]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dwarf2cfi.c
[Ada] Define the -fdump-scos option in lang.opt
[thirdparty/gcc.git] / gcc / dwarf2cfi.c
1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "target.h"
24 #include "function.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "tree-pass.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "emit-rtl.h"
31 #include "stor-layout.h"
32 #include "cfgbuild.h"
33 #include "dwarf2out.h"
34 #include "dwarf2asm.h"
35 #include "common/common-target.h"
36
37 #include "except.h" /* expand_builtin_dwarf_sp_column */
38 #include "profile-count.h" /* For expr.h */
39 #include "expr.h" /* init_return_column_size */
40 #include "output.h" /* asm_out_file */
41 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
42
43
44 /* ??? Poison these here until it can be done generically. They've been
45 totally replaced in this file; make sure it stays that way. */
46 #undef DWARF2_UNWIND_INFO
47 #undef DWARF2_FRAME_INFO
48 #if (GCC_VERSION >= 3000)
49 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
50 #endif
51
52 #ifndef INCOMING_RETURN_ADDR_RTX
53 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
54 #endif
55
56 #ifndef DEFAULT_INCOMING_FRAME_SP_OFFSET
57 #define DEFAULT_INCOMING_FRAME_SP_OFFSET INCOMING_FRAME_SP_OFFSET
58 #endif
59 \f
60 /* A collected description of an entire row of the abstract CFI table. */
61 struct GTY(()) dw_cfi_row
62 {
63 /* The expression that computes the CFA, expressed in two different ways.
64 The CFA member for the simple cases, and the full CFI expression for
65 the complex cases. The later will be a DW_CFA_cfa_expression. */
66 dw_cfa_location cfa;
67 dw_cfi_ref cfa_cfi;
68
69 /* The expressions for any register column that is saved. */
70 cfi_vec reg_save;
71
72 /* True if the register window is saved. */
73 bool window_save;
74 };
75
76 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
77 struct GTY(()) reg_saved_in_data {
78 rtx orig_reg;
79 rtx saved_in_reg;
80 };
81
82
83 /* Since we no longer have a proper CFG, we're going to create a facsimile
84 of one on the fly while processing the frame-related insns.
85
86 We create dw_trace_info structures for each extended basic block beginning
87 and ending at a "save point". Save points are labels, barriers, certain
88 notes, and of course the beginning and end of the function.
89
90 As we encounter control transfer insns, we propagate the "current"
91 row state across the edges to the starts of traces. When checking is
92 enabled, we validate that we propagate the same data from all sources.
93
94 All traces are members of the TRACE_INFO array, in the order in which
95 they appear in the instruction stream.
96
97 All save points are present in the TRACE_INDEX hash, mapping the insn
98 starting a trace to the dw_trace_info describing the trace. */
99
100 struct dw_trace_info
101 {
102 /* The insn that begins the trace. */
103 rtx_insn *head;
104
105 /* The row state at the beginning and end of the trace. */
106 dw_cfi_row *beg_row, *end_row;
107
108 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
109 while scanning insns. However, the args_size value is irrelevant at
110 any point except can_throw_internal_p insns. Therefore the "delay"
111 sizes the values that must actually be emitted for this trace. */
112 poly_int64_pod beg_true_args_size, end_true_args_size;
113 poly_int64_pod beg_delay_args_size, end_delay_args_size;
114
115 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
116 rtx_insn *eh_head;
117
118 /* The following variables contain data used in interpreting frame related
119 expressions. These are not part of the "real" row state as defined by
120 Dwarf, but it seems like they need to be propagated into a trace in case
121 frame related expressions have been sunk. */
122 /* ??? This seems fragile. These variables are fragments of a larger
123 expression. If we do not keep the entire expression together, we risk
124 not being able to put it together properly. Consider forcing targets
125 to generate self-contained expressions and dropping all of the magic
126 interpretation code in this file. Or at least refusing to shrink wrap
127 any frame related insn that doesn't contain a complete expression. */
128
129 /* The register used for saving registers to the stack, and its offset
130 from the CFA. */
131 dw_cfa_location cfa_store;
132
133 /* A temporary register holding an integral value used in adjusting SP
134 or setting up the store_reg. The "offset" field holds the integer
135 value, not an offset. */
136 dw_cfa_location cfa_temp;
137
138 /* A set of registers saved in other registers. This is the inverse of
139 the row->reg_save info, if the entry is a DW_CFA_register. This is
140 implemented as a flat array because it normally contains zero or 1
141 entry, depending on the target. IA-64 is the big spender here, using
142 a maximum of 5 entries. */
143 vec<reg_saved_in_data> regs_saved_in_regs;
144
145 /* An identifier for this trace. Used only for debugging dumps. */
146 unsigned id;
147
148 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
149 bool switch_sections;
150
151 /* True if we've seen different values incoming to beg_true_args_size. */
152 bool args_size_undefined;
153
154 /* True if we've seen an insn with a REG_ARGS_SIZE note before EH_HEAD. */
155 bool args_size_defined_for_eh;
156 };
157
158
159 /* Hashtable helpers. */
160
161 struct trace_info_hasher : nofree_ptr_hash <dw_trace_info>
162 {
163 static inline hashval_t hash (const dw_trace_info *);
164 static inline bool equal (const dw_trace_info *, const dw_trace_info *);
165 };
166
167 inline hashval_t
168 trace_info_hasher::hash (const dw_trace_info *ti)
169 {
170 return INSN_UID (ti->head);
171 }
172
173 inline bool
174 trace_info_hasher::equal (const dw_trace_info *a, const dw_trace_info *b)
175 {
176 return a->head == b->head;
177 }
178
179
180 /* The variables making up the pseudo-cfg, as described above. */
181 static vec<dw_trace_info> trace_info;
182 static vec<dw_trace_info *> trace_work_list;
183 static hash_table<trace_info_hasher> *trace_index;
184
185 /* A vector of call frame insns for the CIE. */
186 cfi_vec cie_cfi_vec;
187
188 /* The state of the first row of the FDE table, which includes the
189 state provided by the CIE. */
190 static GTY(()) dw_cfi_row *cie_cfi_row;
191
192 static GTY(()) reg_saved_in_data *cie_return_save;
193
194 static GTY(()) unsigned long dwarf2out_cfi_label_num;
195
196 /* The insn after which a new CFI note should be emitted. */
197 static rtx_insn *add_cfi_insn;
198
199 /* When non-null, add_cfi will add the CFI to this vector. */
200 static cfi_vec *add_cfi_vec;
201
202 /* The current instruction trace. */
203 static dw_trace_info *cur_trace;
204
205 /* The current, i.e. most recently generated, row of the CFI table. */
206 static dw_cfi_row *cur_row;
207
208 /* A copy of the current CFA, for use during the processing of a
209 single insn. */
210 static dw_cfa_location *cur_cfa;
211
212 /* We delay emitting a register save until either (a) we reach the end
213 of the prologue or (b) the register is clobbered. This clusters
214 register saves so that there are fewer pc advances. */
215
216 struct queued_reg_save {
217 rtx reg;
218 rtx saved_reg;
219 poly_int64_pod cfa_offset;
220 };
221
222
223 static vec<queued_reg_save> queued_reg_saves;
224
225 /* True if any CFI directives were emitted at the current insn. */
226 static bool any_cfis_emitted;
227
228 /* Short-hand for commonly used register numbers. */
229 static unsigned dw_stack_pointer_regnum;
230 static unsigned dw_frame_pointer_regnum;
231 \f
232 /* Hook used by __throw. */
233
234 rtx
235 expand_builtin_dwarf_sp_column (void)
236 {
237 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
238 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
239 }
240
241 /* MEM is a memory reference for the register size table, each element of
242 which has mode MODE. Initialize column C as a return address column. */
243
244 static void
245 init_return_column_size (scalar_int_mode mode, rtx mem, unsigned int c)
246 {
247 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
248 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
249 emit_move_insn (adjust_address (mem, mode, offset),
250 gen_int_mode (size, mode));
251 }
252
253 /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
254 init_one_dwarf_reg_size to communicate on what has been done by the
255 latter. */
256
257 struct init_one_dwarf_reg_state
258 {
259 /* Whether the dwarf return column was initialized. */
260 bool wrote_return_column;
261
262 /* For each hard register REGNO, whether init_one_dwarf_reg_size
263 was given REGNO to process already. */
264 bool processed_regno [FIRST_PSEUDO_REGISTER];
265
266 };
267
268 /* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to
269 initialize the dwarf register size table entry corresponding to register
270 REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to
271 use for the size entry to initialize, and INIT_STATE is the communication
272 datastructure conveying what we're doing to our caller. */
273
274 static
275 void init_one_dwarf_reg_size (int regno, machine_mode regmode,
276 rtx table, machine_mode slotmode,
277 init_one_dwarf_reg_state *init_state)
278 {
279 const unsigned int dnum = DWARF_FRAME_REGNUM (regno);
280 const unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
281 const unsigned int dcol = DWARF_REG_TO_UNWIND_COLUMN (rnum);
282
283 poly_int64 slotoffset = dcol * GET_MODE_SIZE (slotmode);
284 poly_int64 regsize = GET_MODE_SIZE (regmode);
285
286 init_state->processed_regno[regno] = true;
287
288 if (rnum >= DWARF_FRAME_REGISTERS)
289 return;
290
291 if (dnum == DWARF_FRAME_RETURN_COLUMN)
292 {
293 if (regmode == VOIDmode)
294 return;
295 init_state->wrote_return_column = true;
296 }
297
298 /* ??? When is this true? Should it be a test based on DCOL instead? */
299 if (maybe_lt (slotoffset, 0))
300 return;
301
302 emit_move_insn (adjust_address (table, slotmode, slotoffset),
303 gen_int_mode (regsize, slotmode));
304 }
305
306 /* Generate code to initialize the dwarf register size table located
307 at the provided ADDRESS. */
308
309 void
310 expand_builtin_init_dwarf_reg_sizes (tree address)
311 {
312 unsigned int i;
313 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (char_type_node);
314 rtx addr = expand_normal (address);
315 rtx mem = gen_rtx_MEM (BLKmode, addr);
316
317 init_one_dwarf_reg_state init_state;
318
319 memset ((char *)&init_state, 0, sizeof (init_state));
320
321 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
322 {
323 machine_mode save_mode;
324 rtx span;
325
326 /* No point in processing a register multiple times. This could happen
327 with register spans, e.g. when a reg is first processed as a piece of
328 a span, then as a register on its own later on. */
329
330 if (init_state.processed_regno[i])
331 continue;
332
333 save_mode = targetm.dwarf_frame_reg_mode (i);
334 span = targetm.dwarf_register_span (gen_rtx_REG (save_mode, i));
335
336 if (!span)
337 init_one_dwarf_reg_size (i, save_mode, mem, mode, &init_state);
338 else
339 {
340 for (int si = 0; si < XVECLEN (span, 0); si++)
341 {
342 rtx reg = XVECEXP (span, 0, si);
343
344 init_one_dwarf_reg_size
345 (REGNO (reg), GET_MODE (reg), mem, mode, &init_state);
346 }
347 }
348 }
349
350 if (!init_state.wrote_return_column)
351 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
352
353 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
354 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
355 #endif
356
357 targetm.init_dwarf_reg_sizes_extra (address);
358 }
359
360 \f
361 static dw_trace_info *
362 get_trace_info (rtx_insn *insn)
363 {
364 dw_trace_info dummy;
365 dummy.head = insn;
366 return trace_index->find_with_hash (&dummy, INSN_UID (insn));
367 }
368
369 static bool
370 save_point_p (rtx_insn *insn)
371 {
372 /* Labels, except those that are really jump tables. */
373 if (LABEL_P (insn))
374 return inside_basic_block_p (insn);
375
376 /* We split traces at the prologue/epilogue notes because those
377 are points at which the unwind info is usually stable. This
378 makes it easier to find spots with identical unwind info so
379 that we can use remember/restore_state opcodes. */
380 if (NOTE_P (insn))
381 switch (NOTE_KIND (insn))
382 {
383 case NOTE_INSN_PROLOGUE_END:
384 case NOTE_INSN_EPILOGUE_BEG:
385 return true;
386 }
387
388 return false;
389 }
390
391 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
392
393 static inline HOST_WIDE_INT
394 div_data_align (HOST_WIDE_INT off)
395 {
396 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
397 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
398 return r;
399 }
400
401 /* Return true if we need a signed version of a given opcode
402 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
403
404 static inline bool
405 need_data_align_sf_opcode (HOST_WIDE_INT off)
406 {
407 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
