]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
* c-ubsan.c (ubsan_instrument_bounds): Don't skip instrumenting
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2015 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75
76 Other options are passed on to one stage of processing. Some options
77 control the preprocessor and others the compiler itself. Yet other
78 options control the assembler and linker; most of these are not
79 documented here, since you rarely need to use any of them.
80
81 @cindex C compilation options
82 Most of the command-line options that you can use with GCC are useful
83 for C programs; when an option is only useful with another language
84 (usually C++), the explanation says so explicitly. If the description
85 for a particular option does not mention a source language, you can use
86 that option with all supported languages.
87
88 @cindex C++ compilation options
89 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90 options for compiling C++ programs.
91
92 @cindex grouping options
93 @cindex options, grouping
94 The @command{gcc} program accepts options and file names as operands. Many
95 options have multi-letter names; therefore multiple single-letter options
96 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97 -v}}.
98
99 @cindex order of options
100 @cindex options, order
101 You can mix options and other arguments. For the most part, the order
102 you use doesn't matter. Order does matter when you use several
103 options of the same kind; for example, if you specify @option{-L} more
104 than once, the directories are searched in the order specified. Also,
105 the placement of the @option{-l} option is significant.
106
107 Many options have long names starting with @samp{-f} or with
108 @samp{-W}---for example,
109 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
110 these have both positive and negative forms; the negative form of
111 @option{-ffoo} is @option{-fno-foo}. This manual documents
112 only one of these two forms, whichever one is not the default.
113
114 @c man end
115
116 @xref{Option Index}, for an index to GCC's options.
117
118 @menu
119 * Option Summary:: Brief list of all options, without explanations.
120 * Overall Options:: Controlling the kind of output:
121 an executable, object files, assembler files,
122 or preprocessed source.
123 * Invoking G++:: Compiling C++ programs.
124 * C Dialect Options:: Controlling the variant of C language compiled.
125 * C++ Dialect Options:: Variations on C++.
126 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127 and Objective-C++.
128 * Language Independent Options:: Controlling how diagnostics should be
129 formatted.
130 * Warning Options:: How picky should the compiler be?
131 * Debugging Options:: Symbol tables, measurements, and debugging dumps.
132 * Optimize Options:: How much optimization?
133 * Preprocessor Options:: Controlling header files and macro definitions.
134 Also, getting dependency information for Make.
135 * Assembler Options:: Passing options to the assembler.
136 * Link Options:: Specifying libraries and so on.
137 * Directory Options:: Where to find header files and libraries.
138 Where to find the compiler executable files.
139 * Spec Files:: How to pass switches to sub-processes.
140 * Target Options:: Running a cross-compiler, or an old version of GCC.
141 * Submodel Options:: Specifying minor hardware or convention variations,
142 such as 68010 vs 68020.
143 * Code Gen Options:: Specifying conventions for function calls, data layout
144 and register usage.
145 * Environment Variables:: Env vars that affect GCC.
146 * Precompiled Headers:: Compiling a header once, and using it many times.
147 @end menu
148
149 @c man begin OPTIONS
150
151 @node Option Summary
152 @section Option Summary
153
154 Here is a summary of all the options, grouped by type. Explanations are
155 in the following sections.
156
157 @table @emph
158 @item Overall Options
159 @xref{Overall Options,,Options Controlling the Kind of Output}.
160 @gccoptlist{-c -S -E -o @var{file} -no-canonical-prefixes @gol
161 -pipe -pass-exit-codes @gol
162 -x @var{language} -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help @gol
163 --version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
164 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166 @item C Language Options
167 @xref{C Dialect Options,,Options Controlling C Dialect}.
168 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
169 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170 -fno-asm -fno-builtin -fno-builtin-@var{function} @gol
171 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172 -fms-extensions -fplan9-extensions -trigraphs -traditional -traditional-cpp @gol
173 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
174 -fsigned-bitfields -fsigned-char @gol
175 -funsigned-bitfields -funsigned-char}
176
177 @item C++ Language Options
178 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
179 @gccoptlist{-fabi-version=@var{n} -fno-access-control -fcheck-new @gol
180 -fconstexpr-depth=@var{n} -ffriend-injection @gol
181 -fno-elide-constructors @gol
182 -fno-enforce-eh-specs @gol
183 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
184 -fno-implicit-templates @gol
185 -fno-implicit-inline-templates @gol
186 -fno-implement-inlines -fms-extensions @gol
187 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
188 -fno-optional-diags -fpermissive @gol
189 -fno-pretty-templates @gol
190 -frepo -fno-rtti -fsized-deallocation @gol
191 -fstats -ftemplate-backtrace-limit=@var{n} @gol
192 -ftemplate-depth=@var{n} @gol
193 -fno-threadsafe-statics -fuse-cxa-atexit @gol
194 -fno-weak -nostdinc++ @gol
195 -fvisibility-inlines-hidden @gol
196 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
197 -fvtv-counts -fvtv-debug @gol
198 -fvisibility-ms-compat @gol
199 -fext-numeric-literals @gol
200 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
201 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing @gol
202 -Wnoexcept -Wnon-virtual-dtor -Wreorder @gol
203 -Weffc++ -Wstrict-null-sentinel @gol
204 -Wno-non-template-friend -Wold-style-cast @gol
205 -Woverloaded-virtual -Wno-pmf-conversions @gol
206 -Wsign-promo}
207
208 @item Objective-C and Objective-C++ Language Options
209 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
210 Objective-C and Objective-C++ Dialects}.
211 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
212 -fgnu-runtime -fnext-runtime @gol
213 -fno-nil-receivers @gol
214 -fobjc-abi-version=@var{n} @gol
215 -fobjc-call-cxx-cdtors @gol
216 -fobjc-direct-dispatch @gol
217 -fobjc-exceptions @gol
218 -fobjc-gc @gol
219 -fobjc-nilcheck @gol
220 -fobjc-std=objc1 @gol
221 -fno-local-ivars @gol
222 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
223 -freplace-objc-classes @gol
224 -fzero-link @gol
225 -gen-decls @gol
226 -Wassign-intercept @gol
227 -Wno-protocol -Wselector @gol
228 -Wstrict-selector-match @gol
229 -Wundeclared-selector}
230
231 @item Language Independent Options
232 @xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
233 @gccoptlist{-fmessage-length=@var{n} @gol
234 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
235 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
236 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
237
238 @item Warning Options
239 @xref{Warning Options,,Options to Request or Suppress Warnings}.
240 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
241 -pedantic-errors @gol
242 -w -Wextra -Wall -Waddress -Waggregate-return @gol
243 -Waggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
244 -Wbool-compare @gol
245 -Wno-attributes -Wno-builtin-macro-redefined @gol
246 -Wc90-c99-compat -Wc99-c11-compat @gol
247 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
248 -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
249 -Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp @gol
250 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
251 -Wdisabled-optimization @gol
252 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
253 -Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare @gol
254 -Wno-endif-labels -Werror -Werror=* @gol
255 -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
256 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
257 -Wformat-security -Wformat-signedness -Wformat-y2k @gol
258 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
259 -Wignored-qualifiers -Wincompatible-pointer-types @gol
260 -Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol
261 -Winit-self -Winline -Wno-int-conversion @gol
262 -Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
263 -Winvalid-pch -Wlarger-than=@var{len} -Wunsafe-loop-optimizations @gol
264 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
265 -Wmain -Wmaybe-uninitialized -Wmemset-transposed-args -Wmissing-braces @gol
266 -Wmissing-field-initializers -Wmissing-include-dirs @gol
267 -Wno-multichar -Wnonnull -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
268 -Wodr -Wno-overflow -Wopenmp-simd @gol
269 -Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
270 -Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
271 -Wpointer-arith -Wno-pointer-to-int-cast @gol
272 -Wredundant-decls -Wno-return-local-addr @gol
273 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
274 -Wshift-count-negative -Wshift-count-overflow @gol
275 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
276 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
277 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
278 -Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
279 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
280 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
281 -Wmissing-format-attribute @gol
282 -Wswitch -Wswitch-default -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
283 -Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef @gol
284 -Wuninitialized -Wunknown-pragmas -Wno-pragmas @gol
285 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
286 -Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
287 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
288 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
289 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
290 -Wvla -Wvolatile-register-var -Wwrite-strings @gol
291 -Wzero-as-null-pointer-constant}
292
293 @item C and Objective-C-only Warning Options
294 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
295 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
296 -Wold-style-declaration -Wold-style-definition @gol
297 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
298 -Wdeclaration-after-statement -Wpointer-sign}
299
300 @item Debugging Options
301 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
302 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
303 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
304 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1,s2,...} @gol
305 -fsanitize-undefined-trap-on-error @gol
306 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
307 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
308 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
309 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
310 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
311 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
312 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
313 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
314 -fchkp-use-wrappers @gol
315 -fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
316 -fdisable-ipa-@var{pass_name} @gol
317 -fdisable-rtl-@var{pass_name} @gol
318 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
319 -fdisable-tree-@var{pass_name} @gol
320 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
321 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
322 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
323 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
324 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
325 -fdump-passes @gol
326 -fdump-statistics @gol
327 -fdump-tree-all @gol
328 -fdump-tree-original@r{[}-@var{n}@r{]} @gol
329 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
330 -fdump-tree-cfg -fdump-tree-alias @gol
331 -fdump-tree-ch @gol
332 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
333 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
334 -fdump-tree-gimple@r{[}-raw@r{]} @gol
335 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
336 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
337 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
338 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
339 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
340 -fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
341 -fdump-tree-nrv -fdump-tree-vect @gol
342 -fdump-tree-sink @gol
343 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
344 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
345 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
346 -fdump-tree-vtable-verify @gol
347 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
348 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
349 -fdump-final-insns=@var{file} @gol
350 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
351 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
352 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
353 -fenable-@var{kind}-@var{pass} @gol
354 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
355 -fdebug-types-section -fmem-report-wpa @gol
356 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
357 -fopt-info @gol
358 -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
359 -frandom-seed=@var{number} -fsched-verbose=@var{n} @gol
360 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
361 -fstack-usage -ftest-coverage -ftime-report -fvar-tracking @gol
362 -fvar-tracking-assignments -fvar-tracking-assignments-toggle @gol
363 -g -g@var{level} -gtoggle -gcoff -gdwarf-@var{version} @gol
364 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
365 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
366 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
367 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
368 -fdebug-prefix-map=@var{old}=@var{new} @gol
369 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
370 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
371 -p -pg -print-file-name=@var{library} -print-libgcc-file-name @gol
372 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
373 -print-prog-name=@var{program} -print-search-dirs -Q @gol
374 -print-sysroot -print-sysroot-headers-suffix @gol
375 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
376
377 @item Optimization Options
378 @xref{Optimize Options,,Options that Control Optimization}.
379 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
380 -falign-jumps[=@var{n}] @gol
381 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
382 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
383 -fauto-inc-dec -fbranch-probabilities @gol
384 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
385 -fbtr-bb-exclusive -fcaller-saves @gol
386 -fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack @gol
387 -fcompare-elim -fcprop-registers -fcrossjumping @gol
388 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
389 -fcx-limited-range @gol
390 -fdata-sections -fdce -fdelayed-branch @gol
391 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
392 -fdevirtualize-at-ltrans -fdse @gol
393 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
394 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
395 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
396 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
397 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
398 -fif-conversion2 -findirect-inlining @gol
399 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
400 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
401 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
402 -fira-algorithm=@var{algorithm} @gol
403 -fira-region=@var{region} -fira-hoist-pressure @gol
404 -fira-loop-pressure -fno-ira-share-save-slots @gol
405 -fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
406 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
407 -fivopts -fkeep-inline-functions -fkeep-static-consts @gol
408 -flive-range-shrinkage @gol
409 -floop-block -floop-interchange -floop-strip-mine @gol
410 -floop-unroll-and-jam -floop-nest-optimize @gol
411 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
412 -flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
413 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
414 -fmove-loop-invariants -fno-branch-count-reg @gol
415 -fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
416 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
417 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
418 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
419 -fomit-frame-pointer -foptimize-sibling-calls @gol
420 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
421 -fprefetch-loop-arrays -fprofile-report @gol
422 -fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
423 -fprofile-generate=@var{path} @gol
424 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
425 -fprofile-reorder-functions @gol
426 -freciprocal-math -free -frename-registers -freorder-blocks @gol
427 -freorder-blocks-and-partition -freorder-functions @gol
428 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
429 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
430 -fsched-spec-load -fsched-spec-load-dangerous @gol
431 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
432 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
433 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
434 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
435 -fschedule-fusion @gol
436 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
437 -fselective-scheduling -fselective-scheduling2 @gol
438 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
439 -fsemantic-interposition @gol
440 -fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
441 -fsplit-ivs-in-unroller -fsplit-wide-types -fssa-phiopt @gol
442 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
443 -fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
444 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
445 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
446 -ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop @gol
447 -ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse @gol
448 -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
449 -ftree-loop-if-convert-stores -ftree-loop-im @gol
450 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
451 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
452 -ftree-loop-vectorize @gol
453 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
454 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
455 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
456 -ftree-vectorize -ftree-vrp @gol
457 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
458 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
459 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
460 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
461 --param @var{name}=@var{value}
462 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
463
464 @item Preprocessor Options
465 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
466 @gccoptlist{-A@var{question}=@var{answer} @gol
467 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
468 -C -dD -dI -dM -dN @gol
469 -D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
470 -idirafter @var{dir} @gol
471 -include @var{file} -imacros @var{file} @gol
472 -iprefix @var{file} -iwithprefix @var{dir} @gol
473 -iwithprefixbefore @var{dir} -isystem @var{dir} @gol
474 -imultilib @var{dir} -isysroot @var{dir} @gol
475 -M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
476 -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
477 -remap -trigraphs -undef -U@var{macro} @gol
478 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
479
480 @item Assembler Option
481 @xref{Assembler Options,,Passing Options to the Assembler}.
482 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
483
484 @item Linker Options
485 @xref{Link Options,,Options for Linking}.
486 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
487 -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
488 -s -static -static-libgcc -static-libstdc++ @gol
489 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
490 -static-libmpx -static-libmpxwrappers @gol
491 -shared -shared-libgcc -symbolic @gol
492 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
493 -u @var{symbol} -z @var{keyword}}
494
495 @item Directory Options
496 @xref{Directory Options,,Options for Directory Search}.
497 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
498 -iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
499 --sysroot=@var{dir} --no-sysroot-suffix}
500
501 @item Machine Dependent Options
502 @xref{Submodel Options,,Hardware Models and Configurations}.
503 @c This list is ordered alphanumerically by subsection name.
504 @c Try and put the significant identifier (CPU or system) first,
505 @c so users have a clue at guessing where the ones they want will be.
506
507 @emph{AArch64 Options}
508 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
509 -mgeneral-regs-only @gol
510 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
511 -mstrict-align @gol
512 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
513 -mtls-dialect=desc -mtls-dialect=traditional @gol
514 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
515 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
516 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
517
518 @emph{Adapteva Epiphany Options}
519 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
520 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
521 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
522 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
523 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
524 -msplit-vecmove-early -m1reg-@var{reg}}
525
526 @emph{ARC Options}
527 @gccoptlist{-mbarrel-shifter @gol
528 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
529 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
530 -mea -mno-mpy -mmul32x16 -mmul64 @gol
531 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
532 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
533 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
534 -mepilogue-cfi -mlong-calls -mmedium-calls -msdata @gol
535 -mucb-mcount -mvolatile-cache @gol
536 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
537 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
538 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
539 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
540 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
541 -mtune=@var{cpu} -mmultcost=@var{num} -munalign-prob-threshold=@var{probability}}
542
543 @emph{ARM Options}
544 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
545 -mabi=@var{name} @gol
546 -mapcs-stack-check -mno-apcs-stack-check @gol
547 -mapcs-float -mno-apcs-float @gol
548 -mapcs-reentrant -mno-apcs-reentrant @gol
549 -msched-prolog -mno-sched-prolog @gol
550 -mlittle-endian -mbig-endian @gol
551 -mfloat-abi=@var{name} @gol
552 -mfp16-format=@var{name}
553 -mthumb-interwork -mno-thumb-interwork @gol
554 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
555 -mtune=@var{name} -mprint-tune-info @gol
556 -mstructure-size-boundary=@var{n} @gol
557 -mabort-on-noreturn @gol
558 -mlong-calls -mno-long-calls @gol
559 -msingle-pic-base -mno-single-pic-base @gol
560 -mpic-register=@var{reg} @gol
561 -mnop-fun-dllimport @gol
562 -mpoke-function-name @gol
563 -mthumb -marm @gol
564 -mtpcs-frame -mtpcs-leaf-frame @gol
565 -mcaller-super-interworking -mcallee-super-interworking @gol
566 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
567 -mword-relocations @gol
568 -mfix-cortex-m3-ldrd @gol
569 -munaligned-access @gol
570 -mneon-for-64bits @gol
571 -mslow-flash-data @gol
572 -masm-syntax-unified @gol
573 -mrestrict-it}
574
575 @emph{AVR Options}
576 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
577 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
578 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
579
580 @emph{Blackfin Options}
581 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
582 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
583 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
584 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
585 -mno-id-shared-library -mshared-library-id=@var{n} @gol
586 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
587 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
588 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
589 -micplb}
590
591 @emph{C6X Options}
592 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
593 -msim -msdata=@var{sdata-type}}
594
595 @emph{CRIS Options}
596 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
597 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
598 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
599 -mstack-align -mdata-align -mconst-align @gol
600 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
601 -melf -maout -melinux -mlinux -sim -sim2 @gol
602 -mmul-bug-workaround -mno-mul-bug-workaround}
603
604 @emph{CR16 Options}
605 @gccoptlist{-mmac @gol
606 -mcr16cplus -mcr16c @gol
607 -msim -mint32 -mbit-ops
608 -mdata-model=@var{model}}
609
610 @emph{Darwin Options}
611 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
612 -arch_only -bind_at_load -bundle -bundle_loader @gol
613 -client_name -compatibility_version -current_version @gol
614 -dead_strip @gol
615 -dependency-file -dylib_file -dylinker_install_name @gol
616 -dynamic -dynamiclib -exported_symbols_list @gol
617 -filelist -flat_namespace -force_cpusubtype_ALL @gol
618 -force_flat_namespace -headerpad_max_install_names @gol
619 -iframework @gol
620 -image_base -init -install_name -keep_private_externs @gol
621 -multi_module -multiply_defined -multiply_defined_unused @gol
622 -noall_load -no_dead_strip_inits_and_terms @gol
623 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
624 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
625 -private_bundle -read_only_relocs -sectalign @gol
626 -sectobjectsymbols -whyload -seg1addr @gol
627 -sectcreate -sectobjectsymbols -sectorder @gol
628 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
629 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
630 -segprot -segs_read_only_addr -segs_read_write_addr @gol
631 -single_module -static -sub_library -sub_umbrella @gol
632 -twolevel_namespace -umbrella -undefined @gol
633 -unexported_symbols_list -weak_reference_mismatches @gol
634 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
635 -mkernel -mone-byte-bool}
636
637 @emph{DEC Alpha Options}
638 @gccoptlist{-mno-fp-regs -msoft-float @gol
639 -mieee -mieee-with-inexact -mieee-conformant @gol
640 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
641 -mtrap-precision=@var{mode} -mbuild-constants @gol
642 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
643 -mbwx -mmax -mfix -mcix @gol
644 -mfloat-vax -mfloat-ieee @gol
645 -mexplicit-relocs -msmall-data -mlarge-data @gol
646 -msmall-text -mlarge-text @gol
647 -mmemory-latency=@var{time}}
648
649 @emph{FR30 Options}
650 @gccoptlist{-msmall-model -mno-lsim}
651
652 @emph{FRV Options}
653 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
654 -mhard-float -msoft-float @gol
655 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
656 -mdouble -mno-double @gol
657 -mmedia -mno-media -mmuladd -mno-muladd @gol
658 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
659 -mlinked-fp -mlong-calls -malign-labels @gol
660 -mlibrary-pic -macc-4 -macc-8 @gol
661 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
662 -moptimize-membar -mno-optimize-membar @gol
663 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
664 -mvliw-branch -mno-vliw-branch @gol
665 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
666 -mno-nested-cond-exec -mtomcat-stats @gol
667 -mTLS -mtls @gol
668 -mcpu=@var{cpu}}
669
670 @emph{GNU/Linux Options}
671 @gccoptlist{-mglibc -muclibc -mbionic -mandroid @gol
672 -tno-android-cc -tno-android-ld}
673
674 @emph{H8/300 Options}
675 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
676
677 @emph{HPPA Options}
678 @gccoptlist{-march=@var{architecture-type} @gol
679 -mdisable-fpregs -mdisable-indexing @gol
680 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
681 -mfixed-range=@var{register-range} @gol
682 -mjump-in-delay -mlinker-opt -mlong-calls @gol
683 -mlong-load-store -mno-disable-fpregs @gol
684 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
685 -mno-jump-in-delay -mno-long-load-store @gol
686 -mno-portable-runtime -mno-soft-float @gol
687 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
688 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
689 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
690 -munix=@var{unix-std} -nolibdld -static -threads}
691
692 @emph{IA-64 Options}
693 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
694 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
695 -mconstant-gp -mauto-pic -mfused-madd @gol
696 -minline-float-divide-min-latency @gol
697 -minline-float-divide-max-throughput @gol
698 -mno-inline-float-divide @gol
699 -minline-int-divide-min-latency @gol
700 -minline-int-divide-max-throughput @gol
701 -mno-inline-int-divide @gol
702 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
703 -mno-inline-sqrt @gol
704 -mdwarf2-asm -mearly-stop-bits @gol
705 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
706 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
707 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
708 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
709 -msched-spec-ldc -msched-spec-control-ldc @gol
710 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
711 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
712 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
713 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
714
715 @emph{LM32 Options}
716 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
717 -msign-extend-enabled -muser-enabled}
718
719 @emph{M32R/D Options}
720 @gccoptlist{-m32r2 -m32rx -m32r @gol
721 -mdebug @gol
722 -malign-loops -mno-align-loops @gol
723 -missue-rate=@var{number} @gol
724 -mbranch-cost=@var{number} @gol
725 -mmodel=@var{code-size-model-type} @gol
726 -msdata=@var{sdata-type} @gol
727 -mno-flush-func -mflush-func=@var{name} @gol
728 -mno-flush-trap -mflush-trap=@var{number} @gol
729 -G @var{num}}
730
731 @emph{M32C Options}
732 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
733
734 @emph{M680x0 Options}
735 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
736 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
737 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
738 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
739 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
740 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
741 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
742 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
743 -mxgot -mno-xgot}
744
745 @emph{MCore Options}
746 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
747 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
748 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
749 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
750 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
751
752 @emph{MeP Options}
753 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
754 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
755 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
756 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
757 -mtiny=@var{n}}
758
759 @emph{MicroBlaze Options}
760 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
761 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
762 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
763 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
764 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
765
766 @emph{MIPS Options}
767 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
768 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
769 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
770 -mips16 -mno-mips16 -mflip-mips16 @gol
771 -minterlink-compressed -mno-interlink-compressed @gol
772 -minterlink-mips16 -mno-interlink-mips16 @gol
773 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
774 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
775 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
776 -mno-float -msingle-float -mdouble-float @gol
777 -modd-spreg -mno-odd-spreg @gol
778 -mabs=@var{mode} -mnan=@var{encoding} @gol
779 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
780 -mmcu -mmno-mcu @gol
781 -meva -mno-eva @gol
782 -mvirt -mno-virt @gol
783 -mxpa -mno-xpa @gol
784 -mmicromips -mno-micromips @gol
785 -mfpu=@var{fpu-type} @gol
786 -msmartmips -mno-smartmips @gol
787 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
788 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
789 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
790 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
791 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
792 -membedded-data -mno-embedded-data @gol
793 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
794 -mcode-readable=@var{setting} @gol
795 -msplit-addresses -mno-split-addresses @gol
796 -mexplicit-relocs -mno-explicit-relocs @gol
797 -mcheck-zero-division -mno-check-zero-division @gol
798 -mdivide-traps -mdivide-breaks @gol
799 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
800 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
801 -mfix-24k -mno-fix-24k @gol
802 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
803 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
804 -mfix-vr4120 -mno-fix-vr4120 @gol
805 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
806 -mflush-func=@var{func} -mno-flush-func @gol
807 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
808 -mfp-exceptions -mno-fp-exceptions @gol
809 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
810 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address}
811
812 @emph{MMIX Options}
813 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
814 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
815 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
816 -mno-base-addresses -msingle-exit -mno-single-exit}
817
818 @emph{MN10300 Options}
819 @gccoptlist{-mmult-bug -mno-mult-bug @gol
820 -mno-am33 -mam33 -mam33-2 -mam34 @gol
821 -mtune=@var{cpu-type} @gol
822 -mreturn-pointer-on-d0 @gol
823 -mno-crt0 -mrelax -mliw -msetlb}
824
825 @emph{Moxie Options}
826 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
827
828 @emph{MSP430 Options}
829 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
830 -mcode-region= -mdata-region= @gol
831 -mhwmult= -minrt}
832
833 @emph{NDS32 Options}
834 @gccoptlist{-mbig-endian -mlittle-endian @gol
835 -mreduced-regs -mfull-regs @gol
836 -mcmov -mno-cmov @gol
837 -mperf-ext -mno-perf-ext @gol
838 -mv3push -mno-v3push @gol
839 -m16bit -mno-16bit @gol
840 -misr-vector-size=@var{num} @gol
841 -mcache-block-size=@var{num} @gol
842 -march=@var{arch} @gol
843 -mcmodel=@var{code-model} @gol
844 -mctor-dtor -mrelax}
845
846 @emph{Nios II Options}
847 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
848 -mel -meb @gol
849 -mno-bypass-cache -mbypass-cache @gol
850 -mno-cache-volatile -mcache-volatile @gol
851 -mno-fast-sw-div -mfast-sw-div @gol
852 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
853 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
854 -mcustom-fpu-cfg=@var{name} @gol
855 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name}}
856
857 @emph{Nvidia PTX Options}
858 @gccoptlist{-m32 -m64 -mmainkernel}
859
860 @emph{PDP-11 Options}
861 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
862 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
863 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
864 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
865 -mbranch-expensive -mbranch-cheap @gol
866 -munix-asm -mdec-asm}
867
868 @emph{picoChip Options}
869 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
870 -msymbol-as-address -mno-inefficient-warnings}
871
872 @emph{PowerPC Options}
873 See RS/6000 and PowerPC Options.
874
875 @emph{RL78 Options}
876 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
877 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
878 -m64bit-doubles -m32bit-doubles}
879
880 @emph{RS/6000 and PowerPC Options}
881 @gccoptlist{-mcpu=@var{cpu-type} @gol
882 -mtune=@var{cpu-type} @gol
883 -mcmodel=@var{code-model} @gol
884 -mpowerpc64 @gol
885 -maltivec -mno-altivec @gol
886 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
887 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
888 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
889 -mfprnd -mno-fprnd @gol
890 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
891 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
892 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
893 -malign-power -malign-natural @gol
894 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
895 -msingle-float -mdouble-float -msimple-fpu @gol
896 -mstring -mno-string -mupdate -mno-update @gol
897 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
898 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
899 -mstrict-align -mno-strict-align -mrelocatable @gol
900 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
901 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
902 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
903 -mprioritize-restricted-insns=@var{priority} @gol
904 -msched-costly-dep=@var{dependence_type} @gol
905 -minsert-sched-nops=@var{scheme} @gol
906 -mcall-sysv -mcall-netbsd @gol
907 -maix-struct-return -msvr4-struct-return @gol
908 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
909 -mblock-move-inline-limit=@var{num} @gol
910 -misel -mno-isel @gol
911 -misel=yes -misel=no @gol
912 -mspe -mno-spe @gol
913 -mspe=yes -mspe=no @gol
914 -mpaired @gol
915 -mgen-cell-microcode -mwarn-cell-microcode @gol
916 -mvrsave -mno-vrsave @gol
917 -mmulhw -mno-mulhw @gol
918 -mdlmzb -mno-dlmzb @gol
919 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
920 -mprototype -mno-prototype @gol
921 -msim -mmvme -mads -myellowknife -memb -msdata @gol
922 -msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
923 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
924 -mno-recip-precision @gol
925 -mveclibabi=@var{type} -mfriz -mno-friz @gol
926 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
927 -msave-toc-indirect -mno-save-toc-indirect @gol
928 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
929 -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
930 -mquad-memory -mno-quad-memory @gol
931 -mquad-memory-atomic -mno-quad-memory-atomic @gol
932 -mcompat-align-parm -mno-compat-align-parm @gol
933 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
934 -mupper-regs -mno-upper-regs}
935
936 @emph{RX Options}
937 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
938 -mcpu=@gol
939 -mbig-endian-data -mlittle-endian-data @gol
940 -msmall-data @gol
941 -msim -mno-sim@gol
942 -mas100-syntax -mno-as100-syntax@gol
943 -mrelax@gol
944 -mmax-constant-size=@gol
945 -mint-register=@gol
946 -mpid@gol
947 -mallow-string-insns -mno-allow-string-insns@gol
948 -mno-warn-multiple-fast-interrupts@gol
949 -msave-acc-in-interrupts}
950
951 @emph{S/390 and zSeries Options}
952 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
953 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
954 -mlong-double-64 -mlong-double-128 @gol
955 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
956 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
957 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
958 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
959 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
960 -mhotpatch=@var{halfwords},@var{halfwords}}
961
962 @emph{Score Options}
963 @gccoptlist{-meb -mel @gol
964 -mnhwloop @gol
965 -muls @gol
966 -mmac @gol
967 -mscore5 -mscore5u -mscore7 -mscore7d}
968
969 @emph{SH Options}
970 @gccoptlist{-m1 -m2 -m2e @gol
971 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
972 -m3 -m3e @gol
973 -m4-nofpu -m4-single-only -m4-single -m4 @gol
974 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
975 -m5-64media -m5-64media-nofpu @gol
976 -m5-32media -m5-32media-nofpu @gol
977 -m5-compact -m5-compact-nofpu @gol
978 -mb -ml -mdalign -mrelax @gol
979 -mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
980 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
981 -mspace -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
982 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
983 -mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
984 -maccumulate-outgoing-args -minvalid-symbols @gol
985 -matomic-model=@var{atomic-model} @gol
986 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
987 -mcbranch-force-delay-slot @gol
988 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
989 -mpretend-cmove -mtas}
990
991 @emph{Solaris 2 Options}
992 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
993 -pthreads -pthread}
994
995 @emph{SPARC Options}
996 @gccoptlist{-mcpu=@var{cpu-type} @gol
997 -mtune=@var{cpu-type} @gol
998 -mcmodel=@var{code-model} @gol
999 -mmemory-model=@var{mem-model} @gol
1000 -m32 -m64 -mapp-regs -mno-app-regs @gol
1001 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1002 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1003 -mhard-quad-float -msoft-quad-float @gol
1004 -mstack-bias -mno-stack-bias @gol
1005 -munaligned-doubles -mno-unaligned-doubles @gol
1006 -muser-mode -mno-user-mode @gol
1007 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1008 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1009 -mcbcond -mno-cbcond @gol
1010 -mfmaf -mno-fmaf -mpopc -mno-popc @gol
1011 -mfix-at697f -mfix-ut699}
1012
1013 @emph{SPU Options}
1014 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1015 -msafe-dma -munsafe-dma @gol
1016 -mbranch-hints @gol
1017 -msmall-mem -mlarge-mem -mstdmain @gol
1018 -mfixed-range=@var{register-range} @gol
1019 -mea32 -mea64 @gol
1020 -maddress-space-conversion -mno-address-space-conversion @gol
1021 -mcache-size=@var{cache-size} @gol
1022 -matomic-updates -mno-atomic-updates}
1023
1024 @emph{System V Options}
1025 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1026
1027 @emph{TILE-Gx Options}
1028 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1029 -mcmodel=@var{code-model}}
1030
1031 @emph{TILEPro Options}
1032 @gccoptlist{-mcpu=@var{cpu} -m32}
1033
1034 @emph{V850 Options}
1035 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1036 -mprolog-function -mno-prolog-function -mspace @gol
1037 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1038 -mapp-regs -mno-app-regs @gol
1039 -mdisable-callt -mno-disable-callt @gol
1040 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1041 -mv850e -mv850 -mv850e3v5 @gol
1042 -mloop @gol
1043 -mrelax @gol
1044 -mlong-jumps @gol
1045 -msoft-float @gol
1046 -mhard-float @gol
1047 -mgcc-abi @gol
1048 -mrh850-abi @gol
1049 -mbig-switch}
1050
1051 @emph{VAX Options}
1052 @gccoptlist{-mg -mgnu -munix}
1053
1054 @emph{Visium Options}
1055 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1056 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1057
1058 @emph{VMS Options}
1059 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1060 -mpointer-size=@var{size}}
1061
1062 @emph{VxWorks Options}
1063 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1064 -Xbind-lazy -Xbind-now}
1065
1066 @emph{x86 Options}
1067 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1068 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1069 -mfpmath=@var{unit} @gol
1070 -masm=@var{dialect} -mno-fancy-math-387 @gol
1071 -mno-fp-ret-in-387 -msoft-float @gol
1072 -mno-wide-multiply -mrtd -malign-double @gol
1073 -mpreferred-stack-boundary=@var{num} @gol
1074 -mincoming-stack-boundary=@var{num} @gol
1075 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1076 -mrecip -mrecip=@var{opt} @gol
1077 -mvzeroupper -mprefer-avx128 @gol
1078 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1079 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha @gol
1080 -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1 @gol
1081 -mclflushopt -mxsavec -mxsaves @gol
1082 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1083 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mthreads @gol
1084 -mno-align-stringops -minline-all-stringops @gol
1085 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1086 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1087 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1088 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1089 -mregparm=@var{num} -msseregparm @gol
1090 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1091 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1092 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1093 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1094 -m32 -m64 -mx32 -m16 -mlarge-data-threshold=@var{num} @gol
1095 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1096 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1097 -malign-data=@var{type} -mstack-protector-guard=@var{guard}}
1098
1099 @emph{x86 Windows Options}
1100 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1101 -mnop-fun-dllimport -mthread @gol
1102 -municode -mwin32 -mwindows -fno-set-stack-executable}
1103
1104 @emph{Xstormy16 Options}
1105 @gccoptlist{-msim}
1106
1107 @emph{Xtensa Options}
1108 @gccoptlist{-mconst16 -mno-const16 @gol
1109 -mfused-madd -mno-fused-madd @gol
1110 -mforce-no-pic @gol
1111 -mserialize-volatile -mno-serialize-volatile @gol
1112 -mtext-section-literals -mno-text-section-literals @gol
1113 -mtarget-align -mno-target-align @gol
1114 -mlongcalls -mno-longcalls}
1115
1116 @emph{zSeries Options}
1117 See S/390 and zSeries Options.
1118
1119 @item Code Generation Options
1120 @xref{Code Gen Options,,Options for Code Generation Conventions}.
1121 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
1122 -ffixed-@var{reg} -fexceptions @gol
1123 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
1124 -fasynchronous-unwind-tables @gol
1125 -fno-gnu-unique @gol
1126 -finhibit-size-directive -finstrument-functions @gol
1127 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1128 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1129 -fno-common -fno-ident @gol
1130 -fpcc-struct-return -fpic -fPIC -fpie -fPIE @gol
1131 -fno-jump-tables @gol
1132 -frecord-gcc-switches @gol
1133 -freg-struct-return -fshort-enums @gol
1134 -fshort-double -fshort-wchar @gol
1135 -fverbose-asm -fpack-struct[=@var{n}] -fstack-check @gol
1136 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
1137 -fno-stack-limit -fsplit-stack @gol
1138 -fleading-underscore -ftls-model=@var{model} @gol
1139 -fstack-reuse=@var{reuse_level} @gol
1140 -ftrapv -fwrapv -fbounds-check @gol
1141 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1142 -fstrict-volatile-bitfields -fsync-libcalls}
1143 @end table
1144
1145
1146 @node Overall Options
1147 @section Options Controlling the Kind of Output
1148
1149 Compilation can involve up to four stages: preprocessing, compilation
1150 proper, assembly and linking, always in that order. GCC is capable of
1151 preprocessing and compiling several files either into several
1152 assembler input files, or into one assembler input file; then each
1153 assembler input file produces an object file, and linking combines all
1154 the object files (those newly compiled, and those specified as input)
1155 into an executable file.
1156
1157 @cindex file name suffix
1158 For any given input file, the file name suffix determines what kind of
1159 compilation is done:
1160
1161 @table @gcctabopt
1162 @item @var{file}.c
1163 C source code that must be preprocessed.
1164
1165 @item @var{file}.i
1166 C source code that should not be preprocessed.
1167
1168 @item @var{file}.ii
1169 C++ source code that should not be preprocessed.
1170
1171 @item @var{file}.m
1172 Objective-C source code. Note that you must link with the @file{libobjc}
1173 library to make an Objective-C program work.
1174
1175 @item @var{file}.mi
1176 Objective-C source code that should not be preprocessed.
1177
1178 @item @var{file}.mm
1179 @itemx @var{file}.M
1180 Objective-C++ source code. Note that you must link with the @file{libobjc}
1181 library to make an Objective-C++ program work. Note that @samp{.M} refers
1182 to a literal capital M@.
1183
1184 @item @var{file}.mii
1185 Objective-C++ source code that should not be preprocessed.
1186
1187 @item @var{file}.h
1188 C, C++, Objective-C or Objective-C++ header file to be turned into a
1189 precompiled header (default), or C, C++ header file to be turned into an
1190 Ada spec (via the @option{-fdump-ada-spec} switch).
1191
1192 @item @var{file}.cc
1193 @itemx @var{file}.cp
1194 @itemx @var{file}.cxx
1195 @itemx @var{file}.cpp
1196 @itemx @var{file}.CPP
1197 @itemx @var{file}.c++
1198 @itemx @var{file}.C
1199 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1200 the last two letters must both be literally @samp{x}. Likewise,
1201 @samp{.C} refers to a literal capital C@.
1202
1203 @item @var{file}.mm
1204 @itemx @var{file}.M
1205 Objective-C++ source code that must be preprocessed.
1206
1207 @item @var{file}.mii
1208 Objective-C++ source code that should not be preprocessed.
1209
1210 @item @var{file}.hh
1211 @itemx @var{file}.H
1212 @itemx @var{file}.hp
1213 @itemx @var{file}.hxx
1214 @itemx @var{file}.hpp
1215 @itemx @var{file}.HPP
1216 @itemx @var{file}.h++
1217 @itemx @var{file}.tcc
1218 C++ header file to be turned into a precompiled header or Ada spec.
1219
1220 @item @var{file}.f
1221 @itemx @var{file}.for
1222 @itemx @var{file}.ftn
1223 Fixed form Fortran source code that should not be preprocessed.
1224
1225 @item @var{file}.F
1226 @itemx @var{file}.FOR
1227 @itemx @var{file}.fpp
1228 @itemx @var{file}.FPP
1229 @itemx @var{file}.FTN
1230 Fixed form Fortran source code that must be preprocessed (with the traditional
1231 preprocessor).
1232
1233 @item @var{file}.f90
1234 @itemx @var{file}.f95
1235 @itemx @var{file}.f03
1236 @itemx @var{file}.f08
1237 Free form Fortran source code that should not be preprocessed.
1238
1239 @item @var{file}.F90
1240 @itemx @var{file}.F95
1241 @itemx @var{file}.F03
1242 @itemx @var{file}.F08
1243 Free form Fortran source code that must be preprocessed (with the
1244 traditional preprocessor).
1245
1246 @item @var{file}.go
1247 Go source code.
1248
1249 @c FIXME: Descriptions of Java file types.
1250 @c @var{file}.java
1251 @c @var{file}.class
1252 @c @var{file}.zip
1253 @c @var{file}.jar
1254
1255 @item @var{file}.ads
1256 Ada source code file that contains a library unit declaration (a
1257 declaration of a package, subprogram, or generic, or a generic
1258 instantiation), or a library unit renaming declaration (a package,
1259 generic, or subprogram renaming declaration). Such files are also
1260 called @dfn{specs}.
1261
1262 @item @var{file}.adb
1263 Ada source code file containing a library unit body (a subprogram or
1264 package body). Such files are also called @dfn{bodies}.
1265
1266 @c GCC also knows about some suffixes for languages not yet included:
1267 @c Pascal:
1268 @c @var{file}.p
1269 @c @var{file}.pas
1270 @c Ratfor:
1271 @c @var{file}.r
1272
1273 @item @var{file}.s
1274 Assembler code.
1275
1276 @item @var{file}.S
1277 @itemx @var{file}.sx
1278 Assembler code that must be preprocessed.
1279
1280 @item @var{other}
1281 An object file to be fed straight into linking.
1282 Any file name with no recognized suffix is treated this way.
1283 @end table
1284
1285 @opindex x
1286 You can specify the input language explicitly with the @option{-x} option:
1287
1288 @table @gcctabopt
1289 @item -x @var{language}
1290 Specify explicitly the @var{language} for the following input files
1291 (rather than letting the compiler choose a default based on the file
1292 name suffix). This option applies to all following input files until
1293 the next @option{-x} option. Possible values for @var{language} are:
1294 @smallexample
1295 c c-header cpp-output
1296 c++ c++-header c++-cpp-output
1297 objective-c objective-c-header objective-c-cpp-output
1298 objective-c++ objective-c++-header objective-c++-cpp-output
1299 assembler assembler-with-cpp
1300 ada
1301 f77 f77-cpp-input f95 f95-cpp-input
1302 go
1303 java
1304 @end smallexample
1305
1306 @item -x none
1307 Turn off any specification of a language, so that subsequent files are
1308 handled according to their file name suffixes (as they are if @option{-x}
1309 has not been used at all).
1310
1311 @item -pass-exit-codes
1312 @opindex pass-exit-codes
1313 Normally the @command{gcc} program exits with the code of 1 if any
1314 phase of the compiler returns a non-success return code. If you specify
1315 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1316 the numerically highest error produced by any phase returning an error
1317 indication. The C, C++, and Fortran front ends return 4 if an internal
1318 compiler error is encountered.
1319 @end table
1320
1321 If you only want some of the stages of compilation, you can use
1322 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1323 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1324 @command{gcc} is to stop. Note that some combinations (for example,
1325 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1326
1327 @table @gcctabopt
1328 @item -c
1329 @opindex c
1330 Compile or assemble the source files, but do not link. The linking
1331 stage simply is not done. The ultimate output is in the form of an
1332 object file for each source file.
1333
1334 By default, the object file name for a source file is made by replacing
1335 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1336
1337 Unrecognized input files, not requiring compilation or assembly, are
1338 ignored.
1339
1340 @item -S
1341 @opindex S
1342 Stop after the stage of compilation proper; do not assemble. The output
1343 is in the form of an assembler code file for each non-assembler input
1344 file specified.
1345
1346 By default, the assembler file name for a source file is made by
1347 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1348
1349 Input files that don't require compilation are ignored.
1350
1351 @item -E
1352 @opindex E
1353 Stop after the preprocessing stage; do not run the compiler proper. The
1354 output is in the form of preprocessed source code, which is sent to the
1355 standard output.
1356
1357 Input files that don't require preprocessing are ignored.
1358
1359 @cindex output file option
1360 @item -o @var{file}
1361 @opindex o
1362 Place output in file @var{file}. This applies to whatever
1363 sort of output is being produced, whether it be an executable file,
1364 an object file, an assembler file or preprocessed C code.
1365
1366 If @option{-o} is not specified, the default is to put an executable
1367 file in @file{a.out}, the object file for
1368 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1369 assembler file in @file{@var{source}.s}, a precompiled header file in
1370 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1371 standard output.
1372
1373 @item -v
1374 @opindex v
1375 Print (on standard error output) the commands executed to run the stages
1376 of compilation. Also print the version number of the compiler driver
1377 program and of the preprocessor and the compiler proper.
1378
1379 @item -###
1380 @opindex ###
1381 Like @option{-v} except the commands are not executed and arguments
1382 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1383 This is useful for shell scripts to capture the driver-generated command lines.
1384
1385 @item -pipe
1386 @opindex pipe
1387 Use pipes rather than temporary files for communication between the
1388 various stages of compilation. This fails to work on some systems where
1389 the assembler is unable to read from a pipe; but the GNU assembler has
1390 no trouble.
1391
1392 @item --help
1393 @opindex help
1394 Print (on the standard output) a description of the command-line options
1395 understood by @command{gcc}. If the @option{-v} option is also specified
1396 then @option{--help} is also passed on to the various processes
1397 invoked by @command{gcc}, so that they can display the command-line options
1398 they accept. If the @option{-Wextra} option has also been specified
1399 (prior to the @option{--help} option), then command-line options that
1400 have no documentation associated with them are also displayed.
1401
1402 @item --target-help
1403 @opindex target-help
1404 Print (on the standard output) a description of target-specific command-line
1405 options for each tool. For some targets extra target-specific
1406 information may also be printed.
1407
1408 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1409 Print (on the standard output) a description of the command-line
1410 options understood by the compiler that fit into all specified classes
1411 and qualifiers. These are the supported classes:
1412
1413 @table @asis
1414 @item @samp{optimizers}
1415 Display all of the optimization options supported by the
1416 compiler.
1417
1418 @item @samp{warnings}
1419 Display all of the options controlling warning messages
1420 produced by the compiler.
1421
1422 @item @samp{target}
1423 Display target-specific options. Unlike the
1424 @option{--target-help} option however, target-specific options of the
1425 linker and assembler are not displayed. This is because those
1426 tools do not currently support the extended @option{--help=} syntax.
1427
1428 @item @samp{params}
1429 Display the values recognized by the @option{--param}
1430 option.
1431
1432 @item @var{language}
1433 Display the options supported for @var{language}, where
1434 @var{language} is the name of one of the languages supported in this
1435 version of GCC@.
1436
1437 @item @samp{common}
1438 Display the options that are common to all languages.
1439 @end table
1440
1441 These are the supported qualifiers:
1442
1443 @table @asis
1444 @item @samp{undocumented}
1445 Display only those options that are undocumented.
1446
1447 @item @samp{joined}
1448 Display options taking an argument that appears after an equal
1449 sign in the same continuous piece of text, such as:
1450 @samp{--help=target}.
1451
1452 @item @samp{separate}
1453 Display options taking an argument that appears as a separate word
1454 following the original option, such as: @samp{-o output-file}.
1455 @end table
1456
1457 Thus for example to display all the undocumented target-specific
1458 switches supported by the compiler, use:
1459
1460 @smallexample
1461 --help=target,undocumented
1462 @end smallexample
1463
1464 The sense of a qualifier can be inverted by prefixing it with the
1465 @samp{^} character, so for example to display all binary warning
1466 options (i.e., ones that are either on or off and that do not take an
1467 argument) that have a description, use:
1468
1469 @smallexample
1470 --help=warnings,^joined,^undocumented
1471 @end smallexample
1472
1473 The argument to @option{--help=} should not consist solely of inverted
1474 qualifiers.
1475
1476 Combining several classes is possible, although this usually
1477 restricts the output so much that there is nothing to display. One
1478 case where it does work, however, is when one of the classes is
1479 @var{target}. For example, to display all the target-specific
1480 optimization options, use:
1481
1482 @smallexample
1483 --help=target,optimizers
1484 @end smallexample
1485
1486 The @option{--help=} option can be repeated on the command line. Each
1487 successive use displays its requested class of options, skipping
1488 those that have already been displayed.
1489
1490 If the @option{-Q} option appears on the command line before the
1491 @option{--help=} option, then the descriptive text displayed by
1492 @option{--help=} is changed. Instead of describing the displayed
1493 options, an indication is given as to whether the option is enabled,
1494 disabled or set to a specific value (assuming that the compiler
1495 knows this at the point where the @option{--help=} option is used).
1496
1497 Here is a truncated example from the ARM port of @command{gcc}:
1498
1499 @smallexample
1500 % gcc -Q -mabi=2 --help=target -c
1501 The following options are target specific:
1502 -mabi= 2
1503 -mabort-on-noreturn [disabled]
1504 -mapcs [disabled]
1505 @end smallexample
1506
1507 The output is sensitive to the effects of previous command-line
1508 options, so for example it is possible to find out which optimizations
1509 are enabled at @option{-O2} by using:
1510
1511 @smallexample
1512 -Q -O2 --help=optimizers
1513 @end smallexample
1514
1515 Alternatively you can discover which binary optimizations are enabled
1516 by @option{-O3} by using:
1517
1518 @smallexample
1519 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1520 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1521 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1522 @end smallexample
1523
1524 @item -no-canonical-prefixes
1525 @opindex no-canonical-prefixes
1526 Do not expand any symbolic links, resolve references to @samp{/../}
1527 or @samp{/./}, or make the path absolute when generating a relative
1528 prefix.
1529
1530 @item --version
1531 @opindex version
1532 Display the version number and copyrights of the invoked GCC@.
1533
1534 @item -wrapper
1535 @opindex wrapper
1536 Invoke all subcommands under a wrapper program. The name of the
1537 wrapper program and its parameters are passed as a comma separated
1538 list.
1539
1540 @smallexample
1541 gcc -c t.c -wrapper gdb,--args
1542 @end smallexample
1543
1544 @noindent
1545 This invokes all subprograms of @command{gcc} under
1546 @samp{gdb --args}, thus the invocation of @command{cc1} is
1547 @samp{gdb --args cc1 @dots{}}.
1548
1549 @item -fplugin=@var{name}.so
1550 @opindex fplugin
1551 Load the plugin code in file @var{name}.so, assumed to be a
1552 shared object to be dlopen'd by the compiler. The base name of
1553 the shared object file is used to identify the plugin for the
1554 purposes of argument parsing (See
1555 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1556 Each plugin should define the callback functions specified in the
1557 Plugins API.
1558
1559 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1560 @opindex fplugin-arg
1561 Define an argument called @var{key} with a value of @var{value}
1562 for the plugin called @var{name}.
1563
1564 @item -fdump-ada-spec@r{[}-slim@r{]}
1565 @opindex fdump-ada-spec
1566 For C and C++ source and include files, generate corresponding Ada specs.
1567 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1568 GNAT User's Guide}, which provides detailed documentation on this feature.
1569
1570 @item -fada-spec-parent=@var{unit}
1571 @opindex fada-spec-parent
1572 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1573 Ada specs as child units of parent @var{unit}.
1574
1575 @item -fdump-go-spec=@var{file}
1576 @opindex fdump-go-spec
1577 For input files in any language, generate corresponding Go
1578 declarations in @var{file}. This generates Go @code{const},
1579 @code{type}, @code{var}, and @code{func} declarations which may be a
1580 useful way to start writing a Go interface to code written in some
1581 other language.
1582
1583 @include @value{srcdir}/../libiberty/at-file.texi
1584 @end table
1585
1586 @node Invoking G++
1587 @section Compiling C++ Programs
1588
1589 @cindex suffixes for C++ source
1590 @cindex C++ source file suffixes
1591 C++ source files conventionally use one of the suffixes @samp{.C},
1592 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1593 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1594 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1595 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1596 files with these names and compiles them as C++ programs even if you
1597 call the compiler the same way as for compiling C programs (usually
1598 with the name @command{gcc}).
1599
1600 @findex g++
1601 @findex c++
1602 However, the use of @command{gcc} does not add the C++ library.
1603 @command{g++} is a program that calls GCC and automatically specifies linking
1604 against the C++ library. It treats @samp{.c},
1605 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1606 files unless @option{-x} is used. This program is also useful when
1607 precompiling a C header file with a @samp{.h} extension for use in C++
1608 compilations. On many systems, @command{g++} is also installed with
1609 the name @command{c++}.
1610
1611 @cindex invoking @command{g++}
1612 When you compile C++ programs, you may specify many of the same
1613 command-line options that you use for compiling programs in any
1614 language; or command-line options meaningful for C and related
1615 languages; or options that are meaningful only for C++ programs.
1616 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1617 explanations of options for languages related to C@.
1618 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1619 explanations of options that are meaningful only for C++ programs.
1620
1621 @node C Dialect Options
1622 @section Options Controlling C Dialect
1623 @cindex dialect options
1624 @cindex language dialect options
1625 @cindex options, dialect
1626
1627 The following options control the dialect of C (or languages derived
1628 from C, such as C++, Objective-C and Objective-C++) that the compiler
1629 accepts:
1630
1631 @table @gcctabopt
1632 @cindex ANSI support
1633 @cindex ISO support
1634 @item -ansi
1635 @opindex ansi
1636 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1637 equivalent to @option{-std=c++98}.
1638
1639 This turns off certain features of GCC that are incompatible with ISO
1640 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1641 such as the @code{asm} and @code{typeof} keywords, and
1642 predefined macros such as @code{unix} and @code{vax} that identify the
1643 type of system you are using. It also enables the undesirable and
1644 rarely used ISO trigraph feature. For the C compiler,
1645 it disables recognition of C++ style @samp{//} comments as well as
1646 the @code{inline} keyword.
1647
1648 The alternate keywords @code{__asm__}, @code{__extension__},
1649 @code{__inline__} and @code{__typeof__} continue to work despite
1650 @option{-ansi}. You would not want to use them in an ISO C program, of
1651 course, but it is useful to put them in header files that might be included
1652 in compilations done with @option{-ansi}. Alternate predefined macros
1653 such as @code{__unix__} and @code{__vax__} are also available, with or
1654 without @option{-ansi}.
1655
1656 The @option{-ansi} option does not cause non-ISO programs to be
1657 rejected gratuitously. For that, @option{-Wpedantic} is required in
1658 addition to @option{-ansi}. @xref{Warning Options}.
1659
1660 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1661 option is used. Some header files may notice this macro and refrain
1662 from declaring certain functions or defining certain macros that the
1663 ISO standard doesn't call for; this is to avoid interfering with any
1664 programs that might use these names for other things.
1665
1666 Functions that are normally built in but do not have semantics
1667 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1668 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1669 built-in functions provided by GCC}, for details of the functions
1670 affected.
1671
1672 @item -std=
1673 @opindex std
1674 Determine the language standard. @xref{Standards,,Language Standards
1675 Supported by GCC}, for details of these standard versions. This option
1676 is currently only supported when compiling C or C++.
1677
1678 The compiler can accept several base standards, such as @samp{c90} or
1679 @samp{c++98}, and GNU dialects of those standards, such as
1680 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1681 compiler accepts all programs following that standard plus those
1682 using GNU extensions that do not contradict it. For example,
1683 @option{-std=c90} turns off certain features of GCC that are
1684 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1685 keywords, but not other GNU extensions that do not have a meaning in
1686 ISO C90, such as omitting the middle term of a @code{?:}
1687 expression. On the other hand, when a GNU dialect of a standard is
1688 specified, all features supported by the compiler are enabled, even when
1689 those features change the meaning of the base standard. As a result, some
1690 strict-conforming programs may be rejected. The particular standard
1691 is used by @option{-Wpedantic} to identify which features are GNU
1692 extensions given that version of the standard. For example
1693 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1694 comments, while @option{-std=gnu99 -Wpedantic} does not.
1695
1696 A value for this option must be provided; possible values are
1697
1698 @table @samp
1699 @item c90
1700 @itemx c89
1701 @itemx iso9899:1990
1702 Support all ISO C90 programs (certain GNU extensions that conflict
1703 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1704
1705 @item iso9899:199409
1706 ISO C90 as modified in amendment 1.
1707
1708 @item c99
1709 @itemx c9x
1710 @itemx iso9899:1999
1711 @itemx iso9899:199x
1712 ISO C99. This standard is substantially completely supported, modulo
1713 bugs and floating-point issues
1714 (mainly but not entirely relating to optional C99 features from
1715 Annexes F and G). See
1716 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1717 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1718
1719 @item c11
1720 @itemx c1x
1721 @itemx iso9899:2011
1722 ISO C11, the 2011 revision of the ISO C standard. This standard is
1723 substantially completely supported, modulo bugs, floating-point issues
1724 (mainly but not entirely relating to optional C11 features from
1725 Annexes F and G) and the optional Annexes K (Bounds-checking
1726 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1727
1728 @item gnu90
1729 @itemx gnu89
1730 GNU dialect of ISO C90 (including some C99 features).
1731
1732 @item gnu99
1733 @itemx gnu9x
1734 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1735
1736 @item gnu11
1737 @itemx gnu1x
1738 GNU dialect of ISO C11. This is the default for C code.
1739 The name @samp{gnu1x} is deprecated.
1740
1741 @item c++98
1742 @itemx c++03
1743 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1744 additional defect reports. Same as @option{-ansi} for C++ code.
1745
1746 @item gnu++98
1747 @itemx gnu++03
1748 GNU dialect of @option{-std=c++98}. This is the default for
1749 C++ code.
1750
1751 @item c++11
1752 @itemx c++0x
1753 The 2011 ISO C++ standard plus amendments.
1754 The name @samp{c++0x} is deprecated.
1755
1756 @item gnu++11
1757 @itemx gnu++0x
1758 GNU dialect of @option{-std=c++11}.
1759 The name @samp{gnu++0x} is deprecated.
1760
1761 @item c++14
1762 @itemx c++1y
1763 The 2014 ISO C++ standard plus amendments.
1764 The name @samp{c++1y} is deprecated.
1765
1766 @item gnu++14
1767 @itemx gnu++1y
1768 GNU dialect of @option{-std=c++14}.
1769 The name @samp{gnu++1y} is deprecated.
1770
1771 @item c++1z
1772 The next revision of the ISO C++ standard, tentatively planned for
1773 2017. Support is highly experimental, and will almost certainly
1774 change in incompatible ways in future releases.
1775
1776 @item gnu++1z
1777 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1778 and will almost certainly change in incompatible ways in future
1779 releases.
1780 @end table
1781
1782 @item -fgnu89-inline
1783 @opindex fgnu89-inline
1784 The option @option{-fgnu89-inline} tells GCC to use the traditional
1785 GNU semantics for @code{inline} functions when in C99 mode.
1786 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1787 Using this option is roughly equivalent to adding the
1788 @code{gnu_inline} function attribute to all inline functions
1789 (@pxref{Function Attributes}).
1790
1791 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1792 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1793 specifies the default behavior).
1794 This option is not supported in @option{-std=c90} or
1795 @option{-std=gnu90} mode.
1796
1797 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1798 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1799 in effect for @code{inline} functions. @xref{Common Predefined
1800 Macros,,,cpp,The C Preprocessor}.
1801
1802 @item -aux-info @var{filename}
1803 @opindex aux-info
1804 Output to the given filename prototyped declarations for all functions
1805 declared and/or defined in a translation unit, including those in header
1806 files. This option is silently ignored in any language other than C@.
1807
1808 Besides declarations, the file indicates, in comments, the origin of
1809 each declaration (source file and line), whether the declaration was
1810 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1811 @samp{O} for old, respectively, in the first character after the line
1812 number and the colon), and whether it came from a declaration or a
1813 definition (@samp{C} or @samp{F}, respectively, in the following
1814 character). In the case of function definitions, a K&R-style list of
1815 arguments followed by their declarations is also provided, inside
1816 comments, after the declaration.
1817
1818 @item -fallow-parameterless-variadic-functions
1819 @opindex fallow-parameterless-variadic-functions
1820 Accept variadic functions without named parameters.
1821
1822 Although it is possible to define such a function, this is not very
1823 useful as it is not possible to read the arguments. This is only
1824 supported for C as this construct is allowed by C++.
1825
1826 @item -fno-asm
1827 @opindex fno-asm
1828 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1829 keyword, so that code can use these words as identifiers. You can use
1830 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1831 instead. @option{-ansi} implies @option{-fno-asm}.
1832
1833 In C++, this switch only affects the @code{typeof} keyword, since
1834 @code{asm} and @code{inline} are standard keywords. You may want to
1835 use the @option{-fno-gnu-keywords} flag instead, which has the same
1836 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1837 switch only affects the @code{asm} and @code{typeof} keywords, since
1838 @code{inline} is a standard keyword in ISO C99.
1839
1840 @item -fno-builtin
1841 @itemx -fno-builtin-@var{function}
1842 @opindex fno-builtin
1843 @cindex built-in functions
1844 Don't recognize built-in functions that do not begin with
1845 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1846 functions provided by GCC}, for details of the functions affected,
1847 including those which are not built-in functions when @option{-ansi} or
1848 @option{-std} options for strict ISO C conformance are used because they
1849 do not have an ISO standard meaning.
1850
1851 GCC normally generates special code to handle certain built-in functions
1852 more efficiently; for instance, calls to @code{alloca} may become single
1853 instructions which adjust the stack directly, and calls to @code{memcpy}
1854 may become inline copy loops. The resulting code is often both smaller
1855 and faster, but since the function calls no longer appear as such, you
1856 cannot set a breakpoint on those calls, nor can you change the behavior
1857 of the functions by linking with a different library. In addition,
1858 when a function is recognized as a built-in function, GCC may use
1859 information about that function to warn about problems with calls to
1860 that function, or to generate more efficient code, even if the
1861 resulting code still contains calls to that function. For example,
1862 warnings are given with @option{-Wformat} for bad calls to
1863 @code{printf} when @code{printf} is built in and @code{strlen} is
1864 known not to modify global memory.
1865
1866 With the @option{-fno-builtin-@var{function}} option
1867 only the built-in function @var{function} is
1868 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1869 function is named that is not built-in in this version of GCC, this
1870 option is ignored. There is no corresponding
1871 @option{-fbuiltin-@var{function}} option; if you wish to enable
1872 built-in functions selectively when using @option{-fno-builtin} or
1873 @option{-ffreestanding}, you may define macros such as:
1874
1875 @smallexample
1876 #define abs(n) __builtin_abs ((n))
1877 #define strcpy(d, s) __builtin_strcpy ((d), (s))
1878 @end smallexample
1879
1880 @item -fhosted
1881 @opindex fhosted
1882 @cindex hosted environment
1883
1884 Assert that compilation targets a hosted environment. This implies
1885 @option{-fbuiltin}. A hosted environment is one in which the
1886 entire standard library is available, and in which @code{main} has a return
1887 type of @code{int}. Examples are nearly everything except a kernel.
1888 This is equivalent to @option{-fno-freestanding}.
1889
1890 @item -ffreestanding
1891 @opindex ffreestanding
1892 @cindex hosted environment
1893
1894 Assert that compilation targets a freestanding environment. This
1895 implies @option{-fno-builtin}. A freestanding environment
1896 is one in which the standard library may not exist, and program startup may
1897 not necessarily be at @code{main}. The most obvious example is an OS kernel.
1898 This is equivalent to @option{-fno-hosted}.
1899
1900 @xref{Standards,,Language Standards Supported by GCC}, for details of
1901 freestanding and hosted environments.
1902
1903 @item -fopenacc
1904 @opindex fopenacc
1905 @cindex OpenACC accelerator programming
1906 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1907 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
1908 compiler generates accelerated code according to the OpenACC Application
1909 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
1910 implies @option{-pthread}, and thus is only supported on targets that
1911 have support for @option{-pthread}.
1912
1913 Note that this is an experimental feature, incomplete, and subject to
1914 change in future versions of GCC. See
1915 @w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1916
1917 @item -fopenmp
1918 @opindex fopenmp
1919 @cindex OpenMP parallel
1920 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1921 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
1922 compiler generates parallel code according to the OpenMP Application
1923 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}. This option
1924 implies @option{-pthread}, and thus is only supported on targets that
1925 have support for @option{-pthread}. @option{-fopenmp} implies
1926 @option{-fopenmp-simd}.
1927
1928 @item -fopenmp-simd
1929 @opindex fopenmp-simd
1930 @cindex OpenMP SIMD
1931 @cindex SIMD
1932 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1933 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1934 are ignored.
1935
1936 @item -fcilkplus
1937 @opindex fcilkplus
1938 @cindex Enable Cilk Plus
1939 Enable the usage of Cilk Plus language extension features for C/C++.
1940 When the option @option{-fcilkplus} is specified, enable the usage of
1941 the Cilk Plus Language extension features for C/C++. The present
1942 implementation follows ABI version 1.2. This is an experimental
1943 feature that is only partially complete, and whose interface may
1944 change in future versions of GCC as the official specification
1945 changes. Currently, all features but @code{_Cilk_for} have been
1946 implemented.
1947
1948 @item -fgnu-tm
1949 @opindex fgnu-tm
1950 When the option @option{-fgnu-tm} is specified, the compiler
1951 generates code for the Linux variant of Intel's current Transactional
1952 Memory ABI specification document (Revision 1.1, May 6 2009). This is
1953 an experimental feature whose interface may change in future versions
1954 of GCC, as the official specification changes. Please note that not
1955 all architectures are supported for this feature.
1956
1957 For more information on GCC's support for transactional memory,
1958 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1959 Transactional Memory Library}.
1960
1961 Note that the transactional memory feature is not supported with
1962 non-call exceptions (@option{-fnon-call-exceptions}).
1963
1964 @item -fms-extensions
1965 @opindex fms-extensions
1966 Accept some non-standard constructs used in Microsoft header files.
1967
1968 In C++ code, this allows member names in structures to be similar
1969 to previous types declarations.
1970
1971 @smallexample
1972 typedef int UOW;
1973 struct ABC @{
1974 UOW UOW;
1975 @};
1976 @end smallexample
1977
1978 Some cases of unnamed fields in structures and unions are only
1979 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
1980 fields within structs/unions}, for details.
1981
1982 Note that this option is off for all targets but x86
1983 targets using ms-abi.
1984
1985 @item -fplan9-extensions
1986 @opindex fplan9-extensions
1987 Accept some non-standard constructs used in Plan 9 code.
1988
1989 This enables @option{-fms-extensions}, permits passing pointers to
1990 structures with anonymous fields to functions that expect pointers to
1991 elements of the type of the field, and permits referring to anonymous
1992 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
1993 struct/union fields within structs/unions}, for details. This is only
1994 supported for C, not C++.
1995
1996 @item -trigraphs
1997 @opindex trigraphs
1998 Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
1999 options for strict ISO C conformance) implies @option{-trigraphs}.
2000
2001 @cindex traditional C language
2002 @cindex C language, traditional
2003 @item -traditional
2004 @itemx -traditional-cpp
2005 @opindex traditional-cpp
2006 @opindex traditional
2007 Formerly, these options caused GCC to attempt to emulate a pre-standard
2008 C compiler. They are now only supported with the @option{-E} switch.
2009 The preprocessor continues to support a pre-standard mode. See the GNU
2010 CPP manual for details.
2011
2012 @item -fcond-mismatch
2013 @opindex fcond-mismatch
2014 Allow conditional expressions with mismatched types in the second and
2015 third arguments. The value of such an expression is void. This option
2016 is not supported for C++.
2017
2018 @item -flax-vector-conversions
2019 @opindex flax-vector-conversions
2020 Allow implicit conversions between vectors with differing numbers of
2021 elements and/or incompatible element types. This option should not be
2022 used for new code.
2023
2024 @item -funsigned-char
2025 @opindex funsigned-char
2026 Let the type @code{char} be unsigned, like @code{unsigned char}.
2027
2028 Each kind of machine has a default for what @code{char} should
2029 be. It is either like @code{unsigned char} by default or like
2030 @code{signed char} by default.
2031
2032 Ideally, a portable program should always use @code{signed char} or
2033 @code{unsigned char} when it depends on the signedness of an object.
2034 But many programs have been written to use plain @code{char} and
2035 expect it to be signed, or expect it to be unsigned, depending on the
2036 machines they were written for. This option, and its inverse, let you
2037 make such a program work with the opposite default.
2038
2039 The type @code{char} is always a distinct type from each of
2040 @code{signed char} or @code{unsigned char}, even though its behavior
2041 is always just like one of those two.
2042
2043 @item -fsigned-char
2044 @opindex fsigned-char
2045 Let the type @code{char} be signed, like @code{signed char}.
2046
2047 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2048 the negative form of @option{-funsigned-char}. Likewise, the option
2049 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2050
2051 @item -fsigned-bitfields
2052 @itemx -funsigned-bitfields
2053 @itemx -fno-signed-bitfields
2054 @itemx -fno-unsigned-bitfields
2055 @opindex fsigned-bitfields
2056 @opindex funsigned-bitfields
2057 @opindex fno-signed-bitfields
2058 @opindex fno-unsigned-bitfields
2059 These options control whether a bit-field is signed or unsigned, when the
2060 declaration does not use either @code{signed} or @code{unsigned}. By
2061 default, such a bit-field is signed, because this is consistent: the
2062 basic integer types such as @code{int} are signed types.
2063 @end table
2064
2065 @node C++ Dialect Options
2066 @section Options Controlling C++ Dialect
2067
2068 @cindex compiler options, C++
2069 @cindex C++ options, command-line
2070 @cindex options, C++
2071 This section describes the command-line options that are only meaningful
2072 for C++ programs. You can also use most of the GNU compiler options
2073 regardless of what language your program is in. For example, you
2074 might compile a file @file{firstClass.C} like this:
2075
2076 @smallexample
2077 g++ -g -frepo -O -c firstClass.C
2078 @end smallexample
2079
2080 @noindent
2081 In this example, only @option{-frepo} is an option meant
2082 only for C++ programs; you can use the other options with any
2083 language supported by GCC@.
2084
2085 Here is a list of options that are @emph{only} for compiling C++ programs:
2086
2087 @table @gcctabopt
2088
2089 @item -fabi-version=@var{n}
2090 @opindex fabi-version
2091 Use version @var{n} of the C++ ABI@. The default is version 0.
2092
2093 Version 0 refers to the version conforming most closely to
2094 the C++ ABI specification. Therefore, the ABI obtained using version 0
2095 will change in different versions of G++ as ABI bugs are fixed.
2096
2097 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2098
2099 Version 2 is the version of the C++ ABI that first appeared in G++
2100 3.4, and was the default through G++ 4.9.
2101
2102 Version 3 corrects an error in mangling a constant address as a
2103 template argument.
2104
2105 Version 4, which first appeared in G++ 4.5, implements a standard
2106 mangling for vector types.
2107
2108 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2109 attribute const/volatile on function pointer types, decltype of a
2110 plain decl, and use of a function parameter in the declaration of
2111 another parameter.
2112
2113 Version 6, which first appeared in G++ 4.7, corrects the promotion
2114 behavior of C++11 scoped enums and the mangling of template argument
2115 packs, const/static_cast, prefix ++ and --, and a class scope function
2116 used as a template argument.
2117
2118 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2119 builtin type and corrects the mangling of lambdas in default argument
2120 scope.
2121
2122 Version 8, which first appeared in G++ 4.9, corrects the substitution
2123 behavior of function types with function-cv-qualifiers.
2124
2125 See also @option{-Wabi}.
2126
2127 @item -fabi-compat-version=@var{n}
2128 @opindex fabi-compat-version
2129 On targets that support strong aliases, G++
2130 works around mangling changes by creating an alias with the correct
2131 mangled name when defining a symbol with an incorrect mangled name.
2132 This switch specifies which ABI version to use for the alias.
2133
2134 With @option{-fabi-version=0} (the default), this defaults to 2. If
2135 another ABI version is explicitly selected, this defaults to 0.
2136
2137 The compatibility version is also set by @option{-Wabi=@var{n}}.
2138
2139 @item -fno-access-control
2140 @opindex fno-access-control
2141 Turn off all access checking. This switch is mainly useful for working
2142 around bugs in the access control code.
2143
2144 @item -fcheck-new
2145 @opindex fcheck-new
2146 Check that the pointer returned by @code{operator new} is non-null
2147 before attempting to modify the storage allocated. This check is
2148 normally unnecessary because the C++ standard specifies that
2149 @code{operator new} only returns @code{0} if it is declared
2150 @code{throw()}, in which case the compiler always checks the
2151 return value even without this option. In all other cases, when
2152 @code{operator new} has a non-empty exception specification, memory
2153 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2154 @samp{new (nothrow)}.
2155
2156 @item -fconstexpr-depth=@var{n}
2157 @opindex fconstexpr-depth
2158 Set the maximum nested evaluation depth for C++11 constexpr functions
2159 to @var{n}. A limit is needed to detect endless recursion during
2160 constant expression evaluation. The minimum specified by the standard
2161 is 512.
2162
2163 @item -fdeduce-init-list
2164 @opindex fdeduce-init-list
2165 Enable deduction of a template type parameter as
2166 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2167
2168 @smallexample
2169 template <class T> auto forward(T t) -> decltype (realfn (t))
2170 @{
2171 return realfn (t);
2172 @}
2173
2174 void f()
2175 @{
2176 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2177 @}
2178 @end smallexample
2179
2180 This deduction was implemented as a possible extension to the
2181 originally proposed semantics for the C++11 standard, but was not part
2182 of the final standard, so it is disabled by default. This option is
2183 deprecated, and may be removed in a future version of G++.
2184
2185 @item -ffriend-injection
2186 @opindex ffriend-injection
2187 Inject friend functions into the enclosing namespace, so that they are
2188 visible outside the scope of the class in which they are declared.
2189 Friend functions were documented to work this way in the old Annotated
2190 C++ Reference Manual.
2191 However, in ISO C++ a friend function that is not declared
2192 in an enclosing scope can only be found using argument dependent
2193 lookup. GCC defaults to the standard behavior.
2194
2195 This option is for compatibility, and may be removed in a future
2196 release of G++.
2197
2198 @item -fno-elide-constructors
2199 @opindex fno-elide-constructors
2200 The C++ standard allows an implementation to omit creating a temporary
2201 that is only used to initialize another object of the same type.
2202 Specifying this option disables that optimization, and forces G++ to
2203 call the copy constructor in all cases.
2204
2205 @item -fno-enforce-eh-specs
2206 @opindex fno-enforce-eh-specs
2207 Don't generate code to check for violation of exception specifications
2208 at run time. This option violates the C++ standard, but may be useful
2209 for reducing code size in production builds, much like defining
2210 @code{NDEBUG}. This does not give user code permission to throw
2211 exceptions in violation of the exception specifications; the compiler
2212 still optimizes based on the specifications, so throwing an
2213 unexpected exception results in undefined behavior at run time.
2214
2215 @item -fextern-tls-init
2216 @itemx -fno-extern-tls-init
2217 @opindex fextern-tls-init
2218 @opindex fno-extern-tls-init
2219 The C++11 and OpenMP standards allow @code{thread_local} and
2220 @code{threadprivate} variables to have dynamic (runtime)
2221 initialization. To support this, any use of such a variable goes
2222 through a wrapper function that performs any necessary initialization.
2223 When the use and definition of the variable are in the same
2224 translation unit, this overhead can be optimized away, but when the
2225 use is in a different translation unit there is significant overhead
2226 even if the variable doesn't actually need dynamic initialization. If
2227 the programmer can be sure that no use of the variable in a
2228 non-defining TU needs to trigger dynamic initialization (either
2229 because the variable is statically initialized, or a use of the
2230 variable in the defining TU will be executed before any uses in
2231 another TU), they can avoid this overhead with the
2232 @option{-fno-extern-tls-init} option.
2233
2234 On targets that support symbol aliases, the default is
2235 @option{-fextern-tls-init}. On targets that do not support symbol
2236 aliases, the default is @option{-fno-extern-tls-init}.
2237
2238 @item -ffor-scope
2239 @itemx -fno-for-scope
2240 @opindex ffor-scope
2241 @opindex fno-for-scope
2242 If @option{-ffor-scope} is specified, the scope of variables declared in
2243 a @i{for-init-statement} is limited to the @code{for} loop itself,
2244 as specified by the C++ standard.
2245 If @option{-fno-for-scope} is specified, the scope of variables declared in
2246 a @i{for-init-statement} extends to the end of the enclosing scope,
2247 as was the case in old versions of G++, and other (traditional)
2248 implementations of C++.
2249
2250 If neither flag is given, the default is to follow the standard,
2251 but to allow and give a warning for old-style code that would
2252 otherwise be invalid, or have different behavior.
2253
2254 @item -fno-gnu-keywords
2255 @opindex fno-gnu-keywords
2256 Do not recognize @code{typeof} as a keyword, so that code can use this
2257 word as an identifier. You can use the keyword @code{__typeof__} instead.
2258 @option{-ansi} implies @option{-fno-gnu-keywords}.
2259
2260 @item -fno-implicit-templates
2261 @opindex fno-implicit-templates
2262 Never emit code for non-inline templates that are instantiated
2263 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2264 @xref{Template Instantiation}, for more information.
2265
2266 @item -fno-implicit-inline-templates
2267 @opindex fno-implicit-inline-templates
2268 Don't emit code for implicit instantiations of inline templates, either.
2269 The default is to handle inlines differently so that compiles with and
2270 without optimization need the same set of explicit instantiations.
2271
2272 @item -fno-implement-inlines
2273 @opindex fno-implement-inlines
2274 To save space, do not emit out-of-line copies of inline functions
2275 controlled by @code{#pragma implementation}. This causes linker
2276 errors if these functions are not inlined everywhere they are called.
2277
2278 @item -fms-extensions
2279 @opindex fms-extensions
2280 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2281 int and getting a pointer to member function via non-standard syntax.
2282
2283 @item -fno-nonansi-builtins
2284 @opindex fno-nonansi-builtins
2285 Disable built-in declarations of functions that are not mandated by
2286 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2287 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2288
2289 @item -fnothrow-opt
2290 @opindex fnothrow-opt
2291 Treat a @code{throw()} exception specification as if it were a
2292 @code{noexcept} specification to reduce or eliminate the text size
2293 overhead relative to a function with no exception specification. If
2294 the function has local variables of types with non-trivial
2295 destructors, the exception specification actually makes the
2296 function smaller because the EH cleanups for those variables can be
2297 optimized away. The semantic effect is that an exception thrown out of
2298 a function with such an exception specification results in a call
2299 to @code{terminate} rather than @code{unexpected}.
2300
2301 @item -fno-operator-names
2302 @opindex fno-operator-names
2303 Do not treat the operator name keywords @code{and}, @code{bitand},
2304 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2305 synonyms as keywords.
2306
2307 @item -fno-optional-diags
2308 @opindex fno-optional-diags
2309 Disable diagnostics that the standard says a compiler does not need to
2310 issue. Currently, the only such diagnostic issued by G++ is the one for
2311 a name having multiple meanings within a class.
2312
2313 @item -fpermissive
2314 @opindex fpermissive
2315 Downgrade some diagnostics about nonconformant code from errors to
2316 warnings. Thus, using @option{-fpermissive} allows some
2317 nonconforming code to compile.
2318
2319 @item -fno-pretty-templates
2320 @opindex fno-pretty-templates
2321 When an error message refers to a specialization of a function
2322 template, the compiler normally prints the signature of the
2323 template followed by the template arguments and any typedefs or
2324 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2325 rather than @code{void f(int)}) so that it's clear which template is
2326 involved. When an error message refers to a specialization of a class
2327 template, the compiler omits any template arguments that match
2328 the default template arguments for that template. If either of these
2329 behaviors make it harder to understand the error message rather than
2330 easier, you can use @option{-fno-pretty-templates} to disable them.
2331
2332 @item -frepo
2333 @opindex frepo
2334 Enable automatic template instantiation at link time. This option also
2335 implies @option{-fno-implicit-templates}. @xref{Template
2336 Instantiation}, for more information.
2337
2338 @item -fno-rtti
2339 @opindex fno-rtti
2340 Disable generation of information about every class with virtual
2341 functions for use by the C++ run-time type identification features
2342 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2343 of the language, you can save some space by using this flag. Note that
2344 exception handling uses the same information, but G++ generates it as
2345 needed. The @code{dynamic_cast} operator can still be used for casts that
2346 do not require run-time type information, i.e.@: casts to @code{void *} or to
2347 unambiguous base classes.
2348
2349 @item -fsized-deallocation
2350 @opindex fsized-deallocation
2351 Enable the built-in global declarations
2352 @smallexample
2353 void operator delete (void *, std::size_t) noexcept;
2354 void operator delete[] (void *, std::size_t) noexcept;
2355 @end smallexample
2356 as introduced in C++14. This is useful for user-defined replacement
2357 deallocation functions that, for example, use the size of the object
2358 to make deallocation faster. Enabled by default under
2359 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2360 warns about places that might want to add a definition.
2361
2362 @item -fstats
2363 @opindex fstats
2364 Emit statistics about front-end processing at the end of the compilation.
2365 This information is generally only useful to the G++ development team.
2366
2367 @item -fstrict-enums
2368 @opindex fstrict-enums
2369 Allow the compiler to optimize using the assumption that a value of
2370 enumerated type can only be one of the values of the enumeration (as
2371 defined in the C++ standard; basically, a value that can be
2372 represented in the minimum number of bits needed to represent all the
2373 enumerators). This assumption may not be valid if the program uses a
2374 cast to convert an arbitrary integer value to the enumerated type.
2375
2376 @item -ftemplate-backtrace-limit=@var{n}
2377 @opindex ftemplate-backtrace-limit
2378 Set the maximum number of template instantiation notes for a single
2379 warning or error to @var{n}. The default value is 10.
2380
2381 @item -ftemplate-depth=@var{n}
2382 @opindex ftemplate-depth
2383 Set the maximum instantiation depth for template classes to @var{n}.
2384 A limit on the template instantiation depth is needed to detect
2385 endless recursions during template class instantiation. ANSI/ISO C++
2386 conforming programs must not rely on a maximum depth greater than 17
2387 (changed to 1024 in C++11). The default value is 900, as the compiler
2388 can run out of stack space before hitting 1024 in some situations.
2389
2390 @item -fno-threadsafe-statics
2391 @opindex fno-threadsafe-statics
2392 Do not emit the extra code to use the routines specified in the C++
2393 ABI for thread-safe initialization of local statics. You can use this
2394 option to reduce code size slightly in code that doesn't need to be
2395 thread-safe.
2396
2397 @item -fuse-cxa-atexit
2398 @opindex fuse-cxa-atexit
2399 Register destructors for objects with static storage duration with the
2400 @code{__cxa_atexit} function rather than the @code{atexit} function.
2401 This option is required for fully standards-compliant handling of static
2402 destructors, but only works if your C library supports
2403 @code{__cxa_atexit}.
2404
2405 @item -fno-use-cxa-get-exception-ptr
2406 @opindex fno-use-cxa-get-exception-ptr
2407 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2408 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2409 if the runtime routine is not available.
2410
2411 @item -fvisibility-inlines-hidden
2412 @opindex fvisibility-inlines-hidden
2413 This switch declares that the user does not attempt to compare
2414 pointers to inline functions or methods where the addresses of the two functions
2415 are taken in different shared objects.
2416
2417 The effect of this is that GCC may, effectively, mark inline methods with
2418 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2419 appear in the export table of a DSO and do not require a PLT indirection
2420 when used within the DSO@. Enabling this option can have a dramatic effect
2421 on load and link times of a DSO as it massively reduces the size of the
2422 dynamic export table when the library makes heavy use of templates.
2423
2424 The behavior of this switch is not quite the same as marking the
2425 methods as hidden directly, because it does not affect static variables
2426 local to the function or cause the compiler to deduce that
2427 the function is defined in only one shared object.
2428
2429 You may mark a method as having a visibility explicitly to negate the
2430 effect of the switch for that method. For example, if you do want to
2431 compare pointers to a particular inline method, you might mark it as
2432 having default visibility. Marking the enclosing class with explicit
2433 visibility has no effect.
2434
2435 Explicitly instantiated inline methods are unaffected by this option
2436 as their linkage might otherwise cross a shared library boundary.
2437 @xref{Template Instantiation}.
2438
2439 @item -fvisibility-ms-compat
2440 @opindex fvisibility-ms-compat
2441 This flag attempts to use visibility settings to make GCC's C++
2442 linkage model compatible with that of Microsoft Visual Studio.
2443
2444 The flag makes these changes to GCC's linkage model:
2445
2446 @enumerate
2447 @item
2448 It sets the default visibility to @code{hidden}, like
2449 @option{-fvisibility=hidden}.
2450
2451 @item
2452 Types, but not their members, are not hidden by default.
2453
2454 @item
2455 The One Definition Rule is relaxed for types without explicit
2456 visibility specifications that are defined in more than one
2457 shared object: those declarations are permitted if they are
2458 permitted when this option is not used.
2459 @end enumerate
2460
2461 In new code it is better to use @option{-fvisibility=hidden} and
2462 export those classes that are intended to be externally visible.
2463 Unfortunately it is possible for code to rely, perhaps accidentally,
2464 on the Visual Studio behavior.
2465
2466 Among the consequences of these changes are that static data members
2467 of the same type with the same name but defined in different shared
2468 objects are different, so changing one does not change the other;
2469 and that pointers to function members defined in different shared
2470 objects may not compare equal. When this flag is given, it is a
2471 violation of the ODR to define types with the same name differently.
2472
2473 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2474 @opindex fvtable-verify
2475 Turn on (or off, if using @option{-fvtable-verify=none}) the security
2476 feature that verifies at run time, for every virtual call, that
2477 the vtable pointer through which the call is made is valid for the type of
2478 the object, and has not been corrupted or overwritten. If an invalid vtable
2479 pointer is detected at run time, an error is reported and execution of the
2480 program is immediately halted.
2481
2482 This option causes run-time data structures to be built at program startup,
2483 which are used for verifying the vtable pointers.
2484 The options @samp{std} and @samp{preinit}
2485 control the timing of when these data structures are built. In both cases the
2486 data structures are built before execution reaches @code{main}. Using
2487 @option{-fvtable-verify=std} causes the data structures to be built after
2488 shared libraries have been loaded and initialized.
2489 @option{-fvtable-verify=preinit} causes them to be built before shared
2490 libraries have been loaded and initialized.
2491
2492 If this option appears multiple times in the command line with different
2493 values specified, @samp{none} takes highest priority over both @samp{std} and
2494 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2495
2496 @item -fvtv-debug
2497 @opindex fvtv-debug
2498 When used in conjunction with @option{-fvtable-verify=std} or
2499 @option{-fvtable-verify=preinit}, causes debug versions of the
2500 runtime functions for the vtable verification feature to be called.
2501 This flag also causes the compiler to log information about which
2502 vtable pointers it finds for each class.
2503 This information is written to a file named @file{vtv_set_ptr_data.log}
2504 in the directory named by the environment variable @env{VTV_LOGS_DIR}
2505 if that is defined or the current working directory otherwise.
2506
2507 Note: This feature @emph{appends} data to the log file. If you want a fresh log
2508 file, be sure to delete any existing one.
2509
2510 @item -fvtv-counts
2511 @opindex fvtv-counts
2512 This is a debugging flag. When used in conjunction with
2513 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2514 causes the compiler to keep track of the total number of virtual calls
2515 it encounters and the number of verifications it inserts. It also
2516 counts the number of calls to certain run-time library functions
2517 that it inserts and logs this information for each compilation unit.
2518 The compiler writes this information to a file named
2519 @file{vtv_count_data.log} in the directory named by the environment
2520 variable @env{VTV_LOGS_DIR} if that is defined or the current working
2521 directory otherwise. It also counts the size of the vtable pointer sets
2522 for each class, and writes this information to @file{vtv_class_set_sizes.log}
2523 in the same directory.
2524
2525 Note: This feature @emph{appends} data to the log files. To get fresh log
2526 files, be sure to delete any existing ones.
2527
2528 @item -fno-weak
2529 @opindex fno-weak
2530 Do not use weak symbol support, even if it is provided by the linker.
2531 By default, G++ uses weak symbols if they are available. This
2532 option exists only for testing, and should not be used by end-users;
2533 it results in inferior code and has no benefits. This option may
2534 be removed in a future release of G++.
2535
2536 @item -nostdinc++
2537 @opindex nostdinc++
2538 Do not search for header files in the standard directories specific to
2539 C++, but do still search the other standard directories. (This option
2540 is used when building the C++ library.)
2541 @end table
2542
2543 In addition, these optimization, warning, and code generation options
2544 have meanings only for C++ programs:
2545
2546 @table @gcctabopt
2547 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2548 @opindex Wabi
2549 @opindex Wno-abi
2550 When an explicit @option{-fabi-version=@var{n}} option is used, causes
2551 G++ to warn when it generates code that is probably not compatible with the
2552 vendor-neutral C++ ABI@. Since G++ now defaults to
2553 @option{-fabi-version=0}, @option{-Wabi} has no effect unless either
2554 an older ABI version is selected (with @option{-fabi-version=@var{n}})
2555 or an older compatibility version is selected (with
2556 @option{-Wabi=@var{n}} or @option{-fabi-compat-version=@var{n}}).
2557
2558 Although an effort has been made to warn about
2559 all such cases, there are probably some cases that are not warned about,
2560 even though G++ is generating incompatible code. There may also be
2561 cases where warnings are emitted even though the code that is generated
2562 is compatible.
2563
2564 You should rewrite your code to avoid these warnings if you are
2565 concerned about the fact that code generated by G++ may not be binary
2566 compatible with code generated by other compilers.
2567
2568 @option{-Wabi} can also be used with an explicit version number to
2569 warn about compatibility with a particular @option{-fabi-version}
2570 level, e.g. @option{-Wabi=2} to warn about changes relative to
2571 @option{-fabi-version=2}. Specifying a version number also sets
2572 @option{-fabi-compat-version=@var{n}}.
2573
2574 The known incompatibilities in @option{-fabi-version=2} (which was the
2575 default from GCC 3.4 to 4.9) include:
2576
2577 @itemize @bullet
2578
2579 @item
2580 A template with a non-type template parameter of reference type was
2581 mangled incorrectly:
2582 @smallexample
2583 extern int N;
2584 template <int &> struct S @{@};
2585 void n (S<N>) @{2@}
2586 @end smallexample
2587
2588 This was fixed in @option{-fabi-version=3}.
2589
2590 @item
2591 SIMD vector types declared using @code{__attribute ((vector_size))} were
2592 mangled in a non-standard way that does not allow for overloading of
2593 functions taking vectors of different sizes.
2594
2595 The mangling was changed in @option{-fabi-version=4}.
2596
2597 @item
2598 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2599 qualifiers, and @code{decltype} of a plain declaration was folded away.
2600
2601 These mangling issues were fixed in @option{-fabi-version=5}.
2602
2603 @item
2604 Scoped enumerators passed as arguments to a variadic function are
2605 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2606 On most targets this does not actually affect the parameter passing
2607 ABI, as there is no way to pass an argument smaller than @code{int}.
2608
2609 Also, the ABI changed the mangling of template argument packs,
2610 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2611 a class scope function used as a template argument.
2612
2613 These issues were corrected in @option{-fabi-version=6}.
2614
2615 @item
2616 Lambdas in default argument scope were mangled incorrectly, and the
2617 ABI changed the mangling of @code{nullptr_t}.
2618
2619 These issues were corrected in @option{-fabi-version=7}.
2620
2621 @item
2622 When mangling a function type with function-cv-qualifiers, the
2623 un-qualified function type was incorrectly treated as a substitution
2624 candidate.
2625
2626 This was fixed in @option{-fabi-version=8}.
2627 @end itemize
2628
2629 It also warns about psABI-related changes. The known psABI changes at this
2630 point include:
2631
2632 @itemize @bullet
2633
2634 @item
2635 For SysV/x86-64, unions with @code{long double} members are
2636 passed in memory as specified in psABI. For example:
2637
2638 @smallexample
2639 union U @{
2640 long double ld;
2641 int i;
2642 @};
2643 @end smallexample
2644
2645 @noindent
2646 @code{union U} is always passed in memory.
2647
2648 @end itemize
2649
2650 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2651 @opindex Wabi-tag
2652 @opindex -Wabi-tag
2653 Warn when a type with an ABI tag is used in a context that does not
2654 have that ABI tag. See @ref{C++ Attributes} for more information
2655 about ABI tags.
2656
2657 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2658 @opindex Wctor-dtor-privacy
2659 @opindex Wno-ctor-dtor-privacy
2660 Warn when a class seems unusable because all the constructors or
2661 destructors in that class are private, and it has neither friends nor
2662 public static member functions. Also warn if there are no non-private
2663 methods, and there's at least one private member function that isn't
2664 a constructor or destructor.
2665
2666 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2667 @opindex Wdelete-non-virtual-dtor
2668 @opindex Wno-delete-non-virtual-dtor
2669 Warn when @code{delete} is used to destroy an instance of a class that
2670 has virtual functions and non-virtual destructor. It is unsafe to delete
2671 an instance of a derived class through a pointer to a base class if the
2672 base class does not have a virtual destructor. This warning is enabled
2673 by @option{-Wall}.
2674
2675 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2676 @opindex Wliteral-suffix
2677 @opindex Wno-literal-suffix
2678 Warn when a string or character literal is followed by a ud-suffix which does
2679 not begin with an underscore. As a conforming extension, GCC treats such
2680 suffixes as separate preprocessing tokens in order to maintain backwards
2681 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2682 For example:
2683
2684 @smallexample
2685 #define __STDC_FORMAT_MACROS
2686 #include <inttypes.h>
2687 #include <stdio.h>
2688
2689 int main() @{
2690 int64_t i64 = 123;
2691 printf("My int64: %"PRId64"\n", i64);
2692 @}
2693 @end smallexample
2694
2695 In this case, @code{PRId64} is treated as a separate preprocessing token.
2696
2697 This warning is enabled by default.
2698
2699 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2700 @opindex Wnarrowing
2701 @opindex Wno-narrowing
2702 Warn when a narrowing conversion prohibited by C++11 occurs within
2703 @samp{@{ @}}, e.g.
2704
2705 @smallexample
2706 int i = @{ 2.2 @}; // error: narrowing from double to int
2707 @end smallexample
2708
2709 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2710
2711 With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2712 required by the standard. Note that this does not affect the meaning
2713 of well-formed code; narrowing conversions are still considered
2714 ill-formed in SFINAE context.
2715
2716 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2717 @opindex Wnoexcept
2718 @opindex Wno-noexcept
2719 Warn when a noexcept-expression evaluates to false because of a call
2720 to a function that does not have a non-throwing exception
2721 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2722 the compiler to never throw an exception.
2723
2724 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2725 @opindex Wnon-virtual-dtor
2726 @opindex Wno-non-virtual-dtor
2727 Warn when a class has virtual functions and an accessible non-virtual
2728 destructor itself or in an accessible polymorphic base class, in which
2729 case it is possible but unsafe to delete an instance of a derived
2730 class through a pointer to the class itself or base class. This
2731 warning is automatically enabled if @option{-Weffc++} is specified.
2732
2733 @item -Wreorder @r{(C++ and Objective-C++ only)}
2734 @opindex Wreorder
2735 @opindex Wno-reorder
2736 @cindex reordering, warning
2737 @cindex warning for reordering of member initializers
2738 Warn when the order of member initializers given in the code does not
2739 match the order in which they must be executed. For instance:
2740
2741 @smallexample
2742 struct A @{
2743 int i;
2744 int j;
2745 A(): j (0), i (1) @{ @}
2746 @};
2747 @end smallexample
2748
2749 @noindent
2750 The compiler rearranges the member initializers for @code{i}
2751 and @code{j} to match the declaration order of the members, emitting
2752 a warning to that effect. This warning is enabled by @option{-Wall}.
2753
2754 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2755 @opindex fext-numeric-literals
2756 @opindex fno-ext-numeric-literals
2757 Accept imaginary, fixed-point, or machine-defined
2758 literal number suffixes as GNU extensions.
2759 When this option is turned off these suffixes are treated
2760 as C++11 user-defined literal numeric suffixes.
2761 This is on by default for all pre-C++11 dialects and all GNU dialects:
2762 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2763 @option{-std=gnu++14}.
2764 This option is off by default
2765 for ISO C++11 onwards (@option{-std=c++11}, ...).
2766 @end table
2767
2768 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2769
2770 @table @gcctabopt
2771 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2772 @opindex Weffc++
2773 @opindex Wno-effc++
2774 Warn about violations of the following style guidelines from Scott Meyers'
2775 @cite{Effective C++} series of books:
2776
2777 @itemize @bullet
2778 @item
2779 Define a copy constructor and an assignment operator for classes
2780 with dynamically-allocated memory.
2781
2782 @item
2783 Prefer initialization to assignment in constructors.
2784
2785 @item
2786 Have @code{operator=} return a reference to @code{*this}.
2787
2788 @item
2789 Don't try to return a reference when you must return an object.
2790
2791 @item
2792 Distinguish between prefix and postfix forms of increment and
2793 decrement operators.
2794
2795 @item
2796 Never overload @code{&&}, @code{||}, or @code{,}.
2797
2798 @end itemize
2799
2800 This option also enables @option{-Wnon-virtual-dtor}, which is also
2801 one of the effective C++ recommendations. However, the check is
2802 extended to warn about the lack of virtual destructor in accessible
2803 non-polymorphic bases classes too.
2804
2805 When selecting this option, be aware that the standard library
2806 headers do not obey all of these guidelines; use @samp{grep -v}
2807 to filter out those warnings.
2808
2809 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2810 @opindex Wstrict-null-sentinel
2811 @opindex Wno-strict-null-sentinel
2812 Warn about the use of an uncasted @code{NULL} as sentinel. When
2813 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2814 to @code{__null}. Although it is a null pointer constant rather than a
2815 null pointer, it is guaranteed to be of the same size as a pointer.
2816 But this use is not portable across different compilers.
2817
2818 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2819 @opindex Wno-non-template-friend
2820 @opindex Wnon-template-friend
2821 Disable warnings when non-templatized friend functions are declared
2822 within a template. Since the advent of explicit template specification
2823 support in G++, if the name of the friend is an unqualified-id (i.e.,
2824 @samp{friend foo(int)}), the C++ language specification demands that the
2825 friend declare or define an ordinary, nontemplate function. (Section
2826 14.5.3). Before G++ implemented explicit specification, unqualified-ids
2827 could be interpreted as a particular specialization of a templatized
2828 function. Because this non-conforming behavior is no longer the default
2829 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2830 check existing code for potential trouble spots and is on by default.
2831 This new compiler behavior can be turned off with
2832 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2833 but disables the helpful warning.
2834
2835 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2836 @opindex Wold-style-cast
2837 @opindex Wno-old-style-cast
2838 Warn if an old-style (C-style) cast to a non-void type is used within
2839 a C++ program. The new-style casts (@code{dynamic_cast},
2840 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2841 less vulnerable to unintended effects and much easier to search for.
2842
2843 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2844 @opindex Woverloaded-virtual
2845 @opindex Wno-overloaded-virtual
2846 @cindex overloaded virtual function, warning
2847 @cindex warning for overloaded virtual function
2848 Warn when a function declaration hides virtual functions from a
2849 base class. For example, in:
2850
2851 @smallexample
2852 struct A @{
2853 virtual void f();
2854 @};
2855
2856 struct B: public A @{
2857 void f(int);
2858 @};
2859 @end smallexample
2860
2861 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2862 like:
2863
2864 @smallexample
2865 B* b;
2866 b->f();
2867 @end smallexample
2868
2869 @noindent
2870 fails to compile.
2871
2872 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2873 @opindex Wno-pmf-conversions
2874 @opindex Wpmf-conversions
2875 Disable the diagnostic for converting a bound pointer to member function
2876 to a plain pointer.
2877
2878 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2879 @opindex Wsign-promo
2880 @opindex Wno-sign-promo
2881 Warn when overload resolution chooses a promotion from unsigned or
2882 enumerated type to a signed type, over a conversion to an unsigned type of
2883 the same size. Previous versions of G++ tried to preserve
2884 unsignedness, but the standard mandates the current behavior.
2885
2886 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
2887 @opindex Wterminate
2888 @opindex Wno-terminate
2889 Disable the warning about a throw-expression that will immediately
2890 result in a call to @code{terminate}.
2891 @end table
2892
2893 @node Objective-C and Objective-C++ Dialect Options
2894 @section Options Controlling Objective-C and Objective-C++ Dialects
2895
2896 @cindex compiler options, Objective-C and Objective-C++
2897 @cindex Objective-C and Objective-C++ options, command-line
2898 @cindex options, Objective-C and Objective-C++
2899 (NOTE: This manual does not describe the Objective-C and Objective-C++
2900 languages themselves. @xref{Standards,,Language Standards
2901 Supported by GCC}, for references.)
2902
2903 This section describes the command-line options that are only meaningful
2904 for Objective-C and Objective-C++ programs. You can also use most of
2905 the language-independent GNU compiler options.
2906 For example, you might compile a file @file{some_class.m} like this:
2907
2908 @smallexample
2909 gcc -g -fgnu-runtime -O -c some_class.m
2910 @end smallexample
2911
2912 @noindent
2913 In this example, @option{-fgnu-runtime} is an option meant only for
2914 Objective-C and Objective-C++ programs; you can use the other options with
2915 any language supported by GCC@.
2916
2917 Note that since Objective-C is an extension of the C language, Objective-C
2918 compilations may also use options specific to the C front-end (e.g.,
2919 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
2920 C++-specific options (e.g., @option{-Wabi}).
2921
2922 Here is a list of options that are @emph{only} for compiling Objective-C
2923 and Objective-C++ programs:
2924
2925 @table @gcctabopt
2926 @item -fconstant-string-class=@var{class-name}
2927 @opindex fconstant-string-class
2928 Use @var{class-name} as the name of the class to instantiate for each
2929 literal string specified with the syntax @code{@@"@dots{}"}. The default
2930 class name is @code{NXConstantString} if the GNU runtime is being used, and
2931 @code{NSConstantString} if the NeXT runtime is being used (see below). The
2932 @option{-fconstant-cfstrings} option, if also present, overrides the
2933 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
2934 to be laid out as constant CoreFoundation strings.
2935
2936 @item -fgnu-runtime
2937 @opindex fgnu-runtime
2938 Generate object code compatible with the standard GNU Objective-C
2939 runtime. This is the default for most types of systems.
2940
2941 @item -fnext-runtime
2942 @opindex fnext-runtime
2943 Generate output compatible with the NeXT runtime. This is the default
2944 for NeXT-based systems, including Darwin and Mac OS X@. The macro
2945 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
2946 used.
2947
2948 @item -fno-nil-receivers
2949 @opindex fno-nil-receivers
2950 Assume that all Objective-C message dispatches (@code{[receiver
2951 message:arg]}) in this translation unit ensure that the receiver is
2952 not @code{nil}. This allows for more efficient entry points in the
2953 runtime to be used. This option is only available in conjunction with
2954 the NeXT runtime and ABI version 0 or 1.
2955
2956 @item -fobjc-abi-version=@var{n}
2957 @opindex fobjc-abi-version
2958 Use version @var{n} of the Objective-C ABI for the selected runtime.
2959 This option is currently supported only for the NeXT runtime. In that
2960 case, Version 0 is the traditional (32-bit) ABI without support for
2961 properties and other Objective-C 2.0 additions. Version 1 is the
2962 traditional (32-bit) ABI with support for properties and other
2963 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
2964 nothing is specified, the default is Version 0 on 32-bit target
2965 machines, and Version 2 on 64-bit target machines.
2966
2967 @item -fobjc-call-cxx-cdtors
2968 @opindex fobjc-call-cxx-cdtors
2969 For each Objective-C class, check if any of its instance variables is a
2970 C++ object with a non-trivial default constructor. If so, synthesize a
2971 special @code{- (id) .cxx_construct} instance method which runs
2972 non-trivial default constructors on any such instance variables, in order,
2973 and then return @code{self}. Similarly, check if any instance variable
2974 is a C++ object with a non-trivial destructor, and if so, synthesize a
2975 special @code{- (void) .cxx_destruct} method which runs
2976 all such default destructors, in reverse order.
2977
2978 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
2979 methods thusly generated only operate on instance variables
2980 declared in the current Objective-C class, and not those inherited
2981 from superclasses. It is the responsibility of the Objective-C
2982 runtime to invoke all such methods in an object's inheritance
2983 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
2984 by the runtime immediately after a new object instance is allocated;
2985 the @code{- (void) .cxx_destruct} methods are invoked immediately
2986 before the runtime deallocates an object instance.
2987
2988 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
2989 support for invoking the @code{- (id) .cxx_construct} and
2990 @code{- (void) .cxx_destruct} methods.
2991
2992 @item -fobjc-direct-dispatch
2993 @opindex fobjc-direct-dispatch
2994 Allow fast jumps to the message dispatcher. On Darwin this is
2995 accomplished via the comm page.
2996
2997 @item -fobjc-exceptions
2998 @opindex fobjc-exceptions
2999 Enable syntactic support for structured exception handling in
3000 Objective-C, similar to what is offered by C++ and Java. This option
3001 is required to use the Objective-C keywords @code{@@try},
3002 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3003 @code{@@synchronized}. This option is available with both the GNU
3004 runtime and the NeXT runtime (but not available in conjunction with
3005 the NeXT runtime on Mac OS X 10.2 and earlier).
3006
3007 @item -fobjc-gc
3008 @opindex fobjc-gc
3009 Enable garbage collection (GC) in Objective-C and Objective-C++
3010 programs. This option is only available with the NeXT runtime; the
3011 GNU runtime has a different garbage collection implementation that
3012 does not require special compiler flags.
3013
3014 @item -fobjc-nilcheck
3015 @opindex fobjc-nilcheck
3016 For the NeXT runtime with version 2 of the ABI, check for a nil
3017 receiver in method invocations before doing the actual method call.
3018 This is the default and can be disabled using
3019 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3020 checked for nil in this way no matter what this flag is set to.
3021 Currently this flag does nothing when the GNU runtime, or an older
3022 version of the NeXT runtime ABI, is used.
3023
3024 @item -fobjc-std=objc1
3025 @opindex fobjc-std
3026 Conform to the language syntax of Objective-C 1.0, the language
3027 recognized by GCC 4.0. This only affects the Objective-C additions to
3028 the C/C++ language; it does not affect conformance to C/C++ standards,
3029 which is controlled by the separate C/C++ dialect option flags. When
3030 this option is used with the Objective-C or Objective-C++ compiler,
3031 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3032 This is useful if you need to make sure that your Objective-C code can
3033 be compiled with older versions of GCC@.
3034
3035 @item -freplace-objc-classes
3036 @opindex freplace-objc-classes
3037 Emit a special marker instructing @command{ld(1)} not to statically link in
3038 the resulting object file, and allow @command{dyld(1)} to load it in at
3039 run time instead. This is used in conjunction with the Fix-and-Continue
3040 debugging mode, where the object file in question may be recompiled and
3041 dynamically reloaded in the course of program execution, without the need
3042 to restart the program itself. Currently, Fix-and-Continue functionality
3043 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3044 and later.
3045
3046 @item -fzero-link
3047 @opindex fzero-link
3048 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3049 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3050 compile time) with static class references that get initialized at load time,
3051 which improves run-time performance. Specifying the @option{-fzero-link} flag
3052 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3053 to be retained. This is useful in Zero-Link debugging mode, since it allows
3054 for individual class implementations to be modified during program execution.
3055 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3056 regardless of command-line options.
3057
3058 @item -fno-local-ivars
3059 @opindex fno-local-ivars
3060 @opindex flocal-ivars
3061 By default instance variables in Objective-C can be accessed as if
3062 they were local variables from within the methods of the class they're
3063 declared in. This can lead to shadowing between instance variables
3064 and other variables declared either locally inside a class method or
3065 globally with the same name. Specifying the @option{-fno-local-ivars}
3066 flag disables this behavior thus avoiding variable shadowing issues.
3067
3068 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3069 @opindex fivar-visibility
3070 Set the default instance variable visibility to the specified option
3071 so that instance variables declared outside the scope of any access
3072 modifier directives default to the specified visibility.
3073
3074 @item -gen-decls
3075 @opindex gen-decls
3076 Dump interface declarations for all classes seen in the source file to a
3077 file named @file{@var{sourcename}.decl}.
3078
3079 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3080 @opindex Wassign-intercept
3081 @opindex Wno-assign-intercept
3082 Warn whenever an Objective-C assignment is being intercepted by the
3083 garbage collector.
3084
3085 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3086 @opindex Wno-protocol
3087 @opindex Wprotocol
3088 If a class is declared to implement a protocol, a warning is issued for
3089 every method in the protocol that is not implemented by the class. The
3090 default behavior is to issue a warning for every method not explicitly
3091 implemented in the class, even if a method implementation is inherited
3092 from the superclass. If you use the @option{-Wno-protocol} option, then
3093 methods inherited from the superclass are considered to be implemented,
3094 and no warning is issued for them.
3095
3096 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3097 @opindex Wselector
3098 @opindex Wno-selector
3099 Warn if multiple methods of different types for the same selector are
3100 found during compilation. The check is performed on the list of methods
3101 in the final stage of compilation. Additionally, a check is performed
3102 for each selector appearing in a @code{@@selector(@dots{})}
3103 expression, and a corresponding method for that selector has been found
3104 during compilation. Because these checks scan the method table only at
3105 the end of compilation, these warnings are not produced if the final
3106 stage of compilation is not reached, for example because an error is
3107 found during compilation, or because the @option{-fsyntax-only} option is
3108 being used.
3109
3110 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3111 @opindex Wstrict-selector-match
3112 @opindex Wno-strict-selector-match
3113 Warn if multiple methods with differing argument and/or return types are
3114 found for a given selector when attempting to send a message using this
3115 selector to a receiver of type @code{id} or @code{Class}. When this flag
3116 is off (which is the default behavior), the compiler omits such warnings
3117 if any differences found are confined to types that share the same size
3118 and alignment.
3119
3120 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3121 @opindex Wundeclared-selector
3122 @opindex Wno-undeclared-selector
3123 Warn if a @code{@@selector(@dots{})} expression referring to an
3124 undeclared selector is found. A selector is considered undeclared if no
3125 method with that name has been declared before the
3126 @code{@@selector(@dots{})} expression, either explicitly in an
3127 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3128 an @code{@@implementation} section. This option always performs its
3129 checks as soon as a @code{@@selector(@dots{})} expression is found,
3130 while @option{-Wselector} only performs its checks in the final stage of
3131 compilation. This also enforces the coding style convention
3132 that methods and selectors must be declared before being used.
3133
3134 @item -print-objc-runtime-info
3135 @opindex print-objc-runtime-info
3136 Generate C header describing the largest structure that is passed by
3137 value, if any.
3138
3139 @end table
3140
3141 @node Language Independent Options
3142 @section Options to Control Diagnostic Messages Formatting
3143 @cindex options to control diagnostics formatting
3144 @cindex diagnostic messages
3145 @cindex message formatting
3146
3147 Traditionally, diagnostic messages have been formatted irrespective of
3148 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3149 options described below
3150 to control the formatting algorithm for diagnostic messages,
3151 e.g.@: how many characters per line, how often source location
3152 information should be reported. Note that some language front ends may not
3153 honor these options.
3154
3155 @table @gcctabopt
3156 @item -fmessage-length=@var{n}
3157 @opindex fmessage-length
3158 Try to format error messages so that they fit on lines of about
3159 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3160 done; each error message appears on a single line. This is the
3161 default for all front ends.
3162
3163 @item -fdiagnostics-show-location=once
3164 @opindex fdiagnostics-show-location
3165 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3166 reporter to emit source location information @emph{once}; that is, in
3167 case the message is too long to fit on a single physical line and has to
3168 be wrapped, the source location won't be emitted (as prefix) again,
3169 over and over, in subsequent continuation lines. This is the default
3170 behavior.
3171
3172 @item -fdiagnostics-show-location=every-line
3173 Only meaningful in line-wrapping mode. Instructs the diagnostic
3174 messages reporter to emit the same source location information (as
3175 prefix) for physical lines that result from the process of breaking
3176 a message which is too long to fit on a single line.
3177
3178 @item -fdiagnostics-color[=@var{WHEN}]
3179 @itemx -fno-diagnostics-color
3180 @opindex fdiagnostics-color
3181 @cindex highlight, color, colour
3182 @vindex GCC_COLORS @r{environment variable}
3183 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3184 or @samp{auto}. The default depends on how the compiler has been configured,
3185 it can be any of the above @var{WHEN} options or also @samp{never}
3186 if @env{GCC_COLORS} environment variable isn't present in the environment,
3187 and @samp{auto} otherwise.
