]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dwarf2out.c
gcc/
[thirdparty/gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
70
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
74
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
89
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
92
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
101
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
108
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
111
112 int
113 dwarf2out_do_frame (void)
114 {
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
126 );
127 }
128
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
133
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
137
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
143
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
150
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_str_section;
160 static GTY(()) section *debug_ranges_section;
161 static GTY(()) section *debug_frame_section;
162
163 /* How to start an assembler comment. */
164 #ifndef ASM_COMMENT_START
165 #define ASM_COMMENT_START ";#"
166 #endif
167
168 typedef struct dw_cfi_struct *dw_cfi_ref;
169 typedef struct dw_fde_struct *dw_fde_ref;
170 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
171
172 /* Call frames are described using a sequence of Call Frame
173 Information instructions. The register number, offset
174 and address fields are provided as possible operands;
175 their use is selected by the opcode field. */
176
177 enum dw_cfi_oprnd_type {
178 dw_cfi_oprnd_unused,
179 dw_cfi_oprnd_reg_num,
180 dw_cfi_oprnd_offset,
181 dw_cfi_oprnd_addr,
182 dw_cfi_oprnd_loc
183 };
184
185 typedef union dw_cfi_oprnd_struct GTY(())
186 {
187 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
188 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
189 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
190 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
191 }
192 dw_cfi_oprnd;
193
194 typedef struct dw_cfi_struct GTY(())
195 {
196 dw_cfi_ref dw_cfi_next;
197 enum dwarf_call_frame_info dw_cfi_opc;
198 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
199 dw_cfi_oprnd1;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd2;
202 }
203 dw_cfi_node;
204
205 /* This is how we define the location of the CFA. We use to handle it
206 as REG + OFFSET all the time, but now it can be more complex.
207 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
208 Instead of passing around REG and OFFSET, we pass a copy
209 of this structure. */
210 typedef struct cfa_loc GTY(())
211 {
212 HOST_WIDE_INT offset;
213 HOST_WIDE_INT base_offset;
214 unsigned int reg;
215 int indirect; /* 1 if CFA is accessed via a dereference. */
216 } dw_cfa_location;
217
218 /* All call frame descriptions (FDE's) in the GCC generated DWARF
219 refer to a single Common Information Entry (CIE), defined at
220 the beginning of the .debug_frame section. This use of a single
221 CIE obviates the need to keep track of multiple CIE's
222 in the DWARF generation routines below. */
223
224 typedef struct dw_fde_struct GTY(())
225 {
226 tree decl;
227 const char *dw_fde_begin;
228 const char *dw_fde_current_label;
229 const char *dw_fde_end;
230 const char *dw_fde_hot_section_label;
231 const char *dw_fde_hot_section_end_label;
232 const char *dw_fde_unlikely_section_label;
233 const char *dw_fde_unlikely_section_end_label;
234 bool dw_fde_switched_sections;
235 dw_cfi_ref dw_fde_cfi;
236 unsigned funcdef_number;
237 unsigned all_throwers_are_sibcalls : 1;
238 unsigned nothrow : 1;
239 unsigned uses_eh_lsda : 1;
240 }
241 dw_fde_node;
242
243 /* Maximum size (in bytes) of an artificially generated label. */
244 #define MAX_ARTIFICIAL_LABEL_BYTES 30
245
246 /* The size of addresses as they appear in the Dwarf 2 data.
247 Some architectures use word addresses to refer to code locations,
248 but Dwarf 2 info always uses byte addresses. On such machines,
249 Dwarf 2 addresses need to be larger than the architecture's
250 pointers. */
251 #ifndef DWARF2_ADDR_SIZE
252 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
253 #endif
254
255 /* The size in bytes of a DWARF field indicating an offset or length
256 relative to a debug info section, specified to be 4 bytes in the
257 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
258 as PTR_SIZE. */
259
260 #ifndef DWARF_OFFSET_SIZE
261 #define DWARF_OFFSET_SIZE 4
262 #endif
263
264 /* According to the (draft) DWARF 3 specification, the initial length
265 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
266 bytes are 0xffffffff, followed by the length stored in the next 8
267 bytes.
268
269 However, the SGI/MIPS ABI uses an initial length which is equal to
270 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
271
272 #ifndef DWARF_INITIAL_LENGTH_SIZE
273 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
274 #endif
275
276 #define DWARF_VERSION 2
277
278 /* Round SIZE up to the nearest BOUNDARY. */
279 #define DWARF_ROUND(SIZE,BOUNDARY) \
280 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
281
282 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
283 #ifndef DWARF_CIE_DATA_ALIGNMENT
284 #ifdef STACK_GROWS_DOWNWARD
285 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
286 #else
287 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
288 #endif
289 #endif
290
291 /* CIE identifier. */
292 #if HOST_BITS_PER_WIDE_INT >= 64
293 #define DWARF_CIE_ID \
294 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
295 #else
296 #define DWARF_CIE_ID DW_CIE_ID
297 #endif
298
299 /* A pointer to the base of a table that contains frame description
300 information for each routine. */
301 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
302
303 /* Number of elements currently allocated for fde_table. */
304 static GTY(()) unsigned fde_table_allocated;
305
306 /* Number of elements in fde_table currently in use. */
307 static GTY(()) unsigned fde_table_in_use;
308
309 /* Size (in elements) of increments by which we may expand the
310 fde_table. */
311 #define FDE_TABLE_INCREMENT 256
312
313 /* A list of call frame insns for the CIE. */
314 static GTY(()) dw_cfi_ref cie_cfi_head;
315
316 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
317 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
318 attribute that accelerates the lookup of the FDE associated
319 with the subprogram. This variable holds the table index of the FDE
320 associated with the current function (body) definition. */
321 static unsigned current_funcdef_fde;
322 #endif
323
324 struct indirect_string_node GTY(())
325 {
326 const char *str;
327 unsigned int refcount;
328 unsigned int form;
329 char *label;
330 };
331
332 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
333
334 static GTY(()) int dw2_string_counter;
335 static GTY(()) unsigned long dwarf2out_cfi_label_num;
336
337 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
338
339 /* Forward declarations for functions defined in this file. */
340
341 static char *stripattributes (const char *);
342 static const char *dwarf_cfi_name (unsigned);
343 static dw_cfi_ref new_cfi (void);
344 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
