]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dse.c
cse.c: Use HOST_WIDE_INT_M1 instead of ~(HOST_WIDE_INT) 0.
[thirdparty/gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "tm_p.h"
36 #include "gimple-ssa.h"
37 #include "expmed.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "recog.h"
41 #include "alias.h"
42 #include "stor-layout.h"
43 #include "cfgrtl.h"
44 #include "cselib.h"
45 #include "tree-pass.h"
46 #include "explow.h"
47 #include "expr.h"
48 #include "dbgcnt.h"
49 #include "params.h"
50 #include "rtl-iter.h"
51 #include "cfgcleanup.h"
52
53 /* This file contains three techniques for performing Dead Store
54 Elimination (dse).
55
56 * The first technique performs dse locally on any base address. It
57 is based on the cselib which is a local value numbering technique.
58 This technique is local to a basic block but deals with a fairly
59 general addresses.
60
61 * The second technique performs dse globally but is restricted to
62 base addresses that are either constant or are relative to the
63 frame_pointer.
64
65 * The third technique, (which is only done after register allocation)
66 processes the spill slots. This differs from the second
67 technique because it takes advantage of the fact that spilling is
68 completely free from the effects of aliasing.
69
70 Logically, dse is a backwards dataflow problem. A store can be
71 deleted if it if cannot be reached in the backward direction by any
72 use of the value being stored. However, the local technique uses a
73 forwards scan of the basic block because cselib requires that the
74 block be processed in that order.
75
76 The pass is logically broken into 7 steps:
77
78 0) Initialization.
79
80 1) The local algorithm, as well as scanning the insns for the two
81 global algorithms.
82
83 2) Analysis to see if the global algs are necessary. In the case
84 of stores base on a constant address, there must be at least two
85 stores to that address, to make it possible to delete some of the
86 stores. In the case of stores off of the frame or spill related
87 stores, only one store to an address is necessary because those
88 stores die at the end of the function.
89
90 3) Set up the global dataflow equations based on processing the
91 info parsed in the first step.
92
93 4) Solve the dataflow equations.
94
95 5) Delete the insns that the global analysis has indicated are
96 unnecessary.
97
98 6) Delete insns that store the same value as preceding store
99 where the earlier store couldn't be eliminated.
100
101 7) Cleanup.
102
103 This step uses cselib and canon_rtx to build the largest expression
104 possible for each address. This pass is a forwards pass through
105 each basic block. From the point of view of the global technique,
106 the first pass could examine a block in either direction. The
107 forwards ordering is to accommodate cselib.
108
109 We make a simplifying assumption: addresses fall into four broad
110 categories:
111
112 1) base has rtx_varies_p == false, offset is constant.
113 2) base has rtx_varies_p == false, offset variable.
114 3) base has rtx_varies_p == true, offset constant.
115 4) base has rtx_varies_p == true, offset variable.
116
117 The local passes are able to process all 4 kinds of addresses. The
118 global pass only handles 1).
119
120 The global problem is formulated as follows:
121
122 A store, S1, to address A, where A is not relative to the stack
123 frame, can be eliminated if all paths from S1 to the end of the
124 function contain another store to A before a read to A.
125
126 If the address A is relative to the stack frame, a store S2 to A
127 can be eliminated if there are no paths from S2 that reach the
128 end of the function that read A before another store to A. In
129 this case S2 can be deleted if there are paths from S2 to the
130 end of the function that have no reads or writes to A. This
131 second case allows stores to the stack frame to be deleted that
132 would otherwise die when the function returns. This cannot be
133 done if stores_off_frame_dead_at_return is not true. See the doc
134 for that variable for when this variable is false.
135
136 The global problem is formulated as a backwards set union
137 dataflow problem where the stores are the gens and reads are the
138 kills. Set union problems are rare and require some special
139 handling given our representation of bitmaps. A straightforward
140 implementation requires a lot of bitmaps filled with 1s.
141 These are expensive and cumbersome in our bitmap formulation so
142 care has been taken to avoid large vectors filled with 1s. See
143 the comments in bb_info and in the dataflow confluence functions
144 for details.
145
146 There are two places for further enhancements to this algorithm:
147
148 1) The original dse which was embedded in a pass called flow also
149 did local address forwarding. For example in
150
151 A <- r100
152 ... <- A
153
154 flow would replace the right hand side of the second insn with a
155 reference to r100. Most of the information is available to add this
156 to this pass. It has not done it because it is a lot of work in
157 the case that either r100 is assigned to between the first and
158 second insn and/or the second insn is a load of part of the value
159 stored by the first insn.
160
161 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
162 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
163 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
164 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
165
166 2) The cleaning up of spill code is quite profitable. It currently
167 depends on reading tea leaves and chicken entrails left by reload.
168 This pass depends on reload creating a singleton alias set for each
169 spill slot and telling the next dse pass which of these alias sets
170 are the singletons. Rather than analyze the addresses of the
171 spills, dse's spill processing just does analysis of the loads and
172 stores that use those alias sets. There are three cases where this
173 falls short:
174
175 a) Reload sometimes creates the slot for one mode of access, and
176 then inserts loads and/or stores for a smaller mode. In this
177 case, the current code just punts on the slot. The proper thing
178 to do is to back out and use one bit vector position for each
179 byte of the entity associated with the slot. This depends on
180 KNOWING that reload always generates the accesses for each of the
181 bytes in some canonical (read that easy to understand several
182 passes after reload happens) way.
183
184 b) Reload sometimes decides that spill slot it allocated was not
185 large enough for the mode and goes back and allocates more slots
186 with the same mode and alias set. The backout in this case is a
187 little more graceful than (a). In this case the slot is unmarked
188 as being a spill slot and if final address comes out to be based
189 off the frame pointer, the global algorithm handles this slot.
190
191 c) For any pass that may prespill, there is currently no
192 mechanism to tell the dse pass that the slot being used has the
193 special properties that reload uses. It may be that all that is
194 required is to have those passes make the same calls that reload
195 does, assuming that the alias sets can be manipulated in the same
196 way. */
197
198 /* There are limits to the size of constant offsets we model for the
199 global problem. There are certainly test cases, that exceed this
200 limit, however, it is unlikely that there are important programs
201 that really have constant offsets this size. */
202 #define MAX_OFFSET (64 * 1024)
203
204 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
205 on the default obstack because these bitmaps can grow quite large
206 (~2GB for the small (!) test case of PR54146) and we'll hold on to
207 all that memory until the end of the compiler run.
208 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
209 releasing the whole obstack. */
210 static bitmap_obstack dse_bitmap_obstack;
211
212 /* Obstack for other data. As for above: Kinda nice to be able to
213 throw it all away at the end in one big sweep. */
214 static struct obstack dse_obstack;
215
216 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
217 static bitmap scratch = NULL;
218
219 struct insn_info_type;
220
221 /* This structure holds information about a candidate store. */
222 struct store_info
223 {
224
225 /* False means this is a clobber. */
226 bool is_set;
227
228 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
229 bool is_large;
230
231 /* The id of the mem group of the base address. If rtx_varies_p is
232 true, this is -1. Otherwise, it is the index into the group
233 table. */
234 int group_id;
235
236 /* This is the cselib value. */
237 cselib_val *cse_base;
238
239 /* This canonized mem. */
240 rtx mem;
241
242 /* Canonized MEM address for use by canon_true_dependence. */
243 rtx mem_addr;
244
245 /* The offset of the first and byte before the last byte associated
246 with the operation. */
247 HOST_WIDE_INT begin, end;
248
249 union
250 {
251 /* A bitmask as wide as the number of bytes in the word that
252 contains a 1 if the byte may be needed. The store is unused if
253 all of the bits are 0. This is used if IS_LARGE is false. */
254 unsigned HOST_WIDE_INT small_bitmask;
255
256 struct
257 {
258 /* A bitmap with one bit per byte. Cleared bit means the position
259 is needed. Used if IS_LARGE is false. */
260 bitmap bmap;
261
262 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
263 equal to END - BEGIN, the whole store is unused. */
264 int count;
265 } large;
266 } positions_needed;
267
268 /* The next store info for this insn. */
269 struct store_info *next;
270
271 /* The right hand side of the store. This is used if there is a
272 subsequent reload of the mems address somewhere later in the
273 basic block. */
274 rtx rhs;
275
276 /* If rhs is or holds a constant, this contains that constant,
277 otherwise NULL. */
278 rtx const_rhs;
279
280 /* Set if this store stores the same constant value as REDUNDANT_REASON
281 insn stored. These aren't eliminated early, because doing that
282 might prevent the earlier larger store to be eliminated. */
283 struct insn_info_type *redundant_reason;
284 };
285
286 /* Return a bitmask with the first N low bits set. */
287
288 static unsigned HOST_WIDE_INT
289 lowpart_bitmask (int n)
290 {
291 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
292 return mask >> (HOST_BITS_PER_WIDE_INT - n);
293 }
294
295 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
296
297 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
298
299 /* This structure holds information about a load. These are only
300 built for rtx bases. */
301 struct read_info_type
302 {
303 /* The id of the mem group of the base address. */
304 int group_id;
305
306 /* The offset of the first and byte after the last byte associated
307 with the operation. If begin == end == 0, the read did not have
308 a constant offset. */
309 int begin, end;
310
311 /* The mem being read. */
312 rtx mem;
313
314 /* The next read_info for this insn. */
315 struct read_info_type *next;
316 };
317 typedef struct read_info_type *read_info_t;
318
319 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
320
321 /* One of these records is created for each insn. */
322
323 struct insn_info_type
324 {
325 /* Set true if the insn contains a store but the insn itself cannot
326 be deleted. This is set if the insn is a parallel and there is
327 more than one non dead output or if the insn is in some way
328 volatile. */
329 bool cannot_delete;
330
331 /* This field is only used by the global algorithm. It is set true
332 if the insn contains any read of mem except for a (1). This is
333 also set if the insn is a call or has a clobber mem. If the insn
334 contains a wild read, the use_rec will be null. */
335 bool wild_read;
336
337 /* This is true only for CALL instructions which could potentially read
338 any non-frame memory location. This field is used by the global
339 algorithm. */
340 bool non_frame_wild_read;
341
342 /* This field is only used for the processing of const functions.
343 These functions cannot read memory, but they can read the stack
344 because that is where they may get their parms. We need to be
345 this conservative because, like the store motion pass, we don't
346 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
347 Moreover, we need to distinguish two cases:
348 1. Before reload (register elimination), the stores related to
349 outgoing arguments are stack pointer based and thus deemed
350 of non-constant base in this pass. This requires special
351 handling but also means that the frame pointer based stores
352 need not be killed upon encountering a const function call.
353 2. After reload, the stores related to outgoing arguments can be
354 either stack pointer or hard frame pointer based. This means
355 that we have no other choice than also killing all the frame
356 pointer based stores upon encountering a const function call.
357 This field is set after reload for const function calls and before
358 reload for const tail function calls on targets where arg pointer
359 is the frame pointer. Having this set is less severe than a wild
360 read, it just means that all the frame related stores are killed
361 rather than all the stores. */
362 bool frame_read;
363
364 /* This field is only used for the processing of const functions.
365 It is set if the insn may contain a stack pointer based store. */
366 bool stack_pointer_based;
367
368 /* This is true if any of the sets within the store contains a
369 cselib base. Such stores can only be deleted by the local
370 algorithm. */
371 bool contains_cselib_groups;
372
373 /* The insn. */
374 rtx_insn *insn;
375
376 /* The list of mem sets or mem clobbers that are contained in this
377 insn. If the insn is deletable, it contains only one mem set.
378 But it could also contain clobbers. Insns that contain more than
379 one mem set are not deletable, but each of those mems are here in
380 order to provide info to delete other insns. */
381 store_info *store_rec;
382
383 /* The linked list of mem uses in this insn. Only the reads from
384 rtx bases are listed here. The reads to cselib bases are
385 completely processed during the first scan and so are never
386 created. */
387 read_info_t read_rec;
388
389 /* The live fixed registers. We assume only fixed registers can
390 cause trouble by being clobbered from an expanded pattern;
391 storing only the live fixed registers (rather than all registers)
392 means less memory needs to be allocated / copied for the individual
393 stores. */
394 regset fixed_regs_live;
395
396 /* The prev insn in the basic block. */
397 struct insn_info_type * prev_insn;
398
399 /* The linked list of insns that are in consideration for removal in
400 the forwards pass through the basic block. This pointer may be
401 trash as it is not cleared when a wild read occurs. The only
402 time it is guaranteed to be correct is when the traversal starts
403 at active_local_stores. */
404 struct insn_info_type * next_local_store;
405 };
406 typedef struct insn_info_type *insn_info_t;
407
408 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
409
410 /* The linked list of stores that are under consideration in this
411 basic block. */
412 static insn_info_t active_local_stores;
413 static int active_local_stores_len;
414
415 struct dse_bb_info_type
416 {
417 /* Pointer to the insn info for the last insn in the block. These
418 are linked so this is how all of the insns are reached. During
419 scanning this is the current insn being scanned. */
420 insn_info_t last_insn;
421
422 /* The info for the global dataflow problem. */
423
424
425 /* This is set if the transfer function should and in the wild_read
426 bitmap before applying the kill and gen sets. That vector knocks
427 out most of the bits in the bitmap and thus speeds up the
428 operations. */
429 bool apply_wild_read;
430
431 /* The following 4 bitvectors hold information about which positions
432 of which stores are live or dead. They are indexed by
433 get_bitmap_index. */
434
435 /* The set of store positions that exist in this block before a wild read. */
436 bitmap gen;
437
438 /* The set of load positions that exist in this block above the
439 same position of a store. */
440 bitmap kill;
441
442 /* The set of stores that reach the top of the block without being
443 killed by a read.