3188 @samp{auto} means to use color only when the standard error is a terminal.
3189 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3190 aliases for @option{-fdiagnostics-color=always} and
3191 @option{-fdiagnostics-color=never}, respectively.
3192
3193 The colors are defined by the environment variable @env{GCC_COLORS}.
3194 Its value is a colon-separated list of capabilities and Select Graphic
3195 Rendition (SGR) substrings. SGR commands are interpreted by the
3196 terminal or terminal emulator. (See the section in the documentation
3197 of your text terminal for permitted values and their meanings as
3198 character attributes.) These substring values are integers in decimal
3199 representation and can be concatenated with semicolons.
3200 Common values to concatenate include
3201 @samp{1} for bold,
3202 @samp{4} for underline,
3203 @samp{5} for blink,
3204 @samp{7} for inverse,
3205 @samp{39} for default foreground color,
3206 @samp{30} to @samp{37} for foreground colors,
3207 @samp{90} to @samp{97} for 16-color mode foreground colors,
3208 @samp{38;5;0} to @samp{38;5;255}
3209 for 88-color and 256-color modes foreground colors,
3210 @samp{49} for default background color,
3211 @samp{40} to @samp{47} for background colors,
3212 @samp{100} to @samp{107} for 16-color mode background colors,
3213 and @samp{48;5;0} to @samp{48;5;255}
3214 for 88-color and 256-color modes background colors.
3215
3216 The default @env{GCC_COLORS} is
3217 @smallexample
3218 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3219 @end smallexample
3220 @noindent
3221 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3222 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3223 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3224 string disables colors.
3225 Supported capabilities are as follows.
3226
3227 @table @code
3228 @item error=
3229 @vindex error GCC_COLORS @r{capability}
3230 SGR substring for error: markers.
3231
3232 @item warning=
3233 @vindex warning GCC_COLORS @r{capability}
3234 SGR substring for warning: markers.
3235
3236 @item note=
3237 @vindex note GCC_COLORS @r{capability}
3238 SGR substring for note: markers.
3239
3240 @item caret=
3241 @vindex caret GCC_COLORS @r{capability}
3242 SGR substring for caret line.
3243
3244 @item locus=
3245 @vindex locus GCC_COLORS @r{capability}
3246 SGR substring for location information, @samp{file:line} or
3247 @samp{file:line:column} etc.
3248
3249 @item quote=
3250 @vindex quote GCC_COLORS @r{capability}
3251 SGR substring for information printed within quotes.
3252 @end table
3253
3254 @item -fno-diagnostics-show-option
3255 @opindex fno-diagnostics-show-option
3256 @opindex fdiagnostics-show-option
3257 By default, each diagnostic emitted includes text indicating the
3258 command-line option that directly controls the diagnostic (if such an
3259 option is known to the diagnostic machinery). Specifying the
3260 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3261
3262 @item -fno-diagnostics-show-caret
3263 @opindex fno-diagnostics-show-caret
3264 @opindex fdiagnostics-show-caret
3265 By default, each diagnostic emitted includes the original source line
3266 and a caret '^' indicating the column. This option suppresses this
3267 information. The source line is truncated to @var{n} characters, if
3268 the @option{-fmessage-length=n} option is given. When the output is done
3269 to the terminal, the width is limited to the width given by the
3270 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3271
3272 @end table
3273
3274 @node Warning Options
3275 @section Options to Request or Suppress Warnings
3276 @cindex options to control warnings
3277 @cindex warning messages
3278 @cindex messages, warning
3279 @cindex suppressing warnings
3280
3281 Warnings are diagnostic messages that report constructions that
3282 are not inherently erroneous but that are risky or suggest there
3283 may have been an error.
3284
3285 The following language-independent options do not enable specific
3286 warnings but control the kinds of diagnostics produced by GCC@.
3287
3288 @table @gcctabopt
3289 @cindex syntax checking
3290 @item -fsyntax-only
3291 @opindex fsyntax-only
3292 Check the code for syntax errors, but don't do anything beyond that.
3293
3294 @item -fmax-errors=@var{n}
3295 @opindex fmax-errors
3296 Limits the maximum number of error messages to @var{n}, at which point
3297 GCC bails out rather than attempting to continue processing the source
3298 code. If @var{n} is 0 (the default), there is no limit on the number
3299 of error messages produced. If @option{-Wfatal-errors} is also
3300 specified, then @option{-Wfatal-errors} takes precedence over this
3301 option.
3302
3303 @item -w
3304 @opindex w
3305 Inhibit all warning messages.
3306
3307 @item -Werror
3308 @opindex Werror
3309 @opindex Wno-error
3310 Make all warnings into errors.
3311
3312 @item -Werror=
3313 @opindex Werror=
3314 @opindex Wno-error=
3315 Make the specified warning into an error. The specifier for a warning
3316 is appended; for example @option{-Werror=switch} turns the warnings
3317 controlled by @option{-Wswitch} into errors. This switch takes a
3318 negative form, to be used to negate @option{-Werror} for specific
3319 warnings; for example @option{-Wno-error=switch} makes
3320 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3321 is in effect.
3322
3323 The warning message for each controllable warning includes the
3324 option that controls the warning. That option can then be used with
3325 @option{-Werror=} and @option{-Wno-error=} as described above.
3326 (Printing of the option in the warning message can be disabled using the
3327 @option{-fno-diagnostics-show-option} flag.)
3328
3329 Note that specifying @option{-Werror=}@var{foo} automatically implies
3330 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3331 imply anything.
3332
3333 @item -Wfatal-errors
3334 @opindex Wfatal-errors
3335 @opindex Wno-fatal-errors
3336 This option causes the compiler to abort compilation on the first error
3337 occurred rather than trying to keep going and printing further error
3338 messages.
3339
3340 @end table
3341
3342 You can request many specific warnings with options beginning with
3343 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3344 implicit declarations. Each of these specific warning options also
3345 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3346 example, @option{-Wno-implicit}. This manual lists only one of the
3347 two forms, whichever is not the default. For further
3348 language-specific options also refer to @ref{C++ Dialect Options} and
3349 @ref{Objective-C and Objective-C++ Dialect Options}.
3350
3351 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3352 options, such as @option{-Wunused}, which may turn on further options,
3353 such as @option{-Wunused-value}. The combined effect of positive and
3354 negative forms is that more specific options have priority over less
3355 specific ones, independently of their position in the command-line. For
3356 options of the same specificity, the last one takes effect. Options
3357 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3358 as if they appeared at the end of the command-line.
3359
3360 When an unrecognized warning option is requested (e.g.,
3361 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3362 that the option is not recognized. However, if the @option{-Wno-} form
3363 is used, the behavior is slightly different: no diagnostic is
3364 produced for @option{-Wno-unknown-warning} unless other diagnostics
3365 are being produced. This allows the use of new @option{-Wno-} options
3366 with old compilers, but if something goes wrong, the compiler
3367 warns that an unrecognized option is present.
3368
3369 @table @gcctabopt
3370 @item -Wpedantic
3371 @itemx -pedantic
3372 @opindex pedantic
3373 @opindex Wpedantic
3374 Issue all the warnings demanded by strict ISO C and ISO C++;
3375 reject all programs that use forbidden extensions, and some other
3376 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3377 version of the ISO C standard specified by any @option{-std} option used.
3378
3379 Valid ISO C and ISO C++ programs should compile properly with or without
3380 this option (though a rare few require @option{-ansi} or a
3381 @option{-std} option specifying the required version of ISO C)@. However,
3382 without this option, certain GNU extensions and traditional C and C++
3383 features are supported as well. With this option, they are rejected.
3384
3385 @option{-Wpedantic} does not cause warning messages for use of the
3386 alternate keywords whose names begin and end with @samp{__}. Pedantic
3387 warnings are also disabled in the expression that follows
3388 @code{__extension__}. However, only system header files should use
3389 these escape routes; application programs should avoid them.
3390 @xref{Alternate Keywords}.
3391
3392 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3393 C conformance. They soon find that it does not do quite what they want:
3394 it finds some non-ISO practices, but not all---only those for which
3395 ISO C @emph{requires} a diagnostic, and some others for which
3396 diagnostics have been added.
3397
3398 A feature to report any failure to conform to ISO C might be useful in
3399 some instances, but would require considerable additional work and would
3400 be quite different from @option{-Wpedantic}. We don't have plans to
3401 support such a feature in the near future.
3402
3403 Where the standard specified with @option{-std} represents a GNU
3404 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3405 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3406 extended dialect is based. Warnings from @option{-Wpedantic} are given
3407 where they are required by the base standard. (It does not make sense
3408 for such warnings to be given only for features not in the specified GNU
3409 C dialect, since by definition the GNU dialects of C include all
3410 features the compiler supports with the given option, and there would be
3411 nothing to warn about.)
3412
3413 @item -pedantic-errors
3414 @opindex pedantic-errors
3415 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3416 requires a diagnostic, in some cases where there is undefined behavior
3417 at compile-time and in some other cases that do not prevent compilation
3418 of programs that are valid according to the standard. This is not
3419 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3420 by this option and not enabled by the latter and vice versa.
3421
3422 @item -Wall
3423 @opindex Wall
3424 @opindex Wno-all
3425 This enables all the warnings about constructions that some users
3426 consider questionable, and that are easy to avoid (or modify to
3427 prevent the warning), even in conjunction with macros. This also
3428 enables some language-specific warnings described in @ref{C++ Dialect
3429 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3430
3431 @option{-Wall} turns on the following warning flags:
3432
3433 @gccoptlist{-Waddress @gol
3434 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3435 -Wc++11-compat -Wc++14-compat@gol
3436 -Wchar-subscripts @gol
3437 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3438 -Wimplicit-int @r{(C and Objective-C only)} @gol
3439 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3440 -Wcomment @gol
3441 -Wformat @gol
3442 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3443 -Wmaybe-uninitialized @gol
3444 -Wmissing-braces @r{(only for C/ObjC)} @gol
3445 -Wnonnull @gol
3446 -Wopenmp-simd @gol
3447 -Wparentheses @gol
3448 -Wpointer-sign @gol
3449 -Wreorder @gol
3450 -Wreturn-type @gol
3451 -Wsequence-point @gol
3452 -Wsign-compare @r{(only in C++)} @gol
3453 -Wstrict-aliasing @gol
3454 -Wstrict-overflow=1 @gol
3455 -Wswitch @gol
3456 -Wtrigraphs @gol
3457 -Wuninitialized @gol
3458 -Wunknown-pragmas @gol
3459 -Wunused-function @gol
3460 -Wunused-label @gol
3461 -Wunused-value @gol
3462 -Wunused-variable @gol
3463 -Wvolatile-register-var @gol
3464 }
3465
3466 Note that some warning flags are not implied by @option{-Wall}. Some of
3467 them warn about constructions that users generally do not consider
3468 questionable, but which occasionally you might wish to check for;
3469 others warn about constructions that are necessary or hard to avoid in
3470 some cases, and there is no simple way to modify the code to suppress
3471 the warning. Some of them are enabled by @option{-Wextra} but many of
3472 them must be enabled individually.
3473
3474 @item -Wextra
3475 @opindex W
3476 @opindex Wextra
3477 @opindex Wno-extra
3478 This enables some extra warning flags that are not enabled by
3479 @option{-Wall}. (This option used to be called @option{-W}. The older
3480 name is still supported, but the newer name is more descriptive.)
3481
3482 @gccoptlist{-Wclobbered @gol
3483 -Wempty-body @gol
3484 -Wignored-qualifiers @gol
3485 -Wmissing-field-initializers @gol
3486 -Wmissing-parameter-type @r{(C only)} @gol
3487 -Wold-style-declaration @r{(C only)} @gol
3488 -Woverride-init @gol
3489 -Wsign-compare @gol
3490 -Wtype-limits @gol
3491 -Wuninitialized @gol
3492 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3493 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3494 }
3495
3496 The option @option{-Wextra} also prints warning messages for the
3497 following cases:
3498
3499 @itemize @bullet
3500
3501 @item
3502 A pointer is compared against integer zero with @code{<}, @code{<=},
3503 @code{>}, or @code{>=}.
3504
3505 @item
3506 (C++ only) An enumerator and a non-enumerator both appear in a
3507 conditional expression.
3508
3509 @item
3510 (C++ only) Ambiguous virtual bases.
3511
3512 @item
3513 (C++ only) Subscripting an array that has been declared @code{register}.
3514
3515 @item
3516 (C++ only) Taking the address of a variable that has been declared
3517 @code{register}.
3518
3519 @item
3520 (C++ only) A base class is not initialized in a derived class's copy
3521 constructor.
3522
3523 @end itemize
3524
3525 @item -Wchar-subscripts
3526 @opindex Wchar-subscripts
3527 @opindex Wno-char-subscripts
3528 Warn if an array subscript has type @code{char}. This is a common cause
3529 of error, as programmers often forget that this type is signed on some
3530 machines.
3531 This warning is enabled by @option{-Wall}.
3532
3533 @item -Wcomment
3534 @opindex Wcomment
3535 @opindex Wno-comment
3536 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3537 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3538 This warning is enabled by @option{-Wall}.
3539
3540 @item -Wno-coverage-mismatch
3541 @opindex Wno-coverage-mismatch
3542 Warn if feedback profiles do not match when using the
3543 @option{-fprofile-use} option.
3544 If a source file is changed between compiling with @option{-fprofile-gen} and
3545 with @option{-fprofile-use}, the files with the profile feedback can fail
3546 to match the source file and GCC cannot use the profile feedback
3547 information. By default, this warning is enabled and is treated as an
3548 error. @option{-Wno-coverage-mismatch} can be used to disable the
3549 warning or @option{-Wno-error=coverage-mismatch} can be used to
3550 disable the error. Disabling the error for this warning can result in
3551 poorly optimized code and is useful only in the
3552 case of very minor changes such as bug fixes to an existing code-base.
3553 Completely disabling the warning is not recommended.
3554
3555 @item -Wno-cpp
3556 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3557
3558 Suppress warning messages emitted by @code{#warning} directives.
3559
3560 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3561 @opindex Wdouble-promotion
3562 @opindex Wno-double-promotion
3563 Give a warning when a value of type @code{float} is implicitly
3564 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3565 floating-point unit implement @code{float} in hardware, but emulate
3566 @code{double} in software. On such a machine, doing computations
3567 using @code{double} values is much more expensive because of the
3568 overhead required for software emulation.
3569
3570 It is easy to accidentally do computations with @code{double} because
3571 floating-point literals are implicitly of type @code{double}. For
3572 example, in:
3573 @smallexample
3574 @group
3575 float area(float radius)
3576 @{
3577 return 3.14159 * radius * radius;
3578 @}
3579 @end group
3580 @end smallexample
3581 the compiler performs the entire computation with @code{double}
3582 because the floating-point literal is a @code{double}.
3583
3584 @item -Wformat
3585 @itemx -Wformat=@var{n}
3586 @opindex Wformat
3587 @opindex Wno-format
3588 @opindex ffreestanding
3589 @opindex fno-builtin
3590 @opindex Wformat=
3591 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3592 the arguments supplied have types appropriate to the format string
3593 specified, and that the conversions specified in the format string make
3594 sense. This includes standard functions, and others specified by format
3595 attributes (@pxref{Function Attributes}), in the @code{printf},
3596 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3597 not in the C standard) families (or other target-specific families).
3598 Which functions are checked without format attributes having been
3599 specified depends on the standard version selected, and such checks of
3600 functions without the attribute specified are disabled by
3601 @option{-ffreestanding} or @option{-fno-builtin}.
3602
3603 The formats are checked against the format features supported by GNU
3604 libc version 2.2. These include all ISO C90 and C99 features, as well
3605 as features from the Single Unix Specification and some BSD and GNU
3606 extensions. Other library implementations may not support all these
3607 features; GCC does not support warning about features that go beyond a
3608 particular library's limitations. However, if @option{-Wpedantic} is used
3609 with @option{-Wformat}, warnings are given about format features not
3610 in the selected standard version (but not for @code{strfmon} formats,
3611 since those are not in any version of the C standard). @xref{C Dialect
3612 Options,,Options Controlling C Dialect}.
3613
3614 @table @gcctabopt
3615 @item -Wformat=1
3616 @itemx -Wformat
3617 @opindex Wformat
3618 @opindex Wformat=1
3619 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3620 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
3621 @option{-Wformat} also checks for null format arguments for several
3622 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
3623 aspects of this level of format checking can be disabled by the
3624 options: @option{-Wno-format-contains-nul},
3625 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3626 @option{-Wformat} is enabled by @option{-Wall}.
3627
3628 @item -Wno-format-contains-nul
3629 @opindex Wno-format-contains-nul
3630 @opindex Wformat-contains-nul
3631 If @option{-Wformat} is specified, do not warn about format strings that
3632 contain NUL bytes.
3633
3634 @item -Wno-format-extra-args
3635 @opindex Wno-format-extra-args
3636 @opindex Wformat-extra-args
3637 If @option{-Wformat} is specified, do not warn about excess arguments to a
3638 @code{printf} or @code{scanf} format function. The C standard specifies
3639 that such arguments are ignored.
3640
3641 Where the unused arguments lie between used arguments that are
3642 specified with @samp{$} operand number specifications, normally
3643 warnings are still given, since the implementation could not know what
3644 type to pass to @code{va_arg} to skip the unused arguments. However,
3645 in the case of @code{scanf} formats, this option suppresses the
3646 warning if the unused arguments are all pointers, since the Single
3647 Unix Specification says that such unused arguments are allowed.
3648
3649 @item -Wno-format-zero-length
3650 @opindex Wno-format-zero-length
3651 @opindex Wformat-zero-length
3652 If @option{-Wformat} is specified, do not warn about zero-length formats.
3653 The C standard specifies that zero-length formats are allowed.
3654
3655
3656 @item -Wformat=2
3657 @opindex Wformat=2
3658 Enable @option{-Wformat} plus additional format checks. Currently
3659 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3660 -Wformat-y2k}.
3661
3662 @item -Wformat-nonliteral
3663 @opindex Wformat-nonliteral
3664 @opindex Wno-format-nonliteral
3665 If @option{-Wformat} is specified, also warn if the format string is not a
3666 string literal and so cannot be checked, unless the format function
3667 takes its format arguments as a @code{va_list}.
3668
3669 @item -Wformat-security
3670 @opindex Wformat-security
3671 @opindex Wno-format-security
3672 If @option{-Wformat} is specified, also warn about uses of format
3673 functions that represent possible security problems. At present, this
3674 warns about calls to @code{printf} and @code{scanf} functions where the
3675 format string is not a string literal and there are no format arguments,
3676 as in @code{printf (foo);}. This may be a security hole if the format
3677 string came from untrusted input and contains @samp{%n}. (This is
3678 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3679 in future warnings may be added to @option{-Wformat-security} that are not
3680 included in @option{-Wformat-nonliteral}.)
3681
3682 @item -Wformat-signedness
3683 @opindex Wformat-signedness
3684 @opindex Wno-format-signedness
3685 If @option{-Wformat} is specified, also warn if the format string
3686 requires an unsigned argument and the argument is signed and vice versa.
3687
3688 @item -Wformat-y2k
3689 @opindex Wformat-y2k
3690 @opindex Wno-format-y2k
3691 If @option{-Wformat} is specified, also warn about @code{strftime}
3692 formats that may yield only a two-digit year.
3693 @end table
3694
3695 @item -Wnonnull
3696 @opindex Wnonnull
3697 @opindex Wno-nonnull
3698 Warn about passing a null pointer for arguments marked as
3699 requiring a non-null value by the @code{nonnull} function attribute.
3700
3701 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
3702 can be disabled with the @option{-Wno-nonnull} option.
3703
3704 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3705 @opindex Winit-self
3706 @opindex Wno-init-self
3707 Warn about uninitialized variables that are initialized with themselves.
3708 Note this option can only be used with the @option{-Wuninitialized} option.
3709
3710 For example, GCC warns about @code{i} being uninitialized in the
3711 following snippet only when @option{-Winit-self} has been specified:
3712 @smallexample
3713 @group
3714 int f()
3715 @{
3716 int i = i;
3717 return i;
3718 @}
3719 @end group
3720 @end smallexample
3721
3722 This warning is enabled by @option{-Wall} in C++.
3723
3724 @item -Wimplicit-int @r{(C and Objective-C only)}
3725 @opindex Wimplicit-int
3726 @opindex Wno-implicit-int
3727 Warn when a declaration does not specify a type.
3728 This warning is enabled by @option{-Wall}.
3729
3730 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3731 @opindex Wimplicit-function-declaration
3732 @opindex Wno-implicit-function-declaration
3733 Give a warning whenever a function is used before being declared. In
3734 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3735 enabled by default and it is made into an error by
3736 @option{-pedantic-errors}. This warning is also enabled by
3737 @option{-Wall}.
3738
3739 @item -Wimplicit @r{(C and Objective-C only)}
3740 @opindex Wimplicit
3741 @opindex Wno-implicit
3742 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3743 This warning is enabled by @option{-Wall}.
3744
3745 @item -Wignored-qualifiers @r{(C and C++ only)}
3746 @opindex Wignored-qualifiers
3747 @opindex Wno-ignored-qualifiers
3748 Warn if the return type of a function has a type qualifier
3749 such as @code{const}. For ISO C such a type qualifier has no effect,
3750 since the value returned by a function is not an lvalue.
3751 For C++, the warning is only emitted for scalar types or @code{void}.
3752 ISO C prohibits qualified @code{void} return types on function
3753 definitions, so such return types always receive a warning
3754 even without this option.
3755
3756 This warning is also enabled by @option{-Wextra}.
3757
3758 @item -Wmain
3759 @opindex Wmain
3760 @opindex Wno-main
3761 Warn if the type of @code{main} is suspicious. @code{main} should be
3762 a function with external linkage, returning int, taking either zero
3763 arguments, two, or three arguments of appropriate types. This warning
3764 is enabled by default in C++ and is enabled by either @option{-Wall}
3765 or @option{-Wpedantic}.
3766
3767 @item -Wmissing-braces
3768 @opindex Wmissing-braces
3769 @opindex Wno-missing-braces
3770 Warn if an aggregate or union initializer is not fully bracketed. In
3771 the following example, the initializer for @code{a} is not fully
3772 bracketed, but that for @code{b} is fully bracketed. This warning is
3773 enabled by @option{-Wall} in C.
3774
3775 @smallexample
3776 int a[2][2] = @{ 0, 1, 2, 3 @};
3777 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3778 @end smallexample
3779
3780 This warning is enabled by @option{-Wall}.
3781
3782 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3783 @opindex Wmissing-include-dirs
3784 @opindex Wno-missing-include-dirs
3785 Warn if a user-supplied include directory does not exist.
3786
3787 @item -Wparentheses
3788 @opindex Wparentheses
3789 @opindex Wno-parentheses
3790 Warn if parentheses are omitted in certain contexts, such
3791 as when there is an assignment in a context where a truth value
3792 is expected, or when operators are nested whose precedence people
3793 often get confused about.
3794
3795 Also warn if a comparison like @code{x<=y<=z} appears; this is
3796 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3797 interpretation from that of ordinary mathematical notation.
3798
3799 Also warn about constructions where there may be confusion to which
3800 @code{if} statement an @code{else} branch belongs. Here is an example of
3801 such a case:
3802
3803 @smallexample
3804 @group
3805 @{
3806 if (a)
3807 if (b)
3808 foo ();
3809 else
3810 bar ();
3811 @}
3812 @end group
3813 @end smallexample
3814
3815 In C/C++, every @code{else} branch belongs to the innermost possible
3816 @code{if} statement, which in this example is @code{if (b)}. This is
3817 often not what the programmer expected, as illustrated in the above
3818 example by indentation the programmer chose. When there is the
3819 potential for this confusion, GCC issues a warning when this flag
3820 is specified. To eliminate the warning, add explicit braces around
3821 the innermost @code{if} statement so there is no way the @code{else}
3822 can belong to the enclosing @code{if}. The resulting code
3823 looks like this:
3824
3825 @smallexample
3826 @group
3827 @{
3828 if (a)
3829 @{
3830 if (b)
3831 foo ();
3832 else
3833 bar ();
3834 @}
3835 @}
3836 @end group
3837 @end smallexample
3838
3839 Also warn for dangerous uses of the GNU extension to
3840 @code{?:} with omitted middle operand. When the condition
3841 in the @code{?}: operator is a boolean expression, the omitted value is
3842 always 1. Often programmers expect it to be a value computed
3843 inside the conditional expression instead.
3844
3845 This warning is enabled by @option{-Wall}.
3846
3847 @item -Wsequence-point
3848 @opindex Wsequence-point
3849 @opindex Wno-sequence-point
3850 Warn about code that may have undefined semantics because of violations
3851 of sequence point rules in the C and C++ standards.
3852
3853 The C and C++ standards define the order in which expressions in a C/C++
3854 program are evaluated in terms of @dfn{sequence points}, which represent
3855 a partial ordering between the execution of parts of the program: those
3856 executed before the sequence point, and those executed after it. These
3857 occur after the evaluation of a full expression (one which is not part
3858 of a larger expression), after the evaluation of the first operand of a
3859 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
3860 function is called (but after the evaluation of its arguments and the
3861 expression denoting the called function), and in certain other places.
3862 Other than as expressed by the sequence point rules, the order of
3863 evaluation of subexpressions of an expression is not specified. All
3864 these rules describe only a partial order rather than a total order,
3865 since, for example, if two functions are called within one expression
3866 with no sequence point between them, the order in which the functions
3867 are called is not specified. However, the standards committee have
3868 ruled that function calls do not overlap.
3869
3870 It is not specified when between sequence points modifications to the
3871 values of objects take effect. Programs whose behavior depends on this
3872 have undefined behavior; the C and C++ standards specify that ``Between
3873 the previous and next sequence point an object shall have its stored
3874 value modified at most once by the evaluation of an expression.
3875 Furthermore, the prior value shall be read only to determine the value
3876 to be stored.''. If a program breaks these rules, the results on any
3877 particular implementation are entirely unpredictable.
3878
3879 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
3880 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
3881 diagnosed by this option, and it may give an occasional false positive
3882 result, but in general it has been found fairly effective at detecting
3883 this sort of problem in programs.
3884
3885 The standard is worded confusingly, therefore there is some debate
3886 over the precise meaning of the sequence point rules in subtle cases.
3887 Links to discussions of the problem, including proposed formal
3888 definitions, may be found on the GCC readings page, at
3889 @uref{http://gcc.gnu.org/@/readings.html}.
3890
3891 This warning is enabled by @option{-Wall} for C and C++.
3892
3893 @item -Wno-return-local-addr
3894 @opindex Wno-return-local-addr
3895 @opindex Wreturn-local-addr
3896 Do not warn about returning a pointer (or in C++, a reference) to a
3897 variable that goes out of scope after the function returns.
3898
3899 @item -Wreturn-type
3900 @opindex Wreturn-type
3901 @opindex Wno-return-type
3902 Warn whenever a function is defined with a return type that defaults
3903 to @code{int}. Also warn about any @code{return} statement with no
3904 return value in a function whose return type is not @code{void}
3905 (falling off the end of the function body is considered returning
3906 without a value), and about a @code{return} statement with an
3907 expression in a function whose return type is @code{void}.
3908
3909 For C++, a function without return type always produces a diagnostic
3910 message, even when @option{-Wno-return-type} is specified. The only
3911 exceptions are @code{main} and functions defined in system headers.
3912
3913 This warning is enabled by @option{-Wall}.
3914
3915 @item -Wshift-count-negative
3916 @opindex Wshift-count-negative
3917 @opindex Wno-shift-count-negative
3918 Warn if shift count is negative. This warning is enabled by default.
3919
3920 @item -Wshift-count-overflow
3921 @opindex Wshift-count-overflow
3922 @opindex Wno-shift-count-overflow
3923 Warn if shift count >= width of type. This warning is enabled by default.
3924
3925 @item -Wswitch
3926 @opindex Wswitch
3927 @opindex Wno-switch
3928 Warn whenever a @code{switch} statement has an index of enumerated type
3929 and lacks a @code{case} for one or more of the named codes of that
3930 enumeration. (The presence of a @code{default} label prevents this
3931 warning.) @code{case} labels outside the enumeration range also
3932 provoke warnings when this option is used (even if there is a
3933 @code{default} label).
3934 This warning is enabled by @option{-Wall}.
3935
3936 @item -Wswitch-default
3937 @opindex Wswitch-default
3938 @opindex Wno-switch-default
3939 Warn whenever a @code{switch} statement does not have a @code{default}
3940 case.
3941
3942 @item -Wswitch-enum
3943 @opindex Wswitch-enum
3944 @opindex Wno-switch-enum
3945 Warn whenever a @code{switch} statement has an index of enumerated type
3946 and lacks a @code{case} for one or more of the named codes of that
3947 enumeration. @code{case} labels outside the enumeration range also
3948 provoke warnings when this option is used. The only difference
3949 between @option{-Wswitch} and this option is that this option gives a
3950 warning about an omitted enumeration code even if there is a
3951 @code{default} label.
3952
3953 @item -Wswitch-bool
3954 @opindex Wswitch-bool
3955 @opindex Wno-switch-bool
3956 Warn whenever a @code{switch} statement has an index of boolean type.
3957 It is possible to suppress this warning by casting the controlling
3958 expression to a type other than @code{bool}. For example:
3959 @smallexample
3960 @group
3961 switch ((int) (a == 4))
3962 @{
3963 @dots{}
3964 @}
3965 @end group
3966 @end smallexample
3967 This warning is enabled by default for C and C++ programs.
3968
3969 @item -Wsync-nand @r{(C and C++ only)}
3970 @opindex Wsync-nand
3971 @opindex Wno-sync-nand
3972 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
3973 built-in functions are used. These functions changed semantics in GCC 4.4.
3974
3975 @item -Wtrigraphs
3976 @opindex Wtrigraphs
3977 @opindex Wno-trigraphs
3978 Warn if any trigraphs are encountered that might change the meaning of
3979 the program (trigraphs within comments are not warned about).
3980 This warning is enabled by @option{-Wall}.
3981
3982 @item -Wunused-but-set-parameter
3983 @opindex Wunused-but-set-parameter
3984 @opindex Wno-unused-but-set-parameter
3985 Warn whenever a function parameter is assigned to, but otherwise unused
3986 (aside from its declaration).
3987
3988 To suppress this warning use the @code{unused} attribute
3989 (@pxref{Variable Attributes}).
3990
3991 This warning is also enabled by @option{-Wunused} together with
3992 @option{-Wextra}.
3993
3994 @item -Wunused-but-set-variable
3995 @opindex Wunused-but-set-variable
3996 @opindex Wno-unused-but-set-variable
3997 Warn whenever a local variable is assigned to, but otherwise unused
3998 (aside from its declaration).
3999 This warning is enabled by @option{-Wall}.
4000
4001 To suppress this warning use the @code{unused} attribute
4002 (@pxref{Variable Attributes}).
4003
4004 This warning is also enabled by @option{-Wunused}, which is enabled
4005 by @option{-Wall}.
4006
4007 @item -Wunused-function
4008 @opindex Wunused-function
4009 @opindex Wno-unused-function
4010 Warn whenever a static function is declared but not defined or a
4011 non-inline static function is unused.
4012 This warning is enabled by @option{-Wall}.
4013
4014 @item -Wunused-label
4015 @opindex Wunused-label
4016 @opindex Wno-unused-label
4017 Warn whenever a label is declared but not used.
4018 This warning is enabled by @option{-Wall}.
4019
4020 To suppress this warning use the @code{unused} attribute
4021 (@pxref{Variable Attributes}).
4022
4023 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4024 @opindex Wunused-local-typedefs
4025 Warn when a typedef locally defined in a function is not used.
4026 This warning is enabled by @option{-Wall}.
4027
4028 @item -Wunused-parameter
4029 @opindex Wunused-parameter
4030 @opindex Wno-unused-parameter
4031 Warn whenever a function parameter is unused aside from its declaration.
4032
4033 To suppress this warning use the @code{unused} attribute
4034 (@pxref{Variable Attributes}).
4035
4036 @item -Wno-unused-result
4037 @opindex Wunused-result
4038 @opindex Wno-unused-result
4039 Do not warn if a caller of a function marked with attribute
4040 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4041 its return value. The default is @option{-Wunused-result}.
4042
4043 @item -Wunused-variable
4044 @opindex Wunused-variable
4045 @opindex Wno-unused-variable
4046 Warn whenever a local variable or non-constant static variable is unused
4047 aside from its declaration.
4048 This warning is enabled by @option{-Wall}.
4049
4050 To suppress this warning use the @code{unused} attribute
4051 (@pxref{Variable Attributes}).
4052
4053 @item -Wunused-value
4054 @opindex Wunused-value
4055 @opindex Wno-unused-value
4056 Warn whenever a statement computes a result that is explicitly not
4057 used. To suppress this warning cast the unused expression to
4058 @code{void}. This includes an expression-statement or the left-hand
4059 side of a comma expression that contains no side effects. For example,
4060 an expression such as @code{x[i,j]} causes a warning, while
4061 @code{x[(void)i,j]} does not.
4062
4063 This warning is enabled by @option{-Wall}.
4064
4065 @item -Wunused
4066 @opindex Wunused
4067 @opindex Wno-unused
4068 All the above @option{-Wunused} options combined.
4069
4070 In order to get a warning about an unused function parameter, you must
4071 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4072 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4073
4074 @item -Wuninitialized
4075 @opindex Wuninitialized
4076 @opindex Wno-uninitialized
4077 Warn if an automatic variable is used without first being initialized
4078 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4079 warn if a non-static reference or non-static @code{const} member
4080 appears in a class without constructors.
4081
4082 If you want to warn about code that uses the uninitialized value of the
4083 variable in its own initializer, use the @option{-Winit-self} option.
4084
4085 These warnings occur for individual uninitialized or clobbered
4086 elements of structure, union or array variables as well as for
4087 variables that are uninitialized or clobbered as a whole. They do
4088 not occur for variables or elements declared @code{volatile}. Because
4089 these warnings depend on optimization, the exact variables or elements
4090 for which there are warnings depends on the precise optimization
4091 options and version of GCC used.
4092
4093 Note that there may be no warning about a variable that is used only
4094 to compute a value that itself is never used, because such
4095 computations may be deleted by data flow analysis before the warnings
4096 are printed.
4097
4098 @item -Wmaybe-uninitialized
4099 @opindex Wmaybe-uninitialized
4100 @opindex Wno-maybe-uninitialized
4101 For an automatic variable, if there exists a path from the function
4102 entry to a use of the variable that is initialized, but there exist
4103 some other paths for which the variable is not initialized, the compiler
4104 emits a warning if it cannot prove the uninitialized paths are not
4105 executed at run time. These warnings are made optional because GCC is
4106 not smart enough to see all the reasons why the code might be correct
4107 in spite of appearing to have an error. Here is one example of how
4108 this can happen:
4109
4110 @smallexample
4111 @group
4112 @{
4113 int x;
4114 switch (y)
4115 @{
4116 case 1: x = 1;
4117 break;
4118 case 2: x = 4;
4119 break;
4120 case 3: x = 5;
4121 @}
4122 foo (x);
4123 @}
4124 @end group
4125 @end smallexample
4126
4127 @noindent
4128 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4129 always initialized, but GCC doesn't know this. To suppress the
4130 warning, you need to provide a default case with assert(0) or
4131 similar code.
4132
4133 @cindex @code{longjmp} warnings
4134 This option also warns when a non-volatile automatic variable might be
4135 changed by a call to @code{longjmp}. These warnings as well are possible
4136 only in optimizing compilation.
4137
4138 The compiler sees only the calls to @code{setjmp}. It cannot know
4139 where @code{longjmp} will be called; in fact, a signal handler could
4140 call it at any point in the code. As a result, you may get a warning
4141 even when there is in fact no problem because @code{longjmp} cannot
4142 in fact be called at the place that would cause a problem.
4143
4144 Some spurious warnings can be avoided if you declare all the functions
4145 you use that never return as @code{noreturn}. @xref{Function
4146 Attributes}.
4147
4148 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4149
4150 @item -Wunknown-pragmas
4151 @opindex Wunknown-pragmas
4152 @opindex Wno-unknown-pragmas
4153 @cindex warning for unknown pragmas
4154 @cindex unknown pragmas, warning
4155 @cindex pragmas, warning of unknown
4156 Warn when a @code{#pragma} directive is encountered that is not understood by
4157 GCC@. If this command-line option is used, warnings are even issued
4158 for unknown pragmas in system header files. This is not the case if
4159 the warnings are only enabled by the @option{-Wall} command-line option.
4160
4161 @item -Wno-pragmas
4162 @opindex Wno-pragmas
4163 @opindex Wpragmas
4164 Do not warn about misuses of pragmas, such as incorrect parameters,
4165 invalid syntax, or conflicts between pragmas. See also
4166 @option{-Wunknown-pragmas}.
4167
4168 @item -Wstrict-aliasing
4169 @opindex Wstrict-aliasing
4170 @opindex Wno-strict-aliasing
4171 This option is only active when @option{-fstrict-aliasing} is active.
4172 It warns about code that might break the strict aliasing rules that the
4173 compiler is using for optimization. The warning does not catch all
4174 cases, but does attempt to catch the more common pitfalls. It is
4175 included in @option{-Wall}.
4176 It is equivalent to @option{-Wstrict-aliasing=3}
4177
4178 @item -Wstrict-aliasing=n
4179 @opindex Wstrict-aliasing=n
4180 This option is only active when @option{-fstrict-aliasing} is active.
4181 It warns about code that might break the strict aliasing rules that the
4182 compiler is using for optimization.
4183 Higher levels correspond to higher accuracy (fewer false positives).
4184 Higher levels also correspond to more effort, similar to the way @option{-O}
4185 works.
4186 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4187
4188 Level 1: Most aggressive, quick, least accurate.
4189 Possibly useful when higher levels
4190 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4191 false negatives. However, it has many false positives.
4192 Warns for all pointer conversions between possibly incompatible types,
4193 even if never dereferenced. Runs in the front end only.
4194
4195 Level 2: Aggressive, quick, not too precise.
4196 May still have many false positives (not as many as level 1 though),
4197 and few false negatives (but possibly more than level 1).
4198 Unlike level 1, it only warns when an address is taken. Warns about
4199 incomplete types. Runs in the front end only.
4200
4201 Level 3 (default for @option{-Wstrict-aliasing}):
4202 Should have very few false positives and few false
4203 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
4204 Takes care of the common pun+dereference pattern in the front end:
4205 @code{*(int*)&some_float}.
4206 If optimization is enabled, it also runs in the back end, where it deals
4207 with multiple statement cases using flow-sensitive points-to information.
4208 Only warns when the converted pointer is dereferenced.
4209 Does not warn about incomplete types.
4210
4211 @item -Wstrict-overflow
4212 @itemx -Wstrict-overflow=@var{n}
4213 @opindex Wstrict-overflow
4214 @opindex Wno-strict-overflow
4215 This option is only active when @option{-fstrict-overflow} is active.
4216 It warns about cases where the compiler optimizes based on the
4217 assumption that signed overflow does not occur. Note that it does not
4218 warn about all cases where the code might overflow: it only warns
4219 about cases where the compiler implements some optimization. Thus
4220 this warning depends on the optimization level.
4221
4222 An optimization that assumes that signed overflow does not occur is
4223 perfectly safe if the values of the variables involved are such that
4224 overflow never does, in fact, occur. Therefore this warning can
4225 easily give a false positive: a warning about code that is not
4226 actually a problem. To help focus on important issues, several
4227 warning levels are defined. No warnings are issued for the use of
4228 undefined signed overflow when estimating how many iterations a loop
4229 requires, in particular when determining whether a loop will be
4230 executed at all.
4231
4232 @table @gcctabopt
4233 @item -Wstrict-overflow=1
4234 Warn about cases that are both questionable and easy to avoid. For
4235 example, with @option{-fstrict-overflow}, the compiler simplifies
4236 @code{x + 1 > x} to @code{1}. This level of
4237 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4238 are not, and must be explicitly requested.
4239
4240 @item -Wstrict-overflow=2
4241 Also warn about other cases where a comparison is simplified to a
4242 constant. For example: @code{abs (x) >= 0}. This can only be
4243 simplified when @option{-fstrict-overflow} is in effect, because
4244 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4245 zero. @option{-Wstrict-overflow} (with no level) is the same as
4246 @option{-Wstrict-overflow=2}.
4247
4248 @item -Wstrict-overflow=3
4249 Also warn about other cases where a comparison is simplified. For
4250 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4251
4252 @item -Wstrict-overflow=4
4253 Also warn about other simplifications not covered by the above cases.
4254 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4255
4256 @item -Wstrict-overflow=5
4257 Also warn about cases where the compiler reduces the magnitude of a
4258 constant involved in a comparison. For example: @code{x + 2 > y} is
4259 simplified to @code{x + 1 >= y}. This is reported only at the
4260 highest warning level because this simplification applies to many
4261 comparisons, so this warning level gives a very large number of
4262 false positives.
4263 @end table
4264
4265 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4266 @opindex Wsuggest-attribute=
4267 @opindex Wno-suggest-attribute=
4268 Warn for cases where adding an attribute may be beneficial. The
4269 attributes currently supported are listed below.
4270
4271 @table @gcctabopt
4272 @item -Wsuggest-attribute=pure
4273 @itemx -Wsuggest-attribute=const
4274 @itemx -Wsuggest-attribute=noreturn
4275 @opindex Wsuggest-attribute=pure
4276 @opindex Wno-suggest-attribute=pure
4277 @opindex Wsuggest-attribute=const
4278 @opindex Wno-suggest-attribute=const
4279 @opindex Wsuggest-attribute=noreturn
4280 @opindex Wno-suggest-attribute=noreturn
4281
4282 Warn about functions that might be candidates for attributes
4283 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
4284 functions visible in other compilation units or (in the case of @code{pure} and
4285 @code{const}) if it cannot prove that the function returns normally. A function
4286 returns normally if it doesn't contain an infinite loop or return abnormally
4287 by throwing, calling @code{abort} or trapping. This analysis requires option
4288 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4289 higher. Higher optimization levels improve the accuracy of the analysis.
4290
4291 @item -Wsuggest-attribute=format
4292 @itemx -Wmissing-format-attribute
4293 @opindex Wsuggest-attribute=format
4294 @opindex Wmissing-format-attribute
4295 @opindex Wno-suggest-attribute=format
4296 @opindex Wno-missing-format-attribute
4297 @opindex Wformat
4298 @opindex Wno-format
4299
4300 Warn about function pointers that might be candidates for @code{format}
4301 attributes. Note these are only possible candidates, not absolute ones.
4302 GCC guesses that function pointers with @code{format} attributes that
4303 are used in assignment, initialization, parameter passing or return
4304 statements should have a corresponding @code{format} attribute in the
4305 resulting type. I.e.@: the left-hand side of the assignment or
4306 initialization, the type of the parameter variable, or the return type
4307 of the containing function respectively should also have a @code{format}
4308 attribute to avoid the warning.
4309
4310 GCC also warns about function definitions that might be
4311 candidates for @code{format} attributes. Again, these are only
4312 possible candidates. GCC guesses that @code{format} attributes
4313 might be appropriate for any function that calls a function like
4314 @code{vprintf} or @code{vscanf}, but this might not always be the
4315 case, and some functions for which @code{format} attributes are
4316 appropriate may not be detected.
4317 @end table
4318
4319 @item -Wsuggest-final-types
4320 @opindex Wno-suggest-final-types
4321 @opindex Wsuggest-final-types
4322 Warn about types with virtual methods where code quality would be improved
4323 if the type were declared with the C++11 @code{final} specifier,
4324 or, if possible,
4325 declared in an anonymous namespace. This allows GCC to more aggressively
4326 devirtualize the polymorphic calls. This warning is more effective with link
4327 time optimization, where the information about the class hierarchy graph is
4328 more complete.
4329
4330 @item -Wsuggest-final-methods
4331 @opindex Wno-suggest-final-methods
4332 @opindex Wsuggest-final-methods
4333 Warn about virtual methods where code quality would be improved if the method
4334 were declared with the C++11 @code{final} specifier,
4335 or, if possible, its type were
4336 declared in an anonymous namespace or with the @code{final} specifier.
4337 This warning is
4338 more effective with link time optimization, where the information about the
4339 class hierarchy graph is more complete. It is recommended to first consider
4340 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4341 annotations.
4342
4343 @item -Wsuggest-override
4344 Warn about overriding virtual functions that are not marked with the override
4345 keyword.
4346
4347 @item -Warray-bounds
4348 @itemx -Warray-bounds=@var{n}
4349 @opindex Wno-array-bounds
4350 @opindex Warray-bounds
4351 This option is only active when @option{-ftree-vrp} is active
4352 (default for @option{-O2} and above). It warns about subscripts to arrays
4353 that are always out of bounds. This warning is enabled by @option{-Wall}.
4354
4355 @table @gcctabopt
4356 @item -Warray-bounds=1
4357 This is the warning level of @option{-Warray-bounds} and is enabled
4358 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4359
4360 @item -Warray-bounds=2
4361 This warning level also warns about out of bounds access for
4362 arrays at the end of a struct and for arrays accessed through
4363 pointers. This warning level may give a larger number of
4364 false positives and is deactivated by default.
4365 @end table
4366
4367 @item -Wbool-compare
4368 @opindex Wno-bool-compare
4369 @opindex Wbool-compare
4370 Warn about boolean expression compared with an integer value different from
4371 @code{true}/@code{false}. For instance, the following comparison is
4372 always false:
4373 @smallexample
4374 int n = 5;
4375 @dots{}
4376 if ((n > 1) == 2) @{ @dots{} @}
4377 @end smallexample
4378 This warning is enabled by @option{-Wall}.
4379
4380 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4381 @opindex Wno-discarded-qualifiers
4382 @opindex Wdiscarded-qualifiers
4383 Do not warn if type qualifiers on pointers are being discarded.
4384 Typically, the compiler warns if a @code{const char *} variable is
4385 passed to a function that takes a @code{char *} parameter. This option
4386 can be used to suppress such a warning.
4387
4388 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4389 @opindex Wno-discarded-array-qualifiers
4390 @opindex Wdiscarded-array-qualifiers
4391 Do not warn if type qualifiers on arrays which are pointer targets
4392 are being discarded. Typically, the compiler warns if a
4393 @code{const int (*)[]} variable is passed to a function that
4394 takes a @code{int (*)[]} parameter. This option can be used to
4395 suppress such a warning.
4396
4397 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4398 @opindex Wno-incompatible-pointer-types
4399 @opindex Wincompatible-pointer-types
4400 Do not warn when there is a conversion between pointers that have incompatible
4401 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
4402 which warns for pointer argument passing or assignment with different
4403 signedness.
4404
4405 @item -Wno-int-conversion @r{(C and Objective-C only)}
4406 @opindex Wno-int-conversion
4407 @opindex Wint-conversion
4408 Do not warn about incompatible integer to pointer and pointer to integer
4409 conversions. This warning is about implicit conversions; for explicit
4410 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4411 @option{-Wno-pointer-to-int-cast} may be used.
4412
4413 @item -Wno-div-by-zero
4414 @opindex Wno-div-by-zero
4415 @opindex Wdiv-by-zero
4416 Do not warn about compile-time integer division by zero. Floating-point
4417 division by zero is not warned about, as it can be a legitimate way of
4418 obtaining infinities and NaNs.
4419
4420 @item -Wsystem-headers
4421 @opindex Wsystem-headers
4422 @opindex Wno-system-headers
4423 @cindex warnings from system headers
4424 @cindex system headers, warnings from
4425 Print warning messages for constructs found in system header files.
4426 Warnings from system headers are normally suppressed, on the assumption
4427 that they usually do not indicate real problems and would only make the
4428 compiler output harder to read. Using this command-line option tells
4429 GCC to emit warnings from system headers as if they occurred in user
4430 code. However, note that using @option{-Wall} in conjunction with this
4431 option does @emph{not} warn about unknown pragmas in system
4432 headers---for that, @option{-Wunknown-pragmas} must also be used.
4433
4434 @item -Wtrampolines
4435 @opindex Wtrampolines
4436 @opindex Wno-trampolines
4437 Warn about trampolines generated for pointers to nested functions.
4438 A trampoline is a small piece of data or code that is created at run
4439 time on the stack when the address of a nested function is taken, and is
4440 used to call the nested function indirectly. For some targets, it is
4441 made up of data only and thus requires no special treatment. But, for
4442 most targets, it is made up of code and thus requires the stack to be
4443 made executable in order for the program to work properly.
4444
4445 @item -Wfloat-equal
4446 @opindex Wfloat-equal
4447 @opindex Wno-float-equal
4448 Warn if floating-point values are used in equality comparisons.
4449
4450 The idea behind this is that sometimes it is convenient (for the
4451 programmer) to consider floating-point values as approximations to
4452 infinitely precise real numbers. If you are doing this, then you need
4453 to compute (by analyzing the code, or in some other way) the maximum or
4454 likely maximum error that the computation introduces, and allow for it
4455 when performing comparisons (and when producing output, but that's a
4456 different problem). In particular, instead of testing for equality, you
4457 should check to see whether the two values have ranges that overlap; and
4458 this is done with the relational operators, so equality comparisons are
4459 probably mistaken.
4460
4461 @item -Wtraditional @r{(C and Objective-C only)}
4462 @opindex Wtraditional
4463 @opindex Wno-traditional
4464 Warn about certain constructs that behave differently in traditional and
4465 ISO C@. Also warn about ISO C constructs that have no traditional C
4466 equivalent, and/or problematic constructs that should be avoided.
4467
4468 @itemize @bullet
4469 @item
4470 Macro parameters that appear within string literals in the macro body.
4471 In traditional C macro replacement takes place within string literals,
4472 but in ISO C it does not.
4473
4474 @item
4475 In traditional C, some preprocessor directives did not exist.
4476 Traditional preprocessors only considered a line to be a directive
4477 if the @samp{#} appeared in column 1 on the line. Therefore
4478 @option{-Wtraditional} warns about directives that traditional C
4479 understands but ignores because the @samp{#} does not appear as the
4480 first character on the line. It also suggests you hide directives like
4481 @code{#pragma} not understood by traditional C by indenting them. Some
4482 traditional implementations do not recognize @code{#elif}, so this option
4483 suggests avoiding it altogether.
4484
4485 @item
4486 A function-like macro that appears without arguments.
4487
4488 @item
4489 The unary plus operator.
4490
4491 @item
4492 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4493 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
4494 constants.) Note, these suffixes appear in macros defined in the system
4495 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4496 Use of these macros in user code might normally lead to spurious
4497 warnings, however GCC's integrated preprocessor has enough context to
4498 avoid warning in these cases.
4499
4500 @item
4501 A function declared external in one block and then used after the end of
4502 the block.
4503
4504 @item
4505 A @code{switch} statement has an operand of type @code{long}.
4506
4507 @item
4508 A non-@code{static} function declaration follows a @code{static} one.
4509 This construct is not accepted by some traditional C compilers.
4510
4511 @item
4512 The ISO type of an integer constant has a different width or
4513 signedness from its traditional type. This warning is only issued if
4514 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
4515 typically represent bit patterns, are not warned about.
4516
4517 @item
4518 Usage of ISO string concatenation is detected.
4519
4520 @item
4521 Initialization of automatic aggregates.
4522
4523 @item
4524 Identifier conflicts with labels. Traditional C lacks a separate
4525 namespace for labels.
4526
4527 @item
4528 Initialization of unions. If the initializer is zero, the warning is
4529 omitted. This is done under the assumption that the zero initializer in
4530 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4531 initializer warnings and relies on default initialization to zero in the
4532 traditional C case.
4533
4534 @item
4535 Conversions by prototypes between fixed/floating-point values and vice
4536 versa. The absence of these prototypes when compiling with traditional
4537 C causes serious problems. This is a subset of the possible
4538 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4539
4540 @item
4541 Use of ISO C style function definitions. This warning intentionally is
4542 @emph{not} issued for prototype declarations or variadic functions
4543 because these ISO C features appear in your code when using
4544 libiberty's traditional C compatibility macros, @code{PARAMS} and
4545 @code{VPARAMS}. This warning is also bypassed for nested functions
4546 because that feature is already a GCC extension and thus not relevant to
4547 traditional C compatibility.
4548 @end itemize
4549
4550 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4551 @opindex Wtraditional-conversion
4552 @opindex Wno-traditional-conversion
4553 Warn if a prototype causes a type conversion that is different from what
4554 would happen to the same argument in the absence of a prototype. This
4555 includes conversions of fixed point to floating and vice versa, and
4556 conversions changing the width or signedness of a fixed-point argument
4557 except when the same as the default promotion.
4558
4559 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4560 @opindex Wdeclaration-after-statement
4561 @opindex Wno-declaration-after-statement
4562 Warn when a declaration is found after a statement in a block. This
4563 construct, known from C++, was introduced with ISO C99 and is by default
4564 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
4565
4566 @item -Wundef
4567 @opindex Wundef
4568 @opindex Wno-undef
4569 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4570
4571 @item -Wno-endif-labels
4572 @opindex Wno-endif-labels
4573 @opindex Wendif-labels
4574 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4575
4576 @item -Wshadow
4577 @opindex Wshadow
4578 @opindex Wno-shadow
4579 Warn whenever a local variable or type declaration shadows another
4580 variable, parameter, type, class member (in C++), or instance variable
4581 (in Objective-C) or whenever a built-in function is shadowed. Note
4582 that in C++, the compiler warns if a local variable shadows an
4583 explicit typedef, but not if it shadows a struct/class/enum.
4584
4585 @item -Wno-shadow-ivar @r{(Objective-C only)}
4586 @opindex Wno-shadow-ivar
4587 @opindex Wshadow-ivar
4588 Do not warn whenever a local variable shadows an instance variable in an
4589 Objective-C method.
4590
4591 @item -Wlarger-than=@var{len}
4592 @opindex Wlarger-than=@var{len}
4593 @opindex Wlarger-than-@var{len}
4594 Warn whenever an object of larger than @var{len} bytes is defined.
4595
4596 @item -Wframe-larger-than=@var{len}
4597 @opindex Wframe-larger-than
4598 Warn if the size of a function frame is larger than @var{len} bytes.
4599 The computation done to determine the stack frame size is approximate
4600 and not conservative.
4601 The actual requirements may be somewhat greater than @var{len}
4602 even if you do not get a warning. In addition, any space allocated
4603 via @code{alloca}, variable-length arrays, or related constructs
4604 is not included by the compiler when determining
4605 whether or not to issue a warning.
4606
4607 @item -Wno-free-nonheap-object
4608 @opindex Wno-free-nonheap-object
4609 @opindex Wfree-nonheap-object
4610 Do not warn when attempting to free an object that was not allocated
4611 on the heap.
4612
4613 @item -Wstack-usage=@var{len}
4614 @opindex Wstack-usage
4615 Warn if the stack usage of a function might be larger than @var{len} bytes.
4616 The computation done to determine the stack usage is conservative.
4617 Any space allocated via @code{alloca}, variable-length arrays, or related
4618 constructs is included by the compiler when determining whether or not to
4619 issue a warning.
4620
4621 The message is in keeping with the output of @option{-fstack-usage}.
4622
4623 @itemize
4624 @item
4625 If the stack usage is fully static but exceeds the specified amount, it's:
4626
4627 @smallexample
4628 warning: stack usage is 1120 bytes
4629 @end smallexample
4630 @item
4631 If the stack usage is (partly) dynamic but bounded, it's:
4632
4633 @smallexample
4634 warning: stack usage might be 1648 bytes
4635 @end smallexample
4636 @item
4637 If the stack usage is (partly) dynamic and not bounded, it's:
4638
4639 @smallexample
4640 warning: stack usage might be unbounded
4641 @end smallexample
4642 @end itemize
4643
4644 @item -Wunsafe-loop-optimizations
4645 @opindex Wunsafe-loop-optimizations
4646 @opindex Wno-unsafe-loop-optimizations
4647 Warn if the loop cannot be optimized because the compiler cannot
4648 assume anything on the bounds of the loop indices. With
4649 @option{-funsafe-loop-optimizations} warn if the compiler makes
4650 such assumptions.
4651
4652 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4653 @opindex Wno-pedantic-ms-format
4654 @opindex Wpedantic-ms-format
4655 When used in combination with @option{-Wformat}
4656 and @option{-pedantic} without GNU extensions, this option
4657 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4658 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4659 which depend on the MS runtime.
4660
4661 @item -Wpointer-arith
4662 @opindex Wpointer-arith
4663 @opindex Wno-pointer-arith
4664 Warn about anything that depends on the ``size of'' a function type or
4665 of @code{void}. GNU C assigns these types a size of 1, for
4666 convenience in calculations with @code{void *} pointers and pointers
4667 to functions. In C++, warn also when an arithmetic operation involves
4668 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
4669
4670 @item -Wtype-limits
4671 @opindex Wtype-limits
4672 @opindex Wno-type-limits
4673 Warn if a comparison is always true or always false due to the limited
4674 range of the data type, but do not warn for constant expressions. For
4675 example, warn if an unsigned variable is compared against zero with
4676 @code{<} or @code{>=}. This warning is also enabled by
4677 @option{-Wextra}.
4678
4679 @item -Wbad-function-cast @r{(C and Objective-C only)}
4680 @opindex Wbad-function-cast
4681 @opindex Wno-bad-function-cast
4682 Warn when a function call is cast to a non-matching type.
4683 For example, warn if a call to a function returning an integer type
4684 is cast to a pointer type.
4685
4686 @item -Wc90-c99-compat @r{(C and Objective-C only)}
4687 @opindex Wc90-c99-compat
4688 @opindex Wno-c90-c99-compat
4689 Warn about features not present in ISO C90, but present in ISO C99.
4690 For instance, warn about use of variable length arrays, @code{long long}
4691 type, @code{bool} type, compound literals, designated initializers, and so
4692 on. This option is independent of the standards mode. Warnings are disabled
4693 in the expression that follows @code{__extension__}.
4694
4695 @item -Wc99-c11-compat @r{(C and Objective-C only)}
4696 @opindex Wc99-c11-compat
4697 @opindex Wno-c99-c11-compat
4698 Warn about features not present in ISO C99, but present in ISO C11.
4699 For instance, warn about use of anonymous structures and unions,
4700 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4701 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4702 and so on. This option is independent of the standards mode. Warnings are
4703 disabled in the expression that follows @code{__extension__}.
4704
4705 @item -Wc++-compat @r{(C and Objective-C only)}
4706 @opindex Wc++-compat
4707 Warn about ISO C constructs that are outside of the common subset of
4708 ISO C and ISO C++, e.g.@: request for implicit conversion from
4709 @code{void *} to a pointer to non-@code{void} type.
4710
4711 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4712 @opindex Wc++11-compat
4713 Warn about C++ constructs whose meaning differs between ISO C++ 1998
4714 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4715 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
4716 enabled by @option{-Wall}.
4717
4718 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4719 @opindex Wc++14-compat
4720 Warn about C++ constructs whose meaning differs between ISO C++ 2011
4721 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
4722
4723 @item -Wcast-qual
4724 @opindex Wcast-qual
4725 @opindex Wno-cast-qual
4726 Warn whenever a pointer is cast so as to remove a type qualifier from
4727 the target type. For example, warn if a @code{const char *} is cast
4728 to an ordinary @code{char *}.
4729
4730 Also warn when making a cast that introduces a type qualifier in an
4731 unsafe way. For example, casting @code{char **} to @code{const char **}
4732 is unsafe, as in this example:
4733
4734 @smallexample
4735 /* p is char ** value. */
4736 const char **q = (const char **) p;
4737 /* Assignment of readonly string to const char * is OK. */
4738 *q = "string";
4739 /* Now char** pointer points to read-only memory. */
4740 **p = 'b';
4741 @end smallexample
4742
4743 @item -Wcast-align
4744 @opindex Wcast-align
4745 @opindex Wno-cast-align
4746 Warn whenever a pointer is cast such that the required alignment of the
4747 target is increased. For example, warn if a @code{char *} is cast to
4748 an @code{int *} on machines where integers can only be accessed at
4749 two- or four-byte boundaries.
4750
4751 @item -Wwrite-strings
4752 @opindex Wwrite-strings
4753 @opindex Wno-write-strings
4754 When compiling C, give string constants the type @code{const
4755 char[@var{length}]} so that copying the address of one into a
4756 non-@code{const} @code{char *} pointer produces a warning. These
4757 warnings help you find at compile time code that can try to write
4758 into a string constant, but only if you have been very careful about
4759 using @code{const} in declarations and prototypes. Otherwise, it is
4760 just a nuisance. This is why we did not make @option{-Wall} request
4761 these warnings.
4762
4763 When compiling C++, warn about the deprecated conversion from string
4764 literals to @code{char *}. This warning is enabled by default for C++
4765 programs.
4766
4767 @item -Wclobbered
4768 @opindex Wclobbered
4769 @opindex Wno-clobbered
4770 Warn for variables that might be changed by @code{longjmp} or
4771 @code{vfork}. This warning is also enabled by @option{-Wextra}.
4772
4773 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4774 @opindex Wconditionally-supported
4775 @opindex Wno-conditionally-supported
4776 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4777
4778 @item -Wconversion
4779 @opindex Wconversion
4780 @opindex Wno-conversion
4781 Warn for implicit conversions that may alter a value. This includes
4782 conversions between real and integer, like @code{abs (x)} when
4783 @code{x} is @code{double}; conversions between signed and unsigned,
4784 like @code{unsigned ui = -1}; and conversions to smaller types, like
4785 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
4786 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
4787 changed by the conversion like in @code{abs (2.0)}. Warnings about
4788 conversions between signed and unsigned integers can be disabled by
4789 using @option{-Wno-sign-conversion}.
4790
4791 For C++, also warn for confusing overload resolution for user-defined
4792 conversions; and conversions that never use a type conversion
4793 operator: conversions to @code{void}, the same type, a base class or a
4794 reference to them. Warnings about conversions between signed and
4795 unsigned integers are disabled by default in C++ unless
4796 @option{-Wsign-conversion} is explicitly enabled.
4797
4798 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4799 @opindex Wconversion-null
4800 @opindex Wno-conversion-null
4801 Do not warn for conversions between @code{NULL} and non-pointer
4802 types. @option{-Wconversion-null} is enabled by default.
4803
4804 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4805 @opindex Wzero-as-null-pointer-constant
4806 @opindex Wno-zero-as-null-pointer-constant
4807 Warn when a literal '0' is used as null pointer constant. This can
4808 be useful to facilitate the conversion to @code{nullptr} in C++11.
4809
4810 @item -Wdate-time
4811 @opindex Wdate-time
4812 @opindex Wno-date-time
4813 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
4814 are encountered as they might prevent bit-wise-identical reproducible
4815 compilations.
4816
4817 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
4818 @opindex Wdelete-incomplete
4819 @opindex Wno-delete-incomplete
4820 Warn when deleting a pointer to incomplete type, which may cause
4821 undefined behavior at runtime. This warning is enabled by default.
4822
4823 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
4824 @opindex Wuseless-cast
4825 @opindex Wno-useless-cast
4826 Warn when an expression is casted to its own type.
4827
4828 @item -Wempty-body
4829 @opindex Wempty-body
4830 @opindex Wno-empty-body
4831 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
4832 while} statement. This warning is also enabled by @option{-Wextra}.
4833
4834 @item -Wenum-compare
4835 @opindex Wenum-compare
4836 @opindex Wno-enum-compare
4837 Warn about a comparison between values of different enumerated types.
4838 In C++ enumeral mismatches in conditional expressions are also
4839 diagnosed and the warning is enabled by default. In C this warning is
4840 enabled by @option{-Wall}.
4841
4842 @item -Wjump-misses-init @r{(C, Objective-C only)}
4843 @opindex Wjump-misses-init
4844 @opindex Wno-jump-misses-init
4845 Warn if a @code{goto} statement or a @code{switch} statement jumps
4846 forward across the initialization of a variable, or jumps backward to a
4847 label after the variable has been initialized. This only warns about
4848 variables that are initialized when they are declared. This warning is
4849 only supported for C and Objective-C; in C++ this sort of branch is an
4850 error in any case.
4851
4852 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
4853 can be disabled with the @option{-Wno-jump-misses-init} option.
4854
4855 @item -Wsign-compare
4856 @opindex Wsign-compare
4857 @opindex Wno-sign-compare
4858 @cindex warning for comparison of signed and unsigned values
4859 @cindex comparison of signed and unsigned values, warning
4860 @cindex signed and unsigned values, comparison warning
4861 Warn when a comparison between signed and unsigned values could produce
4862 an incorrect result when the signed value is converted to unsigned.
4863 This warning is also enabled by @option{-Wextra}; to get the other warnings
4864 of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
4865
4866 @item -Wsign-conversion
4867 @opindex Wsign-conversion
4868 @opindex Wno-sign-conversion
4869 Warn for implicit conversions that may change the sign of an integer
4870 value, like assigning a signed integer expression to an unsigned
4871 integer variable. An explicit cast silences the warning. In C, this
4872 option is enabled also by @option{-Wconversion}.
4873
4874 @item -Wfloat-conversion
4875 @opindex Wfloat-conversion
4876 @opindex Wno-float-conversion
4877 Warn for implicit conversions that reduce the precision of a real value.
4878 This includes conversions from real to integer, and from higher precision
4879 real to lower precision real values. This option is also enabled by
4880 @option{-Wconversion}.
4881
4882 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
4883 @opindex Wsized-deallocation
4884 @opindex Wno-sized-deallocation
4885 Warn about a definition of an unsized deallocation function
4886 @smallexample
4887 void operator delete (void *) noexcept;
4888 void operator delete[] (void *) noexcept;
4889 @end smallexample
4890 without a definition of the corresponding sized deallocation function
4891 @smallexample
4892 void operator delete (void *, std::size_t) noexcept;
4893 void operator delete[] (void *, std::size_t) noexcept;
4894 @end smallexample
4895 or vice versa. Enabled by @option{-Wextra} along with
4896 @option{-fsized-deallocation}.
4897
4898 @item -Wsizeof-pointer-memaccess
4899 @opindex Wsizeof-pointer-memaccess
4900 @opindex Wno-sizeof-pointer-memaccess
4901 Warn for suspicious length parameters to certain string and memory built-in
4902 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
4903 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
4904 but a pointer, and suggests a possible fix, or about
4905 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
4906 @option{-Wall}.
4907
4908 @item -Wsizeof-array-argument
4909 @opindex Wsizeof-array-argument
4910 @opindex Wno-sizeof-array-argument
4911 Warn when the @code{sizeof} operator is applied to a parameter that is
4912 declared as an array in a function definition. This warning is enabled by
4913 default for C and C++ programs.
4914
4915 @item -Wmemset-transposed-args
4916 @opindex Wmemset-transposed-args
4917 @opindex Wno-memset-transposed-args
4918 Warn for suspicious calls to the @code{memset} built-in function, if the
4919 second argument is not zero and the third argument is zero. This warns e.g.@
4920 about @code{memset (buf, sizeof buf, 0)} where most probably
4921 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
4922 is only emitted if the third argument is literal zero. If it is some
4923 expression that is folded to zero, a cast of zero to some type, etc.,
4924 it is far less likely that the user has mistakenly exchanged the arguments
4925 and no warning is emitted. This warning is enabled by @option{-Wall}.
4926
4927 @item -Waddress
4928 @opindex Waddress
4929 @opindex Wno-address
4930 Warn about suspicious uses of memory addresses. These include using
4931 the address of a function in a conditional expression, such as
4932 @code{void func(void); if (func)}, and comparisons against the memory
4933 address of a string literal, such as @code{if (x == "abc")}. Such
4934 uses typically indicate a programmer error: the address of a function
4935 always evaluates to true, so their use in a conditional usually
4936 indicate that the programmer forgot the parentheses in a function
4937 call; and comparisons against string literals result in unspecified
4938 behavior and are not portable in C, so they usually indicate that the
4939 programmer intended to use @code{strcmp}. This warning is enabled by
4940 @option{-Wall}.
4941
4942 @item -Wlogical-op
4943 @opindex Wlogical-op
4944 @opindex Wno-logical-op
4945 Warn about suspicious uses of logical operators in expressions.
4946 This includes using logical operators in contexts where a
4947 bit-wise operator is likely to be expected. Also warns when
4948 the operands of a logical operator are the same:
4949 @smallexample
4950 extern int a;
4951 if (a < 0 && a < 0) @{ @dots{} @}
4952 @end smallexample
4953
4954 @item -Wlogical-not-parentheses
4955 @opindex Wlogical-not-parentheses
4956 @opindex Wno-logical-not-parentheses
4957 Warn about logical not used on the left hand side operand of a comparison.
4958 This option does not warn if the RHS operand is of a boolean type. Its
4959 purpose is to detect suspicious code like the following:
4960 @smallexample
4961 int a;
4962 @dots{}
4963 if (!a > 1) @{ @dots{} @}
4964 @end smallexample
4965
4966 It is possible to suppress the warning by wrapping the LHS into
4967 parentheses:
4968 @smallexample
4969 if ((!a) > 1) @{ @dots{} @}
4970 @end smallexample
4971
4972 This warning is enabled by @option{-Wall}.
4973
4974 @item -Waggregate-return
4975 @opindex Waggregate-return
4976 @opindex Wno-aggregate-return
4977 Warn if any functions that return structures or unions are defined or
4978 called. (In languages where you can return an array, this also elicits
4979 a warning.)
4980
4981 @item -Wno-aggressive-loop-optimizations
4982 @opindex Wno-aggressive-loop-optimizations
4983 @opindex Waggressive-loop-optimizations
4984 Warn if in a loop with constant number of iterations the compiler detects
4985 undefined behavior in some statement during one or more of the iterations.
4986
4987 @item -Wno-attributes
4988 @opindex Wno-attributes
4989 @opindex Wattributes
4990 Do not warn if an unexpected @code{__attribute__} is used, such as
4991 unrecognized attributes, function attributes applied to variables,
4992 etc. This does not stop errors for incorrect use of supported
4993 attributes.
4994
4995 @item -Wno-builtin-macro-redefined
4996 @opindex Wno-builtin-macro-redefined
4997 @opindex Wbuiltin-macro-redefined
4998 Do not warn if certain built-in macros are redefined. This suppresses
4999 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5000 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5001
5002 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5003 @opindex Wstrict-prototypes
5004 @opindex Wno-strict-prototypes
5005 Warn if a function is declared or defined without specifying the
5006 argument types. (An old-style function definition is permitted without
5007 a warning if preceded by a declaration that specifies the argument
5008 types.)
5009
5010 @item -Wold-style-declaration @r{(C and Objective-C only)}
5011 @opindex Wold-style-declaration
5012 @opindex Wno-old-style-declaration
5013 Warn for obsolescent usages, according to the C Standard, in a
5014 declaration. For example, warn if storage-class specifiers like
5015 @code{static} are not the first things in a declaration. This warning
5016 is also enabled by @option{-Wextra}.
5017
5018 @item -Wold-style-definition @r{(C and Objective-C only)}
5019 @opindex Wold-style-definition
5020 @opindex Wno-old-style-definition
5021 Warn if an old-style function definition is used. A warning is given
5022 even if there is a previous prototype.
5023
5024 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5025 @opindex Wmissing-parameter-type
5026 @opindex Wno-missing-parameter-type
5027 A function parameter is declared without a type specifier in K&R-style
5028 functions:
5029
5030 @smallexample
5031 void foo(bar) @{ @}
5032 @end smallexample
5033
5034 This warning is also enabled by @option{-Wextra}.
5035
5036 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5037 @opindex Wmissing-prototypes
5038 @opindex Wno-missing-prototypes
5039 Warn if a global function is defined without a previous prototype
5040 declaration. This warning is issued even if the definition itself
5041 provides a prototype. Use this option to detect global functions
5042 that do not have a matching prototype declaration in a header file.
5043 This option is not valid for C++ because all function declarations
5044 provide prototypes and a non-matching declaration declares an
5045 overload rather than conflict with an earlier declaration.
5046 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5047
5048 @item -Wmissing-declarations
5049 @opindex Wmissing-declarations
5050 @opindex Wno-missing-declarations
5051 Warn if a global function is defined without a previous declaration.
5052 Do so even if the definition itself provides a prototype.
5053 Use this option to detect global functions that are not declared in
5054 header files. In C, no warnings are issued for functions with previous
5055 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5056 missing prototypes. In C++, no warnings are issued for function templates,
5057 or for inline functions, or for functions in anonymous namespaces.
5058
5059 @item -Wmissing-field-initializers
5060 @opindex Wmissing-field-initializers
5061 @opindex Wno-missing-field-initializers
5062 @opindex W
5063 @opindex Wextra
5064 @opindex Wno-extra
5065 Warn if a structure's initializer has some fields missing. For
5066 example, the following code causes such a warning, because
5067 @code{x.h} is implicitly zero:
5068
5069 @smallexample
5070 struct s @{ int f, g, h; @};
5071 struct s x = @{ 3, 4 @};
5072 @end smallexample
5073
5074 This option does not warn about designated initializers, so the following
5075 modification does not trigger a warning:
5076
5077 @smallexample
5078 struct s @{ int f, g, h; @};
5079 struct s x = @{ .f = 3, .g = 4 @};
5080 @end smallexample
5081
5082 In C++ this option does not warn either about the empty @{ @}
5083 initializer, for example:
5084
5085 @smallexample
5086 struct s @{ int f, g, h; @};
5087 s x = @{ @};
5088 @end smallexample
5089
5090 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
5091 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5092
5093 @item -Wno-multichar
5094 @opindex Wno-multichar
5095 @opindex Wmultichar
5096 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5097 Usually they indicate a typo in the user's code, as they have
5098 implementation-defined values, and should not be used in portable code.
5099
5100 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5101 @opindex Wnormalized=
5102 @opindex Wnormalized
5103 @opindex Wno-normalized
5104 @cindex NFC
5105 @cindex NFKC
5106 @cindex character set, input normalization
5107 In ISO C and ISO C++, two identifiers are different if they are
5108 different sequences of characters. However, sometimes when characters
5109 outside the basic ASCII character set are used, you can have two
5110 different character sequences that look the same. To avoid confusion,
5111 the ISO 10646 standard sets out some @dfn{normalization rules} which
5112 when applied ensure that two sequences that look the same are turned into
5113 the same sequence. GCC can warn you if you are using identifiers that
5114 have not been normalized; this option controls that warning.
5115
5116 There are four levels of warning supported by GCC@. The default is
5117 @option{-Wnormalized=nfc}, which warns about any identifier that is
5118 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
5119 recommended form for most uses. It is equivalent to
5120 @option{-Wnormalized}.
5121
5122 Unfortunately, there are some characters allowed in identifiers by
5123 ISO C and ISO C++ that, when turned into NFC, are not allowed in
5124 identifiers. That is, there's no way to use these symbols in portable
5125 ISO C or C++ and have all your identifiers in NFC@.
5126 @option{-Wnormalized=id} suppresses the warning for these characters.
5127 It is hoped that future versions of the standards involved will correct
5128 this, which is why this option is not the default.
5129
5130 You can switch the warning off for all characters by writing
5131 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
5132 only do this if you are using some other normalization scheme (like
5133 ``D''), because otherwise you can easily create bugs that are
5134 literally impossible to see.
5135
5136 Some characters in ISO 10646 have distinct meanings but look identical
5137 in some fonts or display methodologies, especially once formatting has
5138 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5139 LETTER N'', displays just like a regular @code{n} that has been
5140 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
5141 normalization scheme to convert all these into a standard form as
5142 well, and GCC warns if your code is not in NFKC if you use
5143 @option{-Wnormalized=nfkc}. This warning is comparable to warning
5144 about every identifier that contains the letter O because it might be
5145 confused with the digit 0, and so is not the default, but may be
5146 useful as a local coding convention if the programming environment
5147 cannot be fixed to display these characters distinctly.
5148
5149 @item -Wno-deprecated
5150 @opindex Wno-deprecated
5151 @opindex Wdeprecated
5152 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
5153
5154 @item -Wno-deprecated-declarations
5155 @opindex Wno-deprecated-declarations
5156 @opindex Wdeprecated-declarations
5157 Do not warn about uses of functions (@pxref{Function Attributes}),
5158 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5159 Attributes}) marked as deprecated by using the @code{deprecated}
5160 attribute.
5161
5162 @item -Wno-overflow
5163 @opindex Wno-overflow
5164 @opindex Woverflow
5165 Do not warn about compile-time overflow in constant expressions.
5166
5167 @item -Wno-odr
5168 @opindex Wno-odr
5169 @opindex Wodr
5170 Warn about One Definition Rule violations during link-time optimization.
5171 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
5172
5173 @item -Wopenmp-simd
5174 @opindex Wopenm-simd
5175 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5176 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
5177 option can be used to relax the cost model.
5178
5179 @item -Woverride-init @r{(C and Objective-C only)}
5180 @opindex Woverride-init
5181 @opindex Wno-override-init
5182 @opindex W
5183 @opindex Wextra
5184 @opindex Wno-extra
5185 Warn if an initialized field without side effects is overridden when
5186 using designated initializers (@pxref{Designated Inits, , Designated
5187 Initializers}).
5188
5189 This warning is included in @option{-Wextra}. To get other
5190 @option{-Wextra} warnings without this one, use @option{-Wextra
5191 -Wno-override-init}.
5192
5193 @item -Wpacked
5194 @opindex Wpacked
5195 @opindex Wno-packed
5196 Warn if a structure is given the packed attribute, but the packed
5197 attribute has no effect on the layout or size of the structure.
5198 Such structures may be mis-aligned for little benefit. For
5199 instance, in this code, the variable @code{f.x} in @code{struct bar}
5200 is misaligned even though @code{struct bar} does not itself
5201 have the packed attribute:
5202
5203 @smallexample
5204 @group
5205 struct foo @{
5206 int x;
5207 char a, b, c, d;
5208 @} __attribute__((packed));
5209 struct bar @{
5210 char z;
5211 struct foo f;
5212 @};
5213 @end group
5214 @end smallexample
5215
5216 @item -Wpacked-bitfield-compat
5217 @opindex Wpacked-bitfield-compat
5218 @opindex Wno-packed-bitfield-compat
5219 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5220 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
5221 the change can lead to differences in the structure layout. GCC
5222 informs you when the offset of such a field has changed in GCC 4.4.
5223 For example there is no longer a 4-bit padding between field @code{a}
5224 and @code{b} in this structure:
5225
5226 @smallexample
5227 struct foo
5228 @{
5229 char a:4;
5230 char b:8;
5231 @} __attribute__ ((packed));
5232 @end smallexample
5233
5234 This warning is enabled by default. Use
5235 @option{-Wno-packed-bitfield-compat} to disable this warning.
5236
5237 @item -Wpadded
5238 @opindex Wpadded
5239 @opindex Wno-padded
5240 Warn if padding is included in a structure, either to align an element
5241 of the structure or to align the whole structure. Sometimes when this
5242 happens it is possible to rearrange the fields of the structure to
5243 reduce the padding and so make the structure smaller.
5244
5245 @item -Wredundant-decls
5246 @opindex Wredundant-decls
5247 @opindex Wno-redundant-decls
5248 Warn if anything is declared more than once in the same scope, even in
5249 cases where multiple declaration is valid and changes nothing.
5250
5251 @item -Wnested-externs @r{(C and Objective-C only)}
5252 @opindex Wnested-externs
5253 @opindex Wno-nested-externs
5254 Warn if an @code{extern} declaration is encountered within a function.
5255
5256 @item -Wno-inherited-variadic-ctor
5257 @opindex Winherited-variadic-ctor
5258 @opindex Wno-inherited-variadic-ctor
5259 Suppress warnings about use of C++11 inheriting constructors when the
5260 base class inherited from has a C variadic constructor; the warning is
5261 on by default because the ellipsis is not inherited.
5262
5263 @item -Winline
5264 @opindex Winline
5265 @opindex Wno-inline
5266 Warn if a function that is declared as inline cannot be inlined.
5267 Even with this option, the compiler does not warn about failures to
5268 inline functions declared in system headers.
5269
5270 The compiler uses a variety of heuristics to determine whether or not
5271 to inline a function. For example, the compiler takes into account
5272 the size of the function being inlined and the amount of inlining
5273 that has already been done in the current function. Therefore,
5274 seemingly insignificant changes in the source program can cause the
5275 warnings produced by @option{-Winline} to appear or disappear.
5276
5277 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5278 @opindex Wno-invalid-offsetof
5279 @opindex Winvalid-offsetof
5280 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5281 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
5282 to a non-standard-layout type is undefined. In existing C++ implementations,
5283 however, @code{offsetof} typically gives meaningful results.
5284 This flag is for users who are aware that they are
5285 writing nonportable code and who have deliberately chosen to ignore the
5286 warning about it.
5287
5288 The restrictions on @code{offsetof} may be relaxed in a future version
5289 of the C++ standard.
5290
5291 @item -Wno-int-to-pointer-cast
5292 @opindex Wno-int-to-pointer-cast
5293 @opindex Wint-to-pointer-cast
5294 Suppress warnings from casts to pointer type of an integer of a
5295 different size. In C++, casting to a pointer type of smaller size is
5296 an error. @option{Wint-to-pointer-cast} is enabled by default.
5297
5298
5299 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5300 @opindex Wno-pointer-to-int-cast
5301 @opindex Wpointer-to-int-cast
5302 Suppress warnings from casts from a pointer to an integer type of a
5303 different size.
5304
5305 @item -Winvalid-pch
5306 @opindex Winvalid-pch
5307 @opindex Wno-invalid-pch
5308 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5309 the search path but can't be used.
5310
5311 @item -Wlong-long
5312 @opindex Wlong-long
5313 @opindex Wno-long-long
5314 Warn if @code{long long} type is used. This is enabled by either
5315 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5316 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
5317
5318 @item -Wvariadic-macros
5319 @opindex Wvariadic-macros
5320 @opindex Wno-variadic-macros
5321 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5322 alternate syntax is used in ISO C99 mode. This is enabled by either
5323 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
5324 messages, use @option{-Wno-variadic-macros}.
5325
5326 @item -Wvarargs
5327 @opindex Wvarargs
5328 @opindex Wno-varargs
5329 Warn upon questionable usage of the macros used to handle variable
5330 arguments like @code{va_start}. This is default. To inhibit the
5331 warning messages, use @option{-Wno-varargs}.
5332
5333 @item -Wvector-operation-performance
5334 @opindex Wvector-operation-performance
5335 @opindex Wno-vector-operation-performance
5336 Warn if vector operation is not implemented via SIMD capabilities of the
5337 architecture. Mainly useful for the performance tuning.
5338 Vector operation can be implemented @code{piecewise}, which means that the
5339 scalar operation is performed on every vector element;
5340 @code{in parallel}, which means that the vector operation is implemented
5341 using scalars of wider type, which normally is more performance efficient;
5342 and @code{as a single scalar}, which means that vector fits into a
5343 scalar type.
5344
5345 @item -Wno-virtual-move-assign
5346 @opindex Wvirtual-move-assign
5347 @opindex Wno-virtual-move-assign
5348 Suppress warnings about inheriting from a virtual base with a
5349 non-trivial C++11 move assignment operator. This is dangerous because
5350 if the virtual base is reachable along more than one path, it is
5351 moved multiple times, which can mean both objects end up in the
5352 moved-from state. If the move assignment operator is written to avoid
5353 moving from a moved-from object, this warning can be disabled.
5354
5355 @item -Wvla
5356 @opindex Wvla
5357 @opindex Wno-vla
5358 Warn if variable length array is used in the code.
5359 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5360 the variable length array.
5361
5362 @item -Wvolatile-register-var
5363 @opindex Wvolatile-register-var
5364 @opindex Wno-volatile-register-var
5365 Warn if a register variable is declared volatile. The volatile
5366 modifier does not inhibit all optimizations that may eliminate reads
5367 and/or writes to register variables. This warning is enabled by
5368 @option{-Wall}.
5369
5370 @item -Wdisabled-optimization
5371 @opindex Wdisabled-optimization
5372 @opindex Wno-disabled-optimization
5373 Warn if a requested optimization pass is disabled. This warning does
5374 not generally indicate that there is anything wrong with your code; it
5375 merely indicates that GCC's optimizers are unable to handle the code
5376 effectively. Often, the problem is that your code is too big or too
5377 complex; GCC refuses to optimize programs when the optimization
5378 itself is likely to take inordinate amounts of time.
5379
5380 @item -Wpointer-sign @r{(C and Objective-C only)}
5381 @opindex Wpointer-sign
5382 @opindex Wno-pointer-sign
5383 Warn for pointer argument passing or assignment with different signedness.
5384 This option is only supported for C and Objective-C@. It is implied by
5385 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5386 @option{-Wno-pointer-sign}.
5387
5388 @item -Wstack-protector
5389 @opindex Wstack-protector
5390 @opindex Wno-stack-protector
5391 This option is only active when @option{-fstack-protector} is active. It
5392 warns about functions that are not protected against stack smashing.
5393
5394 @item -Woverlength-strings
5395 @opindex Woverlength-strings
5396 @opindex Wno-overlength-strings
5397 Warn about string constants that are longer than the ``minimum
5398 maximum'' length specified in the C standard. Modern compilers
5399 generally allow string constants that are much longer than the
5400 standard's minimum limit, but very portable programs should avoid
5401 using longer strings.
5402
5403 The limit applies @emph{after} string constant concatenation, and does
5404 not count the trailing NUL@. In C90, the limit was 509 characters; in
5405 C99, it was raised to 4095. C++98 does not specify a normative
5406 minimum maximum, so we do not diagnose overlength strings in C++@.
5407
5408 This option is implied by @option{-Wpedantic}, and can be disabled with
5409 @option{-Wno-overlength-strings}.
5410
5411 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5412 @opindex Wunsuffixed-float-constants
5413
5414 Issue a warning for any floating constant that does not have
5415 a suffix. When used together with @option{-Wsystem-headers} it
5416 warns about such constants in system header files. This can be useful
5417 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5418 from the decimal floating-point extension to C99.
5419
5420 @item -Wno-designated-init @r{(C and Objective-C only)}
5421 Suppress warnings when a positional initializer is used to initialize
5422 a structure that has been marked with the @code{designated_init}
5423 attribute.
5424
5425 @end table
5426
5427 @node Debugging Options
5428 @section Options for Debugging Your Program or GCC
5429 @cindex options, debugging
5430 @cindex debugging information options
5431
5432 GCC has various special options that are used for debugging
5433 either your program or GCC:
5434
5435 @table @gcctabopt
5436 @item -g
5437 @opindex g
5438 Produce debugging information in the operating system's native format
5439 (stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging
5440 information.
5441
5442 On most systems that use stabs format, @option{-g} enables use of extra
5443 debugging information that only GDB can use; this extra information
5444 makes debugging work better in GDB but probably makes other debuggers
5445 crash or
5446 refuse to read the program. If you want to control for certain whether
5447 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5448 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5449
5450 GCC allows you to use @option{-g} with
5451 @option{-O}. The shortcuts taken by optimized code may occasionally
5452 produce surprising results: some variables you declared may not exist
5453 at all; flow of control may briefly move where you did not expect it;
5454 some statements may not be executed because they compute constant
5455 results or their values are already at hand; some statements may
5456 execute in different places because they have been moved out of loops.
5457
5458 Nevertheless it proves possible to debug optimized output. This makes
5459 it reasonable to use the optimizer for programs that might have bugs.
5460
5461 The following options are useful when GCC is generated with the
5462 capability for more than one debugging format.
5463
5464 @item -gsplit-dwarf
5465 @opindex gsplit-dwarf
5466 Separate as much dwarf debugging information as possible into a
5467 separate output file with the extension .dwo. This option allows
5468 the build system to avoid linking files with debug information. To
5469 be useful, this option requires a debugger capable of reading .dwo
5470 files.
5471
5472 @item -ggdb
5473 @opindex ggdb
5474 Produce debugging information for use by GDB@. This means to use the
5475 most expressive format available (DWARF 2, stabs, or the native format
5476 if neither of those are supported), including GDB extensions if at all
5477 possible.
5478
5479 @item -gpubnames
5480 @opindex gpubnames
5481 Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5482
5483 @item -ggnu-pubnames
5484 @opindex ggnu-pubnames
5485 Generate .debug_pubnames and .debug_pubtypes sections in a format
5486 suitable for conversion into a GDB@ index. This option is only useful
5487 with a linker that can produce GDB@ index version 7.
5488
5489 @item -gstabs
5490 @opindex gstabs
5491 Produce debugging information in stabs format (if that is supported),
5492 without GDB extensions. This is the format used by DBX on most BSD
5493 systems. On MIPS, Alpha and System V Release 4 systems this option
5494 produces stabs debugging output that is not understood by DBX or SDB@.
5495 On System V Release 4 systems this option requires the GNU assembler.
5496
5497 @item -feliminate-unused-debug-symbols
5498 @opindex feliminate-unused-debug-symbols
5499 Produce debugging information in stabs format (if that is supported),
5500 for only symbols that are actually used.
5501
5502 @item -femit-class-debug-always
5503 @opindex femit-class-debug-always
5504 Instead of emitting debugging information for a C++ class in only one
5505 object file, emit it in all object files using the class. This option
5506 should be used only with debuggers that are unable to handle the way GCC
5507 normally emits debugging information for classes because using this
5508 option increases the size of debugging information by as much as a
5509 factor of two.
5510
5511 @item -fdebug-types-section
5512 @opindex fdebug-types-section
5513 @opindex fno-debug-types-section
5514 When using DWARF Version 4 or higher, type DIEs can be put into
5515 their own @code{.debug_types} section instead of making them part of the
5516 @code{.debug_info} section. It is more efficient to put them in a separate
5517 comdat sections since the linker can then remove duplicates.
5518 But not all DWARF consumers support @code{.debug_types} sections yet
5519 and on some objects @code{.debug_types} produces larger instead of smaller
5520 debugging information.
5521
5522 @item -gstabs+
5523 @opindex gstabs+
5524 Produce debugging information in stabs format (if that is supported),
5525 using GNU extensions understood only by the GNU debugger (GDB)@. The
5526 use of these extensions is likely to make other debuggers crash or
5527 refuse to read the program.
5528
5529 @item -gcoff
5530 @opindex gcoff
5531 Produce debugging information in COFF format (if that is supported).
5532 This is the format used by SDB on most System V systems prior to
5533 System V Release 4.
5534
5535 @item -gxcoff
5536 @opindex gxcoff
5537 Produce debugging information in XCOFF format (if that is supported).
5538 This is the format used by the DBX debugger on IBM RS/6000 systems.
5539
5540 @item -gxcoff+
5541 @opindex gxcoff+
5542 Produce debugging information in XCOFF format (if that is supported),
5543 using GNU extensions understood only by the GNU debugger (GDB)@. The
5544 use of these extensions is likely to make other debuggers crash or
5545 refuse to read the program, and may cause assemblers other than the GNU
5546 assembler (GAS) to fail with an error.
5547
5548 @item -gdwarf-@var{version}
5549 @opindex gdwarf-@var{version}
5550 Produce debugging information in DWARF format (if that is supported).
5551 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5552 for most targets is 4. DWARF Version 5 is only experimental.
5553
5554 Note that with DWARF Version 2, some ports require and always
5555 use some non-conflicting DWARF 3 extensions in the unwind tables.
5556
5557 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5558 for maximum benefit.
5559
5560 @item -grecord-gcc-switches
5561 @opindex grecord-gcc-switches
5562 This switch causes the command-line options used to invoke the
5563 compiler that may affect code generation to be appended to the
5564 DW_AT_producer attribute in DWARF debugging information. The options
5565 are concatenated with spaces separating them from each other and from
5566 the compiler version. See also @option{-frecord-gcc-switches} for another
5567 way of storing compiler options into the object file. This is the default.
5568
5569 @item -gno-record-gcc-switches
5570 @opindex gno-record-gcc-switches
5571 Disallow appending command-line options to the DW_AT_producer attribute
5572 in DWARF debugging information.
5573
5574 @item -gstrict-dwarf
5575 @opindex gstrict-dwarf
5576 Disallow using extensions of later DWARF standard version than selected
5577 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
5578 DWARF extensions from later standard versions is allowed.
5579
5580 @item -gno-strict-dwarf
5581 @opindex gno-strict-dwarf
5582 Allow using extensions of later DWARF standard version than selected with
5583 @option{-gdwarf-@var{version}}.
5584
5585 @item -gz@r{[}=@var{type}@r{]}
5586 @opindex gz
5587 Produce compressed debug sections in DWARF format, if that is supported.
5588 If @var{type} is not given, the default type depends on the capabilities
5589 of the assembler and linker used. @var{type} may be one of
5590 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5591 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5592 compression in traditional GNU format). If the linker doesn't support
5593 writing compressed debug sections, the option is rejected. Otherwise,
5594 if the assembler does not support them, @option{-gz} is silently ignored
5595 when producing object files.
5596
5597 @item -gvms
5598 @opindex gvms
5599 Produce debugging information in Alpha/VMS debug format (if that is
5600 supported). This is the format used by DEBUG on Alpha/VMS systems.
5601
5602 @item -g@var{level}
5603 @itemx -ggdb@var{level}
5604 @itemx -gstabs@var{level}
5605 @itemx -gcoff@var{level}
5606 @itemx -gxcoff@var{level}
5607 @itemx -gvms@var{level}
5608 Request debugging information and also use @var{level} to specify how
5609 much information. The default level is 2.
5610
5611 Level 0 produces no debug information at all. Thus, @option{-g0} negates
5612 @option{-g}.
5613
5614 Level 1 produces minimal information, enough for making backtraces in
5615 parts of the program that you don't plan to debug. This includes
5616 descriptions of functions and external variables, and line number
5617 tables, but no information about local variables.
5618
5619 Level 3 includes extra information, such as all the macro definitions
5620 present in the program. Some debuggers support macro expansion when
5621 you use @option{-g3}.
5622
5623 @option{-gdwarf-2} does not accept a concatenated debug level, because
5624 GCC used to support an option @option{-gdwarf} that meant to generate
5625 debug information in version 1 of the DWARF format (which is very
5626 different from version 2), and it would have been too confusing. That
5627 debug format is long obsolete, but the option cannot be changed now.
5628 Instead use an additional @option{-g@var{level}} option to change the
5629 debug level for DWARF.
5630
5631 @item -gtoggle
5632 @opindex gtoggle
5633 Turn off generation of debug info, if leaving out this option
5634 generates it, or turn it on at level 2 otherwise. The position of this
5635 argument in the command line does not matter; it takes effect after all
5636 other options are processed, and it does so only once, no matter how
5637 many times it is given. This is mainly intended to be used with
5638 @option{-fcompare-debug}.
5639
5640 @item -fsanitize=address
5641 @opindex fsanitize=address
5642 Enable AddressSanitizer, a fast memory error detector.
5643 Memory access instructions are instrumented to detect
5644 out-of-bounds and use-after-free bugs.
5645 See @uref{http://code.google.com/p/address-sanitizer/} for
5646 more details. The run-time behavior can be influenced using the
5647 @env{ASAN_OPTIONS} environment variable; see
5648 @url{https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags} for
5649 a list of supported options.
5650
5651 @item -fsanitize=kernel-address
5652 @opindex fsanitize=kernel-address
5653 Enable AddressSanitizer for Linux kernel.
5654 See @uref{http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel} for more details.
5655
5656 @item -fsanitize=thread
5657 @opindex fsanitize=thread
5658 Enable ThreadSanitizer, a fast data race detector.
5659 Memory access instructions are instrumented to detect
5660 data race bugs. See @uref{http://code.google.com/p/thread-sanitizer/} for more
5661 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5662 environment variable; see
5663 @url{https://code.google.com/p/thread-sanitizer/wiki/Flags} for a list of
5664 supported options.
5665
5666 @item -fsanitize=leak
5667 @opindex fsanitize=leak
5668 Enable LeakSanitizer, a memory leak detector.
5669 This option only matters for linking of executables and if neither
5670 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that
5671 case the executable is linked against a library that overrides @code{malloc}
5672 and other allocator functions. See
5673 @uref{https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer} for more
5674 details. The run-time behavior can be influenced using the
5675 @env{LSAN_OPTIONS} environment variable.
5676
5677 @item -fsanitize=undefined
5678 @opindex fsanitize=undefined
5679 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5680 Various computations are instrumented to detect undefined behavior
5681 at runtime. Current suboptions are:
5682
5683 @table @gcctabopt
5684
5685 @item -fsanitize=shift
5686 @opindex fsanitize=shift
5687 This option enables checking that the result of a shift operation is
5688 not undefined. Note that what exactly is considered undefined differs
5689 slightly between C and C++, as well as between ISO C90 and C99, etc.
5690
5691 @item -fsanitize=integer-divide-by-zero
5692 @opindex fsanitize=integer-divide-by-zero
5693 Detect integer division by zero as well as @code{INT_MIN / -1} division.
5694
5695 @item -fsanitize=unreachable
5696 @opindex fsanitize=unreachable
5697 With this option, the compiler turns the @code{__builtin_unreachable}
5698 call into a diagnostics message call instead. When reaching the
5699 @code{__builtin_unreachable} call, the behavior is undefined.
5700
5701 @item -fsanitize=vla-bound
5702 @opindex fsanitize=vla-bound
5703 This option instructs the compiler to check that the size of a variable
5704 length array is positive.
5705
5706 @item -fsanitize=null
5707 @opindex fsanitize=null
5708 This option enables pointer checking. Particularly, the application
5709 built with this option turned on will issue an error message when it
5710 tries to dereference a NULL pointer, or if a reference (possibly an
5711 rvalue reference) is bound to a NULL pointer, or if a method is invoked
5712 on an object pointed by a NULL pointer.
5713
5714 @item -fsanitize=return
5715 @opindex fsanitize=return
5716 This option enables return statement checking. Programs
5717 built with this option turned on will issue an error message
5718 when the end of a non-void function is reached without actually
5719 returning a value. This option works in C++ only.
5720
5721 @item -fsanitize=signed-integer-overflow
5722 @opindex fsanitize=signed-integer-overflow
5723 This option enables signed integer overflow checking. We check that
5724 the result of @code{+}, @code{*}, and both unary and binary @code{-}
5725 does not overflow in the signed arithmetics. Note, integer promotion
5726 rules must be taken into account. That is, the following is not an
5727 overflow:
5728 @smallexample
5729 signed char a = SCHAR_MAX;
5730 a++;
5731 @end smallexample
5732
5733 @item -fsanitize=bounds
5734 @opindex fsanitize=bounds
5735 This option enables instrumentation of array bounds. Various out of bounds
5736 accesses are detected. Flexible array members, flexible array member-like
5737 arrays, and initializers of variables with static storage are not instrumented.
5738
5739 @item -fsanitize=bounds-strict
5740 @opindex fsanitize=bounds-strict
5741 This option enables strict instrumentation of array bounds. Most out of bounds
5742 accesses are detected, including flexible array members and flexible array
5743 member-like arrays. Initializers of variables with static storage are not
5744 instrumented.
5745
5746 @item -fsanitize=alignment
5747 @opindex fsanitize=alignment
5748
5749 This option enables checking of alignment of pointers when they are
5750 dereferenced, or when a reference is bound to insufficiently aligned target,
5751 or when a method or constructor is invoked on insufficiently aligned object.
5752
5753 @item -fsanitize=object-size
5754 @opindex fsanitize=object-size
5755 This option enables instrumentation of memory references using the
5756 @code{__builtin_object_size} function. Various out of bounds pointer
5757 accesses are detected.
5758
5759 @item -fsanitize=float-divide-by-zero
5760 @opindex fsanitize=float-divide-by-zero
5761 Detect floating-point division by zero. Unlike other similar options,
5762 @option{-fsanitize=float-divide-by-zero} is not enabled by
5763 @option{-fsanitize=undefined}, since floating-point division by zero can
5764 be a legitimate way of obtaining infinities and NaNs.
5765
5766 @item -fsanitize=float-cast-overflow
5767 @opindex fsanitize=float-cast-overflow
5768 This option enables floating-point type to integer conversion checking.
5769 We check that the result of the conversion does not overflow.
5770 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
5771 not enabled by @option{-fsanitize=undefined}.
5772 This option does not work well with @code{FE_INVALID} exceptions enabled.
5773
5774 @item -fsanitize=nonnull-attribute
5775 @opindex fsanitize=nonnull-attribute
5776
5777 This option enables instrumentation of calls, checking whether null values
5778 are not passed to arguments marked as requiring a non-null value by the
5779 @code{nonnull} function attribute.
5780
5781 @item -fsanitize=returns-nonnull-attribute
5782 @opindex fsanitize=returns-nonnull-attribute
5783
5784 This option enables instrumentation of return statements in functions
5785 marked with @code{returns_nonnull} function attribute, to detect returning
5786 of null values from such functions.
5787
5788 @item -fsanitize=bool
5789 @opindex fsanitize=bool
5790
5791 This option enables instrumentation of loads from bool. If a value other
5792 than 0/1 is loaded, a run-time error is issued.
5793
5794 @item -fsanitize=enum
5795 @opindex fsanitize=enum
5796
5797 This option enables instrumentation of loads from an enum type. If
5798 a value outside the range of values for the enum type is loaded,
5799 a run-time error is issued.
5800
5801 @item -fsanitize=vptr
5802 @opindex fsanitize=vptr
5803
5804 This option enables instrumentation of C++ member function calls, member
5805 accesses and some conversions between pointers to base and derived classes,
5806 to verify the referenced object has the correct dynamic type.
5807
5808 @end table
5809
5810 While @option{-ftrapv} causes traps for signed overflows to be emitted,
5811 @option{-fsanitize=undefined} gives a diagnostic message.
5812 This currently works only for the C family of languages.
5813
5814 @item -fno-sanitize=all
5815 @opindex fno-sanitize=all
5816
5817 This option disables all previously enabled sanitizers.
5818 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
5819 together.
5820
5821 @item -fasan-shadow-offset=@var{number}
5822 @opindex fasan-shadow-offset
5823 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
5824 It is useful for experimenting with different shadow memory layouts in
5825 Kernel AddressSanitizer.
5826
5827 @item -fsanitize-sections=@var{s1,s2,...}
5828 @opindex fsanitize-sections
5829 Sanitize global variables in selected user-defined sections. @var{si} may
5830 contain wildcards.
5831
5832 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
5833 @opindex fsanitize-recover
5834 @opindex fno-sanitize-recover
5835 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
5836 mentioned in comma-separated list of @var{opts}. Enabling this option
5837 for a sanitizer component causes it to attempt to continue
5838 running the program as if no error happened. This means multiple
5839 runtime errors can be reported in a single program run, and the exit
5840 code of the program may indicate success even when errors
5841 have been reported. The @option{-fno-sanitize-recover=} option
5842 can be used to alter
5843 this behavior: only the first detected error is reported
5844 and program then exits with a non-zero exit code.
5845
5846 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
5847 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
5848 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero} and
5849 @option{-fsanitize=kernel-address}. For these sanitizers error recovery is turned on by default.
5850 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
5851 accepted, the former enables recovery for all sanitizers that support it,
5852 the latter disables recovery for all sanitizers that support it.
5853
5854 Syntax without explicit @var{opts} parameter is deprecated. It is equivalent to
5855 @smallexample
5856 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5857 @end smallexample
5858 @noindent
5859 Similarly @option{-fno-sanitize-recover} is equivalent to
5860 @smallexample
5861 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5862 @end smallexample
5863
5864 @item -fsanitize-undefined-trap-on-error
5865 @opindex fsanitize-undefined-trap-on-error
5866 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
5867 report undefined behavior using @code{__builtin_trap} rather than
5868 a @code{libubsan} library routine. The advantage of this is that the
5869 @code{libubsan} library is not needed and is not linked in, so this
5870 is usable even in freestanding environments.
5871
5872 @item -fcheck-pointer-bounds
5873 @opindex fcheck-pointer-bounds
5874 @opindex fno-check-pointer-bounds
5875 @cindex Pointer Bounds Checker options
5876 Enable Pointer Bounds Checker instrumentation. Each memory reference
5877 is instrumented with checks of the pointer used for memory access against
5878 bounds associated with that pointer.
5879
5880 Currently there
5881 is only an implementation for Intel MPX available, thus x86 target
5882 and @option{-mmpx} are required to enable this feature.
5883 MPX-based instrumentation requires
5884 a runtime library to enable MPX in hardware and handle bounds
5885 violation signals. By default when @option{-fcheck-pointer-bounds}
5886 and @option{-mmpx} options are used to link a program, the GCC driver
5887 links against the @file{libmpx} runtime library and @file{libmpxwrappers}
5888 library. It also passes '-z bndplt' to a linker in case it supports this
5889 option (which is checked on libmpx configuration). Note that old versions
5890 of linker may ignore option. Gold linker doesn't support '-z bndplt'
5891 option. With no '-z bndplt' support in linker all calls to dynamic libraries
5892 lose passed bounds reducing overall protection level. It's highly
5893 recommended to use linker with '-z bndplt' support. In case such linker
5894 is not available it is adviced to always use @option{-static-libmpxwrappers}
5895 for better protection level or use @option{-static} to completely avoid
5896 external calls to dynamic libraries. MPX-based instrumentation
5897 may be used for debugging and also may be included in production code
5898 to increase program security. Depending on usage, you may
5899 have different requirements for the runtime library. The current version
5900 of the MPX runtime library is more oriented for use as a debugging
5901 tool. MPX runtime library usage implies @option{-lpthread}. See
5902 also @option{-static-libmpx}. The runtime library behavior can be
5903 influenced using various @env{CHKP_RT_*} environment variables. See
5904 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
5905 for more details.
5906
5907 Generated instrumentation may be controlled by various
5908 @option{-fchkp-*} options and by the @code{bnd_variable_size}
5909 structure field attribute (@pxref{Type Attributes}) and
5910 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
5911 (@pxref{Function Attributes}). GCC also provides a number of built-in
5912 functions for controlling the Pointer Bounds Checker. @xref{Pointer
5913 Bounds Checker builtins}, for more information.
5914
5915 @item -fchkp-check-incomplete-type
5916 @opindex fchkp-check-incomplete-type
5917 @opindex fno-chkp-check-incomplete-type
5918 Generate pointer bounds checks for variables with incomplete type.
5919 Enabled by default.
5920
5921 @item -fchkp-narrow-bounds
5922 @opindex fchkp-narrow-bounds
5923 @opindex fno-chkp-narrow-bounds
5924 Controls bounds used by Pointer Bounds Checker for pointers to object
5925 fields. If narrowing is enabled then field bounds are used. Otherwise
5926 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
5927 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
5928
5929 @item -fchkp-first-field-has-own-bounds
5930 @opindex fchkp-first-field-has-own-bounds
5931 @opindex fno-chkp-first-field-has-own-bounds
5932 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
5933 first field in the structure. By default a pointer to the first field has
5934 the same bounds as a pointer to the whole structure.
5935
5936 @item -fchkp-narrow-to-innermost-array
5937 @opindex fchkp-narrow-to-innermost-array
5938 @opindex fno-chkp-narrow-to-innermost-array
5939 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
5940 case of nested static array access. By default this option is disabled and
5941 bounds of the outermost array are used.
5942
5943 @item -fchkp-optimize
5944 @opindex fchkp-optimize
5945 @opindex fno-chkp-optimize
5946 Enables Pointer Bounds Checker optimizations. Enabled by default at
5947 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
5948
5949 @item -fchkp-use-fast-string-functions
5950 @opindex fchkp-use-fast-string-functions
5951 @opindex fno-chkp-use-fast-string-functions
5952 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
5953 by Pointer Bounds Checker. Disabled by default.
5954
5955 @item -fchkp-use-nochk-string-functions
5956 @opindex fchkp-use-nochk-string-functions
5957 @opindex fno-chkp-use-nochk-string-functions
5958 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
5959 by Pointer Bounds Checker. Disabled by default.
5960
5961 @item -fchkp-use-static-bounds
5962 @opindex fchkp-use-static-bounds
5963 @opindex fno-chkp-use-static-bounds
5964 Allow Pointer Bounds Checker to generate static bounds holding
5965 bounds of static variables. Enabled by default.
5966
5967 @item -fchkp-use-static-const-bounds
5968 @opindex fchkp-use-static-const-bounds
5969 @opindex fno-chkp-use-static-const-bounds
5970 Use statically-initialized bounds for constant bounds instead of
5971 generating them each time they are required. By default enabled when
5972 @option{-fchkp-use-static-bounds} is enabled.
5973
5974 @item -fchkp-treat-zero-dynamic-size-as-infinite
5975 @opindex fchkp-treat-zero-dynamic-size-as-infinite
5976 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
5977 With this option, objects with incomplete type whose
5978 dynamically-obtained size is zero are treated as having infinite size
5979 instead by Pointer Bounds
5980 Checker. This option may be helpful if a program is linked with a library
5981 missing size information for some symbols. Disabled by default.
5982
5983 @item -fchkp-check-read
5984 @opindex fchkp-check-read
5985 @opindex fno-chkp-check-read
5986 Instructs Pointer Bounds Checker to generate checks for all read
5987 accesses to memory. Enabled by default.
5988
5989 @item -fchkp-check-write
5990 @opindex fchkp-check-write
5991 @opindex fno-chkp-check-write
5992 Instructs Pointer Bounds Checker to generate checks for all write
5993 accesses to memory. Enabled by default.
5994
5995 @item -fchkp-store-bounds
5996 @opindex fchkp-store-bounds
5997 @opindex fno-chkp-store-bounds
5998 Instructs Pointer Bounds Checker to generate bounds stores for
5999 pointer writes. Enabled by default.
6000
6001 @item -fchkp-instrument-calls
6002 @opindex fchkp-instrument-calls
6003 @opindex fno-chkp-instrument-calls
6004 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
6005 Enabled by default.
6006
6007 @item -fchkp-instrument-marked-only
6008 @opindex fchkp-instrument-marked-only
6009 @opindex fno-chkp-instrument-marked-only
6010 Instructs Pointer Bounds Checker to instrument only functions
6011 marked with the @code{bnd_instrument} attribute
6012 (@pxref{Function Attributes}). Disabled by default.
6013
6014 @item -fchkp-use-wrappers
6015 @opindex fchkp-use-wrappers
6016 @opindex fno-chkp-use-wrappers
6017 Allows Pointer Bounds Checker to replace calls to built-in functions
6018 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
6019 is used to link a program, the GCC driver automatically links
6020 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
6021 Enabled by default.
6022
6023 @item -fdump-final-insns@r{[}=@var{file}@r{]}
6024 @opindex fdump-final-insns
6025 Dump the final internal representation (RTL) to @var{file}. If the
6026 optional argument is omitted (or if @var{file} is @code{.}), the name
6027 of the dump file is determined by appending @code{.gkd} to the
6028 compilation output file name.
6029
6030 @item -fcompare-debug@r{[}=@var{opts}@r{]}
6031 @opindex fcompare-debug
6032 @opindex fno-compare-debug
6033 If no error occurs during compilation, run the compiler a second time,
6034 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6035 passed to the second compilation. Dump the final internal
6036 representation in both compilations, and print an error if they differ.
6037
6038 If the equal sign is omitted, the default @option{-gtoggle} is used.
6039
6040 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6041 and nonzero, implicitly enables @option{-fcompare-debug}. If
6042 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6043 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6044 is used.
6045
6046 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
6047 is equivalent to @option{-fno-compare-debug}, which disables the dumping
6048 of the final representation and the second compilation, preventing even
6049 @env{GCC_COMPARE_DEBUG} from taking effect.
6050
6051 To verify full coverage during @option{-fcompare-debug} testing, set
6052 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6053 which GCC rejects as an invalid option in any actual compilation
6054 (rather than preprocessing, assembly or linking). To get just a
6055 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6056 not overridden} will do.