345 static void add_fde_cfi (const char *, dw_cfi_ref);
346 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
347 static void lookup_cfa (dw_cfa_location *);
348 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
349 static void initial_return_save (rtx);
350 static HOST_WIDE_INT stack_adjust_offset (rtx);
351 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
352 static void output_call_frame_info (int);
353 static void dwarf2out_stack_adjust (rtx, bool);
354 static void flush_queued_reg_saves (void);
355 static bool clobbers_queued_reg_save (rtx);
356 static void dwarf2out_frame_debug_expr (rtx, const char *);
357
358 /* Support for complex CFA locations. */
359 static void output_cfa_loc (dw_cfi_ref);
360 static void get_cfa_from_loc_descr (dw_cfa_location *,
361 struct dw_loc_descr_struct *);
362 static struct dw_loc_descr_struct *build_cfa_loc
363 (dw_cfa_location *, HOST_WIDE_INT);
364 static void def_cfa_1 (const char *, dw_cfa_location *);
365
366 /* How to start an assembler comment. */
367 #ifndef ASM_COMMENT_START
368 #define ASM_COMMENT_START ";#"
369 #endif
370
371 /* Data and reference forms for relocatable data. */
372 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
373 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
374
375 #ifndef DEBUG_FRAME_SECTION
376 #define DEBUG_FRAME_SECTION ".debug_frame"
377 #endif
378
379 #ifndef FUNC_BEGIN_LABEL
380 #define FUNC_BEGIN_LABEL "LFB"
381 #endif
382
383 #ifndef FUNC_END_LABEL
384 #define FUNC_END_LABEL "LFE"
385 #endif
386
387 #ifndef FRAME_BEGIN_LABEL
388 #define FRAME_BEGIN_LABEL "Lframe"
389 #endif
390 #define CIE_AFTER_SIZE_LABEL "LSCIE"
391 #define CIE_END_LABEL "LECIE"
392 #define FDE_LABEL "LSFDE"
393 #define FDE_AFTER_SIZE_LABEL "LASFDE"
394 #define FDE_END_LABEL "LEFDE"
395 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
396 #define LINE_NUMBER_END_LABEL "LELT"
397 #define LN_PROLOG_AS_LABEL "LASLTP"
398 #define LN_PROLOG_END_LABEL "LELTP"
399 #define DIE_LABEL_PREFIX "DW"
400
401 /* The DWARF 2 CFA column which tracks the return address. Normally this
402 is the column for PC, or the first column after all of the hard
403 registers. */
404 #ifndef DWARF_FRAME_RETURN_COLUMN
405 #ifdef PC_REGNUM
406 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
407 #else
408 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
409 #endif
410 #endif
411
412 /* The mapping from gcc register number to DWARF 2 CFA column number. By
413 default, we just provide columns for all registers. */
414 #ifndef DWARF_FRAME_REGNUM
415 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
416 #endif
417 \f
418 /* Hook used by __throw. */
419
420 rtx
421 expand_builtin_dwarf_sp_column (void)
422 {
423 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
424 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
425 }
426
427 /* Return a pointer to a copy of the section string name S with all
428 attributes stripped off, and an asterisk prepended (for assemble_name). */
429
430 static inline char *
431 stripattributes (const char *s)
432 {
433 char *stripped = XNEWVEC (char, strlen (s) + 2);
434 char *p = stripped;
435
436 *p++ = '*';
437
438 while (*s && *s != ',')
439 *p++ = *s++;
440
441 *p = '\0';
442 return stripped;
443 }
444
445 /* Generate code to initialize the register size table. */
446
447 void
448 expand_builtin_init_dwarf_reg_sizes (tree address)
449 {
450 unsigned int i;
451 enum machine_mode mode = TYPE_MODE (char_type_node);
452 rtx addr = expand_normal (address);
453 rtx mem = gen_rtx_MEM (BLKmode, addr);
454 bool wrote_return_column = false;
455
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
457 {
458 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
459
460 if (rnum < DWARF_FRAME_REGISTERS)
461 {
462 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
463 enum machine_mode save_mode = reg_raw_mode[i];
464 HOST_WIDE_INT size;
465
466 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
467 save_mode = choose_hard_reg_mode (i, 1, true);
468 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
469 {
470 if (save_mode == VOIDmode)
471 continue;
472 wrote_return_column = true;
473 }
474 size = GET_MODE_SIZE (save_mode);
475 if (offset < 0)
476 continue;
477
478 emit_move_insn (adjust_address (mem, mode, offset),
479 gen_int_mode (size, mode));
480 }
481 }
482
483 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
484 gcc_assert (wrote_return_column);
485 i = DWARF_ALT_FRAME_RETURN_COLUMN;
486 wrote_return_column = false;
487 #else
488 i = DWARF_FRAME_RETURN_COLUMN;
489 #endif
490
491 if (! wrote_return_column)
492 {
493 enum machine_mode save_mode = Pmode;
494 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
495 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
496 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
497 }
498 }
499
500 /* Convert a DWARF call frame info. operation to its string name */
501
502 static const char *
503 dwarf_cfi_name (unsigned int cfi_opc)
504 {
505 switch (cfi_opc)
506 {
507 case DW_CFA_advance_loc:
508 return "DW_CFA_advance_loc";
509 case DW_CFA_offset:
510 return "DW_CFA_offset";
511 case DW_CFA_restore:
512 return "DW_CFA_restore";
513 case DW_CFA_nop:
514 return "DW_CFA_nop";
515 case DW_CFA_set_loc:
516 return "DW_CFA_set_loc";
517 case DW_CFA_advance_loc1:
518 return "DW_CFA_advance_loc1";
519 case DW_CFA_advance_loc2:
520 return "DW_CFA_advance_loc2";
521 case DW_CFA_advance_loc4:
522 return "DW_CFA_advance_loc4";
523 case DW_CFA_offset_extended:
524 return "DW_CFA_offset_extended";
525 case DW_CFA_restore_extended:
526 return "DW_CFA_restore_extended";
527 case DW_CFA_undefined:
528 return "DW_CFA_undefined";
529 case DW_CFA_same_value:
530 return "DW_CFA_same_value";
531 case DW_CFA_register:
532 return "DW_CFA_register";
533 case DW_CFA_remember_state:
534 return "DW_CFA_remember_state";
535 case DW_CFA_restore_state:
536 return "DW_CFA_restore_state";
537 case DW_CFA_def_cfa:
538 return "DW_CFA_def_cfa";
539 case DW_CFA_def_cfa_register:
540 return "DW_CFA_def_cfa_register";
541 case DW_CFA_def_cfa_offset:
542 return "DW_CFA_def_cfa_offset";
543
544 /* DWARF 3 */
545 case DW_CFA_def_cfa_expression:
546 return "DW_CFA_def_cfa_expression";
547 case DW_CFA_expression:
548 return "DW_CFA_expression";
549 case DW_CFA_offset_extended_sf:
550 return "DW_CFA_offset_extended_sf";
551 case DW_CFA_def_cfa_sf:
552 return "DW_CFA_def_cfa_sf";
553 case DW_CFA_def_cfa_offset_sf:
554 return "DW_CFA_def_cfa_offset_sf";
555
556 /* SGI/MIPS specific */
557 case DW_CFA_MIPS_advance_loc8:
558 return "DW_CFA_MIPS_advance_loc8";
559
560 /* GNU extensions */
561 case DW_CFA_GNU_window_save:
562 return "DW_CFA_GNU_window_save";
563 case DW_CFA_GNU_args_size:
564 return "DW_CFA_GNU_args_size";
565 case DW_CFA_GNU_negative_offset_extended:
566 return "DW_CFA_GNU_negative_offset_extended";
567
568 default:
569 return "DW_CFA_<unknown>";
570 }
571 }
572
573 /* Return a pointer to a newly allocated Call Frame Instruction. */
574
575 static inline dw_cfi_ref
576 new_cfi (void)
577 {
578 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
579
580 cfi->dw_cfi_next = NULL;
581 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
582 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
