]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dwarf2cfi.c
re PR rtl-optimization/51271 (ICE in in maybe_record_trace_start, at dwarf2cfi.c...
[thirdparty/gcc.git] / gcc / dwarf2cfi.c
1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "version.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "function.h"
30 #include "basic-block.h"
31 #include "dwarf2.h"
32 #include "dwarf2out.h"
33 #include "dwarf2asm.h"
34 #include "ggc.h"
35 #include "tm_p.h"
36 #include "target.h"
37 #include "common/common-target.h"
38 #include "tree-pass.h"
39
40 #include "except.h" /* expand_builtin_dwarf_sp_column */
41 #include "expr.h" /* init_return_column_size */
42 #include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
43 #include "output.h" /* asm_out_file */
44 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
45
46
47 /* ??? Poison these here until it can be done generically. They've been
48 totally replaced in this file; make sure it stays that way. */
49 #undef DWARF2_UNWIND_INFO
50 #undef DWARF2_FRAME_INFO
51 #if (GCC_VERSION >= 3000)
52 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
53 #endif
54
55 #ifndef INCOMING_RETURN_ADDR_RTX
56 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
57 #endif
58
59 /* Maximum size (in bytes) of an artificially generated label. */
60 #define MAX_ARTIFICIAL_LABEL_BYTES 30
61 \f
62 /* A collected description of an entire row of the abstract CFI table. */
63 typedef struct GTY(()) dw_cfi_row_struct
64 {
65 /* The expression that computes the CFA, expressed in two different ways.
66 The CFA member for the simple cases, and the full CFI expression for
67 the complex cases. The later will be a DW_CFA_cfa_expression. */
68 dw_cfa_location cfa;
69 dw_cfi_ref cfa_cfi;
70
71 /* The expressions for any register column that is saved. */
72 cfi_vec reg_save;
73 } dw_cfi_row;
74
75 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
76 typedef struct GTY(()) reg_saved_in_data_struct {
77 rtx orig_reg;
78 rtx saved_in_reg;
79 } reg_saved_in_data;
80
81 DEF_VEC_O (reg_saved_in_data);
82 DEF_VEC_ALLOC_O (reg_saved_in_data, heap);
83
84 /* Since we no longer have a proper CFG, we're going to create a facsimile
85 of one on the fly while processing the frame-related insns.
86
87 We create dw_trace_info structures for each extended basic block beginning
88 and ending at a "save point". Save points are labels, barriers, certain
89 notes, and of course the beginning and end of the function.
90
91 As we encounter control transfer insns, we propagate the "current"
92 row state across the edges to the starts of traces. When checking is
93 enabled, we validate that we propagate the same data from all sources.
94
95 All traces are members of the TRACE_INFO array, in the order in which
96 they appear in the instruction stream.
97
98 All save points are present in the TRACE_INDEX hash, mapping the insn
99 starting a trace to the dw_trace_info describing the trace. */
100
101 typedef struct
102 {
103 /* The insn that begins the trace. */
104 rtx head;
105
106 /* The row state at the beginning and end of the trace. */
107 dw_cfi_row *beg_row, *end_row;
108
109 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
110 while scanning insns. However, the args_size value is irrelevant at
111 any point except can_throw_internal_p insns. Therefore the "delay"
112 sizes the values that must actually be emitted for this trace. */
113 HOST_WIDE_INT beg_true_args_size, end_true_args_size;
114 HOST_WIDE_INT beg_delay_args_size, end_delay_args_size;
115
116 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
117 rtx eh_head;
118
119 /* The following variables contain data used in interpreting frame related
120 expressions. These are not part of the "real" row state as defined by
121 Dwarf, but it seems like they need to be propagated into a trace in case
122 frame related expressions have been sunk. */
123 /* ??? This seems fragile. These variables are fragments of a larger
124 expression. If we do not keep the entire expression together, we risk
125 not being able to put it together properly. Consider forcing targets
126 to generate self-contained expressions and dropping all of the magic
127 interpretation code in this file. Or at least refusing to shrink wrap
128 any frame related insn that doesn't contain a complete expression. */
129
130 /* The register used for saving registers to the stack, and its offset
131 from the CFA. */
132 dw_cfa_location cfa_store;
133
134 /* A temporary register holding an integral value used in adjusting SP
135 or setting up the store_reg. The "offset" field holds the integer
136 value, not an offset. */
137 dw_cfa_location cfa_temp;
138
139 /* A set of registers saved in other registers. This is the inverse of
140 the row->reg_save info, if the entry is a DW_CFA_register. This is
141 implemented as a flat array because it normally contains zero or 1
142 entry, depending on the target. IA-64 is the big spender here, using
143 a maximum of 5 entries. */
144 VEC(reg_saved_in_data, heap) *regs_saved_in_regs;
145
146 /* An identifier for this trace. Used only for debugging dumps. */
147 unsigned id;
148
149 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
150 bool switch_sections;
151
152 /* True if we've seen different values incoming to beg_true_args_size. */
153 bool args_size_undefined;
154 } dw_trace_info;
155
156 DEF_VEC_O (dw_trace_info);
157 DEF_VEC_ALLOC_O (dw_trace_info, heap);
158
159 typedef dw_trace_info *dw_trace_info_ref;
160
161 DEF_VEC_P (dw_trace_info_ref);
162 DEF_VEC_ALLOC_P (dw_trace_info_ref, heap);
163
164 /* The variables making up the pseudo-cfg, as described above. */
165 static VEC (dw_trace_info, heap) *trace_info;
166 static VEC (dw_trace_info_ref, heap) *trace_work_list;
167 static htab_t trace_index;
168
169 /* A vector of call frame insns for the CIE. */
170 cfi_vec cie_cfi_vec;
171
172 /* The state of the first row of the FDE table, which includes the
173 state provided by the CIE. */
174 static GTY(()) dw_cfi_row *cie_cfi_row;
175
176 static GTY(()) reg_saved_in_data *cie_return_save;
177
178 static GTY(()) unsigned long dwarf2out_cfi_label_num;
179
180 /* The insn after which a new CFI note should be emitted. */
181 static rtx add_cfi_insn;
182
183 /* When non-null, add_cfi will add the CFI to this vector. */
184 static cfi_vec *add_cfi_vec;
185
186 /* The current instruction trace. */
187 static dw_trace_info *cur_trace;
188
189 /* The current, i.e. most recently generated, row of the CFI table. */
190 static dw_cfi_row *cur_row;
191
192 /* A copy of the current CFA, for use during the processing of a
193 single insn. */
194 static dw_cfa_location *cur_cfa;
195
196 /* We delay emitting a register save until either (a) we reach the end
197 of the prologue or (b) the register is clobbered. This clusters
198 register saves so that there are fewer pc advances. */
199
200 typedef struct {
201 rtx reg;
202 rtx saved_reg;
203 HOST_WIDE_INT cfa_offset;
204 } queued_reg_save;
205
206 DEF_VEC_O (queued_reg_save);
207 DEF_VEC_ALLOC_O (queued_reg_save, heap);
208
209 static VEC(queued_reg_save, heap) *queued_reg_saves;
210
211 /* True if any CFI directives were emitted at the current insn. */
212 static bool any_cfis_emitted;
213
214 /* Short-hand for commonly used register numbers. */
215 static unsigned dw_stack_pointer_regnum;
216 static unsigned dw_frame_pointer_regnum;
217 \f
218 /* Hook used by __throw. */
219
220 rtx
221 expand_builtin_dwarf_sp_column (void)
222 {
223 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
224 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
225 }
226
227 /* MEM is a memory reference for the register size table, each element of
228 which has mode MODE. Initialize column C as a return address column. */
229
230 static void
231 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
232 {
233 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
234 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
235 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
236 }
237
238 /* Generate code to initialize the register size table. */
239
240 void
241 expand_builtin_init_dwarf_reg_sizes (tree address)
242 {
243 unsigned int i;
244 enum machine_mode mode = TYPE_MODE (char_type_node);
245 rtx addr = expand_normal (address);
246 rtx mem = gen_rtx_MEM (BLKmode, addr);
247 bool wrote_return_column = false;
248
249 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
250 {
251 unsigned int dnum = DWARF_FRAME_REGNUM (i);
252 unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
253
254 if (rnum < DWARF_FRAME_REGISTERS)
255 {
256 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
257 enum machine_mode save_mode = reg_raw_mode[i];
258 HOST_WIDE_INT size;
259
260 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
261 save_mode = choose_hard_reg_mode (i, 1, true);
262 if (dnum == DWARF_FRAME_RETURN_COLUMN)
263 {
264 if (save_mode == VOIDmode)
265 continue;
266 wrote_return_column = true;
267 }
268 size = GET_MODE_SIZE (save_mode);
269 if (offset < 0)
270 continue;
271
272 emit_move_insn (adjust_address (mem, mode, offset),
273 gen_int_mode (size, mode));
274 }
275 }
276
277 if (!wrote_return_column)
278 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
279
280 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
281 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
282 #endif
283
284 targetm.init_dwarf_reg_sizes_extra (address);
285 }
286
287 \f
288 static hashval_t
289 dw_trace_info_hash (const void *ptr)
290 {
291 const dw_trace_info *ti = (const dw_trace_info *) ptr;
292 return INSN_UID (ti->head);
293 }
294
295 static int
296 dw_trace_info_eq (const void *ptr_a, const void *ptr_b)
297 {
298 const dw_trace_info *a = (const dw_trace_info *) ptr_a;
299 const dw_trace_info *b = (const dw_trace_info *) ptr_b;
300 return a->head == b->head;
301 }
302
303 static dw_trace_info *
304 get_trace_info (rtx insn)
305 {
306 dw_trace_info dummy;
307 dummy.head = insn;
308 return (dw_trace_info *)
309 htab_find_with_hash (trace_index, &dummy, INSN_UID (insn));
310 }
311
312 static bool
313 save_point_p (rtx insn)
314 {
315 /* Labels, except those that are really jump tables. */
316 if (LABEL_P (insn))
317 return inside_basic_block_p (insn);
318
319 /* We split traces at the prologue/epilogue notes because those
320 are points at which the unwind info is usually stable. This
321 makes it easier to find spots with identical unwind info so
322 that we can use remember/restore_state opcodes. */
323 if (NOTE_P (insn))
324 switch (NOTE_KIND (insn))
325 {
326 case NOTE_INSN_PROLOGUE_END:
327 case NOTE_INSN_EPILOGUE_BEG:
328 return true;
329 }
330
331 return false;
332 }
333
334 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
335
336 static inline HOST_WIDE_INT
337 div_data_align (HOST_WIDE_INT off)
338 {
339 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
340 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
341 return r;
342 }
343
344 /* Return true if we need a signed version of a given opcode
345 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
346
347 static inline bool
348 need_data_align_sf_opcode (HOST_WIDE_INT off)
349 {
350 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
351 }
352
353 /* Return a pointer to a newly allocated Call Frame Instruction. */
354
355 static inline dw_cfi_ref
356 new_cfi (void)
357 {
358 dw_cfi_ref cfi = ggc_alloc_dw_cfi_node ();
359
360 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
361 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
362
363 return cfi;
364 }
365
366 /* Return a newly allocated CFI row, with no defined data. */
367
368 static dw_cfi_row *
369 new_cfi_row (void)
370 {
371 dw_cfi_row *row = ggc_alloc_cleared_dw_cfi_row ();
372
373 row->cfa.reg = INVALID_REGNUM;
374
375 return row;
376 }
377
378 /* Return a copy of an existing CFI row. */
379
380 static dw_cfi_row *
381 copy_cfi_row (dw_cfi_row *src)
382 {
383 dw_cfi_row *dst = ggc_alloc_dw_cfi_row ();
384
385 *dst = *src;
386 dst->reg_save = VEC_copy (dw_cfi_ref, gc, src->reg_save);
387
388 return dst;
389 }
390
391 /* Generate a new label for the CFI info to refer to. */
392
393 static char *
394 dwarf2out_cfi_label (void)
395 {
396 int num = dwarf2out_cfi_label_num++;
397 char label[20];
398
399 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
400
401 return xstrdup (label);
402 }
403
404 /* Add CFI either to the current insn stream or to a vector, or both. */
405
406 static void
407 add_cfi (dw_cfi_ref cfi)
408 {
409 any_cfis_emitted = true;
410
411 if (add_cfi_insn != NULL)
412 {
413 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
414 NOTE_CFI (add_cfi_insn) = cfi;
415 }
416
417 if (add_cfi_vec != NULL)
418 VEC_safe_push (dw_cfi_ref, gc, *add_cfi_vec, cfi);
419 }
420
421 static void
422 add_cfi_args_size (HOST_WIDE_INT size)
423 {
424 dw_cfi_ref cfi = new_cfi ();
425
426 /* While we can occasionally have args_size < 0 internally, this state
427 should not persist at a point we actually need an opcode. */
428 gcc_assert (size >= 0);
429
430 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
