]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dominance.c
alias.c: Reorder #include statements and remove duplicates.
[thirdparty/gcc.git] / gcc / dominance.c
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
29
30 The algorithm computes this dominator tree implicitly by computing for
31 each block its immediate dominator. We use tree balancing and path
32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33 slowly growing functional inverse of the Ackerman function. */
34
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "backend.h"
39 #include "rtl.h"
40 #include "alloc-pool.h"
41 #include "timevar.h"
42 #include "diagnostic-core.h"
43 #include "cfganal.h"
44 #include "et-forest.h"
45 #include "graphds.h"
46
47 /* We name our nodes with integers, beginning with 1. Zero is reserved for
48 'undefined' or 'end of list'. The name of each node is given by the dfs
49 number of the corresponding basic block. Please note, that we include the
50 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
51 support multiple entry points. Its dfs number is of course 1. */
52
53 /* Type of Basic Block aka. TBB */
54 typedef unsigned int TBB;
55
56 namespace {
57
58 /* This class holds various arrays reflecting the (sub)structure of the
59 flowgraph. Most of them are of type TBB and are also indexed by TBB. */
60
61 class dom_info
62 {
63 public:
64 dom_info (function *, cdi_direction);
65 ~dom_info ();
66 void calc_dfs_tree ();
67 void calc_idoms ();
68
69 inline basic_block get_idom (basic_block);
70 private:
71 void calc_dfs_tree_nonrec (basic_block);
72 void compress (TBB);
73 TBB eval (TBB);
74 void link_roots (TBB, TBB);
75
76 /* The parent of a node in the DFS tree. */
77 TBB *m_dfs_parent;
78 /* For a node x m_key[x] is roughly the node nearest to the root from which
79 exists a way to x only over nodes behind x. Such a node is also called
80 semidominator. */
81 TBB *m_key;
82 /* The value in m_path_min[x] is the node y on the path from x to the root of
83 the tree x is in with the smallest m_key[y]. */
84 TBB *m_path_min;
85 /* m_bucket[x] points to the first node of the set of nodes having x as
86 key. */
87 TBB *m_bucket;
88 /* And m_next_bucket[x] points to the next node. */
89 TBB *m_next_bucket;
90 /* After the algorithm is done, m_dom[x] contains the immediate dominator
91 of x. */
92 TBB *m_dom;
93
94 /* The following few fields implement the structures needed for disjoint
95 sets. */
96 /* m_set_chain[x] is the next node on the path from x to the representative
97 of the set containing x. If m_set_chain[x]==0 then x is a root. */
98 TBB *m_set_chain;
99 /* m_set_size[x] is the number of elements in the set named by x. */
100 unsigned int *m_set_size;
101 /* m_set_child[x] is used for balancing the tree representing a set. It can
102 be understood as the next sibling of x. */
103 TBB *m_set_child;
104
105 /* If b is the number of a basic block (BB->index), m_dfs_order[b] is the
106 number of that node in DFS order counted from 1. This is an index
107 into most of the other arrays in this structure. */
108 TBB *m_dfs_order;
109 /* Points to last element in m_dfs_order array. */
110 TBB *m_dfs_last;
111 /* If x is the DFS-index of a node which corresponds with a basic block,
112 m_dfs_to_bb[x] is that basic block. Note, that in our structure there are
113 more nodes that basic blocks, so only
114 m_dfs_to_bb[m_dfs_order[bb->index]]==bb is true for every basic block bb,
115 but not the opposite. */
116 basic_block *m_dfs_to_bb;
117
118 /* This is the next free DFS number when creating the DFS tree. */
119 unsigned int m_dfsnum;
120 /* The number of nodes in the DFS tree (==m_dfsnum-1). */
121 unsigned int m_nodes;
122
123 /* Blocks with bits set here have a fake edge to EXIT. These are used
124 to turn a DFS forest into a proper tree. */
125 bitmap m_fake_exit_edge;
126
127 /* Number of basic blocks in the function being compiled. */
128 size_t m_n_basic_blocks;
129
130 /* True, if we are computing postdominators (rather than dominators). */
131 bool m_reverse;
132
133 /* Start block (the entry block for forward problem, exit block for backward
134 problem). */
135 basic_block m_start_block;
136 /* Ending block. */
137 basic_block m_end_block;
138 };
139
140 } // anonymous namespace
141
142 void debug_dominance_info (cdi_direction);
143 void debug_dominance_tree (cdi_direction, basic_block);
144
145 /* Allocate and zero-initialize NUM elements of type T (T must be a
146 POD-type). Note: after transition to C++11 or later,
147 `x = new_zero_array <T> (num);' can be replaced with
148 `x = new T[num] {};'. */
149
150 template<typename T>
151 inline T *new_zero_array (size_t num)
152 {
153 T *result = new T[num];
154 memset (result, 0, sizeof (T) * num);
155 return result;
156 }
157
158 /* Allocate all needed memory in a pessimistic fashion (so we round up). */
159
160 dom_info::dom_info (function *fn, cdi_direction dir)
161 {
162 /* We need memory for n_basic_blocks nodes. */
163 size_t num = m_n_basic_blocks = n_basic_blocks_for_fn (fn);
164 m_dfs_parent = new_zero_array <TBB> (num);
165 m_dom = new_zero_array <TBB> (num);
166
167 m_path_min = new TBB[num];
168 m_key = new TBB[num];
169 m_set_size = new unsigned int[num];
170 for (size_t i = 0; i < num; i++)
171 {
172 m_path_min[i] = m_key[i] = i;