6057
6058 @item -fcompare-debug-second
6059 @opindex fcompare-debug-second
6060 This option is implicitly passed to the compiler for the second
6061 compilation requested by @option{-fcompare-debug}, along with options to
6062 silence warnings, and omitting other options that would cause
6063 side-effect compiler outputs to files or to the standard output. Dump
6064 files and preserved temporary files are renamed so as to contain the
6065 @code{.gk} additional extension during the second compilation, to avoid
6066 overwriting those generated by the first.
6067
6068 When this option is passed to the compiler driver, it causes the
6069 @emph{first} compilation to be skipped, which makes it useful for little
6070 other than debugging the compiler proper.
6071
6072 @item -feliminate-dwarf2-dups
6073 @opindex feliminate-dwarf2-dups
6074 Compress DWARF 2 debugging information by eliminating duplicated
6075 information about each symbol. This option only makes sense when
6076 generating DWARF 2 debugging information with @option{-gdwarf-2}.
6077
6078 @item -femit-struct-debug-baseonly
6079 @opindex femit-struct-debug-baseonly
6080 Emit debug information for struct-like types
6081 only when the base name of the compilation source file
6082 matches the base name of file in which the struct is defined.
6083
6084 This option substantially reduces the size of debugging information,
6085 but at significant potential loss in type information to the debugger.
6086 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6087 See @option{-femit-struct-debug-detailed} for more detailed control.
6088
6089 This option works only with DWARF 2.
6090
6091 @item -femit-struct-debug-reduced
6092 @opindex femit-struct-debug-reduced
6093 Emit debug information for struct-like types
6094 only when the base name of the compilation source file
6095 matches the base name of file in which the type is defined,
6096 unless the struct is a template or defined in a system header.
6097
6098 This option significantly reduces the size of debugging information,
6099 with some potential loss in type information to the debugger.
6100 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6101 See @option{-femit-struct-debug-detailed} for more detailed control.
6102
6103 This option works only with DWARF 2.
6104
6105 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6106 @opindex femit-struct-debug-detailed
6107 Specify the struct-like types
6108 for which the compiler generates debug information.
6109 The intent is to reduce duplicate struct debug information
6110 between different object files within the same program.
6111
6112 This option is a detailed version of
6113 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6114 which serves for most needs.
6115
6116 A specification has the syntax@*
6117 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6118
6119 The optional first word limits the specification to
6120 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6121 A struct type is used directly when it is the type of a variable, member.
6122 Indirect uses arise through pointers to structs.
6123 That is, when use of an incomplete struct is valid, the use is indirect.
6124 An example is
6125 @samp{struct one direct; struct two * indirect;}.
6126
6127 The optional second word limits the specification to
6128 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6129 Generic structs are a bit complicated to explain.
6130 For C++, these are non-explicit specializations of template classes,
6131 or non-template classes within the above.
6132 Other programming languages have generics,
6133 but @option{-femit-struct-debug-detailed} does not yet implement them.
6134
6135 The third word specifies the source files for those
6136 structs for which the compiler should emit debug information.
6137 The values @samp{none} and @samp{any} have the normal meaning.
6138 The value @samp{base} means that
6139 the base of name of the file in which the type declaration appears
6140 must match the base of the name of the main compilation file.
6141 In practice, this means that when compiling @file{foo.c}, debug information
6142 is generated for types declared in that file and @file{foo.h},
6143 but not other header files.
6144 The value @samp{sys} means those types satisfying @samp{base}
6145 or declared in system or compiler headers.
6146
6147 You may need to experiment to determine the best settings for your application.
6148
6149 The default is @option{-femit-struct-debug-detailed=all}.
6150
6151 This option works only with DWARF 2.
6152
6153 @item -fno-merge-debug-strings
6154 @opindex fmerge-debug-strings
6155 @opindex fno-merge-debug-strings
6156 Direct the linker to not merge together strings in the debugging
6157 information that are identical in different object files. Merging is
6158 not supported by all assemblers or linkers. Merging decreases the size
6159 of the debug information in the output file at the cost of increasing
6160 link processing time. Merging is enabled by default.
6161
6162 @item -fdebug-prefix-map=@var{old}=@var{new}
6163 @opindex fdebug-prefix-map
6164 When compiling files in directory @file{@var{old}}, record debugging
6165 information describing them as in @file{@var{new}} instead.
6166
6167 @item -fno-dwarf2-cfi-asm
6168 @opindex fdwarf2-cfi-asm
6169 @opindex fno-dwarf2-cfi-asm
6170 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6171 instead of using GAS @code{.cfi_*} directives.
6172
6173 @cindex @command{prof}
6174 @item -p
6175 @opindex p
6176 Generate extra code to write profile information suitable for the
6177 analysis program @command{prof}. You must use this option when compiling
6178 the source files you want data about, and you must also use it when
6179 linking.
6180
6181 @cindex @command{gprof}
6182 @item -pg
6183 @opindex pg
6184 Generate extra code to write profile information suitable for the
6185 analysis program @command{gprof}. You must use this option when compiling
6186 the source files you want data about, and you must also use it when
6187 linking.
6188
6189 @item -Q
6190 @opindex Q
6191 Makes the compiler print out each function name as it is compiled, and
6192 print some statistics about each pass when it finishes.
6193
6194 @item -ftime-report
6195 @opindex ftime-report
6196 Makes the compiler print some statistics about the time consumed by each
6197 pass when it finishes.
6198
6199 @item -fmem-report
6200 @opindex fmem-report
6201 Makes the compiler print some statistics about permanent memory
6202 allocation when it finishes.
6203
6204 @item -fmem-report-wpa
6205 @opindex fmem-report-wpa
6206 Makes the compiler print some statistics about permanent memory
6207 allocation for the WPA phase only.
6208
6209 @item -fpre-ipa-mem-report
6210 @opindex fpre-ipa-mem-report
6211 @item -fpost-ipa-mem-report
6212 @opindex fpost-ipa-mem-report
6213 Makes the compiler print some statistics about permanent memory
6214 allocation before or after interprocedural optimization.
6215
6216 @item -fprofile-report
6217 @opindex fprofile-report
6218 Makes the compiler print some statistics about consistency of the
6219 (estimated) profile and effect of individual passes.
6220
6221 @item -fstack-usage
6222 @opindex fstack-usage
6223 Makes the compiler output stack usage information for the program, on a
6224 per-function basis. The filename for the dump is made by appending
6225 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
6226 the output file, if explicitly specified and it is not an executable,
6227 otherwise it is the basename of the source file. An entry is made up
6228 of three fields:
6229
6230 @itemize
6231 @item
6232 The name of the function.
6233 @item
6234 A number of bytes.
6235 @item
6236 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6237 @end itemize
6238
6239 The qualifier @code{static} means that the function manipulates the stack
6240 statically: a fixed number of bytes are allocated for the frame on function
6241 entry and released on function exit; no stack adjustments are otherwise made
6242 in the function. The second field is this fixed number of bytes.
6243
6244 The qualifier @code{dynamic} means that the function manipulates the stack
6245 dynamically: in addition to the static allocation described above, stack
6246 adjustments are made in the body of the function, for example to push/pop
6247 arguments around function calls. If the qualifier @code{bounded} is also
6248 present, the amount of these adjustments is bounded at compile time and
6249 the second field is an upper bound of the total amount of stack used by
6250 the function. If it is not present, the amount of these adjustments is
6251 not bounded at compile time and the second field only represents the
6252 bounded part.
6253
6254 @item -fprofile-arcs
6255 @opindex fprofile-arcs
6256 Add code so that program flow @dfn{arcs} are instrumented. During
6257 execution the program records how many times each branch and call is
6258 executed and how many times it is taken or returns. When the compiled
6259 program exits it saves this data to a file called
6260 @file{@var{auxname}.gcda} for each source file. The data may be used for
6261 profile-directed optimizations (@option{-fbranch-probabilities}), or for
6262 test coverage analysis (@option{-ftest-coverage}). Each object file's
6263 @var{auxname} is generated from the name of the output file, if
6264 explicitly specified and it is not the final executable, otherwise it is
6265 the basename of the source file. In both cases any suffix is removed
6266 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6267 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6268 @xref{Cross-profiling}.
6269
6270 @cindex @command{gcov}
6271 @item --coverage
6272 @opindex coverage
6273
6274 This option is used to compile and link code instrumented for coverage
6275 analysis. The option is a synonym for @option{-fprofile-arcs}
6276 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6277 linking). See the documentation for those options for more details.
6278
6279 @itemize
6280
6281 @item
6282 Compile the source files with @option{-fprofile-arcs} plus optimization
6283 and code generation options. For test coverage analysis, use the
6284 additional @option{-ftest-coverage} option. You do not need to profile
6285 every source file in a program.
6286
6287 @item
6288 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6289 (the latter implies the former).
6290
6291 @item
6292 Run the program on a representative workload to generate the arc profile
6293 information. This may be repeated any number of times. You can run
6294 concurrent instances of your program, and provided that the file system
6295 supports locking, the data files will be correctly updated. Also
6296 @code{fork} calls are detected and correctly handled (double counting
6297 will not happen).
6298
6299 @item
6300 For profile-directed optimizations, compile the source files again with
6301 the same optimization and code generation options plus
6302 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6303 Control Optimization}).
6304
6305 @item
6306 For test coverage analysis, use @command{gcov} to produce human readable
6307 information from the @file{.gcno} and @file{.gcda} files. Refer to the
6308 @command{gcov} documentation for further information.
6309
6310 @end itemize
6311
6312 With @option{-fprofile-arcs}, for each function of your program GCC
6313 creates a program flow graph, then finds a spanning tree for the graph.
6314 Only arcs that are not on the spanning tree have to be instrumented: the
6315 compiler adds code to count the number of times that these arcs are
6316 executed. When an arc is the only exit or only entrance to a block, the
6317 instrumentation code can be added to the block; otherwise, a new basic
6318 block must be created to hold the instrumentation code.
6319
6320 @need 2000
6321 @item -ftest-coverage
6322 @opindex ftest-coverage
6323 Produce a notes file that the @command{gcov} code-coverage utility
6324 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6325 show program coverage. Each source file's note file is called
6326 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
6327 above for a description of @var{auxname} and instructions on how to
6328 generate test coverage data. Coverage data matches the source files
6329 more closely if you do not optimize.
6330
6331 @item -fdbg-cnt-list
6332 @opindex fdbg-cnt-list
6333 Print the name and the counter upper bound for all debug counters.
6334
6335
6336 @item -fdbg-cnt=@var{counter-value-list}
6337 @opindex fdbg-cnt
6338 Set the internal debug counter upper bound. @var{counter-value-list}
6339 is a comma-separated list of @var{name}:@var{value} pairs
6340 which sets the upper bound of each debug counter @var{name} to @var{value}.
6341 All debug counters have the initial upper bound of @code{UINT_MAX};
6342 thus @code{dbg_cnt} returns true always unless the upper bound
6343 is set by this option.
6344 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6345 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
6346
6347 @item -fenable-@var{kind}-@var{pass}
6348 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6349 @opindex fdisable-
6350 @opindex fenable-
6351
6352 This is a set of options that are used to explicitly disable/enable
6353 optimization passes. These options are intended for use for debugging GCC.
6354 Compiler users should use regular options for enabling/disabling
6355 passes instead.
6356
6357 @table @gcctabopt
6358
6359 @item -fdisable-ipa-@var{pass}
6360 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6361 statically invoked in the compiler multiple times, the pass name should be
6362 appended with a sequential number starting from 1.
6363
6364 @item -fdisable-rtl-@var{pass}
6365 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
6366 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
6367 statically invoked in the compiler multiple times, the pass name should be
6368 appended with a sequential number starting from 1. @var{range-list} is a
6369 comma-separated list of function ranges or assembler names. Each range is a number
6370 pair separated by a colon. The range is inclusive in both ends. If the range
6371 is trivial, the number pair can be simplified as a single number. If the
6372 function's call graph node's @var{uid} falls within one of the specified ranges,
6373 the @var{pass} is disabled for that function. The @var{uid} is shown in the
6374 function header of a dump file, and the pass names can be dumped by using
6375 option @option{-fdump-passes}.
6376
6377 @item -fdisable-tree-@var{pass}
6378 @itemx -fdisable-tree-@var{pass}=@var{range-list}
6379 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
6380 option arguments.
6381
6382 @item -fenable-ipa-@var{pass}
6383 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6384 statically invoked in the compiler multiple times, the pass name should be
6385 appended with a sequential number starting from 1.
6386
6387 @item -fenable-rtl-@var{pass}
6388 @itemx -fenable-rtl-@var{pass}=@var{range-list}
6389 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
6390 description and examples.
6391
6392 @item -fenable-tree-@var{pass}
6393 @itemx -fenable-tree-@var{pass}=@var{range-list}
6394 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
6395 of option arguments.
6396
6397 @end table
6398
6399 Here are some examples showing uses of these options.
6400
6401 @smallexample
6402
6403 # disable ccp1 for all functions
6404 -fdisable-tree-ccp1
6405 # disable complete unroll for function whose cgraph node uid is 1
6406 -fenable-tree-cunroll=1
6407 # disable gcse2 for functions at the following ranges [1,1],
6408 # [300,400], and [400,1000]
6409 # disable gcse2 for functions foo and foo2
6410 -fdisable-rtl-gcse2=foo,foo2
6411 # disable early inlining
6412 -fdisable-tree-einline
6413 # disable ipa inlining
6414 -fdisable-ipa-inline
6415 # enable tree full unroll
6416 -fenable-tree-unroll
6417
6418 @end smallexample
6419
6420 @item -d@var{letters}
6421 @itemx -fdump-rtl-@var{pass}
6422 @itemx -fdump-rtl-@var{pass}=@var{filename}
6423 @opindex d
6424 @opindex fdump-rtl-@var{pass}
6425 Says to make debugging dumps during compilation at times specified by
6426 @var{letters}. This is used for debugging the RTL-based passes of the
6427 compiler. The file names for most of the dumps are made by appending
6428 a pass number and a word to the @var{dumpname}, and the files are
6429 created in the directory of the output file. In case of
6430 @option{=@var{filename}} option, the dump is output on the given file
6431 instead of the pass numbered dump files. Note that the pass number is
6432 computed statically as passes get registered into the pass manager.
6433 Thus the numbering is not related to the dynamic order of execution of
6434 passes. In particular, a pass installed by a plugin could have a
6435 number over 200 even if it executed quite early. @var{dumpname} is
6436 generated from the name of the output file, if explicitly specified
6437 and it is not an executable, otherwise it is the basename of the
6438 source file. These switches may have different effects when
6439 @option{-E} is used for preprocessing.
6440
6441 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6442 @option{-d} option @var{letters}. Here are the possible
6443 letters for use in @var{pass} and @var{letters}, and their meanings:
6444
6445 @table @gcctabopt
6446
6447 @item -fdump-rtl-alignments
6448 @opindex fdump-rtl-alignments
6449 Dump after branch alignments have been computed.
6450
6451 @item -fdump-rtl-asmcons
6452 @opindex fdump-rtl-asmcons
6453 Dump after fixing rtl statements that have unsatisfied in/out constraints.
6454
6455 @item -fdump-rtl-auto_inc_dec
6456 @opindex fdump-rtl-auto_inc_dec
6457 Dump after auto-inc-dec discovery. This pass is only run on
6458 architectures that have auto inc or auto dec instructions.
6459
6460 @item -fdump-rtl-barriers
6461 @opindex fdump-rtl-barriers
6462 Dump after cleaning up the barrier instructions.
6463
6464 @item -fdump-rtl-bbpart
6465 @opindex fdump-rtl-bbpart
6466 Dump after partitioning hot and cold basic blocks.
6467
6468 @item -fdump-rtl-bbro
6469 @opindex fdump-rtl-bbro
6470 Dump after block reordering.
6471
6472 @item -fdump-rtl-btl1
6473 @itemx -fdump-rtl-btl2
6474 @opindex fdump-rtl-btl2
6475 @opindex fdump-rtl-btl2
6476 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6477 after the two branch
6478 target load optimization passes.
6479
6480 @item -fdump-rtl-bypass
6481 @opindex fdump-rtl-bypass
6482 Dump after jump bypassing and control flow optimizations.
6483
6484 @item -fdump-rtl-combine
6485 @opindex fdump-rtl-combine
6486 Dump after the RTL instruction combination pass.
6487
6488 @item -fdump-rtl-compgotos
6489 @opindex fdump-rtl-compgotos
6490 Dump after duplicating the computed gotos.
6491
6492 @item -fdump-rtl-ce1
6493 @itemx -fdump-rtl-ce2
6494 @itemx -fdump-rtl-ce3
6495 @opindex fdump-rtl-ce1
6496 @opindex fdump-rtl-ce2
6497 @opindex fdump-rtl-ce3
6498 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6499 @option{-fdump-rtl-ce3} enable dumping after the three
6500 if conversion passes.
6501
6502 @item -fdump-rtl-cprop_hardreg
6503 @opindex fdump-rtl-cprop_hardreg
6504 Dump after hard register copy propagation.
6505
6506 @item -fdump-rtl-csa
6507 @opindex fdump-rtl-csa
6508 Dump after combining stack adjustments.
6509
6510 @item -fdump-rtl-cse1
6511 @itemx -fdump-rtl-cse2
6512 @opindex fdump-rtl-cse1
6513 @opindex fdump-rtl-cse2
6514 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6515 the two common subexpression elimination passes.
6516
6517 @item -fdump-rtl-dce
6518 @opindex fdump-rtl-dce
6519 Dump after the standalone dead code elimination passes.
6520
6521 @item -fdump-rtl-dbr
6522 @opindex fdump-rtl-dbr
6523 Dump after delayed branch scheduling.
6524
6525 @item -fdump-rtl-dce1
6526 @itemx -fdump-rtl-dce2
6527 @opindex fdump-rtl-dce1
6528 @opindex fdump-rtl-dce2
6529 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6530 the two dead store elimination passes.
6531
6532 @item -fdump-rtl-eh
6533 @opindex fdump-rtl-eh
6534 Dump after finalization of EH handling code.
6535
6536 @item -fdump-rtl-eh_ranges
6537 @opindex fdump-rtl-eh_ranges
6538 Dump after conversion of EH handling range regions.
6539
6540 @item -fdump-rtl-expand
6541 @opindex fdump-rtl-expand
6542 Dump after RTL generation.
6543
6544 @item -fdump-rtl-fwprop1
6545 @itemx -fdump-rtl-fwprop2
6546 @opindex fdump-rtl-fwprop1
6547 @opindex fdump-rtl-fwprop2
6548 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6549 dumping after the two forward propagation passes.
6550
6551 @item -fdump-rtl-gcse1
6552 @itemx -fdump-rtl-gcse2
6553 @opindex fdump-rtl-gcse1
6554 @opindex fdump-rtl-gcse2
6555 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6556 after global common subexpression elimination.
6557
6558 @item -fdump-rtl-init-regs
6559 @opindex fdump-rtl-init-regs
6560 Dump after the initialization of the registers.
6561
6562 @item -fdump-rtl-initvals
6563 @opindex fdump-rtl-initvals
6564 Dump after the computation of the initial value sets.
6565
6566 @item -fdump-rtl-into_cfglayout
6567 @opindex fdump-rtl-into_cfglayout
6568 Dump after converting to cfglayout mode.
6569
6570 @item -fdump-rtl-ira
6571 @opindex fdump-rtl-ira
6572 Dump after iterated register allocation.
6573
6574 @item -fdump-rtl-jump
6575 @opindex fdump-rtl-jump
6576 Dump after the second jump optimization.
6577
6578 @item -fdump-rtl-loop2
6579 @opindex fdump-rtl-loop2
6580 @option{-fdump-rtl-loop2} enables dumping after the rtl
6581 loop optimization passes.
6582
6583 @item -fdump-rtl-mach
6584 @opindex fdump-rtl-mach
6585 Dump after performing the machine dependent reorganization pass, if that
6586 pass exists.
6587
6588 @item -fdump-rtl-mode_sw
6589 @opindex fdump-rtl-mode_sw
6590 Dump after removing redundant mode switches.
6591
6592 @item -fdump-rtl-rnreg
6593 @opindex fdump-rtl-rnreg
6594 Dump after register renumbering.
6595
6596 @item -fdump-rtl-outof_cfglayout
6597 @opindex fdump-rtl-outof_cfglayout
6598 Dump after converting from cfglayout mode.
6599
6600 @item -fdump-rtl-peephole2
6601 @opindex fdump-rtl-peephole2
6602 Dump after the peephole pass.
6603
6604 @item -fdump-rtl-postreload
6605 @opindex fdump-rtl-postreload
6606 Dump after post-reload optimizations.
6607
6608 @item -fdump-rtl-pro_and_epilogue
6609 @opindex fdump-rtl-pro_and_epilogue
6610 Dump after generating the function prologues and epilogues.
6611
6612 @item -fdump-rtl-sched1
6613 @itemx -fdump-rtl-sched2
6614 @opindex fdump-rtl-sched1
6615 @opindex fdump-rtl-sched2
6616 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6617 after the basic block scheduling passes.
6618
6619 @item -fdump-rtl-ree
6620 @opindex fdump-rtl-ree
6621 Dump after sign/zero extension elimination.
6622
6623 @item -fdump-rtl-seqabstr
6624 @opindex fdump-rtl-seqabstr
6625 Dump after common sequence discovery.
6626
6627 @item -fdump-rtl-shorten
6628 @opindex fdump-rtl-shorten
6629 Dump after shortening branches.
6630
6631 @item -fdump-rtl-sibling
6632 @opindex fdump-rtl-sibling
6633 Dump after sibling call optimizations.
6634
6635 @item -fdump-rtl-split1
6636 @itemx -fdump-rtl-split2
6637 @itemx -fdump-rtl-split3
6638 @itemx -fdump-rtl-split4
6639 @itemx -fdump-rtl-split5
6640 @opindex fdump-rtl-split1
6641 @opindex fdump-rtl-split2
6642 @opindex fdump-rtl-split3
6643 @opindex fdump-rtl-split4
6644 @opindex fdump-rtl-split5
6645 These options enable dumping after five rounds of
6646 instruction splitting.
6647
6648 @item -fdump-rtl-sms
6649 @opindex fdump-rtl-sms
6650 Dump after modulo scheduling. This pass is only run on some
6651 architectures.
6652
6653 @item -fdump-rtl-stack
6654 @opindex fdump-rtl-stack
6655 Dump after conversion from GCC's ``flat register file'' registers to the
6656 x87's stack-like registers. This pass is only run on x86 variants.
6657
6658 @item -fdump-rtl-subreg1
6659 @itemx -fdump-rtl-subreg2
6660 @opindex fdump-rtl-subreg1
6661 @opindex fdump-rtl-subreg2
6662 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6663 the two subreg expansion passes.
6664
6665 @item -fdump-rtl-unshare
6666 @opindex fdump-rtl-unshare
6667 Dump after all rtl has been unshared.
6668
6669 @item -fdump-rtl-vartrack
6670 @opindex fdump-rtl-vartrack
6671 Dump after variable tracking.
6672
6673 @item -fdump-rtl-vregs
6674 @opindex fdump-rtl-vregs
6675 Dump after converting virtual registers to hard registers.
6676
6677 @item -fdump-rtl-web
6678 @opindex fdump-rtl-web
6679 Dump after live range splitting.
6680
6681 @item -fdump-rtl-regclass
6682 @itemx -fdump-rtl-subregs_of_mode_init
6683 @itemx -fdump-rtl-subregs_of_mode_finish
6684 @itemx -fdump-rtl-dfinit
6685 @itemx -fdump-rtl-dfinish
6686 @opindex fdump-rtl-regclass
6687 @opindex fdump-rtl-subregs_of_mode_init
6688 @opindex fdump-rtl-subregs_of_mode_finish
6689 @opindex fdump-rtl-dfinit
6690 @opindex fdump-rtl-dfinish
6691 These dumps are defined but always produce empty files.
6692
6693 @item -da
6694 @itemx -fdump-rtl-all
6695 @opindex da
6696 @opindex fdump-rtl-all
6697 Produce all the dumps listed above.
6698
6699 @item -dA
6700 @opindex dA
6701 Annotate the assembler output with miscellaneous debugging information.
6702
6703 @item -dD
6704 @opindex dD
6705 Dump all macro definitions, at the end of preprocessing, in addition to
6706 normal output.
6707
6708 @item -dH
6709 @opindex dH
6710 Produce a core dump whenever an error occurs.
6711
6712 @item -dp
6713 @opindex dp
6714 Annotate the assembler output with a comment indicating which
6715 pattern and alternative is used. The length of each instruction is
6716 also printed.
6717
6718 @item -dP
6719 @opindex dP
6720 Dump the RTL in the assembler output as a comment before each instruction.
6721 Also turns on @option{-dp} annotation.
6722
6723 @item -dx
6724 @opindex dx
6725 Just generate RTL for a function instead of compiling it. Usually used
6726 with @option{-fdump-rtl-expand}.
6727 @end table
6728
6729 @item -fdump-noaddr
6730 @opindex fdump-noaddr
6731 When doing debugging dumps, suppress address output. This makes it more
6732 feasible to use diff on debugging dumps for compiler invocations with
6733 different compiler binaries and/or different
6734 text / bss / data / heap / stack / dso start locations.
6735
6736 @item -freport-bug
6737 @opindex freport-bug
6738 Collect and dump debug information into temporary file if ICE in C/C++
6739 compiler occured.
6740
6741 @item -fdump-unnumbered
6742 @opindex fdump-unnumbered
6743 When doing debugging dumps, suppress instruction numbers and address output.
6744 This makes it more feasible to use diff on debugging dumps for compiler
6745 invocations with different options, in particular with and without
6746 @option{-g}.
6747
6748 @item -fdump-unnumbered-links
6749 @opindex fdump-unnumbered-links
6750 When doing debugging dumps (see @option{-d} option above), suppress
6751 instruction numbers for the links to the previous and next instructions
6752 in a sequence.
6753
6754 @item -fdump-translation-unit @r{(C++ only)}
6755 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
6756 @opindex fdump-translation-unit
6757 Dump a representation of the tree structure for the entire translation
6758 unit to a file. The file name is made by appending @file{.tu} to the
6759 source file name, and the file is created in the same directory as the
6760 output file. If the @samp{-@var{options}} form is used, @var{options}
6761 controls the details of the dump as described for the
6762 @option{-fdump-tree} options.
6763
6764 @item -fdump-class-hierarchy @r{(C++ only)}
6765 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
6766 @opindex fdump-class-hierarchy
6767 Dump a representation of each class's hierarchy and virtual function
6768 table layout to a file. The file name is made by appending
6769 @file{.class} to the source file name, and the file is created in the
6770 same directory as the output file. If the @samp{-@var{options}} form
6771 is used, @var{options} controls the details of the dump as described
6772 for the @option{-fdump-tree} options.
6773
6774 @item -fdump-ipa-@var{switch}
6775 @opindex fdump-ipa
6776 Control the dumping at various stages of inter-procedural analysis
6777 language tree to a file. The file name is generated by appending a
6778 switch specific suffix to the source file name, and the file is created
6779 in the same directory as the output file. The following dumps are
6780 possible:
6781
6782 @table @samp
6783 @item all
6784 Enables all inter-procedural analysis dumps.
6785
6786 @item cgraph
6787 Dumps information about call-graph optimization, unused function removal,
6788 and inlining decisions.
6789
6790 @item inline
6791 Dump after function inlining.
6792
6793 @end table
6794
6795 @item -fdump-passes
6796 @opindex fdump-passes
6797 Dump the list of optimization passes that are turned on and off by
6798 the current command-line options.
6799
6800 @item -fdump-statistics-@var{option}
6801 @opindex fdump-statistics
6802 Enable and control dumping of pass statistics in a separate file. The
6803 file name is generated by appending a suffix ending in
6804 @samp{.statistics} to the source file name, and the file is created in
6805 the same directory as the output file. If the @samp{-@var{option}}
6806 form is used, @samp{-stats} causes counters to be summed over the
6807 whole compilation unit while @samp{-details} dumps every event as
6808 the passes generate them. The default with no option is to sum
6809 counters for each function compiled.
6810
6811 @item -fdump-tree-@var{switch}
6812 @itemx -fdump-tree-@var{switch}-@var{options}
6813 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
6814 @opindex fdump-tree
6815 Control the dumping at various stages of processing the intermediate
6816 language tree to a file. The file name is generated by appending a
6817 switch-specific suffix to the source file name, and the file is
6818 created in the same directory as the output file. In case of
6819 @option{=@var{filename}} option, the dump is output on the given file
6820 instead of the auto named dump files. If the @samp{-@var{options}}
6821 form is used, @var{options} is a list of @samp{-} separated options
6822 which control the details of the dump. Not all options are applicable
6823 to all dumps; those that are not meaningful are ignored. The
6824 following options are available
6825
6826 @table @samp
6827 @item address
6828 Print the address of each node. Usually this is not meaningful as it
6829 changes according to the environment and source file. Its primary use
6830 is for tying up a dump file with a debug environment.
6831 @item asmname
6832 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
6833 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
6834 use working backward from mangled names in the assembly file.
6835 @item slim
6836 When dumping front-end intermediate representations, inhibit dumping
6837 of members of a scope or body of a function merely because that scope
6838 has been reached. Only dump such items when they are directly reachable
6839 by some other path.
6840
6841 When dumping pretty-printed trees, this option inhibits dumping the
6842 bodies of control structures.
6843
6844 When dumping RTL, print the RTL in slim (condensed) form instead of
6845 the default LISP-like representation.
6846 @item raw
6847 Print a raw representation of the tree. By default, trees are
6848 pretty-printed into a C-like representation.
6849 @item details
6850 Enable more detailed dumps (not honored by every dump option). Also
6851 include information from the optimization passes.
6852 @item stats
6853 Enable dumping various statistics about the pass (not honored by every dump
6854 option).
6855 @item blocks
6856 Enable showing basic block boundaries (disabled in raw dumps).
6857 @item graph
6858 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
6859 dump a representation of the control flow graph suitable for viewing with
6860 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
6861 the file is pretty-printed as a subgraph, so that GraphViz can render them
6862 all in a single plot.
6863
6864 This option currently only works for RTL dumps, and the RTL is always
6865 dumped in slim form.
6866 @item vops
6867 Enable showing virtual operands for every statement.
6868 @item lineno
6869 Enable showing line numbers for statements.
6870 @item uid
6871 Enable showing the unique ID (@code{DECL_UID}) for each variable.
6872 @item verbose
6873 Enable showing the tree dump for each statement.
6874 @item eh
6875 Enable showing the EH region number holding each statement.
6876 @item scev
6877 Enable showing scalar evolution analysis details.
6878 @item optimized
6879 Enable showing optimization information (only available in certain
6880 passes).
6881 @item missed
6882 Enable showing missed optimization information (only available in certain
6883 passes).
6884 @item note
6885 Enable other detailed optimization information (only available in
6886 certain passes).
6887 @item =@var{filename}
6888 Instead of an auto named dump file, output into the given file
6889 name. The file names @file{stdout} and @file{stderr} are treated
6890 specially and are considered already open standard streams. For
6891 example,
6892
6893 @smallexample
6894 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
6895 -fdump-tree-pre=stderr file.c
6896 @end smallexample
6897
6898 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
6899 output on to @file{stderr}. If two conflicting dump filenames are
6900 given for the same pass, then the latter option overrides the earlier
6901 one.
6902
6903 @item all
6904 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
6905 and @option{lineno}.
6906
6907 @item optall
6908 Turn on all optimization options, i.e., @option{optimized},
6909 @option{missed}, and @option{note}.
6910 @end table
6911
6912 The following tree dumps are possible:
6913 @table @samp
6914
6915 @item original
6916 @opindex fdump-tree-original
6917 Dump before any tree based optimization, to @file{@var{file}.original}.
6918
6919 @item optimized
6920 @opindex fdump-tree-optimized
6921 Dump after all tree based optimization, to @file{@var{file}.optimized}.
6922
6923 @item gimple
6924 @opindex fdump-tree-gimple
6925 Dump each function before and after the gimplification pass to a file. The
6926 file name is made by appending @file{.gimple} to the source file name.
6927
6928 @item cfg
6929 @opindex fdump-tree-cfg
6930 Dump the control flow graph of each function to a file. The file name is
6931 made by appending @file{.cfg} to the source file name.
6932
6933 @item ch
6934 @opindex fdump-tree-ch
6935 Dump each function after copying loop headers. The file name is made by
6936 appending @file{.ch} to the source file name.
6937
6938 @item ssa
6939 @opindex fdump-tree-ssa
6940 Dump SSA related information to a file. The file name is made by appending
6941 @file{.ssa} to the source file name.
6942
6943 @item alias
6944 @opindex fdump-tree-alias
6945 Dump aliasing information for each function. The file name is made by
6946 appending @file{.alias} to the source file name.
6947
6948 @item ccp
6949 @opindex fdump-tree-ccp
6950 Dump each function after CCP@. The file name is made by appending
6951 @file{.ccp} to the source file name.
6952
6953 @item storeccp
6954 @opindex fdump-tree-storeccp
6955 Dump each function after STORE-CCP@. The file name is made by appending
6956 @file{.storeccp} to the source file name.
6957
6958 @item pre
6959 @opindex fdump-tree-pre
6960 Dump trees after partial redundancy elimination. The file name is made
6961 by appending @file{.pre} to the source file name.
6962
6963 @item fre
6964 @opindex fdump-tree-fre
6965 Dump trees after full redundancy elimination. The file name is made
6966 by appending @file{.fre} to the source file name.
6967
6968 @item copyprop
6969 @opindex fdump-tree-copyprop
6970 Dump trees after copy propagation. The file name is made
6971 by appending @file{.copyprop} to the source file name.
6972
6973 @item store_copyprop
6974 @opindex fdump-tree-store_copyprop
6975 Dump trees after store copy-propagation. The file name is made
6976 by appending @file{.store_copyprop} to the source file name.
6977
6978 @item dce
6979 @opindex fdump-tree-dce
6980 Dump each function after dead code elimination. The file name is made by
6981 appending @file{.dce} to the source file name.
6982
6983 @item sra
6984 @opindex fdump-tree-sra
6985 Dump each function after performing scalar replacement of aggregates. The
6986 file name is made by appending @file{.sra} to the source file name.
6987
6988 @item sink
6989 @opindex fdump-tree-sink
6990 Dump each function after performing code sinking. The file name is made
6991 by appending @file{.sink} to the source file name.
6992
6993 @item dom
6994 @opindex fdump-tree-dom
6995 Dump each function after applying dominator tree optimizations. The file
6996 name is made by appending @file{.dom} to the source file name.
6997
6998 @item dse
6999 @opindex fdump-tree-dse
7000 Dump each function after applying dead store elimination. The file
7001 name is made by appending @file{.dse} to the source file name.
7002
7003 @item phiopt
7004 @opindex fdump-tree-phiopt
7005 Dump each function after optimizing PHI nodes into straightline code. The file
7006 name is made by appending @file{.phiopt} to the source file name.
7007
7008 @item forwprop
7009 @opindex fdump-tree-forwprop
7010 Dump each function after forward propagating single use variables. The file
7011 name is made by appending @file{.forwprop} to the source file name.
7012
7013 @item copyrename
7014 @opindex fdump-tree-copyrename
7015 Dump each function after applying the copy rename optimization. The file
7016 name is made by appending @file{.copyrename} to the source file name.
7017
7018 @item nrv
7019 @opindex fdump-tree-nrv
7020 Dump each function after applying the named return value optimization on
7021 generic trees. The file name is made by appending @file{.nrv} to the source
7022 file name.
7023
7024 @item vect
7025 @opindex fdump-tree-vect
7026 Dump each function after applying vectorization of loops. The file name is
7027 made by appending @file{.vect} to the source file name.
7028
7029 @item slp
7030 @opindex fdump-tree-slp
7031 Dump each function after applying vectorization of basic blocks. The file name
7032 is made by appending @file{.slp} to the source file name.
7033
7034 @item vrp
7035 @opindex fdump-tree-vrp
7036 Dump each function after Value Range Propagation (VRP). The file name
7037 is made by appending @file{.vrp} to the source file name.
7038
7039 @item all
7040 @opindex fdump-tree-all
7041 Enable all the available tree dumps with the flags provided in this option.
7042 @end table
7043
7044 @item -fopt-info
7045 @itemx -fopt-info-@var{options}
7046 @itemx -fopt-info-@var{options}=@var{filename}
7047 @opindex fopt-info
7048 Controls optimization dumps from various optimization passes. If the
7049 @samp{-@var{options}} form is used, @var{options} is a list of
7050 @samp{-} separated option keywords to select the dump details and
7051 optimizations.
7052
7053 The @var{options} can be divided into two groups: options describing the
7054 verbosity of the dump, and options describing which optimizations
7055 should be included. The options from both the groups can be freely
7056 mixed as they are non-overlapping. However, in case of any conflicts,
7057 the later options override the earlier options on the command
7058 line.
7059
7060 The following options control the dump verbosity:
7061
7062 @table @samp
7063 @item optimized
7064 Print information when an optimization is successfully applied. It is
7065 up to a pass to decide which information is relevant. For example, the
7066 vectorizer passes print the source location of loops which are
7067 successfully vectorized.
7068 @item missed
7069 Print information about missed optimizations. Individual passes
7070 control which information to include in the output.
7071 @item note
7072 Print verbose information about optimizations, such as certain
7073 transformations, more detailed messages about decisions etc.
7074 @item all
7075 Print detailed optimization information. This includes
7076 @samp{optimized}, @samp{missed}, and @samp{note}.
7077 @end table
7078
7079 One or more of the following option keywords can be used to describe a
7080 group of optimizations:
7081
7082 @table @samp
7083 @item ipa
7084 Enable dumps from all interprocedural optimizations.
7085 @item loop
7086 Enable dumps from all loop optimizations.
7087 @item inline
7088 Enable dumps from all inlining optimizations.
7089 @item vec
7090 Enable dumps from all vectorization optimizations.
7091 @item optall
7092 Enable dumps from all optimizations. This is a superset of
7093 the optimization groups listed above.
7094 @end table
7095
7096 If @var{options} is
7097 omitted, it defaults to @samp{optimized-optall}, which means to dump all
7098 info about successful optimizations from all the passes.
7099
7100 If the @var{filename} is provided, then the dumps from all the
7101 applicable optimizations are concatenated into the @var{filename}.
7102 Otherwise the dump is output onto @file{stderr}. Though multiple
7103 @option{-fopt-info} options are accepted, only one of them can include
7104 a @var{filename}. If other filenames are provided then all but the
7105 first such option are ignored.
7106
7107 Note that the output @var{filename} is overwritten
7108 in case of multiple translation units. If a combined output from
7109 multiple translation units is desired, @file{stderr} should be used
7110 instead.
7111
7112 In the following example, the optimization info is output to
7113 @file{stderr}:
7114
7115 @smallexample
7116 gcc -O3 -fopt-info
7117 @end smallexample
7118
7119 This example:
7120 @smallexample
7121 gcc -O3 -fopt-info-missed=missed.all
7122 @end smallexample
7123
7124 @noindent
7125 outputs missed optimization report from all the passes into
7126 @file{missed.all}, and this one:
7127
7128 @smallexample
7129 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7130 @end smallexample
7131
7132 @noindent
7133 prints information about missed optimization opportunities from
7134 vectorization passes on @file{stderr}.
7135 Note that @option{-fopt-info-vec-missed} is equivalent to
7136 @option{-fopt-info-missed-vec}.
7137
7138 As another example,
7139 @smallexample
7140 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7141 @end smallexample
7142
7143 @noindent
7144 outputs information about missed optimizations as well as
7145 optimized locations from all the inlining passes into
7146 @file{inline.txt}.
7147
7148 Finally, consider:
7149
7150 @smallexample
7151 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7152 @end smallexample
7153
7154 @noindent
7155 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7156 in conflict since only one output file is allowed. In this case, only
7157 the first option takes effect and the subsequent options are
7158 ignored. Thus only @file{vec.miss} is produced which contains
7159 dumps from the vectorizer about missed opportunities.
7160
7161 @item -frandom-seed=@var{number}
7162 @opindex frandom-seed
7163 This option provides a seed that GCC uses in place of
7164 random numbers in generating certain symbol names
7165 that have to be different in every compiled file. It is also used to
7166 place unique stamps in coverage data files and the object files that
7167 produce them. You can use the @option{-frandom-seed} option to produce
7168 reproducibly identical object files.
7169
7170 The @var{number} should be different for every file you compile.
7171
7172 @item -fsched-verbose=@var{n}
7173 @opindex fsched-verbose
7174 On targets that use instruction scheduling, this option controls the
7175 amount of debugging output the scheduler prints. This information is
7176 written to standard error, unless @option{-fdump-rtl-sched1} or
7177 @option{-fdump-rtl-sched2} is specified, in which case it is output
7178 to the usual dump listing file, @file{.sched1} or @file{.sched2}
7179 respectively. However for @var{n} greater than nine, the output is
7180 always printed to standard error.
7181
7182 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7183 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7184 For @var{n} greater than one, it also output basic block probabilities,
7185 detailed ready list information and unit/insn info. For @var{n} greater
7186 than two, it includes RTL at abort point, control-flow and regions info.
7187 And for @var{n} over four, @option{-fsched-verbose} also includes
7188 dependence info.
7189
7190 @item -save-temps
7191 @itemx -save-temps=cwd
7192 @opindex save-temps
7193 Store the usual ``temporary'' intermediate files permanently; place them
7194 in the current directory and name them based on the source file. Thus,
7195 compiling @file{foo.c} with @option{-c -save-temps} produces files
7196 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
7197 preprocessed @file{foo.i} output file even though the compiler now
7198 normally uses an integrated preprocessor.
7199
7200 When used in combination with the @option{-x} command-line option,
7201 @option{-save-temps} is sensible enough to avoid over writing an
7202 input source file with the same extension as an intermediate file.
7203 The corresponding intermediate file may be obtained by renaming the
7204 source file before using @option{-save-temps}.
7205
7206 If you invoke GCC in parallel, compiling several different source
7207 files that share a common base name in different subdirectories or the
7208 same source file compiled for multiple output destinations, it is
7209 likely that the different parallel compilers will interfere with each
7210 other, and overwrite the temporary files. For instance:
7211
7212 @smallexample
7213 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7214 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7215 @end smallexample
7216
7217 may result in @file{foo.i} and @file{foo.o} being written to
7218 simultaneously by both compilers.
7219
7220 @item -save-temps=obj
7221 @opindex save-temps=obj
7222 Store the usual ``temporary'' intermediate files permanently. If the
7223 @option{-o} option is used, the temporary files are based on the
7224 object file. If the @option{-o} option is not used, the
7225 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
7226
7227 For example:
7228
7229 @smallexample
7230 gcc -save-temps=obj -c foo.c
7231 gcc -save-temps=obj -c bar.c -o dir/xbar.o
7232 gcc -save-temps=obj foobar.c -o dir2/yfoobar
7233 @end smallexample
7234
7235 @noindent
7236 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7237 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7238 @file{dir2/yfoobar.o}.
7239
7240 @item -time@r{[}=@var{file}@r{]}
7241 @opindex time
7242 Report the CPU time taken by each subprocess in the compilation
7243 sequence. For C source files, this is the compiler proper and assembler
7244 (plus the linker if linking is done).
7245
7246 Without the specification of an output file, the output looks like this:
7247
7248 @smallexample
7249 # cc1 0.12 0.01
7250 # as 0.00 0.01
7251 @end smallexample
7252
7253 The first number on each line is the ``user time'', that is time spent
7254 executing the program itself. The second number is ``system time'',
7255 time spent executing operating system routines on behalf of the program.
7256 Both numbers are in seconds.
7257
7258 With the specification of an output file, the output is appended to the
7259 named file, and it looks like this:
7260
7261 @smallexample
7262 0.12 0.01 cc1 @var{options}
7263 0.00 0.01 as @var{options}
7264 @end smallexample
7265
7266 The ``user time'' and the ``system time'' are moved before the program
7267 name, and the options passed to the program are displayed, so that one
7268 can later tell what file was being compiled, and with which options.
7269
7270 @item -fvar-tracking
7271 @opindex fvar-tracking
7272 Run variable tracking pass. It computes where variables are stored at each
7273 position in code. Better debugging information is then generated
7274 (if the debugging information format supports this information).
7275
7276 It is enabled by default when compiling with optimization (@option{-Os},
7277 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7278 the debug info format supports it.
7279
7280 @item -fvar-tracking-assignments
7281 @opindex fvar-tracking-assignments
7282 @opindex fno-var-tracking-assignments
7283 Annotate assignments to user variables early in the compilation and
7284 attempt to carry the annotations over throughout the compilation all the
7285 way to the end, in an attempt to improve debug information while
7286 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7287
7288 It can be enabled even if var-tracking is disabled, in which case
7289 annotations are created and maintained, but discarded at the end.
7290 By default, this flag is enabled together with @option{-fvar-tracking},
7291 except when selective scheduling is enabled.
7292
7293 @item -fvar-tracking-assignments-toggle
7294 @opindex fvar-tracking-assignments-toggle
7295 @opindex fno-var-tracking-assignments-toggle
7296 Toggle @option{-fvar-tracking-assignments}, in the same way that
7297 @option{-gtoggle} toggles @option{-g}.
7298
7299 @item -print-file-name=@var{library}
7300 @opindex print-file-name
7301 Print the full absolute name of the library file @var{library} that
7302 would be used when linking---and don't do anything else. With this
7303 option, GCC does not compile or link anything; it just prints the
7304 file name.
7305
7306 @item -print-multi-directory
7307 @opindex print-multi-directory
7308 Print the directory name corresponding to the multilib selected by any
7309 other switches present in the command line. This directory is supposed
7310 to exist in @env{GCC_EXEC_PREFIX}.
7311
7312 @item -print-multi-lib
7313 @opindex print-multi-lib
7314 Print the mapping from multilib directory names to compiler switches
7315 that enable them. The directory name is separated from the switches by
7316 @samp{;}, and each switch starts with an @samp{@@} instead of the
7317 @samp{-}, without spaces between multiple switches. This is supposed to
7318 ease shell processing.
7319
7320 @item -print-multi-os-directory
7321 @opindex print-multi-os-directory
7322 Print the path to OS libraries for the selected
7323 multilib, relative to some @file{lib} subdirectory. If OS libraries are
7324 present in the @file{lib} subdirectory and no multilibs are used, this is
7325 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7326 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7327 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7328 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7329
7330 @item -print-multiarch
7331 @opindex print-multiarch
7332 Print the path to OS libraries for the selected multiarch,
7333 relative to some @file{lib} subdirectory.
7334
7335 @item -print-prog-name=@var{program}
7336 @opindex print-prog-name
7337 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7338
7339 @item -print-libgcc-file-name
7340 @opindex print-libgcc-file-name
7341 Same as @option{-print-file-name=libgcc.a}.
7342
7343 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7344 but you do want to link with @file{libgcc.a}. You can do:
7345
7346 @smallexample
7347 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7348 @end smallexample
7349
7350 @item -print-search-dirs
7351 @opindex print-search-dirs
7352 Print the name of the configured installation directory and a list of
7353 program and library directories @command{gcc} searches---and don't do anything else.
7354
7355 This is useful when @command{gcc} prints the error message
7356 @samp{installation problem, cannot exec cpp0: No such file or directory}.
7357 To resolve this you either need to put @file{cpp0} and the other compiler
7358 components where @command{gcc} expects to find them, or you can set the environment
7359 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7360 Don't forget the trailing @samp{/}.
7361 @xref{Environment Variables}.
7362
7363 @item -print-sysroot
7364 @opindex print-sysroot
7365 Print the target sysroot directory that is used during
7366 compilation. This is the target sysroot specified either at configure
7367 time or using the @option{--sysroot} option, possibly with an extra
7368 suffix that depends on compilation options. If no target sysroot is
7369 specified, the option prints nothing.
7370
7371 @item -print-sysroot-headers-suffix
7372 @opindex print-sysroot-headers-suffix
7373 Print the suffix added to the target sysroot when searching for
7374 headers, or give an error if the compiler is not configured with such
7375 a suffix---and don't do anything else.
7376
7377 @item -dumpmachine
7378 @opindex dumpmachine
7379 Print the compiler's target machine (for example,
7380 @samp{i686-pc-linux-gnu})---and don't do anything else.
7381
7382 @item -dumpversion
7383 @opindex dumpversion
7384 Print the compiler version (for example, @code{3.0})---and don't do
7385 anything else.
7386
7387 @item -dumpspecs
7388 @opindex dumpspecs
7389 Print the compiler's built-in specs---and don't do anything else. (This
7390 is used when GCC itself is being built.) @xref{Spec Files}.
7391
7392 @item -fno-eliminate-unused-debug-types
7393 @opindex feliminate-unused-debug-types
7394 @opindex fno-eliminate-unused-debug-types
7395 Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
7396 output for types that are nowhere used in the source file being compiled.
7397 Sometimes it is useful to have GCC emit debugging
7398 information for all types declared in a compilation
7399 unit, regardless of whether or not they are actually used
7400 in that compilation unit, for example
7401 if, in the debugger, you want to cast a value to a type that is
7402 not actually used in your program (but is declared). More often,
7403 however, this results in a significant amount of wasted space.
7404 @end table
7405
7406 @node Optimize Options
7407 @section Options That Control Optimization
7408 @cindex optimize options
7409 @cindex options, optimization
7410
7411 These options control various sorts of optimizations.
7412
7413 Without any optimization option, the compiler's goal is to reduce the
7414 cost of compilation and to make debugging produce the expected
7415 results. Statements are independent: if you stop the program with a
7416 breakpoint between statements, you can then assign a new value to any
7417 variable or change the program counter to any other statement in the
7418 function and get exactly the results you expect from the source
7419 code.
7420
7421 Turning on optimization flags makes the compiler attempt to improve
7422 the performance and/or code size at the expense of compilation time
7423 and possibly the ability to debug the program.
7424
7425 The compiler performs optimization based on the knowledge it has of the
7426 program. Compiling multiple files at once to a single output file mode allows
7427 the compiler to use information gained from all of the files when compiling
7428 each of them.
7429
7430 Not all optimizations are controlled directly by a flag. Only
7431 optimizations that have a flag are listed in this section.
7432
7433 Most optimizations are only enabled if an @option{-O} level is set on
7434 the command line. Otherwise they are disabled, even if individual
7435 optimization flags are specified.
7436
7437 Depending on the target and how GCC was configured, a slightly different
7438 set of optimizations may be enabled at each @option{-O} level than
7439 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7440 to find out the exact set of optimizations that are enabled at each level.
7441 @xref{Overall Options}, for examples.
7442
7443 @table @gcctabopt
7444 @item -O
7445 @itemx -O1
7446 @opindex O
7447 @opindex O1
7448 Optimize. Optimizing compilation takes somewhat more time, and a lot
7449 more memory for a large function.
7450
7451 With @option{-O}, the compiler tries to reduce code size and execution
7452 time, without performing any optimizations that take a great deal of
7453 compilation time.
7454
7455 @option{-O} turns on the following optimization flags:
7456 @gccoptlist{
7457 -fauto-inc-dec @gol
7458 -fbranch-count-reg @gol
7459 -fcombine-stack-adjustments @gol
7460 -fcompare-elim @gol
7461 -fcprop-registers @gol
7462 -fdce @gol
7463 -fdefer-pop @gol
7464 -fdelayed-branch @gol
7465 -fdse @gol
7466 -fforward-propagate @gol
7467 -fguess-branch-probability @gol
7468 -fif-conversion2 @gol
7469 -fif-conversion @gol
7470 -finline-functions-called-once @gol
7471 -fipa-pure-const @gol
7472 -fipa-profile @gol
7473 -fipa-reference @gol
7474 -fmerge-constants @gol
7475 -fmove-loop-invariants @gol
7476 -fshrink-wrap @gol
7477 -fsplit-wide-types @gol
7478 -ftree-bit-ccp @gol
7479 -ftree-ccp @gol
7480 -fssa-phiopt @gol
7481 -ftree-ch @gol
7482 -ftree-copy-prop @gol
7483 -ftree-copyrename @gol
7484 -ftree-dce @gol
7485 -ftree-dominator-opts @gol
7486 -ftree-dse @gol
7487 -ftree-forwprop @gol
7488 -ftree-fre @gol
7489 -ftree-phiprop @gol
7490 -ftree-sink @gol
7491 -ftree-slsr @gol
7492 -ftree-sra @gol
7493 -ftree-pta @gol
7494 -ftree-ter @gol
7495 -funit-at-a-time}
7496
7497 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7498 where doing so does not interfere with debugging.
7499
7500 @item -O2
7501 @opindex O2
7502 Optimize even more. GCC performs nearly all supported optimizations
7503 that do not involve a space-speed tradeoff.
7504 As compared to @option{-O}, this option increases both compilation time
7505 and the performance of the generated code.
7506
7507 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7508 also turns on the following optimization flags:
7509 @gccoptlist{-fthread-jumps @gol
7510 -falign-functions -falign-jumps @gol
7511 -falign-loops -falign-labels @gol
7512 -fcaller-saves @gol
7513 -fcrossjumping @gol
7514 -fcse-follow-jumps -fcse-skip-blocks @gol
7515 -fdelete-null-pointer-checks @gol
7516 -fdevirtualize -fdevirtualize-speculatively @gol
7517 -fexpensive-optimizations @gol
7518 -fgcse -fgcse-lm @gol
7519 -fhoist-adjacent-loads @gol
7520 -finline-small-functions @gol
7521 -findirect-inlining @gol
7522 -fipa-cp @gol
7523 -fipa-cp-alignment @gol
7524 -fipa-sra @gol
7525 -fipa-icf @gol
7526 -fisolate-erroneous-paths-dereference @gol
7527 -flra-remat @gol
7528 -foptimize-sibling-calls @gol
7529 -foptimize-strlen @gol
7530 -fpartial-inlining @gol
7531 -fpeephole2 @gol
7532 -freorder-blocks -freorder-blocks-and-partition -freorder-functions @gol
7533 -frerun-cse-after-loop @gol
7534 -fsched-interblock -fsched-spec @gol
7535 -fschedule-insns -fschedule-insns2 @gol
7536 -fstrict-aliasing -fstrict-overflow @gol
7537 -ftree-builtin-call-dce @gol
7538 -ftree-switch-conversion -ftree-tail-merge @gol
7539 -ftree-pre @gol
7540 -ftree-vrp @gol
7541 -fipa-ra}
7542
7543 Please note the warning under @option{-fgcse} about
7544 invoking @option{-O2} on programs that use computed gotos.
7545
7546 @item -O3
7547 @opindex O3
7548 Optimize yet more. @option{-O3} turns on all optimizations specified
7549 by @option{-O2} and also turns on the @option{-finline-functions},
7550 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7551 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7552 @option{-ftree-loop-distribute-patterns},
7553 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7554 @option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7555
7556 @item -O0
7557 @opindex O0
7558 Reduce compilation time and make debugging produce the expected
7559 results. This is the default.
7560
7561 @item -Os
7562 @opindex Os
7563 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7564 do not typically increase code size. It also performs further
7565 optimizations designed to reduce code size.
7566
7567 @option{-Os} disables the following optimization flags:
7568 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7569 -falign-labels -freorder-blocks -freorder-blocks-and-partition @gol
7570 -fprefetch-loop-arrays}
7571
7572 @item -Ofast
7573 @opindex Ofast
7574 Disregard strict standards compliance. @option{-Ofast} enables all
7575 @option{-O3} optimizations. It also enables optimizations that are not
7576 valid for all standard-compliant programs.
7577 It turns on @option{-ffast-math} and the Fortran-specific
7578 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7579
7580 @item -Og
7581 @opindex Og
7582 Optimize debugging experience. @option{-Og} enables optimizations
7583 that do not interfere with debugging. It should be the optimization
7584 level of choice for the standard edit-compile-debug cycle, offering
7585 a reasonable level of optimization while maintaining fast compilation
7586 and a good debugging experience.
7587
7588 If you use multiple @option{-O} options, with or without level numbers,
7589 the last such option is the one that is effective.
7590 @end table
7591
7592 Options of the form @option{-f@var{flag}} specify machine-independent
7593 flags. Most flags have both positive and negative forms; the negative
7594 form of @option{-ffoo} is @option{-fno-foo}. In the table
7595 below, only one of the forms is listed---the one you typically
7596 use. You can figure out the other form by either removing @samp{no-}
7597 or adding it.
7598
7599 The following options control specific optimizations. They are either
7600 activated by @option{-O} options or are related to ones that are. You
7601 can use the following flags in the rare cases when ``fine-tuning'' of
7602 optimizations to be performed is desired.
7603
7604 @table @gcctabopt
7605 @item -fno-defer-pop
7606 @opindex fno-defer-pop
7607 Always pop the arguments to each function call as soon as that function
7608 returns. For machines that must pop arguments after a function call,
7609 the compiler normally lets arguments accumulate on the stack for several
7610 function calls and pops them all at once.
7611
7612 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7613
7614 @item -fforward-propagate
7615 @opindex fforward-propagate
7616 Perform a forward propagation pass on RTL@. The pass tries to combine two
7617 instructions and checks if the result can be simplified. If loop unrolling
7618 is active, two passes are performed and the second is scheduled after
7619 loop unrolling.
7620
7621 This option is enabled by default at optimization levels @option{-O},
7622 @option{-O2}, @option{-O3}, @option{-Os}.
7623
7624 @item -ffp-contract=@var{style}
7625 @opindex ffp-contract
7626 @option{-ffp-contract=off} disables floating-point expression contraction.
7627 @option{-ffp-contract=fast} enables floating-point expression contraction
7628 such as forming of fused multiply-add operations if the target has
7629 native support for them.
7630 @option{-ffp-contract=on} enables floating-point expression contraction
7631 if allowed by the language standard. This is currently not implemented
7632 and treated equal to @option{-ffp-contract=off}.
7633
7634 The default is @option{-ffp-contract=fast}.
7635
7636 @item -fomit-frame-pointer
7637 @opindex fomit-frame-pointer
7638 Don't keep the frame pointer in a register for functions that
7639 don't need one. This avoids the instructions to save, set up and
7640 restore frame pointers; it also makes an extra register available
7641 in many functions. @strong{It also makes debugging impossible on
7642 some machines.}
7643
7644 On some machines, such as the VAX, this flag has no effect, because
7645 the standard calling sequence automatically handles the frame pointer
7646 and nothing is saved by pretending it doesn't exist. The
7647 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7648 whether a target machine supports this flag. @xref{Registers,,Register
7649 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7650
7651 The default setting (when not optimizing for
7652 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7653 @option{-fomit-frame-pointer}. You can configure GCC with the
7654 @option{--enable-frame-pointer} configure option to change the default.
7655
7656 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7657
7658 @item -foptimize-sibling-calls
7659 @opindex foptimize-sibling-calls
7660 Optimize sibling and tail recursive calls.
7661
7662 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7663
7664 @item -foptimize-strlen
7665 @opindex foptimize-strlen
7666 Optimize various standard C string functions (e.g. @code{strlen},
7667 @code{strchr} or @code{strcpy}) and
7668 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7669
7670 Enabled at levels @option{-O2}, @option{-O3}.
7671
7672 @item -fno-inline
7673 @opindex fno-inline
7674 Do not expand any functions inline apart from those marked with
7675 the @code{always_inline} attribute. This is the default when not
7676 optimizing.
7677
7678 Single functions can be exempted from inlining by marking them
7679 with the @code{noinline} attribute.
7680
7681 @item -finline-small-functions
7682 @opindex finline-small-functions
7683 Integrate functions into their callers when their body is smaller than expected
7684 function call code (so overall size of program gets smaller). The compiler
7685 heuristically decides which functions are simple enough to be worth integrating
7686 in this way. This inlining applies to all functions, even those not declared
7687 inline.
7688
7689 Enabled at level @option{-O2}.
7690
7691 @item -findirect-inlining
7692 @opindex findirect-inlining
7693 Inline also indirect calls that are discovered to be known at compile
7694 time thanks to previous inlining. This option has any effect only
7695 when inlining itself is turned on by the @option{-finline-functions}
7696 or @option{-finline-small-functions} options.
7697
7698 Enabled at level @option{-O2}.
7699
7700 @item -finline-functions
7701 @opindex finline-functions
7702 Consider all functions for inlining, even if they are not declared inline.
7703 The compiler heuristically decides which functions are worth integrating
7704 in this way.
7705
7706 If all calls to a given function are integrated, and the function is
7707 declared @code{static}, then the function is normally not output as
7708 assembler code in its own right.
7709
7710 Enabled at level @option{-O3}.
7711
7712 @item -finline-functions-called-once
7713 @opindex finline-functions-called-once
7714 Consider all @code{static} functions called once for inlining into their
7715 caller even if they are not marked @code{inline}. If a call to a given
7716 function is integrated, then the function is not output as assembler code
7717 in its own right.
7718
7719 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7720
7721 @item -fearly-inlining
7722 @opindex fearly-inlining
7723 Inline functions marked by @code{always_inline} and functions whose body seems
7724 smaller than the function call overhead early before doing
7725 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7726 makes profiling significantly cheaper and usually inlining faster on programs
7727 having large chains of nested wrapper functions.
7728
7729 Enabled by default.
7730
7731 @item -fipa-sra
7732 @opindex fipa-sra
7733 Perform interprocedural scalar replacement of aggregates, removal of
7734 unused parameters and replacement of parameters passed by reference
7735 by parameters passed by value.
7736
7737 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7738
7739 @item -finline-limit=@var{n}
7740 @opindex finline-limit
7741 By default, GCC limits the size of functions that can be inlined. This flag
7742 allows coarse control of this limit. @var{n} is the size of functions that
7743 can be inlined in number of pseudo instructions.
7744
7745 Inlining is actually controlled by a number of parameters, which may be
7746 specified individually by using @option{--param @var{name}=@var{value}}.
7747 The @option{-finline-limit=@var{n}} option sets some of these parameters
7748 as follows:
7749
7750 @table @gcctabopt
7751 @item max-inline-insns-single
7752 is set to @var{n}/2.
7753 @item max-inline-insns-auto
7754 is set to @var{n}/2.
7755 @end table
7756
7757 See below for a documentation of the individual
7758 parameters controlling inlining and for the defaults of these parameters.
7759
7760 @emph{Note:} there may be no value to @option{-finline-limit} that results
7761 in default behavior.
7762
7763 @emph{Note:} pseudo instruction represents, in this particular context, an
7764 abstract measurement of function's size. In no way does it represent a count
7765 of assembly instructions and as such its exact meaning might change from one
7766 release to an another.
7767
7768 @item -fno-keep-inline-dllexport
7769 @opindex fno-keep-inline-dllexport
7770 This is a more fine-grained version of @option{-fkeep-inline-functions},
7771 which applies only to functions that are declared using the @code{dllexport}
7772 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
7773 Functions}.)
7774
7775 @item -fkeep-inline-functions
7776 @opindex fkeep-inline-functions
7777 In C, emit @code{static} functions that are declared @code{inline}
7778 into the object file, even if the function has been inlined into all
7779 of its callers. This switch does not affect functions using the
7780 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7781 inline functions into the object file.
7782
7783 @item -fkeep-static-consts
7784 @opindex fkeep-static-consts
7785 Emit variables declared @code{static const} when optimization isn't turned
7786 on, even if the variables aren't referenced.
7787
7788 GCC enables this option by default. If you want to force the compiler to
7789 check if a variable is referenced, regardless of whether or not
7790 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7791
7792 @item -fmerge-constants
7793 @opindex fmerge-constants
7794 Attempt to merge identical constants (string constants and floating-point
7795 constants) across compilation units.
7796
7797 This option is the default for optimized compilation if the assembler and
7798 linker support it. Use @option{-fno-merge-constants} to inhibit this
7799 behavior.
7800
7801 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7802
7803 @item -fmerge-all-constants
7804 @opindex fmerge-all-constants
7805 Attempt to merge identical constants and identical variables.
7806
7807 This option implies @option{-fmerge-constants}. In addition to
7808 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7809 arrays or initialized constant variables with integral or floating-point
7810 types. Languages like C or C++ require each variable, including multiple
7811 instances of the same variable in recursive calls, to have distinct locations,
7812 so using this option results in non-conforming
7813 behavior.
7814
7815 @item -fmodulo-sched
7816 @opindex fmodulo-sched
7817 Perform swing modulo scheduling immediately before the first scheduling
7818 pass. This pass looks at innermost loops and reorders their
7819 instructions by overlapping different iterations.
7820
7821 @item -fmodulo-sched-allow-regmoves
7822 @opindex fmodulo-sched-allow-regmoves
7823 Perform more aggressive SMS-based modulo scheduling with register moves
7824 allowed. By setting this flag certain anti-dependences edges are
7825 deleted, which triggers the generation of reg-moves based on the
7826 life-range analysis. This option is effective only with
7827 @option{-fmodulo-sched} enabled.
7828
7829 @item -fno-branch-count-reg
7830 @opindex fno-branch-count-reg
7831 Do not use ``decrement and branch'' instructions on a count register,
7832 but instead generate a sequence of instructions that decrement a
7833 register, compare it against zero, then branch based upon the result.
7834 This option is only meaningful on architectures that support such
7835 instructions, which include x86, PowerPC, IA-64 and S/390.
7836
7837 Enabled by default at @option{-O1} and higher.
7838
7839 The default is @option{-fbranch-count-reg}.
7840
7841 @item -fno-function-cse
7842 @opindex fno-function-cse
7843 Do not put function addresses in registers; make each instruction that
7844 calls a constant function contain the function's address explicitly.
7845
7846 This option results in less efficient code, but some strange hacks
7847 that alter the assembler output may be confused by the optimizations
7848 performed when this option is not used.
7849
7850 The default is @option{-ffunction-cse}
7851
7852 @item -fno-zero-initialized-in-bss
7853 @opindex fno-zero-initialized-in-bss
7854 If the target supports a BSS section, GCC by default puts variables that
7855 are initialized to zero into BSS@. This can save space in the resulting
7856 code.
7857
7858 This option turns off this behavior because some programs explicitly
7859 rely on variables going to the data section---e.g., so that the
7860 resulting executable can find the beginning of that section and/or make
7861 assumptions based on that.
7862
7863 The default is @option{-fzero-initialized-in-bss}.
7864
7865 @item -fthread-jumps
7866 @opindex fthread-jumps
7867 Perform optimizations that check to see if a jump branches to a
7868 location where another comparison subsumed by the first is found. If
7869 so, the first branch is redirected to either the destination of the
7870 second branch or a point immediately following it, depending on whether
7871 the condition is known to be true or false.
7872
7873 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7874
7875 @item -fsplit-wide-types
7876 @opindex fsplit-wide-types
7877 When using a type that occupies multiple registers, such as @code{long
7878 long} on a 32-bit system, split the registers apart and allocate them
7879 independently. This normally generates better code for those types,
7880 but may make debugging more difficult.
7881
7882 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7883 @option{-Os}.
7884
7885 @item -fcse-follow-jumps
7886 @opindex fcse-follow-jumps
7887 In common subexpression elimination (CSE), scan through jump instructions
7888 when the target of the jump is not reached by any other path. For
7889 example, when CSE encounters an @code{if} statement with an
7890 @code{else} clause, CSE follows the jump when the condition
7891 tested is false.
7892
7893 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7894
7895 @item -fcse-skip-blocks
7896 @opindex fcse-skip-blocks
7897 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7898 follow jumps that conditionally skip over blocks. When CSE
7899 encounters a simple @code{if} statement with no else clause,
7900 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7901 body of the @code{if}.
7902
7903 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7904
7905 @item -frerun-cse-after-loop
7906 @opindex frerun-cse-after-loop
7907 Re-run common subexpression elimination after loop optimizations are
7908 performed.
7909
7910 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7911
7912 @item -fgcse
7913 @opindex fgcse
7914 Perform a global common subexpression elimination pass.
7915 This pass also performs global constant and copy propagation.
7916
7917 @emph{Note:} When compiling a program using computed gotos, a GCC
7918 extension, you may get better run-time performance if you disable
7919 the global common subexpression elimination pass by adding
7920 @option{-fno-gcse} to the command line.
7921
7922 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7923
7924 @item -fgcse-lm
7925 @opindex fgcse-lm
7926 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7927 attempts to move loads that are only killed by stores into themselves. This
7928 allows a loop containing a load/store sequence to be changed to a load outside
7929 the loop, and a copy/store within the loop.
7930
7931 Enabled by default when @option{-fgcse} is enabled.
7932
7933 @item -fgcse-sm
7934 @opindex fgcse-sm
7935 When @option{-fgcse-sm} is enabled, a store motion pass is run after
7936 global common subexpression elimination. This pass attempts to move
7937 stores out of loops. When used in conjunction with @option{-fgcse-lm},
7938 loops containing a load/store sequence can be changed to a load before
7939 the loop and a store after the loop.
7940
7941 Not enabled at any optimization level.
7942
7943 @item -fgcse-las
7944 @opindex fgcse-las
7945 When @option{-fgcse-las} is enabled, the global common subexpression
7946 elimination pass eliminates redundant loads that come after stores to the
7947 same memory location (both partial and full redundancies).
7948
7949 Not enabled at any optimization level.
7950
7951 @item -fgcse-after-reload
7952 @opindex fgcse-after-reload
7953 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7954 pass is performed after reload. The purpose of this pass is to clean up
7955 redundant spilling.
7956
7957 @item -faggressive-loop-optimizations
7958 @opindex faggressive-loop-optimizations
7959 This option tells the loop optimizer to use language constraints to
7960 derive bounds for the number of iterations of a loop. This assumes that
7961 loop code does not invoke undefined behavior by for example causing signed
7962 integer overflows or out-of-bound array accesses. The bounds for the
7963 number of iterations of a loop are used to guide loop unrolling and peeling
7964 and loop exit test optimizations.
7965 This option is enabled by default.
7966
7967 @item -funsafe-loop-optimizations
7968 @opindex funsafe-loop-optimizations
7969 This option tells the loop optimizer to assume that loop indices do not
7970 overflow, and that loops with nontrivial exit condition are not
7971 infinite. This enables a wider range of loop optimizations even if
7972 the loop optimizer itself cannot prove that these assumptions are valid.
7973 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
7974 if it finds this kind of loop.
7975
7976 @item -fcrossjumping
7977 @opindex fcrossjumping
7978 Perform cross-jumping transformation.
7979 This transformation unifies equivalent code and saves code size. The
7980 resulting code may or may not perform better than without cross-jumping.
7981
7982 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7983
7984 @item -fauto-inc-dec
7985 @opindex fauto-inc-dec
7986 Combine increments or decrements of addresses with memory accesses.
7987 This pass is always skipped on architectures that do not have
7988 instructions to support this. Enabled by default at @option{-O} and
7989 higher on architectures that support this.
7990
7991 @item -fdce
7992 @opindex fdce
7993 Perform dead code elimination (DCE) on RTL@.
7994 Enabled by default at @option{-O} and higher.
7995
7996 @item -fdse
7997 @opindex fdse
7998 Perform dead store elimination (DSE) on RTL@.
7999 Enabled by default at @option{-O} and higher.
8000
8001 @item -fif-conversion
8002 @opindex fif-conversion
8003 Attempt to transform conditional jumps into branch-less equivalents. This
8004 includes use of conditional moves, min, max, set flags and abs instructions, and
8005 some tricks doable by standard arithmetics. The use of conditional execution
8006 on chips where it is available is controlled by @option{-fif-conversion2}.
8007
8008 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8009
8010 @item -fif-conversion2
8011 @opindex fif-conversion2
8012 Use conditional execution (where available) to transform conditional jumps into
8013 branch-less equivalents.
8014
8015 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8016
8017 @item -fdeclone-ctor-dtor
8018 @opindex fdeclone-ctor-dtor
8019 The C++ ABI requires multiple entry points for constructors and
8020 destructors: one for a base subobject, one for a complete object, and
8021 one for a virtual destructor that calls operator delete afterwards.
8022 For a hierarchy with virtual bases, the base and complete variants are
8023 clones, which means two copies of the function. With this option, the
8024 base and complete variants are changed to be thunks that call a common
8025 implementation.
8026
8027 Enabled by @option{-Os}.
8028
8029 @item -fdelete-null-pointer-checks
8030 @opindex fdelete-null-pointer-checks
8031 Assume that programs cannot safely dereference null pointers, and that
8032 no code or data element resides at address zero.
8033 This option enables simple constant
8034 folding optimizations at all optimization levels. In addition, other
8035 optimization passes in GCC use this flag to control global dataflow
8036 analyses that eliminate useless checks for null pointers; these assume
8037 that a memory access to address zero always results in a trap, so
8038 that if a pointer is checked after it has already been dereferenced,
8039 it cannot be null.
8040
8041 Note however that in some environments this assumption is not true.
8042 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8043 for programs that depend on that behavior.
8044
8045 This option is enabled by default on most targets. On Nios II ELF, it
8046 defaults to off. On AVR and CR16, this option is completely disabled.
8047
8048 Passes that use the dataflow information
8049 are enabled independently at different optimization levels.
8050
8051 @item -fdevirtualize
8052 @opindex fdevirtualize
8053 Attempt to convert calls to virtual functions to direct calls. This
8054 is done both within a procedure and interprocedurally as part of
8055 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8056 propagation (@option{-fipa-cp}).
8057 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8058
8059 @item -fdevirtualize-speculatively
8060 @opindex fdevirtualize-speculatively
8061 Attempt to convert calls to virtual functions to speculative direct calls.
8062 Based on the analysis of the type inheritance graph, determine for a given call
8063 the set of likely targets. If the set is small, preferably of size 1, change
8064 the call into a conditional deciding between direct and indirect calls. The
8065 speculative calls enable more optimizations, such as inlining. When they seem
8066 useless after further optimization, they are converted back into original form.
8067
8068 @item -fdevirtualize-at-ltrans
8069 @opindex fdevirtualize-at-ltrans
8070 Stream extra information needed for aggressive devirtualization when running
8071 the link-time optimizer in local transformation mode.
8072 This option enables more devirtualization but
8073 significantly increases the size of streamed data. For this reason it is
8074 disabled by default.
8075
8076 @item -fexpensive-optimizations
8077 @opindex fexpensive-optimizations
8078 Perform a number of minor optimizations that are relatively expensive.
8079
8080 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8081
8082 @item -free
8083 @opindex free
8084 Attempt to remove redundant extension instructions. This is especially
8085 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8086 registers after writing to their lower 32-bit half.
8087
8088 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8089 @option{-O3}, @option{-Os}.
8090
8091 @item -fno-lifetime-dse
8092 @opindex fno-lifetime-dse
8093 In C++ the value of an object is only affected by changes within its
8094 lifetime: when the constructor begins, the object has an indeterminate
8095 value, and any changes during the lifetime of the object are dead when
8096 the object is destroyed. Normally dead store elimination will take
8097 advantage of this; if your code relies on the value of the object
8098 storage persisting beyond the lifetime of the object, you can use this
8099 flag to disable this optimization.
8100
8101 @item -flive-range-shrinkage
8102 @opindex flive-range-shrinkage
8103 Attempt to decrease register pressure through register live range
8104 shrinkage. This is helpful for fast processors with small or moderate
8105 size register sets.
8106
8107 @item -fira-algorithm=@var{algorithm}
8108 @opindex fira-algorithm
8109 Use the specified coloring algorithm for the integrated register
8110 allocator. The @var{algorithm} argument can be @samp{priority}, which
8111 specifies Chow's priority coloring, or @samp{CB}, which specifies
8112 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8113 for all architectures, but for those targets that do support it, it is
8114 the default because it generates better code.
8115
8116 @item -fira-region=@var{region}
8117 @opindex fira-region
8118 Use specified regions for the integrated register allocator. The
8119 @var{region} argument should be one of the following:
8120
8121 @table @samp
8122
8123 @item all
8124 Use all loops as register allocation regions.
8125 This can give the best results for machines with a small and/or
8126 irregular register set.
8127
8128 @item mixed
8129 Use all loops except for loops with small register pressure
8130 as the regions. This value usually gives
8131 the best results in most cases and for most architectures,
8132 and is enabled by default when compiling with optimization for speed
8133 (@option{-O}, @option{-O2}, @dots{}).
8134
8135 @item one
8136 Use all functions as a single region.
8137 This typically results in the smallest code size, and is enabled by default for
8138 @option{-Os} or @option{-O0}.
8139
8140 @end table
8141
8142 @item -fira-hoist-pressure
8143 @opindex fira-hoist-pressure
8144 Use IRA to evaluate register pressure in the code hoisting pass for
8145 decisions to hoist expressions. This option usually results in smaller
8146 code, but it can slow the compiler down.
8147
8148 This option is enabled at level @option{-Os} for all targets.
8149
8150 @item -fira-loop-pressure
8151 @opindex fira-loop-pressure
8152 Use IRA to evaluate register pressure in loops for decisions to move
8153 loop invariants. This option usually results in generation
8154 of faster and smaller code on machines with large register files (>= 32
8155 registers), but it can slow the compiler down.
8156
8157 This option is enabled at level @option{-O3} for some targets.
8158
8159 @item -fno-ira-share-save-slots
8160 @opindex fno-ira-share-save-slots
8161 Disable sharing of stack slots used for saving call-used hard
8162 registers living through a call. Each hard register gets a
8163 separate stack slot, and as a result function stack frames are
8164 larger.
8165
8166 @item -fno-ira-share-spill-slots
8167 @opindex fno-ira-share-spill-slots
8168 Disable sharing of stack slots allocated for pseudo-registers. Each
8169 pseudo-register that does not get a hard register gets a separate
8170 stack slot, and as a result function stack frames are larger.
8171
8172 @item -fira-verbose=@var{n}
8173 @opindex fira-verbose
8174 Control the verbosity of the dump file for the integrated register allocator.
8175 The default value is 5. If the value @var{n} is greater or equal to 10,
8176 the dump output is sent to stderr using the same format as @var{n} minus 10.
8177
8178 @item -flra-remat
8179 @opindex flra-remat
8180 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8181 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8182 values if it is profitable.
8183
8184 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8185
8186 @item -fdelayed-branch
8187 @opindex fdelayed-branch
8188 If supported for the target machine, attempt to reorder instructions
8189 to exploit instruction slots available after delayed branch
8190 instructions.
8191
8192 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8193
8194 @item -fschedule-insns
8195 @opindex fschedule-insns
8196 If supported for the target machine, attempt to reorder instructions to
8197 eliminate execution stalls due to required data being unavailable. This
8198 helps machines that have slow floating point or memory load instructions
8199 by allowing other instructions to be issued until the result of the load
8200 or floating-point instruction is required.
8201
8202 Enabled at levels @option{-O2}, @option{-O3}.
8203
8204 @item -fschedule-insns2
8205 @opindex fschedule-insns2
8206 Similar to @option{-fschedule-insns}, but requests an additional pass of
8207 instruction scheduling after register allocation has been done. This is
8208 especially useful on machines with a relatively small number of
8209 registers and where memory load instructions take more than one cycle.
8210
8211 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8212
8213 @item -fno-sched-interblock
8214 @opindex fno-sched-interblock
8215 Don't schedule instructions across basic blocks. This is normally
8216 enabled by default when scheduling before register allocation, i.e.@:
8217 with @option{-fschedule-insns} or at @option{-O2} or higher.
8218
8219 @item -fno-sched-spec
8220 @opindex fno-sched-spec
8221 Don't allow speculative motion of non-load instructions. This is normally
8222 enabled by default when scheduling before register allocation, i.e.@:
8223 with @option{-fschedule-insns} or at @option{-O2} or higher.
8224
8225 @item -fsched-pressure
8226 @opindex fsched-pressure
8227 Enable register pressure sensitive insn scheduling before register
8228 allocation. This only makes sense when scheduling before register
8229 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8230 @option{-O2} or higher. Usage of this option can improve the
8231 generated code and decrease its size by preventing register pressure
8232 increase above the number of available hard registers and subsequent
8233 spills in register allocation.
8234
8235 @item -fsched-spec-load
8236 @opindex fsched-spec-load
8237 Allow speculative motion of some load instructions. This only makes
8238 sense when scheduling before register allocation, i.e.@: with
8239 @option{-fschedule-insns} or at @option{-O2} or higher.
8240
8241 @item -fsched-spec-load-dangerous
8242 @opindex fsched-spec-load-dangerous
8243 Allow speculative motion of more load instructions. This only makes
8244 sense when scheduling before register allocation, i.e.@: with
8245 @option{-fschedule-insns} or at @option{-O2} or higher.
8246
8247 @item -fsched-stalled-insns
8248 @itemx -fsched-stalled-insns=@var{n}
8249 @opindex fsched-stalled-insns
8250 Define how many insns (if any) can be moved prematurely from the queue
8251 of stalled insns into the ready list during the second scheduling pass.
8252 @option{-fno-sched-stalled-insns} means that no insns are moved
8253 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8254 on how many queued insns can be moved prematurely.
8255 @option{-fsched-stalled-insns} without a value is equivalent to
8256 @option{-fsched-stalled-insns=1}.
8257
8258 @item -fsched-stalled-insns-dep
8259 @itemx -fsched-stalled-insns-dep=@var{n}
8260 @opindex fsched-stalled-insns-dep
8261 Define how many insn groups (cycles) are examined for a dependency
8262 on a stalled insn that is a candidate for premature removal from the queue
8263 of stalled insns. This has an effect only during the second scheduling pass,
8264 and only if @option{-fsched-stalled-insns} is used.
8265 @option{-fno-sched-stalled-insns-dep} is equivalent to
8266 @option{-fsched-stalled-insns-dep=0}.
8267 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8268 @option{-fsched-stalled-insns-dep=1}.
8269
8270 @item -fsched2-use-superblocks
8271 @opindex fsched2-use-superblocks
8272 When scheduling after register allocation, use superblock scheduling.
8273 This allows motion across basic block boundaries,
8274 resulting in faster schedules. This option is experimental, as not all machine
8275 descriptions used by GCC model the CPU closely enough to avoid unreliable
8276 results from the algorithm.
8277
8278 This only makes sense when scheduling after register allocation, i.e.@: with
8279 @option{-fschedule-insns2} or at @option{-O2} or higher.
8280
8281 @item -fsched-group-heuristic
8282 @opindex fsched-group-heuristic
8283 Enable the group heuristic in the scheduler. This heuristic favors
8284 the instruction that belongs to a schedule group. This is enabled
8285 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8286 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8287
8288 @item -fsched-critical-path-heuristic
8289 @opindex fsched-critical-path-heuristic
8290 Enable the critical-path heuristic in the scheduler. This heuristic favors
8291 instructions on the critical path. This is enabled by default when
8292 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8293 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8294
8295 @item -fsched-spec-insn-heuristic
8296 @opindex fsched-spec-insn-heuristic
8297 Enable the speculative instruction heuristic in the scheduler. This
8298 heuristic favors speculative instructions with greater dependency weakness.
8299 This is enabled by default when scheduling is enabled, i.e.@:
8300 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8301 or at @option{-O2} or higher.
8302
8303 @item -fsched-rank-heuristic
8304 @opindex fsched-rank-heuristic
8305 Enable the rank heuristic in the scheduler. This heuristic favors
8306 the instruction belonging to a basic block with greater size or frequency.
8307 This is enabled by default when scheduling is enabled, i.e.@:
8308 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8309 at @option{-O2} or higher.
8310
8311 @item -fsched-last-insn-heuristic
8312 @opindex fsched-last-insn-heuristic
8313 Enable the last-instruction heuristic in the scheduler. This heuristic
8314 favors the instruction that is less dependent on the last instruction
8315 scheduled. This is enabled by default when scheduling is enabled,
8316 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8317 at @option{-O2} or higher.
8318
8319 @item -fsched-dep-count-heuristic
8320 @opindex fsched-dep-count-heuristic
8321 Enable the dependent-count heuristic in the scheduler. This heuristic
8322 favors the instruction that has more instructions depending on it.
8323 This is enabled by default when scheduling is enabled, i.e.@:
8324 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8325 at @option{-O2} or higher.
8326
8327 @item -freschedule-modulo-scheduled-loops
8328 @opindex freschedule-modulo-scheduled-loops
8329 Modulo scheduling is performed before traditional scheduling. If a loop
8330 is modulo scheduled, later scheduling passes may change its schedule.
8331 Use this option to control that behavior.
8332
8333 @item -fselective-scheduling
8334 @opindex fselective-scheduling
8335 Schedule instructions using selective scheduling algorithm. Selective
8336 scheduling runs instead of the first scheduler pass.
8337
8338 @item -fselective-scheduling2
8339 @opindex fselective-scheduling2
8340 Schedule instructions using selective scheduling algorithm. Selective
8341 scheduling runs instead of the second scheduler pass.
8342
8343 @item -fsel-sched-pipelining
8344 @opindex fsel-sched-pipelining
8345 Enable software pipelining of innermost loops during selective scheduling.
8346 This option has no effect unless one of @option{-fselective-scheduling} or
8347 @option{-fselective-scheduling2} is turned on.
8348
8349 @item -fsel-sched-pipelining-outer-loops
8350 @opindex fsel-sched-pipelining-outer-loops
8351 When pipelining loops during selective scheduling, also pipeline outer loops.
8352 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8353
8354 @item -fsemantic-interposition
8355 @opindex fsemantic-interposition
8356 Some object formats, like ELF, allow interposing of symbols by the
8357 dynamic linker.
8358 This means that for symbols exported from the DSO, the compiler cannot perform
8359 interprocedural propagation, inlining and other optimizations in anticipation
8360 that the function or variable in question may change. While this feature is
8361 useful, for example, to rewrite memory allocation functions by a debugging
8362 implementation, it is expensive in the terms of code quality.
8363 With @option{-fno-semantic-interposition} the compiler assumes that
8364 if interposition happens for functions the overwriting function will have
8365 precisely the same semantics (and side effects).
8366 Similarly if interposition happens
8367 for variables, the constructor of the variable will be the same. The flag
8368 has no effect for functions explicitly declared inline
8369 (where it is never allowed for interposition to change semantics)
8370 and for symbols explicitly declared weak.
8371
8372 @item -fshrink-wrap
8373 @opindex fshrink-wrap
8374 Emit function prologues only before parts of the function that need it,
8375 rather than at the top of the function. This flag is enabled by default at
8376 @option{-O} and higher.
8377
8378 @item -fcaller-saves
8379 @opindex fcaller-saves
8380 Enable allocation of values to registers that are clobbered by
8381 function calls, by emitting extra instructions to save and restore the
8382 registers around such calls. Such allocation is done only when it
8383 seems to result in better code.
8384
8385 This option is always enabled by default on certain machines, usually
8386 those which have no call-preserved registers to use instead.
8387
8388 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8389
8390 @item -fcombine-stack-adjustments
8391 @opindex fcombine-stack-adjustments
8392 Tracks stack adjustments (pushes and pops) and stack memory references
8393 and then tries to find ways to combine them.
8394
8395 Enabled by default at @option{-O1} and higher.
8396
8397 @item -fipa-ra
8398 @opindex fipa-ra
8399 Use caller save registers for allocation if those registers are not used by
8400 any called function. In that case it is not necessary to save and restore
8401 them around calls. This is only possible if called functions are part of
8402 same compilation unit as current function and they are compiled before it.
8403
8404 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8405
8406 @item -fconserve-stack
8407 @opindex fconserve-stack
8408 Attempt to minimize stack usage. The compiler attempts to use less
8409 stack space, even if that makes the program slower. This option
8410 implies setting the @option{large-stack-frame} parameter to 100
8411 and the @option{large-stack-frame-growth} parameter to 400.
8412
8413 @item -ftree-reassoc
8414 @opindex ftree-reassoc
8415 Perform reassociation on trees. This flag is enabled by default
8416 at @option{-O} and higher.
8417
8418 @item -ftree-pre
8419 @opindex ftree-pre
8420 Perform partial redundancy elimination (PRE) on trees. This flag is
8421 enabled by default at @option{-O2} and @option{-O3}.
8422
8423 @item -ftree-partial-pre
8424 @opindex ftree-partial-pre
8425 Make partial redundancy elimination (PRE) more aggressive. This flag is
8426 enabled by default at @option{-O3}.
8427
8428 @item -ftree-forwprop
8429 @opindex ftree-forwprop
8430 Perform forward propagation on trees. This flag is enabled by default
8431 at @option{-O} and higher.
8432
8433 @item -ftree-fre
8434 @opindex ftree-fre
8435 Perform full redundancy elimination (FRE) on trees. The difference
8436 between FRE and PRE is that FRE only considers expressions
8437 that are computed on all paths leading to the redundant computation.
8438 This analysis is faster than PRE, though it exposes fewer redundancies.
8439 This flag is enabled by default at @option{-O} and higher.
8440
8441 @item -ftree-phiprop
8442 @opindex ftree-phiprop
8443 Perform hoisting of loads from conditional pointers on trees. This
8444 pass is enabled by default at @option{-O} and higher.
8445
8446 @item -fhoist-adjacent-loads
8447 @opindex fhoist-adjacent-loads
8448 Speculatively hoist loads from both branches of an if-then-else if the
8449 loads are from adjacent locations in the same structure and the target
8450 architecture has a conditional move instruction. This flag is enabled
8451 by default at @option{-O2} and higher.
8452
8453 @item -ftree-copy-prop
8454 @opindex ftree-copy-prop
8455 Perform copy propagation on trees. This pass eliminates unnecessary
8456 copy operations. This flag is enabled by default at @option{-O} and
8457 higher.
8458
8459 @item -fipa-pure-const
8460 @opindex fipa-pure-const
8461 Discover which functions are pure or constant.
8462 Enabled by default at @option{-O} and higher.
8463
8464 @item -fipa-reference
8465 @opindex fipa-reference
8466 Discover which static variables do not escape the
8467 compilation unit.
8468 Enabled by default at @option{-O} and higher.
8469
8470 @item -fipa-pta
8471 @opindex fipa-pta
8472 Perform interprocedural pointer analysis and interprocedural modification
8473 and reference analysis. This option can cause excessive memory and
8474 compile-time usage on large compilation units. It is not enabled by
8475 default at any optimization level.
8476
8477 @item -fipa-profile
8478 @opindex fipa-profile
8479 Perform interprocedural profile propagation. The functions called only from
8480 cold functions are marked as cold. Also functions executed once (such as
8481 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8482 functions and loop less parts of functions executed once are then optimized for
8483 size.
8484 Enabled by default at @option{-O} and higher.
8485
8486 @item -fipa-cp
8487 @opindex fipa-cp
8488 Perform interprocedural constant propagation.
8489 This optimization analyzes the program to determine when values passed
8490 to functions are constants and then optimizes accordingly.
8491 This optimization can substantially increase performance
8492 if the application has constants passed to functions.
8493 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8494
8495 @item -fipa-cp-clone
8496 @opindex fipa-cp-clone
8497 Perform function cloning to make interprocedural constant propagation stronger.
8498 When enabled, interprocedural constant propagation performs function cloning
8499 when externally visible function can be called with constant arguments.
8500 Because this optimization can create multiple copies of functions,
8501 it may significantly increase code size
8502 (see @option{--param ipcp-unit-growth=@var{value}}).
8503 This flag is enabled by default at @option{-O3}.
8504
8505 @item -fipa-cp-alignment
8506 @opindex -fipa-cp-alignment
8507 When enabled, this optimization propagates alignment of function
8508 parameters to support better vectorization and string operations.
8509
8510 This flag is enabled by default at @option{-O2} and @option{-Os}. It
8511 requires that @option{-fipa-cp} is enabled.
8512
8513 @item -fipa-icf
8514 @opindex fipa-icf
8515 Perform Identical Code Folding for functions and read-only variables.
8516 The optimization reduces code size and may disturb unwind stacks by replacing
8517 a function by equivalent one with a different name. The optimization works
8518 more effectively with link time optimization enabled.
8519
8520 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8521 works on different levels and thus the optimizations are not same - there are
8522 equivalences that are found only by GCC and equivalences found only by Gold.
8523
8524 This flag is enabled by default at @option{-O2} and @option{-Os}.
8525
8526 @item -fisolate-erroneous-paths-dereference
8527 @opindex fisolate-erroneous-paths-dereference
8528 Detect paths that trigger erroneous or undefined behavior due to
8529 dereferencing a null pointer. Isolate those paths from the main control
8530 flow and turn the statement with erroneous or undefined behavior into a trap.
8531 This flag is enabled by default at @option{-O2} and higher and depends on
8532 @option{-fdelete-null-pointer-checks} also being enabled.
8533
8534 @item -fisolate-erroneous-paths-attribute
8535 @opindex fisolate-erroneous-paths-attribute
8536 Detect paths that trigger erroneous or undefined behavior due a null value
8537 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8538 attribute. Isolate those paths from the main control flow and turn the
8539 statement with erroneous or undefined behavior into a trap. This is not
8540 currently enabled, but may be enabled by @option{-O2} in the future.
8541
8542 @item -ftree-sink
8543 @opindex ftree-sink
8544 Perform forward store motion on trees. This flag is
8545 enabled by default at @option{-O} and higher.
8546
8547 @item -ftree-bit-ccp
8548 @opindex ftree-bit-ccp
8549 Perform sparse conditional bit constant propagation on trees and propagate
8550 pointer alignment information.
8551 This pass only operates on local scalar variables and is enabled by default
8552 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8553
8554 @item -ftree-ccp
8555 @opindex ftree-ccp
8556 Perform sparse conditional constant propagation (CCP) on trees. This
8557 pass only operates on local scalar variables and is enabled by default
8558 at @option{-O} and higher.
8559
8560 @item -fssa-phiopt
8561 @opindex fssa-phiopt
8562 Perform pattern matching on SSA PHI nodes to optimize conditional
8563 code. This pass is enabled by default at @option{-O} and higher.
8564
8565 @item -ftree-switch-conversion
8566 @opindex ftree-switch-conversion
8567 Perform conversion of simple initializations in a switch to
8568 initializations from a scalar array. This flag is enabled by default
8569 at @option{-O2} and higher.
8570
8571 @item -ftree-tail-merge
8572 @opindex ftree-tail-merge
8573 Look for identical code sequences. When found, replace one with a jump to the
8574 other. This optimization is known as tail merging or cross jumping. This flag
8575 is enabled by default at @option{-O2} and higher. The compilation time
8576 in this pass can
8577 be limited using @option{max-tail-merge-comparisons} parameter and
8578 @option{max-tail-merge-iterations} parameter.
8579
8580 @item -ftree-dce
8581 @opindex ftree-dce
8582 Perform dead code elimination (DCE) on trees. This flag is enabled by
8583 default at @option{-O} and higher.
8584
8585 @item -ftree-builtin-call-dce
8586 @opindex ftree-builtin-call-dce
8587 Perform conditional dead code elimination (DCE) for calls to built-in functions
8588 that may set @code{errno} but are otherwise side-effect free. This flag is
8589 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8590 specified.
8591
8592 @item -ftree-dominator-opts
8593 @opindex ftree-dominator-opts
8594 Perform a variety of simple scalar cleanups (constant/copy
8595 propagation, redundancy elimination, range propagation and expression
8596 simplification) based on a dominator tree traversal. This also
8597 performs jump threading (to reduce jumps to jumps). This flag is
8598 enabled by default at @option{-O} and higher.
8599
8600 @item -ftree-dse
8601 @opindex ftree-dse
8602 Perform dead store elimination (DSE) on trees. A dead store is a store into
8603 a memory location that is later overwritten by another store without
8604 any intervening loads. In this case the earlier store can be deleted. This
8605 flag is enabled by default at @option{-O} and higher.
8606
8607 @item -ftree-ch
8608 @opindex ftree-ch
8609 Perform loop header copying on trees. This is beneficial since it increases
8610 effectiveness of code motion optimizations. It also saves one jump. This flag
8611 is enabled by default at @option{-O} and higher. It is not enabled
8612 for @option{-Os}, since it usually increases code size.
8613
8614 @item -ftree-loop-optimize
8615 @opindex ftree-loop-optimize
8616 Perform loop optimizations on trees. This flag is enabled by default
8617 at @option{-O} and higher.
8618
8619 @item -ftree-loop-linear
8620 @opindex ftree-loop-linear
8621 Perform loop interchange transformations on tree. Same as
8622 @option{-floop-interchange}. To use this code transformation, GCC has
8623 to be configured with @option{--with-isl} to enable the Graphite loop
8624 transformation infrastructure.
8625
8626 @item -floop-interchange
8627 @opindex floop-interchange
8628 Perform loop interchange transformations on loops. Interchanging two
8629 nested loops switches the inner and outer loops. For example, given a
8630 loop like:
8631 @smallexample
8632 DO J = 1, M
8633 DO I = 1, N
8634 A(J, I) = A(J, I) * C
8635 ENDDO
8636 ENDDO
8637 @end smallexample
8638 @noindent
8639 loop interchange transforms the loop as if it were written:
8640 @smallexample
8641 DO I = 1, N
8642 DO J = 1, M
8643 A(J, I) = A(J, I) * C
8644 ENDDO
8645 ENDDO
8646 @end smallexample
8647 which can be beneficial when @code{N} is larger than the caches,
8648 because in Fortran, the elements of an array are stored in memory
8649 contiguously by column, and the original loop iterates over rows,
8650 potentially creating at each access a cache miss. This optimization
8651 applies to all the languages supported by GCC and is not limited to
8652 Fortran. To use this code transformation, GCC has to be configured
8653 with @option{--with-isl} to enable the Graphite loop transformation
8654 infrastructure.
8655
8656 @item -floop-strip-mine
8657 @opindex floop-strip-mine
8658 Perform loop strip mining transformations on loops. Strip mining
8659 splits a loop into two nested loops. The outer loop has strides
8660 equal to the strip size and the inner loop has strides of the
8661 original loop within a strip. The strip length can be changed
8662 using the @option{loop-block-tile-size} parameter. For example,
8663 given a loop like:
8664 @smallexample
8665 DO I = 1, N
8666 A(I) = A(I) + C
8667 ENDDO
8668 @end smallexample
8669 @noindent
8670 loop strip mining transforms the loop as if it were written:
8671 @smallexample
8672 DO II = 1, N, 51
8673 DO I = II, min (II + 50, N)
8674 A(I) = A(I) + C
8675 ENDDO
8676 ENDDO
8677 @end smallexample
8678 This optimization applies to all the languages supported by GCC and is
8679 not limited to Fortran. To use this code transformation, GCC has to
8680 be configured with @option{--with-isl} to enable the Graphite loop
8681 transformation infrastructure.
8682
8683 @item -floop-block
8684 @opindex floop-block
8685 Perform loop blocking transformations on loops. Blocking strip mines
8686 each loop in the loop nest such that the memory accesses of the
8687 element loops fit inside caches. The strip length can be changed
8688 using the @option{loop-block-tile-size} parameter. For example, given
8689 a loop like:
8690 @smallexample
8691 DO I = 1, N
8692 DO J = 1, M
8693 A(J, I) = B(I) + C(J)
8694 ENDDO
8695 ENDDO
8696 @end smallexample
8697 @noindent
8698 loop blocking transforms the loop as if it were written:
8699 @smallexample
8700 DO II = 1, N, 51
8701 DO JJ = 1, M, 51
8702 DO I = II, min (II + 50, N)
8703 DO J = JJ, min (JJ + 50, M)
8704 A(J, I) = B(I) + C(J)
8705 ENDDO
8706 ENDDO
8707 ENDDO
8708 ENDDO
8709 @end smallexample
8710 which can be beneficial when @code{M} is larger than the caches,
8711 because the innermost loop iterates over a smaller amount of data
8712 which can be kept in the caches. This optimization applies to all the
8713 languages supported by GCC and is not limited to Fortran. To use this
8714 code transformation, GCC has to be configured with @option{--with-isl}
8715 to enable the Graphite loop transformation infrastructure.
8716
8717 @item -fgraphite-identity
8718 @opindex fgraphite-identity
8719 Enable the identity transformation for graphite. For every SCoP we generate
8720 the polyhedral representation and transform it back to gimple. Using
8721 @option{-fgraphite-identity} we can check the costs or benefits of the
8722 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8723 are also performed by the code generator ISL, like index splitting and
8724 dead code elimination in loops.
8725
8726 @item -floop-nest-optimize
8727 @opindex floop-nest-optimize
8728 Enable the ISL based loop nest optimizer. This is a generic loop nest
8729 optimizer based on the Pluto optimization algorithms. It calculates a loop
8730 structure optimized for data-locality and parallelism. This option
8731 is experimental.
8732
8733 @item -floop-unroll-and-jam
8734 @opindex floop-unroll-and-jam
8735 Enable unroll and jam for the ISL based loop nest optimizer. The unroll
8736 factor can be changed using the @option{loop-unroll-jam-size} parameter.
8737 The unrolled dimension (counting from the most inner one) can be changed
8738 using the @option{loop-unroll-jam-depth} parameter. .
8739
8740 @item -floop-parallelize-all
8741 @opindex floop-parallelize-all
8742 Use the Graphite data dependence analysis to identify loops that can
8743 be parallelized. Parallelize all the loops that can be analyzed to
8744 not contain loop carried dependences without checking that it is
8745 profitable to parallelize the loops.
8746
8747 @item -fcheck-data-deps
8748 @opindex fcheck-data-deps
8749 Compare the results of several data dependence analyzers. This option
8750 is used for debugging the data dependence analyzers.
8751
8752 @item -ftree-loop-if-convert
8753 @opindex ftree-loop-if-convert
8754 Attempt to transform conditional jumps in the innermost loops to
8755 branch-less equivalents. The intent is to remove control-flow from
8756 the innermost loops in order to improve the ability of the
8757 vectorization pass to handle these loops. This is enabled by default
8758 if vectorization is enabled.
8759
8760 @item -ftree-loop-if-convert-stores
8761 @opindex ftree-loop-if-convert-stores
8762 Attempt to also if-convert conditional jumps containing memory writes.
8763 This transformation can be unsafe for multi-threaded programs as it
8764 transforms conditional memory writes into unconditional memory writes.
8765 For example,
8766 @smallexample
8767 for (i = 0; i < N; i++)
8768 if (cond)
8769 A[i] = expr;
8770 @end smallexample
8771 is transformed to
8772 @smallexample
8773 for (i = 0; i < N; i++)
8774 A[i] = cond ? expr : A[i];
8775 @end smallexample
8776 potentially producing data races.
8777
8778 @item -ftree-loop-distribution
8779 @opindex ftree-loop-distribution
8780 Perform loop distribution. This flag can improve cache performance on
8781 big loop bodies and allow further loop optimizations, like
8782 parallelization or vectorization, to take place. For example, the loop
8783 @smallexample
8784 DO I = 1, N
8785 A(I) = B(I) + C
8786 D(I) = E(I) * F
8787 ENDDO
8788 @end smallexample
8789 is transformed to
8790 @smallexample
8791 DO I = 1, N
8792 A(I) = B(I) + C
8793 ENDDO
8794 DO I = 1, N
8795 D(I) = E(I) * F
8796 ENDDO
8797 @end smallexample
8798
8799 @item -ftree-loop-distribute-patterns
8800 @opindex ftree-loop-distribute-patterns
8801 Perform loop distribution of patterns that can be code generated with
8802 calls to a library. This flag is enabled by default at @option{-O3}.
8803
8804 This pass distributes the initialization loops and generates a call to
8805 memset zero. For example, the loop
8806 @smallexample
8807 DO I = 1, N
8808 A(I) = 0
8809 B(I) = A(I) + I
8810 ENDDO
8811 @end smallexample
8812 is transformed to
8813 @smallexample
8814 DO I = 1, N
8815 A(I) = 0
8816 ENDDO
8817 DO I = 1, N
8818 B(I) = A(I) + I
8819 ENDDO
8820 @end smallexample
8821 and the initialization loop is transformed into a call to memset zero.
8822
8823 @item -ftree-loop-im
8824 @opindex ftree-loop-im
8825 Perform loop invariant motion on trees. This pass moves only invariants that
8826 are hard to handle at RTL level (function calls, operations that expand to
8827 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8828 operands of conditions that are invariant out of the loop, so that we can use
8829 just trivial invariantness analysis in loop unswitching. The pass also includes
8830 store motion.
8831
8832 @item -ftree-loop-ivcanon
8833 @opindex ftree-loop-ivcanon
8834 Create a canonical counter for number of iterations in loops for which
8835 determining number of iterations requires complicated analysis. Later
8836 optimizations then may determine the number easily. Useful especially
8837 in connection with unrolling.
8838
8839 @item -fivopts
8840 @opindex fivopts
8841 Perform induction variable optimizations (strength reduction, induction
8842 variable merging and induction variable elimination) on trees.
8843
8844 @item -ftree-parallelize-loops=n
8845 @opindex ftree-parallelize-loops
8846 Parallelize loops, i.e., split their iteration space to run in n threads.
8847 This is only possible for loops whose iterations are independent
8848 and can be arbitrarily reordered. The optimization is only
8849 profitable on multiprocessor machines, for loops that are CPU-intensive,
8850 rather than constrained e.g.@: by memory bandwidth. This option
8851 implies @option{-pthread}, and thus is only supported on targets
8852 that have support for @option{-pthread}.
8853
8854 @item -ftree-pta
8855 @opindex ftree-pta
8856 Perform function-local points-to analysis on trees. This flag is
8857 enabled by default at @option{-O} and higher.
8858
8859 @item -ftree-sra
8860 @opindex ftree-sra
8861 Perform scalar replacement of aggregates. This pass replaces structure
8862 references with scalars to prevent committing structures to memory too
8863 early. This flag is enabled by default at @option{-O} and higher.
8864
8865 @item -ftree-copyrename
8866 @opindex ftree-copyrename
8867 Perform copy renaming on trees. This pass attempts to rename compiler
8868 temporaries to other variables at copy locations, usually resulting in
8869 variable names which more closely resemble the original variables. This flag
8870 is enabled by default at @option{-O} and higher.
8871
8872 @item -ftree-coalesce-inlined-vars
8873 @opindex ftree-coalesce-inlined-vars
8874 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8875 combine small user-defined variables too, but only if they are inlined
8876 from other functions. It is a more limited form of
8877 @option{-ftree-coalesce-vars}. This may harm debug information of such
8878 inlined variables, but it keeps variables of the inlined-into
8879 function apart from each other, such that they are more likely to
8880 contain the expected values in a debugging session.
8881
8882 @item -ftree-coalesce-vars
8883 @opindex ftree-coalesce-vars
8884 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8885 combine small user-defined variables too, instead of just compiler
8886 temporaries. This may severely limit the ability to debug an optimized
8887 program compiled with @option{-fno-var-tracking-assignments}. In the
8888 negated form, this flag prevents SSA coalescing of user variables,
8889 including inlined ones. This option is enabled by default.
8890
8891 @item -ftree-ter
8892 @opindex ftree-ter
8893 Perform temporary expression replacement during the SSA->normal phase. Single
8894 use/single def temporaries are replaced at their use location with their
8895 defining expression. This results in non-GIMPLE code, but gives the expanders
8896 much more complex trees to work on resulting in better RTL generation. This is
8897 enabled by default at @option{-O} and higher.
8898
8899 @item -ftree-slsr
8900 @opindex ftree-slsr
8901 Perform straight-line strength reduction on trees. This recognizes related
8902 expressions involving multiplications and replaces them by less expensive
8903 calculations when possible. This is enabled by default at @option{-O} and
8904 higher.
8905
8906 @item -ftree-vectorize
8907 @opindex ftree-vectorize
8908 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8909 and @option{-ftree-slp-vectorize} if not explicitly specified.
8910
8911 @item -ftree-loop-vectorize
8912 @opindex ftree-loop-vectorize
8913 Perform loop vectorization on trees. This flag is enabled by default at
8914 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8915
8916 @item -ftree-slp-vectorize
8917 @opindex ftree-slp-vectorize
8918 Perform basic block vectorization on trees. This flag is enabled by default at
8919 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8920
8921 @item -fvect-cost-model=@var{model}
8922 @opindex fvect-cost-model
8923 Alter the cost model used for vectorization. The @var{model} argument
8924 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8925 With the @samp{unlimited} model the vectorized code-path is assumed
8926 to be profitable while with the @samp{dynamic} model a runtime check
8927 guards the vectorized code-path to enable it only for iteration
8928 counts that will likely execute faster than when executing the original
8929 scalar loop. The @samp{cheap} model disables vectorization of
8930 loops where doing so would be cost prohibitive for example due to
8931 required runtime checks for data dependence or alignment but otherwise
8932 is equal to the @samp{dynamic} model.
8933 The default cost model depends on other optimization flags and is
8934 either @samp{dynamic} or @samp{cheap}.
8935
8936 @item -fsimd-cost-model=@var{model}
8937 @opindex fsimd-cost-model
8938 Alter the cost model used for vectorization of loops marked with the OpenMP
8939 or Cilk Plus simd directive. The @var{model} argument should be one of
8940 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
8941 have the same meaning as described in @option{-fvect-cost-model} and by
8942 default a cost model defined with @option{-fvect-cost-model} is used.
8943
8944 @item -ftree-vrp
8945 @opindex ftree-vrp
8946 Perform Value Range Propagation on trees. This is similar to the
8947 constant propagation pass, but instead of values, ranges of values are
8948 propagated. This allows the optimizers to remove unnecessary range
8949 checks like array bound checks and null pointer checks. This is
8950 enabled by default at @option{-O2} and higher. Null pointer check
8951 elimination is only done if @option{-fdelete-null-pointer-checks} is
8952 enabled.
8953
8954 @item -fsplit-ivs-in-unroller
8955 @opindex fsplit-ivs-in-unroller
8956 Enables expression of values of induction variables in later iterations
8957 of the unrolled loop using the value in the first iteration. This breaks
8958 long dependency chains, thus improving efficiency of the scheduling passes.
8959
8960 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8961 same effect. However, that is not reliable in cases where the loop body
8962 is more complicated than a single basic block. It also does not work at all
8963 on some architectures due to restrictions in the CSE pass.
8964
8965 This optimization is enabled by default.
8966
8967 @item -fvariable-expansion-in-unroller
8968 @opindex fvariable-expansion-in-unroller
8969 With this option, the compiler creates multiple copies of some
8970 local variables when unrolling a loop, which can result in superior code.
8971
8972 @item -fpartial-inlining
8973 @opindex fpartial-inlining
8974 Inline parts of functions. This option has any effect only
8975 when inlining itself is turned on by the @option{-finline-functions}
8976 or @option{-finline-small-functions} options.
8977
8978 Enabled at level @option{-O2}.
8979
8980 @item -fpredictive-commoning
8981 @opindex fpredictive-commoning
8982 Perform predictive commoning optimization, i.e., reusing computations
8983 (especially memory loads and stores) performed in previous
8984 iterations of loops.
8985
8986 This option is enabled at level @option{-O3}.
8987
8988 @item -fprefetch-loop-arrays
8989 @opindex fprefetch-loop-arrays
8990 If supported by the target machine, generate instructions to prefetch
8991 memory to improve the performance of loops that access large arrays.
8992
8993 This option may generate better or worse code; results are highly
8994 dependent on the structure of loops within the source code.
8995
8996 Disabled at level @option{-Os}.
8997
8998 @item -fno-peephole
8999 @itemx -fno-peephole2
9000 @opindex fno-peephole
9001 @opindex fno-peephole2
9002 Disable any machine-specific peephole optimizations. The difference
9003 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9004 are implemented in the compiler; some targets use one, some use the
9005 other, a few use both.
9006
9007 @option{-fpeephole} is enabled by default.
9008 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9009
9010 @item -fno-guess-branch-probability
9011 @opindex fno-guess-branch-probability
9012 Do not guess branch probabilities using heuristics.
9013
9014 GCC uses heuristics to guess branch probabilities if they are
9015 not provided by profiling feedback (@option{-fprofile-arcs}). These
9016 heuristics are based on the control flow graph. If some branch probabilities
9017 are specified by @code{__builtin_expect}, then the heuristics are
9018 used to guess branch probabilities for the rest of the control flow graph,
9019 taking the @code{__builtin_expect} info into account. The interactions
9020 between the heuristics and @code{__builtin_expect} can be complex, and in
9021 some cases, it may be useful to disable the heuristics so that the effects
9022 of @code{__builtin_expect} are easier to understand.