431 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
432
433 add_cfi (cfi);
434 }
435
436 static void
437 add_cfi_restore (unsigned reg)
438 {
439 dw_cfi_ref cfi = new_cfi ();
440
441 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
442 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
443
444 add_cfi (cfi);
445 }
446
447 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
448 that the register column is no longer saved. */
449
450 static void
451 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
452 {
453 if (VEC_length (dw_cfi_ref, row->reg_save) <= column)
454 VEC_safe_grow_cleared (dw_cfi_ref, gc, row->reg_save, column + 1);
455 VEC_replace (dw_cfi_ref, row->reg_save, column, cfi);
456 }
457
458 /* This function fills in aa dw_cfa_location structure from a dwarf location
459 descriptor sequence. */
460
461 static void
462 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
463 {
464 struct dw_loc_descr_struct *ptr;
465 cfa->offset = 0;
466 cfa->base_offset = 0;
467 cfa->indirect = 0;
468 cfa->reg = -1;
469
470 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
471 {
472 enum dwarf_location_atom op = ptr->dw_loc_opc;
473
474 switch (op)
475 {
476 case DW_OP_reg0:
477 case DW_OP_reg1:
478 case DW_OP_reg2:
479 case DW_OP_reg3:
480 case DW_OP_reg4:
481 case DW_OP_reg5:
482 case DW_OP_reg6:
483 case DW_OP_reg7:
484 case DW_OP_reg8:
485 case DW_OP_reg9:
486 case DW_OP_reg10:
487 case DW_OP_reg11:
488 case DW_OP_reg12:
489 case DW_OP_reg13:
490 case DW_OP_reg14:
491 case DW_OP_reg15:
492 case DW_OP_reg16:
493 case DW_OP_reg17:
494 case DW_OP_reg18:
495 case DW_OP_reg19:
496 case DW_OP_reg20:
497 case DW_OP_reg21:
498 case DW_OP_reg22:
499 case DW_OP_reg23:
500 case DW_OP_reg24:
501 case DW_OP_reg25:
502 case DW_OP_reg26:
503 case DW_OP_reg27:
504 case DW_OP_reg28:
505 case DW_OP_reg29:
506 case DW_OP_reg30:
507 case DW_OP_reg31:
508 cfa->reg = op - DW_OP_reg0;
509 break;
510 case DW_OP_regx:
511 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
512 break;
513 case DW_OP_breg0:
514 case DW_OP_breg1:
515 case DW_OP_breg2:
516 case DW_OP_breg3:
517 case DW_OP_breg4:
518 case DW_OP_breg5:
519 case DW_OP_breg6:
520 case DW_OP_breg7:
521 case DW_OP_breg8:
522 case DW_OP_breg9:
523 case DW_OP_breg10:
524 case DW_OP_breg11:
525 case DW_OP_breg12:
526 case DW_OP_breg13:
527 case DW_OP_breg14:
528 case DW_OP_breg15:
529 case DW_OP_breg16:
530 case DW_OP_breg17:
531 case DW_OP_breg18:
532 case DW_OP_breg19:
533 case DW_OP_breg20:
534 case DW_OP_breg21:
535 case DW_OP_breg22:
536 case DW_OP_breg23:
537 case DW_OP_breg24:
538 case DW_OP_breg25:
539 case DW_OP_breg26:
540 case DW_OP_breg27:
541 case DW_OP_breg28:
542 case DW_OP_breg29:
543 case DW_OP_breg30:
544 case DW_OP_breg31:
545 cfa->reg = op - DW_OP_breg0;
546 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
547 break;
548 case DW_OP_bregx:
549 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
550 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
551 break;
552 case DW_OP_deref:
553 cfa->indirect = 1;
554 break;
555 case DW_OP_plus_uconst:
556 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
557 break;
558 default:
559 gcc_unreachable ();
560 }
561 }
562 }
563
564 /* Find the previous value for the CFA, iteratively. CFI is the opcode
565 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
566 one level of remember/restore state processing. */
567
568 void
569 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
570 {
571 switch (cfi->dw_cfi_opc)
572 {
573 case DW_CFA_def_cfa_offset:
574 case DW_CFA_def_cfa_offset_sf:
575 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
576 break;
577 case DW_CFA_def_cfa_register:
578 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
579 break;
580 case DW_CFA_def_cfa:
581 case DW_CFA_def_cfa_sf:
582 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
583 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
584 break;
585 case DW_CFA_def_cfa_expression:
586 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
587 break;
588
589 case DW_CFA_remember_state:
590 gcc_assert (!remember->in_use);
591 *remember = *loc;
592 remember->in_use = 1;
593 break;
594 case DW_CFA_restore_state:
595 gcc_assert (remember->in_use);
596 *loc = *remember;
597 remember->in_use = 0;
598 break;
599
600 default:
601 break;
602 }
603 }
604
605 /* Determine if two dw_cfa_location structures define the same data. */
606
607 bool
608 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
609 {
610 return (loc1->reg == loc2->reg
611 && loc1->offset == loc2->offset
612 && loc1->indirect == loc2->indirect
613 && (loc1->indirect == 0
614 || loc1->base_offset == loc2->base_offset));
615 }
616
617 /* Determine if two CFI operands are identical. */
618
619 static bool
620 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
621 {
622 switch (t)
623 {
624 case dw_cfi_oprnd_unused:
625 return true;
626 case dw_cfi_oprnd_reg_num:
627 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
628 case dw_cfi_oprnd_offset:
629 return a->dw_cfi_offset == b->dw_cfi_offset;
630 case dw_cfi_oprnd_addr:
631 return (a->dw_cfi_addr == b->dw_cfi_addr
632 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
633 case dw_cfi_oprnd_loc:
634 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
635 }
636 gcc_unreachable ();
637 }
638
639 /* Determine if two CFI entries are identical. */
640
641 static bool
642 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
643 {
644 enum dwarf_call_frame_info opc;
645
646 /* Make things easier for our callers, including missing operands. */
647 if (a == b)
648 return true;
649 if (a == NULL || b == NULL)
650 return false;
651
652 /* Obviously, the opcodes must match. */
653 opc = a->dw_cfi_opc;
654 if (opc != b->dw_cfi_opc)
655 return false;
656
657 /* Compare the two operands, re-using the type of the operands as
658 already exposed elsewhere. */
659 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
660 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
661 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
662 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
663 }
664
665 /* Determine if two CFI_ROW structures are identical. */
666
667 static bool
668 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
669 {
670 size_t i, n_a, n_b, n_max;
671
672 if (a->cfa_cfi)
673 {
674 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
675 return false;
676 }
677 else if (!cfa_equal_p (&a->cfa, &b->cfa))
678 return false;
679
680 n_a = VEC_length (dw_cfi_ref, a->reg_save);
681 n_b = VEC_length (dw_cfi_ref, b->reg_save);
682 n_max = MAX (n_a, n_b);
683
684 for (i = 0; i < n_max; ++i)
685 {
686 dw_cfi_ref r_a = NULL, r_b = NULL;
687
688 if (i < n_a)
689 r_a = VEC_index (dw_cfi_ref, a->reg_save, i);
690 if (i < n_b)
691 r_b = VEC_index (dw_cfi_ref, b->reg_save, i);
692
693 if (!cfi_equal_p (r_a, r_b))
694 return false;
695 }
696
697 return true;
698 }
699
700 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
701 what opcode to emit. Returns the CFI opcode to effect the change, or
702 NULL if NEW_CFA == OLD_CFA. */
703
704 static dw_cfi_ref
705 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
706 {
707 dw_cfi_ref cfi;
708
709 /* If nothing changed, no need to issue any call frame instructions. */
710 if (cfa_equal_p (old_cfa, new_cfa))
711 return NULL;
712
713 cfi = new_cfi ();
714
715 if (new_cfa->reg == old_cfa->reg && !new_cfa->indirect && !old_cfa->indirect)
716 {
717 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
718 the CFA register did not change but the offset did. The data
719 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
720 in the assembler via the .cfi_def_cfa_offset directive. */
721 if (new_cfa->offset < 0)
722 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
723 else
724 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
725 cfi->dw_cfi_oprnd1.dw_cfi_offset = new_cfa->offset;
726 }
727
728 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
729 else if (new_cfa->offset == old_cfa->offset
730 && old_cfa->reg != INVALID_REGNUM
731 && !new_cfa->indirect
732 && !old_cfa->indirect)
733 {
734 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
735 indicating the CFA register has changed to <register> but the
736 offset has not changed. */
737 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
738 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
739 }
740 #endif
741
742 else if (new_cfa->indirect == 0)
743 {
744 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
745 indicating the CFA register has changed to <register> with
746 the specified offset. The data factoring for DW_CFA_def_cfa_sf
747 happens in output_cfi, or in the assembler via the .cfi_def_cfa
748 directive. */
749 if (new_cfa->offset < 0)
750 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
751 else
752 cfi->dw_cfi_opc = DW_CFA_def_cfa;
753 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg;
754 cfi->dw_cfi_oprnd2.dw_cfi_offset = new_cfa->offset;
755 }
756 else
757 {
758 /* Construct a DW_CFA_def_cfa_expression instruction to
759 calculate the CFA using a full location expression since no
760 register-offset pair is available. */
761 struct dw_loc_descr_struct *loc_list;
762
763 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
764 loc_list = build_cfa_loc (new_cfa, 0);
765 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
766 }
767
768 return cfi;
769 }
770
771 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
772
773 static void
774 def_cfa_1 (dw_cfa_location *new_cfa)
775 {
776 dw_cfi_ref cfi;
777
778 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
779 cur_trace->cfa_store.offset = new_cfa->offset;
780
781 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
782 if (cfi)
783 {
784 cur_row->cfa = *new_cfa;
785 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
786 ? cfi : NULL);
787
788 add_cfi (cfi);
789 }
790 }
791
792 /* Add the CFI for saving a register. REG is the CFA column number.
793 If SREG is -1, the register is saved at OFFSET from the CFA;
794 otherwise it is saved in SREG. */
795
796 static void
797 reg_save (unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
798 {
799 dw_fde_ref fde = cfun ? cfun->fde : NULL;
800 dw_cfi_ref cfi = new_cfi ();
801
802 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
803
804 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
805 if (fde
806 && fde->stack_realign
807 && sreg == INVALID_REGNUM)
808 {
809 cfi->dw_cfi_opc = DW_CFA_expression;
810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
811 cfi->dw_cfi_oprnd2.dw_cfi_loc
812 = build_cfa_aligned_loc (&cur_row->cfa, offset,
813 fde->stack_realignment);
814 }
815 else if (sreg == INVALID_REGNUM)
816 {
817 if (need_data_align_sf_opcode (offset))
818 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
819 else if (reg & ~0x3f)
820 cfi->dw_cfi_opc = DW_CFA_offset_extended;
821 else
822 cfi->dw_cfi_opc = DW_CFA_offset;
823 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
824 }
825 else if (sreg == reg)
826 {
827 /* While we could emit something like DW_CFA_same_value or
828 DW_CFA_restore, we never expect to see something like that
829 in a prologue. This is more likely to be a bug. A backend
830 can always bypass this by using REG_CFA_RESTORE directly. */
831 gcc_unreachable ();
832 }
833 else
834 {
835 cfi->dw_cfi_opc = DW_CFA_register;
836 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
837 }
838
839 add_cfi (cfi);
840 update_row_reg_save (cur_row, reg, cfi);
841 }
842
843 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
844 and adjust data structures to match. */
845
846 static void
847 notice_args_size (rtx insn)
848 {
849 HOST_WIDE_INT args_size, delta;
850 rtx note;
851
852 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
853 if (note == NULL)
854 return;
855
856 args_size = INTVAL (XEXP (note, 0));
857 delta = args_size - cur_trace->end_true_args_size;
858 if (delta == 0)
859 return;
860
861 cur_trace->end_true_args_size = args_size;
862
863 /* If the CFA is computed off the stack pointer, then we must adjust
864 the computation of the CFA as well. */
865 if (cur_cfa->reg == dw_stack_pointer_regnum)
866 {
867 gcc_assert (!cur_cfa->indirect);
868
869 /* Convert a change in args_size (always a positive in the
870 direction of stack growth) to a change in stack pointer. */
871 #ifndef STACK_GROWS_DOWNWARD
872 delta = -delta;
873 #endif
874 cur_cfa->offset += delta;
875 }
876 }
877
878 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
879 data within the trace related to EH insns and args_size. */
880
881 static void
882 notice_eh_throw (rtx insn)
883 {
884 HOST_WIDE_INT args_size;
885
886 args_size = cur_trace->end_true_args_size;
887 if (cur_trace->eh_head == NULL)
888 {
889 cur_trace->eh_head = insn;
890 cur_trace->beg_delay_args_size = args_size;
891 cur_trace->end_delay_args_size = args_size;
892 }
893 else if (cur_trace->end_delay_args_size != args_size)
894 {
895 cur_trace->end_delay_args_size = args_size;
896
897 /* ??? If the CFA is the stack pointer, search backward for the last
