-narrow-bounds
5908 @opindex fno-chkp-narrow-bounds
5909 Controls bounds used by Pointer Bounds Checker for pointers to object
5910 fields. If narrowing is enabled then field bounds are used. Otherwise
5911 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
5912 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
5913
5914 @item -fchkp-first-field-has-own-bounds
5915 @opindex fchkp-first-field-has-own-bounds
5916 @opindex fno-chkp-first-field-has-own-bounds
5917 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
5918 first field in the structure. By default a pointer to the first field has
5919 the same bounds as a pointer to the whole structure.
5920
5921 @item -fchkp-narrow-to-innermost-array
5922 @opindex fchkp-narrow-to-innermost-array
5923 @opindex fno-chkp-narrow-to-innermost-array
5924 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
5925 case of nested static array access. By default this option is disabled and
5926 bounds of the outermost array are used.
5927
5928 @item -fchkp-optimize
5929 @opindex fchkp-optimize
5930 @opindex fno-chkp-optimize
5931 Enables Pointer Bounds Checker optimizations. Enabled by default at
5932 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
5933
5934 @item -fchkp-use-fast-string-functions
5935 @opindex fchkp-use-fast-string-functions
5936 @opindex fno-chkp-use-fast-string-functions
5937 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
5938 by Pointer Bounds Checker. Disabled by default.
5939
5940 @item -fchkp-use-nochk-string-functions
5941 @opindex fchkp-use-nochk-string-functions
5942 @opindex fno-chkp-use-nochk-string-functions
5943 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
5944 by Pointer Bounds Checker. Disabled by default.
5945
5946 @item -fchkp-use-static-bounds
5947 @opindex fchkp-use-static-bounds
5948 @opindex fno-chkp-use-static-bounds
5949 Allow Pointer Bounds Checker to generate static bounds holding
5950 bounds of static variables. Enabled by default.
5951
5952 @item -fchkp-use-static-const-bounds
5953 @opindex fchkp-use-static-const-bounds
5954 @opindex fno-chkp-use-static-const-bounds
5955 Use statically-initialized bounds for constant bounds instead of
5956 generating them each time they are required. By default enabled when
5957 @option{-fchkp-use-static-bounds} is enabled.
5958
5959 @item -fchkp-treat-zero-dynamic-size-as-infinite
5960 @opindex fchkp-treat-zero-dynamic-size-as-infinite
5961 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
5962 With this option, objects with incomplete type whose
5963 dynamically-obtained size is zero are treated as having infinite size
5964 instead by Pointer Bounds
5965 Checker. This option may be helpful if a program is linked with a library
5966 missing size information for some symbols. Disabled by default.
5967
5968 @item -fchkp-check-read
5969 @opindex fchkp-check-read
5970 @opindex fno-chkp-check-read
5971 Instructs Pointer Bounds Checker to generate checks for all read
5972 accesses to memory. Enabled by default.
5973
5974 @item -fchkp-check-write
5975 @opindex fchkp-check-write
5976 @opindex fno-chkp-check-write
5977 Instructs Pointer Bounds Checker to generate checks for all write
5978 accesses to memory. Enabled by default.
5979
5980 @item -fchkp-store-bounds
5981 @opindex fchkp-store-bounds
5982 @opindex fno-chkp-store-bounds
5983 Instructs Pointer Bounds Checker to generate bounds stores for
5984 pointer writes. Enabled by default.
5985
5986 @item -fchkp-instrument-calls
5987 @opindex fchkp-instrument-calls
5988 @opindex fno-chkp-instrument-calls
5989 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
5990 Enabled by default.
5991
5992 @item -fchkp-instrument-marked-only
5993 @opindex fchkp-instrument-marked-only
5994 @opindex fno-chkp-instrument-marked-only
5995 Instructs Pointer Bounds Checker to instrument only functions
5996 marked with the @code{bnd_instrument} attribute
5997 (@pxref{Function Attributes}). Disabled by default.
5998
5999 @item -fchkp-use-wrappers
6000 @opindex fchkp-use-wrappers
6001 @opindex fno-chkp-use-wrappers
6002 Allows Pointer Bounds Checker to replace calls to built-in functions
6003 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
6004 is used to link a program, the GCC driver automatically links
6005 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
6006 Enabled by default.
6007
6008 @item -fdump-final-insns@r{[}=@var{file}@r{]}
6009 @opindex fdump-final-insns
6010 Dump the final internal representation (RTL) to @var{file}. If the
6011 optional argument is omitted (or if @var{file} is @code{.}), the name
6012 of the dump file is determined by appending @code{.gkd} to the
6013 compilation output file name.
6014
6015 @item -fcompare-debug@r{[}=@var{opts}@r{]}
6016 @opindex fcompare-debug
6017 @opindex fno-compare-debug
6018 If no error occurs during compilation, run the compiler a second time,
6019 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6020 passed to the second compilation. Dump the final internal
6021 representation in both compilations, and print an error if they differ.
6022
6023 If the equal sign is omitted, the default @option{-gtoggle} is used.
6024
6025 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6026 and nonzero, implicitly enables @option{-fcompare-debug}. If
6027 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6028 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6029 is used.
6030
6031 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
6032 is equivalent to @option{-fno-compare-debug}, which disables the dumping
6033 of the final representation and the second compilation, preventing even
6034 @env{GCC_COMPARE_DEBUG} from taking effect.
6035
6036 To verify full coverage during @option{-fcompare-debug} testing, set
6037 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6038 which GCC rejects as an invalid option in any actual compilation
6039 (rather than preprocessing, assembly or linking). To get just a
6040 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6041 not overridden} will do.
6042
6043 @item -fcompare-debug-second
6044 @opindex fcompare-debug-second
6045 This option is implicitly passed to the compiler for the second
6046 compilation requested by @option{-fcompare-debug}, along with options to
6047 silence warnings, and omitting other options that would cause
6048 side-effect compiler outputs to files or to the standard output. Dump
6049 files and preserved temporary files are renamed so as to contain the
6050 @code{.gk} additional extension during the second compilation, to avoid
6051 overwriting those generated by the first.
6052
6053 When this option is passed to the compiler driver, it causes the
6054 @emph{first} compilation to be skipped, which makes it useful for little
6055 other than debugging the compiler proper.
6056
6057 @item -feliminate-dwarf2-dups
6058 @opindex feliminate-dwarf2-dups
6059 Compress DWARF 2 debugging information by eliminating duplicated
6060 information about each symbol. This option only makes sense when
6061 generating DWARF 2 debugging information with @option{-gdwarf-2}.
6062
6063 @item -femit-struct-debug-baseonly
6064 @opindex femit-struct-debug-baseonly
6065 Emit debug information for struct-like types
6066 only when the base name of the compilation source file
6067 matches the base name of file in which the struct is defined.
6068
6069 This option substantially reduces the size of debugging information,
6070 but at significant potential loss in type information to the debugger.
6071 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6072 See @option{-femit-struct-debug-detailed} for more detailed control.
6073
6074 This option works only with DWARF 2.
6075
6076 @item -femit-struct-debug-reduced
6077 @opindex femit-struct-debug-reduced
6078 Emit debug information for struct-like types
6079 only when the base name of the compilation source file
6080 matches the base name of file in which the type is defined,
6081 unless the struct is a template or defined in a system header.
6082
6083 This option significantly reduces the size of debugging information,
6084 with some potential loss in type information to the debugger.
6085 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6086 See @option{-femit-struct-debug-detailed} for more detailed control.
6087
6088 This option works only with DWARF 2.
6089
6090 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6091 @opindex femit-struct-debug-detailed
6092 Specify the struct-like types
6093 for which the compiler generates debug information.
6094 The intent is to reduce duplicate struct debug information
6095 between different object files within the same program.
6096
6097 This option is a detailed version of
6098 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6099 which serves for most needs.
6100
6101 A specification has the syntax@*
6102 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6103
6104 The optional first word limits the specification to
6105 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6106 A struct type is used directly when it is the type of a variable, member.
6107 Indirect uses arise through pointers to structs.
6108 That is, when use of an incomplete struct is valid, the use is indirect.
6109 An example is
6110 @samp{struct one direct; struct two * indirect;}.
6111
6112 The optional second word limits the specification to
6113 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6114 Generic structs are a bit complicated to explain.
6115 For C++, these are non-explicit specializations of template classes,
6116 or non-template classes within the above.
6117 Other programming languages have generics,
6118 but @option{-femit-struct-debug-detailed} does not yet implement them.
6119
6120 The third word specifies the source files for those
6121 structs for which the compiler should emit debug information.
6122 The values @samp{none} and @samp{any} have the normal meaning.
6123 The value @samp{base} means that
6124 the base of name of the file in which the type declaration appears
6125 must match the base of the name of the main compilation file.
6126 In practice, this means that when compiling @file{foo.c}, debug information
6127 is generated for types declared in that file and @file{foo.h},
6128 but not other header files.
6129 The value @samp{sys} means those types satisfying @samp{base}
6130 or declared in system or compiler headers.
6131
6132 You may need to experiment to determine the best settings for your application.
6133
6134 The default is @option{-femit-struct-debug-detailed=all}.
6135
6136 This option works only with DWARF 2.
6137
6138 @item -fno-merge-debug-strings
6139 @opindex fmerge-debug-strings
6140 @opindex fno-merge-debug-strings
6141 Direct the linker to not merge together strings in the debugging
6142 information that are identical in different object files. Merging is
6143 not supported by all assemblers or linkers. Merging decreases the size
6144 of the debug information in the output file at the cost of increasing
6145 link processing time. Merging is enabled by default.
6146
6147 @item -fdebug-prefix-map=@var{old}=@var{new}
6148 @opindex fdebug-prefix-map
6149 When compiling files in directory @file{@var{old}}, record debugging
6150 information describing them as in @file{@var{new}} instead.
6151
6152 @item -fno-dwarf2-cfi-asm
6153 @opindex fdwarf2-cfi-asm
6154 @opindex fno-dwarf2-cfi-asm
6155 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6156 instead of using GAS @code{.cfi_*} directives.
6157
6158 @cindex @command{prof}
6159 @item -p
6160 @opindex p
6161 Generate extra code to write profile information suitable for the
6162 analysis program @command{prof}. You must use this option when compiling
6163 the source files you want data about, and you must also use it when
6164 linking.
6165
6166 @cindex @command{gprof}
6167 @item -pg
6168 @opindex pg
6169 Generate extra code to write profile information suitable for the
6170 analysis program @command{gprof}. You must use this option when compiling
6171 the source files you want data about, and you must also use it when
6172 linking.
6173
6174 @item -Q
6175 @opindex Q
6176 Makes the compiler print out each function name as it is compiled, and
6177 print some statistics about each pass when it finishes.
6178
6179 @item -ftime-report
6180 @opindex ftime-report
6181 Makes the compiler print some statistics about the time consumed by each
6182 pass when it finishes.
6183
6184 @item -fmem-report
6185 @opindex fmem-report
6186 Makes the compiler print some statistics about permanent memory
6187 allocation when it finishes.
6188
6189 @item -fmem-report-wpa
6190 @opindex fmem-report-wpa
6191 Makes the compiler print some statistics about permanent memory
6192 allocation for the WPA phase only.
6193
6194 @item -fpre-ipa-mem-report
6195 @opindex fpre-ipa-mem-report
6196 @item -fpost-ipa-mem-report
6197 @opindex fpost-ipa-mem-report
6198 Makes the compiler print some statistics about permanent memory
6199 allocation before or after interprocedural optimization.
6200
6201 @item -fprofile-report
6202 @opindex fprofile-report
6203 Makes the compiler print some statistics about consistency of the
6204 (estimated) profile and effect of individual passes.
6205
6206 @item -fstack-usage
6207 @opindex fstack-usage
6208 Makes the compiler output stack usage information for the program, on a
6209 per-function basis. The filename for the dump is made by appending
6210 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
6211 the output file, if explicitly specified and it is not an executable,
6212 otherwise it is the basename of the source file. An entry is made up
6213 of three fields:
6214
6215 @itemize
6216 @item
6217 The name of the function.
6218 @item
6219 A number of bytes.
6220 @item
6221 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6222 @end itemize
6223
6224 The qualifier @code{static} means that the function manipulates the stack
6225 statically: a fixed number of bytes are allocated for the frame on function
6226 entry and released on function exit; no stack adjustments are otherwise made
6227 in the function. The second field is this fixed number of bytes.
6228
6229 The qualifier @code{dynamic} means that the function manipulates the stack
6230 dynamically: in addition to the static allocation described above, stack
6231 adjustments are made in the body of the function, for example to push/pop
6232 arguments around function calls. If the qualifier @code{bounded} is also
6233 present, the amount of these adjustments is bounded at compile time and
6234 the second field is an upper bound of the total amount of stack used by
6235 the function. If it is not present, the amount of these adjustments is
6236 not bounded at compile time and the second field only represents the
6237 bounded part.
6238
6239 @item -fprofile-arcs
6240 @opindex fprofile-arcs
6241 Add code so that program flow @dfn{arcs} are instrumented. During
6242 execution the program records how many times each branch and call is
6243 executed and how many times it is taken or returns. When the compiled
6244 program exits it saves this data to a file called
6245 @file{@var{auxname}.gcda} for each source file. The data may be used for
6246 profile-directed optimizations (@option{-fbranch-probabilities}), or for
6247 test coverage analysis (@option{-ftest-coverage}). Each object file's
6248 @var{auxname} is generated from the name of the output file, if
6249 explicitly specified and it is not the final executable, otherwise it is
6250 the basename of the source file. In both cases any suffix is removed
6251 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6252 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6253 @xref{Cross-profiling}.
6254
6255 @cindex @command{gcov}
6256 @item --coverage
6257 @opindex coverage
6258
6259 This option is used to compile and link code instrumented for coverage
6260 analysis. The option is a synonym for @option{-fprofile-arcs}
6261 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6262 linking). See the documentation for those options for more details.
6263
6264 @itemize
6265
6266 @item
6267 Compile the source files with @option{-fprofile-arcs} plus optimization
6268 and code generation options. For test coverage analysis, use the
6269 additional @option{-ftest-coverage} option. You do not need to profile
6270 every source file in a program.
6271
6272 @item
6273 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6274 (the latter implies the former).
6275
6276 @item
6277 Run the program on a representative workload to generate the arc profile
6278 information. This may be repeated any number of times. You can run
6279 concurrent instances of your program, and provided that the file system
6280 supports locking, the data files will be correctly updated. Also
6281 @code{fork} calls are detected and correctly handled (double counting
6282 will not happen).
6283
6284 @item
6285 For profile-directed optimizations, compile the source files again with
6286 the same optimization and code generation options plus
6287 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6288 Control Optimization}).
6289
6290 @item
6291 For test coverage analysis, use @command{gcov} to produce human readable
6292 information from the @file{.gcno} and @file{.gcda} files. Refer to the
6293 @command{gcov} documentation for further information.
6294
6295 @end itemize
6296
6297 With @option{-fprofile-arcs}, for each function of your program GCC
6298 creates a program flow graph, then finds a spanning tree for the graph.
6299 Only arcs that are not on the spanning tree have to be instrumented: the
6300 compiler adds code to count the number of times that these arcs are
6301 executed. When an arc is the only exit or only entrance to a block, the
6302 instrumentation code can be added to the block; otherwise, a new basic
6303 block must be created to hold the instrumentation code.
6304
6305 @need 2000
6306 @item -ftest-coverage
6307 @opindex ftest-coverage
6308 Produce a notes file that the @command{gcov} code-coverage utility
6309 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6310 show program coverage. Each source file's note file is called
6311 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
6312 above for a description of @var{auxname} and instructions on how to
6313 generate test coverage data. Coverage data matches the source files
6314 more closely if you do not optimize.
6315
6316 @item -fdbg-cnt-list
6317 @opindex fdbg-cnt-list
6318 Print the name and the counter upper bound for all debug counters.
6319
6320
6321 @item -fdbg-cnt=@var{counter-value-list}
6322 @opindex fdbg-cnt
6323 Set the internal debug counter upper bound. @var{counter-value-list}
6324 is a comma-separated list of @var{name}:@var{value} pairs
6325 which sets the upper bound of each debug counter @var{name} to @var{value}.
6326 All debug counters have the initial upper bound of @code{UINT_MAX};
6327 thus @code{dbg_cnt} returns true always unless the upper bound
6328 is set by this option.
6329 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6330 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
6331
6332 @item -fenable-@var{kind}-@var{pass}
6333 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6334 @opindex fdisable-
6335 @opindex fenable-
6336
6337 This is a set of options that are used to explicitly disable/enable
6338 optimization passes. These options are intended for use for debugging GCC.
6339 Compiler users should use regular options for enabling/disabling
6340 passes instead.
6341
6342 @table @gcctabopt
6343
6344 @item -fdisable-ipa-@var{pass}
6345 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6346 statically invoked in the compiler multiple times, the pass name should be
6347 appended with a sequential number starting from 1.
6348
6349 @item -fdisable-rtl-@var{pass}
6350 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
6351 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
6352 statically invoked in the compiler multiple times, the pass name should be
6353 appended with a sequential number starting from 1. @var{range-list} is a
6354 comma-separated list of function ranges or assembler names. Each range is a number
6355 pair separated by a colon. The range is inclusive in both ends. If the range
6356 is trivial, the number pair can be simplified as a single number. If the
6357 function's call graph node's @var{uid} falls within one of the specified ranges,
6358 the @var{pass} is disabled for that function. The @var{uid} is shown in the
6359 function header of a dump file, and the pass names can be dumped by using
6360 option @option{-fdump-passes}.
6361
6362 @item -fdisable-tree-@var{pass}
6363 @itemx -fdisable-tree-@var{pass}=@var{range-list}
6364 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
6365 option arguments.
6366
6367 @item -fenable-ipa-@var{pass}
6368 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6369 statically invoked in the compiler multiple times, the pass name should be
6370 appended with a sequential number starting from 1.
6371
6372 @item -fenable-rtl-@var{pass}
6373 @itemx -fenable-rtl-@var{pass}=@var{range-list}
6374 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
6375 description and examples.
6376
6377 @item -fenable-tree-@var{pass}
6378 @itemx -fenable-tree-@var{pass}=@var{range-list}
6379 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
6380 of option arguments.
6381
6382 @end table
6383
6384 Here are some examples showing uses of these options.
6385
6386 @smallexample
6387
6388 # disable ccp1 for all functions
6389 -fdisable-tree-ccp1
6390 # disable complete unroll for function whose cgraph node uid is 1
6391 -fenable-tree-cunroll=1
6392 # disable gcse2 for functions at the following ranges [1,1],
6393 # [300,400], and [400,1000]
6394 # disable gcse2 for functions foo and foo2
6395 -fdisable-rtl-gcse2=foo,foo2
6396 # disable early inlining
6397 -fdisable-tree-einline
6398 # disable ipa inlining
6399 -fdisable-ipa-inline
6400 # enable tree full unroll
6401 -fenable-tree-unroll
6402
6403 @end smallexample
6404
6405 @item -d@var{letters}
6406 @itemx -fdump-rtl-@var{pass}
6407 @itemx -fdump-rtl-@var{pass}=@var{filename}
6408 @opindex d
6409 @opindex fdump-rtl-@var{pass}
6410 Says to make debugging dumps during compilation at times specified by
6411 @var{letters}. This is used for debugging the RTL-based passes of the
6412 compiler. The file names for most of the dumps are made by appending
6413 a pass number and a word to the @var{dumpname}, and the files are
6414 created in the directory of the output file. In case of
6415 @option{=@var{filename}} option, the dump is output on the given file
6416 instead of the pass numbered dump files. Note that the pass number is
6417 computed statically as passes get registered into the pass manager.
6418 Thus the numbering is not related to the dynamic order of execution of
6419 passes. In particular, a pass installed by a plugin could have a
6420 number over 200 even if it executed quite early. @var{dumpname} is
6421 generated from the name of the output file, if explicitly specified
6422 and it is not an executable, otherwise it is the basename of the
6423 source file. These switches may have different effects when
6424 @option{-E} is used for preprocessing.
6425
6426 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6427 @option{-d} option @var{letters}. Here are the possible
6428 letters for use in @var{pass} and @var{letters}, and their meanings:
6429
6430 @table @gcctabopt
6431
6432 @item -fdump-rtl-alignments
6433 @opindex fdump-rtl-alignments
6434 Dump after branch alignments have been computed.
6435
6436 @item -fdump-rtl-asmcons
6437 @opindex fdump-rtl-asmcons
6438 Dump after fixing rtl statements that have unsatisfied in/out constraints.
6439
6440 @item -fdump-rtl-auto_inc_dec
6441 @opindex fdump-rtl-auto_inc_dec
6442 Dump after auto-inc-dec discovery. This pass is only run on
6443 architectures that have auto inc or auto dec instructions.
6444
6445 @item -fdump-rtl-barriers
6446 @opindex fdump-rtl-barriers
6447 Dump after cleaning up the barrier instructions.
6448
6449 @item -fdump-rtl-bbpart
6450 @opindex fdump-rtl-bbpart
6451 Dump after partitioning hot and cold basic blocks.
6452
6453 @item -fdump-rtl-bbro
6454 @opindex fdump-rtl-bbro
6455 Dump after block reordering.
6456
6457 @item -fdump-rtl-btl1
6458 @itemx -fdump-rtl-btl2
6459 @opindex fdump-rtl-btl2
6460 @opindex fdump-rtl-btl2
6461 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6462 after the two branch
6463 target load optimization passes.
6464
6465 @item -fdump-rtl-bypass
6466 @opindex fdump-rtl-bypass
6467 Dump after jump bypassing and control flow optimizations.
6468
6469 @item -fdump-rtl-combine
6470 @opindex fdump-rtl-combine
6471 Dump after the RTL instruction combination pass.
6472
6473 @item -fdump-rtl-compgotos
6474 @opindex fdump-rtl-compgotos
6475 Dump after duplicating the computed gotos.
6476
6477 @item -fdump-rtl-ce1
6478 @itemx -fdump-rtl-ce2
6479 @itemx -fdump-rtl-ce3
6480 @opindex fdump-rtl-ce1
6481 @opindex fdump-rtl-ce2
6482 @opindex fdump-rtl-ce3
6483 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6484 @option{-fdump-rtl-ce3} enable dumping after the three
6485 if conversion passes.
6486
6487 @item -fdump-rtl-cprop_hardreg
6488 @opindex fdump-rtl-cprop_hardreg
6489 Dump after hard register copy propagation.
6490
6491 @item -fdump-rtl-csa
6492 @opindex fdump-rtl-csa
6493 Dump after combining stack adjustments.
6494
6495 @item -fdump-rtl-cse1
6496 @itemx -fdump-rtl-cse2
6497 @opindex fdump-rtl-cse1
6498 @opindex fdump-rtl-cse2
6499 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6500 the two common subexpression elimination passes.
6501
6502 @item -fdump-rtl-dce
6503 @opindex fdump-rtl-dce
6504 Dump after the standalone dead code elimination passes.
6505
6506 @item -fdump-rtl-dbr
6507 @opindex fdump-rtl-dbr
6508 Dump after delayed branch scheduling.
6509
6510 @item -fdump-rtl-dce1
6511 @itemx -fdump-rtl-dce2
6512 @opindex fdump-rtl-dce1
6513 @opindex fdump-rtl-dce2
6514 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6515 the two dead store elimination passes.
6516
6517 @item -fdump-rtl-eh
6518 @opindex fdump-rtl-eh
6519 Dump after finalization of EH handling code.
6520
6521 @item -fdump-rtl-eh_ranges
6522 @opindex fdump-rtl-eh_ranges
6523 Dump after conversion of EH handling range regions.
6524
6525 @item -fdump-rtl-expand
6526 @opindex fdump-rtl-expand
6527 Dump after RTL generation.
6528
6529 @item -fdump-rtl-fwprop1
6530 @itemx -fdump-rtl-fwprop2
6531 @opindex fdump-rtl-fwprop1
6532 @opindex fdump-rtl-fwprop2
6533 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6534 dumping after the two forward propagation passes.
6535
6536 @item -fdump-rtl-gcse1
6537 @itemx -fdump-rtl-gcse2
6538 @opindex fdump-rtl-gcse1
6539 @opindex fdump-rtl-gcse2
6540 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6541 after global common subexpression elimination.
6542
6543 @item -fdump-rtl-init-regs
6544 @opindex fdump-rtl-init-regs
6545 Dump after the initialization of the registers.
6546
6547 @item -fdump-rtl-initvals
6548 @opindex fdump-rtl-initvals
6549 Dump after the computation of the initial value sets.
6550
6551 @item -fdump-rtl-into_cfglayout
6552 @opindex fdump-rtl-into_cfglayout
6553 Dump after converting to cfglayout mode.
6554
6555 @item -fdump-rtl-ira
6556 @opindex fdump-rtl-ira
6557 Dump after iterated register allocation.
6558
6559 @item -fdump-rtl-jump
6560 @opindex fdump-rtl-jump
6561 Dump after the second jump optimization.
6562
6563 @item -fdump-rtl-loop2
6564 @opindex fdump-rtl-loop2
6565 @option{-fdump-rtl-loop2} enables dumping after the rtl
6566 loop optimization passes.
6567
6568 @item -fdump-rtl-mach
6569 @opindex fdump-rtl-mach
6570 Dump after performing the machine dependent reorganization pass, if that
6571 pass exists.
6572
6573 @item -fdump-rtl-mode_sw
6574 @opindex fdump-rtl-mode_sw
6575 Dump after removing redundant mode switches.
6576
6577 @item -fdump-rtl-rnreg
6578 @opindex fdump-rtl-rnreg
6579 Dump after register renumbering.
6580
6581 @item -fdump-rtl-outof_cfglayout
6582 @opindex fdump-rtl-outof_cfglayout
6583 Dump after converting from cfglayout mode.
6584
6585 @item -fdump-rtl-peephole2
6586 @opindex fdump-rtl-peephole2
6587 Dump after the peephole pass.
6588
6589 @item -fdump-rtl-postreload
6590 @opindex fdump-rtl-postreload
6591 Dump after post-reload optimizations.
6592
6593 @item -fdump-rtl-pro_and_epilogue
6594 @opindex fdump-rtl-pro_and_epilogue
6595 Dump after generating the function prologues and epilogues.
6596
6597 @item -fdump-rtl-sched1
6598 @itemx -fdump-rtl-sched2
6599 @opindex fdump-rtl-sched1
6600 @opindex fdump-rtl-sched2
6601 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6602 after the basic block scheduling passes.
6603
6604 @item -fdump-rtl-ree
6605 @opindex fdump-rtl-ree
6606 Dump after sign/zero extension elimination.
6607
6608 @item -fdump-rtl-seqabstr
6609 @opindex fdump-rtl-seqabstr
6610 Dump after common sequence discovery.
6611
6612 @item -fdump-rtl-shorten
6613 @opindex fdump-rtl-shorten
6614 Dump after shortening branches.
6615
6616 @item -fdump-rtl-sibling
6617 @opindex fdump-rtl-sibling
6618 Dump after sibling call optimizations.
6619
6620 @item -fdump-rtl-split1
6621 @itemx -fdump-rtl-split2
6622 @itemx -fdump-rtl-split3
6623 @itemx -fdump-rtl-split4
6624 @itemx -fdump-rtl-split5
6625 @opindex fdump-rtl-split1
6626 @opindex fdump-rtl-split2
6627 @opindex fdump-rtl-split3
6628 @opindex fdump-rtl-split4
6629 @opindex fdump-rtl-split5
6630 These options enable dumping after five rounds of
6631 instruction splitting.
6632
6633 @item -fdump-rtl-sms
6634 @opindex fdump-rtl-sms
6635 Dump after modulo scheduling. This pass is only run on some
6636 architectures.
6637
6638 @item -fdump-rtl-stack
6639 @opindex fdump-rtl-stack
6640 Dump after conversion from GCC's ``flat register file'' registers to the
6641 x87's stack-like registers. This pass is only run on x86 variants.
6642
6643 @item -fdump-rtl-subreg1
6644 @itemx -fdump-rtl-subreg2
6645 @opindex fdump-rtl-subreg1
6646 @opindex fdump-rtl-subreg2
6647 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6648 the two subreg expansion passes.
6649
6650 @item -fdump-rtl-unshare
6651 @opindex fdump-rtl-unshare
6652 Dump after all rtl has been unshared.
6653
6654 @item -fdump-rtl-vartrack
6655 @opindex fdump-rtl-vartrack
6656 Dump after variable tracking.
6657
6658 @item -fdump-rtl-vregs
6659 @opindex fdump-rtl-vregs
6660 Dump after converting virtual registers to hard registers.
6661
6662 @item -fdump-rtl-web
6663 @opindex fdump-rtl-web
6664 Dump after live range splitting.
6665
6666 @item -fdump-rtl-regclass
6667 @itemx -fdump-rtl-subregs_of_mode_init
6668 @itemx -fdump-rtl-subregs_of_mode_finish
6669 @itemx -fdump-rtl-dfinit
6670 @itemx -fdump-rtl-dfinish
6671 @opindex fdump-rtl-regclass
6672 @opindex fdump-rtl-subregs_of_mode_init
6673 @opindex fdump-rtl-subregs_of_mode_finish
6674 @opindex fdump-rtl-dfinit
6675 @opindex fdump-rtl-dfinish
6676 These dumps are defined but always produce empty files.
6677
6678 @item -da
6679 @itemx -fdump-rtl-all
6680 @opindex da
6681 @opindex fdump-rtl-all
6682 Produce all the dumps listed above.
6683
6684 @item -dA
6685 @opindex dA
6686 Annotate the assembler output with miscellaneous debugging information.
6687
6688 @item -dD
6689 @opindex dD
6690 Dump all macro definitions, at the end of preprocessing, in addition to
6691 normal output.
6692
6693 @item -dH
6694 @opindex dH
6695 Produce a core dump whenever an error occurs.
6696
6697 @item -dp
6698 @opindex dp
6699 Annotate the assembler output with a comment indicating which
6700 pattern and alternative is used. The length of each instruction is
6701 also printed.
6702
6703 @item -dP
6704 @opindex dP
6705 Dump the RTL in the assembler output as a comment before each instruction.
6706 Also turns on @option{-dp} annotation.
6707
6708 @item -dx
6709 @opindex dx
6710 Just generate RTL for a function instead of compiling it. Usually used
6711 with @option{-fdump-rtl-expand}.
6712 @end table
6713
6714 @item -fdump-noaddr
6715 @opindex fdump-noaddr
6716 When doing debugging dumps, suppress address output. This makes it more
6717 feasible to use diff on debugging dumps for compiler invocations with
6718 different compiler binaries and/or different
6719 text / bss / data / heap / stack / dso start locations.
6720
6721 @item -freport-bug
6722 @opindex freport-bug
6723 Collect and dump debug information into temporary file if ICE in C/C++
6724 compiler occured.
6725
6726 @item -fdump-unnumbered
6727 @opindex fdump-unnumbered
6728 When doing debugging dumps, suppress instruction numbers and address output.
6729 This makes it more feasible to use diff on debugging dumps for compiler
6730 invocations with different options, in particular with and without
6731 @option{-g}.
6732
6733 @item -fdump-unnumbered-links
6734 @opindex fdump-unnumbered-links
6735 When doing debugging dumps (see @option{-d} option above), suppress
6736 instruction numbers for the links to the previous and next instructions
6737 in a sequence.
6738
6739 @item -fdump-translation-unit @r{(C++ only)}
6740 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
6741 @opindex fdump-translation-unit
6742 Dump a representation of the tree structure for the entire translation
6743 unit to a file. The file name is made by appending @file{.tu} to the
6744 source file name, and the file is created in the same directory as the
6745 output file. If the @samp{-@var{options}} form is used, @var{options}
6746 controls the details of the dump as described for the
6747 @option{-fdump-tree} options.
6748
6749 @item -fdump-class-hierarchy @r{(C++ only)}
6750 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
6751 @opindex fdump-class-hierarchy
6752 Dump a representation of each class's hierarchy and virtual function
6753 table layout to a file. The file name is made by appending
6754 @file{.class} to the source file name, and the file is created in the
6755 same directory as the output file. If the @samp{-@var{options}} form
6756 is used, @var{options} controls the details of the dump as described
6757 for the @option{-fdump-tree} options.
6758
6759 @item -fdump-ipa-@var{switch}
6760 @opindex fdump-ipa
6761 Control the dumping at various stages of inter-procedural analysis
6762 language tree to a file. The file name is generated by appending a
6763 switch specific suffix to the source file name, and the file is created
6764 in the same directory as the output file. The following dumps are
6765 possible:
6766
6767 @table @samp
6768 @item all
6769 Enables all inter-procedural analysis dumps.
6770
6771 @item cgraph
6772 Dumps information about call-graph optimization, unused function removal,
6773 and inlining decisions.
6774
6775 @item inline
6776 Dump after function inlining.
6777
6778 @end table
6779
6780 @item -fdump-passes
6781 @opindex fdump-passes
6782 Dump the list of optimization passes that are turned on and off by
6783 the current command-line options.
6784
6785 @item -fdump-statistics-@var{option}
6786 @opindex fdump-statistics
6787 Enable and control dumping of pass statistics in a separate file. The
6788 file name is generated by appending a suffix ending in
6789 @samp{.statistics} to the source file name, and the file is created in
6790 the same directory as the output file. If the @samp{-@var{option}}
6791 form is used, @samp{-stats} causes counters to be summed over the
6792 whole compilation unit while @samp{-details} dumps every event as
6793 the passes generate them. The default with no option is to sum
6794 counters for each function compiled.
6795
6796 @item -fdump-tree-@var{switch}
6797 @itemx -fdump-tree-@var{switch}-@var{options}
6798 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
6799 @opindex fdump-tree
6800 Control the dumping at various stages of processing the intermediate
6801 language tree to a file. The file name is generated by appending a
6802 switch-specific suffix to the source file name, and the file is
6803 created in the same directory as the output file. In case of
6804 @option{=@var{filename}} option, the dump is output on the given file
6805 instead of the auto named dump files. If the @samp{-@var{options}}
6806 form is used, @var{options} is a list of @samp{-} separated options
6807 which control the details of the dump. Not all options are applicable
6808 to all dumps; those that are not meaningful are ignored. The
6809 following options are available
6810
6811 @table @samp
6812 @item address
6813 Print the address of each node. Usually this is not meaningful as it
6814 changes according to the environment and source file. Its primary use
6815 is for tying up a dump file with a debug environment.
6816 @item asmname
6817 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
6818 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
6819 use working backward from mangled names in the assembly file.
6820 @item slim
6821 When dumping front-end intermediate representations, inhibit dumping
6822 of members of a scope or body of a function merely because that scope
6823 has been reached. Only dump such items when they are directly reachable
6824 by some other path.
6825
6826 When dumping pretty-printed trees, this option inhibits dumping the
6827 bodies of control structures.
6828
6829 When dumping RTL, print the RTL in slim (condensed) form instead of
6830 the default LISP-like representation.
6831 @item raw
6832 Print a raw representation of the tree. By default, trees are
6833 pretty-printed into a C-like representation.
6834 @item details
6835 Enable more detailed dumps (not honored by every dump option). Also
6836 include information from the optimization passes.
6837 @item stats
6838 Enable dumping various statistics about the pass (not honored by every dump
6839 option).
6840 @item blocks
6841 Enable showing basic block boundaries (disabled in raw dumps).
6842 @item graph
6843 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
6844 dump a representation of the control flow graph suitable for viewing with
6845 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
6846 the file is pretty-printed as a subgraph, so that GraphViz can render them
6847 all in a single plot.
6848
6849 This option currently only works for RTL dumps, and the RTL is always
6850 dumped in slim form.
6851 @item vops
6852 Enable showing virtual operands for every statement.
6853 @item lineno
6854 Enable showing line numbers for statements.
6855 @item uid
6856 Enable showing the unique ID (@code{DECL_UID}) for each variable.
6857 @item verbose
6858 Enable showing the tree dump for each statement.
6859 @item eh
6860 Enable showing the EH region number holding each statement.
6861 @item scev
6862 Enable showing scalar evolution analysis details.
6863 @item optimized
6864 Enable showing optimization information (only available in certain
6865 passes).
6866 @item missed
6867 Enable showing missed optimization information (only available in certain
6868 passes).
6869 @item note
6870 Enable other detailed optimization information (only available in
6871 certain passes).
6872 @item =@var{filename}
6873 Instead of an auto named dump file, output into the given file
6874 name. The file names @file{stdout} and @file{stderr} are treated
6875 specially and are considered already open standard streams. For
6876 example,
6877
6878 @smallexample
6879 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
6880 -fdump-tree-pre=stderr file.c
6881 @end smallexample
6882
6883 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
6884 output on to @file{stderr}. If two conflicting dump filenames are
6885 given for the same pass, then the latter option overrides the earlier
6886 one.
6887
6888 @item all
6889 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
6890 and @option{lineno}.
6891
6892 @item optall
6893 Turn on all optimization options, i.e., @option{optimized},
6894 @option{missed}, and @option{note}.
6895 @end table
6896
6897 The following tree dumps are possible:
6898 @table @samp
6899
6900 @item original
6901 @opindex fdump-tree-original
6902 Dump before any tree based optimization, to @file{@var{file}.original}.
6903
6904 @item optimized
6905 @opindex fdump-tree-optimized
6906 Dump after all tree based optimization, to @file{@var{file}.optimized}.
6907
6908 @item gimple
6909 @opindex fdump-tree-gimple
6910 Dump each function before and after the gimplification pass to a file. The
6911 file name is made by appending @file{.gimple} to the source file name.
6912
6913 @item cfg
6914 @opindex fdump-tree-cfg
6915 Dump the control flow graph of each function to a file. The file name is
6916 made by appending @file{.cfg} to the source file name.
6917
6918 @item ch
6919 @opindex fdump-tree-ch
6920 Dump each function after copying loop headers. The file name is made by
6921 appending @file{.ch} to the source file name.
6922
6923 @item ssa
6924 @opindex fdump-tree-ssa
6925 Dump SSA related information to a file. The file name is made by appending
6926 @file{.ssa} to the source file name.
6927
6928 @item alias
6929 @opindex fdump-tree-alias
6930 Dump aliasing information for each function. The file name is made by
6931 appending @file{.alias} to the source file name.
6932
6933 @item ccp
6934 @opindex fdump-tree-ccp
6935 Dump each function after CCP@. The file name is made by appending
6936 @file{.ccp} to the source file name.
6937
6938 @item storeccp
6939 @opindex fdump-tree-storeccp
6940 Dump each function after STORE-CCP@. The file name is made by appending
6941 @file{.storeccp} to the source file name.
6942
6943 @item pre
6944 @opindex fdump-tree-pre
6945 Dump trees after partial redundancy elimination. The file name is made
6946 by appending @file{.pre} to the source file name.
6947
6948 @item fre
6949 @opindex fdump-tree-fre
6950 Dump trees after full redundancy elimination. The file name is made
6951 by appending @file{.fre} to the source file name.
6952
6953 @item copyprop
6954 @opindex fdump-tree-copyprop
6955 Dump trees after copy propagation. The file name is made
6956 by appending @file{.copyprop} to the source file name.
6957
6958 @item store_copyprop
6959 @opindex fdump-tree-store_copyprop
6960 Dump trees after store copy-propagation. The file name is made
6961 by appending @file{.store_copyprop} to the source file name.
6962
6963 @item dce
6964 @opindex fdump-tree-dce
6965 Dump each function after dead code elimination. The file name is made by
6966 appending @file{.dce} to the source file name.
6967
6968 @item sra
6969 @opindex fdump-tree-sra
6970 Dump each function after performing scalar replacement of aggregates. The
6971 file name is made by appending @file{.sra} to the source file name.
6972
6973 @item sink
6974 @opindex fdump-tree-sink
6975 Dump each function after performing code sinking. The file name is made
6976 by appending @file{.sink} to the source file name.
6977
6978 @item dom
6979 @opindex fdump-tree-dom
6980 Dump each function after applying dominator tree optimizations. The file
6981 name is made by appending @file{.dom} to the source file name.
6982
6983 @item dse
6984 @opindex fdump-tree-dse
6985 Dump each function after applying dead store elimination. The file
6986 name is made by appending @file{.dse} to the source file name.
6987
6988 @item phiopt
6989 @opindex fdump-tree-phiopt
6990 Dump each function after optimizing PHI nodes into straightline code. The file
6991 name is made by appending @file{.phiopt} to the source file name.
6992
6993 @item forwprop
6994 @opindex fdump-tree-forwprop
6995 Dump each function after forward propagating single use variables. The file
6996 name is made by appending @file{.forwprop} to the source file name.
6997
6998 @item copyrename
6999 @opindex fdump-tree-copyrename
7000 Dump each function after applying the copy rename optimization. The file
7001 name is made by appending @file{.copyrename} to the source file name.
7002
7003 @item nrv
7004 @opindex fdump-tree-nrv
7005 Dump each function after applying the named return value optimization on
7006 generic trees. The file name is made by appending @file{.nrv} to the source
7007 file name.
7008
7009 @item vect
7010 @opindex fdump-tree-vect
7011 Dump each function after applying vectorization of loops. The file name is
7012 made by appending @file{.vect} to the source file name.
7013
7014 @item slp
7015 @opindex fdump-tree-slp
7016 Dump each function after applying vectorization of basic blocks. The file name
7017 is made by appending @file{.slp} to the source file name.
7018
7019 @item vrp
7020 @opindex fdump-tree-vrp
7021 Dump each function after Value Range Propagation (VRP). The file name
7022 is made by appending @file{.vrp} to the source file name.
7023
7024 @item all
7025 @opindex fdump-tree-all
7026 Enable all the available tree dumps with the flags provided in this option.
7027 @end table
7028
7029 @item -fopt-info
7030 @itemx -fopt-info-@var{options}
7031 @itemx -fopt-info-@var{options}=@var{filename}
7032 @opindex fopt-info
7033 Controls optimization dumps from various optimization passes. If the
7034 @samp{-@var{options}} form is used, @var{options} is a list of
7035 @samp{-} separated option keywords to select the dump details and
7036 optimizations.
7037
7038 The @var{options} can be divided into two groups: options describing the
7039 verbosity of the dump, and options describing which optimizations
7040 should be included. The options from both the groups can be freely
7041 mixed as they are non-overlapping. However, in case of any conflicts,
7042 the later options override the earlier options on the command
7043 line.
7044
7045 The following options control the dump verbosity:
7046
7047 @table @samp
7048 @item optimized
7049 Print information when an optimization is successfully applied. It is
7050 up to a pass to decide which information is relevant. For example, the
7051 vectorizer passes print the source location of loops which are
7052 successfully vectorized.
7053 @item missed
7054 Print information about missed optimizations. Individual passes
7055 control which information to include in the output.
7056 @item note
7057 Print verbose information about optimizations, such as certain
7058 transformations, more detailed messages about decisions etc.
7059 @item all
7060 Print detailed optimization information. This includes
7061 @samp{optimized}, @samp{missed}, and @samp{note}.
7062 @end table
7063
7064 One or more of the following option keywords can be used to describe a
7065 group of optimizations:
7066
7067 @table @samp
7068 @item ipa
7069 Enable dumps from all interprocedural optimizations.
7070 @item loop
7071 Enable dumps from all loop optimizations.
7072 @item inline
7073 Enable dumps from all inlining optimizations.
7074 @item vec
7075 Enable dumps from all vectorization optimizations.
7076 @item optall
7077 Enable dumps from all optimizations. This is a superset of
7078 the optimization groups listed above.
7079 @end table
7080
7081 If @var{options} is
7082 omitted, it defaults to @samp{optimized-optall}, which means to dump all
7083 info about successful optimizations from all the passes.
7084
7085 If the @var{filename} is provided, then the dumps from all the
7086 applicable optimizations are concatenated into the @var{filename}.
7087 Otherwise the dump is output onto @file{stderr}. Though multiple
7088 @option{-fopt-info} options are accepted, only one of them can include
7089 a @var{filename}. If other filenames are provided then all but the
7090 first such option are ignored.
7091
7092 Note that the output @var{filename} is overwritten
7093 in case of multiple translation units. If a combined output from
7094 multiple translation units is desired, @file{stderr} should be used
7095 instead.
7096
7097 In the following example, the optimization info is output to
7098 @file{stderr}:
7099
7100 @smallexample
7101 gcc -O3 -fopt-info
7102 @end smallexample
7103
7104 This example:
7105 @smallexample
7106 gcc -O3 -fopt-info-missed=missed.all
7107 @end smallexample
7108
7109 @noindent
7110 outputs missed optimization report from all the passes into
7111 @file{missed.all}, and this one:
7112
7113 @smallexample
7114 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7115 @end smallexample
7116
7117 @noindent
7118 prints information about missed optimization opportunities from
7119 vectorization passes on @file{stderr}.
7120 Note that @option{-fopt-info-vec-missed} is equivalent to
7121 @option{-fopt-info-missed-vec}.
7122
7123 As another example,
7124 @smallexample
7125 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7126 @end smallexample
7127
7128 @noindent
7129 outputs information about missed optimizations as well as
7130 optimized locations from all the inlining passes into
7131 @file{inline.txt}.
7132
7133 Finally, consider:
7134
7135 @smallexample
7136 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7137 @end smallexample
7138
7139 @noindent
7140 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7141 in conflict since only one output file is allowed. In this case, only
7142 the first option takes effect and the subsequent options are
7143 ignored. Thus only @file{vec.miss} is produced which contains
7144 dumps from the vectorizer about missed opportunities.
7145
7146 @item -frandom-seed=@var{number}
7147 @opindex frandom-seed
7148 This option provides a seed that GCC uses in place of
7149 random numbers in generating certain symbol names
7150 that have to be different in every compiled file. It is also used to
7151 place unique stamps in coverage data files and the object files that
7152 produce them. You can use the @option{-frandom-seed} option to produce
7153 reproducibly identical object files.
7154
7155 The @var{number} should be different for every file you compile.
7156
7157 @item -fsched-verbose=@var{n}
7158 @opindex fsched-verbose
7159 On targets that use instruction scheduling, this option controls the
7160 amount of debugging output the scheduler prints. This information is
7161 written to standard error, unless @option{-fdump-rtl-sched1} or
7162 @option{-fdump-rtl-sched2} is specified, in which case it is output
7163 to the usual dump listing file, @file{.sched1} or @file{.sched2}
7164 respectively. However for @var{n} greater than nine, the output is
7165 always printed to standard error.
7166
7167 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7168 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7169 For @var{n} greater than one, it also output basic block probabilities,
7170 detailed ready list information and unit/insn info. For @var{n} greater
7171 than two, it includes RTL at abort point, control-flow and regions info.
7172 And for @var{n} over four, @option{-fsched-verbose} also includes
7173 dependence info.
7174
7175 @item -save-temps
7176 @itemx -save-temps=cwd
7177 @opindex save-temps
7178 Store the usual ``temporary'' intermediate files permanently; place them
7179 in the current directory and name them based on the source file. Thus,
7180 compiling @file{foo.c} with @option{-c -save-temps} produces files
7181 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
7182 preprocessed @file{foo.i} output file even though the compiler now
7183 normally uses an integrated preprocessor.
7184
7185 When used in combination with the @option{-x} command-line option,
7186 @option{-save-temps} is sensible enough to avoid over writing an
7187 input source file with the same extension as an intermediate file.
7188 The corresponding intermediate file may be obtained by renaming the
7189 source file before using @option{-save-temps}.
7190
7191 If you invoke GCC in parallel, compiling several different source
7192 files that share a common base name in different subdirectories or the
7193 same source file compiled for multiple output destinations, it is
7194 likely that the different parallel compilers will interfere with each
7195 other, and overwrite the temporary files. For instance:
7196
7197 @smallexample
7198 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7199 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7200 @end smallexample
7201
7202 may result in @file{foo.i} and @file{foo.o} being written to
7203 simultaneously by both compilers.
7204
7205 @item -save-temps=obj
7206 @opindex save-temps=obj
7207 Store the usual ``temporary'' intermediate files permanently. If the
7208 @option{-o} option is used, the temporary files are based on the
7209 object file. If the @option{-o} option is not used, the
7210 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
7211
7212 For example:
7213
7214 @smallexample
7215 gcc -save-temps=obj -c foo.c
7216 gcc -save-temps=obj -c bar.c -o dir/xbar.o
7217 gcc -save-temps=obj foobar.c -o dir2/yfoobar
7218 @end smallexample
7219
7220 @noindent
7221 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7222 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7223 @file{dir2/yfoobar.o}.
7224
7225 @item -time@r{[}=@var{file}@r{]}
7226 @opindex time
7227 Report the CPU time taken by each subprocess in the compilation
7228 sequence. For C source files, this is the compiler proper and assembler
7229 (plus the linker if linking is done).
7230
7231 Without the specification of an output file, the output looks like this:
7232
7233 @smallexample
7234 # cc1 0.12 0.01
7235 # as 0.00 0.01
7236 @end smallexample
7237
7238 The first number on each line is the ``user time'', that is time spent
7239 executing the program itself. The second number is ``system time'',
7240 time spent executing operating system routines on behalf of the program.
7241 Both numbers are in seconds.
7242
7243 With the specification of an output file, the output is appended to the
7244 named file, and it looks like this:
7245
7246 @smallexample
7247 0.12 0.01 cc1 @var{options}
7248 0.00 0.01 as @var{options}
7249 @end smallexample
7250
7251 The ``user time'' and the ``system time'' are moved before the program
7252 name, and the options passed to the program are displayed, so that one
7253 can later tell what file was being compiled, and with which options.
7254
7255 @item -fvar-tracking
7256 @opindex fvar-tracking
7257 Run variable tracking pass. It computes where variables are stored at each
7258 position in code. Better debugging information is then generated
7259 (if the debugging information format supports this information).
7260
7261 It is enabled by default when compiling with optimization (@option{-Os},
7262 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7263 the debug info format supports it.
7264
7265 @item -fvar-tracking-assignments
7266 @opindex fvar-tracking-assignments
7267 @opindex fno-var-tracking-assignments
7268 Annotate assignments to user variables early in the compilation and
7269 attempt to carry the annotations over throughout the compilation all the
7270 way to the end, in an attempt to improve debug information while
7271 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7272
7273 It can be enabled even if var-tracking is disabled, in which case
7274 annotations are created and maintained, but discarded at the end.
7275 By default, this flag is enabled together with @option{-fvar-tracking},
7276 except when selective scheduling is enabled.
7277
7278 @item -fvar-tracking-assignments-toggle
7279 @opindex fvar-tracking-assignments-toggle
7280 @opindex fno-var-tracking-assignments-toggle
7281 Toggle @option{-fvar-tracking-assignments}, in the same way that
7282 @option{-gtoggle} toggles @option{-g}.
7283
7284 @item -print-file-name=@var{library}
7285 @opindex print-file-name
7286 Print the full absolute name of the library file @var{library} that
7287 would be used when linking---and don't do anything else. With this
7288 option, GCC does not compile or link anything; it just prints the
7289 file name.
7290
7291 @item -print-multi-directory
7292 @opindex print-multi-directory
7293 Print the directory name corresponding to the multilib selected by any
7294 other switches present in the command line. This directory is supposed
7295 to exist in @env{GCC_EXEC_PREFIX}.
7296
7297 @item -print-multi-lib
7298 @opindex print-multi-lib
7299 Print the mapping from multilib directory names to compiler switches
7300 that enable them. The directory name is separated from the switches by
7301 @samp{;}, and each switch starts with an @samp{@@} instead of the
7302 @samp{-}, without spaces between multiple switches. This is supposed to
7303 ease shell processing.
7304
7305 @item -print-multi-os-directory
7306 @opindex print-multi-os-directory
7307 Print the path to OS libraries for the selected
7308 multilib, relative to some @file{lib} subdirectory. If OS libraries are
7309 present in the @file{lib} subdirectory and no multilibs are used, this is
7310 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7311 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7312 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7313 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7314
7315 @item -print-multiarch
7316 @opindex print-multiarch
7317 Print the path to OS libraries for the selected multiarch,
7318 relative to some @file{lib} subdirectory.
7319
7320 @item -print-prog-name=@var{program}
7321 @opindex print-prog-name
7322 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7323
7324 @item -print-libgcc-file-name
7325 @opindex print-libgcc-file-name
7326 Same as @option{-print-file-name=libgcc.a}.
7327
7328 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7329 but you do want to link with @file{libgcc.a}. You can do:
7330
7331 @smallexample
7332 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7333 @end smallexample
7334
7335 @item -print-search-dirs
7336 @opindex print-search-dirs
7337 Print the name of the configured installation directory and a list of
7338 program and library directories @command{gcc} searches---and don't do anything else.
7339
7340 This is useful when @command{gcc} prints the error message
7341 @samp{installation problem, cannot exec cpp0: No such file or directory}.
7342 To resolve this you either need to put @file{cpp0} and the other compiler
7343 components where @command{gcc} expects to find them, or you can set the environment
7344 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7345 Don't forget the trailing @samp{/}.
7346 @xref{Environment Variables}.
7347
7348 @item -print-sysroot
7349 @opindex print-sysroot
7350 Print the target sysroot directory that is used during
7351 compilation. This is the target sysroot specified either at configure
7352 time or using the @option{--sysroot} option, possibly with an extra
7353 suffix that depends on compilation options. If no target sysroot is
7354 specified, the option prints nothing.
7355
7356 @item -print-sysroot-headers-suffix
7357 @opindex print-sysroot-headers-suffix
7358 Print the suffix added to the target sysroot when searching for
7359 headers, or give an error if the compiler is not configured with such
7360 a suffix---and don't do anything else.
7361
7362 @item -dumpmachine
7363 @opindex dumpmachine
7364 Print the compiler's target machine (for example,
7365 @samp{i686-pc-linux-gnu})---and don't do anything else.
7366
7367 @item -dumpversion
7368 @opindex dumpversion
7369 Print the compiler version (for example, @code{3.0})---and don't do
7370 anything else.
7371
7372 @item -dumpspecs
7373 @opindex dumpspecs
7374 Print the compiler's built-in specs---and don't do anything else. (This
7375 is used when GCC itself is being built.) @xref{Spec Files}.
7376
7377 @item -fno-eliminate-unused-debug-types
7378 @opindex feliminate-unused-debug-types
7379 @opindex fno-eliminate-unused-debug-types
7380 Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
7381 output for types that are nowhere used in the source file being compiled.
7382 Sometimes it is useful to have GCC emit debugging
7383 information for all types declared in a compilation
7384 unit, regardless of whether or not they are actually used
7385 in that compilation unit, for example
7386 if, in the debugger, you want to cast a value to a type that is
7387 not actually used in your program (but is declared). More often,
7388 however, this results in a significant amount of wasted space.
7389 @end table
7390
7391 @node Optimize Options
7392 @section Options That Control Optimization
7393 @cindex optimize options
7394 @cindex options, optimization
7395
7396 These options control various sorts of optimizations.
7397
7398 Without any optimization option, the compiler's goal is to reduce the
7399 cost of compilation and to make debugging produce the expected
7400 results. Statements are independent: if you stop the program with a
7401 breakpoint between statements, you can then assign a new value to any
7402 variable or change the program counter to any other statement in the
7403 function and get exactly the results you expect from the source
7404 code.
7405
7406 Turning on optimization flags makes the compiler attempt to improve
7407 the performance and/or code size at the expense of compilation time
7408 and possibly the ability to debug the program.
7409
7410 The compiler performs optimization based on the knowledge it has of the
7411 program. Compiling multiple files at once to a single output file mode allows
7412 the compiler to use information gained from all of the files when compiling
7413 each of them.
7414
7415 Not all optimizations are controlled directly by a flag. Only
7416 optimizations that have a flag are listed in this section.
7417
7418 Most optimizations are only enabled if an @option{-O} level is set on
7419 the command line. Otherwise they are disabled, even if individual
7420 optimization flags are specified.
7421
7422 Depending on the target and how GCC was configured, a slightly different
7423 set of optimizations may be enabled at each @option{-O} level than
7424 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7425 to find out the exact set of optimizations that are enabled at each level.
7426 @xref{Overall Options}, for examples.
7427
7428 @table @gcctabopt
7429 @item -O
7430 @itemx -O1
7431 @opindex O
7432 @opindex O1
7433 Optimize. Optimizing compilation takes somewhat more time, and a lot
7434 more memory for a large function.
7435
7436 With @option{-O}, the compiler tries to reduce code size and execution
7437 time, without performing any optimizations that take a great deal of
7438 compilation time.
7439
7440 @option{-O} turns on the following optimization flags:
7441 @gccoptlist{
7442 -fauto-inc-dec @gol
7443 -fbranch-count-reg @gol
7444 -fcombine-stack-adjustments @gol
7445 -fcompare-elim @gol
7446 -fcprop-registers @gol
7447 -fdce @gol
7448 -fdefer-pop @gol
7449 -fdelayed-branch @gol
7450 -fdse @gol
7451 -fforward-propagate @gol
7452 -fguess-branch-probability @gol
7453 -fif-conversion2 @gol
7454 -fif-conversion @gol
7455 -finline-functions-called-once @gol
7456 -fipa-pure-const @gol
7457 -fipa-profile @gol
7458 -fipa-reference @gol
7459 -fmerge-constants @gol
7460 -fmove-loop-invariants @gol
7461 -fshrink-wrap @gol
7462 -fsplit-wide-types @gol
7463 -ftree-bit-ccp @gol
7464 -ftree-ccp @gol
7465 -fssa-phiopt @gol
7466 -ftree-ch @gol
7467 -ftree-copy-prop @gol
7468 -ftree-copyrename @gol
7469 -ftree-dce @gol
7470 -ftree-dominator-opts @gol
7471 -ftree-dse @gol
7472 -ftree-forwprop @gol
7473 -ftree-fre @gol
7474 -ftree-phiprop @gol
7475 -ftree-sink @gol
7476 -ftree-slsr @gol
7477 -ftree-sra @gol
7478 -ftree-pta @gol
7479 -ftree-ter @gol
7480 -funit-at-a-time}
7481
7482 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7483 where doing so does not interfere with debugging.
7484
7485 @item -O2
7486 @opindex O2
7487 Optimize even more. GCC performs nearly all supported optimizations
7488 that do not involve a space-speed tradeoff.
7489 As compared to @option{-O}, this option increases both compilation time
7490 and the performance of the generated code.
7491
7492 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7493 also turns on the following optimization flags:
7494 @gccoptlist{-fthread-jumps @gol
7495 -falign-functions -falign-jumps @gol
7496 -falign-loops -falign-labels @gol
7497 -fcaller-saves @gol
7498 -fcrossjumping @gol
7499 -fcse-follow-jumps -fcse-skip-blocks @gol
7500 -fdelete-null-pointer-checks @gol
7501 -fdevirtualize -fdevirtualize-speculatively @gol
7502 -fexpensive-optimizations @gol
7503 -fgcse -fgcse-lm @gol
7504 -fhoist-adjacent-loads @gol
7505 -finline-small-functions @gol
7506 -findirect-inlining @gol
7507 -fipa-cp @gol
7508 -fipa-cp-alignment @gol
7509 -fipa-sra @gol
7510 -fipa-icf @gol
7511 -fisolate-erroneous-paths-dereference @gol
7512 -flra-remat @gol
7513 -foptimize-sibling-calls @gol
7514 -foptimize-strlen @gol
7515 -fpartial-inlining @gol
7516 -fpeephole2 @gol
7517 -freorder-blocks -freorder-blocks-and-partition -freorder-functions @gol
7518 -frerun-cse-after-loop @gol
7519 -fsched-interblock -fsched-spec @gol
7520 -fschedule-insns -fschedule-insns2 @gol
7521 -fstrict-aliasing -fstrict-overflow @gol
7522 -ftree-builtin-call-dce @gol
7523 -ftree-switch-conversion -ftree-tail-merge @gol
7524 -ftree-pre @gol
7525 -ftree-vrp @gol
7526 -fipa-ra}
7527
7528 Please note the warning under @option{-fgcse} about
7529 invoking @option{-O2} on programs that use computed gotos.
7530
7531 @item -O3
7532 @opindex O3
7533 Optimize yet more. @option{-O3} turns on all optimizations specified
7534 by @option{-O2} and also turns on the @option{-finline-functions},
7535 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7536 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7537 @option{-ftree-loop-distribute-patterns},
7538 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7539 @option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7540
7541 @item -O0
7542 @opindex O0
7543 Reduce compilation time and make debugging produce the expected
7544 results. This is the default.
7545
7546 @item -Os
7547 @opindex Os
7548 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7549 do not typically increase code size. It also performs further
7550 optimizations designed to reduce code size.
7551
7552 @option{-Os} disables the following optimization flags:
7553 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7554 -falign-labels -freorder-blocks -freorder-blocks-and-partition @gol
7555 -fprefetch-loop-arrays}
7556
7557 @item -Ofast
7558 @opindex Ofast
7559 Disregard strict standards compliance. @option{-Ofast} enables all
7560 @option{-O3} optimizations. It also enables optimizations that are not
7561 valid for all standard-compliant programs.
7562 It turns on @option{-ffast-math} and the Fortran-specific
7563 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7564
7565 @item -Og
7566 @opindex Og
7567 Optimize debugging experience. @option{-Og} enables optimizations
7568 that do not interfere with debugging. It should be the optimization
7569 level of choice for the standard edit-compile-debug cycle, offering
7570 a reasonable level of optimization while maintaining fast compilation
7571 and a good debugging experience.
7572
7573 If you use multiple @option{-O} options, with or without level numbers,
7574 the last such option is the one that is effective.
7575 @end table
7576
7577 Options of the form @option{-f@var{flag}} specify machine-independent
7578 flags. Most flags have both positive and negative forms; the negative
7579 form of @option{-ffoo} is @option{-fno-foo}. In the table
7580 below, only one of the forms is listed---the one you typically
7581 use. You can figure out the other form by either removing @samp{no-}
7582 or adding it.
7583
7584 The following options control specific optimizations. They are either
7585 activated by @option{-O} options or are related to ones that are. You
7586 can use the following flags in the rare cases when ``fine-tuning'' of
7587 optimizations to be performed is desired.
7588
7589 @table @gcctabopt
7590 @item -fno-defer-pop
7591 @opindex fno-defer-pop
7592 Always pop the arguments to each function call as soon as that function
7593 returns. For machines that must pop arguments after a function call,
7594 the compiler normally lets arguments accumulate on the stack for several
7595 function calls and pops them all at once.
7596
7597 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7598
7599 @item -fforward-propagate
7600 @opindex fforward-propagate
7601 Perform a forward propagation pass on RTL@. The pass tries to combine two
7602 instructions and checks if the result can be simplified. If loop unrolling
7603 is active, two passes are performed and the second is scheduled after
7604 loop unrolling.
7605
7606 This option is enabled by default at optimization levels @option{-O},
7607 @option{-O2}, @option{-O3}, @option{-Os}.
7608
7609 @item -ffp-contract=@var{style}
7610 @opindex ffp-contract
7611 @option{-ffp-contract=off} disables floating-point expression contraction.
7612 @option{-ffp-contract=fast} enables floating-point expression contraction
7613 such as forming of fused multiply-add operations if the target has
7614 native support for them.
7615 @option{-ffp-contract=on} enables floating-point expression contraction
7616 if allowed by the language standard. This is currently not implemented
7617 and treated equal to @option{-ffp-contract=off}.
7618
7619 The default is @option{-ffp-contract=fast}.
7620
7621 @item -fomit-frame-pointer
7622 @opindex fomit-frame-pointer
7623 Don't keep the frame pointer in a register for functions that
7624 don't need one. This avoids the instructions to save, set up and
7625 restore frame pointers; it also makes an extra register available
7626 in many functions. @strong{It also makes debugging impossible on
7627 some machines.}
7628
7629 On some machines, such as the VAX, this flag has no effect, because
7630 the standard calling sequence automatically handles the frame pointer
7631 and nothing is saved by pretending it doesn't exist. The
7632 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7633 whether a target machine supports this flag. @xref{Registers,,Register
7634 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7635
7636 The default setting (when not optimizing for
7637 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7638 @option{-fomit-frame-pointer}. You can configure GCC with the
7639 @option{--enable-frame-pointer} configure option to change the default.
7640
7641 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7642
7643 @item -foptimize-sibling-calls
7644 @opindex foptimize-sibling-calls
7645 Optimize sibling and tail recursive calls.
7646
7647 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7648
7649 @item -foptimize-strlen
7650 @opindex foptimize-strlen
7651 Optimize various standard C string functions (e.g. @code{strlen},
7652 @code{strchr} or @code{strcpy}) and
7653 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7654
7655 Enabled at levels @option{-O2}, @option{-O3}.
7656
7657 @item -fno-inline
7658 @opindex fno-inline
7659 Do not expand any functions inline apart from those marked with
7660 the @code{always_inline} attribute. This is the default when not
7661 optimizing.
7662
7663 Single functions can be exempted from inlining by marking them
7664 with the @code{noinline} attribute.
7665
7666 @item -finline-small-functions
7667 @opindex finline-small-functions
7668 Integrate functions into their callers when their body is smaller than expected
7669 function call code (so overall size of program gets smaller). The compiler
7670 heuristically decides which functions are simple enough to be worth integrating
7671 in this way. This inlining applies to all functions, even those not declared
7672 inline.
7673
7674 Enabled at level @option{-O2}.
7675
7676 @item -findirect-inlining
7677 @opindex findirect-inlining
7678 Inline also indirect calls that are discovered to be known at compile
7679 time thanks to previous inlining. This option has any effect only
7680 when inlining itself is turned on by the @option{-finline-functions}
7681 or @option{-finline-small-functions} options.
7682
7683 Enabled at level @option{-O2}.
7684
7685 @item -finline-functions
7686 @opindex finline-functions
7687 Consider all functions for inlining, even if they are not declared inline.
7688 The compiler heuristically decides which functions are worth integrating
7689 in this way.
7690
7691 If all calls to a given function are integrated, and the function is
7692 declared @code{static}, then the function is normally not output as
7693 assembler code in its own right.
7694
7695 Enabled at level @option{-O3}.
7696
7697 @item -finline-functions-called-once
7698 @opindex finline-functions-called-once
7699 Consider all @code{static} functions called once for inlining into their
7700 caller even if they are not marked @code{inline}. If a call to a given
7701 function is integrated, then the function is not output as assembler code
7702 in its own right.
7703
7704 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7705
7706 @item -fearly-inlining
7707 @opindex fearly-inlining
7708 Inline functions marked by @code{always_inline} and functions whose body seems
7709 smaller than the function call overhead early before doing
7710 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7711 makes profiling significantly cheaper and usually inlining faster on programs
7712 having large chains of nested wrapper functions.
7713
7714 Enabled by default.
7715
7716 @item -fipa-sra
7717 @opindex fipa-sra
7718 Perform interprocedural scalar replacement of aggregates, removal of
7719 unused parameters and replacement of parameters passed by reference
7720 by parameters passed by value.
7721
7722 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7723
7724 @item -finline-limit=@var{n}
7725 @opindex finline-limit
7726 By default, GCC limits the size of functions that can be inlined. This flag
7727 allows coarse control of this limit. @var{n} is the size of functions that
7728 can be inlined in number of pseudo instructions.
7729
7730 Inlining is actually controlled by a number of parameters, which may be
7731 specified individually by using @option{--param @var{name}=@var{value}}.
7732 The @option{-finline-limit=@var{n}} option sets some of these parameters
7733 as follows:
7734
7735 @table @gcctabopt
7736 @item max-inline-insns-single
7737 is set to @var{n}/2.
7738 @item max-inline-insns-auto
7739 is set to @var{n}/2.
7740 @end table
7741
7742 See below for a documentation of the individual
7743 parameters controlling inlining and for the defaults of these parameters.
7744
7745 @emph{Note:} there may be no value to @option{-finline-limit} that results
7746 in default behavior.
7747
7748 @emph{Note:} pseudo instruction represents, in this particular context, an
7749 abstract measurement of function's size. In no way does it represent a count
7750 of assembly instructions and as such its exact meaning might change from one
7751 release to an another.
7752
7753 @item -fno-keep-inline-dllexport
7754 @opindex fno-keep-inline-dllexport
7755 This is a more fine-grained version of @option{-fkeep-inline-functions},
7756 which applies only to functions that are declared using the @code{dllexport}
7757 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
7758 Functions}.)
7759
7760 @item -fkeep-inline-functions
7761 @opindex fkeep-inline-functions
7762 In C, emit @code{static} functions that are declared @code{inline}
7763 into the object file, even if the function has been inlined into all
7764 of its callers. This switch does not affect functions using the
7765 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7766 inline functions into the object file.
7767
7768 @item -fkeep-static-consts
7769 @opindex fkeep-static-consts
7770 Emit variables declared @code{static const} when optimization isn't turned
7771 on, even if the variables aren't referenced.
7772
7773 GCC enables this option by default. If you want to force the compiler to
7774 check if a variable is referenced, regardless of whether or not
7775 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7776
7777 @item -fmerge-constants
7778 @opindex fmerge-constants
7779 Attempt to merge identical constants (string constants and floating-point
7780 constants) across compilation units.
7781
7782 This option is the default for optimized compilation if the assembler and
7783 linker support it. Use @option{-fno-merge-constants} to inhibit this
7784 behavior.
7785
7786 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7787
7788 @item -fmerge-all-constants
7789 @opindex fmerge-all-constants
7790 Attempt to merge identical constants and identical variables.
7791
7792 This option implies @option{-fmerge-constants}. In addition to
7793 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7794 arrays or initialized constant variables with integral or floating-point
7795 types. Languages like C or C++ require each variable, including multiple
7796 instances of the same variable in recursive calls, to have distinct locations,
7797 so using this option results in non-conforming
7798 behavior.
7799
7800 @item -fmodulo-sched
7801 @opindex fmodulo-sched
7802 Perform swing modulo scheduling immediately before the first scheduling
7803 pass. This pass looks at innermost loops and reorders their
7804 instructions by overlapping different iterations.
7805
7806 @item -fmodulo-sched-allow-regmoves
7807 @opindex fmodulo-sched-allow-regmoves
7808 Perform more aggressive SMS-based modulo scheduling with register moves
7809 allowed. By setting this flag certain anti-dependences edges are
7810 deleted, which triggers the generation of reg-moves based on the
7811 life-range analysis. This option is effective only with
7812 @option{-fmodulo-sched} enabled.
7813
7814 @item -fno-branch-count-reg
7815 @opindex fno-branch-count-reg
7816 Do not use ``decrement and branch'' instructions on a count register,
7817 but instead generate a sequence of instructions that decrement a
7818 register, compare it against zero, then branch based upon the result.
7819 This option is only meaningful on architectures that support such
7820 instructions, which include x86, PowerPC, IA-64 and S/390.
7821
7822 Enabled by default at @option{-O1} and higher.
7823
7824 The default is @option{-fbranch-count-reg}.
7825
7826 @item -fno-function-cse
7827 @opindex fno-function-cse
7828 Do not put function addresses in registers; make each instruction that
7829 calls a constant function contain the function's address explicitly.
7830
7831 This option results in less efficient code, but some strange hacks
7832 that alter the assembler output may be confused by the optimizations
7833 performed when this option is not used.
7834
7835 The default is @option{-ffunction-cse}
7836
7837 @item -fno-zero-initialized-in-bss
7838 @opindex fno-zero-initialized-in-bss
7839 If the target supports a BSS section, GCC by default puts variables that
7840 are initialized to zero into BSS@. This can save space in the resulting
7841 code.
7842
7843 This option turns off this behavior because some programs explicitly
7844 rely on variables going to the data section---e.g., so that the
7845 resulting executable can find the beginning of that section and/or make
7846 assumptions based on that.
7847
7848 The default is @option{-fzero-initialized-in-bss}.
7849
7850 @item -fthread-jumps
7851 @opindex fthread-jumps
7852 Perform optimizations that check to see if a jump branches to a
7853 location where another comparison subsumed by the first is found. If
7854 so, the first branch is redirected to either the destination of the
7855 second branch or a point immediately following it, depending on whether
7856 the condition is known to be true or false.
7857
7858 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7859
7860 @item -fsplit-wide-types
7861 @opindex fsplit-wide-types
7862 When using a type that occupies multiple registers, such as @code{long
7863 long} on a 32-bit system, split the registers apart and allocate them
7864 independently. This normally generates better code for those types,
7865 but may make debugging more difficult.
7866
7867 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7868 @option{-Os}.
7869
7870 @item -fcse-follow-jumps
7871 @opindex fcse-follow-jumps
7872 In common subexpression elimination (CSE), scan through jump instructions
7873 when the target of the jump is not reached by any other path. For
7874 example, when CSE encounters an @code{if} statement with an
7875 @code{else} clause, CSE follows the jump when the condition
7876 tested is false.
7877
7878 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7879
7880 @item -fcse-skip-blocks
7881 @opindex fcse-skip-blocks
7882 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7883 follow jumps that conditionally skip over blocks. When CSE
7884 encounters a simple @code{if} statement with no else clause,
7885 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7886 body of the @code{if}.
7887
7888 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7889
7890 @item -frerun-cse-after-loop
7891 @opindex frerun-cse-after-loop
7892 Re-run common subexpression elimination after loop optimizations are
7893 performed.
7894
7895 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7896
7897 @item -fgcse
7898 @opindex fgcse
7899 Perform a global common subexpression elimination pass.
7900 This pass also performs global constant and copy propagation.
7901
7902 @emph{Note:} When compiling a program using computed gotos, a GCC
7903 extension, you may get better run-time performance if you disable
7904 the global common subexpression elimination pass by adding
7905 @option{-fno-gcse} to the command line.
7906
7907 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7908
7909 @item -fgcse-lm
7910 @opindex fgcse-lm
7911 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7912 attempts to move loads that are only killed by stores into themselves. This
7913 allows a loop containing a load/store sequence to be changed to a load outside
7914 the loop, and a copy/store within the loop.
7915
7916 Enabled by default when @option{-fgcse} is enabled.
7917
7918 @item -fgcse-sm
7919 @opindex fgcse-sm
7920 When @option{-fgcse-sm} is enabled, a store motion pass is run after
7921 global common subexpression elimination. This pass attempts to move
7922 stores out of loops. When used in conjunction with @option{-fgcse-lm},
7923 loops containing a load/store sequence can be changed to a load before
7924 the loop and a store after the loop.
7925
7926 Not enabled at any optimization level.
7927
7928 @item -fgcse-las
7929 @opindex fgcse-las
7930 When @option{-fgcse-las} is enabled, the global common subexpression
7931 elimination pass eliminates redundant loads that come after stores to the
7932 same memory location (both partial and full redundancies).
7933
7934 Not enabled at any optimization level.
7935
7936 @item -fgcse-after-reload
7937 @opindex fgcse-after-reload
7938 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7939 pass is performed after reload. The purpose of this pass is to clean up
7940 redundant spilling.
7941
7942 @item -faggressive-loop-optimizations
7943 @opindex faggressive-loop-optimizations
7944 This option tells the loop optimizer to use language constraints to
7945 derive bounds for the number of iterations of a loop. This assumes that
7946 loop code does not invoke undefined behavior by for example causing signed
7947 integer overflows or out-of-bound array accesses. The bounds for the
7948 number of iterations of a loop are used to guide loop unrolling and peeling
7949 and loop exit test optimizations.
7950 This option is enabled by default.
7951
7952 @item -funsafe-loop-optimizations
7953 @opindex funsafe-loop-optimizations
7954 This option tells the loop optimizer to assume that loop indices do not
7955 overflow, and that loops with nontrivial exit condition are not
7956 infinite. This enables a wider range of loop optimizations even if
7957 the loop optimizer itself cannot prove that these assumptions are valid.
7958 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
7959 if it finds this kind of loop.
7960
7961 @item -fcrossjumping
7962 @opindex fcrossjumping
7963 Perform cross-jumping transformation.
7964 This transformation unifies equivalent code and saves code size. The
7965 resulting code may or may not perform better than without cross-jumping.
7966
7967 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7968
7969 @item -fauto-inc-dec
7970 @opindex fauto-inc-dec
7971 Combine increments or decrements of addresses with memory accesses.
7972 This pass is always skipped on architectures that do not have
7973 instructions to support this. Enabled by default at @option{-O} and
7974 higher on architectures that support this.
7975
7976 @item -fdce
7977 @opindex fdce
7978 Perform dead code elimination (DCE) on RTL@.
7979 Enabled by default at @option{-O} and higher.
7980
7981 @item -fdse
7982 @opindex fdse
7983 Perform dead store elimination (DSE) on RTL@.
7984 Enabled by default at @option{-O} and higher.
7985
7986 @item -fif-conversion
7987 @opindex fif-conversion
7988 Attempt to transform conditional jumps into branch-less equivalents. This
7989 includes use of conditional moves, min, max, set flags and abs instructions, and
7990 some tricks doable by standard arithmetics. The use of conditional execution
7991 on chips where it is available is controlled by @option{-fif-conversion2}.
7992
7993 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7994
7995 @item -fif-conversion2
7996 @opindex fif-conversion2
7997 Use conditional execution (where available) to transform conditional jumps into
7998 branch-less equivalents.
7999
8000 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8001
8002 @item -fdeclone-ctor-dtor
8003 @opindex fdeclone-ctor-dtor
8004 The C++ ABI requires multiple entry points for constructors and
8005 destructors: one for a base subobject, one for a complete object, and
8006 one for a virtual destructor that calls operator delete afterwards.
8007 For a hierarchy with virtual bases, the base and complete variants are
8008 clones, which means two copies of the function. With this option, the
8009 base and complete variants are changed to be thunks that call a common
8010 implementation.
8011
8012 Enabled by @option{-Os}.
8013
8014 @item -fdelete-null-pointer-checks
8015 @opindex fdelete-null-pointer-checks
8016 Assume that programs cannot safely dereference null pointers, and that
8017 no code or data element resides there. This enables simple constant
8018 folding optimizations at all optimization levels. In addition, other
8019 optimization passes in GCC use this flag to control global dataflow
8020 analyses that eliminate useless checks for null pointers; these assume
8021 that if a pointer is checked after it has already been dereferenced,
8022 it cannot be null.
8023
8024 Note however that in some environments this assumption is not true.
8025 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8026 for programs that depend on that behavior.
8027
8028 Some targets, especially embedded ones, disable this option at all levels.
8029 Otherwise it is enabled at all levels: @option{-O0}, @option{-O1},
8030 @option{-O2}, @option{-O3}, @option{-Os}. Passes that use the information
8031 are enabled independently at different optimization levels.
8032
8033 @item -fdevirtualize
8034 @opindex fdevirtualize
8035 Attempt to convert calls to virtual functions to direct calls. This
8036 is done both within a procedure and interprocedurally as part of
8037 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8038 propagation (@option{-fipa-cp}).
8039 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8040
8041 @item -fdevirtualize-speculatively
8042 @opindex fdevirtualize-speculatively
8043 Attempt to convert calls to virtual functions to speculative direct calls.
8044 Based on the analysis of the type inheritance graph, determine for a given call
8045 the set of likely targets. If the set is small, preferably of size 1, change
8046 the call into a conditional deciding between direct and indirect calls. The
8047 speculative calls enable more optimizations, such as inlining. When they seem
8048 useless after further optimization, they are converted back into original form.
8049
8050 @item -fdevirtualize-at-ltrans
8051 @opindex fdevirtualize-at-ltrans
8052 Stream extra information needed for aggressive devirtualization when running
8053 the link-time optimizer in local transformation mode.
8054 This option enables more devirtualization but
8055 significantly increases the size of streamed data. For this reason it is
8056 disabled by default.
8057
8058 @item -fexpensive-optimizations
8059 @opindex fexpensive-optimizations
8060 Perform a number of minor optimizations that are relatively expensive.
8061
8062 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8063
8064 @item -free
8065 @opindex free
8066 Attempt to remove redundant extension instructions. This is especially
8067 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8068 registers after writing to their lower 32-bit half.
8069
8070 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8071 @option{-O3}, @option{-Os}.
8072
8073 @item -fno-lifetime-dse
8074 @opindex fno-lifetime-dse
8075 In C++ the value of an object is only affected by changes within its
8076 lifetime: when the constructor begins, the object has an indeterminate
8077 value, and any changes during the lifetime of the object are dead when
8078 the object is destroyed. Normally dead store elimination will take
8079 advantage of this; if your code relies on the value of the object
8080 storage persisting beyond the lifetime of the object, you can use this
8081 flag to disable this optimization.
8082
8083 @item -flive-range-shrinkage
8084 @opindex flive-range-shrinkage
8085 Attempt to decrease register pressure through register live range
8086 shrinkage. This is helpful for fast processors with small or moderate
8087 size register sets.
8088
8089 @item -fira-algorithm=@var{algorithm}
8090 @opindex fira-algorithm
8091 Use the specified coloring algorithm for the integrated register
8092 allocator. The @var{algorithm} argument can be @samp{priority}, which
8093 specifies Chow's priority coloring, or @samp{CB}, which specifies
8094 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8095 for all architectures, but for those targets that do support it, it is
8096 the default because it generates better code.
8097
8098 @item -fira-region=@var{region}
8099 @opindex fira-region
8100 Use specified regions for the integrated register allocator. The
8101 @var{region} argument should be one of the following:
8102
8103 @table @samp
8104
8105 @item all
8106 Use all loops as register allocation regions.
8107 This can give the best results for machines with a small and/or
8108 irregular register set.
8109
8110 @item mixed
8111 Use all loops except for loops with small register pressure
8112 as the regions. This value usually gives
8113 the best results in most cases and for most architectures,
8114 and is enabled by default when compiling with optimization for speed
8115 (@option{-O}, @option{-O2}, @dots{}).
8116
8117 @item one
8118 Use all functions as a single region.
8119 This typically results in the smallest code size, and is enabled by default for
8120 @option{-Os} or @option{-O0}.
8121
8122 @end table
8123
8124 @item -fira-hoist-pressure
8125 @opindex fira-hoist-pressure
8126 Use IRA to evaluate register pressure in the code hoisting pass for
8127 decisions to hoist expressions. This option usually results in smaller
8128 code, but it can slow the compiler down.
8129
8130 This option is enabled at level @option{-Os} for all targets.
8131
8132 @item -fira-loop-pressure
8133 @opindex fira-loop-pressure
8134 Use IRA to evaluate register pressure in loops for decisions to move
8135 loop invariants. This option usually results in generation
8136 of faster and smaller code on machines with large register files (>= 32
8137 registers), but it can slow the compiler down.
8138
8139 This option is enabled at level @option{-O3} for some targets.
8140
8141 @item -fno-ira-share-save-slots
8142 @opindex fno-ira-share-save-slots
8143 Disable sharing of stack slots used for saving call-used hard
8144 registers living through a call. Each hard register gets a
8145 separate stack slot, and as a result function stack frames are
8146 larger.
8147
8148 @item -fno-ira-share-spill-slots
8149 @opindex fno-ira-share-spill-slots
8150 Disable sharing of stack slots allocated for pseudo-registers. Each
8151 pseudo-register that does not get a hard register gets a separate
8152 stack slot, and as a result function stack frames are larger.
8153
8154 @item -fira-verbose=@var{n}
8155 @opindex fira-verbose
8156 Control the verbosity of the dump file for the integrated register allocator.
8157 The default value is 5. If the value @var{n} is greater or equal to 10,
8158 the dump output is sent to stderr using the same format as @var{n} minus 10.
8159
8160 @item -flra-remat
8161 @opindex flra-remat
8162 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8163 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8164 values if it is profitable.
8165
8166 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8167
8168 @item -fdelayed-branch
8169 @opindex fdelayed-branch
8170 If supported for the target machine, attempt to reorder instructions
8171 to exploit instruction slots available after delayed branch
8172 instructions.
8173
8174 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8175
8176 @item -fschedule-insns
8177 @opindex fschedule-insns
8178 If supported for the target machine, attempt to reorder instructions to
8179 eliminate execution stalls due to required data being unavailable. This
8180 helps machines that have slow floating point or memory load instructions
8181 by allowing other instructions to be issued until the result of the load
8182 or floating-point instruction is required.
8183
8184 Enabled at levels @option{-O2}, @option{-O3}.
8185
8186 @item -fschedule-insns2
8187 @opindex fschedule-insns2
8188 Similar to @option{-fschedule-insns}, but requests an additional pass of
8189 instruction scheduling after register allocation has been done. This is
8190 especially useful on machines with a relatively small number of
8191 registers and where memory load instructions take more than one cycle.