408 }
409
410 /* Return a pointer to a newly allocated Call Frame Instruction. */
411
412 static inline dw_cfi_ref
413 new_cfi (void)
414 {
415 dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
416
417 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
418 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
419
420 return cfi;
421 }
422
423 /* Return a newly allocated CFI row, with no defined data. */
424
425 static dw_cfi_row *
426 new_cfi_row (void)
427 {
428 dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
429
430 row->cfa.reg = INVALID_REGNUM;
431
432 return row;
433 }
434
435 /* Return a copy of an existing CFI row. */
436
437 static dw_cfi_row *
438 copy_cfi_row (dw_cfi_row *src)
439 {
440 dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
441
442 *dst = *src;
443 dst->reg_save = vec_safe_copy (src->reg_save);
444
445 return dst;
446 }
447
448 /* Return a copy of an existing CFA location. */
449
450 static dw_cfa_location *
451 copy_cfa (dw_cfa_location *src)
452 {
453 dw_cfa_location *dst = ggc_alloc<dw_cfa_location> ();
454 *dst = *src;
455 return dst;
456 }
457
458 /* Generate a new label for the CFI info to refer to. */
459
460 static char *
461 dwarf2out_cfi_label (void)
462 {
463 int num = dwarf2out_cfi_label_num++;
464 char label[20];
465
466 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
467
468 return xstrdup (label);
469 }
470
471 /* Add CFI either to the current insn stream or to a vector, or both. */
472
473 static void
474 add_cfi (dw_cfi_ref cfi)
475 {
476 any_cfis_emitted = true;
477
478 if (add_cfi_insn != NULL)
479 {
480 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
481 NOTE_CFI (add_cfi_insn) = cfi;
482 }
483
484 if (add_cfi_vec != NULL)
485 vec_safe_push (*add_cfi_vec, cfi);
486 }
487
488 static void
489 add_cfi_args_size (poly_int64 size)
490 {
491 /* We don't yet have a representation for polynomial sizes. */
492 HOST_WIDE_INT const_size = size.to_constant ();
493
494 dw_cfi_ref cfi = new_cfi ();
495
496 /* While we can occasionally have args_size < 0 internally, this state
497 should not persist at a point we actually need an opcode. */
498 gcc_assert (const_size >= 0);
499
500 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
501 cfi->dw_cfi_oprnd1.dw_cfi_offset = const_size;
502
503 add_cfi (cfi);
504 }
505
506 static void
507 add_cfi_restore (unsigned reg)
508 {
509 dw_cfi_ref cfi = new_cfi ();
510
511 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
512 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
513
514 add_cfi (cfi);
515 }
516
517 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
518 that the register column is no longer saved. */
519
520 static void
521 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
522 {
523 if (vec_safe_length (row->reg_save) <= column)
524 vec_safe_grow_cleared (row->reg_save, column + 1);
525 (*row->reg_save)[column] = cfi;
526 }
527
528 /* This function fills in aa dw_cfa_location structure from a dwarf location
529 descriptor sequence. */
530
531 static void
532 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
533 {
534 struct dw_loc_descr_node *ptr;
535 cfa->offset = 0;
536 cfa->base_offset = 0;
537 cfa->indirect = 0;
538 cfa->reg = -1;
539
540 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
541 {
542 enum dwarf_location_atom op = ptr->dw_loc_opc;
543
544 switch (op)
545 {
546 case DW_OP_reg0:
547 case DW_OP_reg1:
548 case DW_OP_reg2:
549 case DW_OP_reg3:
550 case DW_OP_reg4:
551 case DW_OP_reg5:
552 case DW_OP_reg6:
553 case DW_OP_reg7:
554 case DW_OP_reg8:
555 case DW_OP_reg9:
556 case DW_OP_reg10:
557 case DW_OP_reg11:
558 case DW_OP_reg12:
559 case DW_OP_reg13:
560 case DW_OP_reg14:
561 case DW_OP_reg15:
562 case DW_OP_reg16:
563 case DW_OP_reg17:
564 case DW_OP_reg18:
565 case DW_OP_reg19:
566 case DW_OP_reg20:
567 case DW_OP_reg21:
568 case DW_OP_reg22:
569 case DW_OP_reg23:
570 case DW_OP_reg24:
571 case DW_OP_reg25:
572 case DW_OP_reg26:
573 case DW_OP_reg27:
574 case DW_OP_reg28:
575 case DW_OP_reg29:
576 case DW_OP_reg30:
577 case DW_OP_reg31:
578 cfa->reg = op - DW_OP_reg0;
579 break;
580 case DW_OP_regx:
581 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
582 break;
583 case DW_OP_breg0:
584 case DW_OP_breg1:
585 case DW_OP_breg2:
586 case DW_OP_breg3:
587 case DW_OP_breg4:
588 case DW_OP_breg5:
589 case DW_OP_breg6:
590 case DW_OP_breg7:
591 case DW_OP_breg8:
592 case DW_OP_breg9:
593 case DW_OP_breg10:
594 case DW_OP_breg11:
595 case DW_OP_breg12:
596 case DW_OP_breg13:
597 case DW_OP_breg14:
598 case DW_OP_breg15:
599 case DW_OP_breg16:
600 case DW_OP_breg17:
601 case DW_OP_breg18:
602 case DW_OP_breg19:
603 case DW_OP_breg20:
604 case DW_OP_breg21:
605 case DW_OP_breg22:
606 case DW_OP_breg23:
607 case DW_OP_breg24:
608 case DW_OP_breg25:
609 case DW_OP_breg26:
610 case DW_OP_breg27:
611 case DW_OP_breg28:
612 case DW_OP_breg29:
613 case DW_OP_breg30:
614 case DW_OP_breg31:
615 cfa->reg = op - DW_OP_breg0;
616 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
617 break;
618 case DW_OP_bregx:
619 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
620 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
621 break;
622 case DW_OP_deref:
623 cfa->indirect = 1;
624 break;
625 case DW_OP_plus_uconst:
626 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
627 break;
628 default:
629 gcc_unreachable ();
630 }
631 }
632 }
633
634 /* Find the previous value for the CFA, iteratively. CFI is the opcode
635 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
636 one level of remember/restore state processing. */
637
638 void
639 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
640 {
641 switch (cfi->dw_cfi_opc)
642 {
643 case DW_CFA_def_cfa_offset:
644 case DW_CFA_def_cfa_offset_sf:
645 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
646 break;
647 case DW_CFA_def_cfa_register:
648 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
649 break;
650 case DW_CFA_def_cfa:
651 case DW_CFA_def_cfa_sf:
652 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
653 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
654 break;
655 case DW_CFA_def_cfa_expression:
656 if (cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc)
657 *loc = *cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc;
658 else
659 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
660 break;
661
662 case DW_CFA_remember_state:
663 gcc_assert (!remember->in_use);
664 *remember = *loc;
665 remember->in_use = 1;
666 break;
667 case DW_CFA_restore_state:
668 gcc_assert (remember->in_use);
669 *loc = *remember;
670 remember->in_use = 0;
671 break;
672
673 default:
674 break;
675 }
676 }
677
678 /* Determine if two dw_cfa_location structures define the same data. */
679
680 bool
681 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
682 {
683 return (loc1->reg == loc2->reg
684 && known_eq (loc1->offset, loc2->offset)
685 && loc1->indirect == loc2->indirect
686 && (loc1->indirect == 0
687 || known_eq (loc1->base_offset, loc2->base_offset)));
688 }
689
690 /* Determine if two CFI operands are identical. */
691
692 static bool
693 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
694 {
695 switch (t)
696 {
697 case dw_cfi_oprnd_unused:
698 return true;
699 case dw_cfi_oprnd_reg_num:
700 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
701 case dw_cfi_oprnd_offset:
702 return a->dw_cfi_offset == b->dw_cfi_offset;
703 case dw_cfi_oprnd_addr:
704 return (a->dw_cfi_addr == b->dw_cfi_addr
705 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
706 case dw_cfi_oprnd_loc:
707 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
708 case dw_cfi_oprnd_cfa_loc:
709 return cfa_equal_p (a->dw_cfi_cfa_loc, b->dw_cfi_cfa_loc);
710 }
711 gcc_unreachable ();
712 }
713
714 /* Determine if two CFI entries are identical. */
715
716 static bool
717 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
718 {
719 enum dwarf_call_frame_info opc;
720
721 /* Make things easier for our callers, including missing operands. */
722 if (a == b)
723 return true;
724 if (a == NULL || b == NULL)
725 return false;
726
727 /* Obviously, the opcodes must match. */
728 opc = a->dw_cfi_opc;
729 if (opc != b->dw_cfi_opc)
730 return false;
731
732 /* Compare the two operands, re-using the type of the operands as
733 already exposed elsewhere. */
734 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
735 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
736 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
737 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
738 }
739
740 /* Determine if two CFI_ROW structures are identical. */
741
742 static bool
743 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
744 {
745 size_t i, n_a, n_b, n_max;
746
747 if (a->cfa_cfi)
748 {
749 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
750 return false;
751 }
752 else if (!cfa_equal_p (&a->cfa, &b->cfa))
753 return false;
754
755 n_a = vec_safe_length (a->reg_save);
756 n_b = vec_safe_length (b->reg_save);
757 n_max = MAX (n_a, n_b);
758
759 for (i = 0; i < n_max; ++i)
760 {
761 dw_cfi_ref r_a = NULL, r_b = NULL;
762
763 if (i < n_a)
764 r_a = (*a->reg_save)[i];
765 if (i < n_b)
766 r_b = (*b->reg_save)[i];
767
768 if (!cfi_equal_p (r_a, r_b))
769 return false;
770 }
771
772 if (a->window_save != b->window_save)
773 return false;
774
775 return true;
776 }
777
778 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
779 what opcode to emit. Returns the CFI opcode to effect the change, or
780 NULL if NEW_CFA == OLD_CFA. */
781
782 static dw_cfi_ref
783 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
784 {
785 dw_cfi_ref cfi;
786
787 /* If nothing changed, no need to issue any call frame instructions. */
788 if (cfa_equal_p (old_cfa, new_cfa))
789 return NULL;
790
791 cfi = new_cfi ();
792
793 HOST_WIDE_INT const_offset;
794 if (new_cfa->reg == old_cfa->reg
795 && !new_cfa->indirect
796 && !old_cfa->indirect
797 && new_cfa->offset.is_constant (&const_offset))
798 {
799 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
800 the CFA register did not change but the offset did. The data
801 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
802 in the assembler via the .cfi_def_cfa_offset directive. */
803 if (const_offset < 0)
804 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
805 else
806 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
807 cfi->dw_cfi_oprnd1.dw_cfi_offset = const_offset;
808 }
809 else if (new_cfa->offset.is_constant ()
810 && known_eq (new_cfa->offset, old_cfa->offset)
811 && old_cfa->reg != INVALID_REGNUM
812 && !new_cfa->indirect
813 && !old_cfa->indirect)
814 {
815 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
816 indicating the CFA register has changed to <register> but the
817 offset has not changed. This requires the old CFA to have
818 been set as a register plus offset rather than a general
819 DW_CFA_def_cfa_expression. */
820 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
821 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
822 }
823 else if (new_cfa->indirect == 0
824 && new_cfa->offset.is_constant (&const_offset))
825 {
826 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
827 indicating the CFA register has changed to <register> with
828 the specified offset. The data factoring for DW_CFA_def_cfa_sf
829 happens in output_cfi, or in the assembler via the .cfi_def_cfa
830 directive. */
831 if (const_offset < 0)
832 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
833 else
834 cfi->dw_cfi_opc = DW_CFA_def_cfa;
835 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
836 cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset;
837 }
838 else
839 {
840 /* Construct a DW_CFA_def_cfa_expression instruction to
841 calculate the CFA using a full location expression since no
842 register-offset pair is available. */
843 struct dw_loc_descr_node *loc_list;
844
845 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
846 loc_list = build_cfa_loc (new_cfa, 0);
847 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
848 if (!new_cfa->offset.is_constant ()
849 || !new_cfa->base_offset.is_constant ())
850 /* It's hard to reconstruct the CFA location for a polynomial
851 expression, so just cache it instead. */
852 cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = copy_cfa (new_cfa);
853 else
854 cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = NULL;
855 }
856
857 return cfi;
858 }
859
860 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
861
862 static void
863 def_cfa_1 (dw_cfa_location *new_cfa)
864 {
865 dw_cfi_ref cfi;
866
867 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
868 cur_trace->cfa_store.offset = new_cfa->offset;
869
870 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
871 if (cfi)
872 {
873 cur_row->cfa = *new_cfa;
874 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
875 ? cfi : NULL);
876
877 add_cfi (cfi);
878 }
879 }
880
881 /* Add the CFI for saving a register. REG is the CFA column number.