898 CFI note and insert there. Given that the stack changed for the
899 args_size change, there *must* be such a note in between here and
900 the last eh insn. */
901 add_cfi_args_size (args_size);
902 }
903 }
904
905 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
906 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
907 used in places where rtl is prohibited. */
908
909 static inline unsigned
910 dwf_regno (const_rtx reg)
911 {
912 return DWARF_FRAME_REGNUM (REGNO (reg));
913 }
914
915 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
916
917 static bool
918 compare_reg_or_pc (rtx x, rtx y)
919 {
920 if (REG_P (x) && REG_P (y))
921 return REGNO (x) == REGNO (y);
922 return x == y;
923 }
924
925 /* Record SRC as being saved in DEST. DEST may be null to delete an
926 existing entry. SRC may be a register or PC_RTX. */
927
928 static void
929 record_reg_saved_in_reg (rtx dest, rtx src)
930 {
931 reg_saved_in_data *elt;
932 size_t i;
933
934 FOR_EACH_VEC_ELT (reg_saved_in_data, cur_trace->regs_saved_in_regs, i, elt)
935 if (compare_reg_or_pc (elt->orig_reg, src))
936 {
937 if (dest == NULL)
938 VEC_unordered_remove (reg_saved_in_data,
939 cur_trace->regs_saved_in_regs, i);
940 else
941 elt->saved_in_reg = dest;
942 return;
943 }
944
945 if (dest == NULL)
946 return;
947
948 elt = VEC_safe_push (reg_saved_in_data, heap,
949 cur_trace->regs_saved_in_regs, NULL);
950 elt->orig_reg = src;
951 elt->saved_in_reg = dest;
952 }
953
954 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
955 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
956
957 static void
958 queue_reg_save (rtx reg, rtx sreg, HOST_WIDE_INT offset)
959 {
960 queued_reg_save *q;
961 size_t i;
962
963 /* Duplicates waste space, but it's also necessary to remove them
964 for correctness, since the queue gets output in reverse order. */
965 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
966 if (compare_reg_or_pc (q->reg, reg))
967 goto found;
968
969 q = VEC_safe_push (queued_reg_save, heap, queued_reg_saves, NULL);
970
971 found:
972 q->reg = reg;
973 q->saved_reg = sreg;
974 q->cfa_offset = offset;
975 }
976
977 /* Output all the entries in QUEUED_REG_SAVES. */
978
979 static void
980 dwarf2out_flush_queued_reg_saves (void)
981 {
982 queued_reg_save *q;
983 size_t i;
984
985 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
986 {
987 unsigned int reg, sreg;
988
989 record_reg_saved_in_reg (q->saved_reg, q->reg);
990
991 if (q->reg == pc_rtx)
992 reg = DWARF_FRAME_RETURN_COLUMN;
993 else
994 reg = dwf_regno (q->reg);
995 if (q->saved_reg)
996 sreg = dwf_regno (q->saved_reg);
997 else
998 sreg = INVALID_REGNUM;
999 reg_save (reg, sreg, q->cfa_offset);
1000 }
1001
1002 VEC_truncate (queued_reg_save, queued_reg_saves, 0);
1003 }
1004
1005 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1006 location for? Or, does it clobber a register which we've previously
1007 said that some other register is saved in, and for which we now
1008 have a new location for? */
1009
1010 static bool
1011 clobbers_queued_reg_save (const_rtx insn)
1012 {
1013 queued_reg_save *q;
1014 size_t iq;
1015
1016 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, iq, q)
1017 {
1018 size_t ir;
1019 reg_saved_in_data *rir;
1020
1021 if (modified_in_p (q->reg, insn))
1022 return true;
1023
1024 FOR_EACH_VEC_ELT (reg_saved_in_data,
1025 cur_trace->regs_saved_in_regs, ir, rir)
1026 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1027 && modified_in_p (rir->saved_in_reg, insn))
1028 return true;
1029 }
1030
1031 return false;
1032 }
1033
1034 /* What register, if any, is currently saved in REG? */
1035
1036 static rtx
1037 reg_saved_in (rtx reg)
1038 {
1039 unsigned int regn = REGNO (reg);
1040 queued_reg_save *q;
1041 reg_saved_in_data *rir;
1042 size_t i;
1043
1044 FOR_EACH_VEC_ELT (queued_reg_save, queued_reg_saves, i, q)
1045 if (q->saved_reg && regn == REGNO (q->saved_reg))
1046 return q->reg;
1047
1048 FOR_EACH_VEC_ELT (reg_saved_in_data, cur_trace->regs_saved_in_regs, i, rir)
1049 if (regn == REGNO (rir->saved_in_reg))
1050 return rir->orig_reg;
1051
1052 return NULL_RTX;
1053 }
1054
1055 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1056
1057 static void
1058 dwarf2out_frame_debug_def_cfa (rtx pat)
1059 {
1060 memset (cur_cfa, 0, sizeof (*cur_cfa));
1061
1062 if (GET_CODE (pat) == PLUS)
1063 {
1064 cur_cfa->offset = INTVAL (XEXP (pat, 1));
1065 pat = XEXP (pat, 0);
1066 }
1067 if (MEM_P (pat))
1068 {
1069 cur_cfa->indirect = 1;
1070 pat = XEXP (pat, 0);
1071 if (GET_CODE (pat) == PLUS)
1072 {
1073 cur_cfa->base_offset = INTVAL (XEXP (pat, 1));
1074 pat = XEXP (pat, 0);
1075 }
1076 }
1077 /* ??? If this fails, we could be calling into the _loc functions to
1078 define a full expression. So far no port does that. */
1079 gcc_assert (REG_P (pat));
1080 cur_cfa->reg = dwf_regno (pat);
1081 }
1082
1083 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1084
1085 static void
1086 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1087 {
1088 rtx src, dest;
1089
1090 gcc_assert (GET_CODE (pat) == SET);
1091 dest = XEXP (pat, 0);
1092 src = XEXP (pat, 1);
1093
1094 switch (GET_CODE (src))
1095 {
1096 case PLUS:
1097 gcc_assert (dwf_regno (XEXP (src, 0)) == cur_cfa->reg);
1098 cur_cfa->offset -= INTVAL (XEXP (src, 1));
1099 break;
1100
1101 case REG:
1102 break;
1103
1104 default:
1105 gcc_unreachable ();
1106 }
1107
1108 cur_cfa->reg = dwf_regno (dest);
1109 gcc_assert (cur_cfa->indirect == 0);
1110 }
1111
1112 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1113
1114 static void
1115 dwarf2out_frame_debug_cfa_offset (rtx set)
1116 {
1117 HOST_WIDE_INT offset;
1118 rtx src, addr, span;
1119 unsigned int sregno;
1120
1121 src = XEXP (set, 1);
1122 addr = XEXP (set, 0);
1123 gcc_assert (MEM_P (addr));
1124 addr = XEXP (addr, 0);
1125
1126 /* As documented, only consider extremely simple addresses. */
1127 switch (GET_CODE (addr))
1128 {
1129 case REG:
1130 gcc_assert (dwf_regno (addr) == cur_cfa->reg);
1131 offset = -cur_cfa->offset;
1132 break;
1133 case PLUS:
1134 gcc_assert (dwf_regno (XEXP (addr, 0)) == cur_cfa->reg);
1135 offset = INTVAL (XEXP (addr, 1)) - cur_cfa->offset;
1136 break;
1137 default:
1138 gcc_unreachable ();
1139 }
1140
1141 if (src == pc_rtx)
1142 {
1143 span = NULL;
1144 sregno = DWARF_FRAME_RETURN_COLUMN;
1145 }
1146 else
1147 {
1148 span = targetm.dwarf_register_span (src);
1149 sregno = dwf_regno (src);
1150 }
1151
1152 /* ??? We'd like to use queue_reg_save, but we need to come up with
1153 a different flushing heuristic for epilogues. */
1154 if (!span)
1155 reg_save (sregno, INVALID_REGNUM, offset);
1156 else
1157 {
1158 /* We have a PARALLEL describing where the contents of SRC live.
1159 Queue register saves for each piece of the PARALLEL. */
1160 int par_index;
1161 int limit;
1162 HOST_WIDE_INT span_offset = offset;
1163
1164 gcc_assert (GET_CODE (span) == PARALLEL);
1165
1166 limit = XVECLEN (span, 0);
1167 for (par_index = 0; par_index < limit; par_index++)
1168 {
1169 rtx elem = XVECEXP (span, 0, par_index);
1170
1171 sregno = dwf_regno (src);
1172 reg_save (sregno, INVALID_REGNUM, span_offset);
1173 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1174 }
1175 }
1176 }
1177
1178 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1179
1180 static void
1181 dwarf2out_frame_debug_cfa_register (rtx set)
1182 {
1183 rtx src, dest;
1184 unsigned sregno, dregno;
1185
1186 src = XEXP (set, 1);
1187 dest = XEXP (set, 0);
1188
1189 record_reg_saved_in_reg (dest, src);
1190 if (src == pc_rtx)
1191 sregno = DWARF_FRAME_RETURN_COLUMN;
1192 else
1193 sregno = dwf_regno (src);
1194
1195 dregno = dwf_regno (dest);
1196
1197 /* ??? We'd like to use queue_reg_save, but we need to come up with
1198 a different flushing heuristic for epilogues. */
1199 reg_save (sregno, dregno, 0);
1200 }
1201
1202 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1203
1204 static void
1205 dwarf2out_frame_debug_cfa_expression (rtx set)
1206 {
1207 rtx src, dest, span;
1208 dw_cfi_ref cfi = new_cfi ();
1209 unsigned regno;
1210
1211 dest = SET_DEST (set);
1212 src = SET_SRC (set);
1213
1214 gcc_assert (REG_P (src));
1215 gcc_assert (MEM_P (dest));
1216
1217 span = targetm.dwarf_register_span (src);
1218 gcc_assert (!span);
1219
1220 regno = dwf_regno (src);
1221
1222 cfi->dw_cfi_opc = DW_CFA_expression;
1223 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1224 cfi->dw_cfi_oprnd2.dw_cfi_loc
1225 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1226 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1227
1228 /* ??? We'd like to use queue_reg_save, were the interface different,
1229 and, as above, we could manage flushing for epilogues. */
1230 add_cfi (cfi);
1231 update_row_reg_save (cur_row, regno, cfi);
1232 }
1233
1234 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1235
1236 static void
1237 dwarf2out_frame_debug_cfa_restore (rtx reg)
1238 {
1239 unsigned int regno = dwf_regno (reg);
1240
1241 add_cfi_restore (regno);
1242 update_row_reg_save (cur_row, regno, NULL);
1243 }
1244
1245 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1246 ??? Perhaps we should note in the CIE where windows are saved (instead of
1247 assuming 0(cfa)) and what registers are in the window. */
1248
1249 static void
1250 dwarf2out_frame_debug_cfa_window_save (void)
1251 {
1252 dw_cfi_ref cfi = new_cfi ();
1253
1254 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1255 add_cfi (cfi);
1256 }
1257
1258 /* Record call frame debugging information for an expression EXPR,
1259 which either sets SP or FP (adjusting how we calculate the frame
1260 address) or saves a register to the stack or another register.
1261 LABEL indicates the address of EXPR.
1262
1263 This function encodes a state machine mapping rtxes to actions on
1264 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1265 users need not read the source code.
1266
1267 The High-Level Picture
1268
1269 Changes in the register we use to calculate the CFA: Currently we
1270 assume that if you copy the CFA register into another register, we
1271 should take the other one as the new CFA register; this seems to
1272 work pretty well. If it's wrong for some target, it's simple
1273 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1274
1275 Changes in the register we use for saving registers to the stack:
1276 This is usually SP, but not always. Again, we deduce that if you
1277 copy SP into another register (and SP is not the CFA register),
1278 then the new register is the one we will be using for register
1279 saves. This also seems to work.
1280
1281 Register saves: There's not much guesswork about this one; if
1282 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1283 register save, and the register used to calculate the destination
1284 had better be the one we think we're using for this purpose.
1285 It's also assumed that a copy from a call-saved register to another
1286 register is saving that register if RTX_FRAME_RELATED_P is set on
1287 that instruction. If the copy is from a call-saved register to
1288 the *same* register, that means that the register is now the same
1289 value as in the caller.
1290
1291 Except: If the register being saved is the CFA register, and the
1292 offset is nonzero, we are saving the CFA, so we assume we have to
1293 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1294 the intent is to save the value of SP from the previous frame.
1295
1296 In addition, if a register has previously been saved to a different
1297 register,
1298
1299 Invariants / Summaries of Rules
1300
1301 cfa current rule for calculating the CFA. It usually
1302 consists of a register and an offset. This is
1303 actually stored in *cur_cfa, but abbreviated
1304 for the purposes of this documentation.
1305 cfa_store register used by prologue code to save things to the stack
1306 cfa_store.offset is the offset from the value of
1307 cfa_store.reg to the actual CFA
1308 cfa_temp register holding an integral value. cfa_temp.offset
1309 stores the value, which will be used to adjust the
1310 stack pointer. cfa_temp is also used like cfa_store,
1311 to track stores to the stack via fp or a temp reg.
1312
1313 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1314 with cfa.reg as the first operand changes the cfa.reg and its
1315 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1316 cfa_temp.offset.
1317
1318 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1319 expression yielding a constant. This sets cfa_temp.reg
1320 and cfa_temp.offset.
1321
1322 Rule 5: Create a new register cfa_store used to save items to the
1323 stack.
1324
1325 Rules 10-14: Save a register to the stack. Define offset as the
1326 difference of the original location and cfa_store's
1327 location (or cfa_temp's location if cfa_temp is used).
1328
1329 Rules 16-20: If AND operation happens on sp in prologue, we assume
1330 stack is realigned. We will use a group of DW_OP_XXX
1331 expressions to represent the location of the stored
1332 register instead of CFA+offset.
1333
1334 The Rules
1335
1336 "{a,b}" indicates a choice of a xor b.