444
445 Do not represent the in if it is all ones. Note that this is
446 what the bitvector should logically be initialized to for a set
447 intersection problem. However, like the kill set, this is too
448 expensive. So initially, the in set will only be created for the
449 exit block and any block that contains a wild read. */
450 bitmap in;
451
452 /* The set of stores that reach the bottom of the block from it's
453 successors.
454
455 Do not represent the in if it is all ones. Note that this is
456 what the bitvector should logically be initialized to for a set
457 intersection problem. However, like the kill and in set, this is
458 too expensive. So what is done is that the confluence operator
459 just initializes the vector from one of the out sets of the
460 successors of the block. */
461 bitmap out;
462
463 /* The following bitvector is indexed by the reg number. It
464 contains the set of regs that are live at the current instruction
465 being processed. While it contains info for all of the
466 registers, only the hard registers are actually examined. It is used
467 to assure that shift and/or add sequences that are inserted do not
468 accidentally clobber live hard regs. */
469 bitmap regs_live;
470 };
471
472 typedef struct dse_bb_info_type *bb_info_t;
473
474 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
475 ("bb_info_pool");
476
477 /* Table to hold all bb_infos. */
478 static bb_info_t *bb_table;
479
480 /* There is a group_info for each rtx base that is used to reference
481 memory. There are also not many of the rtx bases because they are
482 very limited in scope. */
483
484 struct group_info
485 {
486 /* The actual base of the address. */
487 rtx rtx_base;
488
489 /* The sequential id of the base. This allows us to have a
490 canonical ordering of these that is not based on addresses. */
491 int id;
492
493 /* True if there are any positions that are to be processed
494 globally. */
495 bool process_globally;
496
497 /* True if the base of this group is either the frame_pointer or
498 hard_frame_pointer. */
499 bool frame_related;
500
501 /* A mem wrapped around the base pointer for the group in order to do
502 read dependency. It must be given BLKmode in order to encompass all
503 the possible offsets from the base. */
504 rtx base_mem;
505
506 /* Canonized version of base_mem's address. */
507 rtx canon_base_addr;
508
509 /* These two sets of two bitmaps are used to keep track of how many
510 stores are actually referencing that position from this base. We
511 only do this for rtx bases as this will be used to assign
512 positions in the bitmaps for the global problem. Bit N is set in
513 store1 on the first store for offset N. Bit N is set in store2
514 for the second store to offset N. This is all we need since we
515 only care about offsets that have two or more stores for them.
516
517 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
518 for 0 and greater offsets.
519
520 There is one special case here, for stores into the stack frame,
521 we will or store1 into store2 before deciding which stores look
522 at globally. This is because stores to the stack frame that have
523 no other reads before the end of the function can also be
524 deleted. */
525 bitmap store1_n, store1_p, store2_n, store2_p;
526
527 /* These bitmaps keep track of offsets in this group escape this function.
528 An offset escapes if it corresponds to a named variable whose
529 addressable flag is set. */
530 bitmap escaped_n, escaped_p;
531
532 /* The positions in this bitmap have the same assignments as the in,
533 out, gen and kill bitmaps. This bitmap is all zeros except for
534 the positions that are occupied by stores for this group. */
535 bitmap group_kill;
536
537 /* The offset_map is used to map the offsets from this base into
538 positions in the global bitmaps. It is only created after all of
539 the all of stores have been scanned and we know which ones we
540 care about. */
541 int *offset_map_n, *offset_map_p;
542 int offset_map_size_n, offset_map_size_p;
543 };
544
545 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
546
547 /* Index into the rtx_group_vec. */
548 static int rtx_group_next_id;
549
550
551 static vec<group_info *> rtx_group_vec;
552
553
554 /* This structure holds the set of changes that are being deferred
555 when removing read operation. See replace_read. */
556 struct deferred_change
557 {
558
559 /* The mem that is being replaced. */
560 rtx *loc;
561
562 /* The reg it is being replaced with. */
563 rtx reg;
564
565 struct deferred_change *next;
566 };
567
568 static object_allocator<deferred_change> deferred_change_pool
569 ("deferred_change_pool");
570
571 static deferred_change *deferred_change_list = NULL;
572
573 /* This is true except if cfun->stdarg -- i.e. we cannot do
574 this for vararg functions because they play games with the frame. */
575 static bool stores_off_frame_dead_at_return;
576
577 /* Counter for stats. */
578 static int globally_deleted;
579 static int locally_deleted;
580
581 static bitmap all_blocks;
582
583 /* Locations that are killed by calls in the global phase. */
584 static bitmap kill_on_calls;
585
586 /* The number of bits used in the global bitmaps. */
587 static unsigned int current_position;
588 \f
589 /*----------------------------------------------------------------------------
590 Zeroth step.
591
592 Initialization.
593 ----------------------------------------------------------------------------*/
594
595
596 /* Hashtable callbacks for maintaining the "bases" field of
597 store_group_info, given that the addresses are function invariants. */
598
599 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
600 {
601 static inline hashval_t hash (const group_info *);
602 static inline bool equal (const group_info *, const group_info *);
603 };
604
605 inline bool
606 invariant_group_base_hasher::equal (const group_info *gi1,
607 const group_info *gi2)
608 {
609 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
610 }
611
612 inline hashval_t
613 invariant_group_base_hasher::hash (const group_info *gi)
614 {
615 int do_not_record;
616 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
617 }
618
619 /* Tables of group_info structures, hashed by base value. */
620 static hash_table<invariant_group_base_hasher> *rtx_group_table;
621
622
623 /* Get the GROUP for BASE. Add a new group if it is not there. */
624
625 static group_info *
626 get_group_info (rtx base)
627 {
628 struct group_info tmp_gi;
629 group_info *gi;
630 group_info **slot;
631
632 gcc_assert (base != NULL_RTX);
633
634 /* Find the store_base_info structure for BASE, creating a new one
635 if necessary. */
636 tmp_gi.rtx_base = base;
637 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
638 gi = *slot;
639
640 if (gi == NULL)
641 {
642 *slot = gi = group_info_pool.allocate ();
643 gi->rtx_base = base;
644 gi->id = rtx_group_next_id++;
645 gi->base_mem = gen_rtx_MEM (BLKmode, base);
646 gi->canon_base_addr = canon_rtx (base);
647 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
648 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
649 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
650 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
651 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
652 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
653 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
654 gi->process_globally = false;
655 gi->frame_related =
656 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
657 gi->offset_map_size_n = 0;
658 gi->offset_map_size_p = 0;
659 gi->offset_map_n = NULL;
660 gi->offset_map_p = NULL;
661 rtx_group_vec.safe_push (gi);
662 }
663
664 return gi;
665 }
666
667
668 /* Initialization of data structures. */
669
670 static void
671 dse_step0 (void)
672 {
673 locally_deleted = 0;
674 globally_deleted = 0;
675
676 bitmap_obstack_initialize (&dse_bitmap_obstack);
677 gcc_obstack_init (&dse_obstack);
678
679 scratch = BITMAP_ALLOC (&reg_obstack);
680 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
681
682
683 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
684
685 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
686 rtx_group_next_id = 0;
687
688 stores_off_frame_dead_at_return = !cfun->stdarg;
689
690 init_alias_analysis ();
691 }
692
693
694 \f
695 /*----------------------------------------------------------------------------
696 First step.
697
698 Scan all of the insns. Any random ordering of the blocks is fine.
699 Each block is scanned in forward order to accommodate cselib which
700 is used to remove stores with non-constant bases.
701 ----------------------------------------------------------------------------*/
702
703 /* Delete all of the store_info recs from INSN_INFO. */
704
705 static void
706 free_store_info (insn_info_t insn_info)
707 {
708 store_info *cur = insn_info->store_rec;
709 while (cur)
710 {
711 store_info *next = cur->next;
712 if (cur->is_large)
713 BITMAP_FREE (cur->positions_needed.large.bmap);
714 if (cur->cse_base)
715 cse_store_info_pool.remove (cur);
716 else
717 rtx_store_info_pool.remove (cur);
718 cur = next;
719 }
720
721 insn_info->cannot_delete = true;
722 insn_info->contains_cselib_groups = false;
723 insn_info->store_rec = NULL;
724 }
725
726 struct note_add_store_info
727 {
728 rtx_insn *first, *current;
729 regset fixed_regs_live;
730 bool failure;
731 };
732
733 /* Callback for emit_inc_dec_insn_before via note_stores.
734 Check if a register is clobbered which is live afterwards. */
735
736 static void
737 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
738 {
739 rtx_insn *insn;
740 note_add_store_info *info = (note_add_store_info *) data;
741
742 if (!REG_P (loc))
743 return;
744
745 /* If this register is referenced by the current or an earlier insn,
746 that's OK. E.g. this applies to the register that is being incremented
747 with this addition. */
748 for (insn = info->first;
749 insn != NEXT_INSN (info->current);
750 insn = NEXT_INSN (insn))
751 if (reg_referenced_p (loc, PATTERN (insn)))
752 return;
753
754 /* If we come here, we have a clobber of a register that's only OK
755 if that register is not live. If we don't have liveness information
756 available, fail now. */
757 if (!info->fixed_regs_live)
758 {
759 info->failure = true;
760 return;
761 }
762 /* Now check if this is a live fixed register. */
763 unsigned int end_regno = END_REGNO (loc);
764 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
765 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
766 info->failure = true;
767 }
768
769 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
770 SRC + SRCOFF before insn ARG. */
771
772 static int
773 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
774 rtx op ATTRIBUTE_UNUSED,
775 rtx dest, rtx src, rtx srcoff, void *arg)
776 {
777 insn_info_t insn_info = (insn_info_t) arg;
778 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
779 note_add_store_info info;
780
781 /* We can reuse all operands without copying, because we are about
782 to delete the insn that contained it. */
783 if (srcoff)
784 {
785 start_sequence ();
786 emit_insn (gen_add3_insn (dest, src, srcoff));
787 new_insn = get_insns ();
788 end_sequence ();
789 }
790 else
791 new_insn = gen_move_insn (dest, src);
792 info.first = new_insn;
793 info.fixed_regs_live = insn_info->fixed_regs_live;
794 info.failure = false;
795 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
796 {
797 info.current = cur;
798 note_stores (PATTERN (cur), note_add_store, &info);
799 }
800
801 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
802 return it immediately, communicating the failure to its caller. */
803 if (info.failure)
804 return 1;
805
806 emit_insn_before (new_insn, insn);
807
808 return 0;
809 }
810
811 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
812 is there, is split into a separate insn.