882 If SREG is -1, the register is saved at OFFSET from the CFA;
883 otherwise it is saved in SREG. */
884
885 static void
886 reg_save (unsigned int reg, unsigned int sreg, poly_int64 offset)
887 {
888 dw_fde_ref fde = cfun ? cfun->fde : NULL;
889 dw_cfi_ref cfi = new_cfi ();
890
891 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
892
893 if (sreg == INVALID_REGNUM)
894 {
895 HOST_WIDE_INT const_offset;
896 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
897 if (fde && fde->stack_realign)
898 {
899 cfi->dw_cfi_opc = DW_CFA_expression;
900 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
901 cfi->dw_cfi_oprnd2.dw_cfi_loc
902 = build_cfa_aligned_loc (&cur_row->cfa, offset,
903 fde->stack_realignment);
904 }
905 else if (offset.is_constant (&const_offset))
906 {
907 if (need_data_align_sf_opcode (const_offset))
908 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
909 else if (reg & ~0x3f)
910 cfi->dw_cfi_opc = DW_CFA_offset_extended;
911 else
912 cfi->dw_cfi_opc = DW_CFA_offset;
913 cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset;
914 }
915 else
916 {
917 cfi->dw_cfi_opc = DW_CFA_expression;
918 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
919 cfi->dw_cfi_oprnd2.dw_cfi_loc
920 = build_cfa_loc (&cur_row->cfa, offset);
921 }
922 }
923 else if (sreg == reg)
924 {
925 /* While we could emit something like DW_CFA_same_value or
926 DW_CFA_restore, we never expect to see something like that
927 in a prologue. This is more likely to be a bug. A backend
928 can always bypass this by using REG_CFA_RESTORE directly. */
929 gcc_unreachable ();
930 }
931 else
932 {
933 cfi->dw_cfi_opc = DW_CFA_register;
934 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
935 }
936
937 add_cfi (cfi);
938 update_row_reg_save (cur_row, reg, cfi);
939 }
940
941 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
942 and adjust data structures to match. */
943
944 static void
945 notice_args_size (rtx_insn *insn)
946 {
947 poly_int64 args_size, delta;
948 rtx note;
949
950 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
951 if (note == NULL)
952 return;
953
954 if (!cur_trace->eh_head)
955 cur_trace->args_size_defined_for_eh = true;
956
957 args_size = get_args_size (note);
958 delta = args_size - cur_trace->end_true_args_size;
959 if (known_eq (delta, 0))
960 return;
961
962 cur_trace->end_true_args_size = args_size;
963
964 /* If the CFA is computed off the stack pointer, then we must adjust
965 the computation of the CFA as well. */
966 if (cur_cfa->reg == dw_stack_pointer_regnum)
967 {
968 gcc_assert (!cur_cfa->indirect);
969
970 /* Convert a change in args_size (always a positive in the
971 direction of stack growth) to a change in stack pointer. */
972 if (!STACK_GROWS_DOWNWARD)
973 delta = -delta;
974
975 cur_cfa->offset += delta;
976 }
977 }
978
979 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
980 data within the trace related to EH insns and args_size. */
981
982 static void
983 notice_eh_throw (rtx_insn *insn)
984 {
985 poly_int64 args_size = cur_trace->end_true_args_size;
986 if (cur_trace->eh_head == NULL)
987 {
988 cur_trace->eh_head = insn;
989 cur_trace->beg_delay_args_size = args_size;
990 cur_trace->end_delay_args_size = args_size;
991 }
992 else if (maybe_ne (cur_trace->end_delay_args_size, args_size))
993 {
994 cur_trace->end_delay_args_size = args_size;
995
996 /* ??? If the CFA is the stack pointer, search backward for the last
997 CFI note and insert there. Given that the stack changed for the
998 args_size change, there *must* be such a note in between here and
999 the last eh insn. */
1000 add_cfi_args_size (args_size);
1001 }
1002 }
1003
1004 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
1005 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
1006 used in places where rtl is prohibited. */
1007
1008 static inline unsigned
1009 dwf_regno (const_rtx reg)
1010 {
1011 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
1012 return DWARF_FRAME_REGNUM (REGNO (reg));
1013 }
1014
1015 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
1016
1017 static bool
1018 compare_reg_or_pc (rtx x, rtx y)
1019 {
1020 if (REG_P (x) && REG_P (y))
1021 return REGNO (x) == REGNO (y);
1022 return x == y;
1023 }
1024
1025 /* Record SRC as being saved in DEST. DEST may be null to delete an
1026 existing entry. SRC may be a register or PC_RTX. */
1027
1028 static void
1029 record_reg_saved_in_reg (rtx dest, rtx src)
1030 {
1031 reg_saved_in_data *elt;
1032 size_t i;
1033
1034 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
1035 if (compare_reg_or_pc (elt->orig_reg, src))
1036 {
1037 if (dest == NULL)
1038 cur_trace->regs_saved_in_regs.unordered_remove (i);
1039 else
1040 elt->saved_in_reg = dest;
1041 return;
1042 }
1043
1044 if (dest == NULL)
1045 return;
1046
1047 reg_saved_in_data e = {src, dest};
1048 cur_trace->regs_saved_in_regs.safe_push (e);
1049 }
1050
1051 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1052 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1053
1054 static void
1055 queue_reg_save (rtx reg, rtx sreg, poly_int64 offset)
1056 {
1057 queued_reg_save *q;
1058 queued_reg_save e = {reg, sreg, offset};
1059 size_t i;
1060
1061 /* Duplicates waste space, but it's also necessary to remove them
1062 for correctness, since the queue gets output in reverse order. */
1063 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1064 if (compare_reg_or_pc (q->reg, reg))
1065 {
1066 *q = e;
1067 return;
1068 }
1069
1070 queued_reg_saves.safe_push (e);
1071 }
1072
1073 /* Output all the entries in QUEUED_REG_SAVES. */
1074
1075 static void
1076 dwarf2out_flush_queued_reg_saves (void)
1077 {
1078 queued_reg_save *q;
1079 size_t i;
1080
1081 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1082 {
1083 unsigned int reg, sreg;
1084
1085 record_reg_saved_in_reg (q->saved_reg, q->reg);
1086
1087 if (q->reg == pc_rtx)
1088 reg = DWARF_FRAME_RETURN_COLUMN;
1089 else
1090 reg = dwf_regno (q->reg);
1091 if (q->saved_reg)
1092 sreg = dwf_regno (q->saved_reg);
1093 else
1094 sreg = INVALID_REGNUM;
1095 reg_save (reg, sreg, q->cfa_offset);
1096 }
1097
1098 queued_reg_saves.truncate (0);
1099 }
1100
1101 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1102 location for? Or, does it clobber a register which we've previously
1103 said that some other register is saved in, and for which we now
1104 have a new location for? */
1105
1106 static bool
1107 clobbers_queued_reg_save (const_rtx insn)
1108 {
1109 queued_reg_save *q;
1110 size_t iq;
1111
1112 FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
1113 {
1114 size_t ir;
1115 reg_saved_in_data *rir;
1116
1117 if (modified_in_p (q->reg, insn))
1118 return true;
1119
1120 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
1121 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1122 && modified_in_p (rir->saved_in_reg, insn))
1123 return true;
1124 }
1125
1126 return false;
1127 }
1128
1129 /* What register, if any, is currently saved in REG? */
1130
1131 static rtx
1132 reg_saved_in (rtx reg)
1133 {
1134 unsigned int regn = REGNO (reg);
1135 queued_reg_save *q;
1136 reg_saved_in_data *rir;
1137 size_t i;
1138
1139 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1140 if (q->saved_reg && regn == REGNO (q->saved_reg))
1141 return q->reg;
1142
1143 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
1144 if (regn == REGNO (rir->saved_in_reg))
1145 return rir->orig_reg;
1146
1147 return NULL_RTX;
1148 }
1149
1150 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1151
1152 static void
1153 dwarf2out_frame_debug_def_cfa (rtx pat)
1154 {
1155 memset (cur_cfa, 0, sizeof (*cur_cfa));
1156
1157 pat = strip_offset (pat, &cur_cfa->offset);
1158 if (MEM_P (pat))
1159 {
1160 cur_cfa->indirect = 1;
1161 pat = strip_offset (XEXP (pat, 0), &cur_cfa->base_offset);
1162 }
1163 /* ??? If this fails, we could be calling into the _loc functions to
1164 define a full expression. So far no port does that. */
1165 gcc_assert (REG_P (pat));
1166 cur_cfa->reg = dwf_regno (pat);
1167 }
1168
1169 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1170
1171 static void
1172 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1173 {
1174 rtx src, dest;
1175
1176 gcc_assert (GET_CODE (pat) == SET);
1177 dest = XEXP (pat, 0);
1178 src = XEXP (pat, 1);
1179
1180 switch (GET_CODE (src))
1181 {
1182 case PLUS:
1183 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1184 cur_cfa->offset -= rtx_to_poly_int64 (XEXP (src, 1));
1185 break;
1186
1187 case REG:
1188 break;
1189
1190 default:
1191 gcc_unreachable ();
1192 }
1193
1194 cur_cfa->reg = dwf_regno (dest);
1195 gcc_assert (cur_cfa->indirect == 0);
1196 }
1197
1198 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1199
1200 static void
1201 dwarf2out_frame_debug_cfa_offset (rtx set)
1202 {
1203 poly_int64 offset;
1204 rtx src, addr, span;
1205 unsigned int sregno;
1206
1207 src = XEXP (set, 1);
1208 addr = XEXP (set, 0);
1209 gcc_assert (MEM_P (addr));
1210 addr = XEXP (addr, 0);
1211
1212 /* As documented, only consider extremely simple addresses. */
1213 switch (GET_CODE (addr))
1214 {
1215 case REG:
1216 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1217 offset = -cur_cfa->offset;
1218 break;
1219 case PLUS:
1220 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1221 offset = rtx_to_poly_int64 (XEXP (addr, 1)) - cur_cfa->offset;
1222 break;
1223 default:
1224 gcc_unreachable ();
1225 }
1226
1227 if (src == pc_rtx)
1228 {
1229 span = NULL;
1230 sregno = DWARF_FRAME_RETURN_COLUMN;
1231 }
1232 else
1233 {
1234 span = targetm.dwarf_register_span (src);
1235 sregno = dwf_regno (src);
1236 }
1237
1238 /* ??? We'd like to use queue_reg_save, but we need to come up with
1239 a different flushing heuristic for epilogues. */
1240 if (!span)
1241 reg_save (sregno, INVALID_REGNUM, offset);
1242 else
1243 {
1244 /* We have a PARALLEL describing where the contents of SRC live.
1245 Adjust the offset for each piece of the PARALLEL. */
1246 poly_int64 span_offset = offset;
1247
1248 gcc_assert (GET_CODE (span) == PARALLEL);
1249
1250 const int par_len = XVECLEN (span, 0);
1251 for (int par_index = 0; par_index < par_len; par_index++)
1252 {
1253 rtx elem = XVECEXP (span, 0, par_index);
1254 sregno = dwf_regno (src);
1255 reg_save (sregno, INVALID_REGNUM, span_offset);
1256 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1257 }
1258 }
1259 }
1260
1261 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1262
1263 static void
1264 dwarf2out_frame_debug_cfa_register (rtx set)
1265 {
1266 rtx src, dest;
1267 unsigned sregno, dregno;
1268
1269 src = XEXP (set, 1);
1270 dest = XEXP (set, 0);
1271
1272 record_reg_saved_in_reg (dest, src);
1273 if (src == pc_rtx)
1274 sregno = DWARF_FRAME_RETURN_COLUMN;
1275 else
1276 sregno = dwf_regno (src);
1277
1278 dregno = dwf_regno (dest);
1279
1280 /* ??? We'd like to use queue_reg_save, but we need to come up with
1281 a different flushing heuristic for epilogues. */
1282 reg_save (sregno, dregno, 0);
1283 }
1284
1285 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1286
1287 static void
1288 dwarf2out_frame_debug_cfa_expression (rtx set)
1289 {
1290 rtx src, dest, span;
1291 dw_cfi_ref cfi = new_cfi ();
1292 unsigned regno;
1293
1294 dest = SET_DEST (set);
1295 src = SET_SRC (set);
1296
1297 gcc_assert (REG_P (src));
1298 gcc_assert (MEM_P (dest));
1299
1300 span = targetm.dwarf_register_span (src);
1301 gcc_assert (!span);
1302
1303 regno = dwf_regno (src);
1304
1305 cfi->dw_cfi_opc = DW_CFA_expression;
1306 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1307 cfi->dw_cfi_oprnd2.dw_cfi_loc
1308 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1309 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1310
1311 /* ??? We'd like to use queue_reg_save, were the interface different,
1312 and, as above, we could manage flushing for epilogues. */
1313 add_cfi (cfi);
1314 update_row_reg_save (cur_row, regno, cfi);
1315 }
1316
1317 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_VAL_EXPRESSION
1318 note. */
1319
1320 static void
1321 dwarf2out_frame_debug_cfa_val_expression (rtx set)
1322 {
1323 rtx dest = SET_DEST (set);
1324 gcc_assert (REG_P (dest));
1325
1326 rtx span = targetm.dwarf_register_span (dest);
1327 gcc_assert (!span);
1328
1329 rtx src = SET_SRC (set);
1330 dw_cfi_ref cfi = new_cfi ();
1331 cfi->dw_cfi_opc = DW_CFA_val_expression;
1332 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = dwf_regno (dest);
1333 cfi->dw_cfi_oprnd2.dw_cfi_loc
1334 = mem_loc_descriptor (src, GET_MODE (src),
1335 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1336 add_cfi (cfi);
1337 update_row_reg_save (cur_row, dwf_regno (dest), cfi);
1338 }
1339
1340 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1341
1342 static void
1343 dwarf2out_frame_debug_cfa_restore (rtx reg)
1344 {
1345 gcc_assert (REG_P (reg));
1346
1347 rtx span = targetm.dwarf_register_span (reg);
1348 if (!span)
1349 {
1350 unsigned int regno = dwf_regno (reg);
1351 add_cfi_restore (regno);
1352 update_row_reg_save (cur_row, regno, NULL);
1353 }
1354 else
1355 {
1356 /* We have a PARALLEL describing where the contents of REG live.
1357 Restore the register for each piece of the PARALLEL. */
1358 gcc_assert (GET_CODE (span) == PARALLEL);
1359
1360 const int par_len = XVECLEN (span, 0);
1361 for (int par_index = 0; par_index < par_len; par_index++)
1362 {
1363 reg = XVECEXP (span, 0, par_index);
1364 gcc_assert (REG_P (reg));
1365 unsigned int regno = dwf_regno (reg);
1366 add_cfi_restore (regno);
1367 update_row_reg_save (cur_row, regno, NULL);
1368 }
1369 }
1370 }
1371
1372 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1373 FAKE is true if this is not really a window save but something else.
1374
1375 ??? Perhaps we should note in the CIE where windows are saved (instead
1376 of assuming 0(cfa)) and what registers are in the window. */
1377
1378 static void
1379 dwarf2out_frame_debug_cfa_window_save (bool fake)
1380 {
1381 dw_cfi_ref cfi = new_cfi ();
1382
1383 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1384 add_cfi (cfi);
1385 if (!fake)
1386 cur_row->window_save = true;
1387 }
1388
1389 /* Record call frame debugging information for an expression EXPR,
1390 which either sets SP or FP (adjusting how we calculate the frame
1391 address) or saves a register to the stack or another register.
1392 LABEL indicates the address of EXPR.
1393
1394 This function encodes a state machine mapping rtxes to actions on
1395 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1396 users need not read the source code.
1397
1398 The High-Level Picture
1399
1400 Changes in the register we use to calculate the CFA: Currently we
1401 assume that if you copy the CFA register into another register, we
1402 should take the other one as the new CFA register; this seems to
1403 work pretty well. If it's wrong for some target, it's simple
1404 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1405
1406 Changes in the register we use for saving registers to the stack:
1407 This is usually SP, but not always. Again, we deduce that if you
1408 copy SP into another register (and SP is not the CFA register),
1409 then the new register is the one we will be using for register
1410 saves. This also seems to work.