583
584 return cfi;
585 }
586
587 /* Add a Call Frame Instruction to list of instructions. */
588
589 static inline void
590 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
591 {
592 dw_cfi_ref *p;
593
594 /* Find the end of the chain. */
595 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
596 ;
597
598 *p = cfi;
599 }
600
601 /* Generate a new label for the CFI info to refer to. */
602
603 char *
604 dwarf2out_cfi_label (void)
605 {
606 static char label[20];
607
608 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
609 ASM_OUTPUT_LABEL (asm_out_file, label);
610 return label;
611 }
612
613 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
614 or to the CIE if LABEL is NULL. */
615
616 static void
617 add_fde_cfi (const char *label, dw_cfi_ref cfi)
618 {
619 if (label)
620 {
621 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
622
623 if (*label == 0)
624 label = dwarf2out_cfi_label ();
625
626 if (fde->dw_fde_current_label == NULL
627 || strcmp (label, fde->dw_fde_current_label) != 0)
628 {
629 dw_cfi_ref xcfi;
630
631 label = xstrdup (label);
632
633 /* Set the location counter to the new label. */
634 xcfi = new_cfi ();
635 /* If we have a current label, advance from there, otherwise
636 set the location directly using set_loc. */
637 xcfi->dw_cfi_opc = fde->dw_fde_current_label
638 ? DW_CFA_advance_loc4
639 : DW_CFA_set_loc;
640 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
641 add_cfi (&fde->dw_fde_cfi, xcfi);
642
643 fde->dw_fde_current_label = label;
644 }
645
646 add_cfi (&fde->dw_fde_cfi, cfi);
647 }
648
649 else
650 add_cfi (&cie_cfi_head, cfi);
651 }
652
653 /* Subroutine of lookup_cfa. */
654
655 static void
656 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
657 {
658 switch (cfi->dw_cfi_opc)
659 {
660 case DW_CFA_def_cfa_offset:
661 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
662 break;
663 case DW_CFA_def_cfa_offset_sf:
664 loc->offset
665 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
666 break;
667 case DW_CFA_def_cfa_register:
668 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
669 break;
670 case DW_CFA_def_cfa:
671 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
672 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
673 break;
674 case DW_CFA_def_cfa_sf:
675 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
676 loc->offset
677 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
678 break;
679 case DW_CFA_def_cfa_expression:
680 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
681 break;
682 default:
683 break;
684 }
685 }
686
687 /* Find the previous value for the CFA. */
688
689 static void
690 lookup_cfa (dw_cfa_location *loc)
691 {
692 dw_cfi_ref cfi;
693
694 loc->reg = INVALID_REGNUM;
695 loc->offset = 0;
696 loc->indirect = 0;
697 loc->base_offset = 0;
698
699 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
700 lookup_cfa_1 (cfi, loc);
701
702 if (fde_table_in_use)
703 {
704 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
705 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
706 lookup_cfa_1 (cfi, loc);
707 }
708 }
709
710 /* The current rule for calculating the DWARF2 canonical frame address. */
711 static dw_cfa_location cfa;
712
713 /* The register used for saving registers to the stack, and its offset
714 from the CFA. */
715 static dw_cfa_location cfa_store;
716
717 /* The running total of the size of arguments pushed onto the stack. */
718 static HOST_WIDE_INT args_size;
719
720 /* The last args_size we actually output. */
721 static HOST_WIDE_INT old_args_size;
722
723 /* Entry point to update the canonical frame address (CFA).
724 LABEL is passed to add_fde_cfi. The value of CFA is now to be
725 calculated from REG+OFFSET. */
726
727 void
728 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
729 {
730 dw_cfa_location loc;
731 loc.indirect = 0;
732 loc.base_offset = 0;
733 loc.reg = reg;
734 loc.offset = offset;
735 def_cfa_1 (label, &loc);
736 }
737
738 /* Determine if two dw_cfa_location structures define the same data. */
739
740 static bool
741 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
742 {
743 return (loc1->reg == loc2->reg
744 && loc1->offset == loc2->offset
745 && loc1->indirect == loc2->indirect
746 && (loc1->indirect == 0
747 || loc1->base_offset == loc2->base_offset));
748 }
749
750 /* This routine does the actual work. The CFA is now calculated from
751 the dw_cfa_location structure. */
752
753 static void
754 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
755 {
756 dw_cfi_ref cfi;
757 dw_cfa_location old_cfa, loc;
758
759 cfa = *loc_p;
760 loc = *loc_p;
761
762 if (cfa_store.reg == loc.reg && loc.indirect == 0)
763 cfa_store.offset = loc.offset;
764
765 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
766 lookup_cfa (&old_cfa);
767
768 /* If nothing changed, no need to issue any call frame instructions. */
769 if (cfa_equal_p (&loc, &old_cfa))
770 return;
771
772 cfi = new_cfi ();
773
774 if (loc.reg == old_cfa.reg && !loc.indirect)
775 {
776 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
777 the CFA register did not change but the offset did. */
778 if (loc.offset < 0)
779 {
780 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
781 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
782
783 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
784 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
785 }
786 else
787 {
788 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
789 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
790 }
791 }
792
793 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
794 else if (loc.offset == old_cfa.offset
795 && old_cfa.reg != INVALID_REGNUM
796 && !loc.indirect)
797 {
798 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
799 indicating the CFA register has changed to <register> but the
800 offset has not changed. */
801 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
802 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
803 }
804 #endif
805
806 else if (loc.indirect == 0)
807 {
808 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
809 indicating the CFA register has changed to <register> with
810 the specified offset. */
811 if (loc.offset < 0)
812 {
813 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
814 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
815
816 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
817 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
818 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
819 }
820 else
821 {
822 cfi->dw_cfi_opc = DW_CFA_def_cfa;
823 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
824 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
825 }
826 }
827 else
828 {
829 /* Construct a DW_CFA_def_cfa_expression instruction to
830 calculate the CFA using a full location expression since no
831 register-offset pair is available. */
832 struct dw_loc_descr_struct *loc_list;
833
834 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
835 loc_list = build_cfa_loc (&loc, 0);
836 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
837 }
838
839 add_fde_cfi (label, cfi);
840 }
841
842 /* Add the CFI for saving a register. REG is the CFA column number.