8192
8193 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8194
8195 @item -fno-sched-interblock
8196 @opindex fno-sched-interblock
8197 Don't schedule instructions across basic blocks. This is normally
8198 enabled by default when scheduling before register allocation, i.e.@:
8199 with @option{-fschedule-insns} or at @option{-O2} or higher.
8200
8201 @item -fno-sched-spec
8202 @opindex fno-sched-spec
8203 Don't allow speculative motion of non-load instructions. This is normally
8204 enabled by default when scheduling before register allocation, i.e.@:
8205 with @option{-fschedule-insns} or at @option{-O2} or higher.
8206
8207 @item -fsched-pressure
8208 @opindex fsched-pressure
8209 Enable register pressure sensitive insn scheduling before register
8210 allocation. This only makes sense when scheduling before register
8211 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8212 @option{-O2} or higher. Usage of this option can improve the
8213 generated code and decrease its size by preventing register pressure
8214 increase above the number of available hard registers and subsequent
8215 spills in register allocation.
8216
8217 @item -fsched-spec-load
8218 @opindex fsched-spec-load
8219 Allow speculative motion of some load instructions. This only makes
8220 sense when scheduling before register allocation, i.e.@: with
8221 @option{-fschedule-insns} or at @option{-O2} or higher.
8222
8223 @item -fsched-spec-load-dangerous
8224 @opindex fsched-spec-load-dangerous
8225 Allow speculative motion of more load instructions. This only makes
8226 sense when scheduling before register allocation, i.e.@: with
8227 @option{-fschedule-insns} or at @option{-O2} or higher.
8228
8229 @item -fsched-stalled-insns
8230 @itemx -fsched-stalled-insns=@var{n}
8231 @opindex fsched-stalled-insns
8232 Define how many insns (if any) can be moved prematurely from the queue
8233 of stalled insns into the ready list during the second scheduling pass.
8234 @option{-fno-sched-stalled-insns} means that no insns are moved
8235 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8236 on how many queued insns can be moved prematurely.
8237 @option{-fsched-stalled-insns} without a value is equivalent to
8238 @option{-fsched-stalled-insns=1}.
8239
8240 @item -fsched-stalled-insns-dep
8241 @itemx -fsched-stalled-insns-dep=@var{n}
8242 @opindex fsched-stalled-insns-dep
8243 Define how many insn groups (cycles) are examined for a dependency
8244 on a stalled insn that is a candidate for premature removal from the queue
8245 of stalled insns. This has an effect only during the second scheduling pass,
8246 and only if @option{-fsched-stalled-insns} is used.
8247 @option{-fno-sched-stalled-insns-dep} is equivalent to
8248 @option{-fsched-stalled-insns-dep=0}.
8249 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8250 @option{-fsched-stalled-insns-dep=1}.
8251
8252 @item -fsched2-use-superblocks
8253 @opindex fsched2-use-superblocks
8254 When scheduling after register allocation, use superblock scheduling.
8255 This allows motion across basic block boundaries,
8256 resulting in faster schedules. This option is experimental, as not all machine
8257 descriptions used by GCC model the CPU closely enough to avoid unreliable
8258 results from the algorithm.
8259
8260 This only makes sense when scheduling after register allocation, i.e.@: with
8261 @option{-fschedule-insns2} or at @option{-O2} or higher.
8262
8263 @item -fsched-group-heuristic
8264 @opindex fsched-group-heuristic
8265 Enable the group heuristic in the scheduler. This heuristic favors
8266 the instruction that belongs to a schedule group. This is enabled
8267 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8268 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8269
8270 @item -fsched-critical-path-heuristic
8271 @opindex fsched-critical-path-heuristic
8272 Enable the critical-path heuristic in the scheduler. This heuristic favors
8273 instructions on the critical path. This is enabled by default when
8274 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8275 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8276
8277 @item -fsched-spec-insn-heuristic
8278 @opindex fsched-spec-insn-heuristic
8279 Enable the speculative instruction heuristic in the scheduler. This
8280 heuristic favors speculative instructions with greater dependency weakness.
8281 This is enabled by default when scheduling is enabled, i.e.@:
8282 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8283 or at @option{-O2} or higher.
8284
8285 @item -fsched-rank-heuristic
8286 @opindex fsched-rank-heuristic
8287 Enable the rank heuristic in the scheduler. This heuristic favors
8288 the instruction belonging to a basic block with greater size or frequency.
8289 This is enabled by default when scheduling is enabled, i.e.@:
8290 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8291 at @option{-O2} or higher.
8292
8293 @item -fsched-last-insn-heuristic
8294 @opindex fsched-last-insn-heuristic
8295 Enable the last-instruction heuristic in the scheduler. This heuristic
8296 favors the instruction that is less dependent on the last instruction
8297 scheduled. This is enabled by default when scheduling is enabled,
8298 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8299 at @option{-O2} or higher.
8300
8301 @item -fsched-dep-count-heuristic
8302 @opindex fsched-dep-count-heuristic
8303 Enable the dependent-count heuristic in the scheduler. This heuristic
8304 favors the instruction that has more instructions depending on it.
8305 This is enabled by default when scheduling is enabled, i.e.@:
8306 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8307 at @option{-O2} or higher.
8308
8309 @item -freschedule-modulo-scheduled-loops
8310 @opindex freschedule-modulo-scheduled-loops
8311 Modulo scheduling is performed before traditional scheduling. If a loop
8312 is modulo scheduled, later scheduling passes may change its schedule.
8313 Use this option to control that behavior.
8314
8315 @item -fselective-scheduling
8316 @opindex fselective-scheduling
8317 Schedule instructions using selective scheduling algorithm. Selective
8318 scheduling runs instead of the first scheduler pass.
8319
8320 @item -fselective-scheduling2
8321 @opindex fselective-scheduling2
8322 Schedule instructions using selective scheduling algorithm. Selective
8323 scheduling runs instead of the second scheduler pass.
8324
8325 @item -fsel-sched-pipelining
8326 @opindex fsel-sched-pipelining
8327 Enable software pipelining of innermost loops during selective scheduling.
8328 This option has no effect unless one of @option{-fselective-scheduling} or
8329 @option{-fselective-scheduling2} is turned on.
8330
8331 @item -fsel-sched-pipelining-outer-loops
8332 @opindex fsel-sched-pipelining-outer-loops
8333 When pipelining loops during selective scheduling, also pipeline outer loops.
8334 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8335
8336 @item -fsemantic-interposition
8337 @opindex fsemantic-interposition
8338 Some object formats, like ELF, allow interposing of symbols by the
8339 dynamic linker.
8340 This means that for symbols exported from the DSO, the compiler cannot perform
8341 interprocedural propagation, inlining and other optimizations in anticipation
8342 that the function or variable in question may change. While this feature is
8343 useful, for example, to rewrite memory allocation functions by a debugging
8344 implementation, it is expensive in the terms of code quality.
8345 With @option{-fno-semantic-interposition} the compiler assumes that
8346 if interposition happens for functions the overwriting function will have
8347 precisely the same semantics (and side effects).
8348 Similarly if interposition happens
8349 for variables, the constructor of the variable will be the same. The flag
8350 has no effect for functions explicitly declared inline
8351 (where it is never allowed for interposition to change semantics)
8352 and for symbols explicitly declared weak.
8353
8354 @item -fshrink-wrap
8355 @opindex fshrink-wrap
8356 Emit function prologues only before parts of the function that need it,
8357 rather than at the top of the function. This flag is enabled by default at
8358 @option{-O} and higher.
8359
8360 @item -fcaller-saves
8361 @opindex fcaller-saves
8362 Enable allocation of values to registers that are clobbered by
8363 function calls, by emitting extra instructions to save and restore the
8364 registers around such calls. Such allocation is done only when it
8365 seems to result in better code.
8366
8367 This option is always enabled by default on certain machines, usually
8368 those which have no call-preserved registers to use instead.
8369
8370 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8371
8372 @item -fcombine-stack-adjustments
8373 @opindex fcombine-stack-adjustments
8374 Tracks stack adjustments (pushes and pops) and stack memory references
8375 and then tries to find ways to combine them.
8376
8377 Enabled by default at @option{-O1} and higher.
8378
8379 @item -fipa-ra
8380 @opindex fipa-ra
8381 Use caller save registers for allocation if those registers are not used by
8382 any called function. In that case it is not necessary to save and restore
8383 them around calls. This is only possible if called functions are part of
8384 same compilation unit as current function and they are compiled before it.
8385
8386 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8387
8388 @item -fconserve-stack
8389 @opindex fconserve-stack
8390 Attempt to minimize stack usage. The compiler attempts to use less
8391 stack space, even if that makes the program slower. This option
8392 implies setting the @option{large-stack-frame} parameter to 100
8393 and the @option{large-stack-frame-growth} parameter to 400.
8394
8395 @item -ftree-reassoc
8396 @opindex ftree-reassoc
8397 Perform reassociation on trees. This flag is enabled by default
8398 at @option{-O} and higher.
8399
8400 @item -ftree-pre
8401 @opindex ftree-pre
8402 Perform partial redundancy elimination (PRE) on trees. This flag is
8403 enabled by default at @option{-O2} and @option{-O3}.
8404
8405 @item -ftree-partial-pre
8406 @opindex ftree-partial-pre
8407 Make partial redundancy elimination (PRE) more aggressive. This flag is
8408 enabled by default at @option{-O3}.
8409
8410 @item -ftree-forwprop
8411 @opindex ftree-forwprop
8412 Perform forward propagation on trees. This flag is enabled by default
8413 at @option{-O} and higher.
8414
8415 @item -ftree-fre
8416 @opindex ftree-fre
8417 Perform full redundancy elimination (FRE) on trees. The difference
8418 between FRE and PRE is that FRE only considers expressions
8419 that are computed on all paths leading to the redundant computation.
8420 This analysis is faster than PRE, though it exposes fewer redundancies.
8421 This flag is enabled by default at @option{-O} and higher.
8422
8423 @item -ftree-phiprop
8424 @opindex ftree-phiprop
8425 Perform hoisting of loads from conditional pointers on trees. This
8426 pass is enabled by default at @option{-O} and higher.
8427
8428 @item -fhoist-adjacent-loads
8429 @opindex fhoist-adjacent-loads
8430 Speculatively hoist loads from both branches of an if-then-else if the
8431 loads are from adjacent locations in the same structure and the target
8432 architecture has a conditional move instruction. This flag is enabled
8433 by default at @option{-O2} and higher.
8434
8435 @item -ftree-copy-prop
8436 @opindex ftree-copy-prop
8437 Perform copy propagation on trees. This pass eliminates unnecessary
8438 copy operations. This flag is enabled by default at @option{-O} and
8439 higher.
8440
8441 @item -fipa-pure-const
8442 @opindex fipa-pure-const
8443 Discover which functions are pure or constant.
8444 Enabled by default at @option{-O} and higher.
8445
8446 @item -fipa-reference
8447 @opindex fipa-reference
8448 Discover which static variables do not escape the
8449 compilation unit.
8450 Enabled by default at @option{-O} and higher.
8451
8452 @item -fipa-pta
8453 @opindex fipa-pta
8454 Perform interprocedural pointer analysis and interprocedural modification
8455 and reference analysis. This option can cause excessive memory and
8456 compile-time usage on large compilation units. It is not enabled by
8457 default at any optimization level.
8458
8459 @item -fipa-profile
8460 @opindex fipa-profile
8461 Perform interprocedural profile propagation. The functions called only from
8462 cold functions are marked as cold. Also functions executed once (such as
8463 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8464 functions and loop less parts of functions executed once are then optimized for
8465 size.
8466 Enabled by default at @option{-O} and higher.
8467
8468 @item -fipa-cp
8469 @opindex fipa-cp
8470 Perform interprocedural constant propagation.
8471 This optimization analyzes the program to determine when values passed
8472 to functions are constants and then optimizes accordingly.
8473 This optimization can substantially increase performance
8474 if the application has constants passed to functions.
8475 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8476
8477 @item -fipa-cp-clone
8478 @opindex fipa-cp-clone
8479 Perform function cloning to make interprocedural constant propagation stronger.
8480 When enabled, interprocedural constant propagation performs function cloning
8481 when externally visible function can be called with constant arguments.
8482 Because this optimization can create multiple copies of functions,
8483 it may significantly increase code size
8484 (see @option{--param ipcp-unit-growth=@var{value}}).
8485 This flag is enabled by default at @option{-O3}.
8486
8487 @item -fipa-cp-alignment
8488 @opindex -fipa-cp-alignment
8489 When enabled, this optimization propagates alignment of function
8490 parameters to support better vectorization and string operations.
8491
8492 This flag is enabled by default at @option{-O2} and @option{-Os}. It
8493 requires that @option{-fipa-cp} is enabled.
8494
8495 @item -fipa-icf
8496 @opindex fipa-icf
8497 Perform Identical Code Folding for functions and read-only variables.
8498 The optimization reduces code size and may disturb unwind stacks by replacing
8499 a function by equivalent one with a different name. The optimization works
8500 more effectively with link time optimization enabled.
8501
8502 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8503 works on different levels and thus the optimizations are not same - there are
8504 equivalences that are found only by GCC and equivalences found only by Gold.
8505
8506 This flag is enabled by default at @option{-O2} and @option{-Os}.
8507
8508 @item -fisolate-erroneous-paths-dereference
8509 @opindex fisolate-erroneous-paths-dereference
8510 Detect paths that trigger erroneous or undefined behavior due to
8511 dereferencing a null pointer. Isolate those paths from the main control
8512 flow and turn the statement with erroneous or undefined behavior into a trap.
8513 This flag is enabled by default at @option{-O2} and higher.
8514
8515 @item -fisolate-erroneous-paths-attribute
8516 @opindex fisolate-erroneous-paths-attribute
8517 Detect paths that trigger erroneous or undefined behavior due a null value
8518 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8519 attribute. Isolate those paths from the main control flow and turn the
8520 statement with erroneous or undefined behavior into a trap. This is not
8521 currently enabled, but may be enabled by @option{-O2} in the future.
8522
8523 @item -ftree-sink
8524 @opindex ftree-sink
8525 Perform forward store motion on trees. This flag is
8526 enabled by default at @option{-O} and higher.
8527
8528 @item -ftree-bit-ccp
8529 @opindex ftree-bit-ccp
8530 Perform sparse conditional bit constant propagation on trees and propagate
8531 pointer alignment information.
8532 This pass only operates on local scalar variables and is enabled by default
8533 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8534
8535 @item -ftree-ccp
8536 @opindex ftree-ccp
8537 Perform sparse conditional constant propagation (CCP) on trees. This
8538 pass only operates on local scalar variables and is enabled by default
8539 at @option{-O} and higher.
8540
8541 @item -fssa-phiopt
8542 @opindex fssa-phiopt
8543 Perform pattern matching on SSA PHI nodes to optimize conditional
8544 code. This pass is enabled by default at @option{-O} and higher.
8545
8546 @item -ftree-switch-conversion
8547 @opindex ftree-switch-conversion
8548 Perform conversion of simple initializations in a switch to
8549 initializations from a scalar array. This flag is enabled by default
8550 at @option{-O2} and higher.
8551
8552 @item -ftree-tail-merge
8553 @opindex ftree-tail-merge
8554 Look for identical code sequences. When found, replace one with a jump to the
8555 other. This optimization is known as tail merging or cross jumping. This flag
8556 is enabled by default at @option{-O2} and higher. The compilation time
8557 in this pass can
8558 be limited using @option{max-tail-merge-comparisons} parameter and
8559 @option{max-tail-merge-iterations} parameter.
8560
8561 @item -ftree-dce
8562 @opindex ftree-dce
8563 Perform dead code elimination (DCE) on trees. This flag is enabled by
8564 default at @option{-O} and higher.
8565
8566 @item -ftree-builtin-call-dce
8567 @opindex ftree-builtin-call-dce
8568 Perform conditional dead code elimination (DCE) for calls to built-in functions
8569 that may set @code{errno} but are otherwise side-effect free. This flag is
8570 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8571 specified.
8572
8573 @item -ftree-dominator-opts
8574 @opindex ftree-dominator-opts
8575 Perform a variety of simple scalar cleanups (constant/copy
8576 propagation, redundancy elimination, range propagation and expression
8577 simplification) based on a dominator tree traversal. This also
8578 performs jump threading (to reduce jumps to jumps). This flag is
8579 enabled by default at @option{-O} and higher.
8580
8581 @item -ftree-dse
8582 @opindex ftree-dse
8583 Perform dead store elimination (DSE) on trees. A dead store is a store into
8584 a memory location that is later overwritten by another store without
8585 any intervening loads. In this case the earlier store can be deleted. This
8586 flag is enabled by default at @option{-O} and higher.
8587
8588 @item -ftree-ch
8589 @opindex ftree-ch
8590 Perform loop header copying on trees. This is beneficial since it increases
8591 effectiveness of code motion optimizations. It also saves one jump. This flag
8592 is enabled by default at @option{-O} and higher. It is not enabled
8593 for @option{-Os}, since it usually increases code size.
8594
8595 @item -ftree-loop-optimize
8596 @opindex ftree-loop-optimize
8597 Perform loop optimizations on trees. This flag is enabled by default
8598 at @option{-O} and higher.
8599
8600 @item -ftree-loop-linear
8601 @opindex ftree-loop-linear
8602 Perform loop interchange transformations on tree. Same as
8603 @option{-floop-interchange}. To use this code transformation, GCC has
8604 to be configured with @option{--with-isl} to enable the Graphite loop
8605 transformation infrastructure.
8606
8607 @item -floop-interchange
8608 @opindex floop-interchange
8609 Perform loop interchange transformations on loops. Interchanging two
8610 nested loops switches the inner and outer loops. For example, given a
8611 loop like:
8612 @smallexample
8613 DO J = 1, M
8614 DO I = 1, N
8615 A(J, I) = A(J, I) * C
8616 ENDDO
8617 ENDDO
8618 @end smallexample
8619 @noindent
8620 loop interchange transforms the loop as if it were written:
8621 @smallexample
8622 DO I = 1, N
8623 DO J = 1, M
8624 A(J, I) = A(J, I) * C
8625 ENDDO
8626 ENDDO
8627 @end smallexample
8628 which can be beneficial when @code{N} is larger than the caches,
8629 because in Fortran, the elements of an array are stored in memory
8630 contiguously by column, and the original loop iterates over rows,
8631 potentially creating at each access a cache miss. This optimization
8632 applies to all the languages supported by GCC and is not limited to
8633 Fortran. To use this code transformation, GCC has to be configured
8634 with @option{--with-isl} to enable the Graphite loop transformation
8635 infrastructure.
8636
8637 @item -floop-strip-mine
8638 @opindex floop-strip-mine
8639 Perform loop strip mining transformations on loops. Strip mining
8640 splits a loop into two nested loops. The outer loop has strides
8641 equal to the strip size and the inner loop has strides of the
8642 original loop within a strip. The strip length can be changed
8643 using the @option{loop-block-tile-size} parameter. For example,
8644 given a loop like:
8645 @smallexample
8646 DO I = 1, N
8647 A(I) = A(I) + C
8648 ENDDO
8649 @end smallexample
8650 @noindent
8651 loop strip mining transforms the loop as if it were written:
8652 @smallexample
8653 DO II = 1, N, 51
8654 DO I = II, min (II + 50, N)
8655 A(I) = A(I) + C
8656 ENDDO
8657 ENDDO
8658 @end smallexample
8659 This optimization applies to all the languages supported by GCC and is
8660 not limited to Fortran. To use this code transformation, GCC has to
8661 be configured with @option{--with-isl} to enable the Graphite loop
8662 transformation infrastructure.
8663
8664 @item -floop-block
8665 @opindex floop-block
8666 Perform loop blocking transformations on loops. Blocking strip mines
8667 each loop in the loop nest such that the memory accesses of the
8668 element loops fit inside caches. The strip length can be changed
8669 using the @option{loop-block-tile-size} parameter. For example, given
8670 a loop like:
8671 @smallexample
8672 DO I = 1, N
8673 DO J = 1, M
8674 A(J, I) = B(I) + C(J)
8675 ENDDO
8676 ENDDO
8677 @end smallexample
8678 @noindent
8679 loop blocking transforms the loop as if it were written:
8680 @smallexample
8681 DO II = 1, N, 51
8682 DO JJ = 1, M, 51
8683 DO I = II, min (II + 50, N)
8684 DO J = JJ, min (JJ + 50, M)
8685 A(J, I) = B(I) + C(J)
8686 ENDDO
8687 ENDDO
8688 ENDDO
8689 ENDDO
8690 @end smallexample
8691 which can be beneficial when @code{M} is larger than the caches,
8692 because the innermost loop iterates over a smaller amount of data
8693 which can be kept in the caches. This optimization applies to all the
8694 languages supported by GCC and is not limited to Fortran. To use this
8695 code transformation, GCC has to be configured with @option{--with-isl}
8696 to enable the Graphite loop transformation infrastructure.
8697
8698 @item -fgraphite-identity
8699 @opindex fgraphite-identity
8700 Enable the identity transformation for graphite. For every SCoP we generate
8701 the polyhedral representation and transform it back to gimple. Using
8702 @option{-fgraphite-identity} we can check the costs or benefits of the
8703 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8704 are also performed by the code generator ISL, like index splitting and
8705 dead code elimination in loops.
8706
8707 @item -floop-nest-optimize
8708 @opindex floop-nest-optimize
8709 Enable the ISL based loop nest optimizer. This is a generic loop nest
8710 optimizer based on the Pluto optimization algorithms. It calculates a loop
8711 structure optimized for data-locality and parallelism. This option
8712 is experimental.
8713
8714 @item -floop-unroll-and-jam
8715 @opindex floop-unroll-and-jam
8716 Enable unroll and jam for the ISL based loop nest optimizer. The unroll
8717 factor can be changed using the @option{loop-unroll-jam-size} parameter.
8718 The unrolled dimension (counting from the most inner one) can be changed
8719 using the @option{loop-unroll-jam-depth} parameter. .
8720
8721 @item -floop-parallelize-all
8722 @opindex floop-parallelize-all
8723 Use the Graphite data dependence analysis to identify loops that can
8724 be parallelized. Parallelize all the loops that can be analyzed to
8725 not contain loop carried dependences without checking that it is
8726 profitable to parallelize the loops.
8727
8728 @item -fcheck-data-deps
8729 @opindex fcheck-data-deps
8730 Compare the results of several data dependence analyzers. This option
8731 is used for debugging the data dependence analyzers.
8732
8733 @item -ftree-loop-if-convert
8734 @opindex ftree-loop-if-convert
8735 Attempt to transform conditional jumps in the innermost loops to
8736 branch-less equivalents. The intent is to remove control-flow from
8737 the innermost loops in order to improve the ability of the
8738 vectorization pass to handle these loops. This is enabled by default
8739 if vectorization is enabled.
8740
8741 @item -ftree-loop-if-convert-stores
8742 @opindex ftree-loop-if-convert-stores
8743 Attempt to also if-convert conditional jumps containing memory writes.
8744 This transformation can be unsafe for multi-threaded programs as it
8745 transforms conditional memory writes into unconditional memory writes.
8746 For example,
8747 @smallexample
8748 for (i = 0; i < N; i++)
8749 if (cond)
8750 A[i] = expr;
8751 @end smallexample
8752 is transformed to
8753 @smallexample
8754 for (i = 0; i < N; i++)
8755 A[i] = cond ? expr : A[i];
8756 @end smallexample
8757 potentially producing data races.
8758
8759 @item -ftree-loop-distribution
8760 @opindex ftree-loop-distribution
8761 Perform loop distribution. This flag can improve cache performance on
8762 big loop bodies and allow further loop optimizations, like
8763 parallelization or vectorization, to take place. For example, the loop
8764 @smallexample
8765 DO I = 1, N
8766 A(I) = B(I) + C
8767 D(I) = E(I) * F
8768 ENDDO
8769 @end smallexample
8770 is transformed to
8771 @smallexample
8772 DO I = 1, N
8773 A(I) = B(I) + C
8774 ENDDO
8775 DO I = 1, N
8776 D(I) = E(I) * F
8777 ENDDO
8778 @end smallexample
8779
8780 @item -ftree-loop-distribute-patterns
8781 @opindex ftree-loop-distribute-patterns
8782 Perform loop distribution of patterns that can be code generated with
8783 calls to a library. This flag is enabled by default at @option{-O3}.
8784
8785 This pass distributes the initialization loops and generates a call to
8786 memset zero. For example, the loop
8787 @smallexample
8788 DO I = 1, N
8789 A(I) = 0
8790 B(I) = A(I) + I
8791 ENDDO
8792 @end smallexample
8793 is transformed to
8794 @smallexample
8795 DO I = 1, N
8796 A(I) = 0
8797 ENDDO
8798 DO I = 1, N
8799 B(I) = A(I) + I
8800 ENDDO
8801 @end smallexample
8802 and the initialization loop is transformed into a call to memset zero.
8803
8804 @item -ftree-loop-im
8805 @opindex ftree-loop-im
8806 Perform loop invariant motion on trees. This pass moves only invariants that
8807 are hard to handle at RTL level (function calls, operations that expand to
8808 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8809 operands of conditions that are invariant out of the loop, so that we can use
8810 just trivial invariantness analysis in loop unswitching. The pass also includes
8811 store motion.
8812
8813 @item -ftree-loop-ivcanon
8814 @opindex ftree-loop-ivcanon
8815 Create a canonical counter for number of iterations in loops for which
8816 determining number of iterations requires complicated analysis. Later
8817 optimizations then may determine the number easily. Useful especially
8818 in connection with unrolling.
8819
8820 @item -fivopts
8821 @opindex fivopts
8822 Perform induction variable optimizations (strength reduction, induction
8823 variable merging and induction variable elimination) on trees.
8824
8825 @item -ftree-parallelize-loops=n
8826 @opindex ftree-parallelize-loops
8827 Parallelize loops, i.e., split their iteration space to run in n threads.
8828 This is only possible for loops whose iterations are independent
8829 and can be arbitrarily reordered. The optimization is only
8830 profitable on multiprocessor machines, for loops that are CPU-intensive,
8831 rather than constrained e.g.@: by memory bandwidth. This option
8832 implies @option{-pthread}, and thus is only supported on targets
8833 that have support for @option{-pthread}.
8834
8835 @item -ftree-pta
8836 @opindex ftree-pta
8837 Perform function-local points-to analysis on trees. This flag is
8838 enabled by default at @option{-O} and higher.
8839
8840 @item -ftree-sra
8841 @opindex ftree-sra
8842 Perform scalar replacement of aggregates. This pass replaces structure
8843 references with scalars to prevent committing structures to memory too
8844 early. This flag is enabled by default at @option{-O} and higher.
8845
8846 @item -ftree-copyrename
8847 @opindex ftree-copyrename
8848 Perform copy renaming on trees. This pass attempts to rename compiler
8849 temporaries to other variables at copy locations, usually resulting in
8850 variable names which more closely resemble the original variables. This flag
8851 is enabled by default at @option{-O} and higher.
8852
8853 @item -ftree-coalesce-inlined-vars
8854 @opindex ftree-coalesce-inlined-vars
8855 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8856 combine small user-defined variables too, but only if they are inlined
8857 from other functions. It is a more limited form of
8858 @option{-ftree-coalesce-vars}. This may harm debug information of such
8859 inlined variables, but it keeps variables of the inlined-into
8860 function apart from each other, such that they are more likely to
8861 contain the expected values in a debugging session.
8862
8863 @item -ftree-coalesce-vars
8864 @opindex ftree-coalesce-vars
8865 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8866 combine small user-defined variables too, instead of just compiler
8867 temporaries. This may severely limit the ability to debug an optimized
8868 program compiled with @option{-fno-var-tracking-assignments}. In the
8869 negated form, this flag prevents SSA coalescing of user variables,
8870 including inlined ones. This option is enabled by default.
8871
8872 @item -ftree-ter
8873 @opindex ftree-ter
8874 Perform temporary expression replacement during the SSA->normal phase. Single
8875 use/single def temporaries are replaced at their use location with their
8876 defining expression. This results in non-GIMPLE code, but gives the expanders
8877 much more complex trees to work on resulting in better RTL generation. This is
8878 enabled by default at @option{-O} and higher.
8879
8880 @item -ftree-slsr
8881 @opindex ftree-slsr
8882 Perform straight-line strength reduction on trees. This recognizes related
8883 expressions involving multiplications and replaces them by less expensive
8884 calculations when possible. This is enabled by default at @option{-O} and
8885 higher.
8886
8887 @item -ftree-vectorize
8888 @opindex ftree-vectorize
8889 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8890 and @option{-ftree-slp-vectorize} if not explicitly specified.
8891
8892 @item -ftree-loop-vectorize
8893 @opindex ftree-loop-vectorize
8894 Perform loop vectorization on trees. This flag is enabled by default at
8895 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8896
8897 @item -ftree-slp-vectorize
8898 @opindex ftree-slp-vectorize
8899 Perform basic block vectorization on trees. This flag is enabled by default at
8900 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8901
8902 @item -fvect-cost-model=@var{model}
8903 @opindex fvect-cost-model
8904 Alter the cost model used for vectorization. The @var{model} argument
8905 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8906 With the @samp{unlimited} model the vectorized code-path is assumed
8907 to be profitable while with the @samp{dynamic} model a runtime check
8908 guards the vectorized code-path to enable it only for iteration
8909 counts that will likely execute faster than when executing the original
8910 scalar loop. The @samp{cheap} model disables vectorization of
8911 loops where doing so would be cost prohibitive for example due to
8912 required runtime checks for data dependence or alignment but otherwise
8913 is equal to the @samp{dynamic} model.
8914 The default cost model depends on other optimization flags and is
8915 either @samp{dynamic} or @samp{cheap}.
8916
8917 @item -fsimd-cost-model=@var{model}
8918 @opindex fsimd-cost-model
8919 Alter the cost model used for vectorization of loops marked with the OpenMP
8920 or Cilk Plus simd directive. The @var{model} argument should be one of
8921 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
8922 have the same meaning as described in @option{-fvect-cost-model} and by
8923 default a cost model defined with @option{-fvect-cost-model} is used.
8924
8925 @item -ftree-vrp
8926 @opindex ftree-vrp
8927 Perform Value Range Propagation on trees. This is similar to the
8928 constant propagation pass, but instead of values, ranges of values are
8929 propagated. This allows the optimizers to remove unnecessary range
8930 checks like array bound checks and null pointer checks. This is
8931 enabled by default at @option{-O2} and higher. Null pointer check
8932 elimination is only done if @option{-fdelete-null-pointer-checks} is
8933 enabled.
8934
8935 @item -fsplit-ivs-in-unroller
8936 @opindex fsplit-ivs-in-unroller
8937 Enables expression of values of induction variables in later iterations
8938 of the unrolled loop using the value in the first iteration. This breaks
8939 long dependency chains, thus improving efficiency of the scheduling passes.
8940
8941 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8942 same effect. However, that is not reliable in cases where the loop body
8943 is more complicated than a single basic block. It also does not work at all
8944 on some architectures due to restrictions in the CSE pass.
8945
8946 This optimization is enabled by default.
8947
8948 @item -fvariable-expansion-in-unroller
8949 @opindex fvariable-expansion-in-unroller
8950 With this option, the compiler creates multiple copies of some
8951 local variables when unrolling a loop, which can result in superior code.
8952
8953 @item -fpartial-inlining
8954 @opindex fpartial-inlining
8955 Inline parts of functions. This option has any effect only
8956 when inlining itself is turned on by the @option{-finline-functions}
8957 or @option{-finline-small-functions} options.
8958
8959 Enabled at level @option{-O2}.
8960
8961 @item -fpredictive-commoning
8962 @opindex fpredictive-commoning
8963 Perform predictive commoning optimization, i.e., reusing computations
8964 (especially memory loads and stores) performed in previous
8965 iterations of loops.
8966
8967 This option is enabled at level @option{-O3}.
8968
8969 @item -fprefetch-loop-arrays
8970 @opindex fprefetch-loop-arrays
8971 If supported by the target machine, generate instructions to prefetch
8972 memory to improve the performance of loops that access large arrays.
8973
8974 This option may generate better or worse code; results are highly
8975 dependent on the structure of loops within the source code.
8976
8977 Disabled at level @option{-Os}.
8978
8979 @item -fno-peephole
8980 @itemx -fno-peephole2
8981 @opindex fno-peephole
8982 @opindex fno-peephole2
8983 Disable any machine-specific peephole optimizations. The difference
8984 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
8985 are implemented in the compiler; some targets use one, some use the
8986 other, a few use both.
8987
8988 @option{-fpeephole} is enabled by default.
8989 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8990
8991 @item -fno-guess-branch-probability
8992 @opindex fno-guess-branch-probability
8993 Do not guess branch probabilities using heuristics.
8994
8995 GCC uses heuristics to guess branch probabilities if they are
8996 not provided by profiling feedback (@option{-fprofile-arcs}). These
8997 heuristics are based on the control flow graph. If some branch probabilities
8998 are specified by @code{__builtin_expect}, then the heuristics are
8999 used to guess branch probabilities for the rest of the control flow graph,
9000 taking the @code{__builtin_expect} info into account. The interactions
9001 between the heuristics and @code{__builtin_expect} can be complex, and in
9002 some cases, it may be useful to disable the heuristics so that the effects
9003 of @code{__builtin_expect} are easier to understand.
9004
9005 The default is @option{-fguess-branch-probability} at levels
9006 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9007
9008 @item -freorder-blocks
9009 @opindex freorder-blocks
9010 Reorder basic blocks in the compiled function in order to reduce number of
9011 taken branches and improve code locality.
9012
9013 Enabled at levels @option{-O2}, @option{-O3}.
9014
9015 @item -freorder-blocks-and-partition
9016 @opindex freorder-blocks-and-partition
9017 In addition to reordering basic blocks in the compiled function, in order
9018 to reduce number of taken branches, partitions hot and cold basic blocks
9019 into separate sections of the assembly and .o files, to improve
9020 paging and cache locality performance.
9021
9022 This optimization is automatically turned off in the presence of
9023 exception handling, for linkonce sections, for functions with a user-defined
9024 section attribute and on any architecture that does not support named
9025 sections.
9026
9027 Enabled for x86 at levels @option{-O2}, @option{-O3}.
9028
9029 @item -freorder-functions
9030 @opindex freorder-functions
9031 Reorder functions in the object file in order to
9032 improve code locality. This is implemented by using special
9033 subsections @code{.text.hot} for most frequently executed functions and
9034 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9035 the linker so object file format must support named sections and linker must
9036 place them in a reasonable way.
9037
9038 Also profile feedback must be available to make this option effective. See
9039 @option{-fprofile-arcs} for details.
9040
9041 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9042
9043 @item -fstrict-aliasing
9044 @opindex fstrict-aliasing
9045 Allow the compiler to assume the strictest aliasing rules applicable to
9046 the language being compiled. For C (and C++), this activates
9047 optimizations based on the type of expressions. In particular, an
9048 object of one type is assumed never to reside at the same address as an
9049 object of a different type, unless the types are almost the same. For
9050 example, an @code{unsigned int} can alias an @code{int}, but not a
9051 @code{void*} or a @code{double}. A character type may alias any other
9052 type.
9053
9054 @anchor{Type-punning}Pay special attention to code like this:
9055 @smallexample
9056 union a_union @{
9057 int i;
9058 double d;
9059 @};
9060
9061 int f() @{
9062 union a_union t;
9063 t.d = 3.0;
9064 return t.i;
9065 @}
9066 @end smallexample
9067 The practice of reading from a different union member than the one most
9068 recently written to (called ``type-punning'') is common. Even with
9069 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9070 is accessed through the union type. So, the code above works as
9071 expected. @xref{Structures unions enumerations and bit-fields
9072 implementation}. However, this code might not:
9073 @smallexample
9074 int f() @{
9075 union a_union t;
9076 int* ip;
9077 t.d = 3.0;
9078 ip = &t.i;
9079 return *ip;
9080 @}
9081 @end smallexample
9082
9083 Similarly, access by taking the address, casting the resulting pointer
9084 and dereferencing the result has undefined behavior, even if the cast
9085 uses a union type, e.g.:
9086 @smallexample
9087 int f() @{
9088 double d = 3.0;
9089 return ((union a_union *) &d)->i;
9090 @}
9091 @end smallexample
9092
9093 The @option{-fstrict-aliasing} option is enabled at levels
9094 @option{-O2}, @option{-O3}, @option{-Os}.
9095
9096 @item -fstrict-overflow
9097 @opindex fstrict-overflow
9098 Allow the compiler to assume strict signed overflow rules, depending
9099 on the language being compiled. For C (and C++) this means that
9100 overflow when doing arithmetic with signed numbers is undefined, which
9101 means that the compiler may assume that it does not happen. This
9102 permits various optimizations. For example, the compiler assumes
9103 that an expression like @code{i + 10 > i} is always true for
9104 signed @code{i}. This assumption is only valid if signed overflow is
9105 undefined, as the expression is false if @code{i + 10} overflows when
9106 using twos complement arithmetic. When this option is in effect any
9107 attempt to determine whether an operation on signed numbers
9108 overflows must be written carefully to not actually involve overflow.
9109
9110 This option also allows the compiler to assume strict pointer
9111 semantics: given a pointer to an object, if adding an offset to that
9112 pointer does not produce a pointer to the same object, the addition is
9113 undefined. This permits the compiler to conclude that @code{p + u >
9114 p} is always true for a pointer @code{p} and unsigned integer
9115 @code{u}. This assumption is only valid because pointer wraparound is
9116 undefined, as the expression is false if @code{p + u} overflows using
9117 twos complement arithmetic.
9118
9119 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
9120 that integer signed overflow is fully defined: it wraps. When
9121 @option{-fwrapv} is used, there is no difference between
9122 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9123 integers. With @option{-fwrapv} certain types of overflow are
9124 permitted. For example, if the compiler gets an overflow when doing
9125 arithmetic on constants, the overflowed value can still be used with
9126 @option{-fwrapv}, but not otherwise.
9127
9128 The @option{-fstrict-overflow} option is enabled at levels
9129 @option{-O2}, @option{-O3}, @option{-Os}.
9130
9131 @item -falign-functions
9132 @itemx -falign-functions=@var{n}
9133 @opindex falign-functions
9134 Align the start of functions to the next power-of-two greater than
9135 @var{n}, skipping up to @var{n} bytes. For instance,
9136 @option{-falign-functions=32} aligns functions to the next 32-byte
9137 boundary, but @option{-falign-functions=24} aligns to the next
9138 32-byte boundary only if this can be done by skipping 23 bytes or less.
9139
9140 @option{-fno-align-functions} and @option{-falign-functions=1} are
9141 equivalent and mean that functions are not aligned.
9142
9143 Some assemblers only support this flag when @var{n} is a power of two;
9144 in that case, it is rounded up.
9145
9146 If @var{n} is not specified or is zero, use a machine-dependent default.
9147
9148 Enabled at levels @option{-O2}, @option{-O3}.
9149
9150 @item -falign-labels
9151 @itemx -falign-labels=@var{n}
9152 @opindex falign-labels
9153 Align all branch targets to a power-of-two boundary, skipping up to
9154 @var{n} bytes like @option{-falign-functions}. This option can easily
9155 make code slower, because it must insert dummy operations for when the
9156 branch target is reached in the usual flow of the code.
9157
9158 @option{-fno-align-labels} and @option{-falign-labels=1} are
9159 equivalent and mean that labels are not aligned.
9160
9161 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9162 are greater than this value, then their values are used instead.
9163
9164 If @var{n} is not specified or is zero, use a machine-dependent default
9165 which is very likely to be @samp{1}, meaning no alignment.
9166
9167 Enabled at levels @option{-O2}, @option{-O3}.
9168
9169 @item -falign-loops
9170 @itemx -falign-loops=@var{n}
9171 @opindex falign-loops
9172 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9173 like @option{-falign-functions}. If the loops are
9174 executed many times, this makes up for any execution of the dummy
9175 operations.
9176
9177 @option{-fno-align-loops} and @option{-falign-loops=1} are
9178 equivalent and mean that loops are not aligned.
9179
9180 If @var{n} is not specified or is zero, use a machine-dependent default.
9181
9182 Enabled at levels @option{-O2}, @option{-O3}.
9183
9184 @item -falign-jumps
9185 @itemx -falign-jumps=@var{n}
9186 @opindex falign-jumps
9187 Align branch targets to a power-of-two boundary, for branch targets
9188 where the targets can only be reached by jumping, skipping up to @var{n}
9189 bytes like @option{-falign-functions}. In this case, no dummy operations
9190 need be executed.
9191
9192 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9193 equivalent and mean that loops are not aligned.
9194
9195 If @var{n} is not specified or is zero, use a machine-dependent default.
9196
9197 Enabled at levels @option{-O2}, @option{-O3}.
9198
9199 @item -funit-at-a-time
9200 @opindex funit-at-a-time
9201 This option is left for compatibility reasons. @option{-funit-at-a-time}
9202 has no effect, while @option{-fno-unit-at-a-time} implies
9203 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9204
9205 Enabled by default.
9206
9207 @item -fno-toplevel-reorder
9208 @opindex fno-toplevel-reorder
9209 Do not reorder top-level functions, variables, and @code{asm}
9210 statements. Output them in the same order that they appear in the
9211 input file. When this option is used, unreferenced static variables
9212 are not removed. This option is intended to support existing code
9213 that relies on a particular ordering. For new code, it is better to
9214 use attributes when possible.
9215
9216 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9217 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9218 targets.
9219
9220 @item -fweb
9221 @opindex fweb
9222 Constructs webs as commonly used for register allocation purposes and assign
9223 each web individual pseudo register. This allows the register allocation pass
9224 to operate on pseudos directly, but also strengthens several other optimization
9225 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9226 however, make debugging impossible, since variables no longer stay in a
9227 ``home register''.
9228
9229 Enabled by default with @option{-funroll-loops}.
9230
9231 @item -fwhole-program
9232 @opindex fwhole-program
9233 Assume that the current compilation unit represents the whole program being
9234 compiled. All public functions and variables with the exception of @code{main}
9235 and those merged by attribute @code{externally_visible} become static functions
9236 and in effect are optimized more aggressively by interprocedural optimizers.
9237
9238 This option should not be used in combination with @option{-flto}.
9239 Instead relying on a linker plugin should provide safer and more precise
9240 information.
9241
9242 @item -flto[=@var{n}]
9243 @opindex flto
9244 This option runs the standard link-time optimizer. When invoked
9245 with source code, it generates GIMPLE (one of GCC's internal
9246 representations) and writes it to special ELF sections in the object
9247 file. When the object files are linked together, all the function
9248 bodies are read from these ELF sections and instantiated as if they
9249 had been part of the same translation unit.
9250
9251 To use the link-time optimizer, @option{-flto} and optimization
9252 options should be specified at compile time and during the final link.
9253 For example:
9254
9255 @smallexample
9256 gcc -c -O2 -flto foo.c
9257 gcc -c -O2 -flto bar.c
9258 gcc -o myprog -flto -O2 foo.o bar.o
9259 @end smallexample
9260
9261 The first two invocations to GCC save a bytecode representation
9262 of GIMPLE into special ELF sections inside @file{foo.o} and
9263 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9264 @file{foo.o} and @file{bar.o}, merges the two files into a single
9265 internal image, and compiles the result as usual. Since both
9266 @file{foo.o} and @file{bar.o} are merged into a single image, this
9267 causes all the interprocedural analyses and optimizations in GCC to
9268 work across the two files as if they were a single one. This means,
9269 for example, that the inliner is able to inline functions in
9270 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9271
9272 Another (simpler) way to enable link-time optimization is:
9273
9274 @smallexample
9275 gcc -o myprog -flto -O2 foo.c bar.c
9276 @end smallexample
9277
9278 The above generates bytecode for @file{foo.c} and @file{bar.c},
9279 merges them together into a single GIMPLE representation and optimizes
9280 them as usual to produce @file{myprog}.
9281
9282 The only important thing to keep in mind is that to enable link-time
9283 optimizations you need to use the GCC driver to perform the link-step.
9284 GCC then automatically performs link-time optimization if any of the
9285 objects involved were compiled with the @option{-flto} command-line option.
9286 You generally
9287 should specify the optimization options to be used for link-time
9288 optimization though GCC tries to be clever at guessing an
9289 optimization level to use from the options used at compile-time
9290 if you fail to specify one at link-time. You can always override
9291 the automatic decision to do link-time optimization at link-time
9292 by passing @option{-fno-lto} to the link command.
9293
9294 To make whole program optimization effective, it is necessary to make
9295 certain whole program assumptions. The compiler needs to know
9296 what functions and variables can be accessed by libraries and runtime
9297 outside of the link-time optimized unit. When supported by the linker,
9298 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9299 to the compiler about used and externally visible symbols. When
9300 the linker plugin is not available, @option{-fwhole-program} should be
9301 used to allow the compiler to make these assumptions, which leads
9302 to more aggressive optimization decisions.
9303
9304 When @option{-fuse-linker-plugin} is not enabled then, when a file is
9305 compiled with @option{-flto}, the generated object file is larger than
9306 a regular object file because it contains GIMPLE bytecodes and the usual
9307 final code (see @option{-ffat-lto-objects}. This means that
9308 object files with LTO information can be linked as normal object
9309 files; if @option{-fno-lto} is passed to the linker, no
9310 interprocedural optimizations are applied. Note that when
9311 @option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9312 but you cannot perform a regular, non-LTO link on them.
9313
9314 Additionally, the optimization flags used to compile individual files
9315 are not necessarily related to those used at link time. For instance,
9316
9317 @smallexample
9318 gcc -c -O0 -ffat-lto-objects -flto foo.c
9319 gcc -c -O0 -ffat-lto-objects -flto bar.c
9320 gcc -o myprog -O3 foo.o bar.o
9321 @end smallexample
9322
9323 This produces individual object files with unoptimized assembler
9324 code, but the resulting binary @file{myprog} is optimized at
9325 @option{-O3}. If, instead, the final binary is generated with
9326 @option{-fno-lto}, then @file{myprog} is not optimized.
9327
9328 When producing the final binary, GCC only
9329 applies link-time optimizations to those files that contain bytecode.
9330 Therefore, you can mix and match object files and libraries with
9331 GIMPLE bytecodes and final object code. GCC automatically selects
9332 which files to optimize in LTO mode and which files to link without
9333 further processing.
9334
9335 There are some code generation flags preserved by GCC when
9336 generating bytecodes, as they need to be used during the final link
9337 stage. Generally options specified at link-time override those
9338 specified at compile-time.
9339
9340 If you do not specify an optimization level option @option{-O} at
9341 link-time then GCC computes one based on the optimization levels
9342 used when compiling the object files. The highest optimization
9343 level wins here.
9344
9345 Currently, the following options and their setting are take from
9346 the first object file that explicitely specified it:
9347 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9348 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9349 and all the @option{-m} target flags.
9350
9351 Certain ABI changing flags are required to match in all compilation-units
9352 and trying to override this at link-time with a conflicting value
9353 is ignored. This includes options such as @option{-freg-struct-return}
9354 and @option{-fpcc-struct-return}.
9355
9356 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9357 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9358 are passed through to the link stage and merged conservatively for
9359 conflicting translation units. Specifically
9360 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9361 precedence and for example @option{-ffp-contract=off} takes precedence
9362 over @option{-ffp-contract=fast}. You can override them at linke-time.
9363
9364 It is recommended that you compile all the files participating in the
9365 same link with the same options and also specify those options at
9366 link time.
9367
9368 If LTO encounters objects with C linkage declared with incompatible
9369 types in separate translation units to be linked together (undefined
9370 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9371 issued. The behavior is still undefined at run time. Similar
9372 diagnostics may be raised for other languages.
9373
9374 Another feature of LTO is that it is possible to apply interprocedural
9375 optimizations on files written in different languages:
9376
9377 @smallexample
9378 gcc -c -flto foo.c
9379 g++ -c -flto bar.cc
9380 gfortran -c -flto baz.f90
9381 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9382 @end smallexample
9383
9384 Notice that the final link is done with @command{g++} to get the C++
9385 runtime libraries and @option{-lgfortran} is added to get the Fortran
9386 runtime libraries. In general, when mixing languages in LTO mode, you
9387 should use the same link command options as when mixing languages in a
9388 regular (non-LTO) compilation.
9389
9390 If object files containing GIMPLE bytecode are stored in a library archive, say
9391 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9392 are using a linker with plugin support. To create static libraries suitable
9393 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9394 and @command{ranlib};
9395 to show the symbols of object files with GIMPLE bytecode, use
9396 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9397 and @command{nm} have been compiled with plugin support. At link time, use the the
9398 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9399 the LTO optimization process:
9400
9401 @smallexample
9402 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9403 @end smallexample
9404
9405 With the linker plugin enabled, the linker extracts the needed
9406 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9407 to make them part of the aggregated GIMPLE image to be optimized.
9408
9409 If you are not using a linker with plugin support and/or do not
9410 enable the linker plugin, then the objects inside @file{libfoo.a}
9411 are extracted and linked as usual, but they do not participate
9412 in the LTO optimization process. In order to make a static library suitable
9413 for both LTO optimization and usual linkage, compile its object files with
9414 @option{-flto} @option{-ffat-lto-objects}.
9415
9416 Link-time optimizations do not require the presence of the whole program to
9417 operate. If the program does not require any symbols to be exported, it is
9418 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9419 the interprocedural optimizers to use more aggressive assumptions which may
9420 lead to improved optimization opportunities.
9421 Use of @option{-fwhole-program} is not needed when linker plugin is
9422 active (see @option{-fuse-linker-plugin}).
9423
9424 The current implementation of LTO makes no
9425 attempt to generate bytecode that is portable between different
9426 types of hosts. The bytecode files are versioned and there is a
9427 strict version check, so bytecode files generated in one version of
9428 GCC do not work with an older or newer version of GCC.
9429
9430 Link-time optimization does not work well with generation of debugging
9431 information. Combining @option{-flto} with
9432 @option{-g} is currently experimental and expected to produce unexpected
9433 results.
9434
9435 If you specify the optional @var{n}, the optimization and code
9436 generation done at link time is executed in parallel using @var{n}
9437 parallel jobs by utilizing an installed @command{make} program. The
9438 environment variable @env{MAKE} may be used to override the program
9439 used. The default value for @var{n} is 1.
9440
9441 You can also specify @option{-flto=jobserver} to use GNU make's
9442 job server mode to determine the number of parallel jobs. This
9443 is useful when the Makefile calling GCC is already executing in parallel.
9444 You must prepend a @samp{+} to the command recipe in the parent Makefile
9445 for this to work. This option likely only works if @env{MAKE} is
9446 GNU make.
9447
9448 @item -flto-partition=@var{alg}
9449 @opindex flto-partition
9450 Specify the partitioning algorithm used by the link-time optimizer.
9451 The value is either @samp{1to1} to specify a partitioning mirroring
9452 the original source files or @samp{balanced} to specify partitioning
9453 into equally sized chunks (whenever possible) or @samp{max} to create
9454 new partition for every symbol where possible. Specifying @samp{none}
9455 as an algorithm disables partitioning and streaming completely.
9456 The default value is @samp{balanced}. While @samp{1to1} can be used
9457 as an workaround for various code ordering issues, the @samp{max}
9458 partitioning is intended for internal testing only.
9459 The value @samp{one} specifies that exactly one partition should be
9460 used while the value @samp{none} bypasses partitioning and executes
9461 the link-time optimization step directly from the WPA phase.
9462
9463 @item -flto-odr-type-merging
9464 @opindex flto-odr-type-merging
9465 Enable streaming of mangled types names of C++ types and their unification
9466 at linktime. This increases size of LTO object files, but enable
9467 diagnostics about One Definition Rule violations.
9468
9469 @item -flto-compression-level=@var{n}
9470 @opindex flto-compression-level
9471 This option specifies the level of compression used for intermediate
9472 language written to LTO object files, and is only meaningful in
9473 conjunction with LTO mode (@option{-flto}). Valid
9474 values are 0 (no compression) to 9 (maximum compression). Values
9475 outside this range are clamped to either 0 or 9. If the option is not
9476 given, a default balanced compression setting is used.
9477
9478 @item -flto-report
9479 @opindex flto-report
9480 Prints a report with internal details on the workings of the link-time
9481 optimizer. The contents of this report vary from version to version.
9482 It is meant to be useful to GCC developers when processing object
9483 files in LTO mode (via @option{-flto}).
9484
9485 Disabled by default.
9486
9487 @item -flto-report-wpa
9488 @opindex flto-report-wpa
9489 Like @option{-flto-report}, but only print for the WPA phase of Link
9490 Time Optimization.
9491
9492 @item -fuse-linker-plugin
9493 @opindex fuse-linker-plugin
9494 Enables the use of a linker plugin during link-time optimization. This
9495 option relies on plugin support in the linker, which is available in gold
9496 or in GNU ld 2.21 or newer.
9497
9498 This option enables the extraction of object files with GIMPLE bytecode out
9499 of library archives. This improves the quality of optimization by exposing
9500 more code to the link-time optimizer. This information specifies what
9501 symbols can be accessed externally (by non-LTO object or during dynamic
9502 linking). Resulting code quality improvements on binaries (and shared
9503 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9504 See @option{-flto} for a description of the effect of this flag and how to
9505 use it.
9506
9507 This option is enabled by default when LTO support in GCC is enabled
9508 and GCC was configured for use with
9509 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9510
9511 @item -ffat-lto-objects
9512 @opindex ffat-lto-objects
9513 Fat LTO objects are object files that contain both the intermediate language
9514 and the object code. This makes them usable for both LTO linking and normal
9515 linking. This option is effective only when compiling with @option{-flto}
9516 and is ignored at link time.
9517
9518 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9519 requires the complete toolchain to be aware of LTO. It requires a linker with
9520 linker plugin support for basic functionality. Additionally,
9521 @command{nm}, @command{ar} and @command{ranlib}
9522 need to support linker plugins to allow a full-featured build environment
9523 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9524 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9525 to these tools. With non fat LTO makefiles need to be modified to use them.
9526
9527 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9528 support.
9529
9530 @item -fcompare-elim
9531 @opindex fcompare-elim
9532 After register allocation and post-register allocation instruction splitting,
9533 identify arithmetic instructions that compute processor flags similar to a
9534 comparison operation based on that arithmetic. If possible, eliminate the
9535 explicit comparison operation.
9536
9537 This pass only applies to certain targets that cannot explicitly represent
9538 the comparison operation before register allocation is complete.
9539
9540 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9541
9542 @item -fcprop-registers
9543 @opindex fcprop-registers
9544 After register allocation and post-register allocation instruction splitting,
9545 perform a copy-propagation pass to try to reduce scheduling dependencies
9546 and occasionally eliminate the copy.
9547
9548 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9549
9550 @item -fprofile-correction
9551 @opindex fprofile-correction
9552 Profiles collected using an instrumented binary for multi-threaded programs may
9553 be inconsistent due to missed counter updates. When this option is specified,
9554 GCC uses heuristics to correct or smooth out such inconsistencies. By
9555 default, GCC emits an error message when an inconsistent profile is detected.
9556
9557 @item -fprofile-dir=@var{path}
9558 @opindex fprofile-dir
9559
9560 Set the directory to search for the profile data files in to @var{path}.
9561 This option affects only the profile data generated by
9562 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9563 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9564 and its related options. Both absolute and relative paths can be used.
9565 By default, GCC uses the current directory as @var{path}, thus the
9566 profile data file appears in the same directory as the object file.
9567
9568 @item -fprofile-generate
9569 @itemx -fprofile-generate=@var{path}
9570 @opindex fprofile-generate
9571
9572 Enable options usually used for instrumenting application to produce
9573 profile useful for later recompilation with profile feedback based
9574 optimization. You must use @option{-fprofile-generate} both when
9575 compiling and when linking your program.
9576
9577 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9578
9579 If @var{path} is specified, GCC looks at the @var{path} to find
9580 the profile feedback data files. See @option{-fprofile-dir}.
9581
9582 @item -fprofile-use
9583 @itemx -fprofile-use=@var{path}
9584 @opindex fprofile-use
9585 Enable profile feedback-directed optimizations,
9586 and the following optimizations
9587 which are generally profitable only with profile feedback available:
9588 @option{-fbranch-probabilities}, @option{-fvpt},
9589 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9590 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9591
9592 By default, GCC emits an error message if the feedback profiles do not
9593 match the source code. This error can be turned into a warning by using
9594 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9595 code.
9596
9597 If @var{path} is specified, GCC looks at the @var{path} to find
9598 the profile feedback data files. See @option{-fprofile-dir}.
9599
9600 @item -fauto-profile
9601 @itemx -fauto-profile=@var{path}
9602 @opindex fauto-profile
9603 Enable sampling-based feedback-directed optimizations,
9604 and the following optimizations
9605 which are generally profitable only with profile feedback available:
9606 @option{-fbranch-probabilities}, @option{-fvpt},
9607 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9608 @option{-ftree-vectorize},
9609 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9610 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9611 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9612
9613 @var{path} is the name of a file containing AutoFDO profile information.
9614 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9615
9616 Producing an AutoFDO profile data file requires running your program
9617 with the @command{perf} utility on a supported GNU/Linux target system.
9618 For more information, see @uref{https://perf.wiki.kernel.org/}.
9619
9620 E.g.
9621 @smallexample
9622 perf record -e br_inst_retired:near_taken -b -o perf.data \
9623 -- your_program
9624 @end smallexample
9625
9626 Then use the @command{create_gcov} tool to convert the raw profile data
9627 to a format that can be used by GCC.@ You must also supply the
9628 unstripped binary for your program to this tool.
9629 See @uref{https://github.com/google/autofdo}.
9630
9631 E.g.
9632 @smallexample
9633 create_gcov --binary=your_program.unstripped --profile=perf.data \
9634 --gcov=profile.afdo
9635 @end smallexample
9636 @end table
9637
9638 The following options control compiler behavior regarding floating-point
9639 arithmetic. These options trade off between speed and
9640 correctness. All must be specifically enabled.
9641
9642 @table @gcctabopt
9643 @item -ffloat-store
9644 @opindex ffloat-store
9645 Do not store floating-point variables in registers, and inhibit other
9646 options that might change whether a floating-point value is taken from a
9647 register or memory.
9648
9649 @cindex floating-point precision
9650 This option prevents undesirable excess precision on machines such as
9651 the 68000 where the floating registers (of the 68881) keep more
9652 precision than a @code{double} is supposed to have. Similarly for the
9653 x86 architecture. For most programs, the excess precision does only
9654 good, but a few programs rely on the precise definition of IEEE floating
9655 point. Use @option{-ffloat-store} for such programs, after modifying
9656 them to store all pertinent intermediate computations into variables.
9657
9658 @item -fexcess-precision=@var{style}
9659 @opindex fexcess-precision
9660 This option allows further control over excess precision on machines
9661 where floating-point registers have more precision than the IEEE
9662 @code{float} and @code{double} types and the processor does not
9663 support operations rounding to those types. By default,
9664 @option{-fexcess-precision=fast} is in effect; this means that
9665 operations are carried out in the precision of the registers and that
9666 it is unpredictable when rounding to the types specified in the source
9667 code takes place. When compiling C, if
9668 @option{-fexcess-precision=standard} is specified then excess
9669 precision follows the rules specified in ISO C99; in particular,
9670 both casts and assignments cause values to be rounded to their
9671 semantic types (whereas @option{-ffloat-store} only affects
9672 assignments). This option is enabled by default for C if a strict
9673 conformance option such as @option{-std=c99} is used.
9674
9675 @opindex mfpmath
9676 @option{-fexcess-precision=standard} is not implemented for languages
9677 other than C, and has no effect if
9678 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
9679 specified. On the x86, it also has no effect if @option{-mfpmath=sse}
9680 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9681 semantics apply without excess precision, and in the latter, rounding
9682 is unpredictable.
9683
9684 @item -ffast-math
9685 @opindex ffast-math
9686 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9687 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9688 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9689
9690 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9691
9692 This option is not turned on by any @option{-O} option besides
9693 @option{-Ofast} since it can result in incorrect output for programs
9694 that depend on an exact implementation of IEEE or ISO rules/specifications
9695 for math functions. It may, however, yield faster code for programs
9696 that do not require the guarantees of these specifications.
9697
9698 @item -fno-math-errno
9699 @opindex fno-math-errno
9700 Do not set @code{errno} after calling math functions that are executed
9701 with a single instruction, e.g., @code{sqrt}. A program that relies on
9702 IEEE exceptions for math error handling may want to use this flag
9703 for speed while maintaining IEEE arithmetic compatibility.
9704
9705 This option is not turned on by any @option{-O} option since
9706 it can result in incorrect output for programs that depend on
9707 an exact implementation of IEEE or ISO rules/specifications for
9708 math functions. It may, however, yield faster code for programs
9709 that do not require the guarantees of these specifications.
9710
9711 The default is @option{-fmath-errno}.
9712
9713 On Darwin systems, the math library never sets @code{errno}. There is
9714 therefore no reason for the compiler to consider the possibility that
9715 it might, and @option{-fno-math-errno} is the default.
9716
9717 @item -funsafe-math-optimizations
9718 @opindex funsafe-math-optimizations
9719
9720 Allow optimizations for floating-point arithmetic that (a) assume
9721 that arguments and results are valid and (b) may violate IEEE or
9722 ANSI standards. When used at link-time, it may include libraries
9723 or startup files that change the default FPU control word or other
9724 similar optimizations.
9725
9726 This option is not turned on by any @option{-O} option since
9727 it can result in incorrect output for programs that depend on
9728 an exact implementation of IEEE or ISO rules/specifications for
9729 math functions. It may, however, yield faster code for programs
9730 that do not require the guarantees of these specifications.
9731 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9732 @option{-fassociative-math} and @option{-freciprocal-math}.
9733
9734 The default is @option{-fno-unsafe-math-optimizations}.
9735
9736 @item -fassociative-math
9737 @opindex fassociative-math
9738
9739 Allow re-association of operands in series of floating-point operations.
9740 This violates the ISO C and C++ language standard by possibly changing
9741 computation result. NOTE: re-ordering may change the sign of zero as
9742 well as ignore NaNs and inhibit or create underflow or overflow (and
9743 thus cannot be used on code that relies on rounding behavior like
9744 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9745 and thus may not be used when ordered comparisons are required.
9746 This option requires that both @option{-fno-signed-zeros} and
9747 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9748 much sense with @option{-frounding-math}. For Fortran the option
9749 is automatically enabled when both @option{-fno-signed-zeros} and
9750 @option{-fno-trapping-math} are in effect.
9751
9752 The default is @option{-fno-associative-math}.
9753
9754 @item -freciprocal-math
9755 @opindex freciprocal-math
9756
9757 Allow the reciprocal of a value to be used instead of dividing by
9758 the value if this enables optimizations. For example @code{x / y}
9759 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9760 is subject to common subexpression elimination. Note that this loses
9761 precision and increases the number of flops operating on the value.
9762
9763 The default is @option{-fno-reciprocal-math}.
9764
9765 @item -ffinite-math-only
9766 @opindex ffinite-math-only
9767 Allow optimizations for floating-point arithmetic that assume
9768 that arguments and results are not NaNs or +-Infs.
9769
9770 This option is not turned on by any @option{-O} option since
9771 it can result in incorrect output for programs that depend on
9772 an exact implementation of IEEE or ISO rules/specifications for
9773 math functions. It may, however, yield faster code for programs
9774 that do not require the guarantees of these specifications.
9775
9776 The default is @option{-fno-finite-math-only}.
9777
9778 @item -fno-signed-zeros
9779 @opindex fno-signed-zeros
9780 Allow optimizations for floating-point arithmetic that ignore the
9781 signedness of zero. IEEE arithmetic specifies the behavior of
9782 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9783 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9784 This option implies that the sign of a zero result isn't significant.
9785
9786 The default is @option{-fsigned-zeros}.
9787
9788 @item -fno-trapping-math
9789 @opindex fno-trapping-math
9790 Compile code assuming that floating-point operations cannot generate
9791 user-visible traps. These traps include division by zero, overflow,
9792 underflow, inexact result and invalid operation. This option requires
9793 that @option{-fno-signaling-nans} be in effect. Setting this option may
9794 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9795
9796 This option should never be turned on by any @option{-O} option since
9797 it can result in incorrect output for programs that depend on
9798 an exact implementation of IEEE or ISO rules/specifications for
9799 math functions.
9800
9801 The default is @option{-ftrapping-math}.
9802
9803 @item -frounding-math
9804 @opindex frounding-math
9805 Disable transformations and optimizations that assume default floating-point
9806 rounding behavior. This is round-to-zero for all floating point
9807 to integer conversions, and round-to-nearest for all other arithmetic
9808 truncations. This option should be specified for programs that change
9809 the FP rounding mode dynamically, or that may be executed with a
9810 non-default rounding mode. This option disables constant folding of
9811 floating-point expressions at compile time (which may be affected by
9812 rounding mode) and arithmetic transformations that are unsafe in the
9813 presence of sign-dependent rounding modes.
9814
9815 The default is @option{-fno-rounding-math}.
9816
9817 This option is experimental and does not currently guarantee to
9818 disable all GCC optimizations that are affected by rounding mode.
9819 Future versions of GCC may provide finer control of this setting
9820 using C99's @code{FENV_ACCESS} pragma. This command-line option
9821 will be used to specify the default state for @code{FENV_ACCESS}.
9822
9823 @item -fsignaling-nans
9824 @opindex fsignaling-nans
9825 Compile code assuming that IEEE signaling NaNs may generate user-visible
9826 traps during floating-point operations. Setting this option disables
9827 optimizations that may change the number of exceptions visible with
9828 signaling NaNs. This option implies @option{-ftrapping-math}.
9829
9830 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9831 be defined.
9832
9833 The default is @option{-fno-signaling-nans}.
9834
9835 This option is experimental and does not currently guarantee to
9836 disable all GCC optimizations that affect signaling NaN behavior.
9837
9838 @item -fsingle-precision-constant
9839 @opindex fsingle-precision-constant
9840 Treat floating-point constants as single precision instead of
9841 implicitly converting them to double-precision constants.
9842
9843 @item -fcx-limited-range
9844 @opindex fcx-limited-range
9845 When enabled, this option states that a range reduction step is not
9846 needed when performing complex division. Also, there is no checking
9847 whether the result of a complex multiplication or division is @code{NaN
9848 + I*NaN}, with an attempt to rescue the situation in that case. The
9849 default is @option{-fno-cx-limited-range}, but is enabled by
9850 @option{-ffast-math}.
9851
9852 This option controls the default setting of the ISO C99
9853 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9854 all languages.
9855
9856 @item -fcx-fortran-rules
9857 @opindex fcx-fortran-rules
9858 Complex multiplication and division follow Fortran rules. Range
9859 reduction is done as part of complex division, but there is no checking
9860 whether the result of a complex multiplication or division is @code{NaN
9861 + I*NaN}, with an attempt to rescue the situation in that case.
9862
9863 The default is @option{-fno-cx-fortran-rules}.
9864
9865 @end table
9866
9867 The following options control optimizations that may improve
9868 performance, but are not enabled by any @option{-O} options. This
9869 section includes experimental options that may produce broken code.
9870
9871 @table @gcctabopt
9872 @item -fbranch-probabilities
9873 @opindex fbranch-probabilities
9874 After running a program compiled with @option{-fprofile-arcs}
9875 (@pxref{Debugging Options,, Options for Debugging Your Program or
9876 @command{gcc}}), you can compile it a second time using
9877 @option{-fbranch-probabilities}, to improve optimizations based on
9878 the number of times each branch was taken. When a program
9879 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9880 counts to a file called @file{@var{sourcename}.gcda} for each source
9881 file. The information in this data file is very dependent on the
9882 structure of the generated code, so you must use the same source code
9883 and the same optimization options for both compilations.
9884
9885 With @option{-fbranch-probabilities}, GCC puts a
9886 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9887 These can be used to improve optimization. Currently, they are only
9888 used in one place: in @file{reorg.c}, instead of guessing which path a
9889 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9890 exactly determine which path is taken more often.
9891
9892 @item -fprofile-values
9893 @opindex fprofile-values
9894 If combined with @option{-fprofile-arcs}, it adds code so that some
9895 data about values of expressions in the program is gathered.
9896
9897 With @option{-fbranch-probabilities}, it reads back the data gathered
9898 from profiling values of expressions for usage in optimizations.
9899
9900 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9901
9902 @item -fprofile-reorder-functions
9903 @opindex fprofile-reorder-functions
9904 Function reordering based on profile instrumentation collects
9905 first time of execution of a function and orders these functions
9906 in ascending order.
9907
9908 Enabled with @option{-fprofile-use}.
9909
9910 @item -fvpt
9911 @opindex fvpt
9912 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9913 to add code to gather information about values of expressions.
9914
9915 With @option{-fbranch-probabilities}, it reads back the data gathered
9916 and actually performs the optimizations based on them.
9917 Currently the optimizations include specialization of division operations
9918 using the knowledge about the value of the denominator.
9919
9920 @item -frename-registers
9921 @opindex frename-registers
9922 Attempt to avoid false dependencies in scheduled code by making use
9923 of registers left over after register allocation. This optimization
9924 most benefits processors with lots of registers. Depending on the
9925 debug information format adopted by the target, however, it can
9926 make debugging impossible, since variables no longer stay in
9927 a ``home register''.
9928
9929 Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
9930
9931 @item -fschedule-fusion
9932 @opindex fschedule-fusion
9933 Performs a target dependent pass over the instruction stream to schedule
9934 instructions of same type together because target machine can execute them
9935 more efficiently if they are adjacent to each other in the instruction flow.
9936
9937 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9938
9939 @item -ftracer
9940 @opindex ftracer
9941 Perform tail duplication to enlarge superblock size. This transformation
9942 simplifies the control flow of the function allowing other optimizations to do
9943 a better job.
9944
9945 Enabled with @option{-fprofile-use}.
9946
9947 @item -funroll-loops
9948 @opindex funroll-loops
9949 Unroll loops whose number of iterations can be determined at compile time or
9950 upon entry to the loop. @option{-funroll-loops} implies
9951 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9952 It also turns on complete loop peeling (i.e.@: complete removal of loops with
9953 a small constant number of iterations). This option makes code larger, and may
9954 or may not make it run faster.
9955
9956 Enabled with @option{-fprofile-use}.
9957
9958 @item -funroll-all-loops
9959 @opindex funroll-all-loops
9960 Unroll all loops, even if their number of iterations is uncertain when
9961 the loop is entered. This usually makes programs run more slowly.
9962 @option{-funroll-all-loops} implies the same options as
9963 @option{-funroll-loops}.
9964
9965 @item -fpeel-loops
9966 @opindex fpeel-loops
9967 Peels loops for which there is enough information that they do not
9968 roll much (from profile feedback). It also turns on complete loop peeling
9969 (i.e.@: complete removal of loops with small constant number of iterations).
9970
9971 Enabled with @option{-fprofile-use}.
9972
9973 @item -fmove-loop-invariants
9974 @opindex fmove-loop-invariants
9975 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
9976 at level @option{-O1}
9977
9978 @item -funswitch-loops
9979 @opindex funswitch-loops
9980 Move branches with loop invariant conditions out of the loop, with duplicates
9981 of the loop on both branches (modified according to result of the condition).
9982
9983 @item -ffunction-sections
9984 @itemx -fdata-sections
9985 @opindex ffunction-sections
9986 @opindex fdata-sections
9987 Place each function or data item into its own section in the output
9988 file if the target supports arbitrary sections. The name of the
9989 function or the name of the data item determines the section's name
9990 in the output file.
9991
9992 Use these options on systems where the linker can perform optimizations
9993 to improve locality of reference in the instruction space. Most systems
9994 using the ELF object format and SPARC processors running Solaris 2 have
9995 linkers with such optimizations. AIX may have these optimizations in
9996 the future.
9997
9998 Only use these options when there are significant benefits from doing
9999 so. When you specify these options, the assembler and linker
10000 create larger object and executable files and are also slower.
10001 You cannot use @command{gprof} on all systems if you
10002 specify this option, and you may have problems with debugging if
10003 you specify both this option and @option{-g}.
10004
10005 @item -fbranch-target-load-optimize
10006 @opindex fbranch-target-load-optimize
10007 Perform branch target register load optimization before prologue / epilogue
10008 threading.
10009 The use of target registers can typically be exposed only during reload,
10010 thus hoisting loads out of loops and doing inter-block scheduling needs
10011 a separate optimization pass.
10012
10013 @item -fbranch-target-load-optimize2
10014 @opindex fbranch-target-load-optimize2
10015 Perform branch target register load optimization after prologue / epilogue
10016 threading.
10017
10018 @item -fbtr-bb-exclusive
10019 @opindex fbtr-bb-exclusive
10020 When performing branch target register load optimization, don't reuse
10021 branch target registers within any basic block.
10022
10023 @item -fstack-protector
10024 @opindex fstack-protector
10025 Emit extra code to check for buffer overflows, such as stack smashing
10026 attacks. This is done by adding a guard variable to functions with
10027 vulnerable objects. This includes functions that call @code{alloca}, and
10028 functions with buffers larger than 8 bytes. The guards are initialized
10029 when a function is entered and then checked when the function exits.
10030 If a guard check fails, an error message is printed and the program exits.
10031
10032 @item -fstack-protector-all
10033 @opindex fstack-protector-all
10034 Like @option{-fstack-protector} except that all functions are protected.
10035
10036 @item -fstack-protector-strong
10037 @opindex fstack-protector-strong
10038 Like @option{-fstack-protector} but includes additional functions to
10039 be protected --- those that have local array definitions, or have
10040 references to local frame addresses.
10041
10042 @item -fstack-protector-explicit
10043 @opindex fstack-protector-explicit
10044 Like @option{-fstack-protector} but only protects those functions which
10045 have the @code{stack_protect} attribute
10046
10047 @item -fstdarg-opt
10048 @opindex fstdarg-opt
10049 Optimize the prologue of variadic argument functions with respect to usage of
10050 those arguments.
10051
10052 @item -fsection-anchors
10053 @opindex fsection-anchors
10054 Try to reduce the number of symbolic address calculations by using
10055 shared ``anchor'' symbols to address nearby objects. This transformation
10056 can help to reduce the number of GOT entries and GOT accesses on some
10057 targets.
10058
10059 For example, the implementation of the following function @code{foo}:
10060
10061 @smallexample
10062 static int a, b, c;
10063 int foo (void) @{ return a + b + c; @}
10064 @end smallexample
10065
10066 @noindent
10067 usually calculates the addresses of all three variables, but if you
10068 compile it with @option{-fsection-anchors}, it accesses the variables
10069 from a common anchor point instead. The effect is similar to the
10070 following pseudocode (which isn't valid C):
10071
10072 @smallexample
10073 int foo (void)
10074 @{
10075 register int *xr = &x;
10076 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10077 @}
10078 @end smallexample
10079
10080 Not all targets support this option.
10081
10082 @item --param @var{name}=@var{value}
10083 @opindex param
10084 In some places, GCC uses various constants to control the amount of
10085 optimization that is done. For example, GCC does not inline functions
10086 that contain more than a certain number of instructions. You can
10087 control some of these constants on the command line using the
10088 @option{--param} option.
10089
10090 The names of specific parameters, and the meaning of the values, are
10091 tied to the internals of the compiler, and are subject to change
10092 without notice in future releases.
10093
10094 In each case, the @var{value} is an integer. The allowable choices for
10095 @var{name} are:
10096
10097 @table @gcctabopt
10098 @item predictable-branch-outcome
10099 When branch is predicted to be taken with probability lower than this threshold
10100 (in percent), then it is considered well predictable. The default is 10.
10101
10102 @item max-crossjump-edges
10103 The maximum number of incoming edges to consider for cross-jumping.
10104 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10105 the number of edges incoming to each block. Increasing values mean
10106 more aggressive optimization, making the compilation time increase with
10107 probably small improvement in executable size.
10108
10109 @item min-crossjump-insns
10110 The minimum number of instructions that must be matched at the end
10111 of two blocks before cross-jumping is performed on them. This
10112 value is ignored in the case where all instructions in the block being
10113 cross-jumped from are matched. The default value is 5.
10114
10115 @item max-grow-copy-bb-insns
10116 The maximum code size expansion factor when copying basic blocks
10117 instead of jumping. The expansion is relative to a jump instruction.
10118 The default value is 8.
10119
10120 @item max-goto-duplication-insns
10121 The maximum number of instructions to duplicate to a block that jumps
10122 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10123 passes, GCC factors computed gotos early in the compilation process,
10124 and unfactors them as late as possible. Only computed jumps at the
10125 end of a basic blocks with no more than max-goto-duplication-insns are
10126 unfactored. The default value is 8.
10127
10128 @item max-delay-slot-insn-search
10129 The maximum number of instructions to consider when looking for an
10130 instruction to fill a delay slot. If more than this arbitrary number of
10131 instructions are searched, the time savings from filling the delay slot
10132 are minimal, so stop searching. Increasing values mean more
10133 aggressive optimization, making the compilation time increase with probably
10134 small improvement in execution time.
10135
10136 @item max-delay-slot-live-search
10137 When trying to fill delay slots, the maximum number of instructions to
10138 consider when searching for a block with valid live register
10139 information. Increasing this arbitrarily chosen value means more
10140 aggressive optimization, increasing the compilation time. This parameter
10141 should be removed when the delay slot code is rewritten to maintain the
10142 control-flow graph.
10143
10144 @item max-gcse-memory
10145 The approximate maximum amount of memory that can be allocated in
10146 order to perform the global common subexpression elimination
10147 optimization. If more memory than specified is required, the
10148 optimization is not done.
10149
10150 @item max-gcse-insertion-ratio
10151 If the ratio of expression insertions to deletions is larger than this value
10152 for any expression, then RTL PRE inserts or removes the expression and thus
10153 leaves partially redundant computations in the instruction stream. The default value is 20.
10154
10155 @item max-pending-list-length
10156 The maximum number of pending dependencies scheduling allows
10157 before flushing the current state and starting over. Large functions
10158 with few branches or calls can create excessively large lists which
10159 needlessly consume memory and resources.
10160
10161 @item max-modulo-backtrack-attempts
10162 The maximum number of backtrack attempts the scheduler should make
10163 when modulo scheduling a loop. Larger values can exponentially increase
10164 compilation time.
10165
10166 @item max-inline-insns-single
10167 Several parameters control the tree inliner used in GCC@.
10168 This number sets the maximum number of instructions (counted in GCC's
10169 internal representation) in a single function that the tree inliner
10170 considers for inlining. This only affects functions declared
10171 inline and methods implemented in a class declaration (C++).
10172 The default value is 400.
10173
10174 @item max-inline-insns-auto
10175 When you use @option{-finline-functions} (included in @option{-O3}),
10176 a lot of functions that would otherwise not be considered for inlining
10177 by the compiler are investigated. To those functions, a different
10178 (more restrictive) limit compared to functions declared inline can
10179 be applied.
10180 The default value is 40.
10181
10182 @item inline-min-speedup
10183 When estimated performance improvement of caller + callee runtime exceeds this
10184 threshold (in precent), the function can be inlined regardless the limit on
10185 @option{--param max-inline-insns-single} and @option{--param
10186 max-inline-insns-auto}.
10187
10188 @item large-function-insns
10189 The limit specifying really large functions. For functions larger than this
10190 limit after inlining, inlining is constrained by
10191 @option{--param large-function-growth}. This parameter is useful primarily
10192 to avoid extreme compilation time caused by non-linear algorithms used by the
10193 back end.
10194 The default value is 2700.
10195
10196 @item large-function-growth
10197 Specifies maximal growth of large function caused by inlining in percents.
10198 The default value is 100 which limits large function growth to 2.0 times
10199 the original size.
10200
10201 @item large-unit-insns
10202 The limit specifying large translation unit. Growth caused by inlining of
10203 units larger than this limit is limited by @option{--param inline-unit-growth}.
10204 For small units this might be too tight.
10205 For example, consider a unit consisting of function A
10206 that is inline and B that just calls A three times. If B is small relative to
10207 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10208 large units consisting of small inlineable functions, however, the overall unit
10209 growth limit is needed to avoid exponential explosion of code size. Thus for
10210 smaller units, the size is increased to @option{--param large-unit-insns}
10211 before applying @option{--param inline-unit-growth}. The default is 10000.
10212
10213 @item inline-unit-growth
10214 Specifies maximal overall growth of the compilation unit caused by inlining.
10215 The default value is 20 which limits unit growth to 1.2 times the original
10216 size. Cold functions (either marked cold via an attribute or by profile
10217 feedback) are not accounted into the unit size.
10218
10219 @item ipcp-unit-growth
10220 Specifies maximal overall growth of the compilation unit caused by
10221 interprocedural constant propagation. The default value is 10 which limits
10222 unit growth to 1.1 times the original size.
10223
10224 @item large-stack-frame
10225 The limit specifying large stack frames. While inlining the algorithm is trying
10226 to not grow past this limit too much. The default value is 256 bytes.
10227
10228 @item large-stack-frame-growth
10229 Specifies maximal growth of large stack frames caused by inlining in percents.
10230 The default value is 1000 which limits large stack frame growth to 11 times
10231 the original size.
10232
10233 @item max-inline-insns-recursive
10234 @itemx max-inline-insns-recursive-auto
10235 Specifies the maximum number of instructions an out-of-line copy of a
10236 self-recursive inline
10237 function can grow into by performing recursive inlining.
10238
10239 @option{--param max-inline-insns-recursive} applies to functions
10240 declared inline.
10241 For functions not declared inline, recursive inlining
10242 happens only when @option{-finline-functions} (included in @option{-O3}) is
10243 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10244 default value is 450.
10245
10246 @item max-inline-recursive-depth
10247 @itemx max-inline-recursive-depth-auto
10248 Specifies the maximum recursion depth used for recursive inlining.
10249
10250 @option{--param max-inline-recursive-depth} applies to functions
10251 declared inline. For functions not declared inline, recursive inlining
10252 happens only when @option{-finline-functions} (included in @option{-O3}) is
10253 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10254 default value is 8.
10255
10256 @item min-inline-recursive-probability
10257 Recursive inlining is profitable only for function having deep recursion
10258 in average and can hurt for function having little recursion depth by
10259 increasing the prologue size or complexity of function body to other
10260 optimizers.
10261
10262 When profile feedback is available (see @option{-fprofile-generate}) the actual
10263 recursion depth can be guessed from probability that function recurses via a
10264 given call expression. This parameter limits inlining only to call expressions
10265 whose probability exceeds the given threshold (in percents).
10266 The default value is 10.
10267
10268 @item early-inlining-insns
10269 Specify growth that the early inliner can make. In effect it increases
10270 the amount of inlining for code having a large abstraction penalty.
10271 The default value is 14.
10272
10273 @item max-early-inliner-iterations
10274 Limit of iterations of the early inliner. This basically bounds
10275 the number of nested indirect calls the early inliner can resolve.
10276 Deeper chains are still handled by late inlining.
10277
10278 @item comdat-sharing-probability
10279 Probability (in percent) that C++ inline function with comdat visibility
10280 are shared across multiple compilation units. The default value is 20.
10281
10282 @item profile-func-internal-id
10283 A parameter to control whether to use function internal id in profile
10284 database lookup. If the value is 0, the compiler uses an id that
10285 is based on function assembler name and filename, which makes old profile
10286 data more tolerant to source changes such as function reordering etc.
10287 The default value is 0.
10288
10289 @item min-vect-loop-bound
10290 The minimum number of iterations under which loops are not vectorized
10291 when @option{-ftree-vectorize} is used. The number of iterations after
10292 vectorization needs to be greater than the value specified by this option
10293 to allow vectorization. The default value is 0.
10294
10295 @item gcse-cost-distance-ratio
10296 Scaling factor in calculation of maximum distance an expression
10297 can be moved by GCSE optimizations. This is currently supported only in the
10298 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10299 is with simple expressions, i.e., the expressions that have cost
10300 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10301 hoisting of simple expressions. The default value is 10.
10302
10303 @item gcse-unrestricted-cost
10304 Cost, roughly measured as the cost of a single typical machine
10305 instruction, at which GCSE optimizations do not constrain
10306 the distance an expression can travel. This is currently
10307 supported only in the code hoisting pass. The lesser the cost,
10308 the more aggressive code hoisting is. Specifying 0
10309 allows all expressions to travel unrestricted distances.
10310 The default value is 3.
10311
10312 @item max-hoist-depth
10313 The depth of search in the dominator tree for expressions to hoist.
10314 This is used to avoid quadratic behavior in hoisting algorithm.
10315 The value of 0 does not limit on the search, but may slow down compilation
10316 of huge functions. The default value is 30.