1411
1412 Register saves: There's not much guesswork about this one; if
1413 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1414 register save, and the register used to calculate the destination
1415 had better be the one we think we're using for this purpose.
1416 It's also assumed that a copy from a call-saved register to another
1417 register is saving that register if RTX_FRAME_RELATED_P is set on
1418 that instruction. If the copy is from a call-saved register to
1419 the *same* register, that means that the register is now the same
1420 value as in the caller.
1421
1422 Except: If the register being saved is the CFA register, and the
1423 offset is nonzero, we are saving the CFA, so we assume we have to
1424 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1425 the intent is to save the value of SP from the previous frame.
1426
1427 In addition, if a register has previously been saved to a different
1428 register,
1429
1430 Invariants / Summaries of Rules
1431
1432 cfa current rule for calculating the CFA. It usually
1433 consists of a register and an offset. This is
1434 actually stored in *cur_cfa, but abbreviated
1435 for the purposes of this documentation.
1436 cfa_store register used by prologue code to save things to the stack
1437 cfa_store.offset is the offset from the value of
1438 cfa_store.reg to the actual CFA
1439 cfa_temp register holding an integral value. cfa_temp.offset
1440 stores the value, which will be used to adjust the
1441 stack pointer. cfa_temp is also used like cfa_store,
1442 to track stores to the stack via fp or a temp reg.
1443
1444 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1445 with cfa.reg as the first operand changes the cfa.reg and its
1446 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1447 cfa_temp.offset.
1448
1449 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1450 expression yielding a constant. This sets cfa_temp.reg
1451 and cfa_temp.offset.
1452
1453 Rule 5: Create a new register cfa_store used to save items to the
1454 stack.
1455
1456 Rules 10-14: Save a register to the stack. Define offset as the
1457 difference of the original location and cfa_store's
1458 location (or cfa_temp's location if cfa_temp is used).
1459
1460 Rules 16-20: If AND operation happens on sp in prologue, we assume
1461 stack is realigned. We will use a group of DW_OP_XXX
1462 expressions to represent the location of the stored
1463 register instead of CFA+offset.
1464
1465 The Rules
1466
1467 "{a,b}" indicates a choice of a xor b.
1468 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1469
1470 Rule 1:
1471 (set <reg1> <reg2>:cfa.reg)
1472 effects: cfa.reg = <reg1>
1473 cfa.offset unchanged
1474 cfa_temp.reg = <reg1>
1475 cfa_temp.offset = cfa.offset
1476
1477 Rule 2:
1478 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1479 {<const_int>,<reg>:cfa_temp.reg}))
1480 effects: cfa.reg = sp if fp used
1481 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1482 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1483 if cfa_store.reg==sp
1484
1485 Rule 3:
1486 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1487 effects: cfa.reg = fp
1488 cfa_offset += +/- <const_int>
1489
1490 Rule 4:
1491 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1492 constraints: <reg1> != fp
1493 <reg1> != sp
1494 effects: cfa.reg = <reg1>
1495 cfa_temp.reg = <reg1>
1496 cfa_temp.offset = cfa.offset
1497
1498 Rule 5:
1499 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1500 constraints: <reg1> != fp
1501 <reg1> != sp
1502 effects: cfa_store.reg = <reg1>
1503 cfa_store.offset = cfa.offset - cfa_temp.offset
1504
1505 Rule 6:
1506 (set <reg> <const_int>)
1507 effects: cfa_temp.reg = <reg>
1508 cfa_temp.offset = <const_int>
1509
1510 Rule 7:
1511 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1512 effects: cfa_temp.reg = <reg1>
1513 cfa_temp.offset |= <const_int>
1514
1515 Rule 8:
1516 (set <reg> (high <exp>))
1517 effects: none
1518
1519 Rule 9:
1520 (set <reg> (lo_sum <exp> <const_int>))
1521 effects: cfa_temp.reg = <reg>
1522 cfa_temp.offset = <const_int>
1523
1524 Rule 10:
1525 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1526 effects: cfa_store.offset -= <const_int>
1527 cfa.offset = cfa_store.offset if cfa.reg == sp
1528 cfa.reg = sp
1529 cfa.base_offset = -cfa_store.offset
1530
1531 Rule 11:
1532 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1533 effects: cfa_store.offset += -/+ mode_size(mem)
1534 cfa.offset = cfa_store.offset if cfa.reg == sp
1535 cfa.reg = sp
1536 cfa.base_offset = -cfa_store.offset
1537
1538 Rule 12:
1539 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1540
1541 <reg2>)
1542 effects: cfa.reg = <reg1>
1543 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1544
1545 Rule 13:
1546 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1547 effects: cfa.reg = <reg1>
1548 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1549
1550 Rule 14:
1551 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1552 effects: cfa.reg = <reg1>
1553 cfa.base_offset = -cfa_temp.offset
1554 cfa_temp.offset -= mode_size(mem)
1555
1556 Rule 15:
1557 (set <reg> {unspec, unspec_volatile})
1558 effects: target-dependent
1559
1560 Rule 16:
1561 (set sp (and: sp <const_int>))
1562 constraints: cfa_store.reg == sp
1563 effects: cfun->fde.stack_realign = 1
1564 cfa_store.offset = 0
1565 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1566
1567 Rule 17:
1568 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1569 effects: cfa_store.offset += -/+ mode_size(mem)
1570
1571 Rule 18:
1572 (set (mem ({pre_inc, pre_dec} sp)) fp)
1573 constraints: fde->stack_realign == 1
1574 effects: cfa_store.offset = 0
1575 cfa.reg != HARD_FRAME_POINTER_REGNUM
1576
1577 Rule 19:
1578 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1579 constraints: fde->stack_realign == 1
1580 && cfa.offset == 0
1581 && cfa.indirect == 0
1582 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1583 effects: Use DW_CFA_def_cfa_expression to define cfa
1584 cfa.reg == fde->drap_reg */
1585
1586 static void
1587 dwarf2out_frame_debug_expr (rtx expr)
1588 {
1589 rtx src, dest, span;
1590 poly_int64 offset;
1591 dw_fde_ref fde;
1592
1593 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1594 the PARALLEL independently. The first element is always processed if
1595 it is a SET. This is for backward compatibility. Other elements
1596 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1597 flag is set in them. */
1598 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1599 {
1600 int par_index;
1601 int limit = XVECLEN (expr, 0);
1602 rtx elem;
1603
1604 /* PARALLELs have strict read-modify-write semantics, so we
1605 ought to evaluate every rvalue before changing any lvalue.
1606 It's cumbersome to do that in general, but there's an
1607 easy approximation that is enough for all current users:
1608 handle register saves before register assignments. */
1609 if (GET_CODE (expr) == PARALLEL)
1610 for (par_index = 0; par_index < limit; par_index++)
1611 {
1612 elem = XVECEXP (expr, 0, par_index);
1613 if (GET_CODE (elem) == SET
1614 && MEM_P (SET_DEST (elem))
1615 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1616 dwarf2out_frame_debug_expr (elem);
1617 }
1618
1619 for (par_index = 0; par_index < limit; par_index++)
1620 {
1621 elem = XVECEXP (expr, 0, par_index);
1622 if (GET_CODE (elem) == SET
1623 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1624 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1625 dwarf2out_frame_debug_expr (elem);
1626 }
1627 return;
1628 }
1629
1630 gcc_assert (GET_CODE (expr) == SET);
1631
1632 src = SET_SRC (expr);
1633 dest = SET_DEST (expr);
1634
1635 if (REG_P (src))
1636 {
1637 rtx rsi = reg_saved_in (src);
1638 if (rsi)
1639 src = rsi;
1640 }
1641
1642 fde = cfun->fde;
1643
1644 switch (GET_CODE (dest))
1645 {
1646 case REG:
1647 switch (GET_CODE (src))
1648 {
1649 /* Setting FP from SP. */
1650 case REG:
1651 if (cur_cfa->reg == dwf_regno (src))
1652 {
1653 /* Rule 1 */
1654 /* Update the CFA rule wrt SP or FP. Make sure src is
1655 relative to the current CFA register.
1656
1657 We used to require that dest be either SP or FP, but the
1658 ARM copies SP to a temporary register, and from there to
1659 FP. So we just rely on the backends to only set
1660 RTX_FRAME_RELATED_P on appropriate insns. */
1661 cur_cfa->reg = dwf_regno (dest);
1662 cur_trace->cfa_temp.reg = cur_cfa->reg;
1663 cur_trace->cfa_temp.offset = cur_cfa->offset;
1664 }
1665 else
1666 {
1667 /* Saving a register in a register. */
1668 gcc_assert (!fixed_regs [REGNO (dest)]
1669 /* For the SPARC and its register window. */
1670 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1671
1672 /* After stack is aligned, we can only save SP in FP
1673 if drap register is used. In this case, we have
1674 to restore stack pointer with the CFA value and we
1675 don't generate this DWARF information. */
1676 if (fde
1677 && fde->stack_realign
1678 && REGNO (src) == STACK_POINTER_REGNUM)
1679 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1680 && fde->drap_reg != INVALID_REGNUM
1681 && cur_cfa->reg != dwf_regno (src));
1682 else
1683 queue_reg_save (src, dest, 0);
1684 }
1685 break;
1686
1687 case PLUS:
1688 case MINUS:
1689 case LO_SUM:
1690 if (dest == stack_pointer_rtx)
1691 {
1692 /* Rule 2 */
1693 /* Adjusting SP. */
1694 if (REG_P (XEXP (src, 1)))
1695 {
1696 gcc_assert (dwf_regno (XEXP (src, 1))
1697 == cur_trace->cfa_temp.reg);
1698 offset = cur_trace->cfa_temp.offset;
1699 }
1700 else if (!poly_int_rtx_p (XEXP (src, 1), &offset))
1701 gcc_unreachable ();
1702
1703 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1704 {
1705 /* Restoring SP from FP in the epilogue. */
1706 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1707 cur_cfa->reg = dw_stack_pointer_regnum;
1708 }
1709 else if (GET_CODE (src) == LO_SUM)
1710 /* Assume we've set the source reg of the LO_SUM from sp. */
1711 ;
1712 else
1713 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1714
1715 if (GET_CODE (src) != MINUS)
1716 offset = -offset;
1717 if (cur_cfa->reg == dw_stack_pointer_regnum)
1718 cur_cfa->offset += offset;
1719 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1720 cur_trace->cfa_store.offset += offset;
1721 }
1722 else if (dest == hard_frame_pointer_rtx)
1723 {
1724 /* Rule 3 */
1725 /* Either setting the FP from an offset of the SP,
1726 or adjusting the FP */
1727 gcc_assert (frame_pointer_needed);
1728
1729 gcc_assert (REG_P (XEXP (src, 0))
1730 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1731 offset = rtx_to_poly_int64 (XEXP (src, 1));
1732 if (GET_CODE (src) != MINUS)
1733 offset = -offset;
1734 cur_cfa->offset += offset;
1735 cur_cfa->reg = dw_frame_pointer_regnum;
1736 }
1737 else
1738 {
1739 gcc_assert (GET_CODE (src) != MINUS);
1740
1741 /* Rule 4 */
1742 if (REG_P (XEXP (src, 0))
1743 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1744 && poly_int_rtx_p (XEXP (src, 1), &offset))
1745 {
1746 /* Setting a temporary CFA register that will be copied
1747 into the FP later on. */
1748 offset = -offset;
1749 cur_cfa->offset += offset;
1750 cur_cfa->reg = dwf_regno (dest);
1751 /* Or used to save regs to the stack. */
1752 cur_trace->cfa_temp.reg = cur_cfa->reg;
1753 cur_trace->cfa_temp.offset = cur_cfa->offset;
1754 }
1755
1756 /* Rule 5 */
1757 else if (REG_P (XEXP (src, 0))
1758 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1759 && XEXP (src, 1) == stack_pointer_rtx)
1760 {
1761 /* Setting a scratch register that we will use instead
1762 of SP for saving registers to the stack. */
1763 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1764 cur_trace->cfa_store.reg = dwf_regno (dest);
1765 cur_trace->cfa_store.offset
1766 = cur_cfa->offset - cur_trace->cfa_temp.offset;
1767 }
1768
1769 /* Rule 9 */
1770 else if (GET_CODE (src) == LO_SUM
1771 && poly_int_rtx_p (XEXP (src, 1),
1772 &cur_trace->cfa_temp.offset))
1773 cur_trace->cfa_temp.reg = dwf_regno (dest);
1774 else
1775 gcc_unreachable ();
1776 }
1777 break;
1778
1779 /* Rule 6 */
1780 case CONST_INT:
1781 case CONST_POLY_INT:
1782 cur_trace->cfa_temp.reg = dwf_regno (dest);
1783 cur_trace->cfa_temp.offset = rtx_to_poly_int64 (src);
1784 break;
1785
1786 /* Rule 7 */
1787 case IOR:
1788 gcc_assert (REG_P (XEXP (src, 0))
1789 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1790 && CONST_INT_P (XEXP (src, 1)));
1791
1792 cur_trace->cfa_temp.reg = dwf_regno (dest);
1793 if (!can_ior_p (cur_trace->cfa_temp.offset, INTVAL (XEXP (src, 1)),
1794 &cur_trace->cfa_temp.offset))
1795 /* The target shouldn't generate this kind of CFI note if we
1796 can't represent it. */
1797 gcc_unreachable ();
1798 break;
1799
1800 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1801 which will fill in all of the bits. */
1802 /* Rule 8 */
1803 case HIGH:
1804 break;
1805
1806 /* Rule 15 */
1807 case UNSPEC:
1808 case UNSPEC_VOLATILE:
1809 /* All unspecs should be represented by REG_CFA_* notes. */
1810 gcc_unreachable ();
1811 return;
1812
1813 /* Rule 16 */
1814 case AND:
1815 /* If this AND operation happens on stack pointer in prologue,
1816 we assume the stack is realigned and we extract the
1817 alignment. */
1818 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1819 {
1820 /* We interpret reg_save differently with stack_realign set.
