]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dse.c
poly_int: dse.c
[thirdparty/gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "params.h"
51 #include "rtl-iter.h"
52 #include "cfgcleanup.h"
53
54 /* This file contains three techniques for performing Dead Store
55 Elimination (dse).
56
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
61
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
65
66 * The third technique, (which is only done after register allocation)
67 processes the spill slots. This differs from the second
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
70
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
76
77 The pass is logically broken into 7 steps:
78
79 0) Initialization.
80
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
83
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
90
91 3) Set up the global dataflow equations based on processing the
92 info parsed in the first step.
93
94 4) Solve the dataflow equations.
95
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
98
99 6) Delete insns that store the same value as preceding store
100 where the earlier store couldn't be eliminated.
101
102 7) Cleanup.
103
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
108 forwards ordering is to accommodate cselib.
109
110 We make a simplifying assumption: addresses fall into four broad
111 categories:
112
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
117
118 The local passes are able to process all 4 kinds of addresses. The
119 global pass only handles 1).
120
121 The global problem is formulated as follows:
122
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
125 function contain another store to A before a read to A.
126
127 If the address A is relative to the stack frame, a store S2 to A
128 can be eliminated if there are no paths from S2 that reach the
129 end of the function that read A before another store to A. In
130 this case S2 can be deleted if there are paths from S2 to the
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
136
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
141 implementation requires a lot of bitmaps filled with 1s.
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
145 for details.
146
147 There are two places for further enhancements to this algorithm:
148
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
151
152 A <- r100
153 ... <- A
154
155 flow would replace the right hand side of the second insn with a
156 reference to r100. Most of the information is available to add this
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
161
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
175
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
184
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
190 off the frame pointer, the global algorithm handles this slot.
191
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
195 required is to have those passes make the same calls that reload
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
198
199 /* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203 #define MAX_OFFSET (64 * 1024)
204
205 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211 static bitmap_obstack dse_bitmap_obstack;
212
213 /* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215 static struct obstack dse_obstack;
216
217 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
218 static bitmap scratch = NULL;
219
220 struct insn_info_type;
221
222 /* This structure holds information about a candidate store. */
223 struct store_info
224 {
225
226 /* False means this is a clobber. */
227 bool is_set;
228
229 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
230 bool is_large;
231
232 /* The id of the mem group of the base address. If rtx_varies_p is
233 true, this is -1. Otherwise, it is the index into the group
234 table. */
235 int group_id;
236
237 /* This is the cselib value. */
238 cselib_val *cse_base;
239
240 /* This canonized mem. */
241 rtx mem;
242
243 /* Canonized MEM address for use by canon_true_dependence. */
244 rtx mem_addr;
245
246 /* The offset of the first byte associated with the operation. */
247 poly_int64 offset;
248
249 /* The number of bytes covered by the operation. This is always exact
250 and known (rather than -1). */
251 poly_int64 width;
252
253 union
254 {
255 /* A bitmask as wide as the number of bytes in the word that
256 contains a 1 if the byte may be needed. The store is unused if
257 all of the bits are 0. This is used if IS_LARGE is false. */
258 unsigned HOST_WIDE_INT small_bitmask;
259
260 struct
261 {
262 /* A bitmap with one bit per byte, or null if the number of
263 bytes isn't known at compile time. A cleared bit means
264 the position is needed. Used if IS_LARGE is true. */
265 bitmap bmap;
266
267 /* When BITMAP is nonnull, this counts the number of set bits
268 (i.e. unneeded bytes) in the bitmap. If it is equal to
269 WIDTH, the whole store is unused.
270
271 When BITMAP is null:
272 - the store is definitely not needed when COUNT == 1
273 - all the store is needed when COUNT == 0 and RHS is nonnull
274 - otherwise we don't know which parts of the store are needed. */
275 int count;
276 } large;
277 } positions_needed;
278
279 /* The next store info for this insn. */
280 struct store_info *next;
281
282 /* The right hand side of the store. This is used if there is a
283 subsequent reload of the mems address somewhere later in the
284 basic block. */
285 rtx rhs;
286
287 /* If rhs is or holds a constant, this contains that constant,
288 otherwise NULL. */
289 rtx const_rhs;
290
291 /* Set if this store stores the same constant value as REDUNDANT_REASON
292 insn stored. These aren't eliminated early, because doing that
293 might prevent the earlier larger store to be eliminated. */
294 struct insn_info_type *redundant_reason;
295 };
296
297 /* Return a bitmask with the first N low bits set. */
298
299 static unsigned HOST_WIDE_INT
300 lowpart_bitmask (int n)
301 {
302 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
303 return mask >> (HOST_BITS_PER_WIDE_INT - n);
304 }
305
306 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
307
308 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
309
310 /* This structure holds information about a load. These are only
311 built for rtx bases. */
312 struct read_info_type
313 {
314 /* The id of the mem group of the base address. */
315 int group_id;
316
317 /* The offset of the first byte associated with the operation. */
318 poly_int64 offset;
319
320 /* The number of bytes covered by the operation, or -1 if not known. */
321 poly_int64 width;
322
323 /* The mem being read. */
324 rtx mem;
325
326 /* The next read_info for this insn. */
327 struct read_info_type *next;
328 };
329 typedef struct read_info_type *read_info_t;
330
331 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
332
333 /* One of these records is created for each insn. */
334
335 struct insn_info_type
336 {
337 /* Set true if the insn contains a store but the insn itself cannot
338 be deleted. This is set if the insn is a parallel and there is
339 more than one non dead output or if the insn is in some way
340 volatile. */
341 bool cannot_delete;
342
343 /* This field is only used by the global algorithm. It is set true
344 if the insn contains any read of mem except for a (1). This is
345 also set if the insn is a call or has a clobber mem. If the insn
346 contains a wild read, the use_rec will be null. */
347 bool wild_read;
348
349 /* This is true only for CALL instructions which could potentially read
350 any non-frame memory location. This field is used by the global
351 algorithm. */
352 bool non_frame_wild_read;
353
354 /* This field is only used for the processing of const functions.
355 These functions cannot read memory, but they can read the stack
356 because that is where they may get their parms. We need to be
357 this conservative because, like the store motion pass, we don't
358 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
359 Moreover, we need to distinguish two cases:
360 1. Before reload (register elimination), the stores related to
361 outgoing arguments are stack pointer based and thus deemed
362 of non-constant base in this pass. This requires special
363 handling but also means that the frame pointer based stores
364 need not be killed upon encountering a const function call.
365 2. After reload, the stores related to outgoing arguments can be
366 either stack pointer or hard frame pointer based. This means
367 that we have no other choice than also killing all the frame
368 pointer based stores upon encountering a const function call.
369 This field is set after reload for const function calls and before
370 reload for const tail function calls on targets where arg pointer
371 is the frame pointer. Having this set is less severe than a wild
372 read, it just means that all the frame related stores are killed
373 rather than all the stores. */
374 bool frame_read;
375
376 /* This field is only used for the processing of const functions.
377 It is set if the insn may contain a stack pointer based store. */
378 bool stack_pointer_based;
379
380 /* This is true if any of the sets within the store contains a
381 cselib base. Such stores can only be deleted by the local
382 algorithm. */
383 bool contains_cselib_groups;
384
385 /* The insn. */
386 rtx_insn *insn;
387
388 /* The list of mem sets or mem clobbers that are contained in this
389 insn. If the insn is deletable, it contains only one mem set.
390 But it could also contain clobbers. Insns that contain more than
391 one mem set are not deletable, but each of those mems are here in
392 order to provide info to delete other insns. */
393 store_info *store_rec;
394
395 /* The linked list of mem uses in this insn. Only the reads from
396 rtx bases are listed here. The reads to cselib bases are
397 completely processed during the first scan and so are never
398 created. */
399 read_info_t read_rec;
400
401 /* The live fixed registers. We assume only fixed registers can
402 cause trouble by being clobbered from an expanded pattern;
403 storing only the live fixed registers (rather than all registers)
404 means less memory needs to be allocated / copied for the individual
405 stores. */
406 regset fixed_regs_live;
407
408 /* The prev insn in the basic block. */
409 struct insn_info_type * prev_insn;
410
411 /* The linked list of insns that are in consideration for removal in
412 the forwards pass through the basic block. This pointer may be
413 trash as it is not cleared when a wild read occurs. The only
414 time it is guaranteed to be correct is when the traversal starts
415 at active_local_stores. */
416 struct insn_info_type * next_local_store;
417 };
418 typedef struct insn_info_type *insn_info_t;
419
420 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
421
422 /* The linked list of stores that are under consideration in this
423 basic block. */
424 static insn_info_t active_local_stores;
425 static int active_local_stores_len;
426
427 struct dse_bb_info_type
428 {
429 /* Pointer to the insn info for the last insn in the block. These
430 are linked so this is how all of the insns are reached. During
431 scanning this is the current insn being scanned. */
432 insn_info_t last_insn;
433
434 /* The info for the global dataflow problem. */
435
436
437 /* This is set if the transfer function should and in the wild_read
438 bitmap before applying the kill and gen sets. That vector knocks
439 out most of the bits in the bitmap and thus speeds up the
440 operations. */
441 bool apply_wild_read;
442
443 /* The following 4 bitvectors hold information about which positions
444 of which stores are live or dead. They are indexed by
445 get_bitmap_index. */
446
447 /* The set of store positions that exist in this block before a wild read. */
448 bitmap gen;
449
450 /* The set of load positions that exist in this block above the
451 same position of a store. */
452 bitmap kill;
453
454 /* The set of stores that reach the top of the block without being
455 killed by a read.
456
457 Do not represent the in if it is all ones. Note that this is
458 what the bitvector should logically be initialized to for a set
459 intersection problem. However, like the kill set, this is too
460 expensive. So initially, the in set will only be created for the
461 exit block and any block that contains a wild read. */
462 bitmap in;
463
464 /* The set of stores that reach the bottom of the block from it's
465 successors.
466
467 Do not represent the in if it is all ones. Note that this is
468 what the bitvector should logically be initialized to for a set
469 intersection problem. However, like the kill and in set, this is
470 too expensive. So what is done is that the confluence operator
471 just initializes the vector from one of the out sets of the
472 successors of the block. */
473 bitmap out;
474
475 /* The following bitvector is indexed by the reg number. It
476 contains the set of regs that are live at the current instruction
477 being processed. While it contains info for all of the
478 registers, only the hard registers are actually examined. It is used
479 to assure that shift and/or add sequences that are inserted do not
480 accidentally clobber live hard regs. */
481 bitmap regs_live;
482 };
483
484 typedef struct dse_bb_info_type *bb_info_t;
485
486 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
487 ("bb_info_pool");
488
489 /* Table to hold all bb_infos. */
490 static bb_info_t *bb_table;
491
492 /* There is a group_info for each rtx base that is used to reference
493 memory. There are also not many of the rtx bases because they are
494 very limited in scope. */
495
496 struct group_info
497 {
498 /* The actual base of the address. */
499 rtx rtx_base;
500
501 /* The sequential id of the base. This allows us to have a
502 canonical ordering of these that is not based on addresses. */
503 int id;
504
505 /* True if there are any positions that are to be processed
506 globally. */
507 bool process_globally;
508
509 /* True if the base of this group is either the frame_pointer or
510 hard_frame_pointer. */
511 bool frame_related;
512
513 /* A mem wrapped around the base pointer for the group in order to do
514 read dependency. It must be given BLKmode in order to encompass all
515 the possible offsets from the base. */
516 rtx base_mem;
517
518 /* Canonized version of base_mem's address. */
519 rtx canon_base_addr;
520
521 /* These two sets of two bitmaps are used to keep track of how many
522 stores are actually referencing that position from this base. We
523 only do this for rtx bases as this will be used to assign
524 positions in the bitmaps for the global problem. Bit N is set in
525 store1 on the first store for offset N. Bit N is set in store2
526 for the second store to offset N. This is all we need since we
527 only care about offsets that have two or more stores for them.
528
529 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
530 for 0 and greater offsets.
531
532 There is one special case here, for stores into the stack frame,
533 we will or store1 into store2 before deciding which stores look
534 at globally. This is because stores to the stack frame that have
535 no other reads before the end of the function can also be
536 deleted. */
537 bitmap store1_n, store1_p, store2_n, store2_p;
538
539 /* These bitmaps keep track of offsets in this group escape this function.
