]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dwarf2cfi.c
invoke.texi: Update -fopt-info documentation.
[thirdparty/gcc.git] / gcc / dwarf2cfi.c
1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "version.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "function.h"
30 #include "basic-block.h"
31 #include "dwarf2.h"
32 #include "dwarf2out.h"
33 #include "dwarf2asm.h"
34 #include "ggc.h"
35 #include "tm_p.h"
36 #include "target.h"
37 #include "common/common-target.h"
38 #include "tree-pass.h"
39
40 #include "except.h" /* expand_builtin_dwarf_sp_column */
41 #include "expr.h" /* init_return_column_size */
42 #include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
43 #include "output.h" /* asm_out_file */
44 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
45
46
47 /* ??? Poison these here until it can be done generically. They've been
48 totally replaced in this file; make sure it stays that way. */
49 #undef DWARF2_UNWIND_INFO
50 #undef DWARF2_FRAME_INFO
51 #if (GCC_VERSION >= 3000)
52 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
53 #endif
54
55 #ifndef INCOMING_RETURN_ADDR_RTX
56 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
57 #endif
58
59 /* Maximum size (in bytes) of an artificially generated label. */
60 #define MAX_ARTIFICIAL_LABEL_BYTES 30
61 \f
62 /* A collected description of an entire row of the abstract CFI table. */
63 typedef struct GTY(()) dw_cfi_row_struct
64 {
65 /* The expression that computes the CFA, expressed in two different ways.
66 The CFA member for the simple cases, and the full CFI expression for
67 the complex cases. The later will be a DW_CFA_cfa_expression. */
68 dw_cfa_location cfa;
69 dw_cfi_ref cfa_cfi;
70
71 /* The expressions for any register column that is saved. */
72 cfi_vec reg_save;
73 } dw_cfi_row;
74
75 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
76 typedef struct GTY(()) reg_saved_in_data_struct {
77 rtx orig_reg;
78 rtx saved_in_reg;
79 } reg_saved_in_data;
80
81 DEF_VEC_O (reg_saved_in_data);
82 DEF_VEC_ALLOC_O (reg_saved_in_data, heap);
83
84 /* Since we no longer have a proper CFG, we're going to create a facsimile
85 of one on the fly while processing the frame-related insns.
86
87 We create dw_trace_info structures for each extended basic block beginning
88 and ending at a "save point". Save points are labels, barriers, certain
89 notes, and of course the beginning and end of the function.
90
91 As we encounter control transfer insns, we propagate the "current"
92 row state across the edges to the starts of traces. When checking is
93 enabled, we validate that we propagate the same data from all sources.
94
95 All traces are members of the TRACE_INFO array, in the order in which
96 they appear in the instruction stream.
97
98 All save points are present in the TRACE_INDEX hash, mapping the insn
99 starting a trace to the dw_trace_info describing the trace. */
100
101 typedef struct
102 {
103 /* The insn that begins the trace. */
104 rtx head;
105
106 /* The row state at the beginning and end of the trace. */
107 dw_cfi_row *beg_row, *end_row;
108
109 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
110 while scanning insns. However, the args_size value is irrelevant at
111 any point except can_throw_internal_p insns. Therefore the "delay"
112 sizes the values that must actually be emitted for this trace. */
113 HOST_WIDE_INT beg_true_args_size, end_true_args_size;
114 HOST_WIDE_INT beg_delay_args_size, end_delay_args_size;
115
116 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
117 rtx eh_head;
118
119 /* The following variables contain data used in interpreting frame related
120 expressions. These are not part of the "real" row state as defined by
121 Dwarf, but it seems like they need to be propagated into a trace in case
122 frame related expressions have been sunk. */
123 /* ??? This seems fragile. These variables are fragments of a larger
124 expression. If we do not keep the entire expression together, we risk
125 not being able to put it together properly. Consider forcing targets
126 to generate self-contained expressions and dropping all of the magic
127 interpretation code in this file. Or at least refusing to shrink wrap
128 any frame related insn that doesn't contain a complete expression. */
129
130 /* The register used for saving registers to the stack, and its offset
131 from the CFA. */
132 dw_cfa_location cfa_store;
133
134 /* A temporary register holding an integral value used in adjusting SP
135 or setting up the store_reg. The "offset" field holds the integer
136 value, not an offset. */
137 dw_cfa_location cfa_temp;
138
139 /* A set of registers saved in other registers. This is the inverse of
140 the row->reg_save info, if the entry is a DW_CFA_register. This is
141 implemented as a flat array because it normally contains zero or 1
142 entry, depending on the target. IA-64 is the big spender here, using
143 a maximum of 5 entries. */
144 VEC(reg_saved_in_data, heap) *regs_saved_in_regs;
145
146 /* An identifier for this trace. Used only for debugging dumps. */
147 unsigned id;
148
149 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
150 bool switch_sections;
151
152 /* True if we've seen different values incoming to beg_true_args_size. */
153 bool args_size_undefined;
154 } dw_trace_info;
155
156 DEF_VEC_O (dw_trace_info);
157 DEF_VEC_ALLOC_O (dw_trace_info, heap);
158
159 typedef dw_trace_info *dw_trace_info_ref;
160
161 DEF_VEC_P (dw_trace_info_ref);
162 DEF_VEC_ALLOC_P (dw_trace_info_ref, heap);
163
164 /* The variables making up the pseudo-cfg, as described above. */
165 static VEC (dw_trace_info, heap) *trace_info;
166 static VEC (dw_trace_info_ref, heap) *trace_work_list;
167 static htab_t trace_index;
168
169 /* A vector of call frame insns for the CIE. */
170 cfi_vec cie_cfi_vec;
171
172 /* The state of the first row of the FDE table, which includes the
173 state provided by the CIE. */
174 static GTY(()) dw_cfi_row *cie_cfi_row;
175
176 static GTY(()) reg_saved_in_data *cie_return_save;
177
178 static GTY(()) unsigned long dwarf2out_cfi_label_num;
179
180 /* The insn after which a new CFI note should be emitted. */
181 static rtx add_cfi_insn;
182
183 /* When non-null, add_cfi will add the CFI to this vector. */
184 static cfi_vec *add_cfi_vec;
185
186 /* The current instruction trace. */
187 static dw_trace_info *cur_trace;
188
189 /* The current, i.e. most recently generated, row of the CFI table. */
190 static dw_cfi_row *cur_row;
191
192 /* A copy of the current CFA, for use during the processing of a
193 single insn. */
194 static dw_cfa_location *cur_cfa;
195
196 /* We delay emitting a register save until either (a) we reach the end
197 of the prologue or (b) the register is clobbered. This clusters
198 register saves so that there are fewer pc advances. */
199
200 typedef struct {
201 rtx reg;
202 rtx saved_reg;
203 HOST_WIDE_INT cfa_offset;
204 } queued_reg_save;
205
206 DEF_VEC_O (queued_reg_save);
207 DEF_VEC_ALLOC_O (queued_reg_save, heap);
208
209 static VEC(queued_reg_save, heap) *queued_reg_saves;
210
211 /* True if any CFI directives were emitted at the current insn. */
212 static bool any_cfis_emitted;
213
214 /* Short-hand for commonly used register numbers. */
215 static unsigned dw_stack_pointer_regnum;
216 static unsigned dw_frame_pointer_regnum;
217 \f
218 /* Hook used by __throw. */
219
220 rtx
221 expand_builtin_dwarf_sp_column (void)
222 {
223 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
224 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
225 }
226
227 /* MEM is a memory reference for the register size table, each element of
228 which has mode MODE. Initialize column C as a return address column. */
229
230 static void
231 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
232 {
233 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
234 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
235 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
236 }
237
238 /* Generate code to initialize the register size table. */
239
240 void
241 expand_builtin_init_dwarf_reg_sizes (tree address)
242 {
243 unsigned int i;
244 enum machine_mode mode = TYPE_MODE (char_type_node);
245 rtx addr = expand_normal (address);
246 rtx mem = gen_rtx_MEM (BLKmode, addr);
247 bool wrote_return_column = false;
248
249 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
250 {
251 unsigned int dnum = DWARF_FRAME_REGNUM (i);
252 unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
253
254 if (rnum < DWARF_FRAME_REGISTERS)
255 {
256 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
257 enum machine_mode save_mode = reg_raw_mode[i];
258 HOST_WIDE_INT size;
259
260 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
261 save_mode = choose_hard_reg_mode (i, 1, true);
262 if (dnum == DWARF_FRAME_RETURN_COLUMN)
263 {
264 if (save_mode == VOIDmode)
265 continue;
266 wrote_return_column = true;
267 }
268 size = GET_MODE_SIZE (save_mode);
269 if (offset < 0)
270 continue;
271
272 emit_move_insn (adjust_address (mem, mode, offset),
273 gen_int_mode (size, mode));
274 }
275 }
276
277 if (!wrote_return_column)
278 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
279
280 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
281 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
282 #endif
283
284 targetm.init_dwarf_reg_sizes_extra (address);
285 }
286
287 \f
288 static hashval_t
289 dw_trace_info_hash (const void *ptr)
290 {
291 const dw_trace_info *ti = (const dw_trace_info *) ptr;
292 return INSN_UID (ti->head);
293 }
294
295 static int
296 dw_trace_info_eq (const void *ptr_a, const void *ptr_b)
297 {
298 const dw_trace_info *a = (const dw_trace_info *) ptr_a;
299 const dw_trace_info *b = (const dw_trace_info *) ptr_b;
300 return a->head == b->head;
301 }
302
303 static dw_trace_info *
304 get_trace_info (rtx insn)
305 {
306 dw_trace_info dummy;
307 dummy.head = insn;
308 return (dw_trace_info *)
309 htab_find_with_hash (trace_index, &dummy, INSN_UID (insn));
310 }
311
312 static bool
313 save_point_p (rtx insn)
314 {
315 /* Labels, except those that are really jump tables. */
316 if (LABEL_P (insn))
317 return inside_basic_block_p (insn);
318
319 /* We split traces at the prologue/epilogue notes because those
320 are points at which the unwind info is usually stable. This
321 makes it easier to find spots with identical unwind info so
322 that we can use remember/restore_state opcodes. */
323 if (NOTE_P (insn))
324 switch (NOTE_KIND (insn))
325 {
326 case NOTE_INSN_PROLOGUE_END:
327 case NOTE_INSN_EPILOGUE_BEG:
328 return true;
329 }
330
331 return false;
332 }
333
334 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
335
336 static inline HOST_WIDE_INT
337 div_data_align (HOST_WIDE_INT off)
338 {
339 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
340 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
341 return r;
342 }
343
344 /* Return true if we need a signed version of a given opcode
345 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
346
347 static inline bool
348 need_data_align_sf_opcode (HOST_WIDE_INT off)
349 {
350 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
351 }
352
353 /* Return a pointer to a newly allocated Call Frame Instruction. */
354
355 static inline dw_cfi_ref
356 new_cfi (void)
357 {
358 dw_cfi_ref cfi = ggc_alloc_dw_cfi_node ();
359
360 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
361 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