1821 Thus we must flush whatever we have queued first. */
1822 dwarf2out_flush_queued_reg_saves ();
1823
1824 gcc_assert (cur_trace->cfa_store.reg
1825 == dwf_regno (XEXP (src, 0)));
1826 fde->stack_realign = 1;
1827 fde->stack_realignment = INTVAL (XEXP (src, 1));
1828 cur_trace->cfa_store.offset = 0;
1829
1830 if (cur_cfa->reg != dw_stack_pointer_regnum
1831 && cur_cfa->reg != dw_frame_pointer_regnum)
1832 fde->drap_reg = cur_cfa->reg;
1833 }
1834 return;
1835
1836 default:
1837 gcc_unreachable ();
1838 }
1839 break;
1840
1841 case MEM:
1842
1843 /* Saving a register to the stack. Make sure dest is relative to the
1844 CFA register. */
1845 switch (GET_CODE (XEXP (dest, 0)))
1846 {
1847 /* Rule 10 */
1848 /* With a push. */
1849 case PRE_MODIFY:
1850 case POST_MODIFY:
1851 /* We can't handle variable size modifications. */
1852 offset = -rtx_to_poly_int64 (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1853
1854 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1855 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1856
1857 cur_trace->cfa_store.offset += offset;
1858 if (cur_cfa->reg == dw_stack_pointer_regnum)
1859 cur_cfa->offset = cur_trace->cfa_store.offset;
1860
1861 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1862 offset -= cur_trace->cfa_store.offset;
1863 else
1864 offset = -cur_trace->cfa_store.offset;
1865 break;
1866
1867 /* Rule 11 */
1868 case PRE_INC:
1869 case PRE_DEC:
1870 case POST_DEC:
1871 offset = GET_MODE_SIZE (GET_MODE (dest));
1872 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1873 offset = -offset;
1874
1875 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1876 == STACK_POINTER_REGNUM)
1877 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1878
1879 cur_trace->cfa_store.offset += offset;
1880
1881 /* Rule 18: If stack is aligned, we will use FP as a
1882 reference to represent the address of the stored
1883 regiser. */
1884 if (fde
1885 && fde->stack_realign
1886 && REG_P (src)
1887 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
1888 {
1889 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1890 cur_trace->cfa_store.offset = 0;
1891 }
1892
1893 if (cur_cfa->reg == dw_stack_pointer_regnum)
1894 cur_cfa->offset = cur_trace->cfa_store.offset;
1895
1896 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1897 offset += -cur_trace->cfa_store.offset;
1898 else
1899 offset = -cur_trace->cfa_store.offset;
1900 break;
1901
1902 /* Rule 12 */
1903 /* With an offset. */
1904 case PLUS:
1905 case MINUS:
1906 case LO_SUM:
1907 {
1908 unsigned int regno;
1909
1910 gcc_assert (REG_P (XEXP (XEXP (dest, 0), 0)));
1911 offset = rtx_to_poly_int64 (XEXP (XEXP (dest, 0), 1));
1912 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1913 offset = -offset;
1914
1915 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1916
1917 if (cur_cfa->reg == regno)
1918 offset -= cur_cfa->offset;
1919 else if (cur_trace->cfa_store.reg == regno)
1920 offset -= cur_trace->cfa_store.offset;
1921 else
1922 {
1923 gcc_assert (cur_trace->cfa_temp.reg == regno);
1924 offset -= cur_trace->cfa_temp.offset;
1925 }
1926 }
1927 break;
1928
1929 /* Rule 13 */
1930 /* Without an offset. */
1931 case REG:
1932 {
1933 unsigned int regno = dwf_regno (XEXP (dest, 0));
1934
1935 if (cur_cfa->reg == regno)
1936 offset = -cur_cfa->offset;
1937 else if (cur_trace->cfa_store.reg == regno)
1938 offset = -cur_trace->cfa_store.offset;
1939 else
1940 {
1941 gcc_assert (cur_trace->cfa_temp.reg == regno);
1942 offset = -cur_trace->cfa_temp.offset;
1943 }
1944 }
1945 break;
1946
1947 /* Rule 14 */
1948 case POST_INC:
1949 gcc_assert (cur_trace->cfa_temp.reg
1950 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1951 offset = -cur_trace->cfa_temp.offset;
1952 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1953 break;
1954
1955 default:
1956 gcc_unreachable ();
1957 }
1958
1959 /* Rule 17 */
1960 /* If the source operand of this MEM operation is a memory,
1961 we only care how much stack grew. */
1962 if (MEM_P (src))
1963 break;
1964
1965 if (REG_P (src)
1966 && REGNO (src) != STACK_POINTER_REGNUM
1967 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1968 && dwf_regno (src) == cur_cfa->reg)
1969 {
1970 /* We're storing the current CFA reg into the stack. */
1971
1972 if (known_eq (cur_cfa->offset, 0))
1973 {
1974 /* Rule 19 */
1975 /* If stack is aligned, putting CFA reg into stack means
1976 we can no longer use reg + offset to represent CFA.
1977 Here we use DW_CFA_def_cfa_expression instead. The
1978 result of this expression equals to the original CFA
1979 value. */
1980 if (fde
1981 && fde->stack_realign
1982 && cur_cfa->indirect == 0
1983 && cur_cfa->reg != dw_frame_pointer_regnum)
1984 {
1985 gcc_assert (fde->drap_reg == cur_cfa->reg);
1986
1987 cur_cfa->indirect = 1;
1988 cur_cfa->reg = dw_frame_pointer_regnum;
1989 cur_cfa->base_offset = offset;
1990 cur_cfa->offset = 0;
1991
1992 fde->drap_reg_saved = 1;
1993 break;
1994 }
1995
1996 /* If the source register is exactly the CFA, assume
1997 we're saving SP like any other register; this happens
1998 on the ARM. */
1999 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
2000 break;
2001 }
2002 else
2003 {
2004 /* Otherwise, we'll need to look in the stack to
2005 calculate the CFA. */
2006 rtx x = XEXP (dest, 0);
2007
2008 if (!REG_P (x))
2009 x = XEXP (x, 0);
2010 gcc_assert (REG_P (x));
2011
2012 cur_cfa->reg = dwf_regno (x);
2013 cur_cfa->base_offset = offset;
2014 cur_cfa->indirect = 1;
2015 break;
2016 }
2017 }
2018
2019 if (REG_P (src))
2020 span = targetm.dwarf_register_span (src);
2021 else
2022 span = NULL;
2023
2024 if (!span)
2025 queue_reg_save (src, NULL_RTX, offset);
2026 else
2027 {
2028 /* We have a PARALLEL describing where the contents of SRC live.
2029 Queue register saves for each piece of the PARALLEL. */
2030 poly_int64 span_offset = offset;
2031
2032 gcc_assert (GET_CODE (span) == PARALLEL);
2033
2034 const int par_len = XVECLEN (span, 0);
2035 for (int par_index = 0; par_index < par_len; par_index++)
2036 {
2037 rtx elem = XVECEXP (span, 0, par_index);
2038 queue_reg_save (elem, NULL_RTX, span_offset);
2039 span_offset += GET_MODE_SIZE (GET_MODE (elem));
2040 }
2041 }
2042 break;
2043
2044 default:
2045 gcc_unreachable ();
2046 }
2047 }
2048
2049 /* Record call frame debugging information for INSN, which either sets
2050 SP or FP (adjusting how we calculate the frame address) or saves a
2051 register to the stack. */
2052
2053 static void
2054 dwarf2out_frame_debug (rtx_insn *insn)
2055 {
2056 rtx note, n, pat;
2057 bool handled_one = false;
2058
2059 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2060 switch (REG_NOTE_KIND (note))
2061 {
2062 case REG_FRAME_RELATED_EXPR:
2063 pat = XEXP (note, 0);
2064 goto do_frame_expr;
2065
2066 case REG_CFA_DEF_CFA:
2067 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
2068 handled_one = true;
2069 break;
2070
2071 case REG_CFA_ADJUST_CFA:
2072 n = XEXP (note, 0);
2073 if (n == NULL)
2074 {
2075 n = PATTERN (insn);
2076 if (GET_CODE (n) == PARALLEL)
2077 n = XVECEXP (n, 0, 0);
2078 }
2079 dwarf2out_frame_debug_adjust_cfa (n);
2080 handled_one = true;
2081 break;
2082
2083 case REG_CFA_OFFSET:
2084 n = XEXP (note, 0);
2085 if (n == NULL)
2086 n = single_set (insn);
2087 dwarf2out_frame_debug_cfa_offset (n);
2088 handled_one = true;
2089 break;
2090
2091 case REG_CFA_REGISTER:
2092 n = XEXP (note, 0);
2093 if (n == NULL)
2094 {
2095 n = PATTERN (insn);
2096 if (GET_CODE (n) == PARALLEL)
2097 n = XVECEXP (n, 0, 0);
2098 }
2099 dwarf2out_frame_debug_cfa_register (n);
2100 handled_one = true;
2101 break;
2102
2103 case REG_CFA_EXPRESSION:
2104 case REG_CFA_VAL_EXPRESSION:
2105 n = XEXP (note, 0);
2106 if (n == NULL)
2107 n = single_set (insn);
2108
2109 if (REG_NOTE_KIND (note) == REG_CFA_EXPRESSION)
2110 dwarf2out_frame_debug_cfa_expression (n);
2111 else
2112 dwarf2out_frame_debug_cfa_val_expression (n);
2113
2114 handled_one = true;
2115 break;
2116
2117 case REG_CFA_RESTORE:
2118 n = XEXP (note, 0);
2119 if (n == NULL)
2120 {
2121 n = PATTERN (insn);
2122 if (GET_CODE (n) == PARALLEL)
2123 n = XVECEXP (n, 0, 0);
2124 n = XEXP (n, 0);
2125 }
2126 dwarf2out_frame_debug_cfa_restore (n);
2127 handled_one = true;
2128 break;
2129
2130 case REG_CFA_SET_VDRAP:
2131 n = XEXP (note, 0);
2132 if (REG_P (n))
2133 {
2134 dw_fde_ref fde = cfun->fde;
2135 if (fde)
2136 {
2137 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2138 if (REG_P (n))
2139 fde->vdrap_reg = dwf_regno (n);
2140 }
2141 }
2142 handled_one = true;
2143 break;
2144
2145 case REG_CFA_TOGGLE_RA_MANGLE:
2146 /* This uses the same DWARF opcode as the next operation. */
2147 dwarf2out_frame_debug_cfa_window_save (true);
2148 handled_one = true;
2149 break;
2150
2151 case REG_CFA_WINDOW_SAVE:
2152 dwarf2out_frame_debug_cfa_window_save (false);
2153 handled_one = true;
2154 break;
2155
2156 case REG_CFA_FLUSH_QUEUE:
2157 /* The actual flush happens elsewhere. */
2158 handled_one = true;
2159 break;
2160
2161 default:
2162 break;
2163 }
2164
2165 if (!handled_one)
2166 {
2167 pat = PATTERN (insn);
2168 do_frame_expr:
2169 dwarf2out_frame_debug_expr (pat);
2170
2171 /* Check again. A parallel can save and update the same register.