9023
9024 The default is @option{-fguess-branch-probability} at levels
9025 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9026
9027 @item -freorder-blocks
9028 @opindex freorder-blocks
9029 Reorder basic blocks in the compiled function in order to reduce number of
9030 taken branches and improve code locality.
9031
9032 Enabled at levels @option{-O2}, @option{-O3}.
9033
9034 @item -freorder-blocks-and-partition
9035 @opindex freorder-blocks-and-partition
9036 In addition to reordering basic blocks in the compiled function, in order
9037 to reduce number of taken branches, partitions hot and cold basic blocks
9038 into separate sections of the assembly and .o files, to improve
9039 paging and cache locality performance.
9040
9041 This optimization is automatically turned off in the presence of
9042 exception handling, for linkonce sections, for functions with a user-defined
9043 section attribute and on any architecture that does not support named
9044 sections.
9045
9046 Enabled for x86 at levels @option{-O2}, @option{-O3}.
9047
9048 @item -freorder-functions
9049 @opindex freorder-functions
9050 Reorder functions in the object file in order to
9051 improve code locality. This is implemented by using special
9052 subsections @code{.text.hot} for most frequently executed functions and
9053 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9054 the linker so object file format must support named sections and linker must
9055 place them in a reasonable way.
9056
9057 Also profile feedback must be available to make this option effective. See
9058 @option{-fprofile-arcs} for details.
9059
9060 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9061
9062 @item -fstrict-aliasing
9063 @opindex fstrict-aliasing
9064 Allow the compiler to assume the strictest aliasing rules applicable to
9065 the language being compiled. For C (and C++), this activates
9066 optimizations based on the type of expressions. In particular, an
9067 object of one type is assumed never to reside at the same address as an
9068 object of a different type, unless the types are almost the same. For
9069 example, an @code{unsigned int} can alias an @code{int}, but not a
9070 @code{void*} or a @code{double}. A character type may alias any other
9071 type.
9072
9073 @anchor{Type-punning}Pay special attention to code like this:
9074 @smallexample
9075 union a_union @{
9076 int i;
9077 double d;
9078 @};
9079
9080 int f() @{
9081 union a_union t;
9082 t.d = 3.0;
9083 return t.i;
9084 @}
9085 @end smallexample
9086 The practice of reading from a different union member than the one most
9087 recently written to (called ``type-punning'') is common. Even with
9088 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9089 is accessed through the union type. So, the code above works as
9090 expected. @xref{Structures unions enumerations and bit-fields
9091 implementation}. However, this code might not:
9092 @smallexample
9093 int f() @{
9094 union a_union t;
9095 int* ip;
9096 t.d = 3.0;
9097 ip = &t.i;
9098 return *ip;
9099 @}
9100 @end smallexample
9101
9102 Similarly, access by taking the address, casting the resulting pointer
9103 and dereferencing the result has undefined behavior, even if the cast
9104 uses a union type, e.g.:
9105 @smallexample
9106 int f() @{
9107 double d = 3.0;
9108 return ((union a_union *) &d)->i;
9109 @}
9110 @end smallexample
9111
9112 The @option{-fstrict-aliasing} option is enabled at levels
9113 @option{-O2}, @option{-O3}, @option{-Os}.
9114
9115 @item -fstrict-overflow
9116 @opindex fstrict-overflow
9117 Allow the compiler to assume strict signed overflow rules, depending
9118 on the language being compiled. For C (and C++) this means that
9119 overflow when doing arithmetic with signed numbers is undefined, which
9120 means that the compiler may assume that it does not happen. This
9121 permits various optimizations. For example, the compiler assumes
9122 that an expression like @code{i + 10 > i} is always true for
9123 signed @code{i}. This assumption is only valid if signed overflow is
9124 undefined, as the expression is false if @code{i + 10} overflows when
9125 using twos complement arithmetic. When this option is in effect any
9126 attempt to determine whether an operation on signed numbers
9127 overflows must be written carefully to not actually involve overflow.
9128
9129 This option also allows the compiler to assume strict pointer
9130 semantics: given a pointer to an object, if adding an offset to that
9131 pointer does not produce a pointer to the same object, the addition is
9132 undefined. This permits the compiler to conclude that @code{p + u >
9133 p} is always true for a pointer @code{p} and unsigned integer
9134 @code{u}. This assumption is only valid because pointer wraparound is
9135 undefined, as the expression is false if @code{p + u} overflows using
9136 twos complement arithmetic.
9137
9138 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
9139 that integer signed overflow is fully defined: it wraps. When
9140 @option{-fwrapv} is used, there is no difference between
9141 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9142 integers. With @option{-fwrapv} certain types of overflow are
9143 permitted. For example, if the compiler gets an overflow when doing
9144 arithmetic on constants, the overflowed value can still be used with
9145 @option{-fwrapv}, but not otherwise.
9146
9147 The @option{-fstrict-overflow} option is enabled at levels
9148 @option{-O2}, @option{-O3}, @option{-Os}.
9149
9150 @item -falign-functions
9151 @itemx -falign-functions=@var{n}
9152 @opindex falign-functions
9153 Align the start of functions to the next power-of-two greater than
9154 @var{n}, skipping up to @var{n} bytes. For instance,
9155 @option{-falign-functions=32} aligns functions to the next 32-byte
9156 boundary, but @option{-falign-functions=24} aligns to the next
9157 32-byte boundary only if this can be done by skipping 23 bytes or less.
9158
9159 @option{-fno-align-functions} and @option{-falign-functions=1} are
9160 equivalent and mean that functions are not aligned.
9161
9162 Some assemblers only support this flag when @var{n} is a power of two;
9163 in that case, it is rounded up.
9164
9165 If @var{n} is not specified or is zero, use a machine-dependent default.
9166
9167 Enabled at levels @option{-O2}, @option{-O3}.
9168
9169 @item -falign-labels
9170 @itemx -falign-labels=@var{n}
9171 @opindex falign-labels
9172 Align all branch targets to a power-of-two boundary, skipping up to
9173 @var{n} bytes like @option{-falign-functions}. This option can easily
9174 make code slower, because it must insert dummy operations for when the
9175 branch target is reached in the usual flow of the code.
9176
9177 @option{-fno-align-labels} and @option{-falign-labels=1} are
9178 equivalent and mean that labels are not aligned.
9179
9180 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9181 are greater than this value, then their values are used instead.
9182
9183 If @var{n} is not specified or is zero, use a machine-dependent default
9184 which is very likely to be @samp{1}, meaning no alignment.
9185
9186 Enabled at levels @option{-O2}, @option{-O3}.
9187
9188 @item -falign-loops
9189 @itemx -falign-loops=@var{n}
9190 @opindex falign-loops
9191 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9192 like @option{-falign-functions}. If the loops are
9193 executed many times, this makes up for any execution of the dummy
9194 operations.
9195
9196 @option{-fno-align-loops} and @option{-falign-loops=1} are
9197 equivalent and mean that loops are not aligned.
9198
9199 If @var{n} is not specified or is zero, use a machine-dependent default.
9200
9201 Enabled at levels @option{-O2}, @option{-O3}.
9202
9203 @item -falign-jumps
9204 @itemx -falign-jumps=@var{n}
9205 @opindex falign-jumps
9206 Align branch targets to a power-of-two boundary, for branch targets
9207 where the targets can only be reached by jumping, skipping up to @var{n}
9208 bytes like @option{-falign-functions}. In this case, no dummy operations
9209 need be executed.
9210
9211 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9212 equivalent and mean that loops are not aligned.
9213
9214 If @var{n} is not specified or is zero, use a machine-dependent default.
9215
9216 Enabled at levels @option{-O2}, @option{-O3}.
9217
9218 @item -funit-at-a-time
9219 @opindex funit-at-a-time
9220 This option is left for compatibility reasons. @option{-funit-at-a-time}
9221 has no effect, while @option{-fno-unit-at-a-time} implies
9222 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9223
9224 Enabled by default.
9225
9226 @item -fno-toplevel-reorder
9227 @opindex fno-toplevel-reorder
9228 Do not reorder top-level functions, variables, and @code{asm}
9229 statements. Output them in the same order that they appear in the
9230 input file. When this option is used, unreferenced static variables
9231 are not removed. This option is intended to support existing code
9232 that relies on a particular ordering. For new code, it is better to
9233 use attributes when possible.
9234
9235 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9236 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9237 targets.
9238
9239 @item -fweb
9240 @opindex fweb
9241 Constructs webs as commonly used for register allocation purposes and assign
9242 each web individual pseudo register. This allows the register allocation pass
9243 to operate on pseudos directly, but also strengthens several other optimization
9244 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9245 however, make debugging impossible, since variables no longer stay in a
9246 ``home register''.
9247
9248 Enabled by default with @option{-funroll-loops}.
9249
9250 @item -fwhole-program
9251 @opindex fwhole-program
9252 Assume that the current compilation unit represents the whole program being
9253 compiled. All public functions and variables with the exception of @code{main}
9254 and those merged by attribute @code{externally_visible} become static functions
9255 and in effect are optimized more aggressively by interprocedural optimizers.
9256
9257 This option should not be used in combination with @option{-flto}.
9258 Instead relying on a linker plugin should provide safer and more precise
9259 information.
9260
9261 @item -flto[=@var{n}]
9262 @opindex flto
9263 This option runs the standard link-time optimizer. When invoked
9264 with source code, it generates GIMPLE (one of GCC's internal
9265 representations) and writes it to special ELF sections in the object
9266 file. When the object files are linked together, all the function
9267 bodies are read from these ELF sections and instantiated as if they
9268 had been part of the same translation unit.
9269
9270 To use the link-time optimizer, @option{-flto} and optimization
9271 options should be specified at compile time and during the final link.
9272 For example:
9273
9274 @smallexample
9275 gcc -c -O2 -flto foo.c
9276 gcc -c -O2 -flto bar.c
9277 gcc -o myprog -flto -O2 foo.o bar.o
9278 @end smallexample
9279
9280 The first two invocations to GCC save a bytecode representation
9281 of GIMPLE into special ELF sections inside @file{foo.o} and
9282 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9283 @file{foo.o} and @file{bar.o}, merges the two files into a single
9284 internal image, and compiles the result as usual. Since both
9285 @file{foo.o} and @file{bar.o} are merged into a single image, this
9286 causes all the interprocedural analyses and optimizations in GCC to
9287 work across the two files as if they were a single one. This means,
9288 for example, that the inliner is able to inline functions in
9289 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9290
9291 Another (simpler) way to enable link-time optimization is:
9292
9293 @smallexample
9294 gcc -o myprog -flto -O2 foo.c bar.c
9295 @end smallexample
9296
9297 The above generates bytecode for @file{foo.c} and @file{bar.c},
9298 merges them together into a single GIMPLE representation and optimizes
9299 them as usual to produce @file{myprog}.
9300
9301 The only important thing to keep in mind is that to enable link-time
9302 optimizations you need to use the GCC driver to perform the link-step.
9303 GCC then automatically performs link-time optimization if any of the
9304 objects involved were compiled with the @option{-flto} command-line option.
9305 You generally
9306 should specify the optimization options to be used for link-time
9307 optimization though GCC tries to be clever at guessing an
9308 optimization level to use from the options used at compile-time
9309 if you fail to specify one at link-time. You can always override
9310 the automatic decision to do link-time optimization at link-time
9311 by passing @option{-fno-lto} to the link command.
9312
9313 To make whole program optimization effective, it is necessary to make
9314 certain whole program assumptions. The compiler needs to know
9315 what functions and variables can be accessed by libraries and runtime
9316 outside of the link-time optimized unit. When supported by the linker,
9317 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9318 to the compiler about used and externally visible symbols. When
9319 the linker plugin is not available, @option{-fwhole-program} should be
9320 used to allow the compiler to make these assumptions, which leads
9321 to more aggressive optimization decisions.
9322
9323 When @option{-fuse-linker-plugin} is not enabled then, when a file is
9324 compiled with @option{-flto}, the generated object file is larger than
9325 a regular object file because it contains GIMPLE bytecodes and the usual
9326 final code (see @option{-ffat-lto-objects}. This means that
9327 object files with LTO information can be linked as normal object
9328 files; if @option{-fno-lto} is passed to the linker, no
9329 interprocedural optimizations are applied. Note that when
9330 @option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9331 but you cannot perform a regular, non-LTO link on them.
9332
9333 Additionally, the optimization flags used to compile individual files
9334 are not necessarily related to those used at link time. For instance,
9335
9336 @smallexample
9337 gcc -c -O0 -ffat-lto-objects -flto foo.c
9338 gcc -c -O0 -ffat-lto-objects -flto bar.c
9339 gcc -o myprog -O3 foo.o bar.o
9340 @end smallexample
9341
9342 This produces individual object files with unoptimized assembler
9343 code, but the resulting binary @file{myprog} is optimized at
9344 @option{-O3}. If, instead, the final binary is generated with
9345 @option{-fno-lto}, then @file{myprog} is not optimized.
9346
9347 When producing the final binary, GCC only
9348 applies link-time optimizations to those files that contain bytecode.
9349 Therefore, you can mix and match object files and libraries with
9350 GIMPLE bytecodes and final object code. GCC automatically selects
9351 which files to optimize in LTO mode and which files to link without
9352 further processing.
9353
9354 There are some code generation flags preserved by GCC when
9355 generating bytecodes, as they need to be used during the final link
9356 stage. Generally options specified at link-time override those
9357 specified at compile-time.
9358
9359 If you do not specify an optimization level option @option{-O} at
9360 link-time then GCC computes one based on the optimization levels
9361 used when compiling the object files. The highest optimization
9362 level wins here.
9363
9364 Currently, the following options and their setting are take from
9365 the first object file that explicitely specified it:
9366 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9367 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9368 and all the @option{-m} target flags.
9369
9370 Certain ABI changing flags are required to match in all compilation-units
9371 and trying to override this at link-time with a conflicting value
9372 is ignored. This includes options such as @option{-freg-struct-return}
9373 and @option{-fpcc-struct-return}.
9374
9375 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9376 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9377 are passed through to the link stage and merged conservatively for
9378 conflicting translation units. Specifically
9379 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9380 precedence and for example @option{-ffp-contract=off} takes precedence
9381 over @option{-ffp-contract=fast}. You can override them at linke-time.
9382
9383 It is recommended that you compile all the files participating in the
9384 same link with the same options and also specify those options at
9385 link time.
9386
9387 If LTO encounters objects with C linkage declared with incompatible
9388 types in separate translation units to be linked together (undefined
9389 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9390 issued. The behavior is still undefined at run time. Similar
9391 diagnostics may be raised for other languages.
9392
9393 Another feature of LTO is that it is possible to apply interprocedural
9394 optimizations on files written in different languages:
9395
9396 @smallexample
9397 gcc -c -flto foo.c
9398 g++ -c -flto bar.cc
9399 gfortran -c -flto baz.f90
9400 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9401 @end smallexample
9402
9403 Notice that the final link is done with @command{g++} to get the C++
9404 runtime libraries and @option{-lgfortran} is added to get the Fortran
9405 runtime libraries. In general, when mixing languages in LTO mode, you
9406 should use the same link command options as when mixing languages in a
9407 regular (non-LTO) compilation.
9408
9409 If object files containing GIMPLE bytecode are stored in a library archive, say
9410 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9411 are using a linker with plugin support. To create static libraries suitable
9412 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9413 and @command{ranlib};
9414 to show the symbols of object files with GIMPLE bytecode, use
9415 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9416 and @command{nm} have been compiled with plugin support. At link time, use the the
9417 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9418 the LTO optimization process:
9419
9420 @smallexample
9421 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9422 @end smallexample
9423
9424 With the linker plugin enabled, the linker extracts the needed
9425 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9426 to make them part of the aggregated GIMPLE image to be optimized.
9427
9428 If you are not using a linker with plugin support and/or do not
9429 enable the linker plugin, then the objects inside @file{libfoo.a}
9430 are extracted and linked as usual, but they do not participate
9431 in the LTO optimization process. In order to make a static library suitable
9432 for both LTO optimization and usual linkage, compile its object files with
9433 @option{-flto} @option{-ffat-lto-objects}.
9434
9435 Link-time optimizations do not require the presence of the whole program to
9436 operate. If the program does not require any symbols to be exported, it is
9437 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9438 the interprocedural optimizers to use more aggressive assumptions which may
9439 lead to improved optimization opportunities.
9440 Use of @option{-fwhole-program} is not needed when linker plugin is
9441 active (see @option{-fuse-linker-plugin}).
9442
9443 The current implementation of LTO makes no
9444 attempt to generate bytecode that is portable between different
9445 types of hosts. The bytecode files are versioned and there is a
9446 strict version check, so bytecode files generated in one version of
9447 GCC do not work with an older or newer version of GCC.
9448
9449 Link-time optimization does not work well with generation of debugging
9450 information. Combining @option{-flto} with
9451 @option{-g} is currently experimental and expected to produce unexpected
9452 results.
9453
9454 If you specify the optional @var{n}, the optimization and code
9455 generation done at link time is executed in parallel using @var{n}
9456 parallel jobs by utilizing an installed @command{make} program. The
9457 environment variable @env{MAKE} may be used to override the program
9458 used. The default value for @var{n} is 1.
9459
9460 You can also specify @option{-flto=jobserver} to use GNU make's
9461 job server mode to determine the number of parallel jobs. This
9462 is useful when the Makefile calling GCC is already executing in parallel.
9463 You must prepend a @samp{+} to the command recipe in the parent Makefile
9464 for this to work. This option likely only works if @env{MAKE} is
9465 GNU make.
9466
9467 @item -flto-partition=@var{alg}
9468 @opindex flto-partition
9469 Specify the partitioning algorithm used by the link-time optimizer.
9470 The value is either @samp{1to1} to specify a partitioning mirroring
9471 the original source files or @samp{balanced} to specify partitioning
9472 into equally sized chunks (whenever possible) or @samp{max} to create
9473 new partition for every symbol where possible. Specifying @samp{none}
9474 as an algorithm disables partitioning and streaming completely.
9475 The default value is @samp{balanced}. While @samp{1to1} can be used
9476 as an workaround for various code ordering issues, the @samp{max}
9477 partitioning is intended for internal testing only.
9478 The value @samp{one} specifies that exactly one partition should be
9479 used while the value @samp{none} bypasses partitioning and executes
9480 the link-time optimization step directly from the WPA phase.
9481
9482 @item -flto-odr-type-merging
9483 @opindex flto-odr-type-merging
9484 Enable streaming of mangled types names of C++ types and their unification
9485 at linktime. This increases size of LTO object files, but enable
9486 diagnostics about One Definition Rule violations.
9487
9488 @item -flto-compression-level=@var{n}
9489 @opindex flto-compression-level
9490 This option specifies the level of compression used for intermediate
9491 language written to LTO object files, and is only meaningful in
9492 conjunction with LTO mode (@option{-flto}). Valid
9493 values are 0 (no compression) to 9 (maximum compression). Values
9494 outside this range are clamped to either 0 or 9. If the option is not
9495 given, a default balanced compression setting is used.
9496
9497 @item -flto-report
9498 @opindex flto-report
9499 Prints a report with internal details on the workings of the link-time
9500 optimizer. The contents of this report vary from version to version.
9501 It is meant to be useful to GCC developers when processing object
9502 files in LTO mode (via @option{-flto}).
9503
9504 Disabled by default.
9505
9506 @item -flto-report-wpa
9507 @opindex flto-report-wpa
9508 Like @option{-flto-report}, but only print for the WPA phase of Link
9509 Time Optimization.
9510
9511 @item -fuse-linker-plugin
9512 @opindex fuse-linker-plugin
9513 Enables the use of a linker plugin during link-time optimization. This
9514 option relies on plugin support in the linker, which is available in gold
9515 or in GNU ld 2.21 or newer.
9516
9517 This option enables the extraction of object files with GIMPLE bytecode out
9518 of library archives. This improves the quality of optimization by exposing
9519 more code to the link-time optimizer. This information specifies what
9520 symbols can be accessed externally (by non-LTO object or during dynamic
9521 linking). Resulting code quality improvements on binaries (and shared
9522 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9523 See @option{-flto} for a description of the effect of this flag and how to
9524 use it.
9525
9526 This option is enabled by default when LTO support in GCC is enabled
9527 and GCC was configured for use with
9528 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9529
9530 @item -ffat-lto-objects
9531 @opindex ffat-lto-objects
9532 Fat LTO objects are object files that contain both the intermediate language
9533 and the object code. This makes them usable for both LTO linking and normal
9534 linking. This option is effective only when compiling with @option{-flto}
9535 and is ignored at link time.
9536
9537 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9538 requires the complete toolchain to be aware of LTO. It requires a linker with
9539 linker plugin support for basic functionality. Additionally,
9540 @command{nm}, @command{ar} and @command{ranlib}
9541 need to support linker plugins to allow a full-featured build environment
9542 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9543 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9544 to these tools. With non fat LTO makefiles need to be modified to use them.
9545
9546 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9547 support.
9548
9549 @item -fcompare-elim
9550 @opindex fcompare-elim
9551 After register allocation and post-register allocation instruction splitting,
9552 identify arithmetic instructions that compute processor flags similar to a
9553 comparison operation based on that arithmetic. If possible, eliminate the
9554 explicit comparison operation.
9555
9556 This pass only applies to certain targets that cannot explicitly represent
9557 the comparison operation before register allocation is complete.
9558
9559 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9560
9561 @item -fcprop-registers
9562 @opindex fcprop-registers
9563 After register allocation and post-register allocation instruction splitting,
9564 perform a copy-propagation pass to try to reduce scheduling dependencies
9565 and occasionally eliminate the copy.
9566
9567 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9568
9569 @item -fprofile-correction
9570 @opindex fprofile-correction
9571 Profiles collected using an instrumented binary for multi-threaded programs may
9572 be inconsistent due to missed counter updates. When this option is specified,
9573 GCC uses heuristics to correct or smooth out such inconsistencies. By
9574 default, GCC emits an error message when an inconsistent profile is detected.
9575
9576 @item -fprofile-dir=@var{path}
9577 @opindex fprofile-dir
9578
9579 Set the directory to search for the profile data files in to @var{path}.
9580 This option affects only the profile data generated by
9581 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9582 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9583 and its related options. Both absolute and relative paths can be used.
9584 By default, GCC uses the current directory as @var{path}, thus the
9585 profile data file appears in the same directory as the object file.
9586
9587 @item -fprofile-generate
9588 @itemx -fprofile-generate=@var{path}
9589 @opindex fprofile-generate
9590
9591 Enable options usually used for instrumenting application to produce
9592 profile useful for later recompilation with profile feedback based
9593 optimization. You must use @option{-fprofile-generate} both when
9594 compiling and when linking your program.
9595
9596 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9597
9598 If @var{path} is specified, GCC looks at the @var{path} to find
9599 the profile feedback data files. See @option{-fprofile-dir}.
9600
9601 @item -fprofile-use
9602 @itemx -fprofile-use=@var{path}
9603 @opindex fprofile-use
9604 Enable profile feedback-directed optimizations,
9605 and the following optimizations
9606 which are generally profitable only with profile feedback available:
9607 @option{-fbranch-probabilities}, @option{-fvpt},
9608 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9609 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9610
9611 By default, GCC emits an error message if the feedback profiles do not
9612 match the source code. This error can be turned into a warning by using
9613 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9614 code.
9615
9616 If @var{path} is specified, GCC looks at the @var{path} to find
9617 the profile feedback data files. See @option{-fprofile-dir}.
9618
9619 @item -fauto-profile
9620 @itemx -fauto-profile=@var{path}
9621 @opindex fauto-profile
9622 Enable sampling-based feedback-directed optimizations,
9623 and the following optimizations
9624 which are generally profitable only with profile feedback available:
9625 @option{-fbranch-probabilities}, @option{-fvpt},
9626 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9627 @option{-ftree-vectorize},
9628 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9629 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9630 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9631
9632 @var{path} is the name of a file containing AutoFDO profile information.
9633 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9634
9635 Producing an AutoFDO profile data file requires running your program
9636 with the @command{perf} utility on a supported GNU/Linux target system.
9637 For more information, see @uref{https://perf.wiki.kernel.org/}.
9638
9639 E.g.
9640 @smallexample
9641 perf record -e br_inst_retired:near_taken -b -o perf.data \
9642 -- your_program
9643 @end smallexample
9644
9645 Then use the @command{create_gcov} tool to convert the raw profile data
9646 to a format that can be used by GCC.@ You must also supply the
9647 unstripped binary for your program to this tool.
9648 See @uref{https://github.com/google/autofdo}.
9649
9650 E.g.
9651 @smallexample
9652 create_gcov --binary=your_program.unstripped --profile=perf.data \
9653 --gcov=profile.afdo
9654 @end smallexample
9655 @end table
9656
9657 The following options control compiler behavior regarding floating-point
9658 arithmetic. These options trade off between speed and
9659 correctness. All must be specifically enabled.
9660
9661 @table @gcctabopt
9662 @item -ffloat-store
9663 @opindex ffloat-store
9664 Do not store floating-point variables in registers, and inhibit other
9665 options that might change whether a floating-point value is taken from a
9666 register or memory.
9667
9668 @cindex floating-point precision
9669 This option prevents undesirable excess precision on machines such as
9670 the 68000 where the floating registers (of the 68881) keep more
9671 precision than a @code{double} is supposed to have. Similarly for the
9672 x86 architecture. For most programs, the excess precision does only
9673 good, but a few programs rely on the precise definition of IEEE floating
9674 point. Use @option{-ffloat-store} for such programs, after modifying
9675 them to store all pertinent intermediate computations into variables.
9676
9677 @item -fexcess-precision=@var{style}
9678 @opindex fexcess-precision
9679 This option allows further control over excess precision on machines
9680 where floating-point registers have more precision than the IEEE
9681 @code{float} and @code{double} types and the processor does not
9682 support operations rounding to those types. By default,
9683 @option{-fexcess-precision=fast} is in effect; this means that
9684 operations are carried out in the precision of the registers and that
9685 it is unpredictable when rounding to the types specified in the source
9686 code takes place. When compiling C, if
9687 @option{-fexcess-precision=standard} is specified then excess
9688 precision follows the rules specified in ISO C99; in particular,
9689 both casts and assignments cause values to be rounded to their
9690 semantic types (whereas @option{-ffloat-store} only affects
9691 assignments). This option is enabled by default for C if a strict
9692 conformance option such as @option{-std=c99} is used.
9693
9694 @opindex mfpmath
9695 @option{-fexcess-precision=standard} is not implemented for languages
9696 other than C, and has no effect if
9697 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
9698 specified. On the x86, it also has no effect if @option{-mfpmath=sse}
9699 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9700 semantics apply without excess precision, and in the latter, rounding
9701 is unpredictable.
9702
9703 @item -ffast-math
9704 @opindex ffast-math
9705 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9706 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9707 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9708
9709 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9710
9711 This option is not turned on by any @option{-O} option besides
9712 @option{-Ofast} since it can result in incorrect output for programs
9713 that depend on an exact implementation of IEEE or ISO rules/specifications
9714 for math functions. It may, however, yield faster code for programs
9715 that do not require the guarantees of these specifications.
9716
9717 @item -fno-math-errno
9718 @opindex fno-math-errno
9719 Do not set @code{errno} after calling math functions that are executed
9720 with a single instruction, e.g., @code{sqrt}. A program that relies on
9721 IEEE exceptions for math error handling may want to use this flag
9722 for speed while maintaining IEEE arithmetic compatibility.
9723
9724 This option is not turned on by any @option{-O} option since
9725 it can result in incorrect output for programs that depend on
9726 an exact implementation of IEEE or ISO rules/specifications for
9727 math functions. It may, however, yield faster code for programs
9728 that do not require the guarantees of these specifications.
9729
9730 The default is @option{-fmath-errno}.
9731
9732 On Darwin systems, the math library never sets @code{errno}. There is
9733 therefore no reason for the compiler to consider the possibility that
9734 it might, and @option{-fno-math-errno} is the default.
9735
9736 @item -funsafe-math-optimizations
9737 @opindex funsafe-math-optimizations
9738
9739 Allow optimizations for floating-point arithmetic that (a) assume
9740 that arguments and results are valid and (b) may violate IEEE or
9741 ANSI standards. When used at link-time, it may include libraries
9742 or startup files that change the default FPU control word or other
9743 similar optimizations.
9744
9745 This option is not turned on by any @option{-O} option since
9746 it can result in incorrect output for programs that depend on
9747 an exact implementation of IEEE or ISO rules/specifications for
9748 math functions. It may, however, yield faster code for programs
9749 that do not require the guarantees of these specifications.
9750 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9751 @option{-fassociative-math} and @option{-freciprocal-math}.
9752
9753 The default is @option{-fno-unsafe-math-optimizations}.
9754
9755 @item -fassociative-math
9756 @opindex fassociative-math
9757
9758 Allow re-association of operands in series of floating-point operations.
9759 This violates the ISO C and C++ language standard by possibly changing
9760 computation result. NOTE: re-ordering may change the sign of zero as
9761 well as ignore NaNs and inhibit or create underflow or overflow (and
9762 thus cannot be used on code that relies on rounding behavior like
9763 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9764 and thus may not be used when ordered comparisons are required.
9765 This option requires that both @option{-fno-signed-zeros} and
9766 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9767 much sense with @option{-frounding-math}. For Fortran the option
9768 is automatically enabled when both @option{-fno-signed-zeros} and
9769 @option{-fno-trapping-math} are in effect.
9770
9771 The default is @option{-fno-associative-math}.
9772
9773 @item -freciprocal-math
9774 @opindex freciprocal-math
9775
9776 Allow the reciprocal of a value to be used instead of dividing by
9777 the value if this enables optimizations. For example @code{x / y}
9778 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9779 is subject to common subexpression elimination. Note that this loses
9780 precision and increases the number of flops operating on the value.
9781
9782 The default is @option{-fno-reciprocal-math}.
9783
9784 @item -ffinite-math-only
9785 @opindex ffinite-math-only
9786 Allow optimizations for floating-point arithmetic that assume
9787 that arguments and results are not NaNs or +-Infs.
9788
9789 This option is not turned on by any @option{-O} option since
9790 it can result in incorrect output for programs that depend on
9791 an exact implementation of IEEE or ISO rules/specifications for
9792 math functions. It may, however, yield faster code for programs
9793 that do not require the guarantees of these specifications.
9794
9795 The default is @option{-fno-finite-math-only}.
9796
9797 @item -fno-signed-zeros
9798 @opindex fno-signed-zeros
9799 Allow optimizations for floating-point arithmetic that ignore the
9800 signedness of zero. IEEE arithmetic specifies the behavior of
9801 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9802 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9803 This option implies that the sign of a zero result isn't significant.
9804
9805 The default is @option{-fsigned-zeros}.
9806
9807 @item -fno-trapping-math
9808 @opindex fno-trapping-math
9809 Compile code assuming that floating-point operations cannot generate
9810 user-visible traps. These traps include division by zero, overflow,
9811 underflow, inexact result and invalid operation. This option requires
9812 that @option{-fno-signaling-nans} be in effect. Setting this option may
9813 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9814
9815 This option should never be turned on by any @option{-O} option since
9816 it can result in incorrect output for programs that depend on
9817 an exact implementation of IEEE or ISO rules/specifications for
9818 math functions.
9819
9820 The default is @option{-ftrapping-math}.
9821
9822 @item -frounding-math
9823 @opindex frounding-math
9824 Disable transformations and optimizations that assume default floating-point
9825 rounding behavior. This is round-to-zero for all floating point
9826 to integer conversions, and round-to-nearest for all other arithmetic
9827 truncations. This option should be specified for programs that change
9828 the FP rounding mode dynamically, or that may be executed with a
9829 non-default rounding mode. This option disables constant folding of
9830 floating-point expressions at compile time (which may be affected by
9831 rounding mode) and arithmetic transformations that are unsafe in the
9832 presence of sign-dependent rounding modes.
9833
9834 The default is @option{-fno-rounding-math}.
9835
9836 This option is experimental and does not currently guarantee to
9837 disable all GCC optimizations that are affected by rounding mode.
9838 Future versions of GCC may provide finer control of this setting
9839 using C99's @code{FENV_ACCESS} pragma. This command-line option
9840 will be used to specify the default state for @code{FENV_ACCESS}.
9841
9842 @item -fsignaling-nans
9843 @opindex fsignaling-nans
9844 Compile code assuming that IEEE signaling NaNs may generate user-visible
9845 traps during floating-point operations. Setting this option disables
9846 optimizations that may change the number of exceptions visible with
9847 signaling NaNs. This option implies @option{-ftrapping-math}.
9848
9849 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9850 be defined.
9851
9852 The default is @option{-fno-signaling-nans}.
9853
9854 This option is experimental and does not currently guarantee to
9855 disable all GCC optimizations that affect signaling NaN behavior.
9856
9857 @item -fsingle-precision-constant
9858 @opindex fsingle-precision-constant
9859 Treat floating-point constants as single precision instead of
9860 implicitly converting them to double-precision constants.
9861
9862 @item -fcx-limited-range
9863 @opindex fcx-limited-range
9864 When enabled, this option states that a range reduction step is not
9865 needed when performing complex division. Also, there is no checking
9866 whether the result of a complex multiplication or division is @code{NaN
9867 + I*NaN}, with an attempt to rescue the situation in that case. The
9868 default is @option{-fno-cx-limited-range}, but is enabled by
9869 @option{-ffast-math}.
9870
9871 This option controls the default setting of the ISO C99
9872 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9873 all languages.
9874
9875 @item -fcx-fortran-rules
9876 @opindex fcx-fortran-rules
9877 Complex multiplication and division follow Fortran rules. Range
9878 reduction is done as part of complex division, but there is no checking
9879 whether the result of a complex multiplication or division is @code{NaN
9880 + I*NaN}, with an attempt to rescue the situation in that case.
9881
9882 The default is @option{-fno-cx-fortran-rules}.
9883
9884 @end table
9885
9886 The following options control optimizations that may improve
9887 performance, but are not enabled by any @option{-O} options. This
9888 section includes experimental options that may produce broken code.
9889
9890 @table @gcctabopt
9891 @item -fbranch-probabilities
9892 @opindex fbranch-probabilities
9893 After running a program compiled with @option{-fprofile-arcs}
9894 (@pxref{Debugging Options,, Options for Debugging Your Program or
9895 @command{gcc}}), you can compile it a second time using
9896 @option{-fbranch-probabilities}, to improve optimizations based on
9897 the number of times each branch was taken. When a program
9898 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9899 counts to a file called @file{@var{sourcename}.gcda} for each source
9900 file. The information in this data file is very dependent on the
9901 structure of the generated code, so you must use the same source code
9902 and the same optimization options for both compilations.
9903
9904 With @option{-fbranch-probabilities}, GCC puts a
9905 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9906 These can be used to improve optimization. Currently, they are only
9907 used in one place: in @file{reorg.c}, instead of guessing which path a
9908 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9909 exactly determine which path is taken more often.
9910
9911 @item -fprofile-values
9912 @opindex fprofile-values
9913 If combined with @option{-fprofile-arcs}, it adds code so that some
9914 data about values of expressions in the program is gathered.
9915
9916 With @option{-fbranch-probabilities}, it reads back the data gathered
9917 from profiling values of expressions for usage in optimizations.
9918
9919 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9920
9921 @item -fprofile-reorder-functions
9922 @opindex fprofile-reorder-functions
9923 Function reordering based on profile instrumentation collects
9924 first time of execution of a function and orders these functions
9925 in ascending order.
9926
9927 Enabled with @option{-fprofile-use}.
9928
9929 @item -fvpt
9930 @opindex fvpt
9931 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9932 to add code to gather information about values of expressions.
9933
9934 With @option{-fbranch-probabilities}, it reads back the data gathered
9935 and actually performs the optimizations based on them.
9936 Currently the optimizations include specialization of division operations
9937 using the knowledge about the value of the denominator.
9938
9939 @item -frename-registers
9940 @opindex frename-registers
9941 Attempt to avoid false dependencies in scheduled code by making use
9942 of registers left over after register allocation. This optimization
9943 most benefits processors with lots of registers. Depending on the
9944 debug information format adopted by the target, however, it can
9945 make debugging impossible, since variables no longer stay in
9946 a ``home register''.
9947
9948 Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
9949
9950 @item -fschedule-fusion
9951 @opindex fschedule-fusion
9952 Performs a target dependent pass over the instruction stream to schedule
9953 instructions of same type together because target machine can execute them
9954 more efficiently if they are adjacent to each other in the instruction flow.
9955
9956 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9957
9958 @item -ftracer
9959 @opindex ftracer
9960 Perform tail duplication to enlarge superblock size. This transformation
9961 simplifies the control flow of the function allowing other optimizations to do
9962 a better job.
9963
9964 Enabled with @option{-fprofile-use}.
9965
9966 @item -funroll-loops
9967 @opindex funroll-loops
9968 Unroll loops whose number of iterations can be determined at compile time or
9969 upon entry to the loop. @option{-funroll-loops} implies
9970 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9971 It also turns on complete loop peeling (i.e.@: complete removal of loops with
9972 a small constant number of iterations). This option makes code larger, and may
9973 or may not make it run faster.
9974
9975 Enabled with @option{-fprofile-use}.
9976
9977 @item -funroll-all-loops
9978 @opindex funroll-all-loops
9979 Unroll all loops, even if their number of iterations is uncertain when
9980 the loop is entered. This usually makes programs run more slowly.
9981 @option{-funroll-all-loops} implies the same options as
9982 @option{-funroll-loops}.
9983
9984 @item -fpeel-loops
9985 @opindex fpeel-loops
9986 Peels loops for which there is enough information that they do not
9987 roll much (from profile feedback). It also turns on complete loop peeling
9988 (i.e.@: complete removal of loops with small constant number of iterations).
9989
9990 Enabled with @option{-fprofile-use}.
9991
9992 @item -fmove-loop-invariants
9993 @opindex fmove-loop-invariants
9994 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
9995 at level @option{-O1}
9996
9997 @item -funswitch-loops
9998 @opindex funswitch-loops
9999 Move branches with loop invariant conditions out of the loop, with duplicates
10000 of the loop on both branches (modified according to result of the condition).
10001
10002 @item -ffunction-sections
10003 @itemx -fdata-sections
10004 @opindex ffunction-sections
10005 @opindex fdata-sections
10006 Place each function or data item into its own section in the output
10007 file if the target supports arbitrary sections. The name of the
10008 function or the name of the data item determines the section's name
10009 in the output file.
10010
10011 Use these options on systems where the linker can perform optimizations
10012 to improve locality of reference in the instruction space. Most systems
10013 using the ELF object format and SPARC processors running Solaris 2 have
10014 linkers with such optimizations. AIX may have these optimizations in
10015 the future.
10016
10017 Only use these options when there are significant benefits from doing
10018 so. When you specify these options, the assembler and linker
10019 create larger object and executable files and are also slower.
10020 You cannot use @command{gprof} on all systems if you
10021 specify this option, and you may have problems with debugging if
10022 you specify both this option and @option{-g}.
10023
10024 @item -fbranch-target-load-optimize
10025 @opindex fbranch-target-load-optimize
10026 Perform branch target register load optimization before prologue / epilogue
10027 threading.
10028 The use of target registers can typically be exposed only during reload,
10029 thus hoisting loads out of loops and doing inter-block scheduling needs
10030 a separate optimization pass.
10031
10032 @item -fbranch-target-load-optimize2
10033 @opindex fbranch-target-load-optimize2
10034 Perform branch target register load optimization after prologue / epilogue
10035 threading.
10036
10037 @item -fbtr-bb-exclusive
10038 @opindex fbtr-bb-exclusive
10039 When performing branch target register load optimization, don't reuse
10040 branch target registers within any basic block.
10041
10042 @item -fstack-protector
10043 @opindex fstack-protector
10044 Emit extra code to check for buffer overflows, such as stack smashing
10045 attacks. This is done by adding a guard variable to functions with
10046 vulnerable objects. This includes functions that call @code{alloca}, and
10047 functions with buffers larger than 8 bytes. The guards are initialized
10048 when a function is entered and then checked when the function exits.
10049 If a guard check fails, an error message is printed and the program exits.
10050
10051 @item -fstack-protector-all
10052 @opindex fstack-protector-all
10053 Like @option{-fstack-protector} except that all functions are protected.
10054
10055 @item -fstack-protector-strong
10056 @opindex fstack-protector-strong
10057 Like @option{-fstack-protector} but includes additional functions to
10058 be protected --- those that have local array definitions, or have
10059 references to local frame addresses.
10060
10061 @item -fstack-protector-explicit
10062 @opindex fstack-protector-explicit
10063 Like @option{-fstack-protector} but only protects those functions which
10064 have the @code{stack_protect} attribute
10065
10066 @item -fstdarg-opt
10067 @opindex fstdarg-opt
10068 Optimize the prologue of variadic argument functions with respect to usage of
10069 those arguments.
10070
10071 @item -fsection-anchors
10072 @opindex fsection-anchors
10073 Try to reduce the number of symbolic address calculations by using
10074 shared ``anchor'' symbols to address nearby objects. This transformation
10075 can help to reduce the number of GOT entries and GOT accesses on some
10076 targets.
10077
10078 For example, the implementation of the following function @code{foo}:
10079
10080 @smallexample
10081 static int a, b, c;
10082 int foo (void) @{ return a + b + c; @}
10083 @end smallexample
10084
10085 @noindent
10086 usually calculates the addresses of all three variables, but if you
10087 compile it with @option{-fsection-anchors}, it accesses the variables
10088 from a common anchor point instead. The effect is similar to the
10089 following pseudocode (which isn't valid C):
10090
10091 @smallexample
10092 int foo (void)
10093 @{
10094 register int *xr = &x;
10095 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10096 @}
10097 @end smallexample
10098
10099 Not all targets support this option.
10100
10101 @item --param @var{name}=@var{value}
10102 @opindex param
10103 In some places, GCC uses various constants to control the amount of
10104 optimization that is done. For example, GCC does not inline functions
10105 that contain more than a certain number of instructions. You can
10106 control some of these constants on the command line using the
10107 @option{--param} option.
10108
10109 The names of specific parameters, and the meaning of the values, are
10110 tied to the internals of the compiler, and are subject to change
10111 without notice in future releases.
10112
10113 In each case, the @var{value} is an integer. The allowable choices for
10114 @var{name} are:
10115
10116 @table @gcctabopt
10117 @item predictable-branch-outcome
10118 When branch is predicted to be taken with probability lower than this threshold
10119 (in percent), then it is considered well predictable. The default is 10.
10120
10121 @item max-crossjump-edges
10122 The maximum number of incoming edges to consider for cross-jumping.
10123 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10124 the number of edges incoming to each block. Increasing values mean
10125 more aggressive optimization, making the compilation time increase with
10126 probably small improvement in executable size.
10127
10128 @item min-crossjump-insns
10129 The minimum number of instructions that must be matched at the end
10130 of two blocks before cross-jumping is performed on them. This
10131 value is ignored in the case where all instructions in the block being
10132 cross-jumped from are matched. The default value is 5.
10133
10134 @item max-grow-copy-bb-insns
10135 The maximum code size expansion factor when copying basic blocks
10136 instead of jumping. The expansion is relative to a jump instruction.
10137 The default value is 8.
10138
10139 @item max-goto-duplication-insns
10140 The maximum number of instructions to duplicate to a block that jumps
10141 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10142 passes, GCC factors computed gotos early in the compilation process,
10143 and unfactors them as late as possible. Only computed jumps at the
10144 end of a basic blocks with no more than max-goto-duplication-insns are
10145 unfactored. The default value is 8.
10146
10147 @item max-delay-slot-insn-search
10148 The maximum number of instructions to consider when looking for an
10149 instruction to fill a delay slot. If more than this arbitrary number of
10150 instructions are searched, the time savings from filling the delay slot
10151 are minimal, so stop searching. Increasing values mean more
10152 aggressive optimization, making the compilation time increase with probably
10153 small improvement in execution time.
10154
10155 @item max-delay-slot-live-search
10156 When trying to fill delay slots, the maximum number of instructions to
10157 consider when searching for a block with valid live register
10158 information. Increasing this arbitrarily chosen value means more
10159 aggressive optimization, increasing the compilation time. This parameter
10160 should be removed when the delay slot code is rewritten to maintain the
10161 control-flow graph.
10162
10163 @item max-gcse-memory
10164 The approximate maximum amount of memory that can be allocated in
10165 order to perform the global common subexpression elimination
10166 optimization. If more memory than specified is required, the
10167 optimization is not done.
10168
10169 @item max-gcse-insertion-ratio
10170 If the ratio of expression insertions to deletions is larger than this value
10171 for any expression, then RTL PRE inserts or removes the expression and thus
10172 leaves partially redundant computations in the instruction stream. The default value is 20.
10173
10174 @item max-pending-list-length
10175 The maximum number of pending dependencies scheduling allows
10176 before flushing the current state and starting over. Large functions
10177 with few branches or calls can create excessively large lists which
10178 needlessly consume memory and resources.
10179
10180 @item max-modulo-backtrack-attempts
10181 The maximum number of backtrack attempts the scheduler should make
10182 when modulo scheduling a loop. Larger values can exponentially increase
10183 compilation time.
10184
10185 @item max-inline-insns-single
10186 Several parameters control the tree inliner used in GCC@.
10187 This number sets the maximum number of instructions (counted in GCC's
10188 internal representation) in a single function that the tree inliner
10189 considers for inlining. This only affects functions declared
10190 inline and methods implemented in a class declaration (C++).
10191 The default value is 400.
10192
10193 @item max-inline-insns-auto
10194 When you use @option{-finline-functions} (included in @option{-O3}),
10195 a lot of functions that would otherwise not be considered for inlining
10196 by the compiler are investigated. To those functions, a different
10197 (more restrictive) limit compared to functions declared inline can
10198 be applied.
10199 The default value is 40.
10200
10201 @item inline-min-speedup
10202 When estimated performance improvement of caller + callee runtime exceeds this
10203 threshold (in precent), the function can be inlined regardless the limit on
10204 @option{--param max-inline-insns-single} and @option{--param
10205 max-inline-insns-auto}.
10206
10207 @item large-function-insns
10208 The limit specifying really large functions. For functions larger than this
10209 limit after inlining, inlining is constrained by
10210 @option{--param large-function-growth}. This parameter is useful primarily
10211 to avoid extreme compilation time caused by non-linear algorithms used by the
10212 back end.
10213 The default value is 2700.
10214
10215 @item large-function-growth
10216 Specifies maximal growth of large function caused by inlining in percents.
10217 The default value is 100 which limits large function growth to 2.0 times
10218 the original size.
10219
10220 @item large-unit-insns
10221 The limit specifying large translation unit. Growth caused by inlining of
10222 units larger than this limit is limited by @option{--param inline-unit-growth}.
10223 For small units this might be too tight.
10224 For example, consider a unit consisting of function A
10225 that is inline and B that just calls A three times. If B is small relative to
10226 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10227 large units consisting of small inlineable functions, however, the overall unit
10228 growth limit is needed to avoid exponential explosion of code size. Thus for
10229 smaller units, the size is increased to @option{--param large-unit-insns}
10230 before applying @option{--param inline-unit-growth}. The default is 10000.
10231
10232 @item inline-unit-growth
10233 Specifies maximal overall growth of the compilation unit caused by inlining.
10234 The default value is 20 which limits unit growth to 1.2 times the original
10235 size. Cold functions (either marked cold via an attribute or by profile
10236 feedback) are not accounted into the unit size.
10237
10238 @item ipcp-unit-growth
10239 Specifies maximal overall growth of the compilation unit caused by
10240 interprocedural constant propagation. The default value is 10 which limits
10241 unit growth to 1.1 times the original size.
10242
10243 @item large-stack-frame
10244 The limit specifying large stack frames. While inlining the algorithm is trying
10245 to not grow past this limit too much. The default value is 256 bytes.
10246
10247 @item large-stack-frame-growth
10248 Specifies maximal growth of large stack frames caused by inlining in percents.
10249 The default value is 1000 which limits large stack frame growth to 11 times
10250 the original size.
10251
10252 @item max-inline-insns-recursive
10253 @itemx max-inline-insns-recursive-auto
10254 Specifies the maximum number of instructions an out-of-line copy of a
10255 self-recursive inline
10256 function can grow into by performing recursive inlining.
10257
10258 @option{--param max-inline-insns-recursive} applies to functions
10259 declared inline.
10260 For functions not declared inline, recursive inlining
10261 happens only when @option{-finline-functions} (included in @option{-O3}) is
10262 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10263 default value is 450.
10264
10265 @item max-inline-recursive-depth
10266 @itemx max-inline-recursive-depth-auto
10267 Specifies the maximum recursion depth used for recursive inlining.
10268
10269 @option{--param max-inline-recursive-depth} applies to functions
10270 declared inline. For functions not declared inline, recursive inlining
10271 happens only when @option{-finline-functions} (included in @option{-O3}) is
10272 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10273 default value is 8.
10274
10275 @item min-inline-recursive-probability
10276 Recursive inlining is profitable only for function having deep recursion
10277 in average and can hurt for function having little recursion depth by
10278 increasing the prologue size or complexity of function body to other
10279 optimizers.
10280
10281 When profile feedback is available (see @option{-fprofile-generate}) the actual
10282 recursion depth can be guessed from probability that function recurses via a
10283 given call expression. This parameter limits inlining only to call expressions
10284 whose probability exceeds the given threshold (in percents).
10285 The default value is 10.
10286
10287 @item early-inlining-insns
10288 Specify growth that the early inliner can make. In effect it increases
10289 the amount of inlining for code having a large abstraction penalty.
10290 The default value is 14.
10291
10292 @item max-early-inliner-iterations
10293 Limit of iterations of the early inliner. This basically bounds
10294 the number of nested indirect calls the early inliner can resolve.
10295 Deeper chains are still handled by late inlining.
10296
10297 @item comdat-sharing-probability
10298 Probability (in percent) that C++ inline function with comdat visibility
10299 are shared across multiple compilation units. The default value is 20.
10300
10301 @item profile-func-internal-id
10302 A parameter to control whether to use function internal id in profile
10303 database lookup. If the value is 0, the compiler uses an id that
10304 is based on function assembler name and filename, which makes old profile
10305 data more tolerant to source changes such as function reordering etc.
10306 The default value is 0.
10307
10308 @item min-vect-loop-bound
10309 The minimum number of iterations under which loops are not vectorized
10310 when @option{-ftree-vectorize} is used. The number of iterations after
10311 vectorization needs to be greater than the value specified by this option
10312 to allow vectorization. The default value is 0.
10313
10314 @item gcse-cost-distance-ratio
10315 Scaling factor in calculation of maximum distance an expression
10316 can be moved by GCSE optimizations. This is currently supported only in the
10317 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10318 is with simple expressions, i.e., the expressions that have cost
10319 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10320 hoisting of simple expressions. The default value is 10.
10321
10322 @item gcse-unrestricted-cost
10323 Cost, roughly measured as the cost of a single typical machine
10324 instruction, at which GCSE optimizations do not constrain
10325 the distance an expression can travel. This is currently
10326 supported only in the code hoisting pass. The lesser the cost,
10327 the more aggressive code hoisting is. Specifying 0
10328 allows all expressions to travel unrestricted distances.
10329 The default value is 3.
10330
10331 @item max-hoist-depth
10332 The depth of search in the dominator tree for expressions to hoist.
10333 This is used to avoid quadratic behavior in hoisting algorithm.
10334 The value of 0 does not limit on the search, but may slow down compilation
10335 of huge functions. The default value is 30.
10336
10337 @item max-tail-merge-comparisons
10338 The maximum amount of similar bbs to compare a bb with. This is used to
10339 avoid quadratic behavior in tree tail merging. The default value is 10.
10340
10341 @item max-tail-merge-iterations
10342 The maximum amount of iterations of the pass over the function. This is used to
10343 limit compilation time in tree tail merging. The default value is 2.
10344
10345 @item max-unrolled-insns
10346 The maximum number of instructions that a loop may have to be unrolled.
10347 If a loop is unrolled, this parameter also determines how many times
10348 the loop code is unrolled.
10349
10350 @item max-average-unrolled-insns
10351 The maximum number of instructions biased by probabilities of their execution
10352 that a loop may have to be unrolled. If a loop is unrolled,
10353 this parameter also determines how many times the loop code is unrolled.
10354
10355 @item max-unroll-times
10356 The maximum number of unrollings of a single loop.
10357
10358 @item max-peeled-insns
10359 The maximum number of instructions that a loop may have to be peeled.
10360 If a loop is peeled, this parameter also determines how many times
10361 the loop code is peeled.
10362
10363 @item max-peel-times
10364 The maximum number of peelings of a single loop.
10365
10366 @item max-peel-branches
10367 The maximum number of branches on the hot path through the peeled sequence.
10368
10369 @item max-completely-peeled-insns
10370 The maximum number of insns of a completely peeled loop.
10371
10372 @item max-completely-peel-times
10373 The maximum number of iterations of a loop to be suitable for complete peeling.
10374
10375 @item max-completely-peel-loop-nest-depth
10376 The maximum depth of a loop nest suitable for complete peeling.
10377
10378 @item max-unswitch-insns
10379 The maximum number of insns of an unswitched loop.
10380
10381 @item max-unswitch-level
10382 The maximum number of branches unswitched in a single loop.
10383
10384 @item lim-expensive
10385 The minimum cost of an expensive expression in the loop invariant motion.
10386
10387 @item iv-consider-all-candidates-bound
10388 Bound on number of candidates for induction variables, below which
10389 all candidates are considered for each use in induction variable
10390 optimizations. If there are more candidates than this,
10391 only the most relevant ones are considered to avoid quadratic time complexity.
10392
10393 @item iv-max-considered-uses
10394 The induction variable optimizations give up on loops that contain more
10395 induction variable uses.
10396
10397 @item iv-always-prune-cand-set-bound
10398 If the number of candidates in the set is smaller than this value,
10399 always try to remove unnecessary ivs from the set
10400 when adding a new one.
10401
10402 @item scev-max-expr-size
10403 Bound on size of expressions used in the scalar evolutions analyzer.
10404 Large expressions slow the analyzer.
10405
10406 @item scev-max-expr-complexity
10407 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10408 Complex expressions slow the analyzer.
10409
10410 @item omega-max-vars
10411 The maximum number of variables in an Omega constraint system.
10412 The default value is 128.
10413
10414 @item omega-max-geqs
10415 The maximum number of inequalities in an Omega constraint system.
10416 The default value is 256.
10417
10418 @item omega-max-eqs
10419 The maximum number of equalities in an Omega constraint system.
10420 The default value is 128.
10421
10422 @item omega-max-wild-cards
10423 The maximum number of wildcard variables that the Omega solver is
10424 able to insert. The default value is 18.
10425
10426 @item omega-hash-table-size
10427 The size of the hash table in the Omega solver. The default value is
10428 550.
10429
10430 @item omega-max-keys
10431 The maximal number of keys used by the Omega solver. The default
10432 value is 500.
10433
10434 @item omega-eliminate-redundant-constraints
10435 When set to 1, use expensive methods to eliminate all redundant
10436 constraints. The default value is 0.
10437
10438 @item vect-max-version-for-alignment-checks
10439 The maximum number of run-time checks that can be performed when
10440 doing loop versioning for alignment in the vectorizer.
10441
10442 @item vect-max-version-for-alias-checks
10443 The maximum number of run-time checks that can be performed when
10444 doing loop versioning for alias in the vectorizer.
10445
10446 @item vect-max-peeling-for-alignment
10447 The maximum number of loop peels to enhance access alignment
10448 for vectorizer. Value -1 means 'no limit'.
10449
10450 @item max-iterations-to-track
10451 The maximum number of iterations of a loop the brute-force algorithm
10452 for analysis of the number of iterations of the loop tries to evaluate.
10453
10454 @item hot-bb-count-ws-permille
10455 A basic block profile count is considered hot if it contributes to
10456 the given permillage (i.e. 0...1000) of the entire profiled execution.
10457
10458 @item hot-bb-frequency-fraction
10459 Select fraction of the entry block frequency of executions of basic block in
10460 function given basic block needs to have to be considered hot.
10461
10462 @item max-predicted-iterations
10463 The maximum number of loop iterations we predict statically. This is useful
10464 in cases where a function contains a single loop with known bound and
10465 another loop with unknown bound.
10466 The known number of iterations is predicted correctly, while
10467 the unknown number of iterations average to roughly 10. This means that the
10468 loop without bounds appears artificially cold relative to the other one.
10469
10470 @item builtin-expect-probability
10471 Control the probability of the expression having the specified value. This
10472 parameter takes a percentage (i.e. 0 ... 100) as input.
10473 The default probability of 90 is obtained empirically.
10474
10475 @item align-threshold
10476
10477 Select fraction of the maximal frequency of executions of a basic block in
10478 a function to align the basic block.
10479
10480 @item align-loop-iterations
10481
10482 A loop expected to iterate at least the selected number of iterations is
10483 aligned.
10484
10485 @item tracer-dynamic-coverage
10486 @itemx tracer-dynamic-coverage-feedback
10487
10488 This value is used to limit superblock formation once the given percentage of
10489 executed instructions is covered. This limits unnecessary code size
10490 expansion.
10491
10492 The @option{tracer-dynamic-coverage-feedback} parameter
10493 is used only when profile
10494 feedback is available. The real profiles (as opposed to statically estimated
10495 ones) are much less balanced allowing the threshold to be larger value.
10496
10497 @item tracer-max-code-growth
10498 Stop tail duplication once code growth has reached given percentage. This is
10499 a rather artificial limit, as most of the duplicates are eliminated later in
10500 cross jumping, so it may be set to much higher values than is the desired code
10501 growth.
10502
10503 @item tracer-min-branch-ratio
10504
10505 Stop reverse growth when the reverse probability of best edge is less than this
10506 threshold (in percent).
10507
10508 @item tracer-min-branch-ratio
10509 @itemx tracer-min-branch-ratio-feedback
10510
10511 Stop forward growth if the best edge has probability lower than this
10512 threshold.
10513
10514 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10515 compilation for profile feedback and one for compilation without. The value
10516 for compilation with profile feedback needs to be more conservative (higher) in
10517 order to make tracer effective.
10518
10519 @item max-cse-path-length
10520
10521 The maximum number of basic blocks on path that CSE considers.
10522 The default is 10.
10523
10524 @item max-cse-insns
10525 The maximum number of instructions CSE processes before flushing.
10526 The default is 1000.
10527
10528 @item ggc-min-expand
10529
10530 GCC uses a garbage collector to manage its own memory allocation. This
10531 parameter specifies the minimum percentage by which the garbage
10532 collector's heap should be allowed to expand between collections.
10533 Tuning this may improve compilation speed; it has no effect on code
10534 generation.
10535
10536 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10537 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10538 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10539 GCC is not able to calculate RAM on a particular platform, the lower
10540 bound of 30% is used. Setting this parameter and
10541 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10542 every opportunity. This is extremely slow, but can be useful for
10543 debugging.
10544
10545 @item ggc-min-heapsize
10546
10547 Minimum size of the garbage collector's heap before it begins bothering
10548 to collect garbage. The first collection occurs after the heap expands
10549 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10550 tuning this may improve compilation speed, and has no effect on code
10551 generation.
10552
10553 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10554 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10555 with a lower bound of 4096 (four megabytes) and an upper bound of
10556 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10557 particular platform, the lower bound is used. Setting this parameter
10558 very large effectively disables garbage collection. Setting this
10559 parameter and @option{ggc-min-expand} to zero causes a full collection
10560 to occur at every opportunity.
10561
10562 @item max-reload-search-insns
10563 The maximum number of instruction reload should look backward for equivalent
10564 register. Increasing values mean more aggressive optimization, making the
10565 compilation time increase with probably slightly better performance.
10566 The default value is 100.
10567
10568 @item max-cselib-memory-locations
10569 The maximum number of memory locations cselib should take into account.
10570 Increasing values mean more aggressive optimization, making the compilation time
10571 increase with probably slightly better performance. The default value is 500.
10572
10573 @item reorder-blocks-duplicate
10574 @itemx reorder-blocks-duplicate-feedback
10575
10576 Used by the basic block reordering pass to decide whether to use unconditional
10577 branch or duplicate the code on its destination. Code is duplicated when its
10578 estimated size is smaller than this value multiplied by the estimated size of
10579 unconditional jump in the hot spots of the program.
10580
10581 The @option{reorder-block-duplicate-feedback} parameter
10582 is used only when profile
10583 feedback is available. It may be set to higher values than
10584 @option{reorder-block-duplicate} since information about the hot spots is more
10585 accurate.
10586
10587 @item max-sched-ready-insns
10588 The maximum number of instructions ready to be issued the scheduler should
10589 consider at any given time during the first scheduling pass. Increasing
10590 values mean more thorough searches, making the compilation time increase
10591 with probably little benefit. The default value is 100.
10592
10593 @item max-sched-region-blocks
10594 The maximum number of blocks in a region to be considered for
10595 interblock scheduling. The default value is 10.
10596
10597 @item max-pipeline-region-blocks
10598 The maximum number of blocks in a region to be considered for
10599 pipelining in the selective scheduler. The default value is 15.
10600
10601 @item max-sched-region-insns
10602 The maximum number of insns in a region to be considered for
10603 interblock scheduling. The default value is 100.
10604
10605 @item max-pipeline-region-insns
10606 The maximum number of insns in a region to be considered for
10607 pipelining in the selective scheduler. The default value is 200.
10608
10609 @item min-spec-prob
10610 The minimum probability (in percents) of reaching a source block
10611 for interblock speculative scheduling. The default value is 40.
10612
10613 @item max-sched-extend-regions-iters
10614 The maximum number of iterations through CFG to extend regions.
10615 A value of 0 (the default) disables region extensions.
10616
10617 @item max-sched-insn-conflict-delay
10618 The maximum conflict delay for an insn to be considered for speculative motion.
10619 The default value is 3.
10620
10621 @item sched-spec-prob-cutoff
10622 The minimal probability of speculation success (in percents), so that
10623 speculative insns are scheduled.
10624 The default value is 40.
10625
10626 @item sched-spec-state-edge-prob-cutoff
10627 The minimum probability an edge must have for the scheduler to save its
10628 state across it.
10629 The default value is 10.
10630
10631 @item sched-mem-true-dep-cost
10632 Minimal distance (in CPU cycles) between store and load targeting same
10633 memory locations. The default value is 1.
10634
10635 @item selsched-max-lookahead
10636 The maximum size of the lookahead window of selective scheduling. It is a
10637 depth of search for available instructions.
10638 The default value is 50.
10639
10640 @item selsched-max-sched-times
10641 The maximum number of times that an instruction is scheduled during
10642 selective scheduling. This is the limit on the number of iterations
10643 through which the instruction may be pipelined. The default value is 2.
10644
10645 @item selsched-max-insns-to-rename
10646 The maximum number of best instructions in the ready list that are considered
10647 for renaming in the selective scheduler. The default value is 2.
10648
10649 @item sms-min-sc
10650 The minimum value of stage count that swing modulo scheduler
10651 generates. The default value is 2.
10652
10653 @item max-last-value-rtl
10654 The maximum size measured as number of RTLs that can be recorded in an expression
10655 in combiner for a pseudo register as last known value of that register. The default
10656 is 10000.
10657
10658 @item max-combine-insns
10659 The maximum number of instructions the RTL combiner tries to combine.
10660 The default value is 2 at @option{-Og} and 4 otherwise.
10661
10662 @item integer-share-limit
10663 Small integer constants can use a shared data structure, reducing the
10664 compiler's memory usage and increasing its speed. This sets the maximum
10665 value of a shared integer constant. The default value is 256.
10666
10667 @item ssp-buffer-size
10668 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10669 protection when @option{-fstack-protection} is used.
10670
10671 @item min-size-for-stack-sharing
10672 The minimum size of variables taking part in stack slot sharing when not
10673 optimizing. The default value is 32.
10674
10675 @item max-jump-thread-duplication-stmts
10676 Maximum number of statements allowed in a block that needs to be
10677 duplicated when threading jumps.
10678
10679 @item max-fields-for-field-sensitive
10680 Maximum number of fields in a structure treated in
10681 a field sensitive manner during pointer analysis. The default is zero
10682 for @option{-O0} and @option{-O1},
10683 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10684
10685 @item prefetch-latency
10686 Estimate on average number of instructions that are executed before
10687 prefetch finishes. The distance prefetched ahead is proportional
10688 to this constant. Increasing this number may also lead to less
10689 streams being prefetched (see @option{simultaneous-prefetches}).
10690
10691 @item simultaneous-prefetches
10692 Maximum number of prefetches that can run at the same time.
10693
10694 @item l1-cache-line-size
10695 The size of cache line in L1 cache, in bytes.
10696
10697 @item l1-cache-size
10698 The size of L1 cache, in kilobytes.
10699
10700 @item l2-cache-size
10701 The size of L2 cache, in kilobytes.
10702
10703 @item min-insn-to-prefetch-ratio
10704 The minimum ratio between the number of instructions and the
10705 number of prefetches to enable prefetching in a loop.
10706
10707 @item prefetch-min-insn-to-mem-ratio
10708 The minimum ratio between the number of instructions and the
10709 number of memory references to enable prefetching in a loop.
10710
10711 @item use-canonical-types
10712 Whether the compiler should use the ``canonical'' type system. By
10713 default, this should always be 1, which uses a more efficient internal
10714 mechanism for comparing types in C++ and Objective-C++. However, if
10715 bugs in the canonical type system are causing compilation failures,
10716 set this value to 0 to disable canonical types.
10717
10718 @item switch-conversion-max-branch-ratio
10719 Switch initialization conversion refuses to create arrays that are
10720 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10721 branches in the switch.
10722
10723 @item max-partial-antic-length
10724 Maximum length of the partial antic set computed during the tree
10725 partial redundancy elimination optimization (@option{-ftree-pre}) when
10726 optimizing at @option{-O3} and above. For some sorts of source code
10727 the enhanced partial redundancy elimination optimization can run away,
10728 consuming all of the memory available on the host machine. This
10729 parameter sets a limit on the length of the sets that are computed,
10730 which prevents the runaway behavior. Setting a value of 0 for
10731 this parameter allows an unlimited set length.
10732
10733 @item sccvn-max-scc-size
10734 Maximum size of a strongly connected component (SCC) during SCCVN
10735 processing. If this limit is hit, SCCVN processing for the whole
10736 function is not done and optimizations depending on it are
10737 disabled. The default maximum SCC size is 10000.
10738
10739 @item sccvn-max-alias-queries-per-access
10740 Maximum number of alias-oracle queries we perform when looking for
10741 redundancies for loads and stores. If this limit is hit the search
10742 is aborted and the load or store is not considered redundant. The
10743 number of queries is algorithmically limited to the number of
10744 stores on all paths from the load to the function entry.
10745 The default maxmimum number of queries is 1000.
10746
10747 @item ira-max-loops-num
10748 IRA uses regional register allocation by default. If a function
10749 contains more loops than the number given by this parameter, only at most
10750 the given number of the most frequently-executed loops form regions
10751 for regional register allocation. The default value of the
10752 parameter is 100.
10753
10754 @item ira-max-conflict-table-size
10755 Although IRA uses a sophisticated algorithm to compress the conflict
10756 table, the table can still require excessive amounts of memory for
10757 huge functions. If the conflict table for a function could be more
10758 than the size in MB given by this parameter, the register allocator
10759 instead uses a faster, simpler, and lower-quality
10760 algorithm that does not require building a pseudo-register conflict table.
10761 The default value of the parameter is 2000.
10762
10763 @item ira-loop-reserved-regs
10764 IRA can be used to evaluate more accurate register pressure in loops
10765 for decisions to move loop invariants (see @option{-O3}). The number
10766 of available registers reserved for some other purposes is given
10767 by this parameter. The default value of the parameter is 2, which is
10768 the minimal number of registers needed by typical instructions.
10769 This value is the best found from numerous experiments.
10770
10771 @item lra-inheritance-ebb-probability-cutoff
10772 LRA tries to reuse values reloaded in registers in subsequent insns.
10773 This optimization is called inheritance. EBB is used as a region to
10774 do this optimization. The parameter defines a minimal fall-through
10775 edge probability in percentage used to add BB to inheritance EBB in
10776 LRA. The default value of the parameter is 40. The value was chosen
10777 from numerous runs of SPEC2000 on x86-64.
10778
10779 @item loop-invariant-max-bbs-in-loop
10780 Loop invariant motion can be very expensive, both in compilation time and
10781 in amount of needed compile-time memory, with very large loops. Loops
10782 with more basic blocks than this parameter won't have loop invariant
10783 motion optimization performed on them. The default value of the
10784 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10785
10786 @item loop-max-datarefs-for-datadeps
10787 Building data dapendencies is expensive for very large loops. This
10788 parameter limits the number of data references in loops that are
10789 considered for data dependence analysis. These large loops are no
10790 handled by the optimizations using loop data dependencies.
10791 The default value is 1000.
10792
10793 @item max-vartrack-size
10794 Sets a maximum number of hash table slots to use during variable
10795 tracking dataflow analysis of any function. If this limit is exceeded
10796 with variable tracking at assignments enabled, analysis for that
10797 function is retried without it, after removing all debug insns from
10798 the function. If the limit is exceeded even without debug insns, var
10799 tracking analysis is completely disabled for the function. Setting
10800 the parameter to zero makes it unlimited.
10801
10802 @item max-vartrack-expr-depth
10803 Sets a maximum number of recursion levels when attempting to map
10804 variable names or debug temporaries to value expressions. This trades
10805 compilation time for more complete debug information. If this is set too
10806 low, value expressions that are available and could be represented in
10807 debug information may end up not being used; setting this higher may
10808 enable the compiler to find more complex debug expressions, but compile
10809 time and memory use may grow. The default is 12.
10810
10811 @item min-nondebug-insn-uid
10812 Use uids starting at this parameter for nondebug insns. The range below
10813 the parameter is reserved exclusively for debug insns created by
10814 @option{-fvar-tracking-assignments}, but debug insns may get
10815 (non-overlapping) uids above it if the reserved range is exhausted.
10816
10817 @item ipa-sra-ptr-growth-factor
10818 IPA-SRA replaces a pointer to an aggregate with one or more new
10819 parameters only when their cumulative size is less or equal to
10820 @option{ipa-sra-ptr-growth-factor} times the size of the original
10821 pointer parameter.
10822
10823 @item sra-max-scalarization-size-Ospeed
10824 @item sra-max-scalarization-size-Osize
10825 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10826 replace scalar parts of aggregates with uses of independent scalar
10827 variables. These parameters control the maximum size, in storage units,
10828 of aggregate which is considered for replacement when compiling for
10829 speed
10830 (@option{sra-max-scalarization-size-Ospeed}) or size
10831 (@option{sra-max-scalarization-size-Osize}) respectively.
10832
10833 @item tm-max-aggregate-size
10834 When making copies of thread-local variables in a transaction, this
10835 parameter specifies the size in bytes after which variables are
10836 saved with the logging functions as opposed to save/restore code
10837 sequence pairs. This option only applies when using
10838 @option{-fgnu-tm}.
10839
10840 @item graphite-max-nb-scop-params
10841 To avoid exponential effects in the Graphite loop transforms, the
10842 number of parameters in a Static Control Part (SCoP) is bounded. The
10843 default value is 10 parameters. A variable whose value is unknown at
10844 compilation time and defined outside a SCoP is a parameter of the SCoP.
10845
10846 @item graphite-max-bbs-per-function
10847 To avoid exponential effects in the detection of SCoPs, the size of
10848 the functions analyzed by Graphite is bounded. The default value is
10849 100 basic blocks.
10850
10851 @item loop-block-tile-size
10852 Loop blocking or strip mining transforms, enabled with
10853 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10854 loop in the loop nest by a given number of iterations. The strip
10855 length can be changed using the @option{loop-block-tile-size}
10856 parameter. The default value is 51 iterations.
10857
10858 @item loop-unroll-jam-size
10859 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10860 default value is 4.
10861
10862 @item loop-unroll-jam-depth
10863 Specify the dimension to be unrolled (counting from the most inner loop)
10864 for the @option{-floop-unroll-and-jam}. The default value is 2.
10865
10866 @item ipa-cp-value-list-size
10867 IPA-CP attempts to track all possible values and types passed to a function's
10868 parameter in order to propagate them and perform devirtualization.
10869 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10870 stores per one formal parameter of a function.
10871
10872 @item ipa-cp-eval-threshold
10873 IPA-CP calculates its own score of cloning profitability heuristics
10874 and performs those cloning opportunities with scores that exceed
10875 @option{ipa-cp-eval-threshold}.
10876
10877 @item ipa-cp-recursion-penalty
10878 Percentage penalty the recursive functions will receive when they
10879 are evaluated for cloning.
10880
10881 @item ipa-cp-single-call-penalty
10882 Percentage penalty functions containg a single call to another
10883 function will receive when they are evaluated for cloning.
10884
10885
10886 @item ipa-max-agg-items
10887 IPA-CP is also capable to propagate a number of scalar values passed
10888 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10889 number of such values per one parameter.
10890
10891 @item ipa-cp-loop-hint-bonus
10892 When IPA-CP determines that a cloning candidate would make the number
10893 of iterations of a loop known, it adds a bonus of
10894 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10895 the candidate.
10896
10897 @item ipa-cp-array-index-hint-bonus
10898 When IPA-CP determines that a cloning candidate would make the index of
10899 an array access known, it adds a bonus of
10900 @option{ipa-cp-array-index-hint-bonus} to the profitability
10901 score of the candidate.
10902
10903 @item ipa-max-aa-steps
10904 During its analysis of function bodies, IPA-CP employs alias analysis
10905 in order to track values pointed to by function parameters. In order
10906 not spend too much time analyzing huge functions, it gives up and
10907 consider all memory clobbered after examining
10908 @option{ipa-max-aa-steps} statements modifying memory.
10909
10910 @item lto-partitions
10911 Specify desired number of partitions produced during WHOPR compilation.
10912 The number of partitions should exceed the number of CPUs used for compilation.
10913 The default value is 32.
10914
10915 @item lto-minpartition
10916 Size of minimal partition for WHOPR (in estimated instructions).
10917 This prevents expenses of splitting very small programs into too many
10918 partitions.
10919
10920 @item cxx-max-namespaces-for-diagnostic-help
10921 The maximum number of namespaces to consult for suggestions when C++
10922 name lookup fails for an identifier. The default is 1000.
10923
10924 @item sink-frequency-threshold
10925 The maximum relative execution frequency (in percents) of the target block
10926 relative to a statement's original block to allow statement sinking of a
10927 statement. Larger numbers result in more aggressive statement sinking.
10928 The default value is 75. A small positive adjustment is applied for
10929 statements with memory operands as those are even more profitable so sink.
10930
10931 @item max-stores-to-sink
10932 The maximum number of conditional stores paires that can be sunk. Set to 0
10933 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10934 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
10935
10936 @item allow-store-data-races
10937 Allow optimizers to introduce new data races on stores.
10938 Set to 1 to allow, otherwise to 0. This option is enabled by default
10939 at optimization level @option{-Ofast}.
10940
10941 @item case-values-threshold
10942 The smallest number of different values for which it is best to use a
10943 jump-table instead of a tree of conditional branches. If the value is
10944 0, use the default for the machine. The default is 0.
10945
10946 @item tree-reassoc-width
10947 Set the maximum number of instructions executed in parallel in
10948 reassociated tree. This parameter overrides target dependent
10949 heuristics used by default if has non zero value.
10950
10951 @item sched-pressure-algorithm
10952 Choose between the two available implementations of
10953 @option{-fsched-pressure}. Algorithm 1 is the original implementation
10954 and is the more likely to prevent instructions from being reordered.
10955 Algorithm 2 was designed to be a compromise between the relatively
10956 conservative approach taken by algorithm 1 and the rather aggressive
10957 approach taken by the default scheduler. It relies more heavily on
10958 having a regular register file and accurate register pressure classes.
10959 See @file{haifa-sched.c} in the GCC sources for more details.
10960
10961 The default choice depends on the target.
10962
10963 @item max-slsr-cand-scan
10964 Set the maximum number of existing candidates that are considered when
10965 seeking a basis for a new straight-line strength reduction candidate.
10966
10967 @item asan-globals
10968 Enable buffer overflow detection for global objects. This kind
10969 of protection is enabled by default if you are using
10970 @option{-fsanitize=address} option.
10971 To disable global objects protection use @option{--param asan-globals=0}.
10972
10973 @item asan-stack
10974 Enable buffer overflow detection for stack objects. This kind of
10975 protection is enabled by default when using@option{-fsanitize=address}.
10976 To disable stack protection use @option{--param asan-stack=0} option.
10977
10978 @item asan-instrument-reads
10979 Enable buffer overflow detection for memory reads. This kind of
10980 protection is enabled by default when using @option{-fsanitize=address}.
10981 To disable memory reads protection use
10982 @option{--param asan-instrument-reads=0}.
10983
10984 @item asan-instrument-writes
10985 Enable buffer overflow detection for memory writes. This kind of
10986 protection is enabled by default when using @option{-fsanitize=address}.
10987 To disable memory writes protection use
10988 @option{--param asan-instrument-writes=0} option.
10989
10990 @item asan-memintrin
10991 Enable detection for built-in functions. This kind of protection
10992 is enabled by default when using @option{-fsanitize=address}.
10993 To disable built-in functions protection use
10994 @option{--param asan-memintrin=0}.
10995
10996 @item asan-use-after-return
10997 Enable detection of use-after-return. This kind of protection
10998 is enabled by default when using @option{-fsanitize=address} option.
10999 To disable use-after-return detection use
11000 @option{--param asan-use-after-return=0}.
11001
11002 @item asan-instrumentation-with-call-threshold
11003 If number of memory accesses in function being instrumented
11004 is greater or equal to this number, use callbacks instead of inline checks.
11005 E.g. to disable inline code use
11006 @option{--param asan-instrumentation-with-call-threshold=0}.
11007
11008 @item chkp-max-ctor-size
11009 Static constructors generated by Pointer Bounds Checker may become very
11010 large and significantly increase compile time at optimization level
11011 @option{-O1} and higher. This parameter is a maximum nubmer of statements
11012 in a single generated constructor. Default value is 5000.
11013
11014 @item max-fsm-thread-path-insns
11015 Maximum number of instructions to copy when duplicating blocks on a
11016 finite state automaton jump thread path. The default is 100.
11017
11018 @item max-fsm-thread-length
11019 Maximum number of basic blocks on a finite state automaton jump thread
11020 path. The default is 10.
11021
11022 @item max-fsm-thread-paths
11023 Maximum number of new jump thread paths to create for a finite state
11024 automaton. The default is 50.
11025
11026 @end table
11027 @end table
11028
11029 @node Preprocessor Options
11030 @section Options Controlling the Preprocessor
11031 @cindex preprocessor options
11032 @cindex options, preprocessor
11033
11034 These options control the C preprocessor, which is run on each C source
11035 file before actual compilation.
11036
11037 If you use the @option{-E} option, nothing is done except preprocessing.
11038 Some of these options make sense only together with @option{-E} because
11039 they cause the preprocessor output to be unsuitable for actual
11040 compilation.
11041
11042 @table @gcctabopt
11043 @item -Wp,@var{option}
11044 @opindex Wp
11045 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11046 and pass @var{option} directly through to the preprocessor. If
11047 @var{option} contains commas, it is split into multiple options at the
11048 commas. However, many options are modified, translated or interpreted
11049 by the compiler driver before being passed to the preprocessor, and
11050 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11051 interface is undocumented and subject to change, so whenever possible
11052 you should avoid using @option{-Wp} and let the driver handle the
11053 options instead.
11054
11055 @item -Xpreprocessor @var{option}
11056 @opindex Xpreprocessor
11057 Pass @var{option} as an option to the preprocessor. You can use this to
11058 supply system-specific preprocessor options that GCC does not
11059 recognize.
11060
11061 If you want to pass an option that takes an argument, you must use
11062 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11063
11064 @item -no-integrated-cpp
11065 @opindex no-integrated-cpp
11066 Perform preprocessing as a separate pass before compilation.
11067 By default, GCC performs preprocessing as an integrated part of
11068 input tokenization and parsing.
11069 If this option is provided, the appropriate language front end
11070 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11071 and Objective-C, respectively) is instead invoked twice,
11072 once for preprocessing only and once for actual compilation
11073 of the preprocessed input.
11074 This option may be useful in conjunction with the @option{-B} or
11075 @option{-wrapper} options to specify an alternate preprocessor or
11076 perform additional processing of the program source between
11077 normal preprocessing and compilation.
11078 @end table
11079
11080 @include cppopts.texi
11081
11082 @node Assembler Options
11083 @section Passing Options to the Assembler
11084
11085 @c prevent bad page break with this line
11086 You can pass options to the assembler.
11087
11088 @table @gcctabopt
11089 @item -Wa,@var{option}
11090 @opindex Wa
11091 Pass @var{option} as an option to the assembler. If @var{option}
11092 contains commas, it is split into multiple options at the commas.
11093
11094 @item -Xassembler @var{option}
11095 @opindex Xassembler
11096 Pass @var{option} as an option to the assembler. You can use this to
11097 supply system-specific assembler options that GCC does not
11098 recognize.
11099
11100 If you want to pass an option that takes an argument, you must use
11101 @option{-Xassembler} twice, once for the option and once for the argument.
11102
11103 @end table
11104
11105 @node Link Options
11106 @section Options for Linking
11107 @cindex link options
11108 @cindex options, linking
11109
11110 These options come into play when the compiler links object files into
11111 an executable output file. They are meaningless if the compiler is
11112 not doing a link step.
11113
11114 @table @gcctabopt
11115 @cindex file names
11116 @item @var{object-file-name}
11117 A file name that does not end in a special recognized suffix is
11118 considered to name an object file or library. (Object files are
11119 distinguished from libraries by the linker according to the file
11120 contents.) If linking is done, these object files are used as input
11121 to the linker.
11122
11123 @item -c
11124 @itemx -S
11125 @itemx -E
11126 @opindex c
11127 @opindex S
11128 @opindex E
11129 If any of these options is used, then the linker is not run, and
11130 object file names should not be used as arguments. @xref{Overall
11131 Options}.
11132
11133 @item -fuse-ld=bfd
11134 @opindex fuse-ld=bfd
11135 Use the @command{bfd} linker instead of the default linker.
11136
11137 @item -fuse-ld=gold
11138 @opindex fuse-ld=gold
11139 Use the @command{gold} linker instead of the default linker.
11140
11141 @cindex Libraries
11142 @item -l@var{library}
11143 @itemx -l @var{library}
11144 @opindex l
11145 Search the library named @var{library} when linking. (The second
11146 alternative with the library as a separate argument is only for
11147 POSIX compliance and is not recommended.)
11148
11149 It makes a difference where in the command you write this option; the
11150 linker searches and processes libraries and object files in the order they
11151 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11152 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11153 to functions in @samp{z}, those functions may not be loaded.
11154
11155 The linker searches a standard list of directories for the library,
11156 which is actually a file named @file{lib@var{library}.a}. The linker
11157 then uses this file as if it had been specified precisely by name.
11158
11159 The directories searched include several standard system directories
11160 plus any that you specify with @option{-L}.
11161
11162 Normally the files found this way are library files---archive files
11163 whose members are object files. The linker handles an archive file by
11164 scanning through it for members which define symbols that have so far
11165 been referenced but not defined. But if the file that is found is an
11166 ordinary object file, it is linked in the usual fashion. The only
11167 difference between using an @option{-l} option and specifying a file name
11168 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11169 and searches several directories.
11170
11171 @item -lobjc
11172 @opindex lobjc
11173 You need this special case of the @option{-l} option in order to
11174 link an Objective-C or Objective-C++ program.
11175
11176 @item -nostartfiles
11177 @opindex nostartfiles
11178 Do not use the standard system startup files when linking.
11179 The standard system libraries are used normally, unless @option{-nostdlib}
11180 or @option{-nodefaultlibs} is used.
11181
11182 @item -nodefaultlibs
11183 @opindex nodefaultlibs
11184 Do not use the standard system libraries when linking.
11185 Only the libraries you specify are passed to the linker, and options
11186 specifying linkage of the system libraries, such as @option{-static-libgcc}
11187 or @option{-shared-libgcc}, are ignored.
11188 The standard startup files are used normally, unless @option{-nostartfiles}
11189 is used.
11190
11191 The compiler may generate calls to @code{memcmp},
11192 @code{memset}, @code{memcpy} and @code{memmove}.
11193 These entries are usually resolved by entries in
11194 libc. These entry points should be supplied through some other
11195 mechanism when this option is specified.
11196
11197 @item -nostdlib
11198 @opindex nostdlib
11199 Do not use the standard system startup files or libraries when linking.
11200 No startup files and only the libraries you specify are passed to
11201 the linker, and options specifying linkage of the system libraries, such as
11202 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11203
11204 The compiler may generate calls to @code{memcmp}, @code{memset},
11205 @code{memcpy} and @code{memmove}.
11206 These entries are usually resolved by entries in
11207 libc. These entry points should be supplied through some other
11208 mechanism when this option is specified.
11209
11210 @cindex @option{-lgcc}, use with @option{-nostdlib}
11211 @cindex @option{-nostdlib} and unresolved references
11212 @cindex unresolved references and @option{-nostdlib}
11213 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11214 @cindex @option{-nodefaultlibs} and unresolved references
11215 @cindex unresolved references and @option{-nodefaultlibs}
11216 One of the standard libraries bypassed by @option{-nostdlib} and
11217 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11218 which GCC uses to overcome shortcomings of particular machines, or special
11219 needs for some languages.
11220 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11221 Collection (GCC) Internals},
11222 for more discussion of @file{libgcc.a}.)
11223 In most cases, you need @file{libgcc.a} even when you want to avoid
11224 other standard libraries. In other words, when you specify @option{-nostdlib}
11225 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11226 This ensures that you have no unresolved references to internal GCC
11227 library subroutines.
11228 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11229 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11230 GNU Compiler Collection (GCC) Internals}.)
11231
11232 @item -pie
11233 @opindex pie
11234 Produce a position independent executable on targets that support it.
11235 For predictable results, you must also specify the same set of options
11236 used for compilation (@option{-fpie}, @option{-fPIE},
11237 or model suboptions) when you specify this linker option.
11238
11239 @item -rdynamic
11240 @opindex rdynamic
11241 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11242 that support it. This instructs the linker to add all symbols, not
11243 only used ones, to the dynamic symbol table. This option is needed
11244 for some uses of @code{dlopen} or to allow obtaining backtraces
11245 from within a program.
11246
11247 @item -s
11248 @opindex s
11249 Remove all symbol table and relocation information from the executable.
11250
11251 @item -static
11252 @opindex static
11253 On systems that support dynamic linking, this prevents linking with the shared
11254 libraries. On other systems, this option has no effect.
11255
11256 @item -shared
11257 @opindex shared
11258 Produce a shared object which can then be linked with other objects to
11259 form an executable. Not all systems support this option. For predictable
11260 results, you must also specify the same set of options used for compilation
11261 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11262 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11263 needs to build supplementary stub code for constructors to work. On
11264 multi-libbed systems, @samp{gcc -shared} must select the correct support
11265 libraries to link against. Failing to supply the correct flags may lead
11266 to subtle defects. Supplying them in cases where they are not necessary
11267 is innocuous.}
11268
11269 @item -shared-libgcc
11270 @itemx -static-libgcc
11271 @opindex shared-libgcc
11272 @opindex static-libgcc
11273 On systems that provide @file{libgcc} as a shared library, these options
11274 force the use of either the shared or static version, respectively.
11275 If no shared version of @file{libgcc} was built when the compiler was
11276 configured, these options have no effect.
11277
11278 There are several situations in which an application should use the
11279 shared @file{libgcc} instead of the static version. The most common
11280 of these is when the application wishes to throw and catch exceptions
11281 across different shared libraries. In that case, each of the libraries
11282 as well as the application itself should use the shared @file{libgcc}.
11283
11284 Therefore, the G++ and GCJ drivers automatically add
11285 @option{-shared-libgcc} whenever you build a shared library or a main
11286 executable, because C++ and Java programs typically use exceptions, so
11287 this is the right thing to do.
11288
11289 If, instead, you use the GCC driver to create shared libraries, you may
11290 find that they are not always linked with the shared @file{libgcc}.
11291 If GCC finds, at its configuration time, that you have a non-GNU linker
11292 or a GNU linker that does not support option @option{--eh-frame-hdr},
11293 it links the shared version of @file{libgcc} into shared libraries
11294 by default. Otherwise, it takes advantage of the linker and optimizes
11295 away the linking with the shared version of @file{libgcc}, linking with
11296 the static version of libgcc by default. This allows exceptions to
11297 propagate through such shared libraries, without incurring relocation
11298 costs at library load time.
11299
11300 However, if a library or main executable is supposed to throw or catch
11301 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11302 for the languages used in the program, or using the option
11303 @option{-shared-libgcc}, such that it is linked with the shared
11304 @file{libgcc}.
11305
11306 @item -static-libasan
11307 @opindex static-libasan
11308 When the @option{-fsanitize=address} option is used to link a program,
11309 the GCC driver automatically links against @option{libasan}. If
11310 @file{libasan} is available as a shared library, and the @option{-static}
11311 option is not used, then this links against the shared version of
11312 @file{libasan}. The @option{-static-libasan} option directs the GCC
11313 driver to link @file{libasan} statically, without necessarily linking
11314 other libraries statically.
11315
11316 @item -static-libtsan
11317 @opindex static-libtsan
11318 When the @option{-fsanitize=thread} option is used to link a program,
11319 the GCC driver automatically links against @option{libtsan}. If
11320 @file{libtsan} is available as a shared library, and the @option{-static}
11321 option is not used, then this links against the shared version of
11322 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11323 driver to link @file{libtsan} statically, without necessarily linking
11324 other libraries statically.
11325
11326 @item -static-liblsan
11327 @opindex static-liblsan
11328 When the @option{-fsanitize=leak} option is used to link a program,
11329 the GCC driver automatically links against @option{liblsan}. If
11330 @file{liblsan} is available as a shared library, and the @option{-static}
11331 option is not used, then this links against the shared version of
11332 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11333 driver to link @file{liblsan} statically, without necessarily linking
11334 other libraries statically.
11335
11336 @item -static-libubsan
11337 @opindex static-libubsan
11338 When the @option{-fsanitize=undefined} option is used to link a program,
11339 the GCC driver automatically links against @option{libubsan}. If
11340 @file{libubsan} is available as a shared library, and the @option{-static}
11341 option is not used, then this links against the shared version of
11342 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11343 driver to link @file{libubsan} statically, without necessarily linking
11344 other libraries statically.
11345
11346 @item -static-libmpx
11347 @opindex static-libmpx
11348 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11349 used to link a program, the GCC driver automatically links against
11350 @file{libmpx}. If @file{libmpx} is available as a shared library,
11351 and the @option{-static} option is not used, then this links against
11352 the shared version of @file{libmpx}. The @option{-static-libmpx}
11353 option directs the GCC driver to link @file{libmpx} statically,
11354 without necessarily linking other libraries statically.
11355
11356 @item -static-libmpxwrappers
11357 @opindex static-libmpxwrappers
11358 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11359 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11360 GCC driver automatically links against @file{libmpxwrappers}. If
11361 @file{libmpxwrappers} is available as a shared library, and the
11362 @option{-static} option is not used, then this links against the shared
11363 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11364 option directs the GCC driver to link @file{libmpxwrappers} statically,
11365 without necessarily linking other libraries statically.
11366
11367 @item -static-libstdc++
11368 @opindex static-libstdc++
11369 When the @command{g++} program is used to link a C++ program, it
11370 normally automatically links against @option{libstdc++}. If
11371 @file{libstdc++} is available as a shared library, and the
11372 @option{-static} option is not used, then this links against the
11373 shared version of @file{libstdc++}. That is normally fine. However, it
11374 is sometimes useful to freeze the version of @file{libstdc++} used by
11375 the program without going all the way to a fully static link. The
11376 @option{-static-libstdc++} option directs the @command{g++} driver to
11377 link @file{libstdc++} statically, without necessarily linking other
11378 libraries statically.
11379
11380 @item -symbolic
11381 @opindex symbolic
11382 Bind references to global symbols when building a shared object. Warn
11383 about any unresolved references (unless overridden by the link editor
11384 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11385 this option.
11386
11387 @item -T @var{script}
11388 @opindex T
11389 @cindex linker script
11390 Use @var{script} as the linker script. This option is supported by most
11391 systems using the GNU linker. On some targets, such as bare-board
11392 targets without an operating system, the @option{-T} option may be required
11393 when linking to avoid references to undefined symbols.
11394
11395 @item -Xlinker @var{option}
11396 @opindex Xlinker
11397 Pass @var{option} as an option to the linker. You can use this to
11398 supply system-specific linker options that GCC does not recognize.
11399
11400 If you want to pass an option that takes a separate argument, you must use
11401 @option{-Xlinker} twice, once for the option and once for the argument.
11402 For example, to pass @option{-assert definitions}, you must write
11403 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11404 @option{-Xlinker "-assert definitions"}, because this passes the entire
11405 string as a single argument, which is not what the linker expects.
11406
11407 When using the GNU linker, it is usually more convenient to pass
11408 arguments to linker options using the @option{@var{option}=@var{value}}
11409 syntax than as separate arguments. For example, you can specify
11410 @option{-Xlinker -Map=output.map} rather than
11411 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11412 this syntax for command-line options.
11413
11414 @item -Wl,@var{option}
11415 @opindex Wl
11416 Pass @var{option} as an option to the linker. If @var{option} contains
11417 commas, it is split into multiple options at the commas. You can use this
11418 syntax to pass an argument to the option.
11419 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11420 linker. When using the GNU linker, you can also get the same effect with
11421 @option{-Wl,-Map=output.map}.
11422
11423 @item -u @var{symbol}
11424 @opindex u
11425 Pretend the symbol @var{symbol} is undefined, to force linking of
11426 library modules to define it. You can use @option{-u} multiple times with
11427 different symbols to force loading of additional library modules.
11428
11429 @item -z @var{keyword}
11430 @opindex z
11431 @option{-z} is passed directly on to the linker along with the keyword
11432 @var{keyword}. See the section in the documentation of your linker for
11433 permitted values and their meanings.
11434 @end table
11435
11436 @node Directory Options
11437 @section Options for Directory Search
11438 @cindex directory options
11439 @cindex options, directory search
11440 @cindex search path
11441
11442 These options specify directories to search for header files, for
11443 libraries and for parts of the compiler:
11444
11445 @table @gcctabopt
11446 @item -I@var{dir}
11447 @opindex I
11448 Add the directory @var{dir} to the head of the list of directories to be
11449 searched for header files. This can be used to override a system header
11450 file, substituting your own version, since these directories are
11451 searched before the system header file directories. However, you should
11452 not use this option to add directories that contain vendor-supplied
11453 system header files (use @option{-isystem} for that). If you use more than
11454 one @option{-I} option, the directories are scanned in left-to-right
11455 order; the standard system directories come after.
11456
11457 If a standard system include directory, or a directory specified with
11458 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11459 option is ignored. The directory is still searched but as a
11460 system directory at its normal position in the system include chain.
11461 This is to ensure that GCC's procedure to fix buggy system headers and
11462 the ordering for the @code{include_next} directive are not inadvertently changed.
11463 If you really need to change the search order for system directories,
11464 use the @option{-nostdinc} and/or @option{-isystem} options.
11465
11466 @item -iplugindir=@var{dir}
11467 @opindex iplugindir=
11468 Set the directory to search for plugins that are passed
11469 by @option{-fplugin=@var{name}} instead of
11470 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11471 to be used by the user, but only passed by the driver.
11472
11473 @item -iquote@var{dir}
11474 @opindex iquote
11475 Add the directory @var{dir} to the head of the list of directories to
11476 be searched for header files only for the case of @code{#include
11477 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11478 otherwise just like @option{-I}.
11479
11480 @item -L@var{dir}
11481 @opindex L
11482 Add directory @var{dir} to the list of directories to be searched
11483 for @option{-l}.
11484
11485 @item -B@var{prefix}
11486 @opindex B
11487 This option specifies where to find the executables, libraries,
11488 include files, and data files of the compiler itself.
11489
11490 The compiler driver program runs one or more of the subprograms
11491 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11492 @var{prefix} as a prefix for each program it tries to run, both with and
11493 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11494
11495 For each subprogram to be run, the compiler driver first tries the
11496 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11497 is not specified, the driver tries two standard prefixes,
11498 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11499 those results in a file name that is found, the unmodified program
11500 name is searched for using the directories specified in your
11501 @env{PATH} environment variable.
11502
11503 The compiler checks to see if the path provided by @option{-B}
11504 refers to a directory, and if necessary it adds a directory
11505 separator character at the end of the path.
11506
11507 @option{-B} prefixes that effectively specify directory names also apply
11508 to libraries in the linker, because the compiler translates these
11509 options into @option{-L} options for the linker. They also apply to
11510 include files in the preprocessor, because the compiler translates these
11511 options into @option{-isystem} options for the preprocessor. In this case,
11512 the compiler appends @samp{include} to the prefix.
11513
11514 The runtime support file @file{libgcc.a} can also be searched for using
11515 the @option{-B} prefix, if needed. If it is not found there, the two
11516 standard prefixes above are tried, and that is all. The file is left
11517 out of the link if it is not found by those means.
11518
11519 Another way to specify a prefix much like the @option{-B} prefix is to use
11520 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
11521 Variables}.
11522
11523 As a special kludge, if the path provided by @option{-B} is
11524 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11525 9, then it is replaced by @file{[dir/]include}. This is to help
11526 with boot-strapping the compiler.
11527
11528 @item -specs=@var{file}
11529 @opindex specs
11530 Process @var{file} after the compiler reads in the standard @file{specs}
11531 file, in order to override the defaults which the @command{gcc} driver
11532 program uses when determining what switches to pass to @command{cc1},
11533 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
11534 @option{-specs=@var{file}} can be specified on the command line, and they
11535 are processed in order, from left to right.
11536
11537 @item --sysroot=@var{dir}
11538 @opindex sysroot
11539 Use @var{dir} as the logical root directory for headers and libraries.
11540 For example, if the compiler normally searches for headers in
11541 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11542 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11543
11544 If you use both this option and the @option{-isysroot} option, then
11545 the @option{--sysroot} option applies to libraries, but the
11546 @option{-isysroot} option applies to header files.
11547
11548 The GNU linker (beginning with version 2.16) has the necessary support
11549 for this option. If your linker does not support this option, the
11550 header file aspect of @option{--sysroot} still works, but the
11551 library aspect does not.
11552
11553 @item --no-sysroot-suffix
11554 @opindex no-sysroot-suffix
11555 For some targets, a suffix is added to the root directory specified
11556 with @option{--sysroot}, depending on the other options used, so that
11557 headers may for example be found in
11558 @file{@var{dir}/@var{suffix}/usr/include} instead of
11559 @file{@var{dir}/usr/include}. This option disables the addition of
11560 such a suffix.
11561
11562 @item -I-
11563 @opindex I-
11564 This option has been deprecated. Please use @option{-iquote} instead for
11565 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11566 option.
11567 Any directories you specify with @option{-I} options before the @option{-I-}
11568 option are searched only for the case of @code{#include "@var{file}"};
11569 they are not searched for @code{#include <@var{file}>}.
11570
11571 If additional directories are specified with @option{-I} options after
11572 the @option{-I-} option, these directories are searched for all @code{#include}
11573 directives. (Ordinarily @emph{all} @option{-I} directories are used
11574 this way.)
11575
11576 In addition, the @option{-I-} option inhibits the use of the current
11577 directory (where the current input file came from) as the first search
11578 directory for @code{#include "@var{file}"}. There is no way to
11579 override this effect of @option{-I-}. With @option{-I.} you can specify
11580 searching the directory that is current when the compiler is
11581 invoked. That is not exactly the same as what the preprocessor does
11582 by default, but it is often satisfactory.
11583
11584 @option{-I-} does not inhibit the use of the standard system directories
11585 for header files. Thus, @option{-I-} and @option{-nostdinc} are
11586 independent.
11587 @end table
11588
11589 @c man end
11590
11591 @node Spec Files
11592 @section Specifying Subprocesses and the Switches to Pass to Them
11593 @cindex Spec Files
11594
11595 @command{gcc} is a driver program. It performs its job by invoking a
11596 sequence of other programs to do the work of compiling, assembling and
11597 linking. GCC interprets its command-line parameters and uses these to
11598 deduce which programs it should invoke, and which command-line options
11599 it ought to place on their command lines. This behavior is controlled
11600 by @dfn{spec strings}. In most cases there is one spec string for each
11601 program that GCC can invoke, but a few programs have multiple spec
11602 strings to control their behavior. The spec strings built into GCC can
11603 be overridden by using the @option{-specs=} command-line switch to specify
11604 a spec file.
11605
11606 @dfn{Spec files} are plaintext files that are used to construct spec
11607 strings. They consist of a sequence of directives separated by blank
11608 lines. The type of directive is determined by the first non-whitespace
11609 character on the line, which can be one of the following:
11610
11611 @table @code
11612 @item %@var{command}
11613 Issues a @var{command} to the spec file processor. The commands that can
11614 appear here are:
11615
11616 @table @code
11617 @item %include <@var{file}>
11618 @cindex @code{%include}
11619 Search for @var{file} and insert its text at the current point in the
11620 specs file.
11621
11622 @item %include_noerr <@var{file}>
11623 @cindex @code{%include_noerr}
11624 Just like @samp{%include}, but do not generate an error message if the include
11625 file cannot be found.
11626
11627 @item %rename @var{old_name} @var{new_name}
11628 @cindex @code{%rename}
11629 Rename the spec string @var{old_name} to @var{new_name}.
11630
11631 @end table
11632
11633 @item *[@var{spec_name}]:
11634 This tells the compiler to create, override or delete the named spec
11635 string. All lines after this directive up to the next directive or
11636 blank line are considered to be the text for the spec string. If this
11637 results in an empty string then the spec is deleted. (Or, if the
11638 spec did not exist, then nothing happens.) Otherwise, if the spec
11639 does not currently exist a new spec is created. If the spec does
11640 exist then its contents are overridden by the text of this
11641 directive, unless the first character of that text is the @samp{+}
11642 character, in which case the text is appended to the spec.
11643
11644 @item [@var{suffix}]:
11645 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
11646 and up to the next directive or blank line are considered to make up the
11647 spec string for the indicated suffix. When the compiler encounters an
11648 input file with the named suffix, it processes the spec string in
11649 order to work out how to compile that file. For example:
11650
11651 @smallexample
11652 .ZZ:
11653 z-compile -input %i
11654 @end smallexample
11655
11656 This says that any input file whose name ends in @samp{.ZZ} should be
11657 passed to the program @samp{z-compile}, which should be invoked with the
11658 command-line switch @option{-input} and with the result of performing the
11659 @samp{%i} substitution. (See below.)
11660
11661 As an alternative to providing a spec string, the text following a
11662 suffix directive can be one of the following:
11663
11664 @table @code
11665 @item @@@var{language}
11666 This says that the suffix is an alias for a known @var{language}. This is
11667 similar to using the @option{-x} command-line switch to GCC to specify a
11668 language explicitly. For example:
11669
11670 @smallexample
11671 .ZZ:
11672 @@c++
11673 @end smallexample
11674
11675 Says that .ZZ files are, in fact, C++ source files.
11676
11677 @item #@var{name}
11678 This causes an error messages saying:
11679
11680 @smallexample
11681 @var{name} compiler not installed on this system.
11682 @end smallexample
11683 @end table
11684
11685 GCC already has an extensive list of suffixes built into it.
11686 This directive adds an entry to the end of the list of suffixes, but
11687 since the list is searched from the end backwards, it is effectively
11688 possible to override earlier entries using this technique.
11689
11690 @end table
11691
11692 GCC has the following spec strings built into it. Spec files can
11693 override these strings or create their own. Note that individual
11694 targets can also add their own spec strings to this list.
11695
11696 @smallexample
11697 asm Options to pass to the assembler
11698 asm_final Options to pass to the assembler post-processor
11699 cpp Options to pass to the C preprocessor
11700 cc1 Options to pass to the C compiler
11701 cc1plus Options to pass to the C++ compiler
11702 endfile Object files to include at the end of the link
11703 link Options to pass to the linker
11704 lib Libraries to include on the command line to the linker
11705 libgcc Decides which GCC support library to pass to the linker
11706 linker Sets the name of the linker
11707 predefines Defines to be passed to the C preprocessor
11708 signed_char Defines to pass to CPP to say whether @code{char} is signed
11709 by default
11710 startfile Object files to include at the start of the link
11711 @end smallexample
11712
11713 Here is a small example of a spec file:
11714
11715 @smallexample
11716 %rename lib old_lib
11717
11718 *lib:
11719 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
11720 @end smallexample
11721
11722 This example renames the spec called @samp{lib} to @samp{old_lib} and
11723 then overrides the previous definition of @samp{lib} with a new one.
11724 The new definition adds in some extra command-line options before
11725 including the text of the old definition.
11726
11727 @dfn{Spec strings} are a list of command-line options to be passed to their
11728 corresponding program. In addition, the spec strings can contain
11729 @samp{%}-prefixed sequences to substitute variable text or to
11730 conditionally insert text into the command line. Using these constructs
11731 it is possible to generate quite complex command lines.
11732
11733 Here is a table of all defined @samp{%}-sequences for spec
11734 strings. Note that spaces are not generated automatically around the
11735 results of expanding these sequences. Therefore you can concatenate them
11736 together or combine them with constant text in a single argument.
11737
11738 @table @code
11739 @item %%
11740 Substitute one @samp{%} into the program name or argument.
11741
11742 @item %i
11743 Substitute the name of the input file being processed.
11744
11745 @item %b
11746 Substitute the basename of the input file being processed.
11747 This is the substring up to (and not including) the last period
11748 and not including the directory.
11749
11750 @item %B
11751 This is the same as @samp{%b}, but include the file suffix (text after
11752 the last period).
11753
11754 @item %d
11755 Marks the argument containing or following the @samp{%d} as a
11756 temporary file name, so that that file is deleted if GCC exits
11757 successfully. Unlike @samp{%g}, this contributes no text to the
11758 argument.
11759
11760 @item %g@var{suffix}
11761 Substitute a file name that has suffix @var{suffix} and is chosen
11762 once per compilation, and mark the argument in the same way as
11763 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
11764 name is now chosen in a way that is hard to predict even when previously
11765 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
11766 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
11767 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
11768 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
11769 was simply substituted with a file name chosen once per compilation,
11770 without regard to any appended suffix (which was therefore treated
11771 just like ordinary text), making such attacks more likely to succeed.
11772
11773 @item %u@var{suffix}
11774 Like @samp{%g}, but generates a new temporary file name
11775 each time it appears instead of once per compilation.
11776
11777 @item %U@var{suffix}
11778 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
11779 new one if there is no such last file name. In the absence of any
11780 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
11781 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
11782 involves the generation of two distinct file names, one
11783 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
11784 simply substituted with a file name chosen for the previous @samp{%u},
11785 without regard to any appended suffix.
11786
11787 @item %j@var{suffix}
11788 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
11789 writable, and if @option{-save-temps} is not used;
11790 otherwise, substitute the name
11791 of a temporary file, just like @samp{%u}. This temporary file is not
11792 meant for communication between processes, but rather as a junk
11793 disposal mechanism.
11794
11795 @item %|@var{suffix}
11796 @itemx %m@var{suffix}
11797 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
11798 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
11799 all. These are the two most common ways to instruct a program that it
11800 should read from standard input or write to standard output. If you
11801 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
11802 construct: see for example @file{f/lang-specs.h}.
11803
11804 @item %.@var{SUFFIX}
11805 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
11806 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
11807 terminated by the next space or %.
11808
11809 @item %w
11810 Marks the argument containing or following the @samp{%w} as the
11811 designated output file of this compilation. This puts the argument
11812 into the sequence of arguments that @samp{%o} substitutes.
11813
11814 @item %o
11815 Substitutes the names of all the output files, with spaces
11816 automatically placed around them. You should write spaces
11817 around the @samp{%o} as well or the results are undefined.
11818 @samp{%o} is for use in the specs for running the linker.
11819 Input files whose names have no recognized suffix are not compiled
11820 at all, but they are included among the output files, so they are
11821 linked.
11822
11823 @item %O
11824 Substitutes the suffix for object files. Note that this is
11825 handled specially when it immediately follows @samp{%g, %u, or %U},
11826 because of the need for those to form complete file names. The
11827 handling is such that @samp{%O} is treated exactly as if it had already
11828 been substituted, except that @samp{%g, %u, and %U} do not currently
11829 support additional @var{suffix} characters following @samp{%O} as they do
11830 following, for example, @samp{.o}.
11831
11832 @item %p
11833 Substitutes the standard macro predefinitions for the
11834 current target machine. Use this when running @command{cpp}.
11835
11836 @item %P
11837 Like @samp{%p}, but puts @samp{__} before and after the name of each
11838 predefined macro, except for macros that start with @samp{__} or with
11839 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
11840 C@.
11841
11842 @item %I
11843 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
11844 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
11845 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
11846 and @option{-imultilib} as necessary.
11847
11848 @item %s
11849 Current argument is the name of a library or startup file of some sort.
11850 Search for that file in a standard list of directories and substitute
11851 the full name found. The current working directory is included in the
11852 list of directories scanned.
11853
11854 @item %T
11855 Current argument is the name of a linker script. Search for that file
11856 in the current list of directories to scan for libraries. If the file
11857 is located insert a @option{--script} option into the command line
11858 followed by the full path name found. If the file is not found then
11859 generate an error message. Note: the current working directory is not
11860 searched.
11861
11862 @item %e@var{str}
11863 Print @var{str} as an error message. @var{str} is terminated by a newline.
11864 Use this when inconsistent options are detected.
11865
11866 @item %(@var{name})
11867 Substitute the contents of spec string @var{name} at this point.
11868
11869 @item %x@{@var{option}@}
11870 Accumulate an option for @samp{%X}.
11871
11872 @item %X
11873 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
11874 spec string.
11875
11876 @item %Y
11877 Output the accumulated assembler options specified by @option{-Wa}.
11878
11879 @item %Z
11880 Output the accumulated preprocessor options specified by @option{-Wp}.
11881
11882 @item %a
11883 Process the @code{asm} spec. This is used to compute the
11884 switches to be passed to the assembler.
11885
11886 @item %A
11887 Process the @code{asm_final} spec. This is a spec string for
11888 passing switches to an assembler post-processor, if such a program is
11889 needed.
11890
11891 @item %l
11892 Process the @code{link} spec. This is the spec for computing the
11893 command line passed to the linker. Typically it makes use of the
11894 @samp{%L %G %S %D and %E} sequences.
11895
11896 @item %D
11897 Dump out a @option{-L} option for each directory that GCC believes might
11898 contain startup files. If the target supports multilibs then the
11899 current multilib directory is prepended to each of these paths.
11900
11901 @item %L
11902 Process the @code{lib} spec. This is a spec string for deciding which
11903 libraries are included on the command line to the linker.
11904
11905 @item %G
11906 Process the @code{libgcc} spec. This is a spec string for deciding
11907 which GCC support library is included on the command line to the linker.
11908
11909 @item %S
11910 Process the @code{startfile} spec. This is a spec for deciding which
11911 object files are the first ones passed to the linker. Typically
11912 this might be a file named @file{crt0.o}.
11913
11914 @item %E
11915 Process the @code{endfile} spec. This is a spec string that specifies
11916 the last object files that are passed to the linker.
11917
11918 @item %C
11919 Process the @code{cpp} spec. This is used to construct the arguments
11920 to be passed to the C preprocessor.