10317
10318 @item max-tail-merge-comparisons
10319 The maximum amount of similar bbs to compare a bb with. This is used to
10320 avoid quadratic behavior in tree tail merging. The default value is 10.
10321
10322 @item max-tail-merge-iterations
10323 The maximum amount of iterations of the pass over the function. This is used to
10324 limit compilation time in tree tail merging. The default value is 2.
10325
10326 @item max-unrolled-insns
10327 The maximum number of instructions that a loop may have to be unrolled.
10328 If a loop is unrolled, this parameter also determines how many times
10329 the loop code is unrolled.
10330
10331 @item max-average-unrolled-insns
10332 The maximum number of instructions biased by probabilities of their execution
10333 that a loop may have to be unrolled. If a loop is unrolled,
10334 this parameter also determines how many times the loop code is unrolled.
10335
10336 @item max-unroll-times
10337 The maximum number of unrollings of a single loop.
10338
10339 @item max-peeled-insns
10340 The maximum number of instructions that a loop may have to be peeled.
10341 If a loop is peeled, this parameter also determines how many times
10342 the loop code is peeled.
10343
10344 @item max-peel-times
10345 The maximum number of peelings of a single loop.
10346
10347 @item max-peel-branches
10348 The maximum number of branches on the hot path through the peeled sequence.
10349
10350 @item max-completely-peeled-insns
10351 The maximum number of insns of a completely peeled loop.
10352
10353 @item max-completely-peel-times
10354 The maximum number of iterations of a loop to be suitable for complete peeling.
10355
10356 @item max-completely-peel-loop-nest-depth
10357 The maximum depth of a loop nest suitable for complete peeling.
10358
10359 @item max-unswitch-insns
10360 The maximum number of insns of an unswitched loop.
10361
10362 @item max-unswitch-level
10363 The maximum number of branches unswitched in a single loop.
10364
10365 @item lim-expensive
10366 The minimum cost of an expensive expression in the loop invariant motion.
10367
10368 @item iv-consider-all-candidates-bound
10369 Bound on number of candidates for induction variables, below which
10370 all candidates are considered for each use in induction variable
10371 optimizations. If there are more candidates than this,
10372 only the most relevant ones are considered to avoid quadratic time complexity.
10373
10374 @item iv-max-considered-uses
10375 The induction variable optimizations give up on loops that contain more
10376 induction variable uses.
10377
10378 @item iv-always-prune-cand-set-bound
10379 If the number of candidates in the set is smaller than this value,
10380 always try to remove unnecessary ivs from the set
10381 when adding a new one.
10382
10383 @item scev-max-expr-size
10384 Bound on size of expressions used in the scalar evolutions analyzer.
10385 Large expressions slow the analyzer.
10386
10387 @item scev-max-expr-complexity
10388 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10389 Complex expressions slow the analyzer.
10390
10391 @item omega-max-vars
10392 The maximum number of variables in an Omega constraint system.
10393 The default value is 128.
10394
10395 @item omega-max-geqs
10396 The maximum number of inequalities in an Omega constraint system.
10397 The default value is 256.
10398
10399 @item omega-max-eqs
10400 The maximum number of equalities in an Omega constraint system.
10401 The default value is 128.
10402
10403 @item omega-max-wild-cards
10404 The maximum number of wildcard variables that the Omega solver is
10405 able to insert. The default value is 18.
10406
10407 @item omega-hash-table-size
10408 The size of the hash table in the Omega solver. The default value is
10409 550.
10410
10411 @item omega-max-keys
10412 The maximal number of keys used by the Omega solver. The default
10413 value is 500.
10414
10415 @item omega-eliminate-redundant-constraints
10416 When set to 1, use expensive methods to eliminate all redundant
10417 constraints. The default value is 0.
10418
10419 @item vect-max-version-for-alignment-checks
10420 The maximum number of run-time checks that can be performed when
10421 doing loop versioning for alignment in the vectorizer.
10422
10423 @item vect-max-version-for-alias-checks
10424 The maximum number of run-time checks that can be performed when
10425 doing loop versioning for alias in the vectorizer.
10426
10427 @item vect-max-peeling-for-alignment
10428 The maximum number of loop peels to enhance access alignment
10429 for vectorizer. Value -1 means 'no limit'.
10430
10431 @item max-iterations-to-track
10432 The maximum number of iterations of a loop the brute-force algorithm
10433 for analysis of the number of iterations of the loop tries to evaluate.
10434
10435 @item hot-bb-count-ws-permille
10436 A basic block profile count is considered hot if it contributes to
10437 the given permillage (i.e. 0...1000) of the entire profiled execution.
10438
10439 @item hot-bb-frequency-fraction
10440 Select fraction of the entry block frequency of executions of basic block in
10441 function given basic block needs to have to be considered hot.
10442
10443 @item max-predicted-iterations
10444 The maximum number of loop iterations we predict statically. This is useful
10445 in cases where a function contains a single loop with known bound and
10446 another loop with unknown bound.
10447 The known number of iterations is predicted correctly, while
10448 the unknown number of iterations average to roughly 10. This means that the
10449 loop without bounds appears artificially cold relative to the other one.
10450
10451 @item builtin-expect-probability
10452 Control the probability of the expression having the specified value. This
10453 parameter takes a percentage (i.e. 0 ... 100) as input.
10454 The default probability of 90 is obtained empirically.
10455
10456 @item align-threshold
10457
10458 Select fraction of the maximal frequency of executions of a basic block in
10459 a function to align the basic block.
10460
10461 @item align-loop-iterations
10462
10463 A loop expected to iterate at least the selected number of iterations is
10464 aligned.
10465
10466 @item tracer-dynamic-coverage
10467 @itemx tracer-dynamic-coverage-feedback
10468
10469 This value is used to limit superblock formation once the given percentage of
10470 executed instructions is covered. This limits unnecessary code size
10471 expansion.
10472
10473 The @option{tracer-dynamic-coverage-feedback} parameter
10474 is used only when profile
10475 feedback is available. The real profiles (as opposed to statically estimated
10476 ones) are much less balanced allowing the threshold to be larger value.
10477
10478 @item tracer-max-code-growth
10479 Stop tail duplication once code growth has reached given percentage. This is
10480 a rather artificial limit, as most of the duplicates are eliminated later in
10481 cross jumping, so it may be set to much higher values than is the desired code
10482 growth.
10483
10484 @item tracer-min-branch-ratio
10485
10486 Stop reverse growth when the reverse probability of best edge is less than this
10487 threshold (in percent).
10488
10489 @item tracer-min-branch-ratio
10490 @itemx tracer-min-branch-ratio-feedback
10491
10492 Stop forward growth if the best edge has probability lower than this
10493 threshold.
10494
10495 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10496 compilation for profile feedback and one for compilation without. The value
10497 for compilation with profile feedback needs to be more conservative (higher) in
10498 order to make tracer effective.
10499
10500 @item max-cse-path-length
10501
10502 The maximum number of basic blocks on path that CSE considers.
10503 The default is 10.
10504
10505 @item max-cse-insns
10506 The maximum number of instructions CSE processes before flushing.
10507 The default is 1000.
10508
10509 @item ggc-min-expand
10510
10511 GCC uses a garbage collector to manage its own memory allocation. This
10512 parameter specifies the minimum percentage by which the garbage
10513 collector's heap should be allowed to expand between collections.
10514 Tuning this may improve compilation speed; it has no effect on code
10515 generation.
10516
10517 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10518 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10519 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10520 GCC is not able to calculate RAM on a particular platform, the lower
10521 bound of 30% is used. Setting this parameter and
10522 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10523 every opportunity. This is extremely slow, but can be useful for
10524 debugging.
10525
10526 @item ggc-min-heapsize
10527
10528 Minimum size of the garbage collector's heap before it begins bothering
10529 to collect garbage. The first collection occurs after the heap expands
10530 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10531 tuning this may improve compilation speed, and has no effect on code
10532 generation.
10533
10534 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10535 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10536 with a lower bound of 4096 (four megabytes) and an upper bound of
10537 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10538 particular platform, the lower bound is used. Setting this parameter
10539 very large effectively disables garbage collection. Setting this
10540 parameter and @option{ggc-min-expand} to zero causes a full collection
10541 to occur at every opportunity.
10542
10543 @item max-reload-search-insns
10544 The maximum number of instruction reload should look backward for equivalent
10545 register. Increasing values mean more aggressive optimization, making the
10546 compilation time increase with probably slightly better performance.
10547 The default value is 100.
10548
10549 @item max-cselib-memory-locations
10550 The maximum number of memory locations cselib should take into account.
10551 Increasing values mean more aggressive optimization, making the compilation time
10552 increase with probably slightly better performance. The default value is 500.
10553
10554 @item reorder-blocks-duplicate
10555 @itemx reorder-blocks-duplicate-feedback
10556
10557 Used by the basic block reordering pass to decide whether to use unconditional
10558 branch or duplicate the code on its destination. Code is duplicated when its
10559 estimated size is smaller than this value multiplied by the estimated size of
10560 unconditional jump in the hot spots of the program.
10561
10562 The @option{reorder-block-duplicate-feedback} parameter
10563 is used only when profile
10564 feedback is available. It may be set to higher values than
10565 @option{reorder-block-duplicate} since information about the hot spots is more
10566 accurate.
10567
10568 @item max-sched-ready-insns
10569 The maximum number of instructions ready to be issued the scheduler should
10570 consider at any given time during the first scheduling pass. Increasing
10571 values mean more thorough searches, making the compilation time increase
10572 with probably little benefit. The default value is 100.
10573
10574 @item max-sched-region-blocks
10575 The maximum number of blocks in a region to be considered for
10576 interblock scheduling. The default value is 10.
10577
10578 @item max-pipeline-region-blocks
10579 The maximum number of blocks in a region to be considered for
10580 pipelining in the selective scheduler. The default value is 15.
10581
10582 @item max-sched-region-insns
10583 The maximum number of insns in a region to be considered for
10584 interblock scheduling. The default value is 100.
10585
10586 @item max-pipeline-region-insns
10587 The maximum number of insns in a region to be considered for
10588 pipelining in the selective scheduler. The default value is 200.
10589
10590 @item min-spec-prob
10591 The minimum probability (in percents) of reaching a source block
10592 for interblock speculative scheduling. The default value is 40.
10593
10594 @item max-sched-extend-regions-iters
10595 The maximum number of iterations through CFG to extend regions.
10596 A value of 0 (the default) disables region extensions.
10597
10598 @item max-sched-insn-conflict-delay
10599 The maximum conflict delay for an insn to be considered for speculative motion.
10600 The default value is 3.
10601
10602 @item sched-spec-prob-cutoff
10603 The minimal probability of speculation success (in percents), so that
10604 speculative insns are scheduled.
10605 The default value is 40.
10606
10607 @item sched-spec-state-edge-prob-cutoff
10608 The minimum probability an edge must have for the scheduler to save its
10609 state across it.
10610 The default value is 10.
10611
10612 @item sched-mem-true-dep-cost
10613 Minimal distance (in CPU cycles) between store and load targeting same
10614 memory locations. The default value is 1.
10615
10616 @item selsched-max-lookahead
10617 The maximum size of the lookahead window of selective scheduling. It is a
10618 depth of search for available instructions.
10619 The default value is 50.
10620
10621 @item selsched-max-sched-times
10622 The maximum number of times that an instruction is scheduled during
10623 selective scheduling. This is the limit on the number of iterations
10624 through which the instruction may be pipelined. The default value is 2.
10625
10626 @item selsched-max-insns-to-rename
10627 The maximum number of best instructions in the ready list that are considered
10628 for renaming in the selective scheduler. The default value is 2.
10629
10630 @item sms-min-sc
10631 The minimum value of stage count that swing modulo scheduler
10632 generates. The default value is 2.
10633
10634 @item max-last-value-rtl
10635 The maximum size measured as number of RTLs that can be recorded in an expression
10636 in combiner for a pseudo register as last known value of that register. The default
10637 is 10000.
10638
10639 @item max-combine-insns
10640 The maximum number of instructions the RTL combiner tries to combine.
10641 The default value is 2 at @option{-Og} and 4 otherwise.
10642
10643 @item integer-share-limit
10644 Small integer constants can use a shared data structure, reducing the
10645 compiler's memory usage and increasing its speed. This sets the maximum
10646 value of a shared integer constant. The default value is 256.
10647
10648 @item ssp-buffer-size
10649 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10650 protection when @option{-fstack-protection} is used.
10651
10652 @item min-size-for-stack-sharing
10653 The minimum size of variables taking part in stack slot sharing when not
10654 optimizing. The default value is 32.
10655
10656 @item max-jump-thread-duplication-stmts
10657 Maximum number of statements allowed in a block that needs to be
10658 duplicated when threading jumps.
10659
10660 @item max-fields-for-field-sensitive
10661 Maximum number of fields in a structure treated in
10662 a field sensitive manner during pointer analysis. The default is zero
10663 for @option{-O0} and @option{-O1},
10664 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10665
10666 @item prefetch-latency
10667 Estimate on average number of instructions that are executed before
10668 prefetch finishes. The distance prefetched ahead is proportional
10669 to this constant. Increasing this number may also lead to less
10670 streams being prefetched (see @option{simultaneous-prefetches}).
10671
10672 @item simultaneous-prefetches
10673 Maximum number of prefetches that can run at the same time.
10674
10675 @item l1-cache-line-size
10676 The size of cache line in L1 cache, in bytes.
10677
10678 @item l1-cache-size
10679 The size of L1 cache, in kilobytes.
10680
10681 @item l2-cache-size
10682 The size of L2 cache, in kilobytes.
10683
10684 @item min-insn-to-prefetch-ratio
10685 The minimum ratio between the number of instructions and the
10686 number of prefetches to enable prefetching in a loop.
10687
10688 @item prefetch-min-insn-to-mem-ratio
10689 The minimum ratio between the number of instructions and the
10690 number of memory references to enable prefetching in a loop.
10691
10692 @item use-canonical-types
10693 Whether the compiler should use the ``canonical'' type system. By
10694 default, this should always be 1, which uses a more efficient internal
10695 mechanism for comparing types in C++ and Objective-C++. However, if
10696 bugs in the canonical type system are causing compilation failures,
10697 set this value to 0 to disable canonical types.
10698
10699 @item switch-conversion-max-branch-ratio
10700 Switch initialization conversion refuses to create arrays that are
10701 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10702 branches in the switch.
10703
10704 @item max-partial-antic-length
10705 Maximum length of the partial antic set computed during the tree
10706 partial redundancy elimination optimization (@option{-ftree-pre}) when
10707 optimizing at @option{-O3} and above. For some sorts of source code
10708 the enhanced partial redundancy elimination optimization can run away,
10709 consuming all of the memory available on the host machine. This
10710 parameter sets a limit on the length of the sets that are computed,
10711 which prevents the runaway behavior. Setting a value of 0 for
10712 this parameter allows an unlimited set length.
10713
10714 @item sccvn-max-scc-size
10715 Maximum size of a strongly connected component (SCC) during SCCVN
10716 processing. If this limit is hit, SCCVN processing for the whole
10717 function is not done and optimizations depending on it are
10718 disabled. The default maximum SCC size is 10000.
10719
10720 @item sccvn-max-alias-queries-per-access
10721 Maximum number of alias-oracle queries we perform when looking for
10722 redundancies for loads and stores. If this limit is hit the search
10723 is aborted and the load or store is not considered redundant. The
10724 number of queries is algorithmically limited to the number of
10725 stores on all paths from the load to the function entry.
10726 The default maxmimum number of queries is 1000.
10727
10728 @item ira-max-loops-num
10729 IRA uses regional register allocation by default. If a function
10730 contains more loops than the number given by this parameter, only at most
10731 the given number of the most frequently-executed loops form regions
10732 for regional register allocation. The default value of the
10733 parameter is 100.
10734
10735 @item ira-max-conflict-table-size
10736 Although IRA uses a sophisticated algorithm to compress the conflict
10737 table, the table can still require excessive amounts of memory for
10738 huge functions. If the conflict table for a function could be more
10739 than the size in MB given by this parameter, the register allocator
10740 instead uses a faster, simpler, and lower-quality
10741 algorithm that does not require building a pseudo-register conflict table.
10742 The default value of the parameter is 2000.
10743
10744 @item ira-loop-reserved-regs
10745 IRA can be used to evaluate more accurate register pressure in loops
10746 for decisions to move loop invariants (see @option{-O3}). The number
10747 of available registers reserved for some other purposes is given
10748 by this parameter. The default value of the parameter is 2, which is
10749 the minimal number of registers needed by typical instructions.
10750 This value is the best found from numerous experiments.
10751
10752 @item lra-inheritance-ebb-probability-cutoff
10753 LRA tries to reuse values reloaded in registers in subsequent insns.
10754 This optimization is called inheritance. EBB is used as a region to
10755 do this optimization. The parameter defines a minimal fall-through
10756 edge probability in percentage used to add BB to inheritance EBB in
10757 LRA. The default value of the parameter is 40. The value was chosen
10758 from numerous runs of SPEC2000 on x86-64.
10759
10760 @item loop-invariant-max-bbs-in-loop
10761 Loop invariant motion can be very expensive, both in compilation time and
10762 in amount of needed compile-time memory, with very large loops. Loops
10763 with more basic blocks than this parameter won't have loop invariant
10764 motion optimization performed on them. The default value of the
10765 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10766
10767 @item loop-max-datarefs-for-datadeps
10768 Building data dapendencies is expensive for very large loops. This
10769 parameter limits the number of data references in loops that are
10770 considered for data dependence analysis. These large loops are no
10771 handled by the optimizations using loop data dependencies.
10772 The default value is 1000.
10773
10774 @item max-vartrack-size
10775 Sets a maximum number of hash table slots to use during variable
10776 tracking dataflow analysis of any function. If this limit is exceeded
10777 with variable tracking at assignments enabled, analysis for that
10778 function is retried without it, after removing all debug insns from
10779 the function. If the limit is exceeded even without debug insns, var
10780 tracking analysis is completely disabled for the function. Setting
10781 the parameter to zero makes it unlimited.
10782
10783 @item max-vartrack-expr-depth
10784 Sets a maximum number of recursion levels when attempting to map
10785 variable names or debug temporaries to value expressions. This trades
10786 compilation time for more complete debug information. If this is set too
10787 low, value expressions that are available and could be represented in
10788 debug information may end up not being used; setting this higher may
10789 enable the compiler to find more complex debug expressions, but compile
10790 time and memory use may grow. The default is 12.
10791
10792 @item min-nondebug-insn-uid
10793 Use uids starting at this parameter for nondebug insns. The range below
10794 the parameter is reserved exclusively for debug insns created by
10795 @option{-fvar-tracking-assignments}, but debug insns may get
10796 (non-overlapping) uids above it if the reserved range is exhausted.
10797
10798 @item ipa-sra-ptr-growth-factor
10799 IPA-SRA replaces a pointer to an aggregate with one or more new
10800 parameters only when their cumulative size is less or equal to
10801 @option{ipa-sra-ptr-growth-factor} times the size of the original
10802 pointer parameter.
10803
10804 @item sra-max-scalarization-size-Ospeed
10805 @item sra-max-scalarization-size-Osize
10806 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10807 replace scalar parts of aggregates with uses of independent scalar
10808 variables. These parameters control the maximum size, in storage units,
10809 of aggregate which is considered for replacement when compiling for
10810 speed
10811 (@option{sra-max-scalarization-size-Ospeed}) or size
10812 (@option{sra-max-scalarization-size-Osize}) respectively.
10813
10814 @item tm-max-aggregate-size
10815 When making copies of thread-local variables in a transaction, this
10816 parameter specifies the size in bytes after which variables are
10817 saved with the logging functions as opposed to save/restore code
10818 sequence pairs. This option only applies when using
10819 @option{-fgnu-tm}.
10820
10821 @item graphite-max-nb-scop-params
10822 To avoid exponential effects in the Graphite loop transforms, the
10823 number of parameters in a Static Control Part (SCoP) is bounded. The
10824 default value is 10 parameters. A variable whose value is unknown at
10825 compilation time and defined outside a SCoP is a parameter of the SCoP.
10826
10827 @item graphite-max-bbs-per-function
10828 To avoid exponential effects in the detection of SCoPs, the size of
10829 the functions analyzed by Graphite is bounded. The default value is
10830 100 basic blocks.
10831
10832 @item loop-block-tile-size
10833 Loop blocking or strip mining transforms, enabled with
10834 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10835 loop in the loop nest by a given number of iterations. The strip
10836 length can be changed using the @option{loop-block-tile-size}
10837 parameter. The default value is 51 iterations.
10838
10839 @item loop-unroll-jam-size
10840 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10841 default value is 4.
10842
10843 @item loop-unroll-jam-depth
10844 Specify the dimension to be unrolled (counting from the most inner loop)
10845 for the @option{-floop-unroll-and-jam}. The default value is 2.
10846
10847 @item ipa-cp-value-list-size
10848 IPA-CP attempts to track all possible values and types passed to a function's
10849 parameter in order to propagate them and perform devirtualization.
10850 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10851 stores per one formal parameter of a function.
10852
10853 @item ipa-cp-eval-threshold
10854 IPA-CP calculates its own score of cloning profitability heuristics
10855 and performs those cloning opportunities with scores that exceed
10856 @option{ipa-cp-eval-threshold}.
10857
10858 @item ipa-cp-recursion-penalty
10859 Percentage penalty the recursive functions will receive when they
10860 are evaluated for cloning.
10861
10862 @item ipa-cp-single-call-penalty
10863 Percentage penalty functions containg a single call to another
10864 function will receive when they are evaluated for cloning.
10865
10866
10867 @item ipa-max-agg-items
10868 IPA-CP is also capable to propagate a number of scalar values passed
10869 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10870 number of such values per one parameter.
10871
10872 @item ipa-cp-loop-hint-bonus
10873 When IPA-CP determines that a cloning candidate would make the number
10874 of iterations of a loop known, it adds a bonus of
10875 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10876 the candidate.
10877
10878 @item ipa-cp-array-index-hint-bonus
10879 When IPA-CP determines that a cloning candidate would make the index of
10880 an array access known, it adds a bonus of
10881 @option{ipa-cp-array-index-hint-bonus} to the profitability
10882 score of the candidate.
10883
10884 @item ipa-max-aa-steps
10885 During its analysis of function bodies, IPA-CP employs alias analysis
10886 in order to track values pointed to by function parameters. In order
10887 not spend too much time analyzing huge functions, it gives up and
10888 consider all memory clobbered after examining
10889 @option{ipa-max-aa-steps} statements modifying memory.
10890
10891 @item lto-partitions
10892 Specify desired number of partitions produced during WHOPR compilation.
10893 The number of partitions should exceed the number of CPUs used for compilation.
10894 The default value is 32.
10895
10896 @item lto-minpartition
10897 Size of minimal partition for WHOPR (in estimated instructions).
10898 This prevents expenses of splitting very small programs into too many
10899 partitions.
10900
10901 @item cxx-max-namespaces-for-diagnostic-help
10902 The maximum number of namespaces to consult for suggestions when C++
10903 name lookup fails for an identifier. The default is 1000.
10904
10905 @item sink-frequency-threshold
10906 The maximum relative execution frequency (in percents) of the target block
10907 relative to a statement's original block to allow statement sinking of a
10908 statement. Larger numbers result in more aggressive statement sinking.
10909 The default value is 75. A small positive adjustment is applied for
10910 statements with memory operands as those are even more profitable so sink.
10911
10912 @item max-stores-to-sink
10913 The maximum number of conditional stores paires that can be sunk. Set to 0
10914 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10915 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
10916
10917 @item allow-store-data-races
10918 Allow optimizers to introduce new data races on stores.
10919 Set to 1 to allow, otherwise to 0. This option is enabled by default
10920 at optimization level @option{-Ofast}.
10921
10922 @item case-values-threshold
10923 The smallest number of different values for which it is best to use a
10924 jump-table instead of a tree of conditional branches. If the value is
10925 0, use the default for the machine. The default is 0.
10926
10927 @item tree-reassoc-width
10928 Set the maximum number of instructions executed in parallel in
10929 reassociated tree. This parameter overrides target dependent
10930 heuristics used by default if has non zero value.
10931
10932 @item sched-pressure-algorithm
10933 Choose between the two available implementations of
10934 @option{-fsched-pressure}. Algorithm 1 is the original implementation
10935 and is the more likely to prevent instructions from being reordered.
10936 Algorithm 2 was designed to be a compromise between the relatively
10937 conservative approach taken by algorithm 1 and the rather aggressive
10938 approach taken by the default scheduler. It relies more heavily on
10939 having a regular register file and accurate register pressure classes.
10940 See @file{haifa-sched.c} in the GCC sources for more details.
10941
10942 The default choice depends on the target.
10943
10944 @item max-slsr-cand-scan
10945 Set the maximum number of existing candidates that are considered when
10946 seeking a basis for a new straight-line strength reduction candidate.
10947
10948 @item asan-globals
10949 Enable buffer overflow detection for global objects. This kind
10950 of protection is enabled by default if you are using
10951 @option{-fsanitize=address} option.
10952 To disable global objects protection use @option{--param asan-globals=0}.
10953
10954 @item asan-stack
10955 Enable buffer overflow detection for stack objects. This kind of
10956 protection is enabled by default when using@option{-fsanitize=address}.
10957 To disable stack protection use @option{--param asan-stack=0} option.
10958
10959 @item asan-instrument-reads
10960 Enable buffer overflow detection for memory reads. This kind of
10961 protection is enabled by default when using @option{-fsanitize=address}.
10962 To disable memory reads protection use
10963 @option{--param asan-instrument-reads=0}.
10964
10965 @item asan-instrument-writes
10966 Enable buffer overflow detection for memory writes. This kind of
10967 protection is enabled by default when using @option{-fsanitize=address}.
10968 To disable memory writes protection use
10969 @option{--param asan-instrument-writes=0} option.
10970
10971 @item asan-memintrin
10972 Enable detection for built-in functions. This kind of protection
10973 is enabled by default when using @option{-fsanitize=address}.
10974 To disable built-in functions protection use
10975 @option{--param asan-memintrin=0}.
10976
10977 @item asan-use-after-return
10978 Enable detection of use-after-return. This kind of protection
10979 is enabled by default when using @option{-fsanitize=address} option.
10980 To disable use-after-return detection use
10981 @option{--param asan-use-after-return=0}.
10982
10983 @item asan-instrumentation-with-call-threshold
10984 If number of memory accesses in function being instrumented
10985 is greater or equal to this number, use callbacks instead of inline checks.
10986 E.g. to disable inline code use
10987 @option{--param asan-instrumentation-with-call-threshold=0}.
10988
10989 @item chkp-max-ctor-size
10990 Static constructors generated by Pointer Bounds Checker may become very
10991 large and significantly increase compile time at optimization level
10992 @option{-O1} and higher. This parameter is a maximum nubmer of statements
10993 in a single generated constructor. Default value is 5000.
10994
10995 @item max-fsm-thread-path-insns
10996 Maximum number of instructions to copy when duplicating blocks on a
10997 finite state automaton jump thread path. The default is 100.
10998
10999 @item max-fsm-thread-length
11000 Maximum number of basic blocks on a finite state automaton jump thread
11001 path. The default is 10.
11002
11003 @item max-fsm-thread-paths
11004 Maximum number of new jump thread paths to create for a finite state
11005 automaton. The default is 50.
11006
11007 @end table
11008 @end table
11009
11010 @node Preprocessor Options
11011 @section Options Controlling the Preprocessor
11012 @cindex preprocessor options
11013 @cindex options, preprocessor
11014
11015 These options control the C preprocessor, which is run on each C source
11016 file before actual compilation.
11017
11018 If you use the @option{-E} option, nothing is done except preprocessing.
11019 Some of these options make sense only together with @option{-E} because
11020 they cause the preprocessor output to be unsuitable for actual
11021 compilation.
11022
11023 @table @gcctabopt
11024 @item -Wp,@var{option}
11025 @opindex Wp
11026 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11027 and pass @var{option} directly through to the preprocessor. If
11028 @var{option} contains commas, it is split into multiple options at the
11029 commas. However, many options are modified, translated or interpreted
11030 by the compiler driver before being passed to the preprocessor, and
11031 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11032 interface is undocumented and subject to change, so whenever possible
11033 you should avoid using @option{-Wp} and let the driver handle the
11034 options instead.
11035
11036 @item -Xpreprocessor @var{option}
11037 @opindex Xpreprocessor
11038 Pass @var{option} as an option to the preprocessor. You can use this to
11039 supply system-specific preprocessor options that GCC does not
11040 recognize.
11041
11042 If you want to pass an option that takes an argument, you must use
11043 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11044
11045 @item -no-integrated-cpp
11046 @opindex no-integrated-cpp
11047 Perform preprocessing as a separate pass before compilation.
11048 By default, GCC performs preprocessing as an integrated part of
11049 input tokenization and parsing.
11050 If this option is provided, the appropriate language front end
11051 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11052 and Objective-C, respectively) is instead invoked twice,
11053 once for preprocessing only and once for actual compilation
11054 of the preprocessed input.
11055 This option may be useful in conjunction with the @option{-B} or
11056 @option{-wrapper} options to specify an alternate preprocessor or
11057 perform additional processing of the program source between
11058 normal preprocessing and compilation.
11059 @end table
11060
11061 @include cppopts.texi
11062
11063 @node Assembler Options
11064 @section Passing Options to the Assembler
11065
11066 @c prevent bad page break with this line
11067 You can pass options to the assembler.
11068
11069 @table @gcctabopt
11070 @item -Wa,@var{option}
11071 @opindex Wa
11072 Pass @var{option} as an option to the assembler. If @var{option}
11073 contains commas, it is split into multiple options at the commas.
11074
11075 @item -Xassembler @var{option}
11076 @opindex Xassembler
11077 Pass @var{option} as an option to the assembler. You can use this to
11078 supply system-specific assembler options that GCC does not
11079 recognize.
11080
11081 If you want to pass an option that takes an argument, you must use
11082 @option{-Xassembler} twice, once for the option and once for the argument.
11083
11084 @end table
11085
11086 @node Link Options
11087 @section Options for Linking
11088 @cindex link options
11089 @cindex options, linking
11090
11091 These options come into play when the compiler links object files into
11092 an executable output file. They are meaningless if the compiler is
11093 not doing a link step.
11094
11095 @table @gcctabopt
11096 @cindex file names
11097 @item @var{object-file-name}
11098 A file name that does not end in a special recognized suffix is
11099 considered to name an object file or library. (Object files are
11100 distinguished from libraries by the linker according to the file
11101 contents.) If linking is done, these object files are used as input
11102 to the linker.
11103
11104 @item -c
11105 @itemx -S
11106 @itemx -E
11107 @opindex c
11108 @opindex S
11109 @opindex E
11110 If any of these options is used, then the linker is not run, and
11111 object file names should not be used as arguments. @xref{Overall
11112 Options}.
11113
11114 @item -fuse-ld=bfd
11115 @opindex fuse-ld=bfd
11116 Use the @command{bfd} linker instead of the default linker.
11117
11118 @item -fuse-ld=gold
11119 @opindex fuse-ld=gold
11120 Use the @command{gold} linker instead of the default linker.
11121
11122 @cindex Libraries
11123 @item -l@var{library}
11124 @itemx -l @var{library}
11125 @opindex l
11126 Search the library named @var{library} when linking. (The second
11127 alternative with the library as a separate argument is only for
11128 POSIX compliance and is not recommended.)
11129
11130 It makes a difference where in the command you write this option; the
11131 linker searches and processes libraries and object files in the order they
11132 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11133 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11134 to functions in @samp{z}, those functions may not be loaded.
11135
11136 The linker searches a standard list of directories for the library,
11137 which is actually a file named @file{lib@var{library}.a}. The linker
11138 then uses this file as if it had been specified precisely by name.
11139
11140 The directories searched include several standard system directories
11141 plus any that you specify with @option{-L}.
11142
11143 Normally the files found this way are library files---archive files
11144 whose members are object files. The linker handles an archive file by
11145 scanning through it for members which define symbols that have so far
11146 been referenced but not defined. But if the file that is found is an
11147 ordinary object file, it is linked in the usual fashion. The only
11148 difference between using an @option{-l} option and specifying a file name
11149 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11150 and searches several directories.
11151
11152 @item -lobjc
11153 @opindex lobjc
11154 You need this special case of the @option{-l} option in order to
11155 link an Objective-C or Objective-C++ program.
11156
11157 @item -nostartfiles
11158 @opindex nostartfiles
11159 Do not use the standard system startup files when linking.
11160 The standard system libraries are used normally, unless @option{-nostdlib}
11161 or @option{-nodefaultlibs} is used.
11162
11163 @item -nodefaultlibs
11164 @opindex nodefaultlibs
11165 Do not use the standard system libraries when linking.
11166 Only the libraries you specify are passed to the linker, and options
11167 specifying linkage of the system libraries, such as @option{-static-libgcc}
11168 or @option{-shared-libgcc}, are ignored.
11169 The standard startup files are used normally, unless @option{-nostartfiles}
11170 is used.
11171
11172 The compiler may generate calls to @code{memcmp},
11173 @code{memset}, @code{memcpy} and @code{memmove}.
11174 These entries are usually resolved by entries in
11175 libc. These entry points should be supplied through some other
11176 mechanism when this option is specified.
11177
11178 @item -nostdlib
11179 @opindex nostdlib
11180 Do not use the standard system startup files or libraries when linking.
11181 No startup files and only the libraries you specify are passed to
11182 the linker, and options specifying linkage of the system libraries, such as
11183 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11184
11185 The compiler may generate calls to @code{memcmp}, @code{memset},
11186 @code{memcpy} and @code{memmove}.
11187 These entries are usually resolved by entries in
11188 libc. These entry points should be supplied through some other
11189 mechanism when this option is specified.
11190
11191 @cindex @option{-lgcc}, use with @option{-nostdlib}
11192 @cindex @option{-nostdlib} and unresolved references
11193 @cindex unresolved references and @option{-nostdlib}
11194 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11195 @cindex @option{-nodefaultlibs} and unresolved references
11196 @cindex unresolved references and @option{-nodefaultlibs}
11197 One of the standard libraries bypassed by @option{-nostdlib} and
11198 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11199 which GCC uses to overcome shortcomings of particular machines, or special
11200 needs for some languages.
11201 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11202 Collection (GCC) Internals},
11203 for more discussion of @file{libgcc.a}.)
11204 In most cases, you need @file{libgcc.a} even when you want to avoid
11205 other standard libraries. In other words, when you specify @option{-nostdlib}
11206 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11207 This ensures that you have no unresolved references to internal GCC
11208 library subroutines.
11209 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11210 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11211 GNU Compiler Collection (GCC) Internals}.)
11212
11213 @item -pie
11214 @opindex pie
11215 Produce a position independent executable on targets that support it.
11216 For predictable results, you must also specify the same set of options
11217 used for compilation (@option{-fpie}, @option{-fPIE},
11218 or model suboptions) when you specify this linker option.
11219
11220 @item -rdynamic
11221 @opindex rdynamic
11222 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11223 that support it. This instructs the linker to add all symbols, not
11224 only used ones, to the dynamic symbol table. This option is needed
11225 for some uses of @code{dlopen} or to allow obtaining backtraces
11226 from within a program.
11227
11228 @item -s
11229 @opindex s
11230 Remove all symbol table and relocation information from the executable.
11231
11232 @item -static
11233 @opindex static
11234 On systems that support dynamic linking, this prevents linking with the shared
11235 libraries. On other systems, this option has no effect.
11236
11237 @item -shared
11238 @opindex shared
11239 Produce a shared object which can then be linked with other objects to
11240 form an executable. Not all systems support this option. For predictable
11241 results, you must also specify the same set of options used for compilation
11242 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11243 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11244 needs to build supplementary stub code for constructors to work. On
11245 multi-libbed systems, @samp{gcc -shared} must select the correct support
11246 libraries to link against. Failing to supply the correct flags may lead
11247 to subtle defects. Supplying them in cases where they are not necessary
11248 is innocuous.}
11249
11250 @item -shared-libgcc
11251 @itemx -static-libgcc
11252 @opindex shared-libgcc
11253 @opindex static-libgcc
11254 On systems that provide @file{libgcc} as a shared library, these options
11255 force the use of either the shared or static version, respectively.
11256 If no shared version of @file{libgcc} was built when the compiler was
11257 configured, these options have no effect.
11258
11259 There are several situations in which an application should use the
11260 shared @file{libgcc} instead of the static version. The most common
11261 of these is when the application wishes to throw and catch exceptions
11262 across different shared libraries. In that case, each of the libraries
11263 as well as the application itself should use the shared @file{libgcc}.
11264
11265 Therefore, the G++ and GCJ drivers automatically add
11266 @option{-shared-libgcc} whenever you build a shared library or a main
11267 executable, because C++ and Java programs typically use exceptions, so
11268 this is the right thing to do.
11269
11270 If, instead, you use the GCC driver to create shared libraries, you may
11271 find that they are not always linked with the shared @file{libgcc}.
11272 If GCC finds, at its configuration time, that you have a non-GNU linker
11273 or a GNU linker that does not support option @option{--eh-frame-hdr},
11274 it links the shared version of @file{libgcc} into shared libraries
11275 by default. Otherwise, it takes advantage of the linker and optimizes
11276 away the linking with the shared version of @file{libgcc}, linking with
11277 the static version of libgcc by default. This allows exceptions to
11278 propagate through such shared libraries, without incurring relocation
11279 costs at library load time.
11280
11281 However, if a library or main executable is supposed to throw or catch
11282 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11283 for the languages used in the program, or using the option
11284 @option{-shared-libgcc}, such that it is linked with the shared
11285 @file{libgcc}.
11286
11287 @item -static-libasan
11288 @opindex static-libasan
11289 When the @option{-fsanitize=address} option is used to link a program,
11290 the GCC driver automatically links against @option{libasan}. If
11291 @file{libasan} is available as a shared library, and the @option{-static}
11292 option is not used, then this links against the shared version of
11293 @file{libasan}. The @option{-static-libasan} option directs the GCC
11294 driver to link @file{libasan} statically, without necessarily linking
11295 other libraries statically.
11296
11297 @item -static-libtsan
11298 @opindex static-libtsan
11299 When the @option{-fsanitize=thread} option is used to link a program,
11300 the GCC driver automatically links against @option{libtsan}. If
11301 @file{libtsan} is available as a shared library, and the @option{-static}
11302 option is not used, then this links against the shared version of
11303 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11304 driver to link @file{libtsan} statically, without necessarily linking
11305 other libraries statically.
11306
11307 @item -static-liblsan
11308 @opindex static-liblsan
11309 When the @option{-fsanitize=leak} option is used to link a program,
11310 the GCC driver automatically links against @option{liblsan}. If
11311 @file{liblsan} is available as a shared library, and the @option{-static}
11312 option is not used, then this links against the shared version of
11313 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11314 driver to link @file{liblsan} statically, without necessarily linking
11315 other libraries statically.
11316
11317 @item -static-libubsan
11318 @opindex static-libubsan
11319 When the @option{-fsanitize=undefined} option is used to link a program,
11320 the GCC driver automatically links against @option{libubsan}. If
11321 @file{libubsan} is available as a shared library, and the @option{-static}
11322 option is not used, then this links against the shared version of
11323 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11324 driver to link @file{libubsan} statically, without necessarily linking
11325 other libraries statically.
11326
11327 @item -static-libmpx
11328 @opindex static-libmpx
11329 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11330 used to link a program, the GCC driver automatically links against
11331 @file{libmpx}. If @file{libmpx} is available as a shared library,
11332 and the @option{-static} option is not used, then this links against
11333 the shared version of @file{libmpx}. The @option{-static-libmpx}
11334 option directs the GCC driver to link @file{libmpx} statically,
11335 without necessarily linking other libraries statically.
11336
11337 @item -static-libmpxwrappers
11338 @opindex static-libmpxwrappers
11339 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11340 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11341 GCC driver automatically links against @file{libmpxwrappers}. If
11342 @file{libmpxwrappers} is available as a shared library, and the
11343 @option{-static} option is not used, then this links against the shared
11344 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11345 option directs the GCC driver to link @file{libmpxwrappers} statically,
11346 without necessarily linking other libraries statically.
11347
11348 @item -static-libstdc++
11349 @opindex static-libstdc++
11350 When the @command{g++} program is used to link a C++ program, it
11351 normally automatically links against @option{libstdc++}. If
11352 @file{libstdc++} is available as a shared library, and the
11353 @option{-static} option is not used, then this links against the
11354 shared version of @file{libstdc++}. That is normally fine. However, it
11355 is sometimes useful to freeze the version of @file{libstdc++} used by
11356 the program without going all the way to a fully static link. The
11357 @option{-static-libstdc++} option directs the @command{g++} driver to
11358 link @file{libstdc++} statically, without necessarily linking other
11359 libraries statically.
11360
11361 @item -symbolic
11362 @opindex symbolic
11363 Bind references to global symbols when building a shared object. Warn
11364 about any unresolved references (unless overridden by the link editor
11365 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11366 this option.
11367
11368 @item -T @var{script}
11369 @opindex T
11370 @cindex linker script
11371 Use @var{script} as the linker script. This option is supported by most
11372 systems using the GNU linker. On some targets, such as bare-board
11373 targets without an operating system, the @option{-T} option may be required
11374 when linking to avoid references to undefined symbols.
11375
11376 @item -Xlinker @var{option}
11377 @opindex Xlinker
11378 Pass @var{option} as an option to the linker. You can use this to
11379 supply system-specific linker options that GCC does not recognize.
11380
11381 If you want to pass an option that takes a separate argument, you must use
11382 @option{-Xlinker} twice, once for the option and once for the argument.
11383 For example, to pass @option{-assert definitions}, you must write
11384 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11385 @option{-Xlinker "-assert definitions"}, because this passes the entire
11386 string as a single argument, which is not what the linker expects.
11387
11388 When using the GNU linker, it is usually more convenient to pass
11389 arguments to linker options using the @option{@var{option}=@var{value}}
11390 syntax than as separate arguments. For example, you can specify
11391 @option{-Xlinker -Map=output.map} rather than
11392 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11393 this syntax for command-line options.
11394
11395 @item -Wl,@var{option}
11396 @opindex Wl
11397 Pass @var{option} as an option to the linker. If @var{option} contains
11398 commas, it is split into multiple options at the commas. You can use this
11399 syntax to pass an argument to the option.
11400 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11401 linker. When using the GNU linker, you can also get the same effect with
11402 @option{-Wl,-Map=output.map}.
11403
11404 @item -u @var{symbol}
11405 @opindex u
11406 Pretend the symbol @var{symbol} is undefined, to force linking of
11407 library modules to define it. You can use @option{-u} multiple times with
11408 different symbols to force loading of additional library modules.
11409
11410 @item -z @var{keyword}
11411 @opindex z
11412 @option{-z} is passed directly on to the linker along with the keyword
11413 @var{keyword}. See the section in the documentation of your linker for
11414 permitted values and their meanings.
11415 @end table
11416
11417 @node Directory Options
11418 @section Options for Directory Search
11419 @cindex directory options
11420 @cindex options, directory search
11421 @cindex search path
11422
11423 These options specify directories to search for header files, for
11424 libraries and for parts of the compiler:
11425
11426 @table @gcctabopt
11427 @item -I@var{dir}
11428 @opindex I
11429 Add the directory @var{dir} to the head of the list of directories to be
11430 searched for header files. This can be used to override a system header
11431 file, substituting your own version, since these directories are
11432 searched before the system header file directories. However, you should
11433 not use this option to add directories that contain vendor-supplied
11434 system header files (use @option{-isystem} for that). If you use more than
11435 one @option{-I} option, the directories are scanned in left-to-right
11436 order; the standard system directories come after.
11437
11438 If a standard system include directory, or a directory specified with
11439 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11440 option is ignored. The directory is still searched but as a
11441 system directory at its normal position in the system include chain.
11442 This is to ensure that GCC's procedure to fix buggy system headers and
11443 the ordering for the @code{include_next} directive are not inadvertently changed.
11444 If you really need to change the search order for system directories,
11445 use the @option{-nostdinc} and/or @option{-isystem} options.
11446
11447 @item -iplugindir=@var{dir}
11448 @opindex iplugindir=
11449 Set the directory to search for plugins that are passed
11450 by @option{-fplugin=@var{name}} instead of
11451 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11452 to be used by the user, but only passed by the driver.
11453
11454 @item -iquote@var{dir}
11455 @opindex iquote
11456 Add the directory @var{dir} to the head of the list of directories to
11457 be searched for header files only for the case of @code{#include
11458 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11459 otherwise just like @option{-I}.
11460
11461 @item -L@var{dir}
11462 @opindex L
11463 Add directory @var{dir} to the list of directories to be searched
11464 for @option{-l}.
11465
11466 @item -B@var{prefix}
11467 @opindex B
11468 This option specifies where to find the executables, libraries,
11469 include files, and data files of the compiler itself.
11470
11471 The compiler driver program runs one or more of the subprograms
11472 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11473 @var{prefix} as a prefix for each program it tries to run, both with and
11474 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11475
11476 For each subprogram to be run, the compiler driver first tries the
11477 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11478 is not specified, the driver tries two standard prefixes,
11479 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11480 those results in a file name that is found, the unmodified program
11481 name is searched for using the directories specified in your
11482 @env{PATH} environment variable.
11483
11484 The compiler checks to see if the path provided by @option{-B}
11485 refers to a directory, and if necessary it adds a directory
11486 separator character at the end of the path.
11487
11488 @option{-B} prefixes that effectively specify directory names also apply
11489 to libraries in the linker, because the compiler translates these
11490 options into @option{-L} options for the linker. They also apply to
11491 include files in the preprocessor, because the compiler translates these
11492 options into @option{-isystem} options for the preprocessor. In this case,
11493 the compiler appends @samp{include} to the prefix.
11494
11495 The runtime support file @file{libgcc.a} can also be searched for using
11496 the @option{-B} prefix, if needed. If it is not found there, the two
11497 standard prefixes above are tried, and that is all. The file is left
11498 out of the link if it is not found by those means.
11499
11500 Another way to specify a prefix much like the @option{-B} prefix is to use
11501 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
11502 Variables}.
11503
11504 As a special kludge, if the path provided by @option{-B} is
11505 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11506 9, then it is replaced by @file{[dir/]include}. This is to help
11507 with boot-strapping the compiler.
11508
11509 @item -specs=@var{file}
11510 @opindex specs
11511 Process @var{file} after the compiler reads in the standard @file{specs}
11512 file, in order to override the defaults which the @command{gcc} driver
11513 program uses when determining what switches to pass to @command{cc1},
11514 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
11515 @option{-specs=@var{file}} can be specified on the command line, and they
11516 are processed in order, from left to right.
11517
11518 @item --sysroot=@var{dir}
11519 @opindex sysroot
11520 Use @var{dir} as the logical root directory for headers and libraries.
11521 For example, if the compiler normally searches for headers in
11522 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11523 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11524
11525 If you use both this option and the @option{-isysroot} option, then
11526 the @option{--sysroot} option applies to libraries, but the
11527 @option{-isysroot} option applies to header files.
11528
11529 The GNU linker (beginning with version 2.16) has the necessary support
11530 for this option. If your linker does not support this option, the
11531 header file aspect of @option{--sysroot} still works, but the
11532 library aspect does not.
11533
11534 @item --no-sysroot-suffix
11535 @opindex no-sysroot-suffix
11536 For some targets, a suffix is added to the root directory specified
11537 with @option{--sysroot}, depending on the other options used, so that
11538 headers may for example be found in
11539 @file{@var{dir}/@var{suffix}/usr/include} instead of
11540 @file{@var{dir}/usr/include}. This option disables the addition of
11541 such a suffix.
11542
11543 @item -I-
11544 @opindex I-
11545 This option has been deprecated. Please use @option{-iquote} instead for
11546 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11547 option.
11548 Any directories you specify with @option{-I} options before the @option{-I-}
11549 option are searched only for the case of @code{#include "@var{file}"};
11550 they are not searched for @code{#include <@var{file}>}.
11551
11552 If additional directories are specified with @option{-I} options after
11553 the @option{-I-} option, these directories are searched for all @code{#include}
11554 directives. (Ordinarily @emph{all} @option{-I} directories are used
11555 this way.)
11556
11557 In addition, the @option{-I-} option inhibits the use of the current
11558 directory (where the current input file came from) as the first search
11559 directory for @code{#include "@var{file}"}. There is no way to
11560 override this effect of @option{-I-}. With @option{-I.} you can specify
11561 searching the directory that is current when the compiler is
11562 invoked. That is not exactly the same as what the preprocessor does
11563 by default, but it is often satisfactory.
11564
11565 @option{-I-} does not inhibit the use of the standard system directories
11566 for header files. Thus, @option{-I-} and @option{-nostdinc} are
11567 independent.
11568 @end table
11569
11570 @c man end
11571
11572 @node Spec Files
11573 @section Specifying Subprocesses and the Switches to Pass to Them
11574 @cindex Spec Files
11575
11576 @command{gcc} is a driver program. It performs its job by invoking a
11577 sequence of other programs to do the work of compiling, assembling and
11578 linking. GCC interprets its command-line parameters and uses these to
11579 deduce which programs it should invoke, and which command-line options
11580 it ought to place on their command lines. This behavior is controlled
11581 by @dfn{spec strings}. In most cases there is one spec string for each
11582 program that GCC can invoke, but a few programs have multiple spec
11583 strings to control their behavior. The spec strings built into GCC can
11584 be overridden by using the @option{-specs=} command-line switch to specify
11585 a spec file.
11586
11587 @dfn{Spec files} are plaintext files that are used to construct spec
11588 strings. They consist of a sequence of directives separated by blank
11589 lines. The type of directive is determined by the first non-whitespace
11590 character on the line, which can be one of the following:
11591
11592 @table @code
11593 @item %@var{command}
11594 Issues a @var{command} to the spec file processor. The commands that can
11595 appear here are:
11596
11597 @table @code
11598 @item %include <@var{file}>
11599 @cindex @code{%include}
11600 Search for @var{file} and insert its text at the current point in the
11601 specs file.
11602
11603 @item %include_noerr <@var{file}>
11604 @cindex @code{%include_noerr}
11605 Just like @samp{%include}, but do not generate an error message if the include
11606 file cannot be found.
11607
11608 @item %rename @var{old_name} @var{new_name}
11609 @cindex @code{%rename}
11610 Rename the spec string @var{old_name} to @var{new_name}.
11611
11612 @end table
11613
11614 @item *[@var{spec_name}]:
11615 This tells the compiler to create, override or delete the named spec
11616 string. All lines after this directive up to the next directive or
11617 blank line are considered to be the text for the spec string. If this
11618 results in an empty string then the spec is deleted. (Or, if the
11619 spec did not exist, then nothing happens.) Otherwise, if the spec
11620 does not currently exist a new spec is created. If the spec does
11621 exist then its contents are overridden by the text of this
11622 directive, unless the first character of that text is the @samp{+}
11623 character, in which case the text is appended to the spec.
11624
11625 @item [@var{suffix}]:
11626 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
11627 and up to the next directive or blank line are considered to make up the
11628 spec string for the indicated suffix. When the compiler encounters an
11629 input file with the named suffix, it processes the spec string in
11630 order to work out how to compile that file. For example:
11631
11632 @smallexample
11633 .ZZ:
11634 z-compile -input %i
11635 @end smallexample
11636
11637 This says that any input file whose name ends in @samp{.ZZ} should be
11638 passed to the program @samp{z-compile}, which should be invoked with the
11639 command-line switch @option{-input} and with the result of performing the
11640 @samp{%i} substitution. (See below.)
11641
11642 As an alternative to providing a spec string, the text following a
11643 suffix directive can be one of the following:
11644
11645 @table @code
11646 @item @@@var{language}
11647 This says that the suffix is an alias for a known @var{language}. This is
11648 similar to using the @option{-x} command-line switch to GCC to specify a
11649 language explicitly. For example:
11650
11651 @smallexample
11652 .ZZ:
11653 @@c++
11654 @end smallexample
11655
11656 Says that .ZZ files are, in fact, C++ source files.
11657
11658 @item #@var{name}
11659 This causes an error messages saying:
11660
11661 @smallexample
11662 @var{name} compiler not installed on this system.
11663 @end smallexample
11664 @end table
11665
11666 GCC already has an extensive list of suffixes built into it.
11667 This directive adds an entry to the end of the list of suffixes, but
11668 since the list is searched from the end backwards, it is effectively
11669 possible to override earlier entries using this technique.
11670
11671 @end table
11672
11673 GCC has the following spec strings built into it. Spec files can
11674 override these strings or create their own. Note that individual
11675 targets can also add their own spec strings to this list.
11676
11677 @smallexample
11678 asm Options to pass to the assembler
11679 asm_final Options to pass to the assembler post-processor
11680 cpp Options to pass to the C preprocessor
11681 cc1 Options to pass to the C compiler
11682 cc1plus Options to pass to the C++ compiler
11683 endfile Object files to include at the end of the link
11684 link Options to pass to the linker
11685 lib Libraries to include on the command line to the linker
11686 libgcc Decides which GCC support library to pass to the linker
11687 linker Sets the name of the linker
11688 predefines Defines to be passed to the C preprocessor
11689 signed_char Defines to pass to CPP to say whether @code{char} is signed
11690 by default
11691 startfile Object files to include at the start of the link
11692 @end smallexample
11693
11694 Here is a small example of a spec file:
11695
11696 @smallexample
11697 %rename lib old_lib
11698
11699 *lib:
11700 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
11701 @end smallexample
11702
11703 This example renames the spec called @samp{lib} to @samp{old_lib} and
11704 then overrides the previous definition of @samp{lib} with a new one.
11705 The new definition adds in some extra command-line options before
11706 including the text of the old definition.
11707
11708 @dfn{Spec strings} are a list of command-line options to be passed to their
11709 corresponding program. In addition, the spec strings can contain
11710 @samp{%}-prefixed sequences to substitute variable text or to
11711 conditionally insert text into the command line. Using these constructs
11712 it is possible to generate quite complex command lines.
11713
11714 Here is a table of all defined @samp{%}-sequences for spec
11715 strings. Note that spaces are not generated automatically around the
11716 results of expanding these sequences. Therefore you can concatenate them
11717 together or combine them with constant text in a single argument.
11718
11719 @table @code
11720 @item %%
11721 Substitute one @samp{%} into the program name or argument.
11722
11723 @item %i
11724 Substitute the name of the input file being processed.
11725
11726 @item %b
11727 Substitute the basename of the input file being processed.
11728 This is the substring up to (and not including) the last period
11729 and not including the directory.
11730
11731 @item %B
11732 This is the same as @samp{%b}, but include the file suffix (text after
11733 the last period).
11734
11735 @item %d
11736 Marks the argument containing or following the @samp{%d} as a
11737 temporary file name, so that that file is deleted if GCC exits
11738 successfully. Unlike @samp{%g}, this contributes no text to the
11739 argument.
11740
11741 @item %g@var{suffix}
11742 Substitute a file name that has suffix @var{suffix} and is chosen
11743 once per compilation, and mark the argument in the same way as
11744 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
11745 name is now chosen in a way that is hard to predict even when previously
11746 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
11747 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
11748 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
11749 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
11750 was simply substituted with a file name chosen once per compilation,
11751 without regard to any appended suffix (which was therefore treated
11752 just like ordinary text), making such attacks more likely to succeed.
11753
11754 @item %u@var{suffix}
11755 Like @samp{%g}, but generates a new temporary file name
11756 each time it appears instead of once per compilation.
11757
11758 @item %U@var{suffix}
11759 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
11760 new one if there is no such last file name. In the absence of any
11761 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
11762 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
11763 involves the generation of two distinct file names, one
11764 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
11765 simply substituted with a file name chosen for the previous @samp{%u},
11766 without regard to any appended suffix.
11767
11768 @item %j@var{suffix}
11769 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
11770 writable, and if @option{-save-temps} is not used;
11771 otherwise, substitute the name
11772 of a temporary file, just like @samp{%u}. This temporary file is not
11773 meant for communication between processes, but rather as a junk
11774 disposal mechanism.
11775
11776 @item %|@var{suffix}
11777 @itemx %m@var{suffix}
11778 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
11779 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
11780 all. These are the two most common ways to instruct a program that it
11781 should read from standard input or write to standard output. If you
11782 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
11783 construct: see for example @file{f/lang-specs.h}.
11784
11785 @item %.@var{SUFFIX}
11786 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
11787 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
11788 terminated by the next space or %.
11789
11790 @item %w
11791 Marks the argument containing or following the @samp{%w} as the
11792 designated output file of this compilation. This puts the argument
11793 into the sequence of arguments that @samp{%o} substitutes.
11794
11795 @item %o
11796 Substitutes the names of all the output files, with spaces
11797 automatically placed around them. You should write spaces
11798 around the @samp{%o} as well or the results are undefined.
11799 @samp{%o} is for use in the specs for running the linker.
11800 Input files whose names have no recognized suffix are not compiled
11801 at all, but they are included among the output files, so they are
11802 linked.
11803
11804 @item %O
11805 Substitutes the suffix for object files. Note that this is
11806 handled specially when it immediately follows @samp{%g, %u, or %U},
11807 because of the need for those to form complete file names. The
11808 handling is such that @samp{%O} is treated exactly as if it had already
11809 been substituted, except that @samp{%g, %u, and %U} do not currently
11810 support additional @var{suffix} characters following @samp{%O} as they do
11811 following, for example, @samp{.o}.
11812
11813 @item %p
11814 Substitutes the standard macro predefinitions for the
11815 current target machine. Use this when running @command{cpp}.
11816
11817 @item %P
11818 Like @samp{%p}, but puts @samp{__} before and after the name of each
11819 predefined macro, except for macros that start with @samp{__} or with
11820 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
11821 C@.
11822
11823 @item %I
11824 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
11825 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
11826 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
11827 and @option{-imultilib} as necessary.
11828
11829 @item %s
11830 Current argument is the name of a library or startup file of some sort.
11831 Search for that file in a standard list of directories and substitute
11832 the full name found. The current working directory is included in the
11833 list of directories scanned.
11834
11835 @item %T
11836 Current argument is the name of a linker script. Search for that file
11837 in the current list of directories to scan for libraries. If the file
11838 is located insert a @option{--script} option into the command line
11839 followed by the full path name found. If the file is not found then
11840 generate an error message. Note: the current working directory is not
11841 searched.
11842
11843 @item %e@var{str}
11844 Print @var{str} as an error message. @var{str} is terminated by a newline.
11845 Use this when inconsistent options are detected.
11846
11847 @item %(@var{name})
11848 Substitute the contents of spec string @var{name} at this point.
11849
11850 @item %x@{@var{option}@}
11851 Accumulate an option for @samp{%X}.
11852
11853 @item %X
11854 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
11855 spec string.
11856
11857 @item %Y
11858 Output the accumulated assembler options specified by @option{-Wa}.
11859
11860 @item %Z
11861 Output the accumulated preprocessor options specified by @option{-Wp}.
11862
11863 @item %a
11864 Process the @code{asm} spec. This is used to compute the
11865 switches to be passed to the assembler.
11866
11867 @item %A
11868 Process the @code{asm_final} spec. This is a spec string for
11869 passing switches to an assembler post-processor, if such a program is
11870 needed.
11871
11872 @item %l
11873 Process the @code{link} spec. This is the spec for computing the
11874 command line passed to the linker. Typically it makes use of the
11875 @samp{%L %G %S %D and %E} sequences.
11876
11877 @item %D
11878 Dump out a @option{-L} option for each directory that GCC believes might
11879 contain startup files. If the target supports multilibs then the
11880 current multilib directory is prepended to each of these paths.
11881
11882 @item %L
11883 Process the @code{lib} spec. This is a spec string for deciding which
11884 libraries are included on the command line to the linker.
11885
11886 @item %G
11887 Process the @code{libgcc} spec. This is a spec string for deciding
11888 which GCC support library is included on the command line to the linker.
11889
11890 @item %S
11891 Process the @code{startfile} spec. This is a spec for deciding which
11892 object files are the first ones passed to the linker. Typically
11893 this might be a file named @file{crt0.o}.
11894
11895 @item %E
11896 Process the @code{endfile} spec. This is a spec string that specifies
11897 the last object files that are passed to the linker.
11898
11899 @item %C
11900 Process the @code{cpp} spec. This is used to construct the arguments
11901 to be passed to the C preprocessor.
11902
11903 @item %1
11904 Process the @code{cc1} spec. This is used to construct the options to be
11905 passed to the actual C compiler (@command{cc1}).
11906
11907 @item %2
11908 Process the @code{cc1plus} spec. This is used to construct the options to be
11909 passed to the actual C++ compiler (@command{cc1plus}).
11910
11911 @item %*
11912 Substitute the variable part of a matched option. See below.
11913 Note that each comma in the substituted string is replaced by
11914 a single space.
11915
11916 @item %<@code{S}
11917 Remove all occurrences of @code{-S} from the command line. Note---this
11918 command is position dependent. @samp{%} commands in the spec string
11919 before this one see @code{-S}, @samp{%} commands in the spec string
11920 after this one do not.
11921
11922 @item %:@var{function}(@var{args})
11923 Call the named function @var{function}, passing it @var{args}.
11924 @var{args} is first processed as a nested spec string, then split
11925 into an argument vector in the usual fashion. The function returns
11926 a string which is processed as if it had appeared literally as part
11927 of the current spec.
11928
11929 The following built-in spec functions are provided:
11930
11931 @table @code
11932 @item @code{getenv}
11933 The @code{getenv} spec function takes two arguments: an environment
11934 variable name and a string. If the environment variable is not
11935 defined, a fatal error is issued. Otherwise, the return value is the
11936 value of the environment variable concatenated with the string. For
11937 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
11938
11939 @smallexample
11940 %:getenv(TOPDIR /include)
11941 @end smallexample
11942
11943 expands to @file{/path/to/top/include}.
11944
11945 @item @code{if-exists}
11946 The @code{if-exists} spec function takes one argument, an absolute
11947 pathname to a file. If the file exists, @code{if-exists} returns the
11948 pathname. Here is a small example of its usage:
11949
11950 @smallexample
11951 *startfile:
11952 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
11953 @end smallexample
11954
11955 @item @code{if-exists-else}
11956 The @code{if-exists-else} spec function is similar to the @code{if-exists}
11957 spec function, except that it takes two arguments. The first argument is
11958 an absolute pathname to a file. If the file exists, @code{if-exists-else}
11959 returns the pathname. If it does not exist, it returns the second argument.
11960 This way, @code{if-exists-else} can be used to select one file or another,
11961 based on the existence of the first. Here is a small example of its usage:
11962
11963 @smallexample
11964 *startfile:
11965 crt0%O%s %:if-exists(crti%O%s) \
11966 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
11967 @end smallexample
11968
11969 @item @code{replace-outfile}
11970 The @code{replace-outfile} spec function takes two arguments. It looks for the
11971 first argument in the outfiles array and replaces it with the second argument. Here
11972 is a small example of its usage:
11973
11974 @smallexample
11975 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
11976 @end smallexample
11977
11978 @item @code{remove-outfile}
11979 The @code{remove-outfile} spec function takes one argument. It looks for the
11980 first argument in the outfiles array and removes it. Here is a small example
11981 its usage:
11982
11983 @smallexample
11984 %:remove-outfile(-lm)
11985 @end smallexample
11986
11987 @item @code{pass-through-libs}
11988 The @code{pass-through-libs} spec function takes any number of arguments. It
11989 finds any @option{-l} options and any non-options ending in @file{.a} (which it
11990 assumes are the names of linker input library archive files) and returns a
11991 result containing all the found arguments each prepended by
11992 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
11993 intended to be passed to the LTO linker plugin.
11994
11995 @smallexample
11996 %:pass-through-libs(%G %L %G)
11997 @end smallexample
11998
11999 @item @code{print-asm-header}
12000 The @code{print-asm-header} function takes no arguments and simply
12001 prints a banner like:
12002
12003 @smallexample
12004 Assembler options
12005 =================
12006
12007 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12008 @end smallexample
12009
12010 It is used to separate compiler options from assembler options
12011 in the @option{--target-help} output.
12012 @end table
12013
12014 @item %@{@code{S}@}
12015 Substitutes the @code{-S} switch, if that switch is given to GCC@.
12016 If that switch is not specified, this substitutes nothing. Note that
12017 the leading dash is omitted when specifying this option, and it is
12018 automatically inserted if the substitution is performed. Thus the spec
12019 string @samp{%@{foo@}} matches the command-line option @option{-foo}
12020 and outputs the command-line option @option{-foo}.
12021
12022 @item %W@{@code{S}@}
12023 Like %@{@code{S}@} but mark last argument supplied within as a file to be
12024 deleted on failure.
12025
12026 @item %@{@code{S}*@}
12027 Substitutes all the switches specified to GCC whose names start
12028 with @code{-S}, but which also take an argument. This is used for
12029 switches like @option{-o}, @option{-D}, @option{-I}, etc.
12030 GCC considers @option{-o foo} as being
12031 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
12032 text, including the space. Thus two arguments are generated.
12033
12034 @item %@{@code{S}*&@code{T}*@}
12035 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12036 (the order of @code{S} and @code{T} in the spec is not significant).
12037 There can be any number of ampersand-separated variables; for each the
12038 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
12039
12040 @item %@{@code{S}:@code{X}@}
12041 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12042
12043 @item %@{!@code{S}:@code{X}@}
12044 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12045
12046 @item %@{@code{S}*:@code{X}@}
12047 Substitutes @code{X} if one or more switches whose names start with
12048 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
12049 once, no matter how many such switches appeared. However, if @code{%*}
12050 appears somewhere in @code{X}, then @code{X} is substituted once
12051 for each matching switch, with the @code{%*} replaced by the part of
12052 that switch matching the @code{*}.
12053
12054 If @code{%*} appears as the last part of a spec sequence then a space
12055 is added after the end of the last substitution. If there is more
12056 text in the sequence, however, then a space is not generated. This
12057 allows the @code{%*} substitution to be used as part of a larger
12058 string. For example, a spec string like this:
12059
12060 @smallexample
12061 %@{mcu=*:--script=%*/memory.ld@}
12062 @end smallexample
12063
12064 @noindent
12065 when matching an option like @option{-mcu=newchip} produces:
12066
12067 @smallexample
12068 --script=newchip/memory.ld
12069 @end smallexample
12070
12071 @item %@{.@code{S}:@code{X}@}
12072 Substitutes @code{X}, if processing a file with suffix @code{S}.
12073
12074 @item %@{!.@code{S}:@code{X}@}
12075 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12076
12077 @item %@{,@code{S}:@code{X}@}
12078 Substitutes @code{X}, if processing a file for language @code{S}.
12079
12080 @item %@{!,@code{S}:@code{X}@}
12081 Substitutes @code{X}, if not processing a file for language @code{S}.
12082
12083 @item %@{@code{S}|@code{P}:@code{X}@}
12084 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12085 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12086 @code{*} sequences as well, although they have a stronger binding than
12087 the @samp{|}. If @code{%*} appears in @code{X}, all of the
12088 alternatives must be starred, and only the first matching alternative
12089 is substituted.
12090
12091 For example, a spec string like this:
12092
12093 @smallexample
12094 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12095 @end smallexample
12096
12097 @noindent
12098 outputs the following command-line options from the following input
12099 command-line options:
12100
12101 @smallexample
12102 fred.c -foo -baz
12103 jim.d -bar -boggle
12104 -d fred.c -foo -baz -boggle
12105 -d jim.d -bar -baz -boggle
12106 @end smallexample
12107
12108 @item %@{S:X; T:Y; :D@}
12109
12110 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12111 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
12112 be as many clauses as you need. This may be combined with @code{.},
12113 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
12114
12115
12116 @end table
12117
12118 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12119 construct may contain other nested @samp{%} constructs or spaces, or
12120 even newlines. They are processed as usual, as described above.
12121 Trailing white space in @code{X} is ignored. White space may also
12122 appear anywhere on the left side of the colon in these constructs,
12123 except between @code{.} or @code{*} and the corresponding word.
12124
12125 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12126 handled specifically in these constructs. If another value of
12127 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
12128 @option{-W} switch is found later in the command line, the earlier
12129 switch value is ignored, except with @{@code{S}*@} where @code{S} is
12130 just one letter, which passes all matching options.
12131
12132 The character @samp{|} at the beginning of the predicate text is used to
12133 indicate that a command should be piped to the following command, but
12134 only if @option{-pipe} is specified.
12135
12136 It is built into GCC which switches take arguments and which do not.
12137 (You might think it would be useful to generalize this to allow each
12138 compiler's spec to say which switches take arguments. But this cannot
12139 be done in a consistent fashion. GCC cannot even decide which input
12140 files have been specified without knowing which switches take arguments,
12141 and it must know which input files to compile in order to tell which
12142 compilers to run).
12143
12144 GCC also knows implicitly that arguments starting in @option{-l} are to be
12145 treated as compiler output files, and passed to the linker in their
12146 proper position among the other output files.
12147
12148 @c man begin OPTIONS
12149
12150 @node Target Options
12151 @section Specifying Target Machine and Compiler Version
12152 @cindex target options
12153 @cindex cross compiling
12154 @cindex specifying machine version
12155 @cindex specifying compiler version and target machine
12156 @cindex compiler version, specifying
12157 @cindex target machine, specifying
12158
12159 The usual way to run GCC is to run the executable called @command{gcc}, or
12160 @command{@var{machine}-gcc} when cross-compiling, or
12161 @command{@var{machine}-gcc-@var{version}} to run a version other than the
12162 one that was installed last.
12163
12164 @node Submodel Options
12165 @section Hardware Models and Configurations
12166 @cindex submodel options
12167 @cindex specifying hardware config
12168 @cindex hardware models and configurations, specifying
12169 @cindex machine dependent options
12170
12171 Each target machine types can have its own
12172 special options, starting with @samp{-m}, to choose among various
12173 hardware models or configurations---for example, 68010 vs 68020,
12174 floating coprocessor or none. A single installed version of the
12175 compiler can compile for any model or configuration, according to the
12176 options specified.
12177
12178 Some configurations of the compiler also support additional special
12179 options, usually for compatibility with other compilers on the same
12180 platform.
12181
12182 @c This list is ordered alphanumerically by subsection name.
12183 @c It should be the same order and spelling as these options are listed
12184 @c in Machine Dependent Options
12185
12186 @menu
12187 * AArch64 Options::
12188 * Adapteva Epiphany Options::
12189 * ARC Options::
12190 * ARM Options::
12191 * AVR Options::
12192 * Blackfin Options::
12193 * C6X Options::
12194 * CRIS Options::
12195 * CR16 Options::
12196 * Darwin Options::
12197 * DEC Alpha Options::
12198 * FR30 Options::
12199 * FRV Options::
12200 * GNU/Linux Options::
12201 * H8/300 Options::
12202 * HPPA Options::
12203 * IA-64 Options::
12204 * LM32 Options::
12205 * M32C Options::
12206 * M32R/D Options::
12207 * M680x0 Options::
12208 * MCore Options::
12209 * MeP Options::
12210 * MicroBlaze Options::
12211 * MIPS Options::
12212 * MMIX Options::
12213 * MN10300 Options::
12214 * Moxie Options::
12215 * MSP430 Options::
12216 * NDS32 Options::
12217 * Nios II Options::
12218 * Nvidia PTX Options::
12219 * PDP-11 Options::
12220 * picoChip Options::
12221 * PowerPC Options::
12222 * RL78 Options::
12223 * RS/6000 and PowerPC Options::
12224 * RX Options::
12225 * S/390 and zSeries Options::
12226 * Score Options::
12227 * SH Options::
12228 * Solaris 2 Options::
12229 * SPARC Options::
12230 * SPU Options::
12231 * System V Options::
12232 * TILE-Gx Options::
12233 * TILEPro Options::
12234 * V850 Options::
12235 * VAX Options::
12236 * Visium Options::
12237 * VMS Options::
12238 * VxWorks Options::
12239 * x86 Options::
12240 * x86 Windows Options::
12241 * Xstormy16 Options::
12242 * Xtensa Options::
12243 * zSeries Options::
12244 @end menu
12245
12246 @node AArch64 Options
12247 @subsection AArch64 Options
12248 @cindex AArch64 Options
12249
12250 These options are defined for AArch64 implementations:
12251
12252 @table @gcctabopt
12253
12254 @item -mabi=@var{name}
12255 @opindex mabi
12256 Generate code for the specified data model. Permissible values
12257 are @samp{ilp32} for SysV-like data model where int, long int and pointer
12258 are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12259 but long int and pointer are 64-bit.
12260
12261 The default depends on the specific target configuration. Note that
12262 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12263 entire program with the same ABI, and link with a compatible set of libraries.
12264
12265 @item -mbig-endian
12266 @opindex mbig-endian
12267 Generate big-endian code. This is the default when GCC is configured for an
12268 @samp{aarch64_be-*-*} target.
12269
12270 @item -mgeneral-regs-only
12271 @opindex mgeneral-regs-only
12272 Generate code which uses only the general registers.
12273
12274 @item -mlittle-endian
12275 @opindex mlittle-endian
12276 Generate little-endian code. This is the default when GCC is configured for an
12277 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12278
12279 @item -mcmodel=tiny
12280 @opindex mcmodel=tiny
12281 Generate code for the tiny code model. The program and its statically defined
12282 symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
12283 be statically or dynamically linked. This model is not fully implemented and
12284 mostly treated as @samp{small}.
12285
12286 @item -mcmodel=small
12287 @opindex mcmodel=small
12288 Generate code for the small code model. The program and its statically defined
12289 symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
12290 be statically or dynamically linked. This is the default code model.
12291
12292 @item -mcmodel=large
12293 @opindex mcmodel=large
12294 Generate code for the large code model. This makes no assumptions about
12295 addresses and sizes of sections. Pointers are 64 bits. Programs can be
12296 statically linked only.
12297
12298 @item -mstrict-align
12299 @opindex mstrict-align
12300 Do not assume that unaligned memory references are handled by the system.
12301
12302 @item -momit-leaf-frame-pointer
12303 @itemx -mno-omit-leaf-frame-pointer
12304 @opindex momit-leaf-frame-pointer
12305 @opindex mno-omit-leaf-frame-pointer
12306 Omit or keep the frame pointer in leaf functions. The former behaviour is the
12307 default.
12308
12309 @item -mtls-dialect=desc
12310 @opindex mtls-dialect=desc
12311 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12312 of TLS variables. This is the default.
12313
12314 @item -mtls-dialect=traditional
12315 @opindex mtls-dialect=traditional
12316 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12317 of TLS variables.
12318
12319 @item -mfix-cortex-a53-835769
12320 @itemx -mno-fix-cortex-a53-835769
12321 @opindex mfix-cortex-a53-835769
12322 @opindex mno-fix-cortex-a53-835769
12323 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12324 This involves inserting a NOP instruction between memory instructions and
12325 64-bit integer multiply-accumulate instructions.
12326
12327 @item -march=@var{name}
12328 @opindex march
12329 Specify the name of the target architecture, optionally suffixed by one or
12330 more feature modifiers. This option has the form
12331 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12332 only permissible value for @var{arch} is @samp{armv8-a}.
12333 The permissible values for @var{feature} are documented in the sub-section
12334 below. Additionally on native AArch64 GNU/Linux systems the value
12335 @samp{native} is available. This option causes the compiler to pick the
12336 architecture of the host system. If the compiler is unable to recognize the
12337 architecture of the host system this option has no effect.
12338
12339 Where conflicting feature modifiers are specified, the right-most feature is
12340 used.
12341
12342 GCC uses this name to determine what kind of instructions it can emit when
12343 generating assembly code.
12344
12345 Where @option{-march} is specified without either of @option{-mtune}
12346 or @option{-mcpu} also being specified, the code is tuned to perform
12347 well across a range of target processors implementing the target
12348 architecture.
12349
12350 @item -mtune=@var{name}
12351 @opindex mtune
12352 Specify the name of the target processor for which GCC should tune the
12353 performance of the code. Permissible values for this option are:
12354 @samp{generic}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
12355 @samp{exynos-m1}, @samp{thunderx}, @samp{xgene1}.
12356
12357 Additionally, this option can specify that GCC should tune the performance
12358 of the code for a big.LITTLE system. Permissible values for this
12359 option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12360
12361 Additionally on native AArch64 GNU/Linux systems the value @samp{native}
12362 is available.
12363 This option causes the compiler to pick the architecture of and tune the
12364 performance of the code for the processor of the host system.
12365 If the compiler is unable to recognize the processor of the host system
12366 this option has no effect.
12367
12368 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12369 are specified, the code is tuned to perform well across a range
12370 of target processors.
12371
12372 This option cannot be suffixed by feature modifiers.
12373
12374 @item -mcpu=@var{name}
12375 @opindex mcpu
12376 Specify the name of the target processor, optionally suffixed by one or more
12377 feature modifiers. This option has the form
12378 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12379 permissible values for @var{cpu} are the same as those available for
12380 @option{-mtune}. Additionally on native AArch64 GNU/Linux systems the
12381 value @samp{native} is available.
12382 This option causes the compiler to tune the performance of the code for the
12383 processor of the host system. If the compiler is unable to recognize the
12384 processor of the host system this option has no effect.
12385
12386 The permissible values for @var{feature} are documented in the sub-section
12387 below.
12388
12389 Where conflicting feature modifiers are specified, the right-most feature is
12390 used.
12391
12392 GCC uses this name to determine what kind of instructions it can emit when
12393 generating assembly code (as if by @option{-march}) and to determine
12394 the target processor for which to tune for performance (as if
12395 by @option{-mtune}). Where this option is used in conjunction
12396 with @option{-march} or @option{-mtune}, those options take precedence
12397 over the appropriate part of this option.
12398 @end table
12399
12400 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12401 @cindex @option{-march} feature modifiers
12402 @cindex @option{-mcpu} feature modifiers
12403 Feature modifiers used with @option{-march} and @option{-mcpu} can be one
12404 the following:
12405
12406 @table @samp
12407 @item crc
12408 Enable CRC extension.
12409 @item crypto
12410 Enable Crypto extension. This implies Advanced SIMD is enabled.
12411 @item fp
12412 Enable floating-point instructions.
12413 @item simd
12414 Enable Advanced SIMD instructions. This implies floating-point instructions
12415 are enabled. This is the default for all current possible values for options
12416 @option{-march} and @option{-mcpu=}.
12417 @end table
12418
12419 @node Adapteva Epiphany Options
12420 @subsection Adapteva Epiphany Options
12421
12422 These @samp{-m} options are defined for Adapteva Epiphany:
12423
12424 @table @gcctabopt
12425 @item -mhalf-reg-file
12426 @opindex mhalf-reg-file
12427 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12428 That allows code to run on hardware variants that lack these registers.
12429
12430 @item -mprefer-short-insn-regs
12431 @opindex mprefer-short-insn-regs
12432 Preferrentially allocate registers that allow short instruction generation.
12433 This can result in increased instruction count, so this may either reduce or
12434 increase overall code size.
12435
12436 @item -mbranch-cost=@var{num}
12437 @opindex mbranch-cost
12438 Set the cost of branches to roughly @var{num} ``simple'' instructions.
12439 This cost is only a heuristic and is not guaranteed to produce
12440 consistent results across releases.
12441
12442 @item -mcmove
12443 @opindex mcmove
12444 Enable the generation of conditional moves.
12445
12446 @item -mnops=@var{num}
12447 @opindex mnops
12448 Emit @var{num} NOPs before every other generated instruction.
12449
12450 @item -mno-soft-cmpsf
12451 @opindex mno-soft-cmpsf
12452 For single-precision floating-point comparisons, emit an @code{fsub} instruction
12453 and test the flags. This is faster than a software comparison, but can
12454 get incorrect results in the presence of NaNs, or when two different small
12455 numbers are compared such that their difference is calculated as zero.
12456 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12457 software comparisons.
12458
12459 @item -mstack-offset=@var{num}
12460 @opindex mstack-offset
12461 Set the offset between the top of the stack and the stack pointer.
12462 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12463 can be used by leaf functions without stack allocation.
12464 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12465 Note also that this option changes the ABI; compiling a program with a
12466 different stack offset than the libraries have been compiled with
12467 generally does not work.
12468 This option can be useful if you want to evaluate if a different stack
12469 offset would give you better code, but to actually use a different stack
12470 offset to build working programs, it is recommended to configure the
12471 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12472
12473 @item -mno-round-nearest
12474 @opindex mno-round-nearest
12475 Make the scheduler assume that the rounding mode has been set to
12476 truncating. The default is @option{-mround-nearest}.
12477
12478 @item -mlong-calls
12479 @opindex mlong-calls
12480 If not otherwise specified by an attribute, assume all calls might be beyond
12481 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12482 function address into a register before performing a (otherwise direct) call.
12483 This is the default.
12484
12485 @item -mshort-calls
12486 @opindex short-calls
12487 If not otherwise specified by an attribute, assume all direct calls are
12488 in the range of the @code{b} / @code{bl} instructions, so use these instructions
12489 for direct calls. The default is @option{-mlong-calls}.
12490
12491 @item -msmall16
12492 @opindex msmall16
12493 Assume addresses can be loaded as 16-bit unsigned values. This does not
12494 apply to function addresses for which @option{-mlong-calls} semantics
12495 are in effect.
12496
12497 @item -mfp-mode=@var{mode}
12498 @opindex mfp-mode
12499 Set the prevailing mode of the floating-point unit.
12500 This determines the floating-point mode that is provided and expected
12501 at function call and return time. Making this mode match the mode you
12502 predominantly need at function start can make your programs smaller and
12503 faster by avoiding unnecessary mode switches.
12504
12505 @var{mode} can be set to one the following values:
12506
12507 @table @samp
12508 @item caller
12509 Any mode at function entry is valid, and retained or restored when
12510 the function returns, and when it calls other functions.
12511 This mode is useful for compiling libraries or other compilation units
12512 you might want to incorporate into different programs with different
12513 prevailing FPU modes, and the convenience of being able to use a single
12514 object file outweighs the size and speed overhead for any extra
12515 mode switching that might be needed, compared with what would be needed
12516 with a more specific choice of prevailing FPU mode.
12517
12518 @item truncate
12519 This is the mode used for floating-point calculations with
12520 truncating (i.e.@: round towards zero) rounding mode. That includes
12521 conversion from floating point to integer.
12522
12523 @item round-nearest
12524 This is the mode used for floating-point calculations with
12525 round-to-nearest-or-even rounding mode.
12526
12527 @item int
12528 This is the mode used to perform integer calculations in the FPU, e.g.@:
12529 integer multiply, or integer multiply-and-accumulate.
12530 @end table
12531
12532 The default is @option{-mfp-mode=caller}
12533
12534 @item -mnosplit-lohi
12535 @itemx -mno-postinc
12536 @itemx -mno-postmodify
12537 @opindex mnosplit-lohi
12538 @opindex mno-postinc
12539 @opindex mno-postmodify
12540 Code generation tweaks that disable, respectively, splitting of 32-bit
12541 loads, generation of post-increment addresses, and generation of
12542 post-modify addresses. The defaults are @option{msplit-lohi},
12543 @option{-mpost-inc}, and @option{-mpost-modify}.
12544
12545 @item -mnovect-double
12546 @opindex mno-vect-double
12547 Change the preferred SIMD mode to SImode. The default is
12548 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
12549
12550 @item -max-vect-align=@var{num}
12551 @opindex max-vect-align
12552 The maximum alignment for SIMD vector mode types.
12553 @var{num} may be 4 or 8. The default is 8.
12554 Note that this is an ABI change, even though many library function
12555 interfaces are unaffected if they don't use SIMD vector modes
12556 in places that affect size and/or alignment of relevant types.
12557
12558 @item -msplit-vecmove-early
12559 @opindex msplit-vecmove-early
12560 Split vector moves into single word moves before reload. In theory this
12561 can give better register allocation, but so far the reverse seems to be
12562 generally the case.
12563
12564 @item -m1reg-@var{reg}
12565 @opindex m1reg-
12566 Specify a register to hold the constant @minus{}1, which makes loading small negative
12567 constants and certain bitmasks faster.
12568 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12569 which specify use of that register as a fixed register,
12570 and @samp{none}, which means that no register is used for this
12571 purpose. The default is @option{-m1reg-none}.
12572
12573 @end table
12574
12575 @node ARC Options
12576 @subsection ARC Options
12577 @cindex ARC options
12578
12579 The following options control the architecture variant for which code
12580 is being compiled:
12581
12582 @c architecture variants
12583 @table @gcctabopt
12584
12585 @item -mbarrel-shifter
12586 @opindex mbarrel-shifter
12587 Generate instructions supported by barrel shifter. This is the default
12588 unless @option{-mcpu=ARC601} is in effect.