1337 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1338
1339 Rule 1:
1340 (set <reg1> <reg2>:cfa.reg)
1341 effects: cfa.reg = <reg1>
1342 cfa.offset unchanged
1343 cfa_temp.reg = <reg1>
1344 cfa_temp.offset = cfa.offset
1345
1346 Rule 2:
1347 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1348 {<const_int>,<reg>:cfa_temp.reg}))
1349 effects: cfa.reg = sp if fp used
1350 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1351 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1352 if cfa_store.reg==sp
1353
1354 Rule 3:
1355 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1356 effects: cfa.reg = fp
1357 cfa_offset += +/- <const_int>
1358
1359 Rule 4:
1360 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1361 constraints: <reg1> != fp
1362 <reg1> != sp
1363 effects: cfa.reg = <reg1>
1364 cfa_temp.reg = <reg1>
1365 cfa_temp.offset = cfa.offset
1366
1367 Rule 5:
1368 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1369 constraints: <reg1> != fp
1370 <reg1> != sp
1371 effects: cfa_store.reg = <reg1>
1372 cfa_store.offset = cfa.offset - cfa_temp.offset
1373
1374 Rule 6:
1375 (set <reg> <const_int>)
1376 effects: cfa_temp.reg = <reg>
1377 cfa_temp.offset = <const_int>
1378
1379 Rule 7:
1380 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1381 effects: cfa_temp.reg = <reg1>
1382 cfa_temp.offset |= <const_int>
1383
1384 Rule 8:
1385 (set <reg> (high <exp>))
1386 effects: none
1387
1388 Rule 9:
1389 (set <reg> (lo_sum <exp> <const_int>))
1390 effects: cfa_temp.reg = <reg>
1391 cfa_temp.offset = <const_int>
1392
1393 Rule 10:
1394 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1395 effects: cfa_store.offset -= <const_int>
1396 cfa.offset = cfa_store.offset if cfa.reg == sp
1397 cfa.reg = sp
1398 cfa.base_offset = -cfa_store.offset
1399
1400 Rule 11:
1401 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1402 effects: cfa_store.offset += -/+ mode_size(mem)
1403 cfa.offset = cfa_store.offset if cfa.reg == sp
1404 cfa.reg = sp
1405 cfa.base_offset = -cfa_store.offset
1406
1407 Rule 12:
1408 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1409
1410 <reg2>)
1411 effects: cfa.reg = <reg1>
1412 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1413
1414 Rule 13:
1415 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1416 effects: cfa.reg = <reg1>
1417 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1418
1419 Rule 14:
1420 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1421 effects: cfa.reg = <reg1>
1422 cfa.base_offset = -cfa_temp.offset
1423 cfa_temp.offset -= mode_size(mem)
1424
1425 Rule 15:
1426 (set <reg> {unspec, unspec_volatile})
1427 effects: target-dependent
1428
1429 Rule 16:
1430 (set sp (and: sp <const_int>))
1431 constraints: cfa_store.reg == sp
1432 effects: cfun->fde.stack_realign = 1
1433 cfa_store.offset = 0
1434 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1435
1436 Rule 17:
1437 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1438 effects: cfa_store.offset += -/+ mode_size(mem)
1439
1440 Rule 18:
1441 (set (mem ({pre_inc, pre_dec} sp)) fp)
1442 constraints: fde->stack_realign == 1
1443 effects: cfa_store.offset = 0
1444 cfa.reg != HARD_FRAME_POINTER_REGNUM
1445
1446 Rule 19:
1447 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1448 constraints: fde->stack_realign == 1
1449 && cfa.offset == 0
1450 && cfa.indirect == 0
1451 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1452 effects: Use DW_CFA_def_cfa_expression to define cfa
1453 cfa.reg == fde->drap_reg */
1454
1455 static void
1456 dwarf2out_frame_debug_expr (rtx expr)
1457 {
1458 rtx src, dest, span;
1459 HOST_WIDE_INT offset;
1460 dw_fde_ref fde;
1461
1462 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1463 the PARALLEL independently. The first element is always processed if
1464 it is a SET. This is for backward compatibility. Other elements
1465 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1466 flag is set in them. */
1467 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1468 {
1469 int par_index;
1470 int limit = XVECLEN (expr, 0);
1471 rtx elem;
1472
1473 /* PARALLELs have strict read-modify-write semantics, so we
1474 ought to evaluate every rvalue before changing any lvalue.
1475 It's cumbersome to do that in general, but there's an
1476 easy approximation that is enough for all current users:
1477 handle register saves before register assignments. */
1478 if (GET_CODE (expr) == PARALLEL)
1479 for (par_index = 0; par_index < limit; par_index++)
1480 {
1481 elem = XVECEXP (expr, 0, par_index);
1482 if (GET_CODE (elem) == SET
1483 && MEM_P (SET_DEST (elem))
1484 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1485 dwarf2out_frame_debug_expr (elem);
1486 }
1487
1488 for (par_index = 0; par_index < limit; par_index++)
1489 {
1490 elem = XVECEXP (expr, 0, par_index);
1491 if (GET_CODE (elem) == SET
1492 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1493 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1494 dwarf2out_frame_debug_expr (elem);
1495 }
1496 return;
1497 }
1498
1499 gcc_assert (GET_CODE (expr) == SET);
1500
1501 src = SET_SRC (expr);
1502 dest = SET_DEST (expr);
1503
1504 if (REG_P (src))
1505 {
1506 rtx rsi = reg_saved_in (src);
1507 if (rsi)
1508 src = rsi;
1509 }
1510
1511 fde = cfun->fde;
1512
1513 switch (GET_CODE (dest))
1514 {
1515 case REG:
1516 switch (GET_CODE (src))
1517 {
1518 /* Setting FP from SP. */
1519 case REG:
1520 if (cur_cfa->reg == dwf_regno (src))
1521 {
1522 /* Rule 1 */
1523 /* Update the CFA rule wrt SP or FP. Make sure src is
1524 relative to the current CFA register.
1525
1526 We used to require that dest be either SP or FP, but the
1527 ARM copies SP to a temporary register, and from there to
1528 FP. So we just rely on the backends to only set
1529 RTX_FRAME_RELATED_P on appropriate insns. */
1530 cur_cfa->reg = dwf_regno (dest);
1531 cur_trace->cfa_temp.reg = cur_cfa->reg;
1532 cur_trace->cfa_temp.offset = cur_cfa->offset;
1533 }
1534 else
1535 {
1536 /* Saving a register in a register. */
1537 gcc_assert (!fixed_regs [REGNO (dest)]
1538 /* For the SPARC and its register window. */
1539 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1540
1541 /* After stack is aligned, we can only save SP in FP
1542 if drap register is used. In this case, we have
1543 to restore stack pointer with the CFA value and we
1544 don't generate this DWARF information. */
1545 if (fde
1546 && fde->stack_realign
1547 && REGNO (src) == STACK_POINTER_REGNUM)
1548 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1549 && fde->drap_reg != INVALID_REGNUM
1550 && cur_cfa->reg != dwf_regno (src));
1551 else
1552 queue_reg_save (src, dest, 0);
1553 }
1554 break;
1555
1556 case PLUS:
1557 case MINUS:
1558 case LO_SUM:
1559 if (dest == stack_pointer_rtx)
1560 {
1561 /* Rule 2 */
1562 /* Adjusting SP. */
1563 switch (GET_CODE (XEXP (src, 1)))
1564 {
1565 case CONST_INT:
1566 offset = INTVAL (XEXP (src, 1));
1567 break;
1568 case REG:
1569 gcc_assert (dwf_regno (XEXP (src, 1))
1570 == cur_trace->cfa_temp.reg);
1571 offset = cur_trace->cfa_temp.offset;
1572 break;
1573 default:
1574 gcc_unreachable ();
1575 }
1576
1577 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1578 {
1579 /* Restoring SP from FP in the epilogue. */
1580 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1581 cur_cfa->reg = dw_stack_pointer_regnum;
1582 }
1583 else if (GET_CODE (src) == LO_SUM)
1584 /* Assume we've set the source reg of the LO_SUM from sp. */
1585 ;
1586 else
1587 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1588
1589 if (GET_CODE (src) != MINUS)
1590 offset = -offset;
1591 if (cur_cfa->reg == dw_stack_pointer_regnum)
1592 cur_cfa->offset += offset;
1593 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1594 cur_trace->cfa_store.offset += offset;
1595 }
1596 else if (dest == hard_frame_pointer_rtx)
1597 {
1598 /* Rule 3 */
1599 /* Either setting the FP from an offset of the SP,
1600 or adjusting the FP */
1601 gcc_assert (frame_pointer_needed);
1602
1603 gcc_assert (REG_P (XEXP (src, 0))
1604 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1605 && CONST_INT_P (XEXP (src, 1)));
1606 offset = INTVAL (XEXP (src, 1));
1607 if (GET_CODE (src) != MINUS)
1608 offset = -offset;
1609 cur_cfa->offset += offset;
1610 cur_cfa->reg = dw_frame_pointer_regnum;
1611 }
1612 else
1613 {
1614 gcc_assert (GET_CODE (src) != MINUS);
1615
1616 /* Rule 4 */
1617 if (REG_P (XEXP (src, 0))
1618 && dwf_regno (XEXP (src, 0)) == cur_cfa->reg
1619 && CONST_INT_P (XEXP (src, 1)))
1620 {
1621 /* Setting a temporary CFA register that will be copied
1622 into the FP later on. */
1623 offset = - INTVAL (XEXP (src, 1));
1624 cur_cfa->offset += offset;
1625 cur_cfa->reg = dwf_regno (dest);
1626 /* Or used to save regs to the stack. */
1627 cur_trace->cfa_temp.reg = cur_cfa->reg;
1628 cur_trace->cfa_temp.offset = cur_cfa->offset;
1629 }
1630
1631 /* Rule 5 */
1632 else if (REG_P (XEXP (src, 0))
1633 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1634 && XEXP (src, 1) == stack_pointer_rtx)
1635 {
1636 /* Setting a scratch register that we will use instead
1637 of SP for saving registers to the stack. */
1638 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1639 cur_trace->cfa_store.reg = dwf_regno (dest);
1640 cur_trace->cfa_store.offset
1641 = cur_cfa->offset - cur_trace->cfa_temp.offset;
1642 }
1643
1644 /* Rule 9 */
1645 else if (GET_CODE (src) == LO_SUM
1646 && CONST_INT_P (XEXP (src, 1)))
1647 {
1648 cur_trace->cfa_temp.reg = dwf_regno (dest);
1649 cur_trace->cfa_temp.offset = INTVAL (XEXP (src, 1));
1650 }
1651 else
1652 gcc_unreachable ();
1653 }
1654 break;
1655
1656 /* Rule 6 */
1657 case CONST_INT:
1658 cur_trace->cfa_temp.reg = dwf_regno (dest);
1659 cur_trace->cfa_temp.offset = INTVAL (src);
1660 break;
1661
1662 /* Rule 7 */
1663 case IOR:
1664 gcc_assert (REG_P (XEXP (src, 0))
1665 && dwf_regno (XEXP (src, 0)) == cur_trace->cfa_temp.reg
1666 && CONST_INT_P (XEXP (src, 1)));
1667
1668 cur_trace->cfa_temp.reg = dwf_regno (dest);
1669 cur_trace->cfa_temp.offset |= INTVAL (XEXP (src, 1));
1670 break;
1671
1672 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1673 which will fill in all of the bits. */
1674 /* Rule 8 */
1675 case HIGH:
1676 break;
1677
1678 /* Rule 15 */
1679 case UNSPEC:
1680 case UNSPEC_VOLATILE:
1681 /* All unspecs should be represented by REG_CFA_* notes. */
1682 gcc_unreachable ();
1683 return;
1684
1685 /* Rule 16 */
1686 case AND:
1687 /* If this AND operation happens on stack pointer in prologue,
1688 we assume the stack is realigned and we extract the
1689 alignment. */
1690 if (fde && XEXP (src, 0) == stack_pointer_rtx)
1691 {
1692 /* We interpret reg_save differently with stack_realign set.