11921
11922 @item %1
11923 Process the @code{cc1} spec. This is used to construct the options to be
11924 passed to the actual C compiler (@command{cc1}).
11925
11926 @item %2
11927 Process the @code{cc1plus} spec. This is used to construct the options to be
11928 passed to the actual C++ compiler (@command{cc1plus}).
11929
11930 @item %*
11931 Substitute the variable part of a matched option. See below.
11932 Note that each comma in the substituted string is replaced by
11933 a single space.
11934
11935 @item %<@code{S}
11936 Remove all occurrences of @code{-S} from the command line. Note---this
11937 command is position dependent. @samp{%} commands in the spec string
11938 before this one see @code{-S}, @samp{%} commands in the spec string
11939 after this one do not.
11940
11941 @item %:@var{function}(@var{args})
11942 Call the named function @var{function}, passing it @var{args}.
11943 @var{args} is first processed as a nested spec string, then split
11944 into an argument vector in the usual fashion. The function returns
11945 a string which is processed as if it had appeared literally as part
11946 of the current spec.
11947
11948 The following built-in spec functions are provided:
11949
11950 @table @code
11951 @item @code{getenv}
11952 The @code{getenv} spec function takes two arguments: an environment
11953 variable name and a string. If the environment variable is not
11954 defined, a fatal error is issued. Otherwise, the return value is the
11955 value of the environment variable concatenated with the string. For
11956 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
11957
11958 @smallexample
11959 %:getenv(TOPDIR /include)
11960 @end smallexample
11961
11962 expands to @file{/path/to/top/include}.
11963
11964 @item @code{if-exists}
11965 The @code{if-exists} spec function takes one argument, an absolute
11966 pathname to a file. If the file exists, @code{if-exists} returns the
11967 pathname. Here is a small example of its usage:
11968
11969 @smallexample
11970 *startfile:
11971 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
11972 @end smallexample
11973
11974 @item @code{if-exists-else}
11975 The @code{if-exists-else} spec function is similar to the @code{if-exists}
11976 spec function, except that it takes two arguments. The first argument is
11977 an absolute pathname to a file. If the file exists, @code{if-exists-else}
11978 returns the pathname. If it does not exist, it returns the second argument.
11979 This way, @code{if-exists-else} can be used to select one file or another,
11980 based on the existence of the first. Here is a small example of its usage:
11981
11982 @smallexample
11983 *startfile:
11984 crt0%O%s %:if-exists(crti%O%s) \
11985 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
11986 @end smallexample
11987
11988 @item @code{replace-outfile}
11989 The @code{replace-outfile} spec function takes two arguments. It looks for the
11990 first argument in the outfiles array and replaces it with the second argument. Here
11991 is a small example of its usage:
11992
11993 @smallexample
11994 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
11995 @end smallexample
11996
11997 @item @code{remove-outfile}
11998 The @code{remove-outfile} spec function takes one argument. It looks for the
11999 first argument in the outfiles array and removes it. Here is a small example
12000 its usage:
12001
12002 @smallexample
12003 %:remove-outfile(-lm)
12004 @end smallexample
12005
12006 @item @code{pass-through-libs}
12007 The @code{pass-through-libs} spec function takes any number of arguments. It
12008 finds any @option{-l} options and any non-options ending in @file{.a} (which it
12009 assumes are the names of linker input library archive files) and returns a
12010 result containing all the found arguments each prepended by
12011 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
12012 intended to be passed to the LTO linker plugin.
12013
12014 @smallexample
12015 %:pass-through-libs(%G %L %G)
12016 @end smallexample
12017
12018 @item @code{print-asm-header}
12019 The @code{print-asm-header} function takes no arguments and simply
12020 prints a banner like:
12021
12022 @smallexample
12023 Assembler options
12024 =================
12025
12026 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12027 @end smallexample
12028
12029 It is used to separate compiler options from assembler options
12030 in the @option{--target-help} output.
12031 @end table
12032
12033 @item %@{@code{S}@}
12034 Substitutes the @code{-S} switch, if that switch is given to GCC@.
12035 If that switch is not specified, this substitutes nothing. Note that
12036 the leading dash is omitted when specifying this option, and it is
12037 automatically inserted if the substitution is performed. Thus the spec
12038 string @samp{%@{foo@}} matches the command-line option @option{-foo}
12039 and outputs the command-line option @option{-foo}.
12040
12041 @item %W@{@code{S}@}
12042 Like %@{@code{S}@} but mark last argument supplied within as a file to be
12043 deleted on failure.
12044
12045 @item %@{@code{S}*@}
12046 Substitutes all the switches specified to GCC whose names start
12047 with @code{-S}, but which also take an argument. This is used for
12048 switches like @option{-o}, @option{-D}, @option{-I}, etc.
12049 GCC considers @option{-o foo} as being
12050 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
12051 text, including the space. Thus two arguments are generated.
12052
12053 @item %@{@code{S}*&@code{T}*@}
12054 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12055 (the order of @code{S} and @code{T} in the spec is not significant).
12056 There can be any number of ampersand-separated variables; for each the
12057 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
12058
12059 @item %@{@code{S}:@code{X}@}
12060 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12061
12062 @item %@{!@code{S}:@code{X}@}
12063 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12064
12065 @item %@{@code{S}*:@code{X}@}
12066 Substitutes @code{X} if one or more switches whose names start with
12067 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
12068 once, no matter how many such switches appeared. However, if @code{%*}
12069 appears somewhere in @code{X}, then @code{X} is substituted once
12070 for each matching switch, with the @code{%*} replaced by the part of
12071 that switch matching the @code{*}.
12072
12073 If @code{%*} appears as the last part of a spec sequence then a space
12074 is added after the end of the last substitution. If there is more
12075 text in the sequence, however, then a space is not generated. This
12076 allows the @code{%*} substitution to be used as part of a larger
12077 string. For example, a spec string like this:
12078
12079 @smallexample
12080 %@{mcu=*:--script=%*/memory.ld@}
12081 @end smallexample
12082
12083 @noindent
12084 when matching an option like @option{-mcu=newchip} produces:
12085
12086 @smallexample
12087 --script=newchip/memory.ld
12088 @end smallexample
12089
12090 @item %@{.@code{S}:@code{X}@}
12091 Substitutes @code{X}, if processing a file with suffix @code{S}.
12092
12093 @item %@{!.@code{S}:@code{X}@}
12094 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12095
12096 @item %@{,@code{S}:@code{X}@}
12097 Substitutes @code{X}, if processing a file for language @code{S}.
12098
12099 @item %@{!,@code{S}:@code{X}@}
12100 Substitutes @code{X}, if not processing a file for language @code{S}.
12101
12102 @item %@{@code{S}|@code{P}:@code{X}@}
12103 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12104 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12105 @code{*} sequences as well, although they have a stronger binding than
12106 the @samp{|}. If @code{%*} appears in @code{X}, all of the
12107 alternatives must be starred, and only the first matching alternative
12108 is substituted.
12109
12110 For example, a spec string like this:
12111
12112 @smallexample
12113 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12114 @end smallexample
12115
12116 @noindent
12117 outputs the following command-line options from the following input
12118 command-line options:
12119
12120 @smallexample
12121 fred.c -foo -baz
12122 jim.d -bar -boggle
12123 -d fred.c -foo -baz -boggle
12124 -d jim.d -bar -baz -boggle
12125 @end smallexample
12126
12127 @item %@{S:X; T:Y; :D@}
12128
12129 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12130 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
12131 be as many clauses as you need. This may be combined with @code{.},
12132 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
12133
12134
12135 @end table
12136
12137 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12138 construct may contain other nested @samp{%} constructs or spaces, or
12139 even newlines. They are processed as usual, as described above.
12140 Trailing white space in @code{X} is ignored. White space may also
12141 appear anywhere on the left side of the colon in these constructs,
12142 except between @code{.} or @code{*} and the corresponding word.
12143
12144 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12145 handled specifically in these constructs. If another value of
12146 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
12147 @option{-W} switch is found later in the command line, the earlier
12148 switch value is ignored, except with @{@code{S}*@} where @code{S} is
12149 just one letter, which passes all matching options.
12150
12151 The character @samp{|} at the beginning of the predicate text is used to
12152 indicate that a command should be piped to the following command, but
12153 only if @option{-pipe} is specified.
12154
12155 It is built into GCC which switches take arguments and which do not.
12156 (You might think it would be useful to generalize this to allow each
12157 compiler's spec to say which switches take arguments. But this cannot
12158 be done in a consistent fashion. GCC cannot even decide which input
12159 files have been specified without knowing which switches take arguments,
12160 and it must know which input files to compile in order to tell which
12161 compilers to run).
12162
12163 GCC also knows implicitly that arguments starting in @option{-l} are to be
12164 treated as compiler output files, and passed to the linker in their
12165 proper position among the other output files.
12166
12167 @c man begin OPTIONS
12168
12169 @node Target Options
12170 @section Specifying Target Machine and Compiler Version
12171 @cindex target options
12172 @cindex cross compiling
12173 @cindex specifying machine version
12174 @cindex specifying compiler version and target machine
12175 @cindex compiler version, specifying
12176 @cindex target machine, specifying
12177
12178 The usual way to run GCC is to run the executable called @command{gcc}, or
12179 @command{@var{machine}-gcc} when cross-compiling, or
12180 @command{@var{machine}-gcc-@var{version}} to run a version other than the
12181 one that was installed last.
12182
12183 @node Submodel Options
12184 @section Hardware Models and Configurations
12185 @cindex submodel options
12186 @cindex specifying hardware config
12187 @cindex hardware models and configurations, specifying
12188 @cindex machine dependent options
12189
12190 Each target machine types can have its own
12191 special options, starting with @samp{-m}, to choose among various
12192 hardware models or configurations---for example, 68010 vs 68020,
12193 floating coprocessor or none. A single installed version of the
12194 compiler can compile for any model or configuration, according to the
12195 options specified.
12196
12197 Some configurations of the compiler also support additional special
12198 options, usually for compatibility with other compilers on the same
12199 platform.
12200
12201 @c This list is ordered alphanumerically by subsection name.
12202 @c It should be the same order and spelling as these options are listed
12203 @c in Machine Dependent Options
12204
12205 @menu
12206 * AArch64 Options::
12207 * Adapteva Epiphany Options::
12208 * ARC Options::
12209 * ARM Options::
12210 * AVR Options::
12211 * Blackfin Options::
12212 * C6X Options::
12213 * CRIS Options::
12214 * CR16 Options::
12215 * Darwin Options::
12216 * DEC Alpha Options::
12217 * FR30 Options::
12218 * FRV Options::
12219 * GNU/Linux Options::
12220 * H8/300 Options::
12221 * HPPA Options::
12222 * IA-64 Options::
12223 * LM32 Options::
12224 * M32C Options::
12225 * M32R/D Options::
12226 * M680x0 Options::
12227 * MCore Options::
12228 * MeP Options::
12229 * MicroBlaze Options::
12230 * MIPS Options::
12231 * MMIX Options::
12232 * MN10300 Options::
12233 * Moxie Options::
12234 * MSP430 Options::
12235 * NDS32 Options::
12236 * Nios II Options::
12237 * Nvidia PTX Options::
12238 * PDP-11 Options::
12239 * picoChip Options::
12240 * PowerPC Options::
12241 * RL78 Options::
12242 * RS/6000 and PowerPC Options::
12243 * RX Options::
12244 * S/390 and zSeries Options::
12245 * Score Options::
12246 * SH Options::
12247 * Solaris 2 Options::
12248 * SPARC Options::
12249 * SPU Options::
12250 * System V Options::
12251 * TILE-Gx Options::
12252 * TILEPro Options::
12253 * V850 Options::
12254 * VAX Options::
12255 * Visium Options::
12256 * VMS Options::
12257 * VxWorks Options::
12258 * x86 Options::
12259 * x86 Windows Options::
12260 * Xstormy16 Options::
12261 * Xtensa Options::
12262 * zSeries Options::
12263 @end menu
12264
12265 @node AArch64 Options
12266 @subsection AArch64 Options
12267 @cindex AArch64 Options
12268
12269 These options are defined for AArch64 implementations:
12270
12271 @table @gcctabopt
12272
12273 @item -mabi=@var{name}
12274 @opindex mabi
12275 Generate code for the specified data model. Permissible values
12276 are @samp{ilp32} for SysV-like data model where int, long int and pointer
12277 are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12278 but long int and pointer are 64-bit.
12279
12280 The default depends on the specific target configuration. Note that
12281 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12282 entire program with the same ABI, and link with a compatible set of libraries.
12283
12284 @item -mbig-endian
12285 @opindex mbig-endian
12286 Generate big-endian code. This is the default when GCC is configured for an
12287 @samp{aarch64_be-*-*} target.
12288
12289 @item -mgeneral-regs-only
12290 @opindex mgeneral-regs-only
12291 Generate code which uses only the general registers.
12292
12293 @item -mlittle-endian
12294 @opindex mlittle-endian
12295 Generate little-endian code. This is the default when GCC is configured for an
12296 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12297
12298 @item -mcmodel=tiny
12299 @opindex mcmodel=tiny
12300 Generate code for the tiny code model. The program and its statically defined
12301 symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
12302 be statically or dynamically linked. This model is not fully implemented and
12303 mostly treated as @samp{small}.
12304
12305 @item -mcmodel=small
12306 @opindex mcmodel=small
12307 Generate code for the small code model. The program and its statically defined
12308 symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
12309 be statically or dynamically linked. This is the default code model.
12310
12311 @item -mcmodel=large
12312 @opindex mcmodel=large
12313 Generate code for the large code model. This makes no assumptions about
12314 addresses and sizes of sections. Pointers are 64 bits. Programs can be
12315 statically linked only.
12316
12317 @item -mstrict-align
12318 @opindex mstrict-align
12319 Do not assume that unaligned memory references are handled by the system.
12320
12321 @item -momit-leaf-frame-pointer
12322 @itemx -mno-omit-leaf-frame-pointer
12323 @opindex momit-leaf-frame-pointer
12324 @opindex mno-omit-leaf-frame-pointer
12325 Omit or keep the frame pointer in leaf functions. The former behaviour is the
12326 default.
12327
12328 @item -mtls-dialect=desc
12329 @opindex mtls-dialect=desc
12330 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12331 of TLS variables. This is the default.
12332
12333 @item -mtls-dialect=traditional
12334 @opindex mtls-dialect=traditional
12335 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12336 of TLS variables.
12337
12338 @item -mfix-cortex-a53-835769
12339 @itemx -mno-fix-cortex-a53-835769
12340 @opindex mfix-cortex-a53-835769
12341 @opindex mno-fix-cortex-a53-835769
12342 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12343 This involves inserting a NOP instruction between memory instructions and
12344 64-bit integer multiply-accumulate instructions.
12345
12346 @item -mfix-cortex-a53-843419
12347 @itemx -mno-fix-cortex-a53-843419
12348 @opindex mfix-cortex-a53-843419
12349 @opindex mno-fix-cortex-a53-843419
12350 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12351 This erratum workaround is made at link time and this will only pass the
12352 corresponding flag to the linker.
12353
12354 @item -march=@var{name}
12355 @opindex march
12356 Specify the name of the target architecture, optionally suffixed by one or
12357 more feature modifiers. This option has the form
12358 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12359 only permissible value for @var{arch} is @samp{armv8-a}.
12360 The permissible values for @var{feature} are documented in the sub-section
12361 below. Additionally on native AArch64 GNU/Linux systems the value
12362 @samp{native} is available. This option causes the compiler to pick the
12363 architecture of the host system. If the compiler is unable to recognize the
12364 architecture of the host system this option has no effect.
12365
12366 Where conflicting feature modifiers are specified, the right-most feature is
12367 used.
12368
12369 GCC uses this name to determine what kind of instructions it can emit when
12370 generating assembly code.
12371
12372 Where @option{-march} is specified without either of @option{-mtune}
12373 or @option{-mcpu} also being specified, the code is tuned to perform
12374 well across a range of target processors implementing the target
12375 architecture.
12376
12377 @item -mtune=@var{name}
12378 @opindex mtune
12379 Specify the name of the target processor for which GCC should tune the
12380 performance of the code. Permissible values for this option are:
12381 @samp{generic}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
12382 @samp{exynos-m1}, @samp{thunderx}, @samp{xgene1}.
12383
12384 Additionally, this option can specify that GCC should tune the performance
12385 of the code for a big.LITTLE system. Permissible values for this
12386 option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12387
12388 Additionally on native AArch64 GNU/Linux systems the value @samp{native}
12389 is available.
12390 This option causes the compiler to pick the architecture of and tune the
12391 performance of the code for the processor of the host system.
12392 If the compiler is unable to recognize the processor of the host system
12393 this option has no effect.
12394
12395 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12396 are specified, the code is tuned to perform well across a range
12397 of target processors.
12398
12399 This option cannot be suffixed by feature modifiers.
12400
12401 @item -mcpu=@var{name}
12402 @opindex mcpu
12403 Specify the name of the target processor, optionally suffixed by one or more
12404 feature modifiers. This option has the form
12405 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12406 permissible values for @var{cpu} are the same as those available for
12407 @option{-mtune}. Additionally on native AArch64 GNU/Linux systems the
12408 value @samp{native} is available.
12409 This option causes the compiler to tune the performance of the code for the
12410 processor of the host system. If the compiler is unable to recognize the
12411 processor of the host system this option has no effect.
12412
12413 The permissible values for @var{feature} are documented in the sub-section
12414 below.
12415
12416 Where conflicting feature modifiers are specified, the right-most feature is
12417 used.
12418
12419 GCC uses this name to determine what kind of instructions it can emit when
12420 generating assembly code (as if by @option{-march}) and to determine
12421 the target processor for which to tune for performance (as if
12422 by @option{-mtune}). Where this option is used in conjunction
12423 with @option{-march} or @option{-mtune}, those options take precedence
12424 over the appropriate part of this option.
12425 @end table
12426
12427 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12428 @cindex @option{-march} feature modifiers
12429 @cindex @option{-mcpu} feature modifiers
12430 Feature modifiers used with @option{-march} and @option{-mcpu} can be one
12431 the following:
12432
12433 @table @samp
12434 @item crc
12435 Enable CRC extension.
12436 @item crypto
12437 Enable Crypto extension. This implies Advanced SIMD is enabled.
12438 @item fp
12439 Enable floating-point instructions.
12440 @item simd
12441 Enable Advanced SIMD instructions. This implies floating-point instructions
12442 are enabled. This is the default for all current possible values for options
12443 @option{-march} and @option{-mcpu=}.
12444 @end table
12445
12446 @node Adapteva Epiphany Options
12447 @subsection Adapteva Epiphany Options
12448
12449 These @samp{-m} options are defined for Adapteva Epiphany:
12450
12451 @table @gcctabopt
12452 @item -mhalf-reg-file
12453 @opindex mhalf-reg-file
12454 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12455 That allows code to run on hardware variants that lack these registers.
12456
12457 @item -mprefer-short-insn-regs
12458 @opindex mprefer-short-insn-regs
12459 Preferrentially allocate registers that allow short instruction generation.
12460 This can result in increased instruction count, so this may either reduce or
12461 increase overall code size.
12462
12463 @item -mbranch-cost=@var{num}
12464 @opindex mbranch-cost
12465 Set the cost of branches to roughly @var{num} ``simple'' instructions.
12466 This cost is only a heuristic and is not guaranteed to produce
12467 consistent results across releases.
12468
12469 @item -mcmove
12470 @opindex mcmove
12471 Enable the generation of conditional moves.
12472
12473 @item -mnops=@var{num}
12474 @opindex mnops
12475 Emit @var{num} NOPs before every other generated instruction.
12476
12477 @item -mno-soft-cmpsf
12478 @opindex mno-soft-cmpsf
12479 For single-precision floating-point comparisons, emit an @code{fsub} instruction
12480 and test the flags. This is faster than a software comparison, but can
12481 get incorrect results in the presence of NaNs, or when two different small
12482 numbers are compared such that their difference is calculated as zero.
12483 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12484 software comparisons.
12485
12486 @item -mstack-offset=@var{num}
12487 @opindex mstack-offset
12488 Set the offset between the top of the stack and the stack pointer.
12489 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12490 can be used by leaf functions without stack allocation.
12491 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12492 Note also that this option changes the ABI; compiling a program with a
12493 different stack offset than the libraries have been compiled with
12494 generally does not work.
12495 This option can be useful if you want to evaluate if a different stack
12496 offset would give you better code, but to actually use a different stack
12497 offset to build working programs, it is recommended to configure the
12498 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12499
12500 @item -mno-round-nearest
12501 @opindex mno-round-nearest
12502 Make the scheduler assume that the rounding mode has been set to
12503 truncating. The default is @option{-mround-nearest}.
12504
12505 @item -mlong-calls
12506 @opindex mlong-calls
12507 If not otherwise specified by an attribute, assume all calls might be beyond
12508 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12509 function address into a register before performing a (otherwise direct) call.
12510 This is the default.
12511
12512 @item -mshort-calls
12513 @opindex short-calls
12514 If not otherwise specified by an attribute, assume all direct calls are
12515 in the range of the @code{b} / @code{bl} instructions, so use these instructions
12516 for direct calls. The default is @option{-mlong-calls}.
12517
12518 @item -msmall16
12519 @opindex msmall16
12520 Assume addresses can be loaded as 16-bit unsigned values. This does not
12521 apply to function addresses for which @option{-mlong-calls} semantics
12522 are in effect.
12523
12524 @item -mfp-mode=@var{mode}
12525 @opindex mfp-mode
12526 Set the prevailing mode of the floating-point unit.
12527 This determines the floating-point mode that is provided and expected
12528 at function call and return time. Making this mode match the mode you
12529 predominantly need at function start can make your programs smaller and
12530 faster by avoiding unnecessary mode switches.
12531
12532 @var{mode} can be set to one the following values:
12533
12534 @table @samp
12535 @item caller
12536 Any mode at function entry is valid, and retained or restored when
12537 the function returns, and when it calls other functions.
12538 This mode is useful for compiling libraries or other compilation units
12539 you might want to incorporate into different programs with different
12540 prevailing FPU modes, and the convenience of being able to use a single
12541 object file outweighs the size and speed overhead for any extra
12542 mode switching that might be needed, compared with what would be needed
12543 with a more specific choice of prevailing FPU mode.
12544
12545 @item truncate
12546 This is the mode used for floating-point calculations with
12547 truncating (i.e.@: round towards zero) rounding mode. That includes
12548 conversion from floating point to integer.
12549
12550 @item round-nearest
12551 This is the mode used for floating-point calculations with
12552 round-to-nearest-or-even rounding mode.
12553
12554 @item int
12555 This is the mode used to perform integer calculations in the FPU, e.g.@:
12556 integer multiply, or integer multiply-and-accumulate.
12557 @end table
12558
12559 The default is @option{-mfp-mode=caller}
12560
12561 @item -mnosplit-lohi
12562 @itemx -mno-postinc
12563 @itemx -mno-postmodify
12564 @opindex mnosplit-lohi
12565 @opindex mno-postinc
12566 @opindex mno-postmodify
12567 Code generation tweaks that disable, respectively, splitting of 32-bit
12568 loads, generation of post-increment addresses, and generation of
12569 post-modify addresses. The defaults are @option{msplit-lohi},
12570 @option{-mpost-inc}, and @option{-mpost-modify}.
12571
12572 @item -mnovect-double
12573 @opindex mno-vect-double
12574 Change the preferred SIMD mode to SImode. The default is
12575 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
12576
12577 @item -max-vect-align=@var{num}
12578 @opindex max-vect-align
12579 The maximum alignment for SIMD vector mode types.
12580 @var{num} may be 4 or 8. The default is 8.
12581 Note that this is an ABI change, even though many library function
12582 interfaces are unaffected if they don't use SIMD vector modes
12583 in places that affect size and/or alignment of relevant types.
12584
12585 @item -msplit-vecmove-early
12586 @opindex msplit-vecmove-early
12587 Split vector moves into single word moves before reload. In theory this
12588 can give better register allocation, but so far the reverse seems to be
12589 generally the case.
12590
12591 @item -m1reg-@var{reg}
12592 @opindex m1reg-
12593 Specify a register to hold the constant @minus{}1, which makes loading small negative
12594 constants and certain bitmasks faster.
12595 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12596 which specify use of that register as a fixed register,
12597 and @samp{none}, which means that no register is used for this
12598 purpose. The default is @option{-m1reg-none}.
12599
12600 @end table
12601
12602 @node ARC Options
12603 @subsection ARC Options
12604 @cindex ARC options
12605
12606 The following options control the architecture variant for which code
12607 is being compiled:
12608
12609 @c architecture variants
12610 @table @gcctabopt
12611
12612 @item -mbarrel-shifter
12613 @opindex mbarrel-shifter
12614 Generate instructions supported by barrel shifter. This is the default
12615 unless @option{-mcpu=ARC601} is in effect.
12616
12617 @item -mcpu=@var{cpu}
12618 @opindex mcpu
12619 Set architecture type, register usage, and instruction scheduling
12620 parameters for @var{cpu}. There are also shortcut alias options
12621 available for backward compatibility and convenience. Supported
12622 values for @var{cpu} are
12623
12624 @table @samp
12625 @opindex mA6
12626 @opindex mARC600
12627 @item ARC600
12628 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
12629
12630 @item ARC601
12631 @opindex mARC601
12632 Compile for ARC601. Alias: @option{-mARC601}.
12633
12634 @item ARC700
12635 @opindex mA7
12636 @opindex mARC700
12637 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
12638 This is the default when configured with @option{--with-cpu=arc700}@.
12639 @end table
12640
12641 @item -mdpfp
12642 @opindex mdpfp
12643 @itemx -mdpfp-compact
12644 @opindex mdpfp-compact
12645 FPX: Generate Double Precision FPX instructions, tuned for the compact
12646 implementation.
12647
12648 @item -mdpfp-fast
12649 @opindex mdpfp-fast
12650 FPX: Generate Double Precision FPX instructions, tuned for the fast
12651 implementation.
12652
12653 @item -mno-dpfp-lrsr
12654 @opindex mno-dpfp-lrsr
12655 Disable LR and SR instructions from using FPX extension aux registers.
12656
12657 @item -mea
12658 @opindex mea
12659 Generate Extended arithmetic instructions. Currently only
12660 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12661 supported. This is always enabled for @option{-mcpu=ARC700}.
12662
12663 @item -mno-mpy
12664 @opindex mno-mpy
12665 Do not generate mpy instructions for ARC700.
12666
12667 @item -mmul32x16
12668 @opindex mmul32x16
12669 Generate 32x16 bit multiply and mac instructions.
12670
12671 @item -mmul64
12672 @opindex mmul64
12673 Generate mul64 and mulu64 instructions. Only valid for @option{-mcpu=ARC600}.
12674
12675 @item -mnorm
12676 @opindex mnorm
12677 Generate norm instruction. This is the default if @option{-mcpu=ARC700}
12678 is in effect.
12679
12680 @item -mspfp
12681 @opindex mspfp
12682 @itemx -mspfp-compact
12683 @opindex mspfp-compact
12684 FPX: Generate Single Precision FPX instructions, tuned for the compact
12685 implementation.
12686
12687 @item -mspfp-fast
12688 @opindex mspfp-fast
12689 FPX: Generate Single Precision FPX instructions, tuned for the fast
12690 implementation.
12691
12692 @item -msimd
12693 @opindex msimd
12694 Enable generation of ARC SIMD instructions via target-specific
12695 builtins. Only valid for @option{-mcpu=ARC700}.
12696
12697 @item -msoft-float
12698 @opindex msoft-float
12699 This option ignored; it is provided for compatibility purposes only.
12700 Software floating point code is emitted by default, and this default
12701 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
12702 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
12703 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
12704
12705 @item -mswap
12706 @opindex mswap
12707 Generate swap instructions.
12708
12709 @end table
12710
12711 The following options are passed through to the assembler, and also
12712 define preprocessor macro symbols.
12713
12714 @c Flags used by the assembler, but for which we define preprocessor
12715 @c macro symbols as well.
12716 @table @gcctabopt
12717 @item -mdsp-packa
12718 @opindex mdsp-packa
12719 Passed down to the assembler to enable the DSP Pack A extensions.
12720 Also sets the preprocessor symbol @code{__Xdsp_packa}.
12721
12722 @item -mdvbf
12723 @opindex mdvbf
12724 Passed down to the assembler to enable the dual viterbi butterfly
12725 extension. Also sets the preprocessor symbol @code{__Xdvbf}.
12726
12727 @c ARC700 4.10 extension instruction
12728 @item -mlock
12729 @opindex mlock
12730 Passed down to the assembler to enable the Locked Load/Store
12731 Conditional extension. Also sets the preprocessor symbol
12732 @code{__Xlock}.
12733
12734 @item -mmac-d16
12735 @opindex mmac-d16
12736 Passed down to the assembler. Also sets the preprocessor symbol
12737 @code{__Xxmac_d16}.
12738
12739 @item -mmac-24
12740 @opindex mmac-24
12741 Passed down to the assembler. Also sets the preprocessor symbol
12742 @code{__Xxmac_24}.
12743
12744 @c ARC700 4.10 extension instruction
12745 @item -mrtsc
12746 @opindex mrtsc
12747 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
12748 extension instruction. Also sets the preprocessor symbol
12749 @code{__Xrtsc}.
12750
12751 @c ARC700 4.10 extension instruction
12752 @item -mswape
12753 @opindex mswape
12754 Passed down to the assembler to enable the swap byte ordering
12755 extension instruction. Also sets the preprocessor symbol
12756 @code{__Xswape}.
12757
12758 @item -mtelephony
12759 @opindex mtelephony
12760 Passed down to the assembler to enable dual and single operand
12761 instructions for telephony. Also sets the preprocessor symbol
12762 @code{__Xtelephony}.
12763
12764 @item -mxy
12765 @opindex mxy
12766 Passed down to the assembler to enable the XY Memory extension. Also
12767 sets the preprocessor symbol @code{__Xxy}.
12768
12769 @end table
12770
12771 The following options control how the assembly code is annotated:
12772
12773 @c Assembly annotation options
12774 @table @gcctabopt
12775 @item -misize
12776 @opindex misize
12777 Annotate assembler instructions with estimated addresses.
12778
12779 @item -mannotate-align
12780 @opindex mannotate-align
12781 Explain what alignment considerations lead to the decision to make an
12782 instruction short or long.
12783
12784 @end table
12785
12786 The following options are passed through to the linker:
12787
12788 @c options passed through to the linker
12789 @table @gcctabopt
12790 @item -marclinux
12791 @opindex marclinux
12792 Passed through to the linker, to specify use of the @code{arclinux} emulation.
12793 This option is enabled by default in tool chains built for
12794 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
12795 when profiling is not requested.
12796
12797 @item -marclinux_prof
12798 @opindex marclinux_prof
12799 Passed through to the linker, to specify use of the
12800 @code{arclinux_prof} emulation. This option is enabled by default in
12801 tool chains built for @w{@code{arc-linux-uclibc}} and
12802 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
12803
12804 @end table
12805
12806 The following options control the semantics of generated code:
12807
12808 @c semantically relevant code generation options
12809 @table @gcctabopt
12810 @item -mepilogue-cfi
12811 @opindex mepilogue-cfi
12812 Enable generation of call frame information for epilogues.
12813
12814 @item -mno-epilogue-cfi
12815 @opindex mno-epilogue-cfi
12816 Disable generation of call frame information for epilogues.
12817
12818 @item -mlong-calls
12819 @opindex mlong-calls
12820 Generate call insns as register indirect calls, thus providing access
12821 to the full 32-bit address range.
12822
12823 @item -mmedium-calls
12824 @opindex mmedium-calls
12825 Don't use less than 25 bit addressing range for calls, which is the
12826 offset available for an unconditional branch-and-link
12827 instruction. Conditional execution of function calls is suppressed, to
12828 allow use of the 25-bit range, rather than the 21-bit range with
12829 conditional branch-and-link. This is the default for tool chains built
12830 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
12831
12832 @item -mno-sdata
12833 @opindex mno-sdata
12834 Do not generate sdata references. This is the default for tool chains
12835 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
12836 targets.
12837
12838 @item -mucb-mcount
12839 @opindex mucb-mcount
12840 Instrument with mcount calls as used in UCB code. I.e. do the
12841 counting in the callee, not the caller. By default ARC instrumentation
12842 counts in the caller.
12843
12844 @item -mvolatile-cache
12845 @opindex mvolatile-cache
12846 Use ordinarily cached memory accesses for volatile references. This is the
12847 default.
12848
12849 @item -mno-volatile-cache
12850 @opindex mno-volatile-cache
12851 Enable cache bypass for volatile references.
12852
12853 @end table
12854
12855 The following options fine tune code generation:
12856 @c code generation tuning options
12857 @table @gcctabopt
12858 @item -malign-call
12859 @opindex malign-call
12860 Do alignment optimizations for call instructions.
12861
12862 @item -mauto-modify-reg
12863 @opindex mauto-modify-reg
12864 Enable the use of pre/post modify with register displacement.
12865
12866 @item -mbbit-peephole
12867 @opindex mbbit-peephole
12868 Enable bbit peephole2.
12869
12870 @item -mno-brcc
12871 @opindex mno-brcc
12872 This option disables a target-specific pass in @file{arc_reorg} to
12873 generate @code{BRcc} instructions. It has no effect on @code{BRcc}
12874 generation driven by the combiner pass.
12875
12876 @item -mcase-vector-pcrel
12877 @opindex mcase-vector-pcrel
12878 Use pc-relative switch case tables - this enables case table shortening.
12879 This is the default for @option{-Os}.
12880
12881 @item -mcompact-casesi
12882 @opindex mcompact-casesi
12883 Enable compact casesi pattern.
12884 This is the default for @option{-Os}.
12885
12886 @item -mno-cond-exec
12887 @opindex mno-cond-exec
12888 Disable ARCompact specific pass to generate conditional execution instructions.
12889 Due to delay slot scheduling and interactions between operand numbers,
12890 literal sizes, instruction lengths, and the support for conditional execution,
12891 the target-independent pass to generate conditional execution is often lacking,
12892 so the ARC port has kept a special pass around that tries to find more
12893 conditional execution generating opportunities after register allocation,
12894 branch shortening, and delay slot scheduling have been done. This pass
12895 generally, but not always, improves performance and code size, at the cost of
12896 extra compilation time, which is why there is an option to switch it off.
12897 If you have a problem with call instructions exceeding their allowable
12898 offset range because they are conditionalized, you should consider using
12899 @option{-mmedium-calls} instead.
12900
12901 @item -mearly-cbranchsi
12902 @opindex mearly-cbranchsi
12903 Enable pre-reload use of the cbranchsi pattern.
12904
12905 @item -mexpand-adddi
12906 @opindex mexpand-adddi
12907 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
12908 @code{add.f}, @code{adc} etc.
12909
12910 @item -mindexed-loads
12911 @opindex mindexed-loads
12912 Enable the use of indexed loads. This can be problematic because some
12913 optimizers then assume that indexed stores exist, which is not
12914 the case.
12915
12916 @item -mlra
12917 @opindex mlra
12918 Enable Local Register Allocation. This is still experimental for ARC,
12919 so by default the compiler uses standard reload
12920 (i.e. @option{-mno-lra}).
12921
12922 @item -mlra-priority-none
12923 @opindex mlra-priority-none
12924 Don't indicate any priority for target registers.
12925
12926 @item -mlra-priority-compact
12927 @opindex mlra-priority-compact
12928 Indicate target register priority for r0..r3 / r12..r15.
12929
12930 @item -mlra-priority-noncompact
12931 @opindex mlra-priority-noncompact
12932 Reduce target regsiter priority for r0..r3 / r12..r15.
12933
12934 @item -mno-millicode
12935 @opindex mno-millicode
12936 When optimizing for size (using @option{-Os}), prologues and epilogues
12937 that have to save or restore a large number of registers are often
12938 shortened by using call to a special function in libgcc; this is
12939 referred to as a @emph{millicode} call. As these calls can pose
12940 performance issues, and/or cause linking issues when linking in a
12941 nonstandard way, this option is provided to turn off millicode call
12942 generation.
12943
12944 @item -mmixed-code
12945 @opindex mmixed-code
12946 Tweak register allocation to help 16-bit instruction generation.
12947 This generally has the effect of decreasing the average instruction size
12948 while increasing the instruction count.
12949
12950 @item -mq-class
12951 @opindex mq-class
12952 Enable 'q' instruction alternatives.
12953 This is the default for @option{-Os}.
12954
12955 @item -mRcq
12956 @opindex mRcq
12957 Enable Rcq constraint handling - most short code generation depends on this.
12958 This is the default.
12959
12960 @item -mRcw
12961 @opindex mRcw
12962 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
12963 This is the default.
12964
12965 @item -msize-level=@var{level}
12966 @opindex msize-level
12967 Fine-tune size optimization with regards to instruction lengths and alignment.
12968 The recognized values for @var{level} are:
12969 @table @samp
12970 @item 0
12971 No size optimization. This level is deprecated and treated like @samp{1}.
12972
12973 @item 1
12974 Short instructions are used opportunistically.
12975
12976 @item 2
12977 In addition, alignment of loops and of code after barriers are dropped.
12978
12979 @item 3
12980 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
12981
12982 @end table
12983
12984 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
12985 the behavior when this is not set is equivalent to level @samp{1}.
12986
12987 @item -mtune=@var{cpu}
12988 @opindex mtune
12989 Set instruction scheduling parameters for @var{cpu}, overriding any implied
12990 by @option{-mcpu=}.
12991
12992 Supported values for @var{cpu} are
12993
12994 @table @samp
12995 @item ARC600
12996 Tune for ARC600 cpu.
12997
12998 @item ARC601
12999 Tune for ARC601 cpu.
13000
13001 @item ARC700
13002 Tune for ARC700 cpu with standard multiplier block.
13003
13004 @item ARC700-xmac
13005 Tune for ARC700 cpu with XMAC block.
13006
13007 @item ARC725D
13008 Tune for ARC725D cpu.
13009
13010 @item ARC750D
13011 Tune for ARC750D cpu.
13012
13013 @end table
13014
13015 @item -mmultcost=@var{num}
13016 @opindex mmultcost
13017 Cost to assume for a multiply instruction, with @samp{4} being equal to a
13018 normal instruction.
13019
13020 @item -munalign-prob-threshold=@var{probability}
13021 @opindex munalign-prob-threshold
13022 Set probability threshold for unaligning branches.
13023 When tuning for @samp{ARC700} and optimizing for speed, branches without
13024 filled delay slot are preferably emitted unaligned and long, unless
13025 profiling indicates that the probability for the branch to be taken
13026 is below @var{probability}. @xref{Cross-profiling}.
13027 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13028
13029 @end table
13030
13031 The following options are maintained for backward compatibility, but
13032 are now deprecated and will be removed in a future release:
13033
13034 @c Deprecated options
13035 @table @gcctabopt
13036
13037 @item -margonaut
13038 @opindex margonaut
13039 Obsolete FPX.
13040
13041 @item -mbig-endian
13042 @opindex mbig-endian
13043 @itemx -EB
13044 @opindex EB
13045 Compile code for big endian targets. Use of these options is now
13046 deprecated. Users wanting big-endian code, should use the
13047 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13048 building the tool chain, for which big-endian is the default.
13049
13050 @item -mlittle-endian
13051 @opindex mlittle-endian
13052 @itemx -EL
13053 @opindex EL
13054 Compile code for little endian targets. Use of these options is now
13055 deprecated. Users wanting little-endian code should use the
13056 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13057 building the tool chain, for which little-endian is the default.
13058
13059 @item -mbarrel_shifter
13060 @opindex mbarrel_shifter
13061 Replaced by @option{-mbarrel-shifter}.
13062
13063 @item -mdpfp_compact
13064 @opindex mdpfp_compact
13065 Replaced by @option{-mdpfp-compact}.
13066
13067 @item -mdpfp_fast
13068 @opindex mdpfp_fast
13069 Replaced by @option{-mdpfp-fast}.
13070
13071 @item -mdsp_packa
13072 @opindex mdsp_packa
13073 Replaced by @option{-mdsp-packa}.
13074
13075 @item -mEA
13076 @opindex mEA
13077 Replaced by @option{-mea}.
13078
13079 @item -mmac_24
13080 @opindex mmac_24
13081 Replaced by @option{-mmac-24}.
13082
13083 @item -mmac_d16
13084 @opindex mmac_d16
13085 Replaced by @option{-mmac-d16}.
13086
13087 @item -mspfp_compact
13088 @opindex mspfp_compact
13089 Replaced by @option{-mspfp-compact}.
13090
13091 @item -mspfp_fast
13092 @opindex mspfp_fast
13093 Replaced by @option{-mspfp-fast}.
13094
13095 @item -mtune=@var{cpu}
13096 @opindex mtune
13097 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13098 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13099 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13100
13101 @item -multcost=@var{num}
13102 @opindex multcost
13103 Replaced by @option{-mmultcost}.
13104
13105 @end table
13106
13107 @node ARM Options
13108 @subsection ARM Options
13109 @cindex ARM options
13110
13111 These @samp{-m} options are defined for the ARM port:
13112
13113 @table @gcctabopt
13114 @item -mabi=@var{name}
13115 @opindex mabi
13116 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
13117 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13118
13119 @item -mapcs-frame
13120 @opindex mapcs-frame
13121 Generate a stack frame that is compliant with the ARM Procedure Call
13122 Standard for all functions, even if this is not strictly necessary for
13123 correct execution of the code. Specifying @option{-fomit-frame-pointer}
13124 with this option causes the stack frames not to be generated for
13125 leaf functions. The default is @option{-mno-apcs-frame}.
13126 This option is deprecated.
13127
13128 @item -mapcs
13129 @opindex mapcs
13130 This is a synonym for @option{-mapcs-frame} and is deprecated.
13131
13132 @ignore
13133 @c not currently implemented
13134 @item -mapcs-stack-check
13135 @opindex mapcs-stack-check
13136 Generate code to check the amount of stack space available upon entry to
13137 every function (that actually uses some stack space). If there is
13138 insufficient space available then either the function
13139 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13140 called, depending upon the amount of stack space required. The runtime
13141 system is required to provide these functions. The default is
13142 @option{-mno-apcs-stack-check}, since this produces smaller code.
13143
13144 @c not currently implemented
13145 @item -mapcs-float
13146 @opindex mapcs-float
13147 Pass floating-point arguments using the floating-point registers. This is
13148 one of the variants of the APCS@. This option is recommended if the
13149 target hardware has a floating-point unit or if a lot of floating-point
13150 arithmetic is going to be performed by the code. The default is
13151 @option{-mno-apcs-float}, since the size of integer-only code is
13152 slightly increased if @option{-mapcs-float} is used.
13153
13154 @c not currently implemented
13155 @item -mapcs-reentrant
13156 @opindex mapcs-reentrant
13157 Generate reentrant, position-independent code. The default is
13158 @option{-mno-apcs-reentrant}.
13159 @end ignore
13160
13161 @item -mthumb-interwork
13162 @opindex mthumb-interwork
13163 Generate code that supports calling between the ARM and Thumb
13164 instruction sets. Without this option, on pre-v5 architectures, the
13165 two instruction sets cannot be reliably used inside one program. The
13166 default is @option{-mno-thumb-interwork}, since slightly larger code
13167 is generated when @option{-mthumb-interwork} is specified. In AAPCS
13168 configurations this option is meaningless.
13169
13170 @item -mno-sched-prolog
13171 @opindex mno-sched-prolog
13172 Prevent the reordering of instructions in the function prologue, or the
13173 merging of those instruction with the instructions in the function's
13174 body. This means that all functions start with a recognizable set
13175 of instructions (or in fact one of a choice from a small set of
13176 different function prologues), and this information can be used to
13177 locate the start of functions inside an executable piece of code. The
13178 default is @option{-msched-prolog}.
13179
13180 @item -mfloat-abi=@var{name}
13181 @opindex mfloat-abi
13182 Specifies which floating-point ABI to use. Permissible values
13183 are: @samp{soft}, @samp{softfp} and @samp{hard}.
13184
13185 Specifying @samp{soft} causes GCC to generate output containing
13186 library calls for floating-point operations.
13187 @samp{softfp} allows the generation of code using hardware floating-point
13188 instructions, but still uses the soft-float calling conventions.
13189 @samp{hard} allows generation of floating-point instructions
13190 and uses FPU-specific calling conventions.
13191
13192 The default depends on the specific target configuration. Note that
13193 the hard-float and soft-float ABIs are not link-compatible; you must
13194 compile your entire program with the same ABI, and link with a
13195 compatible set of libraries.
13196
13197 @item -mlittle-endian
13198 @opindex mlittle-endian
13199 Generate code for a processor running in little-endian mode. This is
13200 the default for all standard configurations.
13201
13202 @item -mbig-endian
13203 @opindex mbig-endian
13204 Generate code for a processor running in big-endian mode; the default is
13205 to compile code for a little-endian processor.
13206
13207 @item -march=@var{name}
13208 @opindex march
13209 This specifies the name of the target ARM architecture. GCC uses this
13210 name to determine what kind of instructions it can emit when generating
13211 assembly code. This option can be used in conjunction with or instead
13212 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
13213 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13214 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13215 @samp{armv6}, @samp{armv6j},
13216 @samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m},
13217 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13218 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc},
13219 @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13220
13221 @option{-march=armv7ve} is the armv7-a architecture with virtualization
13222 extensions.
13223
13224 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13225 architecture together with the optional CRC32 extensions.
13226
13227 @option{-march=native} causes the compiler to auto-detect the architecture
13228 of the build computer. At present, this feature is only supported on
13229 GNU/Linux, and not all architectures are recognized. If the auto-detect
13230 is unsuccessful the option has no effect.
13231
13232 @item -mtune=@var{name}
13233 @opindex mtune
13234 This option specifies the name of the target ARM processor for
13235 which GCC should tune the performance of the code.
13236 For some ARM implementations better performance can be obtained by using
13237 this option.
13238 Permissible names are: @samp{arm2}, @samp{arm250},
13239 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13240 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13241 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13242 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13243 @samp{arm720},
13244 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13245 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13246 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13247 @samp{strongarm1110},
13248 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13249 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13250 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13251 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13252 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13253 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13254 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13255 @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8}, @samp{cortex-a9},
13256 @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a53},
13257 @samp{cortex-a57}, @samp{cortex-a72},
13258 @samp{cortex-r4},
13259 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13260 @samp{cortex-m4},
13261 @samp{cortex-m3},
13262 @samp{cortex-m1},
13263 @samp{cortex-m0},
13264 @samp{cortex-m0plus},
13265 @samp{cortex-m1.small-multiply},
13266 @samp{cortex-m0.small-multiply},
13267 @samp{cortex-m0plus.small-multiply},
13268 @samp{exynos-m1},
13269 @samp{marvell-pj4},
13270 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13271 @samp{fa526}, @samp{fa626},
13272 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13273 @samp{xgene1}.
13274
13275 Additionally, this option can specify that GCC should tune the performance
13276 of the code for a big.LITTLE system. Permissible names are:
13277 @samp{cortex-a15.cortex-a7}, @samp{cortex-a57.cortex-a53},
13278 @samp{cortex-a72.cortex-a53}.
13279
13280 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13281 performance for a blend of processors within architecture @var{arch}.
13282 The aim is to generate code that run well on the current most popular
13283 processors, balancing between optimizations that benefit some CPUs in the
13284 range, and avoiding performance pitfalls of other CPUs. The effects of
13285 this option may change in future GCC versions as CPU models come and go.
13286
13287 @option{-mtune=native} causes the compiler to auto-detect the CPU
13288 of the build computer. At present, this feature is only supported on
13289 GNU/Linux, and not all architectures are recognized. If the auto-detect is
13290 unsuccessful the option has no effect.
13291
13292 @item -mcpu=@var{name}
13293 @opindex mcpu
13294 This specifies the name of the target ARM processor. GCC uses this name
13295 to derive the name of the target ARM architecture (as if specified
13296 by @option{-march}) and the ARM processor type for which to tune for
13297 performance (as if specified by @option{-mtune}). Where this option
13298 is used in conjunction with @option{-march} or @option{-mtune},
13299 those options take precedence over the appropriate part of this option.
13300
13301 Permissible names for this option are the same as those for
13302 @option{-mtune}.
13303
13304 @option{-mcpu=generic-@var{arch}} is also permissible, and is
13305 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13306 See @option{-mtune} for more information.
13307
13308 @option{-mcpu=native} causes the compiler to auto-detect the CPU
13309 of the build computer. At present, this feature is only supported on
13310 GNU/Linux, and not all architectures are recognized. If the auto-detect
13311 is unsuccessful the option has no effect.
13312
13313 @item -mfpu=@var{name}
13314 @opindex mfpu
13315 This specifies what floating-point hardware (or hardware emulation) is
13316 available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
13317 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13318 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13319 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13320 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
13321 @samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
13322
13323 If @option{-msoft-float} is specified this specifies the format of
13324 floating-point values.
13325
13326 If the selected floating-point hardware includes the NEON extension
13327 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13328 operations are not generated by GCC's auto-vectorization pass unless
13329 @option{-funsafe-math-optimizations} is also specified. This is
13330 because NEON hardware does not fully implement the IEEE 754 standard for
13331 floating-point arithmetic (in particular denormal values are treated as
13332 zero), so the use of NEON instructions may lead to a loss of precision.
13333
13334 @item -mfp16-format=@var{name}
13335 @opindex mfp16-format
13336 Specify the format of the @code{__fp16} half-precision floating-point type.
13337 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13338 the default is @samp{none}, in which case the @code{__fp16} type is not
13339 defined. @xref{Half-Precision}, for more information.
13340
13341 @item -mstructure-size-boundary=@var{n}
13342 @opindex mstructure-size-boundary
13343 The sizes of all structures and unions are rounded up to a multiple
13344 of the number of bits set by this option. Permissible values are 8, 32
13345 and 64. The default value varies for different toolchains. For the COFF
13346 targeted toolchain the default value is 8. A value of 64 is only allowed
13347 if the underlying ABI supports it.
13348
13349 Specifying a larger number can produce faster, more efficient code, but
13350 can also increase the size of the program. Different values are potentially
13351 incompatible. Code compiled with one value cannot necessarily expect to
13352 work with code or libraries compiled with another value, if they exchange
13353 information using structures or unions.
13354
13355 @item -mabort-on-noreturn
13356 @opindex mabort-on-noreturn
13357 Generate a call to the function @code{abort} at the end of a
13358 @code{noreturn} function. It is executed if the function tries to
13359 return.
13360
13361 @item -mlong-calls
13362 @itemx -mno-long-calls
13363 @opindex mlong-calls
13364 @opindex mno-long-calls
13365 Tells the compiler to perform function calls by first loading the
13366 address of the function into a register and then performing a subroutine
13367 call on this register. This switch is needed if the target function
13368 lies outside of the 64-megabyte addressing range of the offset-based
13369 version of subroutine call instruction.
13370
13371 Even if this switch is enabled, not all function calls are turned
13372 into long calls. The heuristic is that static functions, functions
13373 that have the @code{short_call} attribute, functions that are inside
13374 the scope of a @code{#pragma no_long_calls} directive, and functions whose
13375 definitions have already been compiled within the current compilation
13376 unit are not turned into long calls. The exceptions to this rule are
13377 that weak function definitions, functions with the @code{long_call}
13378 attribute or the @code{section} attribute, and functions that are within
13379 the scope of a @code{#pragma long_calls} directive are always
13380 turned into long calls.
13381
13382 This feature is not enabled by default. Specifying
13383 @option{-mno-long-calls} restores the default behavior, as does
13384 placing the function calls within the scope of a @code{#pragma
13385 long_calls_off} directive. Note these switches have no effect on how
13386 the compiler generates code to handle function calls via function
13387 pointers.
13388
13389 @item -msingle-pic-base
13390 @opindex msingle-pic-base
13391 Treat the register used for PIC addressing as read-only, rather than
13392 loading it in the prologue for each function. The runtime system is
13393 responsible for initializing this register with an appropriate value
13394 before execution begins.
13395
13396 @item -mpic-register=@var{reg}
13397 @opindex mpic-register
13398 Specify the register to be used for PIC addressing.
13399 For standard PIC base case, the default is any suitable register
13400 determined by compiler. For single PIC base case, the default is
13401 @samp{R9} if target is EABI based or stack-checking is enabled,
13402 otherwise the default is @samp{R10}.
13403
13404 @item -mpic-data-is-text-relative
13405 @opindex mpic-data-is-text-relative
13406 Assume that each data segments are relative to text segment at load time.
13407 Therefore, it permits addressing data using PC-relative operations.
13408 This option is on by default for targets other than VxWorks RTP.
13409
13410 @item -mpoke-function-name
13411 @opindex mpoke-function-name
13412 Write the name of each function into the text section, directly
13413 preceding the function prologue. The generated code is similar to this:
13414
13415 @smallexample
13416 t0
13417 .ascii "arm_poke_function_name", 0
13418 .align
13419 t1
13420 .word 0xff000000 + (t1 - t0)
13421 arm_poke_function_name
13422 mov ip, sp
13423 stmfd sp!, @{fp, ip, lr, pc@}
13424 sub fp, ip, #4
13425 @end smallexample
13426
13427 When performing a stack backtrace, code can inspect the value of
13428 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
13429 location @code{pc - 12} and the top 8 bits are set, then we know that
13430 there is a function name embedded immediately preceding this location
13431 and has length @code{((pc[-3]) & 0xff000000)}.
13432
13433 @item -mthumb
13434 @itemx -marm
13435 @opindex marm
13436 @opindex mthumb
13437
13438 Select between generating code that executes in ARM and Thumb
13439 states. The default for most configurations is to generate code
13440 that executes in ARM state, but the default can be changed by
13441 configuring GCC with the @option{--with-mode=}@var{state}
13442 configure option.
13443
13444 @item -mtpcs-frame
13445 @opindex mtpcs-frame
13446 Generate a stack frame that is compliant with the Thumb Procedure Call
13447 Standard for all non-leaf functions. (A leaf function is one that does
13448 not call any other functions.) The default is @option{-mno-tpcs-frame}.
13449
13450 @item -mtpcs-leaf-frame
13451 @opindex mtpcs-leaf-frame
13452 Generate a stack frame that is compliant with the Thumb Procedure Call
13453 Standard for all leaf functions. (A leaf function is one that does
13454 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
13455
13456 @item -mcallee-super-interworking
13457 @opindex mcallee-super-interworking
13458 Gives all externally visible functions in the file being compiled an ARM
13459 instruction set header which switches to Thumb mode before executing the
13460 rest of the function. This allows these functions to be called from
13461 non-interworking code. This option is not valid in AAPCS configurations
13462 because interworking is enabled by default.
13463
13464 @item -mcaller-super-interworking
13465 @opindex mcaller-super-interworking
13466 Allows calls via function pointers (including virtual functions) to
13467 execute correctly regardless of whether the target code has been
13468 compiled for interworking or not. There is a small overhead in the cost
13469 of executing a function pointer if this option is enabled. This option
13470 is not valid in AAPCS configurations because interworking is enabled
13471 by default.
13472
13473 @item -mtp=@var{name}
13474 @opindex mtp
13475 Specify the access model for the thread local storage pointer. The valid
13476 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13477 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13478 (supported in the arm6k architecture), and @samp{auto}, which uses the
13479 best available method for the selected processor. The default setting is
13480 @samp{auto}.
13481
13482 @item -mtls-dialect=@var{dialect}
13483 @opindex mtls-dialect
13484 Specify the dialect to use for accessing thread local storage. Two
13485 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
13486 @samp{gnu} dialect selects the original GNU scheme for supporting
13487 local and global dynamic TLS models. The @samp{gnu2} dialect
13488 selects the GNU descriptor scheme, which provides better performance
13489 for shared libraries. The GNU descriptor scheme is compatible with
13490 the original scheme, but does require new assembler, linker and
13491 library support. Initial and local exec TLS models are unaffected by
13492 this option and always use the original scheme.
13493
13494 @item -mword-relocations
13495 @opindex mword-relocations
13496 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13497 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13498 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13499 is specified.
13500
13501 @item -mfix-cortex-m3-ldrd
13502 @opindex mfix-cortex-m3-ldrd
13503 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13504 with overlapping destination and base registers are used. This option avoids
13505 generating these instructions. This option is enabled by default when
13506 @option{-mcpu=cortex-m3} is specified.
13507
13508 @item -munaligned-access
13509 @itemx -mno-unaligned-access
13510 @opindex munaligned-access
13511 @opindex mno-unaligned-access
13512 Enables (or disables) reading and writing of 16- and 32- bit values
13513 from addresses that are not 16- or 32- bit aligned. By default
13514 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13515 architectures, and enabled for all other architectures. If unaligned
13516 access is not enabled then words in packed data structures are
13517 accessed a byte at a time.
13518
13519 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13520 generated object file to either true or false, depending upon the
13521 setting of this option. If unaligned access is enabled then the
13522 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13523 defined.
13524
13525 @item -mneon-for-64bits
13526 @opindex mneon-for-64bits
13527 Enables using Neon to handle scalar 64-bits operations. This is
13528 disabled by default since the cost of moving data from core registers
13529 to Neon is high.
13530
13531 @item -mslow-flash-data
13532 @opindex mslow-flash-data
13533 Assume loading data from flash is slower than fetching instruction.
13534 Therefore literal load is minimized for better performance.
13535 This option is only supported when compiling for ARMv7 M-profile and
13536 off by default.
13537
13538 @item -masm-syntax-unified
13539 @opindex masm-syntax-unified
13540 Assume inline assembler is using unified asm syntax. The default is
13541 currently off which implies divided syntax. Currently this option is
13542 available only for Thumb1 and has no effect on ARM state and Thumb2.
13543 However, this may change in future releases of GCC. Divided syntax
13544 should be considered deprecated.
13545
13546 @item -mrestrict-it
13547 @opindex mrestrict-it
13548 Restricts generation of IT blocks to conform to the rules of ARMv8.
13549 IT blocks can only contain a single 16-bit instruction from a select
13550 set of instructions. This option is on by default for ARMv8 Thumb mode.
13551
13552 @item -mprint-tune-info
13553 @opindex mprint-tune-info
13554 Print CPU tuning information as comment in assembler file. This is
13555 an option used only for regression testing of the compiler and not
13556 intended for ordinary use in compiling code. This option is disabled
13557 by default.
13558 @end table
13559
13560 @node AVR Options
13561 @subsection AVR Options
13562 @cindex AVR Options
13563
13564 These options are defined for AVR implementations:
13565
13566 @table @gcctabopt
13567 @item -mmcu=@var{mcu}
13568 @opindex mmcu
13569 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13570
13571 The default for this option is@tie{}@samp{avr2}.
13572
13573 GCC supports the following AVR devices and ISAs:
13574
13575 @include avr-mmcu.texi
13576
13577 @item -maccumulate-args
13578 @opindex maccumulate-args
13579 Accumulate outgoing function arguments and acquire/release the needed
13580 stack space for outgoing function arguments once in function
13581 prologue/epilogue. Without this option, outgoing arguments are pushed
13582 before calling a function and popped afterwards.
13583
13584 Popping the arguments after the function call can be expensive on
13585 AVR so that accumulating the stack space might lead to smaller
13586 executables because arguments need not to be removed from the
13587 stack after such a function call.
13588
13589 This option can lead to reduced code size for functions that perform
13590 several calls to functions that get their arguments on the stack like
13591 calls to printf-like functions.
13592
13593 @item -mbranch-cost=@var{cost}
13594 @opindex mbranch-cost
13595 Set the branch costs for conditional branch instructions to
13596 @var{cost}. Reasonable values for @var{cost} are small, non-negative
13597 integers. The default branch cost is 0.
13598
13599 @item -mcall-prologues
13600 @opindex mcall-prologues
13601 Functions prologues/epilogues are expanded as calls to appropriate
13602 subroutines. Code size is smaller.
13603
13604 @item -mint8
13605 @opindex mint8
13606 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
13607 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13608 and @code{long long} is 4 bytes. Please note that this option does not
13609 conform to the C standards, but it results in smaller code
13610 size.
13611
13612 @item -mn-flash=@var{num}
13613 @opindex mn-flash
13614 Assume that the flash memory has a size of
13615 @var{num} times 64@tie{}KiB.
13616
13617 @item -mno-interrupts
13618 @opindex mno-interrupts
13619 Generated code is not compatible with hardware interrupts.
13620 Code size is smaller.
13621
13622 @item -mrelax
13623 @opindex mrelax
13624 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13625 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13626 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13627 the assembler's command line and the @option{--relax} option to the
13628 linker's command line.
13629
13630 Jump relaxing is performed by the linker because jump offsets are not
13631 known before code is located. Therefore, the assembler code generated by the
13632 compiler is the same, but the instructions in the executable may
13633 differ from instructions in the assembler code.
13634
13635 Relaxing must be turned on if linker stubs are needed, see the
13636 section on @code{EIND} and linker stubs below.
13637
13638 @item -mrmw
13639 @opindex mrmw
13640 Assume that the device supports the Read-Modify-Write
13641 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
13642
13643 @item -msp8
13644 @opindex msp8
13645 Treat the stack pointer register as an 8-bit register,
13646 i.e.@: assume the high byte of the stack pointer is zero.
13647 In general, you don't need to set this option by hand.
13648
13649 This option is used internally by the compiler to select and
13650 build multilibs for architectures @code{avr2} and @code{avr25}.
13651 These architectures mix devices with and without @code{SPH}.
13652 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
13653 the compiler driver adds or removes this option from the compiler
13654 proper's command line, because the compiler then knows if the device
13655 or architecture has an 8-bit stack pointer and thus no @code{SPH}
13656 register or not.
13657
13658 @item -mstrict-X
13659 @opindex mstrict-X
13660 Use address register @code{X} in a way proposed by the hardware. This means
13661 that @code{X} is only used in indirect, post-increment or
13662 pre-decrement addressing.
13663
13664 Without this option, the @code{X} register may be used in the same way
13665 as @code{Y} or @code{Z} which then is emulated by additional
13666 instructions.
13667 For example, loading a value with @code{X+const} addressing with a
13668 small non-negative @code{const < 64} to a register @var{Rn} is
13669 performed as
13670
13671 @example
13672 adiw r26, const ; X += const
13673 ld @var{Rn}, X ; @var{Rn} = *X
13674 sbiw r26, const ; X -= const
13675 @end example
13676
13677 @item -mtiny-stack
13678 @opindex mtiny-stack
13679 Only change the lower 8@tie{}bits of the stack pointer.
13680
13681 @item -nodevicelib
13682 @opindex nodevicelib
13683 Don't link against AVR-LibC's device specific library @code{libdev.a}.
13684
13685 @item -Waddr-space-convert
13686 @opindex Waddr-space-convert
13687 Warn about conversions between address spaces in the case where the
13688 resulting address space is not contained in the incoming address space.
13689 @end table
13690
13691 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
13692 @cindex @code{EIND}
13693 Pointers in the implementation are 16@tie{}bits wide.
13694 The address of a function or label is represented as word address so
13695 that indirect jumps and calls can target any code address in the
13696 range of 64@tie{}Ki words.
13697
13698 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
13699 bytes of program memory space, there is a special function register called
13700 @code{EIND} that serves as most significant part of the target address
13701 when @code{EICALL} or @code{EIJMP} instructions are used.
13702
13703 Indirect jumps and calls on these devices are handled as follows by
13704 the compiler and are subject to some limitations:
13705
13706 @itemize @bullet
13707
13708 @item
13709 The compiler never sets @code{EIND}.
13710
13711 @item
13712 The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
13713 instructions or might read @code{EIND} directly in order to emulate an
13714 indirect call/jump by means of a @code{RET} instruction.
13715
13716 @item
13717 The compiler assumes that @code{EIND} never changes during the startup
13718 code or during the application. In particular, @code{EIND} is not
13719 saved/restored in function or interrupt service routine
13720 prologue/epilogue.
13721
13722 @item
13723 For indirect calls to functions and computed goto, the linker
13724 generates @emph{stubs}. Stubs are jump pads sometimes also called
13725 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
13726 The stub contains a direct jump to the desired address.
13727
13728 @item
13729 Linker relaxation must be turned on so that the linker generates
13730 the stubs correctly in all situations. See the compiler option
13731 @option{-mrelax} and the linker option @option{--relax}.
13732 There are corner cases where the linker is supposed to generate stubs
13733 but aborts without relaxation and without a helpful error message.
13734
13735 @item
13736 The default linker script is arranged for code with @code{EIND = 0}.
13737 If code is supposed to work for a setup with @code{EIND != 0}, a custom
13738 linker script has to be used in order to place the sections whose
13739 name start with @code{.trampolines} into the segment where @code{EIND}
13740 points to.
13741
13742 @item
13743 The startup code from libgcc never sets @code{EIND}.
13744 Notice that startup code is a blend of code from libgcc and AVR-LibC.
13745 For the impact of AVR-LibC on @code{EIND}, see the
13746 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
13747
13748 @item
13749 It is legitimate for user-specific startup code to set up @code{EIND}
13750 early, for example by means of initialization code located in
13751 section @code{.init3}. Such code runs prior to general startup code
13752 that initializes RAM and calls constructors, but after the bit
13753 of startup code from AVR-LibC that sets @code{EIND} to the segment
13754 where the vector table is located.
13755 @example
13756 #include <avr/io.h>
13757
13758 static void
13759 __attribute__((section(".init3"),naked,used,no_instrument_function))
13760 init3_set_eind (void)
13761 @{
13762 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
13763 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
13764 @}
13765 @end example
13766
13767 @noindent
13768 The @code{__trampolines_start} symbol is defined in the linker script.
13769
13770 @item
13771 Stubs are generated automatically by the linker if
13772 the following two conditions are met:
13773 @itemize @minus
13774
13775 @item The address of a label is taken by means of the @code{gs} modifier
13776 (short for @emph{generate stubs}) like so:
13777 @example
13778 LDI r24, lo8(gs(@var{func}))
13779 LDI r25, hi8(gs(@var{func}))
13780 @end example
13781 @item The final location of that label is in a code segment
13782 @emph{outside} the segment where the stubs are located.
13783 @end itemize
13784
13785 @item
13786 The compiler emits such @code{gs} modifiers for code labels in the
13787 following situations:
13788 @itemize @minus
13789 @item Taking address of a function or code label.
13790 @item Computed goto.
13791 @item If prologue-save function is used, see @option{-mcall-prologues}
13792 command-line option.
13793 @item Switch/case dispatch tables. If you do not want such dispatch
13794 tables you can specify the @option{-fno-jump-tables} command-line option.
13795 @item C and C++ constructors/destructors called during startup/shutdown.
13796 @item If the tools hit a @code{gs()} modifier explained above.
13797 @end itemize
13798
13799 @item
13800 Jumping to non-symbolic addresses like so is @emph{not} supported:
13801
13802 @example
13803 int main (void)
13804 @{
13805 /* Call function at word address 0x2 */
13806 return ((int(*)(void)) 0x2)();
13807 @}
13808 @end example
13809
13810 Instead, a stub has to be set up, i.e.@: the function has to be called
13811 through a symbol (@code{func_4} in the example):
13812
13813 @example
13814 int main (void)
13815 @{
13816 extern int func_4 (void);
13817
13818 /* Call function at byte address 0x4 */
13819 return func_4();
13820 @}
13821 @end example
13822
13823 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
13824 Alternatively, @code{func_4} can be defined in the linker script.
13825 @end itemize
13826
13827 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
13828 @cindex @code{RAMPD}
13829 @cindex @code{RAMPX}
13830 @cindex @code{RAMPY}
13831 @cindex @code{RAMPZ}
13832 Some AVR devices support memories larger than the 64@tie{}KiB range
13833 that can be accessed with 16-bit pointers. To access memory locations
13834 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
13835 register is used as high part of the address:
13836 The @code{X}, @code{Y}, @code{Z} address register is concatenated
13837 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
13838 register, respectively, to get a wide address. Similarly,
13839 @code{RAMPD} is used together with direct addressing.
13840
13841 @itemize
13842 @item
13843 The startup code initializes the @code{RAMP} special function
13844 registers with zero.
13845
13846 @item
13847 If a @ref{AVR Named Address Spaces,named address space} other than
13848 generic or @code{__flash} is used, then @code{RAMPZ} is set
13849 as needed before the operation.
13850
13851 @item
13852 If the device supports RAM larger than 64@tie{}KiB and the compiler
13853 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
13854 is reset to zero after the operation.
13855
13856 @item
13857 If the device comes with a specific @code{RAMP} register, the ISR
13858 prologue/epilogue saves/restores that SFR and initializes it with
13859 zero in case the ISR code might (implicitly) use it.
13860
13861 @item
13862 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
13863 If you use inline assembler to read from locations outside the
13864 16-bit address range and change one of the @code{RAMP} registers,
13865 you must reset it to zero after the access.
13866
13867 @end itemize
13868
13869 @subsubsection AVR Built-in Macros
13870
13871 GCC defines several built-in macros so that the user code can test
13872 for the presence or absence of features. Almost any of the following
13873 built-in macros are deduced from device capabilities and thus
13874 triggered by the @option{-mmcu=} command-line option.
13875
13876 For even more AVR-specific built-in macros see
13877 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
13878
13879 @table @code
13880
13881 @item __AVR_ARCH__
13882 Build-in macro that resolves to a decimal number that identifies the
13883 architecture and depends on the @option{-mmcu=@var{mcu}} option.
13884 Possible values are:
13885
13886 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
13887 @code{4}, @code{5}, @code{51}, @code{6}
13888
13889 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
13890 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
13891
13892 respectively and
13893
13894 @code{100}, @code{102}, @code{104},
13895 @code{105}, @code{106}, @code{107}
13896
13897 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
13898 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
13899 If @var{mcu} specifies a device, this built-in macro is set
13900 accordingly. For example, with @option{-mmcu=atmega8} the macro is
13901 defined to @code{4}.
13902
13903 @item __AVR_@var{Device}__
13904 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
13905 the device's name. For example, @option{-mmcu=atmega8} defines the
13906 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
13907 @code{__AVR_ATtiny261A__}, etc.
13908
13909 The built-in macros' names follow
13910 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
13911 the device name as from the AVR user manual. The difference between
13912 @var{Device} in the built-in macro and @var{device} in
13913 @option{-mmcu=@var{device}} is that the latter is always lowercase.
13914
13915 If @var{device} is not a device but only a core architecture like
13916 @samp{avr51}, this macro is not defined.
13917
13918 @item __AVR_DEVICE_NAME__
13919 Setting @option{-mmcu=@var{device}} defines this built-in macro to
13920 the device's name. For example, with @option{-mmcu=atmega8} the macro
13921 is defined to @code{atmega8}.
13922
13923 If @var{device} is not a device but only a core architecture like
13924 @samp{avr51}, this macro is not defined.
13925
13926 @item __AVR_XMEGA__
13927 The device / architecture belongs to the XMEGA family of devices.
13928
13929 @item __AVR_HAVE_ELPM__
13930 The device has the the @code{ELPM} instruction.
13931
13932 @item __AVR_HAVE_ELPMX__
13933 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
13934 R@var{n},Z+} instructions.
13935
13936 @item __AVR_HAVE_MOVW__
13937 The device has the @code{MOVW} instruction to perform 16-bit
13938 register-register moves.
13939
13940 @item __AVR_HAVE_LPMX__
13941 The device has the @code{LPM R@var{n},Z} and
13942 @code{LPM R@var{n},Z+} instructions.
13943
13944 @item __AVR_HAVE_MUL__
13945 The device has a hardware multiplier.
13946
13947 @item __AVR_HAVE_JMP_CALL__
13948 The device has the @code{JMP} and @code{CALL} instructions.
13949 This is the case for devices with at least 16@tie{}KiB of program
13950 memory.
13951
13952 @item __AVR_HAVE_EIJMP_EICALL__
13953 @itemx __AVR_3_BYTE_PC__
13954 The device has the @code{EIJMP} and @code{EICALL} instructions.
13955 This is the case for devices with more than 128@tie{}KiB of program memory.
13956 This also means that the program counter
13957 (PC) is 3@tie{}bytes wide.
13958
13959 @item __AVR_2_BYTE_PC__
13960 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
13961 with up to 128@tie{}KiB of program memory.
13962
13963 @item __AVR_HAVE_8BIT_SP__
13964 @itemx __AVR_HAVE_16BIT_SP__
13965 The stack pointer (SP) register is treated as 8-bit respectively
13966 16-bit register by the compiler.
13967 The definition of these macros is affected by @option{-mtiny-stack}.
13968
13969 @item __AVR_HAVE_SPH__
13970 @itemx __AVR_SP8__
13971 The device has the SPH (high part of stack pointer) special function
13972 register or has an 8-bit stack pointer, respectively.
13973 The definition of these macros is affected by @option{-mmcu=} and
13974 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
13975 by @option{-msp8}.
13976
13977 @item __AVR_HAVE_RAMPD__
13978 @itemx __AVR_HAVE_RAMPX__
13979 @itemx __AVR_HAVE_RAMPY__
13980 @itemx __AVR_HAVE_RAMPZ__
13981 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
13982 @code{RAMPZ} special function register, respectively.
13983
13984 @item __NO_INTERRUPTS__
13985 This macro reflects the @option{-mno-interrupts} command-line option.
13986
13987 @item __AVR_ERRATA_SKIP__
13988 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
13989 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
13990 instructions because of a hardware erratum. Skip instructions are
13991 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
13992 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
13993 set.
13994
13995 @item __AVR_ISA_RMW__
13996 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
13997
13998 @item __AVR_SFR_OFFSET__=@var{offset}
13999 Instructions that can address I/O special function registers directly
14000 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
14001 address as if addressed by an instruction to access RAM like @code{LD}
14002 or @code{STS}. This offset depends on the device architecture and has
14003 to be subtracted from the RAM address in order to get the
14004 respective I/O@tie{}address.
14005
14006 @item __WITH_AVRLIBC__
14007 The compiler is configured to be used together with AVR-Libc.
14008 See the @option{--with-avrlibc} configure option.
14009
14010 @end table
14011
14012 @node Blackfin Options
14013 @subsection Blackfin Options
14014 @cindex Blackfin Options
14015
14016 @table @gcctabopt
14017 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14018 @opindex mcpu=
14019 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
14020 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14021 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14022 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14023 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14024 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14025 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14026 @samp{bf561}, @samp{bf592}.
14027
14028 The optional @var{sirevision} specifies the silicon revision of the target
14029 Blackfin processor. Any workarounds available for the targeted silicon revision
14030 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
14031 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14032 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
14033 hexadecimal digits representing the major and minor numbers in the silicon
14034 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14035 is not defined. If @var{sirevision} is @samp{any}, the
14036 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14037 If this optional @var{sirevision} is not used, GCC assumes the latest known
14038 silicon revision of the targeted Blackfin processor.
14039
14040 GCC defines a preprocessor macro for the specified @var{cpu}.
14041 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14042 provided by libgloss to be linked in if @option{-msim} is not given.
14043
14044 Without this option, @samp{bf532} is used as the processor by default.
14045
14046 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
14047 only the preprocessor macro is defined.
14048
14049 @item -msim
14050 @opindex msim
14051 Specifies that the program will be run on the simulator. This causes
14052 the simulator BSP provided by libgloss to be linked in. This option
14053 has effect only for @samp{bfin-elf} toolchain.
14054 Certain other options, such as @option{-mid-shared-library} and
14055 @option{-mfdpic}, imply @option{-msim}.
14056
14057 @item -momit-leaf-frame-pointer
14058 @opindex momit-leaf-frame-pointer
14059 Don't keep the frame pointer in a register for leaf functions. This
14060 avoids the instructions to save, set up and restore frame pointers and
14061 makes an extra register available in leaf functions. The option
14062 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14063 which might make debugging harder.
14064
14065 @item -mspecld-anomaly
14066 @opindex mspecld-anomaly
14067 When enabled, the compiler ensures that the generated code does not
14068 contain speculative loads after jump instructions. If this option is used,
14069 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14070
14071 @item -mno-specld-anomaly
14072 @opindex mno-specld-anomaly
14073 Don't generate extra code to prevent speculative loads from occurring.
14074
14075 @item -mcsync-anomaly
14076 @opindex mcsync-anomaly
14077 When enabled, the compiler ensures that the generated code does not
14078 contain CSYNC or SSYNC instructions too soon after conditional branches.
14079 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14080
14081 @item -mno-csync-anomaly
14082 @opindex mno-csync-anomaly
14083 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14084 occurring too soon after a conditional branch.
14085
14086 @item -mlow-64k
14087 @opindex mlow-64k
14088 When enabled, the compiler is free to take advantage of the knowledge that
14089 the entire program fits into the low 64k of memory.
14090
14091 @item -mno-low-64k
14092 @opindex mno-low-64k
14093 Assume that the program is arbitrarily large. This is the default.
14094
14095 @item -mstack-check-l1
14096 @opindex mstack-check-l1
14097 Do stack checking using information placed into L1 scratchpad memory by the
14098 uClinux kernel.
14099
14100 @item -mid-shared-library
14101 @opindex mid-shared-library
14102 Generate code that supports shared libraries via the library ID method.
14103 This allows for execute in place and shared libraries in an environment
14104 without virtual memory management. This option implies @option{-fPIC}.
14105 With a @samp{bfin-elf} target, this option implies @option{-msim}.
14106
14107 @item -mno-id-shared-library
14108 @opindex mno-id-shared-library
14109 Generate code that doesn't assume ID-based shared libraries are being used.
14110 This is the default.
14111
14112 @item -mleaf-id-shared-library
14113 @opindex mleaf-id-shared-library
14114 Generate code that supports shared libraries via the library ID method,
14115 but assumes that this library or executable won't link against any other
14116 ID shared libraries. That allows the compiler to use faster code for jumps
14117 and calls.
14118
14119 @item -mno-leaf-id-shared-library
14120 @opindex mno-leaf-id-shared-library
14121 Do not assume that the code being compiled won't link against any ID shared
14122 libraries. Slower code is generated for jump and call insns.
14123
14124 @item -mshared-library-id=n
14125 @opindex mshared-library-id
14126 Specifies the identification number of the ID-based shared library being
14127 compiled. Specifying a value of 0 generates more compact code; specifying
14128 other values forces the allocation of that number to the current
14129 library but is no more space- or time-efficient than omitting this option.
14130
14131 @item -msep-data
14132 @opindex msep-data
14133 Generate code that allows the data segment to be located in a different
14134 area of memory from the text segment. This allows for execute in place in
14135 an environment without virtual memory management by eliminating relocations
14136 against the text section.
14137
14138 @item -mno-sep-data
14139 @opindex mno-sep-data
14140 Generate code that assumes that the data segment follows the text segment.
14141 This is the default.
14142
14143 @item -mlong-calls
14144 @itemx -mno-long-calls
14145 @opindex mlong-calls
14146 @opindex mno-long-calls
14147 Tells the compiler to perform function calls by first loading the
14148 address of the function into a register and then performing a subroutine
14149 call on this register. This switch is needed if the target function
14150 lies outside of the 24-bit addressing range of the offset-based
14151 version of subroutine call instruction.
14152
14153 This feature is not enabled by default. Specifying
14154 @option{-mno-long-calls} restores the default behavior. Note these
14155 switches have no effect on how the compiler generates code to handle
14156 function calls via function pointers.
14157
14158 @item -mfast-fp
14159 @opindex mfast-fp
14160 Link with the fast floating-point library. This library relaxes some of
14161 the IEEE floating-point standard's rules for checking inputs against
14162 Not-a-Number (NAN), in the interest of performance.
14163
14164 @item -minline-plt
14165 @opindex minline-plt
14166 Enable inlining of PLT entries in function calls to functions that are
14167 not known to bind locally. It has no effect without @option{-mfdpic}.
14168
14169 @item -mmulticore
14170 @opindex mmulticore
14171 Build a standalone application for multicore Blackfin processors.
14172 This option causes proper start files and link scripts supporting
14173 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
14174 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
14175
14176 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14177 selects the one-application-per-core programming model. Without
14178 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14179 programming model is used. In this model, the main function of Core B
14180 should be named as @code{coreb_main}.
14181
14182 If this option is not used, the single-core application programming
14183 model is used.
14184
14185 @item -mcorea
14186 @opindex mcorea
14187 Build a standalone application for Core A of BF561 when using
14188 the one-application-per-core programming model. Proper start files
14189 and link scripts are used to support Core A, and the macro
14190 @code{__BFIN_COREA} is defined.
14191 This option can only be used in conjunction with @option{-mmulticore}.
14192
14193 @item -mcoreb
14194 @opindex mcoreb
14195 Build a standalone application for Core B of BF561 when using
14196 the one-application-per-core programming model. Proper start files
14197 and link scripts are used to support Core B, and the macro
14198 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14199 should be used instead of @code{main}.
14200 This option can only be used in conjunction with @option{-mmulticore}.
14201
14202 @item -msdram
14203 @opindex msdram
14204 Build a standalone application for SDRAM. Proper start files and
14205 link scripts are used to put the application into SDRAM, and the macro
14206 @code{__BFIN_SDRAM} is defined.
14207 The loader should initialize SDRAM before loading the application.
14208
14209 @item -micplb
14210 @opindex micplb
14211 Assume that ICPLBs are enabled at run time. This has an effect on certain
14212 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
14213 are enabled; for standalone applications the default is off.
14214 @end table
14215
14216 @node C6X Options
14217 @subsection C6X Options
14218 @cindex C6X Options
14219
14220 @table @gcctabopt
14221 @item -march=@var{name}
14222 @opindex march
14223 This specifies the name of the target architecture. GCC uses this
14224 name to determine what kind of instructions it can emit when generating
14225 assembly code. Permissible names are: @samp{c62x},
14226 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14227
14228 @item -mbig-endian
14229 @opindex mbig-endian
14230 Generate code for a big-endian target.
14231
14232 @item -mlittle-endian
14233 @opindex mlittle-endian
14234 Generate code for a little-endian target. This is the default.
14235
14236 @item -msim
14237 @opindex msim
14238 Choose startup files and linker script suitable for the simulator.
14239
14240 @item -msdata=default
14241 @opindex msdata=default
14242 Put small global and static data in the @code{.neardata} section,
14243 which is pointed to by register @code{B14}. Put small uninitialized
14244 global and static data in the @code{.bss} section, which is adjacent
14245 to the @code{.neardata} section. Put small read-only data into the
14246 @code{.rodata} section. The corresponding sections used for large
14247 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14248
14249 @item -msdata=all
14250 @opindex msdata=all
14251 Put all data, not just small objects, into the sections reserved for
14252 small data, and use addressing relative to the @code{B14} register to
14253 access them.
14254
14255 @item -msdata=none
14256 @opindex msdata=none
14257 Make no use of the sections reserved for small data, and use absolute
14258 addresses to access all data. Put all initialized global and static
14259 data in the @code{.fardata} section, and all uninitialized data in the
14260 @code{.far} section. Put all constant data into the @code{.const}
14261 section.
14262 @end table
14263
14264 @node CRIS Options
14265 @subsection CRIS Options
14266 @cindex CRIS Options
14267
14268 These options are defined specifically for the CRIS ports.
14269
14270 @table @gcctabopt
14271 @item -march=@var{architecture-type}
14272 @itemx -mcpu=@var{architecture-type}
14273 @opindex march
14274 @opindex mcpu
14275 Generate code for the specified architecture. The choices for
14276 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14277 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14278 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14279 @samp{v10}.
14280
14281 @item -mtune=@var{architecture-type}
14282 @opindex mtune
14283 Tune to @var{architecture-type} everything applicable about the generated
14284 code, except for the ABI and the set of available instructions. The
14285 choices for @var{architecture-type} are the same as for
14286 @option{-march=@var{architecture-type}}.
14287
14288 @item -mmax-stack-frame=@var{n}
14289 @opindex mmax-stack-frame
14290 Warn when the stack frame of a function exceeds @var{n} bytes.
14291
14292 @item -metrax4
14293 @itemx -metrax100
14294 @opindex metrax4
14295 @opindex metrax100
14296 The options @option{-metrax4} and @option{-metrax100} are synonyms for
14297 @option{-march=v3} and @option{-march=v8} respectively.
14298
14299 @item -mmul-bug-workaround
14300 @itemx -mno-mul-bug-workaround
14301 @opindex mmul-bug-workaround
14302 @opindex mno-mul-bug-workaround
14303 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14304 models where it applies. This option is active by default.
14305
14306 @item -mpdebug
14307 @opindex mpdebug
14308 Enable CRIS-specific verbose debug-related information in the assembly
14309 code. This option also has the effect of turning off the @samp{#NO_APP}
14310 formatted-code indicator to the assembler at the beginning of the
14311 assembly file.
14312
14313 @item -mcc-init
14314 @opindex mcc-init
14315 Do not use condition-code results from previous instruction; always emit
14316 compare and test instructions before use of condition codes.
14317
14318 @item -mno-side-effects
14319 @opindex mno-side-effects
14320 Do not emit instructions with side effects in addressing modes other than
14321 post-increment.
14322
14323 @item -mstack-align
14324 @itemx -mno-stack-align
14325 @itemx -mdata-align
14326 @itemx -mno-data-align
14327 @itemx -mconst-align
14328 @itemx -mno-const-align
14329 @opindex mstack-align
14330 @opindex mno-stack-align
14331 @opindex mdata-align
14332 @opindex mno-data-align
14333 @opindex mconst-align
14334 @opindex mno-const-align
14335 These options (@samp{no-} options) arrange (eliminate arrangements) for the
14336 stack frame, individual data and constants to be aligned for the maximum
14337 single data access size for the chosen CPU model. The default is to
14338 arrange for 32-bit alignment. ABI details such as structure layout are
14339 not affected by these options.
14340
14341 @item -m32-bit
14342 @itemx -m16-bit
14343 @itemx -m8-bit
14344 @opindex m32-bit
14345 @opindex m16-bit
14346 @opindex m8-bit
14347 Similar to the stack- data- and const-align options above, these options
14348 arrange for stack frame, writable data and constants to all be 32-bit,
14349 16-bit or 8-bit aligned. The default is 32-bit alignment.
14350
14351 @item -mno-prologue-epilogue
14352 @itemx -mprologue-epilogue
14353 @opindex mno-prologue-epilogue
14354 @opindex mprologue-epilogue
14355 With @option{-mno-prologue-epilogue}, the normal function prologue and
14356 epilogue which set up the stack frame are omitted and no return
14357 instructions or return sequences are generated in the code. Use this
14358 option only together with visual inspection of the compiled code: no
14359 warnings or errors are generated when call-saved registers must be saved,
14360 or storage for local variables needs to be allocated.
14361
14362 @item -mno-gotplt
14363 @itemx -mgotplt
14364 @opindex mno-gotplt
14365 @opindex mgotplt
14366 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14367 instruction sequences that load addresses for functions from the PLT part
14368 of the GOT rather than (traditional on other architectures) calls to the
14369 PLT@. The default is @option{-mgotplt}.
14370
14371 @item -melf
14372 @opindex melf
14373 Legacy no-op option only recognized with the cris-axis-elf and
14374 cris-axis-linux-gnu targets.
14375
14376 @item -mlinux
14377 @opindex mlinux
14378 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14379
14380 @item -sim
14381 @opindex sim
14382 This option, recognized for the cris-axis-elf, arranges
14383 to link with input-output functions from a simulator library. Code,
14384 initialized data and zero-initialized data are allocated consecutively.
14385
14386 @item -sim2
14387 @opindex sim2
14388 Like @option{-sim}, but pass linker options to locate initialized data at
14389 0x40000000 and zero-initialized data at 0x80000000.
14390 @end table
14391
14392 @node CR16 Options
14393 @subsection CR16 Options
14394 @cindex CR16 Options
14395
14396 These options are defined specifically for the CR16 ports.
14397
14398 @table @gcctabopt
14399
14400 @item -mmac
14401 @opindex mmac
14402 Enable the use of multiply-accumulate instructions. Disabled by default.
14403
14404 @item -mcr16cplus
14405 @itemx -mcr16c
14406 @opindex mcr16cplus
14407 @opindex mcr16c
14408 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
14409 is default.
14410
14411 @item -msim
14412 @opindex msim
14413 Links the library libsim.a which is in compatible with simulator. Applicable
14414 to ELF compiler only.
14415
14416 @item -mint32
14417 @opindex mint32
14418 Choose integer type as 32-bit wide.
14419
14420 @item -mbit-ops
14421 @opindex mbit-ops
14422 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14423
14424 @item -mdata-model=@var{model}
14425 @opindex mdata-model
14426 Choose a data model. The choices for @var{model} are @samp{near},
14427 @samp{far} or @samp{medium}. @samp{medium} is default.
14428 However, @samp{far} is not valid with @option{-mcr16c}, as the
14429 CR16C architecture does not support the far data model.
14430 @end table
14431
14432 @node Darwin Options
14433 @subsection Darwin Options
14434 @cindex Darwin options
14435
14436 These options are defined for all architectures running the Darwin operating
14437 system.
14438
14439 FSF GCC on Darwin does not create ``fat'' object files; it creates
14440 an object file for the single architecture that GCC was built to
14441 target. Apple's GCC on Darwin does create ``fat'' files if multiple
14442 @option{-arch} options are used; it does so by running the compiler or
14443 linker multiple times and joining the results together with
14444 @file{lipo}.
14445
14446 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14447 @samp{i686}) is determined by the flags that specify the ISA
14448 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
14449 @option{-force_cpusubtype_ALL} option can be used to override this.
14450
14451 The Darwin tools vary in their behavior when presented with an ISA
14452 mismatch. The assembler, @file{as}, only permits instructions to
14453 be used that are valid for the subtype of the file it is generating,
14454 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14455 The linker for shared libraries, @file{/usr/bin/libtool}, fails
14456 and prints an error if asked to create a shared library with a less
14457 restrictive subtype than its input files (for instance, trying to put
14458 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
14459 for executables, @command{ld}, quietly gives the executable the most
14460 restrictive subtype of any of its input files.
14461
14462 @table @gcctabopt
14463 @item -F@var{dir}
14464 @opindex F
14465 Add the framework directory @var{dir} to the head of the list of
14466 directories to be searched for header files. These directories are
14467 interleaved with those specified by @option{-I} options and are
14468 scanned in a left-to-right order.
14469
14470 A framework directory is a directory with frameworks in it. A
14471 framework is a directory with a @file{Headers} and/or
14472 @file{PrivateHeaders} directory contained directly in it that ends
14473 in @file{.framework}. The name of a framework is the name of this
14474 directory excluding the @file{.framework}. Headers associated with
14475 the framework are found in one of those two directories, with
14476 @file{Headers} being searched first. A subframework is a framework
14477 directory that is in a framework's @file{Frameworks} directory.
14478 Includes of subframework headers can only appear in a header of a
14479 framework that contains the subframework, or in a sibling subframework
14480 header. Two subframeworks are siblings if they occur in the same
14481 framework. A subframework should not have the same name as a
14482 framework; a warning is issued if this is violated. Currently a
14483 subframework cannot have subframeworks; in the future, the mechanism
14484 may be extended to support this. The standard frameworks can be found
14485 in @file{/System/Library/Frameworks} and
14486 @file{/Library/Frameworks}. An example include looks like
14487 @code{#include <Framework/header.h>}, where @file{Framework} denotes
14488 the name of the framework and @file{header.h} is found in the
14489 @file{PrivateHeaders} or @file{Headers} directory.
14490
14491 @item -iframework@var{dir}
14492 @opindex iframework
14493 Like @option{-F} except the directory is a treated as a system
14494 directory. The main difference between this @option{-iframework} and
14495 @option{-F} is that with @option{-iframework} the compiler does not
14496 warn about constructs contained within header files found via
14497 @var{dir}. This option is valid only for the C family of languages.
14498
14499 @item -gused
14500 @opindex gused
14501 Emit debugging information for symbols that are used. For stabs
14502 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14503 This is by default ON@.
14504
14505 @item -gfull
14506 @opindex gfull
14507 Emit debugging information for all symbols and types.
14508
14509 @item -mmacosx-version-min=@var{version}
14510 The earliest version of MacOS X that this executable will run on
14511 is @var{version}. Typical values of @var{version} include @code{10.1},
14512 @code{10.2}, and @code{10.3.9}.
14513
14514 If the compiler was built to use the system's headers by default,
14515 then the default for this option is the system version on which the
14516 compiler is running, otherwise the default is to make choices that
14517 are compatible with as many systems and code bases as possible.
14518
14519 @item -mkernel
14520 @opindex mkernel
14521 Enable kernel development mode. The @option{-mkernel} option sets
14522 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14523 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14524 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14525 applicable. This mode also sets @option{-mno-altivec},
14526 @option{-msoft-float}, @option{-fno-builtin} and
14527 @option{-mlong-branch} for PowerPC targets.
14528
14529 @item -mone-byte-bool
14530 @opindex mone-byte-bool
14531 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14532 By default @code{sizeof(bool)} is @code{4} when compiling for
14533 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14534 option has no effect on x86.
14535
14536 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14537 to generate code that is not binary compatible with code generated
14538 without that switch. Using this switch may require recompiling all
14539 other modules in a program, including system libraries. Use this
14540 switch to conform to a non-default data model.
14541
14542 @item -mfix-and-continue
14543 @itemx -ffix-and-continue
14544 @itemx -findirect-data
14545 @opindex mfix-and-continue
14546 @opindex ffix-and-continue
14547 @opindex findirect-data
14548 Generate code suitable for fast turnaround development, such as to
14549 allow GDB to dynamically load @file{.o} files into already-running
14550 programs. @option{-findirect-data} and @option{-ffix-and-continue}
14551 are provided for backwards compatibility.
14552
14553 @item -all_load
14554 @opindex all_load
14555 Loads all members of static archive libraries.
14556 See man ld(1) for more information.
14557
14558 @item -arch_errors_fatal
14559 @opindex arch_errors_fatal
14560 Cause the errors having to do with files that have the wrong architecture
14561 to be fatal.
14562
14563 @item -bind_at_load
14564 @opindex bind_at_load
14565 Causes the output file to be marked such that the dynamic linker will
14566 bind all undefined references when the file is loaded or launched.
14567
14568 @item -bundle
14569 @opindex bundle
14570 Produce a Mach-o bundle format file.
14571 See man ld(1) for more information.
14572
14573 @item -bundle_loader @var{executable}
14574 @opindex bundle_loader
14575 This option specifies the @var{executable} that will load the build
14576 output file being linked. See man ld(1) for more information.
14577
14578 @item -dynamiclib
14579 @opindex dynamiclib
14580 When passed this option, GCC produces a dynamic library instead of
14581 an executable when linking, using the Darwin @file{libtool} command.
14582
14583 @item -force_cpusubtype_ALL
14584 @opindex force_cpusubtype_ALL
14585 This causes GCC's output file to have the @samp{ALL} subtype, instead of
14586 one controlled by the @option{-mcpu} or @option{-march} option.
14587
14588 @item -allowable_client @var{client_name}
14589 @itemx -client_name
14590 @itemx -compatibility_version
14591 @itemx -current_version
14592 @itemx -dead_strip
14593 @itemx -dependency-file
14594 @itemx -dylib_file
14595 @itemx -dylinker_install_name
14596 @itemx -dynamic
14597 @itemx -exported_symbols_list
14598 @itemx -filelist
14599 @need 800
14600 @itemx -flat_namespace
14601 @itemx -force_flat_namespace
14602 @itemx -headerpad_max_install_names
14603 @itemx -image_base
14604 @itemx -init
14605 @itemx -install_name
14606 @itemx -keep_private_externs
14607 @itemx -multi_module
14608 @itemx -multiply_defined
14609 @itemx -multiply_defined_unused
14610 @need 800
14611 @itemx -noall_load
14612 @itemx -no_dead_strip_inits_and_terms
14613 @itemx -nofixprebinding
14614 @itemx -nomultidefs
14615 @itemx -noprebind
14616 @itemx -noseglinkedit
14617 @itemx -pagezero_size
14618 @itemx -prebind
14619 @itemx -prebind_all_twolevel_modules
14620 @itemx -private_bundle
14621 @need 800
14622 @itemx -read_only_relocs
14623 @itemx -sectalign
14624 @itemx -sectobjectsymbols
14625 @itemx -whyload
14626 @itemx -seg1addr
14627 @itemx -sectcreate
14628 @itemx -sectobjectsymbols
14629 @itemx -sectorder
14630 @itemx -segaddr
14631 @itemx -segs_read_only_addr
14632 @need 800
14633 @itemx -segs_read_write_addr
14634 @itemx -seg_addr_table
14635 @itemx -seg_addr_table_filename
14636 @itemx -seglinkedit
14637 @itemx -segprot
14638 @itemx -segs_read_only_addr
14639 @itemx -segs_read_write_addr
14640 @itemx -single_module
14641 @itemx -static
14642 @itemx -sub_library
14643 @need 800
14644 @itemx -sub_umbrella
14645 @itemx -twolevel_namespace
14646 @itemx -umbrella
14647 @itemx -undefined
14648 @itemx -unexported_symbols_list
14649 @itemx -weak_reference_mismatches
14650 @itemx -whatsloaded
14651 @opindex allowable_client
14652 @opindex client_name
14653 @opindex compatibility_version
14654 @opindex current_version
14655 @opindex dead_strip
14656 @opindex dependency-file
14657 @opindex dylib_file
14658 @opindex dylinker_install_name
14659 @opindex dynamic
14660 @opindex exported_symbols_list
14661 @opindex filelist
14662 @opindex flat_namespace
14663 @opindex force_flat_namespace
14664 @opindex headerpad_max_install_names
14665 @opindex image_base
14666 @opindex init
14667 @opindex install_name
14668 @opindex keep_private_externs
14669 @opindex multi_module
14670 @opindex multiply_defined
14671 @opindex multiply_defined_unused
14672 @opindex noall_load
14673 @opindex no_dead_strip_inits_and_terms
14674 @opindex nofixprebinding
14675 @opindex nomultidefs
14676 @opindex noprebind
14677 @opindex noseglinkedit
14678 @opindex pagezero_size
14679 @opindex prebind
14680 @opindex prebind_all_twolevel_modules
14681 @opindex private_bundle
14682 @opindex read_only_relocs
14683 @opindex sectalign
14684 @opindex sectobjectsymbols
14685 @opindex whyload
14686 @opindex seg1addr
14687 @opindex sectcreate
14688 @opindex sectobjectsymbols
14689 @opindex sectorder
14690 @opindex segaddr
14691 @opindex segs_read_only_addr
14692 @opindex segs_read_write_addr
14693 @opindex seg_addr_table
14694 @opindex seg_addr_table_filename
14695 @opindex seglinkedit
14696 @opindex segprot
14697 @opindex segs_read_only_addr
14698 @opindex segs_read_write_addr
14699 @opindex single_module
14700 @opindex static
14701 @opindex sub_library
14702 @opindex sub_umbrella
14703 @opindex twolevel_namespace
14704 @opindex umbrella
14705 @opindex undefined
14706 @opindex unexported_symbols_list
14707 @opindex weak_reference_mismatches
14708 @opindex whatsloaded
14709 These options are passed to the Darwin linker. The Darwin linker man page
14710 describes them in detail.
14711 @end table
14712
14713 @node DEC Alpha Options
14714 @subsection DEC Alpha Options
14715
14716 These @samp{-m} options are defined for the DEC Alpha implementations:
14717
14718 @table @gcctabopt
14719 @item -mno-soft-float
14720 @itemx -msoft-float
14721 @opindex mno-soft-float
14722 @opindex msoft-float
14723 Use (do not use) the hardware floating-point instructions for
14724 floating-point operations. When @option{-msoft-float} is specified,
14725 functions in @file{libgcc.a} are used to perform floating-point
14726 operations. Unless they are replaced by routines that emulate the
14727 floating-point operations, or compiled in such a way as to call such
14728 emulations routines, these routines issue floating-point
14729 operations. If you are compiling for an Alpha without floating-point
14730 operations, you must ensure that the library is built so as not to call
14731 them.
14732
14733 Note that Alpha implementations without floating-point operations are
14734 required to have floating-point registers.
14735
14736 @item -mfp-reg
14737 @itemx -mno-fp-regs
14738 @opindex mfp-reg
14739 @opindex mno-fp-regs
14740 Generate code that uses (does not use) the floating-point register set.
14741 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
14742 register set is not used, floating-point operands are passed in integer
14743 registers as if they were integers and floating-point results are passed
14744 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
14745 so any function with a floating-point argument or return value called by code
14746 compiled with @option{-mno-fp-regs} must also be compiled with that
14747 option.
14748
14749 A typical use of this option is building a kernel that does not use,
14750 and hence need not save and restore, any floating-point registers.
14751
14752 @item -mieee
14753 @opindex mieee
14754 The Alpha architecture implements floating-point hardware optimized for
14755 maximum performance. It is mostly compliant with the IEEE floating-point
14756 standard. However, for full compliance, software assistance is
14757 required. This option generates code fully IEEE-compliant code
14758 @emph{except} that the @var{inexact-flag} is not maintained (see below).
14759 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
14760 defined during compilation. The resulting code is less efficient but is
14761 able to correctly support denormalized numbers and exceptional IEEE
14762 values such as not-a-number and plus/minus infinity. Other Alpha
14763 compilers call this option @option{-ieee_with_no_inexact}.
14764
14765 @item -mieee-with-inexact
14766 @opindex mieee-with-inexact
14767 This is like @option{-mieee} except the generated code also maintains
14768 the IEEE @var{inexact-flag}. Turning on this option causes the
14769 generated code to implement fully-compliant IEEE math. In addition to
14770 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
14771 macro. On some Alpha implementations the resulting code may execute
14772 significantly slower than the code generated by default. Since there is
14773 very little code that depends on the @var{inexact-flag}, you should
14774 normally not specify this option. Other Alpha compilers call this
14775 option @option{-ieee_with_inexact}.
14776
14777 @item -mfp-trap-mode=@var{trap-mode}
14778 @opindex mfp-trap-mode
14779 This option controls what floating-point related traps are enabled.
14780 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
14781 The trap mode can be set to one of four values:
14782
14783 @table @samp
14784 @item n
14785 This is the default (normal) setting. The only traps that are enabled
14786 are the ones that cannot be disabled in software (e.g., division by zero
14787 trap).
14788
14789 @item u
14790 In addition to the traps enabled by @samp{n}, underflow traps are enabled
14791 as well.
14792
14793 @item su
14794 Like @samp{u}, but the instructions are marked to be safe for software
14795 completion (see Alpha architecture manual for details).
14796
14797 @item sui
14798 Like @samp{su}, but inexact traps are enabled as well.
14799 @end table
14800
14801 @item -mfp-rounding-mode=@var{rounding-mode}
14802 @opindex mfp-rounding-mode
14803 Selects the IEEE rounding mode. Other Alpha compilers call this option
14804 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
14805 of:
14806
14807 @table @samp
14808 @item n
14809 Normal IEEE rounding mode. Floating-point numbers are rounded towards
14810 the nearest machine number or towards the even machine number in case
14811 of a tie.
14812
14813 @item m
14814 Round towards minus infinity.
14815
14816 @item c
14817 Chopped rounding mode. Floating-point numbers are rounded towards zero.
14818
14819 @item d
14820 Dynamic rounding mode. A field in the floating-point control register
14821 (@var{fpcr}, see Alpha architecture reference manual) controls the
14822 rounding mode in effect. The C library initializes this register for
14823 rounding towards plus infinity. Thus, unless your program modifies the
14824 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
14825 @end table
14826
14827 @item -mtrap-precision=@var{trap-precision}
14828 @opindex mtrap-precision
14829 In the Alpha architecture, floating-point traps are imprecise. This
14830 means without software assistance it is impossible to recover from a
14831 floating trap and program execution normally needs to be terminated.
14832 GCC can generate code that can assist operating system trap handlers
14833 in determining the exact location that caused a floating-point trap.
14834 Depending on the requirements of an application, different levels of
14835 precisions can be selected:
14836
14837 @table @samp
14838 @item p
14839 Program precision. This option is the default and means a trap handler
14840 can only identify which program caused a floating-point exception.
14841
14842 @item f
14843 Function precision. The trap handler can determine the function that
14844 caused a floating-point exception.
14845
14846 @item i
14847 Instruction precision. The trap handler can determine the exact
14848 instruction that caused a floating-point exception.
14849 @end table
14850
14851 Other Alpha compilers provide the equivalent options called
14852 @option{-scope_safe} and @option{-resumption_safe}.
14853
14854 @item -mieee-conformant
14855 @opindex mieee-conformant
14856 This option marks the generated code as IEEE conformant. You must not
14857 use this option unless you also specify @option{-mtrap-precision=i} and either
14858 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
14859 is to emit the line @samp{.eflag 48} in the function prologue of the
14860 generated assembly file.
14861
14862 @item -mbuild-constants
14863 @opindex mbuild-constants
14864 Normally GCC examines a 32- or 64-bit integer constant to
14865 see if it can construct it from smaller constants in two or three
14866 instructions. If it cannot, it outputs the constant as a literal and
14867 generates code to load it from the data segment at run time.
14868
14869 Use this option to require GCC to construct @emph{all} integer constants
14870 using code, even if it takes more instructions (the maximum is six).
14871
14872 You typically use this option to build a shared library dynamic
14873 loader. Itself a shared library, it must relocate itself in memory
14874 before it can find the variables and constants in its own data segment.
14875
14876 @item -mbwx
14877 @itemx -mno-bwx
14878 @itemx -mcix
14879 @itemx -mno-cix
14880 @itemx -mfix
14881 @itemx -mno-fix
14882 @itemx -mmax
14883 @itemx -mno-max
14884 @opindex mbwx
14885 @opindex mno-bwx
14886 @opindex mcix
14887 @opindex mno-cix
14888 @opindex mfix
14889 @opindex mno-fix
14890 @opindex mmax
14891 @opindex mno-max
14892 Indicate whether GCC should generate code to use the optional BWX,
14893 CIX, FIX and MAX instruction sets. The default is to use the instruction
14894 sets supported by the CPU type specified via @option{-mcpu=} option or that
14895 of the CPU on which GCC was built if none is specified.
14896
14897 @item -mfloat-vax
14898 @itemx -mfloat-ieee
14899 @opindex mfloat-vax
14900 @opindex mfloat-ieee
14901 Generate code that uses (does not use) VAX F and G floating-point
14902 arithmetic instead of IEEE single and double precision.
14903
14904 @item -mexplicit-relocs
14905 @itemx -mno-explicit-relocs
14906 @opindex mexplicit-relocs
14907 @opindex mno-explicit-relocs
14908 Older Alpha assemblers provided no way to generate symbol relocations
14909 except via assembler macros. Use of these macros does not allow
14910 optimal instruction scheduling. GNU binutils as of version 2.12
14911 supports a new syntax that allows the compiler to explicitly mark
14912 which relocations should apply to which instructions. This option
14913 is mostly useful for debugging, as GCC detects the capabilities of
14914 the assembler when it is built and sets the default accordingly.
14915
14916 @item -msmall-data
14917 @itemx -mlarge-data
14918 @opindex msmall-data
14919 @opindex mlarge-data
14920 When @option{-mexplicit-relocs} is in effect, static data is
14921 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
14922 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
14923 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
14924 16-bit relocations off of the @code{$gp} register. This limits the
14925 size of the small data area to 64KB, but allows the variables to be
14926 directly accessed via a single instruction.
14927
14928 The default is @option{-mlarge-data}. With this option the data area
14929 is limited to just below 2GB@. Programs that require more than 2GB of
14930 data must use @code{malloc} or @code{mmap} to allocate the data in the
14931 heap instead of in the program's data segment.
14932
14933 When generating code for shared libraries, @option{-fpic} implies
14934 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
14935
14936 @item -msmall-text
14937 @itemx -mlarge-text
14938 @opindex msmall-text
14939 @opindex mlarge-text
14940 When @option{-msmall-text} is used, the compiler assumes that the
14941 code of the entire program (or shared library) fits in 4MB, and is
14942 thus reachable with a branch instruction. When @option{-msmall-data}
14943 is used, the compiler can assume that all local symbols share the
14944 same @code{$gp} value, and thus reduce the number of instructions
14945 required for a function call from 4 to 1.
14946
14947 The default is @option{-mlarge-text}.
14948
14949 @item -mcpu=@var{cpu_type}
14950 @opindex mcpu
14951 Set the instruction set and instruction scheduling parameters for
14952 machine type @var{cpu_type}. You can specify either the @samp{EV}
14953 style name or the corresponding chip number. GCC supports scheduling
14954 parameters for the EV4, EV5 and EV6 family of processors and
14955 chooses the default values for the instruction set from the processor
14956 you specify. If you do not specify a processor type, GCC defaults
14957 to the processor on which the compiler was built.
14958
14959 Supported values for @var{cpu_type} are
14960
14961 @table @samp
14962 @item ev4
14963 @itemx ev45
14964 @itemx 21064
14965 Schedules as an EV4 and has no instruction set extensions.
14966
14967 @item ev5
14968 @itemx 21164
14969 Schedules as an EV5 and has no instruction set extensions.
14970
14971 @item ev56
14972 @itemx 21164a
14973 Schedules as an EV5 and supports the BWX extension.
14974
14975 @item pca56
14976 @itemx 21164pc
14977 @itemx 21164PC
14978 Schedules as an EV5 and supports the BWX and MAX extensions.
14979
14980 @item ev6
14981 @itemx 21264
14982 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
14983
14984 @item ev67
14985 @itemx 21264a
14986 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
14987 @end table
14988
14989 Native toolchains also support the value @samp{native},
14990 which selects the best architecture option for the host processor.
14991 @option{-mcpu=native} has no effect if GCC does not recognize
14992 the processor.
14993
14994 @item -mtune=@var{cpu_type}
14995 @opindex mtune
14996 Set only the instruction scheduling parameters for machine type
14997 @var{cpu_type}. The instruction set is not changed.
14998
14999 Native toolchains also support the value @samp{native},
15000 which selects the best architecture option for the host processor.
15001 @option{-mtune=native} has no effect if GCC does not recognize
15002 the processor.
15003
15004 @item -mmemory-latency=@var{time}
15005 @opindex mmemory-latency
15006 Sets the latency the scheduler should assume for typical memory
15007 references as seen by the application. This number is highly
15008 dependent on the memory access patterns used by the application
15009 and the size of the external cache on the machine.
15010
15011 Valid options for @var{time} are
15012
15013 @table @samp
15014 @item @var{number}
15015 A decimal number representing clock cycles.
15016
15017 @item L1
15018 @itemx L2
15019 @itemx L3
15020 @itemx main
15021 The compiler contains estimates of the number of clock cycles for
15022 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15023 (also called Dcache, Scache, and Bcache), as well as to main memory.
15024 Note that L3 is only valid for EV5.
15025
15026 @end table
15027 @end table
15028
15029 @node FR30 Options
15030 @subsection FR30 Options
15031 @cindex FR30 Options
15032
15033 These options are defined specifically for the FR30 port.
15034
15035 @table @gcctabopt
15036
15037 @item -msmall-model
15038 @opindex msmall-model
15039 Use the small address space model. This can produce smaller code, but
15040 it does assume that all symbolic values and addresses fit into a
15041 20-bit range.
15042
15043 @item -mno-lsim
15044 @opindex mno-lsim
15045 Assume that runtime support has been provided and so there is no need
15046 to include the simulator library (@file{libsim.a}) on the linker
15047 command line.