362
363 return cfi;
364 }
365
366 /* Return a newly allocated CFI row, with no defined data. */
367
368 static dw_cfi_row *
369 new_cfi_row (void)
370 {
371 dw_cfi_row *row = ggc_alloc_cleared_dw_cfi_row ();
372
373 row->cfa.reg = INVALID_REGNUM;
374
375 return row;
376 }
377
378 /* Return a copy of an existing CFI row. */
379
380 static dw_cfi_row *
381 copy_cfi_row (dw_cfi_row *src)
382 {
383 dw_cfi_row *dst = ggc_alloc_dw_cfi_row ();
384
385 *dst = *src;
386 dst->reg_save = VEC_copy (dw_cfi_ref, gc, src->reg_save);
387
388 return dst;
389 }
390
391 /* Generate a new label for the CFI info to refer to. */
392
393 static char *
394 dwarf2out_cfi_label (void)
395 {
396 int num = dwarf2out_cfi_label_num++;
397 char label[20];
398
399 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
400
401 return xstrdup (label);
402 }
403
404 /* Add CFI either to the current insn stream or to a vector, or both. */
405
406 static void
407 add_cfi (dw_cfi_ref cfi)
408 {
409 any_cfis_emitted = true;
410
411 if (add_cfi_insn != NULL)
412 {
413 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
414 NOTE_CFI (add_cfi_insn) = cfi;
415 }
416
417 if (add_cfi_vec != NULL)
418 VEC_safe_push (dw_cfi_ref, gc, *add_cfi_vec, cfi);
419 }
420
421 static void
422 add_cfi_args_size (HOST_WIDE_INT size)
423 {
424 dw_cfi_ref cfi = new_cfi ();
425
426 /* While we can occasionally have args_size < 0 internally, this state
427 should not persist at a point we actually need an opcode. */
428 gcc_assert (size >= 0);
429
430 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
431 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
432
433 add_cfi (cfi);
434 }
435
436 static void
437 add_cfi_restore (unsigned reg)
438 {
439 dw_cfi_ref cfi = new_cfi ();
440
441 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
442 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
443
444 add_cfi (cfi);
445 }
446
447 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
448 that the register column is no longer saved. */
449
450 static void
451 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
452 {
453 if (VEC_length (dw_cfi_ref, row->reg_save) <= column)
454 VEC_safe_grow_cleared (dw_cfi_ref, gc, row->reg_save, column + 1);
455 VEC_replace (dw_cfi_ref, row->reg_save, column, cfi);
456 }
457
458 /* This function fills in aa dw_cfa_location structure from a dwarf location
459 descriptor sequence. */
460
461 static void
462 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
463 {
464 struct dw_loc_descr_struct *ptr;
465 cfa->offset = 0;
466 cfa->base_offset = 0;
467 cfa->indirect = 0;
468 cfa->reg = -1;
469
470 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
471 {
472 enum dwarf_location_atom op = ptr->dw_loc_opc;
473
474 switch (op)
475 {
476 case DW_OP_reg0:
477 case DW_OP_reg1:
478 case DW_OP_reg2:
479 case DW_OP_reg3:
480 case DW_OP_reg4:
481 case DW_OP_reg5:
482 case DW_OP_reg6:
483 case DW_OP_reg7:
484 case DW_OP_reg8:
485 case DW_OP_reg9:
486 case DW_OP_reg10:
487 case DW_OP_reg11:
488 case DW_OP_reg12:
489 case DW_OP_reg13:
490 case DW_OP_reg14:
491 case DW_OP_reg15:
492 case DW_OP_reg16:
493 case DW_OP_reg17:
494 case DW_OP_reg18:
495 case DW_OP_reg19:
496 case DW_OP_reg20:
497 case DW_OP_reg21:
498 case DW_OP_reg22:
499 case DW_OP_reg23:
500 case DW_OP_reg24:
501 case DW_OP_reg25:
502 case DW_OP_reg26:
503 case DW_OP_reg27:
504 case DW_OP_reg28:
505 case DW_OP_reg29:
506 case DW_OP_reg30:
507 case DW_OP_reg31:
508 cfa->reg = op - DW_OP_reg0;
509 break;
510 case DW_OP_regx:
511 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
512 break;
513 case DW_OP_breg0:
514 case DW_OP_breg1:
515 case DW_OP_breg2:
516 case DW_OP_breg3:
517 case DW_OP_breg4:
518 case DW_OP_breg5:
519 case DW_OP_breg6:
520 case DW_OP_breg7:
521 case DW_OP_breg8:
522 case DW_OP_breg9:
523 case DW_OP_breg10:
524 case DW_OP_breg11:
525 case DW_OP_breg12:
526 case DW_OP_breg13:
527 case DW_OP_breg14:
528 case DW_OP_breg15:
529 case DW_OP_breg16:
530 case DW_OP_breg17:
531 case DW_OP_breg18:
532 case DW_OP_breg19:
533 case DW_OP_breg20:
534 case DW_OP_breg21:
535 case DW_OP_breg22:
536 case DW_OP_breg23:
537 case DW_OP_breg24:
538 case DW_OP_breg25:
539 case DW_OP_breg26:
540 case DW_OP_breg27:
541 case DW_OP_breg28:
542 case DW_OP_breg29:
543 case DW_OP_breg30:
544 case DW_OP_breg31:
545 cfa->reg = op - DW_OP_breg0;
546 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
547 break;
548 case DW_OP_bregx:
549 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
550 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
551 break;
552 case DW_OP_deref:
553 cfa->indirect = 1;
554 break;
555 case DW_OP_plus_uconst:
556 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
557 break;
558 default:
559 gcc_unreachable ();
560 }
561 }
562 }
563
564 /* Find the previous value for the CFA, iteratively. CFI is the opcode
565 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
566 one level of remember/restore state processing. */
567
568 void
569 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
570 {
571 switch (cfi->dw_cfi_opc)
572 {
573 case DW_CFA_def_cfa_offset:
574 case DW_CFA_def_cfa_offset_sf:
575 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
576 break;
577 case DW_CFA_def_cfa_register:
578 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
579 break;
580 case DW_CFA_def_cfa:
581 case DW_CFA_def_cfa_sf:
582 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
583 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
584 break;
585 case DW_CFA_def_cfa_expression:
586 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
587 break;
588
589 case DW_CFA_remember_state:
590 gcc_assert (!remember->in_use);
591 *remember = *loc;
592 remember->in_use = 1;
593 break;
594 case DW_CFA_restore_state:
595 gcc_assert (remember->in_use);
596 *loc = *remember;
597 remember->in_use = 0;
598 break;
599
600 default:
601 break;
602 }
603 }
604
605 /* Determine if two dw_cfa_location structures define the same data. */
606
607 bool
608 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
609 {
610 return (loc1->reg == loc2->reg
611 && loc1->offset == loc2->offset
612 && loc1->indirect == loc2->indirect
613 && (loc1->indirect == 0
614 || loc1->base_offset == loc2->base_offset));
615 }
616
617 /* Determine if two CFI operands are identical. */
618
619 static bool
620 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
621 {
622 switch (t)
623 {
624 case dw_cfi_oprnd_unused:
625 return true;
626 case dw_cfi_oprnd_reg_num:
627 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
628 case dw_cfi_oprnd_offset:
629 return a->dw_cfi_offset == b->dw_cfi_offset;
630 case dw_cfi_oprnd_addr:
631 return (a->dw_cfi_addr == b->dw_cfi_addr
632 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
633 case dw_cfi_oprnd_loc:
634 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
635 }
636 gcc_unreachable ();
637 }
638
639 /* Determine if two CFI entries are identical. */
640
641 static bool
642 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
643 {
644 enum dwarf_call_frame_info opc;
645
646 /* Make things easier for our callers, including missing operands. */
647 if (a == b)
648 return true;
649 if (a == NULL || b == NULL)
650 return false;
651
652 /* Obviously, the opcodes must match. */
653 opc = a->dw_cfi_opc;
654 if (opc != b->dw_cfi_opc)
655 return false;
656
657 /* Compare the two operands, re-using the type of the operands as
658 already exposed elsewhere. */
659 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
660 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
661 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
662 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
663 }
664
665 /* Determine if two CFI_ROW structures are identical. */
666
667 static bool
668 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
669 {
670 size_t i, n_a, n_b, n_max;
671
672 if (a->cfa_cfi)
673 {
674 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
675 return false;
676 }
677 else if (!cfa_equal_p (&a->cfa, &b->cfa))
678 return false;
679
680 n_a = VEC_length (dw_cfi_ref, a->reg_save);
681 n_b = VEC_length (dw_cfi_ref, b->reg_save);
682 n_max = MAX (n_a, n_b);
683
684 for (i = 0; i < n_max; ++i)
685 {
686 dw_cfi_ref r_a = NULL, r_b = NULL;
687
688 if (i < n_a)
689 r_a = VEC_index (dw_cfi_ref, a->reg_save, i);
690 if (i < n_b)
691 r_b = VEC_index (dw_cfi_ref, b->reg_save, i);
692
693 if (!cfi_equal_p (r_a, r_b))
694 return false;
695 }
696
697 return true;
698 }
699
700 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
701 what opcode to emit. Returns the CFI opcode to effect the change, or
702 NULL if NEW_CFA == OLD_CFA. */
703
704 static dw_cfi_ref
705 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
706 {
707 dw_cfi_ref cfi;
708
709 /* If nothing changed, no need to issue any call frame instructions. */
710 if (cfa_equal_p (old_cfa, new_cfa))
711 return NULL;
712
713 cfi = new_cfi ();
714
715 if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect)
716 {
717 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
718 the CFA register did not change but the offset did. The data
719 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
720 in the assembler via the .cfi_def_cfa_offset directive. */
721 if (new_cfa->offset < 0)
722 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
723 else
724 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
725 cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset;
726 }
727 else if (new_cfa->offset == old_cfa->offset
728 && old_cfa->reg != INVALID_REGNUM
729 && !new_cfa->indirect
730 && !old_cfa->indirect)
731 {
732 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
733 indicating the CFA register has changed to <register> but the
734 offset has not changed. */
735 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
736 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
737 }
738 else if (new_cfa->indirect == 0)
739 {
740 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
741 indicating the CFA register has changed to <register> with
742 the specified offset. The data factoring for DW_CFA_def_cfa_sf
743 happens in output_cfi, or in the assembler via the .cfi_def_cfa
744 directive. */
745 if (new_cfa->offset < 0)
746 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
747 else
748 cfi->dw_cfi_opc = DW_CFA_def_cfa;
749 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
750 cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset;
751 }
752 else
753 {
754 /* Construct a DW_CFA_def_cfa_expression instruction to
755 calculate the CFA using a full location expression since no
756 register-offset pair is available. */
757 struct dw_loc_descr_struct *loc_list;
758
759 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
760 loc_list = build_cfa_loc (new_cfa, 0);
761 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
762 }
763
764 return cfi;
765 }
766
767 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
768
769 static void
770 def_cfa_1 (dw_cfa_location *new_cfa)
771 {
772 dw_cfi_ref cfi;
773
774 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
775 cur_trace->cfa_store.offset = new_cfa->offset;
776
777 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
778 if (cfi)
779 {
780 cur_row->cfa = *new_cfa;
781 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
782 ? cfi : NULL);
783
784 add_cfi (cfi);
785 }
786 }
787
788 /* Add the CFI for saving a register. REG is the CFA column number.