173 m_set_size[i] = 1;
174 }
175
176 m_bucket = new_zero_array <TBB> (num);
177 m_next_bucket = new_zero_array <TBB> (num);
178
179 m_set_chain = new_zero_array <TBB> (num);
180 m_set_child = new_zero_array <TBB> (num);
181
182 unsigned last_bb_index = last_basic_block_for_fn (fn);
183 m_dfs_order = new_zero_array <TBB> (last_bb_index + 1);
184 m_dfs_last = &m_dfs_order[last_bb_index];
185 m_dfs_to_bb = new_zero_array <basic_block> (num);
186
187 m_dfsnum = 1;
188 m_nodes = 0;
189
190 switch (dir)
191 {
192 case CDI_DOMINATORS:
193 m_reverse = false;
194 m_fake_exit_edge = NULL;
195 m_start_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
196 m_end_block = EXIT_BLOCK_PTR_FOR_FN (fn);
197 break;
198 case CDI_POST_DOMINATORS:
199 m_reverse = true;
200 m_fake_exit_edge = BITMAP_ALLOC (NULL);
201 m_start_block = EXIT_BLOCK_PTR_FOR_FN (fn);
202 m_end_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
203 break;
204 default:
205 gcc_unreachable ();
206 }
207 }
208
209 inline basic_block
210 dom_info::get_idom (basic_block bb)
211 {
212 TBB d = m_dom[m_dfs_order[bb->index]];
213 return m_dfs_to_bb[d];
214 }
215
216 /* Map dominance calculation type to array index used for various
217 dominance information arrays. This version is simple -- it will need
218 to be modified, obviously, if additional values are added to
219 cdi_direction. */
220
221 static inline unsigned int
222 dom_convert_dir_to_idx (cdi_direction dir)
223 {
224 gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
225 return dir - 1;
226 }
227
228 /* Free all allocated memory in dom_info. */
229
230 dom_info::~dom_info ()
231 {
232 delete[] m_dfs_parent;
233 delete[] m_path_min;
234 delete[] m_key;
235 delete[] m_dom;
236 delete[] m_bucket;
237 delete[] m_next_bucket;
238 delete[] m_set_chain;
239 delete[] m_set_size;
240 delete[] m_set_child;
241 delete[] m_dfs_order;
242 delete[] m_dfs_to_bb;
243 BITMAP_FREE (m_fake_exit_edge);
244 }
245
246 /* The nonrecursive variant of creating a DFS tree. BB is the starting basic
247 block for this tree and m_reverse is true, if predecessors should be visited
248 instead of successors of a node. After this is done all nodes reachable
249 from BB were visited, have assigned their dfs number and are linked together
250 to form a tree. */
251
252 void
253 dom_info::calc_dfs_tree_nonrec (basic_block bb)
254 {
255 edge_iterator *stack = new edge_iterator[m_n_basic_blocks + 1];
256 int sp = 0;
257
258 /* Initialize the first edge. */
259 edge_iterator ei = m_reverse ? ei_start (bb->preds)
260 : ei_start (bb->succs);
261
262 /* When the stack is empty we break out of this loop. */
263 while (1)
264 {
265 basic_block bn;
266 edge_iterator einext;
267
268 /* This loop traverses edges e in depth first manner, and fills the
269 stack. */
270 while (!ei_end_p (ei))
271 {
272 edge e = ei_edge (ei);
273
274 /* Deduce from E the current and the next block (BB and BN), and the
275 next edge. */
276 if (m_reverse)
277 {
278 bn = e->src;
279
280 /* If the next node BN is either already visited or a border
281 block the current edge is useless, and simply overwritten
282 with the next edge out of the current node. */
283 if (bn == m_end_block || m_dfs_order[bn->index])
284 {
285 ei_next (&ei);
286 continue;
287 }
288 bb = e->dest;
289 einext = ei_start (bn->preds);
290 }
291 else
292 {
293 bn = e->dest;
294 if (bn == m_end_block || m_dfs_order[bn->index])
295 {
296 ei_next (&ei);
297 continue;
298 }
299 bb = e->src;
300 einext = ei_start (bn->succs);
301 }
302
303 gcc_assert (bn != m_start_block);
304
305 /* Fill the DFS tree info calculatable _before_ recursing. */
306 TBB my_i;
307 if (bb != m_start_block)
308 my_i = m_dfs_order[bb->index];
309 else
310 my_i = *m_dfs_last;
311 TBB child_i = m_dfs_order[bn->index] = m_dfsnum++;
312 m_dfs_to_bb[child_i] = bn;
313 m_dfs_parent[child_i] = my_i;
314
315 /* Save the current point in the CFG on the stack, and recurse. */
316 stack[sp++] = ei;
317 ei = einext;
318 }
319
320 if (!sp)
321 break;
322 ei = stack[--sp];
323
324 /* OK. The edge-list was exhausted, meaning normally we would
325 end the recursion. After returning from the recursive call,
326 there were (may be) other statements which were run after a
327 child node was completely considered by DFS. Here is the
328 point to do it in the non-recursive variant.
329 E.g. The block just completed is in e->dest for forward DFS,
330 the block not yet completed (the parent of the one above)
331 in e->src. This could be used e.g. for computing the number of
332 descendants or the tree depth. */
333 ei_next (&ei);
334 }
335 delete[] stack;
336 }
337
338 /* The main entry for calculating the DFS tree or forest. m_reverse is true,
339 if we are interested in the reverse flow graph. In that case the result is
340 not necessarily a tree but a forest, because there may be nodes from which
341 the EXIT_BLOCK is unreachable. */
342
343 void
344 dom_info::calc_dfs_tree ()
345 {
346 *m_dfs_last = m_dfsnum;
347 m_dfs_to_bb[m_dfsnum] = m_start_block;
348 m_dfsnum++;
349
350 calc_dfs_tree_nonrec (m_start_block);
351
352 if (m_reverse)
353 {
354 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
355 They are reverse-unreachable. In the dom-case we disallow such
356 nodes, but in post-dom we have to deal with them.