12589
12590 @item -mcpu=@var{cpu}
12591 @opindex mcpu
12592 Set architecture type, register usage, and instruction scheduling
12593 parameters for @var{cpu}. There are also shortcut alias options
12594 available for backward compatibility and convenience. Supported
12595 values for @var{cpu} are
12596
12597 @table @samp
12598 @opindex mA6
12599 @opindex mARC600
12600 @item ARC600
12601 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
12602
12603 @item ARC601
12604 @opindex mARC601
12605 Compile for ARC601. Alias: @option{-mARC601}.
12606
12607 @item ARC700
12608 @opindex mA7
12609 @opindex mARC700
12610 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
12611 This is the default when configured with @option{--with-cpu=arc700}@.
12612 @end table
12613
12614 @item -mdpfp
12615 @opindex mdpfp
12616 @itemx -mdpfp-compact
12617 @opindex mdpfp-compact
12618 FPX: Generate Double Precision FPX instructions, tuned for the compact
12619 implementation.
12620
12621 @item -mdpfp-fast
12622 @opindex mdpfp-fast
12623 FPX: Generate Double Precision FPX instructions, tuned for the fast
12624 implementation.
12625
12626 @item -mno-dpfp-lrsr
12627 @opindex mno-dpfp-lrsr
12628 Disable LR and SR instructions from using FPX extension aux registers.
12629
12630 @item -mea
12631 @opindex mea
12632 Generate Extended arithmetic instructions. Currently only
12633 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12634 supported. This is always enabled for @option{-mcpu=ARC700}.
12635
12636 @item -mno-mpy
12637 @opindex mno-mpy
12638 Do not generate mpy instructions for ARC700.
12639
12640 @item -mmul32x16
12641 @opindex mmul32x16
12642 Generate 32x16 bit multiply and mac instructions.
12643
12644 @item -mmul64
12645 @opindex mmul64
12646 Generate mul64 and mulu64 instructions. Only valid for @option{-mcpu=ARC600}.
12647
12648 @item -mnorm
12649 @opindex mnorm
12650 Generate norm instruction. This is the default if @option{-mcpu=ARC700}
12651 is in effect.
12652
12653 @item -mspfp
12654 @opindex mspfp
12655 @itemx -mspfp-compact
12656 @opindex mspfp-compact
12657 FPX: Generate Single Precision FPX instructions, tuned for the compact
12658 implementation.
12659
12660 @item -mspfp-fast
12661 @opindex mspfp-fast
12662 FPX: Generate Single Precision FPX instructions, tuned for the fast
12663 implementation.
12664
12665 @item -msimd
12666 @opindex msimd
12667 Enable generation of ARC SIMD instructions via target-specific
12668 builtins. Only valid for @option{-mcpu=ARC700}.
12669
12670 @item -msoft-float
12671 @opindex msoft-float
12672 This option ignored; it is provided for compatibility purposes only.
12673 Software floating point code is emitted by default, and this default
12674 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
12675 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
12676 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
12677
12678 @item -mswap
12679 @opindex mswap
12680 Generate swap instructions.
12681
12682 @end table
12683
12684 The following options are passed through to the assembler, and also
12685 define preprocessor macro symbols.
12686
12687 @c Flags used by the assembler, but for which we define preprocessor
12688 @c macro symbols as well.
12689 @table @gcctabopt
12690 @item -mdsp-packa
12691 @opindex mdsp-packa
12692 Passed down to the assembler to enable the DSP Pack A extensions.
12693 Also sets the preprocessor symbol @code{__Xdsp_packa}.
12694
12695 @item -mdvbf
12696 @opindex mdvbf
12697 Passed down to the assembler to enable the dual viterbi butterfly
12698 extension. Also sets the preprocessor symbol @code{__Xdvbf}.
12699
12700 @c ARC700 4.10 extension instruction
12701 @item -mlock
12702 @opindex mlock
12703 Passed down to the assembler to enable the Locked Load/Store
12704 Conditional extension. Also sets the preprocessor symbol
12705 @code{__Xlock}.
12706
12707 @item -mmac-d16
12708 @opindex mmac-d16
12709 Passed down to the assembler. Also sets the preprocessor symbol
12710 @code{__Xxmac_d16}.
12711
12712 @item -mmac-24
12713 @opindex mmac-24
12714 Passed down to the assembler. Also sets the preprocessor symbol
12715 @code{__Xxmac_24}.
12716
12717 @c ARC700 4.10 extension instruction
12718 @item -mrtsc
12719 @opindex mrtsc
12720 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
12721 extension instruction. Also sets the preprocessor symbol
12722 @code{__Xrtsc}.
12723
12724 @c ARC700 4.10 extension instruction
12725 @item -mswape
12726 @opindex mswape
12727 Passed down to the assembler to enable the swap byte ordering
12728 extension instruction. Also sets the preprocessor symbol
12729 @code{__Xswape}.
12730
12731 @item -mtelephony
12732 @opindex mtelephony
12733 Passed down to the assembler to enable dual and single operand
12734 instructions for telephony. Also sets the preprocessor symbol
12735 @code{__Xtelephony}.
12736
12737 @item -mxy
12738 @opindex mxy
12739 Passed down to the assembler to enable the XY Memory extension. Also
12740 sets the preprocessor symbol @code{__Xxy}.
12741
12742 @end table
12743
12744 The following options control how the assembly code is annotated:
12745
12746 @c Assembly annotation options
12747 @table @gcctabopt
12748 @item -misize
12749 @opindex misize
12750 Annotate assembler instructions with estimated addresses.
12751
12752 @item -mannotate-align
12753 @opindex mannotate-align
12754 Explain what alignment considerations lead to the decision to make an
12755 instruction short or long.
12756
12757 @end table
12758
12759 The following options are passed through to the linker:
12760
12761 @c options passed through to the linker
12762 @table @gcctabopt
12763 @item -marclinux
12764 @opindex marclinux
12765 Passed through to the linker, to specify use of the @code{arclinux} emulation.
12766 This option is enabled by default in tool chains built for
12767 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
12768 when profiling is not requested.
12769
12770 @item -marclinux_prof
12771 @opindex marclinux_prof
12772 Passed through to the linker, to specify use of the
12773 @code{arclinux_prof} emulation. This option is enabled by default in
12774 tool chains built for @w{@code{arc-linux-uclibc}} and
12775 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
12776
12777 @end table
12778
12779 The following options control the semantics of generated code:
12780
12781 @c semantically relevant code generation options
12782 @table @gcctabopt
12783 @item -mepilogue-cfi
12784 @opindex mepilogue-cfi
12785 Enable generation of call frame information for epilogues.
12786
12787 @item -mno-epilogue-cfi
12788 @opindex mno-epilogue-cfi
12789 Disable generation of call frame information for epilogues.
12790
12791 @item -mlong-calls
12792 @opindex mlong-calls
12793 Generate call insns as register indirect calls, thus providing access
12794 to the full 32-bit address range.
12795
12796 @item -mmedium-calls
12797 @opindex mmedium-calls
12798 Don't use less than 25 bit addressing range for calls, which is the
12799 offset available for an unconditional branch-and-link
12800 instruction. Conditional execution of function calls is suppressed, to
12801 allow use of the 25-bit range, rather than the 21-bit range with
12802 conditional branch-and-link. This is the default for tool chains built
12803 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
12804
12805 @item -mno-sdata
12806 @opindex mno-sdata
12807 Do not generate sdata references. This is the default for tool chains
12808 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
12809 targets.
12810
12811 @item -mucb-mcount
12812 @opindex mucb-mcount
12813 Instrument with mcount calls as used in UCB code. I.e. do the
12814 counting in the callee, not the caller. By default ARC instrumentation
12815 counts in the caller.
12816
12817 @item -mvolatile-cache
12818 @opindex mvolatile-cache
12819 Use ordinarily cached memory accesses for volatile references. This is the
12820 default.
12821
12822 @item -mno-volatile-cache
12823 @opindex mno-volatile-cache
12824 Enable cache bypass for volatile references.
12825
12826 @end table
12827
12828 The following options fine tune code generation:
12829 @c code generation tuning options
12830 @table @gcctabopt
12831 @item -malign-call
12832 @opindex malign-call
12833 Do alignment optimizations for call instructions.
12834
12835 @item -mauto-modify-reg
12836 @opindex mauto-modify-reg
12837 Enable the use of pre/post modify with register displacement.
12838
12839 @item -mbbit-peephole
12840 @opindex mbbit-peephole
12841 Enable bbit peephole2.
12842
12843 @item -mno-brcc
12844 @opindex mno-brcc
12845 This option disables a target-specific pass in @file{arc_reorg} to
12846 generate @code{BRcc} instructions. It has no effect on @code{BRcc}
12847 generation driven by the combiner pass.
12848
12849 @item -mcase-vector-pcrel
12850 @opindex mcase-vector-pcrel
12851 Use pc-relative switch case tables - this enables case table shortening.
12852 This is the default for @option{-Os}.
12853
12854 @item -mcompact-casesi
12855 @opindex mcompact-casesi
12856 Enable compact casesi pattern.
12857 This is the default for @option{-Os}.
12858
12859 @item -mno-cond-exec
12860 @opindex mno-cond-exec
12861 Disable ARCompact specific pass to generate conditional execution instructions.
12862 Due to delay slot scheduling and interactions between operand numbers,
12863 literal sizes, instruction lengths, and the support for conditional execution,
12864 the target-independent pass to generate conditional execution is often lacking,
12865 so the ARC port has kept a special pass around that tries to find more
12866 conditional execution generating opportunities after register allocation,
12867 branch shortening, and delay slot scheduling have been done. This pass
12868 generally, but not always, improves performance and code size, at the cost of
12869 extra compilation time, which is why there is an option to switch it off.
12870 If you have a problem with call instructions exceeding their allowable
12871 offset range because they are conditionalized, you should consider using
12872 @option{-mmedium-calls} instead.
12873
12874 @item -mearly-cbranchsi
12875 @opindex mearly-cbranchsi
12876 Enable pre-reload use of the cbranchsi pattern.
12877
12878 @item -mexpand-adddi
12879 @opindex mexpand-adddi
12880 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
12881 @code{add.f}, @code{adc} etc.
12882
12883 @item -mindexed-loads
12884 @opindex mindexed-loads
12885 Enable the use of indexed loads. This can be problematic because some
12886 optimizers then assume that indexed stores exist, which is not
12887 the case.
12888
12889 @item -mlra
12890 @opindex mlra
12891 Enable Local Register Allocation. This is still experimental for ARC,
12892 so by default the compiler uses standard reload
12893 (i.e. @option{-mno-lra}).
12894
12895 @item -mlra-priority-none
12896 @opindex mlra-priority-none
12897 Don't indicate any priority for target registers.
12898
12899 @item -mlra-priority-compact
12900 @opindex mlra-priority-compact
12901 Indicate target register priority for r0..r3 / r12..r15.
12902
12903 @item -mlra-priority-noncompact
12904 @opindex mlra-priority-noncompact
12905 Reduce target regsiter priority for r0..r3 / r12..r15.
12906
12907 @item -mno-millicode
12908 @opindex mno-millicode
12909 When optimizing for size (using @option{-Os}), prologues and epilogues
12910 that have to save or restore a large number of registers are often
12911 shortened by using call to a special function in libgcc; this is
12912 referred to as a @emph{millicode} call. As these calls can pose
12913 performance issues, and/or cause linking issues when linking in a
12914 nonstandard way, this option is provided to turn off millicode call
12915 generation.
12916
12917 @item -mmixed-code
12918 @opindex mmixed-code
12919 Tweak register allocation to help 16-bit instruction generation.
12920 This generally has the effect of decreasing the average instruction size
12921 while increasing the instruction count.
12922
12923 @item -mq-class
12924 @opindex mq-class
12925 Enable 'q' instruction alternatives.
12926 This is the default for @option{-Os}.
12927
12928 @item -mRcq
12929 @opindex mRcq
12930 Enable Rcq constraint handling - most short code generation depends on this.
12931 This is the default.
12932
12933 @item -mRcw
12934 @opindex mRcw
12935 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
12936 This is the default.
12937
12938 @item -msize-level=@var{level}
12939 @opindex msize-level
12940 Fine-tune size optimization with regards to instruction lengths and alignment.
12941 The recognized values for @var{level} are:
12942 @table @samp
12943 @item 0
12944 No size optimization. This level is deprecated and treated like @samp{1}.
12945
12946 @item 1
12947 Short instructions are used opportunistically.
12948
12949 @item 2
12950 In addition, alignment of loops and of code after barriers are dropped.
12951
12952 @item 3
12953 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
12954
12955 @end table
12956
12957 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
12958 the behavior when this is not set is equivalent to level @samp{1}.
12959
12960 @item -mtune=@var{cpu}
12961 @opindex mtune
12962 Set instruction scheduling parameters for @var{cpu}, overriding any implied
12963 by @option{-mcpu=}.
12964
12965 Supported values for @var{cpu} are
12966
12967 @table @samp
12968 @item ARC600
12969 Tune for ARC600 cpu.
12970
12971 @item ARC601
12972 Tune for ARC601 cpu.
12973
12974 @item ARC700
12975 Tune for ARC700 cpu with standard multiplier block.
12976
12977 @item ARC700-xmac
12978 Tune for ARC700 cpu with XMAC block.
12979
12980 @item ARC725D
12981 Tune for ARC725D cpu.
12982
12983 @item ARC750D
12984 Tune for ARC750D cpu.
12985
12986 @end table
12987
12988 @item -mmultcost=@var{num}
12989 @opindex mmultcost
12990 Cost to assume for a multiply instruction, with @samp{4} being equal to a
12991 normal instruction.
12992
12993 @item -munalign-prob-threshold=@var{probability}
12994 @opindex munalign-prob-threshold
12995 Set probability threshold for unaligning branches.
12996 When tuning for @samp{ARC700} and optimizing for speed, branches without
12997 filled delay slot are preferably emitted unaligned and long, unless
12998 profiling indicates that the probability for the branch to be taken
12999 is below @var{probability}. @xref{Cross-profiling}.
13000 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13001
13002 @end table
13003
13004 The following options are maintained for backward compatibility, but
13005 are now deprecated and will be removed in a future release:
13006
13007 @c Deprecated options
13008 @table @gcctabopt
13009
13010 @item -margonaut
13011 @opindex margonaut
13012 Obsolete FPX.
13013
13014 @item -mbig-endian
13015 @opindex mbig-endian
13016 @itemx -EB
13017 @opindex EB
13018 Compile code for big endian targets. Use of these options is now
13019 deprecated. Users wanting big-endian code, should use the
13020 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13021 building the tool chain, for which big-endian is the default.
13022
13023 @item -mlittle-endian
13024 @opindex mlittle-endian
13025 @itemx -EL
13026 @opindex EL
13027 Compile code for little endian targets. Use of these options is now
13028 deprecated. Users wanting little-endian code should use the
13029 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13030 building the tool chain, for which little-endian is the default.
13031
13032 @item -mbarrel_shifter
13033 @opindex mbarrel_shifter
13034 Replaced by @option{-mbarrel-shifter}.
13035
13036 @item -mdpfp_compact
13037 @opindex mdpfp_compact
13038 Replaced by @option{-mdpfp-compact}.
13039
13040 @item -mdpfp_fast
13041 @opindex mdpfp_fast
13042 Replaced by @option{-mdpfp-fast}.
13043
13044 @item -mdsp_packa
13045 @opindex mdsp_packa
13046 Replaced by @option{-mdsp-packa}.
13047
13048 @item -mEA
13049 @opindex mEA
13050 Replaced by @option{-mea}.
13051
13052 @item -mmac_24
13053 @opindex mmac_24
13054 Replaced by @option{-mmac-24}.
13055
13056 @item -mmac_d16
13057 @opindex mmac_d16
13058 Replaced by @option{-mmac-d16}.
13059
13060 @item -mspfp_compact
13061 @opindex mspfp_compact
13062 Replaced by @option{-mspfp-compact}.
13063
13064 @item -mspfp_fast
13065 @opindex mspfp_fast
13066 Replaced by @option{-mspfp-fast}.
13067
13068 @item -mtune=@var{cpu}
13069 @opindex mtune
13070 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13071 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13072 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13073
13074 @item -multcost=@var{num}
13075 @opindex multcost
13076 Replaced by @option{-mmultcost}.
13077
13078 @end table
13079
13080 @node ARM Options
13081 @subsection ARM Options
13082 @cindex ARM options
13083
13084 These @samp{-m} options are defined for the ARM port:
13085
13086 @table @gcctabopt
13087 @item -mabi=@var{name}
13088 @opindex mabi
13089 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
13090 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13091
13092 @item -mapcs-frame
13093 @opindex mapcs-frame
13094 Generate a stack frame that is compliant with the ARM Procedure Call
13095 Standard for all functions, even if this is not strictly necessary for
13096 correct execution of the code. Specifying @option{-fomit-frame-pointer}
13097 with this option causes the stack frames not to be generated for
13098 leaf functions. The default is @option{-mno-apcs-frame}.
13099 This option is deprecated.
13100
13101 @item -mapcs
13102 @opindex mapcs
13103 This is a synonym for @option{-mapcs-frame} and is deprecated.
13104
13105 @ignore
13106 @c not currently implemented
13107 @item -mapcs-stack-check
13108 @opindex mapcs-stack-check
13109 Generate code to check the amount of stack space available upon entry to
13110 every function (that actually uses some stack space). If there is
13111 insufficient space available then either the function
13112 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13113 called, depending upon the amount of stack space required. The runtime
13114 system is required to provide these functions. The default is
13115 @option{-mno-apcs-stack-check}, since this produces smaller code.
13116
13117 @c not currently implemented
13118 @item -mapcs-float
13119 @opindex mapcs-float
13120 Pass floating-point arguments using the floating-point registers. This is
13121 one of the variants of the APCS@. This option is recommended if the
13122 target hardware has a floating-point unit or if a lot of floating-point
13123 arithmetic is going to be performed by the code. The default is
13124 @option{-mno-apcs-float}, since the size of integer-only code is
13125 slightly increased if @option{-mapcs-float} is used.
13126
13127 @c not currently implemented
13128 @item -mapcs-reentrant
13129 @opindex mapcs-reentrant
13130 Generate reentrant, position-independent code. The default is
13131 @option{-mno-apcs-reentrant}.
13132 @end ignore
13133
13134 @item -mthumb-interwork
13135 @opindex mthumb-interwork
13136 Generate code that supports calling between the ARM and Thumb
13137 instruction sets. Without this option, on pre-v5 architectures, the
13138 two instruction sets cannot be reliably used inside one program. The
13139 default is @option{-mno-thumb-interwork}, since slightly larger code
13140 is generated when @option{-mthumb-interwork} is specified. In AAPCS
13141 configurations this option is meaningless.
13142
13143 @item -mno-sched-prolog
13144 @opindex mno-sched-prolog
13145 Prevent the reordering of instructions in the function prologue, or the
13146 merging of those instruction with the instructions in the function's
13147 body. This means that all functions start with a recognizable set
13148 of instructions (or in fact one of a choice from a small set of
13149 different function prologues), and this information can be used to
13150 locate the start of functions inside an executable piece of code. The
13151 default is @option{-msched-prolog}.
13152
13153 @item -mfloat-abi=@var{name}
13154 @opindex mfloat-abi
13155 Specifies which floating-point ABI to use. Permissible values
13156 are: @samp{soft}, @samp{softfp} and @samp{hard}.
13157
13158 Specifying @samp{soft} causes GCC to generate output containing
13159 library calls for floating-point operations.
13160 @samp{softfp} allows the generation of code using hardware floating-point
13161 instructions, but still uses the soft-float calling conventions.
13162 @samp{hard} allows generation of floating-point instructions
13163 and uses FPU-specific calling conventions.
13164
13165 The default depends on the specific target configuration. Note that
13166 the hard-float and soft-float ABIs are not link-compatible; you must
13167 compile your entire program with the same ABI, and link with a
13168 compatible set of libraries.
13169
13170 @item -mlittle-endian
13171 @opindex mlittle-endian
13172 Generate code for a processor running in little-endian mode. This is
13173 the default for all standard configurations.
13174
13175 @item -mbig-endian
13176 @opindex mbig-endian
13177 Generate code for a processor running in big-endian mode; the default is
13178 to compile code for a little-endian processor.
13179
13180 @item -march=@var{name}
13181 @opindex march
13182 This specifies the name of the target ARM architecture. GCC uses this
13183 name to determine what kind of instructions it can emit when generating
13184 assembly code. This option can be used in conjunction with or instead
13185 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
13186 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13187 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13188 @samp{armv6}, @samp{armv6j},
13189 @samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m},
13190 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13191 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc},
13192 @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13193
13194 @option{-march=armv7ve} is the armv7-a architecture with virtualization
13195 extensions.
13196
13197 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13198 architecture together with the optional CRC32 extensions.
13199
13200 @option{-march=native} causes the compiler to auto-detect the architecture
13201 of the build computer. At present, this feature is only supported on
13202 GNU/Linux, and not all architectures are recognized. If the auto-detect
13203 is unsuccessful the option has no effect.
13204
13205 @item -mtune=@var{name}
13206 @opindex mtune
13207 This option specifies the name of the target ARM processor for
13208 which GCC should tune the performance of the code.
13209 For some ARM implementations better performance can be obtained by using
13210 this option.
13211 Permissible names are: @samp{arm2}, @samp{arm250},
13212 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13213 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13214 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13215 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13216 @samp{arm720},
13217 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13218 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13219 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13220 @samp{strongarm1110},
13221 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13222 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13223 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13224 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13225 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13226 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13227 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13228 @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8}, @samp{cortex-a9},
13229 @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a53},
13230 @samp{cortex-a57}, @samp{cortex-a72},
13231 @samp{cortex-r4},
13232 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13233 @samp{cortex-m4},
13234 @samp{cortex-m3},
13235 @samp{cortex-m1},
13236 @samp{cortex-m0},
13237 @samp{cortex-m0plus},
13238 @samp{cortex-m1.small-multiply},
13239 @samp{cortex-m0.small-multiply},
13240 @samp{cortex-m0plus.small-multiply},
13241 @samp{exynos-m1},
13242 @samp{marvell-pj4},
13243 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13244 @samp{fa526}, @samp{fa626},
13245 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13246 @samp{xgene1}.
13247
13248 Additionally, this option can specify that GCC should tune the performance
13249 of the code for a big.LITTLE system. Permissible names are:
13250 @samp{cortex-a15.cortex-a7}, @samp{cortex-a57.cortex-a53},
13251 @samp{cortex-a72.cortex-a53}.
13252
13253 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13254 performance for a blend of processors within architecture @var{arch}.
13255 The aim is to generate code that run well on the current most popular
13256 processors, balancing between optimizations that benefit some CPUs in the
13257 range, and avoiding performance pitfalls of other CPUs. The effects of
13258 this option may change in future GCC versions as CPU models come and go.
13259
13260 @option{-mtune=native} causes the compiler to auto-detect the CPU
13261 of the build computer. At present, this feature is only supported on
13262 GNU/Linux, and not all architectures are recognized. If the auto-detect is
13263 unsuccessful the option has no effect.
13264
13265 @item -mcpu=@var{name}
13266 @opindex mcpu
13267 This specifies the name of the target ARM processor. GCC uses this name
13268 to derive the name of the target ARM architecture (as if specified
13269 by @option{-march}) and the ARM processor type for which to tune for
13270 performance (as if specified by @option{-mtune}). Where this option
13271 is used in conjunction with @option{-march} or @option{-mtune},
13272 those options take precedence over the appropriate part of this option.
13273
13274 Permissible names for this option are the same as those for
13275 @option{-mtune}.
13276
13277 @option{-mcpu=generic-@var{arch}} is also permissible, and is
13278 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13279 See @option{-mtune} for more information.
13280
13281 @option{-mcpu=native} causes the compiler to auto-detect the CPU
13282 of the build computer. At present, this feature is only supported on
13283 GNU/Linux, and not all architectures are recognized. If the auto-detect
13284 is unsuccessful the option has no effect.
13285
13286 @item -mfpu=@var{name}
13287 @opindex mfpu
13288 This specifies what floating-point hardware (or hardware emulation) is
13289 available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
13290 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13291 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13292 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13293 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
13294 @samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
13295
13296 If @option{-msoft-float} is specified this specifies the format of
13297 floating-point values.
13298
13299 If the selected floating-point hardware includes the NEON extension
13300 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13301 operations are not generated by GCC's auto-vectorization pass unless
13302 @option{-funsafe-math-optimizations} is also specified. This is
13303 because NEON hardware does not fully implement the IEEE 754 standard for
13304 floating-point arithmetic (in particular denormal values are treated as
13305 zero), so the use of NEON instructions may lead to a loss of precision.
13306
13307 @item -mfp16-format=@var{name}
13308 @opindex mfp16-format
13309 Specify the format of the @code{__fp16} half-precision floating-point type.
13310 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13311 the default is @samp{none}, in which case the @code{__fp16} type is not
13312 defined. @xref{Half-Precision}, for more information.
13313
13314 @item -mstructure-size-boundary=@var{n}
13315 @opindex mstructure-size-boundary
13316 The sizes of all structures and unions are rounded up to a multiple
13317 of the number of bits set by this option. Permissible values are 8, 32
13318 and 64. The default value varies for different toolchains. For the COFF
13319 targeted toolchain the default value is 8. A value of 64 is only allowed
13320 if the underlying ABI supports it.
13321
13322 Specifying a larger number can produce faster, more efficient code, but
13323 can also increase the size of the program. Different values are potentially
13324 incompatible. Code compiled with one value cannot necessarily expect to
13325 work with code or libraries compiled with another value, if they exchange
13326 information using structures or unions.
13327
13328 @item -mabort-on-noreturn
13329 @opindex mabort-on-noreturn
13330 Generate a call to the function @code{abort} at the end of a
13331 @code{noreturn} function. It is executed if the function tries to
13332 return.
13333
13334 @item -mlong-calls
13335 @itemx -mno-long-calls
13336 @opindex mlong-calls
13337 @opindex mno-long-calls
13338 Tells the compiler to perform function calls by first loading the
13339 address of the function into a register and then performing a subroutine
13340 call on this register. This switch is needed if the target function
13341 lies outside of the 64-megabyte addressing range of the offset-based
13342 version of subroutine call instruction.
13343
13344 Even if this switch is enabled, not all function calls are turned
13345 into long calls. The heuristic is that static functions, functions
13346 that have the @code{short_call} attribute, functions that are inside
13347 the scope of a @code{#pragma no_long_calls} directive, and functions whose
13348 definitions have already been compiled within the current compilation
13349 unit are not turned into long calls. The exceptions to this rule are
13350 that weak function definitions, functions with the @code{long_call}
13351 attribute or the @code{section} attribute, and functions that are within
13352 the scope of a @code{#pragma long_calls} directive are always
13353 turned into long calls.
13354
13355 This feature is not enabled by default. Specifying
13356 @option{-mno-long-calls} restores the default behavior, as does
13357 placing the function calls within the scope of a @code{#pragma
13358 long_calls_off} directive. Note these switches have no effect on how
13359 the compiler generates code to handle function calls via function
13360 pointers.
13361
13362 @item -msingle-pic-base
13363 @opindex msingle-pic-base
13364 Treat the register used for PIC addressing as read-only, rather than
13365 loading it in the prologue for each function. The runtime system is
13366 responsible for initializing this register with an appropriate value
13367 before execution begins.
13368
13369 @item -mpic-register=@var{reg}
13370 @opindex mpic-register
13371 Specify the register to be used for PIC addressing.
13372 For standard PIC base case, the default is any suitable register
13373 determined by compiler. For single PIC base case, the default is
13374 @samp{R9} if target is EABI based or stack-checking is enabled,
13375 otherwise the default is @samp{R10}.
13376
13377 @item -mpic-data-is-text-relative
13378 @opindex mpic-data-is-text-relative
13379 Assume that each data segments are relative to text segment at load time.
13380 Therefore, it permits addressing data using PC-relative operations.
13381 This option is on by default for targets other than VxWorks RTP.
13382
13383 @item -mpoke-function-name
13384 @opindex mpoke-function-name
13385 Write the name of each function into the text section, directly
13386 preceding the function prologue. The generated code is similar to this:
13387
13388 @smallexample
13389 t0
13390 .ascii "arm_poke_function_name", 0
13391 .align
13392 t1
13393 .word 0xff000000 + (t1 - t0)
13394 arm_poke_function_name
13395 mov ip, sp
13396 stmfd sp!, @{fp, ip, lr, pc@}
13397 sub fp, ip, #4
13398 @end smallexample
13399
13400 When performing a stack backtrace, code can inspect the value of
13401 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
13402 location @code{pc - 12} and the top 8 bits are set, then we know that
13403 there is a function name embedded immediately preceding this location
13404 and has length @code{((pc[-3]) & 0xff000000)}.
13405
13406 @item -mthumb
13407 @itemx -marm
13408 @opindex marm
13409 @opindex mthumb
13410
13411 Select between generating code that executes in ARM and Thumb
13412 states. The default for most configurations is to generate code
13413 that executes in ARM state, but the default can be changed by
13414 configuring GCC with the @option{--with-mode=}@var{state}
13415 configure option.
13416
13417 @item -mtpcs-frame
13418 @opindex mtpcs-frame
13419 Generate a stack frame that is compliant with the Thumb Procedure Call
13420 Standard for all non-leaf functions. (A leaf function is one that does
13421 not call any other functions.) The default is @option{-mno-tpcs-frame}.
13422
13423 @item -mtpcs-leaf-frame
13424 @opindex mtpcs-leaf-frame
13425 Generate a stack frame that is compliant with the Thumb Procedure Call
13426 Standard for all leaf functions. (A leaf function is one that does
13427 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
13428
13429 @item -mcallee-super-interworking
13430 @opindex mcallee-super-interworking
13431 Gives all externally visible functions in the file being compiled an ARM
13432 instruction set header which switches to Thumb mode before executing the
13433 rest of the function. This allows these functions to be called from
13434 non-interworking code. This option is not valid in AAPCS configurations
13435 because interworking is enabled by default.
13436
13437 @item -mcaller-super-interworking
13438 @opindex mcaller-super-interworking
13439 Allows calls via function pointers (including virtual functions) to
13440 execute correctly regardless of whether the target code has been
13441 compiled for interworking or not. There is a small overhead in the cost
13442 of executing a function pointer if this option is enabled. This option
13443 is not valid in AAPCS configurations because interworking is enabled
13444 by default.
13445
13446 @item -mtp=@var{name}
13447 @opindex mtp
13448 Specify the access model for the thread local storage pointer. The valid
13449 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13450 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13451 (supported in the arm6k architecture), and @samp{auto}, which uses the
13452 best available method for the selected processor. The default setting is
13453 @samp{auto}.
13454
13455 @item -mtls-dialect=@var{dialect}
13456 @opindex mtls-dialect
13457 Specify the dialect to use for accessing thread local storage. Two
13458 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
13459 @samp{gnu} dialect selects the original GNU scheme for supporting
13460 local and global dynamic TLS models. The @samp{gnu2} dialect
13461 selects the GNU descriptor scheme, which provides better performance
13462 for shared libraries. The GNU descriptor scheme is compatible with
13463 the original scheme, but does require new assembler, linker and
13464 library support. Initial and local exec TLS models are unaffected by
13465 this option and always use the original scheme.
13466
13467 @item -mword-relocations
13468 @opindex mword-relocations
13469 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13470 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13471 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13472 is specified.
13473
13474 @item -mfix-cortex-m3-ldrd
13475 @opindex mfix-cortex-m3-ldrd
13476 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13477 with overlapping destination and base registers are used. This option avoids
13478 generating these instructions. This option is enabled by default when
13479 @option{-mcpu=cortex-m3} is specified.
13480
13481 @item -munaligned-access
13482 @itemx -mno-unaligned-access
13483 @opindex munaligned-access
13484 @opindex mno-unaligned-access
13485 Enables (or disables) reading and writing of 16- and 32- bit values
13486 from addresses that are not 16- or 32- bit aligned. By default
13487 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13488 architectures, and enabled for all other architectures. If unaligned
13489 access is not enabled then words in packed data structures are
13490 accessed a byte at a time.
13491
13492 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13493 generated object file to either true or false, depending upon the
13494 setting of this option. If unaligned access is enabled then the
13495 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13496 defined.
13497
13498 @item -mneon-for-64bits
13499 @opindex mneon-for-64bits
13500 Enables using Neon to handle scalar 64-bits operations. This is
13501 disabled by default since the cost of moving data from core registers
13502 to Neon is high.
13503
13504 @item -mslow-flash-data
13505 @opindex mslow-flash-data
13506 Assume loading data from flash is slower than fetching instruction.
13507 Therefore literal load is minimized for better performance.
13508 This option is only supported when compiling for ARMv7 M-profile and
13509 off by default.
13510
13511 @item -masm-syntax-unified
13512 @opindex masm-syntax-unified
13513 Assume inline assembler is using unified asm syntax. The default is
13514 currently off which implies divided syntax. Currently this option is
13515 available only for Thumb1 and has no effect on ARM state and Thumb2.
13516 However, this may change in future releases of GCC. Divided syntax
13517 should be considered deprecated.
13518
13519 @item -mrestrict-it
13520 @opindex mrestrict-it
13521 Restricts generation of IT blocks to conform to the rules of ARMv8.
13522 IT blocks can only contain a single 16-bit instruction from a select
13523 set of instructions. This option is on by default for ARMv8 Thumb mode.
13524
13525 @item -mprint-tune-info
13526 @opindex mprint-tune-info
13527 Print CPU tuning information as comment in assembler file. This is
13528 an option used only for regression testing of the compiler and not
13529 intended for ordinary use in compiling code. This option is disabled
13530 by default.
13531 @end table
13532
13533 @node AVR Options
13534 @subsection AVR Options
13535 @cindex AVR Options
13536
13537 These options are defined for AVR implementations:
13538
13539 @table @gcctabopt
13540 @item -mmcu=@var{mcu}
13541 @opindex mmcu
13542 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13543
13544 The default for this option is@tie{}@samp{avr2}.
13545
13546 GCC supports the following AVR devices and ISAs:
13547
13548 @include avr-mmcu.texi
13549
13550 @item -maccumulate-args
13551 @opindex maccumulate-args
13552 Accumulate outgoing function arguments and acquire/release the needed
13553 stack space for outgoing function arguments once in function
13554 prologue/epilogue. Without this option, outgoing arguments are pushed
13555 before calling a function and popped afterwards.
13556
13557 Popping the arguments after the function call can be expensive on
13558 AVR so that accumulating the stack space might lead to smaller
13559 executables because arguments need not to be removed from the
13560 stack after such a function call.
13561
13562 This option can lead to reduced code size for functions that perform
13563 several calls to functions that get their arguments on the stack like
13564 calls to printf-like functions.
13565
13566 @item -mbranch-cost=@var{cost}
13567 @opindex mbranch-cost
13568 Set the branch costs for conditional branch instructions to
13569 @var{cost}. Reasonable values for @var{cost} are small, non-negative
13570 integers. The default branch cost is 0.
13571
13572 @item -mcall-prologues
13573 @opindex mcall-prologues
13574 Functions prologues/epilogues are expanded as calls to appropriate
13575 subroutines. Code size is smaller.
13576
13577 @item -mint8
13578 @opindex mint8
13579 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
13580 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13581 and @code{long long} is 4 bytes. Please note that this option does not
13582 conform to the C standards, but it results in smaller code
13583 size.
13584
13585 @item -mn-flash=@var{num}
13586 @opindex mn-flash
13587 Assume that the flash memory has a size of
13588 @var{num} times 64@tie{}KiB.
13589
13590 @item -mno-interrupts
13591 @opindex mno-interrupts
13592 Generated code is not compatible with hardware interrupts.
13593 Code size is smaller.
13594
13595 @item -mrelax
13596 @opindex mrelax
13597 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13598 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13599 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13600 the assembler's command line and the @option{--relax} option to the
13601 linker's command line.
13602
13603 Jump relaxing is performed by the linker because jump offsets are not
13604 known before code is located. Therefore, the assembler code generated by the
13605 compiler is the same, but the instructions in the executable may
13606 differ from instructions in the assembler code.
13607
13608 Relaxing must be turned on if linker stubs are needed, see the
13609 section on @code{EIND} and linker stubs below.
13610
13611 @item -mrmw
13612 @opindex mrmw
13613 Assume that the device supports the Read-Modify-Write
13614 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
13615
13616 @item -msp8
13617 @opindex msp8
13618 Treat the stack pointer register as an 8-bit register,
13619 i.e.@: assume the high byte of the stack pointer is zero.
13620 In general, you don't need to set this option by hand.
13621
13622 This option is used internally by the compiler to select and
13623 build multilibs for architectures @code{avr2} and @code{avr25}.
13624 These architectures mix devices with and without @code{SPH}.
13625 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
13626 the compiler driver adds or removes this option from the compiler
13627 proper's command line, because the compiler then knows if the device
13628 or architecture has an 8-bit stack pointer and thus no @code{SPH}
13629 register or not.
13630
13631 @item -mstrict-X
13632 @opindex mstrict-X
13633 Use address register @code{X} in a way proposed by the hardware. This means
13634 that @code{X} is only used in indirect, post-increment or
13635 pre-decrement addressing.
13636
13637 Without this option, the @code{X} register may be used in the same way
13638 as @code{Y} or @code{Z} which then is emulated by additional
13639 instructions.
13640 For example, loading a value with @code{X+const} addressing with a
13641 small non-negative @code{const < 64} to a register @var{Rn} is
13642 performed as
13643
13644 @example
13645 adiw r26, const ; X += const
13646 ld @var{Rn}, X ; @var{Rn} = *X
13647 sbiw r26, const ; X -= const
13648 @end example
13649
13650 @item -mtiny-stack
13651 @opindex mtiny-stack
13652 Only change the lower 8@tie{}bits of the stack pointer.
13653
13654 @item -nodevicelib
13655 @opindex nodevicelib
13656 Don't link against AVR-LibC's device specific library @code{libdev.a}.
13657
13658 @item -Waddr-space-convert
13659 @opindex Waddr-space-convert
13660 Warn about conversions between address spaces in the case where the
13661 resulting address space is not contained in the incoming address space.
13662 @end table
13663
13664 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
13665 @cindex @code{EIND}
13666 Pointers in the implementation are 16@tie{}bits wide.
13667 The address of a function or label is represented as word address so
13668 that indirect jumps and calls can target any code address in the
13669 range of 64@tie{}Ki words.
13670
13671 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
13672 bytes of program memory space, there is a special function register called
13673 @code{EIND} that serves as most significant part of the target address
13674 when @code{EICALL} or @code{EIJMP} instructions are used.
13675
13676 Indirect jumps and calls on these devices are handled as follows by
13677 the compiler and are subject to some limitations:
13678
13679 @itemize @bullet
13680
13681 @item
13682 The compiler never sets @code{EIND}.
13683
13684 @item
13685 The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
13686 instructions or might read @code{EIND} directly in order to emulate an
13687 indirect call/jump by means of a @code{RET} instruction.
13688
13689 @item
13690 The compiler assumes that @code{EIND} never changes during the startup
13691 code or during the application. In particular, @code{EIND} is not
13692 saved/restored in function or interrupt service routine
13693 prologue/epilogue.
13694
13695 @item
13696 For indirect calls to functions and computed goto, the linker
13697 generates @emph{stubs}. Stubs are jump pads sometimes also called
13698 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
13699 The stub contains a direct jump to the desired address.
13700
13701 @item
13702 Linker relaxation must be turned on so that the linker generates
13703 the stubs correctly in all situations. See the compiler option
13704 @option{-mrelax} and the linker option @option{--relax}.
13705 There are corner cases where the linker is supposed to generate stubs
13706 but aborts without relaxation and without a helpful error message.
13707
13708 @item
13709 The default linker script is arranged for code with @code{EIND = 0}.
13710 If code is supposed to work for a setup with @code{EIND != 0}, a custom
13711 linker script has to be used in order to place the sections whose
13712 name start with @code{.trampolines} into the segment where @code{EIND}
13713 points to.
13714
13715 @item
13716 The startup code from libgcc never sets @code{EIND}.
13717 Notice that startup code is a blend of code from libgcc and AVR-LibC.
13718 For the impact of AVR-LibC on @code{EIND}, see the
13719 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
13720
13721 @item
13722 It is legitimate for user-specific startup code to set up @code{EIND}
13723 early, for example by means of initialization code located in
13724 section @code{.init3}. Such code runs prior to general startup code
13725 that initializes RAM and calls constructors, but after the bit
13726 of startup code from AVR-LibC that sets @code{EIND} to the segment
13727 where the vector table is located.
13728 @example
13729 #include <avr/io.h>
13730
13731 static void
13732 __attribute__((section(".init3"),naked,used,no_instrument_function))
13733 init3_set_eind (void)
13734 @{
13735 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
13736 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
13737 @}
13738 @end example
13739
13740 @noindent
13741 The @code{__trampolines_start} symbol is defined in the linker script.
13742
13743 @item
13744 Stubs are generated automatically by the linker if
13745 the following two conditions are met:
13746 @itemize @minus
13747
13748 @item The address of a label is taken by means of the @code{gs} modifier
13749 (short for @emph{generate stubs}) like so:
13750 @example
13751 LDI r24, lo8(gs(@var{func}))
13752 LDI r25, hi8(gs(@var{func}))
13753 @end example
13754 @item The final location of that label is in a code segment
13755 @emph{outside} the segment where the stubs are located.
13756 @end itemize
13757
13758 @item
13759 The compiler emits such @code{gs} modifiers for code labels in the
13760 following situations:
13761 @itemize @minus
13762 @item Taking address of a function or code label.
13763 @item Computed goto.
13764 @item If prologue-save function is used, see @option{-mcall-prologues}
13765 command-line option.
13766 @item Switch/case dispatch tables. If you do not want such dispatch
13767 tables you can specify the @option{-fno-jump-tables} command-line option.
13768 @item C and C++ constructors/destructors called during startup/shutdown.
13769 @item If the tools hit a @code{gs()} modifier explained above.
13770 @end itemize
13771
13772 @item
13773 Jumping to non-symbolic addresses like so is @emph{not} supported:
13774
13775 @example
13776 int main (void)
13777 @{
13778 /* Call function at word address 0x2 */
13779 return ((int(*)(void)) 0x2)();
13780 @}
13781 @end example
13782
13783 Instead, a stub has to be set up, i.e.@: the function has to be called
13784 through a symbol (@code{func_4} in the example):
13785
13786 @example
13787 int main (void)
13788 @{
13789 extern int func_4 (void);
13790
13791 /* Call function at byte address 0x4 */
13792 return func_4();
13793 @}
13794 @end example
13795
13796 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
13797 Alternatively, @code{func_4} can be defined in the linker script.
13798 @end itemize
13799
13800 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
13801 @cindex @code{RAMPD}
13802 @cindex @code{RAMPX}
13803 @cindex @code{RAMPY}
13804 @cindex @code{RAMPZ}
13805 Some AVR devices support memories larger than the 64@tie{}KiB range
13806 that can be accessed with 16-bit pointers. To access memory locations
13807 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
13808 register is used as high part of the address:
13809 The @code{X}, @code{Y}, @code{Z} address register is concatenated
13810 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
13811 register, respectively, to get a wide address. Similarly,
13812 @code{RAMPD} is used together with direct addressing.
13813
13814 @itemize
13815 @item
13816 The startup code initializes the @code{RAMP} special function
13817 registers with zero.
13818
13819 @item
13820 If a @ref{AVR Named Address Spaces,named address space} other than
13821 generic or @code{__flash} is used, then @code{RAMPZ} is set
13822 as needed before the operation.
13823
13824 @item
13825 If the device supports RAM larger than 64@tie{}KiB and the compiler
13826 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
13827 is reset to zero after the operation.
13828
13829 @item
13830 If the device comes with a specific @code{RAMP} register, the ISR
13831 prologue/epilogue saves/restores that SFR and initializes it with
13832 zero in case the ISR code might (implicitly) use it.
13833
13834 @item
13835 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
13836 If you use inline assembler to read from locations outside the
13837 16-bit address range and change one of the @code{RAMP} registers,
13838 you must reset it to zero after the access.
13839
13840 @end itemize
13841
13842 @subsubsection AVR Built-in Macros
13843
13844 GCC defines several built-in macros so that the user code can test
13845 for the presence or absence of features. Almost any of the following
13846 built-in macros are deduced from device capabilities and thus
13847 triggered by the @option{-mmcu=} command-line option.
13848
13849 For even more AVR-specific built-in macros see
13850 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
13851
13852 @table @code
13853
13854 @item __AVR_ARCH__
13855 Build-in macro that resolves to a decimal number that identifies the
13856 architecture and depends on the @option{-mmcu=@var{mcu}} option.
13857 Possible values are:
13858
13859 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
13860 @code{4}, @code{5}, @code{51}, @code{6}
13861
13862 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
13863 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
13864
13865 respectively and
13866
13867 @code{100}, @code{102}, @code{104},
13868 @code{105}, @code{106}, @code{107}
13869
13870 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
13871 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
13872 If @var{mcu} specifies a device, this built-in macro is set
13873 accordingly. For example, with @option{-mmcu=atmega8} the macro is
13874 defined to @code{4}.
13875
13876 @item __AVR_@var{Device}__
13877 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
13878 the device's name. For example, @option{-mmcu=atmega8} defines the
13879 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
13880 @code{__AVR_ATtiny261A__}, etc.
13881
13882 The built-in macros' names follow
13883 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
13884 the device name as from the AVR user manual. The difference between
13885 @var{Device} in the built-in macro and @var{device} in
13886 @option{-mmcu=@var{device}} is that the latter is always lowercase.
13887
13888 If @var{device} is not a device but only a core architecture like
13889 @samp{avr51}, this macro is not defined.
13890
13891 @item __AVR_DEVICE_NAME__
13892 Setting @option{-mmcu=@var{device}} defines this built-in macro to
13893 the device's name. For example, with @option{-mmcu=atmega8} the macro
13894 is defined to @code{atmega8}.
13895
13896 If @var{device} is not a device but only a core architecture like
13897 @samp{avr51}, this macro is not defined.
13898
13899 @item __AVR_XMEGA__
13900 The device / architecture belongs to the XMEGA family of devices.
13901
13902 @item __AVR_HAVE_ELPM__
13903 The device has the the @code{ELPM} instruction.
13904
13905 @item __AVR_HAVE_ELPMX__
13906 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
13907 R@var{n},Z+} instructions.
13908
13909 @item __AVR_HAVE_MOVW__
13910 The device has the @code{MOVW} instruction to perform 16-bit
13911 register-register moves.
13912
13913 @item __AVR_HAVE_LPMX__
13914 The device has the @code{LPM R@var{n},Z} and
13915 @code{LPM R@var{n},Z+} instructions.
13916
13917 @item __AVR_HAVE_MUL__
13918 The device has a hardware multiplier.
13919
13920 @item __AVR_HAVE_JMP_CALL__
13921 The device has the @code{JMP} and @code{CALL} instructions.
13922 This is the case for devices with at least 16@tie{}KiB of program
13923 memory.
13924
13925 @item __AVR_HAVE_EIJMP_EICALL__
13926 @itemx __AVR_3_BYTE_PC__
13927 The device has the @code{EIJMP} and @code{EICALL} instructions.
13928 This is the case for devices with more than 128@tie{}KiB of program memory.
13929 This also means that the program counter
13930 (PC) is 3@tie{}bytes wide.
13931
13932 @item __AVR_2_BYTE_PC__
13933 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
13934 with up to 128@tie{}KiB of program memory.
13935
13936 @item __AVR_HAVE_8BIT_SP__
13937 @itemx __AVR_HAVE_16BIT_SP__
13938 The stack pointer (SP) register is treated as 8-bit respectively
13939 16-bit register by the compiler.
13940 The definition of these macros is affected by @option{-mtiny-stack}.
13941
13942 @item __AVR_HAVE_SPH__
13943 @itemx __AVR_SP8__
13944 The device has the SPH (high part of stack pointer) special function
13945 register or has an 8-bit stack pointer, respectively.
13946 The definition of these macros is affected by @option{-mmcu=} and
13947 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
13948 by @option{-msp8}.
13949
13950 @item __AVR_HAVE_RAMPD__
13951 @itemx __AVR_HAVE_RAMPX__
13952 @itemx __AVR_HAVE_RAMPY__
13953 @itemx __AVR_HAVE_RAMPZ__
13954 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
13955 @code{RAMPZ} special function register, respectively.
13956
13957 @item __NO_INTERRUPTS__
13958 This macro reflects the @option{-mno-interrupts} command-line option.
13959
13960 @item __AVR_ERRATA_SKIP__
13961 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
13962 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
13963 instructions because of a hardware erratum. Skip instructions are
13964 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
13965 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
13966 set.
13967
13968 @item __AVR_ISA_RMW__
13969 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
13970
13971 @item __AVR_SFR_OFFSET__=@var{offset}
13972 Instructions that can address I/O special function registers directly
13973 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
13974 address as if addressed by an instruction to access RAM like @code{LD}
13975 or @code{STS}. This offset depends on the device architecture and has
13976 to be subtracted from the RAM address in order to get the
13977 respective I/O@tie{}address.
13978
13979 @item __WITH_AVRLIBC__
13980 The compiler is configured to be used together with AVR-Libc.
13981 See the @option{--with-avrlibc} configure option.
13982
13983 @end table
13984
13985 @node Blackfin Options
13986 @subsection Blackfin Options
13987 @cindex Blackfin Options
13988
13989 @table @gcctabopt
13990 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
13991 @opindex mcpu=
13992 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
13993 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
13994 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
13995 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
13996 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
13997 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
13998 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
13999 @samp{bf561}, @samp{bf592}.
14000
14001 The optional @var{sirevision} specifies the silicon revision of the target
14002 Blackfin processor. Any workarounds available for the targeted silicon revision
14003 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
14004 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14005 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
14006 hexadecimal digits representing the major and minor numbers in the silicon
14007 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14008 is not defined. If @var{sirevision} is @samp{any}, the
14009 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14010 If this optional @var{sirevision} is not used, GCC assumes the latest known
14011 silicon revision of the targeted Blackfin processor.
14012
14013 GCC defines a preprocessor macro for the specified @var{cpu}.
14014 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14015 provided by libgloss to be linked in if @option{-msim} is not given.
14016
14017 Without this option, @samp{bf532} is used as the processor by default.
14018
14019 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
14020 only the preprocessor macro is defined.
14021
14022 @item -msim
14023 @opindex msim
14024 Specifies that the program will be run on the simulator. This causes
14025 the simulator BSP provided by libgloss to be linked in. This option
14026 has effect only for @samp{bfin-elf} toolchain.
14027 Certain other options, such as @option{-mid-shared-library} and
14028 @option{-mfdpic}, imply @option{-msim}.
14029
14030 @item -momit-leaf-frame-pointer
14031 @opindex momit-leaf-frame-pointer
14032 Don't keep the frame pointer in a register for leaf functions. This
14033 avoids the instructions to save, set up and restore frame pointers and
14034 makes an extra register available in leaf functions. The option
14035 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14036 which might make debugging harder.
14037
14038 @item -mspecld-anomaly
14039 @opindex mspecld-anomaly
14040 When enabled, the compiler ensures that the generated code does not
14041 contain speculative loads after jump instructions. If this option is used,
14042 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14043
14044 @item -mno-specld-anomaly
14045 @opindex mno-specld-anomaly
14046 Don't generate extra code to prevent speculative loads from occurring.
14047
14048 @item -mcsync-anomaly
14049 @opindex mcsync-anomaly
14050 When enabled, the compiler ensures that the generated code does not
14051 contain CSYNC or SSYNC instructions too soon after conditional branches.
14052 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14053
14054 @item -mno-csync-anomaly
14055 @opindex mno-csync-anomaly
14056 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14057 occurring too soon after a conditional branch.
14058
14059 @item -mlow-64k
14060 @opindex mlow-64k
14061 When enabled, the compiler is free to take advantage of the knowledge that
14062 the entire program fits into the low 64k of memory.
14063
14064 @item -mno-low-64k
14065 @opindex mno-low-64k
14066 Assume that the program is arbitrarily large. This is the default.
14067
14068 @item -mstack-check-l1
14069 @opindex mstack-check-l1
14070 Do stack checking using information placed into L1 scratchpad memory by the
14071 uClinux kernel.
14072
14073 @item -mid-shared-library
14074 @opindex mid-shared-library
14075 Generate code that supports shared libraries via the library ID method.
14076 This allows for execute in place and shared libraries in an environment
14077 without virtual memory management. This option implies @option{-fPIC}.
14078 With a @samp{bfin-elf} target, this option implies @option{-msim}.
14079
14080 @item -mno-id-shared-library
14081 @opindex mno-id-shared-library
14082 Generate code that doesn't assume ID-based shared libraries are being used.
14083 This is the default.
14084
14085 @item -mleaf-id-shared-library
14086 @opindex mleaf-id-shared-library
14087 Generate code that supports shared libraries via the library ID method,
14088 but assumes that this library or executable won't link against any other
14089 ID shared libraries. That allows the compiler to use faster code for jumps
14090 and calls.
14091
14092 @item -mno-leaf-id-shared-library
14093 @opindex mno-leaf-id-shared-library
14094 Do not assume that the code being compiled won't link against any ID shared
14095 libraries. Slower code is generated for jump and call insns.
14096
14097 @item -mshared-library-id=n
14098 @opindex mshared-library-id
14099 Specifies the identification number of the ID-based shared library being
14100 compiled. Specifying a value of 0 generates more compact code; specifying
14101 other values forces the allocation of that number to the current
14102 library but is no more space- or time-efficient than omitting this option.
14103
14104 @item -msep-data
14105 @opindex msep-data
14106 Generate code that allows the data segment to be located in a different
14107 area of memory from the text segment. This allows for execute in place in
14108 an environment without virtual memory management by eliminating relocations
14109 against the text section.
14110
14111 @item -mno-sep-data
14112 @opindex mno-sep-data
14113 Generate code that assumes that the data segment follows the text segment.
14114 This is the default.
14115
14116 @item -mlong-calls
14117 @itemx -mno-long-calls
14118 @opindex mlong-calls
14119 @opindex mno-long-calls
14120 Tells the compiler to perform function calls by first loading the
14121 address of the function into a register and then performing a subroutine
14122 call on this register. This switch is needed if the target function
14123 lies outside of the 24-bit addressing range of the offset-based
14124 version of subroutine call instruction.
14125
14126 This feature is not enabled by default. Specifying
14127 @option{-mno-long-calls} restores the default behavior. Note these
14128 switches have no effect on how the compiler generates code to handle
14129 function calls via function pointers.
14130
14131 @item -mfast-fp
14132 @opindex mfast-fp
14133 Link with the fast floating-point library. This library relaxes some of
14134 the IEEE floating-point standard's rules for checking inputs against
14135 Not-a-Number (NAN), in the interest of performance.
14136
14137 @item -minline-plt
14138 @opindex minline-plt
14139 Enable inlining of PLT entries in function calls to functions that are
14140 not known to bind locally. It has no effect without @option{-mfdpic}.
14141
14142 @item -mmulticore
14143 @opindex mmulticore
14144 Build a standalone application for multicore Blackfin processors.
14145 This option causes proper start files and link scripts supporting
14146 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
14147 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
14148
14149 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14150 selects the one-application-per-core programming model. Without
14151 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14152 programming model is used. In this model, the main function of Core B
14153 should be named as @code{coreb_main}.
14154
14155 If this option is not used, the single-core application programming
14156 model is used.
14157
14158 @item -mcorea
14159 @opindex mcorea
14160 Build a standalone application for Core A of BF561 when using
14161 the one-application-per-core programming model. Proper start files
14162 and link scripts are used to support Core A, and the macro
14163 @code{__BFIN_COREA} is defined.
14164 This option can only be used in conjunction with @option{-mmulticore}.
14165
14166 @item -mcoreb
14167 @opindex mcoreb
14168 Build a standalone application for Core B of BF561 when using
14169 the one-application-per-core programming model. Proper start files
14170 and link scripts are used to support Core B, and the macro
14171 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14172 should be used instead of @code{main}.
14173 This option can only be used in conjunction with @option{-mmulticore}.
14174
14175 @item -msdram
14176 @opindex msdram
14177 Build a standalone application for SDRAM. Proper start files and
14178 link scripts are used to put the application into SDRAM, and the macro
14179 @code{__BFIN_SDRAM} is defined.
14180 The loader should initialize SDRAM before loading the application.
14181
14182 @item -micplb
14183 @opindex micplb
14184 Assume that ICPLBs are enabled at run time. This has an effect on certain
14185 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
14186 are enabled; for standalone applications the default is off.
14187 @end table
14188
14189 @node C6X Options
14190 @subsection C6X Options
14191 @cindex C6X Options
14192
14193 @table @gcctabopt
14194 @item -march=@var{name}
14195 @opindex march
14196 This specifies the name of the target architecture. GCC uses this
14197 name to determine what kind of instructions it can emit when generating
14198 assembly code. Permissible names are: @samp{c62x},
14199 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14200
14201 @item -mbig-endian
14202 @opindex mbig-endian
14203 Generate code for a big-endian target.
14204
14205 @item -mlittle-endian
14206 @opindex mlittle-endian
14207 Generate code for a little-endian target. This is the default.
14208
14209 @item -msim
14210 @opindex msim
14211 Choose startup files and linker script suitable for the simulator.
14212
14213 @item -msdata=default
14214 @opindex msdata=default
14215 Put small global and static data in the @code{.neardata} section,
14216 which is pointed to by register @code{B14}. Put small uninitialized
14217 global and static data in the @code{.bss} section, which is adjacent
14218 to the @code{.neardata} section. Put small read-only data into the
14219 @code{.rodata} section. The corresponding sections used for large
14220 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14221
14222 @item -msdata=all
14223 @opindex msdata=all
14224 Put all data, not just small objects, into the sections reserved for
14225 small data, and use addressing relative to the @code{B14} register to
14226 access them.
14227
14228 @item -msdata=none
14229 @opindex msdata=none
14230 Make no use of the sections reserved for small data, and use absolute
14231 addresses to access all data. Put all initialized global and static
14232 data in the @code{.fardata} section, and all uninitialized data in the
14233 @code{.far} section. Put all constant data into the @code{.const}
14234 section.
14235 @end table
14236
14237 @node CRIS Options
14238 @subsection CRIS Options
14239 @cindex CRIS Options
14240
14241 These options are defined specifically for the CRIS ports.
14242
14243 @table @gcctabopt
14244 @item -march=@var{architecture-type}
14245 @itemx -mcpu=@var{architecture-type}
14246 @opindex march
14247 @opindex mcpu
14248 Generate code for the specified architecture. The choices for
14249 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14250 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14251 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14252 @samp{v10}.
14253
14254 @item -mtune=@var{architecture-type}
14255 @opindex mtune
14256 Tune to @var{architecture-type} everything applicable about the generated
14257 code, except for the ABI and the set of available instructions. The
14258 choices for @var{architecture-type} are the same as for
14259 @option{-march=@var{architecture-type}}.
14260
14261 @item -mmax-stack-frame=@var{n}
14262 @opindex mmax-stack-frame
14263 Warn when the stack frame of a function exceeds @var{n} bytes.
14264
14265 @item -metrax4
14266 @itemx -metrax100
14267 @opindex metrax4
14268 @opindex metrax100
14269 The options @option{-metrax4} and @option{-metrax100} are synonyms for
14270 @option{-march=v3} and @option{-march=v8} respectively.
14271
14272 @item -mmul-bug-workaround
14273 @itemx -mno-mul-bug-workaround
14274 @opindex mmul-bug-workaround
14275 @opindex mno-mul-bug-workaround
14276 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14277 models where it applies. This option is active by default.
14278
14279 @item -mpdebug
14280 @opindex mpdebug
14281 Enable CRIS-specific verbose debug-related information in the assembly
14282 code. This option also has the effect of turning off the @samp{#NO_APP}
14283 formatted-code indicator to the assembler at the beginning of the
14284 assembly file.
14285
14286 @item -mcc-init
14287 @opindex mcc-init
14288 Do not use condition-code results from previous instruction; always emit
14289 compare and test instructions before use of condition codes.
14290
14291 @item -mno-side-effects
14292 @opindex mno-side-effects
14293 Do not emit instructions with side effects in addressing modes other than
14294 post-increment.
14295
14296 @item -mstack-align
14297 @itemx -mno-stack-align
14298 @itemx -mdata-align
14299 @itemx -mno-data-align
14300 @itemx -mconst-align
14301 @itemx -mno-const-align
14302 @opindex mstack-align
14303 @opindex mno-stack-align
14304 @opindex mdata-align
14305 @opindex mno-data-align
14306 @opindex mconst-align
14307 @opindex mno-const-align
14308 These options (@samp{no-} options) arrange (eliminate arrangements) for the
14309 stack frame, individual data and constants to be aligned for the maximum
14310 single data access size for the chosen CPU model. The default is to
14311 arrange for 32-bit alignment. ABI details such as structure layout are
14312 not affected by these options.
14313
14314 @item -m32-bit
14315 @itemx -m16-bit
14316 @itemx -m8-bit
14317 @opindex m32-bit
14318 @opindex m16-bit
14319 @opindex m8-bit
14320 Similar to the stack- data- and const-align options above, these options
14321 arrange for stack frame, writable data and constants to all be 32-bit,
14322 16-bit or 8-bit aligned. The default is 32-bit alignment.
14323
14324 @item -mno-prologue-epilogue
14325 @itemx -mprologue-epilogue
14326 @opindex mno-prologue-epilogue
14327 @opindex mprologue-epilogue
14328 With @option{-mno-prologue-epilogue}, the normal function prologue and
14329 epilogue which set up the stack frame are omitted and no return
14330 instructions or return sequences are generated in the code. Use this
14331 option only together with visual inspection of the compiled code: no
14332 warnings or errors are generated when call-saved registers must be saved,
14333 or storage for local variables needs to be allocated.
14334
14335 @item -mno-gotplt
14336 @itemx -mgotplt
14337 @opindex mno-gotplt
14338 @opindex mgotplt
14339 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14340 instruction sequences that load addresses for functions from the PLT part
14341 of the GOT rather than (traditional on other architectures) calls to the
14342 PLT@. The default is @option{-mgotplt}.
14343
14344 @item -melf
14345 @opindex melf
14346 Legacy no-op option only recognized with the cris-axis-elf and
14347 cris-axis-linux-gnu targets.
14348
14349 @item -mlinux
14350 @opindex mlinux
14351 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14352
14353 @item -sim
14354 @opindex sim
14355 This option, recognized for the cris-axis-elf, arranges
14356 to link with input-output functions from a simulator library. Code,
14357 initialized data and zero-initialized data are allocated consecutively.
14358
14359 @item -sim2
14360 @opindex sim2
14361 Like @option{-sim}, but pass linker options to locate initialized data at
14362 0x40000000 and zero-initialized data at 0x80000000.
14363 @end table
14364
14365 @node CR16 Options
14366 @subsection CR16 Options
14367 @cindex CR16 Options
14368
14369 These options are defined specifically for the CR16 ports.
14370
14371 @table @gcctabopt
14372
14373 @item -mmac
14374 @opindex mmac
14375 Enable the use of multiply-accumulate instructions. Disabled by default.
14376
14377 @item -mcr16cplus
14378 @itemx -mcr16c
14379 @opindex mcr16cplus
14380 @opindex mcr16c
14381 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
14382 is default.
14383
14384 @item -msim
14385 @opindex msim
14386 Links the library libsim.a which is in compatible with simulator. Applicable
14387 to ELF compiler only.
14388
14389 @item -mint32
14390 @opindex mint32
14391 Choose integer type as 32-bit wide.
14392
14393 @item -mbit-ops
14394 @opindex mbit-ops
14395 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14396
14397 @item -mdata-model=@var{model}
14398 @opindex mdata-model
14399 Choose a data model. The choices for @var{model} are @samp{near},
14400 @samp{far} or @samp{medium}. @samp{medium} is default.
14401 However, @samp{far} is not valid with @option{-mcr16c}, as the
14402 CR16C architecture does not support the far data model.
14403 @end table
14404
14405 @node Darwin Options
14406 @subsection Darwin Options
14407 @cindex Darwin options
14408
14409 These options are defined for all architectures running the Darwin operating
14410 system.
14411
14412 FSF GCC on Darwin does not create ``fat'' object files; it creates
14413 an object file for the single architecture that GCC was built to
14414 target. Apple's GCC on Darwin does create ``fat'' files if multiple
14415 @option{-arch} options are used; it does so by running the compiler or
14416 linker multiple times and joining the results together with
14417 @file{lipo}.
14418
14419 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14420 @samp{i686}) is determined by the flags that specify the ISA
14421 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
14422 @option{-force_cpusubtype_ALL} option can be used to override this.
14423
14424 The Darwin tools vary in their behavior when presented with an ISA
14425 mismatch. The assembler, @file{as}, only permits instructions to
14426 be used that are valid for the subtype of the file it is generating,
14427 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14428 The linker for shared libraries, @file{/usr/bin/libtool}, fails
14429 and prints an error if asked to create a shared library with a less
14430 restrictive subtype than its input files (for instance, trying to put
14431 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
14432 for executables, @command{ld}, quietly gives the executable the most
14433 restrictive subtype of any of its input files.
14434
14435 @table @gcctabopt
14436 @item -F@var{dir}
14437 @opindex F
14438 Add the framework directory @var{dir} to the head of the list of
14439 directories to be searched for header files. These directories are
14440 interleaved with those specified by @option{-I} options and are
14441 scanned in a left-to-right order.
14442
14443 A framework directory is a directory with frameworks in it. A
14444 framework is a directory with a @file{Headers} and/or
14445 @file{PrivateHeaders} directory contained directly in it that ends
14446 in @file{.framework}. The name of a framework is the name of this
14447 directory excluding the @file{.framework}. Headers associated with
14448 the framework are found in one of those two directories, with
14449 @file{Headers} being searched first. A subframework is a framework
14450 directory that is in a framework's @file{Frameworks} directory.
14451 Includes of subframework headers can only appear in a header of a
14452 framework that contains the subframework, or in a sibling subframework
14453 header. Two subframeworks are siblings if they occur in the same
14454 framework. A subframework should not have the same name as a
14455 framework; a warning is issued if this is violated. Currently a
14456 subframework cannot have subframeworks; in the future, the mechanism
14457 may be extended to support this. The standard frameworks can be found
14458 in @file{/System/Library/Frameworks} and
14459 @file{/Library/Frameworks}. An example include looks like
14460 @code{#include <Framework/header.h>}, where @file{Framework} denotes
14461 the name of the framework and @file{header.h} is found in the
14462 @file{PrivateHeaders} or @file{Headers} directory.
14463
14464 @item -iframework@var{dir}
14465 @opindex iframework
14466 Like @option{-F} except the directory is a treated as a system
14467 directory. The main difference between this @option{-iframework} and
14468 @option{-F} is that with @option{-iframework} the compiler does not
14469 warn about constructs contained within header files found via
14470 @var{dir}. This option is valid only for the C family of languages.
14471
14472 @item -gused
14473 @opindex gused
14474 Emit debugging information for symbols that are used. For stabs
14475 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14476 This is by default ON@.
14477
14478 @item -gfull
14479 @opindex gfull
14480 Emit debugging information for all symbols and types.
14481
14482 @item -mmacosx-version-min=@var{version}
14483 The earliest version of MacOS X that this executable will run on
14484 is @var{version}. Typical values of @var{version} include @code{10.1},
14485 @code{10.2}, and @code{10.3.9}.
14486
14487 If the compiler was built to use the system's headers by default,
14488 then the default for this option is the system version on which the
14489 compiler is running, otherwise the default is to make choices that
14490 are compatible with as many systems and code bases as possible.
14491
14492 @item -mkernel
14493 @opindex mkernel
14494 Enable kernel development mode. The @option{-mkernel} option sets
14495 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14496 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14497 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14498 applicable. This mode also sets @option{-mno-altivec},
14499 @option{-msoft-float}, @option{-fno-builtin} and
14500 @option{-mlong-branch} for PowerPC targets.
14501
14502 @item -mone-byte-bool
14503 @opindex mone-byte-bool
14504 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14505 By default @code{sizeof(bool)} is @code{4} when compiling for
14506 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14507 option has no effect on x86.
14508
14509 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14510 to generate code that is not binary compatible with code generated
14511 without that switch. Using this switch may require recompiling all
14512 other modules in a program, including system libraries. Use this
14513 switch to conform to a non-default data model.
14514
14515 @item -mfix-and-continue
14516 @itemx -ffix-and-continue
14517 @itemx -findirect-data
14518 @opindex mfix-and-continue
14519 @opindex ffix-and-continue
14520 @opindex findirect-data
14521 Generate code suitable for fast turnaround development, such as to
14522 allow GDB to dynamically load @file{.o} files into already-running
14523 programs. @option{-findirect-data} and @option{-ffix-and-continue}
14524 are provided for backwards compatibility.
14525
14526 @item -all_load
14527 @opindex all_load
14528 Loads all members of static archive libraries.
14529 See man ld(1) for more information.
14530
14531 @item -arch_errors_fatal
14532 @opindex arch_errors_fatal
14533 Cause the errors having to do with files that have the wrong architecture
14534 to be fatal.
14535
14536 @item -bind_at_load
14537 @opindex bind_at_load
14538 Causes the output file to be marked such that the dynamic linker will
14539 bind all undefined references when the file is loaded or launched.
14540
14541 @item -bundle
14542 @opindex bundle
14543 Produce a Mach-o bundle format file.
14544 See man ld(1) for more information.
14545
14546 @item -bundle_loader @var{executable}
14547 @opindex bundle_loader
14548 This option specifies the @var{executable} that will load the build
14549 output file being linked. See man ld(1) for more information.
14550
14551 @item -dynamiclib
14552 @opindex dynamiclib
14553 When passed this option, GCC produces a dynamic library instead of
14554 an executable when linking, using the Darwin @file{libtool} command.
14555
14556 @item -force_cpusubtype_ALL
14557 @opindex force_cpusubtype_ALL
14558 This causes GCC's output file to have the @samp{ALL} subtype, instead of
14559 one controlled by the @option{-mcpu} or @option{-march} option.
14560
14561 @item -allowable_client @var{client_name}
14562 @itemx -client_name
14563 @itemx -compatibility_version
14564 @itemx -current_version
14565 @itemx -dead_strip
14566 @itemx -dependency-file
14567 @itemx -dylib_file
14568 @itemx -dylinker_install_name
14569 @itemx -dynamic
14570 @itemx -exported_symbols_list
14571 @itemx -filelist
14572 @need 800
14573 @itemx -flat_namespace
14574 @itemx -force_flat_namespace
14575 @itemx -headerpad_max_install_names
14576 @itemx -image_base
14577 @itemx -init
14578 @itemx -install_name
14579 @itemx -keep_private_externs
14580 @itemx -multi_module
14581 @itemx -multiply_defined
14582 @itemx -multiply_defined_unused
14583 @need 800
14584 @itemx -noall_load
14585 @itemx -no_dead_strip_inits_and_terms
14586 @itemx -nofixprebinding
14587 @itemx -nomultidefs
14588 @itemx -noprebind
14589 @itemx -noseglinkedit
14590 @itemx -pagezero_size
14591 @itemx -prebind
14592 @itemx -prebind_all_twolevel_modules
14593 @itemx -private_bundle
14594 @need 800
14595 @itemx -read_only_relocs
14596 @itemx -sectalign
14597 @itemx -sectobjectsymbols
14598 @itemx -whyload
14599 @itemx -seg1addr
14600 @itemx -sectcreate
14601 @itemx -sectobjectsymbols
14602 @itemx -sectorder
14603 @itemx -segaddr
14604 @itemx -segs_read_only_addr
14605 @need 800
14606 @itemx -segs_read_write_addr
14607 @itemx -seg_addr_table
14608 @itemx -seg_addr_table_filename
14609 @itemx -seglinkedit
14610 @itemx -segprot
14611 @itemx -segs_read_only_addr
14612 @itemx -segs_read_write_addr
14613 @itemx -single_module
14614 @itemx -static
14615 @itemx -sub_library
14616 @need 800
14617 @itemx -sub_umbrella
14618 @itemx -twolevel_namespace
14619 @itemx -umbrella
14620 @itemx -undefined
14621 @itemx -unexported_symbols_list
14622 @itemx -weak_reference_mismatches
14623 @itemx -whatsloaded
14624 @opindex allowable_client
14625 @opindex client_name
14626 @opindex compatibility_version
14627 @opindex current_version
14628 @opindex dead_strip
14629 @opindex dependency-file
14630 @opindex dylib_file
14631 @opindex dylinker_install_name
14632 @opindex dynamic
14633 @opindex exported_symbols_list
14634 @opindex filelist
14635 @opindex flat_namespace
14636 @opindex force_flat_namespace
14637 @opindex headerpad_max_install_names
14638 @opindex image_base
14639 @opindex init
14640 @opindex install_name
14641 @opindex keep_private_externs
14642 @opindex multi_module
14643 @opindex multiply_defined
14644 @opindex multiply_defined_unused
14645 @opindex noall_load
14646 @opindex no_dead_strip_inits_and_terms
14647 @opindex nofixprebinding
14648 @opindex nomultidefs
14649 @opindex noprebind
14650 @opindex noseglinkedit
14651 @opindex pagezero_size
14652 @opindex prebind
14653 @opindex prebind_all_twolevel_modules
14654 @opindex private_bundle
14655 @opindex read_only_relocs
14656 @opindex sectalign
14657 @opindex sectobjectsymbols
14658 @opindex whyload
14659 @opindex seg1addr
14660 @opindex sectcreate
14661 @opindex sectobjectsymbols
14662 @opindex sectorder
14663 @opindex segaddr
14664 @opindex segs_read_only_addr
14665 @opindex segs_read_write_addr
14666 @opindex seg_addr_table
14667 @opindex seg_addr_table_filename
14668 @opindex seglinkedit
14669 @opindex segprot
14670 @opindex segs_read_only_addr
14671 @opindex segs_read_write_addr
14672 @opindex single_module
14673 @opindex static
14674 @opindex sub_library
14675 @opindex sub_umbrella
14676 @opindex twolevel_namespace
14677 @opindex umbrella
14678 @opindex undefined
14679 @opindex unexported_symbols_list
14680 @opindex weak_reference_mismatches
14681 @opindex whatsloaded
14682 These options are passed to the Darwin linker. The Darwin linker man page
14683 describes them in detail.
14684 @end table
14685
14686 @node DEC Alpha Options
14687 @subsection DEC Alpha Options
14688
14689 These @samp{-m} options are defined for the DEC Alpha implementations:
14690
14691 @table @gcctabopt
14692 @item -mno-soft-float
14693 @itemx -msoft-float
14694 @opindex mno-soft-float
14695 @opindex msoft-float
14696 Use (do not use) the hardware floating-point instructions for
14697 floating-point operations. When @option{-msoft-float} is specified,
14698 functions in @file{libgcc.a} are used to perform floating-point
14699 operations. Unless they are replaced by routines that emulate the
14700 floating-point operations, or compiled in such a way as to call such
14701 emulations routines, these routines issue floating-point
14702 operations. If you are compiling for an Alpha without floating-point
14703 operations, you must ensure that the library is built so as not to call
14704 them.
14705
14706 Note that Alpha implementations without floating-point operations are
14707 required to have floating-point registers.
14708
14709 @item -mfp-reg
14710 @itemx -mno-fp-regs
14711 @opindex mfp-reg
14712 @opindex mno-fp-regs
14713 Generate code that uses (does not use) the floating-point register set.
14714 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
14715 register set is not used, floating-point operands are passed in integer
14716 registers as if they were integers and floating-point results are passed
14717 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
14718 so any function with a floating-point argument or return value called by code
14719 compiled with @option{-mno-fp-regs} must also be compiled with that
14720 option.
14721
14722 A typical use of this option is building a kernel that does not use,
14723 and hence need not save and restore, any floating-point registers.
14724
14725 @item -mieee
14726 @opindex mieee
14727 The Alpha architecture implements floating-point hardware optimized for
14728 maximum performance. It is mostly compliant with the IEEE floating-point
14729 standard. However, for full compliance, software assistance is
14730 required. This option generates code fully IEEE-compliant code
14731 @emph{except} that the @var{inexact-flag} is not maintained (see below).
14732 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
14733 defined during compilation. The resulting code is less efficient but is
14734 able to correctly support denormalized numbers and exceptional IEEE
14735 values such as not-a-number and plus/minus infinity. Other Alpha
14736 compilers call this option @option{-ieee_with_no_inexact}.
14737
14738 @item -mieee-with-inexact
14739 @opindex mieee-with-inexact
14740 This is like @option{-mieee} except the generated code also maintains
14741 the IEEE @var{inexact-flag}. Turning on this option causes the
14742 generated code to implement fully-compliant IEEE math. In addition to
14743 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
14744 macro. On some Alpha implementations the resulting code may execute
14745 significantly slower than the code generated by default. Since there is
14746 very little code that depends on the @var{inexact-flag}, you should
14747 normally not specify this option. Other Alpha compilers call this
14748 option @option{-ieee_with_inexact}.
14749
14750 @item -mfp-trap-mode=@var{trap-mode}
14751 @opindex mfp-trap-mode
14752 This option controls what floating-point related traps are enabled.
14753 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
14754 The trap mode can be set to one of four values:
14755
14756 @table @samp
14757 @item n
14758 This is the default (normal) setting. The only traps that are enabled
14759 are the ones that cannot be disabled in software (e.g., division by zero
14760 trap).
14761
14762 @item u
14763 In addition to the traps enabled by @samp{n}, underflow traps are enabled
14764 as well.
14765
14766 @item su
14767 Like @samp{u}, but the instructions are marked to be safe for software
14768 completion (see Alpha architecture manual for details).
14769
14770 @item sui
14771 Like @samp{su}, but inexact traps are enabled as well.
14772 @end table
14773
14774 @item -mfp-rounding-mode=@var{rounding-mode}
14775 @opindex mfp-rounding-mode
14776 Selects the IEEE rounding mode. Other Alpha compilers call this option
14777 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
14778 of:
14779
14780 @table @samp
14781 @item n
14782 Normal IEEE rounding mode. Floating-point numbers are rounded towards
14783 the nearest machine number or towards the even machine number in case
14784 of a tie.
14785
14786 @item m
14787 Round towards minus infinity.
14788
14789 @item c
14790 Chopped rounding mode. Floating-point numbers are rounded towards zero.
14791
14792 @item d
14793 Dynamic rounding mode. A field in the floating-point control register
14794 (@var{fpcr}, see Alpha architecture reference manual) controls the
14795 rounding mode in effect. The C library initializes this register for
14796 rounding towards plus infinity. Thus, unless your program modifies the
14797 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
14798 @end table
14799
14800 @item -mtrap-precision=@var{trap-precision}
14801 @opindex mtrap-precision
14802 In the Alpha architecture, floating-point traps are imprecise. This
14803 means without software assistance it is impossible to recover from a
14804 floating trap and program execution normally needs to be terminated.
14805 GCC can generate code that can assist operating system trap handlers
14806 in determining the exact location that caused a floating-point trap.
14807 Depending on the requirements of an application, different levels of
14808 precisions can be selected:
14809
14810 @table @samp
14811 @item p
14812 Program precision. This option is the default and means a trap handler
14813 can only identify which program caused a floating-point exception.
14814
14815 @item f
14816 Function precision. The trap handler can determine the function that
14817 caused a floating-point exception.
14818
14819 @item i
14820 Instruction precision. The trap handler can determine the exact
14821 instruction that caused a floating-point exception.
14822 @end table
14823
14824 Other Alpha compilers provide the equivalent options called
14825 @option{-scope_safe} and @option{-resumption_safe}.
14826
14827 @item -mieee-conformant
14828 @opindex mieee-conformant
14829 This option marks the generated code as IEEE conformant. You must not
14830 use this option unless you also specify @option{-mtrap-precision=i} and either
14831 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
14832 is to emit the line @samp{.eflag 48} in the function prologue of the
14833 generated assembly file.
14834
14835 @item -mbuild-constants
14836 @opindex mbuild-constants
14837 Normally GCC examines a 32- or 64-bit integer constant to
14838 see if it can construct it from smaller constants in two or three
14839 instructions. If it cannot, it outputs the constant as a literal and
14840 generates code to load it from the data segment at run time.
14841
14842 Use this option to require GCC to construct @emph{all} integer constants
14843 using code, even if it takes more instructions (the maximum is six).
14844
14845 You typically use this option to build a shared library dynamic
14846 loader. Itself a shared library, it must relocate itself in memory
14847 before it can find the variables and constants in its own data segment.
14848
14849 @item -mbwx
14850 @itemx -mno-bwx
14851 @itemx -mcix
14852 @itemx -mno-cix
14853 @itemx -mfix
14854 @itemx -mno-fix
14855 @itemx -mmax
14856 @itemx -mno-max
14857 @opindex mbwx
14858 @opindex mno-bwx
14859 @opindex mcix
14860 @opindex mno-cix
14861 @opindex mfix
14862 @opindex mno-fix
14863 @opindex mmax
14864 @opindex mno-max
14865 Indicate whether GCC should generate code to use the optional BWX,
14866 CIX, FIX and MAX instruction sets. The default is to use the instruction
14867 sets supported by the CPU type specified via @option{-mcpu=} option or that
14868 of the CPU on which GCC was built if none is specified.
14869
14870 @item -mfloat-vax
14871 @itemx -mfloat-ieee
14872 @opindex mfloat-vax
14873 @opindex mfloat-ieee
14874 Generate code that uses (does not use) VAX F and G floating-point
14875 arithmetic instead of IEEE single and double precision.
14876
14877 @item -mexplicit-relocs
14878 @itemx -mno-explicit-relocs
14879 @opindex mexplicit-relocs
14880 @opindex mno-explicit-relocs
14881 Older Alpha assemblers provided no way to generate symbol relocations
14882 except via assembler macros. Use of these macros does not allow
14883 optimal instruction scheduling. GNU binutils as of version 2.12
14884 supports a new syntax that allows the compiler to explicitly mark
14885 which relocations should apply to which instructions. This option
14886 is mostly useful for debugging, as GCC detects the capabilities of
14887 the assembler when it is built and sets the default accordingly.
14888
14889 @item -msmall-data
14890 @itemx -mlarge-data
14891 @opindex msmall-data
14892 @opindex mlarge-data
14893 When @option{-mexplicit-relocs} is in effect, static data is
14894 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
14895 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
14896 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
14897 16-bit relocations off of the @code{$gp} register. This limits the
14898 size of the small data area to 64KB, but allows the variables to be
14899 directly accessed via a single instruction.
14900
14901 The default is @option{-mlarge-data}. With this option the data area
14902 is limited to just below 2GB@. Programs that require more than 2GB of
14903 data must use @code{malloc} or @code{mmap} to allocate the data in the
14904 heap instead of in the program's data segment.
14905
14906 When generating code for shared libraries, @option{-fpic} implies
14907 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
14908
14909 @item -msmall-text
14910 @itemx -mlarge-text
14911 @opindex msmall-text
14912 @opindex mlarge-text
14913 When @option{-msmall-text} is used, the compiler assumes that the
14914 code of the entire program (or shared library) fits in 4MB, and is
14915 thus reachable with a branch instruction. When @option{-msmall-data}
14916 is used, the compiler can assume that all local symbols share the
14917 same @code{$gp} value, and thus reduce the number of instructions
14918 required for a function call from 4 to 1.
14919
14920 The default is @option{-mlarge-text}.
14921
14922 @item -mcpu=@var{cpu_type}
14923 @opindex mcpu
14924 Set the instruction set and instruction scheduling parameters for
14925 machine type @var{cpu_type}. You can specify either the @samp{EV}
14926 style name or the corresponding chip number. GCC supports scheduling
14927 parameters for the EV4, EV5 and EV6 family of processors and
14928 chooses the default values for the instruction set from the processor
14929 you specify. If you do not specify a processor type, GCC defaults
14930 to the processor on which the compiler was built.