789 If SREG is -1, the register is saved at OFFSET from the CFA;
790 otherwise it is saved in SREG. */
791
792 static void
793 reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
794 {
795 dw_fde_ref fde = cfun ? cfun->fde : NULL;
796 dw_cfi_ref cfi = new_cfi ();
797
798 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
799
800 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
801 if (fde
802 && fde->stack_realign
803 && sreg == INVALID_REGNUM)
804 {
805 cfi->dw_cfi_opc = DW_CFA_expression;
806 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
807 cfi->dw_cfi_oprnd2.dw_cfi_loc
808 = build_cfa_aligned_loc (&cur_row->cfa, offset,
809 fde->stack_realignment);
810 }
811 else if (sreg == INVALID_REGNUM)
812 {
813 if (need_data_align_sf_opcode (offset))
814 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
815 else if (reg & ~0x3f)
816 cfi->dw_cfi_opc = DW_CFA_offset_extended;
817 else
818 cfi->dw_cfi_opc = DW_CFA_offset;
819 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
820 }
821 else if (sreg == reg)
822 {
823 /* While we could emit something like DW_CFA_same_value or
824 DW_CFA_restore, we never expect to see something like that
825 in a prologue. This is more likely to be a bug. A backend
826 can always bypass this by using REG_CFA_RESTORE directly. */
827 gcc_unreachable ();
828 }
829 else
830 {
831 cfi->dw_cfi_opc = DW_CFA_register;
832 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
833 }
834
835 add_cfi (cfi);
836 update_row_reg_save (cur_row, reg, cfi);
837 }
838
839 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
840 and adjust data structures to match. */
841
842 static void
843 notice_args_size (rtx insn)
844 {
845 HOST_WIDE_INT args_size, delta;
846 rtx note;
847
848 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
849 if (note == NULL)
850 return;
851
852 args_size = INTVAL (XEXP (note, 0));
853 delta = args_size - cur_trace->end_true_args_size;
854 if (delta == 0)
855 return;
856
857 cur_trace->end_true_args_size = args_size;
858
859 /* If the CFA is computed off the stack pointer, then we must adjust
860 the computation of the CFA as well. */
861 if (cur_cfa->reg == dw_stack_pointer_regnum)
862 {
863 gcc_assert (!cur_cfa->indirect);
864
865 /* Convert a change in args_size (always a positive in the
866 direction of stack growth) to a change in stack pointer. */
867 #ifndef STACK_GROWS_DOWNWARD
868 delta = -delta;
869 #endif
870 cur_cfa->offset += delta;
871 }
872 }
873
874 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
875 data within the trace related to EH insns and args_size. */
876
877 static void
878 notice_eh_throw (rtx insn)
879 {
880 HOST_WIDE_INT args_size;
881
882 args_size = cur_trace->end_true_args_size;
883 if (cur_trace->eh_head == NULL)
884 {
885 cur_trace->eh_head = insn;
886 cur_trace->beg_delay_args_size = args_size;
887 cur_trace->end_delay_args_size = args_size;
888 }
889 else if (cur_trace->end_delay_args_size != args_size)
890 {
891 cur_trace->end_delay_args_size = args_size;
892
893 /* ??? If the CFA is the stack pointer, search backward for the last
894 CFI note and insert there. Given that the stack changed for the
895 args_size change, there *must* be such a note in between here and
896 the last eh insn. */
897 add_cfi_args_size (args_size);
898 }
899 }
900
901 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
902 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
903 used in places where rtl is prohibited. */
904
905 static inline unsigned
906 dwf_regno (const_rtx reg)
907 {
908 return DWARF_FRAME_REGNUM (REGNO (reg));
909 }
910
911 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
912
913 static bool
914 compare_reg_or_pc (rtx x, rtx y)
915 {
916 if (REG_P (x) && REG_P (y))
917 return REGNO (x) == REGNO (y);
918 return x == y;
919 }
920
921 /* Record SRC as being saved in DEST. DEST may be null to delete an
922 existing entry. SRC may be a register or PC_RTX. */
923
924 static void
925 record_reg_saved_in_reg (rtx dest, rtx src)
926 {
927 reg_saved_in_data *elt;
928 size_t i;
929
930 FOR_EACH_VEC_ELT (reg_saved_in_data, cur_trace->regs_saved_in_regs, i, elt)
931 if (compare_reg_or_pc (elt->orig_reg, src))
932 {
933 if (dest == NULL)
934 VEC_unordered_remove (reg_saved_in_data,
935 cur_trace->regs_saved_in_regs, i);
936 else
937 elt->saved_in_reg = dest;
938 return;
939 }
940
941 if (dest == NULL)
942 return;
943
944 reg_saved_in_data e = {src, dest};
945 VEC_safe_push (reg_saved_in_data, heap, cur_trace->regs_saved_in_regs, e);
946 }
947
948 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
949 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
950
951 static void
952 queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset)
953 {
954 queued_reg_save *q;
955 queued_reg_save e = {reg, sreg, offset};
956 size_t i;
957
958 /* Duplicates waste space, but it's also necessary to remove them
959 for correctness, since the queue gets output in reverse order. */
960 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
961 if (compare_reg_or_pc (q->reg, reg))
962 {
963 *q = e;
964 return;
965 }
966
967 VEC_safe_push (queued_reg_save, heap, queued_reg_saves, e);
968 }
969
970 /* Output all the entries in QUEUED_REG_SAVES. */
971
972 static void
973 dwarf2out_flush_queued_reg_saves (void)
974 {
975 queued_reg_save *q;
976 size_t i;
977
978 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
979 {
980 unsigned int reg, sreg;
981
982 record_reg_saved_in_reg (q->saved_reg, q->reg);
983
984 if (q->reg == pc_rtx)
985 reg = DWARF_FRAME_RETURN_COLUMN;
986 else
987 reg = dwf_regno (q->reg);
988 if (q->saved_reg)
989 sreg = dwf_regno (q->saved_reg);
990 else
991 sreg = INVALID_REGNUM;
992 reg_save (reg, sreg, q->cfa_offset);
993 }
994
995 VEC_truncate (queued_reg_save, queued_reg_saves, 0);
996 }
997
998 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
999 location for? Or, does it clobber a register which we've previously
1000 said that some other register is saved in, and for which we now
1001 have a new location for? */
1002
1003 static bool
1004 clobbers_queued_reg_save (const_rtx insn)
1005 {
1006 queued_reg_save *q;
1007 size_t iq;
1008
1009 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, iq, q)
1010 {
1011 size_t ir;
1012 reg_saved_in_data *rir;
1013
1014 if (modified_in_p (q->reg, insn))
1015 return true;
1016
1017 FOR_EACH_VEC_ELT (reg_saved_in_data,
1018 cur_trace->regs_saved_in_regs, ir, rir)
1019 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1020 && modified_in_p (rir->saved_in_reg, insn))
1021 return true;
1022 }
1023
1024 return false;
1025 }
1026
1027 /* What register, if any, is currently saved in REG? */
1028
1029 static rtx
1030 reg_saved_in (rtx reg)
1031 {
1032 unsigned int regn = REGNO (reg);
1033 queued_reg_save *q;
1034 reg_saved_in_data *rir;
1035 size_t i;
1036
1037 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
1038 if (q->saved_reg && regn == REGNO (q->saved_reg))
1039 return q->reg;
1040
1041 FOR_EACH_VEC_ELT (reg_saved_in_data, cur_trace->regs_saved_in_regs, i, rir)
1042 if (regn == REGNO (rir->saved_in_reg))
1043 return rir->orig_reg;
1044
1045 return NULL_RTX;
1046 }
1047
1048 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1049
1050 static void
1051 dwarf2out_frame_debug_def_cfa (rtx pat)
1052 {
1053 memset (cur_cfa, 0, sizeof (*cur_cfa));
1054
1055 if (GET_CODE (pat) == PLUS)
1056 {
1057 cur_cfa->offset = INTVAL (XEXP (pat, 1));
1058 pat = XEXP (pat, 0);
1059 }
1060 if (MEM_P (pat))
1061 {
1062 cur_cfa->indirect = 1;
1063 pat = XEXP (pat, 0);
1064 if (GET_CODE (pat) == PLUS)
1065 {
1066 cur_cfa->base_offset = INTVAL (XEXP (pat, 1));
1067 pat = XEXP (pat, 0);
1068 }
1069 }
1070 /* ??? If this fails, we could be calling into the _loc functions to
1071 define a full expression. So far no port does that. */
1072 gcc_assert (REG_P (pat));
1073 cur_cfa->reg = dwf_regno (pat);
1074 }
1075
1076 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1077
1078 static void
1079 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1080 {
1081 rtx src, dest;
1082
1083 gcc_assert (GET_CODE (pat) == SET);
1084 dest = XEXP (pat, 0);
1085 src = XEXP (pat, 1);
1086
1087 switch (GET_CODE (src))
1088 {
1089 case PLUS:
1090 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1091 cur_cfa->offset -= INTVAL (XEXP (src, 1));
1092 break;
1093
1094 case REG:
1095 break;
1096
1097 default:
1098 gcc_unreachable ();
1099 }
1100
1101 cur_cfa->reg = dwf_regno (dest);
1102 gcc_assert (cur_cfa->indirect == 0);
1103 }
1104
1105 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1106
1107 static void
1108 dwarf2out_frame_debug_cfa_offset (rtx set)
1109 {
1110 HOST_WIDE_INT offset;
1111 rtx src, addr, span;
1112 unsigned int sregno;
1113
1114 src = XEXP (set, 1);
1115 addr = XEXP (set, 0);
1116 gcc_assert (MEM_P (addr));
1117 addr = XEXP (addr, 0);
1118
1119 /* As documented, only consider extremely simple addresses. */
1120 switch (GET_CODE (addr))
1121 {
1122 case REG:
1123 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1124 offset = -cur_cfa->offset;
1125 break;
1126 case PLUS:
1127 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1128 offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset;
1129 break;
1130 default:
1131 gcc_unreachable ();
1132 }
1133
1134 if (src == pc_rtx)
1135 {
1136 span = NULL;
1137 sregno = DWARF_FRAME_RETURN_COLUMN;
1138 }
1139 else
1140 {
1141 span = targetm.dwarf_register_span (src);
1142 sregno = dwf_regno (src);
1143 }
1144
1145 /* ??? We'd like to use queue_reg_save, but we need to come up with
1146 a different flushing heuristic for epilogues. */
1147 if (!span)
1148 reg_save (sregno, INVALID_REGNUM, offset);
1149 else
1150 {
1151 /* We have a PARALLEL describing where the contents of SRC live.
1152 Queue register saves for each piece of the PARALLEL. */
1153 int par_index;
1154 int limit;
1155 HOST_WIDE_INT span_offset = offset;
1156
1157 gcc_assert (GET_CODE (span) == PARALLEL);
1158
1159 limit = XVECLEN (span, 0);
1160 for (par_index = 0; par_index < limit; par_index++)
1161 {
1162 rtx elem = XVECEXP (span, 0, par_index);
1163
1164 sregno = dwf_regno (src);
1165 reg_save (sregno, INVALID_REGNUM, span_offset);
1166 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1167 }
1168 }
1169 }
1170
1171 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1172
1173 static void
1174 dwarf2out_frame_debug_cfa_register (rtx set)
1175 {
1176 rtx src, dest;
1177 unsigned sregno, dregno;
1178
1179 src = XEXP (set, 1);
1180 dest = XEXP (set, 0);
1181
1182 record_reg_saved_in_reg (dest, src);
1183 if (src == pc_rtx)
1184 sregno = DWARF_FRAME_RETURN_COLUMN;
1185 else
1186 sregno = dwf_regno (src);
1187
1188 dregno = dwf_regno (dest);
1189
1190 /* ??? We'd like to use queue_reg_save, but we need to come up with
1191 a different flushing heuristic for epilogues. */
1192 reg_save (sregno, dregno, 0);
1193 }
1194
1195 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1196
1197 static void
1198 dwarf2out_frame_debug_cfa_expression (rtx set)
1199 {
1200 rtx src, dest, span;
1201 dw_cfi_ref cfi = new_cfi ();
1202 unsigned regno;
1203
1204 dest = SET_DEST (set);
1205 src = SET_SRC (set);
1206
1207 gcc_assert (REG_P (src));
1208 gcc_assert (MEM_P (dest));
1209
1210 span = targetm.dwarf_register_span (src);
1211 gcc_assert (!span);
1212
1213 regno = dwf_regno (src);
1214
1215 cfi->dw_cfi_opc = DW_CFA_expression;
1216 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1217 cfi->dw_cfi_oprnd2.dw_cfi_loc
1218 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1219 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1220
1221 /* ??? We'd like to use queue_reg_save, were the interface different,
1222 and, as above, we could manage flushing for epilogues. */
1223 add_cfi (cfi);
1224 update_row_reg_save (cur_row, regno, cfi);
1225 }
1226
1227 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1228
1229 static void
1230 dwarf2out_frame_debug_cfa_restore (rtx reg)
1231 {
1232 unsigned int regno = dwf_regno (reg);
1233
1234 add_cfi_restore (regno);
1235 update_row_reg_save (cur_row, regno, NULL);
1236 }
1237
1238 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1239 ??? Perhaps we should note in the CIE where windows are saved (instead of
1240 assuming 0(cfa)) and what registers are in the window. */
1241
1242 static void
1243 dwarf2out_frame_debug_cfa_window_save (void)
1244 {
1245 dw_cfi_ref cfi = new_cfi ();
1246
1247 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1248 add_cfi (cfi);
1249 }
1250
1251 /* Record call frame debugging information for an expression EXPR,
1252 which either sets SP or FP (adjusting how we calculate the frame
1253 address) or saves a register to the stack or another register.
1254 LABEL indicates the address of EXPR.
1255
1256 This function encodes a state machine mapping rtxes to actions on
1257 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1258 users need not read the source code.
1259
1260 The High-Level Picture
1261
1262 Changes in the register we use to calculate the CFA: Currently we
1263 assume that if you copy the CFA register into another register, we
1264 should take the other one as the new CFA register; this seems to
1265 work pretty well. If it's wrong for some target, it's simple
1266 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1267
1268 Changes in the register we use for saving registers to the stack:
1269 This is usually SP, but not always. Again, we deduce that if you
1270 copy SP into another register (and SP is not the CFA register),
1271 then the new register is the one we will be using for register
1272 saves. This also seems to work.
1273
1274 Register saves: There's not much guesswork about this one; if
1275 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1276 register save, and the register used to calculate the destination
1277 had better be the one we think we're using for this purpose.
1278 It's also assumed that a copy from a call-saved register to another
1279 register is saving that register if RTX_FRAME_RELATED_P is set on
1280 that instruction. If the copy is from a call-saved register to
1281 the *same* register, that means that the register is now the same
1282 value as in the caller.
1283
1284 Except: If the register being saved is the CFA register, and the
1285 offset is nonzero, we are saving the CFA, so we assume we have to
1286 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1287 the intent is to save the value of SP from the previous frame.
1288
1289 In addition, if a register has previously been saved to a different
1290 register,
1291
1292 Invariants / Summaries of Rules
1293
1294 cfa current rule for calculating the CFA. It usually
1295 consists of a register and an offset. This is
1296 actually stored in *cur_cfa, but abbreviated
1297 for the purposes of this documentation.
1298 cfa_store register used by prologue code to save things to the stack
1299 cfa_store.offset is the offset from the value of
1300 cfa_store.reg to the actual CFA
1301 cfa_temp register holding an integral value. cfa_temp.offset
1302 stores the value, which will be used to adjust the
1303 stack pointer. cfa_temp is also used like cfa_store,
1304 to track stores to the stack via fp or a temp reg.
1305
1306 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1307 with cfa.reg as the first operand changes the cfa.reg and its
1308 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1309 cfa_temp.offset.
1310
1311 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1312 expression yielding a constant. This sets cfa_temp.reg
1313 and cfa_temp.offset.
1314
1315 Rule 5: Create a new register cfa_store used to save items to the
1316 stack.
1317
1318 Rules 10-14: Save a register to the stack. Define offset as the
1319 difference of the original location and cfa_store's
1320 location (or cfa_temp's location if cfa_temp is used).
1321
1322 Rules 16-20: If AND operation happens on sp in prologue, we assume
1323 stack is realigned. We will use a group of DW_OP_XXX
1324 expressions to represent the location of the stored
1325 register instead of CFA+offset.
1326
1327 The Rules
1328
1329 "{a,b}" indicates a choice of a xor b.