540 An offset escapes if it corresponds to a named variable whose
541 addressable flag is set. */
542 bitmap escaped_n, escaped_p;
543
544 /* The positions in this bitmap have the same assignments as the in,
545 out, gen and kill bitmaps. This bitmap is all zeros except for
546 the positions that are occupied by stores for this group. */
547 bitmap group_kill;
548
549 /* The offset_map is used to map the offsets from this base into
550 positions in the global bitmaps. It is only created after all of
551 the all of stores have been scanned and we know which ones we
552 care about. */
553 int *offset_map_n, *offset_map_p;
554 int offset_map_size_n, offset_map_size_p;
555 };
556
557 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
558
559 /* Index into the rtx_group_vec. */
560 static int rtx_group_next_id;
561
562
563 static vec<group_info *> rtx_group_vec;
564
565
566 /* This structure holds the set of changes that are being deferred
567 when removing read operation. See replace_read. */
568 struct deferred_change
569 {
570
571 /* The mem that is being replaced. */
572 rtx *loc;
573
574 /* The reg it is being replaced with. */
575 rtx reg;
576
577 struct deferred_change *next;
578 };
579
580 static object_allocator<deferred_change> deferred_change_pool
581 ("deferred_change_pool");
582
583 static deferred_change *deferred_change_list = NULL;
584
585 /* This is true except if cfun->stdarg -- i.e. we cannot do
586 this for vararg functions because they play games with the frame. */
587 static bool stores_off_frame_dead_at_return;
588
589 /* Counter for stats. */
590 static int globally_deleted;
591 static int locally_deleted;
592
593 static bitmap all_blocks;
594
595 /* Locations that are killed by calls in the global phase. */
596 static bitmap kill_on_calls;
597
598 /* The number of bits used in the global bitmaps. */
599 static unsigned int current_position;
600
601 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
602
603 static void
604 print_range (FILE *file, poly_int64 offset, poly_int64 width)
605 {
606 fprintf (file, "[");
607 print_dec (offset, file, SIGNED);
608 fprintf (file, "..");
609 print_dec (offset + width, file, SIGNED);
610 fprintf (file, ")");
611 }
612 \f
613 /*----------------------------------------------------------------------------
614 Zeroth step.
615
616 Initialization.
617 ----------------------------------------------------------------------------*/
618
619
620 /* Hashtable callbacks for maintaining the "bases" field of
621 store_group_info, given that the addresses are function invariants. */
622
623 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
624 {
625 static inline hashval_t hash (const group_info *);
626 static inline bool equal (const group_info *, const group_info *);
627 };
628
629 inline bool
630 invariant_group_base_hasher::equal (const group_info *gi1,
631 const group_info *gi2)
632 {
633 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
634 }
635
636 inline hashval_t
637 invariant_group_base_hasher::hash (const group_info *gi)
638 {
639 int do_not_record;
640 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
641 }
642
643 /* Tables of group_info structures, hashed by base value. */
644 static hash_table<invariant_group_base_hasher> *rtx_group_table;
645
646
647 /* Get the GROUP for BASE. Add a new group if it is not there. */
648
649 static group_info *
650 get_group_info (rtx base)
651 {
652 struct group_info tmp_gi;
653 group_info *gi;
654 group_info **slot;
655
656 gcc_assert (base != NULL_RTX);
657
658 /* Find the store_base_info structure for BASE, creating a new one
659 if necessary. */
660 tmp_gi.rtx_base = base;
661 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
662 gi = *slot;
663
664 if (gi == NULL)
665 {
666 *slot = gi = group_info_pool.allocate ();
667 gi->rtx_base = base;
668 gi->id = rtx_group_next_id++;
669 gi->base_mem = gen_rtx_MEM (BLKmode, base);
670 gi->canon_base_addr = canon_rtx (base);
671 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
672 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
673 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
674 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->process_globally = false;
679 gi->frame_related =
680 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
681 gi->offset_map_size_n = 0;
682 gi->offset_map_size_p = 0;
683 gi->offset_map_n = NULL;
684 gi->offset_map_p = NULL;
685 rtx_group_vec.safe_push (gi);
686 }
687
688 return gi;
689 }
690
691
692 /* Initialization of data structures. */
693
694 static void
695 dse_step0 (void)
696 {
697 locally_deleted = 0;
698 globally_deleted = 0;
699
700 bitmap_obstack_initialize (&dse_bitmap_obstack);
701 gcc_obstack_init (&dse_obstack);
702
703 scratch = BITMAP_ALLOC (&reg_obstack);
704 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
705
706
707 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
708
709 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
710 rtx_group_next_id = 0;
711
712 stores_off_frame_dead_at_return = !cfun->stdarg;
713
714 init_alias_analysis ();
715 }
716
717
718 \f
719 /*----------------------------------------------------------------------------
720 First step.
721
722 Scan all of the insns. Any random ordering of the blocks is fine.
723 Each block is scanned in forward order to accommodate cselib which
724 is used to remove stores with non-constant bases.
725 ----------------------------------------------------------------------------*/
726
727 /* Delete all of the store_info recs from INSN_INFO. */
728
729 static void
730 free_store_info (insn_info_t insn_info)
731 {
732 store_info *cur = insn_info->store_rec;
733 while (cur)
734 {
735 store_info *next = cur->next;
736 if (cur->is_large)
737 BITMAP_FREE (cur->positions_needed.large.bmap);
738 if (cur->cse_base)
739 cse_store_info_pool.remove (cur);
740 else
741 rtx_store_info_pool.remove (cur);
742 cur = next;
743 }
744
745 insn_info->cannot_delete = true;
746 insn_info->contains_cselib_groups = false;
747 insn_info->store_rec = NULL;
748 }
749
750 struct note_add_store_info
751 {
752 rtx_insn *first, *current;
753 regset fixed_regs_live;
754 bool failure;
755 };
756
757 /* Callback for emit_inc_dec_insn_before via note_stores.
758 Check if a register is clobbered which is live afterwards. */
759
760 static void
761 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
762 {
763 rtx_insn *insn;
764 note_add_store_info *info = (note_add_store_info *) data;
765
766 if (!REG_P (loc))
767 return;
768
769 /* If this register is referenced by the current or an earlier insn,
770 that's OK. E.g. this applies to the register that is being incremented
771 with this addition. */
772 for (insn = info->first;
773 insn != NEXT_INSN (info->current);
774 insn = NEXT_INSN (insn))
775 if (reg_referenced_p (loc, PATTERN (insn)))
776 return;
777
778 /* If we come here, we have a clobber of a register that's only OK
779 if that register is not live. If we don't have liveness information
780 available, fail now. */
781 if (!info->fixed_regs_live)
782 {
783 info->failure = true;
784 return;
785 }
786 /* Now check if this is a live fixed register. */
787 unsigned int end_regno = END_REGNO (loc);
788 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
789 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
790 info->failure = true;
791 }
792
793 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
794 SRC + SRCOFF before insn ARG. */
795
796 static int
797 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
798 rtx op ATTRIBUTE_UNUSED,
799 rtx dest, rtx src, rtx srcoff, void *arg)
800 {
801 insn_info_t insn_info = (insn_info_t) arg;
802 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
803 note_add_store_info info;
804
805 /* We can reuse all operands without copying, because we are about
806 to delete the insn that contained it. */
807 if (srcoff)
808 {
809 start_sequence ();
810 emit_insn (gen_add3_insn (dest, src, srcoff));
811 new_insn = get_insns ();
812 end_sequence ();
813 }
814 else
815 new_insn = gen_move_insn (dest, src);
816 info.first = new_insn;
817 info.fixed_regs_live = insn_info->fixed_regs_live;
818 info.failure = false;
819 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
820 {
821 info.current = cur;
822 note_stores (PATTERN (cur), note_add_store, &info);
823 }
824
825 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
826 return it immediately, communicating the failure to its caller. */
827 if (info.failure)
828 return 1;
829
830 emit_insn_before (new_insn, insn);
831
832 return 0;
833 }
834
835 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
836 is there, is split into a separate insn.
837 Return true on success (or if there was nothing to do), false on failure. */
838
839 static bool
840 check_for_inc_dec_1 (insn_info_t insn_info)
841 {
842 rtx_insn *insn = insn_info->insn;
843 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
844 if (note)
845 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
846 insn_info) == 0;
847 return true;
848 }
849
850
851 /* Entry point for postreload. If you work on reload_cse, or you need this
852 anywhere else, consider if you can provide register liveness information
853 and add a parameter to this function so that it can be passed down in
854 insn_info.fixed_regs_live. */
855 bool
856 check_for_inc_dec (rtx_insn *insn)
857 {
858 insn_info_type insn_info;
859 rtx note;
860
861 insn_info.insn = insn;
862 insn_info.fixed_regs_live = NULL;
863 note = find_reg_note (insn, REG_INC, NULL_RTX);
864 if (note)
865 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
866 &insn_info) == 0;
867 return true;
868 }
869
870 /* Delete the insn and free all of the fields inside INSN_INFO. */
871
872 static void
873 delete_dead_store_insn (insn_info_t insn_info)
874 {
875 read_info_t read_info;
876
877 if (!dbg_cnt (dse))
878 return;
879
880 if (!check_for_inc_dec_1 (insn_info))
881 return;
882 if (dump_file && (dump_flags & TDF_DETAILS))
883 fprintf (dump_file, "Locally deleting insn %d\n",
884 INSN_UID (insn_info->insn));
885
886 free_store_info (insn_info);
887 read_info = insn_info->read_rec;
888
889 while (read_info)
890 {
891 read_info_t next = read_info->next;
892 read_info_type_pool.remove (read_info);
893 read_info = next;
894 }
895 insn_info->read_rec = NULL;
896
897 delete_insn (insn_info->insn);
898 locally_deleted++;
899 insn_info->insn = NULL;
900
901 insn_info->wild_read = false;
902 }
903
904 /* Return whether DECL, a local variable, can possibly escape the current
905 function scope. */
906
907 static bool
908 local_variable_can_escape (tree decl)
909 {
910 if (TREE_ADDRESSABLE (decl))
911 return true;
912
913 /* If this is a partitioned variable, we need to consider all the variables
914 in the partition. This is necessary because a store into one of them can
915 be replaced with a store into another and this may not change the outcome
916 of the escape analysis. */
917 if (cfun->gimple_df->decls_to_pointers != NULL)
918 {
919 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
920 if (namep)
921 return TREE_ADDRESSABLE (*namep);
922 }
923
924 return false;
925 }
926
927 /* Return whether EXPR can possibly escape the current function scope. */
928
929 static bool
930 can_escape (tree expr)
931 {
932 tree base;
933 if (!expr)
934 return true;
935 base = get_base_address (expr);
936 if (DECL_P (base)
937 && !may_be_aliased (base)
938 && !(VAR_P (base)
939 && !DECL_EXTERNAL (base)
940 && !TREE_STATIC (base)
941 && local_variable_can_escape (base)))
942 return false;
943 return true;
944 }
945
946 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
947 OFFSET and WIDTH. */
948
949 static void
950 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
951 tree expr)
952 {
953 /* Non-constant offsets and widths act as global kills, so there's no point
954 trying to use them to derive global DSE candidates. */
955 HOST_WIDE_INT i, const_offset, const_width;
956 bool expr_escapes = can_escape (expr);
957 if (offset.is_constant (&const_offset)
958 && width.is_constant (&const_width)
959 && const_offset > -MAX_OFFSET
960 && const_offset + const_width < MAX_OFFSET)
961 for (i = const_offset; i < const_offset + const_width; ++i)
962 {
963 bitmap store1;
964 bitmap store2;
965 bitmap escaped;
966 int ai;
967 if (i < 0)
968 {
969 store1 = group->store1_n;
970 store2 = group->store2_n;
971 escaped = group->escaped_n;
972 ai = -i;
973 }
974 else
975 {
976 store1 = group->store1_p;
977 store2 = group->store2_p;
978 escaped = group->escaped_p;
979 ai = i;
980 }
981
982 if (!bitmap_set_bit (store1, ai))
983 bitmap_set_bit (store2, ai);
984 else
985 {
986 if (i < 0)
987 {
988 if (group->offset_map_size_n < ai)
989 group->offset_map_size_n = ai;
990 }
991 else
992 {
993 if (group->offset_map_size_p < ai)
994 group->offset_map_size_p = ai;
995 }
996 }
997 if (expr_escapes)
998 bitmap_set_bit (escaped, ai);
999 }
1000 }
1001
1002 static void
1003 reset_active_stores (void)
1004 {
1005 active_local_stores = NULL;
1006 active_local_stores_len = 0;
1007 }
1008
1009 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1010
1011 static void
1012 free_read_records (bb_info_t bb_info)
1013 {
1014 insn_info_t insn_info = bb_info->last_insn;
1015 read_info_t *ptr = &insn_info->read_rec;
1016 while (*ptr)
1017 {
1018 read_info_t next = (*ptr)->next;
1019 read_info_type_pool.remove (*ptr);
1020 *ptr = next;
1021 }
1022 }
1023
1024 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1025
1026 static void
1027 add_wild_read (bb_info_t bb_info)
1028 {
1029 insn_info_t insn_info = bb_info->last_insn;
1030 insn_info->wild_read = true;
1031 free_read_records (bb_info);
1032 reset_active_stores ();
1033 }
1034
1035 /* Set the BB_INFO so that the last insn is marked as a wild read of
1036 non-frame locations. */
1037
1038 static void
1039 add_non_frame_wild_read (bb_info_t bb_info)
1040 {
1041 insn_info_t insn_info = bb_info->last_insn;
1042 insn_info->non_frame_wild_read = true;
1043 free_read_records (bb_info);
1044 reset_active_stores ();
1045 }
1046
1047 /* Return true if X is a constant or one of the registers that behave
1048 as a constant over the life of a function. This is equivalent to
1049 !rtx_varies_p for memory addresses. */
1050
1051 static bool
1052 const_or_frame_p (rtx x)
1053 {
1054 if (CONSTANT_P (x))
1055 return true;
1056
1057 if (GET_CODE (x) == REG)
1058 {
1059 /* Note that we have to test for the actual rtx used for the frame
1060 and arg pointers and not just the register number in case we have
1061 eliminated the frame and/or arg pointer and are using it
1062 for pseudos. */
1063 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1064 /* The arg pointer varies if it is not a fixed register. */
1065 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1066 || x == pic_offset_table_rtx)
1067 return true;
1068 return false;
1069 }
1070
1071 return false;
1072 }
1073
1074 /* Take all reasonable action to put the address of MEM into the form
1075 that we can do analysis on.