14931
14932 Supported values for @var{cpu_type} are
14933
14934 @table @samp
14935 @item ev4
14936 @itemx ev45
14937 @itemx 21064
14938 Schedules as an EV4 and has no instruction set extensions.
14939
14940 @item ev5
14941 @itemx 21164
14942 Schedules as an EV5 and has no instruction set extensions.
14943
14944 @item ev56
14945 @itemx 21164a
14946 Schedules as an EV5 and supports the BWX extension.
14947
14948 @item pca56
14949 @itemx 21164pc
14950 @itemx 21164PC
14951 Schedules as an EV5 and supports the BWX and MAX extensions.
14952
14953 @item ev6
14954 @itemx 21264
14955 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
14956
14957 @item ev67
14958 @itemx 21264a
14959 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
14960 @end table
14961
14962 Native toolchains also support the value @samp{native},
14963 which selects the best architecture option for the host processor.
14964 @option{-mcpu=native} has no effect if GCC does not recognize
14965 the processor.
14966
14967 @item -mtune=@var{cpu_type}
14968 @opindex mtune
14969 Set only the instruction scheduling parameters for machine type
14970 @var{cpu_type}. The instruction set is not changed.
14971
14972 Native toolchains also support the value @samp{native},
14973 which selects the best architecture option for the host processor.
14974 @option{-mtune=native} has no effect if GCC does not recognize
14975 the processor.
14976
14977 @item -mmemory-latency=@var{time}
14978 @opindex mmemory-latency
14979 Sets the latency the scheduler should assume for typical memory
14980 references as seen by the application. This number is highly
14981 dependent on the memory access patterns used by the application
14982 and the size of the external cache on the machine.
14983
14984 Valid options for @var{time} are
14985
14986 @table @samp
14987 @item @var{number}
14988 A decimal number representing clock cycles.
14989
14990 @item L1
14991 @itemx L2
14992 @itemx L3
14993 @itemx main
14994 The compiler contains estimates of the number of clock cycles for
14995 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
14996 (also called Dcache, Scache, and Bcache), as well as to main memory.
14997 Note that L3 is only valid for EV5.
14998
14999 @end table
15000 @end table
15001
15002 @node FR30 Options
15003 @subsection FR30 Options
15004 @cindex FR30 Options
15005
15006 These options are defined specifically for the FR30 port.
15007
15008 @table @gcctabopt
15009
15010 @item -msmall-model
15011 @opindex msmall-model
15012 Use the small address space model. This can produce smaller code, but
15013 it does assume that all symbolic values and addresses fit into a
15014 20-bit range.
15015
15016 @item -mno-lsim
15017 @opindex mno-lsim
15018 Assume that runtime support has been provided and so there is no need
15019 to include the simulator library (@file{libsim.a}) on the linker
15020 command line.
15021
15022 @end table
15023
15024 @node FRV Options
15025 @subsection FRV Options
15026 @cindex FRV Options
15027
15028 @table @gcctabopt
15029 @item -mgpr-32
15030 @opindex mgpr-32
15031
15032 Only use the first 32 general-purpose registers.
15033
15034 @item -mgpr-64
15035 @opindex mgpr-64
15036
15037 Use all 64 general-purpose registers.
15038
15039 @item -mfpr-32
15040 @opindex mfpr-32
15041
15042 Use only the first 32 floating-point registers.
15043
15044 @item -mfpr-64
15045 @opindex mfpr-64
15046
15047 Use all 64 floating-point registers.
15048
15049 @item -mhard-float
15050 @opindex mhard-float
15051
15052 Use hardware instructions for floating-point operations.
15053
15054 @item -msoft-float
15055 @opindex msoft-float
15056
15057 Use library routines for floating-point operations.
15058
15059 @item -malloc-cc
15060 @opindex malloc-cc
15061
15062 Dynamically allocate condition code registers.
15063
15064 @item -mfixed-cc
15065 @opindex mfixed-cc
15066
15067 Do not try to dynamically allocate condition code registers, only
15068 use @code{icc0} and @code{fcc0}.
15069
15070 @item -mdword
15071 @opindex mdword
15072
15073 Change ABI to use double word insns.
15074
15075 @item -mno-dword
15076 @opindex mno-dword
15077
15078 Do not use double word instructions.
15079
15080 @item -mdouble
15081 @opindex mdouble
15082
15083 Use floating-point double instructions.
15084
15085 @item -mno-double
15086 @opindex mno-double
15087
15088 Do not use floating-point double instructions.
15089
15090 @item -mmedia
15091 @opindex mmedia
15092
15093 Use media instructions.
15094
15095 @item -mno-media
15096 @opindex mno-media
15097
15098 Do not use media instructions.
15099
15100 @item -mmuladd
15101 @opindex mmuladd
15102
15103 Use multiply and add/subtract instructions.
15104
15105 @item -mno-muladd
15106 @opindex mno-muladd
15107
15108 Do not use multiply and add/subtract instructions.
15109
15110 @item -mfdpic
15111 @opindex mfdpic
15112
15113 Select the FDPIC ABI, which uses function descriptors to represent
15114 pointers to functions. Without any PIC/PIE-related options, it
15115 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
15116 assumes GOT entries and small data are within a 12-bit range from the
15117 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15118 are computed with 32 bits.
15119 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15120
15121 @item -minline-plt
15122 @opindex minline-plt
15123
15124 Enable inlining of PLT entries in function calls to functions that are
15125 not known to bind locally. It has no effect without @option{-mfdpic}.
15126 It's enabled by default if optimizing for speed and compiling for
15127 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15128 optimization option such as @option{-O3} or above is present in the
15129 command line.
15130
15131 @item -mTLS
15132 @opindex mTLS
15133
15134 Assume a large TLS segment when generating thread-local code.
15135
15136 @item -mtls
15137 @opindex mtls
15138
15139 Do not assume a large TLS segment when generating thread-local code.
15140
15141 @item -mgprel-ro
15142 @opindex mgprel-ro
15143
15144 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15145 that is known to be in read-only sections. It's enabled by default,
15146 except for @option{-fpic} or @option{-fpie}: even though it may help
15147 make the global offset table smaller, it trades 1 instruction for 4.
15148 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15149 one of which may be shared by multiple symbols, and it avoids the need
15150 for a GOT entry for the referenced symbol, so it's more likely to be a
15151 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
15152
15153 @item -multilib-library-pic
15154 @opindex multilib-library-pic
15155
15156 Link with the (library, not FD) pic libraries. It's implied by
15157 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
15158 @option{-fpic} without @option{-mfdpic}. You should never have to use
15159 it explicitly.
15160
15161 @item -mlinked-fp
15162 @opindex mlinked-fp
15163
15164 Follow the EABI requirement of always creating a frame pointer whenever
15165 a stack frame is allocated. This option is enabled by default and can
15166 be disabled with @option{-mno-linked-fp}.
15167
15168 @item -mlong-calls
15169 @opindex mlong-calls
15170
15171 Use indirect addressing to call functions outside the current
15172 compilation unit. This allows the functions to be placed anywhere
15173 within the 32-bit address space.
15174
15175 @item -malign-labels
15176 @opindex malign-labels
15177
15178 Try to align labels to an 8-byte boundary by inserting NOPs into the
15179 previous packet. This option only has an effect when VLIW packing
15180 is enabled. It doesn't create new packets; it merely adds NOPs to
15181 existing ones.
15182
15183 @item -mlibrary-pic
15184 @opindex mlibrary-pic
15185
15186 Generate position-independent EABI code.
15187
15188 @item -macc-4
15189 @opindex macc-4
15190
15191 Use only the first four media accumulator registers.
15192
15193 @item -macc-8
15194 @opindex macc-8
15195
15196 Use all eight media accumulator registers.
15197
15198 @item -mpack
15199 @opindex mpack
15200
15201 Pack VLIW instructions.
15202
15203 @item -mno-pack
15204 @opindex mno-pack
15205
15206 Do not pack VLIW instructions.
15207
15208 @item -mno-eflags
15209 @opindex mno-eflags
15210
15211 Do not mark ABI switches in e_flags.
15212
15213 @item -mcond-move
15214 @opindex mcond-move
15215
15216 Enable the use of conditional-move instructions (default).
15217
15218 This switch is mainly for debugging the compiler and will likely be removed
15219 in a future version.
15220
15221 @item -mno-cond-move
15222 @opindex mno-cond-move
15223
15224 Disable the use of conditional-move instructions.
15225
15226 This switch is mainly for debugging the compiler and will likely be removed
15227 in a future version.
15228
15229 @item -mscc
15230 @opindex mscc
15231
15232 Enable the use of conditional set instructions (default).
15233
15234 This switch is mainly for debugging the compiler and will likely be removed
15235 in a future version.
15236
15237 @item -mno-scc
15238 @opindex mno-scc
15239
15240 Disable the use of conditional set instructions.
15241
15242 This switch is mainly for debugging the compiler and will likely be removed
15243 in a future version.
15244
15245 @item -mcond-exec
15246 @opindex mcond-exec
15247
15248 Enable the use of conditional execution (default).
15249
15250 This switch is mainly for debugging the compiler and will likely be removed
15251 in a future version.
15252
15253 @item -mno-cond-exec
15254 @opindex mno-cond-exec
15255
15256 Disable the use of conditional execution.
15257
15258 This switch is mainly for debugging the compiler and will likely be removed
15259 in a future version.
15260
15261 @item -mvliw-branch
15262 @opindex mvliw-branch
15263
15264 Run a pass to pack branches into VLIW instructions (default).
15265
15266 This switch is mainly for debugging the compiler and will likely be removed
15267 in a future version.
15268
15269 @item -mno-vliw-branch
15270 @opindex mno-vliw-branch
15271
15272 Do not run a pass to pack branches into VLIW instructions.
15273
15274 This switch is mainly for debugging the compiler and will likely be removed
15275 in a future version.
15276
15277 @item -mmulti-cond-exec
15278 @opindex mmulti-cond-exec
15279
15280 Enable optimization of @code{&&} and @code{||} in conditional execution
15281 (default).
15282
15283 This switch is mainly for debugging the compiler and will likely be removed
15284 in a future version.
15285
15286 @item -mno-multi-cond-exec
15287 @opindex mno-multi-cond-exec
15288
15289 Disable optimization of @code{&&} and @code{||} in conditional execution.
15290
15291 This switch is mainly for debugging the compiler and will likely be removed
15292 in a future version.
15293
15294 @item -mnested-cond-exec
15295 @opindex mnested-cond-exec
15296
15297 Enable nested conditional execution optimizations (default).
15298
15299 This switch is mainly for debugging the compiler and will likely be removed
15300 in a future version.
15301
15302 @item -mno-nested-cond-exec
15303 @opindex mno-nested-cond-exec
15304
15305 Disable nested conditional execution optimizations.
15306
15307 This switch is mainly for debugging the compiler and will likely be removed
15308 in a future version.
15309
15310 @item -moptimize-membar
15311 @opindex moptimize-membar
15312
15313 This switch removes redundant @code{membar} instructions from the
15314 compiler-generated code. It is enabled by default.
15315
15316 @item -mno-optimize-membar
15317 @opindex mno-optimize-membar
15318
15319 This switch disables the automatic removal of redundant @code{membar}
15320 instructions from the generated code.
15321
15322 @item -mtomcat-stats
15323 @opindex mtomcat-stats
15324
15325 Cause gas to print out tomcat statistics.
15326
15327 @item -mcpu=@var{cpu}
15328 @opindex mcpu
15329
15330 Select the processor type for which to generate code. Possible values are
15331 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15332 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15333
15334 @end table
15335
15336 @node GNU/Linux Options
15337 @subsection GNU/Linux Options
15338
15339 These @samp{-m} options are defined for GNU/Linux targets:
15340
15341 @table @gcctabopt
15342 @item -mglibc
15343 @opindex mglibc
15344 Use the GNU C library. This is the default except
15345 on @samp{*-*-linux-*uclibc*} and @samp{*-*-linux-*android*} targets.
15346
15347 @item -muclibc
15348 @opindex muclibc
15349 Use uClibc C library. This is the default on
15350 @samp{*-*-linux-*uclibc*} targets.
15351
15352 @item -mbionic
15353 @opindex mbionic
15354 Use Bionic C library. This is the default on
15355 @samp{*-*-linux-*android*} targets.
15356
15357 @item -mandroid
15358 @opindex mandroid
15359 Compile code compatible with Android platform. This is the default on
15360 @samp{*-*-linux-*android*} targets.
15361
15362 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15363 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
15364 this option makes the GCC driver pass Android-specific options to the linker.
15365 Finally, this option causes the preprocessor macro @code{__ANDROID__}
15366 to be defined.
15367
15368 @item -tno-android-cc
15369 @opindex tno-android-cc
15370 Disable compilation effects of @option{-mandroid}, i.e., do not enable
15371 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15372 @option{-fno-rtti} by default.
15373
15374 @item -tno-android-ld
15375 @opindex tno-android-ld
15376 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15377 linking options to the linker.
15378
15379 @end table
15380
15381 @node H8/300 Options
15382 @subsection H8/300 Options
15383
15384 These @samp{-m} options are defined for the H8/300 implementations:
15385
15386 @table @gcctabopt
15387 @item -mrelax
15388 @opindex mrelax
15389 Shorten some address references at link time, when possible; uses the
15390 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
15391 ld, Using ld}, for a fuller description.
15392
15393 @item -mh
15394 @opindex mh
15395 Generate code for the H8/300H@.
15396
15397 @item -ms
15398 @opindex ms
15399 Generate code for the H8S@.
15400
15401 @item -mn
15402 @opindex mn
15403 Generate code for the H8S and H8/300H in the normal mode. This switch
15404 must be used either with @option{-mh} or @option{-ms}.
15405
15406 @item -ms2600
15407 @opindex ms2600
15408 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
15409
15410 @item -mexr
15411 @opindex mexr
15412 Extended registers are stored on stack before execution of function
15413 with monitor attribute. Default option is @option{-mexr}.
15414 This option is valid only for H8S targets.
15415
15416 @item -mno-exr
15417 @opindex mno-exr
15418 Extended registers are not stored on stack before execution of function
15419 with monitor attribute. Default option is @option{-mno-exr}.
15420 This option is valid only for H8S targets.
15421
15422 @item -mint32
15423 @opindex mint32
15424 Make @code{int} data 32 bits by default.
15425
15426 @item -malign-300
15427 @opindex malign-300
15428 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15429 The default for the H8/300H and H8S is to align longs and floats on
15430 4-byte boundaries.
15431 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
15432 This option has no effect on the H8/300.
15433 @end table
15434
15435 @node HPPA Options
15436 @subsection HPPA Options
15437 @cindex HPPA Options
15438
15439 These @samp{-m} options are defined for the HPPA family of computers:
15440
15441 @table @gcctabopt
15442 @item -march=@var{architecture-type}
15443 @opindex march
15444 Generate code for the specified architecture. The choices for
15445 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
15446 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
15447 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15448 architecture option for your machine. Code compiled for lower numbered
15449 architectures runs on higher numbered architectures, but not the
15450 other way around.
15451
15452 @item -mpa-risc-1-0
15453 @itemx -mpa-risc-1-1
15454 @itemx -mpa-risc-2-0
15455 @opindex mpa-risc-1-0
15456 @opindex mpa-risc-1-1
15457 @opindex mpa-risc-2-0
15458 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15459
15460 @item -mjump-in-delay
15461 @opindex mjump-in-delay
15462 This option is ignored and provided for compatibility purposes only.
15463
15464 @item -mdisable-fpregs
15465 @opindex mdisable-fpregs
15466 Prevent floating-point registers from being used in any manner. This is
15467 necessary for compiling kernels that perform lazy context switching of
15468 floating-point registers. If you use this option and attempt to perform
15469 floating-point operations, the compiler aborts.
15470
15471 @item -mdisable-indexing
15472 @opindex mdisable-indexing
15473 Prevent the compiler from using indexing address modes. This avoids some
15474 rather obscure problems when compiling MIG generated code under MACH@.
15475
15476 @item -mno-space-regs
15477 @opindex mno-space-regs
15478 Generate code that assumes the target has no space registers. This allows
15479 GCC to generate faster indirect calls and use unscaled index address modes.
15480
15481 Such code is suitable for level 0 PA systems and kernels.
15482
15483 @item -mfast-indirect-calls
15484 @opindex mfast-indirect-calls
15485 Generate code that assumes calls never cross space boundaries. This
15486 allows GCC to emit code that performs faster indirect calls.
15487
15488 This option does not work in the presence of shared libraries or nested
15489 functions.
15490
15491 @item -mfixed-range=@var{register-range}
15492 @opindex mfixed-range
15493 Generate code treating the given register range as fixed registers.
15494 A fixed register is one that the register allocator cannot use. This is
15495 useful when compiling kernel code. A register range is specified as
15496 two registers separated by a dash. Multiple register ranges can be
15497 specified separated by a comma.
15498
15499 @item -mlong-load-store
15500 @opindex mlong-load-store
15501 Generate 3-instruction load and store sequences as sometimes required by
15502 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
15503 the HP compilers.
15504
15505 @item -mportable-runtime
15506 @opindex mportable-runtime
15507 Use the portable calling conventions proposed by HP for ELF systems.
15508
15509 @item -mgas
15510 @opindex mgas
15511 Enable the use of assembler directives only GAS understands.
15512
15513 @item -mschedule=@var{cpu-type}
15514 @opindex mschedule
15515 Schedule code according to the constraints for the machine type
15516 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
15517 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
15518 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15519 proper scheduling option for your machine. The default scheduling is
15520 @samp{8000}.
15521
15522 @item -mlinker-opt
15523 @opindex mlinker-opt
15524 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
15525 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
15526 linkers in which they give bogus error messages when linking some programs.
15527
15528 @item -msoft-float
15529 @opindex msoft-float
15530 Generate output containing library calls for floating point.
15531 @strong{Warning:} the requisite libraries are not available for all HPPA
15532 targets. Normally the facilities of the machine's usual C compiler are
15533 used, but this cannot be done directly in cross-compilation. You must make
15534 your own arrangements to provide suitable library functions for
15535 cross-compilation.
15536
15537 @option{-msoft-float} changes the calling convention in the output file;
15538 therefore, it is only useful if you compile @emph{all} of a program with
15539 this option. In particular, you need to compile @file{libgcc.a}, the
15540 library that comes with GCC, with @option{-msoft-float} in order for
15541 this to work.
15542
15543 @item -msio
15544 @opindex msio
15545 Generate the predefine, @code{_SIO}, for server IO@. The default is
15546 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
15547 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
15548 options are available under HP-UX and HI-UX@.
15549
15550 @item -mgnu-ld
15551 @opindex mgnu-ld
15552 Use options specific to GNU @command{ld}.
15553 This passes @option{-shared} to @command{ld} when
15554 building a shared library. It is the default when GCC is configured,
15555 explicitly or implicitly, with the GNU linker. This option does not
15556 affect which @command{ld} is called; it only changes what parameters
15557 are passed to that @command{ld}.
15558 The @command{ld} that is called is determined by the
15559 @option{--with-ld} configure option, GCC's program search path, and
15560 finally by the user's @env{PATH}. The linker used by GCC can be printed
15561 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
15562 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15563
15564 @item -mhp-ld
15565 @opindex mhp-ld
15566 Use options specific to HP @command{ld}.
15567 This passes @option{-b} to @command{ld} when building
15568 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15569 links. It is the default when GCC is configured, explicitly or
15570 implicitly, with the HP linker. This option does not affect
15571 which @command{ld} is called; it only changes what parameters are passed to that
15572 @command{ld}.
15573 The @command{ld} that is called is determined by the @option{--with-ld}
15574 configure option, GCC's program search path, and finally by the user's
15575 @env{PATH}. The linker used by GCC can be printed using @samp{which
15576 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
15577 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15578
15579 @item -mlong-calls
15580 @opindex mno-long-calls
15581 Generate code that uses long call sequences. This ensures that a call
15582 is always able to reach linker generated stubs. The default is to generate
15583 long calls only when the distance from the call site to the beginning
15584 of the function or translation unit, as the case may be, exceeds a
15585 predefined limit set by the branch type being used. The limits for
15586 normal calls are 7,600,000 and 240,000 bytes, respectively for the
15587 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
15588 240,000 bytes.
15589
15590 Distances are measured from the beginning of functions when using the
15591 @option{-ffunction-sections} option, or when using the @option{-mgas}
15592 and @option{-mno-portable-runtime} options together under HP-UX with
15593 the SOM linker.
15594
15595 It is normally not desirable to use this option as it degrades
15596 performance. However, it may be useful in large applications,
15597 particularly when partial linking is used to build the application.
15598
15599 The types of long calls used depends on the capabilities of the
15600 assembler and linker, and the type of code being generated. The
15601 impact on systems that support long absolute calls, and long pic
15602 symbol-difference or pc-relative calls should be relatively small.
15603 However, an indirect call is used on 32-bit ELF systems in pic code
15604 and it is quite long.
15605
15606 @item -munix=@var{unix-std}
15607 @opindex march
15608 Generate compiler predefines and select a startfile for the specified
15609 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
15610 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
15611 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
15612 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
15613 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
15614 and later.
15615
15616 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
15617 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
15618 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
15619 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
15620 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
15621 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
15622
15623 It is @emph{important} to note that this option changes the interfaces
15624 for various library routines. It also affects the operational behavior
15625 of the C library. Thus, @emph{extreme} care is needed in using this
15626 option.
15627
15628 Library code that is intended to operate with more than one UNIX
15629 standard must test, set and restore the variable @code{__xpg4_extended_mask}
15630 as appropriate. Most GNU software doesn't provide this capability.
15631
15632 @item -nolibdld
15633 @opindex nolibdld
15634 Suppress the generation of link options to search libdld.sl when the
15635 @option{-static} option is specified on HP-UX 10 and later.
15636
15637 @item -static
15638 @opindex static
15639 The HP-UX implementation of setlocale in libc has a dependency on
15640 libdld.sl. There isn't an archive version of libdld.sl. Thus,
15641 when the @option{-static} option is specified, special link options
15642 are needed to resolve this dependency.
15643
15644 On HP-UX 10 and later, the GCC driver adds the necessary options to
15645 link with libdld.sl when the @option{-static} option is specified.
15646 This causes the resulting binary to be dynamic. On the 64-bit port,
15647 the linkers generate dynamic binaries by default in any case. The
15648 @option{-nolibdld} option can be used to prevent the GCC driver from
15649 adding these link options.
15650
15651 @item -threads
15652 @opindex threads
15653 Add support for multithreading with the @dfn{dce thread} library
15654 under HP-UX@. This option sets flags for both the preprocessor and
15655 linker.
15656 @end table
15657
15658 @node IA-64 Options
15659 @subsection IA-64 Options
15660 @cindex IA-64 Options
15661
15662 These are the @samp{-m} options defined for the Intel IA-64 architecture.
15663
15664 @table @gcctabopt
15665 @item -mbig-endian
15666 @opindex mbig-endian
15667 Generate code for a big-endian target. This is the default for HP-UX@.
15668
15669 @item -mlittle-endian
15670 @opindex mlittle-endian
15671 Generate code for a little-endian target. This is the default for AIX5
15672 and GNU/Linux.
15673
15674 @item -mgnu-as
15675 @itemx -mno-gnu-as
15676 @opindex mgnu-as
15677 @opindex mno-gnu-as
15678 Generate (or don't) code for the GNU assembler. This is the default.
15679 @c Also, this is the default if the configure option @option{--with-gnu-as}
15680 @c is used.
15681
15682 @item -mgnu-ld
15683 @itemx -mno-gnu-ld
15684 @opindex mgnu-ld
15685 @opindex mno-gnu-ld
15686 Generate (or don't) code for the GNU linker. This is the default.
15687 @c Also, this is the default if the configure option @option{--with-gnu-ld}
15688 @c is used.
15689
15690 @item -mno-pic
15691 @opindex mno-pic
15692 Generate code that does not use a global pointer register. The result
15693 is not position independent code, and violates the IA-64 ABI@.
15694
15695 @item -mvolatile-asm-stop
15696 @itemx -mno-volatile-asm-stop
15697 @opindex mvolatile-asm-stop
15698 @opindex mno-volatile-asm-stop
15699 Generate (or don't) a stop bit immediately before and after volatile asm
15700 statements.
15701
15702 @item -mregister-names
15703 @itemx -mno-register-names
15704 @opindex mregister-names
15705 @opindex mno-register-names
15706 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
15707 the stacked registers. This may make assembler output more readable.
15708
15709 @item -mno-sdata
15710 @itemx -msdata
15711 @opindex mno-sdata
15712 @opindex msdata
15713 Disable (or enable) optimizations that use the small data section. This may
15714 be useful for working around optimizer bugs.
15715
15716 @item -mconstant-gp
15717 @opindex mconstant-gp
15718 Generate code that uses a single constant global pointer value. This is
15719 useful when compiling kernel code.
15720
15721 @item -mauto-pic
15722 @opindex mauto-pic
15723 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
15724 This is useful when compiling firmware code.
15725
15726 @item -minline-float-divide-min-latency
15727 @opindex minline-float-divide-min-latency
15728 Generate code for inline divides of floating-point values
15729 using the minimum latency algorithm.
15730
15731 @item -minline-float-divide-max-throughput
15732 @opindex minline-float-divide-max-throughput
15733 Generate code for inline divides of floating-point values
15734 using the maximum throughput algorithm.
15735
15736 @item -mno-inline-float-divide
15737 @opindex mno-inline-float-divide
15738 Do not generate inline code for divides of floating-point values.
15739
15740 @item -minline-int-divide-min-latency
15741 @opindex minline-int-divide-min-latency
15742 Generate code for inline divides of integer values
15743 using the minimum latency algorithm.
15744
15745 @item -minline-int-divide-max-throughput
15746 @opindex minline-int-divide-max-throughput
15747 Generate code for inline divides of integer values
15748 using the maximum throughput algorithm.
15749
15750 @item -mno-inline-int-divide
15751 @opindex mno-inline-int-divide
15752 Do not generate inline code for divides of integer values.
15753
15754 @item -minline-sqrt-min-latency
15755 @opindex minline-sqrt-min-latency
15756 Generate code for inline square roots
15757 using the minimum latency algorithm.
15758
15759 @item -minline-sqrt-max-throughput
15760 @opindex minline-sqrt-max-throughput
15761 Generate code for inline square roots
15762 using the maximum throughput algorithm.
15763
15764 @item -mno-inline-sqrt
15765 @opindex mno-inline-sqrt
15766 Do not generate inline code for @code{sqrt}.
15767
15768 @item -mfused-madd
15769 @itemx -mno-fused-madd
15770 @opindex mfused-madd
15771 @opindex mno-fused-madd
15772 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
15773 instructions. The default is to use these instructions.
15774
15775 @item -mno-dwarf2-asm
15776 @itemx -mdwarf2-asm
15777 @opindex mno-dwarf2-asm
15778 @opindex mdwarf2-asm
15779 Don't (or do) generate assembler code for the DWARF 2 line number debugging
15780 info. This may be useful when not using the GNU assembler.
15781
15782 @item -mearly-stop-bits
15783 @itemx -mno-early-stop-bits
15784 @opindex mearly-stop-bits
15785 @opindex mno-early-stop-bits
15786 Allow stop bits to be placed earlier than immediately preceding the
15787 instruction that triggered the stop bit. This can improve instruction
15788 scheduling, but does not always do so.
15789
15790 @item -mfixed-range=@var{register-range}
15791 @opindex mfixed-range
15792 Generate code treating the given register range as fixed registers.
15793 A fixed register is one that the register allocator cannot use. This is
15794 useful when compiling kernel code. A register range is specified as
15795 two registers separated by a dash. Multiple register ranges can be
15796 specified separated by a comma.
15797
15798 @item -mtls-size=@var{tls-size}
15799 @opindex mtls-size
15800 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
15801 64.
15802
15803 @item -mtune=@var{cpu-type}
15804 @opindex mtune
15805 Tune the instruction scheduling for a particular CPU, Valid values are
15806 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
15807 and @samp{mckinley}.
15808
15809 @item -milp32
15810 @itemx -mlp64
15811 @opindex milp32
15812 @opindex mlp64
15813 Generate code for a 32-bit or 64-bit environment.
15814 The 32-bit environment sets int, long and pointer to 32 bits.
15815 The 64-bit environment sets int to 32 bits and long and pointer
15816 to 64 bits. These are HP-UX specific flags.
15817
15818 @item -mno-sched-br-data-spec
15819 @itemx -msched-br-data-spec
15820 @opindex mno-sched-br-data-spec
15821 @opindex msched-br-data-spec
15822 (Dis/En)able data speculative scheduling before reload.
15823 This results in generation of @code{ld.a} instructions and
15824 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15825 The default is 'disable'.
15826
15827 @item -msched-ar-data-spec
15828 @itemx -mno-sched-ar-data-spec
15829 @opindex msched-ar-data-spec
15830 @opindex mno-sched-ar-data-spec
15831 (En/Dis)able data speculative scheduling after reload.
15832 This results in generation of @code{ld.a} instructions and
15833 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15834 The default is 'enable'.
15835
15836 @item -mno-sched-control-spec
15837 @itemx -msched-control-spec
15838 @opindex mno-sched-control-spec
15839 @opindex msched-control-spec
15840 (Dis/En)able control speculative scheduling. This feature is
15841 available only during region scheduling (i.e.@: before reload).
15842 This results in generation of the @code{ld.s} instructions and
15843 the corresponding check instructions @code{chk.s}.
15844 The default is 'disable'.
15845
15846 @item -msched-br-in-data-spec
15847 @itemx -mno-sched-br-in-data-spec
15848 @opindex msched-br-in-data-spec
15849 @opindex mno-sched-br-in-data-spec
15850 (En/Dis)able speculative scheduling of the instructions that
15851 are dependent on the data speculative loads before reload.
15852 This is effective only with @option{-msched-br-data-spec} enabled.
15853 The default is 'enable'.
15854
15855 @item -msched-ar-in-data-spec
15856 @itemx -mno-sched-ar-in-data-spec
15857 @opindex msched-ar-in-data-spec
15858 @opindex mno-sched-ar-in-data-spec
15859 (En/Dis)able speculative scheduling of the instructions that
15860 are dependent on the data speculative loads after reload.
15861 This is effective only with @option{-msched-ar-data-spec} enabled.
15862 The default is 'enable'.
15863
15864 @item -msched-in-control-spec
15865 @itemx -mno-sched-in-control-spec
15866 @opindex msched-in-control-spec
15867 @opindex mno-sched-in-control-spec
15868 (En/Dis)able speculative scheduling of the instructions that
15869 are dependent on the control speculative loads.
15870 This is effective only with @option{-msched-control-spec} enabled.
15871 The default is 'enable'.
15872
15873 @item -mno-sched-prefer-non-data-spec-insns
15874 @itemx -msched-prefer-non-data-spec-insns
15875 @opindex mno-sched-prefer-non-data-spec-insns
15876 @opindex msched-prefer-non-data-spec-insns
15877 If enabled, data-speculative instructions are chosen for schedule
15878 only if there are no other choices at the moment. This makes
15879 the use of the data speculation much more conservative.
15880 The default is 'disable'.
15881
15882 @item -mno-sched-prefer-non-control-spec-insns
15883 @itemx -msched-prefer-non-control-spec-insns
15884 @opindex mno-sched-prefer-non-control-spec-insns
15885 @opindex msched-prefer-non-control-spec-insns
15886 If enabled, control-speculative instructions are chosen for schedule
15887 only if there are no other choices at the moment. This makes
15888 the use of the control speculation much more conservative.
15889 The default is 'disable'.
15890
15891 @item -mno-sched-count-spec-in-critical-path
15892 @itemx -msched-count-spec-in-critical-path
15893 @opindex mno-sched-count-spec-in-critical-path
15894 @opindex msched-count-spec-in-critical-path
15895 If enabled, speculative dependencies are considered during
15896 computation of the instructions priorities. This makes the use of the
15897 speculation a bit more conservative.
15898 The default is 'disable'.
15899
15900 @item -msched-spec-ldc
15901 @opindex msched-spec-ldc
15902 Use a simple data speculation check. This option is on by default.
15903
15904 @item -msched-control-spec-ldc
15905 @opindex msched-spec-ldc
15906 Use a simple check for control speculation. This option is on by default.
15907
15908 @item -msched-stop-bits-after-every-cycle
15909 @opindex msched-stop-bits-after-every-cycle
15910 Place a stop bit after every cycle when scheduling. This option is on
15911 by default.
15912
15913 @item -msched-fp-mem-deps-zero-cost
15914 @opindex msched-fp-mem-deps-zero-cost
15915 Assume that floating-point stores and loads are not likely to cause a conflict
15916 when placed into the same instruction group. This option is disabled by
15917 default.
15918
15919 @item -msel-sched-dont-check-control-spec
15920 @opindex msel-sched-dont-check-control-spec
15921 Generate checks for control speculation in selective scheduling.
15922 This flag is disabled by default.
15923
15924 @item -msched-max-memory-insns=@var{max-insns}
15925 @opindex msched-max-memory-insns
15926 Limit on the number of memory insns per instruction group, giving lower
15927 priority to subsequent memory insns attempting to schedule in the same
15928 instruction group. Frequently useful to prevent cache bank conflicts.
15929 The default value is 1.
15930
15931 @item -msched-max-memory-insns-hard-limit
15932 @opindex msched-max-memory-insns-hard-limit
15933 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
15934 disallowing more than that number in an instruction group.
15935 Otherwise, the limit is ``soft'', meaning that non-memory operations
15936 are preferred when the limit is reached, but memory operations may still
15937 be scheduled.
15938
15939 @end table
15940
15941 @node LM32 Options
15942 @subsection LM32 Options
15943 @cindex LM32 options
15944
15945 These @option{-m} options are defined for the LatticeMico32 architecture:
15946
15947 @table @gcctabopt
15948 @item -mbarrel-shift-enabled
15949 @opindex mbarrel-shift-enabled
15950 Enable barrel-shift instructions.
15951
15952 @item -mdivide-enabled
15953 @opindex mdivide-enabled
15954 Enable divide and modulus instructions.
15955
15956 @item -mmultiply-enabled
15957 @opindex multiply-enabled
15958 Enable multiply instructions.
15959
15960 @item -msign-extend-enabled
15961 @opindex msign-extend-enabled
15962 Enable sign extend instructions.
15963
15964 @item -muser-enabled
15965 @opindex muser-enabled
15966 Enable user-defined instructions.
15967
15968 @end table
15969
15970 @node M32C Options
15971 @subsection M32C Options
15972 @cindex M32C options
15973
15974 @table @gcctabopt
15975 @item -mcpu=@var{name}
15976 @opindex mcpu=
15977 Select the CPU for which code is generated. @var{name} may be one of
15978 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
15979 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
15980 the M32C/80 series.
15981
15982 @item -msim
15983 @opindex msim
15984 Specifies that the program will be run on the simulator. This causes
15985 an alternate runtime library to be linked in which supports, for
15986 example, file I/O@. You must not use this option when generating
15987 programs that will run on real hardware; you must provide your own
15988 runtime library for whatever I/O functions are needed.
15989
15990 @item -memregs=@var{number}
15991 @opindex memregs=
15992 Specifies the number of memory-based pseudo-registers GCC uses
15993 during code generation. These pseudo-registers are used like real
15994 registers, so there is a tradeoff between GCC's ability to fit the
15995 code into available registers, and the performance penalty of using
15996 memory instead of registers. Note that all modules in a program must
15997 be compiled with the same value for this option. Because of that, you
15998 must not use this option with GCC's default runtime libraries.
15999
16000 @end table
16001
16002 @node M32R/D Options
16003 @subsection M32R/D Options
16004 @cindex M32R/D options
16005
16006 These @option{-m} options are defined for Renesas M32R/D architectures:
16007
16008 @table @gcctabopt
16009 @item -m32r2
16010 @opindex m32r2
16011 Generate code for the M32R/2@.
16012
16013 @item -m32rx
16014 @opindex m32rx
16015 Generate code for the M32R/X@.
16016
16017 @item -m32r
16018 @opindex m32r
16019 Generate code for the M32R@. This is the default.
16020
16021 @item -mmodel=small
16022 @opindex mmodel=small
16023 Assume all objects live in the lower 16MB of memory (so that their addresses
16024 can be loaded with the @code{ld24} instruction), and assume all subroutines
16025 are reachable with the @code{bl} instruction.
16026 This is the default.
16027
16028 The addressability of a particular object can be set with the
16029 @code{model} attribute.
16030
16031 @item -mmodel=medium
16032 @opindex mmodel=medium
16033 Assume objects may be anywhere in the 32-bit address space (the compiler
16034 generates @code{seth/add3} instructions to load their addresses), and
16035 assume all subroutines are reachable with the @code{bl} instruction.
16036
16037 @item -mmodel=large
16038 @opindex mmodel=large
16039 Assume objects may be anywhere in the 32-bit address space (the compiler
16040 generates @code{seth/add3} instructions to load their addresses), and
16041 assume subroutines may not be reachable with the @code{bl} instruction
16042 (the compiler generates the much slower @code{seth/add3/jl}
16043 instruction sequence).
16044
16045 @item -msdata=none
16046 @opindex msdata=none
16047 Disable use of the small data area. Variables are put into
16048 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16049 @code{section} attribute has been specified).
16050 This is the default.
16051
16052 The small data area consists of sections @code{.sdata} and @code{.sbss}.
16053 Objects may be explicitly put in the small data area with the
16054 @code{section} attribute using one of these sections.
16055
16056 @item -msdata=sdata
16057 @opindex msdata=sdata
16058 Put small global and static data in the small data area, but do not
16059 generate special code to reference them.
16060
16061 @item -msdata=use
16062 @opindex msdata=use
16063 Put small global and static data in the small data area, and generate
16064 special instructions to reference them.
16065
16066 @item -G @var{num}
16067 @opindex G
16068 @cindex smaller data references
16069 Put global and static objects less than or equal to @var{num} bytes
16070 into the small data or BSS sections instead of the normal data or BSS
16071 sections. The default value of @var{num} is 8.
16072 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16073 for this option to have any effect.
16074
16075 All modules should be compiled with the same @option{-G @var{num}} value.
16076 Compiling with different values of @var{num} may or may not work; if it
16077 doesn't the linker gives an error message---incorrect code is not
16078 generated.
16079
16080 @item -mdebug
16081 @opindex mdebug
16082 Makes the M32R-specific code in the compiler display some statistics
16083 that might help in debugging programs.
16084
16085 @item -malign-loops
16086 @opindex malign-loops
16087 Align all loops to a 32-byte boundary.
16088
16089 @item -mno-align-loops
16090 @opindex mno-align-loops
16091 Do not enforce a 32-byte alignment for loops. This is the default.
16092
16093 @item -missue-rate=@var{number}
16094 @opindex missue-rate=@var{number}
16095 Issue @var{number} instructions per cycle. @var{number} can only be 1
16096 or 2.
16097
16098 @item -mbranch-cost=@var{number}
16099 @opindex mbranch-cost=@var{number}
16100 @var{number} can only be 1 or 2. If it is 1 then branches are
16101 preferred over conditional code, if it is 2, then the opposite applies.
16102
16103 @item -mflush-trap=@var{number}
16104 @opindex mflush-trap=@var{number}
16105 Specifies the trap number to use to flush the cache. The default is
16106 12. Valid numbers are between 0 and 15 inclusive.
16107
16108 @item -mno-flush-trap
16109 @opindex mno-flush-trap
16110 Specifies that the cache cannot be flushed by using a trap.
16111
16112 @item -mflush-func=@var{name}
16113 @opindex mflush-func=@var{name}
16114 Specifies the name of the operating system function to call to flush
16115 the cache. The default is @samp{_flush_cache}, but a function call
16116 is only used if a trap is not available.
16117
16118 @item -mno-flush-func
16119 @opindex mno-flush-func
16120 Indicates that there is no OS function for flushing the cache.
16121
16122 @end table
16123
16124 @node M680x0 Options
16125 @subsection M680x0 Options
16126 @cindex M680x0 options
16127
16128 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16129 The default settings depend on which architecture was selected when
16130 the compiler was configured; the defaults for the most common choices
16131 are given below.
16132
16133 @table @gcctabopt
16134 @item -march=@var{arch}
16135 @opindex march
16136 Generate code for a specific M680x0 or ColdFire instruction set
16137 architecture. Permissible values of @var{arch} for M680x0
16138 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16139 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
16140 architectures are selected according to Freescale's ISA classification
16141 and the permissible values are: @samp{isaa}, @samp{isaaplus},
16142 @samp{isab} and @samp{isac}.
16143
16144 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16145 code for a ColdFire target. The @var{arch} in this macro is one of the
16146 @option{-march} arguments given above.
16147
16148 When used together, @option{-march} and @option{-mtune} select code
16149 that runs on a family of similar processors but that is optimized
16150 for a particular microarchitecture.
16151
16152 @item -mcpu=@var{cpu}
16153 @opindex mcpu
16154 Generate code for a specific M680x0 or ColdFire processor.
16155 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16156 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16157 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
16158 below, which also classifies the CPUs into families:
16159
16160 @multitable @columnfractions 0.20 0.80
16161 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16162 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16163 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16164 @item @samp{5206e} @tab @samp{5206e}
16165 @item @samp{5208} @tab @samp{5207} @samp{5208}
16166 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16167 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16168 @item @samp{5216} @tab @samp{5214} @samp{5216}
16169 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16170 @item @samp{5225} @tab @samp{5224} @samp{5225}
16171 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16172 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16173 @item @samp{5249} @tab @samp{5249}
16174 @item @samp{5250} @tab @samp{5250}
16175 @item @samp{5271} @tab @samp{5270} @samp{5271}
16176 @item @samp{5272} @tab @samp{5272}
16177 @item @samp{5275} @tab @samp{5274} @samp{5275}
16178 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16179 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16180 @item @samp{5307} @tab @samp{5307}
16181 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16182 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16183 @item @samp{5407} @tab @samp{5407}
16184 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16185 @end multitable
16186
16187 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16188 @var{arch} is compatible with @var{cpu}. Other combinations of
16189 @option{-mcpu} and @option{-march} are rejected.
16190
16191 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16192 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
16193 where the value of @var{family} is given by the table above.
16194
16195 @item -mtune=@var{tune}
16196 @opindex mtune
16197 Tune the code for a particular microarchitecture within the
16198 constraints set by @option{-march} and @option{-mcpu}.
16199 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16200 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16201 and @samp{cpu32}. The ColdFire microarchitectures
16202 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16203
16204 You can also use @option{-mtune=68020-40} for code that needs
16205 to run relatively well on 68020, 68030 and 68040 targets.
16206 @option{-mtune=68020-60} is similar but includes 68060 targets
16207 as well. These two options select the same tuning decisions as
16208 @option{-m68020-40} and @option{-m68020-60} respectively.
16209
16210 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16211 when tuning for 680x0 architecture @var{arch}. It also defines
16212 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16213 option is used. If GCC is tuning for a range of architectures,
16214 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16215 it defines the macros for every architecture in the range.
16216
16217 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16218 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16219 of the arguments given above.
16220
16221 @item -m68000
16222 @itemx -mc68000
16223 @opindex m68000
16224 @opindex mc68000
16225 Generate output for a 68000. This is the default
16226 when the compiler is configured for 68000-based systems.
16227 It is equivalent to @option{-march=68000}.
16228
16229 Use this option for microcontrollers with a 68000 or EC000 core,
16230 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16231
16232 @item -m68010
16233 @opindex m68010
16234 Generate output for a 68010. This is the default
16235 when the compiler is configured for 68010-based systems.
16236 It is equivalent to @option{-march=68010}.
16237
16238 @item -m68020
16239 @itemx -mc68020
16240 @opindex m68020
16241 @opindex mc68020
16242 Generate output for a 68020. This is the default
16243 when the compiler is configured for 68020-based systems.
16244 It is equivalent to @option{-march=68020}.
16245
16246 @item -m68030
16247 @opindex m68030
16248 Generate output for a 68030. This is the default when the compiler is
16249 configured for 68030-based systems. It is equivalent to
16250 @option{-march=68030}.
16251
16252 @item -m68040
16253 @opindex m68040
16254 Generate output for a 68040. This is the default when the compiler is
16255 configured for 68040-based systems. It is equivalent to
16256 @option{-march=68040}.
16257
16258 This option inhibits the use of 68881/68882 instructions that have to be
16259 emulated by software on the 68040. Use this option if your 68040 does not
16260 have code to emulate those instructions.
16261
16262 @item -m68060
16263 @opindex m68060
16264 Generate output for a 68060. This is the default when the compiler is
16265 configured for 68060-based systems. It is equivalent to
16266 @option{-march=68060}.
16267
16268 This option inhibits the use of 68020 and 68881/68882 instructions that
16269 have to be emulated by software on the 68060. Use this option if your 68060
16270 does not have code to emulate those instructions.
16271
16272 @item -mcpu32
16273 @opindex mcpu32
16274 Generate output for a CPU32. This is the default
16275 when the compiler is configured for CPU32-based systems.
16276 It is equivalent to @option{-march=cpu32}.
16277
16278 Use this option for microcontrollers with a
16279 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
16280 68336, 68340, 68341, 68349 and 68360.
16281
16282 @item -m5200
16283 @opindex m5200
16284 Generate output for a 520X ColdFire CPU@. This is the default
16285 when the compiler is configured for 520X-based systems.
16286 It is equivalent to @option{-mcpu=5206}, and is now deprecated
16287 in favor of that option.
16288
16289 Use this option for microcontroller with a 5200 core, including
16290 the MCF5202, MCF5203, MCF5204 and MCF5206.
16291
16292 @item -m5206e
16293 @opindex m5206e
16294 Generate output for a 5206e ColdFire CPU@. The option is now
16295 deprecated in favor of the equivalent @option{-mcpu=5206e}.
16296
16297 @item -m528x
16298 @opindex m528x
16299 Generate output for a member of the ColdFire 528X family.
16300 The option is now deprecated in favor of the equivalent
16301 @option{-mcpu=528x}.
16302
16303 @item -m5307
16304 @opindex m5307
16305 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
16306 in favor of the equivalent @option{-mcpu=5307}.
16307
16308 @item -m5407
16309 @opindex m5407
16310 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
16311 in favor of the equivalent @option{-mcpu=5407}.
16312
16313 @item -mcfv4e
16314 @opindex mcfv4e
16315 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16316 This includes use of hardware floating-point instructions.
16317 The option is equivalent to @option{-mcpu=547x}, and is now
16318 deprecated in favor of that option.
16319
16320 @item -m68020-40
16321 @opindex m68020-40
16322 Generate output for a 68040, without using any of the new instructions.
16323 This results in code that can run relatively efficiently on either a
16324 68020/68881 or a 68030 or a 68040. The generated code does use the
16325 68881 instructions that are emulated on the 68040.
16326
16327 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16328
16329 @item -m68020-60
16330 @opindex m68020-60
16331 Generate output for a 68060, without using any of the new instructions.
16332 This results in code that can run relatively efficiently on either a
16333 68020/68881 or a 68030 or a 68040. The generated code does use the
16334 68881 instructions that are emulated on the 68060.
16335
16336 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16337
16338 @item -mhard-float
16339 @itemx -m68881
16340 @opindex mhard-float
16341 @opindex m68881
16342 Generate floating-point instructions. This is the default for 68020
16343 and above, and for ColdFire devices that have an FPU@. It defines the
16344 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16345 on ColdFire targets.
16346
16347 @item -msoft-float
16348 @opindex msoft-float
16349 Do not generate floating-point instructions; use library calls instead.
16350 This is the default for 68000, 68010, and 68832 targets. It is also
16351 the default for ColdFire devices that have no FPU.
16352
16353 @item -mdiv
16354 @itemx -mno-div
16355 @opindex mdiv
16356 @opindex mno-div
16357 Generate (do not generate) ColdFire hardware divide and remainder
16358 instructions. If @option{-march} is used without @option{-mcpu},
16359 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16360 architectures. Otherwise, the default is taken from the target CPU
16361 (either the default CPU, or the one specified by @option{-mcpu}). For
16362 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16363 @option{-mcpu=5206e}.
16364
16365 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16366
16367 @item -mshort
16368 @opindex mshort
16369 Consider type @code{int} to be 16 bits wide, like @code{short int}.
16370 Additionally, parameters passed on the stack are also aligned to a
16371 16-bit boundary even on targets whose API mandates promotion to 32-bit.
16372
16373 @item -mno-short
16374 @opindex mno-short
16375 Do not consider type @code{int} to be 16 bits wide. This is the default.
16376
16377 @item -mnobitfield
16378 @itemx -mno-bitfield
16379 @opindex mnobitfield
16380 @opindex mno-bitfield
16381 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
16382 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16383
16384 @item -mbitfield
16385 @opindex mbitfield
16386 Do use the bit-field instructions. The @option{-m68020} option implies
16387 @option{-mbitfield}. This is the default if you use a configuration
16388 designed for a 68020.
16389
16390 @item -mrtd
16391 @opindex mrtd
16392 Use a different function-calling convention, in which functions
16393 that take a fixed number of arguments return with the @code{rtd}
16394 instruction, which pops their arguments while returning. This
16395 saves one instruction in the caller since there is no need to pop
16396 the arguments there.
16397
16398 This calling convention is incompatible with the one normally
16399 used on Unix, so you cannot use it if you need to call libraries
16400 compiled with the Unix compiler.
16401
16402 Also, you must provide function prototypes for all functions that
16403 take variable numbers of arguments (including @code{printf});
16404 otherwise incorrect code is generated for calls to those
16405 functions.
16406
16407 In addition, seriously incorrect code results if you call a
16408 function with too many arguments. (Normally, extra arguments are
16409 harmlessly ignored.)
16410
16411 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
16412 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16413
16414 @item -mno-rtd
16415 @opindex mno-rtd
16416 Do not use the calling conventions selected by @option{-mrtd}.
16417 This is the default.
16418
16419 @item -malign-int
16420 @itemx -mno-align-int
16421 @opindex malign-int
16422 @opindex mno-align-int
16423 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16424 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
16425 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16426 Aligning variables on 32-bit boundaries produces code that runs somewhat
16427 faster on processors with 32-bit busses at the expense of more memory.
16428
16429 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
16430 aligns structures containing the above types differently than
16431 most published application binary interface specifications for the m68k.
16432
16433 @item -mpcrel
16434 @opindex mpcrel
16435 Use the pc-relative addressing mode of the 68000 directly, instead of
16436 using a global offset table. At present, this option implies @option{-fpic},
16437 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
16438 not presently supported with @option{-mpcrel}, though this could be supported for
16439 68020 and higher processors.
16440
16441 @item -mno-strict-align
16442 @itemx -mstrict-align
16443 @opindex mno-strict-align
16444 @opindex mstrict-align
16445 Do not (do) assume that unaligned memory references are handled by
16446 the system.
16447
16448 @item -msep-data
16449 Generate code that allows the data segment to be located in a different
16450 area of memory from the text segment. This allows for execute-in-place in
16451 an environment without virtual memory management. This option implies
16452 @option{-fPIC}.
16453
16454 @item -mno-sep-data
16455 Generate code that assumes that the data segment follows the text segment.
16456 This is the default.
16457
16458 @item -mid-shared-library
16459 Generate code that supports shared libraries via the library ID method.
16460 This allows for execute-in-place and shared libraries in an environment
16461 without virtual memory management. This option implies @option{-fPIC}.
16462
16463 @item -mno-id-shared-library
16464 Generate code that doesn't assume ID-based shared libraries are being used.
16465 This is the default.
16466
16467 @item -mshared-library-id=n
16468 Specifies the identification number of the ID-based shared library being
16469 compiled. Specifying a value of 0 generates more compact code; specifying
16470 other values forces the allocation of that number to the current
16471 library, but is no more space- or time-efficient than omitting this option.
16472
16473 @item -mxgot
16474 @itemx -mno-xgot
16475 @opindex mxgot
16476 @opindex mno-xgot
16477 When generating position-independent code for ColdFire, generate code
16478 that works if the GOT has more than 8192 entries. This code is
16479 larger and slower than code generated without this option. On M680x0
16480 processors, this option is not needed; @option{-fPIC} suffices.
16481
16482 GCC normally uses a single instruction to load values from the GOT@.
16483 While this is relatively efficient, it only works if the GOT
16484 is smaller than about 64k. Anything larger causes the linker
16485 to report an error such as:
16486
16487 @cindex relocation truncated to fit (ColdFire)
16488 @smallexample
16489 relocation truncated to fit: R_68K_GOT16O foobar
16490 @end smallexample
16491
16492 If this happens, you should recompile your code with @option{-mxgot}.
16493 It should then work with very large GOTs. However, code generated with
16494 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16495 the value of a global symbol.
16496
16497 Note that some linkers, including newer versions of the GNU linker,
16498 can create multiple GOTs and sort GOT entries. If you have such a linker,
16499 you should only need to use @option{-mxgot} when compiling a single
16500 object file that accesses more than 8192 GOT entries. Very few do.
16501
16502 These options have no effect unless GCC is generating
16503 position-independent code.
16504
16505 @end table
16506
16507 @node MCore Options
16508 @subsection MCore Options
16509 @cindex MCore options
16510
16511 These are the @samp{-m} options defined for the Motorola M*Core
16512 processors.
16513
16514 @table @gcctabopt
16515
16516 @item -mhardlit
16517 @itemx -mno-hardlit
16518 @opindex mhardlit
16519 @opindex mno-hardlit
16520 Inline constants into the code stream if it can be done in two
16521 instructions or less.
16522
16523 @item -mdiv
16524 @itemx -mno-div
16525 @opindex mdiv
16526 @opindex mno-div
16527 Use the divide instruction. (Enabled by default).
16528
16529 @item -mrelax-immediate
16530 @itemx -mno-relax-immediate
16531 @opindex mrelax-immediate
16532 @opindex mno-relax-immediate
16533 Allow arbitrary-sized immediates in bit operations.
16534
16535 @item -mwide-bitfields
16536 @itemx -mno-wide-bitfields
16537 @opindex mwide-bitfields
16538 @opindex mno-wide-bitfields
16539 Always treat bit-fields as @code{int}-sized.
16540
16541 @item -m4byte-functions
16542 @itemx -mno-4byte-functions
16543 @opindex m4byte-functions
16544 @opindex mno-4byte-functions
16545 Force all functions to be aligned to a 4-byte boundary.
16546
16547 @item -mcallgraph-data
16548 @itemx -mno-callgraph-data
16549 @opindex mcallgraph-data
16550 @opindex mno-callgraph-data
16551 Emit callgraph information.
16552
16553 @item -mslow-bytes
16554 @itemx -mno-slow-bytes
16555 @opindex mslow-bytes
16556 @opindex mno-slow-bytes
16557 Prefer word access when reading byte quantities.
16558
16559 @item -mlittle-endian
16560 @itemx -mbig-endian
16561 @opindex mlittle-endian
16562 @opindex mbig-endian
16563 Generate code for a little-endian target.
16564
16565 @item -m210
16566 @itemx -m340
16567 @opindex m210
16568 @opindex m340
16569 Generate code for the 210 processor.
16570
16571 @item -mno-lsim
16572 @opindex mno-lsim
16573 Assume that runtime support has been provided and so omit the
16574 simulator library (@file{libsim.a)} from the linker command line.
16575
16576 @item -mstack-increment=@var{size}
16577 @opindex mstack-increment
16578 Set the maximum amount for a single stack increment operation. Large
16579 values can increase the speed of programs that contain functions
16580 that need a large amount of stack space, but they can also trigger a
16581 segmentation fault if the stack is extended too much. The default
16582 value is 0x1000.
16583
16584 @end table
16585
16586 @node MeP Options
16587 @subsection MeP Options
16588 @cindex MeP options
16589
16590 @table @gcctabopt
16591
16592 @item -mabsdiff
16593 @opindex mabsdiff
16594 Enables the @code{abs} instruction, which is the absolute difference
16595 between two registers.
16596
16597 @item -mall-opts
16598 @opindex mall-opts
16599 Enables all the optional instructions---average, multiply, divide, bit
16600 operations, leading zero, absolute difference, min/max, clip, and
16601 saturation.
16602
16603
16604 @item -maverage
16605 @opindex maverage
16606 Enables the @code{ave} instruction, which computes the average of two
16607 registers.
16608
16609 @item -mbased=@var{n}
16610 @opindex mbased=
16611 Variables of size @var{n} bytes or smaller are placed in the
16612 @code{.based} section by default. Based variables use the @code{$tp}
16613 register as a base register, and there is a 128-byte limit to the
16614 @code{.based} section.
16615
16616 @item -mbitops
16617 @opindex mbitops
16618 Enables the bit operation instructions---bit test (@code{btstm}), set
16619 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
16620 test-and-set (@code{tas}).
16621
16622 @item -mc=@var{name}
16623 @opindex mc=
16624 Selects which section constant data is placed in. @var{name} may
16625 be @samp{tiny}, @samp{near}, or @samp{far}.
16626
16627 @item -mclip
16628 @opindex mclip
16629 Enables the @code{clip} instruction. Note that @option{-mclip} is not
16630 useful unless you also provide @option{-mminmax}.
16631
16632 @item -mconfig=@var{name}
16633 @opindex mconfig=
16634 Selects one of the built-in core configurations. Each MeP chip has
16635 one or more modules in it; each module has a core CPU and a variety of
16636 coprocessors, optional instructions, and peripherals. The
16637 @code{MeP-Integrator} tool, not part of GCC, provides these
16638 configurations through this option; using this option is the same as
16639 using all the corresponding command-line options. The default
16640 configuration is @samp{default}.
16641
16642 @item -mcop
16643 @opindex mcop
16644 Enables the coprocessor instructions. By default, this is a 32-bit
16645 coprocessor. Note that the coprocessor is normally enabled via the
16646 @option{-mconfig=} option.
16647
16648 @item -mcop32
16649 @opindex mcop32
16650 Enables the 32-bit coprocessor's instructions.
16651
16652 @item -mcop64
16653 @opindex mcop64
16654 Enables the 64-bit coprocessor's instructions.
16655
16656 @item -mivc2
16657 @opindex mivc2
16658 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
16659
16660 @item -mdc
16661 @opindex mdc
16662 Causes constant variables to be placed in the @code{.near} section.
16663
16664 @item -mdiv
16665 @opindex mdiv
16666 Enables the @code{div} and @code{divu} instructions.
16667
16668 @item -meb
16669 @opindex meb
16670 Generate big-endian code.
16671
16672 @item -mel
16673 @opindex mel
16674 Generate little-endian code.
16675
16676 @item -mio-volatile
16677 @opindex mio-volatile
16678 Tells the compiler that any variable marked with the @code{io}
16679 attribute is to be considered volatile.
16680
16681 @item -ml
16682 @opindex ml
16683 Causes variables to be assigned to the @code{.far} section by default.
16684
16685 @item -mleadz
16686 @opindex mleadz
16687 Enables the @code{leadz} (leading zero) instruction.
16688
16689 @item -mm
16690 @opindex mm
16691 Causes variables to be assigned to the @code{.near} section by default.
16692
16693 @item -mminmax
16694 @opindex mminmax
16695 Enables the @code{min} and @code{max} instructions.
16696
16697 @item -mmult
16698 @opindex mmult
16699 Enables the multiplication and multiply-accumulate instructions.
16700
16701 @item -mno-opts
16702 @opindex mno-opts
16703 Disables all the optional instructions enabled by @option{-mall-opts}.
16704
16705 @item -mrepeat
16706 @opindex mrepeat
16707 Enables the @code{repeat} and @code{erepeat} instructions, used for
16708 low-overhead looping.
16709
16710 @item -ms
16711 @opindex ms
16712 Causes all variables to default to the @code{.tiny} section. Note
16713 that there is a 65536-byte limit to this section. Accesses to these
16714 variables use the @code{%gp} base register.
16715
16716 @item -msatur
16717 @opindex msatur
16718 Enables the saturation instructions. Note that the compiler does not
16719 currently generate these itself, but this option is included for
16720 compatibility with other tools, like @code{as}.
16721
16722 @item -msdram
16723 @opindex msdram
16724 Link the SDRAM-based runtime instead of the default ROM-based runtime.
16725
16726 @item -msim
16727 @opindex msim
16728 Link the simulator run-time libraries.
16729
16730 @item -msimnovec
16731 @opindex msimnovec
16732 Link the simulator runtime libraries, excluding built-in support
16733 for reset and exception vectors and tables.
16734
16735 @item -mtf
16736 @opindex mtf
16737 Causes all functions to default to the @code{.far} section. Without
16738 this option, functions default to the @code{.near} section.
16739
16740 @item -mtiny=@var{n}
16741 @opindex mtiny=
16742 Variables that are @var{n} bytes or smaller are allocated to the
16743 @code{.tiny} section. These variables use the @code{$gp} base
16744 register. The default for this option is 4, but note that there's a
16745 65536-byte limit to the @code{.tiny} section.
16746
16747 @end table
16748
16749 @node MicroBlaze Options
16750 @subsection MicroBlaze Options
16751 @cindex MicroBlaze Options
16752
16753 @table @gcctabopt
16754
16755 @item -msoft-float
16756 @opindex msoft-float
16757 Use software emulation for floating point (default).
16758
16759 @item -mhard-float
16760 @opindex mhard-float
16761 Use hardware floating-point instructions.
16762
16763 @item -mmemcpy
16764 @opindex mmemcpy
16765 Do not optimize block moves, use @code{memcpy}.
16766
16767 @item -mno-clearbss
16768 @opindex mno-clearbss
16769 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
16770
16771 @item -mcpu=@var{cpu-type}
16772 @opindex mcpu=
16773 Use features of, and schedule code for, the given CPU.
16774 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
16775 where @var{X} is a major version, @var{YY} is the minor version, and
16776 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
16777 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
16778
16779 @item -mxl-soft-mul
16780 @opindex mxl-soft-mul
16781 Use software multiply emulation (default).
16782
16783 @item -mxl-soft-div
16784 @opindex mxl-soft-div
16785 Use software emulation for divides (default).
16786
16787 @item -mxl-barrel-shift
16788 @opindex mxl-barrel-shift
16789 Use the hardware barrel shifter.
16790
16791 @item -mxl-pattern-compare
16792 @opindex mxl-pattern-compare
16793 Use pattern compare instructions.
16794
16795 @item -msmall-divides
16796 @opindex msmall-divides
16797 Use table lookup optimization for small signed integer divisions.
16798
16799 @item -mxl-stack-check
16800 @opindex mxl-stack-check
16801 This option is deprecated. Use @option{-fstack-check} instead.
16802
16803 @item -mxl-gp-opt
16804 @opindex mxl-gp-opt
16805 Use GP-relative @code{.sdata}/@code{.sbss} sections.
16806
16807 @item -mxl-multiply-high
16808 @opindex mxl-multiply-high
16809 Use multiply high instructions for high part of 32x32 multiply.
16810
16811 @item -mxl-float-convert
16812 @opindex mxl-float-convert
16813 Use hardware floating-point conversion instructions.
16814
16815 @item -mxl-float-sqrt
16816 @opindex mxl-float-sqrt
16817 Use hardware floating-point square root instruction.
16818
16819 @item -mbig-endian
16820 @opindex mbig-endian
16821 Generate code for a big-endian target.
16822
16823 @item -mlittle-endian
16824 @opindex mlittle-endian
16825 Generate code for a little-endian target.
16826
16827 @item -mxl-reorder
16828 @opindex mxl-reorder
16829 Use reorder instructions (swap and byte reversed load/store).
16830
16831 @item -mxl-mode-@var{app-model}
16832 Select application model @var{app-model}. Valid models are
16833 @table @samp
16834 @item executable
16835 normal executable (default), uses startup code @file{crt0.o}.
16836
16837 @item xmdstub
16838 for use with Xilinx Microprocessor Debugger (XMD) based
16839 software intrusive debug agent called xmdstub. This uses startup file
16840 @file{crt1.o} and sets the start address of the program to 0x800.
16841
16842 @item bootstrap
16843 for applications that are loaded using a bootloader.
16844 This model uses startup file @file{crt2.o} which does not contain a processor
16845 reset vector handler. This is suitable for transferring control on a
16846 processor reset to the bootloader rather than the application.
16847
16848 @item novectors
16849 for applications that do not require any of the
16850 MicroBlaze vectors. This option may be useful for applications running
16851 within a monitoring application. This model uses @file{crt3.o} as a startup file.
16852 @end table
16853
16854 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
16855 @option{-mxl-mode-@var{app-model}}.
16856
16857 @end table
16858
16859 @node MIPS Options
16860 @subsection MIPS Options
16861 @cindex MIPS options
16862
16863 @table @gcctabopt
16864
16865 @item -EB
16866 @opindex EB
16867 Generate big-endian code.
16868
16869 @item -EL
16870 @opindex EL
16871 Generate little-endian code. This is the default for @samp{mips*el-*-*}
16872 configurations.
16873
16874 @item -march=@var{arch}
16875 @opindex march
16876 Generate code that runs on @var{arch}, which can be the name of a
16877 generic MIPS ISA, or the name of a particular processor.
16878 The ISA names are:
16879 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
16880 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
16881 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
16882 @samp{mips64r5} and @samp{mips64r6}.
16883 The processor names are:
16884 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
16885 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
16886 @samp{5kc}, @samp{5kf},
16887 @samp{20kc},
16888 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
16889 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
16890 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
16891 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
16892 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
16893 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
16894 @samp{m4k},
16895 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
16896 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
16897 @samp{orion},
16898 @samp{p5600},
16899 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
16900 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
16901 @samp{rm7000}, @samp{rm9000},
16902 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
16903 @samp{sb1},
16904 @samp{sr71000},
16905 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
16906 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
16907 @samp{xlr} and @samp{xlp}.
16908 The special value @samp{from-abi} selects the
16909 most compatible architecture for the selected ABI (that is,
16910 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
16911
16912 The native Linux/GNU toolchain also supports the value @samp{native},
16913 which selects the best architecture option for the host processor.
16914 @option{-march=native} has no effect if GCC does not recognize
16915 the processor.
16916
16917 In processor names, a final @samp{000} can be abbreviated as @samp{k}
16918 (for example, @option{-march=r2k}). Prefixes are optional, and
16919 @samp{vr} may be written @samp{r}.
16920
16921 Names of the form @samp{@var{n}f2_1} refer to processors with
16922 FPUs clocked at half the rate of the core, names of the form
16923 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
16924 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
16925 processors with FPUs clocked a ratio of 3:2 with respect to the core.
16926 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
16927 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
16928 accepted as synonyms for @samp{@var{n}f1_1}.
16929
16930 GCC defines two macros based on the value of this option. The first
16931 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
16932 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
16933 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
16934 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
16935 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
16936
16937 Note that the @code{_MIPS_ARCH} macro uses the processor names given
16938 above. In other words, it has the full prefix and does not
16939 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
16940 the macro names the resolved architecture (either @code{"mips1"} or
16941 @code{"mips3"}). It names the default architecture when no
16942 @option{-march} option is given.
16943
16944 @item -mtune=@var{arch}
16945 @opindex mtune
16946 Optimize for @var{arch}. Among other things, this option controls
16947 the way instructions are scheduled, and the perceived cost of arithmetic
16948 operations. The list of @var{arch} values is the same as for
16949 @option{-march}.
16950
16951 When this option is not used, GCC optimizes for the processor
16952 specified by @option{-march}. By using @option{-march} and
16953 @option{-mtune} together, it is possible to generate code that
16954 runs on a family of processors, but optimize the code for one
16955 particular member of that family.
16956
16957 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
16958 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
16959 @option{-march} ones described above.
16960
16961 @item -mips1
16962 @opindex mips1
16963 Equivalent to @option{-march=mips1}.
16964
16965 @item -mips2
16966 @opindex mips2
16967 Equivalent to @option{-march=mips2}.
16968
16969 @item -mips3
16970 @opindex mips3
16971 Equivalent to @option{-march=mips3}.
16972
16973 @item -mips4
16974 @opindex mips4
16975 Equivalent to @option{-march=mips4}.
16976
16977 @item -mips32
16978 @opindex mips32
16979 Equivalent to @option{-march=mips32}.
16980
16981 @item -mips32r3
16982 @opindex mips32r3
16983 Equivalent to @option{-march=mips32r3}.
16984
16985 @item -mips32r5
16986 @opindex mips32r5
16987 Equivalent to @option{-march=mips32r5}.
16988
16989 @item -mips32r6
16990 @opindex mips32r6
16991 Equivalent to @option{-march=mips32r6}.
16992
16993 @item -mips64
16994 @opindex mips64
16995 Equivalent to @option{-march=mips64}.
16996
16997 @item -mips64r2
16998 @opindex mips64r2
16999 Equivalent to @option{-march=mips64r2}.
17000
17001 @item -mips64r3
17002 @opindex mips64r3
17003 Equivalent to @option{-march=mips64r3}.
17004
17005 @item -mips64r5
17006 @opindex mips64r5
17007 Equivalent to @option{-march=mips64r5}.
17008
17009 @item -mips64r6
17010 @opindex mips64r6
17011 Equivalent to @option{-march=mips64r6}.
17012
17013 @item -mips16
17014 @itemx -mno-mips16
17015 @opindex mips16
17016 @opindex mno-mips16
17017 Generate (do not generate) MIPS16 code. If GCC is targeting a
17018 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17019
17020 MIPS16 code generation can also be controlled on a per-function basis
17021 by means of @code{mips16} and @code{nomips16} attributes.
17022 @xref{Function Attributes}, for more information.
17023
17024 @item -mflip-mips16
17025 @opindex mflip-mips16
17026 Generate MIPS16 code on alternating functions. This option is provided
17027 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17028 not intended for ordinary use in compiling user code.
17029
17030 @item -minterlink-compressed
17031 @item -mno-interlink-compressed
17032 @opindex minterlink-compressed
17033 @opindex mno-interlink-compressed
17034 Require (do not require) that code using the standard (uncompressed) MIPS ISA
17035 be link-compatible with MIPS16 and microMIPS code, and vice versa.
17036
17037 For example, code using the standard ISA encoding cannot jump directly
17038 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17039 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
17040 knows that the target of the jump is not compressed.
17041
17042 @item -minterlink-mips16
17043 @itemx -mno-interlink-mips16
17044 @opindex minterlink-mips16
17045 @opindex mno-interlink-mips16
17046 Aliases of @option{-minterlink-compressed} and
17047 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
17048 and are retained for backwards compatibility.
17049
17050 @item -mabi=32
17051 @itemx -mabi=o64
17052 @itemx -mabi=n32
17053 @itemx -mabi=64
17054 @itemx -mabi=eabi
17055 @opindex mabi=32
17056 @opindex mabi=o64
17057 @opindex mabi=n32
17058 @opindex mabi=64
17059 @opindex mabi=eabi
17060 Generate code for the given ABI@.
17061
17062 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
17063 generates 64-bit code when you select a 64-bit architecture, but you
17064 can use @option{-mgp32} to get 32-bit code instead.
17065
17066 For information about the O64 ABI, see
17067 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17068
17069 GCC supports a variant of the o32 ABI in which floating-point registers
17070 are 64 rather than 32 bits wide. You can select this combination with
17071 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
17072 and @code{mfhc1} instructions and is therefore only supported for
17073 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17074
17075 The register assignments for arguments and return values remain the
17076 same, but each scalar value is passed in a single 64-bit register
17077 rather than a pair of 32-bit registers. For example, scalar
17078 floating-point values are returned in @samp{$f0} only, not a
17079 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
17080 remains the same in that the even-numbered double-precision registers
17081 are saved.
17082
17083 Two additional variants of the o32 ABI are supported to enable
17084 a transition from 32-bit to 64-bit registers. These are FPXX
17085 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17086 The FPXX extension mandates that all code must execute correctly
17087 when run using 32-bit or 64-bit registers. The code can be interlinked
17088 with either FP32 or FP64, but not both.
17089 The FP64A extension is similar to the FP64 extension but forbids the
17090 use of odd-numbered single-precision registers. This can be used
17091 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17092 processors and allows both FP32 and FP64A code to interlink and
17093 run in the same process without changing FPU modes.
17094
17095 @item -mabicalls
17096 @itemx -mno-abicalls
17097 @opindex mabicalls
17098 @opindex mno-abicalls
17099 Generate (do not generate) code that is suitable for SVR4-style
17100 dynamic objects. @option{-mabicalls} is the default for SVR4-based
17101 systems.
17102
17103 @item -mshared
17104 @itemx -mno-shared
17105 Generate (do not generate) code that is fully position-independent,
17106 and that can therefore be linked into shared libraries. This option
17107 only affects @option{-mabicalls}.
17108
17109 All @option{-mabicalls} code has traditionally been position-independent,
17110 regardless of options like @option{-fPIC} and @option{-fpic}. However,
17111 as an extension, the GNU toolchain allows executables to use absolute
17112 accesses for locally-binding symbols. It can also use shorter GP
17113 initialization sequences and generate direct calls to locally-defined
17114 functions. This mode is selected by @option{-mno-shared}.
17115
17116 @option{-mno-shared} depends on binutils 2.16 or higher and generates
17117 objects that can only be linked by the GNU linker. However, the option
17118 does not affect the ABI of the final executable; it only affects the ABI
17119 of relocatable objects. Using @option{-mno-shared} generally makes
17120 executables both smaller and quicker.
17121
17122 @option{-mshared} is the default.
17123
17124 @item -mplt
17125 @itemx -mno-plt
17126 @opindex mplt
17127 @opindex mno-plt
17128 Assume (do not assume) that the static and dynamic linkers
17129 support PLTs and copy relocations. This option only affects
17130 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
17131 has no effect without @option{-msym32}.
17132
17133 You can make @option{-mplt} the default by configuring
17134 GCC with @option{--with-mips-plt}. The default is
17135 @option{-mno-plt} otherwise.
17136
17137 @item -mxgot
17138 @itemx -mno-xgot
17139 @opindex mxgot
17140 @opindex mno-xgot
17141 Lift (do not lift) the usual restrictions on the size of the global
17142 offset table.
17143
17144 GCC normally uses a single instruction to load values from the GOT@.
17145 While this is relatively efficient, it only works if the GOT
17146 is smaller than about 64k. Anything larger causes the linker
17147 to report an error such as:
17148
17149 @cindex relocation truncated to fit (MIPS)
17150 @smallexample
17151 relocation truncated to fit: R_MIPS_GOT16 foobar
17152 @end smallexample
17153
17154 If this happens, you should recompile your code with @option{-mxgot}.
17155 This works with very large GOTs, although the code is also
17156 less efficient, since it takes three instructions to fetch the
17157 value of a global symbol.
17158
17159 Note that some linkers can create multiple GOTs. If you have such a
17160 linker, you should only need to use @option{-mxgot} when a single object
17161 file accesses more than 64k's worth of GOT entries. Very few do.
17162
17163 These options have no effect unless GCC is generating position
17164 independent code.
17165
17166 @item -mgp32
17167 @opindex mgp32
17168 Assume that general-purpose registers are 32 bits wide.
17169
17170 @item -mgp64
17171 @opindex mgp64
17172 Assume that general-purpose registers are 64 bits wide.
17173
17174 @item -mfp32
17175 @opindex mfp32
17176 Assume that floating-point registers are 32 bits wide.
17177
17178 @item -mfp64
17179 @opindex mfp64
17180 Assume that floating-point registers are 64 bits wide.
17181
17182 @item -mfpxx
17183 @opindex mfpxx
17184 Do not assume the width of floating-point registers.
17185
17186 @item -mhard-float
17187 @opindex mhard-float
17188 Use floating-point coprocessor instructions.
17189
17190 @item -msoft-float
17191 @opindex msoft-float
17192 Do not use floating-point coprocessor instructions. Implement
17193 floating-point calculations using library calls instead.
17194
17195 @item -mno-float
17196 @opindex mno-float
17197 Equivalent to @option{-msoft-float}, but additionally asserts that the
17198 program being compiled does not perform any floating-point operations.
17199 This option is presently supported only by some bare-metal MIPS
17200 configurations, where it may select a special set of libraries
17201 that lack all floating-point support (including, for example, the
17202 floating-point @code{printf} formats).
17203 If code compiled with @option{-mno-float} accidentally contains
17204 floating-point operations, it is likely to suffer a link-time
17205 or run-time failure.
17206
17207 @item -msingle-float
17208 @opindex msingle-float
17209 Assume that the floating-point coprocessor only supports single-precision
17210 operations.
17211
17212 @item -mdouble-float
17213 @opindex mdouble-float
17214 Assume that the floating-point coprocessor supports double-precision
17215 operations. This is the default.
17216
17217 @item -modd-spreg
17218 @itemx -mno-odd-spreg
17219 @opindex modd-spreg
17220 @opindex mno-odd-spreg
17221 Enable the use of odd-numbered single-precision floating-point registers
17222 for the o32 ABI. This is the default for processors that are known to
17223 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17224 is set by default.
17225
17226 @item -mabs=2008
17227 @itemx -mabs=legacy
17228 @opindex mabs=2008
17229 @opindex mabs=legacy
17230 These options control the treatment of the special not-a-number (NaN)
17231 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17232 @code{neg.@i{fmt}} machine instructions.
17233
17234 By default or when @option{-mabs=legacy} is used the legacy
17235 treatment is selected. In this case these instructions are considered
17236 arithmetic and avoided where correct operation is required and the
17237 input operand might be a NaN. A longer sequence of instructions that
17238 manipulate the sign bit of floating-point datum manually is used
17239 instead unless the @option{-ffinite-math-only} option has also been
17240 specified.
17241
17242 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
17243 this case these instructions are considered non-arithmetic and therefore
17244 operating correctly in all cases, including in particular where the
17245 input operand is a NaN. These instructions are therefore always used
17246 for the respective operations.
17247
17248 @item -mnan=2008
17249 @itemx -mnan=legacy
17250 @opindex mnan=2008
17251 @opindex mnan=legacy
17252 These options control the encoding of the special not-a-number (NaN)
17253 IEEE 754 floating-point data.
17254
17255 The @option{-mnan=legacy} option selects the legacy encoding. In this
17256 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17257 significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17258 by the first bit of their trailing significand field being 1.
17259
17260 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
17261 this case qNaNs are denoted by the first bit of their trailing
17262 significand field being 1, whereas sNaNs are denoted by the first bit of
17263 their trailing significand field being 0.
17264
17265 The default is @option{-mnan=legacy} unless GCC has been configured with
17266 @option{--with-nan=2008}.
17267
17268 @item -mllsc
17269 @itemx -mno-llsc
17270 @opindex mllsc
17271 @opindex mno-llsc
17272 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17273 implement atomic memory built-in functions. When neither option is
17274 specified, GCC uses the instructions if the target architecture
17275 supports them.
17276
17277 @option{-mllsc} is useful if the runtime environment can emulate the
17278 instructions and @option{-mno-llsc} can be useful when compiling for
17279 nonstandard ISAs. You can make either option the default by
17280 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17281 respectively. @option{--with-llsc} is the default for some
17282 configurations; see the installation documentation for details.
17283
17284 @item -mdsp
17285 @itemx -mno-dsp
17286 @opindex mdsp
17287 @opindex mno-dsp
17288 Use (do not use) revision 1 of the MIPS DSP ASE@.
17289 @xref{MIPS DSP Built-in Functions}. This option defines the
17290 preprocessor macro @code{__mips_dsp}. It also defines
17291 @code{__mips_dsp_rev} to 1.
17292
17293 @item -mdspr2
17294 @itemx -mno-dspr2
17295 @opindex mdspr2
17296 @opindex mno-dspr2
17297 Use (do not use) revision 2 of the MIPS DSP ASE@.
17298 @xref{MIPS DSP Built-in Functions}. This option defines the
17299 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17300 It also defines @code{__mips_dsp_rev} to 2.
17301
17302 @item -msmartmips
17303 @itemx -mno-smartmips
17304 @opindex msmartmips
17305 @opindex mno-smartmips
17306 Use (do not use) the MIPS SmartMIPS ASE.
17307
17308 @item -mpaired-single
17309 @itemx -mno-paired-single
17310 @opindex mpaired-single
17311 @opindex mno-paired-single
17312 Use (do not use) paired-single floating-point instructions.
17313 @xref{MIPS Paired-Single Support}. This option requires
17314 hardware floating-point support to be enabled.
17315
17316 @item -mdmx
17317 @itemx -mno-mdmx
17318 @opindex mdmx
17319 @opindex mno-mdmx
17320 Use (do not use) MIPS Digital Media Extension instructions.
17321 This option can only be used when generating 64-bit code and requires
17322 hardware floating-point support to be enabled.
17323
17324 @item -mips3d
17325 @itemx -mno-mips3d
17326 @opindex mips3d
17327 @opindex mno-mips3d
17328 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
17329 The option @option{-mips3d} implies @option{-mpaired-single}.
17330
17331 @item -mmicromips
17332 @itemx -mno-micromips
17333 @opindex mmicromips
17334 @opindex mno-mmicromips
17335 Generate (do not generate) microMIPS code.
17336
17337 MicroMIPS code generation can also be controlled on a per-function basis
17338 by means of @code{micromips} and @code{nomicromips} attributes.
17339 @xref{Function Attributes}, for more information.
17340
17341 @item -mmt
17342 @itemx -mno-mt
17343 @opindex mmt
17344 @opindex mno-mt
17345 Use (do not use) MT Multithreading instructions.
17346
17347 @item -mmcu
17348 @itemx -mno-mcu
17349 @opindex mmcu
17350 @opindex mno-mcu
17351 Use (do not use) the MIPS MCU ASE instructions.
17352
17353 @item -meva
17354 @itemx -mno-eva
17355 @opindex meva
17356 @opindex mno-eva
17357 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17358
17359 @item -mvirt
17360 @itemx -mno-virt
17361 @opindex mvirt
17362 @opindex mno-virt
17363 Use (do not use) the MIPS Virtualization Application Specific instructions.
17364
17365 @item -mxpa
17366 @itemx -mno-xpa
17367 @opindex mxpa
17368 @opindex mno-xpa
17369 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17370
17371 @item -mlong64
17372 @opindex mlong64
17373 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
17374 an explanation of the default and the way that the pointer size is
17375 determined.
17376
17377 @item -mlong32
17378 @opindex mlong32
17379 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17380
17381 The default size of @code{int}s, @code{long}s and pointers depends on
17382 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
17383 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
17384 32-bit @code{long}s. Pointers are the same size as @code{long}s,
17385 or the same size as integer registers, whichever is smaller.
17386
17387 @item -msym32
17388 @itemx -mno-sym32
17389 @opindex msym32
17390 @opindex mno-sym32
17391 Assume (do not assume) that all symbols have 32-bit values, regardless
17392 of the selected ABI@. This option is useful in combination with
17393 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17394 to generate shorter and faster references to symbolic addresses.
17395
17396 @item -G @var{num}
17397 @opindex G
17398 Put definitions of externally-visible data in a small data section
17399 if that data is no bigger than @var{num} bytes. GCC can then generate
17400 more efficient accesses to the data; see @option{-mgpopt} for details.
17401
17402 The default @option{-G} option depends on the configuration.
17403
17404 @item -mlocal-sdata
17405 @itemx -mno-local-sdata
17406 @opindex mlocal-sdata
17407 @opindex mno-local-sdata
17408 Extend (do not extend) the @option{-G} behavior to local data too,
17409 such as to static variables in C@. @option{-mlocal-sdata} is the
17410 default for all configurations.
17411
17412 If the linker complains that an application is using too much small data,
17413 you might want to try rebuilding the less performance-critical parts with
17414 @option{-mno-local-sdata}. You might also want to build large
17415 libraries with @option{-mno-local-sdata}, so that the libraries leave
17416 more room for the main program.
17417
17418 @item -mextern-sdata
17419 @itemx -mno-extern-sdata
17420 @opindex mextern-sdata
17421 @opindex mno-extern-sdata
17422 Assume (do not assume) that externally-defined data is in
17423 a small data section if the size of that data is within the @option{-G} limit.
17424 @option{-mextern-sdata} is the default for all configurations.
17425
17426 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17427 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17428 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17429 is placed in a small data section. If @var{Var} is defined by another
17430 module, you must either compile that module with a high-enough
17431 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17432 definition. If @var{Var} is common, you must link the application
17433 with a high-enough @option{-G} setting.
17434
17435 The easiest way of satisfying these restrictions is to compile
17436 and link every module with the same @option{-G} option. However,
17437 you may wish to build a library that supports several different
17438 small data limits. You can do this by compiling the library with
17439 the highest supported @option{-G} setting and additionally using
17440 @option{-mno-extern-sdata} to stop the library from making assumptions
17441 about externally-defined data.
17442
17443 @item -mgpopt
17444 @itemx -mno-gpopt
17445 @opindex mgpopt
17446 @opindex mno-gpopt
17447 Use (do not use) GP-relative accesses for symbols that are known to be
17448 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17449 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
17450 configurations.