15048
15049 @end table
15050
15051 @node FRV Options
15052 @subsection FRV Options
15053 @cindex FRV Options
15054
15055 @table @gcctabopt
15056 @item -mgpr-32
15057 @opindex mgpr-32
15058
15059 Only use the first 32 general-purpose registers.
15060
15061 @item -mgpr-64
15062 @opindex mgpr-64
15063
15064 Use all 64 general-purpose registers.
15065
15066 @item -mfpr-32
15067 @opindex mfpr-32
15068
15069 Use only the first 32 floating-point registers.
15070
15071 @item -mfpr-64
15072 @opindex mfpr-64
15073
15074 Use all 64 floating-point registers.
15075
15076 @item -mhard-float
15077 @opindex mhard-float
15078
15079 Use hardware instructions for floating-point operations.
15080
15081 @item -msoft-float
15082 @opindex msoft-float
15083
15084 Use library routines for floating-point operations.
15085
15086 @item -malloc-cc
15087 @opindex malloc-cc
15088
15089 Dynamically allocate condition code registers.
15090
15091 @item -mfixed-cc
15092 @opindex mfixed-cc
15093
15094 Do not try to dynamically allocate condition code registers, only
15095 use @code{icc0} and @code{fcc0}.
15096
15097 @item -mdword
15098 @opindex mdword
15099
15100 Change ABI to use double word insns.
15101
15102 @item -mno-dword
15103 @opindex mno-dword
15104
15105 Do not use double word instructions.
15106
15107 @item -mdouble
15108 @opindex mdouble
15109
15110 Use floating-point double instructions.
15111
15112 @item -mno-double
15113 @opindex mno-double
15114
15115 Do not use floating-point double instructions.
15116
15117 @item -mmedia
15118 @opindex mmedia
15119
15120 Use media instructions.
15121
15122 @item -mno-media
15123 @opindex mno-media
15124
15125 Do not use media instructions.
15126
15127 @item -mmuladd
15128 @opindex mmuladd
15129
15130 Use multiply and add/subtract instructions.
15131
15132 @item -mno-muladd
15133 @opindex mno-muladd
15134
15135 Do not use multiply and add/subtract instructions.
15136
15137 @item -mfdpic
15138 @opindex mfdpic
15139
15140 Select the FDPIC ABI, which uses function descriptors to represent
15141 pointers to functions. Without any PIC/PIE-related options, it
15142 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
15143 assumes GOT entries and small data are within a 12-bit range from the
15144 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15145 are computed with 32 bits.
15146 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15147
15148 @item -minline-plt
15149 @opindex minline-plt
15150
15151 Enable inlining of PLT entries in function calls to functions that are
15152 not known to bind locally. It has no effect without @option{-mfdpic}.
15153 It's enabled by default if optimizing for speed and compiling for
15154 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15155 optimization option such as @option{-O3} or above is present in the
15156 command line.
15157
15158 @item -mTLS
15159 @opindex mTLS
15160
15161 Assume a large TLS segment when generating thread-local code.
15162
15163 @item -mtls
15164 @opindex mtls
15165
15166 Do not assume a large TLS segment when generating thread-local code.
15167
15168 @item -mgprel-ro
15169 @opindex mgprel-ro
15170
15171 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15172 that is known to be in read-only sections. It's enabled by default,
15173 except for @option{-fpic} or @option{-fpie}: even though it may help
15174 make the global offset table smaller, it trades 1 instruction for 4.
15175 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15176 one of which may be shared by multiple symbols, and it avoids the need
15177 for a GOT entry for the referenced symbol, so it's more likely to be a
15178 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
15179
15180 @item -multilib-library-pic
15181 @opindex multilib-library-pic
15182
15183 Link with the (library, not FD) pic libraries. It's implied by
15184 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
15185 @option{-fpic} without @option{-mfdpic}. You should never have to use
15186 it explicitly.
15187
15188 @item -mlinked-fp
15189 @opindex mlinked-fp
15190
15191 Follow the EABI requirement of always creating a frame pointer whenever
15192 a stack frame is allocated. This option is enabled by default and can
15193 be disabled with @option{-mno-linked-fp}.
15194
15195 @item -mlong-calls
15196 @opindex mlong-calls
15197
15198 Use indirect addressing to call functions outside the current
15199 compilation unit. This allows the functions to be placed anywhere
15200 within the 32-bit address space.
15201
15202 @item -malign-labels
15203 @opindex malign-labels
15204
15205 Try to align labels to an 8-byte boundary by inserting NOPs into the
15206 previous packet. This option only has an effect when VLIW packing
15207 is enabled. It doesn't create new packets; it merely adds NOPs to
15208 existing ones.
15209
15210 @item -mlibrary-pic
15211 @opindex mlibrary-pic
15212
15213 Generate position-independent EABI code.
15214
15215 @item -macc-4
15216 @opindex macc-4
15217
15218 Use only the first four media accumulator registers.
15219
15220 @item -macc-8
15221 @opindex macc-8
15222
15223 Use all eight media accumulator registers.
15224
15225 @item -mpack
15226 @opindex mpack
15227
15228 Pack VLIW instructions.
15229
15230 @item -mno-pack
15231 @opindex mno-pack
15232
15233 Do not pack VLIW instructions.
15234
15235 @item -mno-eflags
15236 @opindex mno-eflags
15237
15238 Do not mark ABI switches in e_flags.
15239
15240 @item -mcond-move
15241 @opindex mcond-move
15242
15243 Enable the use of conditional-move instructions (default).
15244
15245 This switch is mainly for debugging the compiler and will likely be removed
15246 in a future version.
15247
15248 @item -mno-cond-move
15249 @opindex mno-cond-move
15250
15251 Disable the use of conditional-move instructions.
15252
15253 This switch is mainly for debugging the compiler and will likely be removed
15254 in a future version.
15255
15256 @item -mscc
15257 @opindex mscc
15258
15259 Enable the use of conditional set instructions (default).
15260
15261 This switch is mainly for debugging the compiler and will likely be removed
15262 in a future version.
15263
15264 @item -mno-scc
15265 @opindex mno-scc
15266
15267 Disable the use of conditional set instructions.
15268
15269 This switch is mainly for debugging the compiler and will likely be removed
15270 in a future version.
15271
15272 @item -mcond-exec
15273 @opindex mcond-exec
15274
15275 Enable the use of conditional execution (default).
15276
15277 This switch is mainly for debugging the compiler and will likely be removed
15278 in a future version.
15279
15280 @item -mno-cond-exec
15281 @opindex mno-cond-exec
15282
15283 Disable the use of conditional execution.
15284
15285 This switch is mainly for debugging the compiler and will likely be removed
15286 in a future version.
15287
15288 @item -mvliw-branch
15289 @opindex mvliw-branch
15290
15291 Run a pass to pack branches into VLIW instructions (default).
15292
15293 This switch is mainly for debugging the compiler and will likely be removed
15294 in a future version.
15295
15296 @item -mno-vliw-branch
15297 @opindex mno-vliw-branch
15298
15299 Do not run a pass to pack branches into VLIW instructions.
15300
15301 This switch is mainly for debugging the compiler and will likely be removed
15302 in a future version.
15303
15304 @item -mmulti-cond-exec
15305 @opindex mmulti-cond-exec
15306
15307 Enable optimization of @code{&&} and @code{||} in conditional execution
15308 (default).
15309
15310 This switch is mainly for debugging the compiler and will likely be removed
15311 in a future version.
15312
15313 @item -mno-multi-cond-exec
15314 @opindex mno-multi-cond-exec
15315
15316 Disable optimization of @code{&&} and @code{||} in conditional execution.
15317
15318 This switch is mainly for debugging the compiler and will likely be removed
15319 in a future version.
15320
15321 @item -mnested-cond-exec
15322 @opindex mnested-cond-exec
15323
15324 Enable nested conditional execution optimizations (default).
15325
15326 This switch is mainly for debugging the compiler and will likely be removed
15327 in a future version.
15328
15329 @item -mno-nested-cond-exec
15330 @opindex mno-nested-cond-exec
15331
15332 Disable nested conditional execution optimizations.
15333
15334 This switch is mainly for debugging the compiler and will likely be removed
15335 in a future version.
15336
15337 @item -moptimize-membar
15338 @opindex moptimize-membar
15339
15340 This switch removes redundant @code{membar} instructions from the
15341 compiler-generated code. It is enabled by default.
15342
15343 @item -mno-optimize-membar
15344 @opindex mno-optimize-membar
15345
15346 This switch disables the automatic removal of redundant @code{membar}
15347 instructions from the generated code.
15348
15349 @item -mtomcat-stats
15350 @opindex mtomcat-stats
15351
15352 Cause gas to print out tomcat statistics.
15353
15354 @item -mcpu=@var{cpu}
15355 @opindex mcpu
15356
15357 Select the processor type for which to generate code. Possible values are
15358 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15359 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15360
15361 @end table
15362
15363 @node GNU/Linux Options
15364 @subsection GNU/Linux Options
15365
15366 These @samp{-m} options are defined for GNU/Linux targets:
15367
15368 @table @gcctabopt
15369 @item -mglibc
15370 @opindex mglibc
15371 Use the GNU C library. This is the default except
15372 on @samp{*-*-linux-*uclibc*} and @samp{*-*-linux-*android*} targets.
15373
15374 @item -muclibc
15375 @opindex muclibc
15376 Use uClibc C library. This is the default on
15377 @samp{*-*-linux-*uclibc*} targets.
15378
15379 @item -mbionic
15380 @opindex mbionic
15381 Use Bionic C library. This is the default on
15382 @samp{*-*-linux-*android*} targets.
15383
15384 @item -mandroid
15385 @opindex mandroid
15386 Compile code compatible with Android platform. This is the default on
15387 @samp{*-*-linux-*android*} targets.
15388
15389 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15390 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
15391 this option makes the GCC driver pass Android-specific options to the linker.
15392 Finally, this option causes the preprocessor macro @code{__ANDROID__}
15393 to be defined.
15394
15395 @item -tno-android-cc
15396 @opindex tno-android-cc
15397 Disable compilation effects of @option{-mandroid}, i.e., do not enable
15398 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15399 @option{-fno-rtti} by default.
15400
15401 @item -tno-android-ld
15402 @opindex tno-android-ld
15403 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15404 linking options to the linker.
15405
15406 @end table
15407
15408 @node H8/300 Options
15409 @subsection H8/300 Options
15410
15411 These @samp{-m} options are defined for the H8/300 implementations:
15412
15413 @table @gcctabopt
15414 @item -mrelax
15415 @opindex mrelax
15416 Shorten some address references at link time, when possible; uses the
15417 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
15418 ld, Using ld}, for a fuller description.
15419
15420 @item -mh
15421 @opindex mh
15422 Generate code for the H8/300H@.
15423
15424 @item -ms
15425 @opindex ms
15426 Generate code for the H8S@.
15427
15428 @item -mn
15429 @opindex mn
15430 Generate code for the H8S and H8/300H in the normal mode. This switch
15431 must be used either with @option{-mh} or @option{-ms}.
15432
15433 @item -ms2600
15434 @opindex ms2600
15435 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
15436
15437 @item -mexr
15438 @opindex mexr
15439 Extended registers are stored on stack before execution of function
15440 with monitor attribute. Default option is @option{-mexr}.
15441 This option is valid only for H8S targets.
15442
15443 @item -mno-exr
15444 @opindex mno-exr
15445 Extended registers are not stored on stack before execution of function
15446 with monitor attribute. Default option is @option{-mno-exr}.
15447 This option is valid only for H8S targets.
15448
15449 @item -mint32
15450 @opindex mint32
15451 Make @code{int} data 32 bits by default.
15452
15453 @item -malign-300
15454 @opindex malign-300
15455 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15456 The default for the H8/300H and H8S is to align longs and floats on
15457 4-byte boundaries.
15458 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
15459 This option has no effect on the H8/300.
15460 @end table
15461
15462 @node HPPA Options
15463 @subsection HPPA Options
15464 @cindex HPPA Options
15465
15466 These @samp{-m} options are defined for the HPPA family of computers:
15467
15468 @table @gcctabopt
15469 @item -march=@var{architecture-type}
15470 @opindex march
15471 Generate code for the specified architecture. The choices for
15472 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
15473 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
15474 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15475 architecture option for your machine. Code compiled for lower numbered
15476 architectures runs on higher numbered architectures, but not the
15477 other way around.
15478
15479 @item -mpa-risc-1-0
15480 @itemx -mpa-risc-1-1
15481 @itemx -mpa-risc-2-0
15482 @opindex mpa-risc-1-0
15483 @opindex mpa-risc-1-1
15484 @opindex mpa-risc-2-0
15485 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15486
15487 @item -mjump-in-delay
15488 @opindex mjump-in-delay
15489 This option is ignored and provided for compatibility purposes only.
15490
15491 @item -mdisable-fpregs
15492 @opindex mdisable-fpregs
15493 Prevent floating-point registers from being used in any manner. This is
15494 necessary for compiling kernels that perform lazy context switching of
15495 floating-point registers. If you use this option and attempt to perform
15496 floating-point operations, the compiler aborts.
15497
15498 @item -mdisable-indexing
15499 @opindex mdisable-indexing
15500 Prevent the compiler from using indexing address modes. This avoids some
15501 rather obscure problems when compiling MIG generated code under MACH@.
15502
15503 @item -mno-space-regs
15504 @opindex mno-space-regs
15505 Generate code that assumes the target has no space registers. This allows
15506 GCC to generate faster indirect calls and use unscaled index address modes.
15507
15508 Such code is suitable for level 0 PA systems and kernels.
15509
15510 @item -mfast-indirect-calls
15511 @opindex mfast-indirect-calls
15512 Generate code that assumes calls never cross space boundaries. This
15513 allows GCC to emit code that performs faster indirect calls.
15514
15515 This option does not work in the presence of shared libraries or nested
15516 functions.
15517
15518 @item -mfixed-range=@var{register-range}
15519 @opindex mfixed-range
15520 Generate code treating the given register range as fixed registers.
15521 A fixed register is one that the register allocator cannot use. This is
15522 useful when compiling kernel code. A register range is specified as
15523 two registers separated by a dash. Multiple register ranges can be
15524 specified separated by a comma.
15525
15526 @item -mlong-load-store
15527 @opindex mlong-load-store
15528 Generate 3-instruction load and store sequences as sometimes required by
15529 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
15530 the HP compilers.
15531
15532 @item -mportable-runtime
15533 @opindex mportable-runtime
15534 Use the portable calling conventions proposed by HP for ELF systems.
15535
15536 @item -mgas
15537 @opindex mgas
15538 Enable the use of assembler directives only GAS understands.
15539
15540 @item -mschedule=@var{cpu-type}
15541 @opindex mschedule
15542 Schedule code according to the constraints for the machine type
15543 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
15544 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
15545 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15546 proper scheduling option for your machine. The default scheduling is
15547 @samp{8000}.
15548
15549 @item -mlinker-opt
15550 @opindex mlinker-opt
15551 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
15552 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
15553 linkers in which they give bogus error messages when linking some programs.
15554
15555 @item -msoft-float
15556 @opindex msoft-float
15557 Generate output containing library calls for floating point.
15558 @strong{Warning:} the requisite libraries are not available for all HPPA
15559 targets. Normally the facilities of the machine's usual C compiler are
15560 used, but this cannot be done directly in cross-compilation. You must make
15561 your own arrangements to provide suitable library functions for
15562 cross-compilation.
15563
15564 @option{-msoft-float} changes the calling convention in the output file;
15565 therefore, it is only useful if you compile @emph{all} of a program with
15566 this option. In particular, you need to compile @file{libgcc.a}, the
15567 library that comes with GCC, with @option{-msoft-float} in order for
15568 this to work.
15569
15570 @item -msio
15571 @opindex msio
15572 Generate the predefine, @code{_SIO}, for server IO@. The default is
15573 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
15574 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
15575 options are available under HP-UX and HI-UX@.
15576
15577 @item -mgnu-ld
15578 @opindex mgnu-ld
15579 Use options specific to GNU @command{ld}.
15580 This passes @option{-shared} to @command{ld} when
15581 building a shared library. It is the default when GCC is configured,
15582 explicitly or implicitly, with the GNU linker. This option does not
15583 affect which @command{ld} is called; it only changes what parameters
15584 are passed to that @command{ld}.
15585 The @command{ld} that is called is determined by the
15586 @option{--with-ld} configure option, GCC's program search path, and
15587 finally by the user's @env{PATH}. The linker used by GCC can be printed
15588 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
15589 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15590
15591 @item -mhp-ld
15592 @opindex mhp-ld
15593 Use options specific to HP @command{ld}.
15594 This passes @option{-b} to @command{ld} when building
15595 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15596 links. It is the default when GCC is configured, explicitly or
15597 implicitly, with the HP linker. This option does not affect
15598 which @command{ld} is called; it only changes what parameters are passed to that
15599 @command{ld}.
15600 The @command{ld} that is called is determined by the @option{--with-ld}
15601 configure option, GCC's program search path, and finally by the user's
15602 @env{PATH}. The linker used by GCC can be printed using @samp{which
15603 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
15604 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15605
15606 @item -mlong-calls
15607 @opindex mno-long-calls
15608 Generate code that uses long call sequences. This ensures that a call
15609 is always able to reach linker generated stubs. The default is to generate
15610 long calls only when the distance from the call site to the beginning
15611 of the function or translation unit, as the case may be, exceeds a
15612 predefined limit set by the branch type being used. The limits for
15613 normal calls are 7,600,000 and 240,000 bytes, respectively for the
15614 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
15615 240,000 bytes.
15616
15617 Distances are measured from the beginning of functions when using the
15618 @option{-ffunction-sections} option, or when using the @option{-mgas}
15619 and @option{-mno-portable-runtime} options together under HP-UX with
15620 the SOM linker.
15621
15622 It is normally not desirable to use this option as it degrades
15623 performance. However, it may be useful in large applications,
15624 particularly when partial linking is used to build the application.
15625
15626 The types of long calls used depends on the capabilities of the
15627 assembler and linker, and the type of code being generated. The
15628 impact on systems that support long absolute calls, and long pic
15629 symbol-difference or pc-relative calls should be relatively small.
15630 However, an indirect call is used on 32-bit ELF systems in pic code
15631 and it is quite long.
15632
15633 @item -munix=@var{unix-std}
15634 @opindex march
15635 Generate compiler predefines and select a startfile for the specified
15636 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
15637 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
15638 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
15639 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
15640 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
15641 and later.
15642
15643 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
15644 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
15645 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
15646 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
15647 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
15648 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
15649
15650 It is @emph{important} to note that this option changes the interfaces
15651 for various library routines. It also affects the operational behavior
15652 of the C library. Thus, @emph{extreme} care is needed in using this
15653 option.
15654
15655 Library code that is intended to operate with more than one UNIX
15656 standard must test, set and restore the variable @code{__xpg4_extended_mask}
15657 as appropriate. Most GNU software doesn't provide this capability.
15658
15659 @item -nolibdld
15660 @opindex nolibdld
15661 Suppress the generation of link options to search libdld.sl when the
15662 @option{-static} option is specified on HP-UX 10 and later.
15663
15664 @item -static
15665 @opindex static
15666 The HP-UX implementation of setlocale in libc has a dependency on
15667 libdld.sl. There isn't an archive version of libdld.sl. Thus,
15668 when the @option{-static} option is specified, special link options
15669 are needed to resolve this dependency.
15670
15671 On HP-UX 10 and later, the GCC driver adds the necessary options to
15672 link with libdld.sl when the @option{-static} option is specified.
15673 This causes the resulting binary to be dynamic. On the 64-bit port,
15674 the linkers generate dynamic binaries by default in any case. The
15675 @option{-nolibdld} option can be used to prevent the GCC driver from
15676 adding these link options.
15677
15678 @item -threads
15679 @opindex threads
15680 Add support for multithreading with the @dfn{dce thread} library
15681 under HP-UX@. This option sets flags for both the preprocessor and
15682 linker.
15683 @end table
15684
15685 @node IA-64 Options
15686 @subsection IA-64 Options
15687 @cindex IA-64 Options
15688
15689 These are the @samp{-m} options defined for the Intel IA-64 architecture.
15690
15691 @table @gcctabopt
15692 @item -mbig-endian
15693 @opindex mbig-endian
15694 Generate code for a big-endian target. This is the default for HP-UX@.
15695
15696 @item -mlittle-endian
15697 @opindex mlittle-endian
15698 Generate code for a little-endian target. This is the default for AIX5
15699 and GNU/Linux.
15700
15701 @item -mgnu-as
15702 @itemx -mno-gnu-as
15703 @opindex mgnu-as
15704 @opindex mno-gnu-as
15705 Generate (or don't) code for the GNU assembler. This is the default.
15706 @c Also, this is the default if the configure option @option{--with-gnu-as}
15707 @c is used.
15708
15709 @item -mgnu-ld
15710 @itemx -mno-gnu-ld
15711 @opindex mgnu-ld
15712 @opindex mno-gnu-ld
15713 Generate (or don't) code for the GNU linker. This is the default.
15714 @c Also, this is the default if the configure option @option{--with-gnu-ld}
15715 @c is used.
15716
15717 @item -mno-pic
15718 @opindex mno-pic
15719 Generate code that does not use a global pointer register. The result
15720 is not position independent code, and violates the IA-64 ABI@.
15721
15722 @item -mvolatile-asm-stop
15723 @itemx -mno-volatile-asm-stop
15724 @opindex mvolatile-asm-stop
15725 @opindex mno-volatile-asm-stop
15726 Generate (or don't) a stop bit immediately before and after volatile asm
15727 statements.
15728
15729 @item -mregister-names
15730 @itemx -mno-register-names
15731 @opindex mregister-names
15732 @opindex mno-register-names
15733 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
15734 the stacked registers. This may make assembler output more readable.
15735
15736 @item -mno-sdata
15737 @itemx -msdata
15738 @opindex mno-sdata
15739 @opindex msdata
15740 Disable (or enable) optimizations that use the small data section. This may
15741 be useful for working around optimizer bugs.
15742
15743 @item -mconstant-gp
15744 @opindex mconstant-gp
15745 Generate code that uses a single constant global pointer value. This is
15746 useful when compiling kernel code.
15747
15748 @item -mauto-pic
15749 @opindex mauto-pic
15750 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
15751 This is useful when compiling firmware code.
15752
15753 @item -minline-float-divide-min-latency
15754 @opindex minline-float-divide-min-latency
15755 Generate code for inline divides of floating-point values
15756 using the minimum latency algorithm.
15757
15758 @item -minline-float-divide-max-throughput
15759 @opindex minline-float-divide-max-throughput
15760 Generate code for inline divides of floating-point values
15761 using the maximum throughput algorithm.
15762
15763 @item -mno-inline-float-divide
15764 @opindex mno-inline-float-divide
15765 Do not generate inline code for divides of floating-point values.
15766
15767 @item -minline-int-divide-min-latency
15768 @opindex minline-int-divide-min-latency
15769 Generate code for inline divides of integer values
15770 using the minimum latency algorithm.
15771
15772 @item -minline-int-divide-max-throughput
15773 @opindex minline-int-divide-max-throughput
15774 Generate code for inline divides of integer values
15775 using the maximum throughput algorithm.
15776
15777 @item -mno-inline-int-divide
15778 @opindex mno-inline-int-divide
15779 Do not generate inline code for divides of integer values.
15780
15781 @item -minline-sqrt-min-latency
15782 @opindex minline-sqrt-min-latency
15783 Generate code for inline square roots
15784 using the minimum latency algorithm.
15785
15786 @item -minline-sqrt-max-throughput
15787 @opindex minline-sqrt-max-throughput
15788 Generate code for inline square roots
15789 using the maximum throughput algorithm.
15790
15791 @item -mno-inline-sqrt
15792 @opindex mno-inline-sqrt
15793 Do not generate inline code for @code{sqrt}.
15794
15795 @item -mfused-madd
15796 @itemx -mno-fused-madd
15797 @opindex mfused-madd
15798 @opindex mno-fused-madd
15799 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
15800 instructions. The default is to use these instructions.
15801
15802 @item -mno-dwarf2-asm
15803 @itemx -mdwarf2-asm
15804 @opindex mno-dwarf2-asm
15805 @opindex mdwarf2-asm
15806 Don't (or do) generate assembler code for the DWARF 2 line number debugging
15807 info. This may be useful when not using the GNU assembler.
15808
15809 @item -mearly-stop-bits
15810 @itemx -mno-early-stop-bits
15811 @opindex mearly-stop-bits
15812 @opindex mno-early-stop-bits
15813 Allow stop bits to be placed earlier than immediately preceding the
15814 instruction that triggered the stop bit. This can improve instruction
15815 scheduling, but does not always do so.
15816
15817 @item -mfixed-range=@var{register-range}
15818 @opindex mfixed-range
15819 Generate code treating the given register range as fixed registers.
15820 A fixed register is one that the register allocator cannot use. This is
15821 useful when compiling kernel code. A register range is specified as
15822 two registers separated by a dash. Multiple register ranges can be
15823 specified separated by a comma.
15824
15825 @item -mtls-size=@var{tls-size}
15826 @opindex mtls-size
15827 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
15828 64.
15829
15830 @item -mtune=@var{cpu-type}
15831 @opindex mtune
15832 Tune the instruction scheduling for a particular CPU, Valid values are
15833 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
15834 and @samp{mckinley}.
15835
15836 @item -milp32
15837 @itemx -mlp64
15838 @opindex milp32
15839 @opindex mlp64
15840 Generate code for a 32-bit or 64-bit environment.
15841 The 32-bit environment sets int, long and pointer to 32 bits.
15842 The 64-bit environment sets int to 32 bits and long and pointer
15843 to 64 bits. These are HP-UX specific flags.
15844
15845 @item -mno-sched-br-data-spec
15846 @itemx -msched-br-data-spec
15847 @opindex mno-sched-br-data-spec
15848 @opindex msched-br-data-spec
15849 (Dis/En)able data speculative scheduling before reload.
15850 This results in generation of @code{ld.a} instructions and
15851 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15852 The default is 'disable'.
15853
15854 @item -msched-ar-data-spec
15855 @itemx -mno-sched-ar-data-spec
15856 @opindex msched-ar-data-spec
15857 @opindex mno-sched-ar-data-spec
15858 (En/Dis)able data speculative scheduling after reload.
15859 This results in generation of @code{ld.a} instructions and
15860 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15861 The default is 'enable'.
15862
15863 @item -mno-sched-control-spec
15864 @itemx -msched-control-spec
15865 @opindex mno-sched-control-spec
15866 @opindex msched-control-spec
15867 (Dis/En)able control speculative scheduling. This feature is
15868 available only during region scheduling (i.e.@: before reload).
15869 This results in generation of the @code{ld.s} instructions and
15870 the corresponding check instructions @code{chk.s}.
15871 The default is 'disable'.
15872
15873 @item -msched-br-in-data-spec
15874 @itemx -mno-sched-br-in-data-spec
15875 @opindex msched-br-in-data-spec
15876 @opindex mno-sched-br-in-data-spec
15877 (En/Dis)able speculative scheduling of the instructions that
15878 are dependent on the data speculative loads before reload.
15879 This is effective only with @option{-msched-br-data-spec} enabled.
15880 The default is 'enable'.
15881
15882 @item -msched-ar-in-data-spec
15883 @itemx -mno-sched-ar-in-data-spec
15884 @opindex msched-ar-in-data-spec
15885 @opindex mno-sched-ar-in-data-spec
15886 (En/Dis)able speculative scheduling of the instructions that
15887 are dependent on the data speculative loads after reload.
15888 This is effective only with @option{-msched-ar-data-spec} enabled.
15889 The default is 'enable'.
15890
15891 @item -msched-in-control-spec
15892 @itemx -mno-sched-in-control-spec
15893 @opindex msched-in-control-spec
15894 @opindex mno-sched-in-control-spec
15895 (En/Dis)able speculative scheduling of the instructions that
15896 are dependent on the control speculative loads.
15897 This is effective only with @option{-msched-control-spec} enabled.
15898 The default is 'enable'.
15899
15900 @item -mno-sched-prefer-non-data-spec-insns
15901 @itemx -msched-prefer-non-data-spec-insns
15902 @opindex mno-sched-prefer-non-data-spec-insns
15903 @opindex msched-prefer-non-data-spec-insns
15904 If enabled, data-speculative instructions are chosen for schedule
15905 only if there are no other choices at the moment. This makes
15906 the use of the data speculation much more conservative.
15907 The default is 'disable'.
15908
15909 @item -mno-sched-prefer-non-control-spec-insns
15910 @itemx -msched-prefer-non-control-spec-insns
15911 @opindex mno-sched-prefer-non-control-spec-insns
15912 @opindex msched-prefer-non-control-spec-insns
15913 If enabled, control-speculative instructions are chosen for schedule
15914 only if there are no other choices at the moment. This makes
15915 the use of the control speculation much more conservative.
15916 The default is 'disable'.
15917
15918 @item -mno-sched-count-spec-in-critical-path
15919 @itemx -msched-count-spec-in-critical-path
15920 @opindex mno-sched-count-spec-in-critical-path
15921 @opindex msched-count-spec-in-critical-path
15922 If enabled, speculative dependencies are considered during
15923 computation of the instructions priorities. This makes the use of the
15924 speculation a bit more conservative.
15925 The default is 'disable'.
15926
15927 @item -msched-spec-ldc
15928 @opindex msched-spec-ldc
15929 Use a simple data speculation check. This option is on by default.
15930
15931 @item -msched-control-spec-ldc
15932 @opindex msched-spec-ldc
15933 Use a simple check for control speculation. This option is on by default.
15934
15935 @item -msched-stop-bits-after-every-cycle
15936 @opindex msched-stop-bits-after-every-cycle
15937 Place a stop bit after every cycle when scheduling. This option is on
15938 by default.
15939
15940 @item -msched-fp-mem-deps-zero-cost
15941 @opindex msched-fp-mem-deps-zero-cost
15942 Assume that floating-point stores and loads are not likely to cause a conflict
15943 when placed into the same instruction group. This option is disabled by
15944 default.
15945
15946 @item -msel-sched-dont-check-control-spec
15947 @opindex msel-sched-dont-check-control-spec
15948 Generate checks for control speculation in selective scheduling.
15949 This flag is disabled by default.
15950
15951 @item -msched-max-memory-insns=@var{max-insns}
15952 @opindex msched-max-memory-insns
15953 Limit on the number of memory insns per instruction group, giving lower
15954 priority to subsequent memory insns attempting to schedule in the same
15955 instruction group. Frequently useful to prevent cache bank conflicts.
15956 The default value is 1.
15957
15958 @item -msched-max-memory-insns-hard-limit
15959 @opindex msched-max-memory-insns-hard-limit
15960 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
15961 disallowing more than that number in an instruction group.
15962 Otherwise, the limit is ``soft'', meaning that non-memory operations
15963 are preferred when the limit is reached, but memory operations may still
15964 be scheduled.
15965
15966 @end table
15967
15968 @node LM32 Options
15969 @subsection LM32 Options
15970 @cindex LM32 options
15971
15972 These @option{-m} options are defined for the LatticeMico32 architecture:
15973
15974 @table @gcctabopt
15975 @item -mbarrel-shift-enabled
15976 @opindex mbarrel-shift-enabled
15977 Enable barrel-shift instructions.
15978
15979 @item -mdivide-enabled
15980 @opindex mdivide-enabled
15981 Enable divide and modulus instructions.
15982
15983 @item -mmultiply-enabled
15984 @opindex multiply-enabled
15985 Enable multiply instructions.
15986
15987 @item -msign-extend-enabled
15988 @opindex msign-extend-enabled
15989 Enable sign extend instructions.
15990
15991 @item -muser-enabled
15992 @opindex muser-enabled
15993 Enable user-defined instructions.
15994
15995 @end table
15996
15997 @node M32C Options
15998 @subsection M32C Options
15999 @cindex M32C options
16000
16001 @table @gcctabopt
16002 @item -mcpu=@var{name}
16003 @opindex mcpu=
16004 Select the CPU for which code is generated. @var{name} may be one of
16005 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16006 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16007 the M32C/80 series.
16008
16009 @item -msim
16010 @opindex msim
16011 Specifies that the program will be run on the simulator. This causes
16012 an alternate runtime library to be linked in which supports, for
16013 example, file I/O@. You must not use this option when generating
16014 programs that will run on real hardware; you must provide your own
16015 runtime library for whatever I/O functions are needed.
16016
16017 @item -memregs=@var{number}
16018 @opindex memregs=
16019 Specifies the number of memory-based pseudo-registers GCC uses
16020 during code generation. These pseudo-registers are used like real
16021 registers, so there is a tradeoff between GCC's ability to fit the
16022 code into available registers, and the performance penalty of using
16023 memory instead of registers. Note that all modules in a program must
16024 be compiled with the same value for this option. Because of that, you
16025 must not use this option with GCC's default runtime libraries.
16026
16027 @end table
16028
16029 @node M32R/D Options
16030 @subsection M32R/D Options
16031 @cindex M32R/D options
16032
16033 These @option{-m} options are defined for Renesas M32R/D architectures:
16034
16035 @table @gcctabopt
16036 @item -m32r2
16037 @opindex m32r2
16038 Generate code for the M32R/2@.
16039
16040 @item -m32rx
16041 @opindex m32rx
16042 Generate code for the M32R/X@.
16043
16044 @item -m32r
16045 @opindex m32r
16046 Generate code for the M32R@. This is the default.
16047
16048 @item -mmodel=small
16049 @opindex mmodel=small
16050 Assume all objects live in the lower 16MB of memory (so that their addresses
16051 can be loaded with the @code{ld24} instruction), and assume all subroutines
16052 are reachable with the @code{bl} instruction.
16053 This is the default.
16054
16055 The addressability of a particular object can be set with the
16056 @code{model} attribute.
16057
16058 @item -mmodel=medium
16059 @opindex mmodel=medium
16060 Assume objects may be anywhere in the 32-bit address space (the compiler
16061 generates @code{seth/add3} instructions to load their addresses), and
16062 assume all subroutines are reachable with the @code{bl} instruction.
16063
16064 @item -mmodel=large
16065 @opindex mmodel=large
16066 Assume objects may be anywhere in the 32-bit address space (the compiler
16067 generates @code{seth/add3} instructions to load their addresses), and
16068 assume subroutines may not be reachable with the @code{bl} instruction
16069 (the compiler generates the much slower @code{seth/add3/jl}
16070 instruction sequence).
16071
16072 @item -msdata=none
16073 @opindex msdata=none
16074 Disable use of the small data area. Variables are put into
16075 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16076 @code{section} attribute has been specified).
16077 This is the default.
16078
16079 The small data area consists of sections @code{.sdata} and @code{.sbss}.
16080 Objects may be explicitly put in the small data area with the
16081 @code{section} attribute using one of these sections.
16082
16083 @item -msdata=sdata
16084 @opindex msdata=sdata
16085 Put small global and static data in the small data area, but do not
16086 generate special code to reference them.
16087
16088 @item -msdata=use
16089 @opindex msdata=use
16090 Put small global and static data in the small data area, and generate
16091 special instructions to reference them.
16092
16093 @item -G @var{num}
16094 @opindex G
16095 @cindex smaller data references
16096 Put global and static objects less than or equal to @var{num} bytes
16097 into the small data or BSS sections instead of the normal data or BSS
16098 sections. The default value of @var{num} is 8.
16099 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16100 for this option to have any effect.
16101
16102 All modules should be compiled with the same @option{-G @var{num}} value.
16103 Compiling with different values of @var{num} may or may not work; if it
16104 doesn't the linker gives an error message---incorrect code is not
16105 generated.
16106
16107 @item -mdebug
16108 @opindex mdebug
16109 Makes the M32R-specific code in the compiler display some statistics
16110 that might help in debugging programs.
16111
16112 @item -malign-loops
16113 @opindex malign-loops
16114 Align all loops to a 32-byte boundary.
16115
16116 @item -mno-align-loops
16117 @opindex mno-align-loops
16118 Do not enforce a 32-byte alignment for loops. This is the default.
16119
16120 @item -missue-rate=@var{number}
16121 @opindex missue-rate=@var{number}
16122 Issue @var{number} instructions per cycle. @var{number} can only be 1
16123 or 2.
16124
16125 @item -mbranch-cost=@var{number}
16126 @opindex mbranch-cost=@var{number}
16127 @var{number} can only be 1 or 2. If it is 1 then branches are
16128 preferred over conditional code, if it is 2, then the opposite applies.
16129
16130 @item -mflush-trap=@var{number}
16131 @opindex mflush-trap=@var{number}
16132 Specifies the trap number to use to flush the cache. The default is
16133 12. Valid numbers are between 0 and 15 inclusive.
16134
16135 @item -mno-flush-trap
16136 @opindex mno-flush-trap
16137 Specifies that the cache cannot be flushed by using a trap.
16138
16139 @item -mflush-func=@var{name}
16140 @opindex mflush-func=@var{name}
16141 Specifies the name of the operating system function to call to flush
16142 the cache. The default is @samp{_flush_cache}, but a function call
16143 is only used if a trap is not available.
16144
16145 @item -mno-flush-func
16146 @opindex mno-flush-func
16147 Indicates that there is no OS function for flushing the cache.
16148
16149 @end table
16150
16151 @node M680x0 Options
16152 @subsection M680x0 Options
16153 @cindex M680x0 options
16154
16155 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16156 The default settings depend on which architecture was selected when
16157 the compiler was configured; the defaults for the most common choices
16158 are given below.
16159
16160 @table @gcctabopt
16161 @item -march=@var{arch}
16162 @opindex march
16163 Generate code for a specific M680x0 or ColdFire instruction set
16164 architecture. Permissible values of @var{arch} for M680x0
16165 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16166 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
16167 architectures are selected according to Freescale's ISA classification
16168 and the permissible values are: @samp{isaa}, @samp{isaaplus},
16169 @samp{isab} and @samp{isac}.
16170
16171 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16172 code for a ColdFire target. The @var{arch} in this macro is one of the
16173 @option{-march} arguments given above.
16174
16175 When used together, @option{-march} and @option{-mtune} select code
16176 that runs on a family of similar processors but that is optimized
16177 for a particular microarchitecture.
16178
16179 @item -mcpu=@var{cpu}
16180 @opindex mcpu
16181 Generate code for a specific M680x0 or ColdFire processor.
16182 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16183 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16184 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
16185 below, which also classifies the CPUs into families:
16186
16187 @multitable @columnfractions 0.20 0.80
16188 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16189 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16190 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16191 @item @samp{5206e} @tab @samp{5206e}
16192 @item @samp{5208} @tab @samp{5207} @samp{5208}
16193 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16194 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16195 @item @samp{5216} @tab @samp{5214} @samp{5216}
16196 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16197 @item @samp{5225} @tab @samp{5224} @samp{5225}
16198 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16199 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16200 @item @samp{5249} @tab @samp{5249}
16201 @item @samp{5250} @tab @samp{5250}
16202 @item @samp{5271} @tab @samp{5270} @samp{5271}
16203 @item @samp{5272} @tab @samp{5272}
16204 @item @samp{5275} @tab @samp{5274} @samp{5275}
16205 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16206 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16207 @item @samp{5307} @tab @samp{5307}
16208 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16209 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16210 @item @samp{5407} @tab @samp{5407}
16211 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16212 @end multitable
16213
16214 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16215 @var{arch} is compatible with @var{cpu}. Other combinations of
16216 @option{-mcpu} and @option{-march} are rejected.
16217
16218 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16219 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
16220 where the value of @var{family} is given by the table above.
16221
16222 @item -mtune=@var{tune}
16223 @opindex mtune
16224 Tune the code for a particular microarchitecture within the
16225 constraints set by @option{-march} and @option{-mcpu}.
16226 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16227 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16228 and @samp{cpu32}. The ColdFire microarchitectures
16229 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16230
16231 You can also use @option{-mtune=68020-40} for code that needs
16232 to run relatively well on 68020, 68030 and 68040 targets.
16233 @option{-mtune=68020-60} is similar but includes 68060 targets
16234 as well. These two options select the same tuning decisions as
16235 @option{-m68020-40} and @option{-m68020-60} respectively.
16236
16237 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16238 when tuning for 680x0 architecture @var{arch}. It also defines
16239 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16240 option is used. If GCC is tuning for a range of architectures,
16241 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16242 it defines the macros for every architecture in the range.
16243
16244 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16245 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16246 of the arguments given above.
16247
16248 @item -m68000
16249 @itemx -mc68000
16250 @opindex m68000
16251 @opindex mc68000
16252 Generate output for a 68000. This is the default
16253 when the compiler is configured for 68000-based systems.
16254 It is equivalent to @option{-march=68000}.
16255
16256 Use this option for microcontrollers with a 68000 or EC000 core,
16257 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16258
16259 @item -m68010
16260 @opindex m68010
16261 Generate output for a 68010. This is the default
16262 when the compiler is configured for 68010-based systems.
16263 It is equivalent to @option{-march=68010}.
16264
16265 @item -m68020
16266 @itemx -mc68020
16267 @opindex m68020
16268 @opindex mc68020
16269 Generate output for a 68020. This is the default
16270 when the compiler is configured for 68020-based systems.
16271 It is equivalent to @option{-march=68020}.
16272
16273 @item -m68030
16274 @opindex m68030
16275 Generate output for a 68030. This is the default when the compiler is
16276 configured for 68030-based systems. It is equivalent to
16277 @option{-march=68030}.
16278
16279 @item -m68040
16280 @opindex m68040
16281 Generate output for a 68040. This is the default when the compiler is
16282 configured for 68040-based systems. It is equivalent to
16283 @option{-march=68040}.
16284
16285 This option inhibits the use of 68881/68882 instructions that have to be
16286 emulated by software on the 68040. Use this option if your 68040 does not
16287 have code to emulate those instructions.
16288
16289 @item -m68060
16290 @opindex m68060
16291 Generate output for a 68060. This is the default when the compiler is
16292 configured for 68060-based systems. It is equivalent to
16293 @option{-march=68060}.
16294
16295 This option inhibits the use of 68020 and 68881/68882 instructions that
16296 have to be emulated by software on the 68060. Use this option if your 68060
16297 does not have code to emulate those instructions.
16298
16299 @item -mcpu32
16300 @opindex mcpu32
16301 Generate output for a CPU32. This is the default
16302 when the compiler is configured for CPU32-based systems.
16303 It is equivalent to @option{-march=cpu32}.
16304
16305 Use this option for microcontrollers with a
16306 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
16307 68336, 68340, 68341, 68349 and 68360.
16308
16309 @item -m5200
16310 @opindex m5200
16311 Generate output for a 520X ColdFire CPU@. This is the default
16312 when the compiler is configured for 520X-based systems.
16313 It is equivalent to @option{-mcpu=5206}, and is now deprecated
16314 in favor of that option.
16315
16316 Use this option for microcontroller with a 5200 core, including
16317 the MCF5202, MCF5203, MCF5204 and MCF5206.
16318
16319 @item -m5206e
16320 @opindex m5206e
16321 Generate output for a 5206e ColdFire CPU@. The option is now
16322 deprecated in favor of the equivalent @option{-mcpu=5206e}.
16323
16324 @item -m528x
16325 @opindex m528x
16326 Generate output for a member of the ColdFire 528X family.
16327 The option is now deprecated in favor of the equivalent
16328 @option{-mcpu=528x}.
16329
16330 @item -m5307
16331 @opindex m5307
16332 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
16333 in favor of the equivalent @option{-mcpu=5307}.
16334
16335 @item -m5407
16336 @opindex m5407
16337 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
16338 in favor of the equivalent @option{-mcpu=5407}.
16339
16340 @item -mcfv4e
16341 @opindex mcfv4e
16342 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16343 This includes use of hardware floating-point instructions.
16344 The option is equivalent to @option{-mcpu=547x}, and is now
16345 deprecated in favor of that option.
16346
16347 @item -m68020-40
16348 @opindex m68020-40
16349 Generate output for a 68040, without using any of the new instructions.
16350 This results in code that can run relatively efficiently on either a
16351 68020/68881 or a 68030 or a 68040. The generated code does use the
16352 68881 instructions that are emulated on the 68040.
16353
16354 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16355
16356 @item -m68020-60
16357 @opindex m68020-60
16358 Generate output for a 68060, without using any of the new instructions.
16359 This results in code that can run relatively efficiently on either a
16360 68020/68881 or a 68030 or a 68040. The generated code does use the
16361 68881 instructions that are emulated on the 68060.
16362
16363 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16364
16365 @item -mhard-float
16366 @itemx -m68881
16367 @opindex mhard-float
16368 @opindex m68881
16369 Generate floating-point instructions. This is the default for 68020
16370 and above, and for ColdFire devices that have an FPU@. It defines the
16371 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16372 on ColdFire targets.
16373
16374 @item -msoft-float
16375 @opindex msoft-float
16376 Do not generate floating-point instructions; use library calls instead.
16377 This is the default for 68000, 68010, and 68832 targets. It is also
16378 the default for ColdFire devices that have no FPU.
16379
16380 @item -mdiv
16381 @itemx -mno-div
16382 @opindex mdiv
16383 @opindex mno-div
16384 Generate (do not generate) ColdFire hardware divide and remainder
16385 instructions. If @option{-march} is used without @option{-mcpu},
16386 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16387 architectures. Otherwise, the default is taken from the target CPU
16388 (either the default CPU, or the one specified by @option{-mcpu}). For
16389 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16390 @option{-mcpu=5206e}.
16391
16392 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16393
16394 @item -mshort
16395 @opindex mshort
16396 Consider type @code{int} to be 16 bits wide, like @code{short int}.
16397 Additionally, parameters passed on the stack are also aligned to a
16398 16-bit boundary even on targets whose API mandates promotion to 32-bit.
16399
16400 @item -mno-short
16401 @opindex mno-short
16402 Do not consider type @code{int} to be 16 bits wide. This is the default.
16403
16404 @item -mnobitfield
16405 @itemx -mno-bitfield
16406 @opindex mnobitfield
16407 @opindex mno-bitfield
16408 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
16409 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16410
16411 @item -mbitfield
16412 @opindex mbitfield
16413 Do use the bit-field instructions. The @option{-m68020} option implies
16414 @option{-mbitfield}. This is the default if you use a configuration
16415 designed for a 68020.
16416
16417 @item -mrtd
16418 @opindex mrtd
16419 Use a different function-calling convention, in which functions
16420 that take a fixed number of arguments return with the @code{rtd}
16421 instruction, which pops their arguments while returning. This
16422 saves one instruction in the caller since there is no need to pop
16423 the arguments there.
16424
16425 This calling convention is incompatible with the one normally
16426 used on Unix, so you cannot use it if you need to call libraries
16427 compiled with the Unix compiler.
16428
16429 Also, you must provide function prototypes for all functions that
16430 take variable numbers of arguments (including @code{printf});
16431 otherwise incorrect code is generated for calls to those
16432 functions.
16433
16434 In addition, seriously incorrect code results if you call a
16435 function with too many arguments. (Normally, extra arguments are
16436 harmlessly ignored.)
16437
16438 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
16439 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16440
16441 @item -mno-rtd
16442 @opindex mno-rtd
16443 Do not use the calling conventions selected by @option{-mrtd}.
16444 This is the default.
16445
16446 @item -malign-int
16447 @itemx -mno-align-int
16448 @opindex malign-int
16449 @opindex mno-align-int
16450 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16451 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
16452 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16453 Aligning variables on 32-bit boundaries produces code that runs somewhat
16454 faster on processors with 32-bit busses at the expense of more memory.
16455
16456 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
16457 aligns structures containing the above types differently than
16458 most published application binary interface specifications for the m68k.
16459
16460 @item -mpcrel
16461 @opindex mpcrel
16462 Use the pc-relative addressing mode of the 68000 directly, instead of
16463 using a global offset table. At present, this option implies @option{-fpic},
16464 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
16465 not presently supported with @option{-mpcrel}, though this could be supported for
16466 68020 and higher processors.
16467
16468 @item -mno-strict-align
16469 @itemx -mstrict-align
16470 @opindex mno-strict-align
16471 @opindex mstrict-align
16472 Do not (do) assume that unaligned memory references are handled by
16473 the system.
16474
16475 @item -msep-data
16476 Generate code that allows the data segment to be located in a different
16477 area of memory from the text segment. This allows for execute-in-place in
16478 an environment without virtual memory management. This option implies
16479 @option{-fPIC}.
16480
16481 @item -mno-sep-data
16482 Generate code that assumes that the data segment follows the text segment.
16483 This is the default.
16484
16485 @item -mid-shared-library
16486 Generate code that supports shared libraries via the library ID method.
16487 This allows for execute-in-place and shared libraries in an environment
16488 without virtual memory management. This option implies @option{-fPIC}.
16489
16490 @item -mno-id-shared-library
16491 Generate code that doesn't assume ID-based shared libraries are being used.
16492 This is the default.
16493
16494 @item -mshared-library-id=n
16495 Specifies the identification number of the ID-based shared library being
16496 compiled. Specifying a value of 0 generates more compact code; specifying
16497 other values forces the allocation of that number to the current
16498 library, but is no more space- or time-efficient than omitting this option.
16499
16500 @item -mxgot
16501 @itemx -mno-xgot
16502 @opindex mxgot
16503 @opindex mno-xgot
16504 When generating position-independent code for ColdFire, generate code
16505 that works if the GOT has more than 8192 entries. This code is
16506 larger and slower than code generated without this option. On M680x0
16507 processors, this option is not needed; @option{-fPIC} suffices.
16508
16509 GCC normally uses a single instruction to load values from the GOT@.
16510 While this is relatively efficient, it only works if the GOT
16511 is smaller than about 64k. Anything larger causes the linker
16512 to report an error such as:
16513
16514 @cindex relocation truncated to fit (ColdFire)
16515 @smallexample
16516 relocation truncated to fit: R_68K_GOT16O foobar
16517 @end smallexample
16518
16519 If this happens, you should recompile your code with @option{-mxgot}.
16520 It should then work with very large GOTs. However, code generated with
16521 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16522 the value of a global symbol.
16523
16524 Note that some linkers, including newer versions of the GNU linker,
16525 can create multiple GOTs and sort GOT entries. If you have such a linker,
16526 you should only need to use @option{-mxgot} when compiling a single
16527 object file that accesses more than 8192 GOT entries. Very few do.
16528
16529 These options have no effect unless GCC is generating
16530 position-independent code.
16531
16532 @end table
16533
16534 @node MCore Options
16535 @subsection MCore Options
16536 @cindex MCore options
16537
16538 These are the @samp{-m} options defined for the Motorola M*Core
16539 processors.
16540
16541 @table @gcctabopt
16542
16543 @item -mhardlit
16544 @itemx -mno-hardlit
16545 @opindex mhardlit
16546 @opindex mno-hardlit
16547 Inline constants into the code stream if it can be done in two
16548 instructions or less.
16549
16550 @item -mdiv
16551 @itemx -mno-div
16552 @opindex mdiv
16553 @opindex mno-div
16554 Use the divide instruction. (Enabled by default).
16555
16556 @item -mrelax-immediate
16557 @itemx -mno-relax-immediate
16558 @opindex mrelax-immediate
16559 @opindex mno-relax-immediate
16560 Allow arbitrary-sized immediates in bit operations.
16561
16562 @item -mwide-bitfields
16563 @itemx -mno-wide-bitfields
16564 @opindex mwide-bitfields
16565 @opindex mno-wide-bitfields
16566 Always treat bit-fields as @code{int}-sized.
16567
16568 @item -m4byte-functions
16569 @itemx -mno-4byte-functions
16570 @opindex m4byte-functions
16571 @opindex mno-4byte-functions
16572 Force all functions to be aligned to a 4-byte boundary.
16573
16574 @item -mcallgraph-data
16575 @itemx -mno-callgraph-data
16576 @opindex mcallgraph-data
16577 @opindex mno-callgraph-data
16578 Emit callgraph information.
16579
16580 @item -mslow-bytes
16581 @itemx -mno-slow-bytes
16582 @opindex mslow-bytes
16583 @opindex mno-slow-bytes
16584 Prefer word access when reading byte quantities.
16585
16586 @item -mlittle-endian
16587 @itemx -mbig-endian
16588 @opindex mlittle-endian
16589 @opindex mbig-endian
16590 Generate code for a little-endian target.
16591
16592 @item -m210
16593 @itemx -m340
16594 @opindex m210
16595 @opindex m340
16596 Generate code for the 210 processor.
16597
16598 @item -mno-lsim
16599 @opindex mno-lsim
16600 Assume that runtime support has been provided and so omit the
16601 simulator library (@file{libsim.a)} from the linker command line.
16602
16603 @item -mstack-increment=@var{size}
16604 @opindex mstack-increment
16605 Set the maximum amount for a single stack increment operation. Large
16606 values can increase the speed of programs that contain functions
16607 that need a large amount of stack space, but they can also trigger a
16608 segmentation fault if the stack is extended too much. The default
16609 value is 0x1000.
16610
16611 @end table
16612
16613 @node MeP Options
16614 @subsection MeP Options
16615 @cindex MeP options
16616
16617 @table @gcctabopt
16618
16619 @item -mabsdiff
16620 @opindex mabsdiff
16621 Enables the @code{abs} instruction, which is the absolute difference
16622 between two registers.
16623
16624 @item -mall-opts
16625 @opindex mall-opts
16626 Enables all the optional instructions---average, multiply, divide, bit
16627 operations, leading zero, absolute difference, min/max, clip, and
16628 saturation.
16629
16630
16631 @item -maverage
16632 @opindex maverage
16633 Enables the @code{ave} instruction, which computes the average of two
16634 registers.
16635
16636 @item -mbased=@var{n}
16637 @opindex mbased=
16638 Variables of size @var{n} bytes or smaller are placed in the
16639 @code{.based} section by default. Based variables use the @code{$tp}
16640 register as a base register, and there is a 128-byte limit to the
16641 @code{.based} section.
16642
16643 @item -mbitops
16644 @opindex mbitops
16645 Enables the bit operation instructions---bit test (@code{btstm}), set
16646 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
16647 test-and-set (@code{tas}).
16648
16649 @item -mc=@var{name}
16650 @opindex mc=
16651 Selects which section constant data is placed in. @var{name} may
16652 be @samp{tiny}, @samp{near}, or @samp{far}.
16653
16654 @item -mclip
16655 @opindex mclip
16656 Enables the @code{clip} instruction. Note that @option{-mclip} is not
16657 useful unless you also provide @option{-mminmax}.
16658
16659 @item -mconfig=@var{name}
16660 @opindex mconfig=
16661 Selects one of the built-in core configurations. Each MeP chip has
16662 one or more modules in it; each module has a core CPU and a variety of
16663 coprocessors, optional instructions, and peripherals. The
16664 @code{MeP-Integrator} tool, not part of GCC, provides these
16665 configurations through this option; using this option is the same as
16666 using all the corresponding command-line options. The default
16667 configuration is @samp{default}.
16668
16669 @item -mcop
16670 @opindex mcop
16671 Enables the coprocessor instructions. By default, this is a 32-bit
16672 coprocessor. Note that the coprocessor is normally enabled via the
16673 @option{-mconfig=} option.
16674
16675 @item -mcop32
16676 @opindex mcop32
16677 Enables the 32-bit coprocessor's instructions.
16678
16679 @item -mcop64
16680 @opindex mcop64
16681 Enables the 64-bit coprocessor's instructions.
16682
16683 @item -mivc2
16684 @opindex mivc2
16685 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
16686
16687 @item -mdc
16688 @opindex mdc
16689 Causes constant variables to be placed in the @code{.near} section.
16690
16691 @item -mdiv
16692 @opindex mdiv
16693 Enables the @code{div} and @code{divu} instructions.
16694
16695 @item -meb
16696 @opindex meb
16697 Generate big-endian code.
16698
16699 @item -mel
16700 @opindex mel
16701 Generate little-endian code.
16702
16703 @item -mio-volatile
16704 @opindex mio-volatile
16705 Tells the compiler that any variable marked with the @code{io}
16706 attribute is to be considered volatile.
16707
16708 @item -ml
16709 @opindex ml
16710 Causes variables to be assigned to the @code{.far} section by default.
16711
16712 @item -mleadz
16713 @opindex mleadz
16714 Enables the @code{leadz} (leading zero) instruction.
16715
16716 @item -mm
16717 @opindex mm
16718 Causes variables to be assigned to the @code{.near} section by default.
16719
16720 @item -mminmax
16721 @opindex mminmax
16722 Enables the @code{min} and @code{max} instructions.
16723
16724 @item -mmult
16725 @opindex mmult
16726 Enables the multiplication and multiply-accumulate instructions.
16727
16728 @item -mno-opts
16729 @opindex mno-opts
16730 Disables all the optional instructions enabled by @option{-mall-opts}.
16731
16732 @item -mrepeat
16733 @opindex mrepeat
16734 Enables the @code{repeat} and @code{erepeat} instructions, used for
16735 low-overhead looping.
16736
16737 @item -ms
16738 @opindex ms
16739 Causes all variables to default to the @code{.tiny} section. Note
16740 that there is a 65536-byte limit to this section. Accesses to these
16741 variables use the @code{%gp} base register.
16742
16743 @item -msatur
16744 @opindex msatur
16745 Enables the saturation instructions. Note that the compiler does not
16746 currently generate these itself, but this option is included for
16747 compatibility with other tools, like @code{as}.
16748
16749 @item -msdram
16750 @opindex msdram
16751 Link the SDRAM-based runtime instead of the default ROM-based runtime.
16752
16753 @item -msim
16754 @opindex msim
16755 Link the simulator run-time libraries.
16756
16757 @item -msimnovec
16758 @opindex msimnovec
16759 Link the simulator runtime libraries, excluding built-in support
16760 for reset and exception vectors and tables.
16761
16762 @item -mtf
16763 @opindex mtf
16764 Causes all functions to default to the @code{.far} section. Without
16765 this option, functions default to the @code{.near} section.
16766
16767 @item -mtiny=@var{n}
16768 @opindex mtiny=
16769 Variables that are @var{n} bytes or smaller are allocated to the
16770 @code{.tiny} section. These variables use the @code{$gp} base
16771 register. The default for this option is 4, but note that there's a
16772 65536-byte limit to the @code{.tiny} section.
16773
16774 @end table
16775
16776 @node MicroBlaze Options
16777 @subsection MicroBlaze Options
16778 @cindex MicroBlaze Options
16779
16780 @table @gcctabopt
16781
16782 @item -msoft-float
16783 @opindex msoft-float
16784 Use software emulation for floating point (default).
16785
16786 @item -mhard-float
16787 @opindex mhard-float
16788 Use hardware floating-point instructions.
16789
16790 @item -mmemcpy
16791 @opindex mmemcpy
16792 Do not optimize block moves, use @code{memcpy}.
16793
16794 @item -mno-clearbss
16795 @opindex mno-clearbss
16796 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
16797
16798 @item -mcpu=@var{cpu-type}
16799 @opindex mcpu=
16800 Use features of, and schedule code for, the given CPU.
16801 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
16802 where @var{X} is a major version, @var{YY} is the minor version, and
16803 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
16804 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
16805
16806 @item -mxl-soft-mul
16807 @opindex mxl-soft-mul
16808 Use software multiply emulation (default).
16809
16810 @item -mxl-soft-div
16811 @opindex mxl-soft-div
16812 Use software emulation for divides (default).
16813
16814 @item -mxl-barrel-shift
16815 @opindex mxl-barrel-shift
16816 Use the hardware barrel shifter.
16817
16818 @item -mxl-pattern-compare
16819 @opindex mxl-pattern-compare
16820 Use pattern compare instructions.
16821
16822 @item -msmall-divides
16823 @opindex msmall-divides
16824 Use table lookup optimization for small signed integer divisions.
16825
16826 @item -mxl-stack-check
16827 @opindex mxl-stack-check
16828 This option is deprecated. Use @option{-fstack-check} instead.
16829
16830 @item -mxl-gp-opt
16831 @opindex mxl-gp-opt
16832 Use GP-relative @code{.sdata}/@code{.sbss} sections.
16833
16834 @item -mxl-multiply-high
16835 @opindex mxl-multiply-high
16836 Use multiply high instructions for high part of 32x32 multiply.
16837
16838 @item -mxl-float-convert
16839 @opindex mxl-float-convert
16840 Use hardware floating-point conversion instructions.
16841
16842 @item -mxl-float-sqrt
16843 @opindex mxl-float-sqrt
16844 Use hardware floating-point square root instruction.
16845
16846 @item -mbig-endian
16847 @opindex mbig-endian
16848 Generate code for a big-endian target.
16849
16850 @item -mlittle-endian
16851 @opindex mlittle-endian
16852 Generate code for a little-endian target.
16853
16854 @item -mxl-reorder
16855 @opindex mxl-reorder
16856 Use reorder instructions (swap and byte reversed load/store).
16857
16858 @item -mxl-mode-@var{app-model}
16859 Select application model @var{app-model}. Valid models are
16860 @table @samp
16861 @item executable
16862 normal executable (default), uses startup code @file{crt0.o}.
16863
16864 @item xmdstub
16865 for use with Xilinx Microprocessor Debugger (XMD) based
16866 software intrusive debug agent called xmdstub. This uses startup file
16867 @file{crt1.o} and sets the start address of the program to 0x800.
16868
16869 @item bootstrap
16870 for applications that are loaded using a bootloader.
16871 This model uses startup file @file{crt2.o} which does not contain a processor
16872 reset vector handler. This is suitable for transferring control on a
16873 processor reset to the bootloader rather than the application.
16874
16875 @item novectors
16876 for applications that do not require any of the
16877 MicroBlaze vectors. This option may be useful for applications running
16878 within a monitoring application. This model uses @file{crt3.o} as a startup file.
16879 @end table
16880
16881 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
16882 @option{-mxl-mode-@var{app-model}}.
16883
16884 @end table
16885
16886 @node MIPS Options
16887 @subsection MIPS Options
16888 @cindex MIPS options
16889
16890 @table @gcctabopt
16891
16892 @item -EB
16893 @opindex EB
16894 Generate big-endian code.
16895
16896 @item -EL
16897 @opindex EL
16898 Generate little-endian code. This is the default for @samp{mips*el-*-*}
16899 configurations.
16900
16901 @item -march=@var{arch}
16902 @opindex march
16903 Generate code that runs on @var{arch}, which can be the name of a
16904 generic MIPS ISA, or the name of a particular processor.
16905 The ISA names are:
16906 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
16907 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
16908 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
16909 @samp{mips64r5} and @samp{mips64r6}.
16910 The processor names are:
16911 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
16912 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
16913 @samp{5kc}, @samp{5kf},
16914 @samp{20kc},
16915 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
16916 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
16917 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
16918 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
16919 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
16920 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
16921 @samp{m4k},
16922 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
16923 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
16924 @samp{orion},
16925 @samp{p5600},
16926 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
16927 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
16928 @samp{rm7000}, @samp{rm9000},
16929 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
16930 @samp{sb1},
16931 @samp{sr71000},
16932 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
16933 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
16934 @samp{xlr} and @samp{xlp}.
16935 The special value @samp{from-abi} selects the
16936 most compatible architecture for the selected ABI (that is,
16937 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
16938
16939 The native Linux/GNU toolchain also supports the value @samp{native},
16940 which selects the best architecture option for the host processor.
16941 @option{-march=native} has no effect if GCC does not recognize
16942 the processor.
16943
16944 In processor names, a final @samp{000} can be abbreviated as @samp{k}
16945 (for example, @option{-march=r2k}). Prefixes are optional, and
16946 @samp{vr} may be written @samp{r}.
16947
16948 Names of the form @samp{@var{n}f2_1} refer to processors with
16949 FPUs clocked at half the rate of the core, names of the form
16950 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
16951 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
16952 processors with FPUs clocked a ratio of 3:2 with respect to the core.
16953 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
16954 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
16955 accepted as synonyms for @samp{@var{n}f1_1}.
16956
16957 GCC defines two macros based on the value of this option. The first
16958 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
16959 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
16960 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
16961 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
16962 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
16963
16964 Note that the @code{_MIPS_ARCH} macro uses the processor names given
16965 above. In other words, it has the full prefix and does not
16966 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
16967 the macro names the resolved architecture (either @code{"mips1"} or
16968 @code{"mips3"}). It names the default architecture when no
16969 @option{-march} option is given.
16970
16971 @item -mtune=@var{arch}
16972 @opindex mtune
16973 Optimize for @var{arch}. Among other things, this option controls
16974 the way instructions are scheduled, and the perceived cost of arithmetic
16975 operations. The list of @var{arch} values is the same as for
16976 @option{-march}.
16977
16978 When this option is not used, GCC optimizes for the processor
16979 specified by @option{-march}. By using @option{-march} and
16980 @option{-mtune} together, it is possible to generate code that
16981 runs on a family of processors, but optimize the code for one
16982 particular member of that family.
16983
16984 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
16985 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
16986 @option{-march} ones described above.
16987
16988 @item -mips1
16989 @opindex mips1
16990 Equivalent to @option{-march=mips1}.
16991
16992 @item -mips2
16993 @opindex mips2
16994 Equivalent to @option{-march=mips2}.
16995
16996 @item -mips3
16997 @opindex mips3
16998 Equivalent to @option{-march=mips3}.
16999
17000 @item -mips4
17001 @opindex mips4
17002 Equivalent to @option{-march=mips4}.
17003
17004 @item -mips32
17005 @opindex mips32
17006 Equivalent to @option{-march=mips32}.
17007
17008 @item -mips32r3
17009 @opindex mips32r3
17010 Equivalent to @option{-march=mips32r3}.
17011
17012 @item -mips32r5
17013 @opindex mips32r5
17014 Equivalent to @option{-march=mips32r5}.
17015
17016 @item -mips32r6
17017 @opindex mips32r6
17018 Equivalent to @option{-march=mips32r6}.
17019
17020 @item -mips64
17021 @opindex mips64
17022 Equivalent to @option{-march=mips64}.
17023
17024 @item -mips64r2
17025 @opindex mips64r2
17026 Equivalent to @option{-march=mips64r2}.
17027
17028 @item -mips64r3
17029 @opindex mips64r3
17030 Equivalent to @option{-march=mips64r3}.
17031
17032 @item -mips64r5
17033 @opindex mips64r5
17034 Equivalent to @option{-march=mips64r5}.
17035
17036 @item -mips64r6
17037 @opindex mips64r6
17038 Equivalent to @option{-march=mips64r6}.
17039
17040 @item -mips16
17041 @itemx -mno-mips16
17042 @opindex mips16
17043 @opindex mno-mips16
17044 Generate (do not generate) MIPS16 code. If GCC is targeting a
17045 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17046
17047 MIPS16 code generation can also be controlled on a per-function basis
17048 by means of @code{mips16} and @code{nomips16} attributes.
17049 @xref{Function Attributes}, for more information.
17050
17051 @item -mflip-mips16
17052 @opindex mflip-mips16
17053 Generate MIPS16 code on alternating functions. This option is provided
17054 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17055 not intended for ordinary use in compiling user code.
17056
17057 @item -minterlink-compressed
17058 @item -mno-interlink-compressed
17059 @opindex minterlink-compressed
17060 @opindex mno-interlink-compressed
17061 Require (do not require) that code using the standard (uncompressed) MIPS ISA
17062 be link-compatible with MIPS16 and microMIPS code, and vice versa.
17063
17064 For example, code using the standard ISA encoding cannot jump directly
17065 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17066 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
17067 knows that the target of the jump is not compressed.
17068
17069 @item -minterlink-mips16
17070 @itemx -mno-interlink-mips16
17071 @opindex minterlink-mips16
17072 @opindex mno-interlink-mips16
17073 Aliases of @option{-minterlink-compressed} and
17074 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
17075 and are retained for backwards compatibility.
17076
17077 @item -mabi=32
17078 @itemx -mabi=o64
17079 @itemx -mabi=n32
17080 @itemx -mabi=64
17081 @itemx -mabi=eabi
17082 @opindex mabi=32
17083 @opindex mabi=o64
17084 @opindex mabi=n32
17085 @opindex mabi=64
17086 @opindex mabi=eabi
17087 Generate code for the given ABI@.
17088
17089 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
17090 generates 64-bit code when you select a 64-bit architecture, but you
17091 can use @option{-mgp32} to get 32-bit code instead.
17092
17093 For information about the O64 ABI, see
17094 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17095
17096 GCC supports a variant of the o32 ABI in which floating-point registers
17097 are 64 rather than 32 bits wide. You can select this combination with
17098 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
17099 and @code{mfhc1} instructions and is therefore only supported for
17100 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17101
17102 The register assignments for arguments and return values remain the
17103 same, but each scalar value is passed in a single 64-bit register
17104 rather than a pair of 32-bit registers. For example, scalar
17105 floating-point values are returned in @samp{$f0} only, not a
17106 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
17107 remains the same in that the even-numbered double-precision registers
17108 are saved.
17109
17110 Two additional variants of the o32 ABI are supported to enable
17111 a transition from 32-bit to 64-bit registers. These are FPXX
17112 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17113 The FPXX extension mandates that all code must execute correctly
17114 when run using 32-bit or 64-bit registers. The code can be interlinked
17115 with either FP32 or FP64, but not both.
17116 The FP64A extension is similar to the FP64 extension but forbids the
17117 use of odd-numbered single-precision registers. This can be used
17118 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17119 processors and allows both FP32 and FP64A code to interlink and
17120 run in the same process without changing FPU modes.
17121
17122 @item -mabicalls
17123 @itemx -mno-abicalls
17124 @opindex mabicalls
17125 @opindex mno-abicalls
17126 Generate (do not generate) code that is suitable for SVR4-style
17127 dynamic objects. @option{-mabicalls} is the default for SVR4-based
17128 systems.
17129
17130 @item -mshared
17131 @itemx -mno-shared
17132 Generate (do not generate) code that is fully position-independent,
17133 and that can therefore be linked into shared libraries. This option
17134 only affects @option{-mabicalls}.
17135
17136 All @option{-mabicalls} code has traditionally been position-independent,
17137 regardless of options like @option{-fPIC} and @option{-fpic}. However,
17138 as an extension, the GNU toolchain allows executables to use absolute
17139 accesses for locally-binding symbols. It can also use shorter GP
17140 initialization sequences and generate direct calls to locally-defined
17141 functions. This mode is selected by @option{-mno-shared}.
17142
17143 @option{-mno-shared} depends on binutils 2.16 or higher and generates
17144 objects that can only be linked by the GNU linker. However, the option
17145 does not affect the ABI of the final executable; it only affects the ABI
17146 of relocatable objects. Using @option{-mno-shared} generally makes
17147 executables both smaller and quicker.
17148
17149 @option{-mshared} is the default.
17150
17151 @item -mplt
17152 @itemx -mno-plt
17153 @opindex mplt
17154 @opindex mno-plt
17155 Assume (do not assume) that the static and dynamic linkers
17156 support PLTs and copy relocations. This option only affects
17157 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
17158 has no effect without @option{-msym32}.
17159
17160 You can make @option{-mplt} the default by configuring
17161 GCC with @option{--with-mips-plt}. The default is
17162 @option{-mno-plt} otherwise.
17163
17164 @item -mxgot
17165 @itemx -mno-xgot
17166 @opindex mxgot
17167 @opindex mno-xgot
17168 Lift (do not lift) the usual restrictions on the size of the global
17169 offset table.
17170
17171 GCC normally uses a single instruction to load values from the GOT@.
17172 While this is relatively efficient, it only works if the GOT
17173 is smaller than about 64k. Anything larger causes the linker
17174 to report an error such as:
17175
17176 @cindex relocation truncated to fit (MIPS)
17177 @smallexample
17178 relocation truncated to fit: R_MIPS_GOT16 foobar
17179 @end smallexample
17180
17181 If this happens, you should recompile your code with @option{-mxgot}.
17182 This works with very large GOTs, although the code is also
17183 less efficient, since it takes three instructions to fetch the
17184 value of a global symbol.
17185
17186 Note that some linkers can create multiple GOTs. If you have such a
17187 linker, you should only need to use @option{-mxgot} when a single object
17188 file accesses more than 64k's worth of GOT entries. Very few do.
17189
17190 These options have no effect unless GCC is generating position
17191 independent code.
17192
17193 @item -mgp32
17194 @opindex mgp32
17195 Assume that general-purpose registers are 32 bits wide.
17196
17197 @item -mgp64
17198 @opindex mgp64
17199 Assume that general-purpose registers are 64 bits wide.
17200
17201 @item -mfp32
17202 @opindex mfp32
17203 Assume that floating-point registers are 32 bits wide.
17204
17205 @item -mfp64
17206 @opindex mfp64
17207 Assume that floating-point registers are 64 bits wide.
17208
17209 @item -mfpxx
17210 @opindex mfpxx
17211 Do not assume the width of floating-point registers.
17212
17213 @item -mhard-float
17214 @opindex mhard-float
17215 Use floating-point coprocessor instructions.
17216
17217 @item -msoft-float
17218 @opindex msoft-float
17219 Do not use floating-point coprocessor instructions. Implement
17220 floating-point calculations using library calls instead.
17221
17222 @item -mno-float
17223 @opindex mno-float
17224 Equivalent to @option{-msoft-float}, but additionally asserts that the
17225 program being compiled does not perform any floating-point operations.
17226 This option is presently supported only by some bare-metal MIPS
17227 configurations, where it may select a special set of libraries
17228 that lack all floating-point support (including, for example, the
17229 floating-point @code{printf} formats).
17230 If code compiled with @option{-mno-float} accidentally contains
17231 floating-point operations, it is likely to suffer a link-time
17232 or run-time failure.
17233
17234 @item -msingle-float
17235 @opindex msingle-float
17236 Assume that the floating-point coprocessor only supports single-precision
17237 operations.
17238
17239 @item -mdouble-float
17240 @opindex mdouble-float
17241 Assume that the floating-point coprocessor supports double-precision
17242 operations. This is the default.
17243
17244 @item -modd-spreg
17245 @itemx -mno-odd-spreg
17246 @opindex modd-spreg
17247 @opindex mno-odd-spreg
17248 Enable the use of odd-numbered single-precision floating-point registers
17249 for the o32 ABI. This is the default for processors that are known to
17250 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17251 is set by default.
17252
17253 @item -mabs=2008
17254 @itemx -mabs=legacy
17255 @opindex mabs=2008
17256 @opindex mabs=legacy
17257 These options control the treatment of the special not-a-number (NaN)
17258 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17259 @code{neg.@i{fmt}} machine instructions.
17260
17261 By default or when @option{-mabs=legacy} is used the legacy
17262 treatment is selected. In this case these instructions are considered
17263 arithmetic and avoided where correct operation is required and the
17264 input operand might be a NaN. A longer sequence of instructions that
17265 manipulate the sign bit of floating-point datum manually is used
17266 instead unless the @option{-ffinite-math-only} option has also been
17267 specified.
17268
17269 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
17270 this case these instructions are considered non-arithmetic and therefore
17271 operating correctly in all cases, including in particular where the
17272 input operand is a NaN. These instructions are therefore always used
17273 for the respective operations.
17274
17275 @item -mnan=2008
17276 @itemx -mnan=legacy
17277 @opindex mnan=2008
17278 @opindex mnan=legacy
17279 These options control the encoding of the special not-a-number (NaN)
17280 IEEE 754 floating-point data.
17281
17282 The @option{-mnan=legacy} option selects the legacy encoding. In this
17283 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17284 significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17285 by the first bit of their trailing significand field being 1.
17286
17287 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
17288 this case qNaNs are denoted by the first bit of their trailing
17289 significand field being 1, whereas sNaNs are denoted by the first bit of
17290 their trailing significand field being 0.
17291
17292 The default is @option{-mnan=legacy} unless GCC has been configured with
17293 @option{--with-nan=2008}.
17294
17295 @item -mllsc
17296 @itemx -mno-llsc
17297 @opindex mllsc
17298 @opindex mno-llsc
17299 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17300 implement atomic memory built-in functions. When neither option is
17301 specified, GCC uses the instructions if the target architecture
17302 supports them.
17303
17304 @option{-mllsc} is useful if the runtime environment can emulate the
17305 instructions and @option{-mno-llsc} can be useful when compiling for
17306 nonstandard ISAs. You can make either option the default by
17307 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17308 respectively. @option{--with-llsc} is the default for some
17309 configurations; see the installation documentation for details.
17310
17311 @item -mdsp
17312 @itemx -mno-dsp
17313 @opindex mdsp
17314 @opindex mno-dsp
17315 Use (do not use) revision 1 of the MIPS DSP ASE@.
17316 @xref{MIPS DSP Built-in Functions}. This option defines the
17317 preprocessor macro @code{__mips_dsp}. It also defines
17318 @code{__mips_dsp_rev} to 1.
17319
17320 @item -mdspr2
17321 @itemx -mno-dspr2
17322 @opindex mdspr2
17323 @opindex mno-dspr2
17324 Use (do not use) revision 2 of the MIPS DSP ASE@.
17325 @xref{MIPS DSP Built-in Functions}. This option defines the
17326 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17327 It also defines @code{__mips_dsp_rev} to 2.
17328
17329 @item -msmartmips
17330 @itemx -mno-smartmips
17331 @opindex msmartmips
17332 @opindex mno-smartmips
17333 Use (do not use) the MIPS SmartMIPS ASE.
17334
17335 @item -mpaired-single
17336 @itemx -mno-paired-single
17337 @opindex mpaired-single
17338 @opindex mno-paired-single
17339 Use (do not use) paired-single floating-point instructions.
17340 @xref{MIPS Paired-Single Support}. This option requires
17341 hardware floating-point support to be enabled.
17342
17343 @item -mdmx
17344 @itemx -mno-mdmx
17345 @opindex mdmx
17346 @opindex mno-mdmx
17347 Use (do not use) MIPS Digital Media Extension instructions.
17348 This option can only be used when generating 64-bit code and requires
17349 hardware floating-point support to be enabled.
17350
17351 @item -mips3d
17352 @itemx -mno-mips3d
17353 @opindex mips3d
17354 @opindex mno-mips3d
17355 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
17356 The option @option{-mips3d} implies @option{-mpaired-single}.
17357
17358 @item -mmicromips
17359 @itemx -mno-micromips
17360 @opindex mmicromips
17361 @opindex mno-mmicromips
17362 Generate (do not generate) microMIPS code.
17363
17364 MicroMIPS code generation can also be controlled on a per-function basis
17365 by means of @code{micromips} and @code{nomicromips} attributes.
17366 @xref{Function Attributes}, for more information.
17367
17368 @item -mmt
17369 @itemx -mno-mt
17370 @opindex mmt
17371 @opindex mno-mt
17372 Use (do not use) MT Multithreading instructions.
17373
17374 @item -mmcu
17375 @itemx -mno-mcu
17376 @opindex mmcu
17377 @opindex mno-mcu
17378 Use (do not use) the MIPS MCU ASE instructions.
17379
17380 @item -meva
17381 @itemx -mno-eva
17382 @opindex meva
17383 @opindex mno-eva
17384 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17385
17386 @item -mvirt
17387 @itemx -mno-virt
17388 @opindex mvirt
17389 @opindex mno-virt
17390 Use (do not use) the MIPS Virtualization Application Specific instructions.
17391
17392 @item -mxpa
17393 @itemx -mno-xpa
17394 @opindex mxpa
17395 @opindex mno-xpa
17396 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17397
17398 @item -mlong64
17399 @opindex mlong64
17400 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
17401 an explanation of the default and the way that the pointer size is
17402 determined.
17403
17404 @item -mlong32
17405 @opindex mlong32
17406 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17407
17408 The default size of @code{int}s, @code{long}s and pointers depends on
17409 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
17410 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
17411 32-bit @code{long}s. Pointers are the same size as @code{long}s,
17412 or the same size as integer registers, whichever is smaller.
17413
17414 @item -msym32
17415 @itemx -mno-sym32
17416 @opindex msym32
17417 @opindex mno-sym32
17418 Assume (do not assume) that all symbols have 32-bit values, regardless
17419 of the selected ABI@. This option is useful in combination with
17420 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17421 to generate shorter and faster references to symbolic addresses.
17422
17423 @item -G @var{num}
17424 @opindex G
17425 Put definitions of externally-visible data in a small data section
17426 if that data is no bigger than @var{num} bytes. GCC can then generate
17427 more efficient accesses to the data; see @option{-mgpopt} for details.
17428
17429 The default @option{-G} option depends on the configuration.
17430
17431 @item -mlocal-sdata
17432 @itemx -mno-local-sdata
17433 @opindex mlocal-sdata
17434 @opindex mno-local-sdata
17435 Extend (do not extend) the @option{-G} behavior to local data too,
17436 such as to static variables in C@. @option{-mlocal-sdata} is the
17437 default for all configurations.
17438
17439 If the linker complains that an application is using too much small data,
17440 you might want to try rebuilding the less performance-critical parts with
17441 @option{-mno-local-sdata}. You might also want to build large
17442 libraries with @option{-mno-local-sdata}, so that the libraries leave
17443 more room for the main program.
17444
17445 @item -mextern-sdata
17446 @itemx -mno-extern-sdata
17447 @opindex mextern-sdata
17448 @opindex mno-extern-sdata
17449 Assume (do not assume) that externally-defined data is in
17450 a small data section if the size of that data is within the @option{-G} limit.
17451 @option{-mextern-sdata} is the default for all configurations.
17452
17453 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17454 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17455 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17456 is placed in a small data section. If @var{Var} is defined by another
17457 module, you must either compile that module with a high-enough
17458 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17459 definition. If @var{Var} is common, you must link the application
17460 with a high-enough @option{-G} setting.
17461
17462 The easiest way of satisfying these restrictions is to compile
17463 and link every module with the same @option{-G} option. However,
17464 you may wish to build a library that supports several different
17465 small data limits. You can do this by compiling the library with
17466 the highest supported @option{-G} setting and additionally using
17467 @option{-mno-extern-sdata} to stop the library from making assumptions
17468 about externally-defined data.
17469
17470 @item -mgpopt
17471 @itemx -mno-gpopt
17472 @opindex mgpopt
17473 @opindex mno-gpopt
17474 Use (do not use) GP-relative accesses for symbols that are known to be
17475 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17476 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
17477 configurations.
17478
17479 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
17480 might not hold the value of @code{_gp}. For example, if the code is
17481 part of a library that might be used in a boot monitor, programs that
17482 call boot monitor routines pass an unknown value in @code{$gp}.
17483 (In such situations, the boot monitor itself is usually compiled
17484 with @option{-G0}.)
17485
17486 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
17487 @option{-mno-extern-sdata}.
17488
17489 @item -membedded-data
17490 @itemx -mno-embedded-data
17491 @opindex membedded-data
17492 @opindex mno-embedded-data
17493 Allocate variables to the read-only data section first if possible, then
17494 next in the small data section if possible, otherwise in data. This gives
17495 slightly slower code than the default, but reduces the amount of RAM required
17496 when executing, and thus may be preferred for some embedded systems.
17497
17498 @item -muninit-const-in-rodata
17499 @itemx -mno-uninit-const-in-rodata
17500 @opindex muninit-const-in-rodata
17501 @opindex mno-uninit-const-in-rodata
17502 Put uninitialized @code{const} variables in the read-only data section.
17503 This option is only meaningful in conjunction with @option{-membedded-data}.
17504
17505 @item -mcode-readable=@var{setting}
17506 @opindex mcode-readable
17507 Specify whether GCC may generate code that reads from executable sections.
17508 There are three possible settings:
17509
17510 @table @gcctabopt
17511 @item -mcode-readable=yes
17512 Instructions may freely access executable sections. This is the
17513 default setting.
17514
17515 @item -mcode-readable=pcrel
17516 MIPS16 PC-relative load instructions can access executable sections,
17517 but other instructions must not do so. This option is useful on 4KSc
17518 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17519 It is also useful on processors that can be configured to have a dual
17520 instruction/data SRAM interface and that, like the M4K, automatically
17521 redirect PC-relative loads to the instruction RAM.
17522
17523 @item -mcode-readable=no
17524 Instructions must not access executable sections. This option can be
17525 useful on targets that are configured to have a dual instruction/data
17526 SRAM interface but that (unlike the M4K) do not automatically redirect
17527 PC-relative loads to the instruction RAM.
17528 @end table
17529
17530 @item -msplit-addresses
17531 @itemx -mno-split-addresses
17532 @opindex msplit-addresses
17533 @opindex mno-split-addresses
17534 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17535 relocation operators. This option has been superseded by
17536 @option{-mexplicit-relocs} but is retained for backwards compatibility.
17537
17538 @item -mexplicit-relocs
17539 @itemx -mno-explicit-relocs
17540 @opindex mexplicit-relocs
17541 @opindex mno-explicit-relocs
17542 Use (do not use) assembler relocation operators when dealing with symbolic
17543 addresses. The alternative, selected by @option{-mno-explicit-relocs},
17544 is to use assembler macros instead.
17545
17546 @option{-mexplicit-relocs} is the default if GCC was configured
17547 to use an assembler that supports relocation operators.
17548
17549 @item -mcheck-zero-division
17550 @itemx -mno-check-zero-division
17551 @opindex mcheck-zero-division
17552 @opindex mno-check-zero-division
17553 Trap (do not trap) on integer division by zero.
17554
17555 The default is @option{-mcheck-zero-division}.
17556
17557 @item -mdivide-traps
17558 @itemx -mdivide-breaks
17559 @opindex mdivide-traps
17560 @opindex mdivide-breaks
17561 MIPS systems check for division by zero by generating either a
17562 conditional trap or a break instruction. Using traps results in
17563 smaller code, but is only supported on MIPS II and later. Also, some
17564 versions of the Linux kernel have a bug that prevents trap from
17565 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
17566 allow conditional traps on architectures that support them and
17567 @option{-mdivide-breaks} to force the use of breaks.
17568
17569 The default is usually @option{-mdivide-traps}, but this can be
17570 overridden at configure time using @option{--with-divide=breaks}.
17571 Divide-by-zero checks can be completely disabled using
17572 @option{-mno-check-zero-division}.
17573
17574 @item -mmemcpy
17575 @itemx -mno-memcpy
17576 @opindex mmemcpy
17577 @opindex mno-memcpy
17578 Force (do not force) the use of @code{memcpy} for non-trivial block
17579 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
17580 most constant-sized copies.
17581
17582 @item -mlong-calls
17583 @itemx -mno-long-calls
17584 @opindex mlong-calls
17585 @opindex mno-long-calls
17586 Disable (do not disable) use of the @code{jal} instruction. Calling
17587 functions using @code{jal} is more efficient but requires the caller
17588 and callee to be in the same 256 megabyte segment.
17589
17590 This option has no effect on abicalls code. The default is
17591 @option{-mno-long-calls}.
17592
17593 @item -mmad
17594 @itemx -mno-mad
17595 @opindex mmad
17596 @opindex mno-mad
17597 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17598 instructions, as provided by the R4650 ISA@.
17599
17600 @item -mimadd
17601 @itemx -mno-imadd
17602 @opindex mimadd
17603 @opindex mno-imadd
17604 Enable (disable) use of the @code{madd} and @code{msub} integer
17605 instructions. The default is @option{-mimadd} on architectures
17606 that support @code{madd} and @code{msub} except for the 74k
17607 architecture where it was found to generate slower code.
17608
17609 @item -mfused-madd
17610 @itemx -mno-fused-madd
17611 @opindex mfused-madd
17612 @opindex mno-fused-madd
17613 Enable (disable) use of the floating-point multiply-accumulate
17614 instructions, when they are available. The default is
17615 @option{-mfused-madd}.
17616
17617 On the R8000 CPU when multiply-accumulate instructions are used,
17618 the intermediate product is calculated to infinite precision
17619 and is not subject to the FCSR Flush to Zero bit. This may be
17620 undesirable in some circumstances. On other processors the result
17621 is numerically identical to the equivalent computation using
17622 separate multiply, add, subtract and negate instructions.
17623
17624 @item -nocpp
17625 @opindex nocpp
17626 Tell the MIPS assembler to not run its preprocessor over user
17627 assembler files (with a @samp{.s} suffix) when assembling them.
17628
17629 @item -mfix-24k
17630 @item -mno-fix-24k
17631 @opindex mfix-24k
17632 @opindex mno-fix-24k
17633 Work around the 24K E48 (lost data on stores during refill) errata.
17634 The workarounds are implemented by the assembler rather than by GCC@.
17635
17636 @item -mfix-r4000
17637 @itemx -mno-fix-r4000
17638 @opindex mfix-r4000
17639 @opindex mno-fix-r4000
17640 Work around certain R4000 CPU errata:
17641 @itemize @minus
17642 @item
17643 A double-word or a variable shift may give an incorrect result if executed
17644 immediately after starting an integer division.
17645 @item
17646 A double-word or a variable shift may give an incorrect result if executed
17647 while an integer multiplication is in progress.
17648 @item
17649 An integer division may give an incorrect result if started in a delay slot
17650 of a taken branch or a jump.
17651 @end itemize
17652
17653 @item -mfix-r4400
17654 @itemx -mno-fix-r4400
17655 @opindex mfix-r4400
17656 @opindex mno-fix-r4400
17657 Work around certain R4400 CPU errata:
17658 @itemize @minus
17659 @item
17660 A double-word or a variable shift may give an incorrect result if executed
17661 immediately after starting an integer division.
17662 @end itemize
17663
17664 @item -mfix-r10000
17665 @itemx -mno-fix-r10000
17666 @opindex mfix-r10000
17667 @opindex mno-fix-r10000
17668 Work around certain R10000 errata:
17669 @itemize @minus
17670 @item
17671 @code{ll}/@code{sc} sequences may not behave atomically on revisions
17672 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
17673 @end itemize
17674
17675 This option can only be used if the target architecture supports
17676 branch-likely instructions. @option{-mfix-r10000} is the default when
17677 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
17678 otherwise.
17679
17680 @item -mfix-rm7000
17681 @itemx -mno-fix-rm7000
17682 @opindex mfix-rm7000
17683 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
17684 workarounds are implemented by the assembler rather than by GCC@.
17685
17686 @item -mfix-vr4120
17687 @itemx -mno-fix-vr4120
17688 @opindex mfix-vr4120
17689 Work around certain VR4120 errata:
17690 @itemize @minus
17691 @item
17692 @code{dmultu} does not always produce the correct result.
17693 @item
17694 @code{div} and @code{ddiv} do not always produce the correct result if one
17695 of the operands is negative.
17696 @end itemize
17697 The workarounds for the division errata rely on special functions in
17698 @file{libgcc.a}. At present, these functions are only provided by
17699 the @code{mips64vr*-elf} configurations.
17700
17701 Other VR4120 errata require a NOP to be inserted between certain pairs of
17702 instructions. These errata are handled by the assembler, not by GCC itself.
17703
17704 @item -mfix-vr4130
17705 @opindex mfix-vr4130
17706 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
17707 workarounds are implemented by the assembler rather than by GCC,
17708 although GCC avoids using @code{mflo} and @code{mfhi} if the
17709 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
17710 instructions are available instead.
17711
17712 @item -mfix-sb1
17713 @itemx -mno-fix-sb1
17714 @opindex mfix-sb1
17715 Work around certain SB-1 CPU core errata.
17716 (This flag currently works around the SB-1 revision 2
17717 ``F1'' and ``F2'' floating-point errata.)
17718
17719 @item -mr10k-cache-barrier=@var{setting}
17720 @opindex mr10k-cache-barrier
17721 Specify whether GCC should insert cache barriers to avoid the
17722 side-effects of speculation on R10K processors.
17723
17724 In common with many processors, the R10K tries to predict the outcome
17725 of a conditional branch and speculatively executes instructions from
17726 the ``taken'' branch. It later aborts these instructions if the
17727 predicted outcome is wrong. However, on the R10K, even aborted
17728 instructions can have side effects.
17729
17730 This problem only affects kernel stores and, depending on the system,
17731 kernel loads. As an example, a speculatively-executed store may load
17732 the target memory into cache and mark the cache line as dirty, even if
17733 the store itself is later aborted. If a DMA operation writes to the
17734 same area of memory before the ``dirty'' line is flushed, the cached
17735 data overwrites the DMA-ed data. See the R10K processor manual
17736 for a full description, including other potential problems.
17737
17738 One workaround is to insert cache barrier instructions before every memory
17739 access that might be speculatively executed and that might have side
17740 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
17741 controls GCC's implementation of this workaround. It assumes that
17742 aborted accesses to any byte in the following regions does not have
17743 side effects:
17744
17745 @enumerate
17746 @item
17747 the memory occupied by the current function's stack frame;
17748
17749 @item
17750 the memory occupied by an incoming stack argument;
17751
17752 @item
17753 the memory occupied by an object with a link-time-constant address.
17754 @end enumerate
17755
17756 It is the kernel's responsibility to ensure that speculative
17757 accesses to these regions are indeed safe.
17758
17759 If the input program contains a function declaration such as:
17760
17761 @smallexample
17762 void foo (void);
17763 @end smallexample
17764
17765 then the implementation of @code{foo} must allow @code{j foo} and
17766 @code{jal foo} to be executed speculatively. GCC honors this
17767 restriction for functions it compiles itself. It expects non-GCC
17768 functions (such as hand-written assembly code) to do the same.
17769
17770 The option has three forms:
17771
17772 @table @gcctabopt
17773 @item -mr10k-cache-barrier=load-store
17774 Insert a cache barrier before a load or store that might be
17775 speculatively executed and that might have side effects even
17776 if aborted.
17777
17778 @item -mr10k-cache-barrier=store
17779 Insert a cache barrier before a store that might be speculatively
17780 executed and that might have side effects even if aborted.
17781
17782 @item -mr10k-cache-barrier=none
17783 Disable the insertion of cache barriers. This is the default setting.
17784 @end table
17785
17786 @item -mflush-func=@var{func}
17787 @itemx -mno-flush-func
17788 @opindex mflush-func
17789 Specifies the function to call to flush the I and D caches, or to not
17790 call any such function. If called, the function must take the same
17791 arguments as the common @code{_flush_func}, that is, the address of the
17792 memory range for which the cache is being flushed, the size of the
17793 memory range, and the number 3 (to flush both caches). The default
17794 depends on the target GCC was configured for, but commonly is either
17795 @code{_flush_func} or @code{__cpu_flush}.
17796
17797 @item mbranch-cost=@var{num}
17798 @opindex mbranch-cost
17799 Set the cost of branches to roughly @var{num} ``simple'' instructions.
17800 This cost is only a heuristic and is not guaranteed to produce
17801 consistent results across releases. A zero cost redundantly selects
17802 the default, which is based on the @option{-mtune} setting.
17803
17804 @item -mbranch-likely
17805 @itemx -mno-branch-likely
17806 @opindex mbranch-likely
17807 @opindex mno-branch-likely
17808 Enable or disable use of Branch Likely instructions, regardless of the
17809 default for the selected architecture. By default, Branch Likely
17810 instructions may be generated if they are supported by the selected
17811 architecture. An exception is for the MIPS32 and MIPS64 architectures
17812 and processors that implement those architectures; for those, Branch
17813 Likely instructions are not be generated by default because the MIPS32
17814 and MIPS64 architectures specifically deprecate their use.
17815
17816 @item -mfp-exceptions
17817 @itemx -mno-fp-exceptions
17818 @opindex mfp-exceptions
17819 Specifies whether FP exceptions are enabled. This affects how
17820 FP instructions are scheduled for some processors.
17821 The default is that FP exceptions are
17822 enabled.
17823
17824 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
17825 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
17826 FP pipe.
17827
17828 @item -mvr4130-align
17829 @itemx -mno-vr4130-align
17830 @opindex mvr4130-align
17831 The VR4130 pipeline is two-way superscalar, but can only issue two
17832 instructions together if the first one is 8-byte aligned. When this
17833 option is enabled, GCC aligns pairs of instructions that it
17834 thinks should execute in parallel.
17835
17836 This option only has an effect when optimizing for the VR4130.
17837 It normally makes code faster, but at the expense of making it bigger.
17838 It is enabled by default at optimization level @option{-O3}.
17839
17840 @item -msynci
17841 @itemx -mno-synci
17842 @opindex msynci
17843 Enable (disable) generation of @code{synci} instructions on
17844 architectures that support it. The @code{synci} instructions (if
17845 enabled) are generated when @code{__builtin___clear_cache} is
17846 compiled.
17847
17848 This option defaults to @option{-mno-synci}, but the default can be
17849 overridden by configuring GCC with @option{--with-synci}.
17850
17851 When compiling code for single processor systems, it is generally safe
17852 to use @code{synci}. However, on many multi-core (SMP) systems, it
17853 does not invalidate the instruction caches on all cores and may lead
17854 to undefined behavior.
17855
17856 @item -mrelax-pic-calls
17857 @itemx -mno-relax-pic-calls
17858 @opindex mrelax-pic-calls
17859 Try to turn PIC calls that are normally dispatched via register
17860 @code{$25} into direct calls. This is only possible if the linker can
17861 resolve the destination at link-time and if the destination is within
17862 range for a direct call.
17863
17864 @option{-mrelax-pic-calls} is the default if GCC was configured to use
17865 an assembler and a linker that support the @code{.reloc} assembly
17866 directive and @option{-mexplicit-relocs} is in effect. With
17867 @option{-mno-explicit-relocs}, this optimization can be performed by the
17868 assembler and the linker alone without help from the compiler.
17869
17870 @item -mmcount-ra-address
17871 @itemx -mno-mcount-ra-address
17872 @opindex mmcount-ra-address
17873 @opindex mno-mcount-ra-address
17874 Emit (do not emit) code that allows @code{_mcount} to modify the
17875 calling function's return address. When enabled, this option extends
17876 the usual @code{_mcount} interface with a new @var{ra-address}
17877 parameter, which has type @code{intptr_t *} and is passed in register
17878 @code{$12}. @code{_mcount} can then modify the return address by
17879 doing both of the following:
17880 @itemize
17881 @item
17882 Returning the new address in register @code{$31}.
17883 @item
17884 Storing the new address in @code{*@var{ra-address}},
17885 if @var{ra-address} is nonnull.
17886 @end itemize
17887
17888 The default is @option{-mno-mcount-ra-address}.
17889
17890 @end table
17891
17892 @node MMIX Options
17893 @subsection MMIX Options
17894 @cindex MMIX Options
17895
17896 These options are defined for the MMIX:
17897
17898 @table @gcctabopt
17899 @item -mlibfuncs
17900 @itemx -mno-libfuncs
17901 @opindex mlibfuncs
17902 @opindex mno-libfuncs
17903 Specify that intrinsic library functions are being compiled, passing all
17904 values in registers, no matter the size.
17905
17906 @item -mepsilon
17907 @itemx -mno-epsilon
17908 @opindex mepsilon
17909 @opindex mno-epsilon
17910 Generate floating-point comparison instructions that compare with respect
17911 to the @code{rE} epsilon register.
17912
17913 @item -mabi=mmixware
17914 @itemx -mabi=gnu
17915 @opindex mabi=mmixware
17916 @opindex mabi=gnu
17917 Generate code that passes function parameters and return values that (in
17918 the called function) are seen as registers @code{$0} and up, as opposed to
17919 the GNU ABI which uses global registers @code{$231} and up.
17920
17921 @item -mzero-extend
17922 @itemx -mno-zero-extend
17923 @opindex mzero-extend
17924 @opindex mno-zero-extend
17925 When reading data from memory in sizes shorter than 64 bits, use (do not
17926 use) zero-extending load instructions by default, rather than
17927 sign-extending ones.
17928
17929 @item -mknuthdiv
17930 @itemx -mno-knuthdiv
17931 @opindex mknuthdiv
17932 @opindex mno-knuthdiv
17933 Make the result of a division yielding a remainder have the same sign as
17934 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
17935 remainder follows the sign of the dividend. Both methods are
17936 arithmetically valid, the latter being almost exclusively used.
17937
17938 @item -mtoplevel-symbols
17939 @itemx -mno-toplevel-symbols
17940 @opindex mtoplevel-symbols
17941 @opindex mno-toplevel-symbols
17942 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
17943 code can be used with the @code{PREFIX} assembly directive.
17944
17945 @item -melf
17946 @opindex melf
17947 Generate an executable in the ELF format, rather than the default
17948 @samp{mmo} format used by the @command{mmix} simulator.
17949
17950 @item -mbranch-predict
17951 @itemx -mno-branch-predict
17952 @opindex mbranch-predict
17953 @opindex mno-branch-predict
17954 Use (do not use) the probable-branch instructions, when static branch
17955 prediction indicates a probable branch.
17956
17957 @item -mbase-addresses
17958 @itemx -mno-base-addresses
17959 @opindex mbase-addresses
17960 @opindex mno-base-addresses
17961 Generate (do not generate) code that uses @emph{base addresses}. Using a
17962 base address automatically generates a request (handled by the assembler
17963 and the linker) for a constant to be set up in a global register. The
17964 register is used for one or more base address requests within the range 0
17965 to 255 from the value held in the register. The generally leads to short
17966 and fast code, but the number of different data items that can be
17967 addressed is limited. This means that a program that uses lots of static
17968 data may require @option{-mno-base-addresses}.
17969
17970 @item -msingle-exit
17971 @itemx -mno-single-exit
17972 @opindex msingle-exit
17973 @opindex mno-single-exit
17974 Force (do not force) generated code to have a single exit point in each
17975 function.
17976 @end table
17977
17978 @node MN10300 Options
17979 @subsection MN10300 Options
17980 @cindex MN10300 options
17981
17982 These @option{-m} options are defined for Matsushita MN10300 architectures:
17983
17984 @table @gcctabopt
17985 @item -mmult-bug
17986 @opindex mmult-bug
17987 Generate code to avoid bugs in the multiply instructions for the MN10300
17988 processors. This is the default.
17989
17990 @item -mno-mult-bug
17991 @opindex mno-mult-bug
17992 Do not generate code to avoid bugs in the multiply instructions for the
17993 MN10300 processors.
17994
17995 @item -mam33
17996 @opindex mam33
17997 Generate code using features specific to the AM33 processor.
17998
17999 @item -mno-am33
18000 @opindex mno-am33
18001 Do not generate code using features specific to the AM33 processor. This
18002 is the default.
18003
18004 @item -mam33-2
18005 @opindex mam33-2
18006 Generate code using features specific to the AM33/2.0 processor.
18007
18008 @item -mam34
18009 @opindex mam34
18010 Generate code using features specific to the AM34 processor.
18011
18012 @item -mtune=@var{cpu-type}
18013 @opindex mtune
18014 Use the timing characteristics of the indicated CPU type when
18015 scheduling instructions. This does not change the targeted processor
18016 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
18017 @samp{am33-2} or @samp{am34}.
18018
18019 @item -mreturn-pointer-on-d0
18020 @opindex mreturn-pointer-on-d0
18021 When generating a function that returns a pointer, return the pointer
18022 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
18023 only in @code{a0}, and attempts to call such functions without a prototype
18024 result in errors. Note that this option is on by default; use
18025 @option{-mno-return-pointer-on-d0} to disable it.
18026
18027 @item -mno-crt0
18028 @opindex mno-crt0
18029 Do not link in the C run-time initialization object file.
18030
18031 @item -mrelax
18032 @opindex mrelax
18033 Indicate to the linker that it should perform a relaxation optimization pass
18034 to shorten branches, calls and absolute memory addresses. This option only
18035 has an effect when used on the command line for the final link step.
18036
18037 This option makes symbolic debugging impossible.
18038
18039 @item -mliw
18040 @opindex mliw
18041 Allow the compiler to generate @emph{Long Instruction Word}
18042 instructions if the target is the @samp{AM33} or later. This is the
18043 default. This option defines the preprocessor macro @code{__LIW__}.
18044
18045 @item -mnoliw
18046 @opindex mnoliw
18047 Do not allow the compiler to generate @emph{Long Instruction Word}
18048 instructions. This option defines the preprocessor macro
18049 @code{__NO_LIW__}.
18050
18051 @item -msetlb
18052 @opindex msetlb
18053 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18054 instructions if the target is the @samp{AM33} or later. This is the
18055 default. This option defines the preprocessor macro @code{__SETLB__}.
18056
18057 @item -mnosetlb
18058 @opindex mnosetlb
18059 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18060 instructions. This option defines the preprocessor macro
18061 @code{__NO_SETLB__}.
18062
18063 @end table
18064
18065 @node Moxie Options
18066 @subsection Moxie Options
18067 @cindex Moxie Options
18068
18069 @table @gcctabopt
18070
18071 @item -meb
18072 @opindex meb
18073 Generate big-endian code. This is the default for @samp{moxie-*-*}
18074 configurations.
18075
18076 @item -mel
18077 @opindex mel
18078 Generate little-endian code.
18079
18080 @item -mmul.x
18081 @opindex mmul.x
18082 Generate mul.x and umul.x instructions. This is the default for
18083 @samp{moxiebox-*-*} configurations.
18084
18085 @item -mno-crt0
18086 @opindex mno-crt0
18087 Do not link in the C run-time initialization object file.
18088
18089 @end table
18090
18091 @node MSP430 Options
18092 @subsection MSP430 Options
18093 @cindex MSP430 Options
18094
18095 These options are defined for the MSP430:
18096
18097 @table @gcctabopt
18098
18099 @item -masm-hex
18100 @opindex masm-hex
18101 Force assembly output to always use hex constants. Normally such
18102 constants are signed decimals, but this option is available for
18103 testsuite and/or aesthetic purposes.
18104
18105 @item -mmcu=
18106 @opindex mmcu=
18107 Select the MCU to target. This is used to create a C preprocessor
18108 symbol based upon the MCU name, converted to upper case and pre- and
18109 post-fixed with @samp{__}. This in turn is used by the
18110 @file{msp430.h} header file to select an MCU-specific supplementary
18111 header file.
18112
18113 The option also sets the ISA to use. If the MCU name is one that is
18114 known to only support the 430 ISA then that is selected, otherwise the
18115 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
18116 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
18117 name selects the 430X ISA.
18118
18119 In addition an MCU-specific linker script is added to the linker
18120 command line. The script's name is the name of the MCU with
18121 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18122 command line defines the C preprocessor symbol @code{__XXX__} and
18123 cause the linker to search for a script called @file{xxx.ld}.
18124
18125 This option is also passed on to the assembler.
18126
18127 @item -mcpu=
18128 @opindex mcpu=
18129 Specifies the ISA to use. Accepted values are @samp{msp430},
18130 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
18131 @option{-mmcu=} option should be used to select the ISA.
18132
18133 @item -msim
18134 @opindex msim
18135 Link to the simulator runtime libraries and linker script. Overrides
18136 any scripts that would be selected by the @option{-mmcu=} option.
18137
18138 @item -mlarge
18139 @opindex mlarge
18140 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18141
18142 @item -msmall
18143 @opindex msmall
18144 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18145
18146 @item -mrelax
18147 @opindex mrelax
18148 This option is passed to the assembler and linker, and allows the
18149 linker to perform certain optimizations that cannot be done until
18150 the final link.
18151
18152 @item mhwmult=
18153 @opindex mhwmult=
18154 Describes the type of hardware multiply supported by the target.
18155 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18156 for the original 16-bit-only multiply supported by early MCUs.
18157 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18158 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18159 A value of @samp{auto} can also be given. This tells GCC to deduce
18160 the hardware multiply support based upon the MCU name provided by the
18161 @option{-mmcu} option. If no @option{-mmcu} option is specified then
18162 @samp{32bit} hardware multiply support is assumed. @samp{auto} is the
18163 default setting.
18164
18165 Hardware multiplies are normally performed by calling a library
18166 routine. This saves space in the generated code. When compiling at
18167 @option{-O3} or higher however the hardware multiplier is invoked
18168 inline. This makes for bigger, but faster code.
18169
18170 The hardware multiply routines disable interrupts whilst running and
18171 restore the previous interrupt state when they finish. This makes
18172 them safe to use inside interrupt handlers as well as in normal code.
18173
18174 @item -minrt
18175 @opindex minrt
18176 Enable the use of a minimum runtime environment - no static
18177 initializers or constructors. This is intended for memory-constrained
18178 devices. The compiler includes special symbols in some objects
18179 that tell the linker and runtime which code fragments are required.
18180
18181 @item -mcode-region=
18182 @itemx -mdata-region=
18183 @opindex mcode-region
18184 @opindex mdata-region
18185 These options tell the compiler where to place functions and data that
18186 do not have one of the @code{lower}, @code{upper}, @code{either} or
18187 @code{section} attributes. Possible values are @code{lower},
18188 @code{upper}, @code{either} or @code{any}. The first three behave
18189 like the corresponding attribute. The fourth possible value -
18190 @code{any} - is the default. It leaves placement entirely up to the
18191 linker script and how it assigns the standard sections (.text, .data
18192 etc) to the memory regions.
18193
18194 @end table
18195
18196 @node NDS32 Options
18197 @subsection NDS32 Options
18198 @cindex NDS32 Options
18199
18200 These options are defined for NDS32 implementations:
18201
18202 @table @gcctabopt
18203
18204 @item -mbig-endian
18205 @opindex mbig-endian
18206 Generate code in big-endian mode.
18207
18208 @item -mlittle-endian
18209 @opindex mlittle-endian
18210 Generate code in little-endian mode.
18211
18212 @item -mreduced-regs
18213 @opindex mreduced-regs
18214 Use reduced-set registers for register allocation.
18215
18216 @item -mfull-regs
18217 @opindex mfull-regs
18218 Use full-set registers for register allocation.
18219
18220 @item -mcmov
18221 @opindex mcmov
18222 Generate conditional move instructions.
18223
18224 @item -mno-cmov
18225 @opindex mno-cmov
18226 Do not generate conditional move instructions.
18227
18228 @item -mperf-ext
18229 @opindex mperf-ext
18230 Generate performance extension instructions.
18231
18232 @item -mno-perf-ext
18233 @opindex mno-perf-ext
18234 Do not generate performance extension instructions.
18235
18236 @item -mv3push
18237 @opindex mv3push
18238 Generate v3 push25/pop25 instructions.
18239
18240 @item -mno-v3push
18241 @opindex mno-v3push
18242 Do not generate v3 push25/pop25 instructions.
18243
18244 @item -m16-bit
18245 @opindex m16-bit
18246 Generate 16-bit instructions.
18247
18248 @item -mno-16-bit
18249 @opindex mno-16-bit
18250 Do not generate 16-bit instructions.
18251
18252 @item -misr-vector-size=@var{num}
18253 @opindex misr-vector-size
18254 Specify the size of each interrupt vector, which must be 4 or 16.
18255
18256 @item -mcache-block-size=@var{num}
18257 @opindex mcache-block-size
18258 Specify the size of each cache block,
18259 which must be a power of 2 between 4 and 512.
18260
18261 @item -march=@var{arch}
18262 @opindex march
18263 Specify the name of the target architecture.
18264
18265 @item -mcmodel=@var{code-model}
18266 @opindex mcmodel
18267 Set the code model to one of
18268 @table @asis
18269 @item @samp{small}
18270 All the data and read-only data segments must be within 512KB addressing space.
18271 The text segment must be within 16MB addressing space.
18272 @item @samp{medium}
18273 The data segment must be within 512KB while the read-only data segment can be
18274 within 4GB addressing space. The text segment should be still within 16MB
18275 addressing space.
18276 @item @samp{large}
18277 All the text and data segments can be within 4GB addressing space.
18278 @end table
18279
18280 @item -mctor-dtor
18281 @opindex mctor-dtor
18282 Enable constructor/destructor feature.
18283
18284 @item -mrelax
18285 @opindex mrelax
18286 Guide linker to relax instructions.
18287
18288 @end table
18289
18290 @node Nios II Options
18291 @subsection Nios II Options
18292 @cindex Nios II options
18293 @cindex Altera Nios II options
18294
18295 These are the options defined for the Altera Nios II processor.
18296
18297 @table @gcctabopt
18298
18299 @item -G @var{num}
18300 @opindex G
18301 @cindex smaller data references
18302 Put global and static objects less than or equal to @var{num} bytes
18303 into the small data or BSS sections instead of the normal data or BSS
18304 sections. The default value of @var{num} is 8.
18305
18306 @item -mgpopt=@var{option}
18307 @item -mgpopt
18308 @itemx -mno-gpopt
18309 @opindex mgpopt
18310 @opindex mno-gpopt
18311 Generate (do not generate) GP-relative accesses. The following
18312 @var{option} names are recognized:
18313
18314 @table @samp
18315
18316 @item none
18317 Do not generate GP-relative accesses.
18318
18319 @item local
18320 Generate GP-relative accesses for small data objects that are not
18321 external or weak. Also use GP-relative addressing for objects that
18322 have been explicitly placed in a small data section via a @code{section}
18323 attribute.