1076
1077 The gold standard is to get the address into the form: address +
1078 OFFSET where address is something that rtx_varies_p considers a
1079 constant. When we can get the address in this form, we can do
1080 global analysis on it. Note that for constant bases, address is
1081 not actually returned, only the group_id. The address can be
1082 obtained from that.
1083
1084 If that fails, we try cselib to get a value we can at least use
1085 locally. If that fails we return false.
1086
1087 The GROUP_ID is set to -1 for cselib bases and the index of the
1088 group for non_varying bases.
1089
1090 FOR_READ is true if this is a mem read and false if not. */
1091
1092 static bool
1093 canon_address (rtx mem,
1094 int *group_id,
1095 poly_int64 *offset,
1096 cselib_val **base)
1097 {
1098 machine_mode address_mode = get_address_mode (mem);
1099 rtx mem_address = XEXP (mem, 0);
1100 rtx expanded_address, address;
1101 int expanded;
1102
1103 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1104
1105 if (dump_file && (dump_flags & TDF_DETAILS))
1106 {
1107 fprintf (dump_file, " mem: ");
1108 print_inline_rtx (dump_file, mem_address, 0);
1109 fprintf (dump_file, "\n");
1110 }
1111
1112 /* First see if just canon_rtx (mem_address) is const or frame,
1113 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1114 address = NULL_RTX;
1115 for (expanded = 0; expanded < 2; expanded++)
1116 {
1117 if (expanded)
1118 {
1119 /* Use cselib to replace all of the reg references with the full
1120 expression. This will take care of the case where we have
1121
1122 r_x = base + offset;
1123 val = *r_x;
1124
1125 by making it into
1126
1127 val = *(base + offset); */
1128
1129 expanded_address = cselib_expand_value_rtx (mem_address,
1130 scratch, 5);
1131
1132 /* If this fails, just go with the address from first
1133 iteration. */
1134 if (!expanded_address)
1135 break;
1136 }
1137 else
1138 expanded_address = mem_address;
1139
1140 /* Split the address into canonical BASE + OFFSET terms. */
1141 address = canon_rtx (expanded_address);
1142
1143 *offset = 0;
1144
1145 if (dump_file && (dump_flags & TDF_DETAILS))
1146 {
1147 if (expanded)
1148 {
1149 fprintf (dump_file, "\n after cselib_expand address: ");
1150 print_inline_rtx (dump_file, expanded_address, 0);
1151 fprintf (dump_file, "\n");
1152 }
1153
1154 fprintf (dump_file, "\n after canon_rtx address: ");
1155 print_inline_rtx (dump_file, address, 0);
1156 fprintf (dump_file, "\n");
1157 }
1158
1159 if (GET_CODE (address) == CONST)
1160 address = XEXP (address, 0);
1161
1162 address = strip_offset_and_add (address, offset);
1163
1164 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1165 && const_or_frame_p (address))
1166 {
1167 group_info *group = get_group_info (address);
1168
1169 if (dump_file && (dump_flags & TDF_DETAILS))
1170 {
1171 fprintf (dump_file, " gid=%d offset=", group->id);
1172 print_dec (*offset, dump_file);
1173 fprintf (dump_file, "\n");
1174 }
1175 *base = NULL;
1176 *group_id = group->id;
1177 return true;
1178 }
1179 }
1180
1181 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1182 *group_id = -1;
1183
1184 if (*base == NULL)
1185 {
1186 if (dump_file && (dump_flags & TDF_DETAILS))
1187 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1188 return false;
1189 }
1190 if (dump_file && (dump_flags & TDF_DETAILS))
1191 {
1192 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1193 (*base)->uid, (*base)->hash);
1194 print_dec (*offset, dump_file);
1195 fprintf (dump_file, "\n");
1196 }
1197 return true;
1198 }
1199
1200
1201 /* Clear the rhs field from the active_local_stores array. */
1202
1203 static void
1204 clear_rhs_from_active_local_stores (void)
1205 {
1206 insn_info_t ptr = active_local_stores;
1207
1208 while (ptr)
1209 {
1210 store_info *store_info = ptr->store_rec;
1211 /* Skip the clobbers. */
1212 while (!store_info->is_set)
1213 store_info = store_info->next;
1214
1215 store_info->rhs = NULL;
1216 store_info->const_rhs = NULL;
1217
1218 ptr = ptr->next_local_store;
1219 }
1220 }
1221
1222
1223 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1224
1225 static inline void
1226 set_position_unneeded (store_info *s_info, int pos)
1227 {
1228 if (__builtin_expect (s_info->is_large, false))
1229 {
1230 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1231 s_info->positions_needed.large.count++;
1232 }
1233 else
1234 s_info->positions_needed.small_bitmask
1235 &= ~(HOST_WIDE_INT_1U << pos);
1236 }
1237
1238 /* Mark the whole store S_INFO as unneeded. */
1239
1240 static inline void
1241 set_all_positions_unneeded (store_info *s_info)
1242 {
1243 if (__builtin_expect (s_info->is_large, false))
1244 {
1245 HOST_WIDE_INT width;
1246 if (s_info->width.is_constant (&width))
1247 {
1248 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1249 s_info->positions_needed.large.count = width;
1250 }
1251 else
1252 {
1253 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1254 s_info->positions_needed.large.count = 1;
1255 }
1256 }
1257 else
1258 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1259 }
1260
1261 /* Return TRUE if any bytes from S_INFO store are needed. */
1262
1263 static inline bool
1264 any_positions_needed_p (store_info *s_info)
1265 {
1266 if (__builtin_expect (s_info->is_large, false))
1267 {
1268 HOST_WIDE_INT width;
1269 if (s_info->width.is_constant (&width))
1270 {
1271 gcc_checking_assert (s_info->positions_needed.large.bmap);
1272 return s_info->positions_needed.large.count < width;
1273 }
1274 else
1275 {
1276 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1277 return s_info->positions_needed.large.count == 0;
1278 }
1279 }
1280 else
1281 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1282 }
1283
1284 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1285 store are known to be needed. */
1286
1287 static inline bool
1288 all_positions_needed_p (store_info *s_info, poly_int64 start,
1289 poly_int64 width)
1290 {
1291 gcc_assert (s_info->rhs);
1292 if (!s_info->width.is_constant ())
1293 {
1294 gcc_assert (s_info->is_large
1295 && !s_info->positions_needed.large.bmap);
1296 return s_info->positions_needed.large.count == 0;
1297 }
1298
1299 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1300 a non-constant region of a constant-sized store. We can't say for
1301 sure that all positions are needed. */
1302 HOST_WIDE_INT const_start, const_width;
1303 if (!start.is_constant (&const_start)
1304 || !width.is_constant (&const_width))
1305 return false;
1306
1307 if (__builtin_expect (s_info->is_large, false))
1308 {
1309 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1310 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1311 return false;
1312 return true;
1313 }
1314 else
1315 {
1316 unsigned HOST_WIDE_INT mask
1317 = lowpart_bitmask (const_width) << const_start;
1318 return (s_info->positions_needed.small_bitmask & mask) == mask;
1319 }
1320 }
1321
1322
1323 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1324 poly_int64, basic_block, bool);
1325
1326
1327 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1328 there is a candidate store, after adding it to the appropriate
1329 local store group if so. */
1330
1331 static int
1332 record_store (rtx body, bb_info_t bb_info)
1333 {
1334 rtx mem, rhs, const_rhs, mem_addr;
1335 poly_int64 offset = 0;
1336 poly_int64 width = 0;
1337 insn_info_t insn_info = bb_info->last_insn;
1338 store_info *store_info = NULL;
1339 int group_id;
1340 cselib_val *base = NULL;
1341 insn_info_t ptr, last, redundant_reason;
1342 bool store_is_unused;
1343
1344 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1345 return 0;
1346
1347 mem = SET_DEST (body);
1348
1349 /* If this is not used, then this cannot be used to keep the insn
1350 from being deleted. On the other hand, it does provide something
1351 that can be used to prove that another store is dead. */
1352 store_is_unused
1353 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1354
1355 /* Check whether that value is a suitable memory location. */
1356 if (!MEM_P (mem))
1357 {
1358 /* If the set or clobber is unused, then it does not effect our
1359 ability to get rid of the entire insn. */
1360 if (!store_is_unused)
1361 insn_info->cannot_delete = true;
1362 return 0;
1363 }
1364
1365 /* At this point we know mem is a mem. */
1366 if (GET_MODE (mem) == BLKmode)
1367 {
1368 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1369 {
1370 if (dump_file && (dump_flags & TDF_DETAILS))
1371 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1372 add_wild_read (bb_info);
1373 insn_info->cannot_delete = true;
1374 return 0;
1375 }
1376 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1377 as memset (addr, 0, 36); */
1378 else if (!MEM_SIZE_KNOWN_P (mem)
1379 || MEM_SIZE (mem) <= 0
1380 || MEM_SIZE (mem) > MAX_OFFSET
1381 || GET_CODE (body) != SET
1382 || !CONST_INT_P (SET_SRC (body)))
1383 {
1384 if (!store_is_unused)
1385 {
1386 /* If the set or clobber is unused, then it does not effect our
1387 ability to get rid of the entire insn. */
1388 insn_info->cannot_delete = true;
1389 clear_rhs_from_active_local_stores ();
1390 }
1391 return 0;
1392 }
1393 }
1394
1395 /* We can still process a volatile mem, we just cannot delete it. */
1396 if (MEM_VOLATILE_P (mem))
1397 insn_info->cannot_delete = true;
1398
1399 if (!canon_address (mem, &group_id, &offset, &base))
1400 {
1401 clear_rhs_from_active_local_stores ();
1402 return 0;
1403 }
1404
1405 if (GET_MODE (mem) == BLKmode)
1406 width = MEM_SIZE (mem);
1407 else
1408 width = GET_MODE_SIZE (GET_MODE (mem));
1409
1410 if (!endpoint_representable_p (offset, width))
1411 {
1412 clear_rhs_from_active_local_stores ();
1413 return 0;
1414 }
1415
1416 if (group_id >= 0)
1417 {
1418 /* In the restrictive case where the base is a constant or the
1419 frame pointer we can do global analysis. */
1420
1421 group_info *group
1422 = rtx_group_vec[group_id];
1423 tree expr = MEM_EXPR (mem);
1424
1425 store_info = rtx_store_info_pool.allocate ();
1426 set_usage_bits (group, offset, width, expr);
1427
1428 if (dump_file && (dump_flags & TDF_DETAILS))
1429 {
1430 fprintf (dump_file, " processing const base store gid=%d",
1431 group_id);
1432 print_range (dump_file, offset, width);
1433 fprintf (dump_file, "\n");
1434 }
1435 }
1436 else
1437 {
1438 if (may_be_sp_based_p (XEXP (mem, 0)))
1439 insn_info->stack_pointer_based = true;
1440 insn_info->contains_cselib_groups = true;
1441
1442 store_info = cse_store_info_pool.allocate ();
1443 group_id = -1;
1444
1445 if (dump_file && (dump_flags & TDF_DETAILS))
1446 {
1447 fprintf (dump_file, " processing cselib store ");
1448 print_range (dump_file, offset, width);
1449 fprintf (dump_file, "\n");
1450 }
1451 }
1452
1453 const_rhs = rhs = NULL_RTX;
1454 if (GET_CODE (body) == SET
1455 /* No place to keep the value after ra. */
1456 && !reload_completed
1457 && (REG_P (SET_SRC (body))
1458 || GET_CODE (SET_SRC (body)) == SUBREG
1459 || CONSTANT_P (SET_SRC (body)))
1460 && !MEM_VOLATILE_P (mem)
1461 /* Sometimes the store and reload is used for truncation and
1462 rounding. */
1463 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1464 {
1465 rhs = SET_SRC (body);
1466 if (CONSTANT_P (rhs))
1467 const_rhs = rhs;
1468 else if (body == PATTERN (insn_info->insn))
1469 {
1470 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1471 if (tem && CONSTANT_P (XEXP (tem, 0)))
1472 const_rhs = XEXP (tem, 0);
1473 }
1474 if (const_rhs == NULL_RTX && REG_P (rhs))
1475 {
1476 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1477
1478 if (tem && CONSTANT_P (tem))
1479 const_rhs = tem;
1480 }
1481 }
1482
1483 /* Check to see if this stores causes some other stores to be
1484 dead. */
1485 ptr = active_local_stores;
1486 last = NULL;
1487 redundant_reason = NULL;
1488 mem = canon_rtx (mem);
1489
1490 if (group_id < 0)
1491 mem_addr = base->val_rtx;
1492 else
1493 {
1494 group_info *group = rtx_group_vec[group_id];
1495 mem_addr = group->canon_base_addr;
1496 }
1497 if (maybe_ne (offset, 0))
1498 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1499
1500 while (ptr)
1501 {
1502 insn_info_t next = ptr->next_local_store;
1503 struct store_info *s_info = ptr->store_rec;
1504 bool del = true;
1505
1506 /* Skip the clobbers. We delete the active insn if this insn
1507 shadows the set. To have been put on the active list, it
1508 has exactly on set. */
1509 while (!s_info->is_set)
1510 s_info = s_info->next;
1511
1512 if (s_info->group_id == group_id && s_info->cse_base == base)
1513 {
1514 HOST_WIDE_INT i;
1515 if (dump_file && (dump_flags & TDF_DETAILS))
1516 {
1517 fprintf (dump_file, " trying store in insn=%d gid=%d",
1518 INSN_UID (ptr->insn), s_info->group_id);
1519 print_range (dump_file, s_info->offset, s_info->width);
1520 fprintf (dump_file, "\n");
1521 }
1522