2172 We could probably check just once, here, but this is safer than
2173 removing the check at the start of the function. */
2174 if (clobbers_queued_reg_save (pat))
2175 dwarf2out_flush_queued_reg_saves ();
2176 }
2177 }
2178
2179 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2180
2181 static void
2182 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2183 {
2184 size_t i, n_old, n_new, n_max;
2185 dw_cfi_ref cfi;
2186
2187 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2188 add_cfi (new_row->cfa_cfi);
2189 else
2190 {
2191 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2192 if (cfi)
2193 add_cfi (cfi);
2194 }
2195
2196 n_old = vec_safe_length (old_row->reg_save);
2197 n_new = vec_safe_length (new_row->reg_save);
2198 n_max = MAX (n_old, n_new);
2199
2200 for (i = 0; i < n_max; ++i)
2201 {
2202 dw_cfi_ref r_old = NULL, r_new = NULL;
2203
2204 if (i < n_old)
2205 r_old = (*old_row->reg_save)[i];
2206 if (i < n_new)
2207 r_new = (*new_row->reg_save)[i];
2208
2209 if (r_old == r_new)
2210 ;
2211 else if (r_new == NULL)
2212 add_cfi_restore (i);
2213 else if (!cfi_equal_p (r_old, r_new))
2214 add_cfi (r_new);
2215 }
2216
2217 if (!old_row->window_save && new_row->window_save)
2218 {
2219 dw_cfi_ref cfi = new_cfi ();
2220
2221 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
2222 add_cfi (cfi);
2223 }
2224 }
2225
2226 /* Examine CFI and return true if a cfi label and set_loc is needed
2227 beforehand. Even when generating CFI assembler instructions, we
2228 still have to add the cfi to the list so that lookup_cfa_1 works
2229 later on. When -g2 and above we even need to force emitting of
2230 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2231 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2232 and so don't use convert_cfa_to_fb_loc_list. */
2233
2234 static bool
2235 cfi_label_required_p (dw_cfi_ref cfi)
2236 {
2237 if (!dwarf2out_do_cfi_asm ())
2238 return true;
2239
2240 if (dwarf_version == 2
2241 && debug_info_level > DINFO_LEVEL_TERSE
2242 && (write_symbols == DWARF2_DEBUG
2243 || write_symbols == VMS_AND_DWARF2_DEBUG))
2244 {
2245 switch (cfi->dw_cfi_opc)
2246 {
2247 case DW_CFA_def_cfa_offset:
2248 case DW_CFA_def_cfa_offset_sf:
2249 case DW_CFA_def_cfa_register:
2250 case DW_CFA_def_cfa:
2251 case DW_CFA_def_cfa_sf:
2252 case DW_CFA_def_cfa_expression:
2253 case DW_CFA_restore_state:
2254 return true;
2255 default:
2256 return false;
2257 }
2258 }
2259 return false;
2260 }
2261
2262 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2263 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2264 necessary. */
2265 static void
2266 add_cfis_to_fde (void)
2267 {
2268 dw_fde_ref fde = cfun->fde;
2269 rtx_insn *insn, *next;
2270
2271 for (insn = get_insns (); insn; insn = next)
2272 {
2273 next = NEXT_INSN (insn);
2274
2275 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2276 fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
2277
2278 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2279 {
2280 bool required = cfi_label_required_p (NOTE_CFI (insn));
2281 while (next)
2282 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2283 {
2284 required |= cfi_label_required_p (NOTE_CFI (next));
2285 next = NEXT_INSN (next);
2286 }
2287 else if (active_insn_p (next)
2288 || (NOTE_P (next) && (NOTE_KIND (next)
2289 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2290 break;
2291 else
2292 next = NEXT_INSN (next);
2293 if (required)
2294 {
2295 int num = dwarf2out_cfi_label_num;
2296 const char *label = dwarf2out_cfi_label ();
2297 dw_cfi_ref xcfi;
2298
2299 /* Set the location counter to the new label. */
2300 xcfi = new_cfi ();
2301 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
2302 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2303 vec_safe_push (fde->dw_fde_cfi, xcfi);
2304
2305 rtx_note *tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2306 NOTE_LABEL_NUMBER (tmp) = num;
2307 }
2308
2309 do
2310 {
2311 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2312 vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
2313 insn = NEXT_INSN (insn);
2314 }
2315 while (insn != next);
2316 }
2317 }
2318 }
2319
2320 static void dump_cfi_row (FILE *f, dw_cfi_row *row);
2321
2322 /* If LABEL is the start of a trace, then initialize the state of that
2323 trace from CUR_TRACE and CUR_ROW. */
2324
2325 static void
2326 maybe_record_trace_start (rtx_insn *start, rtx_insn *origin)
2327 {
2328 dw_trace_info *ti;
2329
2330 ti = get_trace_info (start);
2331 gcc_assert (ti != NULL);
2332
2333 if (dump_file)
2334 {
2335 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
2336 cur_trace->id, ti->id,
2337 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2338 (origin ? INSN_UID (origin) : 0));
2339 }
2340
2341 poly_int64 args_size = cur_trace->end_true_args_size;
2342 if (ti->beg_row == NULL)
2343 {
2344 /* This is the first time we've encountered this trace. Propagate
2345 state across the edge and push the trace onto the work list. */
2346 ti->beg_row = copy_cfi_row (cur_row);
2347 ti->beg_true_args_size = args_size;
2348
2349 ti->cfa_store = cur_trace->cfa_store;
2350 ti->cfa_temp = cur_trace->cfa_temp;
2351 ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
2352
2353 trace_work_list.safe_push (ti);
2354
2355 if (dump_file)
2356 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2357 }
2358 else
2359 {
2360
2361 /* We ought to have the same state incoming to a given trace no
2362 matter how we arrive at the trace. Anything else means we've
2363 got some kind of optimization error. */
2364 #if CHECKING_P
2365 if (!cfi_row_equal_p (cur_row, ti->beg_row))
2366 {
2367 if (dump_file)
2368 {
2369 fprintf (dump_file, "Inconsistent CFI state!\n");
2370 fprintf (dump_file, "SHOULD have:\n");
2371 dump_cfi_row (dump_file, ti->beg_row);
2372 fprintf (dump_file, "DO have:\n");
2373 dump_cfi_row (dump_file, cur_row);
2374 }
2375
2376 gcc_unreachable ();
2377 }
2378 #endif
2379
2380 /* The args_size is allowed to conflict if it isn't actually used. */
2381 if (maybe_ne (ti->beg_true_args_size, args_size))
2382 ti->args_size_undefined = true;
2383 }
2384 }
2385
2386 /* Similarly, but handle the args_size and CFA reset across EH
2387 and non-local goto edges. */
2388
2389 static void
2390 maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin)
2391 {
2392 poly_int64 save_args_size, delta;
2393 dw_cfa_location save_cfa;
2394
2395 save_args_size = cur_trace->end_true_args_size;
2396 if (known_eq (save_args_size, 0))
2397 {
2398 maybe_record_trace_start (start, origin);
2399 return;
2400 }
2401
2402 delta = -save_args_size;
2403 cur_trace->end_true_args_size = 0;
2404
2405 save_cfa = cur_row->cfa;
2406 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2407 {
2408 /* Convert a change in args_size (always a positive in the
2409 direction of stack growth) to a change in stack pointer. */
2410 if (!STACK_GROWS_DOWNWARD)
2411 delta = -delta;
2412
2413 cur_row->cfa.offset += delta;
2414 }
2415
2416 maybe_record_trace_start (start, origin);
2417
2418 cur_trace->end_true_args_size = save_args_size;
2419 cur_row->cfa = save_cfa;
2420 }
2421
2422 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2423 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2424
2425 static void
2426 create_trace_edges (rtx_insn *insn)
2427 {
2428 rtx tmp;
2429 int i, n;
2430
2431 if (JUMP_P (insn))
2432 {
2433 rtx_jump_table_data *table;
2434
2435 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2436 return;
2437
2438 if (tablejump_p (insn, NULL, &table))
2439 {
2440 rtvec vec = table->get_labels ();
2441
2442 n = GET_NUM_ELEM (vec);
2443 for (i = 0; i < n; ++i)
2444 {
2445 rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0));
2446 maybe_record_trace_start (lab, insn);
2447 }
2448
2449 /* Handle casesi dispatch insns. */
2450 if ((tmp = tablejump_casesi_pattern (insn)) != NULL_RTX)
2451 {
2452 rtx_insn * lab = label_ref_label (XEXP (SET_SRC (tmp), 2));
2453 maybe_record_trace_start (lab, insn);
2454 }
2455 }
2456 else if (computed_jump_p (insn))
2457 {
2458 rtx_insn *temp;
2459 unsigned int i;
2460 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, temp)
2461 maybe_record_trace_start (temp, insn);
2462 }
2463 else if (returnjump_p (insn))
2464 ;
2465 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2466 {
2467 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2468 for (i = 0; i < n; ++i)
2469 {
2470 rtx_insn *lab =
2471 as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0));
2472 maybe_record_trace_start (lab, insn);
2473 }
2474 }
2475 else
2476 {
2477 rtx_insn *lab = JUMP_LABEL_AS_INSN (insn);
2478 gcc_assert (lab != NULL);
2479 maybe_record_trace_start (lab, insn);
2480 }
2481 }
2482 else if (CALL_P (insn))
2483 {
2484 /* Sibling calls don't have edges inside this function. */
2485 if (SIBLING_CALL_P (insn))
2486 return;
2487
2488 /* Process non-local goto edges. */
2489 if (can_nonlocal_goto (insn))
2490 for (rtx_insn_list *lab = nonlocal_goto_handler_labels;
2491 lab;
2492 lab = lab->next ())
2493 maybe_record_trace_start_abnormal (lab->insn (), insn);
2494 }
2495 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2496 {
2497 int i, n = seq->len ();
2498 for (i = 0; i < n; ++i)
2499 create_trace_edges (seq->insn (i));
2500 return;
2501 }
2502
2503 /* Process EH edges. */
2504 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2505 {
2506 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2507 if (lp)
2508 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2509 }
2510 }
2511
2512 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2513
2514 static void
2515 scan_insn_after (rtx_insn *insn)
2516 {
2517 if (RTX_FRAME_RELATED_P (insn))
2518 dwarf2out_frame_debug (insn);
2519 notice_args_size (insn);
2520 }
2521
2522 /* Scan the trace beginning at INSN and create the CFI notes for the
2523 instructions therein. */
2524
2525 static void
2526 scan_trace (dw_trace_info *trace, bool entry)
2527 {
2528 rtx_insn *prev, *insn = trace->head;
2529 dw_cfa_location this_cfa;
2530
2531 if (dump_file)
2532 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2533 trace->id, rtx_name[(int) GET_CODE (insn)],
2534 INSN_UID (insn));
2535
2536 trace->end_row = copy_cfi_row (trace->beg_row);
2537 trace->end_true_args_size = trace->beg_true_args_size;
2538
2539 cur_trace = trace;
2540 cur_row = trace->end_row;
2541
2542 this_cfa = cur_row->cfa;
2543 cur_cfa = &this_cfa;
2544
2545 /* If the current function starts with a non-standard incoming frame
2546 sp offset, emit a note before the first instruction. */
2547 if (entry
2548 && DEFAULT_INCOMING_FRAME_SP_OFFSET != INCOMING_FRAME_SP_OFFSET)
2549 {
2550 add_cfi_insn = insn;
2551 gcc_assert (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED);
2552 this_cfa.offset = INCOMING_FRAME_SP_OFFSET;
2553 def_cfa_1 (&this_cfa);
2554 }
2555
2556 for (prev = insn, insn = NEXT_INSN (insn);
2557 insn;
2558 prev = insn, insn = NEXT_INSN (insn))
2559 {
2560 rtx_insn *control;
2561
2562 /* Do everything that happens "before" the insn. */
2563 add_cfi_insn = prev;
2564
2565 /* Notice the end of a trace. */
2566 if (BARRIER_P (insn))
2567 {
2568 /* Don't bother saving the unneeded queued registers at all. */
2569 queued_reg_saves.truncate (0);
2570 break;
2571 }
2572 if (save_point_p (insn))
2573 {
2574 /* Propagate across fallthru edges. */
2575 dwarf2out_flush_queued_reg_saves ();
2576 maybe_record_trace_start (insn, NULL);
2577 break;
2578 }
2579
2580 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2581 continue;
2582
2583 /* Handle all changes to the row state. Sequences require special
2584 handling for the positioning of the notes. */
2585 if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2586 {
2587 rtx_insn *elt;
2588 int i, n = pat->len ();
2589
2590 control = pat->insn (0);
2591 if (can_throw_internal (control))
2592 notice_eh_throw (control);
2593 dwarf2out_flush_queued_reg_saves ();
2594
2595 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2596 {
2597 /* ??? Hopefully multiple delay slots are not annulled. */
2598 gcc_assert (n == 2);
2599 gcc_assert (!RTX_FRAME_RELATED_P (control));
2600 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2601
2602 elt = pat->insn (1);
2603
2604 if (INSN_FROM_TARGET_P (elt))
2605 {
2606 cfi_vec save_row_reg_save;
2607
2608 /* If ELT is an instruction from target of an annulled
2609 branch, the effects are for the target only and so
2610 the args_size and CFA along the current path
2611 shouldn't change. */
2612 add_cfi_insn = NULL;
2613 poly_int64 restore_args_size = cur_trace->end_true_args_size;
2614 cur_cfa = &cur_row->cfa;
2615 save_row_reg_save = vec_safe_copy (cur_row->reg_save);
2616
2617 scan_insn_after (elt);
2618
2619 /* ??? Should we instead save the entire row state? */
2620 gcc_assert (!queued_reg_saves.length ());
2621
2622 create_trace_edges (control);
2623
2624 cur_trace->end_true_args_size = restore_args_size;
2625 cur_row->cfa = this_cfa;
2626 cur_row->reg_save = save_row_reg_save;
2627 cur_cfa = &this_cfa;
2628 }
2629 else
2630 {
2631 /* If ELT is a annulled branch-taken instruction (i.e.
2632 executed only when branch is not taken), the args_size
2633 and CFA should not change through the jump. */
2634 create_trace_edges (control);
2635
2636 /* Update and continue with the trace. */
2637 add_cfi_insn = insn;
2638 scan_insn_after (elt);
2639 def_cfa_1 (&this_cfa);
2640 }
2641 continue;
2642 }
2643
2644 /* The insns in the delay slot should all be considered to happen
2645 "before" a call insn. Consider a call with a stack pointer
2646 adjustment in the delay slot. The backtrace from the callee
2647 should include the sp adjustment. Unfortunately, that leaves
2648 us with an unavoidable unwinding error exactly at the call insn
2649 itself. For jump insns we'd prefer to avoid this error by
2650 placing the notes after the sequence. */
2651 if (JUMP_P (control))
2652 add_cfi_insn = insn;
2653
2654 for (i = 1; i < n; ++i)
2655 {
2656 elt = pat->insn (i);
2657 scan_insn_after (elt);
2658 }
2659
2660 /* Make sure any register saves are visible at the jump target. */
2661 dwarf2out_flush_queued_reg_saves ();
2662 any_cfis_emitted = false;
2663
2664 /* However, if there is some adjustment on the call itself, e.g.