843 LABEL is passed to add_fde_cfi.
844 If SREG is -1, the register is saved at OFFSET from the CFA;
845 otherwise it is saved in SREG. */
846
847 static void
848 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
849 {
850 dw_cfi_ref cfi = new_cfi ();
851
852 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
853
854 if (sreg == INVALID_REGNUM)
855 {
856 if (reg & ~0x3f)
857 /* The register number won't fit in 6 bits, so we have to use
858 the long form. */
859 cfi->dw_cfi_opc = DW_CFA_offset_extended;
860 else
861 cfi->dw_cfi_opc = DW_CFA_offset;
862
863 #ifdef ENABLE_CHECKING
864 {
865 /* If we get an offset that is not a multiple of
866 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
867 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
868 description. */
869 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
870
871 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
872 }
873 #endif
874 offset /= DWARF_CIE_DATA_ALIGNMENT;
875 if (offset < 0)
876 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
877
878 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
879 }
880 else if (sreg == reg)
881 cfi->dw_cfi_opc = DW_CFA_same_value;
882 else
883 {
884 cfi->dw_cfi_opc = DW_CFA_register;
885 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
886 }
887
888 add_fde_cfi (label, cfi);
889 }
890
891 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
892 This CFI tells the unwinder that it needs to restore the window registers
893 from the previous frame's window save area.
894
895 ??? Perhaps we should note in the CIE where windows are saved (instead of
896 assuming 0(cfa)) and what registers are in the window. */
897
898 void
899 dwarf2out_window_save (const char *label)
900 {
901 dw_cfi_ref cfi = new_cfi ();
902
903 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
904 add_fde_cfi (label, cfi);
905 }
906
907 /* Add a CFI to update the running total of the size of arguments
908 pushed onto the stack. */
909
910 void
911 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
912 {
913 dw_cfi_ref cfi;
914
915 if (size == old_args_size)
916 return;
917
918 old_args_size = size;
919
920 cfi = new_cfi ();
921 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
922 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
923 add_fde_cfi (label, cfi);
924 }
925
926 /* Entry point for saving a register to the stack. REG is the GCC register
927 number. LABEL and OFFSET are passed to reg_save. */
928
929 void
930 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
931 {
932 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
933 }
934
935 /* Entry point for saving the return address in the stack.
936 LABEL and OFFSET are passed to reg_save. */
937
938 void
939 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
940 {
941 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
942 }
943
944 /* Entry point for saving the return address in a register.
945 LABEL and SREG are passed to reg_save. */
946
947 void
948 dwarf2out_return_reg (const char *label, unsigned int sreg)
949 {
950 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
951 }
952
953 /* Record the initial position of the return address. RTL is
954 INCOMING_RETURN_ADDR_RTX. */
955
956 static void
957 initial_return_save (rtx rtl)
958 {
959 unsigned int reg = INVALID_REGNUM;
960 HOST_WIDE_INT offset = 0;
961
962 switch (GET_CODE (rtl))
963 {
964 case REG:
965 /* RA is in a register. */
966 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
967 break;
968
969 case MEM:
970 /* RA is on the stack. */
971 rtl = XEXP (rtl, 0);
972 switch (GET_CODE (rtl))
973 {
974 case REG:
975 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
976 offset = 0;
977 break;
978
979 case PLUS:
980 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
981 offset = INTVAL (XEXP (rtl, 1));
982 break;
983
984 case MINUS:
985 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
986 offset = -INTVAL (XEXP (rtl, 1));
987 break;
988
989 default:
990 gcc_unreachable ();
991 }
992
993 break;
994
995 case PLUS:
996 /* The return address is at some offset from any value we can
997 actually load. For instance, on the SPARC it is in %i7+8. Just
998 ignore the offset for now; it doesn't matter for unwinding frames. */
999 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1000 initial_return_save (XEXP (rtl, 0));
1001 return;
1002
1003 default:
1004 gcc_unreachable ();
1005 }
1006
1007 if (reg != DWARF_FRAME_RETURN_COLUMN)
1008 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1009 }
1010
1011 /* Given a SET, calculate the amount of stack adjustment it
1012 contains. */
1013
1014 static HOST_WIDE_INT
1015 stack_adjust_offset (rtx pattern)
1016 {
1017 rtx src = SET_SRC (pattern);
1018 rtx dest = SET_DEST (pattern);
1019 HOST_WIDE_INT offset = 0;
1020 enum rtx_code code;
1021
1022 if (dest == stack_pointer_rtx)
1023 {
1024 /* (set (reg sp) (plus (reg sp) (const_int))) */
1025 code = GET_CODE (src);
1026 if (! (code == PLUS || code == MINUS)
1027 || XEXP (src, 0) != stack_pointer_rtx
1028 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1029 return 0;
1030
1031 offset = INTVAL (XEXP (src, 1));
1032 if (code == PLUS)
1033 offset = -offset;
1034 }
1035 else if (MEM_P (dest))
1036 {
1037 /* (set (mem (pre_dec (reg sp))) (foo)) */
1038 src = XEXP (dest, 0);
1039 code = GET_CODE (src);
1040
1041 switch (code)
1042 {
1043 case PRE_MODIFY:
1044 case POST_MODIFY:
1045 if (XEXP (src, 0) == stack_pointer_rtx)
1046 {
1047 rtx val = XEXP (XEXP (src, 1), 1);
1048 /* We handle only adjustments by constant amount. */
1049 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1050 && GET_CODE (val) == CONST_INT);
1051 offset = -INTVAL (val);
1052 break;
1053 }
1054 return 0;
1055
1056 case PRE_DEC:
1057 case POST_DEC:
1058 if (XEXP (src, 0) == stack_pointer_rtx)
1059 {
1060 offset = GET_MODE_SIZE (GET_MODE (dest));
1061 break;
1062 }
1063 return 0;
1064
1065 case PRE_INC:
1066 case POST_INC:
1067 if (XEXP (src, 0) == stack_pointer_rtx)
1068 {
1069 offset = -GET_MODE_SIZE (GET_MODE (dest));
1070 break;
1071 }
1072 return 0;
1073
1074 default:
1075 return 0;
1076 }
1077 }
1078 else
1079 return 0;
1080
1081 return offset;
1082 }
1083
1084 /* Check INSN to see if it looks like a push or a stack adjustment, and
1085 make a note of it if it does. EH uses this information to find out how
1086 much extra space it needs to pop off the stack. */
1087
1088 static void
1089 dwarf2out_stack_adjust (rtx insn, bool after_p)
1090 {
1091 HOST_WIDE_INT offset;
1092 const char *label;
1093 int i;
1094
1095 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1096 with this function. Proper support would require all frame-related
1097 insns to be marked, and to be able to handle saving state around
1098 epilogues textually in the middle of the function. */
1099 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1100 return;
1101
1102 /* If only calls can throw, and we have a frame pointer,
1103 save up adjustments until we see the CALL_INSN. */
1104 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1105 {