1523 /* Even if PTR won't be eliminated as unneeded, if both
1524 PTR and this insn store the same constant value, we might
1525 eliminate this insn instead. */
1526 if (s_info->const_rhs
1527 && const_rhs
1528 && known_subrange_p (offset, width,
1529 s_info->offset, s_info->width)
1530 && all_positions_needed_p (s_info, offset - s_info->offset,
1531 width))
1532 {
1533 if (GET_MODE (mem) == BLKmode)
1534 {
1535 if (GET_MODE (s_info->mem) == BLKmode
1536 && s_info->const_rhs == const_rhs)
1537 redundant_reason = ptr;
1538 }
1539 else if (s_info->const_rhs == const0_rtx
1540 && const_rhs == const0_rtx)
1541 redundant_reason = ptr;
1542 else
1543 {
1544 rtx val;
1545 start_sequence ();
1546 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1547 BLOCK_FOR_INSN (insn_info->insn),
1548 true);
1549 if (get_insns () != NULL)
1550 val = NULL_RTX;
1551 end_sequence ();
1552 if (val && rtx_equal_p (val, const_rhs))
1553 redundant_reason = ptr;
1554 }
1555 }
1556
1557 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1558 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1559 /* The new store touches every byte that S_INFO does. */
1560 set_all_positions_unneeded (s_info);
1561 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1562 && s_info->width.is_constant (&const_s_width)
1563 && width.is_constant (&const_width))
1564 {
1565 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1566 begin_unneeded = MAX (begin_unneeded, 0);
1567 end_unneeded = MIN (end_unneeded, const_s_width);
1568 for (i = begin_unneeded; i < end_unneeded; ++i)
1569 set_position_unneeded (s_info, i);
1570 }
1571 else
1572 {
1573 /* We don't know which parts of S_INFO are needed and
1574 which aren't, so invalidate the RHS. */
1575 s_info->rhs = NULL;
1576 s_info->const_rhs = NULL;
1577 }
1578 }
1579 else if (s_info->rhs)
1580 /* Need to see if it is possible for this store to overwrite
1581 the value of store_info. If it is, set the rhs to NULL to
1582 keep it from being used to remove a load. */
1583 {
1584 if (canon_output_dependence (s_info->mem, true,
1585 mem, GET_MODE (mem),
1586 mem_addr))
1587 {
1588 s_info->rhs = NULL;
1589 s_info->const_rhs = NULL;
1590 }
1591 }
1592
1593 /* An insn can be deleted if every position of every one of
1594 its s_infos is zero. */
1595 if (any_positions_needed_p (s_info))
1596 del = false;
1597
1598 if (del)
1599 {
1600 insn_info_t insn_to_delete = ptr;
1601
1602 active_local_stores_len--;
1603 if (last)
1604 last->next_local_store = ptr->next_local_store;
1605 else
1606 active_local_stores = ptr->next_local_store;
1607
1608 if (!insn_to_delete->cannot_delete)
1609 delete_dead_store_insn (insn_to_delete);
1610 }
1611 else
1612 last = ptr;
1613
1614 ptr = next;
1615 }
1616
1617 /* Finish filling in the store_info. */
1618 store_info->next = insn_info->store_rec;
1619 insn_info->store_rec = store_info;
1620 store_info->mem = mem;
1621 store_info->mem_addr = mem_addr;
1622 store_info->cse_base = base;
1623 HOST_WIDE_INT const_width;
1624 if (!width.is_constant (&const_width))
1625 {
1626 store_info->is_large = true;
1627 store_info->positions_needed.large.count = 0;
1628 store_info->positions_needed.large.bmap = NULL;
1629 }
1630 else if (const_width > HOST_BITS_PER_WIDE_INT)
1631 {
1632 store_info->is_large = true;
1633 store_info->positions_needed.large.count = 0;
1634 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1635 }
1636 else
1637 {
1638 store_info->is_large = false;
1639 store_info->positions_needed.small_bitmask
1640 = lowpart_bitmask (const_width);
1641 }
1642 store_info->group_id = group_id;
1643 store_info->offset = offset;
1644 store_info->width = width;
1645 store_info->is_set = GET_CODE (body) == SET;
1646 store_info->rhs = rhs;
1647 store_info->const_rhs = const_rhs;
1648 store_info->redundant_reason = redundant_reason;
1649
1650 /* If this is a clobber, we return 0. We will only be able to
1651 delete this insn if there is only one store USED store, but we
1652 can use the clobber to delete other stores earlier. */
1653 return store_info->is_set ? 1 : 0;
1654 }
1655
1656
1657 static void
1658 dump_insn_info (const char * start, insn_info_t insn_info)
1659 {
1660 fprintf (dump_file, "%s insn=%d %s\n", start,
1661 INSN_UID (insn_info->insn),
1662 insn_info->store_rec ? "has store" : "naked");
1663 }
1664
1665
1666 /* If the modes are different and the value's source and target do not
1667 line up, we need to extract the value from lower part of the rhs of
1668 the store, shift it, and then put it into a form that can be shoved
1669 into the read_insn. This function generates a right SHIFT of a
1670 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1671 shift sequence is returned or NULL if we failed to find a
1672 shift. */
1673
1674 static rtx
1675 find_shift_sequence (poly_int64 access_size,
1676 store_info *store_info,
1677 machine_mode read_mode,
1678 poly_int64 shift, bool speed, bool require_cst)
1679 {
1680 machine_mode store_mode = GET_MODE (store_info->mem);
1681 scalar_int_mode new_mode;
1682 rtx read_reg = NULL;
1683
1684 /* Some machines like the x86 have shift insns for each size of
1685 operand. Other machines like the ppc or the ia-64 may only have
1686 shift insns that shift values within 32 or 64 bit registers.
1687 This loop tries to find the smallest shift insn that will right
1688 justify the value we want to read but is available in one insn on
1689 the machine. */
1690
1691 opt_scalar_int_mode new_mode_iter;
1692 FOR_EACH_MODE_FROM (new_mode_iter,
1693 smallest_int_mode_for_size (access_size * BITS_PER_UNIT))
1694 {
1695 rtx target, new_reg, new_lhs;
1696 rtx_insn *shift_seq, *insn;
1697 int cost;
1698
1699 new_mode = new_mode_iter.require ();
1700 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1701 break;
1702
1703 /* If a constant was stored into memory, try to simplify it here,
1704 otherwise the cost of the shift might preclude this optimization
1705 e.g. at -Os, even when no actual shift will be needed. */
1706 if (store_info->const_rhs)
1707 {
1708 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1709 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1710 store_mode, byte);
1711 if (ret && CONSTANT_P (ret))
1712 {
1713 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1714 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1715 ret, shift_rtx);
1716 if (ret && CONSTANT_P (ret))
1717 {
1718 byte = subreg_lowpart_offset (read_mode, new_mode);
1719 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1720 if (ret && CONSTANT_P (ret)
1721 && (set_src_cost (ret, read_mode, speed)
1722 <= COSTS_N_INSNS (1)))
1723 return ret;
1724 }
1725 }
1726 }
1727
1728 if (require_cst)
1729 return NULL_RTX;
1730
1731 /* Try a wider mode if truncating the store mode to NEW_MODE
1732 requires a real instruction. */
1733 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1734 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1735 continue;
1736
1737 /* Also try a wider mode if the necessary punning is either not
1738 desirable or not possible. */
1739 if (!CONSTANT_P (store_info->rhs)
1740 && !targetm.modes_tieable_p (new_mode, store_mode))
1741 continue;
1742
1743 new_reg = gen_reg_rtx (new_mode);
1744
1745 start_sequence ();
1746
1747 /* In theory we could also check for an ashr. Ian Taylor knows
1748 of one dsp where the cost of these two was not the same. But
1749 this really is a rare case anyway. */
1750 target = expand_binop (new_mode, lshr_optab, new_reg,
1751 gen_int_shift_amount (new_mode, shift),
1752 new_reg, 1, OPTAB_DIRECT);
1753
1754 shift_seq = get_insns ();
1755 end_sequence ();
1756
1757 if (target != new_reg || shift_seq == NULL)
1758 continue;
1759
1760 cost = 0;
1761 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1762 if (INSN_P (insn))
1763 cost += insn_cost (insn, speed);
1764
1765 /* The computation up to here is essentially independent
1766 of the arguments and could be precomputed. It may
1767 not be worth doing so. We could precompute if
1768 worthwhile or at least cache the results. The result
1769 technically depends on both SHIFT and ACCESS_SIZE,
1770 but in practice the answer will depend only on ACCESS_SIZE. */
1771
1772 if (cost > COSTS_N_INSNS (1))
1773 continue;
1774
1775 new_lhs = extract_low_bits (new_mode, store_mode,
1776 copy_rtx (store_info->rhs));
1777 if (new_lhs == NULL_RTX)
1778 continue;
1779
1780 /* We found an acceptable shift. Generate a move to
1781 take the value from the store and put it into the
1782 shift pseudo, then shift it, then generate another
1783 move to put in into the target of the read. */
1784 emit_move_insn (new_reg, new_lhs);
1785 emit_insn (shift_seq);
1786 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1787 break;
1788 }
1789
1790 return read_reg;
1791 }
1792
1793
1794 /* Call back for note_stores to find the hard regs set or clobbered by
1795 insn. Data is a bitmap of the hardregs set so far. */
1796
1797 static void
1798 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1799 {
1800 bitmap regs_set = (bitmap) data;
1801
1802 if (REG_P (x)
1803 && HARD_REGISTER_P (x))
1804 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1805 }
1806
1807 /* Helper function for replace_read and record_store.
1808 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1809 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
1810 if not successful. If REQUIRE_CST is true, return always constant. */
1811
1812 static rtx
1813 get_stored_val (store_info *store_info, machine_mode read_mode,
1814 poly_int64 read_offset, poly_int64 read_width,
1815 basic_block bb, bool require_cst)
1816 {
1817 machine_mode store_mode = GET_MODE (store_info->mem);
1818 poly_int64 gap;
1819 rtx read_reg;
1820
1821 /* To get here the read is within the boundaries of the write so
1822 shift will never be negative. Start out with the shift being in
1823 bytes. */
1824 if (store_mode == BLKmode)
1825 gap = 0;
1826 else if (BYTES_BIG_ENDIAN)
1827 gap = ((store_info->offset + store_info->width)
1828 - (read_offset + read_width));
1829 else
1830 gap = read_offset - store_info->offset;
1831
1832 if (maybe_ne (gap, 0))
1833 {
1834 poly_int64 shift = gap * BITS_PER_UNIT;
1835 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1836 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1837 shift, optimize_bb_for_speed_p (bb),
1838 require_cst);
1839 }
1840 else if (store_mode == BLKmode)
1841 {
1842 /* The store is a memset (addr, const_val, const_size). */
1843 gcc_assert (CONST_INT_P (store_info->rhs));
1844 scalar_int_mode int_store_mode;
1845 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1846 read_reg = NULL_RTX;
1847 else if (store_info->rhs == const0_rtx)
1848 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1849 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1850 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1851 read_reg = NULL_RTX;
1852 else
1853 {
1854 unsigned HOST_WIDE_INT c
1855 = INTVAL (store_info->rhs)
1856 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1857 int shift = BITS_PER_UNIT;
1858 while (shift < HOST_BITS_PER_WIDE_INT)
1859 {
1860 c |= (c << shift);
1861 shift <<= 1;
1862 }
1863 read_reg = gen_int_mode (c, int_store_mode);
1864 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1865 }
1866 }
1867 else if (store_info->const_rhs
1868 && (require_cst
1869 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1870 read_reg = extract_low_bits (read_mode, store_mode,
1871 copy_rtx (store_info->const_rhs));
1872 else
1873 read_reg = extract_low_bits (read_mode, store_mode,
1874 copy_rtx (store_info->rhs));
1875 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1876 read_reg = NULL_RTX;
1877 return read_reg;
1878 }
1879
1880 /* Take a sequence of:
1881 A <- r1
1882 ...
1883 ... <- A
1884
1885 and change it into
1886 r2 <- r1
1887 A <- r1
1888 ...
1889 ... <- r2
1890
1891 or
1892
1893 r3 <- extract (r1)
1894 r3 <- r3 >> shift
1895 r2 <- extract (r3)
1896 ... <- r2
1897
1898 or
1899
1900 r2 <- extract (r1)
1901 ... <- r2
1902
1903 Depending on the alignment and the mode of the store and
1904 subsequent load.
1905
1906
1907 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1908 and READ_INSN are for the read. Return true if the replacement
1909 went ok. */
1910
1911 static bool
1912 replace_read (store_info *store_info, insn_info_t store_insn,
1913 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1914 bitmap regs_live)
1915 {
1916 machine_mode store_mode = GET_MODE (store_info->mem);
1917 machine_mode read_mode = GET_MODE (read_info->mem);
1918 rtx_insn *insns, *this_insn;
1919 rtx read_reg;
1920 basic_block bb;
1921
1922 if (!dbg_cnt (dse))
1923 return false;
1924
1925 /* Create a sequence of instructions to set up the read register.
1926 This sequence goes immediately before the store and its result
1927 is read by the load.