2665 a call_pop, that action should be considered to happen after
2666 the call returns. */
2667 add_cfi_insn = insn;
2668 scan_insn_after (control);
2669 }
2670 else
2671 {
2672 /* Flush data before calls and jumps, and of course if necessary. */
2673 if (can_throw_internal (insn))
2674 {
2675 notice_eh_throw (insn);
2676 dwarf2out_flush_queued_reg_saves ();
2677 }
2678 else if (!NONJUMP_INSN_P (insn)
2679 || clobbers_queued_reg_save (insn)
2680 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2681 dwarf2out_flush_queued_reg_saves ();
2682 any_cfis_emitted = false;
2683
2684 add_cfi_insn = insn;
2685 scan_insn_after (insn);
2686 control = insn;
2687 }
2688
2689 /* Between frame-related-p and args_size we might have otherwise
2690 emitted two cfa adjustments. Do it now. */
2691 def_cfa_1 (&this_cfa);
2692
2693 /* Minimize the number of advances by emitting the entire queue
2694 once anything is emitted. */
2695 if (any_cfis_emitted
2696 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2697 dwarf2out_flush_queued_reg_saves ();
2698
2699 /* Note that a test for control_flow_insn_p does exactly the
2700 same tests as are done to actually create the edges. So
2701 always call the routine and let it not create edges for
2702 non-control-flow insns. */
2703 create_trace_edges (control);
2704 }
2705
2706 add_cfi_insn = NULL;
2707 cur_row = NULL;
2708 cur_trace = NULL;
2709 cur_cfa = NULL;
2710 }
2711
2712 /* Scan the function and create the initial set of CFI notes. */
2713
2714 static void
2715 create_cfi_notes (void)
2716 {
2717 dw_trace_info *ti;
2718
2719 gcc_checking_assert (!queued_reg_saves.exists ());
2720 gcc_checking_assert (!trace_work_list.exists ());
2721
2722 /* Always begin at the entry trace. */
2723 ti = &trace_info[0];
2724 scan_trace (ti, true);
2725
2726 while (!trace_work_list.is_empty ())
2727 {
2728 ti = trace_work_list.pop ();
2729 scan_trace (ti, false);
2730 }
2731
2732 queued_reg_saves.release ();
2733 trace_work_list.release ();
2734 }
2735
2736 /* Return the insn before the first NOTE_INSN_CFI after START. */
2737
2738 static rtx_insn *
2739 before_next_cfi_note (rtx_insn *start)
2740 {
2741 rtx_insn *prev = start;
2742 while (start)
2743 {
2744 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2745 return prev;
2746 prev = start;
2747 start = NEXT_INSN (start);
2748 }
2749 gcc_unreachable ();
2750 }
2751
2752 /* Insert CFI notes between traces to properly change state between them. */
2753
2754 static void
2755 connect_traces (void)
2756 {
2757 unsigned i, n;
2758 dw_trace_info *prev_ti, *ti;
2759
2760 /* ??? Ideally, we should have both queued and processed every trace.
2761 However the current representation of constant pools on various targets
2762 is indistinguishable from unreachable code. Assume for the moment that
2763 we can simply skip over such traces. */
2764 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2765 these are not "real" instructions, and should not be considered.
2766 This could be generically useful for tablejump data as well. */
2767 /* Remove all unprocessed traces from the list. */
2768 unsigned ix, ix2;
2769 VEC_ORDERED_REMOVE_IF_FROM_TO (trace_info, ix, ix2, ti, 1,
2770 trace_info.length (), ti->beg_row == NULL);
2771 FOR_EACH_VEC_ELT (trace_info, ix, ti)
2772 gcc_assert (ti->end_row != NULL);
2773
2774 /* Work from the end back to the beginning. This lets us easily insert
2775 remember/restore_state notes in the correct order wrt other notes. */
2776 n = trace_info.length ();
2777 prev_ti = &trace_info[n - 1];
2778 for (i = n - 1; i > 0; --i)
2779 {
2780 dw_cfi_row *old_row;
2781
2782 ti = prev_ti;
2783 prev_ti = &trace_info[i - 1];
2784
2785 add_cfi_insn = ti->head;
2786
2787 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2788 for the portion of the function in the alternate text
2789 section. The row state at the very beginning of that
2790 new FDE will be exactly the row state from the CIE. */
2791 if (ti->switch_sections)
2792 old_row = cie_cfi_row;
2793 else
2794 {
2795 old_row = prev_ti->end_row;
2796 /* If there's no change from the previous end state, fine. */
2797 if (cfi_row_equal_p (old_row, ti->beg_row))
2798 ;
2799 /* Otherwise check for the common case of sharing state with
2800 the beginning of an epilogue, but not the end. Insert
2801 remember/restore opcodes in that case. */
2802 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2803 {
2804 dw_cfi_ref cfi;
2805
2806 /* Note that if we blindly insert the remember at the
2807 start of the trace, we can wind up increasing the
2808 size of the unwind info due to extra advance opcodes.
2809 Instead, put the remember immediately before the next
2810 state change. We know there must be one, because the
2811 state at the beginning and head of the trace differ. */
2812 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2813 cfi = new_cfi ();
2814 cfi->dw_cfi_opc = DW_CFA_remember_state;
2815 add_cfi (cfi);
2816
2817 add_cfi_insn = ti->head;
2818 cfi = new_cfi ();
2819 cfi->dw_cfi_opc = DW_CFA_restore_state;
2820 add_cfi (cfi);
2821
2822 old_row = prev_ti->beg_row;
2823 }
2824 /* Otherwise, we'll simply change state from the previous end. */
2825 }
2826
2827 change_cfi_row (old_row, ti->beg_row);
2828
2829 if (dump_file && add_cfi_insn != ti->head)
2830 {
2831 rtx_insn *note;
2832
2833 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2834 prev_ti->id, ti->id);
2835
2836 note = ti->head;
2837 do
2838 {
2839 note = NEXT_INSN (note);
2840 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2841 output_cfi_directive (dump_file, NOTE_CFI (note));
2842 }
2843 while (note != add_cfi_insn);
2844 }
2845 }
2846
2847 /* Connect args_size between traces that have can_throw_internal insns. */
2848 if (cfun->eh->lp_array)
2849 {
2850 poly_int64 prev_args_size = 0;
2851
2852 for (i = 0; i < n; ++i)
2853 {
2854 ti = &trace_info[i];
2855
2856 if (ti->switch_sections)
2857 prev_args_size = 0;
2858
2859 if (ti->eh_head == NULL)
2860 continue;
2861
2862 /* We require either the incoming args_size values to match or the
2863 presence of an insn setting it before the first EH insn. */
2864 gcc_assert (!ti->args_size_undefined || ti->args_size_defined_for_eh);
2865
2866 /* In the latter case, we force the creation of a CFI note. */
2867 if (ti->args_size_undefined
2868 || maybe_ne (ti->beg_delay_args_size, prev_args_size))
2869 {
2870 /* ??? Search back to previous CFI note. */
2871 add_cfi_insn = PREV_INSN (ti->eh_head);
2872 add_cfi_args_size (ti->beg_delay_args_size);
2873 }
2874
2875 prev_args_size = ti->end_delay_args_size;
2876 }
2877 }
2878 }
2879
2880 /* Set up the pseudo-cfg of instruction traces, as described at the
2881 block comment at the top of the file. */
2882
2883 static void
2884 create_pseudo_cfg (void)
2885 {
2886 bool saw_barrier, switch_sections;
2887 dw_trace_info ti;
2888 rtx_insn *insn;
2889 unsigned i;
2890
2891 /* The first trace begins at the start of the function,
2892 and begins with the CIE row state. */
2893 trace_info.create (16);
2894 memset (&ti, 0, sizeof (ti));
2895 ti.head = get_insns ();
2896 ti.beg_row = cie_cfi_row;
2897 ti.cfa_store = cie_cfi_row->cfa;
2898 ti.cfa_temp.reg = INVALID_REGNUM;
2899 trace_info.quick_push (ti);
2900
2901 if (cie_return_save)
2902 ti.regs_saved_in_regs.safe_push (*cie_return_save);
2903
2904 /* Walk all the insns, collecting start of trace locations. */
2905 saw_barrier = false;
2906 switch_sections = false;
2907 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2908 {
2909 if (BARRIER_P (insn))
2910 saw_barrier = true;
2911 else if (NOTE_P (insn)
2912 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2913 {
2914 /* We should have just seen a barrier. */
2915 gcc_assert (saw_barrier);
2916 switch_sections = true;
2917 }
2918 /* Watch out for save_point notes between basic blocks.
2919 In particular, a note after a barrier. Do not record these,
2920 delaying trace creation until the label. */
2921 else if (save_point_p (insn)
2922 && (LABEL_P (insn) || !saw_barrier))
2923 {
2924 memset (&ti, 0, sizeof (ti));
2925 ti.head = insn;
2926 ti.switch_sections = switch_sections;
2927 ti.id = trace_info.length ();
2928 trace_info.safe_push (ti);
2929
2930 saw_barrier = false;
2931 switch_sections = false;
2932 }
2933 }
2934
2935 /* Create the trace index after we've finished building trace_info,
2936 avoiding stale pointer problems due to reallocation. */
2937 trace_index
2938 = new hash_table<trace_info_hasher> (trace_info.length ());
2939 dw_trace_info *tp;
2940 FOR_EACH_VEC_ELT (trace_info, i, tp)
2941 {
2942 dw_trace_info **slot;
2943
2944 if (dump_file)
2945 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", tp->id,
2946 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
2947 tp->switch_sections ? " (section switch)" : "");
2948
2949 slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
2950 gcc_assert (*slot == NULL);
2951 *slot = tp;
2952 }
2953 }
2954
2955 /* Record the initial position of the return address. RTL is
2956 INCOMING_RETURN_ADDR_RTX. */
2957
2958 static void
2959 initial_return_save (rtx rtl)
2960 {
2961 unsigned int reg = INVALID_REGNUM;
2962 poly_int64 offset = 0;
2963
2964 switch (GET_CODE (rtl))
2965 {
2966 case REG:
2967 /* RA is in a register. */
2968 reg = dwf_regno (rtl);
2969 break;
2970
2971 case MEM:
2972 /* RA is on the stack. */
2973 rtl = XEXP (rtl, 0);
2974 switch (GET_CODE (rtl))
2975 {
2976 case REG:
2977 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2978 offset = 0;
2979 break;
2980
2981 case PLUS:
2982 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2983 offset = rtx_to_poly_int64 (XEXP (rtl, 1));
2984 break;
2985
2986 case MINUS:
2987 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2988 offset = -rtx_to_poly_int64 (XEXP (rtl, 1));
2989 break;
2990
2991 default:
2992 gcc_unreachable ();
2993 }
2994
2995 break;
2996
2997 case PLUS:
2998 /* The return address is at some offset from any value we can
2999 actually load. For instance, on the SPARC it is in %i7+8. Just
3000 ignore the offset for now; it doesn't matter for unwinding frames. */
3001 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
3002 initial_return_save (XEXP (rtl, 0));
3003 return;
3004
3005 default:
3006 gcc_unreachable ();
3007 }
3008
3009 if (reg != DWARF_FRAME_RETURN_COLUMN)
3010 {
3011 if (reg != INVALID_REGNUM)
3012 record_reg_saved_in_reg (rtl, pc_rtx);
3013 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
3014 }
3015 }
3016
3017 static void
3018 create_cie_data (void)
3019 {
3020 dw_cfa_location loc;
3021 dw_trace_info cie_trace;
3022
3023 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
3024
3025 memset (&cie_trace, 0, sizeof (cie_trace));
3026 cur_trace = &cie_trace;
3027
3028 add_cfi_vec = &cie_cfi_vec;
3029 cie_cfi_row = cur_row = new_cfi_row ();
3030
3031 /* On entry, the Canonical Frame Address is at SP. */
3032 memset (&loc, 0, sizeof (loc));
3033 loc.reg = dw_stack_pointer_regnum;
3034 /* create_cie_data is called just once per TU, and when using .cfi_startproc
3035 is even done by the assembler rather than the compiler. If the target
3036 has different incoming frame sp offsets depending on what kind of
3037 function it is, use a single constant offset for the target and
3038 if needed, adjust before the first instruction in insn stream. */
3039 loc.offset = DEFAULT_INCOMING_FRAME_SP_OFFSET;
3040 def_cfa_1 (&loc);
3041
3042 if (targetm.debug_unwind_info () == UI_DWARF2
3043 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3044 {
3045 initial_return_save (INCOMING_RETURN_ADDR_RTX);
3046
3047 /* For a few targets, we have the return address incoming into a
3048 register, but choose a different return column. This will result
3049 in a DW_CFA_register for the return, and an entry in
3050 regs_saved_in_regs to match. If the target later stores that
3051 return address register to the stack, we want to be able to emit
3052 the DW_CFA_offset against the return column, not the intermediate
3053 save register. Save the contents of regs_saved_in_regs so that
3054 we can re-initialize it at the start of each function. */
3055 switch (cie_trace.regs_saved_in_regs.length ())
3056 {
3057 case 0:
3058 break;
3059 case 1:
3060 cie_return_save = ggc_alloc<reg_saved_in_data> ();
3061 *cie_return_save = cie_trace.regs_saved_in_regs[0];
3062 cie_trace.regs_saved_in_regs.release ();
3063 break;
3064 default:
3065 gcc_unreachable ();
3066 }
3067 }
3068
3069 add_cfi_vec = NULL;
3070 cur_row = NULL;
3071 cur_trace = NULL;
3072 }
3073
3074 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
3075 state at each location within the function. These notes will be
3076 emitted during pass_final. */
3077
3078 static unsigned int
3079 execute_dwarf2_frame (void)
3080 {
3081 /* Different HARD_FRAME_POINTER_REGNUM might coexist in the same file. */
3082 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
3083
3084 /* The first time we're called, compute the incoming frame state. */
3085 if (cie_cfi_vec == NULL)
3086 create_cie_data ();
3087
3088 dwarf2out_alloc_current_fde ();
3089
3090 create_pseudo_cfg ();
3091
3092 /* Do the work. */
3093 create_cfi_notes ();
3094 connect_traces ();
3095 add_cfis_to_fde ();
3096
3097 /* Free all the data we allocated. */
3098 {
3099 size_t i;
3100 dw_trace_info *ti;
3101
3102 FOR_EACH_VEC_ELT (trace_info, i, ti)
3103 ti->regs_saved_in_regs.release ();
3104 }
3105 trace_info.release ();
3106
3107 delete trace_index;
3108 trace_index = NULL;
3109
3110 return 0;
3111 }
3112 \f
3113 /* Convert a DWARF call frame info. operation to its string name */
3114
3115 static const char *
3116 dwarf_cfi_name (unsigned int cfi_opc)
3117 {
3118 const char *name = get_DW_CFA_name (cfi_opc);
3119
3120 if (name != NULL)
3121 return name;
3122
3123 return "DW_CFA_<unknown>";
3124 }
3125
3126 /* This routine will generate the correct assembly data for a location
3127 description based on a cfi entry with a complex address. */
3128
3129 static void
3130 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
3131 {
3132 dw_loc_descr_ref loc;
3133 unsigned long size;
3134
3135 if (cfi->dw_cfi_opc == DW_CFA_expression