1106 if (CALL_P (insn) && !after_p)
1107 {
1108 /* Extract the size of the args from the CALL rtx itself. */
1109 insn = PATTERN (insn);
1110 if (GET_CODE (insn) == PARALLEL)
1111 insn = XVECEXP (insn, 0, 0);
1112 if (GET_CODE (insn) == SET)
1113 insn = SET_SRC (insn);
1114 gcc_assert (GET_CODE (insn) == CALL);
1115 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1116 }
1117 return;
1118 }
1119
1120 if (CALL_P (insn) && !after_p)
1121 {
1122 if (!flag_asynchronous_unwind_tables)
1123 dwarf2out_args_size ("", args_size);
1124 return;
1125 }
1126 else if (BARRIER_P (insn))
1127 {
1128 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1129 the compiler will have already emitted a stack adjustment, but
1130 doesn't bother for calls to noreturn functions. */
1131 #ifdef STACK_GROWS_DOWNWARD
1132 offset = -args_size;
1133 #else
1134 offset = args_size;
1135 #endif
1136 }
1137 else if (GET_CODE (PATTERN (insn)) == SET)
1138 offset = stack_adjust_offset (PATTERN (insn));
1139 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1140 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1141 {
1142 /* There may be stack adjustments inside compound insns. Search
1143 for them. */
1144 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1145 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1146 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1147 }
1148 else
1149 return;
1150
1151 if (offset == 0)
1152 return;
1153
1154 if (cfa.reg == STACK_POINTER_REGNUM)
1155 cfa.offset += offset;
1156
1157 #ifndef STACK_GROWS_DOWNWARD
1158 offset = -offset;
1159 #endif
1160
1161 args_size += offset;
1162 if (args_size < 0)
1163 args_size = 0;
1164
1165 label = dwarf2out_cfi_label ();
1166 def_cfa_1 (label, &cfa);
1167 if (flag_asynchronous_unwind_tables)
1168 dwarf2out_args_size (label, args_size);
1169 }
1170
1171 #endif
1172
1173 /* We delay emitting a register save until either (a) we reach the end
1174 of the prologue or (b) the register is clobbered. This clusters
1175 register saves so that there are fewer pc advances. */
1176
1177 struct queued_reg_save GTY(())
1178 {
1179 struct queued_reg_save *next;
1180 rtx reg;
1181 HOST_WIDE_INT cfa_offset;
1182 rtx saved_reg;
1183 };
1184
1185 static GTY(()) struct queued_reg_save *queued_reg_saves;
1186
1187 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1188 struct reg_saved_in_data GTY(()) {
1189 rtx orig_reg;
1190 rtx saved_in_reg;
1191 };
1192
1193 /* A list of registers saved in other registers.
1194 The list intentionally has a small maximum capacity of 4; if your
1195 port needs more than that, you might consider implementing a
1196 more efficient data structure. */
1197 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1198 static GTY(()) size_t num_regs_saved_in_regs;
1199
1200 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1201 static const char *last_reg_save_label;
1202
1203 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1204 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1205
1206 static void
1207 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1208 {
1209 struct queued_reg_save *q;
1210
1211 /* Duplicates waste space, but it's also necessary to remove them
1212 for correctness, since the queue gets output in reverse
1213 order. */
1214 for (q = queued_reg_saves; q != NULL; q = q->next)
1215 if (REGNO (q->reg) == REGNO (reg))
1216 break;
1217
1218 if (q == NULL)
1219 {
1220 q = ggc_alloc (sizeof (*q));
1221 q->next = queued_reg_saves;
1222 queued_reg_saves = q;
1223 }
1224
1225 q->reg = reg;
1226 q->cfa_offset = offset;
1227 q->saved_reg = sreg;
1228
1229 last_reg_save_label = label;
1230 }
1231
1232 /* Output all the entries in QUEUED_REG_SAVES. */
1233
1234 static void
1235 flush_queued_reg_saves (void)
1236 {
1237 struct queued_reg_save *q;
1238
1239 for (q = queued_reg_saves; q; q = q->next)
1240 {
1241 size_t i;
1242 unsigned int reg, sreg;
1243
1244 for (i = 0; i < num_regs_saved_in_regs; i++)
1245 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1246 break;
1247 if (q->saved_reg && i == num_regs_saved_in_regs)
1248 {
1249 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1250 num_regs_saved_in_regs++;
1251 }
1252 if (i != num_regs_saved_in_regs)
1253 {
1254 regs_saved_in_regs[i].orig_reg = q->reg;
1255 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1256 }
1257
1258 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1259 if (q->saved_reg)
1260 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1261 else
1262 sreg = INVALID_REGNUM;
1263 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1264 }
1265
1266 queued_reg_saves = NULL;
1267 last_reg_save_label = NULL;
1268 }
1269
1270 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1271 location for? Or, does it clobber a register which we've previously
1272 said that some other register is saved in, and for which we now
1273 have a new location for? */
1274
1275 static bool
1276 clobbers_queued_reg_save (rtx insn)
1277 {
1278 struct queued_reg_save *q;
1279
1280 for (q = queued_reg_saves; q; q = q->next)
1281 {
1282 size_t i;
1283 if (modified_in_p (q->reg, insn))
1284 return true;
1285 for (i = 0; i < num_regs_saved_in_regs; i++)
1286 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1287 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1288 return true;
1289 }
1290
1291 return false;
1292 }
1293
1294 /* Entry point for saving the first register into the second. */
1295
1296 void
1297 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1298 {
1299 size_t i;
1300 unsigned int regno, sregno;
1301
1302 for (i = 0; i < num_regs_saved_in_regs; i++)
1303 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1304 break;
1305 if (i == num_regs_saved_in_regs)
1306 {
1307 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1308 num_regs_saved_in_regs++;
1309 }
1310 regs_saved_in_regs[i].orig_reg = reg;
1311 regs_saved_in_regs[i].saved_in_reg = sreg;
1312
1313 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1314 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1315 reg_save (label, regno, sregno, 0);
1316 }
1317
1318 /* What register, if any, is currently saved in REG? */
1319
1320 static rtx
1321 reg_saved_in (rtx reg)
1322 {
1323 unsigned int regn = REGNO (reg);
1324 size_t i;
1325 struct queued_reg_save *q;
1326
1327 for (q = queued_reg_saves; q; q = q->next)
1328 if (q->saved_reg && regn == REGNO (q->saved_reg))
1329 return q->reg;
1330
1331 for (i = 0; i < num_regs_saved_in_regs; i++)
1332 if (regs_saved_in_regs[i].saved_in_reg
1333 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1334 return regs_saved_in_regs[i].orig_reg;
1335
1336 return NULL_RTX;
1337 }
1338
1339
1340 /* A temporary register holding an integral value used in adjusting SP
1341 or setting up the store_reg. The "offset" field holds the integer
1342 value, not an offset. */
1343 static dw_cfa_location cfa_temp;
1344
1345 /* Record call frame debugging information for an expression EXPR,
1346 which either sets SP or FP (adjusting how we calculate the frame
1347 address) or saves a register to the stack or another register.