1693 Thus we must flush whatever we have queued first. */
1694 dwarf2out_flush_queued_reg_saves ();
1695
1696 gcc_assert (cur_trace->cfa_store.reg
1697 == dwf_regno (XEXP (src, 0)));
1698 fde->stack_realign = 1;
1699 fde->stack_realignment = INTVAL (XEXP (src, 1));
1700 cur_trace->cfa_store.offset = 0;
1701
1702 if (cur_cfa->reg != dw_stack_pointer_regnum
1703 && cur_cfa->reg != dw_frame_pointer_regnum)
1704 fde->drap_reg = cur_cfa->reg;
1705 }
1706 return;
1707
1708 default:
1709 gcc_unreachable ();
1710 }
1711 break;
1712
1713 case MEM:
1714
1715 /* Saving a register to the stack. Make sure dest is relative to the
1716 CFA register. */
1717 switch (GET_CODE (XEXP (dest, 0)))
1718 {
1719 /* Rule 10 */
1720 /* With a push. */
1721 case PRE_MODIFY:
1722 case POST_MODIFY:
1723 /* We can't handle variable size modifications. */
1724 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1725 == CONST_INT);
1726 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1727
1728 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1729 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1730
1731 cur_trace->cfa_store.offset += offset;
1732 if (cur_cfa->reg == dw_stack_pointer_regnum)
1733 cur_cfa->offset = cur_trace->cfa_store.offset;
1734
1735 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
1736 offset -= cur_trace->cfa_store.offset;
1737 else
1738 offset = -cur_trace->cfa_store.offset;
1739 break;
1740
1741 /* Rule 11 */
1742 case PRE_INC:
1743 case PRE_DEC:
1744 case POST_DEC:
1745 offset = GET_MODE_SIZE (GET_MODE (dest));
1746 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1747 offset = -offset;
1748
1749 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
1750 == STACK_POINTER_REGNUM)
1751 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
1752
1753 cur_trace->cfa_store.offset += offset;
1754
1755 /* Rule 18: If stack is aligned, we will use FP as a
1756 reference to represent the address of the stored
1757 regiser. */
1758 if (fde
1759 && fde->stack_realign
1760 && REG_P (src)
1761 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
1762 {
1763 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
1764 cur_trace->cfa_store.offset = 0;
1765 }
1766
1767 if (cur_cfa->reg == dw_stack_pointer_regnum)
1768 cur_cfa->offset = cur_trace->cfa_store.offset;
1769
1770 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
1771 offset += -cur_trace->cfa_store.offset;
1772 else
1773 offset = -cur_trace->cfa_store.offset;
1774 break;
1775
1776 /* Rule 12 */
1777 /* With an offset. */
1778 case PLUS:
1779 case MINUS:
1780 case LO_SUM:
1781 {
1782 unsigned int regno;
1783
1784 gcc_assert (CONST_INT_P (XEXP (XEXP (dest, 0), 1))
1785 && REG_P (XEXP (XEXP (dest, 0), 0)));
1786 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1787 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1788 offset = -offset;
1789
1790 regno = dwf_regno (XEXP (XEXP (dest, 0), 0));
1791
1792 if (cur_cfa->reg == regno)
1793 offset -= cur_cfa->offset;
1794 else if (cur_trace->cfa_store.reg == regno)
1795 offset -= cur_trace->cfa_store.offset;
1796 else
1797 {
1798 gcc_assert (cur_trace->cfa_temp.reg == regno);
1799 offset -= cur_trace->cfa_temp.offset;
1800 }
1801 }
1802 break;
1803
1804 /* Rule 13 */
1805 /* Without an offset. */
1806 case REG:
1807 {
1808 unsigned int regno = dwf_regno (XEXP (dest, 0));
1809
1810 if (cur_cfa->reg == regno)
1811 offset = -cur_cfa->offset;
1812 else if (cur_trace->cfa_store.reg == regno)
1813 offset = -cur_trace->cfa_store.offset;
1814 else
1815 {
1816 gcc_assert (cur_trace->cfa_temp.reg == regno);
1817 offset = -cur_trace->cfa_temp.offset;
1818 }
1819 }
1820 break;
1821
1822 /* Rule 14 */
1823 case POST_INC:
1824 gcc_assert (cur_trace->cfa_temp.reg
1825 == dwf_regno (XEXP (XEXP (dest, 0), 0)));
1826 offset = -cur_trace->cfa_temp.offset;
1827 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1828 break;
1829
1830 default:
1831 gcc_unreachable ();
1832 }
1833
1834 /* Rule 17 */
1835 /* If the source operand of this MEM operation is a memory,
1836 we only care how much stack grew. */
1837 if (MEM_P (src))
1838 break;
1839
1840 if (REG_P (src)
1841 && REGNO (src) != STACK_POINTER_REGNUM
1842 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1843 && dwf_regno (src) == cur_cfa->reg)
1844 {
1845 /* We're storing the current CFA reg into the stack. */
1846
1847 if (cur_cfa->offset == 0)
1848 {
1849 /* Rule 19 */
1850 /* If stack is aligned, putting CFA reg into stack means
1851 we can no longer use reg + offset to represent CFA.
1852 Here we use DW_CFA_def_cfa_expression instead. The
1853 result of this expression equals to the original CFA
1854 value. */
1855 if (fde
1856 && fde->stack_realign
1857 && cur_cfa->indirect == 0
1858 && cur_cfa->reg != dw_frame_pointer_regnum)
1859 {
1860 gcc_assert (fde->drap_reg == cur_cfa->reg);
1861
1862 cur_cfa->indirect = 1;
1863 cur_cfa->reg = dw_frame_pointer_regnum;
1864 cur_cfa->base_offset = offset;
1865 cur_cfa->offset = 0;
1866
1867 fde->drap_reg_saved = 1;
1868 break;
1869 }
1870
1871 /* If the source register is exactly the CFA, assume
1872 we're saving SP like any other register; this happens
1873 on the ARM. */
1874 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
1875 break;
1876 }
1877 else
1878 {
1879 /* Otherwise, we'll need to look in the stack to
1880 calculate the CFA. */
1881 rtx x = XEXP (dest, 0);
1882
1883 if (!REG_P (x))
1884 x = XEXP (x, 0);
1885 gcc_assert (REG_P (x));
1886
1887 cur_cfa->reg = dwf_regno (x);
1888 cur_cfa->base_offset = offset;
1889 cur_cfa->indirect = 1;
1890 break;
1891 }
1892 }
1893
1894 span = NULL;
1895 if (REG_P (src))
1896 span = targetm.dwarf_register_span (src);
1897 if (!span)
1898 queue_reg_save (src, NULL_RTX, offset);
1899 else
1900 {
1901 /* We have a PARALLEL describing where the contents of SRC live.
1902 Queue register saves for each piece of the PARALLEL. */
1903 int par_index;
1904 int limit;
1905 HOST_WIDE_INT span_offset = offset;
1906
1907 gcc_assert (GET_CODE (span) == PARALLEL);
1908
1909 limit = XVECLEN (span, 0);
1910 for (par_index = 0; par_index < limit; par_index++)
1911 {
1912 rtx elem = XVECEXP (span, 0, par_index);
1913 queue_reg_save (elem, NULL_RTX, span_offset);
1914 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1915 }
1916 }
1917 break;
1918
1919 default:
1920 gcc_unreachable ();
1921 }
1922 }
1923
1924 /* Record call frame debugging information for INSN, which either sets
1925 SP or FP (adjusting how we calculate the frame address) or saves a
1926 register to the stack. */
1927
1928 static void
1929 dwarf2out_frame_debug (rtx insn)
1930 {
1931 rtx note, n;
1932 bool handled_one = false;
1933
1934 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1935 switch (REG_NOTE_KIND (note))
1936 {
1937 case REG_FRAME_RELATED_EXPR:
1938 insn = XEXP (note, 0);
1939 goto do_frame_expr;
1940
1941 case REG_CFA_DEF_CFA:
1942 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
1943 handled_one = true;
1944 break;
1945
1946 case REG_CFA_ADJUST_CFA:
1947 n = XEXP (note, 0);
1948 if (n == NULL)
1949 {
1950 n = PATTERN (insn);
1951 if (GET_CODE (n) == PARALLEL)
1952 n = XVECEXP (n, 0, 0);
1953 }
1954 dwarf2out_frame_debug_adjust_cfa (n);
1955 handled_one = true;
1956 break;
1957
1958 case REG_CFA_OFFSET:
1959 n = XEXP (note, 0);
1960 if (n == NULL)
1961 n = single_set (insn);
1962 dwarf2out_frame_debug_cfa_offset (n);
1963 handled_one = true;
1964 break;
1965
1966 case REG_CFA_REGISTER:
1967 n = XEXP (note, 0);
1968 if (n == NULL)
1969 {
1970 n = PATTERN (insn);
1971 if (GET_CODE (n) == PARALLEL)
1972 n = XVECEXP (n, 0, 0);
1973 }
1974 dwarf2out_frame_debug_cfa_register (n);
1975 handled_one = true;
1976 break;
1977
1978 case REG_CFA_EXPRESSION:
1979 n = XEXP (note, 0);
1980 if (n == NULL)
1981 n = single_set (insn);
1982 dwarf2out_frame_debug_cfa_expression (n);
1983 handled_one = true;
1984 break;
1985
1986 case REG_CFA_RESTORE:
1987 n = XEXP (note, 0);
1988 if (n == NULL)
1989 {
1990 n = PATTERN (insn);
1991 if (GET_CODE (n) == PARALLEL)
1992 n = XVECEXP (n, 0, 0);
1993 n = XEXP (n, 0);
1994 }
1995 dwarf2out_frame_debug_cfa_restore (n);
1996 handled_one = true;
1997 break;
1998
1999 case REG_CFA_SET_VDRAP:
2000 n = XEXP (note, 0);
2001 if (REG_P (n))
2002 {
2003 dw_fde_ref fde = cfun->fde;
2004 if (fde)
2005 {
2006 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2007 if (REG_P (n))
2008 fde->vdrap_reg = dwf_regno (n);
2009 }
2010 }
2011 handled_one = true;
2012 break;
2013
2014 case REG_CFA_WINDOW_SAVE:
2015 dwarf2out_frame_debug_cfa_window_save ();
2016 handled_one = true;
2017 break;
2018
2019 case REG_CFA_FLUSH_QUEUE:
2020 /* The actual flush happens elsewhere. */
2021 handled_one = true;
2022 break;
2023
2024 default:
2025 break;
2026 }
2027
2028 if (!handled_one)
2029 {
2030 insn = PATTERN (insn);
2031 do_frame_expr:
2032 dwarf2out_frame_debug_expr (insn);
2033
2034 /* Check again. A parallel can save and update the same register.
2035 We could probably check just once, here, but this is safer than
2036 removing the check at the start of the function. */
2037 if (clobbers_queued_reg_save (insn))
2038 dwarf2out_flush_queued_reg_saves ();
2039 }
2040 }
2041
2042 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2043
2044 static void
2045 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2046 {
2047 size_t i, n_old, n_new, n_max;
2048 dw_cfi_ref cfi;
2049
2050 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2051 add_cfi (new_row->cfa_cfi);
2052 else
2053 {
2054 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2055 if (cfi)
2056 add_cfi (cfi);
2057 }
2058
2059 n_old = VEC_length (dw_cfi_ref, old_row->reg_save);
2060 n_new = VEC_length (dw_cfi_ref, new_row->reg_save);
2061 n_max = MAX (n_old, n_new);
2062
2063 for (i = 0; i < n_max; ++i)
2064 {
2065 dw_cfi_ref r_old = NULL, r_new = NULL;
2066
2067 if (i < n_old)
2068 r_old = VEC_index (dw_cfi_ref, old_row->reg_save, i);
2069 if (i < n_new)
2070 r_new = VEC_index (dw_cfi_ref, new_row->reg_save, i);
2071
2072 if (r_old == r_new)
2073 ;
2074 else if (r_new == NULL)
2075 add_cfi_restore (i);
2076 else if (!cfi_equal_p (r_old, r_new))
2077 add_cfi (r_new);
2078 }
2079 }
2080
2081 /* Examine CFI and return true if a cfi label and set_loc is needed
2082 beforehand. Even when generating CFI assembler instructions, we
2083 still have to add the cfi to the list so that lookup_cfa_1 works
2084 later on. When -g2 and above we even need to force emitting of
2085 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2086 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2087 and so don't use convert_cfa_to_fb_loc_list. */
2088
2089 static bool
2090 cfi_label_required_p (dw_cfi_ref cfi)
2091 {
2092 if (!dwarf2out_do_cfi_asm ())
2093 return true;
2094
2095 if (dwarf_version == 2
2096 && debug_info_level > DINFO_LEVEL_TERSE
2097 && (write_symbols == DWARF2_DEBUG
2098 || write_symbols == VMS_AND_DWARF2_DEBUG))
2099 {
2100 switch (cfi->dw_cfi_opc)
2101 {
2102 case DW_CFA_def_cfa_offset:
2103 case DW_CFA_def_cfa_offset_sf:
2104 case DW_CFA_def_cfa_register:
2105 case DW_CFA_def_cfa:
2106 case DW_CFA_def_cfa_sf:
2107 case DW_CFA_def_cfa_expression:
2108 case DW_CFA_restore_state:
2109 return true;
2110 default:
2111 return false;
2112 }
2113 }
2114 return false;
2115 }
2116
2117 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2118 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2119 necessary. */
2120 static void
2121 add_cfis_to_fde (void)
2122 {
2123 dw_fde_ref fde = cfun->fde;
2124 rtx insn, next;
2125 /* We always start with a function_begin label. */
2126 bool first = false;
2127
2128 for (insn = get_insns (); insn; insn = next)
2129 {
2130 next = NEXT_INSN (insn);
2131
2132 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2133 {
2134 fde->dw_fde_switch_cfi_index
2135 = VEC_length (dw_cfi_ref, fde->dw_fde_cfi);
2136 /* Don't attempt to advance_loc4 between labels
2137 in different sections. */
2138 first = true;
2139 }
2140
2141 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2142 {
2143 bool required = cfi_label_required_p (NOTE_CFI (insn));
2144 while (next)
2145 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2146 {
2147 required |= cfi_label_required_p (NOTE_CFI (next));
2148 next = NEXT_INSN (next);
2149 }
2150 else if (active_insn_p (next)
2151 || (NOTE_P (next) && (NOTE_KIND (next)
2152 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2153 break;
2154 else
2155 next = NEXT_INSN (next);
2156 if (required)
2157 {
2158 int num = dwarf2out_cfi_label_num;
2159 const char *label = dwarf2out_cfi_label ();