3136 || cfi->dw_cfi_opc == DW_CFA_val_expression)
3137 {
3138 unsigned r =
3139 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3140 dw2_asm_output_data (1, r, NULL);
3141 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3142 }
3143 else
3144 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3145
3146 /* Output the size of the block. */
3147 size = size_of_locs (loc);
3148 dw2_asm_output_data_uleb128 (size, NULL);
3149
3150 /* Now output the operations themselves. */
3151 output_loc_sequence (loc, for_eh);
3152 }
3153
3154 /* Similar, but used for .cfi_escape. */
3155
3156 static void
3157 output_cfa_loc_raw (dw_cfi_ref cfi)
3158 {
3159 dw_loc_descr_ref loc;
3160 unsigned long size;
3161
3162 if (cfi->dw_cfi_opc == DW_CFA_expression
3163 || cfi->dw_cfi_opc == DW_CFA_val_expression)
3164 {
3165 unsigned r =
3166 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3167 fprintf (asm_out_file, "%#x,", r);
3168 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3169 }
3170 else
3171 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3172
3173 /* Output the size of the block. */
3174 size = size_of_locs (loc);
3175 dw2_asm_output_data_uleb128_raw (size);
3176 fputc (',', asm_out_file);
3177
3178 /* Now output the operations themselves. */
3179 output_loc_sequence_raw (loc);
3180 }
3181
3182 /* Output a Call Frame Information opcode and its operand(s). */
3183
3184 void
3185 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3186 {
3187 unsigned long r;
3188 HOST_WIDE_INT off;
3189
3190 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3191 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3192 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3193 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3194 ((unsigned HOST_WIDE_INT)
3195 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3196 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3197 {
3198 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3199 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3200 "DW_CFA_offset, column %#lx", r);
3201 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3202 dw2_asm_output_data_uleb128 (off, NULL);
3203 }
3204 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3205 {
3206 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3207 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3208 "DW_CFA_restore, column %#lx", r);
3209 }
3210 else
3211 {
3212 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3213 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3214
3215 switch (cfi->dw_cfi_opc)
3216 {
3217 case DW_CFA_set_loc:
3218 if (for_eh)
3219 dw2_asm_output_encoded_addr_rtx (
3220 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3221 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3222 false, NULL);
3223 else
3224 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3225 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3226 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3227 break;
3228
3229 case DW_CFA_advance_loc1:
3230 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3231 fde->dw_fde_current_label, NULL);
3232 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3233 break;
3234
3235 case DW_CFA_advance_loc2:
3236 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3237 fde->dw_fde_current_label, NULL);
3238 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3239 break;
3240
3241 case DW_CFA_advance_loc4:
3242 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3243 fde->dw_fde_current_label, NULL);
3244 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3245 break;
3246
3247 case DW_CFA_MIPS_advance_loc8:
3248 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3249 fde->dw_fde_current_label, NULL);
3250 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3251 break;
3252
3253 case DW_CFA_offset_extended:
3254 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3255 dw2_asm_output_data_uleb128 (r, NULL);
3256 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3257 dw2_asm_output_data_uleb128 (off, NULL);
3258 break;
3259
3260 case DW_CFA_def_cfa:
3261 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3262 dw2_asm_output_data_uleb128 (r, NULL);
3263 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3264 break;
3265
3266 case DW_CFA_offset_extended_sf:
3267 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3268 dw2_asm_output_data_uleb128 (r, NULL);
3269 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3270 dw2_asm_output_data_sleb128 (off, NULL);
3271 break;
3272
3273 case DW_CFA_def_cfa_sf:
3274 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3275 dw2_asm_output_data_uleb128 (r, NULL);
3276 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3277 dw2_asm_output_data_sleb128 (off, NULL);
3278 break;
3279
3280 case DW_CFA_restore_extended:
3281 case DW_CFA_undefined:
3282 case DW_CFA_same_value:
3283 case DW_CFA_def_cfa_register:
3284 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3285 dw2_asm_output_data_uleb128 (r, NULL);
3286 break;
3287
3288 case DW_CFA_register:
3289 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3290 dw2_asm_output_data_uleb128 (r, NULL);
3291 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3292 dw2_asm_output_data_uleb128 (r, NULL);
3293 break;
3294
3295 case DW_CFA_def_cfa_offset:
3296 case DW_CFA_GNU_args_size:
3297 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3298 break;
3299
3300 case DW_CFA_def_cfa_offset_sf:
3301 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3302 dw2_asm_output_data_sleb128 (off, NULL);
3303 break;
3304
3305 case DW_CFA_GNU_window_save:
3306 break;
3307
3308 case DW_CFA_def_cfa_expression:
3309 case DW_CFA_expression:
3310 case DW_CFA_val_expression:
3311 output_cfa_loc (cfi, for_eh);
3312 break;
3313
3314 case DW_CFA_GNU_negative_offset_extended:
3315 /* Obsoleted by DW_CFA_offset_extended_sf. */
3316 gcc_unreachable ();
3317
3318 default:
3319 break;
3320 }
3321 }
3322 }
3323
3324 /* Similar, but do it via assembler directives instead. */
3325
3326 void
3327 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3328 {
3329 unsigned long r, r2;
3330
3331 switch (cfi->dw_cfi_opc)
3332 {
3333 case DW_CFA_advance_loc:
3334 case DW_CFA_advance_loc1:
3335 case DW_CFA_advance_loc2:
3336 case DW_CFA_advance_loc4:
3337 case DW_CFA_MIPS_advance_loc8:
3338 case DW_CFA_set_loc:
3339 /* Should only be created in a code path not followed when emitting
3340 via directives. The assembler is going to take care of this for
3341 us. But this routines is also used for debugging dumps, so
3342 print something. */
3343 gcc_assert (f != asm_out_file);
3344 fprintf (f, "\t.cfi_advance_loc\n");
3345 break;
3346
3347 case DW_CFA_offset:
3348 case DW_CFA_offset_extended:
3349 case DW_CFA_offset_extended_sf:
3350 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3351 fprintf (f, "\t.cfi_offset %lu, " HOST_WIDE_INT_PRINT_DEC"\n",
3352 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3353 break;
3354
3355 case DW_CFA_restore:
3356 case DW_CFA_restore_extended:
3357 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3358 fprintf (f, "\t.cfi_restore %lu\n", r);
3359 break;
3360
3361 case DW_CFA_undefined:
3362 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3363 fprintf (f, "\t.cfi_undefined %lu\n", r);
3364 break;
3365
3366 case DW_CFA_same_value:
3367 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3368 fprintf (f, "\t.cfi_same_value %lu\n", r);
3369 break;
3370
3371 case DW_CFA_def_cfa:
3372 case DW_CFA_def_cfa_sf:
3373 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3374 fprintf (f, "\t.cfi_def_cfa %lu, " HOST_WIDE_INT_PRINT_DEC"\n",
3375 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3376 break;
3377
3378 case DW_CFA_def_cfa_register:
3379 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3380 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3381 break;
3382
3383 case DW_CFA_register:
3384 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3385 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3386 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3387 break;
3388
3389 case DW_CFA_def_cfa_offset:
3390 case DW_CFA_def_cfa_offset_sf:
3391 fprintf (f, "\t.cfi_def_cfa_offset "
3392 HOST_WIDE_INT_PRINT_DEC"\n",
3393 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3394 break;
3395
3396 case DW_CFA_remember_state:
3397 fprintf (f, "\t.cfi_remember_state\n");
3398 break;
3399 case DW_CFA_restore_state:
3400 fprintf (f, "\t.cfi_restore_state\n");
3401 break;
3402
3403 case DW_CFA_GNU_args_size:
3404 if (f == asm_out_file)
3405 {
3406 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3407 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3408 if (flag_debug_asm)
3409 fprintf (f, "\t%s args_size " HOST_WIDE_INT_PRINT_DEC,
3410 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3411 fputc ('\n', f);
3412 }
3413 else
3414 {
3415 fprintf (f, "\t.cfi_GNU_args_size " HOST_WIDE_INT_PRINT_DEC "\n",
3416 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3417 }
3418 break;
3419
3420 case DW_CFA_GNU_window_save:
3421 fprintf (f, "\t.cfi_window_save\n");
3422 break;
3423
3424 case DW_CFA_def_cfa_expression:
3425 case DW_CFA_expression:
3426 case DW_CFA_val_expression:
3427 if (f != asm_out_file)
3428 {
3429 fprintf (f, "\t.cfi_%scfa_%sexpression ...\n",
3430 cfi->dw_cfi_opc == DW_CFA_def_cfa_expression ? "def_" : "",
3431 cfi->dw_cfi_opc == DW_CFA_val_expression ? "val_" : "");
3432 break;
3433 }
3434 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3435 output_cfa_loc_raw (cfi);
3436 fputc ('\n', f);
3437 break;
3438
3439 default:
3440 gcc_unreachable ();
3441 }
3442 }
3443
3444 void
3445 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3446 {
3447 if (dwarf2out_do_cfi_asm ())
3448 output_cfi_directive (asm_out_file, cfi);
3449 }
3450
3451 static void
3452 dump_cfi_row (FILE *f, dw_cfi_row *row)
3453 {
3454 dw_cfi_ref cfi;
3455 unsigned i;
3456
3457 cfi = row->cfa_cfi;
3458 if (!cfi)
3459 {
3460 dw_cfa_location dummy;
3461 memset (&dummy, 0, sizeof (dummy));
3462 dummy.reg = INVALID_REGNUM;
3463 cfi = def_cfa_0 (&dummy, &row->cfa);
3464 }
3465 output_cfi_directive (f, cfi);
3466
3467 FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
3468 if (cfi)
3469 output_cfi_directive (f, cfi);
3470 }
3471
3472 void debug_cfi_row (dw_cfi_row *row);
3473
3474 void
3475 debug_cfi_row (dw_cfi_row *row)
3476 {
3477 dump_cfi_row (stderr, row);
3478 }
3479 \f
3480
3481 /* Save the result of dwarf2out_do_frame across PCH.
3482 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3483 static GTY(()) signed char saved_do_cfi_asm = 0;
3484
3485 /* Decide whether to emit EH frame unwind information for the current
3486 translation unit. */
3487
3488 bool
3489 dwarf2out_do_eh_frame (void)
3490 {
3491 return
3492 (flag_unwind_tables || flag_exceptions)
3493 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2;
3494 }
3495
3496 /* Decide whether we want to emit frame unwind information for the current
3497 translation unit. */
3498
3499 bool
3500 dwarf2out_do_frame (void)
3501 {
3502 /* We want to emit correct CFA location expressions or lists, so we
3503 have to return true if we're going to output debug info, even if
3504 we're not going to output frame or unwind info. */
3505 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3506 return true;
3507
3508 if (saved_do_cfi_asm > 0)
3509 return true;
3510
3511 if (targetm.debug_unwind_info () == UI_DWARF2)
3512 return true;
3513
3514 if (dwarf2out_do_eh_frame ())
3515 return true;
3516
3517 return false;
3518 }
3519
3520 /* Decide whether to emit frame unwind via assembler directives. */
3521
3522 bool
3523 dwarf2out_do_cfi_asm (void)
3524 {
3525 int enc;
3526
3527 if (saved_do_cfi_asm != 0)
3528 return saved_do_cfi_asm > 0;
3529
3530 /* Assume failure for a moment. */
3531 saved_do_cfi_asm = -1;
3532
3533 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3534 return false;
3535 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3536 return false;
3537
3538 /* Make sure the personality encoding is one the assembler can support.
3539 In particular, aligned addresses can't be handled. */
3540 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3541 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3542 return false;
3543 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3544 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3545 return false;
3546
3547 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3548 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3549 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE && !dwarf2out_do_eh_frame ())
3550 return false;
3551
3552 /* Success! */
3553 saved_do_cfi_asm = 1;
3554 return true;
3555 }
3556
3557 namespace {
3558
3559 const pass_data pass_data_dwarf2_frame =
3560 {
3561 RTL_PASS, /* type */
3562 "dwarf2", /* name */
3563 OPTGROUP_NONE, /* optinfo_flags */
3564 TV_FINAL, /* tv_id */
3565 0, /* properties_required */
3566 0, /* properties_provided */
3567 0, /* properties_destroyed */
3568 0, /* todo_flags_start */
3569 0, /* todo_flags_finish */
3570 };
3571
3572 class pass_dwarf2_frame : public rtl_opt_pass
3573 {
3574 public:
3575 pass_dwarf2_frame (gcc::context *ctxt)
3576 : rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
3577 {}
3578
3579 /* opt_pass methods: */
3580 virtual bool gate (function *);
3581 virtual unsigned int execute (function *) { return execute_dwarf2_frame (); }
3582
3583 }; // class pass_dwarf2_frame
3584
3585 bool
3586 pass_dwarf2_frame::gate (function *)
3587 {
3588 /* Targets which still implement the prologue in assembler text
3589 cannot use the generic dwarf2 unwinding. */
3590 if (!targetm.have_prologue ())
3591 return false;
3592
3593 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3594 from the optimized shrink-wrapping annotations that we will compute.
3595 For now, only produce the CFI notes for dwarf2. */
3596 return dwarf2out_do_frame ();
3597 }
3598
3599 } // anon namespace
3600
3601 rtl_opt_pass *
3602 make_pass_dwarf2_frame (gcc::context *ctxt)
3603 {
3604 return new pass_dwarf2_frame (ctxt);
3605 }
3606
3607 #include "gt-dwarf2cfi.h"