17451
17452 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
17453 might not hold the value of @code{_gp}. For example, if the code is
17454 part of a library that might be used in a boot monitor, programs that
17455 call boot monitor routines pass an unknown value in @code{$gp}.
17456 (In such situations, the boot monitor itself is usually compiled
17457 with @option{-G0}.)
17458
17459 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
17460 @option{-mno-extern-sdata}.
17461
17462 @item -membedded-data
17463 @itemx -mno-embedded-data
17464 @opindex membedded-data
17465 @opindex mno-embedded-data
17466 Allocate variables to the read-only data section first if possible, then
17467 next in the small data section if possible, otherwise in data. This gives
17468 slightly slower code than the default, but reduces the amount of RAM required
17469 when executing, and thus may be preferred for some embedded systems.
17470
17471 @item -muninit-const-in-rodata
17472 @itemx -mno-uninit-const-in-rodata
17473 @opindex muninit-const-in-rodata
17474 @opindex mno-uninit-const-in-rodata
17475 Put uninitialized @code{const} variables in the read-only data section.
17476 This option is only meaningful in conjunction with @option{-membedded-data}.
17477
17478 @item -mcode-readable=@var{setting}
17479 @opindex mcode-readable
17480 Specify whether GCC may generate code that reads from executable sections.
17481 There are three possible settings:
17482
17483 @table @gcctabopt
17484 @item -mcode-readable=yes
17485 Instructions may freely access executable sections. This is the
17486 default setting.
17487
17488 @item -mcode-readable=pcrel
17489 MIPS16 PC-relative load instructions can access executable sections,
17490 but other instructions must not do so. This option is useful on 4KSc
17491 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17492 It is also useful on processors that can be configured to have a dual
17493 instruction/data SRAM interface and that, like the M4K, automatically
17494 redirect PC-relative loads to the instruction RAM.
17495
17496 @item -mcode-readable=no
17497 Instructions must not access executable sections. This option can be
17498 useful on targets that are configured to have a dual instruction/data
17499 SRAM interface but that (unlike the M4K) do not automatically redirect
17500 PC-relative loads to the instruction RAM.
17501 @end table
17502
17503 @item -msplit-addresses
17504 @itemx -mno-split-addresses
17505 @opindex msplit-addresses
17506 @opindex mno-split-addresses
17507 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17508 relocation operators. This option has been superseded by
17509 @option{-mexplicit-relocs} but is retained for backwards compatibility.
17510
17511 @item -mexplicit-relocs
17512 @itemx -mno-explicit-relocs
17513 @opindex mexplicit-relocs
17514 @opindex mno-explicit-relocs
17515 Use (do not use) assembler relocation operators when dealing with symbolic
17516 addresses. The alternative, selected by @option{-mno-explicit-relocs},
17517 is to use assembler macros instead.
17518
17519 @option{-mexplicit-relocs} is the default if GCC was configured
17520 to use an assembler that supports relocation operators.
17521
17522 @item -mcheck-zero-division
17523 @itemx -mno-check-zero-division
17524 @opindex mcheck-zero-division
17525 @opindex mno-check-zero-division
17526 Trap (do not trap) on integer division by zero.
17527
17528 The default is @option{-mcheck-zero-division}.
17529
17530 @item -mdivide-traps
17531 @itemx -mdivide-breaks
17532 @opindex mdivide-traps
17533 @opindex mdivide-breaks
17534 MIPS systems check for division by zero by generating either a
17535 conditional trap or a break instruction. Using traps results in
17536 smaller code, but is only supported on MIPS II and later. Also, some
17537 versions of the Linux kernel have a bug that prevents trap from
17538 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
17539 allow conditional traps on architectures that support them and
17540 @option{-mdivide-breaks} to force the use of breaks.
17541
17542 The default is usually @option{-mdivide-traps}, but this can be
17543 overridden at configure time using @option{--with-divide=breaks}.
17544 Divide-by-zero checks can be completely disabled using
17545 @option{-mno-check-zero-division}.
17546
17547 @item -mmemcpy
17548 @itemx -mno-memcpy
17549 @opindex mmemcpy
17550 @opindex mno-memcpy
17551 Force (do not force) the use of @code{memcpy} for non-trivial block
17552 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
17553 most constant-sized copies.
17554
17555 @item -mlong-calls
17556 @itemx -mno-long-calls
17557 @opindex mlong-calls
17558 @opindex mno-long-calls
17559 Disable (do not disable) use of the @code{jal} instruction. Calling
17560 functions using @code{jal} is more efficient but requires the caller
17561 and callee to be in the same 256 megabyte segment.
17562
17563 This option has no effect on abicalls code. The default is
17564 @option{-mno-long-calls}.
17565
17566 @item -mmad
17567 @itemx -mno-mad
17568 @opindex mmad
17569 @opindex mno-mad
17570 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17571 instructions, as provided by the R4650 ISA@.
17572
17573 @item -mimadd
17574 @itemx -mno-imadd
17575 @opindex mimadd
17576 @opindex mno-imadd
17577 Enable (disable) use of the @code{madd} and @code{msub} integer
17578 instructions. The default is @option{-mimadd} on architectures
17579 that support @code{madd} and @code{msub} except for the 74k
17580 architecture where it was found to generate slower code.
17581
17582 @item -mfused-madd
17583 @itemx -mno-fused-madd
17584 @opindex mfused-madd
17585 @opindex mno-fused-madd
17586 Enable (disable) use of the floating-point multiply-accumulate
17587 instructions, when they are available. The default is
17588 @option{-mfused-madd}.
17589
17590 On the R8000 CPU when multiply-accumulate instructions are used,
17591 the intermediate product is calculated to infinite precision
17592 and is not subject to the FCSR Flush to Zero bit. This may be
17593 undesirable in some circumstances. On other processors the result
17594 is numerically identical to the equivalent computation using
17595 separate multiply, add, subtract and negate instructions.
17596
17597 @item -nocpp
17598 @opindex nocpp
17599 Tell the MIPS assembler to not run its preprocessor over user
17600 assembler files (with a @samp{.s} suffix) when assembling them.
17601
17602 @item -mfix-24k
17603 @item -mno-fix-24k
17604 @opindex mfix-24k
17605 @opindex mno-fix-24k
17606 Work around the 24K E48 (lost data on stores during refill) errata.
17607 The workarounds are implemented by the assembler rather than by GCC@.
17608
17609 @item -mfix-r4000
17610 @itemx -mno-fix-r4000
17611 @opindex mfix-r4000
17612 @opindex mno-fix-r4000
17613 Work around certain R4000 CPU errata:
17614 @itemize @minus
17615 @item
17616 A double-word or a variable shift may give an incorrect result if executed
17617 immediately after starting an integer division.
17618 @item
17619 A double-word or a variable shift may give an incorrect result if executed
17620 while an integer multiplication is in progress.
17621 @item
17622 An integer division may give an incorrect result if started in a delay slot
17623 of a taken branch or a jump.
17624 @end itemize
17625
17626 @item -mfix-r4400
17627 @itemx -mno-fix-r4400
17628 @opindex mfix-r4400
17629 @opindex mno-fix-r4400
17630 Work around certain R4400 CPU errata:
17631 @itemize @minus
17632 @item
17633 A double-word or a variable shift may give an incorrect result if executed
17634 immediately after starting an integer division.
17635 @end itemize
17636
17637 @item -mfix-r10000
17638 @itemx -mno-fix-r10000
17639 @opindex mfix-r10000
17640 @opindex mno-fix-r10000
17641 Work around certain R10000 errata:
17642 @itemize @minus
17643 @item
17644 @code{ll}/@code{sc} sequences may not behave atomically on revisions
17645 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
17646 @end itemize
17647
17648 This option can only be used if the target architecture supports
17649 branch-likely instructions. @option{-mfix-r10000} is the default when
17650 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
17651 otherwise.
17652
17653 @item -mfix-rm7000
17654 @itemx -mno-fix-rm7000
17655 @opindex mfix-rm7000
17656 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
17657 workarounds are implemented by the assembler rather than by GCC@.
17658
17659 @item -mfix-vr4120
17660 @itemx -mno-fix-vr4120
17661 @opindex mfix-vr4120
17662 Work around certain VR4120 errata:
17663 @itemize @minus
17664 @item
17665 @code{dmultu} does not always produce the correct result.
17666 @item
17667 @code{div} and @code{ddiv} do not always produce the correct result if one
17668 of the operands is negative.
17669 @end itemize
17670 The workarounds for the division errata rely on special functions in
17671 @file{libgcc.a}. At present, these functions are only provided by
17672 the @code{mips64vr*-elf} configurations.
17673
17674 Other VR4120 errata require a NOP to be inserted between certain pairs of
17675 instructions. These errata are handled by the assembler, not by GCC itself.
17676
17677 @item -mfix-vr4130
17678 @opindex mfix-vr4130
17679 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
17680 workarounds are implemented by the assembler rather than by GCC,
17681 although GCC avoids using @code{mflo} and @code{mfhi} if the
17682 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
17683 instructions are available instead.
17684
17685 @item -mfix-sb1
17686 @itemx -mno-fix-sb1
17687 @opindex mfix-sb1
17688 Work around certain SB-1 CPU core errata.
17689 (This flag currently works around the SB-1 revision 2
17690 ``F1'' and ``F2'' floating-point errata.)
17691
17692 @item -mr10k-cache-barrier=@var{setting}
17693 @opindex mr10k-cache-barrier
17694 Specify whether GCC should insert cache barriers to avoid the
17695 side-effects of speculation on R10K processors.
17696
17697 In common with many processors, the R10K tries to predict the outcome
17698 of a conditional branch and speculatively executes instructions from
17699 the ``taken'' branch. It later aborts these instructions if the
17700 predicted outcome is wrong. However, on the R10K, even aborted
17701 instructions can have side effects.
17702
17703 This problem only affects kernel stores and, depending on the system,
17704 kernel loads. As an example, a speculatively-executed store may load
17705 the target memory into cache and mark the cache line as dirty, even if
17706 the store itself is later aborted. If a DMA operation writes to the
17707 same area of memory before the ``dirty'' line is flushed, the cached
17708 data overwrites the DMA-ed data. See the R10K processor manual
17709 for a full description, including other potential problems.
17710
17711 One workaround is to insert cache barrier instructions before every memory
17712 access that might be speculatively executed and that might have side
17713 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
17714 controls GCC's implementation of this workaround. It assumes that
17715 aborted accesses to any byte in the following regions does not have
17716 side effects:
17717
17718 @enumerate
17719 @item
17720 the memory occupied by the current function's stack frame;
17721
17722 @item
17723 the memory occupied by an incoming stack argument;
17724
17725 @item
17726 the memory occupied by an object with a link-time-constant address.
17727 @end enumerate
17728
17729 It is the kernel's responsibility to ensure that speculative
17730 accesses to these regions are indeed safe.
17731
17732 If the input program contains a function declaration such as:
17733
17734 @smallexample
17735 void foo (void);
17736 @end smallexample
17737
17738 then the implementation of @code{foo} must allow @code{j foo} and
17739 @code{jal foo} to be executed speculatively. GCC honors this
17740 restriction for functions it compiles itself. It expects non-GCC
17741 functions (such as hand-written assembly code) to do the same.
17742
17743 The option has three forms:
17744
17745 @table @gcctabopt
17746 @item -mr10k-cache-barrier=load-store
17747 Insert a cache barrier before a load or store that might be
17748 speculatively executed and that might have side effects even
17749 if aborted.
17750
17751 @item -mr10k-cache-barrier=store
17752 Insert a cache barrier before a store that might be speculatively
17753 executed and that might have side effects even if aborted.
17754
17755 @item -mr10k-cache-barrier=none
17756 Disable the insertion of cache barriers. This is the default setting.
17757 @end table
17758
17759 @item -mflush-func=@var{func}
17760 @itemx -mno-flush-func
17761 @opindex mflush-func
17762 Specifies the function to call to flush the I and D caches, or to not
17763 call any such function. If called, the function must take the same
17764 arguments as the common @code{_flush_func}, that is, the address of the
17765 memory range for which the cache is being flushed, the size of the
17766 memory range, and the number 3 (to flush both caches). The default
17767 depends on the target GCC was configured for, but commonly is either
17768 @code{_flush_func} or @code{__cpu_flush}.
17769
17770 @item mbranch-cost=@var{num}
17771 @opindex mbranch-cost
17772 Set the cost of branches to roughly @var{num} ``simple'' instructions.
17773 This cost is only a heuristic and is not guaranteed to produce
17774 consistent results across releases. A zero cost redundantly selects
17775 the default, which is based on the @option{-mtune} setting.
17776
17777 @item -mbranch-likely
17778 @itemx -mno-branch-likely
17779 @opindex mbranch-likely
17780 @opindex mno-branch-likely
17781 Enable or disable use of Branch Likely instructions, regardless of the
17782 default for the selected architecture. By default, Branch Likely
17783 instructions may be generated if they are supported by the selected
17784 architecture. An exception is for the MIPS32 and MIPS64 architectures
17785 and processors that implement those architectures; for those, Branch
17786 Likely instructions are not be generated by default because the MIPS32
17787 and MIPS64 architectures specifically deprecate their use.
17788
17789 @item -mfp-exceptions
17790 @itemx -mno-fp-exceptions
17791 @opindex mfp-exceptions
17792 Specifies whether FP exceptions are enabled. This affects how
17793 FP instructions are scheduled for some processors.
17794 The default is that FP exceptions are
17795 enabled.
17796
17797 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
17798 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
17799 FP pipe.
17800
17801 @item -mvr4130-align
17802 @itemx -mno-vr4130-align
17803 @opindex mvr4130-align
17804 The VR4130 pipeline is two-way superscalar, but can only issue two
17805 instructions together if the first one is 8-byte aligned. When this
17806 option is enabled, GCC aligns pairs of instructions that it
17807 thinks should execute in parallel.
17808
17809 This option only has an effect when optimizing for the VR4130.
17810 It normally makes code faster, but at the expense of making it bigger.
17811 It is enabled by default at optimization level @option{-O3}.
17812
17813 @item -msynci
17814 @itemx -mno-synci
17815 @opindex msynci
17816 Enable (disable) generation of @code{synci} instructions on
17817 architectures that support it. The @code{synci} instructions (if
17818 enabled) are generated when @code{__builtin___clear_cache} is
17819 compiled.
17820
17821 This option defaults to @option{-mno-synci}, but the default can be
17822 overridden by configuring GCC with @option{--with-synci}.
17823
17824 When compiling code for single processor systems, it is generally safe
17825 to use @code{synci}. However, on many multi-core (SMP) systems, it
17826 does not invalidate the instruction caches on all cores and may lead
17827 to undefined behavior.
17828
17829 @item -mrelax-pic-calls
17830 @itemx -mno-relax-pic-calls
17831 @opindex mrelax-pic-calls
17832 Try to turn PIC calls that are normally dispatched via register
17833 @code{$25} into direct calls. This is only possible if the linker can
17834 resolve the destination at link-time and if the destination is within
17835 range for a direct call.
17836
17837 @option{-mrelax-pic-calls} is the default if GCC was configured to use
17838 an assembler and a linker that support the @code{.reloc} assembly
17839 directive and @option{-mexplicit-relocs} is in effect. With
17840 @option{-mno-explicit-relocs}, this optimization can be performed by the
17841 assembler and the linker alone without help from the compiler.
17842
17843 @item -mmcount-ra-address
17844 @itemx -mno-mcount-ra-address
17845 @opindex mmcount-ra-address
17846 @opindex mno-mcount-ra-address
17847 Emit (do not emit) code that allows @code{_mcount} to modify the
17848 calling function's return address. When enabled, this option extends
17849 the usual @code{_mcount} interface with a new @var{ra-address}
17850 parameter, which has type @code{intptr_t *} and is passed in register
17851 @code{$12}. @code{_mcount} can then modify the return address by
17852 doing both of the following:
17853 @itemize
17854 @item
17855 Returning the new address in register @code{$31}.
17856 @item
17857 Storing the new address in @code{*@var{ra-address}},
17858 if @var{ra-address} is nonnull.
17859 @end itemize
17860
17861 The default is @option{-mno-mcount-ra-address}.
17862
17863 @end table
17864
17865 @node MMIX Options
17866 @subsection MMIX Options
17867 @cindex MMIX Options
17868
17869 These options are defined for the MMIX:
17870
17871 @table @gcctabopt
17872 @item -mlibfuncs
17873 @itemx -mno-libfuncs
17874 @opindex mlibfuncs
17875 @opindex mno-libfuncs
17876 Specify that intrinsic library functions are being compiled, passing all
17877 values in registers, no matter the size.
17878
17879 @item -mepsilon
17880 @itemx -mno-epsilon
17881 @opindex mepsilon
17882 @opindex mno-epsilon
17883 Generate floating-point comparison instructions that compare with respect
17884 to the @code{rE} epsilon register.
17885
17886 @item -mabi=mmixware
17887 @itemx -mabi=gnu
17888 @opindex mabi=mmixware
17889 @opindex mabi=gnu
17890 Generate code that passes function parameters and return values that (in
17891 the called function) are seen as registers @code{$0} and up, as opposed to
17892 the GNU ABI which uses global registers @code{$231} and up.
17893
17894 @item -mzero-extend
17895 @itemx -mno-zero-extend
17896 @opindex mzero-extend
17897 @opindex mno-zero-extend
17898 When reading data from memory in sizes shorter than 64 bits, use (do not
17899 use) zero-extending load instructions by default, rather than
17900 sign-extending ones.
17901
17902 @item -mknuthdiv
17903 @itemx -mno-knuthdiv
17904 @opindex mknuthdiv
17905 @opindex mno-knuthdiv
17906 Make the result of a division yielding a remainder have the same sign as
17907 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
17908 remainder follows the sign of the dividend. Both methods are
17909 arithmetically valid, the latter being almost exclusively used.
17910
17911 @item -mtoplevel-symbols
17912 @itemx -mno-toplevel-symbols
17913 @opindex mtoplevel-symbols
17914 @opindex mno-toplevel-symbols
17915 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
17916 code can be used with the @code{PREFIX} assembly directive.
17917
17918 @item -melf
17919 @opindex melf
17920 Generate an executable in the ELF format, rather than the default
17921 @samp{mmo} format used by the @command{mmix} simulator.
17922
17923 @item -mbranch-predict
17924 @itemx -mno-branch-predict
17925 @opindex mbranch-predict
17926 @opindex mno-branch-predict
17927 Use (do not use) the probable-branch instructions, when static branch
17928 prediction indicates a probable branch.
17929
17930 @item -mbase-addresses
17931 @itemx -mno-base-addresses
17932 @opindex mbase-addresses
17933 @opindex mno-base-addresses
17934 Generate (do not generate) code that uses @emph{base addresses}. Using a
17935 base address automatically generates a request (handled by the assembler
17936 and the linker) for a constant to be set up in a global register. The
17937 register is used for one or more base address requests within the range 0
17938 to 255 from the value held in the register. The generally leads to short
17939 and fast code, but the number of different data items that can be
17940 addressed is limited. This means that a program that uses lots of static
17941 data may require @option{-mno-base-addresses}.
17942
17943 @item -msingle-exit
17944 @itemx -mno-single-exit
17945 @opindex msingle-exit
17946 @opindex mno-single-exit
17947 Force (do not force) generated code to have a single exit point in each
17948 function.
17949 @end table
17950
17951 @node MN10300 Options
17952 @subsection MN10300 Options
17953 @cindex MN10300 options
17954
17955 These @option{-m} options are defined for Matsushita MN10300 architectures:
17956
17957 @table @gcctabopt
17958 @item -mmult-bug
17959 @opindex mmult-bug
17960 Generate code to avoid bugs in the multiply instructions for the MN10300
17961 processors. This is the default.
17962
17963 @item -mno-mult-bug
17964 @opindex mno-mult-bug
17965 Do not generate code to avoid bugs in the multiply instructions for the
17966 MN10300 processors.
17967
17968 @item -mam33
17969 @opindex mam33
17970 Generate code using features specific to the AM33 processor.
17971
17972 @item -mno-am33
17973 @opindex mno-am33
17974 Do not generate code using features specific to the AM33 processor. This
17975 is the default.
17976
17977 @item -mam33-2
17978 @opindex mam33-2
17979 Generate code using features specific to the AM33/2.0 processor.
17980
17981 @item -mam34
17982 @opindex mam34
17983 Generate code using features specific to the AM34 processor.
17984
17985 @item -mtune=@var{cpu-type}
17986 @opindex mtune
17987 Use the timing characteristics of the indicated CPU type when
17988 scheduling instructions. This does not change the targeted processor
17989 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
17990 @samp{am33-2} or @samp{am34}.
17991
17992 @item -mreturn-pointer-on-d0
17993 @opindex mreturn-pointer-on-d0
17994 When generating a function that returns a pointer, return the pointer
17995 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
17996 only in @code{a0}, and attempts to call such functions without a prototype
17997 result in errors. Note that this option is on by default; use
17998 @option{-mno-return-pointer-on-d0} to disable it.
17999
18000 @item -mno-crt0
18001 @opindex mno-crt0
18002 Do not link in the C run-time initialization object file.
18003
18004 @item -mrelax
18005 @opindex mrelax
18006 Indicate to the linker that it should perform a relaxation optimization pass
18007 to shorten branches, calls and absolute memory addresses. This option only
18008 has an effect when used on the command line for the final link step.
18009
18010 This option makes symbolic debugging impossible.
18011
18012 @item -mliw
18013 @opindex mliw
18014 Allow the compiler to generate @emph{Long Instruction Word}
18015 instructions if the target is the @samp{AM33} or later. This is the
18016 default. This option defines the preprocessor macro @code{__LIW__}.
18017
18018 @item -mnoliw
18019 @opindex mnoliw
18020 Do not allow the compiler to generate @emph{Long Instruction Word}
18021 instructions. This option defines the preprocessor macro
18022 @code{__NO_LIW__}.
18023
18024 @item -msetlb
18025 @opindex msetlb
18026 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18027 instructions if the target is the @samp{AM33} or later. This is the
18028 default. This option defines the preprocessor macro @code{__SETLB__}.
18029
18030 @item -mnosetlb
18031 @opindex mnosetlb
18032 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18033 instructions. This option defines the preprocessor macro
18034 @code{__NO_SETLB__}.
18035
18036 @end table
18037
18038 @node Moxie Options
18039 @subsection Moxie Options
18040 @cindex Moxie Options
18041
18042 @table @gcctabopt
18043
18044 @item -meb
18045 @opindex meb
18046 Generate big-endian code. This is the default for @samp{moxie-*-*}
18047 configurations.
18048
18049 @item -mel
18050 @opindex mel
18051 Generate little-endian code.
18052
18053 @item -mmul.x
18054 @opindex mmul.x
18055 Generate mul.x and umul.x instructions. This is the default for
18056 @samp{moxiebox-*-*} configurations.
18057
18058 @item -mno-crt0
18059 @opindex mno-crt0
18060 Do not link in the C run-time initialization object file.
18061
18062 @end table
18063
18064 @node MSP430 Options
18065 @subsection MSP430 Options
18066 @cindex MSP430 Options
18067
18068 These options are defined for the MSP430:
18069
18070 @table @gcctabopt
18071
18072 @item -masm-hex
18073 @opindex masm-hex
18074 Force assembly output to always use hex constants. Normally such
18075 constants are signed decimals, but this option is available for
18076 testsuite and/or aesthetic purposes.
18077
18078 @item -mmcu=
18079 @opindex mmcu=
18080 Select the MCU to target. This is used to create a C preprocessor
18081 symbol based upon the MCU name, converted to upper case and pre- and
18082 post-fixed with @samp{__}. This in turn is used by the
18083 @file{msp430.h} header file to select an MCU-specific supplementary
18084 header file.
18085
18086 The option also sets the ISA to use. If the MCU name is one that is
18087 known to only support the 430 ISA then that is selected, otherwise the
18088 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
18089 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
18090 name selects the 430X ISA.
18091
18092 In addition an MCU-specific linker script is added to the linker
18093 command line. The script's name is the name of the MCU with
18094 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18095 command line defines the C preprocessor symbol @code{__XXX__} and
18096 cause the linker to search for a script called @file{xxx.ld}.
18097
18098 This option is also passed on to the assembler.
18099
18100 @item -mcpu=
18101 @opindex mcpu=
18102 Specifies the ISA to use. Accepted values are @samp{msp430},
18103 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
18104 @option{-mmcu=} option should be used to select the ISA.
18105
18106 @item -msim
18107 @opindex msim
18108 Link to the simulator runtime libraries and linker script. Overrides
18109 any scripts that would be selected by the @option{-mmcu=} option.
18110
18111 @item -mlarge
18112 @opindex mlarge
18113 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18114
18115 @item -msmall
18116 @opindex msmall
18117 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18118
18119 @item -mrelax
18120 @opindex mrelax
18121 This option is passed to the assembler and linker, and allows the
18122 linker to perform certain optimizations that cannot be done until
18123 the final link.
18124
18125 @item mhwmult=
18126 @opindex mhwmult=
18127 Describes the type of hardware multiply supported by the target.
18128 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18129 for the original 16-bit-only multiply supported by early MCUs.
18130 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18131 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18132 A value of @samp{auto} can also be given. This tells GCC to deduce
18133 the hardware multiply support based upon the MCU name provided by the
18134 @option{-mmcu} option. If no @option{-mmcu} option is specified then
18135 @samp{32bit} hardware multiply support is assumed. @samp{auto} is the
18136 default setting.
18137
18138 Hardware multiplies are normally performed by calling a library
18139 routine. This saves space in the generated code. When compiling at
18140 @option{-O3} or higher however the hardware multiplier is invoked
18141 inline. This makes for bigger, but faster code.
18142
18143 The hardware multiply routines disable interrupts whilst running and
18144 restore the previous interrupt state when they finish. This makes
18145 them safe to use inside interrupt handlers as well as in normal code.
18146
18147 @item -minrt
18148 @opindex minrt
18149 Enable the use of a minimum runtime environment - no static
18150 initializers or constructors. This is intended for memory-constrained
18151 devices. The compiler includes special symbols in some objects
18152 that tell the linker and runtime which code fragments are required.
18153
18154 @end table
18155
18156 @node NDS32 Options
18157 @subsection NDS32 Options
18158 @cindex NDS32 Options
18159
18160 These options are defined for NDS32 implementations:
18161
18162 @table @gcctabopt
18163
18164 @item -mbig-endian
18165 @opindex mbig-endian
18166 Generate code in big-endian mode.
18167
18168 @item -mlittle-endian
18169 @opindex mlittle-endian
18170 Generate code in little-endian mode.
18171
18172 @item -mreduced-regs
18173 @opindex mreduced-regs
18174 Use reduced-set registers for register allocation.
18175
18176 @item -mfull-regs
18177 @opindex mfull-regs
18178 Use full-set registers for register allocation.
18179
18180 @item -mcmov
18181 @opindex mcmov
18182 Generate conditional move instructions.
18183
18184 @item -mno-cmov
18185 @opindex mno-cmov
18186 Do not generate conditional move instructions.
18187
18188 @item -mperf-ext
18189 @opindex mperf-ext
18190 Generate performance extension instructions.
18191
18192 @item -mno-perf-ext
18193 @opindex mno-perf-ext
18194 Do not generate performance extension instructions.
18195
18196 @item -mv3push
18197 @opindex mv3push
18198 Generate v3 push25/pop25 instructions.
18199
18200 @item -mno-v3push
18201 @opindex mno-v3push
18202 Do not generate v3 push25/pop25 instructions.
18203
18204 @item -m16-bit
18205 @opindex m16-bit
18206 Generate 16-bit instructions.
18207
18208 @item -mno-16-bit
18209 @opindex mno-16-bit
18210 Do not generate 16-bit instructions.
18211
18212 @item -misr-vector-size=@var{num}
18213 @opindex misr-vector-size
18214 Specify the size of each interrupt vector, which must be 4 or 16.
18215
18216 @item -mcache-block-size=@var{num}
18217 @opindex mcache-block-size
18218 Specify the size of each cache block,
18219 which must be a power of 2 between 4 and 512.
18220
18221 @item -march=@var{arch}
18222 @opindex march
18223 Specify the name of the target architecture.
18224
18225 @item -mcmodel=@var{code-model}
18226 @opindex mcmodel
18227 Set the code model to one of
18228 @table @asis
18229 @item @samp{small}
18230 All the data and read-only data segments must be within 512KB addressing space.
18231 The text segment must be within 16MB addressing space.
18232 @item @samp{medium}
18233 The data segment must be within 512KB while the read-only data segment can be
18234 within 4GB addressing space. The text segment should be still within 16MB
18235 addressing space.
18236 @item @samp{large}
18237 All the text and data segments can be within 4GB addressing space.
18238 @end table
18239
18240 @item -mctor-dtor
18241 @opindex mctor-dtor
18242 Enable constructor/destructor feature.
18243
18244 @item -mrelax
18245 @opindex mrelax
18246 Guide linker to relax instructions.
18247
18248 @end table
18249
18250 @node Nios II Options
18251 @subsection Nios II Options
18252 @cindex Nios II options
18253 @cindex Altera Nios II options
18254
18255 These are the options defined for the Altera Nios II processor.
18256
18257 @table @gcctabopt
18258
18259 @item -G @var{num}
18260 @opindex G
18261 @cindex smaller data references
18262 Put global and static objects less than or equal to @var{num} bytes
18263 into the small data or BSS sections instead of the normal data or BSS
18264 sections. The default value of @var{num} is 8.
18265
18266 @item -mgpopt=@var{option}
18267 @item -mgpopt
18268 @itemx -mno-gpopt
18269 @opindex mgpopt
18270 @opindex mno-gpopt
18271 Generate (do not generate) GP-relative accesses. The following
18272 @var{option} names are recognized:
18273
18274 @table @samp
18275
18276 @item none
18277 Do not generate GP-relative accesses.
18278
18279 @item local
18280 Generate GP-relative accesses for small data objects that are not
18281 external or weak. Also use GP-relative addressing for objects that
18282 have been explicitly placed in a small data section via a @code{section}
18283 attribute.
18284
18285 @item global
18286 As for @samp{local}, but also generate GP-relative accesses for
18287 small data objects that are external or weak. If you use this option,
18288 you must ensure that all parts of your program (including libraries) are
18289 compiled with the same @option{-G} setting.
18290
18291 @item data
18292 Generate GP-relative accesses for all data objects in the program. If you
18293 use this option, the entire data and BSS segments
18294 of your program must fit in 64K of memory and you must use an appropriate
18295 linker script to allocate them within the addressible range of the
18296 global pointer.
18297
18298 @item all
18299 Generate GP-relative addresses for function pointers as well as data
18300 pointers. If you use this option, the entire text, data, and BSS segments
18301 of your program must fit in 64K of memory and you must use an appropriate
18302 linker script to allocate them within the addressible range of the
18303 global pointer.
18304
18305 @end table
18306
18307 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18308 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18309
18310 The default is @option{-mgpopt} except when @option{-fpic} or
18311 @option{-fPIC} is specified to generate position-independent code.
18312 Note that the Nios II ABI does not permit GP-relative accesses from
18313 shared libraries.
18314
18315 You may need to specify @option{-mno-gpopt} explicitly when building
18316 programs that include large amounts of small data, including large
18317 GOT data sections. In this case, the 16-bit offset for GP-relative
18318 addressing may not be large enough to allow access to the entire
18319 small data section.
18320
18321 @item -mel
18322 @itemx -meb
18323 @opindex mel
18324 @opindex meb
18325 Generate little-endian (default) or big-endian (experimental) code,
18326 respectively.
18327
18328 @item -mbypass-cache
18329 @itemx -mno-bypass-cache
18330 @opindex mno-bypass-cache
18331 @opindex mbypass-cache
18332 Force all load and store instructions to always bypass cache by
18333 using I/O variants of the instructions. The default is not to
18334 bypass the cache.
18335
18336 @item -mno-cache-volatile
18337 @itemx -mcache-volatile
18338 @opindex mcache-volatile
18339 @opindex mno-cache-volatile
18340 Volatile memory access bypass the cache using the I/O variants of
18341 the load and store instructions. The default is not to bypass the cache.
18342
18343 @item -mno-fast-sw-div
18344 @itemx -mfast-sw-div
18345 @opindex mno-fast-sw-div
18346 @opindex mfast-sw-div
18347 Do not use table-based fast divide for small numbers. The default
18348 is to use the fast divide at @option{-O3} and above.
18349
18350 @item -mno-hw-mul
18351 @itemx -mhw-mul
18352 @itemx -mno-hw-mulx
18353 @itemx -mhw-mulx
18354 @itemx -mno-hw-div
18355 @itemx -mhw-div
18356 @opindex mno-hw-mul
18357 @opindex mhw-mul
18358 @opindex mno-hw-mulx
18359 @opindex mhw-mulx
18360 @opindex mno-hw-div
18361 @opindex mhw-div
18362 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
18363 instructions by the compiler. The default is to emit @code{mul}
18364 and not emit @code{div} and @code{mulx}.
18365
18366 @item -mcustom-@var{insn}=@var{N}
18367 @itemx -mno-custom-@var{insn}
18368 @opindex mcustom-@var{insn}
18369 @opindex mno-custom-@var{insn}
18370 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18371 custom instruction with encoding @var{N} when generating code that uses
18372 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
18373 instruction 253 for single-precision floating-point add operations instead
18374 of the default behavior of using a library call.
18375
18376 The following values of @var{insn} are supported. Except as otherwise
18377 noted, floating-point operations are expected to be implemented with
18378 normal IEEE 754 semantics and correspond directly to the C operators or the
18379 equivalent GCC built-in functions (@pxref{Other Builtins}).
18380
18381 Single-precision floating point:
18382 @table @asis
18383
18384 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18385 Binary arithmetic operations.
18386
18387 @item @samp{fnegs}
18388 Unary negation.
18389
18390 @item @samp{fabss}
18391 Unary absolute value.
18392
18393 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18394 Comparison operations.
18395
18396 @item @samp{fmins}, @samp{fmaxs}
18397 Floating-point minimum and maximum. These instructions are only
18398 generated if @option{-ffinite-math-only} is specified.
18399
18400 @item @samp{fsqrts}
18401 Unary square root operation.
18402
18403 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18404 Floating-point trigonometric and exponential functions. These instructions
18405 are only generated if @option{-funsafe-math-optimizations} is also specified.
18406
18407 @end table
18408
18409 Double-precision floating point:
18410 @table @asis
18411
18412 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18413 Binary arithmetic operations.
18414
18415 @item @samp{fnegd}
18416 Unary negation.
18417
18418 @item @samp{fabsd}
18419 Unary absolute value.
18420
18421 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18422 Comparison operations.
18423
18424 @item @samp{fmind}, @samp{fmaxd}
18425 Double-precision minimum and maximum. These instructions are only
18426 generated if @option{-ffinite-math-only} is specified.
18427
18428 @item @samp{fsqrtd}
18429 Unary square root operation.
18430
18431 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18432 Double-precision trigonometric and exponential functions. These instructions
18433 are only generated if @option{-funsafe-math-optimizations} is also specified.
18434
18435 @end table
18436
18437 Conversions:
18438 @table @asis
18439 @item @samp{fextsd}
18440 Conversion from single precision to double precision.
18441
18442 @item @samp{ftruncds}
18443 Conversion from double precision to single precision.
18444
18445 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18446 Conversion from floating point to signed or unsigned integer types, with
18447 truncation towards zero.
18448
18449 @item @samp{round}
18450 Conversion from single-precision floating point to signed integer,
18451 rounding to the nearest integer and ties away from zero.
18452 This corresponds to the @code{__builtin_lroundf} function when
18453 @option{-fno-math-errno} is used.
18454
18455 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18456 Conversion from signed or unsigned integer types to floating-point types.
18457
18458 @end table
18459
18460 In addition, all of the following transfer instructions for internal
18461 registers X and Y must be provided to use any of the double-precision
18462 floating-point instructions. Custom instructions taking two
18463 double-precision source operands expect the first operand in the
18464 64-bit register X. The other operand (or only operand of a unary
18465 operation) is given to the custom arithmetic instruction with the
18466 least significant half in source register @var{src1} and the most
18467 significant half in @var{src2}. A custom instruction that returns a
18468 double-precision result returns the most significant 32 bits in the
18469 destination register and the other half in 32-bit register Y.
18470 GCC automatically generates the necessary code sequences to write
18471 register X and/or read register Y when double-precision floating-point
18472 instructions are used.
18473
18474 @table @asis
18475
18476 @item @samp{fwrx}
18477 Write @var{src1} into the least significant half of X and @var{src2} into
18478 the most significant half of X.
18479
18480 @item @samp{fwry}
18481 Write @var{src1} into Y.
18482
18483 @item @samp{frdxhi}, @samp{frdxlo}
18484 Read the most or least (respectively) significant half of X and store it in
18485 @var{dest}.
18486
18487 @item @samp{frdy}
18488 Read the value of Y and store it into @var{dest}.
18489 @end table
18490
18491 Note that you can gain more local control over generation of Nios II custom
18492 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18493 and @code{target("no-custom-@var{insn}")} function attributes
18494 (@pxref{Function Attributes})
18495 or pragmas (@pxref{Function Specific Option Pragmas}).
18496
18497 @item -mcustom-fpu-cfg=@var{name}
18498 @opindex mcustom-fpu-cfg
18499
18500 This option enables a predefined, named set of custom instruction encodings
18501 (see @option{-mcustom-@var{insn}} above).
18502 Currently, the following sets are defined:
18503
18504 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
18505 @gccoptlist{-mcustom-fmuls=252 @gol
18506 -mcustom-fadds=253 @gol
18507 -mcustom-fsubs=254 @gol
18508 -fsingle-precision-constant}
18509
18510 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
18511 @gccoptlist{-mcustom-fmuls=252 @gol
18512 -mcustom-fadds=253 @gol
18513 -mcustom-fsubs=254 @gol
18514 -mcustom-fdivs=255 @gol
18515 -fsingle-precision-constant}
18516
18517 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
18518 @gccoptlist{-mcustom-floatus=243 @gol
18519 -mcustom-fixsi=244 @gol
18520 -mcustom-floatis=245 @gol
18521 -mcustom-fcmpgts=246 @gol
18522 -mcustom-fcmples=249 @gol
18523 -mcustom-fcmpeqs=250 @gol
18524 -mcustom-fcmpnes=251 @gol
18525 -mcustom-fmuls=252 @gol
18526 -mcustom-fadds=253 @gol
18527 -mcustom-fsubs=254 @gol
18528 -mcustom-fdivs=255 @gol
18529 -fsingle-precision-constant}
18530
18531 Custom instruction assignments given by individual
18532 @option{-mcustom-@var{insn}=} options override those given by
18533 @option{-mcustom-fpu-cfg=}, regardless of the
18534 order of the options on the command line.
18535
18536 Note that you can gain more local control over selection of a FPU
18537 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
18538 function attribute (@pxref{Function Attributes})
18539 or pragma (@pxref{Function Specific Option Pragmas}).
18540
18541 @end table
18542
18543 These additional @samp{-m} options are available for the Altera Nios II
18544 ELF (bare-metal) target:
18545
18546 @table @gcctabopt
18547
18548 @item -mhal
18549 @opindex mhal
18550 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
18551 startup and termination code, and is typically used in conjunction with
18552 @option{-msys-crt0=} to specify the location of the alternate startup code
18553 provided by the HAL BSP.
18554
18555 @item -msmallc
18556 @opindex msmallc
18557 Link with a limited version of the C library, @option{-lsmallc}, rather than
18558 Newlib.
18559
18560 @item -msys-crt0=@var{startfile}
18561 @opindex msys-crt0
18562 @var{startfile} is the file name of the startfile (crt0) to use
18563 when linking. This option is only useful in conjunction with @option{-mhal}.
18564
18565 @item -msys-lib=@var{systemlib}
18566 @opindex msys-lib
18567 @var{systemlib} is the library name of the library that provides
18568 low-level system calls required by the C library,
18569 e.g. @code{read} and @code{write}.
18570 This option is typically used to link with a library provided by a HAL BSP.
18571
18572 @end table
18573
18574 @node Nvidia PTX Options
18575 @subsection Nvidia PTX Options
18576 @cindex Nvidia PTX options
18577 @cindex nvptx options
18578
18579 These options are defined for Nvidia PTX:
18580
18581 @table @gcctabopt
18582
18583 @item -m32
18584 @itemx -m64
18585 @opindex m32
18586 @opindex m64
18587 Generate code for 32-bit or 64-bit ABI.
18588
18589 @item -mmainkernel
18590 @opindex mmainkernel
18591 Link in code for a __main kernel. This is for stand-alone instead of
18592 offloading execution.
18593
18594 @end table
18595
18596 @node PDP-11 Options
18597 @subsection PDP-11 Options
18598 @cindex PDP-11 Options
18599
18600 These options are defined for the PDP-11:
18601
18602 @table @gcctabopt
18603 @item -mfpu
18604 @opindex mfpu
18605 Use hardware FPP floating point. This is the default. (FIS floating
18606 point on the PDP-11/40 is not supported.)
18607
18608 @item -msoft-float
18609 @opindex msoft-float
18610 Do not use hardware floating point.
18611
18612 @item -mac0
18613 @opindex mac0
18614 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
18615
18616 @item -mno-ac0
18617 @opindex mno-ac0
18618 Return floating-point results in memory. This is the default.
18619
18620 @item -m40
18621 @opindex m40
18622 Generate code for a PDP-11/40.
18623
18624 @item -m45
18625 @opindex m45
18626 Generate code for a PDP-11/45. This is the default.
18627
18628 @item -m10
18629 @opindex m10
18630 Generate code for a PDP-11/10.
18631
18632 @item -mbcopy-builtin
18633 @opindex mbcopy-builtin
18634 Use inline @code{movmemhi} patterns for copying memory. This is the
18635 default.
18636
18637 @item -mbcopy
18638 @opindex mbcopy
18639 Do not use inline @code{movmemhi} patterns for copying memory.
18640
18641 @item -mint16
18642 @itemx -mno-int32
18643 @opindex mint16
18644 @opindex mno-int32
18645 Use 16-bit @code{int}. This is the default.
18646
18647 @item -mint32
18648 @itemx -mno-int16
18649 @opindex mint32
18650 @opindex mno-int16
18651 Use 32-bit @code{int}.
18652
18653 @item -mfloat64
18654 @itemx -mno-float32
18655 @opindex mfloat64
18656 @opindex mno-float32
18657 Use 64-bit @code{float}. This is the default.
18658
18659 @item -mfloat32
18660 @itemx -mno-float64
18661 @opindex mfloat32
18662 @opindex mno-float64
18663 Use 32-bit @code{float}.
18664
18665 @item -mabshi
18666 @opindex mabshi
18667 Use @code{abshi2} pattern. This is the default.
18668
18669 @item -mno-abshi
18670 @opindex mno-abshi
18671 Do not use @code{abshi2} pattern.
18672
18673 @item -mbranch-expensive
18674 @opindex mbranch-expensive
18675 Pretend that branches are expensive. This is for experimenting with
18676 code generation only.
18677
18678 @item -mbranch-cheap
18679 @opindex mbranch-cheap
18680 Do not pretend that branches are expensive. This is the default.
18681
18682 @item -munix-asm
18683 @opindex munix-asm
18684 Use Unix assembler syntax. This is the default when configured for
18685 @samp{pdp11-*-bsd}.
18686
18687 @item -mdec-asm
18688 @opindex mdec-asm
18689 Use DEC assembler syntax. This is the default when configured for any
18690 PDP-11 target other than @samp{pdp11-*-bsd}.
18691 @end table
18692
18693 @node picoChip Options
18694 @subsection picoChip Options
18695 @cindex picoChip options
18696
18697 These @samp{-m} options are defined for picoChip implementations:
18698
18699 @table @gcctabopt
18700
18701 @item -mae=@var{ae_type}
18702 @opindex mcpu
18703 Set the instruction set, register set, and instruction scheduling
18704 parameters for array element type @var{ae_type}. Supported values
18705 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
18706
18707 @option{-mae=ANY} selects a completely generic AE type. Code
18708 generated with this option runs on any of the other AE types. The
18709 code is not as efficient as it would be if compiled for a specific
18710 AE type, and some types of operation (e.g., multiplication) do not
18711 work properly on all types of AE.
18712
18713 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
18714 for compiled code, and is the default.
18715
18716 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
18717 option may suffer from poor performance of byte (char) manipulation,
18718 since the DSP AE does not provide hardware support for byte load/stores.
18719
18720 @item -msymbol-as-address
18721 Enable the compiler to directly use a symbol name as an address in a
18722 load/store instruction, without first loading it into a
18723 register. Typically, the use of this option generates larger
18724 programs, which run faster than when the option isn't used. However, the
18725 results vary from program to program, so it is left as a user option,
18726 rather than being permanently enabled.
18727
18728 @item -mno-inefficient-warnings
18729 Disables warnings about the generation of inefficient code. These
18730 warnings can be generated, for example, when compiling code that
18731 performs byte-level memory operations on the MAC AE type. The MAC AE has
18732 no hardware support for byte-level memory operations, so all byte
18733 load/stores must be synthesized from word load/store operations. This is
18734 inefficient and a warning is generated to indicate
18735 that you should rewrite the code to avoid byte operations, or to target
18736 an AE type that has the necessary hardware support. This option disables
18737 these warnings.
18738
18739 @end table
18740
18741 @node PowerPC Options
18742 @subsection PowerPC Options
18743 @cindex PowerPC options
18744
18745 These are listed under @xref{RS/6000 and PowerPC Options}.
18746
18747 @node RL78 Options
18748 @subsection RL78 Options
18749 @cindex RL78 Options
18750
18751 @table @gcctabopt
18752
18753 @item -msim
18754 @opindex msim
18755 Links in additional target libraries to support operation within a
18756 simulator.
18757
18758 @item -mmul=none
18759 @itemx -mmul=g10
18760 @itemx -mmul=g13
18761 @itemx -mmul=g14
18762 @itemx -mmul=rl78
18763 @opindex mmul
18764 Specifies the type of hardware multiplication and division support to
18765 be used. The simplest is @code{none}, which uses software for both
18766 multiplication and division. This is the default. The @code{g13}
18767 value is for the hardware multiply/divide peripheral found on the
18768 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
18769 the multiplication and division instructions supported by the RL78/G14
18770 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
18771 the value @code{mg10} is an alias for @code{none}.
18772
18773 In addition a C preprocessor macro is defined, based upon the setting
18774 of this option. Possible values are: @code{__RL78_MUL_NONE__},
18775 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
18776
18777 @item -mcpu=g10
18778 @itemx -mcpu=g13
18779 @itemx -mcpu=g14
18780 @itemx -mcpu=rl78
18781 @opindex mcpu
18782 Specifies the RL78 core to target. The default is the G14 core, also
18783 known as an S3 core or just RL78. The G13 or S2 core does not have
18784 multiply or divide instructions, instead it uses a hardware peripheral
18785 for these operations. The G10 or S1 core does not have register
18786 banks, so it uses a different calling convention.
18787
18788 If this option is set it also selects the type of hardware multiply
18789 support to use, unless this is overridden by an explicit
18790 @option{-mmul=none} option on the command line. Thus specifying
18791 @option{-mcpu=g13} enables the use of the G13 hardware multiply
18792 peripheral and specifying @option{-mcpu=g10} disables the use of
18793 hardware multipications altogether.
18794
18795 Note, although the RL78/G14 core is the default target, specifying
18796 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
18797 change the behaviour of the toolchain since it also enables G14
18798 hardware multiply support. If these options are not specified on the
18799 command line then software multiplication routines will be used even
18800 though the code targets the RL78 core. This is for backwards
18801 compatibility with older toolchains which did not have hardware
18802 multiply and divide support.
18803
18804 In addition a C preprocessor macro is defined, based upon the setting
18805 of this option. Possible values are: @code{__RL78_G10__},
18806 @code{__RL78_G13__} or @code{__RL78_G14__}.
18807
18808 @item -mg10
18809 @itemx -mg13
18810 @itemx -mg14
18811 @itemx -mrl78
18812 @opindex mg10
18813 @opindex mg13
18814 @opindex mg14
18815 @opindex mrl78
18816 These are aliases for the corresponding @option{-mcpu=} option. They
18817 are provided for backwards compatibility.
18818
18819 @item -mallregs
18820 @opindex mallregs
18821 Allow the compiler to use all of the available registers. By default
18822 registers @code{r24..r31} are reserved for use in interrupt handlers.
18823 With this option enabled these registers can be used in ordinary
18824 functions as well.
18825
18826 @item -m64bit-doubles
18827 @itemx -m32bit-doubles
18828 @opindex m64bit-doubles
18829 @opindex m32bit-doubles
18830 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
18831 or 32 bits (@option{-m32bit-doubles}) in size. The default is
18832 @option{-m32bit-doubles}.
18833
18834 @end table
18835
18836 @node RS/6000 and PowerPC Options
18837 @subsection IBM RS/6000 and PowerPC Options
18838 @cindex RS/6000 and PowerPC Options
18839 @cindex IBM RS/6000 and PowerPC Options
18840
18841 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
18842 @table @gcctabopt
18843 @item -mpowerpc-gpopt
18844 @itemx -mno-powerpc-gpopt
18845 @itemx -mpowerpc-gfxopt
18846 @itemx -mno-powerpc-gfxopt
18847 @need 800
18848 @itemx -mpowerpc64
18849 @itemx -mno-powerpc64
18850 @itemx -mmfcrf
18851 @itemx -mno-mfcrf
18852 @itemx -mpopcntb
18853 @itemx -mno-popcntb
18854 @itemx -mpopcntd
18855 @itemx -mno-popcntd
18856 @itemx -mfprnd
18857 @itemx -mno-fprnd
18858 @need 800
18859 @itemx -mcmpb
18860 @itemx -mno-cmpb
18861 @itemx -mmfpgpr
18862 @itemx -mno-mfpgpr
18863 @itemx -mhard-dfp
18864 @itemx -mno-hard-dfp
18865 @opindex mpowerpc-gpopt
18866 @opindex mno-powerpc-gpopt
18867 @opindex mpowerpc-gfxopt
18868 @opindex mno-powerpc-gfxopt
18869 @opindex mpowerpc64
18870 @opindex mno-powerpc64
18871 @opindex mmfcrf
18872 @opindex mno-mfcrf
18873 @opindex mpopcntb
18874 @opindex mno-popcntb
18875 @opindex mpopcntd
18876 @opindex mno-popcntd
18877 @opindex mfprnd
18878 @opindex mno-fprnd
18879 @opindex mcmpb
18880 @opindex mno-cmpb
18881 @opindex mmfpgpr
18882 @opindex mno-mfpgpr
18883 @opindex mhard-dfp
18884 @opindex mno-hard-dfp
18885 You use these options to specify which instructions are available on the
18886 processor you are using. The default value of these options is
18887 determined when configuring GCC@. Specifying the
18888 @option{-mcpu=@var{cpu_type}} overrides the specification of these
18889 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
18890 rather than the options listed above.
18891
18892 Specifying @option{-mpowerpc-gpopt} allows
18893 GCC to use the optional PowerPC architecture instructions in the
18894 General Purpose group, including floating-point square root. Specifying
18895 @option{-mpowerpc-gfxopt} allows GCC to
18896 use the optional PowerPC architecture instructions in the Graphics
18897 group, including floating-point select.
18898
18899 The @option{-mmfcrf} option allows GCC to generate the move from
18900 condition register field instruction implemented on the POWER4
18901 processor and other processors that support the PowerPC V2.01
18902 architecture.
18903 The @option{-mpopcntb} option allows GCC to generate the popcount and
18904 double-precision FP reciprocal estimate instruction implemented on the
18905 POWER5 processor and other processors that support the PowerPC V2.02
18906 architecture.
18907 The @option{-mpopcntd} option allows GCC to generate the popcount
18908 instruction implemented on the POWER7 processor and other processors
18909 that support the PowerPC V2.06 architecture.
18910 The @option{-mfprnd} option allows GCC to generate the FP round to
18911 integer instructions implemented on the POWER5+ processor and other
18912 processors that support the PowerPC V2.03 architecture.
18913 The @option{-mcmpb} option allows GCC to generate the compare bytes
18914 instruction implemented on the POWER6 processor and other processors
18915 that support the PowerPC V2.05 architecture.
18916 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
18917 general-purpose register instructions implemented on the POWER6X
18918 processor and other processors that support the extended PowerPC V2.05
18919 architecture.
18920 The @option{-mhard-dfp} option allows GCC to generate the decimal
18921 floating-point instructions implemented on some POWER processors.
18922
18923 The @option{-mpowerpc64} option allows GCC to generate the additional
18924 64-bit instructions that are found in the full PowerPC64 architecture
18925 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
18926 @option{-mno-powerpc64}.
18927
18928 @item -mcpu=@var{cpu_type}
18929 @opindex mcpu
18930 Set architecture type, register usage, and
18931 instruction scheduling parameters for machine type @var{cpu_type}.
18932 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
18933 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
18934 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
18935 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
18936 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
18937 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
18938 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
18939 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
18940 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
18941 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
18942 @samp{powerpc64}, @samp{powerpc64le}, and @samp{rs64}.
18943
18944 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
18945 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
18946 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
18947 architecture machine types, with an appropriate, generic processor
18948 model assumed for scheduling purposes.
18949
18950 The other options specify a specific processor. Code generated under
18951 those options runs best on that processor, and may not run at all on
18952 others.
18953
18954 The @option{-mcpu} options automatically enable or disable the
18955 following options:
18956
18957 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
18958 -mpopcntb -mpopcntd -mpowerpc64 @gol
18959 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
18960 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
18961 -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
18962 -mquad-memory -mquad-memory-atomic}
18963
18964 The particular options set for any particular CPU varies between
18965 compiler versions, depending on what setting seems to produce optimal
18966 code for that CPU; it doesn't necessarily reflect the actual hardware's
18967 capabilities. If you wish to set an individual option to a particular
18968 value, you may specify it after the @option{-mcpu} option, like
18969 @option{-mcpu=970 -mno-altivec}.
18970
18971 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
18972 not enabled or disabled by the @option{-mcpu} option at present because
18973 AIX does not have full support for these options. You may still
18974 enable or disable them individually if you're sure it'll work in your
18975 environment.
18976
18977 @item -mtune=@var{cpu_type}
18978 @opindex mtune
18979 Set the instruction scheduling parameters for machine type
18980 @var{cpu_type}, but do not set the architecture type or register usage,
18981 as @option{-mcpu=@var{cpu_type}} does. The same
18982 values for @var{cpu_type} are used for @option{-mtune} as for
18983 @option{-mcpu}. If both are specified, the code generated uses the
18984 architecture and registers set by @option{-mcpu}, but the
18985 scheduling parameters set by @option{-mtune}.
18986
18987 @item -mcmodel=small
18988 @opindex mcmodel=small
18989 Generate PowerPC64 code for the small model: The TOC is limited to
18990 64k.
18991
18992 @item -mcmodel=medium
18993 @opindex mcmodel=medium
18994 Generate PowerPC64 code for the medium model: The TOC and other static
18995 data may be up to a total of 4G in size.
18996
18997 @item -mcmodel=large
18998 @opindex mcmodel=large
18999 Generate PowerPC64 code for the large model: The TOC may be up to 4G
19000 in size. Other data and code is only limited by the 64-bit address
19001 space.
19002
19003 @item -maltivec
19004 @itemx -mno-altivec
19005 @opindex maltivec
19006 @opindex mno-altivec
19007 Generate code that uses (does not use) AltiVec instructions, and also
19008 enable the use of built-in functions that allow more direct access to
19009 the AltiVec instruction set. You may also need to set
19010 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
19011 enhancements.
19012
19013 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
19014 @option{-maltivec=be}, the element order for Altivec intrinsics such
19015 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
19016 match array element order corresponding to the endianness of the
19017 target. That is, element zero identifies the leftmost element in a
19018 vector register when targeting a big-endian platform, and identifies
19019 the rightmost element in a vector register when targeting a
19020 little-endian platform.
19021
19022 @item -maltivec=be
19023 @opindex maltivec=be
19024 Generate Altivec instructions using big-endian element order,
19025 regardless of whether the target is big- or little-endian. This is
19026 the default when targeting a big-endian platform.
19027
19028 The element order is used to interpret element numbers in Altivec
19029 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19030 @code{vec_insert}. By default, these match array element order
19031 corresponding to the endianness for the target.
19032
19033 @item -maltivec=le
19034 @opindex maltivec=le
19035 Generate Altivec instructions using little-endian element order,
19036 regardless of whether the target is big- or little-endian. This is
19037 the default when targeting a little-endian platform. This option is
19038 currently ignored when targeting a big-endian platform.
19039
19040 The element order is used to interpret element numbers in Altivec
19041 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19042 @code{vec_insert}. By default, these match array element order
19043 corresponding to the endianness for the target.
19044
19045 @item -mvrsave
19046 @itemx -mno-vrsave
19047 @opindex mvrsave
19048 @opindex mno-vrsave
19049 Generate VRSAVE instructions when generating AltiVec code.
19050
19051 @item -mgen-cell-microcode
19052 @opindex mgen-cell-microcode
19053 Generate Cell microcode instructions.
19054
19055 @item -mwarn-cell-microcode
19056 @opindex mwarn-cell-microcode
19057 Warn when a Cell microcode instruction is emitted. An example
19058 of a Cell microcode instruction is a variable shift.
19059
19060 @item -msecure-plt
19061 @opindex msecure-plt
19062 Generate code that allows @command{ld} and @command{ld.so}
19063 to build executables and shared
19064 libraries with non-executable @code{.plt} and @code{.got} sections.
19065 This is a PowerPC
19066 32-bit SYSV ABI option.
19067
19068 @item -mbss-plt
19069 @opindex mbss-plt
19070 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19071 fills in, and
19072 requires @code{.plt} and @code{.got}
19073 sections that are both writable and executable.
19074 This is a PowerPC 32-bit SYSV ABI option.
19075
19076 @item -misel
19077 @itemx -mno-isel
19078 @opindex misel
19079 @opindex mno-isel
19080 This switch enables or disables the generation of ISEL instructions.
19081
19082 @item -misel=@var{yes/no}
19083 This switch has been deprecated. Use @option{-misel} and
19084 @option{-mno-isel} instead.
19085
19086 @item -mspe
19087 @itemx -mno-spe
19088 @opindex mspe
19089 @opindex mno-spe
19090 This switch enables or disables the generation of SPE simd
19091 instructions.
19092
19093 @item -mpaired
19094 @itemx -mno-paired
19095 @opindex mpaired
19096 @opindex mno-paired
19097 This switch enables or disables the generation of PAIRED simd
19098 instructions.
19099
19100 @item -mspe=@var{yes/no}
19101 This option has been deprecated. Use @option{-mspe} and
19102 @option{-mno-spe} instead.
19103
19104 @item -mvsx
19105 @itemx -mno-vsx
19106 @opindex mvsx
19107 @opindex mno-vsx
19108 Generate code that uses (does not use) vector/scalar (VSX)
19109 instructions, and also enable the use of built-in functions that allow
19110 more direct access to the VSX instruction set.
19111
19112 @item -mcrypto
19113 @itemx -mno-crypto
19114 @opindex mcrypto
19115 @opindex mno-crypto
19116 Enable the use (disable) of the built-in functions that allow direct
19117 access to the cryptographic instructions that were added in version
19118 2.07 of the PowerPC ISA.
19119
19120 @item -mdirect-move
19121 @itemx -mno-direct-move
19122 @opindex mdirect-move
19123 @opindex mno-direct-move
19124 Generate code that uses (does not use) the instructions to move data
19125 between the general purpose registers and the vector/scalar (VSX)
19126 registers that were added in version 2.07 of the PowerPC ISA.
19127
19128 @item -mpower8-fusion
19129 @itemx -mno-power8-fusion
19130 @opindex mpower8-fusion
19131 @opindex mno-power8-fusion
19132 Generate code that keeps (does not keeps) some integer operations
19133 adjacent so that the instructions can be fused together on power8 and
19134 later processors.
19135
19136 @item -mpower8-vector
19137 @itemx -mno-power8-vector
19138 @opindex mpower8-vector
19139 @opindex mno-power8-vector
19140 Generate code that uses (does not use) the vector and scalar
19141 instructions that were added in version 2.07 of the PowerPC ISA. Also
19142 enable the use of built-in functions that allow more direct access to
19143 the vector instructions.
19144
19145 @item -mquad-memory
19146 @itemx -mno-quad-memory
19147 @opindex mquad-memory
19148 @opindex mno-quad-memory
19149 Generate code that uses (does not use) the non-atomic quad word memory
19150 instructions. The @option{-mquad-memory} option requires use of
19151 64-bit mode.
19152
19153 @item -mquad-memory-atomic
19154 @itemx -mno-quad-memory-atomic
19155 @opindex mquad-memory-atomic
19156 @opindex mno-quad-memory-atomic
19157 Generate code that uses (does not use) the atomic quad word memory
19158 instructions. The @option{-mquad-memory-atomic} option requires use of
19159 64-bit mode.
19160
19161 @item -mupper-regs-df
19162 @itemx -mno-upper-regs-df
19163 @opindex mupper-regs-df
19164 @opindex mno-upper-regs-df
19165 Generate code that uses (does not use) the scalar double precision
19166 instructions that target all 64 registers in the vector/scalar
19167 floating point register set that were added in version 2.06 of the
19168 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
19169 use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19170 @option{-mvsx} options.
19171
19172 @item -mupper-regs-sf
19173 @itemx -mno-upper-regs-sf
19174 @opindex mupper-regs-sf
19175 @opindex mno-upper-regs-sf
19176 Generate code that uses (does not use) the scalar single precision
19177 instructions that target all 64 registers in the vector/scalar
19178 floating point register set that were added in version 2.07 of the
19179 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
19180 use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19181 options.
19182
19183 @item -mupper-regs
19184 @itemx -mno-upper-regs
19185 @opindex mupper-regs
19186 @opindex mno-upper-regs
19187 Generate code that uses (does not use) the scalar
19188 instructions that target all 64 registers in the vector/scalar
19189 floating point register set, depending on the model of the machine.
19190
19191 If the @option{-mno-upper-regs} option is used, it turns off both
19192 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19193
19194 @item -mfloat-gprs=@var{yes/single/double/no}
19195 @itemx -mfloat-gprs
19196 @opindex mfloat-gprs
19197 This switch enables or disables the generation of floating-point
19198 operations on the general-purpose registers for architectures that
19199 support it.
19200
19201 The argument @samp{yes} or @samp{single} enables the use of
19202 single-precision floating-point operations.
19203
19204 The argument @samp{double} enables the use of single and
19205 double-precision floating-point operations.
19206
19207 The argument @samp{no} disables floating-point operations on the
19208 general-purpose registers.
19209
19210 This option is currently only available on the MPC854x.
19211
19212 @item -m32
19213 @itemx -m64
19214 @opindex m32
19215 @opindex m64
19216 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19217 targets (including GNU/Linux). The 32-bit environment sets int, long
19218 and pointer to 32 bits and generates code that runs on any PowerPC
19219 variant. The 64-bit environment sets int to 32 bits and long and
19220 pointer to 64 bits, and generates code for PowerPC64, as for
19221 @option{-mpowerpc64}.
19222
19223 @item -mfull-toc
19224 @itemx -mno-fp-in-toc
19225 @itemx -mno-sum-in-toc
19226 @itemx -mminimal-toc
19227 @opindex mfull-toc
19228 @opindex mno-fp-in-toc
19229 @opindex mno-sum-in-toc
19230 @opindex mminimal-toc
19231 Modify generation of the TOC (Table Of Contents), which is created for
19232 every executable file. The @option{-mfull-toc} option is selected by
19233 default. In that case, GCC allocates at least one TOC entry for
19234 each unique non-automatic variable reference in your program. GCC
19235 also places floating-point constants in the TOC@. However, only
19236 16,384 entries are available in the TOC@.
19237
19238 If you receive a linker error message that saying you have overflowed
19239 the available TOC space, you can reduce the amount of TOC space used
19240 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19241 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
19242 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19243 generate code to calculate the sum of an address and a constant at
19244 run time instead of putting that sum into the TOC@. You may specify one
19245 or both of these options. Each causes GCC to produce very slightly
19246 slower and larger code at the expense of conserving TOC space.
19247
19248 If you still run out of space in the TOC even when you specify both of
19249 these options, specify @option{-mminimal-toc} instead. This option causes
19250 GCC to make only one TOC entry for every file. When you specify this
19251 option, GCC produces code that is slower and larger but which
19252 uses extremely little TOC space. You may wish to use this option
19253 only on files that contain less frequently-executed code.
19254
19255 @item -maix64
19256 @itemx -maix32
19257 @opindex maix64
19258 @opindex maix32
19259 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19260 @code{long} type, and the infrastructure needed to support them.
19261 Specifying @option{-maix64} implies @option{-mpowerpc64},
19262 while @option{-maix32} disables the 64-bit ABI and
19263 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
19264
19265 @item -mxl-compat
19266 @itemx -mno-xl-compat
19267 @opindex mxl-compat
19268 @opindex mno-xl-compat
19269 Produce code that conforms more closely to IBM XL compiler semantics
19270 when using AIX-compatible ABI@. Pass floating-point arguments to
19271 prototyped functions beyond the register save area (RSA) on the stack
19272 in addition to argument FPRs. Do not assume that most significant
19273 double in 128-bit long double value is properly rounded when comparing
19274 values and converting to double. Use XL symbol names for long double
19275 support routines.
19276
19277 The AIX calling convention was extended but not initially documented to
19278 handle an obscure K&R C case of calling a function that takes the
19279 address of its arguments with fewer arguments than declared. IBM XL
19280 compilers access floating-point arguments that do not fit in the
19281 RSA from the stack when a subroutine is compiled without
19282 optimization. Because always storing floating-point arguments on the
19283 stack is inefficient and rarely needed, this option is not enabled by
19284 default and only is necessary when calling subroutines compiled by IBM
19285 XL compilers without optimization.
19286
19287 @item -mpe
19288 @opindex mpe
19289 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
19290 application written to use message passing with special startup code to
19291 enable the application to run. The system must have PE installed in the
19292 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19293 must be overridden with the @option{-specs=} option to specify the
19294 appropriate directory location. The Parallel Environment does not
19295 support threads, so the @option{-mpe} option and the @option{-pthread}
19296 option are incompatible.
19297
19298 @item -malign-natural
19299 @itemx -malign-power
19300 @opindex malign-natural
19301 @opindex malign-power
19302 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19303 @option{-malign-natural} overrides the ABI-defined alignment of larger
19304 types, such as floating-point doubles, on their natural size-based boundary.
19305 The option @option{-malign-power} instructs GCC to follow the ABI-specified
19306 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
19307
19308 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19309 is not supported.
19310
19311 @item -msoft-float
19312 @itemx -mhard-float
19313 @opindex msoft-float
19314 @opindex mhard-float
19315 Generate code that does not use (uses) the floating-point register set.
19316 Software floating-point emulation is provided if you use the
19317 @option{-msoft-float} option, and pass the option to GCC when linking.
19318
19319 @item -msingle-float
19320 @itemx -mdouble-float
19321 @opindex msingle-float
19322 @opindex mdouble-float
19323 Generate code for single- or double-precision floating-point operations.
19324 @option{-mdouble-float} implies @option{-msingle-float}.
19325
19326 @item -msimple-fpu
19327 @opindex msimple-fpu
19328 Do not generate @code{sqrt} and @code{div} instructions for hardware
19329 floating-point unit.
19330
19331 @item -mfpu=@var{name}
19332 @opindex mfpu
19333 Specify type of floating-point unit. Valid values for @var{name} are
19334 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19335 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19336 @samp{sp_full} (equivalent to @option{-msingle-float}),
19337 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19338
19339 @item -mxilinx-fpu
19340 @opindex mxilinx-fpu
19341 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19342
19343 @item -mmultiple
19344 @itemx -mno-multiple
19345 @opindex mmultiple
19346 @opindex mno-multiple
19347 Generate code that uses (does not use) the load multiple word
19348 instructions and the store multiple word instructions. These
19349 instructions are generated by default on POWER systems, and not
19350 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
19351 PowerPC systems, since those instructions do not work when the
19352 processor is in little-endian mode. The exceptions are PPC740 and
19353 PPC750 which permit these instructions in little-endian mode.
19354
19355 @item -mstring
19356 @itemx -mno-string
19357 @opindex mstring
19358 @opindex mno-string
19359 Generate code that uses (does not use) the load string instructions
19360 and the store string word instructions to save multiple registers and
19361 do small block moves. These instructions are generated by default on
19362 POWER systems, and not generated on PowerPC systems. Do not use
19363 @option{-mstring} on little-endian PowerPC systems, since those
19364 instructions do not work when the processor is in little-endian mode.
19365 The exceptions are PPC740 and PPC750 which permit these instructions
19366 in little-endian mode.
19367
19368 @item -mupdate
19369 @itemx -mno-update
19370 @opindex mupdate
19371 @opindex mno-update
19372 Generate code that uses (does not use) the load or store instructions
19373 that update the base register to the address of the calculated memory
19374 location. These instructions are generated by default. If you use
19375 @option{-mno-update}, there is a small window between the time that the
19376 stack pointer is updated and the address of the previous frame is
19377 stored, which means code that walks the stack frame across interrupts or
19378 signals may get corrupted data.
19379
19380 @item -mavoid-indexed-addresses
19381 @itemx -mno-avoid-indexed-addresses
19382 @opindex mavoid-indexed-addresses
19383 @opindex mno-avoid-indexed-addresses
19384 Generate code that tries to avoid (not avoid) the use of indexed load
19385 or store instructions. These instructions can incur a performance
19386 penalty on Power6 processors in certain situations, such as when
19387 stepping through large arrays that cross a 16M boundary. This option
19388 is enabled by default when targeting Power6 and disabled otherwise.
19389
19390 @item -mfused-madd
19391 @itemx -mno-fused-madd
19392 @opindex mfused-madd
19393 @opindex mno-fused-madd
19394 Generate code that uses (does not use) the floating-point multiply and
19395 accumulate instructions. These instructions are generated by default
19396 if hardware floating point is used. The machine-dependent
19397 @option{-mfused-madd} option is now mapped to the machine-independent
19398 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19399 mapped to @option{-ffp-contract=off}.
19400
19401 @item -mmulhw
19402 @itemx -mno-mulhw
19403 @opindex mmulhw
19404 @opindex mno-mulhw
19405 Generate code that uses (does not use) the half-word multiply and
19406 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19407 These instructions are generated by default when targeting those
19408 processors.
19409
19410 @item -mdlmzb
19411 @itemx -mno-dlmzb
19412 @opindex mdlmzb
19413 @opindex mno-dlmzb
19414 Generate code that uses (does not use) the string-search @samp{dlmzb}
19415 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
19416 generated by default when targeting those processors.
19417
19418 @item -mno-bit-align
19419 @itemx -mbit-align
19420 @opindex mno-bit-align
19421 @opindex mbit-align
19422 On System V.4 and embedded PowerPC systems do not (do) force structures
19423 and unions that contain bit-fields to be aligned to the base type of the
19424 bit-field.
19425
19426 For example, by default a structure containing nothing but 8
19427 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19428 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
19429 the structure is aligned to a 1-byte boundary and is 1 byte in
19430 size.
19431
19432 @item -mno-strict-align
19433 @itemx -mstrict-align
19434 @opindex mno-strict-align
19435 @opindex mstrict-align
19436 On System V.4 and embedded PowerPC systems do not (do) assume that
19437 unaligned memory references are handled by the system.
19438
19439 @item -mrelocatable
19440 @itemx -mno-relocatable
19441 @opindex mrelocatable
19442 @opindex mno-relocatable
19443 Generate code that allows (does not allow) a static executable to be
19444 relocated to a different address at run time. A simple embedded
19445 PowerPC system loader should relocate the entire contents of
19446 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
19447 a table of 32-bit addresses generated by this option. For this to
19448 work, all objects linked together must be compiled with
19449 @option{-mrelocatable} or @option{-mrelocatable-lib}.
19450 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
19451
19452 @item -mrelocatable-lib
19453 @itemx -mno-relocatable-lib
19454 @opindex mrelocatable-lib
19455 @opindex mno-relocatable-lib
19456 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
19457 @code{.fixup} section to allow static executables to be relocated at
19458 run time, but @option{-mrelocatable-lib} does not use the smaller stack
19459 alignment of @option{-mrelocatable}. Objects compiled with
19460 @option{-mrelocatable-lib} may be linked with objects compiled with
19461 any combination of the @option{-mrelocatable} options.
19462
19463 @item -mno-toc
19464 @itemx -mtoc
19465 @opindex mno-toc
19466 @opindex mtoc
19467 On System V.4 and embedded PowerPC systems do not (do) assume that
19468 register 2 contains a pointer to a global area pointing to the addresses
19469 used in the program.
19470
19471 @item -mlittle
19472 @itemx -mlittle-endian
19473 @opindex mlittle
19474 @opindex mlittle-endian
19475 On System V.4 and embedded PowerPC systems compile code for the
19476 processor in little-endian mode. The @option{-mlittle-endian} option is
19477 the same as @option{-mlittle}.
19478
19479 @item -mbig
19480 @itemx -mbig-endian
19481 @opindex mbig
19482 @opindex mbig-endian
19483 On System V.4 and embedded PowerPC systems compile code for the
19484 processor in big-endian mode. The @option{-mbig-endian} option is
19485 the same as @option{-mbig}.
19486
19487 @item -mdynamic-no-pic
19488 @opindex mdynamic-no-pic
19489 On Darwin and Mac OS X systems, compile code so that it is not
19490 relocatable, but that its external references are relocatable. The
19491 resulting code is suitable for applications, but not shared
19492 libraries.
19493
19494 @item -msingle-pic-base
19495 @opindex msingle-pic-base
19496 Treat the register used for PIC addressing as read-only, rather than
19497 loading it in the prologue for each function. The runtime system is
19498 responsible for initializing this register with an appropriate value
19499 before execution begins.
19500
19501 @item -mprioritize-restricted-insns=@var{priority}
19502 @opindex mprioritize-restricted-insns
19503 This option controls the priority that is assigned to
19504 dispatch-slot restricted instructions during the second scheduling
19505 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
19506 or @samp{2} to assign no, highest, or second-highest (respectively)
19507 priority to dispatch-slot restricted
19508 instructions.
19509
19510 @item -msched-costly-dep=@var{dependence_type}
19511 @opindex msched-costly-dep
19512 This option controls which dependences are considered costly
19513 by the target during instruction scheduling. The argument
19514 @var{dependence_type} takes one of the following values:
19515
19516 @table @asis
19517 @item @samp{no}
19518 No dependence is costly.
19519
19520 @item @samp{all}
19521 All dependences are costly.
19522
19523 @item @samp{true_store_to_load}
19524 A true dependence from store to load is costly.
19525
19526 @item @samp{store_to_load}
19527 Any dependence from store to load is costly.
19528
19529 @item @var{number}
19530 Any dependence for which the latency is greater than or equal to
19531 @var{number} is costly.
19532 @end table
19533
19534 @item -minsert-sched-nops=@var{scheme}
19535 @opindex minsert-sched-nops
19536 This option controls which NOP insertion scheme is used during
19537 the second scheduling pass. The argument @var{scheme} takes one of the
19538 following values:
19539
19540 @table @asis
19541 @item @samp{no}
19542 Don't insert NOPs.
19543
19544 @item @samp{pad}
19545 Pad with NOPs any dispatch group that has vacant issue slots,
19546 according to the scheduler's grouping.
19547
19548 @item @samp{regroup_exact}
19549 Insert NOPs to force costly dependent insns into
19550 separate groups. Insert exactly as many NOPs as needed to force an insn
19551 to a new group, according to the estimated processor grouping.
19552
19553 @item @var{number}
19554 Insert NOPs to force costly dependent insns into
19555 separate groups. Insert @var{number} NOPs to force an insn to a new group.
19556 @end table
19557
19558 @item -mcall-sysv
19559 @opindex mcall-sysv
19560 On System V.4 and embedded PowerPC systems compile code using calling
19561 conventions that adhere to the March 1995 draft of the System V
19562 Application Binary Interface, PowerPC processor supplement. This is the
19563 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19564
19565 @item -mcall-sysv-eabi
19566 @itemx -mcall-eabi
19567 @opindex mcall-sysv-eabi
19568 @opindex mcall-eabi
19569 Specify both @option{-mcall-sysv} and @option{-meabi} options.
19570
19571 @item -mcall-sysv-noeabi
19572 @opindex mcall-sysv-noeabi
19573 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
19574
19575 @item -mcall-aixdesc
19576 @opindex m
19577 On System V.4 and embedded PowerPC systems compile code for the AIX
19578 operating system.
19579
19580 @item -mcall-linux
19581 @opindex mcall-linux
19582 On System V.4 and embedded PowerPC systems compile code for the
19583 Linux-based GNU system.
19584
19585 @item -mcall-freebsd
19586 @opindex mcall-freebsd
19587 On System V.4 and embedded PowerPC systems compile code for the
19588 FreeBSD operating system.
19589
19590 @item -mcall-netbsd
19591 @opindex mcall-netbsd
19592 On System V.4 and embedded PowerPC systems compile code for the
19593 NetBSD operating system.
19594
19595 @item -mcall-openbsd
19596 @opindex mcall-netbsd
19597 On System V.4 and embedded PowerPC systems compile code for the
19598 OpenBSD operating system.
19599
19600 @item -maix-struct-return
19601 @opindex maix-struct-return
19602 Return all structures in memory (as specified by the AIX ABI)@.
19603
19604 @item -msvr4-struct-return
19605 @opindex msvr4-struct-return
19606 Return structures smaller than 8 bytes in registers (as specified by the
19607 SVR4 ABI)@.
19608
19609 @item -mabi=@var{abi-type}
19610 @opindex mabi
19611 Extend the current ABI with a particular extension, or remove such extension.
19612 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
19613 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
19614 @samp{elfv1}, @samp{elfv2}@.
19615
19616 @item -mabi=spe
19617 @opindex mabi=spe
19618 Extend the current ABI with SPE ABI extensions. This does not change
19619 the default ABI, instead it adds the SPE ABI extensions to the current
19620 ABI@.
19621
19622 @item -mabi=no-spe
19623 @opindex mabi=no-spe
19624 Disable Book-E SPE ABI extensions for the current ABI@.
19625
19626 @item -mabi=ibmlongdouble
19627 @opindex mabi=ibmlongdouble
19628 Change the current ABI to use IBM extended-precision long double.
19629 This is a PowerPC 32-bit SYSV ABI option.
19630
19631 @item -mabi=ieeelongdouble
19632 @opindex mabi=ieeelongdouble
19633 Change the current ABI to use IEEE extended-precision long double.
19634 This is a PowerPC 32-bit Linux ABI option.
19635
19636 @item -mabi=elfv1
19637 @opindex mabi=elfv1
19638 Change the current ABI to use the ELFv1 ABI.
19639 This is the default ABI for big-endian PowerPC 64-bit Linux.
19640 Overriding the default ABI requires special system support and is
19641 likely to fail in spectacular ways.
19642
19643 @item -mabi=elfv2
19644 @opindex mabi=elfv2
19645 Change the current ABI to use the ELFv2 ABI.
19646 This is the default ABI for little-endian PowerPC 64-bit Linux.
19647 Overriding the default ABI requires special system support and is
19648 likely to fail in spectacular ways.
19649
19650 @item -mprototype
19651 @itemx -mno-prototype
19652 @opindex mprototype
19653 @opindex mno-prototype
19654 On System V.4 and embedded PowerPC systems assume that all calls to
19655 variable argument functions are properly prototyped. Otherwise, the
19656 compiler must insert an instruction before every non-prototyped call to
19657 set or clear bit 6 of the condition code register (@code{CR}) to
19658 indicate whether floating-point values are passed in the floating-point
19659 registers in case the function takes variable arguments. With
19660 @option{-mprototype}, only calls to prototyped variable argument functions
19661 set or clear the bit.
19662
19663 @item -msim
19664 @opindex msim
19665 On embedded PowerPC systems, assume that the startup module is called
19666 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
19667 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
19668 configurations.
19669
19670 @item -mmvme
19671 @opindex mmvme
19672 On embedded PowerPC systems, assume that the startup module is called
19673 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
19674 @file{libc.a}.
19675
19676 @item -mads
19677 @opindex mads
19678 On embedded PowerPC systems, assume that the startup module is called
19679 @file{crt0.o} and the standard C libraries are @file{libads.a} and
19680 @file{libc.a}.
19681
19682 @item -myellowknife
19683 @opindex myellowknife
19684 On embedded PowerPC systems, assume that the startup module is called
19685 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
19686 @file{libc.a}.
19687
19688 @item -mvxworks
19689 @opindex mvxworks
19690 On System V.4 and embedded PowerPC systems, specify that you are
19691 compiling for a VxWorks system.
19692
19693 @item -memb
19694 @opindex memb
19695 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
19696 header to indicate that @samp{eabi} extended relocations are used.
19697
19698 @item -meabi
19699 @itemx -mno-eabi
19700 @opindex meabi
19701 @opindex mno-eabi
19702 On System V.4 and embedded PowerPC systems do (do not) adhere to the
19703 Embedded Applications Binary Interface (EABI), which is a set of
19704 modifications to the System V.4 specifications. Selecting @option{-meabi}
19705 means that the stack is aligned to an 8-byte boundary, a function
19706 @code{__eabi} is called from @code{main} to set up the EABI
19707 environment, and the @option{-msdata} option can use both @code{r2} and
19708 @code{r13} to point to two separate small data areas. Selecting
19709 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
19710 no EABI initialization function is called from @code{main}, and the
19711 @option{-msdata} option only uses @code{r13} to point to a single
19712 small data area. The @option{-meabi} option is on by default if you
19713 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
19714
19715 @item -msdata=eabi
19716 @opindex msdata=eabi
19717 On System V.4 and embedded PowerPC systems, put small initialized
19718 @code{const} global and static data in the @code{.sdata2} section, which
19719 is pointed to by register @code{r2}. Put small initialized
19720 non-@code{const} global and static data in the @code{.sdata} section,
19721 which is pointed to by register @code{r13}. Put small uninitialized
19722 global and static data in the @code{.sbss} section, which is adjacent to
19723 the @code{.sdata} section. The @option{-msdata=eabi} option is
19724 incompatible with the @option{-mrelocatable} option. The
19725 @option{-msdata=eabi} option also sets the @option{-memb} option.
19726
19727 @item -msdata=sysv
19728 @opindex msdata=sysv
19729 On System V.4 and embedded PowerPC systems, put small global and static
19730 data in the @code{.sdata} section, which is pointed to by register
19731 @code{r13}. Put small uninitialized global and static data in the
19732 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
19733 The @option{-msdata=sysv} option is incompatible with the
19734 @option{-mrelocatable} option.
19735
19736 @item -msdata=default
19737 @itemx -msdata
19738 @opindex msdata=default
19739 @opindex msdata
19740 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
19741 compile code the same as @option{-msdata=eabi}, otherwise compile code the
19742 same as @option{-msdata=sysv}.
19743
19744 @item -msdata=data
19745 @opindex msdata=data
19746 On System V.4 and embedded PowerPC systems, put small global
19747 data in the @code{.sdata} section. Put small uninitialized global
19748 data in the @code{.sbss} section. Do not use register @code{r13}
19749 to address small data however. This is the default behavior unless
19750 other @option{-msdata} options are used.
19751
19752 @item -msdata=none
19753 @itemx -mno-sdata
19754 @opindex msdata=none
19755 @opindex mno-sdata
19756 On embedded PowerPC systems, put all initialized global and static data
19757 in the @code{.data} section, and all uninitialized data in the
19758 @code{.bss} section.
19759
19760 @item -mblock-move-inline-limit=@var{num}
19761 @opindex mblock-move-inline-limit
19762 Inline all block moves (such as calls to @code{memcpy} or structure
19763 copies) less than or equal to @var{num} bytes. The minimum value for
19764 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
19765 targets. The default value is target-specific.
19766
19767 @item -G @var{num}
19768 @opindex G
19769 @cindex smaller data references (PowerPC)
19770 @cindex .sdata/.sdata2 references (PowerPC)
19771 On embedded PowerPC systems, put global and static items less than or
19772 equal to @var{num} bytes into the small data or BSS sections instead of
19773 the normal data or BSS section. By default, @var{num} is 8. The
19774 @option{-G @var{num}} switch is also passed to the linker.