1348 LABEL indicates the address of EXPR.
1349
1350 This function encodes a state machine mapping rtxes to actions on
1351 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1352 users need not read the source code.
1353
1354 The High-Level Picture
1355
1356 Changes in the register we use to calculate the CFA: Currently we
1357 assume that if you copy the CFA register into another register, we
1358 should take the other one as the new CFA register; this seems to
1359 work pretty well. If it's wrong for some target, it's simple
1360 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1361
1362 Changes in the register we use for saving registers to the stack:
1363 This is usually SP, but not always. Again, we deduce that if you
1364 copy SP into another register (and SP is not the CFA register),
1365 then the new register is the one we will be using for register
1366 saves. This also seems to work.
1367
1368 Register saves: There's not much guesswork about this one; if
1369 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1370 register save, and the register used to calculate the destination
1371 had better be the one we think we're using for this purpose.
1372 It's also assumed that a copy from a call-saved register to another
1373 register is saving that register if RTX_FRAME_RELATED_P is set on
1374 that instruction. If the copy is from a call-saved register to
1375 the *same* register, that means that the register is now the same
1376 value as in the caller.
1377
1378 Except: If the register being saved is the CFA register, and the
1379 offset is nonzero, we are saving the CFA, so we assume we have to
1380 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1381 the intent is to save the value of SP from the previous frame.
1382
1383 In addition, if a register has previously been saved to a different
1384 register,
1385
1386 Invariants / Summaries of Rules
1387
1388 cfa current rule for calculating the CFA. It usually
1389 consists of a register and an offset.
1390 cfa_store register used by prologue code to save things to the stack
1391 cfa_store.offset is the offset from the value of
1392 cfa_store.reg to the actual CFA
1393 cfa_temp register holding an integral value. cfa_temp.offset
1394 stores the value, which will be used to adjust the
1395 stack pointer. cfa_temp is also used like cfa_store,
1396 to track stores to the stack via fp or a temp reg.
1397
1398 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1399 with cfa.reg as the first operand changes the cfa.reg and its
1400 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1401 cfa_temp.offset.
1402
1403 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1404 expression yielding a constant. This sets cfa_temp.reg
1405 and cfa_temp.offset.
1406
1407 Rule 5: Create a new register cfa_store used to save items to the
1408 stack.
1409
1410 Rules 10-14: Save a register to the stack. Define offset as the
1411 difference of the original location and cfa_store's
1412 location (or cfa_temp's location if cfa_temp is used).
1413
1414 The Rules
1415
1416 "{a,b}" indicates a choice of a xor b.
1417 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1418
1419 Rule 1:
1420 (set <reg1> <reg2>:cfa.reg)
1421 effects: cfa.reg = <reg1>
1422 cfa.offset unchanged
1423 cfa_temp.reg = <reg1>
1424 cfa_temp.offset = cfa.offset
1425
1426 Rule 2:
1427 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1428 {<const_int>,<reg>:cfa_temp.reg}))
1429 effects: cfa.reg = sp if fp used
1430 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1431 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1432 if cfa_store.reg==sp
1433
1434 Rule 3:
1435 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1436 effects: cfa.reg = fp
1437 cfa_offset += +/- <const_int>
1438
1439 Rule 4:
1440 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1441 constraints: <reg1> != fp
1442 <reg1> != sp
1443 effects: cfa.reg = <reg1>
1444 cfa_temp.reg = <reg1>
1445 cfa_temp.offset = cfa.offset
1446
1447 Rule 5:
1448 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1449 constraints: <reg1> != fp
1450 <reg1> != sp
1451 effects: cfa_store.reg = <reg1>
1452 cfa_store.offset = cfa.offset - cfa_temp.offset
1453
1454 Rule 6:
1455 (set <reg> <const_int>)
1456 effects: cfa_temp.reg = <reg>
1457 cfa_temp.offset = <const_int>
1458
1459 Rule 7:
1460 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1461 effects: cfa_temp.reg = <reg1>
1462 cfa_temp.offset |= <const_int>
1463
1464 Rule 8:
1465 (set <reg> (high <exp>))
1466 effects: none
1467
1468 Rule 9:
1469 (set <reg> (lo_sum <exp> <const_int>))
1470 effects: cfa_temp.reg = <reg>
1471 cfa_temp.offset = <const_int>
1472
1473 Rule 10:
1474 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1475 effects: cfa_store.offset -= <const_int>
1476 cfa.offset = cfa_store.offset if cfa.reg == sp
1477 cfa.reg = sp
1478 cfa.base_offset = -cfa_store.offset
1479
1480 Rule 11:
1481 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1482 effects: cfa_store.offset += -/+ mode_size(mem)
1483 cfa.offset = cfa_store.offset if cfa.reg == sp
1484 cfa.reg = sp
1485 cfa.base_offset = -cfa_store.offset
1486
1487 Rule 12:
1488 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1489
1490 <reg2>)
1491 effects: cfa.reg = <reg1>
1492 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1493
1494 Rule 13:
1495 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1496 effects: cfa.reg = <reg1>
1497 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1498
1499 Rule 14:
1500 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1501 effects: cfa.reg = <reg1>
1502 cfa.base_offset = -cfa_temp.offset
1503 cfa_temp.offset -= mode_size(mem)
1504
1505 Rule 15:
1506 (set <reg> {unspec, unspec_volatile})
1507 effects: target-dependent */
1508
1509 static void
1510 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1511 {
1512 rtx src, dest;
1513 HOST_WIDE_INT offset;
1514
1515 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1516 the PARALLEL independently. The first element is always processed if
1517 it is a SET. This is for backward compatibility. Other elements
1518 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1519 flag is set in them. */
1520 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1521 {
1522 int par_index;
1523 int limit = XVECLEN (expr, 0);
1524
1525 for (par_index = 0; par_index < limit; par_index++)
1526 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1527 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1528 || par_index == 0))
1529 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1530
1531 return;
1532 }
1533
1534 gcc_assert (GET_CODE (expr) == SET);
1535
1536 src = SET_SRC (expr);
1537 dest = SET_DEST (expr);
1538
1539 if (REG_P (src))
1540 {
1541 rtx rsi = reg_saved_in (src);
1542 if (rsi)
1543 src = rsi;
1544 }
1545
1546 switch (GET_CODE (dest))
1547 {
1548 case REG:
1549 switch (GET_CODE (src))
1550 {
1551 /* Setting FP from SP. */
1552 case REG:
1553 if (cfa.reg == (unsigned) REGNO (src))
1554 {
1555 /* Rule 1 */
1556 /* Update the CFA rule wrt SP or FP. Make sure src is
1557 relative to the current CFA register.