1928
1929 We need to keep this in perspective. We are replacing a read
1930 with a sequence of insns, but the read will almost certainly be
1931 in cache, so it is not going to be an expensive one. Thus, we
1932 are not willing to do a multi insn shift or worse a subroutine
1933 call to get rid of the read. */
1934 if (dump_file && (dump_flags & TDF_DETAILS))
1935 fprintf (dump_file, "trying to replace %smode load in insn %d"
1936 " from %smode store in insn %d\n",
1937 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1938 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1939 start_sequence ();
1940 bb = BLOCK_FOR_INSN (read_insn->insn);
1941 read_reg = get_stored_val (store_info,
1942 read_mode, read_info->offset, read_info->width,
1943 bb, false);
1944 if (read_reg == NULL_RTX)
1945 {
1946 end_sequence ();
1947 if (dump_file && (dump_flags & TDF_DETAILS))
1948 fprintf (dump_file, " -- could not extract bits of stored value\n");
1949 return false;
1950 }
1951 /* Force the value into a new register so that it won't be clobbered
1952 between the store and the load. */
1953 read_reg = copy_to_mode_reg (read_mode, read_reg);
1954 insns = get_insns ();
1955 end_sequence ();
1956
1957 if (insns != NULL_RTX)
1958 {
1959 /* Now we have to scan the set of new instructions to see if the
1960 sequence contains and sets of hardregs that happened to be
1961 live at this point. For instance, this can happen if one of
1962 the insns sets the CC and the CC happened to be live at that
1963 point. This does occasionally happen, see PR 37922. */
1964 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
1965
1966 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1967 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
1968
1969 bitmap_and_into (regs_set, regs_live);
1970 if (!bitmap_empty_p (regs_set))
1971 {
1972 if (dump_file && (dump_flags & TDF_DETAILS))
1973 {
1974 fprintf (dump_file,
1975 "abandoning replacement because sequence clobbers live hardregs:");
1976 df_print_regset (dump_file, regs_set);
1977 }
1978
1979 BITMAP_FREE (regs_set);
1980 return false;
1981 }
1982 BITMAP_FREE (regs_set);
1983 }
1984
1985 if (validate_change (read_insn->insn, loc, read_reg, 0))
1986 {
1987 deferred_change *change = deferred_change_pool.allocate ();
1988
1989 /* Insert this right before the store insn where it will be safe
1990 from later insns that might change it before the read. */
1991 emit_insn_before (insns, store_insn->insn);
1992
1993 /* And now for the kludge part: cselib croaks if you just
1994 return at this point. There are two reasons for this:
1995
1996 1) Cselib has an idea of how many pseudos there are and
1997 that does not include the new ones we just added.
1998
1999 2) Cselib does not know about the move insn we added
2000 above the store_info, and there is no way to tell it
2001 about it, because it has "moved on".
2002
2003 Problem (1) is fixable with a certain amount of engineering.
2004 Problem (2) is requires starting the bb from scratch. This
2005 could be expensive.
2006
2007 So we are just going to have to lie. The move/extraction
2008 insns are not really an issue, cselib did not see them. But
2009 the use of the new pseudo read_insn is a real problem because
2010 cselib has not scanned this insn. The way that we solve this
2011 problem is that we are just going to put the mem back for now
2012 and when we are finished with the block, we undo this. We
2013 keep a table of mems to get rid of. At the end of the basic
2014 block we can put them back. */
2015
2016 *loc = read_info->mem;
2017 change->next = deferred_change_list;
2018 deferred_change_list = change;
2019 change->loc = loc;
2020 change->reg = read_reg;
2021
2022 /* Get rid of the read_info, from the point of view of the
2023 rest of dse, play like this read never happened. */
2024 read_insn->read_rec = read_info->next;
2025 read_info_type_pool.remove (read_info);
2026 if (dump_file && (dump_flags & TDF_DETAILS))
2027 {
2028 fprintf (dump_file, " -- replaced the loaded MEM with ");
2029 print_simple_rtl (dump_file, read_reg);
2030 fprintf (dump_file, "\n");
2031 }
2032 return true;
2033 }
2034 else
2035 {
2036 if (dump_file && (dump_flags & TDF_DETAILS))
2037 {
2038 fprintf (dump_file, " -- replacing the loaded MEM with ");
2039 print_simple_rtl (dump_file, read_reg);
2040 fprintf (dump_file, " led to an invalid instruction\n");
2041 }
2042 return false;
2043 }
2044 }
2045
2046 /* Check the address of MEM *LOC and kill any appropriate stores that may
2047 be active. */
2048
2049 static void
2050 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2051 {
2052 rtx mem = *loc, mem_addr;
2053 insn_info_t insn_info;
2054 poly_int64 offset = 0;
2055 poly_int64 width = 0;
2056 cselib_val *base = NULL;
2057 int group_id;
2058 read_info_t read_info;
2059
2060 insn_info = bb_info->last_insn;
2061
2062 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2063 || (MEM_VOLATILE_P (mem)))
2064 {
2065 if (dump_file && (dump_flags & TDF_DETAILS))
2066 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2067 add_wild_read (bb_info);
2068 insn_info->cannot_delete = true;
2069 return;
2070 }
2071
2072 /* If it is reading readonly mem, then there can be no conflict with
2073 another write. */
2074 if (MEM_READONLY_P (mem))
2075 return;
2076
2077 if (!canon_address (mem, &group_id, &offset, &base))
2078 {
2079 if (dump_file && (dump_flags & TDF_DETAILS))
2080 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2081 add_wild_read (bb_info);
2082 return;
2083 }
2084
2085 if (GET_MODE (mem) == BLKmode)
2086 width = -1;
2087 else
2088 width = GET_MODE_SIZE (GET_MODE (mem));
2089
2090 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2091 {
2092 if (dump_file && (dump_flags & TDF_DETAILS))
2093 fprintf (dump_file, " adding wild read, due to overflow.\n");
2094 add_wild_read (bb_info);
2095 return;
2096 }
2097
2098 read_info = read_info_type_pool.allocate ();
2099 read_info->group_id = group_id;
2100 read_info->mem = mem;
2101 read_info->offset = offset;
2102 read_info->width = width;
2103 read_info->next = insn_info->read_rec;
2104 insn_info->read_rec = read_info;
2105 if (group_id < 0)
2106 mem_addr = base->val_rtx;
2107 else
2108 {
2109 group_info *group = rtx_group_vec[group_id];
2110 mem_addr = group->canon_base_addr;
2111 }
2112 if (maybe_ne (offset, 0))
2113 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2114
2115 if (group_id >= 0)
2116 {
2117 /* This is the restricted case where the base is a constant or
2118 the frame pointer and offset is a constant. */
2119 insn_info_t i_ptr = active_local_stores;
2120 insn_info_t last = NULL;
2121
2122 if (dump_file && (dump_flags & TDF_DETAILS))
2123 {
2124 if (!known_size_p (width))
2125 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2126 group_id);
2127 else
2128 {
2129 fprintf (dump_file, " processing const load gid=%d", group_id);
2130 print_range (dump_file, offset, width);
2131 fprintf (dump_file, "\n");
2132 }
2133 }
2134
2135 while (i_ptr)
2136 {
2137 bool remove = false;
2138 store_info *store_info = i_ptr->store_rec;
2139
2140 /* Skip the clobbers. */
2141 while (!store_info->is_set)
2142 store_info = store_info->next;
2143
2144 /* There are three cases here. */
2145 if (store_info->group_id < 0)
2146 /* We have a cselib store followed by a read from a
2147 const base. */
2148 remove
2149 = canon_true_dependence (store_info->mem,
2150 GET_MODE (store_info->mem),
2151 store_info->mem_addr,
2152 mem, mem_addr);
2153
2154 else if (group_id == store_info->group_id)
2155 {
2156 /* This is a block mode load. We may get lucky and
2157 canon_true_dependence may save the day. */
2158 if (!known_size_p (width))
2159 remove
2160 = canon_true_dependence (store_info->mem,
2161 GET_MODE (store_info->mem),
2162 store_info->mem_addr,
2163 mem, mem_addr);
2164
2165 /* If this read is just reading back something that we just
2166 stored, rewrite the read. */
2167 else
2168 {
2169 if (store_info->rhs
2170 && known_subrange_p (offset, width, store_info->offset,
2171 store_info->width)
2172 && all_positions_needed_p (store_info,
2173 offset - store_info->offset,
2174 width)
2175 && replace_read (store_info, i_ptr, read_info,
2176 insn_info, loc, bb_info->regs_live))
2177 return;
2178
2179 /* The bases are the same, just see if the offsets
2180 could overlap. */
2181 if (ranges_maybe_overlap_p (offset, width,
2182 store_info->offset,
2183 store_info->width))
2184 remove = true;
2185 }
2186 }
2187
2188 /* else
2189 The else case that is missing here is that the
2190 bases are constant but different. There is nothing
2191 to do here because there is no overlap. */
2192
2193 if (remove)
2194 {
2195 if (dump_file && (dump_flags & TDF_DETAILS))
2196 dump_insn_info ("removing from active", i_ptr);
2197
2198 active_local_stores_len--;
2199 if (last)
2200 last->next_local_store = i_ptr->next_local_store;
2201 else
2202 active_local_stores = i_ptr->next_local_store;
2203 }
2204 else
2205 last = i_ptr;
2206 i_ptr = i_ptr->next_local_store;
2207 }
2208 }
2209 else
2210 {
2211 insn_info_t i_ptr = active_local_stores;
2212 insn_info_t last = NULL;
2213 if (dump_file && (dump_flags & TDF_DETAILS))
2214 {
2215 fprintf (dump_file, " processing cselib load mem:");
2216 print_inline_rtx (dump_file, mem, 0);
2217 fprintf (dump_file, "\n");
2218 }
2219
2220 while (i_ptr)
2221 {
2222 bool remove = false;
2223 store_info *store_info = i_ptr->store_rec;
2224
2225 if (dump_file && (dump_flags & TDF_DETAILS))
2226 fprintf (dump_file, " processing cselib load against insn %d\n",
2227 INSN_UID (i_ptr->insn));
2228
2229 /* Skip the clobbers. */
2230 while (!store_info->is_set)
2231 store_info = store_info->next;
2232
2233 /* If this read is just reading back something that we just
2234 stored, rewrite the read. */
2235 if (store_info->rhs
2236 && store_info->group_id == -1
2237 && store_info->cse_base == base
2238 && known_subrange_p (offset, width, store_info->offset,
2239 store_info->width)
2240 && all_positions_needed_p (store_info,
2241 offset - store_info->offset, width)
2242 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2243 bb_info->regs_live))
2244 return;
2245
2246 remove = canon_true_dependence (store_info->mem,
2247 GET_MODE (store_info->mem),
2248 store_info->mem_addr,
2249 mem, mem_addr);
2250
2251 if (remove)
2252 {
2253 if (dump_file && (dump_flags & TDF_DETAILS))
2254 dump_insn_info ("removing from active", i_ptr);
2255
2256 active_local_stores_len--;
2257 if (last)
2258 last->next_local_store = i_ptr->next_local_store;
2259 else
2260 active_local_stores = i_ptr->next_local_store;
2261 }
2262 else
2263 last = i_ptr;
2264 i_ptr = i_ptr->next_local_store;
2265 }
2266 }
2267 }
2268
2269 /* A note_uses callback in which DATA points the INSN_INFO for
2270 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2271 true for any part of *LOC. */
2272
2273 static void
2274 check_mem_read_use (rtx *loc, void *data)
2275 {
2276 subrtx_ptr_iterator::array_type array;
2277 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2278 {
2279 rtx *loc = *iter;
2280 if (MEM_P (*loc))
2281 check_mem_read_rtx (loc, (bb_info_t) data);
2282 }
2283 }
2284
2285
2286 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2287 So far it only handles arguments passed in registers. */
2288
2289 static bool
2290 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2291 {
2292 CUMULATIVE_ARGS args_so_far_v;
2293 cumulative_args_t args_so_far;
2294 tree arg;
2295 int idx;
2296
2297 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2298 args_so_far = pack_cumulative_args (&args_so_far_v);
2299
2300 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2301 for (idx = 0;
2302 arg != void_list_node && idx < nargs;
2303 arg = TREE_CHAIN (arg), idx++)
2304 {
2305 scalar_int_mode mode;
2306 rtx reg, link, tmp;
2307
2308 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2309 return false;
2310
2311 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2312 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2313 return false;
2314
2315 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2316 link;
2317 link = XEXP (link, 1))
2318 if (GET_CODE (XEXP (link, 0)) == USE)
2319 {
2320 scalar_int_mode arg_mode;
2321 args[idx] = XEXP (XEXP (link, 0), 0);
2322 if (REG_P (args[idx])
2323 && REGNO (args[idx]) == REGNO (reg)
2324 && (GET_MODE (args[idx]) == mode
2325 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2326 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2327 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2328 break;
2329 }
2330 if (!link)
2331 return false;
2332
2333 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2334 if (GET_MODE (args[idx]) != mode)
2335 {
2336 if (!tmp || !CONST_INT_P (tmp))
2337 return false;
2338 tmp = gen_int_mode (INTVAL (tmp), mode);
2339 }
2340 if (tmp)
2341 args[idx] = tmp;
2342
2343 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2344 }
2345 if (arg != void_list_node || idx != nargs)
2346 return false;
2347 return true;
2348 }
2349
2350 /* Return a bitmap of the fixed registers contained in IN. */
2351
2352 static bitmap
2353 copy_fixed_regs (const_bitmap in)
2354 {
2355 bitmap ret;
2356
2357 ret = ALLOC_REG_SET (NULL);
2358 bitmap_and (ret, in, fixed_reg_set_regset);
2359 return ret;
2360 }
2361
2362 /* Apply record_store to all candidate stores in INSN. Mark INSN
2363 if some part of it is not a candidate store and assigns to a
2364 non-register target. */
2365
2366 static void
2367 scan_insn (bb_info_t bb_info, rtx_insn *insn)
2368 {
2369 rtx body;
2370 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2371 int mems_found = 0;
2372 memset (insn_info, 0, sizeof (struct insn_info_type));
2373
2374 if (dump_file && (dump_flags & TDF_DETAILS))
2375 fprintf (dump_file, "\n**scanning insn=%d\n",
2376 INSN_UID (insn));
2377
2378 insn_info->prev_insn = bb_info->last_insn;
2379 insn_info->insn = insn;
2380 bb_info->last_insn = insn_info;
2381
2382 if (DEBUG_INSN_P (insn))
2383 {
2384 insn_info->cannot_delete = true;
2385 return;
2386 }
2387
2388 /* Look at all of the uses in the insn. */
2389 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2390
2391 if (CALL_P (insn))
2392 {
2393 bool const_call;
2394 rtx call, sym;
2395 tree memset_call = NULL_TREE;
2396
2397 insn_info->cannot_delete = true;
2398
2399 /* Const functions cannot do anything bad i.e. read memory,
2400 however, they can read their parameters which may have
2401 been pushed onto the stack.