19775 All modules should be compiled with the same @option{-G @var{num}} value.
19776
19777 @item -mregnames
19778 @itemx -mno-regnames
19779 @opindex mregnames
19780 @opindex mno-regnames
19781 On System V.4 and embedded PowerPC systems do (do not) emit register
19782 names in the assembly language output using symbolic forms.
19783
19784 @item -mlongcall
19785 @itemx -mno-longcall
19786 @opindex mlongcall
19787 @opindex mno-longcall
19788 By default assume that all calls are far away so that a longer and more
19789 expensive calling sequence is required. This is required for calls
19790 farther than 32 megabytes (33,554,432 bytes) from the current location.
19791 A short call is generated if the compiler knows
19792 the call cannot be that far away. This setting can be overridden by
19793 the @code{shortcall} function attribute, or by @code{#pragma
19794 longcall(0)}.
19795
19796 Some linkers are capable of detecting out-of-range calls and generating
19797 glue code on the fly. On these systems, long calls are unnecessary and
19798 generate slower code. As of this writing, the AIX linker can do this,
19799 as can the GNU linker for PowerPC/64. It is planned to add this feature
19800 to the GNU linker for 32-bit PowerPC systems as well.
19801
19802 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
19803 callee, L42}, plus a @dfn{branch island} (glue code). The two target
19804 addresses represent the callee and the branch island. The
19805 Darwin/PPC linker prefers the first address and generates a @code{bl
19806 callee} if the PPC @code{bl} instruction reaches the callee directly;
19807 otherwise, the linker generates @code{bl L42} to call the branch
19808 island. The branch island is appended to the body of the
19809 calling function; it computes the full 32-bit address of the callee
19810 and jumps to it.
19811
19812 On Mach-O (Darwin) systems, this option directs the compiler emit to
19813 the glue for every direct call, and the Darwin linker decides whether
19814 to use or discard it.
19815
19816 In the future, GCC may ignore all longcall specifications
19817 when the linker is known to generate glue.
19818
19819 @item -mtls-markers
19820 @itemx -mno-tls-markers
19821 @opindex mtls-markers
19822 @opindex mno-tls-markers
19823 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
19824 specifying the function argument. The relocation allows the linker to
19825 reliably associate function call with argument setup instructions for
19826 TLS optimization, which in turn allows GCC to better schedule the
19827 sequence.
19828
19829 @item -pthread
19830 @opindex pthread
19831 Adds support for multithreading with the @dfn{pthreads} library.
19832 This option sets flags for both the preprocessor and linker.
19833
19834 @item -mrecip
19835 @itemx -mno-recip
19836 @opindex mrecip
19837 This option enables use of the reciprocal estimate and
19838 reciprocal square root estimate instructions with additional
19839 Newton-Raphson steps to increase precision instead of doing a divide or
19840 square root and divide for floating-point arguments. You should use
19841 the @option{-ffast-math} option when using @option{-mrecip} (or at
19842 least @option{-funsafe-math-optimizations},
19843 @option{-finite-math-only}, @option{-freciprocal-math} and
19844 @option{-fno-trapping-math}). Note that while the throughput of the
19845 sequence is generally higher than the throughput of the non-reciprocal
19846 instruction, the precision of the sequence can be decreased by up to 2
19847 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
19848 roots.
19849
19850 @item -mrecip=@var{opt}
19851 @opindex mrecip=opt
19852 This option controls which reciprocal estimate instructions
19853 may be used. @var{opt} is a comma-separated list of options, which may
19854 be preceded by a @code{!} to invert the option:
19855
19856 @table @samp
19857
19858 @item all
19859 Enable all estimate instructions.
19860
19861 @item default
19862 Enable the default instructions, equivalent to @option{-mrecip}.
19863
19864 @item none
19865 Disable all estimate instructions, equivalent to @option{-mno-recip}.
19866
19867 @item div
19868 Enable the reciprocal approximation instructions for both
19869 single and double precision.
19870
19871 @item divf
19872 Enable the single-precision reciprocal approximation instructions.
19873
19874 @item divd
19875 Enable the double-precision reciprocal approximation instructions.
19876
19877 @item rsqrt
19878 Enable the reciprocal square root approximation instructions for both
19879 single and double precision.
19880
19881 @item rsqrtf
19882 Enable the single-precision reciprocal square root approximation instructions.
19883
19884 @item rsqrtd
19885 Enable the double-precision reciprocal square root approximation instructions.
19886
19887 @end table
19888
19889 So, for example, @option{-mrecip=all,!rsqrtd} enables
19890 all of the reciprocal estimate instructions, except for the
19891 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
19892 which handle the double-precision reciprocal square root calculations.
19893
19894 @item -mrecip-precision
19895 @itemx -mno-recip-precision
19896 @opindex mrecip-precision
19897 Assume (do not assume) that the reciprocal estimate instructions
19898 provide higher-precision estimates than is mandated by the PowerPC
19899 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
19900 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
19901 The double-precision square root estimate instructions are not generated by
19902 default on low-precision machines, since they do not provide an
19903 estimate that converges after three steps.
19904
19905 @item -mveclibabi=@var{type}
19906 @opindex mveclibabi
19907 Specifies the ABI type to use for vectorizing intrinsics using an
19908 external library. The only type supported at present is @samp{mass},
19909 which specifies to use IBM's Mathematical Acceleration Subsystem
19910 (MASS) libraries for vectorizing intrinsics using external libraries.
19911 GCC currently emits calls to @code{acosd2}, @code{acosf4},
19912 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
19913 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
19914 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
19915 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
19916 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
19917 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
19918 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
19919 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
19920 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
19921 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
19922 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
19923 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
19924 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
19925 for power7. Both @option{-ftree-vectorize} and
19926 @option{-funsafe-math-optimizations} must also be enabled. The MASS
19927 libraries must be specified at link time.
19928
19929 @item -mfriz
19930 @itemx -mno-friz
19931 @opindex mfriz
19932 Generate (do not generate) the @code{friz} instruction when the
19933 @option{-funsafe-math-optimizations} option is used to optimize
19934 rounding of floating-point values to 64-bit integer and back to floating
19935 point. The @code{friz} instruction does not return the same value if
19936 the floating-point number is too large to fit in an integer.
19937
19938 @item -mpointers-to-nested-functions
19939 @itemx -mno-pointers-to-nested-functions
19940 @opindex mpointers-to-nested-functions
19941 Generate (do not generate) code to load up the static chain register
19942 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
19943 systems where a function pointer points to a 3-word descriptor giving
19944 the function address, TOC value to be loaded in register @code{r2}, and
19945 static chain value to be loaded in register @code{r11}. The
19946 @option{-mpointers-to-nested-functions} is on by default. You cannot
19947 call through pointers to nested functions or pointers
19948 to functions compiled in other languages that use the static chain if
19949 you use @option{-mno-pointers-to-nested-functions}.
19950
19951 @item -msave-toc-indirect
19952 @itemx -mno-save-toc-indirect
19953 @opindex msave-toc-indirect
19954 Generate (do not generate) code to save the TOC value in the reserved
19955 stack location in the function prologue if the function calls through
19956 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
19957 saved in the prologue, it is saved just before the call through the
19958 pointer. The @option{-mno-save-toc-indirect} option is the default.
19959
19960 @item -mcompat-align-parm
19961 @itemx -mno-compat-align-parm
19962 @opindex mcompat-align-parm
19963 Generate (do not generate) code to pass structure parameters with a
19964 maximum alignment of 64 bits, for compatibility with older versions
19965 of GCC.
19966
19967 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
19968 structure parameter on a 128-bit boundary when that structure contained
19969 a member requiring 128-bit alignment. This is corrected in more
19970 recent versions of GCC. This option may be used to generate code
19971 that is compatible with functions compiled with older versions of
19972 GCC.
19973
19974 The @option{-mno-compat-align-parm} option is the default.
19975 @end table
19976
19977 @node RX Options
19978 @subsection RX Options
19979 @cindex RX Options
19980
19981 These command-line options are defined for RX targets:
19982
19983 @table @gcctabopt
19984 @item -m64bit-doubles
19985 @itemx -m32bit-doubles
19986 @opindex m64bit-doubles
19987 @opindex m32bit-doubles
19988 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
19989 or 32 bits (@option{-m32bit-doubles}) in size. The default is
19990 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
19991 works on 32-bit values, which is why the default is
19992 @option{-m32bit-doubles}.
19993
19994 @item -fpu
19995 @itemx -nofpu
19996 @opindex fpu
19997 @opindex nofpu
19998 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
19999 floating-point hardware. The default is enabled for the RX600
20000 series and disabled for the RX200 series.
20001
20002 Floating-point instructions are only generated for 32-bit floating-point
20003 values, however, so the FPU hardware is not used for doubles if the
20004 @option{-m64bit-doubles} option is used.
20005
20006 @emph{Note} If the @option{-fpu} option is enabled then
20007 @option{-funsafe-math-optimizations} is also enabled automatically.
20008 This is because the RX FPU instructions are themselves unsafe.
20009
20010 @item -mcpu=@var{name}
20011 @opindex mcpu
20012 Selects the type of RX CPU to be targeted. Currently three types are
20013 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
20014 the specific @samp{RX610} CPU. The default is @samp{RX600}.
20015
20016 The only difference between @samp{RX600} and @samp{RX610} is that the
20017 @samp{RX610} does not support the @code{MVTIPL} instruction.
20018
20019 The @samp{RX200} series does not have a hardware floating-point unit
20020 and so @option{-nofpu} is enabled by default when this type is
20021 selected.
20022
20023 @item -mbig-endian-data
20024 @itemx -mlittle-endian-data
20025 @opindex mbig-endian-data
20026 @opindex mlittle-endian-data
20027 Store data (but not code) in the big-endian format. The default is
20028 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20029 format.
20030
20031 @item -msmall-data-limit=@var{N}
20032 @opindex msmall-data-limit
20033 Specifies the maximum size in bytes of global and static variables
20034 which can be placed into the small data area. Using the small data
20035 area can lead to smaller and faster code, but the size of area is
20036 limited and it is up to the programmer to ensure that the area does
20037 not overflow. Also when the small data area is used one of the RX's
20038 registers (usually @code{r13}) is reserved for use pointing to this
20039 area, so it is no longer available for use by the compiler. This
20040 could result in slower and/or larger code if variables are pushed onto
20041 the stack instead of being held in this register.
20042
20043 Note, common variables (variables that have not been initialized) and
20044 constants are not placed into the small data area as they are assigned
20045 to other sections in the output executable.
20046
20047 The default value is zero, which disables this feature. Note, this
20048 feature is not enabled by default with higher optimization levels
20049 (@option{-O2} etc) because of the potentially detrimental effects of
20050 reserving a register. It is up to the programmer to experiment and
20051 discover whether this feature is of benefit to their program. See the
20052 description of the @option{-mpid} option for a description of how the
20053 actual register to hold the small data area pointer is chosen.
20054
20055 @item -msim
20056 @itemx -mno-sim
20057 @opindex msim
20058 @opindex mno-sim
20059 Use the simulator runtime. The default is to use the libgloss
20060 board-specific runtime.
20061
20062 @item -mas100-syntax
20063 @itemx -mno-as100-syntax
20064 @opindex mas100-syntax
20065 @opindex mno-as100-syntax
20066 When generating assembler output use a syntax that is compatible with
20067 Renesas's AS100 assembler. This syntax can also be handled by the GAS
20068 assembler, but it has some restrictions so it is not generated by default.
20069
20070 @item -mmax-constant-size=@var{N}
20071 @opindex mmax-constant-size
20072 Specifies the maximum size, in bytes, of a constant that can be used as
20073 an operand in a RX instruction. Although the RX instruction set does
20074 allow constants of up to 4 bytes in length to be used in instructions,
20075 a longer value equates to a longer instruction. Thus in some
20076 circumstances it can be beneficial to restrict the size of constants
20077 that are used in instructions. Constants that are too big are instead
20078 placed into a constant pool and referenced via register indirection.
20079
20080 The value @var{N} can be between 0 and 4. A value of 0 (the default)
20081 or 4 means that constants of any size are allowed.
20082
20083 @item -mrelax
20084 @opindex mrelax
20085 Enable linker relaxation. Linker relaxation is a process whereby the
20086 linker attempts to reduce the size of a program by finding shorter
20087 versions of various instructions. Disabled by default.
20088
20089 @item -mint-register=@var{N}
20090 @opindex mint-register
20091 Specify the number of registers to reserve for fast interrupt handler
20092 functions. The value @var{N} can be between 0 and 4. A value of 1
20093 means that register @code{r13} is reserved for the exclusive use
20094 of fast interrupt handlers. A value of 2 reserves @code{r13} and
20095 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
20096 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20097 A value of 0, the default, does not reserve any registers.
20098
20099 @item -msave-acc-in-interrupts
20100 @opindex msave-acc-in-interrupts
20101 Specifies that interrupt handler functions should preserve the
20102 accumulator register. This is only necessary if normal code might use
20103 the accumulator register, for example because it performs 64-bit
20104 multiplications. The default is to ignore the accumulator as this
20105 makes the interrupt handlers faster.
20106
20107 @item -mpid
20108 @itemx -mno-pid
20109 @opindex mpid
20110 @opindex mno-pid
20111 Enables the generation of position independent data. When enabled any
20112 access to constant data is done via an offset from a base address
20113 held in a register. This allows the location of constant data to be
20114 determined at run time without requiring the executable to be
20115 relocated, which is a benefit to embedded applications with tight
20116 memory constraints. Data that can be modified is not affected by this
20117 option.
20118
20119 Note, using this feature reserves a register, usually @code{r13}, for
20120 the constant data base address. This can result in slower and/or
20121 larger code, especially in complicated functions.
20122
20123 The actual register chosen to hold the constant data base address
20124 depends upon whether the @option{-msmall-data-limit} and/or the
20125 @option{-mint-register} command-line options are enabled. Starting
20126 with register @code{r13} and proceeding downwards, registers are
20127 allocated first to satisfy the requirements of @option{-mint-register},
20128 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
20129 is possible for the small data area register to be @code{r8} if both
20130 @option{-mint-register=4} and @option{-mpid} are specified on the
20131 command line.
20132
20133 By default this feature is not enabled. The default can be restored
20134 via the @option{-mno-pid} command-line option.
20135
20136 @item -mno-warn-multiple-fast-interrupts
20137 @itemx -mwarn-multiple-fast-interrupts
20138 @opindex mno-warn-multiple-fast-interrupts
20139 @opindex mwarn-multiple-fast-interrupts
20140 Prevents GCC from issuing a warning message if it finds more than one
20141 fast interrupt handler when it is compiling a file. The default is to
20142 issue a warning for each extra fast interrupt handler found, as the RX
20143 only supports one such interrupt.
20144
20145 @item -mallow-string-insns
20146 @itemx -mno-allow-string-insns
20147 @opindex mallow-string-insns
20148 @opindex mno-allow-string-insns
20149 Enables or disables the use of the string manipulation instructions
20150 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
20151 @code{SWHILE} and also the @code{RMPA} instruction. These
20152 instructions may prefetch data, which is not safe to do if accessing
20153 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
20154 for more information).
20155
20156 The default is to allow these instructions, but it is not possible for
20157 GCC to reliably detect all circumstances where a string instruction
20158 might be used to access an I/O register, so their use cannot be
20159 disabled automatically. Instead it is reliant upon the programmer to
20160 use the @option{-mno-allow-string-insns} option if their program
20161 accesses I/O space.
20162
20163 When the instructions are enabled GCC defines the C preprocessor
20164 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
20165 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
20166 @end table
20167
20168 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20169 has special significance to the RX port when used with the
20170 @code{interrupt} function attribute. This attribute indicates a
20171 function intended to process fast interrupts. GCC ensures
20172 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20173 and/or @code{r13} and only provided that the normal use of the
20174 corresponding registers have been restricted via the
20175 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20176 options.
20177
20178 @node S/390 and zSeries Options
20179 @subsection S/390 and zSeries Options
20180 @cindex S/390 and zSeries Options
20181
20182 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20183
20184 @table @gcctabopt
20185 @item -mhard-float
20186 @itemx -msoft-float
20187 @opindex mhard-float
20188 @opindex msoft-float
20189 Use (do not use) the hardware floating-point instructions and registers
20190 for floating-point operations. When @option{-msoft-float} is specified,
20191 functions in @file{libgcc.a} are used to perform floating-point
20192 operations. When @option{-mhard-float} is specified, the compiler
20193 generates IEEE floating-point instructions. This is the default.
20194
20195 @item -mhard-dfp
20196 @itemx -mno-hard-dfp
20197 @opindex mhard-dfp
20198 @opindex mno-hard-dfp
20199 Use (do not use) the hardware decimal-floating-point instructions for
20200 decimal-floating-point operations. When @option{-mno-hard-dfp} is
20201 specified, functions in @file{libgcc.a} are used to perform
20202 decimal-floating-point operations. When @option{-mhard-dfp} is
20203 specified, the compiler generates decimal-floating-point hardware
20204 instructions. This is the default for @option{-march=z9-ec} or higher.
20205
20206 @item -mlong-double-64
20207 @itemx -mlong-double-128
20208 @opindex mlong-double-64
20209 @opindex mlong-double-128
20210 These switches control the size of @code{long double} type. A size
20211 of 64 bits makes the @code{long double} type equivalent to the @code{double}
20212 type. This is the default.
20213
20214 @item -mbackchain
20215 @itemx -mno-backchain
20216 @opindex mbackchain
20217 @opindex mno-backchain
20218 Store (do not store) the address of the caller's frame as backchain pointer
20219 into the callee's stack frame.
20220 A backchain may be needed to allow debugging using tools that do not understand
20221 DWARF 2 call frame information.
20222 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20223 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20224 the backchain is placed into the topmost word of the 96/160 byte register
20225 save area.
20226
20227 In general, code compiled with @option{-mbackchain} is call-compatible with
20228 code compiled with @option{-mmo-backchain}; however, use of the backchain
20229 for debugging purposes usually requires that the whole binary is built with
20230 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
20231 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20232 to build a linux kernel use @option{-msoft-float}.
20233
20234 The default is to not maintain the backchain.
20235
20236 @item -mpacked-stack
20237 @itemx -mno-packed-stack
20238 @opindex mpacked-stack
20239 @opindex mno-packed-stack
20240 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
20241 specified, the compiler uses the all fields of the 96/160 byte register save
20242 area only for their default purpose; unused fields still take up stack space.
20243 When @option{-mpacked-stack} is specified, register save slots are densely
20244 packed at the top of the register save area; unused space is reused for other
20245 purposes, allowing for more efficient use of the available stack space.
20246 However, when @option{-mbackchain} is also in effect, the topmost word of
20247 the save area is always used to store the backchain, and the return address
20248 register is always saved two words below the backchain.
20249
20250 As long as the stack frame backchain is not used, code generated with
20251 @option{-mpacked-stack} is call-compatible with code generated with
20252 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
20253 S/390 or zSeries generated code that uses the stack frame backchain at run
20254 time, not just for debugging purposes. Such code is not call-compatible
20255 with code compiled with @option{-mpacked-stack}. Also, note that the
20256 combination of @option{-mbackchain},
20257 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20258 to build a linux kernel use @option{-msoft-float}.
20259
20260 The default is to not use the packed stack layout.
20261
20262 @item -msmall-exec
20263 @itemx -mno-small-exec
20264 @opindex msmall-exec
20265 @opindex mno-small-exec
20266 Generate (or do not generate) code using the @code{bras} instruction
20267 to do subroutine calls.
20268 This only works reliably if the total executable size does not
20269 exceed 64k. The default is to use the @code{basr} instruction instead,
20270 which does not have this limitation.
20271
20272 @item -m64
20273 @itemx -m31
20274 @opindex m64
20275 @opindex m31
20276 When @option{-m31} is specified, generate code compliant to the
20277 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
20278 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
20279 particular to generate 64-bit instructions. For the @samp{s390}
20280 targets, the default is @option{-m31}, while the @samp{s390x}
20281 targets default to @option{-m64}.
20282
20283 @item -mzarch
20284 @itemx -mesa
20285 @opindex mzarch
20286 @opindex mesa
20287 When @option{-mzarch} is specified, generate code using the
20288 instructions available on z/Architecture.
20289 When @option{-mesa} is specified, generate code using the
20290 instructions available on ESA/390. Note that @option{-mesa} is
20291 not possible with @option{-m64}.
20292 When generating code compliant to the GNU/Linux for S/390 ABI,
20293 the default is @option{-mesa}. When generating code compliant
20294 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20295
20296 @item -mmvcle
20297 @itemx -mno-mvcle
20298 @opindex mmvcle
20299 @opindex mno-mvcle
20300 Generate (or do not generate) code using the @code{mvcle} instruction
20301 to perform block moves. When @option{-mno-mvcle} is specified,
20302 use a @code{mvc} loop instead. This is the default unless optimizing for
20303 size.
20304
20305 @item -mdebug
20306 @itemx -mno-debug
20307 @opindex mdebug
20308 @opindex mno-debug
20309 Print (or do not print) additional debug information when compiling.
20310 The default is to not print debug information.
20311
20312 @item -march=@var{cpu-type}
20313 @opindex march
20314 Generate code that runs on @var{cpu-type}, which is the name of a system
20315 representing a certain processor type. Possible values for
20316 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
20317 @samp{z9-109}, @samp{z9-ec}, @samp{z10}, @samp{z196}, and @samp{zEC12}.
20318 When generating code using the instructions available on z/Architecture,
20319 the default is @option{-march=z900}. Otherwise, the default is
20320 @option{-march=g5}.
20321
20322 @item -mtune=@var{cpu-type}
20323 @opindex mtune
20324 Tune to @var{cpu-type} everything applicable about the generated code,
20325 except for the ABI and the set of available instructions.
20326 The list of @var{cpu-type} values is the same as for @option{-march}.
20327 The default is the value used for @option{-march}.
20328
20329 @item -mtpf-trace
20330 @itemx -mno-tpf-trace
20331 @opindex mtpf-trace
20332 @opindex mno-tpf-trace
20333 Generate code that adds (does not add) in TPF OS specific branches to trace
20334 routines in the operating system. This option is off by default, even
20335 when compiling for the TPF OS@.
20336
20337 @item -mfused-madd
20338 @itemx -mno-fused-madd
20339 @opindex mfused-madd
20340 @opindex mno-fused-madd
20341 Generate code that uses (does not use) the floating-point multiply and
20342 accumulate instructions. These instructions are generated by default if
20343 hardware floating point is used.
20344
20345 @item -mwarn-framesize=@var{framesize}
20346 @opindex mwarn-framesize
20347 Emit a warning if the current function exceeds the given frame size. Because
20348 this is a compile-time check it doesn't need to be a real problem when the program
20349 runs. It is intended to identify functions that most probably cause
20350 a stack overflow. It is useful to be used in an environment with limited stack
20351 size e.g.@: the linux kernel.
20352
20353 @item -mwarn-dynamicstack
20354 @opindex mwarn-dynamicstack
20355 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20356 arrays. This is generally a bad idea with a limited stack size.
20357
20358 @item -mstack-guard=@var{stack-guard}
20359 @itemx -mstack-size=@var{stack-size}
20360 @opindex mstack-guard
20361 @opindex mstack-size
20362 If these options are provided the S/390 back end emits additional instructions in
20363 the function prologue that trigger a trap if the stack size is @var{stack-guard}
20364 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20365 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20366 the frame size of the compiled function is chosen.
20367 These options are intended to be used to help debugging stack overflow problems.
20368 The additionally emitted code causes only little overhead and hence can also be
20369 used in production-like systems without greater performance degradation. The given
20370 values have to be exact powers of 2 and @var{stack-size} has to be greater than
20371 @var{stack-guard} without exceeding 64k.
20372 In order to be efficient the extra code makes the assumption that the stack starts
20373 at an address aligned to the value given by @var{stack-size}.
20374 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20375
20376 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20377 @opindex mhotpatch
20378 If the hotpatch option is enabled, a ``hot-patching'' function
20379 prologue is generated for all functions in the compilation unit.
20380 The funtion label is prepended with the given number of two-byte
20381 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
20382 the label, 2 * @var{post-halfwords} bytes are appended, using the
20383 largest NOP like instructions the architecture allows (maximum
20384 1000000).
20385
20386 If both arguments are zero, hotpatching is disabled.
20387
20388 This option can be overridden for individual functions with the
20389 @code{hotpatch} attribute.
20390 @end table
20391
20392 @node Score Options
20393 @subsection Score Options
20394 @cindex Score Options
20395
20396 These options are defined for Score implementations:
20397
20398 @table @gcctabopt
20399 @item -meb
20400 @opindex meb
20401 Compile code for big-endian mode. This is the default.
20402
20403 @item -mel
20404 @opindex mel
20405 Compile code for little-endian mode.
20406
20407 @item -mnhwloop
20408 @opindex mnhwloop
20409 Disable generation of @code{bcnz} instructions.
20410
20411 @item -muls
20412 @opindex muls
20413 Enable generation of unaligned load and store instructions.
20414
20415 @item -mmac
20416 @opindex mmac
20417 Enable the use of multiply-accumulate instructions. Disabled by default.
20418
20419 @item -mscore5
20420 @opindex mscore5
20421 Specify the SCORE5 as the target architecture.
20422
20423 @item -mscore5u
20424 @opindex mscore5u
20425 Specify the SCORE5U of the target architecture.
20426
20427 @item -mscore7
20428 @opindex mscore7
20429 Specify the SCORE7 as the target architecture. This is the default.
20430
20431 @item -mscore7d
20432 @opindex mscore7d
20433 Specify the SCORE7D as the target architecture.
20434 @end table
20435
20436 @node SH Options
20437 @subsection SH Options
20438
20439 These @samp{-m} options are defined for the SH implementations:
20440
20441 @table @gcctabopt
20442 @item -m1
20443 @opindex m1
20444 Generate code for the SH1.
20445
20446 @item -m2
20447 @opindex m2
20448 Generate code for the SH2.
20449
20450 @item -m2e
20451 Generate code for the SH2e.
20452
20453 @item -m2a-nofpu
20454 @opindex m2a-nofpu
20455 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
20456 that the floating-point unit is not used.
20457
20458 @item -m2a-single-only
20459 @opindex m2a-single-only
20460 Generate code for the SH2a-FPU, in such a way that no double-precision
20461 floating-point operations are used.
20462
20463 @item -m2a-single
20464 @opindex m2a-single
20465 Generate code for the SH2a-FPU assuming the floating-point unit is in
20466 single-precision mode by default.
20467
20468 @item -m2a
20469 @opindex m2a
20470 Generate code for the SH2a-FPU assuming the floating-point unit is in
20471 double-precision mode by default.
20472
20473 @item -m3
20474 @opindex m3
20475 Generate code for the SH3.
20476
20477 @item -m3e
20478 @opindex m3e
20479 Generate code for the SH3e.
20480
20481 @item -m4-nofpu
20482 @opindex m4-nofpu
20483 Generate code for the SH4 without a floating-point unit.
20484
20485 @item -m4-single-only
20486 @opindex m4-single-only
20487 Generate code for the SH4 with a floating-point unit that only
20488 supports single-precision arithmetic.
20489
20490 @item -m4-single
20491 @opindex m4-single
20492 Generate code for the SH4 assuming the floating-point unit is in
20493 single-precision mode by default.
20494
20495 @item -m4
20496 @opindex m4
20497 Generate code for the SH4.
20498
20499 @item -m4-100
20500 @opindex m4-100
20501 Generate code for SH4-100.
20502
20503 @item -m4-100-nofpu
20504 @opindex m4-100-nofpu
20505 Generate code for SH4-100 in such a way that the
20506 floating-point unit is not used.
20507
20508 @item -m4-100-single
20509 @opindex m4-100-single
20510 Generate code for SH4-100 assuming the floating-point unit is in
20511 single-precision mode by default.
20512
20513 @item -m4-100-single-only
20514 @opindex m4-100-single-only
20515 Generate code for SH4-100 in such a way that no double-precision
20516 floating-point operations are used.
20517
20518 @item -m4-200
20519 @opindex m4-200
20520 Generate code for SH4-200.
20521
20522 @item -m4-200-nofpu
20523 @opindex m4-200-nofpu
20524 Generate code for SH4-200 without in such a way that the
20525 floating-point unit is not used.
20526
20527 @item -m4-200-single
20528 @opindex m4-200-single
20529 Generate code for SH4-200 assuming the floating-point unit is in
20530 single-precision mode by default.
20531
20532 @item -m4-200-single-only
20533 @opindex m4-200-single-only
20534 Generate code for SH4-200 in such a way that no double-precision
20535 floating-point operations are used.
20536
20537 @item -m4-300
20538 @opindex m4-300
20539 Generate code for SH4-300.
20540
20541 @item -m4-300-nofpu
20542 @opindex m4-300-nofpu
20543 Generate code for SH4-300 without in such a way that the
20544 floating-point unit is not used.
20545
20546 @item -m4-300-single
20547 @opindex m4-300-single
20548 Generate code for SH4-300 in such a way that no double-precision
20549 floating-point operations are used.
20550
20551 @item -m4-300-single-only
20552 @opindex m4-300-single-only
20553 Generate code for SH4-300 in such a way that no double-precision
20554 floating-point operations are used.
20555
20556 @item -m4-340
20557 @opindex m4-340
20558 Generate code for SH4-340 (no MMU, no FPU).
20559
20560 @item -m4-500
20561 @opindex m4-500
20562 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
20563 assembler.
20564
20565 @item -m4a-nofpu
20566 @opindex m4a-nofpu
20567 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
20568 floating-point unit is not used.
20569
20570 @item -m4a-single-only
20571 @opindex m4a-single-only
20572 Generate code for the SH4a, in such a way that no double-precision
20573 floating-point operations are used.
20574
20575 @item -m4a-single
20576 @opindex m4a-single
20577 Generate code for the SH4a assuming the floating-point unit is in
20578 single-precision mode by default.
20579
20580 @item -m4a
20581 @opindex m4a
20582 Generate code for the SH4a.
20583
20584 @item -m4al
20585 @opindex m4al
20586 Same as @option{-m4a-nofpu}, except that it implicitly passes
20587 @option{-dsp} to the assembler. GCC doesn't generate any DSP
20588 instructions at the moment.
20589
20590 @item -m5-32media
20591 @opindex m5-32media
20592 Generate 32-bit code for SHmedia.
20593
20594 @item -m5-32media-nofpu
20595 @opindex m5-32media-nofpu
20596 Generate 32-bit code for SHmedia in such a way that the
20597 floating-point unit is not used.
20598
20599 @item -m5-64media
20600 @opindex m5-64media
20601 Generate 64-bit code for SHmedia.
20602
20603 @item -m5-64media-nofpu
20604 @opindex m5-64media-nofpu
20605 Generate 64-bit code for SHmedia in such a way that the
20606 floating-point unit is not used.
20607
20608 @item -m5-compact
20609 @opindex m5-compact
20610 Generate code for SHcompact.
20611
20612 @item -m5-compact-nofpu
20613 @opindex m5-compact-nofpu
20614 Generate code for SHcompact in such a way that the
20615 floating-point unit is not used.
20616
20617 @item -mb
20618 @opindex mb
20619 Compile code for the processor in big-endian mode.
20620
20621 @item -ml
20622 @opindex ml
20623 Compile code for the processor in little-endian mode.
20624
20625 @item -mdalign
20626 @opindex mdalign
20627 Align doubles at 64-bit boundaries. Note that this changes the calling
20628 conventions, and thus some functions from the standard C library do
20629 not work unless you recompile it first with @option{-mdalign}.
20630
20631 @item -mrelax
20632 @opindex mrelax
20633 Shorten some address references at link time, when possible; uses the
20634 linker option @option{-relax}.
20635
20636 @item -mbigtable
20637 @opindex mbigtable
20638 Use 32-bit offsets in @code{switch} tables. The default is to use
20639 16-bit offsets.
20640
20641 @item -mbitops
20642 @opindex mbitops
20643 Enable the use of bit manipulation instructions on SH2A.
20644
20645 @item -mfmovd
20646 @opindex mfmovd
20647 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
20648 alignment constraints.
20649
20650 @item -mrenesas
20651 @opindex mrenesas
20652 Comply with the calling conventions defined by Renesas.
20653
20654 @item -mno-renesas
20655 @opindex mno-renesas
20656 Comply with the calling conventions defined for GCC before the Renesas
20657 conventions were available. This option is the default for all
20658 targets of the SH toolchain.
20659
20660 @item -mnomacsave
20661 @opindex mnomacsave
20662 Mark the @code{MAC} register as call-clobbered, even if
20663 @option{-mrenesas} is given.
20664
20665 @item -mieee
20666 @itemx -mno-ieee
20667 @opindex mieee
20668 @opindex mno-ieee
20669 Control the IEEE compliance of floating-point comparisons, which affects the
20670 handling of cases where the result of a comparison is unordered. By default
20671 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
20672 enabled @option{-mno-ieee} is implicitly set, which results in faster
20673 floating-point greater-equal and less-equal comparisons. The implcit settings
20674 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
20675
20676 @item -minline-ic_invalidate
20677 @opindex minline-ic_invalidate
20678 Inline code to invalidate instruction cache entries after setting up
20679 nested function trampolines.
20680 This option has no effect if @option{-musermode} is in effect and the selected
20681 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
20682 instruction.
20683 If the selected code generation option does not allow the use of the @code{icbi}
20684 instruction, and @option{-musermode} is not in effect, the inlined code
20685 manipulates the instruction cache address array directly with an associative
20686 write. This not only requires privileged mode at run time, but it also
20687 fails if the cache line had been mapped via the TLB and has become unmapped.
20688
20689 @item -misize
20690 @opindex misize
20691 Dump instruction size and location in the assembly code.
20692
20693 @item -mpadstruct
20694 @opindex mpadstruct
20695 This option is deprecated. It pads structures to multiple of 4 bytes,
20696 which is incompatible with the SH ABI@.
20697
20698 @item -matomic-model=@var{model}
20699 @opindex matomic-model=@var{model}
20700 Sets the model of atomic operations and additional parameters as a comma
20701 separated list. For details on the atomic built-in functions see
20702 @ref{__atomic Builtins}. The following models and parameters are supported:
20703
20704 @table @samp
20705
20706 @item none
20707 Disable compiler generated atomic sequences and emit library calls for atomic
20708 operations. This is the default if the target is not @code{sh*-*-linux*}.
20709
20710 @item soft-gusa
20711 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
20712 built-in functions. The generated atomic sequences require additional support
20713 from the interrupt/exception handling code of the system and are only suitable
20714 for SH3* and SH4* single-core systems. This option is enabled by default when
20715 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
20716 this option also partially utilizes the hardware atomic instructions
20717 @code{movli.l} and @code{movco.l} to create more efficient code, unless
20718 @samp{strict} is specified.
20719
20720 @item soft-tcb
20721 Generate software atomic sequences that use a variable in the thread control
20722 block. This is a variation of the gUSA sequences which can also be used on
20723 SH1* and SH2* targets. The generated atomic sequences require additional
20724 support from the interrupt/exception handling code of the system and are only
20725 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
20726 parameter has to be specified as well.
20727
20728 @item soft-imask
20729 Generate software atomic sequences that temporarily disable interrupts by
20730 setting @code{SR.IMASK = 1111}. This model works only when the program runs
20731 in privileged mode and is only suitable for single-core systems. Additional
20732 support from the interrupt/exception handling code of the system is not
20733 required. This model is enabled by default when the target is
20734 @code{sh*-*-linux*} and SH1* or SH2*.
20735
20736 @item hard-llcs
20737 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
20738 instructions only. This is only available on SH4A and is suitable for
20739 multi-core systems. Since the hardware instructions support only 32 bit atomic
20740 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
20741 Code compiled with this option is also compatible with other software
20742 atomic model interrupt/exception handling systems if executed on an SH4A
20743 system. Additional support from the interrupt/exception handling code of the
20744 system is not required for this model.
20745
20746 @item gbr-offset=
20747 This parameter specifies the offset in bytes of the variable in the thread
20748 control block structure that should be used by the generated atomic sequences
20749 when the @samp{soft-tcb} model has been selected. For other models this
20750 parameter is ignored. The specified value must be an integer multiple of four
20751 and in the range 0-1020.
20752
20753 @item strict
20754 This parameter prevents mixed usage of multiple atomic models, even if they
20755 are compatible, and makes the compiler generate atomic sequences of the
20756 specified model only.
20757
20758 @end table
20759
20760 @item -mtas
20761 @opindex mtas
20762 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
20763 Notice that depending on the particular hardware and software configuration
20764 this can degrade overall performance due to the operand cache line flushes
20765 that are implied by the @code{tas.b} instruction. On multi-core SH4A
20766 processors the @code{tas.b} instruction must be used with caution since it
20767 can result in data corruption for certain cache configurations.
20768
20769 @item -mprefergot
20770 @opindex mprefergot
20771 When generating position-independent code, emit function calls using
20772 the Global Offset Table instead of the Procedure Linkage Table.
20773
20774 @item -musermode
20775 @itemx -mno-usermode
20776 @opindex musermode
20777 @opindex mno-usermode
20778 Don't allow (allow) the compiler generating privileged mode code. Specifying
20779 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
20780 inlined code would not work in user mode. @option{-musermode} is the default
20781 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
20782 @option{-musermode} has no effect, since there is no user mode.
20783
20784 @item -multcost=@var{number}
20785 @opindex multcost=@var{number}
20786 Set the cost to assume for a multiply insn.
20787
20788 @item -mdiv=@var{strategy}
20789 @opindex mdiv=@var{strategy}
20790 Set the division strategy to be used for integer division operations.
20791 For SHmedia @var{strategy} can be one of:
20792
20793 @table @samp
20794
20795 @item fp
20796 Performs the operation in floating point. This has a very high latency,
20797 but needs only a few instructions, so it might be a good choice if
20798 your code has enough easily-exploitable ILP to allow the compiler to
20799 schedule the floating-point instructions together with other instructions.
20800 Division by zero causes a floating-point exception.
20801
20802 @item inv
20803 Uses integer operations to calculate the inverse of the divisor,
20804 and then multiplies the dividend with the inverse. This strategy allows
20805 CSE and hoisting of the inverse calculation. Division by zero calculates
20806 an unspecified result, but does not trap.
20807
20808 @item inv:minlat
20809 A variant of @samp{inv} where, if no CSE or hoisting opportunities
20810 have been found, or if the entire operation has been hoisted to the same
20811 place, the last stages of the inverse calculation are intertwined with the
20812 final multiply to reduce the overall latency, at the expense of using a few
20813 more instructions, and thus offering fewer scheduling opportunities with
20814 other code.
20815
20816 @item call
20817 Calls a library function that usually implements the @samp{inv:minlat}
20818 strategy.
20819 This gives high code density for @code{m5-*media-nofpu} compilations.
20820
20821 @item call2
20822 Uses a different entry point of the same library function, where it
20823 assumes that a pointer to a lookup table has already been set up, which
20824 exposes the pointer load to CSE and code hoisting optimizations.
20825
20826 @item inv:call
20827 @itemx inv:call2
20828 @itemx inv:fp
20829 Use the @samp{inv} algorithm for initial
20830 code generation, but if the code stays unoptimized, revert to the @samp{call},
20831 @samp{call2}, or @samp{fp} strategies, respectively. Note that the
20832 potentially-trapping side effect of division by zero is carried by a
20833 separate instruction, so it is possible that all the integer instructions
20834 are hoisted out, but the marker for the side effect stays where it is.
20835 A recombination to floating-point operations or a call is not possible
20836 in that case.
20837
20838 @item inv20u
20839 @itemx inv20l
20840 Variants of the @samp{inv:minlat} strategy. In the case
20841 that the inverse calculation is not separated from the multiply, they speed
20842 up division where the dividend fits into 20 bits (plus sign where applicable)
20843 by inserting a test to skip a number of operations in this case; this test
20844 slows down the case of larger dividends. @samp{inv20u} assumes the case of a such
20845 a small dividend to be unlikely, and @samp{inv20l} assumes it to be likely.
20846
20847 @end table
20848
20849 For targets other than SHmedia @var{strategy} can be one of:
20850
20851 @table @samp
20852
20853 @item call-div1
20854 Calls a library function that uses the single-step division instruction
20855 @code{div1} to perform the operation. Division by zero calculates an
20856 unspecified result and does not trap. This is the default except for SH4,
20857 SH2A and SHcompact.
20858
20859 @item call-fp
20860 Calls a library function that performs the operation in double precision
20861 floating point. Division by zero causes a floating-point exception. This is
20862 the default for SHcompact with FPU. Specifying this for targets that do not
20863 have a double precision FPU defaults to @code{call-div1}.
20864
20865 @item call-table
20866 Calls a library function that uses a lookup table for small divisors and
20867 the @code{div1} instruction with case distinction for larger divisors. Division
20868 by zero calculates an unspecified result and does not trap. This is the default
20869 for SH4. Specifying this for targets that do not have dynamic shift
20870 instructions defaults to @code{call-div1}.
20871
20872 @end table
20873
20874 When a division strategy has not been specified the default strategy is
20875 selected based on the current target. For SH2A the default strategy is to
20876 use the @code{divs} and @code{divu} instructions instead of library function
20877 calls.
20878
20879 @item -maccumulate-outgoing-args
20880 @opindex maccumulate-outgoing-args
20881 Reserve space once for outgoing arguments in the function prologue rather
20882 than around each call. Generally beneficial for performance and size. Also
20883 needed for unwinding to avoid changing the stack frame around conditional code.
20884
20885 @item -mdivsi3_libfunc=@var{name}
20886 @opindex mdivsi3_libfunc=@var{name}
20887 Set the name of the library function used for 32-bit signed division to
20888 @var{name}.
20889 This only affects the name used in the @samp{call} and @samp{inv:call}
20890 division strategies, and the compiler still expects the same
20891 sets of input/output/clobbered registers as if this option were not present.
20892
20893 @item -mfixed-range=@var{register-range}
20894 @opindex mfixed-range
20895 Generate code treating the given register range as fixed registers.
20896 A fixed register is one that the register allocator can not use. This is
20897 useful when compiling kernel code. A register range is specified as
20898 two registers separated by a dash. Multiple register ranges can be
20899 specified separated by a comma.
20900
20901 @item -mindexed-addressing
20902 @opindex mindexed-addressing
20903 Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
20904 This is only safe if the hardware and/or OS implement 32-bit wrap-around
20905 semantics for the indexed addressing mode. The architecture allows the
20906 implementation of processors with 64-bit MMU, which the OS could use to
20907 get 32-bit addressing, but since no current hardware implementation supports
20908 this or any other way to make the indexed addressing mode safe to use in
20909 the 32-bit ABI, the default is @option{-mno-indexed-addressing}.
20910
20911 @item -mgettrcost=@var{number}
20912 @opindex mgettrcost=@var{number}
20913 Set the cost assumed for the @code{gettr} instruction to @var{number}.
20914 The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.
20915
20916 @item -mpt-fixed
20917 @opindex mpt-fixed
20918 Assume @code{pt*} instructions won't trap. This generally generates
20919 better-scheduled code, but is unsafe on current hardware.
20920 The current architecture
20921 definition says that @code{ptabs} and @code{ptrel} trap when the target
20922 anded with 3 is 3.
20923 This has the unintentional effect of making it unsafe to schedule these
20924 instructions before a branch, or hoist them out of a loop. For example,
20925 @code{__do_global_ctors}, a part of @file{libgcc}
20926 that runs constructors at program
20927 startup, calls functions in a list which is delimited by @minus{}1. With the
20928 @option{-mpt-fixed} option, the @code{ptabs} is done before testing against @minus{}1.
20929 That means that all the constructors run a bit more quickly, but when
20930 the loop comes to the end of the list, the program crashes because @code{ptabs}
20931 loads @minus{}1 into a target register.
20932
20933 Since this option is unsafe for any
20934 hardware implementing the current architecture specification, the default
20935 is @option{-mno-pt-fixed}. Unless specified explicitly with
20936 @option{-mgettrcost}, @option{-mno-pt-fixed} also implies @option{-mgettrcost=100};
20937 this deters register allocation from using target registers for storing
20938 ordinary integers.
20939
20940 @item -minvalid-symbols
20941 @opindex minvalid-symbols
20942 Assume symbols might be invalid. Ordinary function symbols generated by
20943 the compiler are always valid to load with
20944 @code{movi}/@code{shori}/@code{ptabs} or
20945 @code{movi}/@code{shori}/@code{ptrel},
20946 but with assembler and/or linker tricks it is possible
20947 to generate symbols that cause @code{ptabs} or @code{ptrel} to trap.
20948 This option is only meaningful when @option{-mno-pt-fixed} is in effect.
20949 It prevents cross-basic-block CSE, hoisting and most scheduling
20950 of symbol loads. The default is @option{-mno-invalid-symbols}.
20951
20952 @item -mbranch-cost=@var{num}
20953 @opindex mbranch-cost=@var{num}
20954 Assume @var{num} to be the cost for a branch instruction. Higher numbers
20955 make the compiler try to generate more branch-free code if possible.
20956 If not specified the value is selected depending on the processor type that
20957 is being compiled for.
20958
20959 @item -mzdcbranch
20960 @itemx -mno-zdcbranch
20961 @opindex mzdcbranch
20962 @opindex mno-zdcbranch
20963 Assume (do not assume) that zero displacement conditional branch instructions
20964 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
20965 compiler prefers zero displacement branch code sequences. This is
20966 enabled by default when generating code for SH4 and SH4A. It can be explicitly
20967 disabled by specifying @option{-mno-zdcbranch}.
20968
20969 @item -mcbranch-force-delay-slot
20970 @opindex mcbranch-force-delay-slot
20971 Force the usage of delay slots for conditional branches, which stuffs the delay
20972 slot with a @code{nop} if a suitable instruction can't be found. By default
20973 this option is disabled. It can be enabled to work around hardware bugs as
20974 found in the original SH7055.
20975
20976 @item -mfused-madd
20977 @itemx -mno-fused-madd
20978 @opindex mfused-madd
20979 @opindex mno-fused-madd
20980 Generate code that uses (does not use) the floating-point multiply and
20981 accumulate instructions. These instructions are generated by default
20982 if hardware floating point is used. The machine-dependent
20983 @option{-mfused-madd} option is now mapped to the machine-independent
20984 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
20985 mapped to @option{-ffp-contract=off}.
20986
20987 @item -mfsca
20988 @itemx -mno-fsca
20989 @opindex mfsca
20990 @opindex mno-fsca
20991 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
20992 and cosine approximations. The option @option{-mfsca} must be used in
20993 combination with @option{-funsafe-math-optimizations}. It is enabled by default
20994 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
20995 approximations even if @option{-funsafe-math-optimizations} is in effect.
20996
20997 @item -mfsrra
20998 @itemx -mno-fsrra
20999 @opindex mfsrra
21000 @opindex mno-fsrra
21001 Allow or disallow the compiler to emit the @code{fsrra} instruction for
21002 reciprocal square root approximations. The option @option{-mfsrra} must be used
21003 in combination with @option{-funsafe-math-optimizations} and
21004 @option{-ffinite-math-only}. It is enabled by default when generating code for
21005 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
21006 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
21007 in effect.
21008
21009 @item -mpretend-cmove
21010 @opindex mpretend-cmove
21011 Prefer zero-displacement conditional branches for conditional move instruction
21012 patterns. This can result in faster code on the SH4 processor.
21013
21014 @end table
21015
21016 @node Solaris 2 Options
21017 @subsection Solaris 2 Options
21018 @cindex Solaris 2 options
21019
21020 These @samp{-m} options are supported on Solaris 2:
21021
21022 @table @gcctabopt
21023 @item -mclear-hwcap
21024 @opindex mclear-hwcap
21025 @option{-mclear-hwcap} tells the compiler to remove the hardware
21026 capabilities generated by the Solaris assembler. This is only necessary
21027 when object files use ISA extensions not supported by the current
21028 machine, but check at runtime whether or not to use them.
21029
21030 @item -mimpure-text
21031 @opindex mimpure-text
21032 @option{-mimpure-text}, used in addition to @option{-shared}, tells
21033 the compiler to not pass @option{-z text} to the linker when linking a
21034 shared object. Using this option, you can link position-dependent
21035 code into a shared object.
21036
21037 @option{-mimpure-text} suppresses the ``relocations remain against
21038 allocatable but non-writable sections'' linker error message.
21039 However, the necessary relocations trigger copy-on-write, and the
21040 shared object is not actually shared across processes. Instead of
21041 using @option{-mimpure-text}, you should compile all source code with
21042 @option{-fpic} or @option{-fPIC}.
21043
21044 @end table
21045
21046 These switches are supported in addition to the above on Solaris 2:
21047
21048 @table @gcctabopt
21049 @item -pthreads
21050 @opindex pthreads
21051 Add support for multithreading using the POSIX threads library. This
21052 option sets flags for both the preprocessor and linker. This option does
21053 not affect the thread safety of object code produced by the compiler or
21054 that of libraries supplied with it.
21055
21056 @item -pthread
21057 @opindex pthread
21058 This is a synonym for @option{-pthreads}.
21059 @end table
21060
21061 @node SPARC Options
21062 @subsection SPARC Options
21063 @cindex SPARC options
21064
21065 These @samp{-m} options are supported on the SPARC:
21066
21067 @table @gcctabopt
21068 @item -mno-app-regs
21069 @itemx -mapp-regs
21070 @opindex mno-app-regs
21071 @opindex mapp-regs
21072 Specify @option{-mapp-regs} to generate output using the global registers
21073 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
21074 global register 1, each global register 2 through 4 is then treated as an
21075 allocable register that is clobbered by function calls. This is the default.
21076
21077 To be fully SVR4 ABI-compliant at the cost of some performance loss,
21078 specify @option{-mno-app-regs}. You should compile libraries and system
21079 software with this option.
21080
21081 @item -mflat
21082 @itemx -mno-flat
21083 @opindex mflat
21084 @opindex mno-flat
21085 With @option{-mflat}, the compiler does not generate save/restore instructions
21086 and uses a ``flat'' or single register window model. This model is compatible
21087 with the regular register window model. The local registers and the input
21088 registers (0--5) are still treated as ``call-saved'' registers and are
21089 saved on the stack as needed.
21090
21091 With @option{-mno-flat} (the default), the compiler generates save/restore
21092 instructions (except for leaf functions). This is the normal operating mode.
21093
21094 @item -mfpu
21095 @itemx -mhard-float
21096 @opindex mfpu
21097 @opindex mhard-float
21098 Generate output containing floating-point instructions. This is the
21099 default.
21100
21101 @item -mno-fpu
21102 @itemx -msoft-float
21103 @opindex mno-fpu
21104 @opindex msoft-float
21105 Generate output containing library calls for floating point.
21106 @strong{Warning:} the requisite libraries are not available for all SPARC
21107 targets. Normally the facilities of the machine's usual C compiler are
21108 used, but this cannot be done directly in cross-compilation. You must make
21109 your own arrangements to provide suitable library functions for
21110 cross-compilation. The embedded targets @samp{sparc-*-aout} and
21111 @samp{sparclite-*-*} do provide software floating-point support.
21112
21113 @option{-msoft-float} changes the calling convention in the output file;
21114 therefore, it is only useful if you compile @emph{all} of a program with
21115 this option. In particular, you need to compile @file{libgcc.a}, the
21116 library that comes with GCC, with @option{-msoft-float} in order for
21117 this to work.
21118
21119 @item -mhard-quad-float
21120 @opindex mhard-quad-float
21121 Generate output containing quad-word (long double) floating-point
21122 instructions.
21123
21124 @item -msoft-quad-float
21125 @opindex msoft-quad-float
21126 Generate output containing library calls for quad-word (long double)
21127 floating-point instructions. The functions called are those specified
21128 in the SPARC ABI@. This is the default.
21129
21130 As of this writing, there are no SPARC implementations that have hardware
21131 support for the quad-word floating-point instructions. They all invoke
21132 a trap handler for one of these instructions, and then the trap handler
21133 emulates the effect of the instruction. Because of the trap handler overhead,
21134 this is much slower than calling the ABI library routines. Thus the
21135 @option{-msoft-quad-float} option is the default.
21136
21137 @item -mno-unaligned-doubles
21138 @itemx -munaligned-doubles
21139 @opindex mno-unaligned-doubles
21140 @opindex munaligned-doubles
21141 Assume that doubles have 8-byte alignment. This is the default.
21142
21143 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21144 alignment only if they are contained in another type, or if they have an
21145 absolute address. Otherwise, it assumes they have 4-byte alignment.
21146 Specifying this option avoids some rare compatibility problems with code
21147 generated by other compilers. It is not the default because it results
21148 in a performance loss, especially for floating-point code.
21149
21150 @item -muser-mode
21151 @itemx -mno-user-mode
21152 @opindex muser-mode
21153 @opindex mno-user-mode
21154 Do not generate code that can only run in supervisor mode. This is relevant
21155 only for the @code{casa} instruction emitted for the LEON3 processor. The
21156 default is @option{-mno-user-mode}.
21157
21158 @item -mno-faster-structs
21159 @itemx -mfaster-structs
21160 @opindex mno-faster-structs
21161 @opindex mfaster-structs
21162 With @option{-mfaster-structs}, the compiler assumes that structures
21163 should have 8-byte alignment. This enables the use of pairs of
21164 @code{ldd} and @code{std} instructions for copies in structure
21165 assignment, in place of twice as many @code{ld} and @code{st} pairs.
21166 However, the use of this changed alignment directly violates the SPARC
21167 ABI@. Thus, it's intended only for use on targets where the developer
21168 acknowledges that their resulting code is not directly in line with
21169 the rules of the ABI@.
21170
21171 @item -mcpu=@var{cpu_type}
21172 @opindex mcpu
21173 Set the instruction set, register set, and instruction scheduling parameters
21174 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
21175 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21176 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21177 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21178 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21179 @samp{niagara3} and @samp{niagara4}.
21180
21181 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21182 which selects the best architecture option for the host processor.
21183 @option{-mcpu=native} has no effect if GCC does not recognize
21184 the processor.
21185
21186 Default instruction scheduling parameters are used for values that select
21187 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
21188 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
21189
21190 Here is a list of each supported architecture and their supported
21191 implementations.
21192
21193 @table @asis
21194 @item v7
21195 cypress, leon3v7
21196
21197 @item v8
21198 supersparc, hypersparc, leon, leon3
21199
21200 @item sparclite
21201 f930, f934, sparclite86x
21202
21203 @item sparclet
21204 tsc701
21205
21206 @item v9
21207 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21208 @end table
21209
21210 By default (unless configured otherwise), GCC generates code for the V7
21211 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
21212 additionally optimizes it for the Cypress CY7C602 chip, as used in the
21213 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
21214 SPARCStation 1, 2, IPX etc.
21215
21216 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21217 architecture. The only difference from V7 code is that the compiler emits
21218 the integer multiply and integer divide instructions which exist in SPARC-V8
21219 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
21220 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
21221 2000 series.
21222
21223 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21224 the SPARC architecture. This adds the integer multiply, integer divide step
21225 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21226 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21227 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
21228 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21229 MB86934 chip, which is the more recent SPARClite with FPU@.
21230
21231 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21232 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
21233 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21234 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
21235 optimizes it for the TEMIC SPARClet chip.
21236
21237 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21238 architecture. This adds 64-bit integer and floating-point move instructions,
21239 3 additional floating-point condition code registers and conditional move
21240 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
21241 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
21242 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21243 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
21244 @option{-mcpu=niagara}, the compiler additionally optimizes it for
21245 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
21246 additionally optimizes it for Sun UltraSPARC T2 chips. With
21247 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21248 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
21249 additionally optimizes it for Sun UltraSPARC T4 chips.
21250
21251 @item -mtune=@var{cpu_type}
21252 @opindex mtune
21253 Set the instruction scheduling parameters for machine type
21254 @var{cpu_type}, but do not set the instruction set or register set that the
21255 option @option{-mcpu=@var{cpu_type}} does.
21256
21257 The same values for @option{-mcpu=@var{cpu_type}} can be used for
21258 @option{-mtune=@var{cpu_type}}, but the only useful values are those
21259 that select a particular CPU implementation. Those are @samp{cypress},
21260 @samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21261 @samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21262 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21263 @samp{niagara3} and @samp{niagara4}. With native Solaris and GNU/Linux
21264 toolchains, @samp{native} can also be used.
21265
21266 @item -mv8plus
21267 @itemx -mno-v8plus
21268 @opindex mv8plus
21269 @opindex mno-v8plus
21270 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
21271 difference from the V8 ABI is that the global and out registers are
21272 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
21273 mode for all SPARC-V9 processors.
21274
21275 @item -mvis
21276 @itemx -mno-vis
21277 @opindex mvis
21278 @opindex mno-vis
21279 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21280 Visual Instruction Set extensions. The default is @option{-mno-vis}.
21281
21282 @item -mvis2
21283 @itemx -mno-vis2
21284 @opindex mvis2
21285 @opindex mno-vis2
21286 With @option{-mvis2}, GCC generates code that takes advantage of
21287 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
21288 default is @option{-mvis2} when targeting a cpu that supports such
21289 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
21290 also sets @option{-mvis}.
21291
21292 @item -mvis3
21293 @itemx -mno-vis3
21294 @opindex mvis3
21295 @opindex mno-vis3
21296 With @option{-mvis3}, GCC generates code that takes advantage of
21297 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
21298 default is @option{-mvis3} when targeting a cpu that supports such
21299 instructions, such as niagara-3 and later. Setting @option{-mvis3}
21300 also sets @option{-mvis2} and @option{-mvis}.
21301
21302 @item -mcbcond
21303 @itemx -mno-cbcond
21304 @opindex mcbcond
21305 @opindex mno-cbcond
21306 With @option{-mcbcond}, GCC generates code that takes advantage of
21307 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21308 The default is @option{-mcbcond} when targeting a cpu that supports such
21309 instructions, such as niagara-4 and later.
21310
21311 @item -mpopc
21312 @itemx -mno-popc
21313 @opindex mpopc
21314 @opindex mno-popc
21315 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21316 population count instruction. The default is @option{-mpopc}
21317 when targeting a cpu that supports such instructions, such as Niagara-2 and
21318 later.
21319
21320 @item -mfmaf
21321 @itemx -mno-fmaf
21322 @opindex mfmaf
21323 @opindex mno-fmaf
21324 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21325 Fused Multiply-Add Floating-point extensions. The default is @option{-mfmaf}
21326 when targeting a cpu that supports such instructions, such as Niagara-3 and
21327 later.
21328
21329 @item -mfix-at697f
21330 @opindex mfix-at697f
21331 Enable the documented workaround for the single erratum of the Atmel AT697F
21332 processor (which corresponds to erratum #13 of the AT697E processor).
21333
21334 @item -mfix-ut699
21335 @opindex mfix-ut699
21336 Enable the documented workarounds for the floating-point errata and the data
21337 cache nullify errata of the UT699 processor.
21338 @end table
21339
21340 These @samp{-m} options are supported in addition to the above
21341 on SPARC-V9 processors in 64-bit environments:
21342
21343 @table @gcctabopt
21344 @item -m32
21345 @itemx -m64
21346 @opindex m32
21347 @opindex m64
21348 Generate code for a 32-bit or 64-bit environment.
21349 The 32-bit environment sets int, long and pointer to 32 bits.
21350 The 64-bit environment sets int to 32 bits and long and pointer
21351 to 64 bits.
21352
21353 @item -mcmodel=@var{which}
21354 @opindex mcmodel
21355 Set the code model to one of
21356
21357 @table @samp
21358 @item medlow
21359 The Medium/Low code model: 64-bit addresses, programs
21360 must be linked in the low 32 bits of memory. Programs can be statically
21361 or dynamically linked.
21362
21363 @item medmid
21364 The Medium/Middle code model: 64-bit addresses, programs
21365 must be linked in the low 44 bits of memory, the text and data segments must
21366 be less than 2GB in size and the data segment must be located within 2GB of
21367 the text segment.
21368
21369 @item medany
21370 The Medium/Anywhere code model: 64-bit addresses, programs
21371 may be linked anywhere in memory, the text and data segments must be less
21372 than 2GB in size and the data segment must be located within 2GB of the
21373 text segment.
21374
21375 @item embmedany
21376 The Medium/Anywhere code model for embedded systems:
21377 64-bit addresses, the text and data segments must be less than 2GB in
21378 size, both starting anywhere in memory (determined at link time). The
21379 global register %g4 points to the base of the data segment. Programs
21380 are statically linked and PIC is not supported.
21381 @end table
21382
21383 @item -mmemory-model=@var{mem-model}
21384 @opindex mmemory-model
21385 Set the memory model in force on the processor to one of
21386
21387 @table @samp
21388 @item default
21389 The default memory model for the processor and operating system.
21390
21391 @item rmo
21392 Relaxed Memory Order
21393
21394 @item pso
21395 Partial Store Order
21396
21397 @item tso
21398 Total Store Order
21399
21400 @item sc
21401 Sequential Consistency
21402 @end table
21403
21404 These memory models are formally defined in Appendix D of the Sparc V9
21405 architecture manual, as set in the processor's @code{PSTATE.MM} field.
21406
21407 @item -mstack-bias
21408 @itemx -mno-stack-bias
21409 @opindex mstack-bias
21410 @opindex mno-stack-bias
21411 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21412 frame pointer if present, are offset by @minus{}2047 which must be added back
21413 when making stack frame references. This is the default in 64-bit mode.
21414 Otherwise, assume no such offset is present.
21415 @end table
21416
21417 @node SPU Options
21418 @subsection SPU Options
21419 @cindex SPU options
21420
21421 These @samp{-m} options are supported on the SPU:
21422
21423 @table @gcctabopt
21424 @item -mwarn-reloc
21425 @itemx -merror-reloc
21426 @opindex mwarn-reloc
21427 @opindex merror-reloc
21428
21429 The loader for SPU does not handle dynamic relocations. By default, GCC
21430 gives an error when it generates code that requires a dynamic
21431 relocation. @option{-mno-error-reloc} disables the error,
21432 @option{-mwarn-reloc} generates a warning instead.
21433
21434 @item -msafe-dma
21435 @itemx -munsafe-dma
21436 @opindex msafe-dma
21437 @opindex munsafe-dma
21438
21439 Instructions that initiate or test completion of DMA must not be
21440 reordered with respect to loads and stores of the memory that is being
21441 accessed.
21442 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21443 memory accesses, but that can lead to inefficient code in places where the
21444 memory is known to not change. Rather than mark the memory as volatile,
21445 you can use @option{-msafe-dma} to tell the compiler to treat
21446 the DMA instructions as potentially affecting all memory.
21447
21448 @item -mbranch-hints
21449 @opindex mbranch-hints
21450
21451 By default, GCC generates a branch hint instruction to avoid
21452 pipeline stalls for always-taken or probably-taken branches. A hint
21453 is not generated closer than 8 instructions away from its branch.
21454 There is little reason to disable them, except for debugging purposes,
21455 or to make an object a little bit smaller.
21456
21457 @item -msmall-mem
21458 @itemx -mlarge-mem
21459 @opindex msmall-mem
21460 @opindex mlarge-mem
21461
21462 By default, GCC generates code assuming that addresses are never larger
21463 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
21464 a full 32-bit address.
21465
21466 @item -mstdmain
21467 @opindex mstdmain
21468
21469 By default, GCC links against startup code that assumes the SPU-style
21470 main function interface (which has an unconventional parameter list).
21471 With @option{-mstdmain}, GCC links your program against startup
21472 code that assumes a C99-style interface to @code{main}, including a
21473 local copy of @code{argv} strings.
21474
21475 @item -mfixed-range=@var{register-range}
21476 @opindex mfixed-range
21477 Generate code treating the given register range as fixed registers.
21478 A fixed register is one that the register allocator cannot use. This is
21479 useful when compiling kernel code. A register range is specified as
21480 two registers separated by a dash. Multiple register ranges can be
21481 specified separated by a comma.
21482
21483 @item -mea32
21484 @itemx -mea64
21485 @opindex mea32
21486 @opindex mea64
21487 Compile code assuming that pointers to the PPU address space accessed
21488 via the @code{__ea} named address space qualifier are either 32 or 64
21489 bits wide. The default is 32 bits. As this is an ABI-changing option,
21490 all object code in an executable must be compiled with the same setting.
21491
21492 @item -maddress-space-conversion
21493 @itemx -mno-address-space-conversion
21494 @opindex maddress-space-conversion
21495 @opindex mno-address-space-conversion
21496 Allow/disallow treating the @code{__ea} address space as superset
21497 of the generic address space. This enables explicit type casts
21498 between @code{__ea} and generic pointer as well as implicit
21499 conversions of generic pointers to @code{__ea} pointers. The
21500 default is to allow address space pointer conversions.
21501
21502 @item -mcache-size=@var{cache-size}
21503 @opindex mcache-size
21504 This option controls the version of libgcc that the compiler links to an
21505 executable and selects a software-managed cache for accessing variables
21506 in the @code{__ea} address space with a particular cache size. Possible
21507 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21508 and @samp{128}. The default cache size is 64KB.
21509
21510 @item -matomic-updates
21511 @itemx -mno-atomic-updates
21512 @opindex matomic-updates
21513 @opindex mno-atomic-updates
21514 This option controls the version of libgcc that the compiler links to an
21515 executable and selects whether atomic updates to the software-managed
21516 cache of PPU-side variables are used. If you use atomic updates, changes
21517 to a PPU variable from SPU code using the @code{__ea} named address space
21518 qualifier do not interfere with changes to other PPU variables residing
21519 in the same cache line from PPU code. If you do not use atomic updates,
21520 such interference may occur; however, writing back cache lines is
21521 more efficient. The default behavior is to use atomic updates.
21522
21523 @item -mdual-nops
21524 @itemx -mdual-nops=@var{n}
21525 @opindex mdual-nops
21526 By default, GCC inserts nops to increase dual issue when it expects
21527 it to increase performance. @var{n} can be a value from 0 to 10. A
21528 smaller @var{n} inserts fewer nops. 10 is the default, 0 is the
21529 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
21530
21531 @item -mhint-max-nops=@var{n}
21532 @opindex mhint-max-nops
21533 Maximum number of nops to insert for a branch hint. A branch hint must
21534 be at least 8 instructions away from the branch it is affecting. GCC
21535 inserts up to @var{n} nops to enforce this, otherwise it does not
21536 generate the branch hint.
21537
21538 @item -mhint-max-distance=@var{n}
21539 @opindex mhint-max-distance
21540 The encoding of the branch hint instruction limits the hint to be within
21541 256 instructions of the branch it is affecting. By default, GCC makes
21542 sure it is within 125.
21543
21544 @item -msafe-hints
21545 @opindex msafe-hints
21546 Work around a hardware bug that causes the SPU to stall indefinitely.
21547 By default, GCC inserts the @code{hbrp} instruction to make sure
21548 this stall won't happen.
21549
21550 @end table
21551
21552 @node System V Options
21553 @subsection Options for System V
21554
21555 These additional options are available on System V Release 4 for
21556 compatibility with other compilers on those systems:
21557
21558 @table @gcctabopt
21559 @item -G
21560 @opindex G
21561 Create a shared object.
21562 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
21563
21564 @item -Qy
21565 @opindex Qy
21566 Identify the versions of each tool used by the compiler, in a
21567 @code{.ident} assembler directive in the output.
21568
21569 @item -Qn
21570 @opindex Qn
21571 Refrain from adding @code{.ident} directives to the output file (this is
21572 the default).
21573
21574 @item -YP,@var{dirs}
21575 @opindex YP
21576 Search the directories @var{dirs}, and no others, for libraries
21577 specified with @option{-l}.
21578
21579 @item -Ym,@var{dir}
21580 @opindex Ym
21581 Look in the directory @var{dir} to find the M4 preprocessor.
21582 The assembler uses this option.
21583 @c This is supposed to go with a -Yd for predefined M4 macro files, but
21584 @c the generic assembler that comes with Solaris takes just -Ym.
21585 @end table
21586
21587 @node TILE-Gx Options
21588 @subsection TILE-Gx Options
21589 @cindex TILE-Gx options
21590
21591 These @samp{-m} options are supported on the TILE-Gx:
21592
21593 @table @gcctabopt
21594 @item -mcmodel=small
21595 @opindex mcmodel=small
21596 Generate code for the small model. The distance for direct calls is
21597 limited to 500M in either direction. PC-relative addresses are 32
21598 bits. Absolute addresses support the full address range.
21599
21600 @item -mcmodel=large
21601 @opindex mcmodel=large
21602 Generate code for the large model. There is no limitation on call
21603 distance, pc-relative addresses, or absolute addresses.
21604
21605 @item -mcpu=@var{name}
21606 @opindex mcpu
21607 Selects the type of CPU to be targeted. Currently the only supported
21608 type is @samp{tilegx}.
21609
21610 @item -m32
21611 @itemx -m64
21612 @opindex m32
21613 @opindex m64
21614 Generate code for a 32-bit or 64-bit environment. The 32-bit
21615 environment sets int, long, and pointer to 32 bits. The 64-bit
21616 environment sets int to 32 bits and long and pointer to 64 bits.
21617
21618 @item -mbig-endian
21619 @itemx -mlittle-endian
21620 @opindex mbig-endian
21621 @opindex mlittle-endian
21622 Generate code in big/little endian mode, respectively.
21623 @end table
21624
21625 @node TILEPro Options
21626 @subsection TILEPro Options
21627 @cindex TILEPro options
21628
21629 These @samp{-m} options are supported on the TILEPro:
21630
21631 @table @gcctabopt
21632 @item -mcpu=@var{name}
21633 @opindex mcpu
21634 Selects the type of CPU to be targeted. Currently the only supported
21635 type is @samp{tilepro}.
21636
21637 @item -m32
21638 @opindex m32
21639 Generate code for a 32-bit environment, which sets int, long, and
21640 pointer to 32 bits. This is the only supported behavior so the flag
21641 is essentially ignored.
21642 @end table
21643
21644 @node V850 Options
21645 @subsection V850 Options
21646 @cindex V850 Options
21647
21648 These @samp{-m} options are defined for V850 implementations:
21649
21650 @table @gcctabopt
21651 @item -mlong-calls
21652 @itemx -mno-long-calls
21653 @opindex mlong-calls
21654 @opindex mno-long-calls
21655 Treat all calls as being far away (near). If calls are assumed to be
21656 far away, the compiler always loads the function's address into a
21657 register, and calls indirect through the pointer.
21658
21659 @item -mno-ep
21660 @itemx -mep
21661 @opindex mno-ep
21662 @opindex mep
21663 Do not optimize (do optimize) basic blocks that use the same index
21664 pointer 4 or more times to copy pointer into the @code{ep} register, and
21665 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
21666 option is on by default if you optimize.
21667
21668 @item -mno-prolog-function
21669 @itemx -mprolog-function
21670 @opindex mno-prolog-function
21671 @opindex mprolog-function
21672 Do not use (do use) external functions to save and restore registers
21673 at the prologue and epilogue of a function. The external functions
21674 are slower, but use less code space if more than one function saves
21675 the same number of registers. The @option{-mprolog-function} option
21676 is on by default if you optimize.
21677
21678 @item -mspace
21679 @opindex mspace
21680 Try to make the code as small as possible. At present, this just turns
21681 on the @option{-mep} and @option{-mprolog-function} options.
21682
21683 @item -mtda=@var{n}
21684 @opindex mtda
21685 Put static or global variables whose size is @var{n} bytes or less into
21686 the tiny data area that register @code{ep} points to. The tiny data
21687 area can hold up to 256 bytes in total (128 bytes for byte references).
21688
21689 @item -msda=@var{n}
21690 @opindex msda
21691 Put static or global variables whose size is @var{n} bytes or less into
21692 the small data area that register @code{gp} points to. The small data
21693 area can hold up to 64 kilobytes.
21694
21695 @item -mzda=@var{n}
21696 @opindex mzda
21697 Put static or global variables whose size is @var{n} bytes or less into
21698 the first 32 kilobytes of memory.
21699
21700 @item -mv850
21701 @opindex mv850
21702 Specify that the target processor is the V850.
21703
21704 @item -mv850e3v5
21705 @opindex mv850e3v5
21706 Specify that the target processor is the V850E3V5. The preprocessor
21707 constant @code{__v850e3v5__} is defined if this option is used.
21708
21709 @item -mv850e2v4
21710 @opindex mv850e2v4
21711 Specify that the target processor is the V850E3V5. This is an alias for
21712 the @option{-mv850e3v5} option.
21713
21714 @item -mv850e2v3
21715 @opindex mv850e2v3
21716 Specify that the target processor is the V850E2V3. The preprocessor
21717 constant @code{__v850e2v3__} is defined if this option is used.
21718
21719 @item -mv850e2
21720 @opindex mv850e2
21721 Specify that the target processor is the V850E2. The preprocessor
21722 constant @code{__v850e2__} is defined if this option is used.
21723
21724 @item -mv850e1
21725 @opindex mv850e1
21726 Specify that the target processor is the V850E1. The preprocessor
21727 constants @code{__v850e1__} and @code{__v850e__} are defined if
21728 this option is used.
21729
21730 @item -mv850es
21731 @opindex mv850es
21732 Specify that the target processor is the V850ES. This is an alias for
21733 the @option{-mv850e1} option.
21734
21735 @item -mv850e
21736 @opindex mv850e
21737 Specify that the target processor is the V850E@. The preprocessor
21738 constant @code{__v850e__} is defined if this option is used.
21739
21740 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
21741 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
21742 are defined then a default target processor is chosen and the
21743 relevant @samp{__v850*__} preprocessor constant is defined.
21744
21745 The preprocessor constants @code{__v850} and @code{__v851__} are always
21746 defined, regardless of which processor variant is the target.
21747
21748 @item -mdisable-callt
21749 @itemx -mno-disable-callt
21750 @opindex mdisable-callt
21751 @opindex mno-disable-callt
21752 This option suppresses generation of the @code{CALLT} instruction for the
21753 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
21754 architecture.
21755
21756 This option is enabled by default when the RH850 ABI is
21757 in use (see @option{-mrh850-abi}), and disabled by default when the
21758 GCC ABI is in use. If @code{CALLT} instructions are being generated
21759 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
21760
21761 @item -mrelax
21762 @itemx -mno-relax
21763 @opindex mrelax
21764 @opindex mno-relax
21765 Pass on (or do not pass on) the @option{-mrelax} command-line option
21766 to the assembler.
21767
21768 @item -mlong-jumps
21769 @itemx -mno-long-jumps
21770 @opindex mlong-jumps
21771 @opindex mno-long-jumps
21772 Disable (or re-enable) the generation of PC-relative jump instructions.
21773
21774 @item -msoft-float
21775 @itemx -mhard-float
21776 @opindex msoft-float
21777 @opindex mhard-float
21778 Disable (or re-enable) the generation of hardware floating point
21779 instructions. This option is only significant when the target
21780 architecture is @samp{V850E2V3} or higher. If hardware floating point
21781 instructions are being generated then the C preprocessor symbol
21782 @code{__FPU_OK__} is defined, otherwise the symbol
21783 @code{__NO_FPU__} is defined.
21784
21785 @item -mloop
21786 @opindex mloop
21787 Enables the use of the e3v5 LOOP instruction. The use of this
21788 instruction is not enabled by default when the e3v5 architecture is
21789 selected because its use is still experimental.
21790
21791 @item -mrh850-abi
21792 @itemx -mghs
21793 @opindex mrh850-abi
21794 @opindex mghs
21795 Enables support for the RH850 version of the V850 ABI. This is the
21796 default. With this version of the ABI the following rules apply:
21797
21798 @itemize
21799 @item
21800 Integer sized structures and unions are returned via a memory pointer
21801 rather than a register.
21802
21803 @item
21804 Large structures and unions (more than 8 bytes in size) are passed by
21805 value.
21806
21807 @item
21808 Functions are aligned to 16-bit boundaries.
21809
21810 @item
21811 The @option{-m8byte-align} command-line option is supported.
21812
21813 @item
21814 The @option{-mdisable-callt} command-line option is enabled by
21815 default. The @option{-mno-disable-callt} command-line option is not
21816 supported.
21817 @end itemize
21818
21819 When this version of the ABI is enabled the C preprocessor symbol
21820 @code{__V850_RH850_ABI__} is defined.
21821
21822 @item -mgcc-abi
21823 @opindex mgcc-abi
21824 Enables support for the old GCC version of the V850 ABI. With this
21825 version of the ABI the following rules apply:
21826
21827 @itemize
21828 @item
21829 Integer sized structures and unions are returned in register @code{r10}.
21830
21831 @item
21832 Large structures and unions (more than 8 bytes in size) are passed by
21833 reference.
21834
21835 @item
21836 Functions are aligned to 32-bit boundaries, unless optimizing for
21837 size.
21838
21839 @item
21840 The @option{-m8byte-align} command-line option is not supported.
21841
21842 @item
21843 The @option{-mdisable-callt} command-line option is supported but not
21844 enabled by default.
21845 @end itemize
21846
21847 When this version of the ABI is enabled the C preprocessor symbol
21848 @code{__V850_GCC_ABI__} is defined.
21849
21850 @item -m8byte-align
21851 @itemx -mno-8byte-align
21852 @opindex m8byte-align
21853 @opindex mno-8byte-align
21854 Enables support for @code{double} and @code{long long} types to be
21855 aligned on 8-byte boundaries. The default is to restrict the
21856 alignment of all objects to at most 4-bytes. When
21857 @option{-m8byte-align} is in effect the C preprocessor symbol
21858 @code{__V850_8BYTE_ALIGN__} is defined.
21859
21860 @item -mbig-switch
21861 @opindex mbig-switch
21862 Generate code suitable for big switch tables. Use this option only if
21863 the assembler/linker complain about out of range branches within a switch
21864 table.
21865
21866 @item -mapp-regs
21867 @opindex mapp-regs
21868 This option causes r2 and r5 to be used in the code generated by
21869 the compiler. This setting is the default.
21870
21871 @item -mno-app-regs
21872 @opindex mno-app-regs
21873 This option causes r2 and r5 to be treated as fixed registers.
21874
21875 @end table
21876
21877 @node VAX Options
21878 @subsection VAX Options
21879 @cindex VAX options
21880
21881 These @samp{-m} options are defined for the VAX:
21882
21883 @table @gcctabopt
21884 @item -munix
21885 @opindex munix
21886 Do not output certain jump instructions (@code{aobleq} and so on)
21887 that the Unix assembler for the VAX cannot handle across long
21888 ranges.
21889
21890 @item -mgnu
21891 @opindex mgnu
21892 Do output those jump instructions, on the assumption that the
21893 GNU assembler is being used.
21894
21895 @item -mg
21896 @opindex mg
21897 Output code for G-format floating-point numbers instead of D-format.
21898 @end table
21899
21900 @node Visium Options
21901 @subsection Visium Options
21902 @cindex Visium options
21903
21904 @table @gcctabopt
21905
21906 @item -mdebug
21907 @opindex mdebug
21908 A program which performs file I/O and is destined to run on an MCM target
21909 should be linked with this option. It causes the libraries libc.a and
21910 libdebug.a to be linked. The program should be run on the target under
21911 the control of the GDB remote debugging stub.
21912
21913 @item -msim
21914 @opindex msim
21915 A program which performs file I/O and is destined to run on the simulator
21916 should be linked with option. This causes libraries libc.a and libsim.a to
21917 be linked.
21918
21919 @item -mfpu
21920 @itemx -mhard-float
21921 @opindex mfpu
21922 @opindex mhard-float
21923 Generate code containing floating-point instructions. This is the
21924 default.
21925
21926 @item -mno-fpu
21927 @itemx -msoft-float
21928 @opindex mno-fpu
21929 @opindex msoft-float
21930 Generate code containing library calls for floating-point.
21931
21932 @option{-msoft-float} changes the calling convention in the output file;
21933 therefore, it is only useful if you compile @emph{all} of a program with
21934 this option. In particular, you need to compile @file{libgcc.a}, the
21935 library that comes with GCC, with @option{-msoft-float} in order for
21936 this to work.
21937
21938 @item -mcpu=@var{cpu_type}
21939 @opindex mcpu
21940 Set the instruction set, register set, and instruction scheduling parameters
21941 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
21942 @samp{mcm}, @samp{gr5} and @samp{gr6}.
21943
21944 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
21945
21946 By default (unless configured otherwise), GCC generates code for the GR5
21947 variant of the Visium architecture.
21948
21949 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
21950 architecture. The only difference from GR5 code is that the compiler will
21951 generate block move instructions.
21952
21953 @item -mtune=@var{cpu_type}
21954 @opindex mtune
21955 Set the instruction scheduling parameters for machine type @var{cpu_type},
21956 but do not set the instruction set or register set that the option
21957 @option{-mcpu=@var{cpu_type}} would.
21958
21959 @item -msv-mode
21960 @opindex msv-mode
21961 Generate code for the supervisor mode, where there are no restrictions on
21962 the access to general registers. This is the default.
21963
21964 @item -muser-mode
21965 @opindex muser-mode
21966 Generate code for the user mode, where the access to some general registers
21967 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
21968 mode; on the GR6, only registers r29 to r31 are affected.
21969 @end table
21970
21971 @node VMS Options
21972 @subsection VMS Options
21973
21974 These @samp{-m} options are defined for the VMS implementations:
21975
21976 @table @gcctabopt
21977 @item -mvms-return-codes
21978 @opindex mvms-return-codes
21979 Return VMS condition codes from @code{main}. The default is to return POSIX-style
21980 condition (e.g.@ error) codes.
21981
21982 @item -mdebug-main=@var{prefix}
21983 @opindex mdebug-main=@var{prefix}
21984 Flag the first routine whose name starts with @var{prefix} as the main
21985 routine for the debugger.
21986
21987 @item -mmalloc64
21988 @opindex mmalloc64
21989 Default to 64-bit memory allocation routines.
21990
21991 @item -mpointer-size=@var{size}
21992 @opindex mpointer-size=@var{size}
21993 Set the default size of pointers. Possible options for @var{size} are
21994 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
21995 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
21996 The later option disables @code{pragma pointer_size}.
21997 @end table
21998
21999 @node VxWorks Options
22000 @subsection VxWorks Options
22001 @cindex VxWorks Options
22002
22003 The options in this section are defined for all VxWorks targets.
22004 Options specific to the target hardware are listed with the other
22005 options for that target.
22006
22007 @table @gcctabopt
22008 @item -mrtp
22009 @opindex mrtp
22010 GCC can generate code for both VxWorks kernels and real time processes
22011 (RTPs). This option switches from the former to the latter. It also
22012 defines the preprocessor macro @code{__RTP__}.
22013
22014 @item -non-static
22015 @opindex non-static
22016 Link an RTP executable against shared libraries rather than static
22017 libraries. The options @option{-static} and @option{-shared} can
22018 also be used for RTPs (@pxref{Link Options}); @option{-static}
22019 is the default.
22020
22021 @item -Bstatic
22022 @itemx -Bdynamic
22023 @opindex Bstatic
22024 @opindex Bdynamic
22025 These options are passed down to the linker. They are defined for
22026 compatibility with Diab.
22027
22028 @item -Xbind-lazy
22029 @opindex Xbind-lazy
22030 Enable lazy binding of function calls. This option is equivalent to
22031 @option{-Wl,-z,now} and is defined for compatibility with Diab.
22032
22033 @item -Xbind-now
22034 @opindex Xbind-now
22035 Disable lazy binding of function calls. This option is the default and
22036 is defined for compatibility with Diab.
22037 @end table
22038
22039 @node x86 Options
22040 @subsection x86 Options
22041 @cindex x86 Options
22042
22043 These @samp{-m} options are defined for the x86 family of computers.
22044
22045 @table @gcctabopt
22046
22047 @item -march=@var{cpu-type}
22048 @opindex march
22049 Generate instructions for the machine type @var{cpu-type}. In contrast to
22050 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
22051 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22052 to generate code that may not run at all on processors other than the one
22053 indicated. Specifying @option{-march=@var{cpu-type}} implies
22054 @option{-mtune=@var{cpu-type}}.
22055
22056 The choices for @var{cpu-type} are:
22057
22058 @table @samp
22059 @item native
22060 This selects the CPU to generate code for at compilation time by determining
22061 the processor type of the compiling machine. Using @option{-march=native}
22062 enables all instruction subsets supported by the local machine (hence
22063 the result might not run on different machines). Using @option{-mtune=native}
22064 produces code optimized for the local machine under the constraints
22065 of the selected instruction set.