357
358 There are two situations in which this occurs. First, noreturn
359 functions. Second, infinite loops. In the first case we need to
360 pretend that there is an edge to the exit block. In the second
361 case, we wind up with a forest. We need to process all noreturn
362 blocks before we know if we've got any infinite loops. */
363
364 basic_block b;
365 bool saw_unconnected = false;
366
367 FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
368 {
369 if (EDGE_COUNT (b->succs) > 0)
370 {
371 if (m_dfs_order[b->index] == 0)
372 saw_unconnected = true;
373 continue;
374 }
375 bitmap_set_bit (m_fake_exit_edge, b->index);
376 m_dfs_order[b->index] = m_dfsnum;
377 m_dfs_to_bb[m_dfsnum] = b;
378 m_dfs_parent[m_dfsnum] = *m_dfs_last;
379 m_dfsnum++;
380 calc_dfs_tree_nonrec (b);
381 }
382
383 if (saw_unconnected)
384 {
385 FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
386 {
387 if (m_dfs_order[b->index])
388 continue;
389 basic_block b2 = dfs_find_deadend (b);
390 gcc_checking_assert (m_dfs_order[b2->index] == 0);
391 bitmap_set_bit (m_fake_exit_edge, b2->index);
392 m_dfs_order[b2->index] = m_dfsnum;
393 m_dfs_to_bb[m_dfsnum] = b2;
394 m_dfs_parent[m_dfsnum] = *m_dfs_last;
395 m_dfsnum++;
396 calc_dfs_tree_nonrec (b2);
397 gcc_checking_assert (m_dfs_order[b->index]);
398 }
399 }
400 }
401
402 m_nodes = m_dfsnum - 1;
403
404 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
405 gcc_assert (m_nodes == (unsigned int) m_n_basic_blocks - 1);
406 }
407
408 /* Compress the path from V to the root of its set and update path_min at the
409 same time. After compress(di, V) set_chain[V] is the root of the set V is
410 in and path_min[V] is the node with the smallest key[] value on the path
411 from V to that root. */
412
413 void
414 dom_info::compress (TBB v)
415 {
416 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
417 greater than 5 even for huge graphs (I've not seen call depth > 4).
418 Also performance wise compress() ranges _far_ behind eval(). */
419 TBB parent = m_set_chain[v];
420 if (m_set_chain[parent])
421 {
422 compress (parent);
423 if (m_key[m_path_min[parent]] < m_key[m_path_min[v]])
424 m_path_min[v] = m_path_min[parent];
425 m_set_chain[v] = m_set_chain[parent];
426 }
427 }
428
429 /* Compress the path from V to the set root of V if needed (when the root has
430 changed since the last call). Returns the node with the smallest key[]
431 value on the path from V to the root. */
432
433 inline TBB
434 dom_info::eval (TBB v)
435 {
436 /* The representative of the set V is in, also called root (as the set
437 representation is a tree). */
438 TBB rep = m_set_chain[v];
439
440 /* V itself is the root. */
441 if (!rep)
442 return m_path_min[v];
443
444 /* Compress only if necessary. */
445 if (m_set_chain[rep])
446 {
447 compress (v);
448 rep = m_set_chain[v];
449 }
450
451 if (m_key[m_path_min[rep]] >= m_key[m_path_min[v]])
452 return m_path_min[v];
453 else
454 return m_path_min[rep];
455 }
456
457 /* This essentially merges the two sets of V and W, giving a single set with
458 the new root V. The internal representation of these disjoint sets is a
459 balanced tree. Currently link(V,W) is only used with V being the parent
460 of W. */
461
462 void
463 dom_info::link_roots (TBB v, TBB w)
464 {
465 TBB s = w;
466
467 /* Rebalance the tree. */
468 while (m_key[m_path_min[w]] < m_key[m_path_min[m_set_child[s]]])
469 {
470 if (m_set_size[s] + m_set_size[m_set_child[m_set_child[s]]]
471 >= 2 * m_set_size[m_set_child[s]])
472 {
473 m_set_chain[m_set_child[s]] = s;
474 m_set_child[s] = m_set_child[m_set_child[s]];
475 }
476 else
477 {
478 m_set_size[m_set_child[s]] = m_set_size[s];
479 s = m_set_chain[s] = m_set_child[s];
480 }
481 }
482
483 m_path_min[s] = m_path_min[w];
484 m_set_size[v] += m_set_size[w];
485 if (m_set_size[v] < 2 * m_set_size[w])
486 std::swap (m_set_child[v], s);
487
488 /* Merge all subtrees. */
489 while (s)
490 {
491 m_set_chain[s] = v;
492 s = m_set_child[s];
493 }
494 }
495
496 /* This calculates the immediate dominators (or post-dominators). THIS is our
497 working structure and should hold the DFS forest.