2160 dw_cfi_ref xcfi;
2161 rtx tmp;
2162
2163 /* Set the location counter to the new label. */
2164 xcfi = new_cfi ();
2165 xcfi->dw_cfi_opc = (first ? DW_CFA_set_loc
2166 : DW_CFA_advance_loc4);
2167 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2168 VEC_safe_push (dw_cfi_ref, gc, fde->dw_fde_cfi, xcfi);
2169
2170 tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2171 NOTE_LABEL_NUMBER (tmp) = num;
2172 }
2173
2174 do
2175 {
2176 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2177 VEC_safe_push (dw_cfi_ref, gc, fde->dw_fde_cfi,
2178 NOTE_CFI (insn));
2179 insn = NEXT_INSN (insn);
2180 }
2181 while (insn != next);
2182 first = false;
2183 }
2184 }
2185 }
2186
2187 /* If LABEL is the start of a trace, then initialize the state of that
2188 trace from CUR_TRACE and CUR_ROW. */
2189
2190 static void
2191 maybe_record_trace_start (rtx start, rtx origin)
2192 {
2193 dw_trace_info *ti;
2194 HOST_WIDE_INT args_size;
2195
2196 ti = get_trace_info (start);
2197 gcc_assert (ti != NULL);
2198
2199 if (dump_file)
2200 {
2201 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
2202 cur_trace->id, ti->id,
2203 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2204 (origin ? INSN_UID (origin) : 0));
2205 }
2206
2207 args_size = cur_trace->end_true_args_size;
2208 if (ti->beg_row == NULL)
2209 {
2210 /* This is the first time we've encountered this trace. Propagate
2211 state across the edge and push the trace onto the work list. */
2212 ti->beg_row = copy_cfi_row (cur_row);
2213 ti->beg_true_args_size = args_size;
2214
2215 ti->cfa_store = cur_trace->cfa_store;
2216 ti->cfa_temp = cur_trace->cfa_temp;
2217 ti->regs_saved_in_regs = VEC_copy (reg_saved_in_data, heap,
2218 cur_trace->regs_saved_in_regs);
2219
2220 VEC_safe_push (dw_trace_info_ref, heap, trace_work_list, ti);
2221
2222 if (dump_file)
2223 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2224 }
2225 else
2226 {
2227
2228 /* We ought to have the same state incoming to a given trace no
2229 matter how we arrive at the trace. Anything else means we've
2230 got some kind of optimization error. */
2231 gcc_checking_assert (cfi_row_equal_p (cur_row, ti->beg_row));
2232
2233 /* The args_size is allowed to conflict if it isn't actually used. */
2234 if (ti->beg_true_args_size != args_size)
2235 ti->args_size_undefined = true;
2236 }
2237 }
2238
2239 /* Similarly, but handle the args_size and CFA reset across EH
2240 and non-local goto edges. */
2241
2242 static void
2243 maybe_record_trace_start_abnormal (rtx start, rtx origin)
2244 {
2245 HOST_WIDE_INT save_args_size, delta;
2246 dw_cfa_location save_cfa;
2247
2248 save_args_size = cur_trace->end_true_args_size;
2249 if (save_args_size == 0)
2250 {
2251 maybe_record_trace_start (start, origin);
2252 return;
2253 }
2254
2255 delta = -save_args_size;
2256 cur_trace->end_true_args_size = 0;
2257
2258 save_cfa = cur_row->cfa;
2259 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2260 {
2261 /* Convert a change in args_size (always a positive in the
2262 direction of stack growth) to a change in stack pointer. */
2263 #ifndef STACK_GROWS_DOWNWARD
2264 delta = -delta;
2265 #endif
2266 cur_row->cfa.offset += delta;
2267 }
2268
2269 maybe_record_trace_start (start, origin);
2270
2271 cur_trace->end_true_args_size = save_args_size;
2272 cur_row->cfa = save_cfa;
2273 }
2274
2275 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2276 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2277
2278 static void
2279 create_trace_edges (rtx insn)
2280 {
2281 rtx tmp, lab;
2282 int i, n;
2283
2284 if (JUMP_P (insn))
2285 {
2286 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2287 return;
2288
2289 if (tablejump_p (insn, NULL, &tmp))
2290 {
2291 rtvec vec;
2292
2293 tmp = PATTERN (tmp);
2294 vec = XVEC (tmp, GET_CODE (tmp) == ADDR_DIFF_VEC);
2295
2296 n = GET_NUM_ELEM (vec);
2297 for (i = 0; i < n; ++i)
2298 {
2299 lab = XEXP (RTVEC_ELT (vec, i), 0);
2300 maybe_record_trace_start (lab, insn);
2301 }
2302 }
2303 else if (computed_jump_p (insn))
2304 {
2305 for (lab = forced_labels; lab; lab = XEXP (lab, 1))
2306 maybe_record_trace_start (XEXP (lab, 0), insn);
2307 }
2308 else if (returnjump_p (insn))
2309 ;
2310 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2311 {
2312 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2313 for (i = 0; i < n; ++i)
2314 {
2315 lab = XEXP (ASM_OPERANDS_LABEL (tmp, i), 0);
2316 maybe_record_trace_start (lab, insn);
2317 }
2318 }
2319 else
2320 {
2321 lab = JUMP_LABEL (insn);
2322 gcc_assert (lab != NULL);
2323 maybe_record_trace_start (lab, insn);
2324 }
2325 }
2326 else if (CALL_P (insn))
2327 {
2328 /* Sibling calls don't have edges inside this function. */
2329 if (SIBLING_CALL_P (insn))
2330 return;
2331
2332 /* Process non-local goto edges. */
2333 if (can_nonlocal_goto (insn))
2334 for (lab = nonlocal_goto_handler_labels; lab; lab = XEXP (lab, 1))
2335 maybe_record_trace_start_abnormal (XEXP (lab, 0), insn);
2336 }
2337 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2338 {
2339 rtx seq = PATTERN (insn);
2340 int i, n = XVECLEN (seq, 0);
2341 for (i = 0; i < n; ++i)
2342 create_trace_edges (XVECEXP (seq, 0, i));
2343 return;
2344 }
2345
2346 /* Process EH edges. */
2347 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2348 {
2349 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2350 if (lp)
2351 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2352 }
2353 }
2354
2355 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2356
2357 static void
2358 scan_insn_after (rtx insn)
2359 {
2360 if (RTX_FRAME_RELATED_P (insn))
2361 dwarf2out_frame_debug (insn);
2362 notice_args_size (insn);
2363 }
2364
2365 /* Scan the trace beginning at INSN and create the CFI notes for the
2366 instructions therein. */
2367
2368 static void
2369 scan_trace (dw_trace_info *trace)
2370 {
2371 rtx prev, insn = trace->head;
2372 dw_cfa_location this_cfa;
2373
2374 if (dump_file)
2375 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2376 trace->id, rtx_name[(int) GET_CODE (insn)],
2377 INSN_UID (insn));
2378
2379 trace->end_row = copy_cfi_row (trace->beg_row);
2380 trace->end_true_args_size = trace->beg_true_args_size;
2381
2382 cur_trace = trace;
2383 cur_row = trace->end_row;
2384
2385 this_cfa = cur_row->cfa;
2386 cur_cfa = &this_cfa;
2387
2388 for (prev = insn, insn = NEXT_INSN (insn);
2389 insn;
2390 prev = insn, insn = NEXT_INSN (insn))
2391 {
2392 rtx control;
2393
2394 /* Do everything that happens "before" the insn. */
2395 add_cfi_insn = prev;
2396
2397 /* Notice the end of a trace. */
2398 if (BARRIER_P (insn))
2399 {
2400 /* Don't bother saving the unneeded queued registers at all. */
2401 VEC_truncate (queued_reg_save, queued_reg_saves, 0);
2402 break;
2403 }
2404 if (save_point_p (insn))
2405 {
2406 /* Propagate across fallthru edges. */
2407 dwarf2out_flush_queued_reg_saves ();
2408 maybe_record_trace_start (insn, NULL);
2409 break;
2410 }
2411
2412 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2413 continue;
2414
2415 /* Handle all changes to the row state. Sequences require special
2416 handling for the positioning of the notes. */
2417 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2418 {
2419 rtx elt, pat = PATTERN (insn);
2420 int i, n = XVECLEN (pat, 0);
2421
2422 control = XVECEXP (pat, 0, 0);
2423 if (can_throw_internal (control))
2424 notice_eh_throw (control);
2425 dwarf2out_flush_queued_reg_saves ();
2426
2427 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2428 {
2429 /* ??? Hopefully multiple delay slots are not annulled. */
2430 gcc_assert (n == 2);
2431 gcc_assert (!RTX_FRAME_RELATED_P (control));
2432 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2433
2434 elt = XVECEXP (pat, 0, 1);
2435
2436 /* If ELT is an instruction from target of an annulled branch,
2437 the effects are for the target only and so the args_size
2438 and CFA along the current path shouldn't change. */
2439 if (INSN_FROM_TARGET_P (elt))
2440 {
2441 HOST_WIDE_INT restore_args_size;
2442 cfi_vec save_row_reg_save;
2443
2444 add_cfi_insn = NULL;
2445 restore_args_size = cur_trace->end_true_args_size;
2446 cur_cfa = &cur_row->cfa;
2447 save_row_reg_save = VEC_copy (dw_cfi_ref, gc, cur_row->reg_save);
2448
2449 scan_insn_after (elt);
2450
2451 /* ??? Should we instead save the entire row state? */
2452 gcc_assert (!VEC_length (queued_reg_save, queued_reg_saves));
2453
2454 create_trace_edges (control);
2455
2456 cur_trace->end_true_args_size = restore_args_size;
2457 cur_row->cfa = this_cfa;
2458 cur_row->reg_save = save_row_reg_save;
2459 cur_cfa = &this_cfa;
2460 continue;
2461 }
2462 }
2463
2464 /* The insns in the delay slot should all be considered to happen
2465 "before" a call insn. Consider a call with a stack pointer
2466 adjustment in the delay slot. The backtrace from the callee
2467 should include the sp adjustment. Unfortunately, that leaves
2468 us with an unavoidable unwinding error exactly at the call insn
2469 itself. For jump insns we'd prefer to avoid this error by
2470 placing the notes after the sequence. */
2471 if (JUMP_P (control))
2472 add_cfi_insn = insn;
2473
2474 for (i = 1; i < n; ++i)
2475 {
2476 elt = XVECEXP (pat, 0, i);
2477 scan_insn_after (elt);
2478 }
2479
2480 /* Make sure any register saves are visible at the jump target. */
2481 dwarf2out_flush_queued_reg_saves ();
2482 any_cfis_emitted = false;
2483
2484 /* However, if there is some adjustment on the call itself, e.g.
2485 a call_pop, that action should be considered to happen after
2486 the call returns. */
2487 add_cfi_insn = insn;
2488 scan_insn_after (control);
2489 }
2490 else
2491 {
2492 /* Flush data before calls and jumps, and of course if necessary. */
2493 if (can_throw_internal (insn))
2494 {
2495 notice_eh_throw (insn);
2496 dwarf2out_flush_queued_reg_saves ();
2497 }
2498 else if (!NONJUMP_INSN_P (insn)
2499 || clobbers_queued_reg_save (insn)
2500 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2501 dwarf2out_flush_queued_reg_saves ();
2502 any_cfis_emitted = false;
2503
2504 add_cfi_insn = insn;
2505 scan_insn_after (insn);
2506 control = insn;
2507 }
2508
2509 /* Between frame-related-p and args_size we might have otherwise
2510 emitted two cfa adjustments. Do it now. */
2511 def_cfa_1 (&this_cfa);
2512
2513 /* Minimize the number of advances by emitting the entire queue
2514 once anything is emitted. */
2515 if (any_cfis_emitted
2516 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2517 dwarf2out_flush_queued_reg_saves ();
2518
2519 /* Note that a test for control_flow_insn_p does exactly the
2520 same tests as are done to actually create the edges. So
2521 always call the routine and let it not create edges for
2522 non-control-flow insns. */
2523 create_trace_edges (control);
2524 }
2525
2526 add_cfi_insn = NULL;
2527 cur_row = NULL;
2528 cur_trace = NULL;
2529 cur_cfa = NULL;
2530 }
2531
2532 /* Scan the function and create the initial set of CFI notes. */
2533
2534 static void
2535 create_cfi_notes (void)
2536 {
2537 dw_trace_info *ti;
2538
2539 gcc_checking_assert (queued_reg_saves == NULL);
2540 gcc_checking_assert (trace_work_list == NULL);
2541
2542 /* Always begin at the entry trace. */
2543 ti = VEC_index (dw_trace_info, trace_info, 0);
2544 scan_trace (ti);
2545
2546 while (!VEC_empty (dw_trace_info_ref, trace_work_list))
2547 {
2548 ti = VEC_pop (dw_trace_info_ref, trace_work_list);
2549 scan_trace (ti);
2550 }
2551
2552 VEC_free (queued_reg_save, heap, queued_reg_saves);
2553 VEC_free (dw_trace_info_ref, heap, trace_work_list);
2554 }
2555
2556 /* Return the insn before the first NOTE_INSN_CFI after START. */
2557
2558 static rtx
2559 before_next_cfi_note (rtx start)
2560 {
2561 rtx prev = start;
2562 while (start)
2563 {
2564 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2565 return prev;
2566 prev = start;
2567 start = NEXT_INSN (start);
2568 }
2569 gcc_unreachable ();
2570 }
2571
2572 /* Insert CFI notes between traces to properly change state between them. */
2573
2574 static void
2575 connect_traces (void)
2576 {
2577 unsigned i, n = VEC_length (dw_trace_info, trace_info);
2578 dw_trace_info *prev_ti, *ti;
2579
2580 /* ??? Ideally, we should have both queued and processed every trace.
2581 However the current representation of constant pools on various targets
2582 is indistinguishable from unreachable code. Assume for the moment that
2583 we can simply skip over such traces. */
2584 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2585 these are not "real" instructions, and should not be considered.