22066
22067 @item i386
22068 Original Intel i386 CPU@.
22069
22070 @item i486
22071 Intel i486 CPU@. (No scheduling is implemented for this chip.)
22072
22073 @item i586
22074 @itemx pentium
22075 Intel Pentium CPU with no MMX support.
22076
22077 @item pentium-mmx
22078 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22079
22080 @item pentiumpro
22081 Intel Pentium Pro CPU@.
22082
22083 @item i686
22084 When used with @option{-march}, the Pentium Pro
22085 instruction set is used, so the code runs on all i686 family chips.
22086 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22087
22088 @item pentium2
22089 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22090 support.
22091
22092 @item pentium3
22093 @itemx pentium3m
22094 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22095 set support.
22096
22097 @item pentium-m
22098 Intel Pentium M; low-power version of Intel Pentium III CPU
22099 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
22100
22101 @item pentium4
22102 @itemx pentium4m
22103 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22104
22105 @item prescott
22106 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22107 set support.
22108
22109 @item nocona
22110 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22111 SSE2 and SSE3 instruction set support.
22112
22113 @item core2
22114 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22115 instruction set support.
22116
22117 @item nehalem
22118 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22119 SSE4.1, SSE4.2 and POPCNT instruction set support.
22120
22121 @item westmere
22122 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22123 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22124
22125 @item sandybridge
22126 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22127 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22128
22129 @item ivybridge
22130 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22131 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22132 instruction set support.
22133
22134 @item haswell
22135 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22136 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22137 BMI, BMI2 and F16C instruction set support.
22138
22139 @item broadwell
22140 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22141 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22142 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22143
22144 @item bonnell
22145 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22146 instruction set support.
22147
22148 @item silvermont
22149 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22150 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22151
22152 @item knl
22153 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22154 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22155 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22156 AVX512CD instruction set support.
22157
22158 @item k6
22159 AMD K6 CPU with MMX instruction set support.
22160
22161 @item k6-2
22162 @itemx k6-3
22163 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22164
22165 @item athlon
22166 @itemx athlon-tbird
22167 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22168 support.
22169
22170 @item athlon-4
22171 @itemx athlon-xp
22172 @itemx athlon-mp
22173 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22174 instruction set support.
22175
22176 @item k8
22177 @itemx opteron
22178 @itemx athlon64
22179 @itemx athlon-fx
22180 Processors based on the AMD K8 core with x86-64 instruction set support,
22181 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22182 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22183 instruction set extensions.)
22184
22185 @item k8-sse3
22186 @itemx opteron-sse3
22187 @itemx athlon64-sse3
22188 Improved versions of AMD K8 cores with SSE3 instruction set support.
22189
22190 @item amdfam10
22191 @itemx barcelona
22192 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
22193 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22194 instruction set extensions.)
22195
22196 @item bdver1
22197 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
22198 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22199 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22200 @item bdver2
22201 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22202 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22203 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
22204 extensions.)
22205 @item bdver3
22206 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22207 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
22208 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
22209 64-bit instruction set extensions.
22210 @item bdver4
22211 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22212 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
22213 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
22214 SSE4.2, ABM and 64-bit instruction set extensions.
22215
22216 @item btver1
22217 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
22218 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22219 instruction set extensions.)
22220
22221 @item btver2
22222 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22223 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22224 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22225
22226 @item winchip-c6
22227 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22228 set support.
22229
22230 @item winchip2
22231 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22232 instruction set support.
22233
22234 @item c3
22235 VIA C3 CPU with MMX and 3DNow!@: instruction set support. (No scheduling is
22236 implemented for this chip.)
22237
22238 @item c3-2
22239 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22240 (No scheduling is
22241 implemented for this chip.)
22242
22243 @item geode
22244 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22245 @end table
22246
22247 @item -mtune=@var{cpu-type}
22248 @opindex mtune
22249 Tune to @var{cpu-type} everything applicable about the generated code, except
22250 for the ABI and the set of available instructions.
22251 While picking a specific @var{cpu-type} schedules things appropriately
22252 for that particular chip, the compiler does not generate any code that
22253 cannot run on the default machine type unless you use a
22254 @option{-march=@var{cpu-type}} option.
22255 For example, if GCC is configured for i686-pc-linux-gnu
22256 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22257 but still runs on i686 machines.
22258
22259 The choices for @var{cpu-type} are the same as for @option{-march}.
22260 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22261
22262 @table @samp
22263 @item generic
22264 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22265 If you know the CPU on which your code will run, then you should use
22266 the corresponding @option{-mtune} or @option{-march} option instead of
22267 @option{-mtune=generic}. But, if you do not know exactly what CPU users
22268 of your application will have, then you should use this option.
22269
22270 As new processors are deployed in the marketplace, the behavior of this
22271 option will change. Therefore, if you upgrade to a newer version of
22272 GCC, code generation controlled by this option will change to reflect
22273 the processors
22274 that are most common at the time that version of GCC is released.
22275
22276 There is no @option{-march=generic} option because @option{-march}
22277 indicates the instruction set the compiler can use, and there is no
22278 generic instruction set applicable to all processors. In contrast,
22279 @option{-mtune} indicates the processor (or, in this case, collection of
22280 processors) for which the code is optimized.
22281
22282 @item intel
22283 Produce code optimized for the most current Intel processors, which are
22284 Haswell and Silvermont for this version of GCC. If you know the CPU
22285 on which your code will run, then you should use the corresponding
22286 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22287 But, if you want your application performs better on both Haswell and
22288 Silvermont, then you should use this option.
22289
22290 As new Intel processors are deployed in the marketplace, the behavior of
22291 this option will change. Therefore, if you upgrade to a newer version of
22292 GCC, code generation controlled by this option will change to reflect
22293 the most current Intel processors at the time that version of GCC is
22294 released.
22295
22296 There is no @option{-march=intel} option because @option{-march} indicates
22297 the instruction set the compiler can use, and there is no common
22298 instruction set applicable to all processors. In contrast,
22299 @option{-mtune} indicates the processor (or, in this case, collection of
22300 processors) for which the code is optimized.
22301 @end table
22302
22303 @item -mcpu=@var{cpu-type}
22304 @opindex mcpu
22305 A deprecated synonym for @option{-mtune}.
22306
22307 @item -mfpmath=@var{unit}
22308 @opindex mfpmath
22309 Generate floating-point arithmetic for selected unit @var{unit}. The choices
22310 for @var{unit} are:
22311
22312 @table @samp
22313 @item 387
22314 Use the standard 387 floating-point coprocessor present on the majority of chips and
22315 emulated otherwise. Code compiled with this option runs almost everywhere.
22316 The temporary results are computed in 80-bit precision instead of the precision
22317 specified by the type, resulting in slightly different results compared to most
22318 of other chips. See @option{-ffloat-store} for more detailed description.
22319
22320 This is the default choice for x86-32 targets.
22321
22322 @item sse
22323 Use scalar floating-point instructions present in the SSE instruction set.
22324 This instruction set is supported by Pentium III and newer chips,
22325 and in the AMD line
22326 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
22327 instruction set supports only single-precision arithmetic, thus the double and
22328 extended-precision arithmetic are still done using 387. A later version, present
22329 only in Pentium 4 and AMD x86-64 chips, supports double-precision
22330 arithmetic too.
22331
22332 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22333 or @option{-msse2} switches to enable SSE extensions and make this option
22334 effective. For the x86-64 compiler, these extensions are enabled by default.
22335
22336 The resulting code should be considerably faster in the majority of cases and avoid
22337 the numerical instability problems of 387 code, but may break some existing
22338 code that expects temporaries to be 80 bits.
22339
22340 This is the default choice for the x86-64 compiler.
22341
22342 @item sse,387
22343 @itemx sse+387
22344 @itemx both
22345 Attempt to utilize both instruction sets at once. This effectively doubles the
22346 amount of available registers, and on chips with separate execution units for
22347 387 and SSE the execution resources too. Use this option with care, as it is
22348 still experimental, because the GCC register allocator does not model separate
22349 functional units well, resulting in unstable performance.
22350 @end table
22351
22352 @item -masm=@var{dialect}
22353 @opindex masm=@var{dialect}
22354 Output assembly instructions using selected @var{dialect}. Also affects
22355 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22356 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22357 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22358 not support @samp{intel}.
22359
22360 @item -mieee-fp
22361 @itemx -mno-ieee-fp
22362 @opindex mieee-fp
22363 @opindex mno-ieee-fp
22364 Control whether or not the compiler uses IEEE floating-point
22365 comparisons. These correctly handle the case where the result of a
22366 comparison is unordered.
22367
22368 @item -msoft-float
22369 @opindex msoft-float
22370 Generate output containing library calls for floating point.
22371
22372 @strong{Warning:} the requisite libraries are not part of GCC@.
22373 Normally the facilities of the machine's usual C compiler are used, but
22374 this can't be done directly in cross-compilation. You must make your
22375 own arrangements to provide suitable library functions for
22376 cross-compilation.
22377
22378 On machines where a function returns floating-point results in the 80387
22379 register stack, some floating-point opcodes may be emitted even if
22380 @option{-msoft-float} is used.
22381
22382 @item -mno-fp-ret-in-387
22383 @opindex mno-fp-ret-in-387
22384 Do not use the FPU registers for return values of functions.
22385
22386 The usual calling convention has functions return values of types
22387 @code{float} and @code{double} in an FPU register, even if there
22388 is no FPU@. The idea is that the operating system should emulate
22389 an FPU@.
22390
22391 The option @option{-mno-fp-ret-in-387} causes such values to be returned
22392 in ordinary CPU registers instead.
22393
22394 @item -mno-fancy-math-387
22395 @opindex mno-fancy-math-387
22396 Some 387 emulators do not support the @code{sin}, @code{cos} and
22397 @code{sqrt} instructions for the 387. Specify this option to avoid
22398 generating those instructions. This option is the default on FreeBSD,
22399 OpenBSD and NetBSD@. This option is overridden when @option{-march}
22400 indicates that the target CPU always has an FPU and so the
22401 instruction does not need emulation. These
22402 instructions are not generated unless you also use the
22403 @option{-funsafe-math-optimizations} switch.
22404
22405 @item -malign-double
22406 @itemx -mno-align-double
22407 @opindex malign-double
22408 @opindex mno-align-double
22409 Control whether GCC aligns @code{double}, @code{long double}, and
22410 @code{long long} variables on a two-word boundary or a one-word
22411 boundary. Aligning @code{double} variables on a two-word boundary
22412 produces code that runs somewhat faster on a Pentium at the
22413 expense of more memory.
22414
22415 On x86-64, @option{-malign-double} is enabled by default.
22416
22417 @strong{Warning:} if you use the @option{-malign-double} switch,
22418 structures containing the above types are aligned differently than
22419 the published application binary interface specifications for the x86-32
22420 and are not binary compatible with structures in code compiled
22421 without that switch.
22422
22423 @item -m96bit-long-double
22424 @itemx -m128bit-long-double
22425 @opindex m96bit-long-double
22426 @opindex m128bit-long-double
22427 These switches control the size of @code{long double} type. The x86-32
22428 application binary interface specifies the size to be 96 bits,
22429 so @option{-m96bit-long-double} is the default in 32-bit mode.
22430
22431 Modern architectures (Pentium and newer) prefer @code{long double}
22432 to be aligned to an 8- or 16-byte boundary. In arrays or structures
22433 conforming to the ABI, this is not possible. So specifying
22434 @option{-m128bit-long-double} aligns @code{long double}
22435 to a 16-byte boundary by padding the @code{long double} with an additional
22436 32-bit zero.
22437
22438 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22439 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22440
22441 Notice that neither of these options enable any extra precision over the x87
22442 standard of 80 bits for a @code{long double}.
22443
22444 @strong{Warning:} if you override the default value for your target ABI, this
22445 changes the size of
22446 structures and arrays containing @code{long double} variables,
22447 as well as modifying the function calling convention for functions taking
22448 @code{long double}. Hence they are not binary-compatible
22449 with code compiled without that switch.
22450
22451 @item -mlong-double-64
22452 @itemx -mlong-double-80
22453 @itemx -mlong-double-128
22454 @opindex mlong-double-64
22455 @opindex mlong-double-80
22456 @opindex mlong-double-128
22457 These switches control the size of @code{long double} type. A size
22458 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22459 type. This is the default for 32-bit Bionic C library. A size
22460 of 128 bits makes the @code{long double} type equivalent to the
22461 @code{__float128} type. This is the default for 64-bit Bionic C library.
22462
22463 @strong{Warning:} if you override the default value for your target ABI, this
22464 changes the size of
22465 structures and arrays containing @code{long double} variables,
22466 as well as modifying the function calling convention for functions taking
22467 @code{long double}. Hence they are not binary-compatible
22468 with code compiled without that switch.
22469
22470 @item -malign-data=@var{type}
22471 @opindex malign-data
22472 Control how GCC aligns variables. Supported values for @var{type} are
22473 @samp{compat} uses increased alignment value compatible uses GCC 4.8
22474 and earlier, @samp{abi} uses alignment value as specified by the
22475 psABI, and @samp{cacheline} uses increased alignment value to match
22476 the cache line size. @samp{compat} is the default.
22477
22478 @item -mlarge-data-threshold=@var{threshold}
22479 @opindex mlarge-data-threshold
22480 When @option{-mcmodel=medium} is specified, data objects larger than
22481 @var{threshold} are placed in the large data section. This value must be the
22482 same across all objects linked into the binary, and defaults to 65535.
22483
22484 @item -mrtd
22485 @opindex mrtd
22486 Use a different function-calling convention, in which functions that
22487 take a fixed number of arguments return with the @code{ret @var{num}}
22488 instruction, which pops their arguments while returning. This saves one
22489 instruction in the caller since there is no need to pop the arguments
22490 there.
22491
22492 You can specify that an individual function is called with this calling
22493 sequence with the function attribute @code{stdcall}. You can also
22494 override the @option{-mrtd} option by using the function attribute
22495 @code{cdecl}. @xref{Function Attributes}.
22496
22497 @strong{Warning:} this calling convention is incompatible with the one
22498 normally used on Unix, so you cannot use it if you need to call
22499 libraries compiled with the Unix compiler.
22500
22501 Also, you must provide function prototypes for all functions that
22502 take variable numbers of arguments (including @code{printf});
22503 otherwise incorrect code is generated for calls to those
22504 functions.
22505
22506 In addition, seriously incorrect code results if you call a
22507 function with too many arguments. (Normally, extra arguments are
22508 harmlessly ignored.)
22509
22510 @item -mregparm=@var{num}
22511 @opindex mregparm
22512 Control how many registers are used to pass integer arguments. By
22513 default, no registers are used to pass arguments, and at most 3
22514 registers can be used. You can control this behavior for a specific
22515 function by using the function attribute @code{regparm}.
22516 @xref{Function Attributes}.
22517
22518 @strong{Warning:} if you use this switch, and
22519 @var{num} is nonzero, then you must build all modules with the same
22520 value, including any libraries. This includes the system libraries and
22521 startup modules.
22522
22523 @item -msseregparm
22524 @opindex msseregparm
22525 Use SSE register passing conventions for float and double arguments
22526 and return values. You can control this behavior for a specific
22527 function by using the function attribute @code{sseregparm}.
22528 @xref{Function Attributes}.
22529
22530 @strong{Warning:} if you use this switch then you must build all
22531 modules with the same value, including any libraries. This includes
22532 the system libraries and startup modules.
22533
22534 @item -mvect8-ret-in-mem
22535 @opindex mvect8-ret-in-mem
22536 Return 8-byte vectors in memory instead of MMX registers. This is the
22537 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
22538 Studio compilers until version 12. Later compiler versions (starting
22539 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
22540 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
22541 you need to remain compatible with existing code produced by those
22542 previous compiler versions or older versions of GCC@.
22543
22544 @item -mpc32
22545 @itemx -mpc64
22546 @itemx -mpc80
22547 @opindex mpc32
22548 @opindex mpc64
22549 @opindex mpc80
22550
22551 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
22552 is specified, the significands of results of floating-point operations are
22553 rounded to 24 bits (single precision); @option{-mpc64} rounds the
22554 significands of results of floating-point operations to 53 bits (double
22555 precision) and @option{-mpc80} rounds the significands of results of
22556 floating-point operations to 64 bits (extended double precision), which is
22557 the default. When this option is used, floating-point operations in higher
22558 precisions are not available to the programmer without setting the FPU
22559 control word explicitly.
22560
22561 Setting the rounding of floating-point operations to less than the default
22562 80 bits can speed some programs by 2% or more. Note that some mathematical
22563 libraries assume that extended-precision (80-bit) floating-point operations
22564 are enabled by default; routines in such libraries could suffer significant
22565 loss of accuracy, typically through so-called ``catastrophic cancellation'',
22566 when this option is used to set the precision to less than extended precision.
22567
22568 @item -mstackrealign
22569 @opindex mstackrealign
22570 Realign the stack at entry. On the x86, the @option{-mstackrealign}
22571 option generates an alternate prologue and epilogue that realigns the
22572 run-time stack if necessary. This supports mixing legacy codes that keep
22573 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
22574 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
22575 applicable to individual functions.
22576
22577 @item -mpreferred-stack-boundary=@var{num}
22578 @opindex mpreferred-stack-boundary
22579 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22580 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
22581 the default is 4 (16 bytes or 128 bits).
22582
22583 @strong{Warning:} When generating code for the x86-64 architecture with
22584 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
22585 used to keep the stack boundary aligned to 8 byte boundary. Since
22586 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
22587 intended to be used in controlled environment where stack space is
22588 important limitation. This option leads to wrong code when functions
22589 compiled with 16 byte stack alignment (such as functions from a standard
22590 library) are called with misaligned stack. In this case, SSE
22591 instructions may lead to misaligned memory access traps. In addition,
22592 variable arguments are handled incorrectly for 16 byte aligned
22593 objects (including x87 long double and __int128), leading to wrong
22594 results. You must build all modules with
22595 @option{-mpreferred-stack-boundary=3}, including any libraries. This
22596 includes the system libraries and startup modules.
22597
22598 @item -mincoming-stack-boundary=@var{num}
22599 @opindex mincoming-stack-boundary
22600 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
22601 boundary. If @option{-mincoming-stack-boundary} is not specified,
22602 the one specified by @option{-mpreferred-stack-boundary} is used.
22603
22604 On Pentium and Pentium Pro, @code{double} and @code{long double} values
22605 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
22606 suffer significant run time performance penalties. On Pentium III, the
22607 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
22608 properly if it is not 16-byte aligned.
22609
22610 To ensure proper alignment of this values on the stack, the stack boundary
22611 must be as aligned as that required by any value stored on the stack.
22612 Further, every function must be generated such that it keeps the stack
22613 aligned. Thus calling a function compiled with a higher preferred
22614 stack boundary from a function compiled with a lower preferred stack
22615 boundary most likely misaligns the stack. It is recommended that
22616 libraries that use callbacks always use the default setting.
22617
22618 This extra alignment does consume extra stack space, and generally
22619 increases code size. Code that is sensitive to stack space usage, such
22620 as embedded systems and operating system kernels, may want to reduce the
22621 preferred alignment to @option{-mpreferred-stack-boundary=2}.
22622
22623 @need 200
22624 @item -mmmx
22625 @opindex mmmx
22626 @need 200
22627 @itemx -msse
22628 @opindex msse
22629 @need 200
22630 @itemx -msse2
22631 @need 200
22632 @itemx -msse3
22633 @need 200
22634 @itemx -mssse3
22635 @need 200
22636 @itemx -msse4
22637 @need 200
22638 @itemx -msse4a
22639 @need 200
22640 @itemx -msse4.1
22641 @need 200
22642 @itemx -msse4.2
22643 @need 200
22644 @itemx -mavx
22645 @opindex mavx
22646 @need 200
22647 @itemx -mavx2
22648 @need 200
22649 @itemx -mavx512f
22650 @need 200
22651 @itemx -mavx512pf
22652 @need 200
22653 @itemx -mavx512er
22654 @need 200
22655 @itemx -mavx512cd
22656 @need 200
22657 @itemx -msha
22658 @opindex msha
22659 @need 200
22660 @itemx -maes
22661 @opindex maes
22662 @need 200
22663 @itemx -mpclmul
22664 @opindex mpclmul
22665 @need 200
22666 @itemx -mclfushopt
22667 @opindex mclfushopt
22668 @need 200
22669 @itemx -mfsgsbase
22670 @opindex mfsgsbase
22671 @need 200
22672 @itemx -mrdrnd
22673 @opindex mrdrnd
22674 @need 200
22675 @itemx -mf16c
22676 @opindex mf16c
22677 @need 200
22678 @itemx -mfma
22679 @opindex mfma
22680 @need 200
22681 @itemx -mfma4
22682 @need 200
22683 @itemx -mno-fma4
22684 @need 200
22685 @itemx -mprefetchwt1
22686 @opindex mprefetchwt1
22687 @need 200
22688 @itemx -mxop
22689 @opindex mxop
22690 @need 200
22691 @itemx -mlwp
22692 @opindex mlwp
22693 @need 200
22694 @itemx -m3dnow
22695 @opindex m3dnow
22696 @need 200
22697 @itemx -mpopcnt
22698 @opindex mpopcnt
22699 @need 200
22700 @itemx -mabm
22701 @opindex mabm
22702 @need 200
22703 @itemx -mbmi
22704 @opindex mbmi
22705 @need 200
22706 @itemx -mbmi2
22707 @need 200
22708 @itemx -mlzcnt
22709 @opindex mlzcnt
22710 @need 200
22711 @itemx -mfxsr
22712 @opindex mfxsr
22713 @need 200
22714 @itemx -mxsave
22715 @opindex mxsave
22716 @need 200
22717 @itemx -mxsaveopt
22718 @opindex mxsaveopt
22719 @need 200
22720 @itemx -mxsavec
22721 @opindex mxsavec
22722 @need 200
22723 @itemx -mxsaves
22724 @opindex mxsaves
22725 @need 200
22726 @itemx -mrtm
22727 @opindex mrtm
22728 @need 200
22729 @itemx -mtbm
22730 @opindex mtbm
22731 @need 200
22732 @itemx -mmpx
22733 @opindex mmpx
22734 These switches enable the use of instructions in the MMX, SSE,
22735 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
22736 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
22737 BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX or 3DNow!@:
22738 extended instruction sets. Each has a corresponding @option{-mno-} option
22739 to disable use of these instructions.
22740
22741 These extensions are also available as built-in functions: see
22742 @ref{x86 Built-in Functions}, for details of the functions enabled and
22743 disabled by these switches.
22744
22745 To generate SSE/SSE2 instructions automatically from floating-point
22746 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
22747
22748 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
22749 generates new AVX instructions or AVX equivalence for all SSEx instructions
22750 when needed.
22751
22752 These options enable GCC to use these extended instructions in
22753 generated code, even without @option{-mfpmath=sse}. Applications that
22754 perform run-time CPU detection must compile separate files for each
22755 supported architecture, using the appropriate flags. In particular,
22756 the file containing the CPU detection code should be compiled without
22757 these options.
22758
22759 @item -mdump-tune-features
22760 @opindex mdump-tune-features
22761 This option instructs GCC to dump the names of the x86 performance
22762 tuning features and default settings. The names can be used in
22763 @option{-mtune-ctrl=@var{feature-list}}.
22764
22765 @item -mtune-ctrl=@var{feature-list}
22766 @opindex mtune-ctrl=@var{feature-list}
22767 This option is used to do fine grain control of x86 code generation features.
22768 @var{feature-list} is a comma separated list of @var{feature} names. See also
22769 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
22770 on if it is not preceded with @samp{^}, otherwise, it is turned off.
22771 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
22772 developers. Using it may lead to code paths not covered by testing and can
22773 potentially result in compiler ICEs or runtime errors.
22774
22775 @item -mno-default
22776 @opindex mno-default
22777 This option instructs GCC to turn off all tunable features. See also
22778 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
22779
22780 @item -mcld
22781 @opindex mcld
22782 This option instructs GCC to emit a @code{cld} instruction in the prologue
22783 of functions that use string instructions. String instructions depend on
22784 the DF flag to select between autoincrement or autodecrement mode. While the
22785 ABI specifies the DF flag to be cleared on function entry, some operating
22786 systems violate this specification by not clearing the DF flag in their
22787 exception dispatchers. The exception handler can be invoked with the DF flag
22788 set, which leads to wrong direction mode when string instructions are used.
22789 This option can be enabled by default on 32-bit x86 targets by configuring
22790 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
22791 instructions can be suppressed with the @option{-mno-cld} compiler option
22792 in this case.
22793
22794 @item -mvzeroupper
22795 @opindex mvzeroupper
22796 This option instructs GCC to emit a @code{vzeroupper} instruction
22797 before a transfer of control flow out of the function to minimize
22798 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
22799 intrinsics.
22800
22801 @item -mprefer-avx128
22802 @opindex mprefer-avx128
22803 This option instructs GCC to use 128-bit AVX instructions instead of
22804 256-bit AVX instructions in the auto-vectorizer.
22805
22806 @item -mcx16
22807 @opindex mcx16
22808 This option enables GCC to generate @code{CMPXCHG16B} instructions.
22809 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
22810 (or oword) data types.
22811 This is useful for high-resolution counters that can be updated
22812 by multiple processors (or cores). This instruction is generated as part of
22813 atomic built-in functions: see @ref{__sync Builtins} or
22814 @ref{__atomic Builtins} for details.
22815
22816 @item -msahf
22817 @opindex msahf
22818 This option enables generation of @code{SAHF} instructions in 64-bit code.
22819 Early Intel Pentium 4 CPUs with Intel 64 support,
22820 prior to the introduction of Pentium 4 G1 step in December 2005,
22821 lacked the @code{LAHF} and @code{SAHF} instructions
22822 which are supported by AMD64.
22823 These are load and store instructions, respectively, for certain status flags.
22824 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
22825 @code{drem}, and @code{remainder} built-in functions;
22826 see @ref{Other Builtins} for details.
22827
22828 @item -mmovbe
22829 @opindex mmovbe
22830 This option enables use of the @code{movbe} instruction to implement
22831 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
22832
22833 @item -mcrc32
22834 @opindex mcrc32
22835 This option enables built-in functions @code{__builtin_ia32_crc32qi},
22836 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
22837 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
22838
22839 @item -mrecip
22840 @opindex mrecip
22841 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
22842 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
22843 with an additional Newton-Raphson step
22844 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
22845 (and their vectorized
22846 variants) for single-precision floating-point arguments. These instructions
22847 are generated only when @option{-funsafe-math-optimizations} is enabled
22848 together with @option{-finite-math-only} and @option{-fno-trapping-math}.
22849 Note that while the throughput of the sequence is higher than the throughput
22850 of the non-reciprocal instruction, the precision of the sequence can be
22851 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
22852
22853 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
22854 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
22855 combination), and doesn't need @option{-mrecip}.
22856
22857 Also note that GCC emits the above sequence with additional Newton-Raphson step
22858 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
22859 already with @option{-ffast-math} (or the above option combination), and
22860 doesn't need @option{-mrecip}.
22861
22862 @item -mrecip=@var{opt}
22863 @opindex mrecip=opt
22864 This option controls which reciprocal estimate instructions
22865 may be used. @var{opt} is a comma-separated list of options, which may
22866 be preceded by a @samp{!} to invert the option:
22867
22868 @table @samp
22869 @item all
22870 Enable all estimate instructions.
22871
22872 @item default
22873 Enable the default instructions, equivalent to @option{-mrecip}.
22874
22875 @item none
22876 Disable all estimate instructions, equivalent to @option{-mno-recip}.
22877
22878 @item div
22879 Enable the approximation for scalar division.
22880
22881 @item vec-div
22882 Enable the approximation for vectorized division.
22883
22884 @item sqrt
22885 Enable the approximation for scalar square root.
22886
22887 @item vec-sqrt
22888 Enable the approximation for vectorized square root.
22889 @end table
22890
22891 So, for example, @option{-mrecip=all,!sqrt} enables
22892 all of the reciprocal approximations, except for square root.
22893
22894 @item -mveclibabi=@var{type}
22895 @opindex mveclibabi
22896 Specifies the ABI type to use for vectorizing intrinsics using an
22897 external library. Supported values for @var{type} are @samp{svml}
22898 for the Intel short
22899 vector math library and @samp{acml} for the AMD math core library.
22900 To use this option, both @option{-ftree-vectorize} and
22901 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
22902 ABI-compatible library must be specified at link time.
22903
22904 GCC currently emits calls to @code{vmldExp2},
22905 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
22906 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
22907 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
22908 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
22909 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
22910 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
22911 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
22912 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
22913 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
22914 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
22915 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
22916 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
22917 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
22918 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
22919 when @option{-mveclibabi=acml} is used.
22920
22921 @item -mabi=@var{name}
22922 @opindex mabi
22923 Generate code for the specified calling convention. Permissible values
22924 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
22925 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
22926 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
22927 You can control this behavior for specific functions by
22928 using the function attributes @code{ms_abi} and @code{sysv_abi}.
22929 @xref{Function Attributes}.
22930
22931 @item -mtls-dialect=@var{type}
22932 @opindex mtls-dialect
22933 Generate code to access thread-local storage using the @samp{gnu} or
22934 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
22935 @samp{gnu2} is more efficient, but it may add compile- and run-time
22936 requirements that cannot be satisfied on all systems.
22937
22938 @item -mpush-args
22939 @itemx -mno-push-args
22940 @opindex mpush-args
22941 @opindex mno-push-args
22942 Use PUSH operations to store outgoing parameters. This method is shorter
22943 and usually equally fast as method using SUB/MOV operations and is enabled
22944 by default. In some cases disabling it may improve performance because of
22945 improved scheduling and reduced dependencies.
22946
22947 @item -maccumulate-outgoing-args
22948 @opindex maccumulate-outgoing-args
22949 If enabled, the maximum amount of space required for outgoing arguments is
22950 computed in the function prologue. This is faster on most modern CPUs
22951 because of reduced dependencies, improved scheduling and reduced stack usage
22952 when the preferred stack boundary is not equal to 2. The drawback is a notable
22953 increase in code size. This switch implies @option{-mno-push-args}.
22954
22955 @item -mthreads
22956 @opindex mthreads
22957 Support thread-safe exception handling on MinGW. Programs that rely
22958 on thread-safe exception handling must compile and link all code with the
22959 @option{-mthreads} option. When compiling, @option{-mthreads} defines
22960 @option{-D_MT}; when linking, it links in a special thread helper library
22961 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
22962
22963 @item -mno-align-stringops
22964 @opindex mno-align-stringops
22965 Do not align the destination of inlined string operations. This switch reduces
22966 code size and improves performance in case the destination is already aligned,
22967 but GCC doesn't know about it.
22968
22969 @item -minline-all-stringops
22970 @opindex minline-all-stringops
22971 By default GCC inlines string operations only when the destination is
22972 known to be aligned to least a 4-byte boundary.
22973 This enables more inlining and increases code
22974 size, but may improve performance of code that depends on fast
22975 @code{memcpy}, @code{strlen},
22976 and @code{memset} for short lengths.
22977
22978 @item -minline-stringops-dynamically
22979 @opindex minline-stringops-dynamically
22980 For string operations of unknown size, use run-time checks with
22981 inline code for small blocks and a library call for large blocks.
22982
22983 @item -mstringop-strategy=@var{alg}
22984 @opindex mstringop-strategy=@var{alg}
22985 Override the internal decision heuristic for the particular algorithm to use
22986 for inlining string operations. The allowed values for @var{alg} are:
22987
22988 @table @samp
22989 @item rep_byte
22990 @itemx rep_4byte
22991 @itemx rep_8byte
22992 Expand using i386 @code{rep} prefix of the specified size.
22993
22994 @item byte_loop
22995 @itemx loop
22996 @itemx unrolled_loop
22997 Expand into an inline loop.
22998
22999 @item libcall
23000 Always use a library call.
23001 @end table
23002
23003 @item -mmemcpy-strategy=@var{strategy}
23004 @opindex mmemcpy-strategy=@var{strategy}
23005 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
23006 should be inlined and what inline algorithm to use when the expected size
23007 of the copy operation is known. @var{strategy}
23008 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
23009 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
23010 the max byte size with which inline algorithm @var{alg} is allowed. For the last
23011 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
23012 in the list must be specified in increasing order. The minimal byte size for
23013 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
23014 preceding range.
23015
23016 @item -mmemset-strategy=@var{strategy}
23017 @opindex mmemset-strategy=@var{strategy}
23018 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
23019 @code{__builtin_memset} expansion.
23020
23021 @item -momit-leaf-frame-pointer
23022 @opindex momit-leaf-frame-pointer
23023 Don't keep the frame pointer in a register for leaf functions. This
23024 avoids the instructions to save, set up, and restore frame pointers and
23025 makes an extra register available in leaf functions. The option
23026 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
23027 which might make debugging harder.
23028
23029 @item -mtls-direct-seg-refs
23030 @itemx -mno-tls-direct-seg-refs
23031 @opindex mtls-direct-seg-refs
23032 Controls whether TLS variables may be accessed with offsets from the
23033 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
23034 or whether the thread base pointer must be added. Whether or not this
23035 is valid depends on the operating system, and whether it maps the
23036 segment to cover the entire TLS area.
23037
23038 For systems that use the GNU C Library, the default is on.
23039
23040 @item -msse2avx
23041 @itemx -mno-sse2avx
23042 @opindex msse2avx
23043 Specify that the assembler should encode SSE instructions with VEX
23044 prefix. The option @option{-mavx} turns this on by default.
23045
23046 @item -mfentry
23047 @itemx -mno-fentry
23048 @opindex mfentry
23049 If profiling is active (@option{-pg}), put the profiling
23050 counter call before the prologue.
23051 Note: On x86 architectures the attribute @code{ms_hook_prologue}
23052 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23053
23054 @item -mrecord-mcount
23055 @itemx -mno-record-mcount
23056 @opindex mrecord-mcount
23057 If profiling is active (@option{-pg}), generate a __mcount_loc section
23058 that contains pointers to each profiling call. This is useful for
23059 automatically patching and out calls.
23060
23061 @item -mnop-mcount
23062 @itemx -mno-nop-mcount
23063 @opindex mnop-mcount
23064 If profiling is active (@option{-pg}), generate the calls to
23065 the profiling functions as nops. This is useful when they
23066 should be patched in later dynamically. This is likely only
23067 useful together with @option{-mrecord-mcount}.
23068
23069 @item -mskip-rax-setup
23070 @itemx -mno-skip-rax-setup
23071 @opindex mskip-rax-setup
23072 When generating code for the x86-64 architecture with SSE extensions
23073 disabled, @option{-skip-rax-setup} can be used to skip setting up RAX
23074 register when there are no variable arguments passed in vector registers.
23075
23076 @strong{Warning:} Since RAX register is used to avoid unnecessarily
23077 saving vector registers on stack when passing variable arguments, the
23078 impacts of this option are callees may waste some stack space,
23079 misbehave or jump to a random location. GCC 4.4 or newer don't have
23080 those issues, regardless the RAX register value.
23081
23082 @item -m8bit-idiv
23083 @itemx -mno-8bit-idiv
23084 @opindex m8bit-idiv
23085 On some processors, like Intel Atom, 8-bit unsigned integer divide is
23086 much faster than 32-bit/64-bit integer divide. This option generates a
23087 run-time check. If both dividend and divisor are within range of 0
23088 to 255, 8-bit unsigned integer divide is used instead of
23089 32-bit/64-bit integer divide.
23090
23091 @item -mavx256-split-unaligned-load
23092 @itemx -mavx256-split-unaligned-store
23093 @opindex mavx256-split-unaligned-load
23094 @opindex mavx256-split-unaligned-store
23095 Split 32-byte AVX unaligned load and store.
23096
23097 @item -mstack-protector-guard=@var{guard}
23098 @opindex mstack-protector-guard=@var{guard}
23099 Generate stack protection code using canary at @var{guard}. Supported
23100 locations are @samp{global} for global canary or @samp{tls} for per-thread
23101 canary in the TLS block (the default). This option has effect only when
23102 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23103
23104 @end table
23105
23106 These @samp{-m} switches are supported in addition to the above
23107 on x86-64 processors in 64-bit environments.
23108
23109 @table @gcctabopt
23110 @item -m32
23111 @itemx -m64
23112 @itemx -mx32
23113 @itemx -m16
23114 @opindex m32
23115 @opindex m64
23116 @opindex mx32
23117 @opindex m16
23118 Generate code for a 16-bit, 32-bit or 64-bit environment.
23119 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23120 to 32 bits, and
23121 generates code that runs on any i386 system.
23122
23123 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23124 types to 64 bits, and generates code for the x86-64 architecture.
23125 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23126 and @option{-mdynamic-no-pic} options.
23127
23128 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23129 to 32 bits, and
23130 generates code for the x86-64 architecture.
23131
23132 The @option{-m16} option is the same as @option{-m32}, except for that
23133 it outputs the @code{.code16gcc} assembly directive at the beginning of
23134 the assembly output so that the binary can run in 16-bit mode.
23135
23136 @item -mno-red-zone
23137 @opindex mno-red-zone
23138 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
23139 by the x86-64 ABI; it is a 128-byte area beyond the location of the
23140 stack pointer that is not modified by signal or interrupt handlers
23141 and therefore can be used for temporary data without adjusting the stack
23142 pointer. The flag @option{-mno-red-zone} disables this red zone.
23143
23144 @item -mcmodel=small
23145 @opindex mcmodel=small
23146 Generate code for the small code model: the program and its symbols must
23147 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
23148 Programs can be statically or dynamically linked. This is the default
23149 code model.
23150
23151 @item -mcmodel=kernel
23152 @opindex mcmodel=kernel
23153 Generate code for the kernel code model. The kernel runs in the
23154 negative 2 GB of the address space.
23155 This model has to be used for Linux kernel code.
23156
23157 @item -mcmodel=medium
23158 @opindex mcmodel=medium
23159 Generate code for the medium model: the program is linked in the lower 2
23160 GB of the address space. Small symbols are also placed there. Symbols
23161 with sizes larger than @option{-mlarge-data-threshold} are put into
23162 large data or BSS sections and can be located above 2GB. Programs can
23163 be statically or dynamically linked.
23164
23165 @item -mcmodel=large
23166 @opindex mcmodel=large
23167 Generate code for the large model. This model makes no assumptions
23168 about addresses and sizes of sections.
23169
23170 @item -maddress-mode=long
23171 @opindex maddress-mode=long
23172 Generate code for long address mode. This is only supported for 64-bit
23173 and x32 environments. It is the default address mode for 64-bit
23174 environments.
23175
23176 @item -maddress-mode=short
23177 @opindex maddress-mode=short
23178 Generate code for short address mode. This is only supported for 32-bit
23179 and x32 environments. It is the default address mode for 32-bit and
23180 x32 environments.
23181 @end table
23182
23183 @node x86 Windows Options
23184 @subsection x86 Windows Options
23185 @cindex x86 Windows Options
23186 @cindex Windows Options for x86
23187
23188 These additional options are available for Microsoft Windows targets:
23189
23190 @table @gcctabopt
23191 @item -mconsole
23192 @opindex mconsole
23193 This option
23194 specifies that a console application is to be generated, by
23195 instructing the linker to set the PE header subsystem type
23196 required for console applications.
23197 This option is available for Cygwin and MinGW targets and is
23198 enabled by default on those targets.
23199
23200 @item -mdll
23201 @opindex mdll
23202 This option is available for Cygwin and MinGW targets. It
23203 specifies that a DLL---a dynamic link library---is to be
23204 generated, enabling the selection of the required runtime
23205 startup object and entry point.
23206
23207 @item -mnop-fun-dllimport
23208 @opindex mnop-fun-dllimport
23209 This option is available for Cygwin and MinGW targets. It
23210 specifies that the @code{dllimport} attribute should be ignored.
23211
23212 @item -mthread
23213 @opindex mthread
23214 This option is available for MinGW targets. It specifies
23215 that MinGW-specific thread support is to be used.
23216
23217 @item -municode
23218 @opindex municode
23219 This option is available for MinGW-w64 targets. It causes
23220 the @code{UNICODE} preprocessor macro to be predefined, and
23221 chooses Unicode-capable runtime startup code.
23222
23223 @item -mwin32
23224 @opindex mwin32
23225 This option is available for Cygwin and MinGW targets. It
23226 specifies that the typical Microsoft Windows predefined macros are to
23227 be set in the pre-processor, but does not influence the choice
23228 of runtime library/startup code.
23229
23230 @item -mwindows
23231 @opindex mwindows
23232 This option is available for Cygwin and MinGW targets. It
23233 specifies that a GUI application is to be generated by
23234 instructing the linker to set the PE header subsystem type
23235 appropriately.
23236
23237 @item -fno-set-stack-executable
23238 @opindex fno-set-stack-executable
23239 This option is available for MinGW targets. It specifies that
23240 the executable flag for the stack used by nested functions isn't
23241 set. This is necessary for binaries running in kernel mode of
23242 Microsoft Windows, as there the User32 API, which is used to set executable
23243 privileges, isn't available.
23244
23245 @item -fwritable-relocated-rdata
23246 @opindex fno-writable-relocated-rdata
23247 This option is available for MinGW and Cygwin targets. It specifies
23248 that relocated-data in read-only section is put into .data
23249 section. This is a necessary for older runtimes not supporting
23250 modification of .rdata sections for pseudo-relocation.
23251
23252 @item -mpe-aligned-commons
23253 @opindex mpe-aligned-commons
23254 This option is available for Cygwin and MinGW targets. It
23255 specifies that the GNU extension to the PE file format that
23256 permits the correct alignment of COMMON variables should be
23257 used when generating code. It is enabled by default if
23258 GCC detects that the target assembler found during configuration
23259 supports the feature.
23260 @end table
23261
23262 See also under @ref{x86 Options} for standard options.
23263
23264 @node Xstormy16 Options
23265 @subsection Xstormy16 Options
23266 @cindex Xstormy16 Options
23267
23268 These options are defined for Xstormy16:
23269
23270 @table @gcctabopt
23271 @item -msim
23272 @opindex msim
23273 Choose startup files and linker script suitable for the simulator.
23274 @end table
23275
23276 @node Xtensa Options
23277 @subsection Xtensa Options
23278 @cindex Xtensa Options
23279
23280 These options are supported for Xtensa targets:
23281
23282 @table @gcctabopt
23283 @item -mconst16
23284 @itemx -mno-const16
23285 @opindex mconst16
23286 @opindex mno-const16
23287 Enable or disable use of @code{CONST16} instructions for loading
23288 constant values. The @code{CONST16} instruction is currently not a
23289 standard option from Tensilica. When enabled, @code{CONST16}
23290 instructions are always used in place of the standard @code{L32R}
23291 instructions. The use of @code{CONST16} is enabled by default only if
23292 the @code{L32R} instruction is not available.
23293
23294 @item -mfused-madd
23295 @itemx -mno-fused-madd
23296 @opindex mfused-madd
23297 @opindex mno-fused-madd
23298 Enable or disable use of fused multiply/add and multiply/subtract
23299 instructions in the floating-point option. This has no effect if the
23300 floating-point option is not also enabled. Disabling fused multiply/add
23301 and multiply/subtract instructions forces the compiler to use separate
23302 instructions for the multiply and add/subtract operations. This may be
23303 desirable in some cases where strict IEEE 754-compliant results are
23304 required: the fused multiply add/subtract instructions do not round the
23305 intermediate result, thereby producing results with @emph{more} bits of
23306 precision than specified by the IEEE standard. Disabling fused multiply
23307 add/subtract instructions also ensures that the program output is not
23308 sensitive to the compiler's ability to combine multiply and add/subtract
23309 operations.
23310
23311 @item -mserialize-volatile
23312 @itemx -mno-serialize-volatile
23313 @opindex mserialize-volatile
23314 @opindex mno-serialize-volatile
23315 When this option is enabled, GCC inserts @code{MEMW} instructions before
23316 @code{volatile} memory references to guarantee sequential consistency.
23317 The default is @option{-mserialize-volatile}. Use
23318 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
23319
23320 @item -mforce-no-pic
23321 @opindex mforce-no-pic
23322 For targets, like GNU/Linux, where all user-mode Xtensa code must be
23323 position-independent code (PIC), this option disables PIC for compiling
23324 kernel code.
23325
23326 @item -mtext-section-literals
23327 @itemx -mno-text-section-literals
23328 @opindex mtext-section-literals
23329 @opindex mno-text-section-literals
23330 These options control the treatment of literal pools. The default is
23331 @option{-mno-text-section-literals}, which places literals in a separate
23332 section in the output file. This allows the literal pool to be placed
23333 in a data RAM/ROM, and it also allows the linker to combine literal
23334 pools from separate object files to remove redundant literals and
23335 improve code size. With @option{-mtext-section-literals}, the literals
23336 are interspersed in the text section in order to keep them as close as
23337 possible to their references. This may be necessary for large assembly
23338 files.
23339
23340 @item -mtarget-align
23341 @itemx -mno-target-align
23342 @opindex mtarget-align
23343 @opindex mno-target-align
23344 When this option is enabled, GCC instructs the assembler to
23345 automatically align instructions to reduce branch penalties at the
23346 expense of some code density. The assembler attempts to widen density
23347 instructions to align branch targets and the instructions following call
23348 instructions. If there are not enough preceding safe density
23349 instructions to align a target, no widening is performed. The
23350 default is @option{-mtarget-align}. These options do not affect the
23351 treatment of auto-aligned instructions like @code{LOOP}, which the
23352 assembler always aligns, either by widening density instructions or
23353 by inserting NOP instructions.
23354
23355 @item -mlongcalls
23356 @itemx -mno-longcalls
23357 @opindex mlongcalls
23358 @opindex mno-longcalls
23359 When this option is enabled, GCC instructs the assembler to translate
23360 direct calls to indirect calls unless it can determine that the target
23361 of a direct call is in the range allowed by the call instruction. This
23362 translation typically occurs for calls to functions in other source
23363 files. Specifically, the assembler translates a direct @code{CALL}
23364 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
23365 The default is @option{-mno-longcalls}. This option should be used in
23366 programs where the call target can potentially be out of range. This
23367 option is implemented in the assembler, not the compiler, so the
23368 assembly code generated by GCC still shows direct call
23369 instructions---look at the disassembled object code to see the actual
23370 instructions. Note that the assembler uses an indirect call for
23371 every cross-file call, not just those that really are out of range.
23372 @end table
23373
23374 @node zSeries Options
23375 @subsection zSeries Options
23376 @cindex zSeries options
23377
23378 These are listed under @xref{S/390 and zSeries Options}.
23379
23380 @node Code Gen Options
23381 @section Options for Code Generation Conventions
23382 @cindex code generation conventions
23383 @cindex options, code generation
23384 @cindex run-time options
23385
23386 These machine-independent options control the interface conventions
23387 used in code generation.
23388
23389 Most of them have both positive and negative forms; the negative form
23390 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
23391 one of the forms is listed---the one that is not the default. You
23392 can figure out the other form by either removing @samp{no-} or adding
23393 it.
23394
23395 @table @gcctabopt
23396 @item -fbounds-check
23397 @opindex fbounds-check
23398 For front ends that support it, generate additional code to check that
23399 indices used to access arrays are within the declared range. This is
23400 currently only supported by the Java and Fortran front ends, where
23401 this option defaults to true and false respectively.
23402
23403 @item -fstack-reuse=@var{reuse-level}
23404 @opindex fstack_reuse
23405 This option controls stack space reuse for user declared local/auto variables
23406 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
23407 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
23408 local variables and temporaries, @samp{named_vars} enables the reuse only for
23409 user defined local variables with names, and @samp{none} disables stack reuse
23410 completely. The default value is @samp{all}. The option is needed when the
23411 program extends the lifetime of a scoped local variable or a compiler generated
23412 temporary beyond the end point defined by the language. When a lifetime of
23413 a variable ends, and if the variable lives in memory, the optimizing compiler
23414 has the freedom to reuse its stack space with other temporaries or scoped
23415 local variables whose live range does not overlap with it. Legacy code extending
23416 local lifetime is likely to break with the stack reuse optimization.
23417
23418 For example,
23419
23420 @smallexample
23421 int *p;
23422 @{
23423 int local1;
23424
23425 p = &local1;
23426 local1 = 10;
23427 ....
23428 @}
23429 @{
23430 int local2;
23431 local2 = 20;
23432 ...
23433 @}
23434
23435 if (*p == 10) // out of scope use of local1
23436 @{
23437
23438 @}
23439 @end smallexample
23440
23441 Another example:
23442 @smallexample
23443
23444 struct A
23445 @{
23446 A(int k) : i(k), j(k) @{ @}
23447 int i;
23448 int j;
23449 @};
23450
23451 A *ap;
23452
23453 void foo(const A& ar)
23454 @{
23455 ap = &ar;
23456 @}
23457
23458 void bar()
23459 @{
23460 foo(A(10)); // temp object's lifetime ends when foo returns
23461
23462 @{
23463 A a(20);
23464 ....
23465 @}
23466 ap->i+= 10; // ap references out of scope temp whose space
23467 // is reused with a. What is the value of ap->i?
23468 @}
23469
23470 @end smallexample
23471
23472 The lifetime of a compiler generated temporary is well defined by the C++
23473 standard. When a lifetime of a temporary ends, and if the temporary lives
23474 in memory, the optimizing compiler has the freedom to reuse its stack
23475 space with other temporaries or scoped local variables whose live range
23476 does not overlap with it. However some of the legacy code relies on
23477 the behavior of older compilers in which temporaries' stack space is
23478 not reused, the aggressive stack reuse can lead to runtime errors. This
23479 option is used to control the temporary stack reuse optimization.
23480
23481 @item -ftrapv
23482 @opindex ftrapv
23483 This option generates traps for signed overflow on addition, subtraction,
23484 multiplication operations.
23485
23486 @item -fwrapv
23487 @opindex fwrapv
23488 This option instructs the compiler to assume that signed arithmetic
23489 overflow of addition, subtraction and multiplication wraps around
23490 using twos-complement representation. This flag enables some optimizations
23491 and disables others. This option is enabled by default for the Java
23492 front end, as required by the Java language specification.
23493
23494 @item -fexceptions
23495 @opindex fexceptions
23496 Enable exception handling. Generates extra code needed to propagate
23497 exceptions. For some targets, this implies GCC generates frame
23498 unwind information for all functions, which can produce significant data
23499 size overhead, although it does not affect execution. If you do not
23500 specify this option, GCC enables it by default for languages like
23501 C++ that normally require exception handling, and disables it for
23502 languages like C that do not normally require it. However, you may need
23503 to enable this option when compiling C code that needs to interoperate
23504 properly with exception handlers written in C++. You may also wish to
23505 disable this option if you are compiling older C++ programs that don't
23506 use exception handling.
23507
23508 @item -fnon-call-exceptions
23509 @opindex fnon-call-exceptions
23510 Generate code that allows trapping instructions to throw exceptions.
23511 Note that this requires platform-specific runtime support that does
23512 not exist everywhere. Moreover, it only allows @emph{trapping}
23513 instructions to throw exceptions, i.e.@: memory references or floating-point
23514 instructions. It does not allow exceptions to be thrown from
23515 arbitrary signal handlers such as @code{SIGALRM}.
23516
23517 @item -fdelete-dead-exceptions
23518 @opindex fdelete-dead-exceptions
23519 Consider that instructions that may throw exceptions but don't otherwise
23520 contribute to the execution of the program can be optimized away.
23521 This option is enabled by default for the Ada front end, as permitted by
23522 the Ada language specification.
23523 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
23524
23525 @item -funwind-tables
23526 @opindex funwind-tables
23527 Similar to @option{-fexceptions}, except that it just generates any needed
23528 static data, but does not affect the generated code in any other way.
23529 You normally do not need to enable this option; instead, a language processor
23530 that needs this handling enables it on your behalf.
23531
23532 @item -fasynchronous-unwind-tables
23533 @opindex fasynchronous-unwind-tables
23534 Generate unwind table in DWARF 2 format, if supported by target machine. The
23535 table is exact at each instruction boundary, so it can be used for stack
23536 unwinding from asynchronous events (such as debugger or garbage collector).
23537
23538 @item -fno-gnu-unique
23539 @opindex fno-gnu-unique
23540 On systems with recent GNU assembler and C library, the C++ compiler
23541 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
23542 of template static data members and static local variables in inline
23543 functions are unique even in the presence of @code{RTLD_LOCAL}; this
23544 is necessary to avoid problems with a library used by two different
23545 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
23546 therefore disagreeing with the other one about the binding of the
23547 symbol. But this causes @code{dlclose} to be ignored for affected
23548 DSOs; if your program relies on reinitialization of a DSO via
23549 @code{dlclose} and @code{dlopen}, you can use
23550 @option{-fno-gnu-unique}.
23551
23552 @item -fpcc-struct-return
23553 @opindex fpcc-struct-return
23554 Return ``short'' @code{struct} and @code{union} values in memory like
23555 longer ones, rather than in registers. This convention is less
23556 efficient, but it has the advantage of allowing intercallability between
23557 GCC-compiled files and files compiled with other compilers, particularly
23558 the Portable C Compiler (pcc).
23559
23560 The precise convention for returning structures in memory depends
23561 on the target configuration macros.
23562
23563 Short structures and unions are those whose size and alignment match
23564 that of some integer type.
23565
23566 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
23567 switch is not binary compatible with code compiled with the
23568 @option{-freg-struct-return} switch.
23569 Use it to conform to a non-default application binary interface.
23570
23571 @item -freg-struct-return
23572 @opindex freg-struct-return
23573 Return @code{struct} and @code{union} values in registers when possible.
23574 This is more efficient for small structures than
23575 @option{-fpcc-struct-return}.
23576
23577 If you specify neither @option{-fpcc-struct-return} nor
23578 @option{-freg-struct-return}, GCC defaults to whichever convention is
23579 standard for the target. If there is no standard convention, GCC
23580 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
23581 the principal compiler. In those cases, we can choose the standard, and
23582 we chose the more efficient register return alternative.
23583
23584 @strong{Warning:} code compiled with the @option{-freg-struct-return}
23585 switch is not binary compatible with code compiled with the
23586 @option{-fpcc-struct-return} switch.
23587 Use it to conform to a non-default application binary interface.
23588
23589 @item -fshort-enums
23590 @opindex fshort-enums
23591 Allocate to an @code{enum} type only as many bytes as it needs for the
23592 declared range of possible values. Specifically, the @code{enum} type
23593 is equivalent to the smallest integer type that has enough room.
23594
23595 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
23596 code that is not binary compatible with code generated without that switch.
23597 Use it to conform to a non-default application binary interface.
23598
23599 @item -fshort-double
23600 @opindex fshort-double
23601 Use the same size for @code{double} as for @code{float}.
23602
23603 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
23604 code that is not binary compatible with code generated without that switch.
23605 Use it to conform to a non-default application binary interface.
23606
23607 @item -fshort-wchar
23608 @opindex fshort-wchar
23609 Override the underlying type for @code{wchar_t} to be @code{short
23610 unsigned int} instead of the default for the target. This option is
23611 useful for building programs to run under WINE@.
23612
23613 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
23614 code that is not binary compatible with code generated without that switch.
23615 Use it to conform to a non-default application binary interface.
23616
23617 @item -fno-common
23618 @opindex fno-common
23619 In C code, controls the placement of uninitialized global variables.
23620 Unix C compilers have traditionally permitted multiple definitions of
23621 such variables in different compilation units by placing the variables
23622 in a common block.
23623 This is the behavior specified by @option{-fcommon}, and is the default
23624 for GCC on most targets.
23625 On the other hand, this behavior is not required by ISO C, and on some
23626 targets may carry a speed or code size penalty on variable references.
23627 The @option{-fno-common} option specifies that the compiler should place
23628 uninitialized global variables in the data section of the object file,
23629 rather than generating them as common blocks.
23630 This has the effect that if the same variable is declared
23631 (without @code{extern}) in two different compilations,
23632 you get a multiple-definition error when you link them.
23633 In this case, you must compile with @option{-fcommon} instead.
23634 Compiling with @option{-fno-common} is useful on targets for which
23635 it provides better performance, or if you wish to verify that the
23636 program will work on other systems that always treat uninitialized
23637 variable declarations this way.
23638
23639 @item -fno-ident
23640 @opindex fno-ident
23641 Ignore the @code{#ident} directive.
23642
23643 @item -finhibit-size-directive
23644 @opindex finhibit-size-directive
23645 Don't output a @code{.size} assembler directive, or anything else that
23646 would cause trouble if the function is split in the middle, and the
23647 two halves are placed at locations far apart in memory. This option is
23648 used when compiling @file{crtstuff.c}; you should not need to use it
23649 for anything else.
23650
23651 @item -fverbose-asm
23652 @opindex fverbose-asm
23653 Put extra commentary information in the generated assembly code to
23654 make it more readable. This option is generally only of use to those
23655 who actually need to read the generated assembly code (perhaps while
23656 debugging the compiler itself).
23657
23658 @option{-fno-verbose-asm}, the default, causes the
23659 extra information to be omitted and is useful when comparing two assembler
23660 files.
23661
23662 @item -frecord-gcc-switches
23663 @opindex frecord-gcc-switches
23664 This switch causes the command line used to invoke the
23665 compiler to be recorded into the object file that is being created.
23666 This switch is only implemented on some targets and the exact format
23667 of the recording is target and binary file format dependent, but it
23668 usually takes the form of a section containing ASCII text. This
23669 switch is related to the @option{-fverbose-asm} switch, but that
23670 switch only records information in the assembler output file as
23671 comments, so it never reaches the object file.
23672 See also @option{-grecord-gcc-switches} for another
23673 way of storing compiler options into the object file.
23674
23675 @item -fpic
23676 @opindex fpic
23677 @cindex global offset table
23678 @cindex PIC
23679 Generate position-independent code (PIC) suitable for use in a shared
23680 library, if supported for the target machine. Such code accesses all
23681 constant addresses through a global offset table (GOT)@. The dynamic
23682 loader resolves the GOT entries when the program starts (the dynamic
23683 loader is not part of GCC; it is part of the operating system). If
23684 the GOT size for the linked executable exceeds a machine-specific
23685 maximum size, you get an error message from the linker indicating that
23686 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
23687 instead. (These maximums are 8k on the SPARC and 32k
23688 on the m68k and RS/6000. The x86 has no such limit.)
23689
23690 Position-independent code requires special support, and therefore works
23691 only on certain machines. For the x86, GCC supports PIC for System V
23692 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
23693 position-independent.
23694
23695 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23696 are defined to 1.
23697
23698 @item -fPIC
23699 @opindex fPIC
23700 If supported for the target machine, emit position-independent code,
23701 suitable for dynamic linking and avoiding any limit on the size of the
23702 global offset table. This option makes a difference on the m68k,
23703 PowerPC and SPARC@.
23704
23705 Position-independent code requires special support, and therefore works
23706 only on certain machines.
23707
23708 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23709 are defined to 2.
23710
23711 @item -fpie
23712 @itemx -fPIE
23713 @opindex fpie
23714 @opindex fPIE
23715 These options are similar to @option{-fpic} and @option{-fPIC}, but
23716 generated position independent code can be only linked into executables.
23717 Usually these options are used when @option{-pie} GCC option is
23718 used during linking.
23719
23720 @option{-fpie} and @option{-fPIE} both define the macros
23721 @code{__pie__} and @code{__PIE__}. The macros have the value 1
23722 for @option{-fpie} and 2 for @option{-fPIE}.
23723
23724 @item -fno-jump-tables
23725 @opindex fno-jump-tables
23726 Do not use jump tables for switch statements even where it would be
23727 more efficient than other code generation strategies. This option is
23728 of use in conjunction with @option{-fpic} or @option{-fPIC} for
23729 building code that forms part of a dynamic linker and cannot
23730 reference the address of a jump table. On some targets, jump tables
23731 do not require a GOT and this option is not needed.
23732
23733 @item -ffixed-@var{reg}
23734 @opindex ffixed
23735 Treat the register named @var{reg} as a fixed register; generated code
23736 should never refer to it (except perhaps as a stack pointer, frame
23737 pointer or in some other fixed role).
23738
23739 @var{reg} must be the name of a register. The register names accepted
23740 are machine-specific and are defined in the @code{REGISTER_NAMES}
23741 macro in the machine description macro file.
23742
23743 This flag does not have a negative form, because it specifies a
23744 three-way choice.
23745
23746 @item -fcall-used-@var{reg}
23747 @opindex fcall-used
23748 Treat the register named @var{reg} as an allocable register that is
23749 clobbered by function calls. It may be allocated for temporaries or
23750 variables that do not live across a call. Functions compiled this way
23751 do not save and restore the register @var{reg}.
23752
23753 It is an error to use this flag with the frame pointer or stack pointer.
23754 Use of this flag for other registers that have fixed pervasive roles in
23755 the machine's execution model produces disastrous results.
23756
23757 This flag does not have a negative form, because it specifies a
23758 three-way choice.
23759
23760 @item -fcall-saved-@var{reg}
23761 @opindex fcall-saved
23762 Treat the register named @var{reg} as an allocable register saved by
23763 functions. It may be allocated even for temporaries or variables that
23764 live across a call. Functions compiled this way save and restore
23765 the register @var{reg} if they use it.
23766
23767 It is an error to use this flag with the frame pointer or stack pointer.
23768 Use of this flag for other registers that have fixed pervasive roles in
23769 the machine's execution model produces disastrous results.
23770
23771 A different sort of disaster results from the use of this flag for
23772 a register in which function values may be returned.
23773
23774 This flag does not have a negative form, because it specifies a
23775 three-way choice.
23776
23777 @item -fpack-struct[=@var{n}]
23778 @opindex fpack-struct
23779 Without a value specified, pack all structure members together without
23780 holes. When a value is specified (which must be a small power of two), pack
23781 structure members according to this value, representing the maximum
23782 alignment (that is, objects with default alignment requirements larger than
23783 this are output potentially unaligned at the next fitting location.
23784
23785 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
23786 code that is not binary compatible with code generated without that switch.
23787 Additionally, it makes the code suboptimal.
23788 Use it to conform to a non-default application binary interface.
23789
23790 @item -finstrument-functions
23791 @opindex finstrument-functions
23792 Generate instrumentation calls for entry and exit to functions. Just
23793 after function entry and just before function exit, the following
23794 profiling functions are called with the address of the current
23795 function and its call site. (On some platforms,
23796 @code{__builtin_return_address} does not work beyond the current
23797 function, so the call site information may not be available to the
23798 profiling functions otherwise.)
23799
23800 @smallexample
23801 void __cyg_profile_func_enter (void *this_fn,
23802 void *call_site);
23803 void __cyg_profile_func_exit (void *this_fn,
23804 void *call_site);
23805 @end smallexample
23806
23807 The first argument is the address of the start of the current function,
23808 which may be looked up exactly in the symbol table.
23809
23810 This instrumentation is also done for functions expanded inline in other
23811 functions. The profiling calls indicate where, conceptually, the
23812 inline function is entered and exited. This means that addressable
23813 versions of such functions must be available. If all your uses of a
23814 function are expanded inline, this may mean an additional expansion of
23815 code size. If you use @code{extern inline} in your C code, an
23816 addressable version of such functions must be provided. (This is
23817 normally the case anyway, but if you get lucky and the optimizer always
23818 expands the functions inline, you might have gotten away without
23819 providing static copies.)
23820
23821 A function may be given the attribute @code{no_instrument_function}, in
23822 which case this instrumentation is not done. This can be used, for
23823 example, for the profiling functions listed above, high-priority
23824 interrupt routines, and any functions from which the profiling functions
23825 cannot safely be called (perhaps signal handlers, if the profiling
23826 routines generate output or allocate memory).
23827
23828 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
23829 @opindex finstrument-functions-exclude-file-list
23830
23831 Set the list of functions that are excluded from instrumentation (see
23832 the description of @option{-finstrument-functions}). If the file that
23833 contains a function definition matches with one of @var{file}, then
23834 that function is not instrumented. The match is done on substrings:
23835 if the @var{file} parameter is a substring of the file name, it is
23836 considered to be a match.
23837
23838 For example:
23839
23840 @smallexample
23841 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
23842 @end smallexample
23843
23844 @noindent
23845 excludes any inline function defined in files whose pathnames
23846 contain @file{/bits/stl} or @file{include/sys}.
23847
23848 If, for some reason, you want to include letter @samp{,} in one of
23849 @var{sym}, write @samp{\,}. For example,
23850 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
23851 (note the single quote surrounding the option).
23852
23853 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
23854 @opindex finstrument-functions-exclude-function-list
23855
23856 This is similar to @option{-finstrument-functions-exclude-file-list},
23857 but this option sets the list of function names to be excluded from
23858 instrumentation. The function name to be matched is its user-visible
23859 name, such as @code{vector<int> blah(const vector<int> &)}, not the
23860 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
23861 match is done on substrings: if the @var{sym} parameter is a substring
23862 of the function name, it is considered to be a match. For C99 and C++
23863 extended identifiers, the function name must be given in UTF-8, not
23864 using universal character names.
23865
23866 @item -fstack-check
23867 @opindex fstack-check
23868 Generate code to verify that you do not go beyond the boundary of the
23869 stack. You should specify this flag if you are running in an
23870 environment with multiple threads, but you only rarely need to specify it in
23871 a single-threaded environment since stack overflow is automatically
23872 detected on nearly all systems if there is only one stack.
23873
23874 Note that this switch does not actually cause checking to be done; the
23875 operating system or the language runtime must do that. The switch causes
23876 generation of code to ensure that they see the stack being extended.
23877
23878 You can additionally specify a string parameter: @samp{no} means no
23879 checking, @samp{generic} means force the use of old-style checking,
23880 @samp{specific} means use the best checking method and is equivalent
23881 to bare @option{-fstack-check}.
23882
23883 Old-style checking is a generic mechanism that requires no specific
23884 target support in the compiler but comes with the following drawbacks:
23885
23886 @enumerate
23887 @item
23888 Modified allocation strategy for large objects: they are always
23889 allocated dynamically if their size exceeds a fixed threshold.
23890
23891 @item
23892 Fixed limit on the size of the static frame of functions: when it is
23893 topped by a particular function, stack checking is not reliable and
23894 a warning is issued by the compiler.
23895
23896 @item
23897 Inefficiency: because of both the modified allocation strategy and the
23898 generic implementation, code performance is hampered.
23899 @end enumerate
23900
23901 Note that old-style stack checking is also the fallback method for
23902 @samp{specific} if no target support has been added in the compiler.
23903
23904 @item -fstack-limit-register=@var{reg}
23905 @itemx -fstack-limit-symbol=@var{sym}
23906 @itemx -fno-stack-limit
23907 @opindex fstack-limit-register
23908 @opindex fstack-limit-symbol
23909 @opindex fno-stack-limit
23910 Generate code to ensure that the stack does not grow beyond a certain value,
23911 either the value of a register or the address of a symbol. If a larger
23912 stack is required, a signal is raised at run time. For most targets,
23913 the signal is raised before the stack overruns the boundary, so
23914 it is possible to catch the signal without taking special precautions.
23915
23916 For instance, if the stack starts at absolute address @samp{0x80000000}
23917 and grows downwards, you can use the flags
23918 @option{-fstack-limit-symbol=__stack_limit} and
23919 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
23920 of 128KB@. Note that this may only work with the GNU linker.
23921
23922 @item -fsplit-stack
23923 @opindex fsplit-stack
23924 Generate code to automatically split the stack before it overflows.
23925 The resulting program has a discontiguous stack which can only
23926 overflow if the program is unable to allocate any more memory. This
23927 is most useful when running threaded programs, as it is no longer
23928 necessary to calculate a good stack size to use for each thread. This
23929 is currently only implemented for the x86 targets running
23930 GNU/Linux.
23931
23932 When code compiled with @option{-fsplit-stack} calls code compiled
23933 without @option{-fsplit-stack}, there may not be much stack space
23934 available for the latter code to run. If compiling all code,
23935 including library code, with @option{-fsplit-stack} is not an option,
23936 then the linker can fix up these calls so that the code compiled
23937 without @option{-fsplit-stack} always has a large stack. Support for
23938 this is implemented in the gold linker in GNU binutils release 2.21
23939 and later.
23940
23941 @item -fleading-underscore
23942 @opindex fleading-underscore
23943 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
23944 change the way C symbols are represented in the object file. One use
23945 is to help link with legacy assembly code.
23946
23947 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
23948 generate code that is not binary compatible with code generated without that
23949 switch. Use it to conform to a non-default application binary interface.
23950 Not all targets provide complete support for this switch.
23951
23952 @item -ftls-model=@var{model}
23953 @opindex ftls-model
23954 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
23955 The @var{model} argument should be one of @samp{global-dynamic},
23956 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
23957 Note that the choice is subject to optimization: the compiler may use
23958 a more efficient model for symbols not visible outside of the translation
23959 unit, or if @option{-fpic} is not given on the command line.
23960
23961 The default without @option{-fpic} is @samp{initial-exec}; with
23962 @option{-fpic} the default is @samp{global-dynamic}.
23963
23964 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
23965 @opindex fvisibility
23966 Set the default ELF image symbol visibility to the specified option---all
23967 symbols are marked with this unless overridden within the code.
23968 Using this feature can very substantially improve linking and
23969 load times of shared object libraries, produce more optimized
23970 code, provide near-perfect API export and prevent symbol clashes.
23971 It is @strong{strongly} recommended that you use this in any shared objects
23972 you distribute.
23973
23974 Despite the nomenclature, @samp{default} always means public; i.e.,
23975 available to be linked against from outside the shared object.
23976 @samp{protected} and @samp{internal} are pretty useless in real-world
23977 usage so the only other commonly used option is @samp{hidden}.
23978 The default if @option{-fvisibility} isn't specified is
23979 @samp{default}, i.e., make every symbol public.
23980
23981 A good explanation of the benefits offered by ensuring ELF
23982 symbols have the correct visibility is given by ``How To Write
23983 Shared Libraries'' by Ulrich Drepper (which can be found at
23984 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
23985 solution made possible by this option to marking things hidden when
23986 the default is public is to make the default hidden and mark things
23987 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
23988 and @code{__attribute__ ((visibility("default")))} instead of
23989 @code{__declspec(dllexport)} you get almost identical semantics with
23990 identical syntax. This is a great boon to those working with
23991 cross-platform projects.
23992
23993 For those adding visibility support to existing code, you may find
23994 @code{#pragma GCC visibility} of use. This works by you enclosing
23995 the declarations you wish to set visibility for with (for example)
23996 @code{#pragma GCC visibility push(hidden)} and
23997 @code{#pragma GCC visibility pop}.
23998 Bear in mind that symbol visibility should be viewed @strong{as
23999 part of the API interface contract} and thus all new code should
24000 always specify visibility when it is not the default; i.e., declarations
24001 only for use within the local DSO should @strong{always} be marked explicitly
24002 as hidden as so to avoid PLT indirection overheads---making this
24003 abundantly clear also aids readability and self-documentation of the code.
24004 Note that due to ISO C++ specification requirements, @code{operator new} and
24005 @code{operator delete} must always be of default visibility.
24006
24007 Be aware that headers from outside your project, in particular system
24008 headers and headers from any other library you use, may not be
24009 expecting to be compiled with visibility other than the default. You
24010 may need to explicitly say @code{#pragma GCC visibility push(default)}
24011 before including any such headers.
24012
24013 @code{extern} declarations are not affected by @option{-fvisibility}, so
24014 a lot of code can be recompiled with @option{-fvisibility=hidden} with
24015 no modifications. However, this means that calls to @code{extern}
24016 functions with no explicit visibility use the PLT, so it is more
24017 effective to use @code{__attribute ((visibility))} and/or
24018 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
24019 declarations should be treated as hidden.
24020
24021 Note that @option{-fvisibility} does affect C++ vague linkage
24022 entities. This means that, for instance, an exception class that is
24023 be thrown between DSOs must be explicitly marked with default
24024 visibility so that the @samp{type_info} nodes are unified between
24025 the DSOs.
24026
24027 An overview of these techniques, their benefits and how to use them
24028 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
24029
24030 @item -fstrict-volatile-bitfields
24031 @opindex fstrict-volatile-bitfields
24032 This option should be used if accesses to volatile bit-fields (or other
24033 structure fields, although the compiler usually honors those types
24034 anyway) should use a single access of the width of the
24035 field's type, aligned to a natural alignment if possible. For
24036 example, targets with memory-mapped peripheral registers might require
24037 all such accesses to be 16 bits wide; with this flag you can
24038 declare all peripheral bit-fields as @code{unsigned short} (assuming short
24039 is 16 bits on these targets) to force GCC to use 16-bit accesses
24040 instead of, perhaps, a more efficient 32-bit access.
24041
24042 If this option is disabled, the compiler uses the most efficient
24043 instruction. In the previous example, that might be a 32-bit load
24044 instruction, even though that accesses bytes that do not contain
24045 any portion of the bit-field, or memory-mapped registers unrelated to
24046 the one being updated.
24047
24048 In some cases, such as when the @code{packed} attribute is applied to a
24049 structure field, it may not be possible to access the field with a single
24050 read or write that is correctly aligned for the target machine. In this
24051 case GCC falls back to generating multiple accesses rather than code that
24052 will fault or truncate the result at run time.
24053
24054 Note: Due to restrictions of the C/C++11 memory model, write accesses are
24055 not allowed to touch non bit-field members. It is therefore recommended
24056 to define all bits of the field's type as bit-field members.
24057
24058 The default value of this option is determined by the application binary
24059 interface for the target processor.
24060
24061 @item -fsync-libcalls
24062 @opindex fsync-libcalls
24063 This option controls whether any out-of-line instance of the @code{__sync}
24064 family of functions may be used to implement the C++11 @code{__atomic}
24065 family of functions.
24066
24067 The default value of this option is enabled, thus the only useful form
24068 of the option is @option{-fno-sync-libcalls}. This option is used in
24069 the implementation of the @file{libatomic} runtime library.
24070
24071 @end table
24072
24073 @c man end
24074
24075 @node Environment Variables
24076 @section Environment Variables Affecting GCC
24077 @cindex environment variables
24078
24079 @c man begin ENVIRONMENT
24080 This section describes several environment variables that affect how GCC
24081 operates. Some of them work by specifying directories or prefixes to use
24082 when searching for various kinds of files. Some are used to specify other
24083 aspects of the compilation environment.
24084
24085 Note that you can also specify places to search using options such as
24086 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
24087 take precedence over places specified using environment variables, which
24088 in turn take precedence over those specified by the configuration of GCC@.
24089 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24090 GNU Compiler Collection (GCC) Internals}.
24091
24092 @table @env
24093 @item LANG
24094 @itemx LC_CTYPE
24095 @c @itemx LC_COLLATE
24096 @itemx LC_MESSAGES
24097 @c @itemx LC_MONETARY
24098 @c @itemx LC_NUMERIC
24099 @c @itemx LC_TIME
24100 @itemx LC_ALL
24101 @findex LANG
24102 @findex LC_CTYPE
24103 @c @findex LC_COLLATE
24104 @findex LC_MESSAGES
24105 @c @findex LC_MONETARY
24106 @c @findex LC_NUMERIC
24107 @c @findex LC_TIME
24108 @findex LC_ALL
24109 @cindex locale
24110 These environment variables control the way that GCC uses
24111 localization information which allows GCC to work with different
24112 national conventions. GCC inspects the locale categories
24113 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24114 so. These locale categories can be set to any value supported by your
24115 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
24116 Kingdom encoded in UTF-8.
24117
24118 The @env{LC_CTYPE} environment variable specifies character
24119 classification. GCC uses it to determine the character boundaries in
24120 a string; this is needed for some multibyte encodings that contain quote
24121 and escape characters that are otherwise interpreted as a string
24122 end or escape.
24123
24124 The @env{LC_MESSAGES} environment variable specifies the language to
24125 use in diagnostic messages.
24126
24127 If the @env{LC_ALL} environment variable is set, it overrides the value
24128 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24129 and @env{LC_MESSAGES} default to the value of the @env{LANG}
24130 environment variable. If none of these variables are set, GCC
24131 defaults to traditional C English behavior.
24132
24133 @item TMPDIR
24134 @findex TMPDIR
24135 If @env{TMPDIR} is set, it specifies the directory to use for temporary
24136 files. GCC uses temporary files to hold the output of one stage of
24137 compilation which is to be used as input to the next stage: for example,
24138 the output of the preprocessor, which is the input to the compiler
24139 proper.
24140
24141 @item GCC_COMPARE_DEBUG
24142 @findex GCC_COMPARE_DEBUG
24143 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24144 @option{-fcompare-debug} to the compiler driver. See the documentation
24145 of this option for more details.
24146
24147 @item GCC_EXEC_PREFIX
24148 @findex GCC_EXEC_PREFIX
24149 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24150 names of the subprograms executed by the compiler. No slash is added
24151 when this prefix is combined with the name of a subprogram, but you can
24152 specify a prefix that ends with a slash if you wish.
24153
24154 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24155 an appropriate prefix to use based on the pathname it is invoked with.
24156
24157 If GCC cannot find the subprogram using the specified prefix, it
24158 tries looking in the usual places for the subprogram.
24159
24160 The default value of @env{GCC_EXEC_PREFIX} is
24161 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24162 the installed compiler. In many cases @var{prefix} is the value
24163 of @code{prefix} when you ran the @file{configure} script.
24164
24165 Other prefixes specified with @option{-B} take precedence over this prefix.
24166
24167 This prefix is also used for finding files such as @file{crt0.o} that are
24168 used for linking.
24169
24170 In addition, the prefix is used in an unusual way in finding the
24171 directories to search for header files. For each of the standard
24172 directories whose name normally begins with @samp{/usr/local/lib/gcc}
24173 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24174 replacing that beginning with the specified prefix to produce an
24175 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
24176 @file{foo/bar} just before it searches the standard directory
24177 @file{/usr/local/lib/bar}.
24178 If a standard directory begins with the configured
24179 @var{prefix} then the value of @var{prefix} is replaced by
24180 @env{GCC_EXEC_PREFIX} when looking for header files.
24181
24182 @item COMPILER_PATH
24183 @findex COMPILER_PATH
24184 The value of @env{COMPILER_PATH} is a colon-separated list of
24185 directories, much like @env{PATH}. GCC tries the directories thus
24186 specified when searching for subprograms, if it can't find the
24187 subprograms using @env{GCC_EXEC_PREFIX}.
24188
24189 @item LIBRARY_PATH
24190 @findex LIBRARY_PATH
24191 The value of @env{LIBRARY_PATH} is a colon-separated list of
24192 directories, much like @env{PATH}. When configured as a native compiler,
24193 GCC tries the directories thus specified when searching for special
24194 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
24195 using GCC also uses these directories when searching for ordinary
24196 libraries for the @option{-l} option (but directories specified with
24197 @option{-L} come first).
24198
24199 @item LANG
24200 @findex LANG
24201 @cindex locale definition
24202 This variable is used to pass locale information to the compiler. One way in
24203 which this information is used is to determine the character set to be used
24204 when character literals, string literals and comments are parsed in C and C++.
24205 When the compiler is configured to allow multibyte characters,
24206 the following values for @env{LANG} are recognized:
24207
24208 @table @samp
24209 @item C-JIS
24210 Recognize JIS characters.
24211 @item C-SJIS
24212 Recognize SJIS characters.
24213 @item C-EUCJP
24214 Recognize EUCJP characters.
24215 @end table
24216
24217 If @env{LANG} is not defined, or if it has some other value, then the
24218 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24219 recognize and translate multibyte characters.
24220 @end table
24221
24222 @noindent
24223 Some additional environment variables affect the behavior of the
24224 preprocessor.
24225
24226 @include cppenv.texi
24227
24228 @c man end
24229
24230 @node Precompiled Headers
24231 @section Using Precompiled Headers
24232 @cindex precompiled headers
24233 @cindex speed of compilation
24234
24235 Often large projects have many header files that are included in every
24236 source file. The time the compiler takes to process these header files
24237 over and over again can account for nearly all of the time required to
24238 build the project. To make builds faster, GCC allows you to
24239 @dfn{precompile} a header file.
24240
24241 To create a precompiled header file, simply compile it as you would any
24242 other file, if necessary using the @option{-x} option to make the driver
24243 treat it as a C or C++ header file. You may want to use a
24244 tool like @command{make} to keep the precompiled header up-to-date when
24245 the headers it contains change.
24246
24247 A precompiled header file is searched for when @code{#include} is
24248 seen in the compilation. As it searches for the included file
24249 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24250 compiler looks for a precompiled header in each directory just before it
24251 looks for the include file in that directory. The name searched for is
24252 the name specified in the @code{#include} with @samp{.gch} appended. If
24253 the precompiled header file can't be used, it is ignored.
24254
24255 For instance, if you have @code{#include "all.h"}, and you have
24256 @file{all.h.gch} in the same directory as @file{all.h}, then the
24257 precompiled header file is used if possible, and the original
24258 header is used otherwise.
24259
24260 Alternatively, you might decide to put the precompiled header file in a
24261 directory and use @option{-I} to ensure that directory is searched
24262 before (or instead of) the directory containing the original header.
24263 Then, if you want to check that the precompiled header file is always
24264 used, you can put a file of the same name as the original header in this
24265 directory containing an @code{#error} command.
24266
24267 This also works with @option{-include}. So yet another way to use
24268 precompiled headers, good for projects not designed with precompiled
24269 header files in mind, is to simply take most of the header files used by
24270 a project, include them from another header file, precompile that header
24271 file, and @option{-include} the precompiled header. If the header files
24272 have guards against multiple inclusion, they are skipped because
24273 they've already been included (in the precompiled header).
24274
24275 If you need to precompile the same header file for different
24276 languages, targets, or compiler options, you can instead make a
24277 @emph{directory} named like @file{all.h.gch}, and put each precompiled
24278 header in the directory, perhaps using @option{-o}. It doesn't matter
24279 what you call the files in the directory; every precompiled header in
24280 the directory is considered. The first precompiled header
24281 encountered in the directory that is valid for this compilation is
24282 used; they're searched in no particular order.
24283
24284 There are many other possibilities, limited only by your imagination,
24285 good sense, and the constraints of your build system.
24286
24287 A precompiled header file can be used only when these conditions apply:
24288
24289 @itemize
24290 @item
24291 Only one precompiled header can be used in a particular compilation.
24292
24293 @item
24294 A precompiled header can't be used once the first C token is seen. You
24295 can have preprocessor directives before a precompiled header; you cannot
24296 include a precompiled header from inside another header.
24297
24298 @item
24299 The precompiled header file must be produced for the same language as
24300 the current compilation. You can't use a C precompiled header for a C++
24301 compilation.
24302
24303 @item
24304 The precompiled header file must have been produced by the same compiler
24305 binary as the current compilation is using.
24306
24307 @item
24308 Any macros defined before the precompiled header is included must
24309 either be defined in the same way as when the precompiled header was
24310 generated, or must not affect the precompiled header, which usually
24311 means that they don't appear in the precompiled header at all.
24312
24313 The @option{-D} option is one way to define a macro before a
24314 precompiled header is included; using a @code{#define} can also do it.
24315 There are also some options that define macros implicitly, like
24316 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
24317 defined this way.
24318
24319 @item If debugging information is output when using the precompiled
24320 header, using @option{-g} or similar, the same kind of debugging information
24321 must have been output when building the precompiled header. However,
24322 a precompiled header built using @option{-g} can be used in a compilation
24323 when no debugging information is being output.
24324
24325 @item The same @option{-m} options must generally be used when building
24326 and using the precompiled header. @xref{Submodel Options},
24327 for any cases where this rule is relaxed.
24328
24329 @item Each of the following options must be the same when building and using
24330 the precompiled header:
24331
24332 @gccoptlist{-fexceptions}
24333
24334 @item
24335 Some other command-line options starting with @option{-f},
24336 @option{-p}, or @option{-O} must be defined in the same way as when
24337 the precompiled header was generated. At present, it's not clear
24338 which options are safe to change and which are not; the safest choice
24339 is to use exactly the same options when generating and using the
24340 precompiled header. The following are known to be safe:
24341
24342 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
24343 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
24344 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
24345 -pedantic-errors}
24346
24347 @end itemize
24348
24349 For all of these except the last, the compiler automatically
24350 ignores the precompiled header if the conditions aren't met. If you
24351 find an option combination that doesn't work and doesn't cause the
24352 precompiled header to be ignored, please consider filing a bug report,
24353 see @ref{Bugs}.
24354
24355 If you do use differing options when generating and using the
24356 precompiled header, the actual behavior is a mixture of the
24357 behavior for the options. For instance, if you use @option{-g} to
24358 generate the precompiled header but not when using it, you may or may
24359 not get debugging information for routines in the precompiled header.