498 On return the immediate dominator to node V is in m_dom[V]. */
499
500 void
501 dom_info::calc_idoms ()
502 {
503 /* Go backwards in DFS order, to first look at the leafs. */
504 for (TBB v = m_nodes; v > 1; v--)
505 {
506 basic_block bb = m_dfs_to_bb[v];
507 edge e;
508
509 TBB par = m_dfs_parent[v];
510 TBB k = v;
511
512 edge_iterator ei = m_reverse ? ei_start (bb->succs)
513 : ei_start (bb->preds);
514 edge_iterator einext;
515
516 if (m_reverse)
517 {
518 /* If this block has a fake edge to exit, process that first. */
519 if (bitmap_bit_p (m_fake_exit_edge, bb->index))
520 {
521 einext = ei;
522 einext.index = 0;
523 goto do_fake_exit_edge;
524 }
525 }
526
527 /* Search all direct predecessors for the smallest node with a path
528 to them. That way we have the smallest node with also a path to
529 us only over nodes behind us. In effect we search for our
530 semidominator. */
531 while (!ei_end_p (ei))
532 {
533 basic_block b;
534 TBB k1;
535
536 e = ei_edge (ei);
537 b = m_reverse ? e->dest : e->src;
538 einext = ei;
539 ei_next (&einext);
540
541 if (b == m_start_block)
542 {
543 do_fake_exit_edge:
544 k1 = *m_dfs_last;
545 }
546 else
547 k1 = m_dfs_order[b->index];
548
549 /* Call eval() only if really needed. If k1 is above V in DFS tree,
550 then we know, that eval(k1) == k1 and key[k1] == k1. */
551 if (k1 > v)
552 k1 = m_key[eval (k1)];
553 if (k1 < k)
554 k = k1;
555
556 ei = einext;
557 }
558
559 m_key[v] = k;
560 link_roots (par, v);
561 m_next_bucket[v] = m_bucket[k];
562 m_bucket[k] = v;
563
564 /* Transform semidominators into dominators. */
565 for (TBB w = m_bucket[par]; w; w = m_next_bucket[w])
566 {
567 k = eval (w);
568 if (m_key[k] < m_key[w])
569 m_dom[w] = k;
570 else
571 m_dom[w] = par;
572 }
573 /* We don't need to cleanup next_bucket[]. */
574 m_bucket[par] = 0;
575 }
576
577 /* Explicitly define the dominators. */
578 m_dom[1] = 0;
579 for (TBB v = 2; v <= m_nodes; v++)
580 if (m_dom[v] != m_key[v])
581 m_dom[v] = m_dom[m_dom[v]];
582 }
583
584 /* Assign dfs numbers starting from NUM to NODE and its sons. */
585
586 static void
587 assign_dfs_numbers (struct et_node *node, int *num)
588 {
589 struct et_node *son;
590
591 node->dfs_num_in = (*num)++;
592
593 if (node->son)
594 {
595 assign_dfs_numbers (node->son, num);
596 for (son = node->son->right; son != node->son; son = son->right)
597 assign_dfs_numbers (son, num);
598 }
599
600 node->dfs_num_out = (*num)++;
601 }
602
603 /* Compute the data necessary for fast resolving of dominator queries in a
604 static dominator tree. */
605
606 static void
607 compute_dom_fast_query (enum cdi_direction dir)
608 {
609 int num = 0;
610 basic_block bb;
611 unsigned int dir_index = dom_convert_dir_to_idx (dir);
612
613 gcc_checking_assert (dom_info_available_p (dir));
614
615 if (dom_computed[dir_index] == DOM_OK)
616 return;
617
618 FOR_ALL_BB_FN (bb, cfun)
619 {
620 if (!bb->dom[dir_index]->father)
621 assign_dfs_numbers (bb->dom[dir_index], &num);
622 }
623
624 dom_computed[dir_index] = DOM_OK;
625 }
626
627 /* The main entry point into this module. DIR is set depending on whether
628 we want to compute dominators or postdominators. */
629
630 void
631 calculate_dominance_info (cdi_direction dir)
632 {
633 unsigned int dir_index = dom_convert_dir_to_idx (dir);
634
635 if (dom_computed[dir_index] == DOM_OK)
636 {
637 checking_verify_dominators (dir);
638 return;
639 }
640
641 timevar_push (TV_DOMINANCE);
642 if (!dom_info_available_p (dir))
643 {
644 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
645
646 basic_block b;
647 FOR_ALL_BB_FN (b, cfun)
648 {
649 b->dom[dir_index] = et_new_tree (b);
650 }
651 n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
652
653 dom_info di (cfun, dir);
654 di.calc_dfs_tree ();
655 di.calc_idoms ();
656
657 FOR_EACH_BB_FN (b, cfun)
658 {
659 if (basic_block d = di.get_idom (b))
660 et_set_father (b->dom[dir_index], d->dom[dir_index]);
661 }
662
663 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
664 }
665 else
666 checking_verify_dominators (dir);
667
668 compute_dom_fast_query (dir);
669
670 timevar_pop (TV_DOMINANCE);
671 }
672
673 /* Free dominance information for direction DIR. */
674 void
675 free_dominance_info (function *fn, enum cdi_direction dir)
676 {
677 basic_block bb;
678 unsigned int dir_index = dom_convert_dir_to_idx (dir);
679
680 if (!dom_info_available_p (fn, dir))
681 return;
682
683 FOR_ALL_BB_FN (bb, fn)
684 {
685 et_free_tree_force (bb->dom[dir_index]);
686 bb->dom[dir_index] = NULL;
687 }
688 et_free_pools ();
689
690 fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
691
692 fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
693 }
694
695 void
696 free_dominance_info (enum cdi_direction dir)
697 {
698 free_dominance_info (cfun, dir);
699 }
700
701 /* Return the immediate dominator of basic block BB. */
702 basic_block
703 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
704 {
705 unsigned int dir_index = dom_convert_dir_to_idx (dir);
706 struct et_node *node = bb->dom[dir_index];
707
708 gcc_checking_assert (dom_computed[dir_index]);
709
710 if (!node->father)
711 return NULL;
712
713 return (basic_block) node->father->data;
714 }
715
716 /* Set the immediate dominator of the block possibly removing
717 existing edge. NULL can be used to remove any edge. */
718 void
719 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
720 basic_block dominated_by)
721 {
722 unsigned int dir_index = dom_convert_dir_to_idx (dir);
723 struct et_node *node = bb->dom[dir_index];
724
725 gcc_checking_assert (dom_computed[dir_index]);
726
727 if (node->father)
728 {
729 if (node->father->data == dominated_by)
730 return;
731 et_split (node);
732 }
733
734 if (dominated_by)
735 et_set_father (node, dominated_by->dom[dir_index]);
736
737 if (dom_computed[dir_index] == DOM_OK)
738 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
739 }
740
741 /* Returns the list of basic blocks immediately dominated by BB, in the
742 direction DIR. */