18324
18325 @item global
18326 As for @samp{local}, but also generate GP-relative accesses for
18327 small data objects that are external or weak. If you use this option,
18328 you must ensure that all parts of your program (including libraries) are
18329 compiled with the same @option{-G} setting.
18330
18331 @item data
18332 Generate GP-relative accesses for all data objects in the program. If you
18333 use this option, the entire data and BSS segments
18334 of your program must fit in 64K of memory and you must use an appropriate
18335 linker script to allocate them within the addressible range of the
18336 global pointer.
18337
18338 @item all
18339 Generate GP-relative addresses for function pointers as well as data
18340 pointers. If you use this option, the entire text, data, and BSS segments
18341 of your program must fit in 64K of memory and you must use an appropriate
18342 linker script to allocate them within the addressible range of the
18343 global pointer.
18344
18345 @end table
18346
18347 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18348 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18349
18350 The default is @option{-mgpopt} except when @option{-fpic} or
18351 @option{-fPIC} is specified to generate position-independent code.
18352 Note that the Nios II ABI does not permit GP-relative accesses from
18353 shared libraries.
18354
18355 You may need to specify @option{-mno-gpopt} explicitly when building
18356 programs that include large amounts of small data, including large
18357 GOT data sections. In this case, the 16-bit offset for GP-relative
18358 addressing may not be large enough to allow access to the entire
18359 small data section.
18360
18361 @item -mel
18362 @itemx -meb
18363 @opindex mel
18364 @opindex meb
18365 Generate little-endian (default) or big-endian (experimental) code,
18366 respectively.
18367
18368 @item -mbypass-cache
18369 @itemx -mno-bypass-cache
18370 @opindex mno-bypass-cache
18371 @opindex mbypass-cache
18372 Force all load and store instructions to always bypass cache by
18373 using I/O variants of the instructions. The default is not to
18374 bypass the cache.
18375
18376 @item -mno-cache-volatile
18377 @itemx -mcache-volatile
18378 @opindex mcache-volatile
18379 @opindex mno-cache-volatile
18380 Volatile memory access bypass the cache using the I/O variants of
18381 the load and store instructions. The default is not to bypass the cache.
18382
18383 @item -mno-fast-sw-div
18384 @itemx -mfast-sw-div
18385 @opindex mno-fast-sw-div
18386 @opindex mfast-sw-div
18387 Do not use table-based fast divide for small numbers. The default
18388 is to use the fast divide at @option{-O3} and above.
18389
18390 @item -mno-hw-mul
18391 @itemx -mhw-mul
18392 @itemx -mno-hw-mulx
18393 @itemx -mhw-mulx
18394 @itemx -mno-hw-div
18395 @itemx -mhw-div
18396 @opindex mno-hw-mul
18397 @opindex mhw-mul
18398 @opindex mno-hw-mulx
18399 @opindex mhw-mulx
18400 @opindex mno-hw-div
18401 @opindex mhw-div
18402 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
18403 instructions by the compiler. The default is to emit @code{mul}
18404 and not emit @code{div} and @code{mulx}.
18405
18406 @item -mcustom-@var{insn}=@var{N}
18407 @itemx -mno-custom-@var{insn}
18408 @opindex mcustom-@var{insn}
18409 @opindex mno-custom-@var{insn}
18410 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18411 custom instruction with encoding @var{N} when generating code that uses
18412 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
18413 instruction 253 for single-precision floating-point add operations instead
18414 of the default behavior of using a library call.
18415
18416 The following values of @var{insn} are supported. Except as otherwise
18417 noted, floating-point operations are expected to be implemented with
18418 normal IEEE 754 semantics and correspond directly to the C operators or the
18419 equivalent GCC built-in functions (@pxref{Other Builtins}).
18420
18421 Single-precision floating point:
18422 @table @asis
18423
18424 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18425 Binary arithmetic operations.
18426
18427 @item @samp{fnegs}
18428 Unary negation.
18429
18430 @item @samp{fabss}
18431 Unary absolute value.
18432
18433 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18434 Comparison operations.
18435
18436 @item @samp{fmins}, @samp{fmaxs}
18437 Floating-point minimum and maximum. These instructions are only
18438 generated if @option{-ffinite-math-only} is specified.
18439
18440 @item @samp{fsqrts}
18441 Unary square root operation.
18442
18443 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18444 Floating-point trigonometric and exponential functions. These instructions
18445 are only generated if @option{-funsafe-math-optimizations} is also specified.
18446
18447 @end table
18448
18449 Double-precision floating point:
18450 @table @asis
18451
18452 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18453 Binary arithmetic operations.
18454
18455 @item @samp{fnegd}
18456 Unary negation.
18457
18458 @item @samp{fabsd}
18459 Unary absolute value.
18460
18461 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18462 Comparison operations.
18463
18464 @item @samp{fmind}, @samp{fmaxd}
18465 Double-precision minimum and maximum. These instructions are only
18466 generated if @option{-ffinite-math-only} is specified.
18467
18468 @item @samp{fsqrtd}
18469 Unary square root operation.
18470
18471 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18472 Double-precision trigonometric and exponential functions. These instructions
18473 are only generated if @option{-funsafe-math-optimizations} is also specified.
18474
18475 @end table
18476
18477 Conversions:
18478 @table @asis
18479 @item @samp{fextsd}
18480 Conversion from single precision to double precision.
18481
18482 @item @samp{ftruncds}
18483 Conversion from double precision to single precision.
18484
18485 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18486 Conversion from floating point to signed or unsigned integer types, with
18487 truncation towards zero.
18488
18489 @item @samp{round}
18490 Conversion from single-precision floating point to signed integer,
18491 rounding to the nearest integer and ties away from zero.
18492 This corresponds to the @code{__builtin_lroundf} function when
18493 @option{-fno-math-errno} is used.
18494
18495 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18496 Conversion from signed or unsigned integer types to floating-point types.
18497
18498 @end table
18499
18500 In addition, all of the following transfer instructions for internal
18501 registers X and Y must be provided to use any of the double-precision
18502 floating-point instructions. Custom instructions taking two
18503 double-precision source operands expect the first operand in the
18504 64-bit register X. The other operand (or only operand of a unary
18505 operation) is given to the custom arithmetic instruction with the
18506 least significant half in source register @var{src1} and the most
18507 significant half in @var{src2}. A custom instruction that returns a
18508 double-precision result returns the most significant 32 bits in the
18509 destination register and the other half in 32-bit register Y.
18510 GCC automatically generates the necessary code sequences to write
18511 register X and/or read register Y when double-precision floating-point
18512 instructions are used.
18513
18514 @table @asis
18515
18516 @item @samp{fwrx}
18517 Write @var{src1} into the least significant half of X and @var{src2} into
18518 the most significant half of X.
18519
18520 @item @samp{fwry}
18521 Write @var{src1} into Y.
18522
18523 @item @samp{frdxhi}, @samp{frdxlo}
18524 Read the most or least (respectively) significant half of X and store it in
18525 @var{dest}.
18526
18527 @item @samp{frdy}
18528 Read the value of Y and store it into @var{dest}.
18529 @end table
18530
18531 Note that you can gain more local control over generation of Nios II custom
18532 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18533 and @code{target("no-custom-@var{insn}")} function attributes
18534 (@pxref{Function Attributes})
18535 or pragmas (@pxref{Function Specific Option Pragmas}).
18536
18537 @item -mcustom-fpu-cfg=@var{name}
18538 @opindex mcustom-fpu-cfg
18539
18540 This option enables a predefined, named set of custom instruction encodings
18541 (see @option{-mcustom-@var{insn}} above).
18542 Currently, the following sets are defined:
18543
18544 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
18545 @gccoptlist{-mcustom-fmuls=252 @gol
18546 -mcustom-fadds=253 @gol
18547 -mcustom-fsubs=254 @gol
18548 -fsingle-precision-constant}
18549
18550 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
18551 @gccoptlist{-mcustom-fmuls=252 @gol
18552 -mcustom-fadds=253 @gol
18553 -mcustom-fsubs=254 @gol
18554 -mcustom-fdivs=255 @gol
18555 -fsingle-precision-constant}
18556
18557 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
18558 @gccoptlist{-mcustom-floatus=243 @gol
18559 -mcustom-fixsi=244 @gol
18560 -mcustom-floatis=245 @gol
18561 -mcustom-fcmpgts=246 @gol
18562 -mcustom-fcmples=249 @gol
18563 -mcustom-fcmpeqs=250 @gol
18564 -mcustom-fcmpnes=251 @gol
18565 -mcustom-fmuls=252 @gol
18566 -mcustom-fadds=253 @gol
18567 -mcustom-fsubs=254 @gol
18568 -mcustom-fdivs=255 @gol
18569 -fsingle-precision-constant}
18570
18571 Custom instruction assignments given by individual
18572 @option{-mcustom-@var{insn}=} options override those given by
18573 @option{-mcustom-fpu-cfg=}, regardless of the
18574 order of the options on the command line.
18575
18576 Note that you can gain more local control over selection of a FPU
18577 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
18578 function attribute (@pxref{Function Attributes})
18579 or pragma (@pxref{Function Specific Option Pragmas}).
18580
18581 @end table
18582
18583 These additional @samp{-m} options are available for the Altera Nios II
18584 ELF (bare-metal) target:
18585
18586 @table @gcctabopt
18587
18588 @item -mhal
18589 @opindex mhal
18590 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
18591 startup and termination code, and is typically used in conjunction with
18592 @option{-msys-crt0=} to specify the location of the alternate startup code
18593 provided by the HAL BSP.
18594
18595 @item -msmallc
18596 @opindex msmallc
18597 Link with a limited version of the C library, @option{-lsmallc}, rather than
18598 Newlib.
18599
18600 @item -msys-crt0=@var{startfile}
18601 @opindex msys-crt0
18602 @var{startfile} is the file name of the startfile (crt0) to use
18603 when linking. This option is only useful in conjunction with @option{-mhal}.
18604
18605 @item -msys-lib=@var{systemlib}
18606 @opindex msys-lib
18607 @var{systemlib} is the library name of the library that provides
18608 low-level system calls required by the C library,
18609 e.g. @code{read} and @code{write}.
18610 This option is typically used to link with a library provided by a HAL BSP.
18611
18612 @end table
18613
18614 @node Nvidia PTX Options
18615 @subsection Nvidia PTX Options
18616 @cindex Nvidia PTX options
18617 @cindex nvptx options
18618
18619 These options are defined for Nvidia PTX:
18620
18621 @table @gcctabopt
18622
18623 @item -m32
18624 @itemx -m64
18625 @opindex m32
18626 @opindex m64
18627 Generate code for 32-bit or 64-bit ABI.
18628
18629 @item -mmainkernel
18630 @opindex mmainkernel
18631 Link in code for a __main kernel. This is for stand-alone instead of
18632 offloading execution.
18633
18634 @end table
18635
18636 @node PDP-11 Options
18637 @subsection PDP-11 Options
18638 @cindex PDP-11 Options
18639
18640 These options are defined for the PDP-11:
18641
18642 @table @gcctabopt
18643 @item -mfpu
18644 @opindex mfpu
18645 Use hardware FPP floating point. This is the default. (FIS floating
18646 point on the PDP-11/40 is not supported.)
18647
18648 @item -msoft-float
18649 @opindex msoft-float
18650 Do not use hardware floating point.
18651
18652 @item -mac0
18653 @opindex mac0
18654 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
18655
18656 @item -mno-ac0
18657 @opindex mno-ac0
18658 Return floating-point results in memory. This is the default.
18659
18660 @item -m40
18661 @opindex m40
18662 Generate code for a PDP-11/40.
18663
18664 @item -m45
18665 @opindex m45
18666 Generate code for a PDP-11/45. This is the default.
18667
18668 @item -m10
18669 @opindex m10
18670 Generate code for a PDP-11/10.
18671
18672 @item -mbcopy-builtin
18673 @opindex mbcopy-builtin
18674 Use inline @code{movmemhi} patterns for copying memory. This is the
18675 default.
18676
18677 @item -mbcopy
18678 @opindex mbcopy
18679 Do not use inline @code{movmemhi} patterns for copying memory.
18680
18681 @item -mint16
18682 @itemx -mno-int32
18683 @opindex mint16
18684 @opindex mno-int32
18685 Use 16-bit @code{int}. This is the default.
18686
18687 @item -mint32
18688 @itemx -mno-int16
18689 @opindex mint32
18690 @opindex mno-int16
18691 Use 32-bit @code{int}.
18692
18693 @item -mfloat64
18694 @itemx -mno-float32
18695 @opindex mfloat64
18696 @opindex mno-float32
18697 Use 64-bit @code{float}. This is the default.
18698
18699 @item -mfloat32
18700 @itemx -mno-float64
18701 @opindex mfloat32
18702 @opindex mno-float64
18703 Use 32-bit @code{float}.
18704
18705 @item -mabshi
18706 @opindex mabshi
18707 Use @code{abshi2} pattern. This is the default.
18708
18709 @item -mno-abshi
18710 @opindex mno-abshi
18711 Do not use @code{abshi2} pattern.
18712
18713 @item -mbranch-expensive
18714 @opindex mbranch-expensive
18715 Pretend that branches are expensive. This is for experimenting with
18716 code generation only.
18717
18718 @item -mbranch-cheap
18719 @opindex mbranch-cheap
18720 Do not pretend that branches are expensive. This is the default.
18721
18722 @item -munix-asm
18723 @opindex munix-asm
18724 Use Unix assembler syntax. This is the default when configured for
18725 @samp{pdp11-*-bsd}.
18726
18727 @item -mdec-asm
18728 @opindex mdec-asm
18729 Use DEC assembler syntax. This is the default when configured for any
18730 PDP-11 target other than @samp{pdp11-*-bsd}.
18731 @end table
18732
18733 @node picoChip Options
18734 @subsection picoChip Options
18735 @cindex picoChip options
18736
18737 These @samp{-m} options are defined for picoChip implementations:
18738
18739 @table @gcctabopt
18740
18741 @item -mae=@var{ae_type}
18742 @opindex mcpu
18743 Set the instruction set, register set, and instruction scheduling
18744 parameters for array element type @var{ae_type}. Supported values
18745 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
18746
18747 @option{-mae=ANY} selects a completely generic AE type. Code
18748 generated with this option runs on any of the other AE types. The
18749 code is not as efficient as it would be if compiled for a specific
18750 AE type, and some types of operation (e.g., multiplication) do not
18751 work properly on all types of AE.
18752
18753 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
18754 for compiled code, and is the default.
18755
18756 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
18757 option may suffer from poor performance of byte (char) manipulation,
18758 since the DSP AE does not provide hardware support for byte load/stores.
18759
18760 @item -msymbol-as-address
18761 Enable the compiler to directly use a symbol name as an address in a
18762 load/store instruction, without first loading it into a
18763 register. Typically, the use of this option generates larger
18764 programs, which run faster than when the option isn't used. However, the
18765 results vary from program to program, so it is left as a user option,
18766 rather than being permanently enabled.
18767
18768 @item -mno-inefficient-warnings
18769 Disables warnings about the generation of inefficient code. These
18770 warnings can be generated, for example, when compiling code that
18771 performs byte-level memory operations on the MAC AE type. The MAC AE has
18772 no hardware support for byte-level memory operations, so all byte
18773 load/stores must be synthesized from word load/store operations. This is
18774 inefficient and a warning is generated to indicate
18775 that you should rewrite the code to avoid byte operations, or to target
18776 an AE type that has the necessary hardware support. This option disables
18777 these warnings.
18778
18779 @end table
18780
18781 @node PowerPC Options
18782 @subsection PowerPC Options
18783 @cindex PowerPC options
18784
18785 These are listed under @xref{RS/6000 and PowerPC Options}.
18786
18787 @node RL78 Options
18788 @subsection RL78 Options
18789 @cindex RL78 Options
18790
18791 @table @gcctabopt
18792
18793 @item -msim
18794 @opindex msim
18795 Links in additional target libraries to support operation within a
18796 simulator.
18797
18798 @item -mmul=none
18799 @itemx -mmul=g10
18800 @itemx -mmul=g13
18801 @itemx -mmul=g14
18802 @itemx -mmul=rl78
18803 @opindex mmul
18804 Specifies the type of hardware multiplication and division support to
18805 be used. The simplest is @code{none}, which uses software for both
18806 multiplication and division. This is the default. The @code{g13}
18807 value is for the hardware multiply/divide peripheral found on the
18808 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
18809 the multiplication and division instructions supported by the RL78/G14
18810 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
18811 the value @code{mg10} is an alias for @code{none}.
18812
18813 In addition a C preprocessor macro is defined, based upon the setting
18814 of this option. Possible values are: @code{__RL78_MUL_NONE__},
18815 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
18816
18817 @item -mcpu=g10
18818 @itemx -mcpu=g13
18819 @itemx -mcpu=g14
18820 @itemx -mcpu=rl78
18821 @opindex mcpu
18822 Specifies the RL78 core to target. The default is the G14 core, also
18823 known as an S3 core or just RL78. The G13 or S2 core does not have
18824 multiply or divide instructions, instead it uses a hardware peripheral
18825 for these operations. The G10 or S1 core does not have register
18826 banks, so it uses a different calling convention.
18827
18828 If this option is set it also selects the type of hardware multiply
18829 support to use, unless this is overridden by an explicit
18830 @option{-mmul=none} option on the command line. Thus specifying
18831 @option{-mcpu=g13} enables the use of the G13 hardware multiply
18832 peripheral and specifying @option{-mcpu=g10} disables the use of
18833 hardware multipications altogether.
18834
18835 Note, although the RL78/G14 core is the default target, specifying
18836 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
18837 change the behaviour of the toolchain since it also enables G14
18838 hardware multiply support. If these options are not specified on the
18839 command line then software multiplication routines will be used even
18840 though the code targets the RL78 core. This is for backwards
18841 compatibility with older toolchains which did not have hardware
18842 multiply and divide support.
18843
18844 In addition a C preprocessor macro is defined, based upon the setting
18845 of this option. Possible values are: @code{__RL78_G10__},
18846 @code{__RL78_G13__} or @code{__RL78_G14__}.
18847
18848 @item -mg10
18849 @itemx -mg13
18850 @itemx -mg14
18851 @itemx -mrl78
18852 @opindex mg10
18853 @opindex mg13
18854 @opindex mg14
18855 @opindex mrl78
18856 These are aliases for the corresponding @option{-mcpu=} option. They
18857 are provided for backwards compatibility.
18858
18859 @item -mallregs
18860 @opindex mallregs
18861 Allow the compiler to use all of the available registers. By default
18862 registers @code{r24..r31} are reserved for use in interrupt handlers.
18863 With this option enabled these registers can be used in ordinary
18864 functions as well.
18865
18866 @item -m64bit-doubles
18867 @itemx -m32bit-doubles
18868 @opindex m64bit-doubles
18869 @opindex m32bit-doubles
18870 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
18871 or 32 bits (@option{-m32bit-doubles}) in size. The default is
18872 @option{-m32bit-doubles}.
18873
18874 @end table
18875
18876 @node RS/6000 and PowerPC Options
18877 @subsection IBM RS/6000 and PowerPC Options
18878 @cindex RS/6000 and PowerPC Options
18879 @cindex IBM RS/6000 and PowerPC Options
18880
18881 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
18882 @table @gcctabopt
18883 @item -mpowerpc-gpopt
18884 @itemx -mno-powerpc-gpopt
18885 @itemx -mpowerpc-gfxopt
18886 @itemx -mno-powerpc-gfxopt
18887 @need 800
18888 @itemx -mpowerpc64
18889 @itemx -mno-powerpc64
18890 @itemx -mmfcrf
18891 @itemx -mno-mfcrf
18892 @itemx -mpopcntb
18893 @itemx -mno-popcntb
18894 @itemx -mpopcntd
18895 @itemx -mno-popcntd
18896 @itemx -mfprnd
18897 @itemx -mno-fprnd
18898 @need 800
18899 @itemx -mcmpb
18900 @itemx -mno-cmpb
18901 @itemx -mmfpgpr
18902 @itemx -mno-mfpgpr
18903 @itemx -mhard-dfp
18904 @itemx -mno-hard-dfp
18905 @opindex mpowerpc-gpopt
18906 @opindex mno-powerpc-gpopt
18907 @opindex mpowerpc-gfxopt
18908 @opindex mno-powerpc-gfxopt
18909 @opindex mpowerpc64
18910 @opindex mno-powerpc64
18911 @opindex mmfcrf
18912 @opindex mno-mfcrf
18913 @opindex mpopcntb
18914 @opindex mno-popcntb
18915 @opindex mpopcntd
18916 @opindex mno-popcntd
18917 @opindex mfprnd
18918 @opindex mno-fprnd
18919 @opindex mcmpb
18920 @opindex mno-cmpb
18921 @opindex mmfpgpr
18922 @opindex mno-mfpgpr
18923 @opindex mhard-dfp
18924 @opindex mno-hard-dfp
18925 You use these options to specify which instructions are available on the
18926 processor you are using. The default value of these options is
18927 determined when configuring GCC@. Specifying the
18928 @option{-mcpu=@var{cpu_type}} overrides the specification of these
18929 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
18930 rather than the options listed above.
18931
18932 Specifying @option{-mpowerpc-gpopt} allows
18933 GCC to use the optional PowerPC architecture instructions in the
18934 General Purpose group, including floating-point square root. Specifying
18935 @option{-mpowerpc-gfxopt} allows GCC to
18936 use the optional PowerPC architecture instructions in the Graphics
18937 group, including floating-point select.
18938
18939 The @option{-mmfcrf} option allows GCC to generate the move from
18940 condition register field instruction implemented on the POWER4
18941 processor and other processors that support the PowerPC V2.01
18942 architecture.
18943 The @option{-mpopcntb} option allows GCC to generate the popcount and
18944 double-precision FP reciprocal estimate instruction implemented on the
18945 POWER5 processor and other processors that support the PowerPC V2.02
18946 architecture.
18947 The @option{-mpopcntd} option allows GCC to generate the popcount
18948 instruction implemented on the POWER7 processor and other processors
18949 that support the PowerPC V2.06 architecture.
18950 The @option{-mfprnd} option allows GCC to generate the FP round to
18951 integer instructions implemented on the POWER5+ processor and other
18952 processors that support the PowerPC V2.03 architecture.
18953 The @option{-mcmpb} option allows GCC to generate the compare bytes
18954 instruction implemented on the POWER6 processor and other processors
18955 that support the PowerPC V2.05 architecture.
18956 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
18957 general-purpose register instructions implemented on the POWER6X
18958 processor and other processors that support the extended PowerPC V2.05
18959 architecture.
18960 The @option{-mhard-dfp} option allows GCC to generate the decimal
18961 floating-point instructions implemented on some POWER processors.
18962
18963 The @option{-mpowerpc64} option allows GCC to generate the additional
18964 64-bit instructions that are found in the full PowerPC64 architecture
18965 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
18966 @option{-mno-powerpc64}.
18967
18968 @item -mcpu=@var{cpu_type}
18969 @opindex mcpu
18970 Set architecture type, register usage, and
18971 instruction scheduling parameters for machine type @var{cpu_type}.
18972 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
18973 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
18974 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
18975 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
18976 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
18977 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
18978 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
18979 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
18980 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
18981 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
18982 @samp{powerpc64}, @samp{powerpc64le}, and @samp{rs64}.
18983
18984 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
18985 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
18986 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
18987 architecture machine types, with an appropriate, generic processor
18988 model assumed for scheduling purposes.
18989
18990 The other options specify a specific processor. Code generated under
18991 those options runs best on that processor, and may not run at all on
18992 others.
18993
18994 The @option{-mcpu} options automatically enable or disable the
18995 following options:
18996
18997 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
18998 -mpopcntb -mpopcntd -mpowerpc64 @gol
18999 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
19000 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
19001 -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
19002 -mquad-memory -mquad-memory-atomic}
19003
19004 The particular options set for any particular CPU varies between
19005 compiler versions, depending on what setting seems to produce optimal
19006 code for that CPU; it doesn't necessarily reflect the actual hardware's
19007 capabilities. If you wish to set an individual option to a particular
19008 value, you may specify it after the @option{-mcpu} option, like
19009 @option{-mcpu=970 -mno-altivec}.
19010
19011 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
19012 not enabled or disabled by the @option{-mcpu} option at present because
19013 AIX does not have full support for these options. You may still
19014 enable or disable them individually if you're sure it'll work in your
19015 environment.
19016
19017 @item -mtune=@var{cpu_type}
19018 @opindex mtune
19019 Set the instruction scheduling parameters for machine type
19020 @var{cpu_type}, but do not set the architecture type or register usage,
19021 as @option{-mcpu=@var{cpu_type}} does. The same
19022 values for @var{cpu_type} are used for @option{-mtune} as for
19023 @option{-mcpu}. If both are specified, the code generated uses the
19024 architecture and registers set by @option{-mcpu}, but the
19025 scheduling parameters set by @option{-mtune}.
19026
19027 @item -mcmodel=small
19028 @opindex mcmodel=small
19029 Generate PowerPC64 code for the small model: The TOC is limited to
19030 64k.
19031
19032 @item -mcmodel=medium
19033 @opindex mcmodel=medium
19034 Generate PowerPC64 code for the medium model: The TOC and other static
19035 data may be up to a total of 4G in size.
19036
19037 @item -mcmodel=large
19038 @opindex mcmodel=large
19039 Generate PowerPC64 code for the large model: The TOC may be up to 4G
19040 in size. Other data and code is only limited by the 64-bit address
19041 space.
19042
19043 @item -maltivec
19044 @itemx -mno-altivec
19045 @opindex maltivec
19046 @opindex mno-altivec
19047 Generate code that uses (does not use) AltiVec instructions, and also
19048 enable the use of built-in functions that allow more direct access to
19049 the AltiVec instruction set. You may also need to set
19050 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
19051 enhancements.
19052
19053 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
19054 @option{-maltivec=be}, the element order for Altivec intrinsics such
19055 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
19056 match array element order corresponding to the endianness of the
19057 target. That is, element zero identifies the leftmost element in a
19058 vector register when targeting a big-endian platform, and identifies
19059 the rightmost element in a vector register when targeting a
19060 little-endian platform.
19061
19062 @item -maltivec=be
19063 @opindex maltivec=be
19064 Generate Altivec instructions using big-endian element order,
19065 regardless of whether the target is big- or little-endian. This is
19066 the default when targeting a big-endian platform.
19067
19068 The element order is used to interpret element numbers in Altivec
19069 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19070 @code{vec_insert}. By default, these match array element order
19071 corresponding to the endianness for the target.
19072
19073 @item -maltivec=le
19074 @opindex maltivec=le
19075 Generate Altivec instructions using little-endian element order,
19076 regardless of whether the target is big- or little-endian. This is
19077 the default when targeting a little-endian platform. This option is
19078 currently ignored when targeting a big-endian platform.
19079
19080 The element order is used to interpret element numbers in Altivec
19081 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19082 @code{vec_insert}. By default, these match array element order
19083 corresponding to the endianness for the target.
19084
19085 @item -mvrsave
19086 @itemx -mno-vrsave
19087 @opindex mvrsave
19088 @opindex mno-vrsave
19089 Generate VRSAVE instructions when generating AltiVec code.
19090
19091 @item -mgen-cell-microcode
19092 @opindex mgen-cell-microcode
19093 Generate Cell microcode instructions.
19094
19095 @item -mwarn-cell-microcode
19096 @opindex mwarn-cell-microcode
19097 Warn when a Cell microcode instruction is emitted. An example
19098 of a Cell microcode instruction is a variable shift.
19099
19100 @item -msecure-plt
19101 @opindex msecure-plt
19102 Generate code that allows @command{ld} and @command{ld.so}
19103 to build executables and shared
19104 libraries with non-executable @code{.plt} and @code{.got} sections.
19105 This is a PowerPC
19106 32-bit SYSV ABI option.
19107
19108 @item -mbss-plt
19109 @opindex mbss-plt
19110 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19111 fills in, and
19112 requires @code{.plt} and @code{.got}
19113 sections that are both writable and executable.
19114 This is a PowerPC 32-bit SYSV ABI option.
19115
19116 @item -misel
19117 @itemx -mno-isel
19118 @opindex misel
19119 @opindex mno-isel
19120 This switch enables or disables the generation of ISEL instructions.
19121
19122 @item -misel=@var{yes/no}
19123 This switch has been deprecated. Use @option{-misel} and
19124 @option{-mno-isel} instead.
19125
19126 @item -mspe
19127 @itemx -mno-spe
19128 @opindex mspe
19129 @opindex mno-spe
19130 This switch enables or disables the generation of SPE simd
19131 instructions.
19132
19133 @item -mpaired
19134 @itemx -mno-paired
19135 @opindex mpaired
19136 @opindex mno-paired
19137 This switch enables or disables the generation of PAIRED simd
19138 instructions.
19139
19140 @item -mspe=@var{yes/no}
19141 This option has been deprecated. Use @option{-mspe} and
19142 @option{-mno-spe} instead.
19143
19144 @item -mvsx
19145 @itemx -mno-vsx
19146 @opindex mvsx
19147 @opindex mno-vsx
19148 Generate code that uses (does not use) vector/scalar (VSX)
19149 instructions, and also enable the use of built-in functions that allow
19150 more direct access to the VSX instruction set.
19151
19152 @item -mcrypto
19153 @itemx -mno-crypto
19154 @opindex mcrypto
19155 @opindex mno-crypto
19156 Enable the use (disable) of the built-in functions that allow direct
19157 access to the cryptographic instructions that were added in version
19158 2.07 of the PowerPC ISA.
19159
19160 @item -mdirect-move
19161 @itemx -mno-direct-move
19162 @opindex mdirect-move
19163 @opindex mno-direct-move
19164 Generate code that uses (does not use) the instructions to move data
19165 between the general purpose registers and the vector/scalar (VSX)
19166 registers that were added in version 2.07 of the PowerPC ISA.
19167
19168 @item -mpower8-fusion
19169 @itemx -mno-power8-fusion
19170 @opindex mpower8-fusion
19171 @opindex mno-power8-fusion
19172 Generate code that keeps (does not keeps) some integer operations
19173 adjacent so that the instructions can be fused together on power8 and
19174 later processors.
19175
19176 @item -mpower8-vector
19177 @itemx -mno-power8-vector
19178 @opindex mpower8-vector
19179 @opindex mno-power8-vector
19180 Generate code that uses (does not use) the vector and scalar
19181 instructions that were added in version 2.07 of the PowerPC ISA. Also
19182 enable the use of built-in functions that allow more direct access to
19183 the vector instructions.
19184
19185 @item -mquad-memory
19186 @itemx -mno-quad-memory
19187 @opindex mquad-memory
19188 @opindex mno-quad-memory
19189 Generate code that uses (does not use) the non-atomic quad word memory
19190 instructions. The @option{-mquad-memory} option requires use of
19191 64-bit mode.
19192
19193 @item -mquad-memory-atomic
19194 @itemx -mno-quad-memory-atomic
19195 @opindex mquad-memory-atomic
19196 @opindex mno-quad-memory-atomic
19197 Generate code that uses (does not use) the atomic quad word memory
19198 instructions. The @option{-mquad-memory-atomic} option requires use of
19199 64-bit mode.
19200
19201 @item -mupper-regs-df
19202 @itemx -mno-upper-regs-df
19203 @opindex mupper-regs-df
19204 @opindex mno-upper-regs-df
19205 Generate code that uses (does not use) the scalar double precision
19206 instructions that target all 64 registers in the vector/scalar
19207 floating point register set that were added in version 2.06 of the
19208 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
19209 use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19210 @option{-mvsx} options.
19211
19212 @item -mupper-regs-sf
19213 @itemx -mno-upper-regs-sf
19214 @opindex mupper-regs-sf
19215 @opindex mno-upper-regs-sf
19216 Generate code that uses (does not use) the scalar single precision
19217 instructions that target all 64 registers in the vector/scalar
19218 floating point register set that were added in version 2.07 of the
19219 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
19220 use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19221 options.
19222
19223 @item -mupper-regs
19224 @itemx -mno-upper-regs
19225 @opindex mupper-regs
19226 @opindex mno-upper-regs
19227 Generate code that uses (does not use) the scalar
19228 instructions that target all 64 registers in the vector/scalar
19229 floating point register set, depending on the model of the machine.
19230
19231 If the @option{-mno-upper-regs} option is used, it turns off both
19232 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19233
19234 @item -mfloat-gprs=@var{yes/single/double/no}
19235 @itemx -mfloat-gprs
19236 @opindex mfloat-gprs
19237 This switch enables or disables the generation of floating-point
19238 operations on the general-purpose registers for architectures that
19239 support it.
19240
19241 The argument @samp{yes} or @samp{single} enables the use of
19242 single-precision floating-point operations.
19243
19244 The argument @samp{double} enables the use of single and
19245 double-precision floating-point operations.
19246
19247 The argument @samp{no} disables floating-point operations on the
19248 general-purpose registers.
19249
19250 This option is currently only available on the MPC854x.
19251
19252 @item -m32
19253 @itemx -m64
19254 @opindex m32
19255 @opindex m64
19256 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19257 targets (including GNU/Linux). The 32-bit environment sets int, long
19258 and pointer to 32 bits and generates code that runs on any PowerPC
19259 variant. The 64-bit environment sets int to 32 bits and long and
19260 pointer to 64 bits, and generates code for PowerPC64, as for
19261 @option{-mpowerpc64}.
19262
19263 @item -mfull-toc
19264 @itemx -mno-fp-in-toc
19265 @itemx -mno-sum-in-toc
19266 @itemx -mminimal-toc
19267 @opindex mfull-toc
19268 @opindex mno-fp-in-toc
19269 @opindex mno-sum-in-toc
19270 @opindex mminimal-toc
19271 Modify generation of the TOC (Table Of Contents), which is created for
19272 every executable file. The @option{-mfull-toc} option is selected by
19273 default. In that case, GCC allocates at least one TOC entry for
19274 each unique non-automatic variable reference in your program. GCC
19275 also places floating-point constants in the TOC@. However, only
19276 16,384 entries are available in the TOC@.
19277
19278 If you receive a linker error message that saying you have overflowed
19279 the available TOC space, you can reduce the amount of TOC space used
19280 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19281 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
19282 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19283 generate code to calculate the sum of an address and a constant at
19284 run time instead of putting that sum into the TOC@. You may specify one
19285 or both of these options. Each causes GCC to produce very slightly
19286 slower and larger code at the expense of conserving TOC space.
19287
19288 If you still run out of space in the TOC even when you specify both of
19289 these options, specify @option{-mminimal-toc} instead. This option causes
19290 GCC to make only one TOC entry for every file. When you specify this
19291 option, GCC produces code that is slower and larger but which
19292 uses extremely little TOC space. You may wish to use this option
19293 only on files that contain less frequently-executed code.
19294
19295 @item -maix64
19296 @itemx -maix32
19297 @opindex maix64
19298 @opindex maix32
19299 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19300 @code{long} type, and the infrastructure needed to support them.
19301 Specifying @option{-maix64} implies @option{-mpowerpc64},
19302 while @option{-maix32} disables the 64-bit ABI and
19303 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
19304
19305 @item -mxl-compat
19306 @itemx -mno-xl-compat
19307 @opindex mxl-compat
19308 @opindex mno-xl-compat
19309 Produce code that conforms more closely to IBM XL compiler semantics
19310 when using AIX-compatible ABI@. Pass floating-point arguments to
19311 prototyped functions beyond the register save area (RSA) on the stack
19312 in addition to argument FPRs. Do not assume that most significant
19313 double in 128-bit long double value is properly rounded when comparing
19314 values and converting to double. Use XL symbol names for long double
19315 support routines.
19316
19317 The AIX calling convention was extended but not initially documented to
19318 handle an obscure K&R C case of calling a function that takes the
19319 address of its arguments with fewer arguments than declared. IBM XL
19320 compilers access floating-point arguments that do not fit in the
19321 RSA from the stack when a subroutine is compiled without
19322 optimization. Because always storing floating-point arguments on the
19323 stack is inefficient and rarely needed, this option is not enabled by
19324 default and only is necessary when calling subroutines compiled by IBM
19325 XL compilers without optimization.
19326
19327 @item -mpe
19328 @opindex mpe
19329 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
19330 application written to use message passing with special startup code to
19331 enable the application to run. The system must have PE installed in the
19332 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19333 must be overridden with the @option{-specs=} option to specify the
19334 appropriate directory location. The Parallel Environment does not
19335 support threads, so the @option{-mpe} option and the @option{-pthread}
19336 option are incompatible.
19337
19338 @item -malign-natural
19339 @itemx -malign-power
19340 @opindex malign-natural
19341 @opindex malign-power
19342 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19343 @option{-malign-natural} overrides the ABI-defined alignment of larger
19344 types, such as floating-point doubles, on their natural size-based boundary.
19345 The option @option{-malign-power} instructs GCC to follow the ABI-specified
19346 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
19347
19348 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19349 is not supported.
19350
19351 @item -msoft-float
19352 @itemx -mhard-float
19353 @opindex msoft-float
19354 @opindex mhard-float
19355 Generate code that does not use (uses) the floating-point register set.
19356 Software floating-point emulation is provided if you use the
19357 @option{-msoft-float} option, and pass the option to GCC when linking.
19358
19359 @item -msingle-float
19360 @itemx -mdouble-float
19361 @opindex msingle-float
19362 @opindex mdouble-float
19363 Generate code for single- or double-precision floating-point operations.
19364 @option{-mdouble-float} implies @option{-msingle-float}.
19365
19366 @item -msimple-fpu
19367 @opindex msimple-fpu
19368 Do not generate @code{sqrt} and @code{div} instructions for hardware
19369 floating-point unit.
19370
19371 @item -mfpu=@var{name}
19372 @opindex mfpu
19373 Specify type of floating-point unit. Valid values for @var{name} are
19374 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19375 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19376 @samp{sp_full} (equivalent to @option{-msingle-float}),
19377 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19378
19379 @item -mxilinx-fpu
19380 @opindex mxilinx-fpu
19381 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19382
19383 @item -mmultiple
19384 @itemx -mno-multiple
19385 @opindex mmultiple
19386 @opindex mno-multiple
19387 Generate code that uses (does not use) the load multiple word
19388 instructions and the store multiple word instructions. These
19389 instructions are generated by default on POWER systems, and not
19390 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
19391 PowerPC systems, since those instructions do not work when the
19392 processor is in little-endian mode. The exceptions are PPC740 and
19393 PPC750 which permit these instructions in little-endian mode.
19394
19395 @item -mstring
19396 @itemx -mno-string
19397 @opindex mstring
19398 @opindex mno-string
19399 Generate code that uses (does not use) the load string instructions
19400 and the store string word instructions to save multiple registers and
19401 do small block moves. These instructions are generated by default on
19402 POWER systems, and not generated on PowerPC systems. Do not use
19403 @option{-mstring} on little-endian PowerPC systems, since those
19404 instructions do not work when the processor is in little-endian mode.
19405 The exceptions are PPC740 and PPC750 which permit these instructions
19406 in little-endian mode.
19407
19408 @item -mupdate
19409 @itemx -mno-update
19410 @opindex mupdate
19411 @opindex mno-update
19412 Generate code that uses (does not use) the load or store instructions
19413 that update the base register to the address of the calculated memory
19414 location. These instructions are generated by default. If you use
19415 @option{-mno-update}, there is a small window between the time that the
19416 stack pointer is updated and the address of the previous frame is
19417 stored, which means code that walks the stack frame across interrupts or
19418 signals may get corrupted data.
19419
19420 @item -mavoid-indexed-addresses
19421 @itemx -mno-avoid-indexed-addresses
19422 @opindex mavoid-indexed-addresses
19423 @opindex mno-avoid-indexed-addresses
19424 Generate code that tries to avoid (not avoid) the use of indexed load
19425 or store instructions. These instructions can incur a performance
19426 penalty on Power6 processors in certain situations, such as when
19427 stepping through large arrays that cross a 16M boundary. This option
19428 is enabled by default when targeting Power6 and disabled otherwise.
19429
19430 @item -mfused-madd
19431 @itemx -mno-fused-madd
19432 @opindex mfused-madd
19433 @opindex mno-fused-madd
19434 Generate code that uses (does not use) the floating-point multiply and
19435 accumulate instructions. These instructions are generated by default
19436 if hardware floating point is used. The machine-dependent
19437 @option{-mfused-madd} option is now mapped to the machine-independent
19438 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19439 mapped to @option{-ffp-contract=off}.
19440
19441 @item -mmulhw
19442 @itemx -mno-mulhw
19443 @opindex mmulhw
19444 @opindex mno-mulhw
19445 Generate code that uses (does not use) the half-word multiply and
19446 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19447 These instructions are generated by default when targeting those
19448 processors.
19449
19450 @item -mdlmzb
19451 @itemx -mno-dlmzb
19452 @opindex mdlmzb
19453 @opindex mno-dlmzb
19454 Generate code that uses (does not use) the string-search @samp{dlmzb}
19455 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
19456 generated by default when targeting those processors.
19457
19458 @item -mno-bit-align
19459 @itemx -mbit-align
19460 @opindex mno-bit-align
19461 @opindex mbit-align
19462 On System V.4 and embedded PowerPC systems do not (do) force structures
19463 and unions that contain bit-fields to be aligned to the base type of the
19464 bit-field.
19465
19466 For example, by default a structure containing nothing but 8
19467 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19468 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
19469 the structure is aligned to a 1-byte boundary and is 1 byte in
19470 size.
19471
19472 @item -mno-strict-align
19473 @itemx -mstrict-align
19474 @opindex mno-strict-align
19475 @opindex mstrict-align
19476 On System V.4 and embedded PowerPC systems do not (do) assume that
19477 unaligned memory references are handled by the system.
19478
19479 @item -mrelocatable
19480 @itemx -mno-relocatable
19481 @opindex mrelocatable
19482 @opindex mno-relocatable
19483 Generate code that allows (does not allow) a static executable to be
19484 relocated to a different address at run time. A simple embedded
19485 PowerPC system loader should relocate the entire contents of
19486 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
19487 a table of 32-bit addresses generated by this option. For this to
19488 work, all objects linked together must be compiled with
19489 @option{-mrelocatable} or @option{-mrelocatable-lib}.
19490 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
19491
19492 @item -mrelocatable-lib
19493 @itemx -mno-relocatable-lib
19494 @opindex mrelocatable-lib
19495 @opindex mno-relocatable-lib
19496 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
19497 @code{.fixup} section to allow static executables to be relocated at
19498 run time, but @option{-mrelocatable-lib} does not use the smaller stack
19499 alignment of @option{-mrelocatable}. Objects compiled with
19500 @option{-mrelocatable-lib} may be linked with objects compiled with
19501 any combination of the @option{-mrelocatable} options.
19502
19503 @item -mno-toc
19504 @itemx -mtoc
19505 @opindex mno-toc
19506 @opindex mtoc
19507 On System V.4 and embedded PowerPC systems do not (do) assume that
19508 register 2 contains a pointer to a global area pointing to the addresses
19509 used in the program.
19510
19511 @item -mlittle
19512 @itemx -mlittle-endian
19513 @opindex mlittle
19514 @opindex mlittle-endian
19515 On System V.4 and embedded PowerPC systems compile code for the
19516 processor in little-endian mode. The @option{-mlittle-endian} option is
19517 the same as @option{-mlittle}.
19518
19519 @item -mbig
19520 @itemx -mbig-endian
19521 @opindex mbig
19522 @opindex mbig-endian
19523 On System V.4 and embedded PowerPC systems compile code for the
19524 processor in big-endian mode. The @option{-mbig-endian} option is
19525 the same as @option{-mbig}.
19526
19527 @item -mdynamic-no-pic
19528 @opindex mdynamic-no-pic
19529 On Darwin and Mac OS X systems, compile code so that it is not
19530 relocatable, but that its external references are relocatable. The
19531 resulting code is suitable for applications, but not shared
19532 libraries.
19533
19534 @item -msingle-pic-base
19535 @opindex msingle-pic-base
19536 Treat the register used for PIC addressing as read-only, rather than
19537 loading it in the prologue for each function. The runtime system is
19538 responsible for initializing this register with an appropriate value
19539 before execution begins.
19540
19541 @item -mprioritize-restricted-insns=@var{priority}
19542 @opindex mprioritize-restricted-insns
19543 This option controls the priority that is assigned to
19544 dispatch-slot restricted instructions during the second scheduling
19545 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
19546 or @samp{2} to assign no, highest, or second-highest (respectively)
19547 priority to dispatch-slot restricted
19548 instructions.
19549
19550 @item -msched-costly-dep=@var{dependence_type}
19551 @opindex msched-costly-dep
19552 This option controls which dependences are considered costly
19553 by the target during instruction scheduling. The argument
19554 @var{dependence_type} takes one of the following values:
19555
19556 @table @asis
19557 @item @samp{no}
19558 No dependence is costly.
19559
19560 @item @samp{all}
19561 All dependences are costly.
19562
19563 @item @samp{true_store_to_load}
19564 A true dependence from store to load is costly.
19565
19566 @item @samp{store_to_load}
19567 Any dependence from store to load is costly.
19568
19569 @item @var{number}
19570 Any dependence for which the latency is greater than or equal to
19571 @var{number} is costly.
19572 @end table
19573
19574 @item -minsert-sched-nops=@var{scheme}
19575 @opindex minsert-sched-nops
19576 This option controls which NOP insertion scheme is used during
19577 the second scheduling pass. The argument @var{scheme} takes one of the
19578 following values:
19579
19580 @table @asis
19581 @item @samp{no}
19582 Don't insert NOPs.
19583
19584 @item @samp{pad}
19585 Pad with NOPs any dispatch group that has vacant issue slots,
19586 according to the scheduler's grouping.
19587
19588 @item @samp{regroup_exact}
19589 Insert NOPs to force costly dependent insns into
19590 separate groups. Insert exactly as many NOPs as needed to force an insn
19591 to a new group, according to the estimated processor grouping.
19592
19593 @item @var{number}
19594 Insert NOPs to force costly dependent insns into
19595 separate groups. Insert @var{number} NOPs to force an insn to a new group.
19596 @end table
19597
19598 @item -mcall-sysv
19599 @opindex mcall-sysv
19600 On System V.4 and embedded PowerPC systems compile code using calling
19601 conventions that adhere to the March 1995 draft of the System V
19602 Application Binary Interface, PowerPC processor supplement. This is the
19603 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19604
19605 @item -mcall-sysv-eabi
19606 @itemx -mcall-eabi
19607 @opindex mcall-sysv-eabi
19608 @opindex mcall-eabi
19609 Specify both @option{-mcall-sysv} and @option{-meabi} options.
19610
19611 @item -mcall-sysv-noeabi
19612 @opindex mcall-sysv-noeabi
19613 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
19614
19615 @item -mcall-aixdesc
19616 @opindex m
19617 On System V.4 and embedded PowerPC systems compile code for the AIX
19618 operating system.
19619
19620 @item -mcall-linux
19621 @opindex mcall-linux
19622 On System V.4 and embedded PowerPC systems compile code for the
19623 Linux-based GNU system.
19624
19625 @item -mcall-freebsd
19626 @opindex mcall-freebsd
19627 On System V.4 and embedded PowerPC systems compile code for the
19628 FreeBSD operating system.
19629
19630 @item -mcall-netbsd
19631 @opindex mcall-netbsd
19632 On System V.4 and embedded PowerPC systems compile code for the
19633 NetBSD operating system.
19634
19635 @item -mcall-openbsd
19636 @opindex mcall-netbsd
19637 On System V.4 and embedded PowerPC systems compile code for the
19638 OpenBSD operating system.
19639
19640 @item -maix-struct-return
19641 @opindex maix-struct-return
19642 Return all structures in memory (as specified by the AIX ABI)@.
19643
19644 @item -msvr4-struct-return
19645 @opindex msvr4-struct-return
19646 Return structures smaller than 8 bytes in registers (as specified by the
19647 SVR4 ABI)@.
19648
19649 @item -mabi=@var{abi-type}
19650 @opindex mabi
19651 Extend the current ABI with a particular extension, or remove such extension.
19652 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
19653 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
19654 @samp{elfv1}, @samp{elfv2}@.
19655
19656 @item -mabi=spe
19657 @opindex mabi=spe
19658 Extend the current ABI with SPE ABI extensions. This does not change
19659 the default ABI, instead it adds the SPE ABI extensions to the current
19660 ABI@.
19661
19662 @item -mabi=no-spe
19663 @opindex mabi=no-spe
19664 Disable Book-E SPE ABI extensions for the current ABI@.
19665
19666 @item -mabi=ibmlongdouble
19667 @opindex mabi=ibmlongdouble
19668 Change the current ABI to use IBM extended-precision long double.
19669 This is a PowerPC 32-bit SYSV ABI option.
19670
19671 @item -mabi=ieeelongdouble
19672 @opindex mabi=ieeelongdouble
19673 Change the current ABI to use IEEE extended-precision long double.
19674 This is a PowerPC 32-bit Linux ABI option.
19675
19676 @item -mabi=elfv1
19677 @opindex mabi=elfv1
19678 Change the current ABI to use the ELFv1 ABI.
19679 This is the default ABI for big-endian PowerPC 64-bit Linux.
19680 Overriding the default ABI requires special system support and is
19681 likely to fail in spectacular ways.
19682
19683 @item -mabi=elfv2
19684 @opindex mabi=elfv2
19685 Change the current ABI to use the ELFv2 ABI.
19686 This is the default ABI for little-endian PowerPC 64-bit Linux.
19687 Overriding the default ABI requires special system support and is
19688 likely to fail in spectacular ways.
19689
19690 @item -mprototype
19691 @itemx -mno-prototype
19692 @opindex mprototype
19693 @opindex mno-prototype
19694 On System V.4 and embedded PowerPC systems assume that all calls to
19695 variable argument functions are properly prototyped. Otherwise, the
19696 compiler must insert an instruction before every non-prototyped call to
19697 set or clear bit 6 of the condition code register (@code{CR}) to
19698 indicate whether floating-point values are passed in the floating-point
19699 registers in case the function takes variable arguments. With
19700 @option{-mprototype}, only calls to prototyped variable argument functions
19701 set or clear the bit.
19702
19703 @item -msim
19704 @opindex msim
19705 On embedded PowerPC systems, assume that the startup module is called
19706 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
19707 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
19708 configurations.
19709
19710 @item -mmvme
19711 @opindex mmvme
19712 On embedded PowerPC systems, assume that the startup module is called
19713 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
19714 @file{libc.a}.
19715
19716 @item -mads
19717 @opindex mads
19718 On embedded PowerPC systems, assume that the startup module is called
19719 @file{crt0.o} and the standard C libraries are @file{libads.a} and
19720 @file{libc.a}.
19721
19722 @item -myellowknife
19723 @opindex myellowknife
19724 On embedded PowerPC systems, assume that the startup module is called
19725 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
19726 @file{libc.a}.
19727
19728 @item -mvxworks
19729 @opindex mvxworks
19730 On System V.4 and embedded PowerPC systems, specify that you are
19731 compiling for a VxWorks system.
19732
19733 @item -memb
19734 @opindex memb
19735 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
19736 header to indicate that @samp{eabi} extended relocations are used.
19737
19738 @item -meabi
19739 @itemx -mno-eabi
19740 @opindex meabi
19741 @opindex mno-eabi
19742 On System V.4 and embedded PowerPC systems do (do not) adhere to the
19743 Embedded Applications Binary Interface (EABI), which is a set of
19744 modifications to the System V.4 specifications. Selecting @option{-meabi}
19745 means that the stack is aligned to an 8-byte boundary, a function
19746 @code{__eabi} is called from @code{main} to set up the EABI
19747 environment, and the @option{-msdata} option can use both @code{r2} and
19748 @code{r13} to point to two separate small data areas. Selecting
19749 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
19750 no EABI initialization function is called from @code{main}, and the
19751 @option{-msdata} option only uses @code{r13} to point to a single
19752 small data area. The @option{-meabi} option is on by default if you
19753 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
19754
19755 @item -msdata=eabi
19756 @opindex msdata=eabi
19757 On System V.4 and embedded PowerPC systems, put small initialized
19758 @code{const} global and static data in the @code{.sdata2} section, which
19759 is pointed to by register @code{r2}. Put small initialized
19760 non-@code{const} global and static data in the @code{.sdata} section,
19761 which is pointed to by register @code{r13}. Put small uninitialized
19762 global and static data in the @code{.sbss} section, which is adjacent to
19763 the @code{.sdata} section. The @option{-msdata=eabi} option is
19764 incompatible with the @option{-mrelocatable} option. The
19765 @option{-msdata=eabi} option also sets the @option{-memb} option.
19766
19767 @item -msdata=sysv
19768 @opindex msdata=sysv
19769 On System V.4 and embedded PowerPC systems, put small global and static
19770 data in the @code{.sdata} section, which is pointed to by register
19771 @code{r13}. Put small uninitialized global and static data in the
19772 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
19773 The @option{-msdata=sysv} option is incompatible with the
19774 @option{-mrelocatable} option.
19775
19776 @item -msdata=default
19777 @itemx -msdata
19778 @opindex msdata=default
19779 @opindex msdata
19780 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
19781 compile code the same as @option{-msdata=eabi}, otherwise compile code the
19782 same as @option{-msdata=sysv}.
19783
19784 @item -msdata=data
19785 @opindex msdata=data
19786 On System V.4 and embedded PowerPC systems, put small global
19787 data in the @code{.sdata} section. Put small uninitialized global
19788 data in the @code{.sbss} section. Do not use register @code{r13}
19789 to address small data however. This is the default behavior unless
19790 other @option{-msdata} options are used.
19791
19792 @item -msdata=none
19793 @itemx -mno-sdata
19794 @opindex msdata=none
19795 @opindex mno-sdata
19796 On embedded PowerPC systems, put all initialized global and static data
19797 in the @code{.data} section, and all uninitialized data in the
19798 @code{.bss} section.
19799
19800 @item -mblock-move-inline-limit=@var{num}
19801 @opindex mblock-move-inline-limit
19802 Inline all block moves (such as calls to @code{memcpy} or structure
19803 copies) less than or equal to @var{num} bytes. The minimum value for
19804 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
19805 targets. The default value is target-specific.
19806
19807 @item -G @var{num}
19808 @opindex G
19809 @cindex smaller data references (PowerPC)
19810 @cindex .sdata/.sdata2 references (PowerPC)
19811 On embedded PowerPC systems, put global and static items less than or
19812 equal to @var{num} bytes into the small data or BSS sections instead of
19813 the normal data or BSS section. By default, @var{num} is 8. The
19814 @option{-G @var{num}} switch is also passed to the linker.
19815 All modules should be compiled with the same @option{-G @var{num}} value.
19816
19817 @item -mregnames
19818 @itemx -mno-regnames
19819 @opindex mregnames
19820 @opindex mno-regnames
19821 On System V.4 and embedded PowerPC systems do (do not) emit register
19822 names in the assembly language output using symbolic forms.
19823
19824 @item -mlongcall
19825 @itemx -mno-longcall
19826 @opindex mlongcall
19827 @opindex mno-longcall
19828 By default assume that all calls are far away so that a longer and more
19829 expensive calling sequence is required. This is required for calls
19830 farther than 32 megabytes (33,554,432 bytes) from the current location.
19831 A short call is generated if the compiler knows
19832 the call cannot be that far away. This setting can be overridden by
19833 the @code{shortcall} function attribute, or by @code{#pragma
19834 longcall(0)}.
19835
19836 Some linkers are capable of detecting out-of-range calls and generating
19837 glue code on the fly. On these systems, long calls are unnecessary and
19838 generate slower code. As of this writing, the AIX linker can do this,
19839 as can the GNU linker for PowerPC/64. It is planned to add this feature
19840 to the GNU linker for 32-bit PowerPC systems as well.
19841
19842 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
19843 callee, L42}, plus a @dfn{branch island} (glue code). The two target
19844 addresses represent the callee and the branch island. The
19845 Darwin/PPC linker prefers the first address and generates a @code{bl
19846 callee} if the PPC @code{bl} instruction reaches the callee directly;
19847 otherwise, the linker generates @code{bl L42} to call the branch
19848 island. The branch island is appended to the body of the
19849 calling function; it computes the full 32-bit address of the callee
19850 and jumps to it.
19851
19852 On Mach-O (Darwin) systems, this option directs the compiler emit to
19853 the glue for every direct call, and the Darwin linker decides whether
19854 to use or discard it.
19855
19856 In the future, GCC may ignore all longcall specifications
19857 when the linker is known to generate glue.
19858
19859 @item -mtls-markers
19860 @itemx -mno-tls-markers
19861 @opindex mtls-markers
19862 @opindex mno-tls-markers
19863 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
19864 specifying the function argument. The relocation allows the linker to
19865 reliably associate function call with argument setup instructions for
19866 TLS optimization, which in turn allows GCC to better schedule the
19867 sequence.
19868
19869 @item -pthread
19870 @opindex pthread
19871 Adds support for multithreading with the @dfn{pthreads} library.
19872 This option sets flags for both the preprocessor and linker.
19873
19874 @item -mrecip
19875 @itemx -mno-recip
19876 @opindex mrecip
19877 This option enables use of the reciprocal estimate and
19878 reciprocal square root estimate instructions with additional
19879 Newton-Raphson steps to increase precision instead of doing a divide or
19880 square root and divide for floating-point arguments. You should use
19881 the @option{-ffast-math} option when using @option{-mrecip} (or at
19882 least @option{-funsafe-math-optimizations},
19883 @option{-finite-math-only}, @option{-freciprocal-math} and
19884 @option{-fno-trapping-math}). Note that while the throughput of the
19885 sequence is generally higher than the throughput of the non-reciprocal
19886 instruction, the precision of the sequence can be decreased by up to 2
19887 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
19888 roots.
19889
19890 @item -mrecip=@var{opt}
19891 @opindex mrecip=opt
19892 This option controls which reciprocal estimate instructions
19893 may be used. @var{opt} is a comma-separated list of options, which may
19894 be preceded by a @code{!} to invert the option:
19895
19896 @table @samp
19897
19898 @item all
19899 Enable all estimate instructions.
19900
19901 @item default
19902 Enable the default instructions, equivalent to @option{-mrecip}.
19903
19904 @item none
19905 Disable all estimate instructions, equivalent to @option{-mno-recip}.
19906
19907 @item div
19908 Enable the reciprocal approximation instructions for both
19909 single and double precision.
19910
19911 @item divf
19912 Enable the single-precision reciprocal approximation instructions.
19913
19914 @item divd
19915 Enable the double-precision reciprocal approximation instructions.
19916
19917 @item rsqrt
19918 Enable the reciprocal square root approximation instructions for both
19919 single and double precision.
19920
19921 @item rsqrtf
19922 Enable the single-precision reciprocal square root approximation instructions.
19923
19924 @item rsqrtd
19925 Enable the double-precision reciprocal square root approximation instructions.
19926
19927 @end table
19928
19929 So, for example, @option{-mrecip=all,!rsqrtd} enables
19930 all of the reciprocal estimate instructions, except for the
19931 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
19932 which handle the double-precision reciprocal square root calculations.
19933
19934 @item -mrecip-precision
19935 @itemx -mno-recip-precision
19936 @opindex mrecip-precision
19937 Assume (do not assume) that the reciprocal estimate instructions
19938 provide higher-precision estimates than is mandated by the PowerPC
19939 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
19940 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
19941 The double-precision square root estimate instructions are not generated by
19942 default on low-precision machines, since they do not provide an
19943 estimate that converges after three steps.
19944
19945 @item -mveclibabi=@var{type}
19946 @opindex mveclibabi
19947 Specifies the ABI type to use for vectorizing intrinsics using an
19948 external library. The only type supported at present is @samp{mass},
19949 which specifies to use IBM's Mathematical Acceleration Subsystem
19950 (MASS) libraries for vectorizing intrinsics using external libraries.
19951 GCC currently emits calls to @code{acosd2}, @code{acosf4},
19952 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
19953 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
19954 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
19955 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
19956 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
19957 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
19958 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
19959 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
19960 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
19961 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
19962 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
19963 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
19964 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
19965 for power7. Both @option{-ftree-vectorize} and
19966 @option{-funsafe-math-optimizations} must also be enabled. The MASS
19967 libraries must be specified at link time.
19968
19969 @item -mfriz
19970 @itemx -mno-friz
19971 @opindex mfriz
19972 Generate (do not generate) the @code{friz} instruction when the
19973 @option{-funsafe-math-optimizations} option is used to optimize
19974 rounding of floating-point values to 64-bit integer and back to floating
19975 point. The @code{friz} instruction does not return the same value if
19976 the floating-point number is too large to fit in an integer.
19977
19978 @item -mpointers-to-nested-functions
19979 @itemx -mno-pointers-to-nested-functions
19980 @opindex mpointers-to-nested-functions
19981 Generate (do not generate) code to load up the static chain register
19982 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
19983 systems where a function pointer points to a 3-word descriptor giving
19984 the function address, TOC value to be loaded in register @code{r2}, and
19985 static chain value to be loaded in register @code{r11}. The
19986 @option{-mpointers-to-nested-functions} is on by default. You cannot
19987 call through pointers to nested functions or pointers
19988 to functions compiled in other languages that use the static chain if
19989 you use @option{-mno-pointers-to-nested-functions}.
19990
19991 @item -msave-toc-indirect
19992 @itemx -mno-save-toc-indirect
19993 @opindex msave-toc-indirect
19994 Generate (do not generate) code to save the TOC value in the reserved
19995 stack location in the function prologue if the function calls through
19996 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
19997 saved in the prologue, it is saved just before the call through the
19998 pointer. The @option{-mno-save-toc-indirect} option is the default.
19999
20000 @item -mcompat-align-parm
20001 @itemx -mno-compat-align-parm
20002 @opindex mcompat-align-parm
20003 Generate (do not generate) code to pass structure parameters with a
20004 maximum alignment of 64 bits, for compatibility with older versions
20005 of GCC.
20006
20007 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
20008 structure parameter on a 128-bit boundary when that structure contained
20009 a member requiring 128-bit alignment. This is corrected in more
20010 recent versions of GCC. This option may be used to generate code
20011 that is compatible with functions compiled with older versions of
20012 GCC.
20013
20014 The @option{-mno-compat-align-parm} option is the default.
20015 @end table
20016
20017 @node RX Options
20018 @subsection RX Options
20019 @cindex RX Options
20020
20021 These command-line options are defined for RX targets:
20022
20023 @table @gcctabopt
20024 @item -m64bit-doubles
20025 @itemx -m32bit-doubles
20026 @opindex m64bit-doubles
20027 @opindex m32bit-doubles
20028 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
20029 or 32 bits (@option{-m32bit-doubles}) in size. The default is
20030 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
20031 works on 32-bit values, which is why the default is
20032 @option{-m32bit-doubles}.
20033
20034 @item -fpu
20035 @itemx -nofpu
20036 @opindex fpu
20037 @opindex nofpu
20038 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
20039 floating-point hardware. The default is enabled for the RX600
20040 series and disabled for the RX200 series.
20041
20042 Floating-point instructions are only generated for 32-bit floating-point
20043 values, however, so the FPU hardware is not used for doubles if the
20044 @option{-m64bit-doubles} option is used.
20045
20046 @emph{Note} If the @option{-fpu} option is enabled then
20047 @option{-funsafe-math-optimizations} is also enabled automatically.
20048 This is because the RX FPU instructions are themselves unsafe.
20049
20050 @item -mcpu=@var{name}
20051 @opindex mcpu
20052 Selects the type of RX CPU to be targeted. Currently three types are
20053 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
20054 the specific @samp{RX610} CPU. The default is @samp{RX600}.
20055
20056 The only difference between @samp{RX600} and @samp{RX610} is that the
20057 @samp{RX610} does not support the @code{MVTIPL} instruction.
20058
20059 The @samp{RX200} series does not have a hardware floating-point unit
20060 and so @option{-nofpu} is enabled by default when this type is
20061 selected.
20062
20063 @item -mbig-endian-data
20064 @itemx -mlittle-endian-data
20065 @opindex mbig-endian-data
20066 @opindex mlittle-endian-data
20067 Store data (but not code) in the big-endian format. The default is
20068 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20069 format.
20070
20071 @item -msmall-data-limit=@var{N}
20072 @opindex msmall-data-limit
20073 Specifies the maximum size in bytes of global and static variables
20074 which can be placed into the small data area. Using the small data
20075 area can lead to smaller and faster code, but the size of area is
20076 limited and it is up to the programmer to ensure that the area does
20077 not overflow. Also when the small data area is used one of the RX's
20078 registers (usually @code{r13}) is reserved for use pointing to this
20079 area, so it is no longer available for use by the compiler. This
20080 could result in slower and/or larger code if variables are pushed onto
20081 the stack instead of being held in this register.
20082
20083 Note, common variables (variables that have not been initialized) and
20084 constants are not placed into the small data area as they are assigned
20085 to other sections in the output executable.
20086
20087 The default value is zero, which disables this feature. Note, this
20088 feature is not enabled by default with higher optimization levels
20089 (@option{-O2} etc) because of the potentially detrimental effects of
20090 reserving a register. It is up to the programmer to experiment and
20091 discover whether this feature is of benefit to their program. See the
20092 description of the @option{-mpid} option for a description of how the
20093 actual register to hold the small data area pointer is chosen.
20094
20095 @item -msim
20096 @itemx -mno-sim
20097 @opindex msim
20098 @opindex mno-sim
20099 Use the simulator runtime. The default is to use the libgloss
20100 board-specific runtime.
20101
20102 @item -mas100-syntax
20103 @itemx -mno-as100-syntax
20104 @opindex mas100-syntax
20105 @opindex mno-as100-syntax
20106 When generating assembler output use a syntax that is compatible with
20107 Renesas's AS100 assembler. This syntax can also be handled by the GAS
20108 assembler, but it has some restrictions so it is not generated by default.
20109
20110 @item -mmax-constant-size=@var{N}
20111 @opindex mmax-constant-size
20112 Specifies the maximum size, in bytes, of a constant that can be used as
20113 an operand in a RX instruction. Although the RX instruction set does
20114 allow constants of up to 4 bytes in length to be used in instructions,
20115 a longer value equates to a longer instruction. Thus in some
20116 circumstances it can be beneficial to restrict the size of constants
20117 that are used in instructions. Constants that are too big are instead
20118 placed into a constant pool and referenced via register indirection.
20119
20120 The value @var{N} can be between 0 and 4. A value of 0 (the default)
20121 or 4 means that constants of any size are allowed.
20122
20123 @item -mrelax
20124 @opindex mrelax
20125 Enable linker relaxation. Linker relaxation is a process whereby the
20126 linker attempts to reduce the size of a program by finding shorter
20127 versions of various instructions. Disabled by default.
20128
20129 @item -mint-register=@var{N}
20130 @opindex mint-register
20131 Specify the number of registers to reserve for fast interrupt handler
20132 functions. The value @var{N} can be between 0 and 4. A value of 1
20133 means that register @code{r13} is reserved for the exclusive use
20134 of fast interrupt handlers. A value of 2 reserves @code{r13} and
20135 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
20136 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20137 A value of 0, the default, does not reserve any registers.
20138
20139 @item -msave-acc-in-interrupts
20140 @opindex msave-acc-in-interrupts
20141 Specifies that interrupt handler functions should preserve the
20142 accumulator register. This is only necessary if normal code might use
20143 the accumulator register, for example because it performs 64-bit
20144 multiplications. The default is to ignore the accumulator as this
20145 makes the interrupt handlers faster.
20146
20147 @item -mpid
20148 @itemx -mno-pid
20149 @opindex mpid
20150 @opindex mno-pid
20151 Enables the generation of position independent data. When enabled any
20152 access to constant data is done via an offset from a base address
20153 held in a register. This allows the location of constant data to be
20154 determined at run time without requiring the executable to be
20155 relocated, which is a benefit to embedded applications with tight
20156 memory constraints. Data that can be modified is not affected by this
20157 option.
20158
20159 Note, using this feature reserves a register, usually @code{r13}, for
20160 the constant data base address. This can result in slower and/or
20161 larger code, especially in complicated functions.
20162
20163 The actual register chosen to hold the constant data base address
20164 depends upon whether the @option{-msmall-data-limit} and/or the
20165 @option{-mint-register} command-line options are enabled. Starting
20166 with register @code{r13} and proceeding downwards, registers are
20167 allocated first to satisfy the requirements of @option{-mint-register},
20168 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
20169 is possible for the small data area register to be @code{r8} if both
20170 @option{-mint-register=4} and @option{-mpid} are specified on the
20171 command line.
20172
20173 By default this feature is not enabled. The default can be restored
20174 via the @option{-mno-pid} command-line option.
20175
20176 @item -mno-warn-multiple-fast-interrupts
20177 @itemx -mwarn-multiple-fast-interrupts
20178 @opindex mno-warn-multiple-fast-interrupts
20179 @opindex mwarn-multiple-fast-interrupts
20180 Prevents GCC from issuing a warning message if it finds more than one
20181 fast interrupt handler when it is compiling a file. The default is to
20182 issue a warning for each extra fast interrupt handler found, as the RX
20183 only supports one such interrupt.
20184
20185 @item -mallow-string-insns
20186 @itemx -mno-allow-string-insns
20187 @opindex mallow-string-insns
20188 @opindex mno-allow-string-insns
20189 Enables or disables the use of the string manipulation instructions
20190 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
20191 @code{SWHILE} and also the @code{RMPA} instruction. These
20192 instructions may prefetch data, which is not safe to do if accessing
20193 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
20194 for more information).
20195
20196 The default is to allow these instructions, but it is not possible for
20197 GCC to reliably detect all circumstances where a string instruction
20198 might be used to access an I/O register, so their use cannot be
20199 disabled automatically. Instead it is reliant upon the programmer to
20200 use the @option{-mno-allow-string-insns} option if their program
20201 accesses I/O space.
20202
20203 When the instructions are enabled GCC defines the C preprocessor
20204 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
20205 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
20206 @end table
20207
20208 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20209 has special significance to the RX port when used with the
20210 @code{interrupt} function attribute. This attribute indicates a
20211 function intended to process fast interrupts. GCC ensures
20212 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20213 and/or @code{r13} and only provided that the normal use of the
20214 corresponding registers have been restricted via the
20215 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20216 options.
20217
20218 @node S/390 and zSeries Options
20219 @subsection S/390 and zSeries Options
20220 @cindex S/390 and zSeries Options
20221
20222 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20223
20224 @table @gcctabopt
20225 @item -mhard-float
20226 @itemx -msoft-float
20227 @opindex mhard-float
20228 @opindex msoft-float
20229 Use (do not use) the hardware floating-point instructions and registers
20230 for floating-point operations. When @option{-msoft-float} is specified,
20231 functions in @file{libgcc.a} are used to perform floating-point
20232 operations. When @option{-mhard-float} is specified, the compiler
20233 generates IEEE floating-point instructions. This is the default.
20234
20235 @item -mhard-dfp
20236 @itemx -mno-hard-dfp
20237 @opindex mhard-dfp
20238 @opindex mno-hard-dfp
20239 Use (do not use) the hardware decimal-floating-point instructions for
20240 decimal-floating-point operations. When @option{-mno-hard-dfp} is
20241 specified, functions in @file{libgcc.a} are used to perform
20242 decimal-floating-point operations. When @option{-mhard-dfp} is
20243 specified, the compiler generates decimal-floating-point hardware
20244 instructions. This is the default for @option{-march=z9-ec} or higher.
20245
20246 @item -mlong-double-64
20247 @itemx -mlong-double-128
20248 @opindex mlong-double-64
20249 @opindex mlong-double-128
20250 These switches control the size of @code{long double} type. A size
20251 of 64 bits makes the @code{long double} type equivalent to the @code{double}
20252 type. This is the default.
20253
20254 @item -mbackchain
20255 @itemx -mno-backchain
20256 @opindex mbackchain
20257 @opindex mno-backchain
20258 Store (do not store) the address of the caller's frame as backchain pointer
20259 into the callee's stack frame.
20260 A backchain may be needed to allow debugging using tools that do not understand
20261 DWARF 2 call frame information.
20262 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20263 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20264 the backchain is placed into the topmost word of the 96/160 byte register
20265 save area.
20266
20267 In general, code compiled with @option{-mbackchain} is call-compatible with
20268 code compiled with @option{-mmo-backchain}; however, use of the backchain
20269 for debugging purposes usually requires that the whole binary is built with
20270 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
20271 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20272 to build a linux kernel use @option{-msoft-float}.
20273
20274 The default is to not maintain the backchain.
20275
20276 @item -mpacked-stack
20277 @itemx -mno-packed-stack
20278 @opindex mpacked-stack
20279 @opindex mno-packed-stack
20280 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
20281 specified, the compiler uses the all fields of the 96/160 byte register save
20282 area only for their default purpose; unused fields still take up stack space.
20283 When @option{-mpacked-stack} is specified, register save slots are densely
20284 packed at the top of the register save area; unused space is reused for other
20285 purposes, allowing for more efficient use of the available stack space.
20286 However, when @option{-mbackchain} is also in effect, the topmost word of
20287 the save area is always used to store the backchain, and the return address
20288 register is always saved two words below the backchain.
20289
20290 As long as the stack frame backchain is not used, code generated with
20291 @option{-mpacked-stack} is call-compatible with code generated with
20292 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
20293 S/390 or zSeries generated code that uses the stack frame backchain at run
20294 time, not just for debugging purposes. Such code is not call-compatible
20295 with code compiled with @option{-mpacked-stack}. Also, note that the
20296 combination of @option{-mbackchain},
20297 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20298 to build a linux kernel use @option{-msoft-float}.
20299
20300 The default is to not use the packed stack layout.
20301
20302 @item -msmall-exec
20303 @itemx -mno-small-exec
20304 @opindex msmall-exec
20305 @opindex mno-small-exec
20306 Generate (or do not generate) code using the @code{bras} instruction
20307 to do subroutine calls.
20308 This only works reliably if the total executable size does not
20309 exceed 64k. The default is to use the @code{basr} instruction instead,
20310 which does not have this limitation.
20311
20312 @item -m64
20313 @itemx -m31
20314 @opindex m64
20315 @opindex m31
20316 When @option{-m31} is specified, generate code compliant to the
20317 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
20318 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
20319 particular to generate 64-bit instructions. For the @samp{s390}
20320 targets, the default is @option{-m31}, while the @samp{s390x}
20321 targets default to @option{-m64}.
20322
20323 @item -mzarch
20324 @itemx -mesa
20325 @opindex mzarch
20326 @opindex mesa
20327 When @option{-mzarch} is specified, generate code using the
20328 instructions available on z/Architecture.
20329 When @option{-mesa} is specified, generate code using the
20330 instructions available on ESA/390. Note that @option{-mesa} is
20331 not possible with @option{-m64}.
20332 When generating code compliant to the GNU/Linux for S/390 ABI,
20333 the default is @option{-mesa}. When generating code compliant
20334 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20335
20336 @item -mmvcle
20337 @itemx -mno-mvcle
20338 @opindex mmvcle
20339 @opindex mno-mvcle
20340 Generate (or do not generate) code using the @code{mvcle} instruction
20341 to perform block moves. When @option{-mno-mvcle} is specified,
20342 use a @code{mvc} loop instead. This is the default unless optimizing for
20343 size.
20344
20345 @item -mdebug
20346 @itemx -mno-debug
20347 @opindex mdebug
20348 @opindex mno-debug
20349 Print (or do not print) additional debug information when compiling.
20350 The default is to not print debug information.
20351
20352 @item -march=@var{cpu-type}
20353 @opindex march
20354 Generate code that runs on @var{cpu-type}, which is the name of a system
20355 representing a certain processor type. Possible values for
20356 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
20357 @samp{z9-109}, @samp{z9-ec}, @samp{z10}, @samp{z196}, and @samp{zEC12}.
20358 When generating code using the instructions available on z/Architecture,
20359 the default is @option{-march=z900}. Otherwise, the default is
20360 @option{-march=g5}.
20361
20362 @item -mtune=@var{cpu-type}
20363 @opindex mtune
20364 Tune to @var{cpu-type} everything applicable about the generated code,
20365 except for the ABI and the set of available instructions.
20366 The list of @var{cpu-type} values is the same as for @option{-march}.
20367 The default is the value used for @option{-march}.
20368
20369 @item -mtpf-trace
20370 @itemx -mno-tpf-trace
20371 @opindex mtpf-trace
20372 @opindex mno-tpf-trace
20373 Generate code that adds (does not add) in TPF OS specific branches to trace
20374 routines in the operating system. This option is off by default, even
20375 when compiling for the TPF OS@.
20376
20377 @item -mfused-madd
20378 @itemx -mno-fused-madd
20379 @opindex mfused-madd
20380 @opindex mno-fused-madd
20381 Generate code that uses (does not use) the floating-point multiply and
20382 accumulate instructions. These instructions are generated by default if
20383 hardware floating point is used.
20384
20385 @item -mwarn-framesize=@var{framesize}
20386 @opindex mwarn-framesize
20387 Emit a warning if the current function exceeds the given frame size. Because
20388 this is a compile-time check it doesn't need to be a real problem when the program
20389 runs. It is intended to identify functions that most probably cause
20390 a stack overflow. It is useful to be used in an environment with limited stack
20391 size e.g.@: the linux kernel.
20392
20393 @item -mwarn-dynamicstack
20394 @opindex mwarn-dynamicstack
20395 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20396 arrays. This is generally a bad idea with a limited stack size.
20397
20398 @item -mstack-guard=@var{stack-guard}
20399 @itemx -mstack-size=@var{stack-size}
20400 @opindex mstack-guard
20401 @opindex mstack-size
20402 If these options are provided the S/390 back end emits additional instructions in
20403 the function prologue that trigger a trap if the stack size is @var{stack-guard}
20404 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20405 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20406 the frame size of the compiled function is chosen.
20407 These options are intended to be used to help debugging stack overflow problems.
20408 The additionally emitted code causes only little overhead and hence can also be
20409 used in production-like systems without greater performance degradation. The given
20410 values have to be exact powers of 2 and @var{stack-size} has to be greater than
20411 @var{stack-guard} without exceeding 64k.
20412 In order to be efficient the extra code makes the assumption that the stack starts
20413 at an address aligned to the value given by @var{stack-size}.
20414 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20415
20416 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20417 @opindex mhotpatch
20418 If the hotpatch option is enabled, a ``hot-patching'' function
20419 prologue is generated for all functions in the compilation unit.
20420 The funtion label is prepended with the given number of two-byte
20421 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
20422 the label, 2 * @var{post-halfwords} bytes are appended, using the
20423 largest NOP like instructions the architecture allows (maximum
20424 1000000).
20425
20426 If both arguments are zero, hotpatching is disabled.
20427
20428 This option can be overridden for individual functions with the
20429 @code{hotpatch} attribute.
20430 @end table
20431
20432 @node Score Options
20433 @subsection Score Options
20434 @cindex Score Options
20435
20436 These options are defined for Score implementations:
20437
20438 @table @gcctabopt
20439 @item -meb
20440 @opindex meb
20441 Compile code for big-endian mode. This is the default.
20442
20443 @item -mel
20444 @opindex mel
20445 Compile code for little-endian mode.
20446
20447 @item -mnhwloop
20448 @opindex mnhwloop
20449 Disable generation of @code{bcnz} instructions.
20450
20451 @item -muls
20452 @opindex muls
20453 Enable generation of unaligned load and store instructions.
20454
20455 @item -mmac
20456 @opindex mmac
20457 Enable the use of multiply-accumulate instructions. Disabled by default.
20458
20459 @item -mscore5
20460 @opindex mscore5
20461 Specify the SCORE5 as the target architecture.
20462
20463 @item -mscore5u
20464 @opindex mscore5u
20465 Specify the SCORE5U of the target architecture.
20466
20467 @item -mscore7
20468 @opindex mscore7
20469 Specify the SCORE7 as the target architecture. This is the default.
20470
20471 @item -mscore7d
20472 @opindex mscore7d
20473 Specify the SCORE7D as the target architecture.
20474 @end table
20475
20476 @node SH Options
20477 @subsection SH Options
20478
20479 These @samp{-m} options are defined for the SH implementations:
20480
20481 @table @gcctabopt
20482 @item -m1
20483 @opindex m1
20484 Generate code for the SH1.
20485
20486 @item -m2
20487 @opindex m2
20488 Generate code for the SH2.
20489
20490 @item -m2e
20491 Generate code for the SH2e.
20492
20493 @item -m2a-nofpu
20494 @opindex m2a-nofpu
20495 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
20496 that the floating-point unit is not used.
20497
20498 @item -m2a-single-only
20499 @opindex m2a-single-only
20500 Generate code for the SH2a-FPU, in such a way that no double-precision
20501 floating-point operations are used.
20502
20503 @item -m2a-single
20504 @opindex m2a-single
20505 Generate code for the SH2a-FPU assuming the floating-point unit is in
20506 single-precision mode by default.
20507
20508 @item -m2a
20509 @opindex m2a
20510 Generate code for the SH2a-FPU assuming the floating-point unit is in
20511 double-precision mode by default.
20512
20513 @item -m3
20514 @opindex m3
20515 Generate code for the SH3.
20516
20517 @item -m3e
20518 @opindex m3e
20519 Generate code for the SH3e.
20520
20521 @item -m4-nofpu
20522 @opindex m4-nofpu
20523 Generate code for the SH4 without a floating-point unit.
20524
20525 @item -m4-single-only
20526 @opindex m4-single-only
20527 Generate code for the SH4 with a floating-point unit that only
20528 supports single-precision arithmetic.
20529
20530 @item -m4-single
20531 @opindex m4-single
20532 Generate code for the SH4 assuming the floating-point unit is in
20533 single-precision mode by default.
20534
20535 @item -m4
20536 @opindex m4
20537 Generate code for the SH4.
20538
20539 @item -m4-100
20540 @opindex m4-100
20541 Generate code for SH4-100.
20542
20543 @item -m4-100-nofpu
20544 @opindex m4-100-nofpu
20545 Generate code for SH4-100 in such a way that the
20546 floating-point unit is not used.
20547
20548 @item -m4-100-single
20549 @opindex m4-100-single
20550 Generate code for SH4-100 assuming the floating-point unit is in
20551 single-precision mode by default.
20552
20553 @item -m4-100-single-only
20554 @opindex m4-100-single-only
20555 Generate code for SH4-100 in such a way that no double-precision
20556 floating-point operations are used.
20557
20558 @item -m4-200
20559 @opindex m4-200
20560 Generate code for SH4-200.
20561
20562 @item -m4-200-nofpu
20563 @opindex m4-200-nofpu
20564 Generate code for SH4-200 without in such a way that the
20565 floating-point unit is not used.
20566
20567 @item -m4-200-single
20568 @opindex m4-200-single
20569 Generate code for SH4-200 assuming the floating-point unit is in
20570 single-precision mode by default.
20571
20572 @item -m4-200-single-only
20573 @opindex m4-200-single-only
20574 Generate code for SH4-200 in such a way that no double-precision
20575 floating-point operations are used.
20576
20577 @item -m4-300
20578 @opindex m4-300
20579 Generate code for SH4-300.
20580
20581 @item -m4-300-nofpu
20582 @opindex m4-300-nofpu
20583 Generate code for SH4-300 without in such a way that the
20584 floating-point unit is not used.
20585
20586 @item -m4-300-single
20587 @opindex m4-300-single
20588 Generate code for SH4-300 in such a way that no double-precision
20589 floating-point operations are used.
20590
20591 @item -m4-300-single-only
20592 @opindex m4-300-single-only
20593 Generate code for SH4-300 in such a way that no double-precision
20594 floating-point operations are used.
20595
20596 @item -m4-340
20597 @opindex m4-340
20598 Generate code for SH4-340 (no MMU, no FPU).
20599
20600 @item -m4-500
20601 @opindex m4-500
20602 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
20603 assembler.
20604
20605 @item -m4a-nofpu
20606 @opindex m4a-nofpu
20607 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
20608 floating-point unit is not used.
20609
20610 @item -m4a-single-only
20611 @opindex m4a-single-only
20612 Generate code for the SH4a, in such a way that no double-precision
20613 floating-point operations are used.
20614
20615 @item -m4a-single
20616 @opindex m4a-single
20617 Generate code for the SH4a assuming the floating-point unit is in
20618 single-precision mode by default.
20619
20620 @item -m4a
20621 @opindex m4a
20622 Generate code for the SH4a.
20623
20624 @item -m4al
20625 @opindex m4al
20626 Same as @option{-m4a-nofpu}, except that it implicitly passes
20627 @option{-dsp} to the assembler. GCC doesn't generate any DSP
20628 instructions at the moment.
20629
20630 @item -m5-32media
20631 @opindex m5-32media
20632 Generate 32-bit code for SHmedia.
20633
20634 @item -m5-32media-nofpu
20635 @opindex m5-32media-nofpu
20636 Generate 32-bit code for SHmedia in such a way that the
20637 floating-point unit is not used.
20638
20639 @item -m5-64media
20640 @opindex m5-64media
20641 Generate 64-bit code for SHmedia.
20642
20643 @item -m5-64media-nofpu
20644 @opindex m5-64media-nofpu
20645 Generate 64-bit code for SHmedia in such a way that the
20646 floating-point unit is not used.
20647
20648 @item -m5-compact
20649 @opindex m5-compact
20650 Generate code for SHcompact.
20651
20652 @item -m5-compact-nofpu
20653 @opindex m5-compact-nofpu
20654 Generate code for SHcompact in such a way that the
20655 floating-point unit is not used.
20656
20657 @item -mb
20658 @opindex mb
20659 Compile code for the processor in big-endian mode.
20660
20661 @item -ml
20662 @opindex ml
20663 Compile code for the processor in little-endian mode.
20664
20665 @item -mdalign
20666 @opindex mdalign
20667 Align doubles at 64-bit boundaries. Note that this changes the calling
20668 conventions, and thus some functions from the standard C library do
20669 not work unless you recompile it first with @option{-mdalign}.
20670
20671 @item -mrelax
20672 @opindex mrelax
20673 Shorten some address references at link time, when possible; uses the
20674 linker option @option{-relax}.
20675
20676 @item -mbigtable
20677 @opindex mbigtable
20678 Use 32-bit offsets in @code{switch} tables. The default is to use
20679 16-bit offsets.
20680
20681 @item -mbitops
20682 @opindex mbitops
20683 Enable the use of bit manipulation instructions on SH2A.
20684
20685 @item -mfmovd
20686 @opindex mfmovd
20687 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
20688 alignment constraints.
20689
20690 @item -mrenesas
20691 @opindex mrenesas
20692 Comply with the calling conventions defined by Renesas.
20693
20694 @item -mno-renesas
20695 @opindex mno-renesas
20696 Comply with the calling conventions defined for GCC before the Renesas
20697 conventions were available. This option is the default for all
20698 targets of the SH toolchain.
20699
20700 @item -mnomacsave
20701 @opindex mnomacsave
20702 Mark the @code{MAC} register as call-clobbered, even if
20703 @option{-mrenesas} is given.
20704
20705 @item -mieee
20706 @itemx -mno-ieee
20707 @opindex mieee
20708 @opindex mno-ieee
20709 Control the IEEE compliance of floating-point comparisons, which affects the
20710 handling of cases where the result of a comparison is unordered. By default
20711 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
20712 enabled @option{-mno-ieee} is implicitly set, which results in faster
20713 floating-point greater-equal and less-equal comparisons. The implcit settings
20714 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
20715
20716 @item -minline-ic_invalidate
20717 @opindex minline-ic_invalidate
20718 Inline code to invalidate instruction cache entries after setting up
20719 nested function trampolines.
20720 This option has no effect if @option{-musermode} is in effect and the selected
20721 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
20722 instruction.
20723 If the selected code generation option does not allow the use of the @code{icbi}
20724 instruction, and @option{-musermode} is not in effect, the inlined code
20725 manipulates the instruction cache address array directly with an associative
20726 write. This not only requires privileged mode at run time, but it also
20727 fails if the cache line had been mapped via the TLB and has become unmapped.
20728
20729 @item -misize
20730 @opindex misize
20731 Dump instruction size and location in the assembly code.
20732
20733 @item -mpadstruct
20734 @opindex mpadstruct
20735 This option is deprecated. It pads structures to multiple of 4 bytes,
20736 which is incompatible with the SH ABI@.
20737
20738 @item -matomic-model=@var{model}
20739 @opindex matomic-model=@var{model}
20740 Sets the model of atomic operations and additional parameters as a comma
20741 separated list. For details on the atomic built-in functions see
20742 @ref{__atomic Builtins}. The following models and parameters are supported:
20743
20744 @table @samp
20745
20746 @item none
20747 Disable compiler generated atomic sequences and emit library calls for atomic
20748 operations. This is the default if the target is not @code{sh*-*-linux*}.
20749
20750 @item soft-gusa
20751 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
20752 built-in functions. The generated atomic sequences require additional support
20753 from the interrupt/exception handling code of the system and are only suitable
20754 for SH3* and SH4* single-core systems. This option is enabled by default when
20755 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
20756 this option also partially utilizes the hardware atomic instructions
20757 @code{movli.l} and @code{movco.l} to create more efficient code, unless
20758 @samp{strict} is specified.
20759
20760 @item soft-tcb
20761 Generate software atomic sequences that use a variable in the thread control
20762 block. This is a variation of the gUSA sequences which can also be used on
20763 SH1* and SH2* targets. The generated atomic sequences require additional
20764 support from the interrupt/exception handling code of the system and are only
20765 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
20766 parameter has to be specified as well.
20767
20768 @item soft-imask
20769 Generate software atomic sequences that temporarily disable interrupts by
20770 setting @code{SR.IMASK = 1111}. This model works only when the program runs
20771 in privileged mode and is only suitable for single-core systems. Additional
20772 support from the interrupt/exception handling code of the system is not
20773 required. This model is enabled by default when the target is
20774 @code{sh*-*-linux*} and SH1* or SH2*.
20775
20776 @item hard-llcs
20777 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
20778 instructions only. This is only available on SH4A and is suitable for
20779 multi-core systems. Since the hardware instructions support only 32 bit atomic
20780 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
20781 Code compiled with this option is also compatible with other software
20782 atomic model interrupt/exception handling systems if executed on an SH4A
20783 system. Additional support from the interrupt/exception handling code of the
20784 system is not required for this model.
20785
20786 @item gbr-offset=
20787 This parameter specifies the offset in bytes of the variable in the thread
20788 control block structure that should be used by the generated atomic sequences
20789 when the @samp{soft-tcb} model has been selected. For other models this
20790 parameter is ignored. The specified value must be an integer multiple of four
20791 and in the range 0-1020.
20792
20793 @item strict
20794 This parameter prevents mixed usage of multiple atomic models, even if they
20795 are compatible, and makes the compiler generate atomic sequences of the
20796 specified model only.
20797
20798 @end table
20799
20800 @item -mtas
20801 @opindex mtas
20802 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
20803 Notice that depending on the particular hardware and software configuration
20804 this can degrade overall performance due to the operand cache line flushes
20805 that are implied by the @code{tas.b} instruction. On multi-core SH4A
20806 processors the @code{tas.b} instruction must be used with caution since it
20807 can result in data corruption for certain cache configurations.
20808
20809 @item -mprefergot
20810 @opindex mprefergot
20811 When generating position-independent code, emit function calls using
20812 the Global Offset Table instead of the Procedure Linkage Table.
20813
20814 @item -musermode
20815 @itemx -mno-usermode
20816 @opindex musermode
20817 @opindex mno-usermode
20818 Don't allow (allow) the compiler generating privileged mode code. Specifying
20819 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
20820 inlined code would not work in user mode. @option{-musermode} is the default
20821 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
20822 @option{-musermode} has no effect, since there is no user mode.
20823
20824 @item -multcost=@var{number}
20825 @opindex multcost=@var{number}
20826 Set the cost to assume for a multiply insn.
20827
20828 @item -mdiv=@var{strategy}
20829 @opindex mdiv=@var{strategy}
20830 Set the division strategy to be used for integer division operations.
20831 For SHmedia @var{strategy} can be one of:
20832
20833 @table @samp
20834
20835 @item fp
20836 Performs the operation in floating point. This has a very high latency,
20837 but needs only a few instructions, so it might be a good choice if
20838 your code has enough easily-exploitable ILP to allow the compiler to
20839 schedule the floating-point instructions together with other instructions.
20840 Division by zero causes a floating-point exception.
20841
20842 @item inv
20843 Uses integer operations to calculate the inverse of the divisor,
20844 and then multiplies the dividend with the inverse. This strategy allows
20845 CSE and hoisting of the inverse calculation. Division by zero calculates
20846 an unspecified result, but does not trap.
20847
20848 @item inv:minlat
20849 A variant of @samp{inv} where, if no CSE or hoisting opportunities
20850 have been found, or if the entire operation has been hoisted to the same
20851 place, the last stages of the inverse calculation are intertwined with the
20852 final multiply to reduce the overall latency, at the expense of using a few
20853 more instructions, and thus offering fewer scheduling opportunities with
20854 other code.
20855
20856 @item call
20857 Calls a library function that usually implements the @samp{inv:minlat}
20858 strategy.
20859 This gives high code density for @code{m5-*media-nofpu} compilations.
20860
20861 @item call2
20862 Uses a different entry point of the same library function, where it
20863 assumes that a pointer to a lookup table has already been set up, which
20864 exposes the pointer load to CSE and code hoisting optimizations.
20865
20866 @item inv:call
20867 @itemx inv:call2
20868 @itemx inv:fp
20869 Use the @samp{inv} algorithm for initial
20870 code generation, but if the code stays unoptimized, revert to the @samp{call},
20871 @samp{call2}, or @samp{fp} strategies, respectively. Note that the
20872 potentially-trapping side effect of division by zero is carried by a
20873 separate instruction, so it is possible that all the integer instructions
20874 are hoisted out, but the marker for the side effect stays where it is.
20875 A recombination to floating-point operations or a call is not possible
20876 in that case.
20877
20878 @item inv20u
20879 @itemx inv20l
20880 Variants of the @samp{inv:minlat} strategy. In the case
20881 that the inverse calculation is not separated from the multiply, they speed
20882 up division where the dividend fits into 20 bits (plus sign where applicable)
20883 by inserting a test to skip a number of operations in this case; this test
20884 slows down the case of larger dividends. @samp{inv20u} assumes the case of a such
20885 a small dividend to be unlikely, and @samp{inv20l} assumes it to be likely.
20886
20887 @end table
20888
20889 For targets other than SHmedia @var{strategy} can be one of:
20890
20891 @table @samp
20892
20893 @item call-div1
20894 Calls a library function that uses the single-step division instruction
20895 @code{div1} to perform the operation. Division by zero calculates an
20896 unspecified result and does not trap. This is the default except for SH4,
20897 SH2A and SHcompact.
20898
20899 @item call-fp
20900 Calls a library function that performs the operation in double precision
20901 floating point. Division by zero causes a floating-point exception. This is
20902 the default for SHcompact with FPU. Specifying this for targets that do not
20903 have a double precision FPU defaults to @code{call-div1}.
20904
20905 @item call-table
20906 Calls a library function that uses a lookup table for small divisors and
20907 the @code{div1} instruction with case distinction for larger divisors. Division
20908 by zero calculates an unspecified result and does not trap. This is the default
20909 for SH4. Specifying this for targets that do not have dynamic shift
20910 instructions defaults to @code{call-div1}.
20911
20912 @end table
20913
20914 When a division strategy has not been specified the default strategy is
20915 selected based on the current target. For SH2A the default strategy is to
20916 use the @code{divs} and @code{divu} instructions instead of library function
20917 calls.
20918
20919 @item -maccumulate-outgoing-args
20920 @opindex maccumulate-outgoing-args
20921 Reserve space once for outgoing arguments in the function prologue rather
20922 than around each call. Generally beneficial for performance and size. Also
20923 needed for unwinding to avoid changing the stack frame around conditional code.
20924
20925 @item -mdivsi3_libfunc=@var{name}
20926 @opindex mdivsi3_libfunc=@var{name}
20927 Set the name of the library function used for 32-bit signed division to
20928 @var{name}.
20929 This only affects the name used in the @samp{call} and @samp{inv:call}
20930 division strategies, and the compiler still expects the same
20931 sets of input/output/clobbered registers as if this option were not present.
20932
20933 @item -mfixed-range=@var{register-range}
20934 @opindex mfixed-range
20935 Generate code treating the given register range as fixed registers.
20936 A fixed register is one that the register allocator can not use. This is
20937 useful when compiling kernel code. A register range is specified as
20938 two registers separated by a dash. Multiple register ranges can be
20939 specified separated by a comma.
20940
20941 @item -mindexed-addressing
20942 @opindex mindexed-addressing
20943 Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
20944 This is only safe if the hardware and/or OS implement 32-bit wrap-around
20945 semantics for the indexed addressing mode. The architecture allows the
20946 implementation of processors with 64-bit MMU, which the OS could use to
20947 get 32-bit addressing, but since no current hardware implementation supports
20948 this or any other way to make the indexed addressing mode safe to use in
20949 the 32-bit ABI, the default is @option{-mno-indexed-addressing}.
20950
20951 @item -mgettrcost=@var{number}
20952 @opindex mgettrcost=@var{number}
20953 Set the cost assumed for the @code{gettr} instruction to @var{number}.
20954 The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.
20955
20956 @item -mpt-fixed
20957 @opindex mpt-fixed
20958 Assume @code{pt*} instructions won't trap. This generally generates
20959 better-scheduled code, but is unsafe on current hardware.
20960 The current architecture
20961 definition says that @code{ptabs} and @code{ptrel} trap when the target
20962 anded with 3 is 3.
20963 This has the unintentional effect of making it unsafe to schedule these
20964 instructions before a branch, or hoist them out of a loop. For example,
20965 @code{__do_global_ctors}, a part of @file{libgcc}
20966 that runs constructors at program
20967 startup, calls functions in a list which is delimited by @minus{}1. With the
20968 @option{-mpt-fixed} option, the @code{ptabs} is done before testing against @minus{}1.
20969 That means that all the constructors run a bit more quickly, but when
20970 the loop comes to the end of the list, the program crashes because @code{ptabs}
20971 loads @minus{}1 into a target register.
20972
20973 Since this option is unsafe for any
20974 hardware implementing the current architecture specification, the default
20975 is @option{-mno-pt-fixed}. Unless specified explicitly with
20976 @option{-mgettrcost}, @option{-mno-pt-fixed} also implies @option{-mgettrcost=100};
20977 this deters register allocation from using target registers for storing
20978 ordinary integers.
20979
20980 @item -minvalid-symbols
20981 @opindex minvalid-symbols
20982 Assume symbols might be invalid. Ordinary function symbols generated by
20983 the compiler are always valid to load with
20984 @code{movi}/@code{shori}/@code{ptabs} or
20985 @code{movi}/@code{shori}/@code{ptrel},
20986 but with assembler and/or linker tricks it is possible
20987 to generate symbols that cause @code{ptabs} or @code{ptrel} to trap.
20988 This option is only meaningful when @option{-mno-pt-fixed} is in effect.
20989 It prevents cross-basic-block CSE, hoisting and most scheduling
20990 of symbol loads. The default is @option{-mno-invalid-symbols}.
20991
20992 @item -mbranch-cost=@var{num}
20993 @opindex mbranch-cost=@var{num}
20994 Assume @var{num} to be the cost for a branch instruction. Higher numbers
20995 make the compiler try to generate more branch-free code if possible.
20996 If not specified the value is selected depending on the processor type that
20997 is being compiled for.
20998
20999 @item -mzdcbranch
21000 @itemx -mno-zdcbranch
21001 @opindex mzdcbranch
21002 @opindex mno-zdcbranch
21003 Assume (do not assume) that zero displacement conditional branch instructions
21004 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
21005 compiler prefers zero displacement branch code sequences. This is
21006 enabled by default when generating code for SH4 and SH4A. It can be explicitly
21007 disabled by specifying @option{-mno-zdcbranch}.
21008
21009 @item -mcbranch-force-delay-slot
21010 @opindex mcbranch-force-delay-slot
21011 Force the usage of delay slots for conditional branches, which stuffs the delay
21012 slot with a @code{nop} if a suitable instruction can't be found. By default
21013 this option is disabled. It can be enabled to work around hardware bugs as
21014 found in the original SH7055.
21015
21016 @item -mfused-madd
21017 @itemx -mno-fused-madd
21018 @opindex mfused-madd
21019 @opindex mno-fused-madd
21020 Generate code that uses (does not use) the floating-point multiply and
21021 accumulate instructions. These instructions are generated by default
21022 if hardware floating point is used. The machine-dependent
21023 @option{-mfused-madd} option is now mapped to the machine-independent
21024 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
21025 mapped to @option{-ffp-contract=off}.
21026
21027 @item -mfsca
21028 @itemx -mno-fsca
21029 @opindex mfsca
21030 @opindex mno-fsca
21031 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
21032 and cosine approximations. The option @option{-mfsca} must be used in
21033 combination with @option{-funsafe-math-optimizations}. It is enabled by default
21034 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
21035 approximations even if @option{-funsafe-math-optimizations} is in effect.
21036
21037 @item -mfsrra
21038 @itemx -mno-fsrra
21039 @opindex mfsrra
21040 @opindex mno-fsrra
21041 Allow or disallow the compiler to emit the @code{fsrra} instruction for
21042 reciprocal square root approximations. The option @option{-mfsrra} must be used
21043 in combination with @option{-funsafe-math-optimizations} and
21044 @option{-ffinite-math-only}. It is enabled by default when generating code for
21045 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
21046 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
21047 in effect.
21048
21049 @item -mpretend-cmove
21050 @opindex mpretend-cmove
21051 Prefer zero-displacement conditional branches for conditional move instruction
21052 patterns. This can result in faster code on the SH4 processor.
21053
21054 @end table
21055
21056 @node Solaris 2 Options
21057 @subsection Solaris 2 Options
21058 @cindex Solaris 2 options
21059
21060 These @samp{-m} options are supported on Solaris 2:
21061
21062 @table @gcctabopt
21063 @item -mclear-hwcap
21064 @opindex mclear-hwcap
21065 @option{-mclear-hwcap} tells the compiler to remove the hardware
21066 capabilities generated by the Solaris assembler. This is only necessary
21067 when object files use ISA extensions not supported by the current
21068 machine, but check at runtime whether or not to use them.
21069
21070 @item -mimpure-text
21071 @opindex mimpure-text
21072 @option{-mimpure-text}, used in addition to @option{-shared}, tells
21073 the compiler to not pass @option{-z text} to the linker when linking a
21074 shared object. Using this option, you can link position-dependent
21075 code into a shared object.
21076
21077 @option{-mimpure-text} suppresses the ``relocations remain against
21078 allocatable but non-writable sections'' linker error message.
21079 However, the necessary relocations trigger copy-on-write, and the
21080 shared object is not actually shared across processes. Instead of
21081 using @option{-mimpure-text}, you should compile all source code with
21082 @option{-fpic} or @option{-fPIC}.
21083
21084 @end table
21085
21086 These switches are supported in addition to the above on Solaris 2:
21087
21088 @table @gcctabopt
21089 @item -pthreads
21090 @opindex pthreads
21091 Add support for multithreading using the POSIX threads library. This
21092 option sets flags for both the preprocessor and linker. This option does
21093 not affect the thread safety of object code produced by the compiler or
21094 that of libraries supplied with it.
21095
21096 @item -pthread
21097 @opindex pthread
21098 This is a synonym for @option{-pthreads}.
21099 @end table
21100
21101 @node SPARC Options
21102 @subsection SPARC Options
21103 @cindex SPARC options
21104
21105 These @samp{-m} options are supported on the SPARC:
21106
21107 @table @gcctabopt
21108 @item -mno-app-regs
21109 @itemx -mapp-regs
21110 @opindex mno-app-regs
21111 @opindex mapp-regs
21112 Specify @option{-mapp-regs} to generate output using the global registers
21113 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
21114 global register 1, each global register 2 through 4 is then treated as an
21115 allocable register that is clobbered by function calls. This is the default.
21116
21117 To be fully SVR4 ABI-compliant at the cost of some performance loss,
21118 specify @option{-mno-app-regs}. You should compile libraries and system
21119 software with this option.
21120
21121 @item -mflat
21122 @itemx -mno-flat
21123 @opindex mflat
21124 @opindex mno-flat
21125 With @option{-mflat}, the compiler does not generate save/restore instructions
21126 and uses a ``flat'' or single register window model. This model is compatible
21127 with the regular register window model. The local registers and the input
21128 registers (0--5) are still treated as ``call-saved'' registers and are
21129 saved on the stack as needed.
21130
21131 With @option{-mno-flat} (the default), the compiler generates save/restore
21132 instructions (except for leaf functions). This is the normal operating mode.
21133
21134 @item -mfpu
21135 @itemx -mhard-float
21136 @opindex mfpu
21137 @opindex mhard-float
21138 Generate output containing floating-point instructions. This is the
21139 default.
21140
21141 @item -mno-fpu
21142 @itemx -msoft-float
21143 @opindex mno-fpu
21144 @opindex msoft-float
21145 Generate output containing library calls for floating point.
21146 @strong{Warning:} the requisite libraries are not available for all SPARC
21147 targets. Normally the facilities of the machine's usual C compiler are
21148 used, but this cannot be done directly in cross-compilation. You must make
21149 your own arrangements to provide suitable library functions for
21150 cross-compilation. The embedded targets @samp{sparc-*-aout} and
21151 @samp{sparclite-*-*} do provide software floating-point support.
21152
21153 @option{-msoft-float} changes the calling convention in the output file;
21154 therefore, it is only useful if you compile @emph{all} of a program with
21155 this option. In particular, you need to compile @file{libgcc.a}, the
21156 library that comes with GCC, with @option{-msoft-float} in order for
21157 this to work.
21158
21159 @item -mhard-quad-float
21160 @opindex mhard-quad-float
21161 Generate output containing quad-word (long double) floating-point
21162 instructions.
21163
21164 @item -msoft-quad-float
21165 @opindex msoft-quad-float
21166 Generate output containing library calls for quad-word (long double)
21167 floating-point instructions. The functions called are those specified
21168 in the SPARC ABI@. This is the default.
21169
21170 As of this writing, there are no SPARC implementations that have hardware
21171 support for the quad-word floating-point instructions. They all invoke
21172 a trap handler for one of these instructions, and then the trap handler
21173 emulates the effect of the instruction. Because of the trap handler overhead,
21174 this is much slower than calling the ABI library routines. Thus the
21175 @option{-msoft-quad-float} option is the default.
21176
21177 @item -mno-unaligned-doubles
21178 @itemx -munaligned-doubles
21179 @opindex mno-unaligned-doubles
21180 @opindex munaligned-doubles
21181 Assume that doubles have 8-byte alignment. This is the default.
21182
21183 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21184 alignment only if they are contained in another type, or if they have an
21185 absolute address. Otherwise, it assumes they have 4-byte alignment.
21186 Specifying this option avoids some rare compatibility problems with code
21187 generated by other compilers. It is not the default because it results
21188 in a performance loss, especially for floating-point code.
21189
21190 @item -muser-mode
21191 @itemx -mno-user-mode
21192 @opindex muser-mode
21193 @opindex mno-user-mode
21194 Do not generate code that can only run in supervisor mode. This is relevant
21195 only for the @code{casa} instruction emitted for the LEON3 processor. The
21196 default is @option{-mno-user-mode}.
21197
21198 @item -mno-faster-structs
21199 @itemx -mfaster-structs
21200 @opindex mno-faster-structs
21201 @opindex mfaster-structs
21202 With @option{-mfaster-structs}, the compiler assumes that structures
21203 should have 8-byte alignment. This enables the use of pairs of
21204 @code{ldd} and @code{std} instructions for copies in structure
21205 assignment, in place of twice as many @code{ld} and @code{st} pairs.
21206 However, the use of this changed alignment directly violates the SPARC
21207 ABI@. Thus, it's intended only for use on targets where the developer
21208 acknowledges that their resulting code is not directly in line with
21209 the rules of the ABI@.
21210
21211 @item -mcpu=@var{cpu_type}
21212 @opindex mcpu
21213 Set the instruction set, register set, and instruction scheduling parameters
21214 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
21215 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21216 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21217 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21218 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21219 @samp{niagara3} and @samp{niagara4}.
21220
21221 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21222 which selects the best architecture option for the host processor.
21223 @option{-mcpu=native} has no effect if GCC does not recognize
21224 the processor.
21225
21226 Default instruction scheduling parameters are used for values that select
21227 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
21228 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
21229
21230 Here is a list of each supported architecture and their supported
21231 implementations.
21232
21233 @table @asis
21234 @item v7
21235 cypress, leon3v7
21236
21237 @item v8
21238 supersparc, hypersparc, leon, leon3
21239
21240 @item sparclite
21241 f930, f934, sparclite86x
21242
21243 @item sparclet
21244 tsc701
21245
21246 @item v9
21247 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21248 @end table
21249
21250 By default (unless configured otherwise), GCC generates code for the V7
21251 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
21252 additionally optimizes it for the Cypress CY7C602 chip, as used in the
21253 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
21254 SPARCStation 1, 2, IPX etc.
21255
21256 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21257 architecture. The only difference from V7 code is that the compiler emits
21258 the integer multiply and integer divide instructions which exist in SPARC-V8
21259 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
21260 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
21261 2000 series.
21262
21263 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21264 the SPARC architecture. This adds the integer multiply, integer divide step
21265 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21266 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21267 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
21268 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21269 MB86934 chip, which is the more recent SPARClite with FPU@.
21270
21271 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21272 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
21273 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21274 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
21275 optimizes it for the TEMIC SPARClet chip.
21276
21277 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21278 architecture. This adds 64-bit integer and floating-point move instructions,
21279 3 additional floating-point condition code registers and conditional move
21280 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
21281 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
21282 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21283 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
21284 @option{-mcpu=niagara}, the compiler additionally optimizes it for
21285 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
21286 additionally optimizes it for Sun UltraSPARC T2 chips. With
21287 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21288 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
21289 additionally optimizes it for Sun UltraSPARC T4 chips.
21290
21291 @item -mtune=@var{cpu_type}
21292 @opindex mtune
21293 Set the instruction scheduling parameters for machine type
21294 @var{cpu_type}, but do not set the instruction set or register set that the
21295 option @option{-mcpu=@var{cpu_type}} does.
21296
21297 The same values for @option{-mcpu=@var{cpu_type}} can be used for
21298 @option{-mtune=@var{cpu_type}}, but the only useful values are those
21299 that select a particular CPU implementation. Those are @samp{cypress},
21300 @samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21301 @samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21302 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21303 @samp{niagara3} and @samp{niagara4}. With native Solaris and GNU/Linux
21304 toolchains, @samp{native} can also be used.
21305
21306 @item -mv8plus
21307 @itemx -mno-v8plus
21308 @opindex mv8plus
21309 @opindex mno-v8plus
21310 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
21311 difference from the V8 ABI is that the global and out registers are
21312 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
21313 mode for all SPARC-V9 processors.
21314
21315 @item -mvis
21316 @itemx -mno-vis
21317 @opindex mvis
21318 @opindex mno-vis
21319 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21320 Visual Instruction Set extensions. The default is @option{-mno-vis}.
21321
21322 @item -mvis2
21323 @itemx -mno-vis2
21324 @opindex mvis2
21325 @opindex mno-vis2
21326 With @option{-mvis2}, GCC generates code that takes advantage of
21327 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
21328 default is @option{-mvis2} when targeting a cpu that supports such
21329 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
21330 also sets @option{-mvis}.