2586 This could be generically useful for tablejump data as well. */
2587 /* Remove all unprocessed traces from the list. */
2588 for (i = n - 1; i > 0; --i)
2589 {
2590 ti = VEC_index (dw_trace_info, trace_info, i);
2591 if (ti->beg_row == NULL)
2592 {
2593 VEC_ordered_remove (dw_trace_info, trace_info, i);
2594 n -= 1;
2595 }
2596 else
2597 gcc_assert (ti->end_row != NULL);
2598 }
2599
2600 /* Work from the end back to the beginning. This lets us easily insert
2601 remember/restore_state notes in the correct order wrt other notes. */
2602 prev_ti = VEC_index (dw_trace_info, trace_info, n - 1);
2603 for (i = n - 1; i > 0; --i)
2604 {
2605 dw_cfi_row *old_row;
2606
2607 ti = prev_ti;
2608 prev_ti = VEC_index (dw_trace_info, trace_info, i - 1);
2609
2610 add_cfi_insn = ti->head;
2611
2612 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2613 for the portion of the function in the alternate text
2614 section. The row state at the very beginning of that
2615 new FDE will be exactly the row state from the CIE. */
2616 if (ti->switch_sections)
2617 old_row = cie_cfi_row;
2618 else
2619 {
2620 old_row = prev_ti->end_row;
2621 /* If there's no change from the previous end state, fine. */
2622 if (cfi_row_equal_p (old_row, ti->beg_row))
2623 ;
2624 /* Otherwise check for the common case of sharing state with
2625 the beginning of an epilogue, but not the end. Insert
2626 remember/restore opcodes in that case. */
2627 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
2628 {
2629 dw_cfi_ref cfi;
2630
2631 /* Note that if we blindly insert the remember at the
2632 start of the trace, we can wind up increasing the
2633 size of the unwind info due to extra advance opcodes.
2634 Instead, put the remember immediately before the next
2635 state change. We know there must be one, because the
2636 state at the beginning and head of the trace differ. */
2637 add_cfi_insn = before_next_cfi_note (prev_ti->head);
2638 cfi = new_cfi ();
2639 cfi->dw_cfi_opc = DW_CFA_remember_state;
2640 add_cfi (cfi);
2641
2642 add_cfi_insn = ti->head;
2643 cfi = new_cfi ();
2644 cfi->dw_cfi_opc = DW_CFA_restore_state;
2645 add_cfi (cfi);
2646
2647 old_row = prev_ti->beg_row;
2648 }
2649 /* Otherwise, we'll simply change state from the previous end. */
2650 }
2651
2652 change_cfi_row (old_row, ti->beg_row);
2653
2654 if (dump_file && add_cfi_insn != ti->head)
2655 {
2656 rtx note;
2657
2658 fprintf (dump_file, "Fixup between trace %u and %u:\n",
2659 prev_ti->id, ti->id);
2660
2661 note = ti->head;
2662 do
2663 {
2664 note = NEXT_INSN (note);
2665 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
2666 output_cfi_directive (dump_file, NOTE_CFI (note));
2667 }
2668 while (note != add_cfi_insn);
2669 }
2670 }
2671
2672 /* Connect args_size between traces that have can_throw_internal insns. */
2673 if (cfun->eh->lp_array != NULL)
2674 {
2675 HOST_WIDE_INT prev_args_size = 0;
2676
2677 for (i = 0; i < n; ++i)
2678 {
2679 ti = VEC_index (dw_trace_info, trace_info, i);
2680
2681 if (ti->switch_sections)
2682 prev_args_size = 0;
2683 if (ti->eh_head == NULL)
2684 continue;
2685 gcc_assert (!ti->args_size_undefined);
2686
2687 if (ti->beg_delay_args_size != prev_args_size)
2688 {
2689 /* ??? Search back to previous CFI note. */
2690 add_cfi_insn = PREV_INSN (ti->eh_head);
2691 add_cfi_args_size (ti->beg_delay_args_size);
2692 }
2693
2694 prev_args_size = ti->end_delay_args_size;
2695 }
2696 }
2697 }
2698
2699 /* Set up the pseudo-cfg of instruction traces, as described at the
2700 block comment at the top of the file. */
2701
2702 static void
2703 create_pseudo_cfg (void)
2704 {
2705 bool saw_barrier, switch_sections;
2706 dw_trace_info *ti;
2707 rtx insn;
2708 unsigned i;
2709
2710 /* The first trace begins at the start of the function,
2711 and begins with the CIE row state. */
2712 trace_info = VEC_alloc (dw_trace_info, heap, 16);
2713 ti = VEC_quick_push (dw_trace_info, trace_info, NULL);
2714
2715 memset (ti, 0, sizeof (*ti));
2716 ti->head = get_insns ();
2717 ti->beg_row = cie_cfi_row;
2718 ti->cfa_store = cie_cfi_row->cfa;
2719 ti->cfa_temp.reg = INVALID_REGNUM;
2720 if (cie_return_save)
2721 VEC_safe_push (reg_saved_in_data, heap,
2722 ti->regs_saved_in_regs, cie_return_save);
2723
2724 /* Walk all the insns, collecting start of trace locations. */
2725 saw_barrier = false;
2726 switch_sections = false;
2727 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2728 {
2729 if (BARRIER_P (insn))
2730 saw_barrier = true;
2731 else if (NOTE_P (insn)
2732 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2733 {
2734 /* We should have just seen a barrier. */
2735 gcc_assert (saw_barrier);
2736 switch_sections = true;
2737 }
2738 /* Watch out for save_point notes between basic blocks.
2739 In particular, a note after a barrier. Do not record these,
2740 delaying trace creation until the label. */
2741 else if (save_point_p (insn)
2742 && (LABEL_P (insn) || !saw_barrier))
2743 {
2744 ti = VEC_safe_push (dw_trace_info, heap, trace_info, NULL);
2745 memset (ti, 0, sizeof (*ti));
2746 ti->head = insn;
2747 ti->switch_sections = switch_sections;
2748 ti->id = VEC_length (dw_trace_info, trace_info) - 1;
2749
2750 saw_barrier = false;
2751 switch_sections = false;
2752 }
2753 }
2754
2755 /* Create the trace index after we've finished building trace_info,
2756 avoiding stale pointer problems due to reallocation. */
2757 trace_index = htab_create (VEC_length (dw_trace_info, trace_info),
2758 dw_trace_info_hash, dw_trace_info_eq, NULL);
2759 FOR_EACH_VEC_ELT (dw_trace_info, trace_info, i, ti)
2760 {
2761 void **slot;
2762
2763 if (dump_file)
2764 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", i,
2765 rtx_name[(int) GET_CODE (ti->head)], INSN_UID (ti->head),
2766 ti->switch_sections ? " (section switch)" : "");
2767
2768 slot = htab_find_slot_with_hash (trace_index, ti,
2769 INSN_UID (ti->head), INSERT);
2770 gcc_assert (*slot == NULL);
2771 *slot = (void *) ti;
2772 }
2773 }
2774
2775 /* Record the initial position of the return address. RTL is
2776 INCOMING_RETURN_ADDR_RTX. */
2777
2778 static void
2779 initial_return_save (rtx rtl)
2780 {
2781 unsigned int reg = INVALID_REGNUM;
2782 HOST_WIDE_INT offset = 0;
2783
2784 switch (GET_CODE (rtl))
2785 {
2786 case REG:
2787 /* RA is in a register. */
2788 reg = dwf_regno (rtl);
2789 break;
2790
2791 case MEM:
2792 /* RA is on the stack. */
2793 rtl = XEXP (rtl, 0);
2794 switch (GET_CODE (rtl))
2795 {
2796 case REG:
2797 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
2798 offset = 0;
2799 break;
2800
2801 case PLUS:
2802 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2803 offset = INTVAL (XEXP (rtl, 1));
2804 break;
2805
2806 case MINUS:
2807 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
2808 offset = -INTVAL (XEXP (rtl, 1));
2809 break;
2810
2811 default:
2812 gcc_unreachable ();
2813 }
2814
2815 break;
2816
2817 case PLUS:
2818 /* The return address is at some offset from any value we can
2819 actually load. For instance, on the SPARC it is in %i7+8. Just
2820 ignore the offset for now; it doesn't matter for unwinding frames. */
2821 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
2822 initial_return_save (XEXP (rtl, 0));
2823 return;
2824
2825 default:
2826 gcc_unreachable ();
2827 }
2828
2829 if (reg != DWARF_FRAME_RETURN_COLUMN)
2830 {
2831 if (reg != INVALID_REGNUM)
2832 record_reg_saved_in_reg (rtl, pc_rtx);
2833 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
2834 }
2835 }
2836
2837 static void
2838 create_cie_data (void)
2839 {
2840 dw_cfa_location loc;
2841 dw_trace_info cie_trace;
2842
2843 dw_stack_pointer_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
2844 dw_frame_pointer_regnum = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2845
2846 memset (&cie_trace, 0, sizeof(cie_trace));
2847 cur_trace = &cie_trace;
2848
2849 add_cfi_vec = &cie_cfi_vec;
2850 cie_cfi_row = cur_row = new_cfi_row ();
2851
2852 /* On entry, the Canonical Frame Address is at SP. */
2853 memset(&loc, 0, sizeof (loc));
2854 loc.reg = dw_stack_pointer_regnum;
2855 loc.offset = INCOMING_FRAME_SP_OFFSET;
2856 def_cfa_1 (&loc);
2857
2858 if (targetm.debug_unwind_info () == UI_DWARF2
2859 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
2860 {
2861 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2862
2863 /* For a few targets, we have the return address incoming into a
2864 register, but choose a different return column. This will result
2865 in a DW_CFA_register for the return, and an entry in
2866 regs_saved_in_regs to match. If the target later stores that
2867 return address register to the stack, we want to be able to emit
2868 the DW_CFA_offset against the return column, not the intermediate
2869 save register. Save the contents of regs_saved_in_regs so that
2870 we can re-initialize it at the start of each function. */
2871 switch (VEC_length (reg_saved_in_data, cie_trace.regs_saved_in_regs))
2872 {
2873 case 0:
2874 break;
2875 case 1:
2876 cie_return_save = ggc_alloc_reg_saved_in_data ();
2877 *cie_return_save = *VEC_index (reg_saved_in_data,
2878 cie_trace.regs_saved_in_regs, 0);
2879 VEC_free (reg_saved_in_data, heap, cie_trace.regs_saved_in_regs);
2880 break;
2881 default:
2882 gcc_unreachable ();
2883 }
2884 }
2885
2886 add_cfi_vec = NULL;
2887 cur_row = NULL;
2888 cur_trace = NULL;
2889 }
2890
2891 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2892 state at each location within the function. These notes will be
2893 emitted during pass_final. */
2894
2895 static unsigned int
2896 execute_dwarf2_frame (void)
2897 {
2898 /* The first time we're called, compute the incoming frame state. */
2899 if (cie_cfi_vec == NULL)
2900 create_cie_data ();
2901
2902 dwarf2out_alloc_current_fde ();
2903
2904 create_pseudo_cfg ();
2905
2906 /* Do the work. */
2907 create_cfi_notes ();
2908 connect_traces ();
2909 add_cfis_to_fde ();
2910
2911 /* Free all the data we allocated. */
2912 {
2913 size_t i;
2914 dw_trace_info *ti;
2915
2916 FOR_EACH_VEC_ELT (dw_trace_info, trace_info, i, ti)
2917 VEC_free (reg_saved_in_data, heap, ti->regs_saved_in_regs);
2918 }
2919 VEC_free (dw_trace_info, heap, trace_info);
2920
2921 htab_delete (trace_index);
2922 trace_index = NULL;
2923
2924 return 0;
2925 }
2926 \f
2927 /* Convert a DWARF call frame info. operation to its string name */
2928
2929 static const char *
2930 dwarf_cfi_name (unsigned int cfi_opc)
2931 {
2932 switch (cfi_opc)
2933 {
2934 case DW_CFA_advance_loc:
2935 return "DW_CFA_advance_loc";
2936 case DW_CFA_offset:
2937 return "DW_CFA_offset";
2938 case DW_CFA_restore:
2939 return "DW_CFA_restore";
2940 case DW_CFA_nop:
2941 return "DW_CFA_nop";
2942 case DW_CFA_set_loc:
2943 return "DW_CFA_set_loc";
2944 case DW_CFA_advance_loc1:
2945 return "DW_CFA_advance_loc1";
2946 case DW_CFA_advance_loc2:
2947 return "DW_CFA_advance_loc2";
2948 case DW_CFA_advance_loc4:
2949 return "DW_CFA_advance_loc4";
2950 case DW_CFA_offset_extended:
2951 return "DW_CFA_offset_extended";
2952 case DW_CFA_restore_extended:
2953 return "DW_CFA_restore_extended";
2954 case DW_CFA_undefined:
2955 return "DW_CFA_undefined";
2956 case DW_CFA_same_value:
2957 return "DW_CFA_same_value";
2958 case DW_CFA_register:
2959 return "DW_CFA_register";
2960 case DW_CFA_remember_state:
2961 return "DW_CFA_remember_state";
2962 case DW_CFA_restore_state:
2963 return "DW_CFA_restore_state";
2964 case DW_CFA_def_cfa:
2965 return "DW_CFA_def_cfa";
2966 case DW_CFA_def_cfa_register:
2967 return "DW_CFA_def_cfa_register";
2968 case DW_CFA_def_cfa_offset:
2969 return "DW_CFA_def_cfa_offset";
2970
2971 /* DWARF 3 */
2972 case DW_CFA_def_cfa_expression:
2973 return "DW_CFA_def_cfa_expression";
2974 case DW_CFA_expression:
2975 return "DW_CFA_expression";
2976 case DW_CFA_offset_extended_sf:
2977 return "DW_CFA_offset_extended_sf";
2978 case DW_CFA_def_cfa_sf:
2979 return "DW_CFA_def_cfa_sf";
2980 case DW_CFA_def_cfa_offset_sf:
2981 return "DW_CFA_def_cfa_offset_sf";
2982
2983 /* SGI/MIPS specific */
2984 case DW_CFA_MIPS_advance_loc8:
2985 return "DW_CFA_MIPS_advance_loc8";
2986
2987 /* GNU extensions */
2988 case DW_CFA_GNU_window_save:
2989 return "DW_CFA_GNU_window_save";
2990 case DW_CFA_GNU_args_size:
2991 return "DW_CFA_GNU_args_size";
2992 case DW_CFA_GNU_negative_offset_extended:
2993 return "DW_CFA_GNU_negative_offset_extended";
2994
2995 default:
2996 return "DW_CFA_<unknown>";
2997 }
2998 }
2999
3000 /* This routine will generate the correct assembly data for a location
3001 description based on a cfi entry with a complex address. */
3002
3003 static void
3004 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
3005 {
3006 dw_loc_descr_ref loc;
3007 unsigned long size;
3008
3009 if (cfi->dw_cfi_opc == DW_CFA_expression)
3010 {
3011 unsigned r =
3012 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3013 dw2_asm_output_data (1, r, NULL);
3014 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3015 }
3016 else
3017 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3018
3019 /* Output the size of the block. */
3020 size = size_of_locs (loc);
3021 dw2_asm_output_data_uleb128 (size, NULL);