743 vec<basic_block>
744 get_dominated_by (enum cdi_direction dir, basic_block bb)
745 {
746 unsigned int dir_index = dom_convert_dir_to_idx (dir);
747 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
748 vec<basic_block> bbs = vNULL;
749
750 gcc_checking_assert (dom_computed[dir_index]);
751
752 if (!son)
753 return vNULL;
754
755 bbs.safe_push ((basic_block) son->data);
756 for (ason = son->right; ason != son; ason = ason->right)
757 bbs.safe_push ((basic_block) ason->data);
758
759 return bbs;
760 }
761
762 /* Returns the list of basic blocks that are immediately dominated (in
763 direction DIR) by some block between N_REGION ones stored in REGION,
764 except for blocks in the REGION itself. */
765
766 vec<basic_block>
767 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
768 unsigned n_region)
769 {
770 unsigned i;
771 basic_block dom;
772 vec<basic_block> doms = vNULL;
773
774 for (i = 0; i < n_region; i++)
775 region[i]->flags |= BB_DUPLICATED;
776 for (i = 0; i < n_region; i++)
777 for (dom = first_dom_son (dir, region[i]);
778 dom;
779 dom = next_dom_son (dir, dom))
780 if (!(dom->flags & BB_DUPLICATED))
781 doms.safe_push (dom);
782 for (i = 0; i < n_region; i++)
783 region[i]->flags &= ~BB_DUPLICATED;
784
785 return doms;
786 }
787
788 /* Returns the list of basic blocks including BB dominated by BB, in the
789 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
790 produce a vector containing all dominated blocks. The vector will be sorted
791 in preorder. */
792
793 vec<basic_block>
794 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
795 {
796 vec<basic_block> bbs = vNULL;
797 unsigned i;
798 unsigned next_level_start;
799
800 i = 0;
801 bbs.safe_push (bb);
802 next_level_start = 1; /* = bbs.length (); */
803
804 do
805 {
806 basic_block son;
807
808 bb = bbs[i++];
809 for (son = first_dom_son (dir, bb);
810 son;
811 son = next_dom_son (dir, son))
812 bbs.safe_push (son);
813
814 if (i == next_level_start && --depth)
815 next_level_start = bbs.length ();
816 }
817 while (i < next_level_start);
818
819 return bbs;
820 }
821
822 /* Returns the list of basic blocks including BB dominated by BB, in the
823 direction DIR. The vector will be sorted in preorder. */
824
825 vec<basic_block>
826 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
827 {
828 return get_dominated_to_depth (dir, bb, 0);
829 }
830
831 /* Redirect all edges pointing to BB to TO. */
832 void
833 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
834 basic_block to)
835 {
836 unsigned int dir_index = dom_convert_dir_to_idx (dir);
837 struct et_node *bb_node, *to_node, *son;
838
839 bb_node = bb->dom[dir_index];
840 to_node = to->dom[dir_index];
841
842 gcc_checking_assert (dom_computed[dir_index]);
843
844 if (!bb_node->son)
845 return;
846
847 while (bb_node->son)
848 {
849 son = bb_node->son;
850
851 et_split (son);
852 et_set_father (son, to_node);
853 }
854
855 if (dom_computed[dir_index] == DOM_OK)
856 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
857 }
858
859 /* Find first basic block in the tree dominating both BB1 and BB2. */
860 basic_block
861 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
862 {
863 unsigned int dir_index = dom_convert_dir_to_idx (dir);
864
865 gcc_checking_assert (dom_computed[dir_index]);
866
867 if (!bb1)
868 return bb2;
869 if (!bb2)
870 return bb1;
871
872 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
873 }
874
875
876 /* Find the nearest common dominator for the basic blocks in BLOCKS,
877 using dominance direction DIR. */
878
879 basic_block
880 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
881 {
882 unsigned i, first;
883 bitmap_iterator bi;
884 basic_block dom;
885
886 first = bitmap_first_set_bit (blocks);
887 dom = BASIC_BLOCK_FOR_FN (cfun, first);
888 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
889 if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
890 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
891
892 return dom;
893 }
894
895 /* Given a dominator tree, we can determine whether one thing
896 dominates another in constant time by using two DFS numbers:
897
898 1. The number for when we visit a node on the way down the tree
899 2. The number for when we visit a node on the way back up the tree
900
901 You can view these as bounds for the range of dfs numbers the
902 nodes in the subtree of the dominator tree rooted at that node
903 will contain.
904
905 The dominator tree is always a simple acyclic tree, so there are
906 only three possible relations two nodes in the dominator tree have
907 to each other:
908
909 1. Node A is above Node B (and thus, Node A dominates node B)
910
911 A
912 |
913 C
914 / \
915 B D
916
917
918 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
919 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
920 because we must hit A in the dominator tree *before* B on the walk
921 down, and we will hit A *after* B on the walk back up
922
923 2. Node A is below node B (and thus, node B dominates node A)
924
925
926 B
927 |
928 A
929 / \
930 C D
931
932 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
933 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
934
935 This is because we must hit A in the dominator tree *after* B on
936 the walk down, and we will hit A *before* B on the walk back up
937
938 3. Node A and B are siblings (and thus, neither dominates the other)
939
940 C
941 |
942 D
943 / \
944 A B
945
946 In the above case, DFS_Number_In of A will *always* be <=
947 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
948 DFS_Number_Out of B. This is because we will always finish the dfs
949 walk of one of the subtrees before the other, and thus, the dfs
950 numbers for one subtree can't intersect with the range of dfs
951 numbers for the other subtree. If you swap A and B's position in
952 the dominator tree, the comparison changes direction, but the point
953 is that both comparisons will always go the same way if there is no
954 dominance relationship.