1330 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1331
1332 Rule 1:
1333 (set <reg1> <reg2>:cfa.reg)
1334 effects: cfa.reg = <reg1>
1335 cfa.offset unchanged
1336 cfa_temp.reg = <reg1>
1337 cfa_temp.offset = cfa.offset
1338
1339 Rule 2:
1340 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1341 {<const_int>,<reg>:cfa_temp.reg}))
1342 effects: cfa.reg = sp if fp used
1343 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1344 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1345 if cfa_store.reg==sp
1346
1347 Rule 3:
1348 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1349 effects: cfa.reg = fp
1350 cfa_offset += +/- <const_int>
1351
1352 Rule 4:
1353 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1354 constraints: <reg1> != fp
1355 <reg1> != sp
1356 effects: cfa.reg = <reg1>
1357 cfa_temp.reg = <reg1>
1358 cfa_temp.offset = cfa.offset
1359
1360 Rule 5:
1361 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1362 constraints: <reg1> != fp
1363 <reg1> != sp
1364 effects: cfa_store.reg = <reg1>
1365 cfa_store.offset = cfa.offset - cfa_temp.offset
1366
1367 Rule 6:
1368 (set <reg> <const_int>)
1369 effects: cfa_temp.reg = <reg>
1370 cfa_temp.offset = <const_int>
1371
1372 Rule 7:
1373 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1374 effects: cfa_temp.reg = <reg1>
1375 cfa_temp.offset |= <const_int>
1376
1377 Rule 8:
1378 (set <reg> (high <exp>))
1379 effects: none
1380
1381 Rule 9:
1382 (set <reg> (lo_sum <exp> <const_int>))
1383 effects: cfa_temp.reg = <reg>
1384 cfa_temp.offset = <const_int>
1385
1386 Rule 10:
1387 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1388 effects: cfa_store.offset -= <const_int>
1389 cfa.offset = cfa_store.offset if cfa.reg == sp
1390 cfa.reg = sp
1391 cfa.base_offset = -cfa_store.offset
1392
1393 Rule 11:
1394 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1395 effects: cfa_store.offset += -/+ mode_size(mem)
1396 cfa.offset = cfa_store.offset if cfa.reg == sp
1397 cfa.reg = sp
1398 cfa.base_offset = -cfa_store.offset
1399
1400 Rule 12:
1401 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1402
1403 <reg2>)
1404 effects: cfa.reg = <reg1>
1405 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1406
1407 Rule 13:
1408 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1409 effects: cfa.reg = <reg1>
1410 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1411
1412 Rule 14:
1413 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1414 effects: cfa.reg = <reg1>
1415 cfa.base_offset = -cfa_temp.offset
1416 cfa_temp.offset -= mode_size(mem)
1417
1418 Rule 15:
1419 (set <reg> {unspec, unspec_volatile})
1420 effects: target-dependent
1421
1422 Rule 16:
1423 (set sp (and: sp <const_int>))
1424 constraints: cfa_store.reg == sp
1425 effects: cfun->fde.stack_realign = 1
1426 cfa_store.offset = 0
1427 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1428
1429 Rule 17:
1430 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1431 effects: cfa_store.offset += -/+ mode_size(mem)
1432
1433 Rule 18:
1434 (set (mem ({pre_inc, pre_dec} sp)) fp)
1435 constraints: fde->stack_realign == 1
1436 effects: cfa_store.offset = 0
1437 cfa.reg != HARD_FRAME_POINTER_REGNUM
1438
1439 Rule 19:
1440 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1441 constraints: fde->stack_realign == 1
1442 && cfa.offset == 0
1443 && cfa.indirect == 0
1444 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1445 effects: Use DW_CFA_def_cfa_expression to define cfa
1446 cfa.reg == fde->drap_reg */
1447
1448 static void
1449 dwarf2out_frame_debug_expr (rtx expr)
1450 {
1451 rtx src, dest, span;
1452 HOST_WIDE_INT offset;
1453 dw_fde_ref fde;
1454
1455 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1456 the PARALLEL independently. The first element is always processed if
1457 it is a SET. This is for backward compatibility. Other elements
1458 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1459 flag is set in them. */
1460 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1461 {
1462 int par_index;
1463 int limit = XVECLEN (expr, 0);
1464 rtx elem;
1465
1466 /* PARALLELs have strict read-modify-write semantics, so we
1467 ought to evaluate every rvalue before changing any lvalue.
1468 It's cumbersome to do that in general, but there's an
1469 easy approximation that is enough for all current users:
1470 handle register saves before register assignments. */
1471 if (GET_CODE (expr) == PARALLEL)
1472 for (par_index = 0; par_index < limit; par_index++)
1473 {
1474 elem = XVECEXP (expr, 0, par_index);
1475 if (GET_CODE (elem) == SET
1476 && MEM_P (SET_DEST (elem))
1477 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1478 dwarf2out_frame_debug_expr (elem);
1479 }
1480
1481 for (par_index = 0; par_index < limit; par_index++)
1482 {
1483 elem = XVECEXP (expr, 0, par_index);
1484 if (GET_CODE (elem) == SET
1485 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1486 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1487 dwarf2out_frame_debug_expr (elem);
1488 }
1489 return;
1490 }
1491
1492 gcc_assert (GET_CODE (expr) == SET);
1493
1494 src = SET_SRC (expr);
1495 dest = SET_DEST (expr);
1496
1497 if (REG_P (src))
1498 {
1499 rtx rsi = reg_saved_in (src);
1500 if (rsi)
1501 src = rsi;
1502 }
1503
1504 fde = cfun->fde;
1505
1506 switch (GET_CODE (dest))
1507 {
1508 case REG:
1509 switch (GET_CODE (src))
1510 {
1511 /* Setting FP from SP. */
1512 case REG:
1513 if (cur_cfa->reg == dwf_regno (src))
1514 {
1515 /* Rule 1 */
1516 /* Update the CFA rule wrt SP or FP. Make sure src is
1517 relative to the current CFA register.
1518
1519 We used to require that dest be either SP or FP, but the
1520 ARM copies SP to a temporary register, and from there to
1521 FP. So we just rely on the backends to only set
1522 RTX_FRAME_RELATED_P on appropriate insns. */
1523 cur_cfa->reg = dwf_regno (dest);
1524 cur_trace->cfa_temp.reg = cur_cfa->reg;
1525 cur_trace->cfa_temp.offset = cur_cfa->offset;
1526 }
1527 else
1528 {
1529 /* Saving a register in a register. */
1530 gcc_assert (!fixed_regs [REGNO (dest)]
1531 /* For the SPARC and its register window. */
1532 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1533
1534 /* After stack is aligned, we can only save SP in FP
1535 if drap register is used. In this case, we have
1536 to restore stack pointer with the CFA value and we
1537 don't generate this DWARF information. */
1538 if (fde
1539 && fde->stack_realign
1540 && REGNO (src) == STACK_POINTER_REGNUM)
1541 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1542 && fde->drap_reg != INVALID_REGNUM
1543 && cur_cfa->reg != dwf_regno (src));
1544 else
1545 queue_reg_save (src, dest, 0);
1546 }
1547 break;
1548
1549 case PLUS:
1550 case MINUS:
1551 case LO_SUM:
1552 if (dest == stack_pointer_rtx)
1553 {
1554 /* Rule 2 */
1555 /* Adjusting SP. */
1556 switch (GET_CODE (XEXP (src, 1)))
1557 {
1558 case CONST_INT:
1559 offset = INTVAL (XEXP (src, 1));
1560 break;
1561 case REG:
1562 gcc_assert (dwf_regno (XEXP (src, 1))
1563 == cur_trace->cfa_temp.reg);
1564 offset = cur_trace->cfa_temp.offset;
1565 break;
1566 default:
1567 gcc_unreachable ();
1568 }
1569
1570 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1571 {
1572 /* Restoring SP from FP in the epilogue. */
1573 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1574 cur_cfa->reg = dw_stack_pointer_regnum;
1575 }
1576 else if (GET_CODE (src) == LO_SUM)
1577 /* Assume we've set the source reg of the LO_SUM from sp. */
1578 ;
1579 else
1580 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1581
1582 if (GET_CODE (src) != MINUS)
1583 offset = -offset;
1584 if (cur_cfa->reg == dw_stack_pointer_regnum)
1585 cur_cfa->offset += offset;
1586 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1587 cur_trace->cfa_store.offset += offset;
1588 }
1589 else if (dest == hard_frame_pointer_rtx)
1590 {
1591 /* Rule 3 */
1592 /* Either setting the FP from an offset of the SP,
1593 or adjusting the FP */
1594 gcc_assert (frame_pointer_needed);
1595
1596 gcc_assert (REG_P (XEXP (src, 0))
1597 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1598 && CONST_INT_P (XEXP (src, 1)));
1599 offset = INTVAL (XEXP (src, 1));
1600 if (GET_CODE (src) != MINUS)
1601 offset = -offset;
1602 cur_cfa->offset += offset;
1603 cur_cfa->reg = dw_frame_pointer_regnum;
1604 }
1605 else
1606 {
1607 gcc_assert (GET_CODE (src) != MINUS);
1608
1609 /* Rule 4 */
1610 if (REG_P (XEXP (src, 0))
1611 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1612 && CONST_INT_P (XEXP (src, 1)))
1613 {
1614 /* Setting a temporary CFA register that will be copied
1615 into the FP later on. */
1616 offset = - INTVAL (XEXP (src, 1));
1617 cur_cfa->offset += offset;
1618 cur_cfa->reg = dwf_regno (dest);
1619 /* Or used to save regs to the stack. */
1620 cur_trace->cfa_temp.reg = cur_cfa->reg;
1621 cur_trace->cfa_temp.offset = cur_cfa->offset;
1622 }
1623
1624 /* Rule 5 */
1625 else if (REG_P (XEXP (src, 0))
1626 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1627 && XEXP (src, 1) == stack_pointer_rtx)
1628 {
1629 /* Setting a scratch register that we will use instead
1630 of SP for saving registers to the stack. */
1631 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1632 cur_trace->cfa_store.reg = dwf_regno (dest);
1633 cur_trace->cfa_store.offset
1634 = cur_cfa->offset - cur_trace->cfa_temp.offset;
1635 }
1636
1637 /* Rule 9 */
1638 else if (GET_CODE (src) == LO_SUM
1639 && CONST_INT_P (XEXP (src, 1)))
1640 {
1641 cur_trace->cfa_temp.reg = dwf_regno (dest);
1642 cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1));
1643 }
1644 else
1645 gcc_unreachable ();
1646 }
1647 break;
1648
1649 /* Rule 6 */
1650 case CONST_INT:
1651 cur_trace->cfa_temp.reg = dwf_regno (dest);
1652 cur_trace->cfa_temp.offset = INTVAL (src);
1653 break;
1654
1655 /* Rule 7 */
1656 case IOR:
1657 gcc_assert (REG_P (XEXP (src, 0))
1658 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1659 && CONST_INT_P (XEXP (src, 1)));
1660
1661 cur_trace->cfa_temp.reg = dwf_regno (dest);
1662 cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1));
1663 break;
1664
1665 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1666 which will fill in all of the bits. */
1667 /* Rule 8 */
1668 case HIGH:
1669 break;
1670
1671 /* Rule 15 */
1672 case UNSPEC:
1673 case UNSPEC_VOLATILE:
1674 /* All unspecs should be represented by REG_CFA_* notes. */
1675 gcc_unreachable ();
1676 return;
1677
1678 /* Rule 16 */
1679 case AND:
1680 /* If this AND operation happens on stack pointer in prologue,
1681 we assume the stack is realigned and we extract the
1682 alignment. */
1683 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1684 {
1685 /* We interpret reg_save differently with stack_realign set.