813 Return true on success (or if there was nothing to do), false on failure. */
814
815 static bool
816 check_for_inc_dec_1 (insn_info_t insn_info)
817 {
818 rtx_insn *insn = insn_info->insn;
819 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
820 if (note)
821 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
822 insn_info) == 0;
823 return true;
824 }
825
826
827 /* Entry point for postreload. If you work on reload_cse, or you need this
828 anywhere else, consider if you can provide register liveness information
829 and add a parameter to this function so that it can be passed down in
830 insn_info.fixed_regs_live. */
831 bool
832 check_for_inc_dec (rtx_insn *insn)
833 {
834 insn_info_type insn_info;
835 rtx note;
836
837 insn_info.insn = insn;
838 insn_info.fixed_regs_live = NULL;
839 note = find_reg_note (insn, REG_INC, NULL_RTX);
840 if (note)
841 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
842 &insn_info) == 0;
843 return true;
844 }
845
846 /* Delete the insn and free all of the fields inside INSN_INFO. */
847
848 static void
849 delete_dead_store_insn (insn_info_t insn_info)
850 {
851 read_info_t read_info;
852
853 if (!dbg_cnt (dse))
854 return;
855
856 if (!check_for_inc_dec_1 (insn_info))
857 return;
858 if (dump_file && (dump_flags & TDF_DETAILS))
859 fprintf (dump_file, "Locally deleting insn %d\n",
860 INSN_UID (insn_info->insn));
861
862 free_store_info (insn_info);
863 read_info = insn_info->read_rec;
864
865 while (read_info)
866 {
867 read_info_t next = read_info->next;
868 read_info_type_pool.remove (read_info);
869 read_info = next;
870 }
871 insn_info->read_rec = NULL;
872
873 delete_insn (insn_info->insn);
874 locally_deleted++;
875 insn_info->insn = NULL;
876
877 insn_info->wild_read = false;
878 }
879
880 /* Return whether DECL, a local variable, can possibly escape the current
881 function scope. */
882
883 static bool
884 local_variable_can_escape (tree decl)
885 {
886 if (TREE_ADDRESSABLE (decl))
887 return true;
888
889 /* If this is a partitioned variable, we need to consider all the variables
890 in the partition. This is necessary because a store into one of them can
891 be replaced with a store into another and this may not change the outcome
892 of the escape analysis. */
893 if (cfun->gimple_df->decls_to_pointers != NULL)
894 {
895 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
896 if (namep)
897 return TREE_ADDRESSABLE (*namep);
898 }
899
900 return false;
901 }
902
903 /* Return whether EXPR can possibly escape the current function scope. */
904
905 static bool
906 can_escape (tree expr)
907 {
908 tree base;
909 if (!expr)
910 return true;
911 base = get_base_address (expr);
912 if (DECL_P (base)
913 && !may_be_aliased (base)
914 && !(TREE_CODE (base) == VAR_DECL
915 && !DECL_EXTERNAL (base)
916 && !TREE_STATIC (base)
917 && local_variable_can_escape (base)))
918 return false;
919 return true;
920 }
921
922 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
923 OFFSET and WIDTH. */
924
925 static void
926 set_usage_bits (group_info *group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
927 tree expr)
928 {
929 HOST_WIDE_INT i;
930 bool expr_escapes = can_escape (expr);
931 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
932 for (i=offset; i<offset+width; i++)
933 {
934 bitmap store1;
935 bitmap store2;
936 bitmap escaped;
937 int ai;
938 if (i < 0)
939 {
940 store1 = group->store1_n;
941 store2 = group->store2_n;
942 escaped = group->escaped_n;
943 ai = -i;
944 }
945 else
946 {
947 store1 = group->store1_p;
948 store2 = group->store2_p;
949 escaped = group->escaped_p;
950 ai = i;
951 }
952
953 if (!bitmap_set_bit (store1, ai))
954 bitmap_set_bit (store2, ai);
955 else
956 {
957 if (i < 0)
958 {
959 if (group->offset_map_size_n < ai)
960 group->offset_map_size_n = ai;
961 }
962 else
963 {
964 if (group->offset_map_size_p < ai)
965 group->offset_map_size_p = ai;
966 }
967 }
968 if (expr_escapes)
969 bitmap_set_bit (escaped, ai);
970 }
971 }
972
973 static void
974 reset_active_stores (void)
975 {
976 active_local_stores = NULL;
977 active_local_stores_len = 0;
978 }
979
980 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
981
982 static void
983 free_read_records (bb_info_t bb_info)
984 {
985 insn_info_t insn_info = bb_info->last_insn;
986 read_info_t *ptr = &insn_info->read_rec;
987 while (*ptr)
988 {
989 read_info_t next = (*ptr)->next;
990 read_info_type_pool.remove (*ptr);
991 *ptr = next;
992 }
993 }
994
995 /* Set the BB_INFO so that the last insn is marked as a wild read. */
996
997 static void
998 add_wild_read (bb_info_t bb_info)
999 {
1000 insn_info_t insn_info = bb_info->last_insn;
1001 insn_info->wild_read = true;
1002 free_read_records (bb_info);
1003 reset_active_stores ();
1004 }
1005
1006 /* Set the BB_INFO so that the last insn is marked as a wild read of
1007 non-frame locations. */
1008
1009 static void
1010 add_non_frame_wild_read (bb_info_t bb_info)
1011 {
1012 insn_info_t insn_info = bb_info->last_insn;
1013 insn_info->non_frame_wild_read = true;
1014 free_read_records (bb_info);
1015 reset_active_stores ();
1016 }
1017
1018 /* Return true if X is a constant or one of the registers that behave
1019 as a constant over the life of a function. This is equivalent to
1020 !rtx_varies_p for memory addresses. */
1021
1022 static bool
1023 const_or_frame_p (rtx x)
1024 {
1025 if (CONSTANT_P (x))
1026 return true;
1027
1028 if (GET_CODE (x) == REG)
1029 {
1030 /* Note that we have to test for the actual rtx used for the frame
1031 and arg pointers and not just the register number in case we have
1032 eliminated the frame and/or arg pointer and are using it
1033 for pseudos. */
1034 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1035 /* The arg pointer varies if it is not a fixed register. */
1036 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1037 || x == pic_offset_table_rtx)
1038 return true;
1039 return false;
1040 }
1041
1042 return false;
1043 }
1044
1045 /* Take all reasonable action to put the address of MEM into the form
1046 that we can do analysis on.
1047
1048 The gold standard is to get the address into the form: address +
1049 OFFSET where address is something that rtx_varies_p considers a
1050 constant. When we can get the address in this form, we can do
1051 global analysis on it. Note that for constant bases, address is
1052 not actually returned, only the group_id. The address can be
1053 obtained from that.
1054
1055 If that fails, we try cselib to get a value we can at least use
1056 locally. If that fails we return false.
1057
1058 The GROUP_ID is set to -1 for cselib bases and the index of the
1059 group for non_varying bases.
1060
1061 FOR_READ is true if this is a mem read and false if not. */
1062
1063 static bool
1064 canon_address (rtx mem,
1065 int *group_id,
1066 HOST_WIDE_INT *offset,
1067 cselib_val **base)
1068 {
1069 machine_mode address_mode = get_address_mode (mem);
1070 rtx mem_address = XEXP (mem, 0);
1071 rtx expanded_address, address;
1072 int expanded;
1073
1074 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1075
1076 if (dump_file && (dump_flags & TDF_DETAILS))
1077 {
1078 fprintf (dump_file, " mem: ");
1079 print_inline_rtx (dump_file, mem_address, 0);
1080 fprintf (dump_file, "\n");
1081 }
1082
1083 /* First see if just canon_rtx (mem_address) is const or frame,
1084 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1085 address = NULL_RTX;
1086 for (expanded = 0; expanded < 2; expanded++)
1087 {
1088 if (expanded)
1089 {
1090 /* Use cselib to replace all of the reg references with the full
1091 expression. This will take care of the case where we have
1092
1093 r_x = base + offset;
1094 val = *r_x;
1095
1096 by making it into
1097
1098 val = *(base + offset); */
1099
1100 expanded_address = cselib_expand_value_rtx (mem_address,
1101 scratch, 5);
1102
1103 /* If this fails, just go with the address from first
1104 iteration. */
1105 if (!expanded_address)
1106 break;
1107 }
1108 else
1109 expanded_address = mem_address;
1110
1111 /* Split the address into canonical BASE + OFFSET terms. */
1112 address = canon_rtx (expanded_address);
1113
1114 *offset = 0;
1115
1116 if (dump_file && (dump_flags & TDF_DETAILS))
1117 {
1118 if (expanded)
1119 {
1120 fprintf (dump_file, "\n after cselib_expand address: ");
1121 print_inline_rtx (dump_file, expanded_address, 0);
1122 fprintf (dump_file, "\n");
1123 }
1124
1125 fprintf (dump_file, "\n after canon_rtx address: ");
1126 print_inline_rtx (dump_file, address, 0);
1127 fprintf (dump_file, "\n");
1128 }
1129
1130 if (GET_CODE (address) == CONST)
1131 address = XEXP (address, 0);
1132
1133 if (GET_CODE (address) == PLUS
1134 && CONST_INT_P (XEXP (address, 1)))
1135 {
1136 *offset = INTVAL (XEXP (address, 1));
1137 address = XEXP (address, 0);
1138 }
1139
1140 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1141 && const_or_frame_p (address))
1142 {
1143 group_info *group = get_group_info (address);
1144
1145 if (dump_file && (dump_flags & TDF_DETAILS))
1146 fprintf (dump_file, " gid=%d offset=%d \n",
1147 group->id, (int)*offset);
1148 *base = NULL;
1149 *group_id = group->id;
1150 return true;
1151 }
1152 }
1153
1154 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1155 *group_id = -1;
1156
1157 if (*base == NULL)
1158 {
1159 if (dump_file && (dump_flags & TDF_DETAILS))
1160 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1161 return false;
1162 }
1163 if (dump_file && (dump_flags & TDF_DETAILS))
1164 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1165 (*base)->uid, (*base)->hash, (int)*offset);
1166 return true;
1167 }
1168
1169
1170 /* Clear the rhs field from the active_local_stores array. */
1171
1172 static void
1173 clear_rhs_from_active_local_stores (void)
1174 {
1175 insn_info_t ptr = active_local_stores;
1176
1177 while (ptr)
1178 {
1179 store_info *store_info = ptr->store_rec;
1180 /* Skip the clobbers. */
1181 while (!store_info->is_set)
1182 store_info = store_info->next;
1183
1184 store_info->rhs = NULL;
1185 store_info->const_rhs = NULL;
1186
1187 ptr = ptr->next_local_store;
1188 }
1189 }
1190
1191
1192 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1193
1194 static inline void
1195 set_position_unneeded (store_info *s_info, int pos)
1196 {
1197 if (__builtin_expect (s_info->is_large, false))
1198 {
1199 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1200 s_info->positions_needed.large.count++;
1201 }
1202 else
1203 s_info->positions_needed.small_bitmask
1204 &= ~(HOST_WIDE_INT_1U << pos);
1205 }
1206
1207 /* Mark the whole store S_INFO as unneeded. */
1208
1209 static inline void
1210 set_all_positions_unneeded (store_info *s_info)
1211 {
1212 if (__builtin_expect (s_info->is_large, false))
1213 {
1214 int pos, end = s_info->end - s_info->begin;
1215 for (pos = 0; pos < end; pos++)
1216 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1217 s_info->positions_needed.large.count = end;
1218 }
1219 else
1220 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1221 }
1222
1223 /* Return TRUE if any bytes from S_INFO store are needed. */
1224
1225 static inline bool
1226 any_positions_needed_p (store_info *s_info)
1227 {
1228 if (__builtin_expect (s_info->is_large, false))
1229 return (s_info->positions_needed.large.count
1230 < s_info->end - s_info->begin);
1231 else
1232 return (s_info->positions_needed.small_bitmask
1233 != (unsigned HOST_WIDE_INT) 0);
1234 }
1235
1236 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1237 store are needed. */
1238
1239 static inline bool
1240 all_positions_needed_p (store_info *s_info, int start, int width)
1241 {
1242 if (__builtin_expect (s_info->is_large, false))
1243 {
1244 int end = start + width;
1245 while (start < end)
1246 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1247 return false;
1248 return true;
1249 }
1250 else
1251 {
1252 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1253 return (s_info->positions_needed.small_bitmask & mask) == mask;
1254 }
1255 }
1256
1257
1258 static rtx get_stored_val (store_info *, machine_mode, HOST_WIDE_INT,
1259 HOST_WIDE_INT, basic_block, bool);
1260
1261
1262 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1263 there is a candidate store, after adding it to the appropriate
1264 local store group if so. */
1265
1266 static int
1267 record_store (rtx body, bb_info_t bb_info)
1268 {
1269 rtx mem, rhs, const_rhs, mem_addr;
1270 HOST_WIDE_INT offset = 0;
1271 HOST_WIDE_INT width = 0;
1272 insn_info_t insn_info = bb_info->last_insn;
1273 store_info *store_info = NULL;
1274 int group_id;
1275 cselib_val *base = NULL;
1276 insn_info_t ptr, last, redundant_reason;
1277 bool store_is_unused;
1278
1279 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1280 return 0;
1281
1282 mem = SET_DEST (body);
1283
1284 /* If this is not used, then this cannot be used to keep the insn
1285 from being deleted. On the other hand, it does provide something
1286 that can be used to prove that another store is dead. */
1287 store_is_unused
1288 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1289
1290 /* Check whether that value is a suitable memory location. */
1291 if (!MEM_P (mem))
1292 {
1293 /* If the set or clobber is unused, then it does not effect our
1294 ability to get rid of the entire insn. */
1295 if (!store_is_unused)
1296 insn_info->cannot_delete = true;
1297 return 0;
1298 }
1299
1300 /* At this point we know mem is a mem. */
1301 if (GET_MODE (mem) == BLKmode)
1302 {
1303 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1304 {
1305 if (dump_file && (dump_flags & TDF_DETAILS))
1306 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1307 add_wild_read (bb_info);
1308 insn_info->cannot_delete = true;
1309 return 0;
1310 }
1311 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1312 as memset (addr, 0, 36); */
1313 else if (!MEM_SIZE_KNOWN_P (mem)
1314 || MEM_SIZE (mem) <= 0
1315 || MEM_SIZE (mem) > MAX_OFFSET
1316 || GET_CODE (body) != SET
1317 || !CONST_INT_P (SET_SRC (body)))
1318 {
1319 if (!store_is_unused)
1320 {
1321 /* If the set or clobber is unused, then it does not effect our