2402 memset and bzero don't read memory either. */
2403 const_call = RTL_CONST_CALL_P (insn);
2404 if (!const_call
2405 && (call = get_call_rtx_from (insn))
2406 && (sym = XEXP (XEXP (call, 0), 0))
2407 && GET_CODE (sym) == SYMBOL_REF
2408 && SYMBOL_REF_DECL (sym)
2409 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2410 && DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (sym)) == BUILT_IN_NORMAL
2411 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (sym)) == BUILT_IN_MEMSET)
2412 memset_call = SYMBOL_REF_DECL (sym);
2413
2414 if (const_call || memset_call)
2415 {
2416 insn_info_t i_ptr = active_local_stores;
2417 insn_info_t last = NULL;
2418
2419 if (dump_file && (dump_flags & TDF_DETAILS))
2420 fprintf (dump_file, "%s call %d\n",
2421 const_call ? "const" : "memset", INSN_UID (insn));
2422
2423 /* See the head comment of the frame_read field. */
2424 if (reload_completed
2425 /* Tail calls are storing their arguments using
2426 arg pointer. If it is a frame pointer on the target,
2427 even before reload we need to kill frame pointer based
2428 stores. */
2429 || (SIBLING_CALL_P (insn)
2430 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2431 insn_info->frame_read = true;
2432
2433 /* Loop over the active stores and remove those which are
2434 killed by the const function call. */
2435 while (i_ptr)
2436 {
2437 bool remove_store = false;
2438
2439 /* The stack pointer based stores are always killed. */
2440 if (i_ptr->stack_pointer_based)
2441 remove_store = true;
2442
2443 /* If the frame is read, the frame related stores are killed. */
2444 else if (insn_info->frame_read)
2445 {
2446 store_info *store_info = i_ptr->store_rec;
2447
2448 /* Skip the clobbers. */
2449 while (!store_info->is_set)
2450 store_info = store_info->next;
2451
2452 if (store_info->group_id >= 0
2453 && rtx_group_vec[store_info->group_id]->frame_related)
2454 remove_store = true;
2455 }
2456
2457 if (remove_store)
2458 {
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2460 dump_insn_info ("removing from active", i_ptr);
2461
2462 active_local_stores_len--;
2463 if (last)
2464 last->next_local_store = i_ptr->next_local_store;
2465 else
2466 active_local_stores = i_ptr->next_local_store;
2467 }
2468 else
2469 last = i_ptr;
2470
2471 i_ptr = i_ptr->next_local_store;
2472 }
2473
2474 if (memset_call)
2475 {
2476 rtx args[3];
2477 if (get_call_args (insn, memset_call, args, 3)
2478 && CONST_INT_P (args[1])
2479 && CONST_INT_P (args[2])
2480 && INTVAL (args[2]) > 0)
2481 {
2482 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2483 set_mem_size (mem, INTVAL (args[2]));
2484 body = gen_rtx_SET (mem, args[1]);
2485 mems_found += record_store (body, bb_info);
2486 if (dump_file && (dump_flags & TDF_DETAILS))
2487 fprintf (dump_file, "handling memset as BLKmode store\n");
2488 if (mems_found == 1)
2489 {
2490 if (active_local_stores_len++
2491 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2492 {
2493 active_local_stores_len = 1;
2494 active_local_stores = NULL;
2495 }
2496 insn_info->fixed_regs_live
2497 = copy_fixed_regs (bb_info->regs_live);
2498 insn_info->next_local_store = active_local_stores;
2499 active_local_stores = insn_info;
2500 }
2501 }
2502 else
2503 clear_rhs_from_active_local_stores ();
2504 }
2505 }
2506 else if (SIBLING_CALL_P (insn) && reload_completed)
2507 /* Arguments for a sibling call that are pushed to memory are passed
2508 using the incoming argument pointer of the current function. After
2509 reload that might be (and likely is) frame pointer based. */
2510 add_wild_read (bb_info);
2511 else
2512 /* Every other call, including pure functions, may read any memory
2513 that is not relative to the frame. */
2514 add_non_frame_wild_read (bb_info);
2515
2516 return;
2517 }
2518
2519 /* Assuming that there are sets in these insns, we cannot delete
2520 them. */
2521 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2522 || volatile_refs_p (PATTERN (insn))
2523 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2524 || (RTX_FRAME_RELATED_P (insn))
2525 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2526 insn_info->cannot_delete = true;
2527
2528 body = PATTERN (insn);
2529 if (GET_CODE (body) == PARALLEL)
2530 {
2531 int i;
2532 for (i = 0; i < XVECLEN (body, 0); i++)
2533 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2534 }
2535 else
2536 mems_found += record_store (body, bb_info);
2537
2538 if (dump_file && (dump_flags & TDF_DETAILS))
2539 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2540 mems_found, insn_info->cannot_delete ? "true" : "false");
2541
2542 /* If we found some sets of mems, add it into the active_local_stores so
2543 that it can be locally deleted if found dead or used for
2544 replace_read and redundant constant store elimination. Otherwise mark
2545 it as cannot delete. This simplifies the processing later. */
2546 if (mems_found == 1)
2547 {
2548 if (active_local_stores_len++
2549 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2550 {
2551 active_local_stores_len = 1;
2552 active_local_stores = NULL;
2553 }
2554 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2555 insn_info->next_local_store = active_local_stores;
2556 active_local_stores = insn_info;
2557 }
2558 else
2559 insn_info->cannot_delete = true;
2560 }
2561
2562
2563 /* Remove BASE from the set of active_local_stores. This is a
2564 callback from cselib that is used to get rid of the stores in
2565 active_local_stores. */
2566
2567 static void
2568 remove_useless_values (cselib_val *base)
2569 {
2570 insn_info_t insn_info = active_local_stores;
2571 insn_info_t last = NULL;
2572
2573 while (insn_info)
2574 {
2575 store_info *store_info = insn_info->store_rec;
2576 bool del = false;
2577
2578 /* If ANY of the store_infos match the cselib group that is
2579 being deleted, then the insn can not be deleted. */
2580 while (store_info)
2581 {
2582 if ((store_info->group_id == -1)
2583 && (store_info->cse_base == base))
2584 {
2585 del = true;
2586 break;
2587 }
2588 store_info = store_info->next;
2589 }
2590
2591 if (del)
2592 {
2593 active_local_stores_len--;
2594 if (last)
2595 last->next_local_store = insn_info->next_local_store;
2596 else
2597 active_local_stores = insn_info->next_local_store;
2598 free_store_info (insn_info);
2599 }
2600 else
2601 last = insn_info;
2602
2603 insn_info = insn_info->next_local_store;
2604 }
2605 }
2606
2607
2608 /* Do all of step 1. */
2609
2610 static void
2611 dse_step1 (void)
2612 {
2613 basic_block bb;
2614 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2615
2616 cselib_init (0);
2617 all_blocks = BITMAP_ALLOC (NULL);
2618 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2619 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2620
2621 FOR_ALL_BB_FN (bb, cfun)
2622 {
2623 insn_info_t ptr;
2624 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2625
2626 memset (bb_info, 0, sizeof (dse_bb_info_type));
2627 bitmap_set_bit (all_blocks, bb->index);
2628 bb_info->regs_live = regs_live;
2629
2630 bitmap_copy (regs_live, DF_LR_IN (bb));
2631 df_simulate_initialize_forwards (bb, regs_live);
2632
2633 bb_table[bb->index] = bb_info;
2634 cselib_discard_hook = remove_useless_values;
2635
2636 if (bb->index >= NUM_FIXED_BLOCKS)
2637 {
2638 rtx_insn *insn;
2639
2640 active_local_stores = NULL;
2641 active_local_stores_len = 0;
2642 cselib_clear_table ();
2643
2644 /* Scan the insns. */
2645 FOR_BB_INSNS (bb, insn)
2646 {
2647 if (INSN_P (insn))
2648 scan_insn (bb_info, insn);
2649 cselib_process_insn (insn);
2650 if (INSN_P (insn))
2651 df_simulate_one_insn_forwards (bb, insn, regs_live);
2652 }
2653
2654 /* This is something of a hack, because the global algorithm
2655 is supposed to take care of the case where stores go dead
2656 at the end of the function. However, the global
2657 algorithm must take a more conservative view of block
2658 mode reads than the local alg does. So to get the case
2659 where you have a store to the frame followed by a non
2660 overlapping block more read, we look at the active local
2661 stores at the end of the function and delete all of the
2662 frame and spill based ones. */
2663 if (stores_off_frame_dead_at_return
2664 && (EDGE_COUNT (bb->succs) == 0
2665 || (single_succ_p (bb)
2666 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2667 && ! crtl->calls_eh_return)))
2668 {
2669 insn_info_t i_ptr = active_local_stores;
2670 while (i_ptr)
2671 {
2672 store_info *store_info = i_ptr->store_rec;
2673
2674 /* Skip the clobbers. */
2675 while (!store_info->is_set)
2676 store_info = store_info->next;
2677 if (store_info->group_id >= 0)
2678 {
2679 group_info *group = rtx_group_vec[store_info->group_id];
2680 if (group->frame_related && !i_ptr->cannot_delete)
2681 delete_dead_store_insn (i_ptr);
2682 }
2683
2684 i_ptr = i_ptr->next_local_store;
2685 }
2686 }
2687
2688 /* Get rid of the loads that were discovered in
2689 replace_read. Cselib is finished with this block. */
2690 while (deferred_change_list)
2691 {
2692 deferred_change *next = deferred_change_list->next;
2693
2694 /* There is no reason to validate this change. That was
2695 done earlier. */
2696 *deferred_change_list->loc = deferred_change_list->reg;
2697 deferred_change_pool.remove (deferred_change_list);
2698 deferred_change_list = next;
2699 }
2700
2701 /* Get rid of all of the cselib based store_infos in this
2702 block and mark the containing insns as not being
2703 deletable. */
2704 ptr = bb_info->last_insn;
2705 while (ptr)
2706 {
2707 if (ptr->contains_cselib_groups)
2708 {
2709 store_info *s_info = ptr->store_rec;
2710 while (s_info && !s_info->is_set)
2711 s_info = s_info->next;
2712 if (s_info
2713 && s_info->redundant_reason
2714 && s_info->redundant_reason->insn
2715 && !ptr->cannot_delete)
2716 {
2717 if (dump_file && (dump_flags & TDF_DETAILS))
2718 fprintf (dump_file, "Locally deleting insn %d "
2719 "because insn %d stores the "
2720 "same value and couldn't be "
2721 "eliminated\n",
2722 INSN_UID (ptr->insn),
2723 INSN_UID (s_info->redundant_reason->insn));
2724 delete_dead_store_insn (ptr);
2725 }
2726 free_store_info (ptr);
2727 }
2728 else
2729 {
2730 store_info *s_info;
2731
2732 /* Free at least positions_needed bitmaps. */
2733 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2734 if (s_info->is_large)
2735 {
2736 BITMAP_FREE (s_info->positions_needed.large.bmap);
2737 s_info->is_large = false;
2738 }
2739 }
2740 ptr = ptr->prev_insn;
2741 }
2742
2743 cse_store_info_pool.release ();
2744 }
2745 bb_info->regs_live = NULL;
2746 }
2747
2748 BITMAP_FREE (regs_live);
2749 cselib_finish ();
2750 rtx_group_table->empty ();
2751 }
2752
2753 \f
2754 /*----------------------------------------------------------------------------
2755 Second step.
2756
2757 Assign each byte position in the stores that we are going to
2758 analyze globally to a position in the bitmaps. Returns true if
2759 there are any bit positions assigned.