1686 Thus we must flush whatever we have queued first. */
1687 dwarf2out_flush_queued_reg_saves ();
1688
1689 gcc_assert (cur_trace->cfa_store.reg
1690 == dwf_regno (XEXP (src, 0)));
1691 fde->stack_realign = 1;
1692 fde->stack_realignment = INTVAL (XEXP (src, 1));
1693 cur_trace->cfa_store.offset = 0;
1694
1695 if (cur_cfa->reg != dw_stack_pointer_regnum
1696 && cur_cfa->reg != dw_frame_pointer_regnum)
1697 fde->drap_reg = cur_cfa->reg;
1698 }
1699 return;
1700
1701 default:
1702 gcc_unreachable ();
1703 }
1704 break;
1705
1706 case MEM:
1707
1708 /* Saving a register to the stack. Make sure dest is relative to the
1709 CFA register. */
1710 switch (GET_CODE (XEXP (dest, 0)))
1711 {
1712 /* Rule 10 */
1713 /* With a push. */
1714 case PRE_MODIFY:
1715 case POST_MODIFY:
1716 /* We can't handle variable size modifications. */
1717 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1718 == CONST_INT);
1719 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1720
1721 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1722 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1723
1724 cur_trace->cfa_store.offset += offset;
1725 if (cur_cfa->reg == dw_stack_pointer_regnum)
1726 cur_cfa->offset = cur_trace->cfa_store.offset;
1727
1728 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1729 offset -= cur_trace->cfa_store.offset;
1730 else
1731 offset = -cur_trace->cfa_store.offset;
1732 break;
1733
1734 /* Rule 11 */
1735 case PRE_INC:
1736 case PRE_DEC:
1737 case POST_DEC:
1738 offset = GET_MODE_SIZE (GET_MODE (dest));
1739 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1740 offset = -offset;
1741
1742 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1743 == STACK_POINTER_REGNUM)
1744 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1745
1746 cur_trace->cfa_store.offset += offset;
1747
1748 /* Rule 18: If stack is aligned, we will use FP as a
1749 reference to represent the address of the stored
1750 regiser. */
1751 if (fde
1752 && fde->stack_realign
1753 && REG_P (src)
1754 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
1755 {
1756 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1757 cur_trace->cfa_store.offset = 0;
1758 }
1759
1760 if (cur_cfa->reg == dw_stack_pointer_regnum)
1761 cur_cfa->offset = cur_trace->cfa_store.offset;
1762
1763 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1764 offset += -cur_trace->cfa_store.offset;
1765 else
1766 offset = -cur_trace->cfa_store.offset;
1767 break;
1768
1769 /* Rule 12 */
1770 /* With an offset. */
1771 case PLUS:
1772 case MINUS:
1773 case LO_SUM:
1774 {
1775 unsigned int regno;
1776
1777 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
1778 && REG_P (XEXP (XEXP (dest, 0), 0)));
1779 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1780 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1781 offset = -offset;
1782
1783 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1784
1785 if (cur_cfa->reg == regno)
1786 offset -= cur_cfa->offset;
1787 else if (cur_trace->cfa_store.reg == regno)
1788 offset -= cur_trace->cfa_store.offset;
1789 else
1790 {
1791 gcc_assert (cur_trace->cfa_temp.reg == regno);
1792 offset -= cur_trace->cfa_temp.offset;
1793 }
1794 }
1795 break;
1796
1797 /* Rule 13 */
1798 /* Without an offset. */
1799 case REG:
1800 {
1801 unsigned int regno = dwf_regno (XEXP (dest, 0));
1802
1803 if (cur_cfa->reg == regno)
1804 offset = -cur_cfa->offset;
1805 else if (cur_trace->cfa_store.reg == regno)
1806 offset = -cur_trace->cfa_store.offset;
1807 else
1808 {
1809 gcc_assert (cur_trace->cfa_temp.reg == regno);
1810 offset = -cur_trace->cfa_temp.offset;
1811 }
1812 }
1813 break;
1814
1815 /* Rule 14 */
1816 case POST_INC:
1817 gcc_assert (cur_trace->cfa_temp.reg
1818 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1819 offset = -cur_trace->cfa_temp.offset;
1820 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1821 break;
1822
1823 default:
1824 gcc_unreachable ();
1825 }
1826
1827 /* Rule 17 */
1828 /* If the source operand of this MEM operation is a memory,
1829 we only care how much stack grew. */
1830 if (MEM_P (src))
1831 break;
1832
1833 if (REG_P (src)
1834 && REGNO (src) != STACK_POINTER_REGNUM
1835 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1836 && dwf_regno (src) == cur_cfa->reg)
1837 {
1838 /* We're storing the current CFA reg into the stack. */
1839
1840 if (cur_cfa->offset == 0)
1841 {
1842 /* Rule 19 */
1843 /* If stack is aligned, putting CFA reg into stack means
1844 we can no longer use reg + offset to represent CFA.
1845 Here we use DW_CFA_def_cfa_expression instead. The
1846 result of this expression equals to the original CFA
1847 value. */
1848 if (fde
1849 && fde->stack_realign
1850 && cur_cfa->indirect == 0
1851 && cur_cfa->reg != dw_frame_pointer_regnum)
1852 {
1853 gcc_assert (fde->drap_reg == cur_cfa->reg);
1854
1855 cur_cfa->indirect = 1;
1856 cur_cfa->reg = dw_frame_pointer_regnum;
1857 cur_cfa->base_offset = offset;
1858 cur_cfa->offset = 0;
1859
1860 fde->drap_reg_saved = 1;
1861 break;
1862 }
1863
1864 /* If the source register is exactly the CFA, assume
1865 we're saving SP like any other register; this happens
1866 on the ARM. */
1867 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
1868 break;
1869 }
1870 else
1871 {
1872 /* Otherwise, we'll need to look in the stack to
1873 calculate the CFA. */
1874 rtx x = XEXP (dest, 0);
1875
1876 if (!REG_P (x))
1877 x = XEXP (x, 0);
1878 gcc_assert (REG_P (x));
1879
1880 cur_cfa->reg = dwf_regno (x);
1881 cur_cfa->base_offset = offset;
1882 cur_cfa->indirect = 1;
1883 break;
1884 }
1885 }
1886
1887 span = NULL;
1888 if (REG_P (src))
1889 span = targetm.dwarf_register_span (src);
1890 if (!span)
1891 queue_reg_save (src, NULL_RTX, offset);
1892 else
1893 {
1894 /* We have a PARALLEL describing where the contents of SRC live.
1895 Queue register saves for each piece of the PARALLEL. */
1896 int par_index;
1897 int limit;
1898 HOST_WIDE_INT span_offset = offset;
1899
1900 gcc_assert (GET_CODE (span) == PARALLEL);
1901
1902 limit = XVECLEN (span, 0);
1903 for (par_index = 0; par_index < limit; par_index++)
1904 {
1905 rtx elem = XVECEXP (span, 0, par_index);
1906 queue_reg_save (elem, NULL_RTX, span_offset);
1907 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1908 }
1909 }
1910 break;
1911
1912 default:
1913 gcc_unreachable ();
1914 }
1915 }
1916
1917 /* Record call frame debugging information for INSN, which either sets
1918 SP or FP (adjusting how we calculate the frame address) or saves a
1919 register to the stack. */
1920
1921 static void
1922 dwarf2out_frame_debug (rtx insn)
1923 {
1924 rtx note, n;
1925 bool handled_one = false;
1926
1927 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1928 switch (REG_NOTE_KIND (note))
1929 {
1930 case REG_FRAME_RELATED_EXPR:
1931 insn = XEXP (note, 0);
1932 goto do_frame_expr;
1933
1934 case REG_CFA_DEF_CFA:
1935 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
1936 handled_one = true;
1937 break;
1938
1939 case REG_CFA_ADJUST_CFA:
1940 n = XEXP (note, 0);
1941 if (n == NULL)
1942 {
1943 n = PATTERN (insn);
1944 if (GET_CODE (n) == PARALLEL)
1945 n = XVECEXP (n, 0, 0);
1946 }
1947 dwarf2out_frame_debug_adjust_cfa (n);
1948 handled_one = true;
1949 break;
1950
1951 case REG_CFA_OFFSET:
1952 n = XEXP (note, 0);
1953 if (n == NULL)
1954 n = single_set (insn);
1955 dwarf2out_frame_debug_cfa_offset (n);
1956 handled_one = true;
1957 break;
1958
1959 case REG_CFA_REGISTER:
1960 n = XEXP (note, 0);
1961 if (n == NULL)
1962 {
1963 n = PATTERN (insn);
1964 if (GET_CODE (n) == PARALLEL)
1965 n = XVECEXP (n, 0, 0);
1966 }
1967 dwarf2out_frame_debug_cfa_register (n);
1968 handled_one = true;
1969 break;
1970
1971 case REG_CFA_EXPRESSION:
1972 n = XEXP (note, 0);
1973 if (n == NULL)
1974 n = single_set (insn);
1975 dwarf2out_frame_debug_cfa_expression (n);
1976 handled_one = true;
1977 break;
1978
1979 case REG_CFA_RESTORE:
1980 n = XEXP (note, 0);
1981 if (n == NULL)
1982 {
1983 n = PATTERN (insn);
1984 if (GET_CODE (n) == PARALLEL)
1985 n = XVECEXP (n, 0, 0);
1986 n = XEXP (n, 0);
1987 }
1988 dwarf2out_frame_debug_cfa_restore (n);
1989 handled_one = true;
1990 break;
1991
1992 case REG_CFA_SET_VDRAP:
1993 n = XEXP (note, 0);
1994 if (REG_P (n))
1995 {
1996 dw_fde_ref fde = cfun->fde;
1997 if (fde)
1998 {
1999 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2000 if (REG_P (n))
2001 fde->vdrap_reg = dwf_regno (n);
2002 }
2003 }
2004 handled_one = true;
2005 break;
2006
2007 case REG_CFA_WINDOW_SAVE:
2008 dwarf2out_frame_debug_cfa_window_save ();
2009 handled_one = true;
2010 break;
2011
2012 case REG_CFA_FLUSH_QUEUE:
2013 /* The actual flush happens elsewhere. */
2014 handled_one = true;
2015 break;
2016
2017 default:
2018 break;
2019 }
2020
2021 if (!handled_one)
2022 {
2023 insn = PATTERN (insn);
2024 do_frame_expr:
2025 dwarf2out_frame_debug_expr (insn);
2026
2027 /* Check again. A parallel can save and update the same register.