1322 ability to get rid of the entire insn. */
1323 insn_info->cannot_delete = true;
1324 clear_rhs_from_active_local_stores ();
1325 }
1326 return 0;
1327 }
1328 }
1329
1330 /* We can still process a volatile mem, we just cannot delete it. */
1331 if (MEM_VOLATILE_P (mem))
1332 insn_info->cannot_delete = true;
1333
1334 if (!canon_address (mem, &group_id, &offset, &base))
1335 {
1336 clear_rhs_from_active_local_stores ();
1337 return 0;
1338 }
1339
1340 if (GET_MODE (mem) == BLKmode)
1341 width = MEM_SIZE (mem);
1342 else
1343 width = GET_MODE_SIZE (GET_MODE (mem));
1344
1345 if (group_id >= 0)
1346 {
1347 /* In the restrictive case where the base is a constant or the
1348 frame pointer we can do global analysis. */
1349
1350 group_info *group
1351 = rtx_group_vec[group_id];
1352 tree expr = MEM_EXPR (mem);
1353
1354 store_info = rtx_store_info_pool.allocate ();
1355 set_usage_bits (group, offset, width, expr);
1356
1357 if (dump_file && (dump_flags & TDF_DETAILS))
1358 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1359 group_id, (int)offset, (int)(offset+width));
1360 }
1361 else
1362 {
1363 if (may_be_sp_based_p (XEXP (mem, 0)))
1364 insn_info->stack_pointer_based = true;
1365 insn_info->contains_cselib_groups = true;
1366
1367 store_info = cse_store_info_pool.allocate ();
1368 group_id = -1;
1369
1370 if (dump_file && (dump_flags & TDF_DETAILS))
1371 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1372 (int)offset, (int)(offset+width));
1373 }
1374
1375 const_rhs = rhs = NULL_RTX;
1376 if (GET_CODE (body) == SET
1377 /* No place to keep the value after ra. */
1378 && !reload_completed
1379 && (REG_P (SET_SRC (body))
1380 || GET_CODE (SET_SRC (body)) == SUBREG
1381 || CONSTANT_P (SET_SRC (body)))
1382 && !MEM_VOLATILE_P (mem)
1383 /* Sometimes the store and reload is used for truncation and
1384 rounding. */
1385 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1386 {
1387 rhs = SET_SRC (body);
1388 if (CONSTANT_P (rhs))
1389 const_rhs = rhs;
1390 else if (body == PATTERN (insn_info->insn))
1391 {
1392 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1393 if (tem && CONSTANT_P (XEXP (tem, 0)))
1394 const_rhs = XEXP (tem, 0);
1395 }
1396 if (const_rhs == NULL_RTX && REG_P (rhs))
1397 {
1398 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1399
1400 if (tem && CONSTANT_P (tem))
1401 const_rhs = tem;
1402 }
1403 }
1404
1405 /* Check to see if this stores causes some other stores to be
1406 dead. */
1407 ptr = active_local_stores;
1408 last = NULL;
1409 redundant_reason = NULL;
1410 mem = canon_rtx (mem);
1411
1412 if (group_id < 0)
1413 mem_addr = base->val_rtx;
1414 else
1415 {
1416 group_info *group = rtx_group_vec[group_id];
1417 mem_addr = group->canon_base_addr;
1418 }
1419 if (offset)
1420 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1421
1422 while (ptr)
1423 {
1424 insn_info_t next = ptr->next_local_store;
1425 struct store_info *s_info = ptr->store_rec;
1426 bool del = true;
1427
1428 /* Skip the clobbers. We delete the active insn if this insn
1429 shadows the set. To have been put on the active list, it
1430 has exactly on set. */
1431 while (!s_info->is_set)
1432 s_info = s_info->next;
1433
1434 if (s_info->group_id == group_id && s_info->cse_base == base)
1435 {
1436 HOST_WIDE_INT i;
1437 if (dump_file && (dump_flags & TDF_DETAILS))
1438 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1439 INSN_UID (ptr->insn), s_info->group_id,
1440 (int)s_info->begin, (int)s_info->end);
1441
1442 /* Even if PTR won't be eliminated as unneeded, if both
1443 PTR and this insn store the same constant value, we might
1444 eliminate this insn instead. */
1445 if (s_info->const_rhs
1446 && const_rhs
1447 && offset >= s_info->begin
1448 && offset + width <= s_info->end
1449 && all_positions_needed_p (s_info, offset - s_info->begin,
1450 width))
1451 {
1452 if (GET_MODE (mem) == BLKmode)
1453 {
1454 if (GET_MODE (s_info->mem) == BLKmode
1455 && s_info->const_rhs == const_rhs)
1456 redundant_reason = ptr;
1457 }
1458 else if (s_info->const_rhs == const0_rtx
1459 && const_rhs == const0_rtx)
1460 redundant_reason = ptr;
1461 else
1462 {
1463 rtx val;
1464 start_sequence ();
1465 val = get_stored_val (s_info, GET_MODE (mem),
1466 offset, offset + width,
1467 BLOCK_FOR_INSN (insn_info->insn),
1468 true);
1469 if (get_insns () != NULL)
1470 val = NULL_RTX;
1471 end_sequence ();
1472 if (val && rtx_equal_p (val, const_rhs))
1473 redundant_reason = ptr;
1474 }
1475 }
1476
1477 for (i = MAX (offset, s_info->begin);
1478 i < offset + width && i < s_info->end;
1479 i++)
1480 set_position_unneeded (s_info, i - s_info->begin);
1481 }
1482 else if (s_info->rhs)
1483 /* Need to see if it is possible for this store to overwrite
1484 the value of store_info. If it is, set the rhs to NULL to
1485 keep it from being used to remove a load. */
1486 {
1487 if (canon_output_dependence (s_info->mem, true,
1488 mem, GET_MODE (mem),
1489 mem_addr))
1490 {
1491 s_info->rhs = NULL;
1492 s_info->const_rhs = NULL;
1493 }
1494 }
1495
1496 /* An insn can be deleted if every position of every one of
1497 its s_infos is zero. */
1498 if (any_positions_needed_p (s_info))
1499 del = false;
1500
1501 if (del)
1502 {
1503 insn_info_t insn_to_delete = ptr;
1504
1505 active_local_stores_len--;
1506 if (last)
1507 last->next_local_store = ptr->next_local_store;
1508 else
1509 active_local_stores = ptr->next_local_store;
1510
1511 if (!insn_to_delete->cannot_delete)
1512 delete_dead_store_insn (insn_to_delete);
1513 }
1514 else
1515 last = ptr;
1516
1517 ptr = next;
1518 }
1519
1520 /* Finish filling in the store_info. */
1521 store_info->next = insn_info->store_rec;
1522 insn_info->store_rec = store_info;
1523 store_info->mem = mem;
1524 store_info->mem_addr = mem_addr;
1525 store_info->cse_base = base;
1526 if (width > HOST_BITS_PER_WIDE_INT)
1527 {
1528 store_info->is_large = true;
1529 store_info->positions_needed.large.count = 0;
1530 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1531 }
1532 else
1533 {
1534 store_info->is_large = false;
1535 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1536 }
1537 store_info->group_id = group_id;
1538 store_info->begin = offset;
1539 store_info->end = offset + width;
1540 store_info->is_set = GET_CODE (body) == SET;
1541 store_info->rhs = rhs;
1542 store_info->const_rhs = const_rhs;
1543 store_info->redundant_reason = redundant_reason;
1544
1545 /* If this is a clobber, we return 0. We will only be able to
1546 delete this insn if there is only one store USED store, but we
1547 can use the clobber to delete other stores earlier. */
1548 return store_info->is_set ? 1 : 0;
1549 }
1550
1551
1552 static void
1553 dump_insn_info (const char * start, insn_info_t insn_info)
1554 {
1555 fprintf (dump_file, "%s insn=%d %s\n", start,
1556 INSN_UID (insn_info->insn),
1557 insn_info->store_rec ? "has store" : "naked");
1558 }
1559
1560
1561 /* If the modes are different and the value's source and target do not
1562 line up, we need to extract the value from lower part of the rhs of
1563 the store, shift it, and then put it into a form that can be shoved
1564 into the read_insn. This function generates a right SHIFT of a
1565 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1566 shift sequence is returned or NULL if we failed to find a
1567 shift. */
1568
1569 static rtx
1570 find_shift_sequence (int access_size,
1571 store_info *store_info,
1572 machine_mode read_mode,
1573 int shift, bool speed, bool require_cst)
1574 {
1575 machine_mode store_mode = GET_MODE (store_info->mem);
1576 machine_mode new_mode;
1577 rtx read_reg = NULL;
1578
1579 /* Some machines like the x86 have shift insns for each size of
1580 operand. Other machines like the ppc or the ia-64 may only have
1581 shift insns that shift values within 32 or 64 bit registers.
1582 This loop tries to find the smallest shift insn that will right
1583 justify the value we want to read but is available in one insn on
1584 the machine. */
1585
1586 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1587 MODE_INT);
1588 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1589 new_mode = GET_MODE_WIDER_MODE (new_mode))
1590 {
1591 rtx target, new_reg, new_lhs;
1592 rtx_insn *shift_seq, *insn;
1593 int cost;
1594
1595 /* If a constant was stored into memory, try to simplify it here,
1596 otherwise the cost of the shift might preclude this optimization
1597 e.g. at -Os, even when no actual shift will be needed. */
1598 if (store_info->const_rhs)
1599 {
1600 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1601 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1602 store_mode, byte);
1603 if (ret && CONSTANT_P (ret))
1604 {
1605 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1606 ret, GEN_INT (shift));
1607 if (ret && CONSTANT_P (ret))
1608 {
1609 byte = subreg_lowpart_offset (read_mode, new_mode);
1610 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1611 if (ret && CONSTANT_P (ret)
1612 && (set_src_cost (ret, read_mode, speed)
1613 <= COSTS_N_INSNS (1)))
1614 return ret;
1615 }
1616 }
1617 }
1618
1619 if (require_cst)
1620 return NULL_RTX;
1621
1622 /* Try a wider mode if truncating the store mode to NEW_MODE
1623 requires a real instruction. */
1624 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1625 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1626 continue;
1627
1628 /* Also try a wider mode if the necessary punning is either not
1629 desirable or not possible. */
1630 if (!CONSTANT_P (store_info->rhs)
1631 && !MODES_TIEABLE_P (new_mode, store_mode))
1632 continue;
1633
1634 new_reg = gen_reg_rtx (new_mode);
1635
1636 start_sequence ();
1637
1638 /* In theory we could also check for an ashr. Ian Taylor knows
1639 of one dsp where the cost of these two was not the same. But
1640 this really is a rare case anyway. */
1641 target = expand_binop (new_mode, lshr_optab, new_reg,
1642 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1643
1644 shift_seq = get_insns ();
1645 end_sequence ();
1646
1647 if (target != new_reg || shift_seq == NULL)
1648 continue;
1649
1650 cost = 0;
1651 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1652 if (INSN_P (insn))
1653 cost += insn_rtx_cost (PATTERN (insn), speed);
1654
1655 /* The computation up to here is essentially independent
1656 of the arguments and could be precomputed. It may
1657 not be worth doing so. We could precompute if
1658 worthwhile or at least cache the results. The result
1659 technically depends on both SHIFT and ACCESS_SIZE,
1660 but in practice the answer will depend only on ACCESS_SIZE. */
1661
1662 if (cost > COSTS_N_INSNS (1))
1663 continue;
1664
1665 new_lhs = extract_low_bits (new_mode, store_mode,
1666 copy_rtx (store_info->rhs));
1667 if (new_lhs == NULL_RTX)
1668 continue;
1669
1670 /* We found an acceptable shift. Generate a move to
1671 take the value from the store and put it into the
1672 shift pseudo, then shift it, then generate another
1673 move to put in into the target of the read. */
1674 emit_move_insn (new_reg, new_lhs);
1675 emit_insn (shift_seq);
1676 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1677 break;
1678 }
1679
1680 return read_reg;
1681 }
1682
1683
1684 /* Call back for note_stores to find the hard regs set or clobbered by
1685 insn. Data is a bitmap of the hardregs set so far. */
1686
1687 static void
1688 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1689 {
1690 bitmap regs_set = (bitmap) data;
1691
1692 if (REG_P (x)
1693 && HARD_REGISTER_P (x))
1694 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1695 }
1696
1697 /* Helper function for replace_read and record_store.
1698 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1699 to one before READ_END bytes read in READ_MODE. Return NULL
1700 if not successful. If REQUIRE_CST is true, return always constant. */
1701
1702 static rtx
1703 get_stored_val (store_info *store_info, machine_mode read_mode,
1704 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1705 basic_block bb, bool require_cst)
1706 {
1707 machine_mode store_mode = GET_MODE (store_info->mem);
1708 int shift;
1709 int access_size; /* In bytes. */
1710 rtx read_reg;
1711
1712 /* To get here the read is within the boundaries of the write so
1713 shift will never be negative. Start out with the shift being in
1714 bytes. */
1715 if (store_mode == BLKmode)
1716 shift = 0;
1717 else if (BYTES_BIG_ENDIAN)
1718 shift = store_info->end - read_end;
1719 else
1720 shift = read_begin - store_info->begin;
1721
1722 access_size = shift + GET_MODE_SIZE (read_mode);
1723
1724 /* From now on it is bits. */
1725 shift *= BITS_PER_UNIT;
1726
1727 if (shift)
1728 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1729 optimize_bb_for_speed_p (bb),
1730 require_cst);
1731 else if (store_mode == BLKmode)
1732 {
1733 /* The store is a memset (addr, const_val, const_size). */
1734 gcc_assert (CONST_INT_P (store_info->rhs));
1735 store_mode = int_mode_for_mode (read_mode);
1736 if (store_mode == BLKmode)
1737 read_reg = NULL_RTX;
1738 else if (store_info->rhs == const0_rtx)
1739 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1740 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1741 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1742 read_reg = NULL_RTX;
1743 else
1744 {
1745 unsigned HOST_WIDE_INT c
1746 = INTVAL (store_info->rhs)
1747 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1748 int shift = BITS_PER_UNIT;
1749 while (shift < HOST_BITS_PER_WIDE_INT)
1750 {
1751 c |= (c << shift);
1752 shift <<= 1;
1753 }
1754 read_reg = gen_int_mode (c, store_mode);
1755 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1756 }
1757 }
1758 else if (store_info->const_rhs
1759 && (require_cst
1760 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1761 read_reg = extract_low_bits (read_mode, store_mode,
1762 copy_rtx (store_info->const_rhs));
1763 else
1764 read_reg = extract_low_bits (read_mode, store_mode,
1765 copy_rtx (store_info->rhs));
1766 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1767 read_reg = NULL_RTX;
1768 return read_reg;
1769 }
1770
1771 /* Take a sequence of:
1772 A <- r1
1773 ...