955
956 Thus, it is sufficient to write
957
958 A_Dominates_B (node A, node B)
959 {
960 return DFS_Number_In(A) <= DFS_Number_In(B)
961 && DFS_Number_Out (A) >= DFS_Number_Out(B);
962 }
963
964 A_Dominated_by_B (node A, node B)
965 {
966 return DFS_Number_In(A) >= DFS_Number_In(B)
967 && DFS_Number_Out (A) <= DFS_Number_Out(B);
968 } */
969
970 /* Return TRUE in case BB1 is dominated by BB2. */
971 bool
972 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
973 {
974 unsigned int dir_index = dom_convert_dir_to_idx (dir);
975 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
976
977 gcc_checking_assert (dom_computed[dir_index]);
978
979 if (dom_computed[dir_index] == DOM_OK)
980 return (n1->dfs_num_in >= n2->dfs_num_in
981 && n1->dfs_num_out <= n2->dfs_num_out);
982
983 return et_below (n1, n2);
984 }
985
986 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
987
988 unsigned
989 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
990 {
991 unsigned int dir_index = dom_convert_dir_to_idx (dir);
992 struct et_node *n = bb->dom[dir_index];
993
994 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
995 return n->dfs_num_in;
996 }
997
998 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
999
1000 unsigned
1001 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1002 {
1003 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1004 struct et_node *n = bb->dom[dir_index];
1005
1006 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1007 return n->dfs_num_out;
1008 }
1009
1010 /* Verify invariants of dominator structure. */
1011 DEBUG_FUNCTION void
1012 verify_dominators (cdi_direction dir)
1013 {
1014 gcc_assert (dom_info_available_p (dir));
1015
1016 dom_info di (cfun, dir);
1017 di.calc_dfs_tree ();
1018 di.calc_idoms ();
1019
1020 bool err = false;
1021 basic_block bb;
1022 FOR_EACH_BB_FN (bb, cfun)
1023 {
1024 basic_block imm_bb = get_immediate_dominator (dir, bb);
1025 if (!imm_bb)
1026 {
1027 error ("dominator of %d status unknown", bb->index);
1028 err = true;
1029 }
1030
1031 basic_block imm_bb_correct = di.get_idom (bb);
1032 if (imm_bb != imm_bb_correct)
1033 {
1034 error ("dominator of %d should be %d, not %d",
1035 bb->index, imm_bb_correct->index, imm_bb->index);
1036 err = true;
1037 }
1038 }
1039
1040 gcc_assert (!err);
1041 }
1042
1043 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1044 assuming that dominators of other blocks are correct. We also use it to
1045 recompute the dominators in a restricted area, by iterating it until it
1046 reaches a fixed point. */
1047
1048 basic_block
1049 recompute_dominator (enum cdi_direction dir, basic_block bb)
1050 {
1051 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1052 basic_block dom_bb = NULL;
1053 edge e;
1054 edge_iterator ei;
1055
1056 gcc_checking_assert (dom_computed[dir_index]);
1057
1058 if (dir == CDI_DOMINATORS)
1059 {
1060 FOR_EACH_EDGE (e, ei, bb->preds)
1061 {
1062 if (!dominated_by_p (dir, e->src, bb))
1063 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1064 }
1065 }
1066 else
1067 {
1068 FOR_EACH_EDGE (e, ei, bb->succs)
1069 {
1070 if (!dominated_by_p (dir, e->dest, bb))
1071 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1072 }
1073 }
1074
1075 return dom_bb;
1076 }
1077
1078 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1079 of BBS. We assume that all the immediate dominators except for those of the
1080 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1081 currently recorded immediate dominators of blocks in BBS really dominate the
1082 blocks. The basic blocks for that we determine the dominator are removed
1083 from BBS. */
1084
1085 static void
1086 prune_bbs_to_update_dominators (vec<basic_block> bbs,
1087 bool conservative)
1088 {
1089 unsigned i;
1090 bool single;
1091 basic_block bb, dom = NULL;
1092 edge_iterator ei;
1093 edge e;
1094
1095 for (i = 0; bbs.iterate (i, &bb);)
1096 {
1097 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1098 goto succeed;
1099
1100 if (single_pred_p (bb))
1101 {
1102 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1103 goto succeed;
1104 }
1105
1106 if (!conservative)
1107 goto fail;
1108
1109 single = true;
1110 dom = NULL;
1111 FOR_EACH_EDGE (e, ei, bb->preds)
1112 {
1113 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1114 continue;
1115
1116 if (!dom)
1117 dom = e->src;
1118 else
1119 {
1120 single = false;
1121 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1122 }
1123 }
1124
1125 gcc_assert (dom != NULL);
1126 if (single
1127 || find_edge (dom, bb))
1128 {
1129 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1130 goto succeed;
1131 }
1132
1133 fail:
1134 i++;
1135 continue;
1136
1137 succeed:
1138 bbs.unordered_remove (i);
1139 }
1140 }
1141
1142 /* Returns root of the dominance tree in the direction DIR that contains
1143 BB. */
1144
1145 static basic_block
1146 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1147 {
1148 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1149 }
1150
1151 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1152 for the sons of Y, found using the SON and BROTHER arrays representing
1153 the dominance tree of graph G. BBS maps the vertices of G to the basic
1154 blocks. */
1155
1156 static void
1157 determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
1158 int y, int *son, int *brother)
1159 {
1160 bitmap gprime;
1161 int i, a, nc;
1162 vec<int> *sccs;
1163 basic_block bb, dom, ybb;
1164 unsigned si;