2028 We could probably check just once, here, but this is safer than
2029 removing the check at the start of the function. */
2030 if (clobbers_queued_reg_save (insn))
2031 dwarf2out_flush_queued_reg_saves ();
2032 }
2033 }
2034
2035 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2036
2037 static void
2038 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2039 {
2040 size_t i, n_old, n_new, n_max;
2041 dw_cfi_ref cfi;
2042
2043 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2044 add_cfi (new_row->cfa_cfi);
2045 else
2046 {
2047 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2048 if (cfi)
2049 add_cfi (cfi);
2050 }
2051
2052 n_old = VEC_length (dw_cfi_ref, old_row->reg_save);
2053 n_new = VEC_length (dw_cfi_ref, new_row->reg_save);
2054 n_max = MAX (n_old, n_new);
2055
2056 for (i = 0; i < n_max; ++i)
2057 {
2058 dw_cfi_ref r_old = NULL, r_new = NULL;
2059
2060 if (i < n_old)
2061 r_old = VEC_index (dw_cfi_ref, old_row->reg_save, i);
2062 if (i < n_new)
2063 r_new = VEC_index (dw_cfi_ref, new_row->reg_save, i);
2064
2065 if (r_old == r_new)
2066 ;
2067 else if (r_new == NULL)
2068 add_cfi_restore (i);
2069 else if (!cfi_equal_p (r_old, r_new))
2070 add_cfi (r_new);
2071 }
2072 }
2073
2074 /* Examine CFI and return true if a cfi label and set_loc is needed
2075 beforehand. Even when generating CFI assembler instructions, we
2076 still have to add the cfi to the list so that lookup_cfa_1 works
2077 later on. When -g2 and above we even need to force emitting of
2078 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2079 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2080 and so don't use convert_cfa_to_fb_loc_list. */
2081
2082 static bool
2083 cfi_label_required_p (dw_cfi_ref cfi)
2084 {
2085 if (!dwarf2out_do_cfi_asm ())
2086 return true;
2087
2088 if (dwarf_version == 2
2089 && debug_info_level > DINFO_LEVEL_TERSE
2090 && (write_symbols == DWARF2_DEBUG
2091 || write_symbols == VMS_AND_DWARF2_DEBUG))
2092 {
2093 switch (cfi->dw_cfi_opc)
2094 {
2095 case DW_CFA_def_cfa_offset:
2096 case DW_CFA_def_cfa_offset_sf:
2097 case DW_CFA_def_cfa_register:
2098 case DW_CFA_def_cfa:
2099 case DW_CFA_def_cfa_sf:
2100 case DW_CFA_def_cfa_expression:
2101 case DW_CFA_restore_state:
2102 return true;
2103 default:
2104 return false;
2105 }
2106 }
2107 return false;
2108 }
2109
2110 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2111 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2112 necessary. */
2113 static void
2114 add_cfis_to_fde (void)
2115 {
2116 dw_fde_ref fde = cfun->fde;
2117 rtx insn, next;
2118 /* We always start with a function_begin label. */
2119 bool first = false;
2120
2121 for (insn = get_insns (); insn; insn = next)
2122 {
2123 next = NEXT_INSN (insn);
2124
2125 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2126 {
2127 fde->dw_fde_switch_cfi_index
2128 = VEC_length (dw_cfi_ref, fde->dw_fde_cfi);
2129 /* Don't attempt to advance_loc4 between labels
2130 in different sections. */
2131 first = true;
2132 }
2133
2134 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2135 {
2136 bool required = cfi_label_required_p (NOTE_CFI (insn));
2137 while (next)
2138 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2139 {
2140 required |= cfi_label_required_p (NOTE_CFI (next));
2141 next = NEXT_INSN (next);
2142 }
2143 else if (active_insn_p (next)
2144 || (NOTE_P (next) && (NOTE_KIND (next)
2145 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2146 break;
2147 else
2148 next = NEXT_INSN (next);
2149 if (required)
2150 {
2151 int num = dwarf2out_cfi_label_num;
2152 const char *label = dwarf2out_cfi_label ();
2153 dw_cfi_ref xcfi;
2154 rtx tmp;
2155
2156 /* Set the location counter to the new label. */
2157 xcfi = new_cfi ();
2158 xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc
2159 : DW_CFA_advance_loc4);
2160 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2161 VEC_safe_push (dw_cfi_ref, gc, fde->dw_fde_cfi, xcfi);
2162
2163 tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2164 NOTE_LABEL_NUMBER (tmp) = num;
2165 }
2166
2167 do
2168 {
2169 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2170 VEC_safe_push (dw_cfi_ref, gc, fde->dw_fde_cfi,
2171 NOTE_CFI (insn));
2172 insn = NEXT_INSN (insn);
2173 }
2174 while (insn != next);
2175 first = false;
2176 }
2177 }
2178 }
2179
2180 /* If LABEL is the start of a trace, then initialize the state of that
2181 trace from CUR_TRACE and CUR_ROW. */
2182
2183 static void
2184 maybe_record_trace_start (rtx start, rtx origin)
2185 {
2186 dw_trace_info *ti;
2187 HOST_WIDE_INT args_size;
2188
2189 ti = get_trace_info (start);
2190 gcc_assert (ti != NULL);
2191
2192 if (dump_file)
2193 {
2194 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
2195 cur_trace->id, ti->id,
2196 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2197 (origin ? INSN_UID (origin) : 0));
2198 }
2199
2200 args_size = cur_trace->end_true_args_size;
2201 if (ti->beg_row == NULL)
2202 {
2203 /* This is the first time we've encountered this trace. Propagate
2204 state across the edge and push the trace onto the work list. */
2205 ti->beg_row = copy_cfi_row (cur_row);
2206 ti->beg_true_args_size = args_size;
2207
2208 ti->cfa_store = cur_trace->cfa_store;
2209 ti->cfa_temp = cur_trace->cfa_temp;
2210 ti->regs_saved_in_regs = VEC_copy (reg_saved_in_data, heap,
2211 cur_trace->regs_saved_in_regs);
2212
2213 VEC_safe_push (dw_trace_info_ref, heap, trace_work_list, ti);
2214
2215 if (dump_file)
2216 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2217 }
2218 else
2219 {
2220
2221 /* We ought to have the same state incoming to a given trace no
2222 matter how we arrive at the trace. Anything else means we've
2223 got some kind of optimization error. */
2224 gcc_checking_assert (cfi_row_equal_p (cur_row, ti->beg_row));
2225
2226 /* The args_size is allowed to conflict if it isn't actually used. */
2227 if (ti->beg_true_args_size != args_size)
2228 ti->args_size_undefined = true;
2229 }
2230 }
2231
2232 /* Similarly, but handle the args_size and CFA reset across EH
2233 and non-local goto edges. */
2234
2235 static void
2236 maybe_record_trace_start_abnormal (rtx start, rtx origin)
2237 {
2238 HOST_WIDE_INT save_args_size, delta;
2239 dw_cfa_location save_cfa;
2240
2241 save_args_size = cur_trace->end_true_args_size;
2242 if (save_args_size == 0)
2243 {
2244 maybe_record_trace_start (start, origin);
2245 return;
2246 }
2247
2248 delta = -save_args_size;
2249 cur_trace->end_true_args_size = 0;
2250
2251 save_cfa = cur_row->cfa;
2252 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2253 {
2254 /* Convert a change in args_size (always a positive in the
2255 direction of stack growth) to a change in stack pointer. */
2256 #ifndef STACK_GROWS_DOWNWARD
2257 delta = -delta;
2258 #endif
2259 cur_row->cfa.offset += delta;
2260 }
2261
2262 maybe_record_trace_start (start, origin);
2263
2264 cur_trace->end_true_args_size = save_args_size;
2265 cur_row->cfa = save_cfa;
2266 }
2267
2268 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2269 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2270
2271 static void
2272 create_trace_edges (rtx insn)
2273 {
2274 rtx tmp, lab;
2275 int i, n;
2276
2277 if (JUMP_P (insn))
2278 {
2279 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2280 return;
2281
2282 if (tablejump_p (insn, NULL, &tmp))
2283 {
2284 rtvec vec;
2285
2286 tmp = PATTERN (tmp);
2287 vec = XVEC (tmp, GET_CODE (tmp) == ADDR_DIFF_VEC);
2288
2289 n = GET_NUM_ELEM (vec);
2290 for (i = 0; i < n; ++i)
2291 {
2292 lab = XEXP (RTVEC_ELT (vec, i), 0);
2293 maybe_record_trace_start (lab, insn);
2294 }
2295 }
2296 else if (computed_jump_p (insn))
2297 {
2298 for (lab = forced_labels; lab; lab = XEXP (lab, 1))
2299 maybe_record_trace_start (XEXP (lab, 0), insn);
2300 }
2301 else if (returnjump_p (insn))
2302 ;
2303 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2304 {
2305 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2306 for (i = 0; i < n; ++i)
2307 {
2308 lab = XEXP (ASM_OPERANDS_LABEL (tmp, i), 0);
2309 maybe_record_trace_start (lab, insn);
2310 }
2311 }
2312 else
2313 {
2314 lab = JUMP_LABEL (insn);
2315 gcc_assert (lab != NULL);
2316 maybe_record_trace_start (lab, insn);
2317 }
2318 }
2319 else if (CALL_P (insn))
2320 {
2321 /* Sibling calls don't have edges inside this function. */
2322 if (SIBLING_CALL_P (insn))
2323 return;
2324
2325 /* Process non-local goto edges. */
2326 if (can_nonlocal_goto (insn))
2327 for (lab = nonlocal_goto_handler_labels; lab; lab = XEXP (lab, 1))
2328 maybe_record_trace_start_abnormal (XEXP (lab, 0), insn);
2329 }
2330 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2331 {
2332 rtx seq = PATTERN (insn);
2333 int i, n = XVECLEN (seq, 0);
2334 for (i = 0; i < n; ++i)
2335 create_trace_edges (XVECEXP (seq, 0, i));
2336 return;
2337 }
2338
2339 /* Process EH edges. */
2340 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2341 {
2342 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2343 if (lp)
2344 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2345 }
2346 }
2347
2348 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2349
2350 static void
2351 scan_insn_after (rtx insn)
2352 {
2353 if (RTX_FRAME_RELATED_P (insn))
2354 dwarf2out_frame_debug (insn);
2355 notice_args_size (insn);
2356 }
2357
2358 /* Scan the trace beginning at INSN and create the CFI notes for the
2359 instructions therein. */
2360
2361 static void
2362 scan_trace (dw_trace_info *trace)
2363 {
2364 rtx prev, insn = trace->head;
2365 dw_cfa_location this_cfa;
2366
2367 if (dump_file)
2368 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2369 trace->id, rtx_name[(int) GET_CODE (insn)],
2370 INSN_UID (insn));
2371
2372 trace->end_row = copy_cfi_row (trace->beg_row);
2373 trace->end_true_args_size = trace->beg_true_args_size;
2374
2375 cur_trace = trace;
2376 cur_row = trace->end_row;
2377
2378 this_cfa = cur_row->cfa;
2379 cur_cfa = &this_cfa;
2380
2381 for (prev = insn, insn = NEXT_INSN (insn);
2382 insn;
2383 prev = insn, insn = NEXT_INSN (insn))
2384 {
2385 rtx control;
2386
2387 /* Do everything that happens "before" the insn. */
2388 add_cfi_insn = prev;
2389
2390 /* Notice the end of a trace. */
2391 if (BARRIER_P (insn))
2392 {
2393 /* Don't bother saving the unneeded queued registers at all. */
2394 VEC_truncate (queued_reg_save, queued_reg_saves, 0);
2395 break;
2396 }
2397 if (save_point_p (insn))
2398 {
2399 /* Propagate across fallthru edges. */
2400 dwarf2out_flush_queued_reg_saves ();
2401 maybe_record_trace_start (insn, NULL);
2402 break;
2403 }
2404
2405 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2406 continue;
2407
2408 /* Handle all changes to the row state. Sequences require special
2409 handling for the positioning of the notes. */
2410 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2411 {
2412 rtx elt, pat = PATTERN (insn);
2413 int i, n = XVECLEN (pat, 0);
2414
2415 control = XVECEXP (pat, 0, 0);
2416 if (can_throw_internal (control))
2417 notice_eh_throw (control);
2418 dwarf2out_flush_queued_reg_saves ();
2419
2420 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2421 {
2422 /* ??? Hopefully multiple delay slots are not annulled. */
2423 gcc_assert (n == 2);
2424 gcc_assert (!RTX_FRAME_RELATED_P (control));
2425 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2426
2427 elt = XVECEXP (pat, 0, 1);
2428
2429 if (INSN_FROM_TARGET_P (elt))
2430 {
2431 HOST_WIDE_INT restore_args_size;
2432 cfi_vec save_row_reg_save;
2433
2434 /* If ELT is an instruction from target of an annulled
2435 branch, the effects are for the target only and so
2436 the args_size and CFA along the current path
2437 shouldn't change. */
2438 add_cfi_insn = NULL;
2439 restore_args_size = cur_trace->end_true_args_size;
2440 cur_cfa = &cur_row->cfa;
2441 save_row_reg_save
2442 = VEC_copy (dw_cfi_ref, gc, cur_row->reg_save);
2443
2444 scan_insn_after (elt);
2445
2446 /* ??? Should we instead save the entire row state? */
2447 gcc_assert (!VEC_length (queued_reg_save, queued_reg_saves));
2448
2449 create_trace_edges (control);
2450
2451 cur_trace->end_true_args_size = restore_args_size;
2452 cur_row->cfa = this_cfa;
2453 cur_row->reg_save = save_row_reg_save;
2454 cur_cfa = &this_cfa;
2455 }
2456 else
2457 {
2458 /* If ELT is a annulled branch-taken instruction (i.e.
2459 executed only when branch is not taken), the args_size
2460 and CFA should not change through the jump. */
2461 create_trace_edges (control);
2462
2463 /* Update and continue with the trace. */
2464 add_cfi_insn = insn;
2465 scan_insn_after (elt);
2466 def_cfa_1 (&this_cfa);
2467 }
2468 continue;
2469 }
2470
2471 /* The insns in the delay slot should all be considered to happen
2472 "before" a call insn. Consider a call with a stack pointer
2473 adjustment in the delay slot. The backtrace from the callee
2474 should include the sp adjustment. Unfortunately, that leaves
2475 us with an unavoidable unwinding error exactly at the call insn
2476 itself. For jump insns we'd prefer to avoid this error by
2477 placing the notes after the sequence. */
2478 if (JUMP_P (control))
2479 add_cfi_insn = insn;
2480
2481 for (i = 1; i < n; ++i)
2482 {
2483 elt = XVECEXP (pat, 0, i);
2484 scan_insn_after (elt);
2485 }
2486
2487 /* Make sure any register saves are visible at the jump target. */
2488 dwarf2out_flush_queued_reg_saves ();
2489 any_cfis_emitted = false;
2490
2491 /* However, if there is some adjustment on the call itself, e.g.
2492 a call_pop, that action should be considered to happen after
2493 the call returns. */
2494 add_cfi_insn = insn;
2495 scan_insn_after (control);
2496 }
2497 else
2498 {
2499 /* Flush data before calls and jumps, and of course if necessary. */
2500 if (can_throw_internal (insn))
2501 {
2502 notice_eh_throw (insn);
2503 dwarf2out_flush_queued_reg_saves ();
2504 }
2505 else if (!NONJUMP_INSN_P (insn)
2506 || clobbers_queued_reg_save (insn)
2507 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2508 dwarf2out_flush_queued_reg_saves ();
2509 any_cfis_emitted = false;
2510
2511 add_cfi_insn = insn;
2512 scan_insn_after (insn);
2513 control = insn;
2514 }
2515
2516 /* Between frame-related-p and args_size we might have otherwise
2517 emitted two cfa adjustments. Do it now. */
2518 def_cfa_1 (&this_cfa);
2519
2520 /* Minimize the number of advances by emitting the entire queue
2521 once anything is emitted. */
2522 if (any_cfis_emitted
2523 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2524 dwarf2out_flush_queued_reg_saves ();
2525
2526 /* Note that a test for control_flow_insn_p does exactly the
2527 same tests as are done to actually create the edges. So
2528 always call the routine and let it not create edges for
2529 non-control-flow insns. */
2530 create_trace_edges (control);
2531 }
2532
2533 add_cfi_insn = NULL;
2534 cur_row = NULL;
2535 cur_trace = NULL;
2536 cur_cfa = NULL;
2537 }
2538
2539 /* Scan the function and create the initial set of CFI notes. */
2540
2541 static void
2542 create_cfi_notes (void)
2543 {
2544 dw_trace_info *ti;
2545
2546 gcc_checking_assert (queued_reg_saves == NULL);
2547 gcc_checking_assert (trace_work_list == NULL);
2548
2549 /* Always begin at the entry trace. */
2550 ti = &VEC_index (dw_trace_info, trace_info, 0);
2551 scan_trace (ti);
2552
2553 while (!VEC_empty (dw_trace_info_ref, trace_work_list))
2554 {
2555 ti = VEC_pop (dw_trace_info_ref, trace_work_list);
2556 scan_trace (ti);
2557 }
2558
2559 VEC_free (queued_reg_save, heap, queued_reg_saves);
2560 VEC_free (dw_trace_info_ref, heap, trace_work_list);
2561 }
2562
2563 /* Return the insn before the first NOTE_INSN_CFI after START. */
2564
2565 static rtx
2566 before_next_cfi_note (rtx start)
2567 {
2568 rtx prev = start;
2569 while (start)
2570 {
2571 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2572 return prev;
2573 prev = start;
2574 start = NEXT_INSN (start);
2575 }
2576 gcc_unreachable ();
2577 }
2578
2579 /* Insert CFI notes between traces to properly change state between them. */
2580
2581 static void
2582 connect_traces (void)
2583 {
2584 unsigned i, n = VEC_length (dw_trace_info, trace_info);
2585 dw_trace_info *prev_ti, *ti;
2586
2587 /* ??? Ideally, we should have both queued and processed every trace.