1774 ... <- A
1775
1776 and change it into
1777 r2 <- r1
1778 A <- r1
1779 ...
1780 ... <- r2
1781
1782 or
1783
1784 r3 <- extract (r1)
1785 r3 <- r3 >> shift
1786 r2 <- extract (r3)
1787 ... <- r2
1788
1789 or
1790
1791 r2 <- extract (r1)
1792 ... <- r2
1793
1794 Depending on the alignment and the mode of the store and
1795 subsequent load.
1796
1797
1798 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1799 and READ_INSN are for the read. Return true if the replacement
1800 went ok. */
1801
1802 static bool
1803 replace_read (store_info *store_info, insn_info_t store_insn,
1804 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1805 bitmap regs_live)
1806 {
1807 machine_mode store_mode = GET_MODE (store_info->mem);
1808 machine_mode read_mode = GET_MODE (read_info->mem);
1809 rtx_insn *insns, *this_insn;
1810 rtx read_reg;
1811 basic_block bb;
1812
1813 if (!dbg_cnt (dse))
1814 return false;
1815
1816 /* Create a sequence of instructions to set up the read register.
1817 This sequence goes immediately before the store and its result
1818 is read by the load.
1819
1820 We need to keep this in perspective. We are replacing a read
1821 with a sequence of insns, but the read will almost certainly be
1822 in cache, so it is not going to be an expensive one. Thus, we
1823 are not willing to do a multi insn shift or worse a subroutine
1824 call to get rid of the read. */
1825 if (dump_file && (dump_flags & TDF_DETAILS))
1826 fprintf (dump_file, "trying to replace %smode load in insn %d"
1827 " from %smode store in insn %d\n",
1828 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1829 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1830 start_sequence ();
1831 bb = BLOCK_FOR_INSN (read_insn->insn);
1832 read_reg = get_stored_val (store_info,
1833 read_mode, read_info->begin, read_info->end,
1834 bb, false);
1835 if (read_reg == NULL_RTX)
1836 {
1837 end_sequence ();
1838 if (dump_file && (dump_flags & TDF_DETAILS))
1839 fprintf (dump_file, " -- could not extract bits of stored value\n");
1840 return false;
1841 }
1842 /* Force the value into a new register so that it won't be clobbered
1843 between the store and the load. */
1844 read_reg = copy_to_mode_reg (read_mode, read_reg);
1845 insns = get_insns ();
1846 end_sequence ();
1847
1848 if (insns != NULL_RTX)
1849 {
1850 /* Now we have to scan the set of new instructions to see if the
1851 sequence contains and sets of hardregs that happened to be
1852 live at this point. For instance, this can happen if one of
1853 the insns sets the CC and the CC happened to be live at that
1854 point. This does occasionally happen, see PR 37922. */
1855 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
1856
1857 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1858 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
1859
1860 bitmap_and_into (regs_set, regs_live);
1861 if (!bitmap_empty_p (regs_set))
1862 {
1863 if (dump_file && (dump_flags & TDF_DETAILS))
1864 {
1865 fprintf (dump_file,
1866 "abandoning replacement because sequence clobbers live hardregs:");
1867 df_print_regset (dump_file, regs_set);
1868 }
1869
1870 BITMAP_FREE (regs_set);
1871 return false;
1872 }
1873 BITMAP_FREE (regs_set);
1874 }
1875
1876 if (validate_change (read_insn->insn, loc, read_reg, 0))
1877 {
1878 deferred_change *change = deferred_change_pool.allocate ();
1879
1880 /* Insert this right before the store insn where it will be safe
1881 from later insns that might change it before the read. */
1882 emit_insn_before (insns, store_insn->insn);
1883
1884 /* And now for the kludge part: cselib croaks if you just
1885 return at this point. There are two reasons for this:
1886
1887 1) Cselib has an idea of how many pseudos there are and
1888 that does not include the new ones we just added.
1889
1890 2) Cselib does not know about the move insn we added
1891 above the store_info, and there is no way to tell it
1892 about it, because it has "moved on".
1893
1894 Problem (1) is fixable with a certain amount of engineering.
1895 Problem (2) is requires starting the bb from scratch. This
1896 could be expensive.
1897
1898 So we are just going to have to lie. The move/extraction
1899 insns are not really an issue, cselib did not see them. But
1900 the use of the new pseudo read_insn is a real problem because
1901 cselib has not scanned this insn. The way that we solve this
1902 problem is that we are just going to put the mem back for now
1903 and when we are finished with the block, we undo this. We
1904 keep a table of mems to get rid of. At the end of the basic
1905 block we can put them back. */
1906
1907 *loc = read_info->mem;
1908 change->next = deferred_change_list;
1909 deferred_change_list = change;
1910 change->loc = loc;
1911 change->reg = read_reg;
1912
1913 /* Get rid of the read_info, from the point of view of the
1914 rest of dse, play like this read never happened. */
1915 read_insn->read_rec = read_info->next;
1916 read_info_type_pool.remove (read_info);
1917 if (dump_file && (dump_flags & TDF_DETAILS))
1918 {
1919 fprintf (dump_file, " -- replaced the loaded MEM with ");
1920 print_simple_rtl (dump_file, read_reg);
1921 fprintf (dump_file, "\n");
1922 }
1923 return true;
1924 }
1925 else
1926 {
1927 if (dump_file && (dump_flags & TDF_DETAILS))
1928 {
1929 fprintf (dump_file, " -- replacing the loaded MEM with ");
1930 print_simple_rtl (dump_file, read_reg);
1931 fprintf (dump_file, " led to an invalid instruction\n");
1932 }
1933 return false;
1934 }
1935 }
1936
1937 /* Check the address of MEM *LOC and kill any appropriate stores that may
1938 be active. */
1939
1940 static void
1941 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
1942 {
1943 rtx mem = *loc, mem_addr;
1944 insn_info_t insn_info;
1945 HOST_WIDE_INT offset = 0;
1946 HOST_WIDE_INT width = 0;
1947 cselib_val *base = NULL;
1948 int group_id;
1949 read_info_t read_info;
1950
1951 insn_info = bb_info->last_insn;
1952
1953 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
1954 || (MEM_VOLATILE_P (mem)))
1955 {
1956 if (dump_file && (dump_flags & TDF_DETAILS))
1957 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
1958 add_wild_read (bb_info);
1959 insn_info->cannot_delete = true;
1960 return;
1961 }
1962
1963 /* If it is reading readonly mem, then there can be no conflict with
1964 another write. */
1965 if (MEM_READONLY_P (mem))
1966 return;
1967
1968 if (!canon_address (mem, &group_id, &offset, &base))
1969 {
1970 if (dump_file && (dump_flags & TDF_DETAILS))
1971 fprintf (dump_file, " adding wild read, canon_address failure.\n");
1972 add_wild_read (bb_info);
1973 return;
1974 }
1975
1976 if (GET_MODE (mem) == BLKmode)
1977 width = -1;
1978 else
1979 width = GET_MODE_SIZE (GET_MODE (mem));
1980
1981 read_info = read_info_type_pool.allocate ();
1982 read_info->group_id = group_id;
1983 read_info->mem = mem;
1984 read_info->begin = offset;
1985 read_info->end = offset + width;
1986 read_info->next = insn_info->read_rec;
1987 insn_info->read_rec = read_info;
1988 if (group_id < 0)
1989 mem_addr = base->val_rtx;
1990 else
1991 {
1992 group_info *group = rtx_group_vec[group_id];
1993 mem_addr = group->canon_base_addr;
1994 }
1995 if (offset)
1996 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1997
1998 if (group_id >= 0)
1999 {
2000 /* This is the restricted case where the base is a constant or
2001 the frame pointer and offset is a constant. */
2002 insn_info_t i_ptr = active_local_stores;
2003 insn_info_t last = NULL;
2004
2005 if (dump_file && (dump_flags & TDF_DETAILS))
2006 {
2007 if (width == -1)
2008 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2009 group_id);
2010 else
2011 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2012 group_id, (int)offset, (int)(offset+width));
2013 }
2014
2015 while (i_ptr)
2016 {
2017 bool remove = false;
2018 store_info *store_info = i_ptr->store_rec;
2019
2020 /* Skip the clobbers. */
2021 while (!store_info->is_set)
2022 store_info = store_info->next;
2023
2024 /* There are three cases here. */
2025 if (store_info->group_id < 0)
2026 /* We have a cselib store followed by a read from a
2027 const base. */
2028 remove
2029 = canon_true_dependence (store_info->mem,
2030 GET_MODE (store_info->mem),
2031 store_info->mem_addr,
2032 mem, mem_addr);
2033
2034 else if (group_id == store_info->group_id)
2035 {
2036 /* This is a block mode load. We may get lucky and
2037 canon_true_dependence may save the day. */
2038 if (width == -1)
2039 remove
2040 = canon_true_dependence (store_info->mem,
2041 GET_MODE (store_info->mem),
2042 store_info->mem_addr,
2043 mem, mem_addr);
2044
2045 /* If this read is just reading back something that we just
2046 stored, rewrite the read. */
2047 else
2048 {
2049 if (store_info->rhs
2050 && offset >= store_info->begin
2051 && offset + width <= store_info->end
2052 && all_positions_needed_p (store_info,
2053 offset - store_info->begin,
2054 width)
2055 && replace_read (store_info, i_ptr, read_info,
2056 insn_info, loc, bb_info->regs_live))
2057 return;
2058
2059 /* The bases are the same, just see if the offsets
2060 overlap. */
2061 if ((offset < store_info->end)
2062 && (offset + width > store_info->begin))
2063 remove = true;
2064 }
2065 }
2066
2067 /* else
2068 The else case that is missing here is that the
2069 bases are constant but different. There is nothing
2070 to do here because there is no overlap. */
2071
2072 if (remove)
2073 {
2074 if (dump_file && (dump_flags & TDF_DETAILS))
2075 dump_insn_info ("removing from active", i_ptr);
2076
2077 active_local_stores_len--;
2078 if (last)
2079 last->next_local_store = i_ptr->next_local_store;
2080 else
2081 active_local_stores = i_ptr->next_local_store;
2082 }
2083 else
2084 last = i_ptr;
2085 i_ptr = i_ptr->next_local_store;
2086 }
2087 }
2088 else
2089 {
2090 insn_info_t i_ptr = active_local_stores;
2091 insn_info_t last = NULL;
2092 if (dump_file && (dump_flags & TDF_DETAILS))
2093 {
2094 fprintf (dump_file, " processing cselib load mem:");
2095 print_inline_rtx (dump_file, mem, 0);
2096 fprintf (dump_file, "\n");
2097 }
2098
2099 while (i_ptr)
2100 {
2101 bool remove = false;
2102 store_info *store_info = i_ptr->store_rec;
2103
2104 if (dump_file && (dump_flags & TDF_DETAILS))
2105 fprintf (dump_file, " processing cselib load against insn %d\n",
2106 INSN_UID (i_ptr->insn));
2107
2108 /* Skip the clobbers. */
2109 while (!store_info->is_set)
2110 store_info = store_info->next;
2111
2112 /* If this read is just reading back something that we just
2113 stored, rewrite the read. */
2114 if (store_info->rhs
2115 && store_info->group_id == -1
2116 && store_info->cse_base == base
2117 && width != -1
2118 && offset >= store_info->begin
2119 && offset + width <= store_info->end
2120 && all_positions_needed_p (store_info,
2121 offset - store_info->begin, width)
2122 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2123 bb_info->regs_live))
2124 return;
2125
2126 remove = canon_true_dependence (store_info->mem,
2127 GET_MODE (store_info->mem),
2128 store_info->mem_addr,
2129 mem, mem_addr);
2130
2131 if (remove)
2132 {
2133 if (dump_file && (dump_flags & TDF_DETAILS))
2134 dump_insn_info ("removing from active", i_ptr);
2135
2136 active_local_stores_len--;
2137 if (last)
2138 last->next_local_store = i_ptr->next_local_store;
2139 else
2140 active_local_stores = i_ptr->next_local_store;
2141 }
2142 else
2143 last = i_ptr;
2144 i_ptr = i_ptr->next_local_store;
2145 }
2146 }
2147 }
2148
2149 /* A note_uses callback in which DATA points the INSN_INFO for
2150 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2151 true for any part of *LOC. */
2152
2153 static void
2154 check_mem_read_use (rtx *loc, void *data)
2155 {
2156 subrtx_ptr_iterator::array_type array;
2157 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2158 {
2159 rtx *loc = *iter;
2160 if (MEM_P (*loc))
2161 check_mem_read_rtx (loc, (bb_info_t) data);
2162 }
2163 }
2164
2165
2166 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2167 So far it only handles arguments passed in registers. */
2168
2169 static bool
2170 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2171 {
2172 CUMULATIVE_ARGS args_so_far_v;
2173 cumulative_args_t args_so_far;
2174 tree arg;
2175 int idx;
2176
2177 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2178 args_so_far = pack_cumulative_args (&args_so_far_v);
2179
2180 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2181 for (idx = 0;
2182 arg != void_list_node && idx < nargs;
2183 arg = TREE_CHAIN (arg), idx++)
2184 {
2185 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2186 rtx reg, link, tmp;
2187 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2188 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2189 || GET_MODE_CLASS (mode) != MODE_INT)
2190 return false;
2191
2192 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2193 link;
2194 link = XEXP (link, 1))
2195 if (GET_CODE (XEXP (link, 0)) == USE)
2196 {
2197 args[idx] = XEXP (XEXP (link, 0), 0);
2198 if (REG_P (args[idx])
2199 && REGNO (args[idx]) == REGNO (reg)
2200 && (GET_MODE (args[idx]) == mode
2201 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2202 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2203 <= UNITS_PER_WORD)
2204 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2205 > GET_MODE_SIZE (mode)))))
2206 break;
2207 }
2208 if (!link)
2209 return false;
2210
2211 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2212 if (GET_MODE (args[idx]) != mode)
2213 {
2214 if (!tmp || !CONST_INT_P (tmp))
2215 return false;
2216 tmp = gen_int_mode (INTVAL (tmp), mode);
2217 }
2218 if (tmp)
2219 args[idx] = tmp;
2220
2221 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2222 }
2223 if (arg != void_list_node || idx != nargs)
2224 return false;
2225 return true;
2226 }
2227
2228 /* Return a bitmap of the fixed registers contained in IN. */
2229
2230 static bitmap
2231 copy_fixed_regs (const_bitmap in)
2232 {
2233 bitmap ret;
2234
2235 ret = ALLOC_REG_SET (NULL);
2236 bitmap_and (ret, in, fixed_reg_set_regset);
2237 return ret;
2238 }
2239
2240 /* Apply record_store to all candidate stores in INSN. Mark INSN
2241 if some part of it is not a candidate store and assigns to a
2242 non-register target. */
2243
2244 static void
2245 scan_insn (bb_info_t bb_info, rtx_insn *insn)
2246 {
2247 rtx body;
2248 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2249 int mems_found = 0;
2250 memset (insn_info, 0, sizeof (struct insn_info_type));
2251
2252 if (dump_file && (dump_flags & TDF_DETAILS))
2253 fprintf (dump_file, "\n**scanning insn=%d\n",
2254 INSN_UID (insn));
2255
2256 insn_info->prev_insn = bb_info->last_insn;
2257 insn_info->insn = insn;
2258 bb_info->last_insn = insn_info;
2259
2260 if (DEBUG_INSN_P (insn))
2261 {
2262 insn_info->cannot_delete = true;
2263 return;
2264 }
2265
2266 /* Look at all of the uses in the insn. */
2267 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2268
2269 if (CALL_P (insn))
2270 {
2271 bool const_call;
2272 rtx call, sym;
2273 tree memset_call = NULL_TREE;
2274
2275 insn_info->cannot_delete = true;
2276
2277 /* Const functions cannot do anything bad i.e. read memory,
2278 however, they can read their parameters which may have
2279 been pushed onto the stack.