3022
3023 /* Now output the operations themselves. */
3024 output_loc_sequence (loc, for_eh);
3025 }
3026
3027 /* Similar, but used for .cfi_escape. */
3028
3029 static void
3030 output_cfa_loc_raw (dw_cfi_ref cfi)
3031 {
3032 dw_loc_descr_ref loc;
3033 unsigned long size;
3034
3035 if (cfi->dw_cfi_opc == DW_CFA_expression)
3036 {
3037 unsigned r =
3038 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3039 fprintf (asm_out_file, "%#x,", r);
3040 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3041 }
3042 else
3043 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3044
3045 /* Output the size of the block. */
3046 size = size_of_locs (loc);
3047 dw2_asm_output_data_uleb128_raw (size);
3048 fputc (',', asm_out_file);
3049
3050 /* Now output the operations themselves. */
3051 output_loc_sequence_raw (loc);
3052 }
3053
3054 /* Output a Call Frame Information opcode and its operand(s). */
3055
3056 void
3057 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3058 {
3059 unsigned long r;
3060 HOST_WIDE_INT off;
3061
3062 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3063 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3064 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3065 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3066 ((unsigned HOST_WIDE_INT)
3067 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3068 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3069 {
3070 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3071 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3072 "DW_CFA_offset, column %#lx", r);
3073 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3074 dw2_asm_output_data_uleb128 (off, NULL);
3075 }
3076 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3077 {
3078 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3079 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3080 "DW_CFA_restore, column %#lx", r);
3081 }
3082 else
3083 {
3084 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3085 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3086
3087 switch (cfi->dw_cfi_opc)
3088 {
3089 case DW_CFA_set_loc:
3090 if (for_eh)
3091 dw2_asm_output_encoded_addr_rtx (
3092 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3093 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3094 false, NULL);
3095 else
3096 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3097 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3098 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3099 break;
3100
3101 case DW_CFA_advance_loc1:
3102 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3103 fde->dw_fde_current_label, NULL);
3104 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3105 break;
3106
3107 case DW_CFA_advance_loc2:
3108 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3109 fde->dw_fde_current_label, NULL);
3110 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3111 break;
3112
3113 case DW_CFA_advance_loc4:
3114 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3115 fde->dw_fde_current_label, NULL);
3116 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3117 break;
3118
3119 case DW_CFA_MIPS_advance_loc8:
3120 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3121 fde->dw_fde_current_label, NULL);
3122 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3123 break;
3124
3125 case DW_CFA_offset_extended:
3126 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3127 dw2_asm_output_data_uleb128 (r, NULL);
3128 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3129 dw2_asm_output_data_uleb128 (off, NULL);
3130 break;
3131
3132 case DW_CFA_def_cfa:
3133 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3134 dw2_asm_output_data_uleb128 (r, NULL);
3135 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3136 break;
3137
3138 case DW_CFA_offset_extended_sf:
3139 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3140 dw2_asm_output_data_uleb128 (r, NULL);
3141 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3142 dw2_asm_output_data_sleb128 (off, NULL);
3143 break;
3144
3145 case DW_CFA_def_cfa_sf:
3146 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3147 dw2_asm_output_data_uleb128 (r, NULL);
3148 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3149 dw2_asm_output_data_sleb128 (off, NULL);
3150 break;
3151
3152 case DW_CFA_restore_extended:
3153 case DW_CFA_undefined:
3154 case DW_CFA_same_value:
3155 case DW_CFA_def_cfa_register:
3156 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3157 dw2_asm_output_data_uleb128 (r, NULL);
3158 break;
3159
3160 case DW_CFA_register:
3161 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3162 dw2_asm_output_data_uleb128 (r, NULL);
3163 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3164 dw2_asm_output_data_uleb128 (r, NULL);
3165 break;
3166
3167 case DW_CFA_def_cfa_offset:
3168 case DW_CFA_GNU_args_size:
3169 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3170 break;
3171
3172 case DW_CFA_def_cfa_offset_sf:
3173 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3174 dw2_asm_output_data_sleb128 (off, NULL);
3175 break;
3176
3177 case DW_CFA_GNU_window_save:
3178 break;
3179
3180 case DW_CFA_def_cfa_expression:
3181 case DW_CFA_expression:
3182 output_cfa_loc (cfi, for_eh);
3183 break;
3184
3185 case DW_CFA_GNU_negative_offset_extended:
3186 /* Obsoleted by DW_CFA_offset_extended_sf. */
3187 gcc_unreachable ();
3188
3189 default:
3190 break;
3191 }
3192 }
3193 }
3194
3195 /* Similar, but do it via assembler directives instead. */
3196
3197 void
3198 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3199 {
3200 unsigned long r, r2;
3201
3202 switch (cfi->dw_cfi_opc)
3203 {
3204 case DW_CFA_advance_loc:
3205 case DW_CFA_advance_loc1:
3206 case DW_CFA_advance_loc2:
3207 case DW_CFA_advance_loc4:
3208 case DW_CFA_MIPS_advance_loc8:
3209 case DW_CFA_set_loc:
3210 /* Should only be created in a code path not followed when emitting
3211 via directives. The assembler is going to take care of this for
3212 us. But this routines is also used for debugging dumps, so
3213 print something. */
3214 gcc_assert (f != asm_out_file);
3215 fprintf (f, "\t.cfi_advance_loc\n");
3216 break;
3217
3218 case DW_CFA_offset:
3219 case DW_CFA_offset_extended:
3220 case DW_CFA_offset_extended_sf:
3221 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3222 fprintf (f, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3223 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3224 break;
3225
3226 case DW_CFA_restore:
3227 case DW_CFA_restore_extended:
3228 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3229 fprintf (f, "\t.cfi_restore %lu\n", r);
3230 break;
3231
3232 case DW_CFA_undefined:
3233 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3234 fprintf (f, "\t.cfi_undefined %lu\n", r);
3235 break;
3236
3237 case DW_CFA_same_value:
3238 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3239 fprintf (f, "\t.cfi_same_value %lu\n", r);
3240 break;
3241
3242 case DW_CFA_def_cfa:
3243 case DW_CFA_def_cfa_sf:
3244 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3245 fprintf (f, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC"\n",
3246 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3247 break;
3248
3249 case DW_CFA_def_cfa_register:
3250 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3251 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3252 break;
3253
3254 case DW_CFA_register:
3255 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3256 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3257 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3258 break;
3259
3260 case DW_CFA_def_cfa_offset:
3261 case DW_CFA_def_cfa_offset_sf:
3262 fprintf (f, "\t.cfi_def_cfa_offset "
3263 HOST_WIDE_INT_PRINT_DEC"\n",
3264 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3265 break;
3266
3267 case DW_CFA_remember_state:
3268 fprintf (f, "\t.cfi_remember_state\n");
3269 break;
3270 case DW_CFA_restore_state:
3271 fprintf (f, "\t.cfi_restore_state\n");
3272 break;
3273
3274 case DW_CFA_GNU_args_size:
3275 if (f == asm_out_file)
3276 {
3277 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3278 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3279 if (flag_debug_asm)
3280 fprintf (f, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC,
3281 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3282 fputc ('\n', f);
3283 }
3284 else
3285 {
3286 fprintf (f, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC "\n",
3287 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3288 }
3289 break;
3290
3291 case DW_CFA_GNU_window_save:
3292 fprintf (f, "\t.cfi_window_save\n");
3293 break;
3294
3295 case DW_CFA_def_cfa_expression:
3296 if (f != asm_out_file)
3297 {
3298 fprintf (f, "\t.cfi_def_cfa_expression ...\n");
3299 break;
3300 }
3301 /* FALLTHRU */
3302 case DW_CFA_expression:
3303 if (f != asm_out_file)
3304 {
3305 fprintf (f, "\t.cfi_cfa_expression ...\n");
3306 break;
3307 }
3308 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3309 output_cfa_loc_raw (cfi);
3310 fputc ('\n', f);
3311 break;
3312
3313 default:
3314 gcc_unreachable ();
3315 }
3316 }
3317
3318 void
3319 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3320 {
3321 if (dwarf2out_do_cfi_asm ())
3322 output_cfi_directive (asm_out_file, cfi);
3323 }
3324
3325 static void
3326 dump_cfi_row (FILE *f, dw_cfi_row *row)
3327 {
3328 dw_cfi_ref cfi;
3329 unsigned i;
3330
3331 cfi = row->cfa_cfi;
3332 if (!cfi)
3333 {
3334 dw_cfa_location dummy;
3335 memset(&dummy, 0, sizeof(dummy));
3336 dummy.reg = INVALID_REGNUM;
3337 cfi = def_cfa_0 (&dummy, &row->cfa);
3338 }
3339 output_cfi_directive (f, cfi);
3340
3341 FOR_EACH_VEC_ELT (dw_cfi_ref, row->reg_save, i, cfi)
3342 if (cfi)
3343 output_cfi_directive (f, cfi);
3344 }
3345
3346 void debug_cfi_row (dw_cfi_row *row);
3347
3348 void
3349 debug_cfi_row (dw_cfi_row *row)
3350 {
3351 dump_cfi_row (stderr, row);
3352 }
3353 \f
3354
3355 /* Save the result of dwarf2out_do_frame across PCH.
3356 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3357 static GTY(()) signed char saved_do_cfi_asm = 0;
3358
3359 /* Decide whether we want to emit frame unwind information for the current
3360 translation unit. */
3361
3362 bool
3363 dwarf2out_do_frame (void)
3364 {
3365 /* We want to emit correct CFA location expressions or lists, so we
3366 have to return true if we're going to output debug info, even if
3367 we're not going to output frame or unwind info. */
3368 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3369 return true;
3370
3371 if (saved_do_cfi_asm > 0)
3372 return true;
3373
3374 if (targetm.debug_unwind_info () == UI_DWARF2)
3375 return true;
3376
3377 if ((flag_unwind_tables || flag_exceptions)
3378 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3379 return true;
3380
3381 return false;
3382 }
3383
3384 /* Decide whether to emit frame unwind via assembler directives. */
3385
3386 bool
3387 dwarf2out_do_cfi_asm (void)
3388 {
3389 int enc;
3390
3391 #ifdef MIPS_DEBUGGING_INFO
3392 return false;
3393 #endif
3394
3395 if (saved_do_cfi_asm != 0)
3396 return saved_do_cfi_asm > 0;
3397
3398 /* Assume failure for a moment. */
3399 saved_do_cfi_asm = -1;
3400
3401 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3402 return false;
3403 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3404 return false;
3405
3406 /* Make sure the personality encoding is one the assembler can support.
3407 In particular, aligned addresses can't be handled. */
3408 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3409 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3410 return false;
3411 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3412 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3413 return false;
3414
3415 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3416 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3417 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3418 && !flag_unwind_tables && !flag_exceptions
3419 && targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
3420 return false;
3421
3422 /* Success! */
3423 saved_do_cfi_asm = 1;
3424 return true;
3425 }
3426
3427 static bool
3428 gate_dwarf2_frame (void)
3429 {
3430 #ifndef HAVE_prologue
3431 /* Targets which still implement the prologue in assembler text
3432 cannot use the generic dwarf2 unwinding. */
3433 return false;
3434 #endif
3435
3436 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3437 from the optimized shrink-wrapping annotations that we will compute.
3438 For now, only produce the CFI notes for dwarf2. */
3439 return dwarf2out_do_frame ();
3440 }
3441
3442 struct rtl_opt_pass pass_dwarf2_frame =
3443 {
3444 {
3445 RTL_PASS,
3446 "dwarf2", /* name */
3447 gate_dwarf2_frame, /* gate */
3448 execute_dwarf2_frame, /* execute */
3449 NULL, /* sub */
3450 NULL, /* next */
3451 0, /* static_pass_number */
3452 TV_FINAL, /* tv_id */
3453 0, /* properties_required */
3454 0, /* properties_provided */
3455 0, /* properties_destroyed */
3456 0, /* todo_flags_start */
3457 0 /* todo_flags_finish */
3458 }
3459 };
3460
3461 #include "gt-dwarf2cfi.h"