1165 edge e;
1166 edge_iterator ei;
1167
1168 if (son[y] == -1)
1169 return;
1170 if (y == (int) bbs.length ())
1171 ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1172 else
1173 ybb = bbs[y];
1174
1175 if (brother[son[y]] == -1)
1176 {
1177 /* Handle the common case Y has just one son specially. */
1178 bb = bbs[son[y]];
1179 set_immediate_dominator (CDI_DOMINATORS, bb,
1180 recompute_dominator (CDI_DOMINATORS, bb));
1181 identify_vertices (g, y, son[y]);
1182 return;
1183 }
1184
1185 gprime = BITMAP_ALLOC (NULL);
1186 for (a = son[y]; a != -1; a = brother[a])
1187 bitmap_set_bit (gprime, a);
1188
1189 nc = graphds_scc (g, gprime);
1190 BITMAP_FREE (gprime);
1191
1192 /* ??? Needed to work around the pre-processor confusion with
1193 using a multi-argument template type as macro argument. */
1194 typedef vec<int> vec_int_heap;
1195 sccs = XCNEWVEC (vec_int_heap, nc);
1196 for (a = son[y]; a != -1; a = brother[a])
1197 sccs[g->vertices[a].component].safe_push (a);
1198
1199 for (i = nc - 1; i >= 0; i--)
1200 {
1201 dom = NULL;
1202 FOR_EACH_VEC_ELT (sccs[i], si, a)
1203 {
1204 bb = bbs[a];
1205 FOR_EACH_EDGE (e, ei, bb->preds)
1206 {
1207 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1208 continue;
1209
1210 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1211 }
1212 }
1213
1214 gcc_assert (dom != NULL);
1215 FOR_EACH_VEC_ELT (sccs[i], si, a)
1216 {
1217 bb = bbs[a];
1218 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1219 }
1220 }
1221
1222 for (i = 0; i < nc; i++)
1223 sccs[i].release ();
1224 free (sccs);
1225
1226 for (a = son[y]; a != -1; a = brother[a])
1227 identify_vertices (g, y, a);
1228 }
1229
1230 /* Recompute dominance information for basic blocks in the set BBS. The
1231 function assumes that the immediate dominators of all the other blocks
1232 in CFG are correct, and that there are no unreachable blocks.
1233
1234 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1235 a block of BBS in the current dominance tree dominate it. */
1236
1237 void
1238 iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
1239 bool conservative)
1240 {
1241 unsigned i;
1242 basic_block bb, dom;
1243 struct graph *g;
1244 int n, y;
1245 size_t dom_i;
1246 edge e;
1247 edge_iterator ei;
1248 int *parent, *son, *brother;
1249 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1250
1251 /* We only support updating dominators. There are some problems with
1252 updating postdominators (need to add fake edges from infinite loops
1253 and noreturn functions), and since we do not currently use
1254 iterate_fix_dominators for postdominators, any attempt to handle these
1255 problems would be unused, untested, and almost surely buggy. We keep
1256 the DIR argument for consistency with the rest of the dominator analysis
1257 interface. */
1258 gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
1259
1260 /* The algorithm we use takes inspiration from the following papers, although
1261 the details are quite different from any of them:
1262
1263 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1264 Dominator Tree of a Reducible Flowgraph
1265 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1266 dominator trees
1267 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1268 Algorithm
1269
1270 First, we use the following heuristics to decrease the size of the BBS
1271 set:
1272 a) if BB has a single predecessor, then its immediate dominator is this
1273 predecessor
1274 additionally, if CONSERVATIVE is true:
1275 b) if all the predecessors of BB except for one (X) are dominated by BB,
1276 then X is the immediate dominator of BB
1277 c) if the nearest common ancestor of the predecessors of BB is X and
1278 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1279
1280 Then, we need to establish the dominance relation among the basic blocks
1281 in BBS. We split the dominance tree by removing the immediate dominator
1282 edges from BBS, creating a forest F. We form a graph G whose vertices
1283 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1284 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1285 whose root is X. We then determine dominance tree of G. Note that
1286 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1287 In this step, we can use arbitrary algorithm to determine dominators.
1288 We decided to prefer the algorithm [3] to the algorithm of
1289 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1290 10 during gcc bootstrap), and [3] should perform better in this case.
1291
1292 Finally, we need to determine the immediate dominators for the basic
1293 blocks of BBS. If the immediate dominator of X in G is Y, then
1294 the immediate dominator of X in CFG belongs to the tree of F rooted in
1295 Y. We process the dominator tree T of G recursively, starting from leaves.
1296 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1297 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1298 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1299 the following observations:
1300 (i) the immediate dominator of all blocks in a strongly connected
1301 component of G' is the same
1302 (ii) if X has no predecessors in G', then the immediate dominator of X
1303 is the nearest common ancestor of the predecessors of X in the
1304 subtree of F rooted in Y
1305 Therefore, it suffices to find the topological ordering of G', and
1306 process the nodes X_i in this order using the rules (i) and (ii).