21331
21332 @item -mvis3
21333 @itemx -mno-vis3
21334 @opindex mvis3
21335 @opindex mno-vis3
21336 With @option{-mvis3}, GCC generates code that takes advantage of
21337 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
21338 default is @option{-mvis3} when targeting a cpu that supports such
21339 instructions, such as niagara-3 and later. Setting @option{-mvis3}
21340 also sets @option{-mvis2} and @option{-mvis}.
21341
21342 @item -mcbcond
21343 @itemx -mno-cbcond
21344 @opindex mcbcond
21345 @opindex mno-cbcond
21346 With @option{-mcbcond}, GCC generates code that takes advantage of
21347 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21348 The default is @option{-mcbcond} when targeting a cpu that supports such
21349 instructions, such as niagara-4 and later.
21350
21351 @item -mpopc
21352 @itemx -mno-popc
21353 @opindex mpopc
21354 @opindex mno-popc
21355 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21356 population count instruction. The default is @option{-mpopc}
21357 when targeting a cpu that supports such instructions, such as Niagara-2 and
21358 later.
21359
21360 @item -mfmaf
21361 @itemx -mno-fmaf
21362 @opindex mfmaf
21363 @opindex mno-fmaf
21364 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21365 Fused Multiply-Add Floating-point extensions. The default is @option{-mfmaf}
21366 when targeting a cpu that supports such instructions, such as Niagara-3 and
21367 later.
21368
21369 @item -mfix-at697f
21370 @opindex mfix-at697f
21371 Enable the documented workaround for the single erratum of the Atmel AT697F
21372 processor (which corresponds to erratum #13 of the AT697E processor).
21373
21374 @item -mfix-ut699
21375 @opindex mfix-ut699
21376 Enable the documented workarounds for the floating-point errata and the data
21377 cache nullify errata of the UT699 processor.
21378 @end table
21379
21380 These @samp{-m} options are supported in addition to the above
21381 on SPARC-V9 processors in 64-bit environments:
21382
21383 @table @gcctabopt
21384 @item -m32
21385 @itemx -m64
21386 @opindex m32
21387 @opindex m64
21388 Generate code for a 32-bit or 64-bit environment.
21389 The 32-bit environment sets int, long and pointer to 32 bits.
21390 The 64-bit environment sets int to 32 bits and long and pointer
21391 to 64 bits.
21392
21393 @item -mcmodel=@var{which}
21394 @opindex mcmodel
21395 Set the code model to one of
21396
21397 @table @samp
21398 @item medlow
21399 The Medium/Low code model: 64-bit addresses, programs
21400 must be linked in the low 32 bits of memory. Programs can be statically
21401 or dynamically linked.
21402
21403 @item medmid
21404 The Medium/Middle code model: 64-bit addresses, programs
21405 must be linked in the low 44 bits of memory, the text and data segments must
21406 be less than 2GB in size and the data segment must be located within 2GB of
21407 the text segment.
21408
21409 @item medany
21410 The Medium/Anywhere code model: 64-bit addresses, programs
21411 may be linked anywhere in memory, the text and data segments must be less
21412 than 2GB in size and the data segment must be located within 2GB of the
21413 text segment.
21414
21415 @item embmedany
21416 The Medium/Anywhere code model for embedded systems:
21417 64-bit addresses, the text and data segments must be less than 2GB in
21418 size, both starting anywhere in memory (determined at link time). The
21419 global register %g4 points to the base of the data segment. Programs
21420 are statically linked and PIC is not supported.
21421 @end table
21422
21423 @item -mmemory-model=@var{mem-model}
21424 @opindex mmemory-model
21425 Set the memory model in force on the processor to one of
21426
21427 @table @samp
21428 @item default
21429 The default memory model for the processor and operating system.
21430
21431 @item rmo
21432 Relaxed Memory Order
21433
21434 @item pso
21435 Partial Store Order
21436
21437 @item tso
21438 Total Store Order
21439
21440 @item sc
21441 Sequential Consistency
21442 @end table
21443
21444 These memory models are formally defined in Appendix D of the Sparc V9
21445 architecture manual, as set in the processor's @code{PSTATE.MM} field.
21446
21447 @item -mstack-bias
21448 @itemx -mno-stack-bias
21449 @opindex mstack-bias
21450 @opindex mno-stack-bias
21451 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21452 frame pointer if present, are offset by @minus{}2047 which must be added back
21453 when making stack frame references. This is the default in 64-bit mode.
21454 Otherwise, assume no such offset is present.
21455 @end table
21456
21457 @node SPU Options
21458 @subsection SPU Options
21459 @cindex SPU options
21460
21461 These @samp{-m} options are supported on the SPU:
21462
21463 @table @gcctabopt
21464 @item -mwarn-reloc
21465 @itemx -merror-reloc
21466 @opindex mwarn-reloc
21467 @opindex merror-reloc
21468
21469 The loader for SPU does not handle dynamic relocations. By default, GCC
21470 gives an error when it generates code that requires a dynamic
21471 relocation. @option{-mno-error-reloc} disables the error,
21472 @option{-mwarn-reloc} generates a warning instead.
21473
21474 @item -msafe-dma
21475 @itemx -munsafe-dma
21476 @opindex msafe-dma
21477 @opindex munsafe-dma
21478
21479 Instructions that initiate or test completion of DMA must not be
21480 reordered with respect to loads and stores of the memory that is being
21481 accessed.
21482 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21483 memory accesses, but that can lead to inefficient code in places where the
21484 memory is known to not change. Rather than mark the memory as volatile,
21485 you can use @option{-msafe-dma} to tell the compiler to treat
21486 the DMA instructions as potentially affecting all memory.
21487
21488 @item -mbranch-hints
21489 @opindex mbranch-hints
21490
21491 By default, GCC generates a branch hint instruction to avoid
21492 pipeline stalls for always-taken or probably-taken branches. A hint
21493 is not generated closer than 8 instructions away from its branch.
21494 There is little reason to disable them, except for debugging purposes,
21495 or to make an object a little bit smaller.
21496
21497 @item -msmall-mem
21498 @itemx -mlarge-mem
21499 @opindex msmall-mem
21500 @opindex mlarge-mem
21501
21502 By default, GCC generates code assuming that addresses are never larger
21503 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
21504 a full 32-bit address.
21505
21506 @item -mstdmain
21507 @opindex mstdmain
21508
21509 By default, GCC links against startup code that assumes the SPU-style
21510 main function interface (which has an unconventional parameter list).
21511 With @option{-mstdmain}, GCC links your program against startup
21512 code that assumes a C99-style interface to @code{main}, including a
21513 local copy of @code{argv} strings.
21514
21515 @item -mfixed-range=@var{register-range}
21516 @opindex mfixed-range
21517 Generate code treating the given register range as fixed registers.
21518 A fixed register is one that the register allocator cannot use. This is
21519 useful when compiling kernel code. A register range is specified as
21520 two registers separated by a dash. Multiple register ranges can be
21521 specified separated by a comma.
21522
21523 @item -mea32
21524 @itemx -mea64
21525 @opindex mea32
21526 @opindex mea64
21527 Compile code assuming that pointers to the PPU address space accessed
21528 via the @code{__ea} named address space qualifier are either 32 or 64
21529 bits wide. The default is 32 bits. As this is an ABI-changing option,
21530 all object code in an executable must be compiled with the same setting.
21531
21532 @item -maddress-space-conversion
21533 @itemx -mno-address-space-conversion
21534 @opindex maddress-space-conversion
21535 @opindex mno-address-space-conversion
21536 Allow/disallow treating the @code{__ea} address space as superset
21537 of the generic address space. This enables explicit type casts
21538 between @code{__ea} and generic pointer as well as implicit
21539 conversions of generic pointers to @code{__ea} pointers. The
21540 default is to allow address space pointer conversions.
21541
21542 @item -mcache-size=@var{cache-size}
21543 @opindex mcache-size
21544 This option controls the version of libgcc that the compiler links to an
21545 executable and selects a software-managed cache for accessing variables
21546 in the @code{__ea} address space with a particular cache size. Possible
21547 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21548 and @samp{128}. The default cache size is 64KB.
21549
21550 @item -matomic-updates
21551 @itemx -mno-atomic-updates
21552 @opindex matomic-updates
21553 @opindex mno-atomic-updates
21554 This option controls the version of libgcc that the compiler links to an
21555 executable and selects whether atomic updates to the software-managed
21556 cache of PPU-side variables are used. If you use atomic updates, changes
21557 to a PPU variable from SPU code using the @code{__ea} named address space
21558 qualifier do not interfere with changes to other PPU variables residing
21559 in the same cache line from PPU code. If you do not use atomic updates,
21560 such interference may occur; however, writing back cache lines is
21561 more efficient. The default behavior is to use atomic updates.
21562
21563 @item -mdual-nops
21564 @itemx -mdual-nops=@var{n}
21565 @opindex mdual-nops
21566 By default, GCC inserts nops to increase dual issue when it expects
21567 it to increase performance. @var{n} can be a value from 0 to 10. A
21568 smaller @var{n} inserts fewer nops. 10 is the default, 0 is the
21569 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
21570
21571 @item -mhint-max-nops=@var{n}
21572 @opindex mhint-max-nops
21573 Maximum number of nops to insert for a branch hint. A branch hint must
21574 be at least 8 instructions away from the branch it is affecting. GCC
21575 inserts up to @var{n} nops to enforce this, otherwise it does not
21576 generate the branch hint.
21577
21578 @item -mhint-max-distance=@var{n}
21579 @opindex mhint-max-distance
21580 The encoding of the branch hint instruction limits the hint to be within
21581 256 instructions of the branch it is affecting. By default, GCC makes
21582 sure it is within 125.
21583
21584 @item -msafe-hints
21585 @opindex msafe-hints
21586 Work around a hardware bug that causes the SPU to stall indefinitely.
21587 By default, GCC inserts the @code{hbrp} instruction to make sure
21588 this stall won't happen.
21589
21590 @end table
21591
21592 @node System V Options
21593 @subsection Options for System V
21594
21595 These additional options are available on System V Release 4 for
21596 compatibility with other compilers on those systems:
21597
21598 @table @gcctabopt
21599 @item -G
21600 @opindex G
21601 Create a shared object.
21602 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
21603
21604 @item -Qy
21605 @opindex Qy
21606 Identify the versions of each tool used by the compiler, in a
21607 @code{.ident} assembler directive in the output.
21608
21609 @item -Qn
21610 @opindex Qn
21611 Refrain from adding @code{.ident} directives to the output file (this is
21612 the default).
21613
21614 @item -YP,@var{dirs}
21615 @opindex YP
21616 Search the directories @var{dirs}, and no others, for libraries
21617 specified with @option{-l}.
21618
21619 @item -Ym,@var{dir}
21620 @opindex Ym
21621 Look in the directory @var{dir} to find the M4 preprocessor.
21622 The assembler uses this option.
21623 @c This is supposed to go with a -Yd for predefined M4 macro files, but
21624 @c the generic assembler that comes with Solaris takes just -Ym.
21625 @end table
21626
21627 @node TILE-Gx Options
21628 @subsection TILE-Gx Options
21629 @cindex TILE-Gx options
21630
21631 These @samp{-m} options are supported on the TILE-Gx:
21632
21633 @table @gcctabopt
21634 @item -mcmodel=small
21635 @opindex mcmodel=small
21636 Generate code for the small model. The distance for direct calls is
21637 limited to 500M in either direction. PC-relative addresses are 32
21638 bits. Absolute addresses support the full address range.
21639
21640 @item -mcmodel=large
21641 @opindex mcmodel=large
21642 Generate code for the large model. There is no limitation on call
21643 distance, pc-relative addresses, or absolute addresses.
21644
21645 @item -mcpu=@var{name}
21646 @opindex mcpu
21647 Selects the type of CPU to be targeted. Currently the only supported
21648 type is @samp{tilegx}.
21649
21650 @item -m32
21651 @itemx -m64
21652 @opindex m32
21653 @opindex m64
21654 Generate code for a 32-bit or 64-bit environment. The 32-bit
21655 environment sets int, long, and pointer to 32 bits. The 64-bit
21656 environment sets int to 32 bits and long and pointer to 64 bits.
21657
21658 @item -mbig-endian
21659 @itemx -mlittle-endian
21660 @opindex mbig-endian
21661 @opindex mlittle-endian
21662 Generate code in big/little endian mode, respectively.
21663 @end table
21664
21665 @node TILEPro Options
21666 @subsection TILEPro Options
21667 @cindex TILEPro options
21668
21669 These @samp{-m} options are supported on the TILEPro:
21670
21671 @table @gcctabopt
21672 @item -mcpu=@var{name}
21673 @opindex mcpu
21674 Selects the type of CPU to be targeted. Currently the only supported
21675 type is @samp{tilepro}.
21676
21677 @item -m32
21678 @opindex m32
21679 Generate code for a 32-bit environment, which sets int, long, and
21680 pointer to 32 bits. This is the only supported behavior so the flag
21681 is essentially ignored.
21682 @end table
21683
21684 @node V850 Options
21685 @subsection V850 Options
21686 @cindex V850 Options
21687
21688 These @samp{-m} options are defined for V850 implementations:
21689
21690 @table @gcctabopt
21691 @item -mlong-calls
21692 @itemx -mno-long-calls
21693 @opindex mlong-calls
21694 @opindex mno-long-calls
21695 Treat all calls as being far away (near). If calls are assumed to be
21696 far away, the compiler always loads the function's address into a
21697 register, and calls indirect through the pointer.
21698
21699 @item -mno-ep
21700 @itemx -mep
21701 @opindex mno-ep
21702 @opindex mep
21703 Do not optimize (do optimize) basic blocks that use the same index
21704 pointer 4 or more times to copy pointer into the @code{ep} register, and
21705 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
21706 option is on by default if you optimize.
21707
21708 @item -mno-prolog-function
21709 @itemx -mprolog-function
21710 @opindex mno-prolog-function
21711 @opindex mprolog-function
21712 Do not use (do use) external functions to save and restore registers
21713 at the prologue and epilogue of a function. The external functions
21714 are slower, but use less code space if more than one function saves
21715 the same number of registers. The @option{-mprolog-function} option
21716 is on by default if you optimize.
21717
21718 @item -mspace
21719 @opindex mspace
21720 Try to make the code as small as possible. At present, this just turns
21721 on the @option{-mep} and @option{-mprolog-function} options.
21722
21723 @item -mtda=@var{n}
21724 @opindex mtda
21725 Put static or global variables whose size is @var{n} bytes or less into
21726 the tiny data area that register @code{ep} points to. The tiny data
21727 area can hold up to 256 bytes in total (128 bytes for byte references).
21728
21729 @item -msda=@var{n}
21730 @opindex msda
21731 Put static or global variables whose size is @var{n} bytes or less into
21732 the small data area that register @code{gp} points to. The small data
21733 area can hold up to 64 kilobytes.
21734
21735 @item -mzda=@var{n}
21736 @opindex mzda
21737 Put static or global variables whose size is @var{n} bytes or less into
21738 the first 32 kilobytes of memory.
21739
21740 @item -mv850
21741 @opindex mv850
21742 Specify that the target processor is the V850.
21743
21744 @item -mv850e3v5
21745 @opindex mv850e3v5
21746 Specify that the target processor is the V850E3V5. The preprocessor
21747 constant @code{__v850e3v5__} is defined if this option is used.
21748
21749 @item -mv850e2v4
21750 @opindex mv850e2v4
21751 Specify that the target processor is the V850E3V5. This is an alias for
21752 the @option{-mv850e3v5} option.
21753
21754 @item -mv850e2v3
21755 @opindex mv850e2v3
21756 Specify that the target processor is the V850E2V3. The preprocessor
21757 constant @code{__v850e2v3__} is defined if this option is used.
21758
21759 @item -mv850e2
21760 @opindex mv850e2
21761 Specify that the target processor is the V850E2. The preprocessor
21762 constant @code{__v850e2__} is defined if this option is used.
21763
21764 @item -mv850e1
21765 @opindex mv850e1
21766 Specify that the target processor is the V850E1. The preprocessor
21767 constants @code{__v850e1__} and @code{__v850e__} are defined if
21768 this option is used.
21769
21770 @item -mv850es
21771 @opindex mv850es
21772 Specify that the target processor is the V850ES. This is an alias for
21773 the @option{-mv850e1} option.
21774
21775 @item -mv850e
21776 @opindex mv850e
21777 Specify that the target processor is the V850E@. The preprocessor
21778 constant @code{__v850e__} is defined if this option is used.
21779
21780 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
21781 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
21782 are defined then a default target processor is chosen and the
21783 relevant @samp{__v850*__} preprocessor constant is defined.
21784
21785 The preprocessor constants @code{__v850} and @code{__v851__} are always
21786 defined, regardless of which processor variant is the target.
21787
21788 @item -mdisable-callt
21789 @itemx -mno-disable-callt
21790 @opindex mdisable-callt
21791 @opindex mno-disable-callt
21792 This option suppresses generation of the @code{CALLT} instruction for the
21793 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
21794 architecture.
21795
21796 This option is enabled by default when the RH850 ABI is
21797 in use (see @option{-mrh850-abi}), and disabled by default when the
21798 GCC ABI is in use. If @code{CALLT} instructions are being generated
21799 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
21800
21801 @item -mrelax
21802 @itemx -mno-relax
21803 @opindex mrelax
21804 @opindex mno-relax
21805 Pass on (or do not pass on) the @option{-mrelax} command-line option
21806 to the assembler.
21807
21808 @item -mlong-jumps
21809 @itemx -mno-long-jumps
21810 @opindex mlong-jumps
21811 @opindex mno-long-jumps
21812 Disable (or re-enable) the generation of PC-relative jump instructions.
21813
21814 @item -msoft-float
21815 @itemx -mhard-float
21816 @opindex msoft-float
21817 @opindex mhard-float
21818 Disable (or re-enable) the generation of hardware floating point
21819 instructions. This option is only significant when the target
21820 architecture is @samp{V850E2V3} or higher. If hardware floating point
21821 instructions are being generated then the C preprocessor symbol
21822 @code{__FPU_OK__} is defined, otherwise the symbol
21823 @code{__NO_FPU__} is defined.
21824
21825 @item -mloop
21826 @opindex mloop
21827 Enables the use of the e3v5 LOOP instruction. The use of this
21828 instruction is not enabled by default when the e3v5 architecture is
21829 selected because its use is still experimental.
21830
21831 @item -mrh850-abi
21832 @itemx -mghs
21833 @opindex mrh850-abi
21834 @opindex mghs
21835 Enables support for the RH850 version of the V850 ABI. This is the
21836 default. With this version of the ABI the following rules apply:
21837
21838 @itemize
21839 @item
21840 Integer sized structures and unions are returned via a memory pointer
21841 rather than a register.
21842
21843 @item
21844 Large structures and unions (more than 8 bytes in size) are passed by
21845 value.
21846
21847 @item
21848 Functions are aligned to 16-bit boundaries.
21849
21850 @item
21851 The @option{-m8byte-align} command-line option is supported.
21852
21853 @item
21854 The @option{-mdisable-callt} command-line option is enabled by
21855 default. The @option{-mno-disable-callt} command-line option is not
21856 supported.
21857 @end itemize
21858
21859 When this version of the ABI is enabled the C preprocessor symbol
21860 @code{__V850_RH850_ABI__} is defined.
21861
21862 @item -mgcc-abi
21863 @opindex mgcc-abi
21864 Enables support for the old GCC version of the V850 ABI. With this
21865 version of the ABI the following rules apply:
21866
21867 @itemize
21868 @item
21869 Integer sized structures and unions are returned in register @code{r10}.
21870
21871 @item
21872 Large structures and unions (more than 8 bytes in size) are passed by
21873 reference.
21874
21875 @item
21876 Functions are aligned to 32-bit boundaries, unless optimizing for
21877 size.
21878
21879 @item
21880 The @option{-m8byte-align} command-line option is not supported.
21881
21882 @item
21883 The @option{-mdisable-callt} command-line option is supported but not
21884 enabled by default.
21885 @end itemize
21886
21887 When this version of the ABI is enabled the C preprocessor symbol
21888 @code{__V850_GCC_ABI__} is defined.
21889
21890 @item -m8byte-align
21891 @itemx -mno-8byte-align
21892 @opindex m8byte-align
21893 @opindex mno-8byte-align
21894 Enables support for @code{double} and @code{long long} types to be
21895 aligned on 8-byte boundaries. The default is to restrict the
21896 alignment of all objects to at most 4-bytes. When
21897 @option{-m8byte-align} is in effect the C preprocessor symbol
21898 @code{__V850_8BYTE_ALIGN__} is defined.
21899
21900 @item -mbig-switch
21901 @opindex mbig-switch
21902 Generate code suitable for big switch tables. Use this option only if
21903 the assembler/linker complain about out of range branches within a switch
21904 table.
21905
21906 @item -mapp-regs
21907 @opindex mapp-regs
21908 This option causes r2 and r5 to be used in the code generated by
21909 the compiler. This setting is the default.
21910
21911 @item -mno-app-regs
21912 @opindex mno-app-regs
21913 This option causes r2 and r5 to be treated as fixed registers.
21914
21915 @end table
21916
21917 @node VAX Options
21918 @subsection VAX Options
21919 @cindex VAX options
21920
21921 These @samp{-m} options are defined for the VAX:
21922
21923 @table @gcctabopt
21924 @item -munix
21925 @opindex munix
21926 Do not output certain jump instructions (@code{aobleq} and so on)
21927 that the Unix assembler for the VAX cannot handle across long
21928 ranges.
21929
21930 @item -mgnu
21931 @opindex mgnu
21932 Do output those jump instructions, on the assumption that the
21933 GNU assembler is being used.
21934
21935 @item -mg
21936 @opindex mg
21937 Output code for G-format floating-point numbers instead of D-format.
21938 @end table
21939
21940 @node Visium Options
21941 @subsection Visium Options
21942 @cindex Visium options
21943
21944 @table @gcctabopt
21945
21946 @item -mdebug
21947 @opindex mdebug
21948 A program which performs file I/O and is destined to run on an MCM target
21949 should be linked with this option. It causes the libraries libc.a and
21950 libdebug.a to be linked. The program should be run on the target under
21951 the control of the GDB remote debugging stub.
21952
21953 @item -msim
21954 @opindex msim
21955 A program which performs file I/O and is destined to run on the simulator
21956 should be linked with option. This causes libraries libc.a and libsim.a to
21957 be linked.
21958
21959 @item -mfpu
21960 @itemx -mhard-float
21961 @opindex mfpu
21962 @opindex mhard-float
21963 Generate code containing floating-point instructions. This is the
21964 default.
21965
21966 @item -mno-fpu
21967 @itemx -msoft-float
21968 @opindex mno-fpu
21969 @opindex msoft-float
21970 Generate code containing library calls for floating-point.
21971
21972 @option{-msoft-float} changes the calling convention in the output file;
21973 therefore, it is only useful if you compile @emph{all} of a program with
21974 this option. In particular, you need to compile @file{libgcc.a}, the
21975 library that comes with GCC, with @option{-msoft-float} in order for
21976 this to work.
21977
21978 @item -mcpu=@var{cpu_type}
21979 @opindex mcpu
21980 Set the instruction set, register set, and instruction scheduling parameters
21981 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
21982 @samp{mcm}, @samp{gr5} and @samp{gr6}.
21983
21984 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
21985
21986 By default (unless configured otherwise), GCC generates code for the GR5
21987 variant of the Visium architecture.
21988
21989 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
21990 architecture. The only difference from GR5 code is that the compiler will
21991 generate block move instructions.
21992
21993 @item -mtune=@var{cpu_type}
21994 @opindex mtune
21995 Set the instruction scheduling parameters for machine type @var{cpu_type},
21996 but do not set the instruction set or register set that the option
21997 @option{-mcpu=@var{cpu_type}} would.
21998
21999 @item -msv-mode
22000 @opindex msv-mode
22001 Generate code for the supervisor mode, where there are no restrictions on
22002 the access to general registers. This is the default.
22003
22004 @item -muser-mode
22005 @opindex muser-mode
22006 Generate code for the user mode, where the access to some general registers
22007 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
22008 mode; on the GR6, only registers r29 to r31 are affected.
22009 @end table
22010
22011 @node VMS Options
22012 @subsection VMS Options
22013
22014 These @samp{-m} options are defined for the VMS implementations:
22015
22016 @table @gcctabopt
22017 @item -mvms-return-codes
22018 @opindex mvms-return-codes
22019 Return VMS condition codes from @code{main}. The default is to return POSIX-style
22020 condition (e.g.@ error) codes.
22021
22022 @item -mdebug-main=@var{prefix}
22023 @opindex mdebug-main=@var{prefix}
22024 Flag the first routine whose name starts with @var{prefix} as the main
22025 routine for the debugger.
22026
22027 @item -mmalloc64
22028 @opindex mmalloc64
22029 Default to 64-bit memory allocation routines.
22030
22031 @item -mpointer-size=@var{size}
22032 @opindex mpointer-size=@var{size}
22033 Set the default size of pointers. Possible options for @var{size} are
22034 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
22035 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
22036 The later option disables @code{pragma pointer_size}.
22037 @end table
22038
22039 @node VxWorks Options
22040 @subsection VxWorks Options
22041 @cindex VxWorks Options
22042
22043 The options in this section are defined for all VxWorks targets.
22044 Options specific to the target hardware are listed with the other
22045 options for that target.
22046
22047 @table @gcctabopt
22048 @item -mrtp
22049 @opindex mrtp
22050 GCC can generate code for both VxWorks kernels and real time processes
22051 (RTPs). This option switches from the former to the latter. It also
22052 defines the preprocessor macro @code{__RTP__}.
22053
22054 @item -non-static
22055 @opindex non-static
22056 Link an RTP executable against shared libraries rather than static
22057 libraries. The options @option{-static} and @option{-shared} can
22058 also be used for RTPs (@pxref{Link Options}); @option{-static}
22059 is the default.
22060
22061 @item -Bstatic
22062 @itemx -Bdynamic
22063 @opindex Bstatic
22064 @opindex Bdynamic
22065 These options are passed down to the linker. They are defined for
22066 compatibility with Diab.
22067
22068 @item -Xbind-lazy
22069 @opindex Xbind-lazy
22070 Enable lazy binding of function calls. This option is equivalent to
22071 @option{-Wl,-z,now} and is defined for compatibility with Diab.
22072
22073 @item -Xbind-now
22074 @opindex Xbind-now
22075 Disable lazy binding of function calls. This option is the default and
22076 is defined for compatibility with Diab.
22077 @end table
22078
22079 @node x86 Options
22080 @subsection x86 Options
22081 @cindex x86 Options
22082
22083 These @samp{-m} options are defined for the x86 family of computers.
22084
22085 @table @gcctabopt
22086
22087 @item -march=@var{cpu-type}
22088 @opindex march
22089 Generate instructions for the machine type @var{cpu-type}. In contrast to
22090 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
22091 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22092 to generate code that may not run at all on processors other than the one
22093 indicated. Specifying @option{-march=@var{cpu-type}} implies
22094 @option{-mtune=@var{cpu-type}}.
22095
22096 The choices for @var{cpu-type} are:
22097
22098 @table @samp
22099 @item native
22100 This selects the CPU to generate code for at compilation time by determining
22101 the processor type of the compiling machine. Using @option{-march=native}
22102 enables all instruction subsets supported by the local machine (hence
22103 the result might not run on different machines). Using @option{-mtune=native}
22104 produces code optimized for the local machine under the constraints
22105 of the selected instruction set.
22106
22107 @item i386
22108 Original Intel i386 CPU@.
22109
22110 @item i486
22111 Intel i486 CPU@. (No scheduling is implemented for this chip.)
22112
22113 @item i586
22114 @itemx pentium
22115 Intel Pentium CPU with no MMX support.
22116
22117 @item pentium-mmx
22118 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22119
22120 @item pentiumpro
22121 Intel Pentium Pro CPU@.
22122
22123 @item i686
22124 When used with @option{-march}, the Pentium Pro
22125 instruction set is used, so the code runs on all i686 family chips.
22126 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22127
22128 @item pentium2
22129 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22130 support.
22131
22132 @item pentium3
22133 @itemx pentium3m
22134 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22135 set support.
22136
22137 @item pentium-m
22138 Intel Pentium M; low-power version of Intel Pentium III CPU
22139 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
22140
22141 @item pentium4
22142 @itemx pentium4m
22143 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22144
22145 @item prescott
22146 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22147 set support.
22148
22149 @item nocona
22150 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22151 SSE2 and SSE3 instruction set support.
22152
22153 @item core2
22154 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22155 instruction set support.
22156
22157 @item nehalem
22158 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22159 SSE4.1, SSE4.2 and POPCNT instruction set support.
22160
22161 @item westmere
22162 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22163 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22164
22165 @item sandybridge
22166 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22167 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22168
22169 @item ivybridge
22170 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22171 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22172 instruction set support.
22173
22174 @item haswell
22175 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22176 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22177 BMI, BMI2 and F16C instruction set support.
22178
22179 @item broadwell
22180 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22181 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22182 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22183
22184 @item bonnell
22185 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22186 instruction set support.
22187
22188 @item silvermont
22189 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22190 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22191
22192 @item knl
22193 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22194 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22195 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22196 AVX512CD instruction set support.
22197
22198 @item k6
22199 AMD K6 CPU with MMX instruction set support.
22200
22201 @item k6-2
22202 @itemx k6-3
22203 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22204
22205 @item athlon
22206 @itemx athlon-tbird
22207 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22208 support.
22209
22210 @item athlon-4
22211 @itemx athlon-xp
22212 @itemx athlon-mp
22213 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22214 instruction set support.
22215
22216 @item k8
22217 @itemx opteron
22218 @itemx athlon64
22219 @itemx athlon-fx
22220 Processors based on the AMD K8 core with x86-64 instruction set support,
22221 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22222 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22223 instruction set extensions.)
22224
22225 @item k8-sse3
22226 @itemx opteron-sse3
22227 @itemx athlon64-sse3
22228 Improved versions of AMD K8 cores with SSE3 instruction set support.
22229
22230 @item amdfam10
22231 @itemx barcelona
22232 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
22233 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22234 instruction set extensions.)
22235
22236 @item bdver1
22237 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
22238 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22239 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22240 @item bdver2
22241 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22242 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22243 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
22244 extensions.)
22245 @item bdver3
22246 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22247 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
22248 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
22249 64-bit instruction set extensions.
22250 @item bdver4
22251 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22252 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
22253 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
22254 SSE4.2, ABM and 64-bit instruction set extensions.
22255
22256 @item btver1
22257 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
22258 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22259 instruction set extensions.)
22260
22261 @item btver2
22262 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22263 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22264 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22265
22266 @item winchip-c6
22267 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22268 set support.
22269
22270 @item winchip2
22271 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22272 instruction set support.
22273
22274 @item c3
22275 VIA C3 CPU with MMX and 3DNow!@: instruction set support. (No scheduling is
22276 implemented for this chip.)
22277
22278 @item c3-2
22279 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22280 (No scheduling is
22281 implemented for this chip.)
22282
22283 @item geode
22284 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22285 @end table
22286
22287 @item -mtune=@var{cpu-type}
22288 @opindex mtune
22289 Tune to @var{cpu-type} everything applicable about the generated code, except
22290 for the ABI and the set of available instructions.
22291 While picking a specific @var{cpu-type} schedules things appropriately
22292 for that particular chip, the compiler does not generate any code that
22293 cannot run on the default machine type unless you use a
22294 @option{-march=@var{cpu-type}} option.
22295 For example, if GCC is configured for i686-pc-linux-gnu
22296 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22297 but still runs on i686 machines.
22298
22299 The choices for @var{cpu-type} are the same as for @option{-march}.
22300 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22301
22302 @table @samp
22303 @item generic
22304 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22305 If you know the CPU on which your code will run, then you should use
22306 the corresponding @option{-mtune} or @option{-march} option instead of
22307 @option{-mtune=generic}. But, if you do not know exactly what CPU users
22308 of your application will have, then you should use this option.
22309
22310 As new processors are deployed in the marketplace, the behavior of this
22311 option will change. Therefore, if you upgrade to a newer version of
22312 GCC, code generation controlled by this option will change to reflect
22313 the processors
22314 that are most common at the time that version of GCC is released.
22315
22316 There is no @option{-march=generic} option because @option{-march}
22317 indicates the instruction set the compiler can use, and there is no
22318 generic instruction set applicable to all processors. In contrast,
22319 @option{-mtune} indicates the processor (or, in this case, collection of
22320 processors) for which the code is optimized.
22321
22322 @item intel
22323 Produce code optimized for the most current Intel processors, which are
22324 Haswell and Silvermont for this version of GCC. If you know the CPU
22325 on which your code will run, then you should use the corresponding
22326 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22327 But, if you want your application performs better on both Haswell and
22328 Silvermont, then you should use this option.
22329
22330 As new Intel processors are deployed in the marketplace, the behavior of
22331 this option will change. Therefore, if you upgrade to a newer version of
22332 GCC, code generation controlled by this option will change to reflect
22333 the most current Intel processors at the time that version of GCC is
22334 released.
22335
22336 There is no @option{-march=intel} option because @option{-march} indicates
22337 the instruction set the compiler can use, and there is no common
22338 instruction set applicable to all processors. In contrast,
22339 @option{-mtune} indicates the processor (or, in this case, collection of
22340 processors) for which the code is optimized.
22341 @end table
22342
22343 @item -mcpu=@var{cpu-type}
22344 @opindex mcpu
22345 A deprecated synonym for @option{-mtune}.
22346
22347 @item -mfpmath=@var{unit}
22348 @opindex mfpmath
22349 Generate floating-point arithmetic for selected unit @var{unit}. The choices
22350 for @var{unit} are:
22351
22352 @table @samp
22353 @item 387
22354 Use the standard 387 floating-point coprocessor present on the majority of chips and
22355 emulated otherwise. Code compiled with this option runs almost everywhere.
22356 The temporary results are computed in 80-bit precision instead of the precision
22357 specified by the type, resulting in slightly different results compared to most
22358 of other chips. See @option{-ffloat-store} for more detailed description.
22359
22360 This is the default choice for x86-32 targets.
22361
22362 @item sse
22363 Use scalar floating-point instructions present in the SSE instruction set.
22364 This instruction set is supported by Pentium III and newer chips,
22365 and in the AMD line
22366 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
22367 instruction set supports only single-precision arithmetic, thus the double and
22368 extended-precision arithmetic are still done using 387. A later version, present
22369 only in Pentium 4 and AMD x86-64 chips, supports double-precision
22370 arithmetic too.
22371
22372 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22373 or @option{-msse2} switches to enable SSE extensions and make this option
22374 effective. For the x86-64 compiler, these extensions are enabled by default.
22375
22376 The resulting code should be considerably faster in the majority of cases and avoid
22377 the numerical instability problems of 387 code, but may break some existing
22378 code that expects temporaries to be 80 bits.
22379
22380 This is the default choice for the x86-64 compiler.
22381
22382 @item sse,387
22383 @itemx sse+387
22384 @itemx both
22385 Attempt to utilize both instruction sets at once. This effectively doubles the
22386 amount of available registers, and on chips with separate execution units for
22387 387 and SSE the execution resources too. Use this option with care, as it is
22388 still experimental, because the GCC register allocator does not model separate
22389 functional units well, resulting in unstable performance.
22390 @end table
22391
22392 @item -masm=@var{dialect}
22393 @opindex masm=@var{dialect}
22394 Output assembly instructions using selected @var{dialect}. Also affects
22395 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22396 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22397 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22398 not support @samp{intel}.
22399
22400 @item -mieee-fp
22401 @itemx -mno-ieee-fp
22402 @opindex mieee-fp
22403 @opindex mno-ieee-fp
22404 Control whether or not the compiler uses IEEE floating-point
22405 comparisons. These correctly handle the case where the result of a
22406 comparison is unordered.
22407
22408 @item -msoft-float
22409 @opindex msoft-float
22410 Generate output containing library calls for floating point.
22411
22412 @strong{Warning:} the requisite libraries are not part of GCC@.
22413 Normally the facilities of the machine's usual C compiler are used, but
22414 this can't be done directly in cross-compilation. You must make your
22415 own arrangements to provide suitable library functions for
22416 cross-compilation.
22417
22418 On machines where a function returns floating-point results in the 80387
22419 register stack, some floating-point opcodes may be emitted even if
22420 @option{-msoft-float} is used.
22421
22422 @item -mno-fp-ret-in-387
22423 @opindex mno-fp-ret-in-387
22424 Do not use the FPU registers for return values of functions.
22425
22426 The usual calling convention has functions return values of types
22427 @code{float} and @code{double} in an FPU register, even if there
22428 is no FPU@. The idea is that the operating system should emulate
22429 an FPU@.
22430
22431 The option @option{-mno-fp-ret-in-387} causes such values to be returned
22432 in ordinary CPU registers instead.
22433
22434 @item -mno-fancy-math-387
22435 @opindex mno-fancy-math-387
22436 Some 387 emulators do not support the @code{sin}, @code{cos} and
22437 @code{sqrt} instructions for the 387. Specify this option to avoid
22438 generating those instructions. This option is the default on FreeBSD,
22439 OpenBSD and NetBSD@. This option is overridden when @option{-march}
22440 indicates that the target CPU always has an FPU and so the
22441 instruction does not need emulation. These
22442 instructions are not generated unless you also use the
22443 @option{-funsafe-math-optimizations} switch.
22444
22445 @item -malign-double
22446 @itemx -mno-align-double
22447 @opindex malign-double
22448 @opindex mno-align-double
22449 Control whether GCC aligns @code{double}, @code{long double}, and
22450 @code{long long} variables on a two-word boundary or a one-word
22451 boundary. Aligning @code{double} variables on a two-word boundary
22452 produces code that runs somewhat faster on a Pentium at the
22453 expense of more memory.
22454
22455 On x86-64, @option{-malign-double} is enabled by default.
22456
22457 @strong{Warning:} if you use the @option{-malign-double} switch,
22458 structures containing the above types are aligned differently than
22459 the published application binary interface specifications for the x86-32
22460 and are not binary compatible with structures in code compiled
22461 without that switch.
22462
22463 @item -m96bit-long-double
22464 @itemx -m128bit-long-double
22465 @opindex m96bit-long-double
22466 @opindex m128bit-long-double
22467 These switches control the size of @code{long double} type. The x86-32
22468 application binary interface specifies the size to be 96 bits,
22469 so @option{-m96bit-long-double} is the default in 32-bit mode.
22470
22471 Modern architectures (Pentium and newer) prefer @code{long double}
22472 to be aligned to an 8- or 16-byte boundary. In arrays or structures
22473 conforming to the ABI, this is not possible. So specifying
22474 @option{-m128bit-long-double} aligns @code{long double}
22475 to a 16-byte boundary by padding the @code{long double} with an additional
22476 32-bit zero.
22477
22478 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22479 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22480
22481 Notice that neither of these options enable any extra precision over the x87
22482 standard of 80 bits for a @code{long double}.
22483
22484 @strong{Warning:} if you override the default value for your target ABI, this
22485 changes the size of
22486 structures and arrays containing @code{long double} variables,
22487 as well as modifying the function calling convention for functions taking
22488 @code{long double}. Hence they are not binary-compatible
22489 with code compiled without that switch.
22490
22491 @item -mlong-double-64
22492 @itemx -mlong-double-80
22493 @itemx -mlong-double-128
22494 @opindex mlong-double-64
22495 @opindex mlong-double-80
22496 @opindex mlong-double-128
22497 These switches control the size of @code{long double} type. A size
22498 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22499 type. This is the default for 32-bit Bionic C library. A size
22500 of 128 bits makes the @code{long double} type equivalent to the
22501 @code{__float128} type. This is the default for 64-bit Bionic C library.
22502
22503 @strong{Warning:} if you override the default value for your target ABI, this
22504 changes the size of
22505 structures and arrays containing @code{long double} variables,
22506 as well as modifying the function calling convention for functions taking
22507 @code{long double}. Hence they are not binary-compatible
22508 with code compiled without that switch.
22509
22510 @item -malign-data=@var{type}
22511 @opindex malign-data
22512 Control how GCC aligns variables. Supported values for @var{type} are
22513 @samp{compat} uses increased alignment value compatible uses GCC 4.8
22514 and earlier, @samp{abi} uses alignment value as specified by the
22515 psABI, and @samp{cacheline} uses increased alignment value to match
22516 the cache line size. @samp{compat} is the default.
22517
22518 @item -mlarge-data-threshold=@var{threshold}
22519 @opindex mlarge-data-threshold
22520 When @option{-mcmodel=medium} is specified, data objects larger than
22521 @var{threshold} are placed in the large data section. This value must be the
22522 same across all objects linked into the binary, and defaults to 65535.
22523
22524 @item -mrtd
22525 @opindex mrtd
22526 Use a different function-calling convention, in which functions that
22527 take a fixed number of arguments return with the @code{ret @var{num}}
22528 instruction, which pops their arguments while returning. This saves one
22529 instruction in the caller since there is no need to pop the arguments
22530 there.
22531
22532 You can specify that an individual function is called with this calling
22533 sequence with the function attribute @code{stdcall}. You can also
22534 override the @option{-mrtd} option by using the function attribute
22535 @code{cdecl}. @xref{Function Attributes}.
22536
22537 @strong{Warning:} this calling convention is incompatible with the one
22538 normally used on Unix, so you cannot use it if you need to call
22539 libraries compiled with the Unix compiler.
22540
22541 Also, you must provide function prototypes for all functions that
22542 take variable numbers of arguments (including @code{printf});
22543 otherwise incorrect code is generated for calls to those
22544 functions.
22545
22546 In addition, seriously incorrect code results if you call a
22547 function with too many arguments. (Normally, extra arguments are
22548 harmlessly ignored.)
22549
22550 @item -mregparm=@var{num}
22551 @opindex mregparm
22552 Control how many registers are used to pass integer arguments. By
22553 default, no registers are used to pass arguments, and at most 3
22554 registers can be used. You can control this behavior for a specific
22555 function by using the function attribute @code{regparm}.
22556 @xref{Function Attributes}.
22557
22558 @strong{Warning:} if you use this switch, and
22559 @var{num} is nonzero, then you must build all modules with the same
22560 value, including any libraries. This includes the system libraries and
22561 startup modules.
22562
22563 @item -msseregparm
22564 @opindex msseregparm
22565 Use SSE register passing conventions for float and double arguments
22566 and return values. You can control this behavior for a specific
22567 function by using the function attribute @code{sseregparm}.
22568 @xref{Function Attributes}.
22569
22570 @strong{Warning:} if you use this switch then you must build all
22571 modules with the same value, including any libraries. This includes
22572 the system libraries and startup modules.
22573
22574 @item -mvect8-ret-in-mem
22575 @opindex mvect8-ret-in-mem
22576 Return 8-byte vectors in memory instead of MMX registers. This is the
22577 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
22578 Studio compilers until version 12. Later compiler versions (starting
22579 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
22580 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
22581 you need to remain compatible with existing code produced by those
22582 previous compiler versions or older versions of GCC@.
22583
22584 @item -mpc32
22585 @itemx -mpc64
22586 @itemx -mpc80
22587 @opindex mpc32
22588 @opindex mpc64
22589 @opindex mpc80
22590
22591 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
22592 is specified, the significands of results of floating-point operations are
22593 rounded to 24 bits (single precision); @option{-mpc64} rounds the
22594 significands of results of floating-point operations to 53 bits (double
22595 precision) and @option{-mpc80} rounds the significands of results of
22596 floating-point operations to 64 bits (extended double precision), which is
22597 the default. When this option is used, floating-point operations in higher
22598 precisions are not available to the programmer without setting the FPU
22599 control word explicitly.
22600
22601 Setting the rounding of floating-point operations to less than the default
22602 80 bits can speed some programs by 2% or more. Note that some mathematical
22603 libraries assume that extended-precision (80-bit) floating-point operations
22604 are enabled by default; routines in such libraries could suffer significant
22605 loss of accuracy, typically through so-called ``catastrophic cancellation'',
22606 when this option is used to set the precision to less than extended precision.
22607
22608 @item -mstackrealign
22609 @opindex mstackrealign
22610 Realign the stack at entry. On the x86, the @option{-mstackrealign}
22611 option generates an alternate prologue and epilogue that realigns the
22612 run-time stack if necessary. This supports mixing legacy codes that keep
22613 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
22614 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
22615 applicable to individual functions.
22616
22617 @item -mpreferred-stack-boundary=@var{num}
22618 @opindex mpreferred-stack-boundary
22619 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22620 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
22621 the default is 4 (16 bytes or 128 bits).
22622
22623 @strong{Warning:} When generating code for the x86-64 architecture with
22624 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
22625 used to keep the stack boundary aligned to 8 byte boundary. Since
22626 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
22627 intended to be used in controlled environment where stack space is
22628 important limitation. This option leads to wrong code when functions
22629 compiled with 16 byte stack alignment (such as functions from a standard
22630 library) are called with misaligned stack. In this case, SSE
22631 instructions may lead to misaligned memory access traps. In addition,
22632 variable arguments are handled incorrectly for 16 byte aligned
22633 objects (including x87 long double and __int128), leading to wrong
22634 results. You must build all modules with
22635 @option{-mpreferred-stack-boundary=3}, including any libraries. This
22636 includes the system libraries and startup modules.
22637
22638 @item -mincoming-stack-boundary=@var{num}
22639 @opindex mincoming-stack-boundary
22640 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
22641 boundary. If @option{-mincoming-stack-boundary} is not specified,
22642 the one specified by @option{-mpreferred-stack-boundary} is used.
22643
22644 On Pentium and Pentium Pro, @code{double} and @code{long double} values
22645 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
22646 suffer significant run time performance penalties. On Pentium III, the
22647 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
22648 properly if it is not 16-byte aligned.
22649
22650 To ensure proper alignment of this values on the stack, the stack boundary
22651 must be as aligned as that required by any value stored on the stack.
22652 Further, every function must be generated such that it keeps the stack
22653 aligned. Thus calling a function compiled with a higher preferred
22654 stack boundary from a function compiled with a lower preferred stack
22655 boundary most likely misaligns the stack. It is recommended that
22656 libraries that use callbacks always use the default setting.
22657
22658 This extra alignment does consume extra stack space, and generally
22659 increases code size. Code that is sensitive to stack space usage, such
22660 as embedded systems and operating system kernels, may want to reduce the
22661 preferred alignment to @option{-mpreferred-stack-boundary=2}.
22662
22663 @need 200
22664 @item -mmmx
22665 @opindex mmmx
22666 @need 200
22667 @itemx -msse
22668 @opindex msse
22669 @need 200
22670 @itemx -msse2
22671 @need 200
22672 @itemx -msse3
22673 @need 200
22674 @itemx -mssse3
22675 @need 200
22676 @itemx -msse4
22677 @need 200
22678 @itemx -msse4a
22679 @need 200
22680 @itemx -msse4.1
22681 @need 200
22682 @itemx -msse4.2
22683 @need 200
22684 @itemx -mavx
22685 @opindex mavx
22686 @need 200
22687 @itemx -mavx2
22688 @need 200
22689 @itemx -mavx512f
22690 @need 200
22691 @itemx -mavx512pf
22692 @need 200
22693 @itemx -mavx512er
22694 @need 200
22695 @itemx -mavx512cd
22696 @need 200
22697 @itemx -msha
22698 @opindex msha
22699 @need 200
22700 @itemx -maes
22701 @opindex maes
22702 @need 200
22703 @itemx -mpclmul
22704 @opindex mpclmul
22705 @need 200
22706 @itemx -mclfushopt
22707 @opindex mclfushopt
22708 @need 200
22709 @itemx -mfsgsbase
22710 @opindex mfsgsbase
22711 @need 200
22712 @itemx -mrdrnd
22713 @opindex mrdrnd
22714 @need 200
22715 @itemx -mf16c
22716 @opindex mf16c
22717 @need 200
22718 @itemx -mfma
22719 @opindex mfma
22720 @need 200
22721 @itemx -mfma4
22722 @need 200
22723 @itemx -mno-fma4
22724 @need 200
22725 @itemx -mprefetchwt1
22726 @opindex mprefetchwt1
22727 @need 200
22728 @itemx -mxop
22729 @opindex mxop
22730 @need 200
22731 @itemx -mlwp
22732 @opindex mlwp
22733 @need 200
22734 @itemx -m3dnow
22735 @opindex m3dnow
22736 @need 200
22737 @itemx -mpopcnt
22738 @opindex mpopcnt
22739 @need 200
22740 @itemx -mabm
22741 @opindex mabm
22742 @need 200
22743 @itemx -mbmi
22744 @opindex mbmi
22745 @need 200
22746 @itemx -mbmi2
22747 @need 200
22748 @itemx -mlzcnt
22749 @opindex mlzcnt
22750 @need 200
22751 @itemx -mfxsr
22752 @opindex mfxsr
22753 @need 200
22754 @itemx -mxsave
22755 @opindex mxsave
22756 @need 200
22757 @itemx -mxsaveopt
22758 @opindex mxsaveopt
22759 @need 200
22760 @itemx -mxsavec
22761 @opindex mxsavec
22762 @need 200
22763 @itemx -mxsaves
22764 @opindex mxsaves
22765 @need 200
22766 @itemx -mrtm
22767 @opindex mrtm
22768 @need 200
22769 @itemx -mtbm
22770 @opindex mtbm
22771 @need 200
22772 @itemx -mmpx
22773 @opindex mmpx
22774 These switches enable the use of instructions in the MMX, SSE,
22775 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
22776 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
22777 BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX or 3DNow!@:
22778 extended instruction sets. Each has a corresponding @option{-mno-} option
22779 to disable use of these instructions.
22780
22781 These extensions are also available as built-in functions: see
22782 @ref{x86 Built-in Functions}, for details of the functions enabled and
22783 disabled by these switches.
22784
22785 To generate SSE/SSE2 instructions automatically from floating-point
22786 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
22787
22788 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
22789 generates new AVX instructions or AVX equivalence for all SSEx instructions
22790 when needed.
22791
22792 These options enable GCC to use these extended instructions in
22793 generated code, even without @option{-mfpmath=sse}. Applications that
22794 perform run-time CPU detection must compile separate files for each
22795 supported architecture, using the appropriate flags. In particular,
22796 the file containing the CPU detection code should be compiled without
22797 these options.
22798
22799 @item -mdump-tune-features
22800 @opindex mdump-tune-features
22801 This option instructs GCC to dump the names of the x86 performance
22802 tuning features and default settings. The names can be used in
22803 @option{-mtune-ctrl=@var{feature-list}}.
22804
22805 @item -mtune-ctrl=@var{feature-list}
22806 @opindex mtune-ctrl=@var{feature-list}
22807 This option is used to do fine grain control of x86 code generation features.
22808 @var{feature-list} is a comma separated list of @var{feature} names. See also
22809 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
22810 on if it is not preceded with @samp{^}, otherwise, it is turned off.
22811 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
22812 developers. Using it may lead to code paths not covered by testing and can
22813 potentially result in compiler ICEs or runtime errors.
22814
22815 @item -mno-default
22816 @opindex mno-default
22817 This option instructs GCC to turn off all tunable features. See also
22818 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
22819
22820 @item -mcld
22821 @opindex mcld
22822 This option instructs GCC to emit a @code{cld} instruction in the prologue
22823 of functions that use string instructions. String instructions depend on
22824 the DF flag to select between autoincrement or autodecrement mode. While the
22825 ABI specifies the DF flag to be cleared on function entry, some operating
22826 systems violate this specification by not clearing the DF flag in their
22827 exception dispatchers. The exception handler can be invoked with the DF flag
22828 set, which leads to wrong direction mode when string instructions are used.
22829 This option can be enabled by default on 32-bit x86 targets by configuring
22830 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
22831 instructions can be suppressed with the @option{-mno-cld} compiler option
22832 in this case.
22833
22834 @item -mvzeroupper
22835 @opindex mvzeroupper
22836 This option instructs GCC to emit a @code{vzeroupper} instruction
22837 before a transfer of control flow out of the function to minimize
22838 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
22839 intrinsics.
22840
22841 @item -mprefer-avx128
22842 @opindex mprefer-avx128
22843 This option instructs GCC to use 128-bit AVX instructions instead of
22844 256-bit AVX instructions in the auto-vectorizer.
22845
22846 @item -mcx16
22847 @opindex mcx16
22848 This option enables GCC to generate @code{CMPXCHG16B} instructions.
22849 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
22850 (or oword) data types.
22851 This is useful for high-resolution counters that can be updated
22852 by multiple processors (or cores). This instruction is generated as part of
22853 atomic built-in functions: see @ref{__sync Builtins} or
22854 @ref{__atomic Builtins} for details.
22855
22856 @item -msahf
22857 @opindex msahf
22858 This option enables generation of @code{SAHF} instructions in 64-bit code.
22859 Early Intel Pentium 4 CPUs with Intel 64 support,
22860 prior to the introduction of Pentium 4 G1 step in December 2005,
22861 lacked the @code{LAHF} and @code{SAHF} instructions
22862 which are supported by AMD64.
22863 These are load and store instructions, respectively, for certain status flags.
22864 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
22865 @code{drem}, and @code{remainder} built-in functions;
22866 see @ref{Other Builtins} for details.
22867
22868 @item -mmovbe
22869 @opindex mmovbe
22870 This option enables use of the @code{movbe} instruction to implement
22871 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
22872
22873 @item -mcrc32
22874 @opindex mcrc32
22875 This option enables built-in functions @code{__builtin_ia32_crc32qi},
22876 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
22877 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
22878
22879 @item -mrecip
22880 @opindex mrecip
22881 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
22882 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
22883 with an additional Newton-Raphson step
22884 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
22885 (and their vectorized
22886 variants) for single-precision floating-point arguments. These instructions
22887 are generated only when @option{-funsafe-math-optimizations} is enabled
22888 together with @option{-finite-math-only} and @option{-fno-trapping-math}.
22889 Note that while the throughput of the sequence is higher than the throughput
22890 of the non-reciprocal instruction, the precision of the sequence can be
22891 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
22892
22893 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
22894 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
22895 combination), and doesn't need @option{-mrecip}.
22896
22897 Also note that GCC emits the above sequence with additional Newton-Raphson step
22898 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
22899 already with @option{-ffast-math} (or the above option combination), and
22900 doesn't need @option{-mrecip}.
22901
22902 @item -mrecip=@var{opt}
22903 @opindex mrecip=opt
22904 This option controls which reciprocal estimate instructions
22905 may be used. @var{opt} is a comma-separated list of options, which may
22906 be preceded by a @samp{!} to invert the option:
22907
22908 @table @samp
22909 @item all
22910 Enable all estimate instructions.
22911
22912 @item default
22913 Enable the default instructions, equivalent to @option{-mrecip}.
22914
22915 @item none
22916 Disable all estimate instructions, equivalent to @option{-mno-recip}.
22917
22918 @item div
22919 Enable the approximation for scalar division.
22920
22921 @item vec-div
22922 Enable the approximation for vectorized division.
22923
22924 @item sqrt
22925 Enable the approximation for scalar square root.
22926
22927 @item vec-sqrt
22928 Enable the approximation for vectorized square root.
22929 @end table
22930
22931 So, for example, @option{-mrecip=all,!sqrt} enables
22932 all of the reciprocal approximations, except for square root.
22933
22934 @item -mveclibabi=@var{type}
22935 @opindex mveclibabi
22936 Specifies the ABI type to use for vectorizing intrinsics using an
22937 external library. Supported values for @var{type} are @samp{svml}
22938 for the Intel short
22939 vector math library and @samp{acml} for the AMD math core library.
22940 To use this option, both @option{-ftree-vectorize} and
22941 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
22942 ABI-compatible library must be specified at link time.
22943
22944 GCC currently emits calls to @code{vmldExp2},
22945 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
22946 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
22947 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
22948 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
22949 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
22950 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
22951 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
22952 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
22953 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
22954 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
22955 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
22956 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
22957 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
22958 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
22959 when @option{-mveclibabi=acml} is used.
22960
22961 @item -mabi=@var{name}
22962 @opindex mabi
22963 Generate code for the specified calling convention. Permissible values
22964 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
22965 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
22966 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
22967 You can control this behavior for specific functions by
22968 using the function attributes @code{ms_abi} and @code{sysv_abi}.
22969 @xref{Function Attributes}.
22970
22971 @item -mtls-dialect=@var{type}
22972 @opindex mtls-dialect
22973 Generate code to access thread-local storage using the @samp{gnu} or
22974 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
22975 @samp{gnu2} is more efficient, but it may add compile- and run-time
22976 requirements that cannot be satisfied on all systems.
22977
22978 @item -mpush-args
22979 @itemx -mno-push-args
22980 @opindex mpush-args
22981 @opindex mno-push-args
22982 Use PUSH operations to store outgoing parameters. This method is shorter
22983 and usually equally fast as method using SUB/MOV operations and is enabled
22984 by default. In some cases disabling it may improve performance because of
22985 improved scheduling and reduced dependencies.
22986
22987 @item -maccumulate-outgoing-args
22988 @opindex maccumulate-outgoing-args
22989 If enabled, the maximum amount of space required for outgoing arguments is
22990 computed in the function prologue. This is faster on most modern CPUs
22991 because of reduced dependencies, improved scheduling and reduced stack usage
22992 when the preferred stack boundary is not equal to 2. The drawback is a notable
22993 increase in code size. This switch implies @option{-mno-push-args}.
22994
22995 @item -mthreads
22996 @opindex mthreads
22997 Support thread-safe exception handling on MinGW. Programs that rely
22998 on thread-safe exception handling must compile and link all code with the
22999 @option{-mthreads} option. When compiling, @option{-mthreads} defines
23000 @option{-D_MT}; when linking, it links in a special thread helper library
23001 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
23002
23003 @item -mno-align-stringops
23004 @opindex mno-align-stringops
23005 Do not align the destination of inlined string operations. This switch reduces
23006 code size and improves performance in case the destination is already aligned,
23007 but GCC doesn't know about it.
23008
23009 @item -minline-all-stringops
23010 @opindex minline-all-stringops
23011 By default GCC inlines string operations only when the destination is
23012 known to be aligned to least a 4-byte boundary.
23013 This enables more inlining and increases code
23014 size, but may improve performance of code that depends on fast
23015 @code{memcpy}, @code{strlen},
23016 and @code{memset} for short lengths.
23017
23018 @item -minline-stringops-dynamically
23019 @opindex minline-stringops-dynamically
23020 For string operations of unknown size, use run-time checks with
23021 inline code for small blocks and a library call for large blocks.
23022
23023 @item -mstringop-strategy=@var{alg}
23024 @opindex mstringop-strategy=@var{alg}
23025 Override the internal decision heuristic for the particular algorithm to use
23026 for inlining string operations. The allowed values for @var{alg} are:
23027
23028 @table @samp
23029 @item rep_byte
23030 @itemx rep_4byte
23031 @itemx rep_8byte
23032 Expand using i386 @code{rep} prefix of the specified size.
23033
23034 @item byte_loop
23035 @itemx loop
23036 @itemx unrolled_loop
23037 Expand into an inline loop.
23038
23039 @item libcall
23040 Always use a library call.
23041 @end table
23042
23043 @item -mmemcpy-strategy=@var{strategy}
23044 @opindex mmemcpy-strategy=@var{strategy}
23045 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
23046 should be inlined and what inline algorithm to use when the expected size
23047 of the copy operation is known. @var{strategy}
23048 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
23049 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
23050 the max byte size with which inline algorithm @var{alg} is allowed. For the last
23051 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
23052 in the list must be specified in increasing order. The minimal byte size for
23053 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
23054 preceding range.
23055
23056 @item -mmemset-strategy=@var{strategy}
23057 @opindex mmemset-strategy=@var{strategy}
23058 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
23059 @code{__builtin_memset} expansion.
23060
23061 @item -momit-leaf-frame-pointer
23062 @opindex momit-leaf-frame-pointer
23063 Don't keep the frame pointer in a register for leaf functions. This
23064 avoids the instructions to save, set up, and restore frame pointers and
23065 makes an extra register available in leaf functions. The option
23066 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
23067 which might make debugging harder.
23068
23069 @item -mtls-direct-seg-refs
23070 @itemx -mno-tls-direct-seg-refs
23071 @opindex mtls-direct-seg-refs
23072 Controls whether TLS variables may be accessed with offsets from the
23073 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
23074 or whether the thread base pointer must be added. Whether or not this
23075 is valid depends on the operating system, and whether it maps the
23076 segment to cover the entire TLS area.
23077
23078 For systems that use the GNU C Library, the default is on.
23079
23080 @item -msse2avx
23081 @itemx -mno-sse2avx
23082 @opindex msse2avx
23083 Specify that the assembler should encode SSE instructions with VEX
23084 prefix. The option @option{-mavx} turns this on by default.
23085
23086 @item -mfentry
23087 @itemx -mno-fentry
23088 @opindex mfentry
23089 If profiling is active (@option{-pg}), put the profiling
23090 counter call before the prologue.
23091 Note: On x86 architectures the attribute @code{ms_hook_prologue}
23092 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23093
23094 @item -mrecord-mcount
23095 @itemx -mno-record-mcount
23096 @opindex mrecord-mcount
23097 If profiling is active (@option{-pg}), generate a __mcount_loc section
23098 that contains pointers to each profiling call. This is useful for
23099 automatically patching and out calls.
23100
23101 @item -mnop-mcount
23102 @itemx -mno-nop-mcount
23103 @opindex mnop-mcount
23104 If profiling is active (@option{-pg}), generate the calls to
23105 the profiling functions as nops. This is useful when they
23106 should be patched in later dynamically. This is likely only
23107 useful together with @option{-mrecord-mcount}.
23108
23109 @item -mskip-rax-setup
23110 @itemx -mno-skip-rax-setup
23111 @opindex mskip-rax-setup
23112 When generating code for the x86-64 architecture with SSE extensions
23113 disabled, @option{-skip-rax-setup} can be used to skip setting up RAX
23114 register when there are no variable arguments passed in vector registers.
23115
23116 @strong{Warning:} Since RAX register is used to avoid unnecessarily
23117 saving vector registers on stack when passing variable arguments, the
23118 impacts of this option are callees may waste some stack space,
23119 misbehave or jump to a random location. GCC 4.4 or newer don't have
23120 those issues, regardless the RAX register value.
23121
23122 @item -m8bit-idiv
23123 @itemx -mno-8bit-idiv
23124 @opindex m8bit-idiv
23125 On some processors, like Intel Atom, 8-bit unsigned integer divide is
23126 much faster than 32-bit/64-bit integer divide. This option generates a
23127 run-time check. If both dividend and divisor are within range of 0
23128 to 255, 8-bit unsigned integer divide is used instead of
23129 32-bit/64-bit integer divide.
23130
23131 @item -mavx256-split-unaligned-load
23132 @itemx -mavx256-split-unaligned-store
23133 @opindex mavx256-split-unaligned-load
23134 @opindex mavx256-split-unaligned-store
23135 Split 32-byte AVX unaligned load and store.
23136
23137 @item -mstack-protector-guard=@var{guard}
23138 @opindex mstack-protector-guard=@var{guard}
23139 Generate stack protection code using canary at @var{guard}. Supported
23140 locations are @samp{global} for global canary or @samp{tls} for per-thread
23141 canary in the TLS block (the default). This option has effect only when
23142 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23143
23144 @end table
23145
23146 These @samp{-m} switches are supported in addition to the above
23147 on x86-64 processors in 64-bit environments.
23148
23149 @table @gcctabopt
23150 @item -m32
23151 @itemx -m64
23152 @itemx -mx32
23153 @itemx -m16
23154 @opindex m32
23155 @opindex m64
23156 @opindex mx32
23157 @opindex m16
23158 Generate code for a 16-bit, 32-bit or 64-bit environment.
23159 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23160 to 32 bits, and
23161 generates code that runs on any i386 system.
23162
23163 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23164 types to 64 bits, and generates code for the x86-64 architecture.
23165 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23166 and @option{-mdynamic-no-pic} options.
23167
23168 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23169 to 32 bits, and
23170 generates code for the x86-64 architecture.
23171
23172 The @option{-m16} option is the same as @option{-m32}, except for that
23173 it outputs the @code{.code16gcc} assembly directive at the beginning of
23174 the assembly output so that the binary can run in 16-bit mode.
23175
23176 @item -mno-red-zone
23177 @opindex mno-red-zone
23178 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
23179 by the x86-64 ABI; it is a 128-byte area beyond the location of the
23180 stack pointer that is not modified by signal or interrupt handlers
23181 and therefore can be used for temporary data without adjusting the stack
23182 pointer. The flag @option{-mno-red-zone} disables this red zone.
23183
23184 @item -mcmodel=small
23185 @opindex mcmodel=small
23186 Generate code for the small code model: the program and its symbols must
23187 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
23188 Programs can be statically or dynamically linked. This is the default
23189 code model.
23190
23191 @item -mcmodel=kernel
23192 @opindex mcmodel=kernel
23193 Generate code for the kernel code model. The kernel runs in the
23194 negative 2 GB of the address space.
23195 This model has to be used for Linux kernel code.
23196
23197 @item -mcmodel=medium
23198 @opindex mcmodel=medium
23199 Generate code for the medium model: the program is linked in the lower 2
23200 GB of the address space. Small symbols are also placed there. Symbols
23201 with sizes larger than @option{-mlarge-data-threshold} are put into
23202 large data or BSS sections and can be located above 2GB. Programs can
23203 be statically or dynamically linked.
23204
23205 @item -mcmodel=large
23206 @opindex mcmodel=large
23207 Generate code for the large model. This model makes no assumptions
23208 about addresses and sizes of sections.
23209
23210 @item -maddress-mode=long
23211 @opindex maddress-mode=long
23212 Generate code for long address mode. This is only supported for 64-bit
23213 and x32 environments. It is the default address mode for 64-bit
23214 environments.
23215
23216 @item -maddress-mode=short
23217 @opindex maddress-mode=short
23218 Generate code for short address mode. This is only supported for 32-bit
23219 and x32 environments. It is the default address mode for 32-bit and
23220 x32 environments.
23221 @end table
23222
23223 @node x86 Windows Options
23224 @subsection x86 Windows Options
23225 @cindex x86 Windows Options
23226 @cindex Windows Options for x86
23227
23228 These additional options are available for Microsoft Windows targets:
23229
23230 @table @gcctabopt
23231 @item -mconsole
23232 @opindex mconsole
23233 This option
23234 specifies that a console application is to be generated, by
23235 instructing the linker to set the PE header subsystem type
23236 required for console applications.
23237 This option is available for Cygwin and MinGW targets and is
23238 enabled by default on those targets.
23239
23240 @item -mdll
23241 @opindex mdll
23242 This option is available for Cygwin and MinGW targets. It
23243 specifies that a DLL---a dynamic link library---is to be
23244 generated, enabling the selection of the required runtime
23245 startup object and entry point.
23246
23247 @item -mnop-fun-dllimport
23248 @opindex mnop-fun-dllimport
23249 This option is available for Cygwin and MinGW targets. It
23250 specifies that the @code{dllimport} attribute should be ignored.
23251
23252 @item -mthread
23253 @opindex mthread
23254 This option is available for MinGW targets. It specifies
23255 that MinGW-specific thread support is to be used.
23256
23257 @item -municode
23258 @opindex municode
23259 This option is available for MinGW-w64 targets. It causes
23260 the @code{UNICODE} preprocessor macro to be predefined, and
23261 chooses Unicode-capable runtime startup code.
23262
23263 @item -mwin32
23264 @opindex mwin32
23265 This option is available for Cygwin and MinGW targets. It
23266 specifies that the typical Microsoft Windows predefined macros are to
23267 be set in the pre-processor, but does not influence the choice
23268 of runtime library/startup code.
23269
23270 @item -mwindows
23271 @opindex mwindows
23272 This option is available for Cygwin and MinGW targets. It
23273 specifies that a GUI application is to be generated by
23274 instructing the linker to set the PE header subsystem type
23275 appropriately.
23276
23277 @item -fno-set-stack-executable
23278 @opindex fno-set-stack-executable
23279 This option is available for MinGW targets. It specifies that
23280 the executable flag for the stack used by nested functions isn't
23281 set. This is necessary for binaries running in kernel mode of
23282 Microsoft Windows, as there the User32 API, which is used to set executable
23283 privileges, isn't available.
23284
23285 @item -fwritable-relocated-rdata
23286 @opindex fno-writable-relocated-rdata
23287 This option is available for MinGW and Cygwin targets. It specifies
23288 that relocated-data in read-only section is put into .data
23289 section. This is a necessary for older runtimes not supporting
23290 modification of .rdata sections for pseudo-relocation.
23291
23292 @item -mpe-aligned-commons
23293 @opindex mpe-aligned-commons
23294 This option is available for Cygwin and MinGW targets. It
23295 specifies that the GNU extension to the PE file format that
23296 permits the correct alignment of COMMON variables should be
23297 used when generating code. It is enabled by default if
23298 GCC detects that the target assembler found during configuration
23299 supports the feature.
23300 @end table
23301
23302 See also under @ref{x86 Options} for standard options.
23303
23304 @node Xstormy16 Options
23305 @subsection Xstormy16 Options
23306 @cindex Xstormy16 Options
23307
23308 These options are defined for Xstormy16:
23309
23310 @table @gcctabopt
23311 @item -msim
23312 @opindex msim
23313 Choose startup files and linker script suitable for the simulator.
23314 @end table
23315
23316 @node Xtensa Options
23317 @subsection Xtensa Options
23318 @cindex Xtensa Options
23319
23320 These options are supported for Xtensa targets:
23321
23322 @table @gcctabopt
23323 @item -mconst16
23324 @itemx -mno-const16
23325 @opindex mconst16
23326 @opindex mno-const16
23327 Enable or disable use of @code{CONST16} instructions for loading
23328 constant values. The @code{CONST16} instruction is currently not a
23329 standard option from Tensilica. When enabled, @code{CONST16}
23330 instructions are always used in place of the standard @code{L32R}
23331 instructions. The use of @code{CONST16} is enabled by default only if
23332 the @code{L32R} instruction is not available.
23333
23334 @item -mfused-madd
23335 @itemx -mno-fused-madd
23336 @opindex mfused-madd
23337 @opindex mno-fused-madd
23338 Enable or disable use of fused multiply/add and multiply/subtract
23339 instructions in the floating-point option. This has no effect if the
23340 floating-point option is not also enabled. Disabling fused multiply/add
23341 and multiply/subtract instructions forces the compiler to use separate
23342 instructions for the multiply and add/subtract operations. This may be
23343 desirable in some cases where strict IEEE 754-compliant results are
23344 required: the fused multiply add/subtract instructions do not round the
23345 intermediate result, thereby producing results with @emph{more} bits of
23346 precision than specified by the IEEE standard. Disabling fused multiply
23347 add/subtract instructions also ensures that the program output is not
23348 sensitive to the compiler's ability to combine multiply and add/subtract
23349 operations.
23350
23351 @item -mserialize-volatile
23352 @itemx -mno-serialize-volatile
23353 @opindex mserialize-volatile
23354 @opindex mno-serialize-volatile
23355 When this option is enabled, GCC inserts @code{MEMW} instructions before
23356 @code{volatile} memory references to guarantee sequential consistency.
23357 The default is @option{-mserialize-volatile}. Use
23358 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
23359
23360 @item -mforce-no-pic
23361 @opindex mforce-no-pic
23362 For targets, like GNU/Linux, where all user-mode Xtensa code must be
23363 position-independent code (PIC), this option disables PIC for compiling
23364 kernel code.
23365
23366 @item -mtext-section-literals
23367 @itemx -mno-text-section-literals
23368 @opindex mtext-section-literals
23369 @opindex mno-text-section-literals
23370 These options control the treatment of literal pools. The default is
23371 @option{-mno-text-section-literals}, which places literals in a separate
23372 section in the output file. This allows the literal pool to be placed
23373 in a data RAM/ROM, and it also allows the linker to combine literal
23374 pools from separate object files to remove redundant literals and
23375 improve code size. With @option{-mtext-section-literals}, the literals
23376 are interspersed in the text section in order to keep them as close as
23377 possible to their references. This may be necessary for large assembly
23378 files.
23379
23380 @item -mtarget-align
23381 @itemx -mno-target-align
23382 @opindex mtarget-align
23383 @opindex mno-target-align
23384 When this option is enabled, GCC instructs the assembler to
23385 automatically align instructions to reduce branch penalties at the
23386 expense of some code density. The assembler attempts to widen density
23387 instructions to align branch targets and the instructions following call
23388 instructions. If there are not enough preceding safe density
23389 instructions to align a target, no widening is performed. The
23390 default is @option{-mtarget-align}. These options do not affect the
23391 treatment of auto-aligned instructions like @code{LOOP}, which the
23392 assembler always aligns, either by widening density instructions or
23393 by inserting NOP instructions.
23394
23395 @item -mlongcalls
23396 @itemx -mno-longcalls
23397 @opindex mlongcalls
23398 @opindex mno-longcalls
23399 When this option is enabled, GCC instructs the assembler to translate
23400 direct calls to indirect calls unless it can determine that the target
23401 of a direct call is in the range allowed by the call instruction. This
23402 translation typically occurs for calls to functions in other source
23403 files. Specifically, the assembler translates a direct @code{CALL}
23404 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
23405 The default is @option{-mno-longcalls}. This option should be used in
23406 programs where the call target can potentially be out of range. This
23407 option is implemented in the assembler, not the compiler, so the
23408 assembly code generated by GCC still shows direct call
23409 instructions---look at the disassembled object code to see the actual
23410 instructions. Note that the assembler uses an indirect call for
23411 every cross-file call, not just those that really are out of range.
23412 @end table
23413
23414 @node zSeries Options
23415 @subsection zSeries Options
23416 @cindex zSeries options
23417
23418 These are listed under @xref{S/390 and zSeries Options}.
23419
23420 @node Code Gen Options
23421 @section Options for Code Generation Conventions
23422 @cindex code generation conventions
23423 @cindex options, code generation
23424 @cindex run-time options
23425
23426 These machine-independent options control the interface conventions
23427 used in code generation.
23428
23429 Most of them have both positive and negative forms; the negative form
23430 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
23431 one of the forms is listed---the one that is not the default. You
23432 can figure out the other form by either removing @samp{no-} or adding
23433 it.
23434
23435 @table @gcctabopt
23436 @item -fbounds-check
23437 @opindex fbounds-check
23438 For front ends that support it, generate additional code to check that
23439 indices used to access arrays are within the declared range. This is
23440 currently only supported by the Java and Fortran front ends, where
23441 this option defaults to true and false respectively.
23442
23443 @item -fstack-reuse=@var{reuse-level}
23444 @opindex fstack_reuse
23445 This option controls stack space reuse for user declared local/auto variables
23446 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
23447 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
23448 local variables and temporaries, @samp{named_vars} enables the reuse only for
23449 user defined local variables with names, and @samp{none} disables stack reuse
23450 completely. The default value is @samp{all}. The option is needed when the
23451 program extends the lifetime of a scoped local variable or a compiler generated
23452 temporary beyond the end point defined by the language. When a lifetime of
23453 a variable ends, and if the variable lives in memory, the optimizing compiler
23454 has the freedom to reuse its stack space with other temporaries or scoped
23455 local variables whose live range does not overlap with it. Legacy code extending
23456 local lifetime is likely to break with the stack reuse optimization.
23457
23458 For example,
23459
23460 @smallexample
23461 int *p;
23462 @{
23463 int local1;
23464
23465 p = &local1;
23466 local1 = 10;
23467 ....
23468 @}
23469 @{
23470 int local2;
23471 local2 = 20;
23472 ...
23473 @}
23474
23475 if (*p == 10) // out of scope use of local1
23476 @{
23477
23478 @}
23479 @end smallexample
23480
23481 Another example:
23482 @smallexample
23483
23484 struct A
23485 @{
23486 A(int k) : i(k), j(k) @{ @}
23487 int i;
23488 int j;
23489 @};
23490
23491 A *ap;
23492
23493 void foo(const A& ar)
23494 @{
23495 ap = &ar;
23496 @}
23497
23498 void bar()
23499 @{
23500 foo(A(10)); // temp object's lifetime ends when foo returns
23501
23502 @{
23503 A a(20);
23504 ....
23505 @}
23506 ap->i+= 10; // ap references out of scope temp whose space
23507 // is reused with a. What is the value of ap->i?
23508 @}
23509
23510 @end smallexample
23511
23512 The lifetime of a compiler generated temporary is well defined by the C++
23513 standard. When a lifetime of a temporary ends, and if the temporary lives
23514 in memory, the optimizing compiler has the freedom to reuse its stack
23515 space with other temporaries or scoped local variables whose live range
23516 does not overlap with it. However some of the legacy code relies on
23517 the behavior of older compilers in which temporaries' stack space is
23518 not reused, the aggressive stack reuse can lead to runtime errors. This
23519 option is used to control the temporary stack reuse optimization.
23520
23521 @item -ftrapv
23522 @opindex ftrapv
23523 This option generates traps for signed overflow on addition, subtraction,
23524 multiplication operations.
23525
23526 @item -fwrapv
23527 @opindex fwrapv
23528 This option instructs the compiler to assume that signed arithmetic
23529 overflow of addition, subtraction and multiplication wraps around
23530 using twos-complement representation. This flag enables some optimizations
23531 and disables others. This option is enabled by default for the Java
23532 front end, as required by the Java language specification.
23533
23534 @item -fexceptions
23535 @opindex fexceptions
23536 Enable exception handling. Generates extra code needed to propagate
23537 exceptions. For some targets, this implies GCC generates frame
23538 unwind information for all functions, which can produce significant data
23539 size overhead, although it does not affect execution. If you do not
23540 specify this option, GCC enables it by default for languages like
23541 C++ that normally require exception handling, and disables it for
23542 languages like C that do not normally require it. However, you may need
23543 to enable this option when compiling C code that needs to interoperate
23544 properly with exception handlers written in C++. You may also wish to
23545 disable this option if you are compiling older C++ programs that don't
23546 use exception handling.
23547
23548 @item -fnon-call-exceptions
23549 @opindex fnon-call-exceptions
23550 Generate code that allows trapping instructions to throw exceptions.
23551 Note that this requires platform-specific runtime support that does
23552 not exist everywhere. Moreover, it only allows @emph{trapping}
23553 instructions to throw exceptions, i.e.@: memory references or floating-point
23554 instructions. It does not allow exceptions to be thrown from
23555 arbitrary signal handlers such as @code{SIGALRM}.
23556
23557 @item -fdelete-dead-exceptions
23558 @opindex fdelete-dead-exceptions
23559 Consider that instructions that may throw exceptions but don't otherwise
23560 contribute to the execution of the program can be optimized away.
23561 This option is enabled by default for the Ada front end, as permitted by
23562 the Ada language specification.
23563 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
23564
23565 @item -funwind-tables
23566 @opindex funwind-tables
23567 Similar to @option{-fexceptions}, except that it just generates any needed
23568 static data, but does not affect the generated code in any other way.
23569 You normally do not need to enable this option; instead, a language processor
23570 that needs this handling enables it on your behalf.
23571
23572 @item -fasynchronous-unwind-tables
23573 @opindex fasynchronous-unwind-tables
23574 Generate unwind table in DWARF 2 format, if supported by target machine. The
23575 table is exact at each instruction boundary, so it can be used for stack
23576 unwinding from asynchronous events (such as debugger or garbage collector).
23577
23578 @item -fno-gnu-unique
23579 @opindex fno-gnu-unique
23580 On systems with recent GNU assembler and C library, the C++ compiler
23581 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
23582 of template static data members and static local variables in inline
23583 functions are unique even in the presence of @code{RTLD_LOCAL}; this
23584 is necessary to avoid problems with a library used by two different
23585 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
23586 therefore disagreeing with the other one about the binding of the
23587 symbol. But this causes @code{dlclose} to be ignored for affected
23588 DSOs; if your program relies on reinitialization of a DSO via
23589 @code{dlclose} and @code{dlopen}, you can use
23590 @option{-fno-gnu-unique}.
23591
23592 @item -fpcc-struct-return
23593 @opindex fpcc-struct-return
23594 Return ``short'' @code{struct} and @code{union} values in memory like
23595 longer ones, rather than in registers. This convention is less
23596 efficient, but it has the advantage of allowing intercallability between
23597 GCC-compiled files and files compiled with other compilers, particularly
23598 the Portable C Compiler (pcc).
23599
23600 The precise convention for returning structures in memory depends
23601 on the target configuration macros.
23602
23603 Short structures and unions are those whose size and alignment match
23604 that of some integer type.
23605
23606 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
23607 switch is not binary compatible with code compiled with the
23608 @option{-freg-struct-return} switch.
23609 Use it to conform to a non-default application binary interface.
23610
23611 @item -freg-struct-return
23612 @opindex freg-struct-return
23613 Return @code{struct} and @code{union} values in registers when possible.
23614 This is more efficient for small structures than
23615 @option{-fpcc-struct-return}.
23616
23617 If you specify neither @option{-fpcc-struct-return} nor
23618 @option{-freg-struct-return}, GCC defaults to whichever convention is
23619 standard for the target. If there is no standard convention, GCC
23620 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
23621 the principal compiler. In those cases, we can choose the standard, and
23622 we chose the more efficient register return alternative.
23623
23624 @strong{Warning:} code compiled with the @option{-freg-struct-return}
23625 switch is not binary compatible with code compiled with the
23626 @option{-fpcc-struct-return} switch.
23627 Use it to conform to a non-default application binary interface.
23628
23629 @item -fshort-enums
23630 @opindex fshort-enums
23631 Allocate to an @code{enum} type only as many bytes as it needs for the
23632 declared range of possible values. Specifically, the @code{enum} type
23633 is equivalent to the smallest integer type that has enough room.
23634
23635 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
23636 code that is not binary compatible with code generated without that switch.
23637 Use it to conform to a non-default application binary interface.
23638
23639 @item -fshort-double
23640 @opindex fshort-double
23641 Use the same size for @code{double} as for @code{float}.
23642
23643 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
23644 code that is not binary compatible with code generated without that switch.
23645 Use it to conform to a non-default application binary interface.
23646
23647 @item -fshort-wchar
23648 @opindex fshort-wchar
23649 Override the underlying type for @code{wchar_t} to be @code{short
23650 unsigned int} instead of the default for the target. This option is
23651 useful for building programs to run under WINE@.
23652
23653 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
23654 code that is not binary compatible with code generated without that switch.
23655 Use it to conform to a non-default application binary interface.
23656
23657 @item -fno-common
23658 @opindex fno-common
23659 In C code, controls the placement of uninitialized global variables.
23660 Unix C compilers have traditionally permitted multiple definitions of
23661 such variables in different compilation units by placing the variables
23662 in a common block.
23663 This is the behavior specified by @option{-fcommon}, and is the default
23664 for GCC on most targets.
23665 On the other hand, this behavior is not required by ISO C, and on some
23666 targets may carry a speed or code size penalty on variable references.
23667 The @option{-fno-common} option specifies that the compiler should place
23668 uninitialized global variables in the data section of the object file,
23669 rather than generating them as common blocks.
23670 This has the effect that if the same variable is declared
23671 (without @code{extern}) in two different compilations,
23672 you get a multiple-definition error when you link them.
23673 In this case, you must compile with @option{-fcommon} instead.
23674 Compiling with @option{-fno-common} is useful on targets for which
23675 it provides better performance, or if you wish to verify that the
23676 program will work on other systems that always treat uninitialized
23677 variable declarations this way.
23678
23679 @item -fno-ident
23680 @opindex fno-ident
23681 Ignore the @code{#ident} directive.
23682
23683 @item -finhibit-size-directive
23684 @opindex finhibit-size-directive
23685 Don't output a @code{.size} assembler directive, or anything else that
23686 would cause trouble if the function is split in the middle, and the
23687 two halves are placed at locations far apart in memory. This option is
23688 used when compiling @file{crtstuff.c}; you should not need to use it
23689 for anything else.
23690
23691 @item -fverbose-asm
23692 @opindex fverbose-asm
23693 Put extra commentary information in the generated assembly code to
23694 make it more readable. This option is generally only of use to those
23695 who actually need to read the generated assembly code (perhaps while
23696 debugging the compiler itself).
23697
23698 @option{-fno-verbose-asm}, the default, causes the
23699 extra information to be omitted and is useful when comparing two assembler
23700 files.
23701
23702 @item -frecord-gcc-switches
23703 @opindex frecord-gcc-switches
23704 This switch causes the command line used to invoke the
23705 compiler to be recorded into the object file that is being created.
23706 This switch is only implemented on some targets and the exact format
23707 of the recording is target and binary file format dependent, but it
23708 usually takes the form of a section containing ASCII text. This
23709 switch is related to the @option{-fverbose-asm} switch, but that
23710 switch only records information in the assembler output file as
23711 comments, so it never reaches the object file.
23712 See also @option{-grecord-gcc-switches} for another
23713 way of storing compiler options into the object file.
23714
23715 @item -fpic
23716 @opindex fpic
23717 @cindex global offset table
23718 @cindex PIC
23719 Generate position-independent code (PIC) suitable for use in a shared
23720 library, if supported for the target machine. Such code accesses all
23721 constant addresses through a global offset table (GOT)@. The dynamic
23722 loader resolves the GOT entries when the program starts (the dynamic
23723 loader is not part of GCC; it is part of the operating system). If
23724 the GOT size for the linked executable exceeds a machine-specific
23725 maximum size, you get an error message from the linker indicating that
23726 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
23727 instead. (These maximums are 8k on the SPARC and 32k
23728 on the m68k and RS/6000. The x86 has no such limit.)
23729
23730 Position-independent code requires special support, and therefore works
23731 only on certain machines. For the x86, GCC supports PIC for System V
23732 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
23733 position-independent.
23734
23735 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23736 are defined to 1.
23737
23738 @item -fPIC
23739 @opindex fPIC
23740 If supported for the target machine, emit position-independent code,
23741 suitable for dynamic linking and avoiding any limit on the size of the
23742 global offset table. This option makes a difference on the m68k,
23743 PowerPC and SPARC@.
23744
23745 Position-independent code requires special support, and therefore works
23746 only on certain machines.
23747
23748 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23749 are defined to 2.
23750
23751 @item -fpie
23752 @itemx -fPIE
23753 @opindex fpie
23754 @opindex fPIE
23755 These options are similar to @option{-fpic} and @option{-fPIC}, but
23756 generated position independent code can be only linked into executables.
23757 Usually these options are used when @option{-pie} GCC option is
23758 used during linking.
23759
23760 @option{-fpie} and @option{-fPIE} both define the macros
23761 @code{__pie__} and @code{__PIE__}. The macros have the value 1
23762 for @option{-fpie} and 2 for @option{-fPIE}.
23763
23764 @item -fno-jump-tables
23765 @opindex fno-jump-tables
23766 Do not use jump tables for switch statements even where it would be
23767 more efficient than other code generation strategies. This option is
23768 of use in conjunction with @option{-fpic} or @option{-fPIC} for
23769 building code that forms part of a dynamic linker and cannot
23770 reference the address of a jump table. On some targets, jump tables
23771 do not require a GOT and this option is not needed.
23772
23773 @item -ffixed-@var{reg}
23774 @opindex ffixed
23775 Treat the register named @var{reg} as a fixed register; generated code
23776 should never refer to it (except perhaps as a stack pointer, frame
23777 pointer or in some other fixed role).
23778
23779 @var{reg} must be the name of a register. The register names accepted
23780 are machine-specific and are defined in the @code{REGISTER_NAMES}
23781 macro in the machine description macro file.
23782
23783 This flag does not have a negative form, because it specifies a
23784 three-way choice.
23785
23786 @item -fcall-used-@var{reg}
23787 @opindex fcall-used
23788 Treat the register named @var{reg} as an allocable register that is
23789 clobbered by function calls. It may be allocated for temporaries or
23790 variables that do not live across a call. Functions compiled this way
23791 do not save and restore the register @var{reg}.
23792
23793 It is an error to use this flag with the frame pointer or stack pointer.
23794 Use of this flag for other registers that have fixed pervasive roles in
23795 the machine's execution model produces disastrous results.
23796
23797 This flag does not have a negative form, because it specifies a
23798 three-way choice.
23799
23800 @item -fcall-saved-@var{reg}
23801 @opindex fcall-saved
23802 Treat the register named @var{reg} as an allocable register saved by
23803 functions. It may be allocated even for temporaries or variables that
23804 live across a call. Functions compiled this way save and restore
23805 the register @var{reg} if they use it.
23806
23807 It is an error to use this flag with the frame pointer or stack pointer.
23808 Use of this flag for other registers that have fixed pervasive roles in
23809 the machine's execution model produces disastrous results.
23810
23811 A different sort of disaster results from the use of this flag for
23812 a register in which function values may be returned.
23813
23814 This flag does not have a negative form, because it specifies a
23815 three-way choice.
23816
23817 @item -fpack-struct[=@var{n}]
23818 @opindex fpack-struct
23819 Without a value specified, pack all structure members together without
23820 holes. When a value is specified (which must be a small power of two), pack
23821 structure members according to this value, representing the maximum
23822 alignment (that is, objects with default alignment requirements larger than
23823 this are output potentially unaligned at the next fitting location.
23824
23825 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
23826 code that is not binary compatible with code generated without that switch.
23827 Additionally, it makes the code suboptimal.
23828 Use it to conform to a non-default application binary interface.
23829
23830 @item -finstrument-functions
23831 @opindex finstrument-functions
23832 Generate instrumentation calls for entry and exit to functions. Just
23833 after function entry and just before function exit, the following
23834 profiling functions are called with the address of the current
23835 function and its call site. (On some platforms,
23836 @code{__builtin_return_address} does not work beyond the current
23837 function, so the call site information may not be available to the
23838 profiling functions otherwise.)
23839
23840 @smallexample
23841 void __cyg_profile_func_enter (void *this_fn,
23842 void *call_site);
23843 void __cyg_profile_func_exit (void *this_fn,
23844 void *call_site);
23845 @end smallexample
23846
23847 The first argument is the address of the start of the current function,
23848 which may be looked up exactly in the symbol table.
23849
23850 This instrumentation is also done for functions expanded inline in other
23851 functions. The profiling calls indicate where, conceptually, the
23852 inline function is entered and exited. This means that addressable
23853 versions of such functions must be available. If all your uses of a
23854 function are expanded inline, this may mean an additional expansion of
23855 code size. If you use @code{extern inline} in your C code, an
23856 addressable version of such functions must be provided. (This is
23857 normally the case anyway, but if you get lucky and the optimizer always
23858 expands the functions inline, you might have gotten away without
23859 providing static copies.)
23860
23861 A function may be given the attribute @code{no_instrument_function}, in
23862 which case this instrumentation is not done. This can be used, for
23863 example, for the profiling functions listed above, high-priority
23864 interrupt routines, and any functions from which the profiling functions
23865 cannot safely be called (perhaps signal handlers, if the profiling
23866 routines generate output or allocate memory).
23867
23868 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
23869 @opindex finstrument-functions-exclude-file-list
23870
23871 Set the list of functions that are excluded from instrumentation (see
23872 the description of @option{-finstrument-functions}). If the file that
23873 contains a function definition matches with one of @var{file}, then
23874 that function is not instrumented. The match is done on substrings:
23875 if the @var{file} parameter is a substring of the file name, it is
23876 considered to be a match.
23877
23878 For example:
23879
23880 @smallexample
23881 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
23882 @end smallexample
23883
23884 @noindent
23885 excludes any inline function defined in files whose pathnames
23886 contain @file{/bits/stl} or @file{include/sys}.
23887
23888 If, for some reason, you want to include letter @samp{,} in one of
23889 @var{sym}, write @samp{\,}. For example,
23890 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
23891 (note the single quote surrounding the option).
23892
23893 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
23894 @opindex finstrument-functions-exclude-function-list
23895
23896 This is similar to @option{-finstrument-functions-exclude-file-list},
23897 but this option sets the list of function names to be excluded from
23898 instrumentation. The function name to be matched is its user-visible
23899 name, such as @code{vector<int> blah(const vector<int> &)}, not the
23900 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
23901 match is done on substrings: if the @var{sym} parameter is a substring
23902 of the function name, it is considered to be a match. For C99 and C++
23903 extended identifiers, the function name must be given in UTF-8, not
23904 using universal character names.
23905
23906 @item -fstack-check
23907 @opindex fstack-check
23908 Generate code to verify that you do not go beyond the boundary of the
23909 stack. You should specify this flag if you are running in an
23910 environment with multiple threads, but you only rarely need to specify it in
23911 a single-threaded environment since stack overflow is automatically
23912 detected on nearly all systems if there is only one stack.
23913
23914 Note that this switch does not actually cause checking to be done; the
23915 operating system or the language runtime must do that. The switch causes
23916 generation of code to ensure that they see the stack being extended.
23917
23918 You can additionally specify a string parameter: @samp{no} means no
23919 checking, @samp{generic} means force the use of old-style checking,
23920 @samp{specific} means use the best checking method and is equivalent
23921 to bare @option{-fstack-check}.
23922
23923 Old-style checking is a generic mechanism that requires no specific
23924 target support in the compiler but comes with the following drawbacks:
23925
23926 @enumerate
23927 @item
23928 Modified allocation strategy for large objects: they are always
23929 allocated dynamically if their size exceeds a fixed threshold.
23930
23931 @item
23932 Fixed limit on the size of the static frame of functions: when it is
23933 topped by a particular function, stack checking is not reliable and
23934 a warning is issued by the compiler.
23935
23936 @item
23937 Inefficiency: because of both the modified allocation strategy and the
23938 generic implementation, code performance is hampered.
23939 @end enumerate
23940
23941 Note that old-style stack checking is also the fallback method for
23942 @samp{specific} if no target support has been added in the compiler.
23943
23944 @item -fstack-limit-register=@var{reg}
23945 @itemx -fstack-limit-symbol=@var{sym}
23946 @itemx -fno-stack-limit
23947 @opindex fstack-limit-register
23948 @opindex fstack-limit-symbol
23949 @opindex fno-stack-limit
23950 Generate code to ensure that the stack does not grow beyond a certain value,
23951 either the value of a register or the address of a symbol. If a larger
23952 stack is required, a signal is raised at run time. For most targets,
23953 the signal is raised before the stack overruns the boundary, so
23954 it is possible to catch the signal without taking special precautions.
23955
23956 For instance, if the stack starts at absolute address @samp{0x80000000}
23957 and grows downwards, you can use the flags
23958 @option{-fstack-limit-symbol=__stack_limit} and
23959 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
23960 of 128KB@. Note that this may only work with the GNU linker.
23961
23962 @item -fsplit-stack
23963 @opindex fsplit-stack
23964 Generate code to automatically split the stack before it overflows.
23965 The resulting program has a discontiguous stack which can only
23966 overflow if the program is unable to allocate any more memory. This
23967 is most useful when running threaded programs, as it is no longer
23968 necessary to calculate a good stack size to use for each thread. This
23969 is currently only implemented for the x86 targets running
23970 GNU/Linux.
23971
23972 When code compiled with @option{-fsplit-stack} calls code compiled
23973 without @option{-fsplit-stack}, there may not be much stack space
23974 available for the latter code to run. If compiling all code,
23975 including library code, with @option{-fsplit-stack} is not an option,
23976 then the linker can fix up these calls so that the code compiled
23977 without @option{-fsplit-stack} always has a large stack. Support for
23978 this is implemented in the gold linker in GNU binutils release 2.21
23979 and later.
23980
23981 @item -fleading-underscore
23982 @opindex fleading-underscore
23983 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
23984 change the way C symbols are represented in the object file. One use
23985 is to help link with legacy assembly code.
23986
23987 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
23988 generate code that is not binary compatible with code generated without that
23989 switch. Use it to conform to a non-default application binary interface.
23990 Not all targets provide complete support for this switch.
23991
23992 @item -ftls-model=@var{model}
23993 @opindex ftls-model
23994 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
23995 The @var{model} argument should be one of @samp{global-dynamic},
23996 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
23997 Note that the choice is subject to optimization: the compiler may use
23998 a more efficient model for symbols not visible outside of the translation
23999 unit, or if @option{-fpic} is not given on the command line.
24000
24001 The default without @option{-fpic} is @samp{initial-exec}; with
24002 @option{-fpic} the default is @samp{global-dynamic}.
24003
24004 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
24005 @opindex fvisibility
24006 Set the default ELF image symbol visibility to the specified option---all
24007 symbols are marked with this unless overridden within the code.
24008 Using this feature can very substantially improve linking and
24009 load times of shared object libraries, produce more optimized
24010 code, provide near-perfect API export and prevent symbol clashes.
24011 It is @strong{strongly} recommended that you use this in any shared objects
24012 you distribute.
24013
24014 Despite the nomenclature, @samp{default} always means public; i.e.,
24015 available to be linked against from outside the shared object.
24016 @samp{protected} and @samp{internal} are pretty useless in real-world
24017 usage so the only other commonly used option is @samp{hidden}.
24018 The default if @option{-fvisibility} isn't specified is
24019 @samp{default}, i.e., make every symbol public.
24020
24021 A good explanation of the benefits offered by ensuring ELF
24022 symbols have the correct visibility is given by ``How To Write
24023 Shared Libraries'' by Ulrich Drepper (which can be found at
24024 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
24025 solution made possible by this option to marking things hidden when
24026 the default is public is to make the default hidden and mark things
24027 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
24028 and @code{__attribute__ ((visibility("default")))} instead of
24029 @code{__declspec(dllexport)} you get almost identical semantics with
24030 identical syntax. This is a great boon to those working with
24031 cross-platform projects.
24032
24033 For those adding visibility support to existing code, you may find
24034 @code{#pragma GCC visibility} of use. This works by you enclosing
24035 the declarations you wish to set visibility for with (for example)
24036 @code{#pragma GCC visibility push(hidden)} and
24037 @code{#pragma GCC visibility pop}.
24038 Bear in mind that symbol visibility should be viewed @strong{as
24039 part of the API interface contract} and thus all new code should
24040 always specify visibility when it is not the default; i.e., declarations
24041 only for use within the local DSO should @strong{always} be marked explicitly
24042 as hidden as so to avoid PLT indirection overheads---making this
24043 abundantly clear also aids readability and self-documentation of the code.
24044 Note that due to ISO C++ specification requirements, @code{operator new} and
24045 @code{operator delete} must always be of default visibility.
24046
24047 Be aware that headers from outside your project, in particular system
24048 headers and headers from any other library you use, may not be
24049 expecting to be compiled with visibility other than the default. You
24050 may need to explicitly say @code{#pragma GCC visibility push(default)}
24051 before including any such headers.
24052
24053 @code{extern} declarations are not affected by @option{-fvisibility}, so
24054 a lot of code can be recompiled with @option{-fvisibility=hidden} with
24055 no modifications. However, this means that calls to @code{extern}
24056 functions with no explicit visibility use the PLT, so it is more
24057 effective to use @code{__attribute ((visibility))} and/or
24058 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
24059 declarations should be treated as hidden.
24060
24061 Note that @option{-fvisibility} does affect C++ vague linkage
24062 entities. This means that, for instance, an exception class that is
24063 be thrown between DSOs must be explicitly marked with default
24064 visibility so that the @samp{type_info} nodes are unified between
24065 the DSOs.
24066
24067 An overview of these techniques, their benefits and how to use them
24068 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
24069
24070 @item -fstrict-volatile-bitfields
24071 @opindex fstrict-volatile-bitfields
24072 This option should be used if accesses to volatile bit-fields (or other
24073 structure fields, although the compiler usually honors those types
24074 anyway) should use a single access of the width of the
24075 field's type, aligned to a natural alignment if possible. For
24076 example, targets with memory-mapped peripheral registers might require
24077 all such accesses to be 16 bits wide; with this flag you can
24078 declare all peripheral bit-fields as @code{unsigned short} (assuming short
24079 is 16 bits on these targets) to force GCC to use 16-bit accesses
24080 instead of, perhaps, a more efficient 32-bit access.
24081
24082 If this option is disabled, the compiler uses the most efficient
24083 instruction. In the previous example, that might be a 32-bit load
24084 instruction, even though that accesses bytes that do not contain
24085 any portion of the bit-field, or memory-mapped registers unrelated to
24086 the one being updated.
24087
24088 In some cases, such as when the @code{packed} attribute is applied to a
24089 structure field, it may not be possible to access the field with a single
24090 read or write that is correctly aligned for the target machine. In this
24091 case GCC falls back to generating multiple accesses rather than code that
24092 will fault or truncate the result at run time.
24093
24094 Note: Due to restrictions of the C/C++11 memory model, write accesses are
24095 not allowed to touch non bit-field members. It is therefore recommended
24096 to define all bits of the field's type as bit-field members.
24097
24098 The default value of this option is determined by the application binary
24099 interface for the target processor.
24100
24101 @item -fsync-libcalls
24102 @opindex fsync-libcalls
24103 This option controls whether any out-of-line instance of the @code{__sync}
24104 family of functions may be used to implement the C++11 @code{__atomic}
24105 family of functions.
24106
24107 The default value of this option is enabled, thus the only useful form
24108 of the option is @option{-fno-sync-libcalls}. This option is used in
24109 the implementation of the @file{libatomic} runtime library.
24110
24111 @end table
24112
24113 @c man end
24114
24115 @node Environment Variables
24116 @section Environment Variables Affecting GCC
24117 @cindex environment variables
24118
24119 @c man begin ENVIRONMENT
24120 This section describes several environment variables that affect how GCC
24121 operates. Some of them work by specifying directories or prefixes to use
24122 when searching for various kinds of files. Some are used to specify other
24123 aspects of the compilation environment.
24124
24125 Note that you can also specify places to search using options such as
24126 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
24127 take precedence over places specified using environment variables, which
24128 in turn take precedence over those specified by the configuration of GCC@.
24129 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24130 GNU Compiler Collection (GCC) Internals}.
24131
24132 @table @env
24133 @item LANG
24134 @itemx LC_CTYPE
24135 @c @itemx LC_COLLATE
24136 @itemx LC_MESSAGES
24137 @c @itemx LC_MONETARY
24138 @c @itemx LC_NUMERIC
24139 @c @itemx LC_TIME
24140 @itemx LC_ALL
24141 @findex LANG
24142 @findex LC_CTYPE
24143 @c @findex LC_COLLATE
24144 @findex LC_MESSAGES
24145 @c @findex LC_MONETARY
24146 @c @findex LC_NUMERIC
24147 @c @findex LC_TIME
24148 @findex LC_ALL
24149 @cindex locale
24150 These environment variables control the way that GCC uses
24151 localization information which allows GCC to work with different
24152 national conventions. GCC inspects the locale categories
24153 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24154 so. These locale categories can be set to any value supported by your
24155 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
24156 Kingdom encoded in UTF-8.
24157
24158 The @env{LC_CTYPE} environment variable specifies character
24159 classification. GCC uses it to determine the character boundaries in
24160 a string; this is needed for some multibyte encodings that contain quote
24161 and escape characters that are otherwise interpreted as a string
24162 end or escape.
24163
24164 The @env{LC_MESSAGES} environment variable specifies the language to
24165 use in diagnostic messages.
24166
24167 If the @env{LC_ALL} environment variable is set, it overrides the value
24168 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24169 and @env{LC_MESSAGES} default to the value of the @env{LANG}
24170 environment variable. If none of these variables are set, GCC
24171 defaults to traditional C English behavior.
24172
24173 @item TMPDIR
24174 @findex TMPDIR
24175 If @env{TMPDIR} is set, it specifies the directory to use for temporary
24176 files. GCC uses temporary files to hold the output of one stage of
24177 compilation which is to be used as input to the next stage: for example,
24178 the output of the preprocessor, which is the input to the compiler
24179 proper.
24180
24181 @item GCC_COMPARE_DEBUG
24182 @findex GCC_COMPARE_DEBUG
24183 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24184 @option{-fcompare-debug} to the compiler driver. See the documentation
24185 of this option for more details.
24186
24187 @item GCC_EXEC_PREFIX
24188 @findex GCC_EXEC_PREFIX
24189 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24190 names of the subprograms executed by the compiler. No slash is added
24191 when this prefix is combined with the name of a subprogram, but you can
24192 specify a prefix that ends with a slash if you wish.
24193
24194 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24195 an appropriate prefix to use based on the pathname it is invoked with.
24196
24197 If GCC cannot find the subprogram using the specified prefix, it
24198 tries looking in the usual places for the subprogram.
24199
24200 The default value of @env{GCC_EXEC_PREFIX} is
24201 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24202 the installed compiler. In many cases @var{prefix} is the value
24203 of @code{prefix} when you ran the @file{configure} script.
24204
24205 Other prefixes specified with @option{-B} take precedence over this prefix.
24206
24207 This prefix is also used for finding files such as @file{crt0.o} that are
24208 used for linking.
24209
24210 In addition, the prefix is used in an unusual way in finding the
24211 directories to search for header files. For each of the standard
24212 directories whose name normally begins with @samp{/usr/local/lib/gcc}
24213 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24214 replacing that beginning with the specified prefix to produce an
24215 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
24216 @file{foo/bar} just before it searches the standard directory
24217 @file{/usr/local/lib/bar}.
24218 If a standard directory begins with the configured
24219 @var{prefix} then the value of @var{prefix} is replaced by
24220 @env{GCC_EXEC_PREFIX} when looking for header files.
24221
24222 @item COMPILER_PATH
24223 @findex COMPILER_PATH
24224 The value of @env{COMPILER_PATH} is a colon-separated list of
24225 directories, much like @env{PATH}. GCC tries the directories thus
24226 specified when searching for subprograms, if it can't find the
24227 subprograms using @env{GCC_EXEC_PREFIX}.
24228
24229 @item LIBRARY_PATH
24230 @findex LIBRARY_PATH
24231 The value of @env{LIBRARY_PATH} is a colon-separated list of
24232 directories, much like @env{PATH}. When configured as a native compiler,
24233 GCC tries the directories thus specified when searching for special
24234 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
24235 using GCC also uses these directories when searching for ordinary
24236 libraries for the @option{-l} option (but directories specified with
24237 @option{-L} come first).
24238
24239 @item LANG
24240 @findex LANG
24241 @cindex locale definition
24242 This variable is used to pass locale information to the compiler. One way in
24243 which this information is used is to determine the character set to be used
24244 when character literals, string literals and comments are parsed in C and C++.
24245 When the compiler is configured to allow multibyte characters,
24246 the following values for @env{LANG} are recognized:
24247
24248 @table @samp
24249 @item C-JIS
24250 Recognize JIS characters.
24251 @item C-SJIS
24252 Recognize SJIS characters.
24253 @item C-EUCJP
24254 Recognize EUCJP characters.
24255 @end table
24256
24257 If @env{LANG} is not defined, or if it has some other value, then the
24258 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24259 recognize and translate multibyte characters.
24260 @end table
24261
24262 @noindent
24263 Some additional environment variables affect the behavior of the
24264 preprocessor.
24265
24266 @include cppenv.texi
24267
24268 @c man end
24269
24270 @node Precompiled Headers
24271 @section Using Precompiled Headers
24272 @cindex precompiled headers
24273 @cindex speed of compilation
24274
24275 Often large projects have many header files that are included in every
24276 source file. The time the compiler takes to process these header files
24277 over and over again can account for nearly all of the time required to
24278 build the project. To make builds faster, GCC allows you to
24279 @dfn{precompile} a header file.
24280
24281 To create a precompiled header file, simply compile it as you would any
24282 other file, if necessary using the @option{-x} option to make the driver
24283 treat it as a C or C++ header file. You may want to use a
24284 tool like @command{make} to keep the precompiled header up-to-date when
24285 the headers it contains change.
24286
24287 A precompiled header file is searched for when @code{#include} is
24288 seen in the compilation. As it searches for the included file
24289 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24290 compiler looks for a precompiled header in each directory just before it
24291 looks for the include file in that directory. The name searched for is
24292 the name specified in the @code{#include} with @samp{.gch} appended. If
24293 the precompiled header file can't be used, it is ignored.
24294
24295 For instance, if you have @code{#include "all.h"}, and you have
24296 @file{all.h.gch} in the same directory as @file{all.h}, then the
24297 precompiled header file is used if possible, and the original
24298 header is used otherwise.
24299
24300 Alternatively, you might decide to put the precompiled header file in a
24301 directory and use @option{-I} to ensure that directory is searched
24302 before (or instead of) the directory containing the original header.
24303 Then, if you want to check that the precompiled header file is always
24304 used, you can put a file of the same name as the original header in this
24305 directory containing an @code{#error} command.
24306
24307 This also works with @option{-include}. So yet another way to use
24308 precompiled headers, good for projects not designed with precompiled
24309 header files in mind, is to simply take most of the header files used by
24310 a project, include them from another header file, precompile that header
24311 file, and @option{-include} the precompiled header. If the header files
24312 have guards against multiple inclusion, they are skipped because
24313 they've already been included (in the precompiled header).
24314
24315 If you need to precompile the same header file for different
24316 languages, targets, or compiler options, you can instead make a
24317 @emph{directory} named like @file{all.h.gch}, and put each precompiled
24318 header in the directory, perhaps using @option{-o}. It doesn't matter
24319 what you call the files in the directory; every precompiled header in
24320 the directory is considered. The first precompiled header
24321 encountered in the directory that is valid for this compilation is
24322 used; they're searched in no particular order.
24323
24324 There are many other possibilities, limited only by your imagination,
24325 good sense, and the constraints of your build system.
24326
24327 A precompiled header file can be used only when these conditions apply:
24328
24329 @itemize
24330 @item
24331 Only one precompiled header can be used in a particular compilation.
24332
24333 @item
24334 A precompiled header can't be used once the first C token is seen. You
24335 can have preprocessor directives before a precompiled header; you cannot
24336 include a precompiled header from inside another header.
24337
24338 @item
24339 The precompiled header file must be produced for the same language as
24340 the current compilation. You can't use a C precompiled header for a C++
24341 compilation.
24342
24343 @item
24344 The precompiled header file must have been produced by the same compiler
24345 binary as the current compilation is using.
24346
24347 @item
24348 Any macros defined before the precompiled header is included must
24349 either be defined in the same way as when the precompiled header was
24350 generated, or must not affect the precompiled header, which usually
24351 means that they don't appear in the precompiled header at all.
24352
24353 The @option{-D} option is one way to define a macro before a
24354 precompiled header is included; using a @code{#define} can also do it.
24355 There are also some options that define macros implicitly, like
24356 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
24357 defined this way.
24358
24359 @item If debugging information is output when using the precompiled
24360 header, using @option{-g} or similar, the same kind of debugging information
24361 must have been output when building the precompiled header. However,
24362 a precompiled header built using @option{-g} can be used in a compilation
24363 when no debugging information is being output.
24364
24365 @item The same @option{-m} options must generally be used when building
24366 and using the precompiled header. @xref{Submodel Options},
24367 for any cases where this rule is relaxed.
24368
24369 @item Each of the following options must be the same when building and using
24370 the precompiled header:
24371
24372 @gccoptlist{-fexceptions}
24373
24374 @item
24375 Some other command-line options starting with @option{-f},
24376 @option{-p}, or @option{-O} must be defined in the same way as when
24377 the precompiled header was generated. At present, it's not clear
24378 which options are safe to change and which are not; the safest choice
24379 is to use exactly the same options when generating and using the
24380 precompiled header. The following are known to be safe:
24381
24382 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
24383 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
24384 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
24385 -pedantic-errors}
24386
24387 @end itemize
24388
24389 For all of these except the last, the compiler automatically
24390 ignores the precompiled header if the conditions aren't met. If you
24391 find an option combination that doesn't work and doesn't cause the
24392 precompiled header to be ignored, please consider filing a bug report,
24393 see @ref{Bugs}.
24394
24395 If you do use differing options when generating and using the
24396 precompiled header, the actual behavior is a mixture of the
24397 behavior for the options. For instance, if you use @option{-g} to
24398 generate the precompiled header but not when using it, you may or may
24399 not get debugging information for routines in the precompiled header.