2280 memset and bzero don't read memory either. */
2281 const_call = RTL_CONST_CALL_P (insn);
2282 if (!const_call
2283 && (call = get_call_rtx_from (insn))
2284 && (sym = XEXP (XEXP (call, 0), 0))
2285 && GET_CODE (sym) == SYMBOL_REF
2286 && SYMBOL_REF_DECL (sym)
2287 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2288 && DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (sym)) == BUILT_IN_NORMAL
2289 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (sym)) == BUILT_IN_MEMSET)
2290 memset_call = SYMBOL_REF_DECL (sym);
2291
2292 if (const_call || memset_call)
2293 {
2294 insn_info_t i_ptr = active_local_stores;
2295 insn_info_t last = NULL;
2296
2297 if (dump_file && (dump_flags & TDF_DETAILS))
2298 fprintf (dump_file, "%s call %d\n",
2299 const_call ? "const" : "memset", INSN_UID (insn));
2300
2301 /* See the head comment of the frame_read field. */
2302 if (reload_completed
2303 /* Tail calls are storing their arguments using
2304 arg pointer. If it is a frame pointer on the target,
2305 even before reload we need to kill frame pointer based
2306 stores. */
2307 || (SIBLING_CALL_P (insn)
2308 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2309 insn_info->frame_read = true;
2310
2311 /* Loop over the active stores and remove those which are
2312 killed by the const function call. */
2313 while (i_ptr)
2314 {
2315 bool remove_store = false;
2316
2317 /* The stack pointer based stores are always killed. */
2318 if (i_ptr->stack_pointer_based)
2319 remove_store = true;
2320
2321 /* If the frame is read, the frame related stores are killed. */
2322 else if (insn_info->frame_read)
2323 {
2324 store_info *store_info = i_ptr->store_rec;
2325
2326 /* Skip the clobbers. */
2327 while (!store_info->is_set)
2328 store_info = store_info->next;
2329
2330 if (store_info->group_id >= 0
2331 && rtx_group_vec[store_info->group_id]->frame_related)
2332 remove_store = true;
2333 }
2334
2335 if (remove_store)
2336 {
2337 if (dump_file && (dump_flags & TDF_DETAILS))
2338 dump_insn_info ("removing from active", i_ptr);
2339
2340 active_local_stores_len--;
2341 if (last)
2342 last->next_local_store = i_ptr->next_local_store;
2343 else
2344 active_local_stores = i_ptr->next_local_store;
2345 }
2346 else
2347 last = i_ptr;
2348
2349 i_ptr = i_ptr->next_local_store;
2350 }
2351
2352 if (memset_call)
2353 {
2354 rtx args[3];
2355 if (get_call_args (insn, memset_call, args, 3)
2356 && CONST_INT_P (args[1])
2357 && CONST_INT_P (args[2])
2358 && INTVAL (args[2]) > 0)
2359 {
2360 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2361 set_mem_size (mem, INTVAL (args[2]));
2362 body = gen_rtx_SET (mem, args[1]);
2363 mems_found += record_store (body, bb_info);
2364 if (dump_file && (dump_flags & TDF_DETAILS))
2365 fprintf (dump_file, "handling memset as BLKmode store\n");
2366 if (mems_found == 1)
2367 {
2368 if (active_local_stores_len++
2369 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2370 {
2371 active_local_stores_len = 1;
2372 active_local_stores = NULL;
2373 }
2374 insn_info->fixed_regs_live
2375 = copy_fixed_regs (bb_info->regs_live);
2376 insn_info->next_local_store = active_local_stores;
2377 active_local_stores = insn_info;
2378 }
2379 }
2380 else
2381 clear_rhs_from_active_local_stores ();
2382 }
2383 }
2384 else if (SIBLING_CALL_P (insn) && reload_completed)
2385 /* Arguments for a sibling call that are pushed to memory are passed
2386 using the incoming argument pointer of the current function. After
2387 reload that might be (and likely is) frame pointer based. */
2388 add_wild_read (bb_info);
2389 else
2390 /* Every other call, including pure functions, may read any memory
2391 that is not relative to the frame. */
2392 add_non_frame_wild_read (bb_info);
2393
2394 return;
2395 }
2396
2397 /* Assuming that there are sets in these insns, we cannot delete
2398 them. */
2399 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2400 || volatile_refs_p (PATTERN (insn))
2401 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2402 || (RTX_FRAME_RELATED_P (insn))
2403 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2404 insn_info->cannot_delete = true;
2405
2406 body = PATTERN (insn);
2407 if (GET_CODE (body) == PARALLEL)
2408 {
2409 int i;
2410 for (i = 0; i < XVECLEN (body, 0); i++)
2411 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2412 }
2413 else
2414 mems_found += record_store (body, bb_info);
2415
2416 if (dump_file && (dump_flags & TDF_DETAILS))
2417 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2418 mems_found, insn_info->cannot_delete ? "true" : "false");
2419
2420 /* If we found some sets of mems, add it into the active_local_stores so
2421 that it can be locally deleted if found dead or used for
2422 replace_read and redundant constant store elimination. Otherwise mark
2423 it as cannot delete. This simplifies the processing later. */
2424 if (mems_found == 1)
2425 {
2426 if (active_local_stores_len++
2427 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2428 {
2429 active_local_stores_len = 1;
2430 active_local_stores = NULL;
2431 }
2432 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2433 insn_info->next_local_store = active_local_stores;
2434 active_local_stores = insn_info;
2435 }
2436 else
2437 insn_info->cannot_delete = true;
2438 }
2439
2440
2441 /* Remove BASE from the set of active_local_stores. This is a
2442 callback from cselib that is used to get rid of the stores in
2443 active_local_stores. */
2444
2445 static void
2446 remove_useless_values (cselib_val *base)
2447 {
2448 insn_info_t insn_info = active_local_stores;
2449 insn_info_t last = NULL;
2450
2451 while (insn_info)
2452 {
2453 store_info *store_info = insn_info->store_rec;
2454 bool del = false;
2455
2456 /* If ANY of the store_infos match the cselib group that is
2457 being deleted, then the insn can not be deleted. */
2458 while (store_info)
2459 {
2460 if ((store_info->group_id == -1)
2461 && (store_info->cse_base == base))
2462 {
2463 del = true;
2464 break;
2465 }
2466 store_info = store_info->next;
2467 }
2468
2469 if (del)
2470 {
2471 active_local_stores_len--;
2472 if (last)
2473 last->next_local_store = insn_info->next_local_store;
2474 else
2475 active_local_stores = insn_info->next_local_store;
2476 free_store_info (insn_info);
2477 }
2478 else
2479 last = insn_info;
2480
2481 insn_info = insn_info->next_local_store;
2482 }
2483 }
2484
2485
2486 /* Do all of step 1. */
2487
2488 static void
2489 dse_step1 (void)
2490 {
2491 basic_block bb;
2492 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2493
2494 cselib_init (0);
2495 all_blocks = BITMAP_ALLOC (NULL);
2496 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2497 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2498
2499 FOR_ALL_BB_FN (bb, cfun)
2500 {
2501 insn_info_t ptr;
2502 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2503
2504 memset (bb_info, 0, sizeof (dse_bb_info_type));
2505 bitmap_set_bit (all_blocks, bb->index);
2506 bb_info->regs_live = regs_live;
2507
2508 bitmap_copy (regs_live, DF_LR_IN (bb));
2509 df_simulate_initialize_forwards (bb, regs_live);
2510
2511 bb_table[bb->index] = bb_info;
2512 cselib_discard_hook = remove_useless_values;
2513
2514 if (bb->index >= NUM_FIXED_BLOCKS)
2515 {
2516 rtx_insn *insn;
2517
2518 active_local_stores = NULL;
2519 active_local_stores_len = 0;
2520 cselib_clear_table ();
2521
2522 /* Scan the insns. */
2523 FOR_BB_INSNS (bb, insn)
2524 {
2525 if (INSN_P (insn))
2526 scan_insn (bb_info, insn);
2527 cselib_process_insn (insn);
2528 if (INSN_P (insn))
2529 df_simulate_one_insn_forwards (bb, insn, regs_live);
2530 }
2531
2532 /* This is something of a hack, because the global algorithm
2533 is supposed to take care of the case where stores go dead
2534 at the end of the function. However, the global
2535 algorithm must take a more conservative view of block
2536 mode reads than the local alg does. So to get the case
2537 where you have a store to the frame followed by a non
2538 overlapping block more read, we look at the active local
2539 stores at the end of the function and delete all of the
2540 frame and spill based ones. */
2541 if (stores_off_frame_dead_at_return
2542 && (EDGE_COUNT (bb->succs) == 0
2543 || (single_succ_p (bb)
2544 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2545 && ! crtl->calls_eh_return)))
2546 {
2547 insn_info_t i_ptr = active_local_stores;
2548 while (i_ptr)
2549 {
2550 store_info *store_info = i_ptr->store_rec;
2551
2552 /* Skip the clobbers. */
2553 while (!store_info->is_set)
2554 store_info = store_info->next;
2555 if (store_info->group_id >= 0)
2556 {
2557 group_info *group = rtx_group_vec[store_info->group_id];
2558 if (group->frame_related && !i_ptr->cannot_delete)
2559 delete_dead_store_insn (i_ptr);
2560 }
2561
2562 i_ptr = i_ptr->next_local_store;
2563 }
2564 }
2565
2566 /* Get rid of the loads that were discovered in
2567 replace_read. Cselib is finished with this block. */
2568 while (deferred_change_list)
2569 {
2570 deferred_change *next = deferred_change_list->next;
2571
2572 /* There is no reason to validate this change. That was
2573 done earlier. */
2574 *deferred_change_list->loc = deferred_change_list->reg;
2575 deferred_change_pool.remove (deferred_change_list);
2576 deferred_change_list = next;
2577 }
2578
2579 /* Get rid of all of the cselib based store_infos in this
2580 block and mark the containing insns as not being
2581 deletable. */
2582 ptr = bb_info->last_insn;
2583 while (ptr)
2584 {
2585 if (ptr->contains_cselib_groups)
2586 {
2587 store_info *s_info = ptr->store_rec;
2588 while (s_info && !s_info->is_set)
2589 s_info = s_info->next;
2590 if (s_info
2591 && s_info->redundant_reason
2592 && s_info->redundant_reason->insn
2593 && !ptr->cannot_delete)
2594 {
2595 if (dump_file && (dump_flags & TDF_DETAILS))
2596 fprintf (dump_file, "Locally deleting insn %d "
2597 "because insn %d stores the "
2598 "same value and couldn't be "
2599 "eliminated\n",
2600 INSN_UID (ptr->insn),
2601 INSN_UID (s_info->redundant_reason->insn));
2602 delete_dead_store_insn (ptr);
2603 }
2604 free_store_info (ptr);
2605 }
2606 else
2607 {
2608 store_info *s_info;
2609
2610 /* Free at least positions_needed bitmaps. */
2611 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2612 if (s_info->is_large)
2613 {
2614 BITMAP_FREE (s_info->positions_needed.large.bmap);
2615 s_info->is_large = false;
2616 }
2617 }
2618 ptr = ptr->prev_insn;
2619 }
2620
2621 cse_store_info_pool.release ();
2622 }
2623 bb_info->regs_live = NULL;
2624 }
2625
2626 BITMAP_FREE (regs_live);
2627 cselib_finish ();
2628 rtx_group_table->empty ();
2629 }
2630
2631 \f
2632 /*----------------------------------------------------------------------------
2633 Second step.
2634
2635 Assign each byte position in the stores that we are going to
2636 analyze globally to a position in the bitmaps. Returns true if
2637 there are any bit positions assigned.