2760 ----------------------------------------------------------------------------*/
2761
2762 static void
2763 dse_step2_init (void)
2764 {
2765 unsigned int i;
2766 group_info *group;
2767
2768 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2769 {
2770 /* For all non stack related bases, we only consider a store to
2771 be deletable if there are two or more stores for that
2772 position. This is because it takes one store to make the
2773 other store redundant. However, for the stores that are
2774 stack related, we consider them if there is only one store
2775 for the position. We do this because the stack related
2776 stores can be deleted if their is no read between them and
2777 the end of the function.
2778
2779 To make this work in the current framework, we take the stack
2780 related bases add all of the bits from store1 into store2.
2781 This has the effect of making the eligible even if there is
2782 only one store. */
2783
2784 if (stores_off_frame_dead_at_return && group->frame_related)
2785 {
2786 bitmap_ior_into (group->store2_n, group->store1_n);
2787 bitmap_ior_into (group->store2_p, group->store1_p);
2788 if (dump_file && (dump_flags & TDF_DETAILS))
2789 fprintf (dump_file, "group %d is frame related ", i);
2790 }
2791
2792 group->offset_map_size_n++;
2793 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2794 group->offset_map_size_n);
2795 group->offset_map_size_p++;
2796 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2797 group->offset_map_size_p);
2798 group->process_globally = false;
2799 if (dump_file && (dump_flags & TDF_DETAILS))
2800 {
2801 fprintf (dump_file, "group %d(%d+%d): ", i,
2802 (int)bitmap_count_bits (group->store2_n),
2803 (int)bitmap_count_bits (group->store2_p));
2804 bitmap_print (dump_file, group->store2_n, "n ", " ");
2805 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2806 }
2807 }
2808 }
2809
2810
2811 /* Init the offset tables. */
2812
2813 static bool
2814 dse_step2 (void)
2815 {
2816 unsigned int i;
2817 group_info *group;
2818 /* Position 0 is unused because 0 is used in the maps to mean
2819 unused. */
2820 current_position = 1;
2821 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2822 {
2823 bitmap_iterator bi;
2824 unsigned int j;
2825
2826 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2827 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2828 bitmap_clear (group->group_kill);
2829
2830 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2831 {
2832 bitmap_set_bit (group->group_kill, current_position);
2833 if (bitmap_bit_p (group->escaped_n, j))
2834 bitmap_set_bit (kill_on_calls, current_position);
2835 group->offset_map_n[j] = current_position++;
2836 group->process_globally = true;
2837 }
2838 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2839 {
2840 bitmap_set_bit (group->group_kill, current_position);
2841 if (bitmap_bit_p (group->escaped_p, j))
2842 bitmap_set_bit (kill_on_calls, current_position);
2843 group->offset_map_p[j] = current_position++;
2844 group->process_globally = true;
2845 }
2846 }
2847 return current_position != 1;
2848 }
2849
2850
2851 \f
2852 /*----------------------------------------------------------------------------
2853 Third step.
2854
2855 Build the bit vectors for the transfer functions.
2856 ----------------------------------------------------------------------------*/
2857
2858
2859 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2860 there, return 0. */
2861
2862 static int
2863 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2864 {
2865 if (offset < 0)
2866 {
2867 HOST_WIDE_INT offset_p = -offset;
2868 if (offset_p >= group_info->offset_map_size_n)
2869 return 0;
2870 return group_info->offset_map_n[offset_p];
2871 }
2872 else
2873 {
2874 if (offset >= group_info->offset_map_size_p)
2875 return 0;
2876 return group_info->offset_map_p[offset];
2877 }
2878 }
2879
2880
2881 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2882 may be NULL. */
2883
2884 static void
2885 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
2886 {
2887 while (store_info)
2888 {
2889 HOST_WIDE_INT i, offset, width;
2890 group_info *group_info
2891 = rtx_group_vec[store_info->group_id];
2892 /* We can (conservatively) ignore stores whose bounds aren't known;
2893 they simply don't generate new global dse opportunities. */
2894 if (group_info->process_globally
2895 && store_info->offset.is_constant (&offset)
2896 && store_info->width.is_constant (&width))
2897 {
2898 HOST_WIDE_INT end = offset + width;
2899 for (i = offset; i < end; i++)
2900 {
2901 int index = get_bitmap_index (group_info, i);
2902 if (index != 0)
2903 {
2904 bitmap_set_bit (gen, index);
2905 if (kill)
2906 bitmap_clear_bit (kill, index);
2907 }
2908 }
2909 }
2910 store_info = store_info->next;
2911 }
2912 }
2913
2914
2915 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2916 may be NULL. */
2917
2918 static void
2919 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
2920 {
2921 read_info_t read_info = insn_info->read_rec;
2922 int i;
2923 group_info *group;
2924
2925 /* If this insn reads the frame, kill all the frame related stores. */
2926 if (insn_info->frame_read)
2927 {
2928 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2929 if (group->process_globally && group->frame_related)
2930 {
2931 if (kill)
2932 bitmap_ior_into (kill, group->group_kill);
2933 bitmap_and_compl_into (gen, group->group_kill);
2934 }
2935 }
2936 if (insn_info->non_frame_wild_read)
2937 {
2938 /* Kill all non-frame related stores. Kill all stores of variables that
2939 escape. */
2940 if (kill)
2941 bitmap_ior_into (kill, kill_on_calls);
2942 bitmap_and_compl_into (gen, kill_on_calls);
2943 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2944 if (group->process_globally && !group->frame_related)
2945 {
2946 if (kill)
2947 bitmap_ior_into (kill, group->group_kill);
2948 bitmap_and_compl_into (gen, group->group_kill);
2949 }
2950 }
2951 while (read_info)
2952 {
2953 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2954 {
2955 if (group->process_globally)
2956 {
2957 if (i == read_info->group_id)
2958 {
2959 HOST_WIDE_INT offset, width;
2960 /* Reads with non-constant size kill all DSE opportunities
2961 in the group. */
2962 if (!read_info->offset.is_constant (&offset)
2963 || !read_info->width.is_constant (&width)
2964 || !known_size_p (width))
2965 {
2966 /* Handle block mode reads. */
2967 if (kill)
2968 bitmap_ior_into (kill, group->group_kill);
2969 bitmap_and_compl_into (gen, group->group_kill);
2970 }
2971 else
2972 {
2973 /* The groups are the same, just process the
2974 offsets. */
2975 HOST_WIDE_INT j;
2976 HOST_WIDE_INT end = offset + width;
2977 for (j = offset; j < end; j++)
2978 {
2979 int index = get_bitmap_index (group, j);
2980 if (index != 0)
2981 {
2982 if (kill)
2983 bitmap_set_bit (kill, index);
2984 bitmap_clear_bit (gen, index);
2985 }
2986 }
2987 }
2988 }
2989 else
2990 {
2991 /* The groups are different, if the alias sets
2992 conflict, clear the entire group. We only need
2993 to apply this test if the read_info is a cselib
2994 read. Anything with a constant base cannot alias
2995 something else with a different constant
2996 base. */
2997 if ((read_info->group_id < 0)
2998 && canon_true_dependence (group->base_mem,
2999 GET_MODE (group->base_mem),
3000 group->canon_base_addr,
3001 read_info->mem, NULL_RTX))
3002 {
3003 if (kill)
3004 bitmap_ior_into (kill, group->group_kill);
3005 bitmap_and_compl_into (gen, group->group_kill);
3006 }
3007 }
3008 }
3009 }
3010
3011 read_info = read_info->next;
3012 }
3013 }
3014
3015
3016 /* Return the insn in BB_INFO before the first wild read or if there
3017 are no wild reads in the block, return the last insn. */
3018
3019 static insn_info_t
3020 find_insn_before_first_wild_read (bb_info_t bb_info)
3021 {
3022 insn_info_t insn_info = bb_info->last_insn;
3023 insn_info_t last_wild_read = NULL;
3024
3025 while (insn_info)
3026 {
3027 if (insn_info->wild_read)
3028 {
3029 last_wild_read = insn_info->prev_insn;
3030 /* Block starts with wild read. */
3031 if (!last_wild_read)
3032 return NULL;
3033 }
3034
3035 insn_info = insn_info->prev_insn;
3036 }
3037
3038 if (last_wild_read)
3039 return last_wild_read;
3040 else
3041 return bb_info->last_insn;
3042 }
3043
3044
3045 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3046 the block in order to build the gen and kill sets for the block.
3047 We start at ptr which may be the last insn in the block or may be
3048 the first insn with a wild read. In the latter case we are able to
3049 skip the rest of the block because it just does not matter:
3050 anything that happens is hidden by the wild read. */
3051
3052 static void
3053 dse_step3_scan (basic_block bb)
3054 {
3055 bb_info_t bb_info = bb_table[bb->index];
3056 insn_info_t insn_info;
3057
3058 insn_info = find_insn_before_first_wild_read (bb_info);
3059
3060 /* In the spill case or in the no_spill case if there is no wild
3061 read in the block, we will need a kill set. */
3062 if (insn_info == bb_info->last_insn)
3063 {
3064 if (bb_info->kill)
3065 bitmap_clear (bb_info->kill);
3066 else
3067 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3068 }
3069 else
3070 if (bb_info->kill)
3071 BITMAP_FREE (bb_info->kill);
3072
3073 while (insn_info)
3074 {
3075 /* There may have been code deleted by the dce pass run before
3076 this phase. */
3077 if (insn_info->insn && INSN_P (insn_info->insn))
3078 {
3079 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3080 scan_reads (insn_info, bb_info->gen, bb_info->kill);
3081 }
3082
3083 insn_info = insn_info->prev_insn;
3084 }
3085 }
3086
3087
3088 /* Set the gen set of the exit block, and also any block with no
3089 successors that does not have a wild read. */
3090
3091 static void
3092 dse_step3_exit_block_scan (bb_info_t bb_info)
3093 {
3094 /* The gen set is all 0's for the exit block except for the
3095 frame_pointer_group. */
3096
3097 if (stores_off_frame_dead_at_return)
3098 {
3099 unsigned int i;
3100 group_info *group;
3101
3102 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3103 {
3104 if (group->process_globally && group->frame_related)
3105 bitmap_ior_into (bb_info->gen, group->group_kill);
3106 }
3107 }
3108 }
3109
3110
3111 /* Find all of the blocks that are not backwards reachable from the
3112 exit block or any block with no successors (BB). These are the
3113 infinite loops or infinite self loops. These blocks will still
3114 have their bits set in UNREACHABLE_BLOCKS. */
3115
3116 static void
3117 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3118 {
3119 edge e;
3120 edge_iterator ei;
3121
3122 if (bitmap_bit_p (unreachable_blocks, bb->index))
3123 {
3124 bitmap_clear_bit (unreachable_blocks, bb->index);
3125 FOR_EACH_EDGE (e, ei, bb->preds)
3126 {
3127 mark_reachable_blocks (unreachable_blocks, e->src);
3128 }
3129 }
3130 }
3131
3132 /* Build the transfer functions for the function. */
3133
3134 static void
3135 dse_step3 ()
3136 {
3137 basic_block bb;
3138 sbitmap_iterator sbi;
3139 bitmap all_ones = NULL;
3140 unsigned int i;
3141
3142 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3143 bitmap_ones (unreachable_blocks);
3144
3145 FOR_ALL_BB_FN (bb, cfun)
3146 {
3147 bb_info_t bb_info = bb_table[bb->index];
3148 if (bb_info->gen)
3149 bitmap_clear (bb_info->gen);
3150 else
3151 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3152
3153 if (bb->index == ENTRY_BLOCK)
3154 ;
3155 else if (bb->index == EXIT_BLOCK)
3156 dse_step3_exit_block_scan (bb_info);
3157 else
3158 dse_step3_scan (bb);
3159 if (EDGE_COUNT (bb->succs) == 0)
3160 mark_reachable_blocks (unreachable_blocks, bb);
3161
3162 /* If this is the second time dataflow is run, delete the old
3163 sets. */
3164 if (bb_info->in)
3165 BITMAP_FREE (bb_info->in);
3166 if (bb_info->out)
3167 BITMAP_FREE (bb_info->out);
3168 }
3169
3170 /* For any block in an infinite loop, we must initialize the out set
3171 to all ones. This could be expensive, but almost never occurs in
3172 practice. However, it is common in regression tests. */
3173 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3174 {
3175 if (bitmap_bit_p (all_blocks, i))
3176 {
3177 bb_info_t bb_info = bb_table[i];
3178 if (!all_ones)
3179 {
3180 unsigned int j;
3181 group_info *group;
3182
3183 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3184 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3185 bitmap_ior_into (all_ones, group->group_kill);
3186 }
3187 if (!bb_info->out)
3188 {
3189 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3190 bitmap_copy (bb_info->out, all_ones);
3191 }
3192 }
3193 }
3194
3195 if (all_ones)
3196 BITMAP_FREE (all_ones);
3197 }
3198
3199
3200 \f
3201 /*----------------------------------------------------------------------------
3202 Fourth step.
3203
3204 Solve the bitvector equations.
3205 ----------------------------------------------------------------------------*/
3206
3207
3208 /* Confluence function for blocks with no successors. Create an out
3209 set from the gen set of the exit block. This block logically has
3210 the exit block as a successor. */
3211
3212
3213
3214 static void
3215 dse_confluence_0 (basic_block bb)
3216 {
3217 bb_info_t bb_info = bb_table[bb->index];
3218
3219 if (bb->index == EXIT_BLOCK)
3220 return;
3221
3222 if (!bb_info->out)
3223 {
3224 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3225 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3226 }
3227 }
3228
3229 /* Propagate the information from the in set of the dest of E to the
3230 out set of the src of E. If the various in or out sets are not
3231 there, that means they are all ones. */
3232
3233 static bool
3234 dse_confluence_n (edge e)
3235 {
3236 bb_info_t src_info = bb_table[e->src->index];
3237 bb_info_t dest_info = bb_table[e->dest->index];
3238
3239 if (dest_info->in)
3240 {
3241 if (src_info->out)
3242 bitmap_and_into (src_info->out, dest_info->in);
3243 else
3244 {
3245 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3246 bitmap_copy (src_info->out, dest_info->in);
3247 }
3248 }
3249 return true;
3250 }
3251
3252
3253 /* Propagate the info from the out to the in set of BB_INDEX's basic
3254 block. There are three cases:
3255
3256 1) The block has no kill set. In this case the kill set is all
3257 ones. It does not matter what the out set of the block is, none of
3258 the info can reach the top. The only thing that reaches the top is
3259 the gen set and we just copy the set.