2588 However the current representation of constant pools on various targets
2589 is indistinguishable from unreachable code. Assume for the moment that
2590 we can simply skip over such traces. */
2591 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2592 these are not "real" instructions, and should not be considered.
2593 This could be generically useful for tablejump data as well. */
2594 /* Remove all unprocessed traces from the list. */
2595 for (i = n - 1; i > 0; --i)
2596 {
2597 ti = &VEC_index (dw_trace_info, trace_info, i);
2598 if (ti->beg_row == NULL)
2599 {
2600 VEC_ordered_remove (dw_trace_info, trace_info, i);
2601 n -= 1;
2602 }
2603 else
2604 gcc_assert (ti->end_row != NULL);
2605 }
2606
2607 /* Work from the end back to the beginning. This lets us easily insert
2608 remember/restore_state notes in the correct order wrt other notes. */
2609 prev_ti = &VEC_index (dw_trace_info, trace_info, n - 1);
2610 for (i = n - 1; i > 0; --i)
2611 {
2612 dw_cfi_row *old_row;
2613
2614 ti = prev_ti;
2615 prev_ti = &VEC_index (dw_trace_info, trace_info, i - 1);
2616
2617 add_cfi_insn = ti->head;
2618
2619 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2620 for the portion of the function in the alternate text
2621 section. The row state at the very beginning of that
2622 new FDE will be exactly the row state from the CIE. */
2623 if (ti->switch_sections)
2624 old_row = cie_cfi_row;
2625 else
2626 {
2627 old_row = prev_ti->end_row;
2628 /* If there's no change from the previous end state, fine. */
2629 if (cfi_row_equal_p (old_row, ti->beg_row))
2630 ;
2631 /* Otherwise check for the common case of sharing state with
2632 the beginning of an epilogue, but not the end. Insert
2633 remember/restore opcodes in that case. */
2634 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2635 {
2636 dw_cfi_ref cfi;
2637
2638 /* Note that if we blindly insert the remember at the
2639 start of the trace, we can wind up increasing the
2640 size of the unwind info due to extra advance opcodes.
2641 Instead, put the remember immediately before the next
2642 state change. We know there must be one, because the
2643 state at the beginning and head of the trace differ. */
2644 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2645 cfi = new_cfi ();
2646 cfi->dw_cfi_opc = DW_CFA_remember_state;
2647 add_cfi (cfi);
2648
2649 add_cfi_insn = ti->head;
2650 cfi = new_cfi ();
2651 cfi->dw_cfi_opc = DW_CFA_restore_state;
2652 add_cfi (cfi);
2653
2654 old_row = prev_ti->beg_row;
2655 }
2656 /* Otherwise, we'll simply change state from the previous end. */
2657 }
2658
2659 change_cfi_row (old_row, ti->beg_row);
2660
2661 if (dump_file && add_cfi_insn != ti->head)
2662 {
2663 rtx note;
2664
2665 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2666 prev_ti->id, ti->id);
2667
2668 note = ti->head;
2669 do
2670 {
2671 note = NEXT_INSN (note);
2672 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2673 output_cfi_directive (dump_file, NOTE_CFI (note));
2674 }
2675 while (note != add_cfi_insn);
2676 }
2677 }
2678
2679 /* Connect args_size between traces that have can_throw_internal insns. */
2680 if (cfun->eh->lp_array != NULL)
2681 {
2682 HOST_WIDE_INT prev_args_size = 0;
2683
2684 for (i = 0; i < n; ++i)
2685 {
2686 ti = &VEC_index (dw_trace_info, trace_info, i);
2687
2688 if (ti->switch_sections)
2689 prev_args_size = 0;
2690 if (ti->eh_head == NULL)
2691 continue;
2692 gcc_assert (!ti->args_size_undefined);
2693
2694 if (ti->beg_delay_args_size != prev_args_size)
2695 {
2696 /* ??? Search back to previous CFI note. */
2697 add_cfi_insn = PREV_INSN (ti->eh_head);
2698 add_cfi_args_size (ti->beg_delay_args_size);
2699 }
2700
2701 prev_args_size = ti->end_delay_args_size;
2702 }
2703 }
2704 }
2705
2706 /* Set up the pseudo-cfg of instruction traces, as described at the
2707 block comment at the top of the file. */
2708
2709 static void
2710 create_pseudo_cfg (void)
2711 {
2712 bool saw_barrier, switch_sections;
2713 dw_trace_info ti;
2714 rtx insn;
2715 unsigned i;
2716
2717 /* The first trace begins at the start of the function,
2718 and begins with the CIE row state. */
2719 trace_info = VEC_alloc (dw_trace_info, heap, 16);
2720 memset (&ti, 0, sizeof (ti));
2721 ti.head = get_insns ();
2722 ti.beg_row = cie_cfi_row;
2723 ti.cfa_store = cie_cfi_row->cfa;
2724 ti.cfa_temp.reg = INVALID_REGNUM;
2725 VEC_quick_push (dw_trace_info, trace_info, ti);
2726
2727 if (cie_return_save)
2728 VEC_safe_push (reg_saved_in_data, heap,
2729 ti.regs_saved_in_regs, *cie_return_save);
2730
2731 /* Walk all the insns, collecting start of trace locations. */
2732 saw_barrier = false;
2733 switch_sections = false;
2734 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2735 {
2736 if (BARRIER_P (insn))
2737 saw_barrier = true;
2738 else if (NOTE_P (insn)
2739 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2740 {
2741 /* We should have just seen a barrier. */
2742 gcc_assert (saw_barrier);
2743 switch_sections = true;
2744 }
2745 /* Watch out for save_point notes between basic blocks.
2746 In particular, a note after a barrier. Do not record these,
2747 delaying trace creation until the label. */
2748 else if (save_point_p (insn)
2749 && (LABEL_P (insn) || !saw_barrier))
2750 {
2751 memset (&ti, 0, sizeof (ti));
2752 ti.head = insn;
2753 ti.switch_sections = switch_sections;
2754 ti.id = VEC_length (dw_trace_info, trace_info) - 1;
2755 VEC_safe_push (dw_trace_info, heap, trace_info, ti);
2756
2757 saw_barrier = false;
2758 switch_sections = false;
2759 }
2760 }
2761
2762 /* Create the trace index after we've finished building trace_info,
2763 avoiding stale pointer problems due to reallocation. */
2764 trace_index = htab_create (VEC_length (dw_trace_info, trace_info),
2765 dw_trace_info_hash, dw_trace_info_eq, NULL);
2766 dw_trace_info *tp;
2767 FOR_EACH_VEC_ELT (dw_trace_info, trace_info, i, tp)
2768 {
2769 void **slot;
2770
2771 if (dump_file)
2772 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", i,
2773 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
2774 tp->switch_sections ? " (section switch)" : "");
2775
2776 slot = htab_find_slot_with_hash (trace_index, tp,
2777 INSN_UID (tp->head), INSERT);
2778 gcc_assert (*slot == NULL);
2779 *slot = (void *) tp;
2780 }
2781 }
2782
2783 /* Record the initial position of the return address. RTL is
2784 INCOMING_RETURN_ADDR_RTX. */
2785
2786 static void
2787 initial_return_save (rtx rtl)
2788 {
2789 unsigned int reg = INVALID_REGNUM;
2790 HOST_WIDE_INT offset = 0;
2791
2792 switch (GET_CODE (rtl))
2793 {
2794 case REG:
2795 /* RA is in a register. */
2796 reg = dwf_regno (rtl);
2797 break;
2798
2799 case MEM:
2800 /* RA is on the stack. */
2801 rtl = XEXP (rtl, 0);
2802 switch (GET_CODE (rtl))
2803 {
2804 case REG:
2805 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2806 offset = 0;
2807 break;
2808
2809 case PLUS:
2810 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2811 offset = INTVAL (XEXP (rtl, 1));
2812 break;
2813
2814 case MINUS:
2815 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2816 offset = -INTVAL (XEXP (rtl, 1));
2817 break;
2818
2819 default:
2820 gcc_unreachable ();
2821 }
2822
2823 break;
2824
2825 case PLUS:
2826 /* The return address is at some offset from any value we can
2827 actually load. For instance, on the SPARC it is in %i7+8. Just
2828 ignore the offset for now; it doesn't matter for unwinding frames. */
2829 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2830 initial_return_save (XEXP (rtl, 0));
2831 return;
2832
2833 default:
2834 gcc_unreachable ();
2835 }
2836
2837 if (reg != DWARF_FRAME_RETURN_COLUMN)
2838 {
2839 if (reg != INVALID_REGNUM)
2840 record_reg_saved_in_reg (rtl, pc_rtx);
2841 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
2842 }
2843 }
2844
2845 static void
2846 create_cie_data (void)
2847 {
2848 dw_cfa_location loc;
2849 dw_trace_info cie_trace;
2850
2851 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
2852 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2853
2854 memset (&cie_trace, 0, sizeof(cie_trace));
2855 cur_trace = &cie_trace;
2856
2857 add_cfi_vec = &cie_cfi_vec;
2858 cie_cfi_row = cur_row = new_cfi_row ();
2859
2860 /* On entry, the Canonical Frame Address is at SP. */
2861 memset(&loc, 0, sizeof (loc));
2862 loc.reg = dw_stack_pointer_regnum;
2863 loc.offset = INCOMING_FRAME_SP_OFFSET;
2864 def_cfa_1 (&loc);
2865
2866 if (targetm.debug_unwind_info () == UI_DWARF2
2867 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
2868 {
2869 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2870
2871 /* For a few targets, we have the return address incoming into a
2872 register, but choose a different return column. This will result
2873 in a DW_CFA_register for the return, and an entry in
2874 regs_saved_in_regs to match. If the target later stores that
2875 return address register to the stack, we want to be able to emit
2876 the DW_CFA_offset against the return column, not the intermediate
2877 save register. Save the contents of regs_saved_in_regs so that
2878 we can re-initialize it at the start of each function. */
2879 switch (VEC_length (reg_saved_in_data, cie_trace.regs_saved_in_regs))
2880 {
2881 case 0:
2882 break;
2883 case 1:
2884 cie_return_save = ggc_alloc_reg_saved_in_data ();
2885 *cie_return_save = VEC_index (reg_saved_in_data,
2886 cie_trace.regs_saved_in_regs, 0);
2887 VEC_free (reg_saved_in_data, heap, cie_trace.regs_saved_in_regs);
2888 break;
2889 default:
2890 gcc_unreachable ();
2891 }
2892 }
2893
2894 add_cfi_vec = NULL;
2895 cur_row = NULL;
2896 cur_trace = NULL;
2897 }
2898
2899 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2900 state at each location within the function. These notes will be
2901 emitted during pass_final. */
2902
2903 static unsigned int
2904 execute_dwarf2_frame (void)
2905 {
2906 /* The first time we're called, compute the incoming frame state. */
2907 if (cie_cfi_vec == NULL)
2908 create_cie_data ();
2909
2910 dwarf2out_alloc_current_fde ();
2911
2912 create_pseudo_cfg ();
2913
2914 /* Do the work. */
2915 create_cfi_notes ();
2916 connect_traces ();
2917 add_cfis_to_fde ();
2918
2919 /* Free all the data we allocated. */
2920 {
2921 size_t i;
2922 dw_trace_info *ti;
2923
2924 FOR_EACH_VEC_ELT (dw_trace_info, trace_info, i, ti)
2925 VEC_free (reg_saved_in_data, heap, ti->regs_saved_in_regs);
2926 }
2927 VEC_free (dw_trace_info, heap, trace_info);
2928
2929 htab_delete (trace_index);
2930 trace_index = NULL;
2931
2932 return 0;
2933 }
2934 \f
2935 /* Convert a DWARF call frame info. operation to its string name */
2936
2937 static const char *
2938 dwarf_cfi_name (unsigned int cfi_opc)
2939 {
2940 const char *name = get_DW_CFA_name (cfi_opc);
2941
2942 if (name != NULL)
2943 return name;
2944
2945 return "DW_CFA_<unknown>";
2946 }
2947
2948 /* This routine will generate the correct assembly data for a location
2949 description based on a cfi entry with a complex address. */
2950
2951 static void
2952 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
2953 {
2954 dw_loc_descr_ref loc;
2955 unsigned long size;
2956
2957 if (cfi->dw_cfi_opc == DW_CFA_expression)
2958 {
2959 unsigned r =
2960 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2961 dw2_asm_output_data (1, r, NULL);
2962 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
2963 }
2964 else
2965 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2966
2967 /* Output the size of the block. */
2968 size = size_of_locs (loc);
2969 dw2_asm_output_data_uleb128 (size, NULL);
2970
2971 /* Now output the operations themselves. */
2972 output_loc_sequence (loc, for_eh);
2973 }
2974
2975 /* Similar, but used for .cfi_escape. */
2976
2977 static void
2978 output_cfa_loc_raw (dw_cfi_ref cfi)
2979 {
2980 dw_loc_descr_ref loc;
2981 unsigned long size;
2982
2983 if (cfi->dw_cfi_opc == DW_CFA_expression)
2984 {
2985 unsigned r =
2986 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
2987 fprintf (asm_out_file, "%#x,", r);
2988 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
2989 }
2990 else
2991 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
2992
2993 /* Output the size of the block. */
2994 size = size_of_locs (loc);
2995 dw2_asm_output_data_uleb128_raw (size);
2996 fputc (',', asm_out_file);
2997