2638 ----------------------------------------------------------------------------*/
2639
2640 static void
2641 dse_step2_init (void)
2642 {
2643 unsigned int i;
2644 group_info *group;
2645
2646 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2647 {
2648 /* For all non stack related bases, we only consider a store to
2649 be deletable if there are two or more stores for that
2650 position. This is because it takes one store to make the
2651 other store redundant. However, for the stores that are
2652 stack related, we consider them if there is only one store
2653 for the position. We do this because the stack related
2654 stores can be deleted if their is no read between them and
2655 the end of the function.
2656
2657 To make this work in the current framework, we take the stack
2658 related bases add all of the bits from store1 into store2.
2659 This has the effect of making the eligible even if there is
2660 only one store. */
2661
2662 if (stores_off_frame_dead_at_return && group->frame_related)
2663 {
2664 bitmap_ior_into (group->store2_n, group->store1_n);
2665 bitmap_ior_into (group->store2_p, group->store1_p);
2666 if (dump_file && (dump_flags & TDF_DETAILS))
2667 fprintf (dump_file, "group %d is frame related ", i);
2668 }
2669
2670 group->offset_map_size_n++;
2671 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2672 group->offset_map_size_n);
2673 group->offset_map_size_p++;
2674 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2675 group->offset_map_size_p);
2676 group->process_globally = false;
2677 if (dump_file && (dump_flags & TDF_DETAILS))
2678 {
2679 fprintf (dump_file, "group %d(%d+%d): ", i,
2680 (int)bitmap_count_bits (group->store2_n),
2681 (int)bitmap_count_bits (group->store2_p));
2682 bitmap_print (dump_file, group->store2_n, "n ", " ");
2683 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2684 }
2685 }
2686 }
2687
2688
2689 /* Init the offset tables. */
2690
2691 static bool
2692 dse_step2 (void)
2693 {
2694 unsigned int i;
2695 group_info *group;
2696 /* Position 0 is unused because 0 is used in the maps to mean
2697 unused. */
2698 current_position = 1;
2699 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2700 {
2701 bitmap_iterator bi;
2702 unsigned int j;
2703
2704 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2705 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2706 bitmap_clear (group->group_kill);
2707
2708 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2709 {
2710 bitmap_set_bit (group->group_kill, current_position);
2711 if (bitmap_bit_p (group->escaped_n, j))
2712 bitmap_set_bit (kill_on_calls, current_position);
2713 group->offset_map_n[j] = current_position++;
2714 group->process_globally = true;
2715 }
2716 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2717 {
2718 bitmap_set_bit (group->group_kill, current_position);
2719 if (bitmap_bit_p (group->escaped_p, j))
2720 bitmap_set_bit (kill_on_calls, current_position);
2721 group->offset_map_p[j] = current_position++;
2722 group->process_globally = true;
2723 }
2724 }
2725 return current_position != 1;
2726 }
2727
2728
2729 \f
2730 /*----------------------------------------------------------------------------
2731 Third step.
2732
2733 Build the bit vectors for the transfer functions.
2734 ----------------------------------------------------------------------------*/
2735
2736
2737 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2738 there, return 0. */
2739
2740 static int
2741 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2742 {
2743 if (offset < 0)
2744 {
2745 HOST_WIDE_INT offset_p = -offset;
2746 if (offset_p >= group_info->offset_map_size_n)
2747 return 0;
2748 return group_info->offset_map_n[offset_p];
2749 }
2750 else
2751 {
2752 if (offset >= group_info->offset_map_size_p)
2753 return 0;
2754 return group_info->offset_map_p[offset];
2755 }
2756 }
2757
2758
2759 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2760 may be NULL. */
2761
2762 static void
2763 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
2764 {
2765 while (store_info)
2766 {
2767 HOST_WIDE_INT i;
2768 group_info *group_info
2769 = rtx_group_vec[store_info->group_id];
2770 if (group_info->process_globally)
2771 for (i = store_info->begin; i < store_info->end; i++)
2772 {
2773 int index = get_bitmap_index (group_info, i);
2774 if (index != 0)
2775 {
2776 bitmap_set_bit (gen, index);
2777 if (kill)
2778 bitmap_clear_bit (kill, index);
2779 }
2780 }
2781 store_info = store_info->next;
2782 }
2783 }
2784
2785
2786 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2787 may be NULL. */
2788
2789 static void
2790 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
2791 {
2792 read_info_t read_info = insn_info->read_rec;
2793 int i;
2794 group_info *group;
2795
2796 /* If this insn reads the frame, kill all the frame related stores. */
2797 if (insn_info->frame_read)
2798 {
2799 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2800 if (group->process_globally && group->frame_related)
2801 {
2802 if (kill)
2803 bitmap_ior_into (kill, group->group_kill);
2804 bitmap_and_compl_into (gen, group->group_kill);
2805 }
2806 }
2807 if (insn_info->non_frame_wild_read)
2808 {
2809 /* Kill all non-frame related stores. Kill all stores of variables that
2810 escape. */
2811 if (kill)
2812 bitmap_ior_into (kill, kill_on_calls);
2813 bitmap_and_compl_into (gen, kill_on_calls);
2814 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2815 if (group->process_globally && !group->frame_related)
2816 {
2817 if (kill)
2818 bitmap_ior_into (kill, group->group_kill);
2819 bitmap_and_compl_into (gen, group->group_kill);
2820 }
2821 }
2822 while (read_info)
2823 {
2824 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2825 {
2826 if (group->process_globally)
2827 {
2828 if (i == read_info->group_id)
2829 {
2830 if (read_info->begin > read_info->end)
2831 {
2832 /* Begin > end for block mode reads. */
2833 if (kill)
2834 bitmap_ior_into (kill, group->group_kill);
2835 bitmap_and_compl_into (gen, group->group_kill);
2836 }
2837 else
2838 {
2839 /* The groups are the same, just process the
2840 offsets. */
2841 HOST_WIDE_INT j;
2842 for (j = read_info->begin; j < read_info->end; j++)
2843 {
2844 int index = get_bitmap_index (group, j);
2845 if (index != 0)
2846 {
2847 if (kill)
2848 bitmap_set_bit (kill, index);
2849 bitmap_clear_bit (gen, index);
2850 }
2851 }
2852 }
2853 }
2854 else
2855 {
2856 /* The groups are different, if the alias sets
2857 conflict, clear the entire group. We only need
2858 to apply this test if the read_info is a cselib
2859 read. Anything with a constant base cannot alias
2860 something else with a different constant
2861 base. */
2862 if ((read_info->group_id < 0)
2863 && canon_true_dependence (group->base_mem,
2864 GET_MODE (group->base_mem),
2865 group->canon_base_addr,
2866 read_info->mem, NULL_RTX))
2867 {
2868 if (kill)
2869 bitmap_ior_into (kill, group->group_kill);
2870 bitmap_and_compl_into (gen, group->group_kill);
2871 }
2872 }
2873 }
2874 }
2875
2876 read_info = read_info->next;
2877 }
2878 }
2879
2880
2881 /* Return the insn in BB_INFO before the first wild read or if there
2882 are no wild reads in the block, return the last insn. */
2883
2884 static insn_info_t
2885 find_insn_before_first_wild_read (bb_info_t bb_info)
2886 {
2887 insn_info_t insn_info = bb_info->last_insn;
2888 insn_info_t last_wild_read = NULL;
2889
2890 while (insn_info)
2891 {
2892 if (insn_info->wild_read)
2893 {
2894 last_wild_read = insn_info->prev_insn;
2895 /* Block starts with wild read. */
2896 if (!last_wild_read)
2897 return NULL;
2898 }
2899
2900 insn_info = insn_info->prev_insn;
2901 }
2902
2903 if (last_wild_read)
2904 return last_wild_read;
2905 else
2906 return bb_info->last_insn;
2907 }
2908
2909
2910 /* Scan the insns in BB_INFO starting at PTR and going to the top of
2911 the block in order to build the gen and kill sets for the block.
2912 We start at ptr which may be the last insn in the block or may be
2913 the first insn with a wild read. In the latter case we are able to
2914 skip the rest of the block because it just does not matter:
2915 anything that happens is hidden by the wild read. */
2916
2917 static void
2918 dse_step3_scan (basic_block bb)
2919 {
2920 bb_info_t bb_info = bb_table[bb->index];
2921 insn_info_t insn_info;
2922
2923 insn_info = find_insn_before_first_wild_read (bb_info);
2924
2925 /* In the spill case or in the no_spill case if there is no wild
2926 read in the block, we will need a kill set. */
2927 if (insn_info == bb_info->last_insn)
2928 {
2929 if (bb_info->kill)
2930 bitmap_clear (bb_info->kill);
2931 else
2932 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
2933 }
2934 else
2935 if (bb_info->kill)
2936 BITMAP_FREE (bb_info->kill);
2937
2938 while (insn_info)
2939 {
2940 /* There may have been code deleted by the dce pass run before
2941 this phase. */
2942 if (insn_info->insn && INSN_P (insn_info->insn))
2943 {
2944 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
2945 scan_reads (insn_info, bb_info->gen, bb_info->kill);
2946 }
2947
2948 insn_info = insn_info->prev_insn;
2949 }
2950 }
2951
2952
2953 /* Set the gen set of the exit block, and also any block with no
2954 successors that does not have a wild read. */
2955
2956 static void
2957 dse_step3_exit_block_scan (bb_info_t bb_info)
2958 {
2959 /* The gen set is all 0's for the exit block except for the
2960 frame_pointer_group. */
2961
2962 if (stores_off_frame_dead_at_return)
2963 {
2964 unsigned int i;
2965 group_info *group;
2966
2967 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2968 {
2969 if (group->process_globally && group->frame_related)
2970 bitmap_ior_into (bb_info->gen, group->group_kill);
2971 }
2972 }
2973 }
2974
2975
2976 /* Find all of the blocks that are not backwards reachable from the
2977 exit block or any block with no successors (BB). These are the
2978 infinite loops or infinite self loops. These blocks will still
2979 have their bits set in UNREACHABLE_BLOCKS. */
2980
2981 static void
2982 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
2983 {
2984 edge e;
2985 edge_iterator ei;
2986
2987 if (bitmap_bit_p (unreachable_blocks, bb->index))
2988 {
2989 bitmap_clear_bit (unreachable_blocks, bb->index);
2990 FOR_EACH_EDGE (e, ei, bb->preds)
2991 {
2992 mark_reachable_blocks (unreachable_blocks, e->src);
2993 }
2994 }
2995 }
2996
2997 /* Build the transfer functions for the function. */
2998
2999 static void
3000 dse_step3 ()
3001 {
3002 basic_block bb;
3003 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3004 sbitmap_iterator sbi;
3005 bitmap all_ones = NULL;
3006 unsigned int i;
3007
3008 bitmap_ones (unreachable_blocks);
3009
3010 FOR_ALL_BB_FN (bb, cfun)
3011 {
3012 bb_info_t bb_info = bb_table[bb->index];
3013 if (bb_info->gen)
3014 bitmap_clear (bb_info->gen);
3015 else
3016 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3017
3018 if (bb->index == ENTRY_BLOCK)
3019 ;
3020 else if (bb->index == EXIT_BLOCK)
3021 dse_step3_exit_block_scan (bb_info);
3022 else
3023 dse_step3_scan (bb);
3024 if (EDGE_COUNT (bb->succs) == 0)
3025 mark_reachable_blocks (unreachable_blocks, bb);
3026
3027 /* If this is the second time dataflow is run, delete the old
3028 sets. */
3029 if (bb_info->in)
3030 BITMAP_FREE (bb_info->in);
3031 if (bb_info->out)
3032 BITMAP_FREE (bb_info->out);
3033 }
3034
3035 /* For any block in an infinite loop, we must initialize the out set
3036 to all ones. This could be expensive, but almost never occurs in
3037 practice. However, it is common in regression tests. */
3038 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3039 {
3040 if (bitmap_bit_p (all_blocks, i))
3041 {
3042 bb_info_t bb_info = bb_table[i];
3043 if (!all_ones)
3044 {
3045 unsigned int j;
3046 group_info *group;
3047
3048 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3049 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3050 bitmap_ior_into (all_ones, group->group_kill);
3051 }
3052 if (!bb_info->out)
3053 {
3054 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3055 bitmap_copy (bb_info->out, all_ones);
3056 }
3057 }
3058 }
3059
3060 if (all_ones)
3061 BITMAP_FREE (all_ones);
3062 sbitmap_free (unreachable_blocks);
3063 }
3064
3065
3066 \f
3067 /*----------------------------------------------------------------------------
3068 Fourth step.
3069
3070 Solve the bitvector equations.
3071 ----------------------------------------------------------------------------*/
3072
3073
3074 /* Confluence function for blocks with no successors. Create an out
3075 set from the gen set of the exit block. This block logically has
3076 the exit block as a successor. */
3077
3078
3079
3080 static void
3081 dse_confluence_0 (basic_block bb)
3082 {
3083 bb_info_t bb_info = bb_table[bb->index];
3084
3085 if (bb->index == EXIT_BLOCK)
3086 return;
3087
3088 if (!bb_info->out)
3089 {
3090 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3091 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3092 }
3093 }
3094
3095 /* Propagate the information from the in set of the dest of E to the
3096 out set of the src of E. If the various in or out sets are not
3097 there, that means they are all ones. */
3098
3099 static bool
3100 dse_confluence_n (edge e)
3101 {
3102 bb_info_t src_info = bb_table[e->src->index];
3103 bb_info_t dest_info = bb_table[e->dest->index];
3104
3105 if (dest_info->in)
3106 {
3107 if (src_info->out)
3108 bitmap_and_into (src_info->out, dest_info->in);
3109 else
3110 {
3111 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3112 bitmap_copy (src_info->out, dest_info->in);
3113 }
3114 }
3115 return true;
3116 }
3117
3118
3119 /* Propagate the info from the out to the in set of BB_INDEX's basic
3120 block. There are three cases:
3121
3122 1) The block has no kill set. In this case the kill set is all
3123 ones. It does not matter what the out set of the block is, none of
3124 the info can reach the top. The only thing that reaches the top is
3125 the gen set and we just copy the set.