3260
3261 2) There is a kill set but no out set and bb has successors. In
3262 this case we just return. Eventually an out set will be created and
3263 it is better to wait than to create a set of ones.
3264
3265 3) There is both a kill and out set. We apply the obvious transfer
3266 function.
3267 */
3268
3269 static bool
3270 dse_transfer_function (int bb_index)
3271 {
3272 bb_info_t bb_info = bb_table[bb_index];
3273
3274 if (bb_info->kill)
3275 {
3276 if (bb_info->out)
3277 {
3278 /* Case 3 above. */
3279 if (bb_info->in)
3280 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3281 bb_info->out, bb_info->kill);
3282 else
3283 {
3284 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3285 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3286 bb_info->out, bb_info->kill);
3287 return true;
3288 }
3289 }
3290 else
3291 /* Case 2 above. */
3292 return false;
3293 }
3294 else
3295 {
3296 /* Case 1 above. If there is already an in set, nothing
3297 happens. */
3298 if (bb_info->in)
3299 return false;
3300 else
3301 {
3302 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3303 bitmap_copy (bb_info->in, bb_info->gen);
3304 return true;
3305 }
3306 }
3307 }
3308
3309 /* Solve the dataflow equations. */
3310
3311 static void
3312 dse_step4 (void)
3313 {
3314 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3315 dse_confluence_n, dse_transfer_function,
3316 all_blocks, df_get_postorder (DF_BACKWARD),
3317 df_get_n_blocks (DF_BACKWARD));
3318 if (dump_file && (dump_flags & TDF_DETAILS))
3319 {
3320 basic_block bb;
3321
3322 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3323 FOR_ALL_BB_FN (bb, cfun)
3324 {
3325 bb_info_t bb_info = bb_table[bb->index];
3326
3327 df_print_bb_index (bb, dump_file);
3328 if (bb_info->in)
3329 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3330 else
3331 fprintf (dump_file, " in: *MISSING*\n");
3332 if (bb_info->gen)
3333 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3334 else
3335 fprintf (dump_file, " gen: *MISSING*\n");
3336 if (bb_info->kill)
3337 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3338 else
3339 fprintf (dump_file, " kill: *MISSING*\n");
3340 if (bb_info->out)
3341 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3342 else
3343 fprintf (dump_file, " out: *MISSING*\n\n");
3344 }
3345 }
3346 }
3347
3348
3349 \f
3350 /*----------------------------------------------------------------------------
3351 Fifth step.
3352
3353 Delete the stores that can only be deleted using the global information.
3354 ----------------------------------------------------------------------------*/
3355
3356
3357 static void
3358 dse_step5 (void)
3359 {
3360 basic_block bb;
3361 FOR_EACH_BB_FN (bb, cfun)
3362 {
3363 bb_info_t bb_info = bb_table[bb->index];
3364 insn_info_t insn_info = bb_info->last_insn;
3365 bitmap v = bb_info->out;
3366
3367 while (insn_info)
3368 {
3369 bool deleted = false;
3370 if (dump_file && insn_info->insn)
3371 {
3372 fprintf (dump_file, "starting to process insn %d\n",
3373 INSN_UID (insn_info->insn));
3374 bitmap_print (dump_file, v, " v: ", "\n");
3375 }
3376
3377 /* There may have been code deleted by the dce pass run before
3378 this phase. */
3379 if (insn_info->insn
3380 && INSN_P (insn_info->insn)
3381 && (!insn_info->cannot_delete)
3382 && (!bitmap_empty_p (v)))
3383 {
3384 store_info *store_info = insn_info->store_rec;
3385
3386 /* Try to delete the current insn. */
3387 deleted = true;
3388
3389 /* Skip the clobbers. */
3390 while (!store_info->is_set)
3391 store_info = store_info->next;
3392
3393 HOST_WIDE_INT i, offset, width;
3394 group_info *group_info = rtx_group_vec[store_info->group_id];
3395
3396 if (!store_info->offset.is_constant (&offset)
3397 || !store_info->width.is_constant (&width))
3398 deleted = false;
3399 else
3400 {
3401 HOST_WIDE_INT end = offset + width;
3402 for (i = offset; i < end; i++)
3403 {
3404 int index = get_bitmap_index (group_info, i);
3405
3406 if (dump_file && (dump_flags & TDF_DETAILS))
3407 fprintf (dump_file, "i = %d, index = %d\n",
3408 (int) i, index);
3409 if (index == 0 || !bitmap_bit_p (v, index))
3410 {
3411 if (dump_file && (dump_flags & TDF_DETAILS))
3412 fprintf (dump_file, "failing at i = %d\n",
3413 (int) i);
3414 deleted = false;
3415 break;
3416 }
3417 }
3418 }
3419 if (deleted)
3420 {
3421 if (dbg_cnt (dse)
3422 && check_for_inc_dec_1 (insn_info))
3423 {
3424 delete_insn (insn_info->insn);
3425 insn_info->insn = NULL;
3426 globally_deleted++;
3427 }
3428 }
3429 }
3430 /* We do want to process the local info if the insn was
3431 deleted. For instance, if the insn did a wild read, we
3432 no longer need to trash the info. */
3433 if (insn_info->insn
3434 && INSN_P (insn_info->insn)
3435 && (!deleted))
3436 {
3437 scan_stores (insn_info->store_rec, v, NULL);
3438 if (insn_info->wild_read)
3439 {
3440 if (dump_file && (dump_flags & TDF_DETAILS))
3441 fprintf (dump_file, "wild read\n");
3442 bitmap_clear (v);
3443 }
3444 else if (insn_info->read_rec
3445 || insn_info->non_frame_wild_read
3446 || insn_info->frame_read)
3447 {
3448 if (dump_file && (dump_flags & TDF_DETAILS))
3449 {
3450 if (!insn_info->non_frame_wild_read
3451 && !insn_info->frame_read)
3452 fprintf (dump_file, "regular read\n");
3453 if (insn_info->non_frame_wild_read)
3454 fprintf (dump_file, "non-frame wild read\n");
3455 if (insn_info->frame_read)
3456 fprintf (dump_file, "frame read\n");
3457 }
3458 scan_reads (insn_info, v, NULL);
3459 }
3460 }
3461
3462 insn_info = insn_info->prev_insn;
3463 }
3464 }
3465 }
3466
3467
3468 \f
3469 /*----------------------------------------------------------------------------
3470 Sixth step.
3471
3472 Delete stores made redundant by earlier stores (which store the same
3473 value) that couldn't be eliminated.
3474 ----------------------------------------------------------------------------*/
3475
3476 static void
3477 dse_step6 (void)
3478 {
3479 basic_block bb;
3480
3481 FOR_ALL_BB_FN (bb, cfun)
3482 {
3483 bb_info_t bb_info = bb_table[bb->index];
3484 insn_info_t insn_info = bb_info->last_insn;
3485
3486 while (insn_info)
3487 {
3488 /* There may have been code deleted by the dce pass run before
3489 this phase. */
3490 if (insn_info->insn
3491 && INSN_P (insn_info->insn)
3492 && !insn_info->cannot_delete)
3493 {
3494 store_info *s_info = insn_info->store_rec;
3495
3496 while (s_info && !s_info->is_set)
3497 s_info = s_info->next;
3498 if (s_info
3499 && s_info->redundant_reason
3500 && s_info->redundant_reason->insn
3501 && INSN_P (s_info->redundant_reason->insn))
3502 {
3503 rtx_insn *rinsn = s_info->redundant_reason->insn;
3504 if (dump_file && (dump_flags & TDF_DETAILS))
3505 fprintf (dump_file, "Locally deleting insn %d "
3506 "because insn %d stores the "
3507 "same value and couldn't be "
3508 "eliminated\n",
3509 INSN_UID (insn_info->insn),
3510 INSN_UID (rinsn));
3511 delete_dead_store_insn (insn_info);
3512 }
3513 }
3514 insn_info = insn_info->prev_insn;
3515 }
3516 }
3517 }
3518 \f
3519 /*----------------------------------------------------------------------------
3520 Seventh step.
3521
3522 Destroy everything left standing.
3523 ----------------------------------------------------------------------------*/
3524
3525 static void
3526 dse_step7 (void)
3527 {
3528 bitmap_obstack_release (&dse_bitmap_obstack);
3529 obstack_free (&dse_obstack, NULL);
3530
3531 end_alias_analysis ();
3532 free (bb_table);
3533 delete rtx_group_table;
3534 rtx_group_table = NULL;
3535 rtx_group_vec.release ();
3536 BITMAP_FREE (all_blocks);
3537 BITMAP_FREE (scratch);
3538
3539 rtx_store_info_pool.release ();
3540 read_info_type_pool.release ();
3541 insn_info_type_pool.release ();
3542 dse_bb_info_type_pool.release ();
3543 group_info_pool.release ();
3544 deferred_change_pool.release ();
3545 }
3546
3547
3548 /* -------------------------------------------------------------------------
3549 DSE
3550 ------------------------------------------------------------------------- */
3551
3552 /* Callback for running pass_rtl_dse. */
3553
3554 static unsigned int
3555 rest_of_handle_dse (void)
3556 {
3557 df_set_flags (DF_DEFER_INSN_RESCAN);
3558
3559 /* Need the notes since we must track live hardregs in the forwards
3560 direction. */
3561 df_note_add_problem ();
3562 df_analyze ();
3563
3564 dse_step0 ();
3565 dse_step1 ();
3566 dse_step2_init ();
3567 if (dse_step2 ())
3568 {
3569 df_set_flags (DF_LR_RUN_DCE);
3570 df_analyze ();
3571 if (dump_file && (dump_flags & TDF_DETAILS))
3572 fprintf (dump_file, "doing global processing\n");
3573 dse_step3 ();
3574 dse_step4 ();
3575 dse_step5 ();
3576 }
3577
3578 dse_step6 ();
3579 dse_step7 ();
3580
3581 if (dump_file)
3582 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3583 locally_deleted, globally_deleted);
3584
3585 /* DSE can eliminate potentially-trapping MEMs.
3586 Remove any EH edges associated with them. */
3587 if ((locally_deleted || globally_deleted)
3588 && cfun->can_throw_non_call_exceptions
3589 && purge_all_dead_edges ())
3590 cleanup_cfg (0);
3591
3592 return 0;
3593 }
3594
3595 namespace {
3596
3597 const pass_data pass_data_rtl_dse1 =
3598 {
3599 RTL_PASS, /* type */
3600 "dse1", /* name */
3601 OPTGROUP_NONE, /* optinfo_flags */
3602 TV_DSE1, /* tv_id */
3603 0, /* properties_required */
3604 0, /* properties_provided */
3605 0, /* properties_destroyed */
3606 0, /* todo_flags_start */
3607 TODO_df_finish, /* todo_flags_finish */
3608 };
3609
3610 class pass_rtl_dse1 : public rtl_opt_pass
3611 {
3612 public:
3613 pass_rtl_dse1 (gcc::context *ctxt)
3614 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3615 {}
3616
3617 /* opt_pass methods: */
3618 virtual bool gate (function *)
3619 {
3620 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3621 }
3622
3623 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3624
3625 }; // class pass_rtl_dse1
3626
3627 } // anon namespace
3628
3629 rtl_opt_pass *
3630 make_pass_rtl_dse1 (gcc::context *ctxt)
3631 {
3632 return new pass_rtl_dse1 (ctxt);
3633 }
3634
3635 namespace {
3636
3637 const pass_data pass_data_rtl_dse2 =
3638 {
3639 RTL_PASS, /* type */
3640 "dse2", /* name */
3641 OPTGROUP_NONE, /* optinfo_flags */
3642 TV_DSE2, /* tv_id */
3643 0, /* properties_required */
3644 0, /* properties_provided */
3645 0, /* properties_destroyed */
3646 0, /* todo_flags_start */
3647 TODO_df_finish, /* todo_flags_finish */
3648 };
3649
3650 class pass_rtl_dse2 : public rtl_opt_pass
3651 {
3652 public:
3653 pass_rtl_dse2 (gcc::context *ctxt)
3654 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3655 {}
3656
3657 /* opt_pass methods: */
3658 virtual bool gate (function *)
3659 {
3660 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3661 }
3662
3663 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3664
3665 }; // class pass_rtl_dse2
3666
3667 } // anon namespace
3668
3669 rtl_opt_pass *
3670 make_pass_rtl_dse2 (gcc::context *ctxt)
3671 {
3672 return new pass_rtl_dse2 (ctxt);
3673 }