1558
1559 We used to require that dest be either SP or FP, but the
1560 ARM copies SP to a temporary register, and from there to
1561 FP. So we just rely on the backends to only set
1562 RTX_FRAME_RELATED_P on appropriate insns. */
1563 cfa.reg = REGNO (dest);
1564 cfa_temp.reg = cfa.reg;
1565 cfa_temp.offset = cfa.offset;
1566 }
1567 else
1568 {
1569 /* Saving a register in a register. */
1570 gcc_assert (!fixed_regs [REGNO (dest)]
1571 /* For the SPARC and its register window. */
1572 || (DWARF_FRAME_REGNUM (REGNO (src))
1573 == DWARF_FRAME_RETURN_COLUMN));
1574 queue_reg_save (label, src, dest, 0);
1575 }
1576 break;
1577
1578 case PLUS:
1579 case MINUS:
1580 case LO_SUM:
1581 if (dest == stack_pointer_rtx)
1582 {
1583 /* Rule 2 */
1584 /* Adjusting SP. */
1585 switch (GET_CODE (XEXP (src, 1)))
1586 {
1587 case CONST_INT:
1588 offset = INTVAL (XEXP (src, 1));
1589 break;
1590 case REG:
1591 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1592 == cfa_temp.reg);
1593 offset = cfa_temp.offset;
1594 break;
1595 default:
1596 gcc_unreachable ();
1597 }
1598
1599 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1600 {
1601 /* Restoring SP from FP in the epilogue. */
1602 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1603 cfa.reg = STACK_POINTER_REGNUM;
1604 }
1605 else if (GET_CODE (src) == LO_SUM)
1606 /* Assume we've set the source reg of the LO_SUM from sp. */
1607 ;
1608 else
1609 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1610
1611 if (GET_CODE (src) != MINUS)
1612 offset = -offset;
1613 if (cfa.reg == STACK_POINTER_REGNUM)
1614 cfa.offset += offset;
1615 if (cfa_store.reg == STACK_POINTER_REGNUM)
1616 cfa_store.offset += offset;
1617 }
1618 else if (dest == hard_frame_pointer_rtx)
1619 {
1620 /* Rule 3 */
1621 /* Either setting the FP from an offset of the SP,
1622 or adjusting the FP */
1623 gcc_assert (frame_pointer_needed);
1624
1625 gcc_assert (REG_P (XEXP (src, 0))
1626 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1627 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1628 offset = INTVAL (XEXP (src, 1));
1629 if (GET_CODE (src) != MINUS)
1630 offset = -offset;
1631 cfa.offset += offset;
1632 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1633 }
1634 else
1635 {
1636 gcc_assert (GET_CODE (src) != MINUS);
1637
1638 /* Rule 4 */
1639 if (REG_P (XEXP (src, 0))
1640 && REGNO (XEXP (src, 0)) == cfa.reg
1641 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1642 {
1643 /* Setting a temporary CFA register that will be copied
1644 into the FP later on. */
1645 offset = - INTVAL (XEXP (src, 1));
1646 cfa.offset += offset;
1647 cfa.reg = REGNO (dest);
1648 /* Or used to save regs to the stack. */
1649 cfa_temp.reg = cfa.reg;
1650 cfa_temp.offset = cfa.offset;
1651 }
1652
1653 /* Rule 5 */
1654 else if (REG_P (XEXP (src, 0))
1655 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1656 && XEXP (src, 1) == stack_pointer_rtx)
1657 {
1658 /* Setting a scratch register that we will use instead
1659 of SP for saving registers to the stack. */
1660 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1661 cfa_store.reg = REGNO (dest);
1662 cfa_store.offset = cfa.offset - cfa_temp.offset;
1663 }
1664
1665 /* Rule 9 */
1666 else if (GET_CODE (src) == LO_SUM
1667 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1668 {
1669 cfa_temp.reg = REGNO (dest);
1670 cfa_temp.offset = INTVAL (XEXP (src, 1));
1671 }
1672 else
1673 gcc_unreachable ();
1674 }
1675 break;
1676
1677 /* Rule 6 */
1678 case CONST_INT:
1679 cfa_temp.reg = REGNO (dest);
1680 cfa_temp.offset = INTVAL (src);
1681 break;
1682
1683 /* Rule 7 */
1684 case IOR:
1685 gcc_assert (REG_P (XEXP (src, 0))
1686 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1687 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1688
1689 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1690 cfa_temp.reg = REGNO (dest);
1691 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1692 break;
1693
1694 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1695 which will fill in all of the bits. */
1696 /* Rule 8 */
1697 case HIGH:
1698 break;
1699
1700 /* Rule 15 */
1701 case UNSPEC:
1702 case UNSPEC_VOLATILE:
1703 gcc_assert (targetm.dwarf_handle_frame_unspec);
1704 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1705 return;
1706
1707 default:
1708 gcc_unreachable ();
1709 }
1710
1711 def_cfa_1 (label, &cfa);
1712 break;
1713
1714 case MEM:
1715 gcc_assert (REG_P (src));
1716
1717 /* Saving a register to the stack. Make sure dest is relative to the
1718 CFA register. */
1719 switch (GET_CODE (XEXP (dest, 0)))
1720 {
1721 /* Rule 10 */
1722 /* With a push. */
1723 case PRE_MODIFY:
1724 /* We can't handle variable size modifications. */
1725 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1726 == CONST_INT);
1727 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1728
1729 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1730 && cfa_store.reg == STACK_POINTER_REGNUM);
1731
1732 cfa_store.offset += offset;
1733 if (cfa.reg == STACK_POINTER_REGNUM)
1734 cfa.offset = cfa_store.offset;
1735
1736 offset = -cfa_store.offset;
1737 break;
1738
1739 /* Rule 11 */
1740 case PRE_INC:
1741 case PRE_DEC:
1742 offset = GET_MODE_SIZE (GET_MODE (dest));
1743 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1744 offset = -offset;
1745
1746 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1747 && cfa_store.reg == STACK_POINTER_REGNUM);
1748
1749 cfa_store.offset += offset;
1750 if (cfa.reg == STACK_POINTER_REGNUM)