2998 /* Now output the operations themselves. */
2999 output_loc_sequence_raw (loc);
3000 }
3001
3002 /* Output a Call Frame Information opcode and its operand(s). */
3003
3004 void
3005 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3006 {
3007 unsigned long r;
3008 HOST_WIDE_INT off;
3009
3010 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3011 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3012 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3013 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3014 ((unsigned HOST_WIDE_INT)
3015 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3016 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3017 {
3018 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3019 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3020 "DW_CFA_offset, column %#lx", r);
3021 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3022 dw2_asm_output_data_uleb128 (off, NULL);
3023 }
3024 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3025 {
3026 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3027 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3028 "DW_CFA_restore, column %#lx", r);
3029 }
3030 else
3031 {
3032 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3033 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3034
3035 switch (cfi->dw_cfi_opc)
3036 {
3037 case DW_CFA_set_loc:
3038 if (for_eh)
3039 dw2_asm_output_encoded_addr_rtx (
3040 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3041 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3042 false, NULL);
3043 else
3044 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3045 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3046 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3047 break;
3048
3049 case DW_CFA_advance_loc1:
3050 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3051 fde->dw_fde_current_label, NULL);
3052 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3053 break;
3054
3055 case DW_CFA_advance_loc2:
3056 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3057 fde->dw_fde_current_label, NULL);
3058 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3059 break;
3060
3061 case DW_CFA_advance_loc4:
3062 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3063 fde->dw_fde_current_label, NULL);
3064 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3065 break;
3066
3067 case DW_CFA_MIPS_advance_loc8:
3068 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3069 fde->dw_fde_current_label, NULL);
3070 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3071 break;
3072
3073 case DW_CFA_offset_extended:
3074 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3075 dw2_asm_output_data_uleb128 (r, NULL);
3076 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3077 dw2_asm_output_data_uleb128 (off, NULL);
3078 break;
3079
3080 case DW_CFA_def_cfa:
3081 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3082 dw2_asm_output_data_uleb128 (r, NULL);
3083 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3084 break;
3085
3086 case DW_CFA_offset_extended_sf:
3087 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3088 dw2_asm_output_data_uleb128 (r, NULL);
3089 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3090 dw2_asm_output_data_sleb128 (off, NULL);
3091 break;
3092
3093 case DW_CFA_def_cfa_sf:
3094 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3095 dw2_asm_output_data_uleb128 (r, NULL);
3096 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3097 dw2_asm_output_data_sleb128 (off, NULL);
3098 break;
3099
3100 case DW_CFA_restore_extended:
3101 case DW_CFA_undefined:
3102 case DW_CFA_same_value:
3103 case DW_CFA_def_cfa_register:
3104 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3105 dw2_asm_output_data_uleb128 (r, NULL);
3106 break;
3107
3108 case DW_CFA_register:
3109 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3110 dw2_asm_output_data_uleb128 (r, NULL);
3111 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3112 dw2_asm_output_data_uleb128 (r, NULL);
3113 break;
3114
3115 case DW_CFA_def_cfa_offset:
3116 case DW_CFA_GNU_args_size:
3117 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3118 break;
3119
3120 case DW_CFA_def_cfa_offset_sf:
3121 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3122 dw2_asm_output_data_sleb128 (off, NULL);
3123 break;
3124
3125 case DW_CFA_GNU_window_save:
3126 break;
3127
3128 case DW_CFA_def_cfa_expression:
3129 case DW_CFA_expression:
3130 output_cfa_loc (cfi, for_eh);
3131 break;
3132
3133 case DW_CFA_GNU_negative_offset_extended:
3134 /* Obsoleted by DW_CFA_offset_extended_sf. */
3135 gcc_unreachable ();
3136
3137 default:
3138 break;
3139 }
3140 }
3141 }
3142
3143 /* Similar, but do it via assembler directives instead. */
3144
3145 void
3146 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3147 {
3148 unsigned long r, r2;
3149
3150 switch (cfi->dw_cfi_opc)
3151 {
3152 case DW_CFA_advance_loc:
3153 case DW_CFA_advance_loc1:
3154 case DW_CFA_advance_loc2:
3155 case DW_CFA_advance_loc4:
3156 case DW_CFA_MIPS_advance_loc8:
3157 case DW_CFA_set_loc:
3158 /* Should only be created in a code path not followed when emitting
3159 via directives. The assembler is going to take care of this for
3160 us. But this routines is also used for debugging dumps, so
3161 print something. */
3162 gcc_assert (f != asm_out_file);
3163 fprintf (f, "\t.cfi_advance_loc\n");
3164 break;
3165
3166 case DW_CFA_offset:
3167 case DW_CFA_offset_extended:
3168 case DW_CFA_offset_extended_sf:
3169 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3170 fprintf (f, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3171 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3172 break;
3173
3174 case DW_CFA_restore:
3175 case DW_CFA_restore_extended:
3176 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3177 fprintf (f, "\t.cfi_restore %lu\n", r);
3178 break;
3179
3180 case DW_CFA_undefined:
3181 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3182 fprintf (f, "\t.cfi_undefined %lu\n", r);
3183 break;
3184
3185 case DW_CFA_same_value:
3186 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3187 fprintf (f, "\t.cfi_same_value %lu\n", r);
3188 break;
3189
3190 case DW_CFA_def_cfa:
3191 case DW_CFA_def_cfa_sf:
3192 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3193 fprintf (f, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3194 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3195 break;
3196
3197 case DW_CFA_def_cfa_register:
3198 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3199 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3200 break;
3201
3202 case DW_CFA_register:
3203 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3204 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3205 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3206 break;
3207
3208 case DW_CFA_def_cfa_offset:
3209 case DW_CFA_def_cfa_offset_sf:
3210 fprintf (f, "\t.cfi_def_cfa_offset "
3211 HOST_WIDE_INT_PRINT_DEC"\n",
3212 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3213 break;
3214
3215 case DW_CFA_remember_state:
3216 fprintf (f, "\t.cfi_remember_state\n");
3217 break;
3218 case DW_CFA_restore_state:
3219 fprintf (f, "\t.cfi_restore_state\n");
3220 break;
3221
3222 case DW_CFA_GNU_args_size:
3223 if (f == asm_out_file)
3224 {
3225 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3226 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3227 if (flag_debug_asm)
3228 fprintf (f, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3229 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3230 fputc ('\n', f);
3231 }
3232 else
3233 {
3234 fprintf (f, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC "\n",
3235 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3236 }
3237 break;
3238
3239 case DW_CFA_GNU_window_save:
3240 fprintf (f, "\t.cfi_window_save\n");
3241 break;
3242
3243 case DW_CFA_def_cfa_expression:
3244 if (f != asm_out_file)
3245 {
3246 fprintf (f, "\t.cfi_def_cfa_expression ...\n");
3247 break;
3248 }
3249 /* FALLTHRU */
3250 case DW_CFA_expression:
3251 if (f != asm_out_file)
3252 {
3253 fprintf (f, "\t.cfi_cfa_expression ...\n");
3254 break;
3255 }
3256 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3257 output_cfa_loc_raw (cfi);
3258 fputc ('\n', f);
3259 break;
3260
3261 default:
3262 gcc_unreachable ();
3263 }
3264 }
3265
3266 void
3267 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3268 {
3269 if (dwarf2out_do_cfi_asm ())
3270 output_cfi_directive (asm_out_file, cfi);
3271 }
3272
3273 static void
3274 dump_cfi_row (FILE *f, dw_cfi_row *row)
3275 {
3276 dw_cfi_ref cfi;
3277 unsigned i;
3278
3279 cfi = row->cfa_cfi;
3280 if (!cfi)
3281 {
3282 dw_cfa_location dummy;
3283 memset(&dummy, 0, sizeof(dummy));
3284 dummy.reg = INVALID_REGNUM;
3285 cfi = def_cfa_0 (&dummy, &row->cfa);
3286 }
3287 output_cfi_directive (f, cfi);
3288
3289 FOR_EACH_VEC_ELT (dw_cfi_ref, row->reg_save, i, cfi)
3290 if (cfi)
3291 output_cfi_directive (f, cfi);
3292 }
3293
3294 void debug_cfi_row (dw_cfi_row *row);
3295
3296 void
3297 debug_cfi_row (dw_cfi_row *row)
3298 {
3299 dump_cfi_row (stderr, row);
3300 }
3301 \f
3302
3303 /* Save the result of dwarf2out_do_frame across PCH.
3304 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3305 static GTY(()) signed char saved_do_cfi_asm = 0;
3306
3307 /* Decide whether we want to emit frame unwind information for the current
3308 translation unit. */
3309
3310 bool
3311 dwarf2out_do_frame (void)
3312 {
3313 /* We want to emit correct CFA location expressions or lists, so we
3314 have to return true if we're going to output debug info, even if
3315 we're not going to output frame or unwind info. */
3316 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3317 return true;
3318
3319 if (saved_do_cfi_asm > 0)
3320 return true;
3321
3322 if (targetm.debug_unwind_info () == UI_DWARF2)
3323 return true;
3324
3325 if ((flag_unwind_tables || flag_exceptions)
3326 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3327 return true;
3328
3329 return false;
3330 }
3331
3332 /* Decide whether to emit frame unwind via assembler directives. */
3333
3334 bool
3335 dwarf2out_do_cfi_asm (void)
3336 {
3337 int enc;
3338
3339 if (saved_do_cfi_asm != 0)
3340 return saved_do_cfi_asm > 0;
3341
3342 /* Assume failure for a moment. */
3343 saved_do_cfi_asm = -1;
3344
3345 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3346 return false;
3347 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3348 return false;
3349
3350 /* Make sure the personality encoding is one the assembler can support.
3351 In particular, aligned addresses can't be handled. */
3352 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3353 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3354 return false;
3355 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3356 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3357 return false;
3358
3359 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3360 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3361 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3362 && !flag_unwind_tables && !flag_exceptions
3363 && targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
3364 return false;
3365
3366 /* Success! */
3367 saved_do_cfi_asm = 1;
3368 return true;
3369 }
3370
3371 static bool
3372 gate_dwarf2_frame (void)
3373 {
3374 #ifndef HAVE_prologue
3375 /* Targets which still implement the prologue in assembler text
3376 cannot use the generic dwarf2 unwinding. */
3377 return false;
3378 #endif
3379
3380 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3381 from the optimized shrink-wrapping annotations that we will compute.
3382 For now, only produce the CFI notes for dwarf2. */
3383 return dwarf2out_do_frame ();
3384 }
3385
3386 struct rtl_opt_pass pass_dwarf2_frame =
3387 {
3388 {
3389 RTL_PASS,
3390 "dwarf2", /* name */
3391 OPTGROUP_NONE, /* optinfo_flags */
3392 gate_dwarf2_frame, /* gate */
3393 execute_dwarf2_frame, /* execute */
3394 NULL, /* sub */
3395 NULL, /* next */
3396 0, /* static_pass_number */
3397 TV_FINAL, /* tv_id */
3398 0, /* properties_required */
3399 0, /* properties_provided */
3400 0, /* properties_destroyed */
3401 0, /* todo_flags_start */
3402 0 /* todo_flags_finish */
3403 }
3404 };
3405
3406 #include "gt-dwarf2cfi.h"