3126
3127 2) There is a kill set but no out set and bb has successors. In
3128 this case we just return. Eventually an out set will be created and
3129 it is better to wait than to create a set of ones.
3130
3131 3) There is both a kill and out set. We apply the obvious transfer
3132 function.
3133 */
3134
3135 static bool
3136 dse_transfer_function (int bb_index)
3137 {
3138 bb_info_t bb_info = bb_table[bb_index];
3139
3140 if (bb_info->kill)
3141 {
3142 if (bb_info->out)
3143 {
3144 /* Case 3 above. */
3145 if (bb_info->in)
3146 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3147 bb_info->out, bb_info->kill);
3148 else
3149 {
3150 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3151 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3152 bb_info->out, bb_info->kill);
3153 return true;
3154 }
3155 }
3156 else
3157 /* Case 2 above. */
3158 return false;
3159 }
3160 else
3161 {
3162 /* Case 1 above. If there is already an in set, nothing
3163 happens. */
3164 if (bb_info->in)
3165 return false;
3166 else
3167 {
3168 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3169 bitmap_copy (bb_info->in, bb_info->gen);
3170 return true;
3171 }
3172 }
3173 }
3174
3175 /* Solve the dataflow equations. */
3176
3177 static void
3178 dse_step4 (void)
3179 {
3180 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3181 dse_confluence_n, dse_transfer_function,
3182 all_blocks, df_get_postorder (DF_BACKWARD),
3183 df_get_n_blocks (DF_BACKWARD));
3184 if (dump_file && (dump_flags & TDF_DETAILS))
3185 {
3186 basic_block bb;
3187
3188 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3189 FOR_ALL_BB_FN (bb, cfun)
3190 {
3191 bb_info_t bb_info = bb_table[bb->index];
3192
3193 df_print_bb_index (bb, dump_file);
3194 if (bb_info->in)
3195 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3196 else
3197 fprintf (dump_file, " in: *MISSING*\n");
3198 if (bb_info->gen)
3199 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3200 else
3201 fprintf (dump_file, " gen: *MISSING*\n");
3202 if (bb_info->kill)
3203 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3204 else
3205 fprintf (dump_file, " kill: *MISSING*\n");
3206 if (bb_info->out)
3207 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3208 else
3209 fprintf (dump_file, " out: *MISSING*\n\n");
3210 }
3211 }
3212 }
3213
3214
3215 \f
3216 /*----------------------------------------------------------------------------
3217 Fifth step.
3218
3219 Delete the stores that can only be deleted using the global information.
3220 ----------------------------------------------------------------------------*/
3221
3222
3223 static void
3224 dse_step5 (void)
3225 {
3226 basic_block bb;
3227 FOR_EACH_BB_FN (bb, cfun)
3228 {
3229 bb_info_t bb_info = bb_table[bb->index];
3230 insn_info_t insn_info = bb_info->last_insn;
3231 bitmap v = bb_info->out;
3232
3233 while (insn_info)
3234 {
3235 bool deleted = false;
3236 if (dump_file && insn_info->insn)
3237 {
3238 fprintf (dump_file, "starting to process insn %d\n",
3239 INSN_UID (insn_info->insn));
3240 bitmap_print (dump_file, v, " v: ", "\n");
3241 }
3242
3243 /* There may have been code deleted by the dce pass run before
3244 this phase. */
3245 if (insn_info->insn
3246 && INSN_P (insn_info->insn)
3247 && (!insn_info->cannot_delete)
3248 && (!bitmap_empty_p (v)))
3249 {
3250 store_info *store_info = insn_info->store_rec;
3251
3252 /* Try to delete the current insn. */
3253 deleted = true;
3254
3255 /* Skip the clobbers. */
3256 while (!store_info->is_set)
3257 store_info = store_info->next;
3258
3259 HOST_WIDE_INT i;
3260 group_info *group_info = rtx_group_vec[store_info->group_id];
3261
3262 for (i = store_info->begin; i < store_info->end; i++)
3263 {
3264 int index = get_bitmap_index (group_info, i);
3265
3266 if (dump_file && (dump_flags & TDF_DETAILS))
3267 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3268 if (index == 0 || !bitmap_bit_p (v, index))
3269 {
3270 if (dump_file && (dump_flags & TDF_DETAILS))
3271 fprintf (dump_file, "failing at i = %d\n", (int)i);
3272 deleted = false;
3273 break;
3274 }
3275 }
3276 if (deleted)
3277 {
3278 if (dbg_cnt (dse)
3279 && check_for_inc_dec_1 (insn_info))
3280 {
3281 delete_insn (insn_info->insn);
3282 insn_info->insn = NULL;
3283 globally_deleted++;
3284 }
3285 }
3286 }
3287 /* We do want to process the local info if the insn was
3288 deleted. For instance, if the insn did a wild read, we
3289 no longer need to trash the info. */
3290 if (insn_info->insn
3291 && INSN_P (insn_info->insn)
3292 && (!deleted))
3293 {
3294 scan_stores (insn_info->store_rec, v, NULL);
3295 if (insn_info->wild_read)
3296 {
3297 if (dump_file && (dump_flags & TDF_DETAILS))
3298 fprintf (dump_file, "wild read\n");
3299 bitmap_clear (v);
3300 }
3301 else if (insn_info->read_rec
3302 || insn_info->non_frame_wild_read)
3303 {
3304 if (dump_file && !insn_info->non_frame_wild_read)
3305 fprintf (dump_file, "regular read\n");
3306 else if (dump_file && (dump_flags & TDF_DETAILS))
3307 fprintf (dump_file, "non-frame wild read\n");
3308 scan_reads (insn_info, v, NULL);
3309 }
3310 }
3311
3312 insn_info = insn_info->prev_insn;
3313 }
3314 }
3315 }
3316
3317
3318 \f
3319 /*----------------------------------------------------------------------------
3320 Sixth step.
3321
3322 Delete stores made redundant by earlier stores (which store the same
3323 value) that couldn't be eliminated.
3324 ----------------------------------------------------------------------------*/
3325
3326 static void
3327 dse_step6 (void)
3328 {
3329 basic_block bb;
3330
3331 FOR_ALL_BB_FN (bb, cfun)
3332 {
3333 bb_info_t bb_info = bb_table[bb->index];
3334 insn_info_t insn_info = bb_info->last_insn;
3335
3336 while (insn_info)
3337 {
3338 /* There may have been code deleted by the dce pass run before
3339 this phase. */
3340 if (insn_info->insn
3341 && INSN_P (insn_info->insn)
3342 && !insn_info->cannot_delete)
3343 {
3344 store_info *s_info = insn_info->store_rec;
3345
3346 while (s_info && !s_info->is_set)
3347 s_info = s_info->next;
3348 if (s_info
3349 && s_info->redundant_reason
3350 && s_info->redundant_reason->insn
3351 && INSN_P (s_info->redundant_reason->insn))
3352 {
3353 rtx_insn *rinsn = s_info->redundant_reason->insn;
3354 if (dump_file && (dump_flags & TDF_DETAILS))
3355 fprintf (dump_file, "Locally deleting insn %d "
3356 "because insn %d stores the "
3357 "same value and couldn't be "
3358 "eliminated\n",
3359 INSN_UID (insn_info->insn),
3360 INSN_UID (rinsn));
3361 delete_dead_store_insn (insn_info);
3362 }
3363 }
3364 insn_info = insn_info->prev_insn;
3365 }
3366 }
3367 }
3368 \f
3369 /*----------------------------------------------------------------------------
3370 Seventh step.
3371
3372 Destroy everything left standing.
3373 ----------------------------------------------------------------------------*/
3374
3375 static void
3376 dse_step7 (void)
3377 {
3378 bitmap_obstack_release (&dse_bitmap_obstack);
3379 obstack_free (&dse_obstack, NULL);
3380
3381 end_alias_analysis ();
3382 free (bb_table);
3383 delete rtx_group_table;
3384 rtx_group_table = NULL;
3385 rtx_group_vec.release ();
3386 BITMAP_FREE (all_blocks);
3387 BITMAP_FREE (scratch);
3388
3389 rtx_store_info_pool.release ();
3390 read_info_type_pool.release ();
3391 insn_info_type_pool.release ();
3392 dse_bb_info_type_pool.release ();
3393 group_info_pool.release ();
3394 deferred_change_pool.release ();
3395 }
3396
3397
3398 /* -------------------------------------------------------------------------
3399 DSE
3400 ------------------------------------------------------------------------- */
3401
3402 /* Callback for running pass_rtl_dse. */
3403
3404 static unsigned int
3405 rest_of_handle_dse (void)
3406 {
3407 df_set_flags (DF_DEFER_INSN_RESCAN);
3408
3409 /* Need the notes since we must track live hardregs in the forwards
3410 direction. */
3411 df_note_add_problem ();
3412 df_analyze ();
3413
3414 dse_step0 ();
3415 dse_step1 ();
3416 dse_step2_init ();
3417 if (dse_step2 ())
3418 {
3419 df_set_flags (DF_LR_RUN_DCE);
3420 df_analyze ();
3421 if (dump_file && (dump_flags & TDF_DETAILS))
3422 fprintf (dump_file, "doing global processing\n");
3423 dse_step3 ();
3424 dse_step4 ();
3425 dse_step5 ();
3426 }
3427
3428 dse_step6 ();
3429 dse_step7 ();
3430
3431 if (dump_file)
3432 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3433 locally_deleted, globally_deleted);
3434
3435 /* DSE can eliminate potentially-trapping MEMs.
3436 Remove any EH edges associated with them. */
3437 if ((locally_deleted || globally_deleted)
3438 && cfun->can_throw_non_call_exceptions
3439 && purge_all_dead_edges ())
3440 cleanup_cfg (0);
3441
3442 return 0;
3443 }
3444
3445 namespace {
3446
3447 const pass_data pass_data_rtl_dse1 =
3448 {
3449 RTL_PASS, /* type */
3450 "dse1", /* name */
3451 OPTGROUP_NONE, /* optinfo_flags */
3452 TV_DSE1, /* tv_id */
3453 0, /* properties_required */
3454 0, /* properties_provided */
3455 0, /* properties_destroyed */
3456 0, /* todo_flags_start */
3457 TODO_df_finish, /* todo_flags_finish */
3458 };
3459
3460 class pass_rtl_dse1 : public rtl_opt_pass
3461 {
3462 public:
3463 pass_rtl_dse1 (gcc::context *ctxt)
3464 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3465 {}
3466
3467 /* opt_pass methods: */
3468 virtual bool gate (function *)
3469 {
3470 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3471 }
3472
3473 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3474
3475 }; // class pass_rtl_dse1
3476
3477 } // anon namespace
3478
3479 rtl_opt_pass *
3480 make_pass_rtl_dse1 (gcc::context *ctxt)
3481 {
3482 return new pass_rtl_dse1 (ctxt);
3483 }
3484
3485 namespace {
3486
3487 const pass_data pass_data_rtl_dse2 =
3488 {
3489 RTL_PASS, /* type */
3490 "dse2", /* name */
3491 OPTGROUP_NONE, /* optinfo_flags */
3492 TV_DSE2, /* tv_id */
3493 0, /* properties_required */
3494 0, /* properties_provided */
3495 0, /* properties_destroyed */
3496 0, /* todo_flags_start */
3497 TODO_df_finish, /* todo_flags_finish */
3498 };
3499
3500 class pass_rtl_dse2 : public rtl_opt_pass
3501 {
3502 public:
3503 pass_rtl_dse2 (gcc::context *ctxt)
3504 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3505 {}
3506
3507 /* opt_pass methods: */
3508 virtual bool gate (function *)
3509 {
3510 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3511 }
3512
3513 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3514
3515 }; // class pass_rtl_dse2
3516
3517 } // anon namespace
3518
3519 rtl_opt_pass *
3520 make_pass_rtl_dse2 (gcc::context *ctxt)
3521 {
3522 return new pass_rtl_dse2 (ctxt);
3523 }