1307 Then, we contract all the nodes X_i with Y in G, so that the further
1308 steps work correctly. */
1309
1310 if (!conservative)
1311 {
1312 /* Split the tree now. If the idoms of blocks in BBS are not
1313 conservatively correct, setting the dominators using the
1314 heuristics in prune_bbs_to_update_dominators could
1315 create cycles in the dominance "tree", and cause ICE. */
1316 FOR_EACH_VEC_ELT (bbs, i, bb)
1317 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1318 }
1319
1320 prune_bbs_to_update_dominators (bbs, conservative);
1321 n = bbs.length ();
1322
1323 if (n == 0)
1324 return;
1325
1326 if (n == 1)
1327 {
1328 bb = bbs[0];
1329 set_immediate_dominator (CDI_DOMINATORS, bb,
1330 recompute_dominator (CDI_DOMINATORS, bb));
1331 return;
1332 }
1333
1334 /* Construct the graph G. */
1335 hash_map<basic_block, int> map (251);
1336 FOR_EACH_VEC_ELT (bbs, i, bb)
1337 {
1338 /* If the dominance tree is conservatively correct, split it now. */
1339 if (conservative)
1340 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1341 map.put (bb, i);
1342 }
1343 map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);
1344
1345 g = new_graph (n + 1);
1346 for (y = 0; y < g->n_vertices; y++)
1347 g->vertices[y].data = BITMAP_ALLOC (NULL);
1348 FOR_EACH_VEC_ELT (bbs, i, bb)
1349 {
1350 FOR_EACH_EDGE (e, ei, bb->preds)
1351 {
1352 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1353 if (dom == bb)
1354 continue;
1355
1356 dom_i = *map.get (dom);
1357
1358 /* Do not include parallel edges to G. */
1359 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1360 continue;
1361
1362 add_edge (g, dom_i, i);
1363 }
1364 }
1365 for (y = 0; y < g->n_vertices; y++)
1366 BITMAP_FREE (g->vertices[y].data);
1367
1368 /* Find the dominator tree of G. */
1369 son = XNEWVEC (int, n + 1);
1370 brother = XNEWVEC (int, n + 1);
1371 parent = XNEWVEC (int, n + 1);
1372 graphds_domtree (g, n, parent, son, brother);
1373
1374 /* Finally, traverse the tree and find the immediate dominators. */
1375 for (y = n; son[y] != -1; y = son[y])
1376 continue;
1377 while (y != -1)
1378 {
1379 determine_dominators_for_sons (g, bbs, y, son, brother);
1380
1381 if (brother[y] != -1)
1382 {
1383 y = brother[y];
1384 while (son[y] != -1)
1385 y = son[y];
1386 }
1387 else
1388 y = parent[y];
1389 }
1390
1391 free (son);
1392 free (brother);
1393 free (parent);
1394
1395 free_graph (g);
1396 }
1397
1398 void
1399 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1400 {
1401 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1402
1403 gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
1404
1405 n_bbs_in_dom_tree[dir_index]++;
1406
1407 bb->dom[dir_index] = et_new_tree (bb);
1408
1409 if (dom_computed[dir_index] == DOM_OK)
1410 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1411 }
1412
1413 void
1414 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1415 {
1416 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1417
1418 gcc_checking_assert (dom_computed[dir_index]);
1419
1420 et_free_tree (bb->dom[dir_index]);
1421 bb->dom[dir_index] = NULL;
1422 n_bbs_in_dom_tree[dir_index]--;
1423
1424 if (dom_computed[dir_index] == DOM_OK)
1425 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1426 }
1427
1428 /* Returns the first son of BB in the dominator or postdominator tree
1429 as determined by DIR. */
1430
1431 basic_block
1432 first_dom_son (enum cdi_direction dir, basic_block bb)
1433 {
1434 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1435 struct et_node *son = bb->dom[dir_index]->son;
1436
1437 return (basic_block) (son ? son->data : NULL);
1438 }
1439
1440 /* Returns the next dominance son after BB in the dominator or postdominator
1441 tree as determined by DIR, or NULL if it was the last one. */
1442
1443 basic_block
1444 next_dom_son (enum cdi_direction dir, basic_block bb)
1445 {
1446 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1447 struct et_node *next = bb->dom[dir_index]->right;
1448
1449 return (basic_block) (next->father->son == next ? NULL : next->data);
1450 }
1451
1452 /* Return dominance availability for dominance info DIR. */
1453
1454 enum dom_state
1455 dom_info_state (function *fn, enum cdi_direction dir)
1456 {
1457 if (!fn->cfg)
1458 return DOM_NONE;
1459
1460 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1461 return fn->cfg->x_dom_computed[dir_index];
1462 }
1463
1464 enum dom_state
1465 dom_info_state (enum cdi_direction dir)
1466 {
1467 return dom_info_state (cfun, dir);
1468 }
1469
1470 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1471
1472 void
1473 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1474 {
1475 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1476
1477 dom_computed[dir_index] = new_state;
1478 }
1479
1480 /* Returns true if dominance information for direction DIR is available. */
1481
1482 bool
1483 dom_info_available_p (function *fn, enum cdi_direction dir)
1484 {
1485 return dom_info_state (fn, dir) != DOM_NONE;
1486 }
1487
1488 bool
1489 dom_info_available_p (enum cdi_direction dir)
1490 {
1491 return dom_info_available_p (cfun, dir);
1492 }
1493
1494 DEBUG_FUNCTION void
1495 debug_dominance_info (enum cdi_direction dir)
1496 {
1497 basic_block bb, bb2;
1498 FOR_EACH_BB_FN (bb, cfun)
1499 if ((bb2 = get_immediate_dominator (dir, bb)))
1500 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1501 }
1502
1503 /* Prints to stderr representation of the dominance tree (for direction DIR)
1504 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1505 the first line of the output is not indented. */
1506
1507 static void
1508 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1509 unsigned indent, bool indent_first)
1510 {
1511 basic_block son;
1512 unsigned i;
1513 bool first = true;
1514
1515 if (indent_first)
1516 for (i = 0; i < indent; i++)
1517 fprintf (stderr, "\t");
1518 fprintf (stderr, "%d\t", root->index);
1519
1520 for (son = first_dom_son (dir, root);
1521 son;
1522 son = next_dom_son (dir, son))
1523 {
1524 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1525 first = false;
1526 }
1527
1528 if (first)
1529 fprintf (stderr, "\n");
1530 }
1531
1532 /* Prints to stderr representation of the dominance tree (for direction DIR)
1533 rooted in ROOT. */
1534
1535 DEBUG_FUNCTION void
1536 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1537 {
1538 debug_dominance_tree_1 (dir, root, 0, false);
1539 }