1751 cfa.offset = cfa_store.offset;
1752
1753 offset = -cfa_store.offset;
1754 break;
1755
1756 /* Rule 12 */
1757 /* With an offset. */
1758 case PLUS:
1759 case MINUS:
1760 case LO_SUM:
1761 {
1762 int regno;
1763
1764 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1765 && REG_P (XEXP (XEXP (dest, 0), 0)));
1766 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1767 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1768 offset = -offset;
1769
1770 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1771
1772 if (cfa_store.reg == (unsigned) regno)
1773 offset -= cfa_store.offset;
1774 else
1775 {
1776 gcc_assert (cfa_temp.reg == (unsigned) regno);
1777 offset -= cfa_temp.offset;
1778 }
1779 }
1780 break;
1781
1782 /* Rule 13 */
1783 /* Without an offset. */
1784 case REG:
1785 {
1786 int regno = REGNO (XEXP (dest, 0));
1787
1788 if (cfa_store.reg == (unsigned) regno)
1789 offset = -cfa_store.offset;
1790 else
1791 {
1792 gcc_assert (cfa_temp.reg == (unsigned) regno);
1793 offset = -cfa_temp.offset;
1794 }
1795 }
1796 break;
1797
1798 /* Rule 14 */
1799 case POST_INC:
1800 gcc_assert (cfa_temp.reg
1801 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1802 offset = -cfa_temp.offset;
1803 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1804 break;
1805
1806 default:
1807 gcc_unreachable ();
1808 }
1809
1810 if (REGNO (src) != STACK_POINTER_REGNUM
1811 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1812 && (unsigned) REGNO (src) == cfa.reg)
1813 {
1814 /* We're storing the current CFA reg into the stack. */
1815
1816 if (cfa.offset == 0)
1817 {
1818 /* If the source register is exactly the CFA, assume
1819 we're saving SP like any other register; this happens
1820 on the ARM. */
1821 def_cfa_1 (label, &cfa);
1822 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1823 break;
1824 }
1825 else
1826 {
1827 /* Otherwise, we'll need to look in the stack to
1828 calculate the CFA. */
1829 rtx x = XEXP (dest, 0);
1830
1831 if (!REG_P (x))
1832 x = XEXP (x, 0);
1833 gcc_assert (REG_P (x));
1834
1835 cfa.reg = REGNO (x);
1836 cfa.base_offset = offset;
1837 cfa.indirect = 1;
1838 def_cfa_1 (label, &cfa);
1839 break;
1840 }
1841 }
1842
1843 def_cfa_1 (label, &cfa);
1844 queue_reg_save (label, src, NULL_RTX, offset);
1845 break;
1846
1847 default:
1848 gcc_unreachable ();
1849 }
1850 }
1851
1852 /* Record call frame debugging information for INSN, which either
1853 sets SP or FP (adjusting how we calculate the frame address) or saves a
1854 register to the stack. If INSN is NULL_RTX, initialize our state.
1855
1856 If AFTER_P is false, we're being called before the insn is emitted,
1857 otherwise after. Call instructions get invoked twice. */
1858
1859 void
1860 dwarf2out_frame_debug (rtx insn, bool after_p)
1861 {
1862 const char *label;
1863 rtx src;
1864
1865 if (insn == NULL_RTX)
1866 {
1867 size_t i;
1868
1869 /* Flush any queued register saves. */
1870 flush_queued_reg_saves ();
1871
1872 /* Set up state for generating call frame debug info. */
1873 lookup_cfa (&cfa);
1874 gcc_assert (cfa.reg
1875 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1876
1877 cfa.reg = STACK_POINTER_REGNUM;
1878 cfa_store = cfa;
1879 cfa_temp.reg = -1;
1880 cfa_temp.offset = 0;
1881
1882 for (i = 0; i < num_regs_saved_in_regs; i++)
1883 {
1884 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1885 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1886 }
1887 num_regs_saved_in_regs = 0;
1888 return;
1889 }
1890
1891 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1892 flush_queued_reg_saves ();
1893
1894 if (! RTX_FRAME_RELATED_P (insn))
1895 {
1896 if (!ACCUMULATE_OUTGOING_ARGS)
1897 dwarf2out_stack_adjust (insn, after_p);
1898 return;
1899 }
1900
1901 label = dwarf2out_cfi_label ();
1902 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1903 if (src)
1904 insn = XEXP (src, 0);
1905 else
1906 insn = PATTERN (insn);
1907
1908 dwarf2out_frame_debug_expr (insn, label);
1909 }
1910
1911 #endif
1912
1913 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1914 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1915 (enum dwarf_call_frame_info cfi);
1916
1917 static enum dw_cfi_oprnd_type
1918 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1919 {
1920 switch (cfi)
1921 {
1922 case DW_CFA_nop:
1923 case DW_CFA_GNU_window_save:
1924 return dw_cfi_oprnd_unused;
1925
1926 case DW_CFA_set_loc:
1927 case DW_CFA_advance_loc1:
1928 case DW_CFA_advance_loc2:
1929 case DW_CFA_advance_loc4:
1930 case DW_CFA_MIPS_advance_loc8:
1931 return dw_cfi_oprnd_addr;
1932
1933 case DW_CFA_offset:
1934 case DW_CFA_offset_extended:
1935 case DW_CFA_def_cfa:
1936 case DW_CFA_offset_extended_sf:
1937 case DW_CFA_def_cfa_sf:
1938 case DW_CFA_restore_extended:
1939 case DW_CFA_undefined:
1940 case DW_CFA_same_value:
1941 case DW_CFA_def_cfa_register:
1942 case DW_CFA_register:
1943 return dw_cfi_oprnd_reg_num;
1944
1945 case DW_CFA_def_cfa_offset:
1946 case DW_CFA_GNU_args_size:
1947 case DW_CFA_def_cfa_offset_sf:
1948 return dw_cfi_oprnd_offset;
1949
1950 case DW_CFA_def_cfa_expression:
1951 case DW_CFA_expression:
1952 return dw_cfi_oprnd_loc;
1953
1954 default:
1955 gcc_unreachable ();
1956 }
1957 }
1958
1959 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1960 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1961 (enum dwarf_call_frame_info cfi);
1962
1963 static enum dw_cfi_oprnd_type
1964 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1965 {
1966 switch (cfi)
1967 {
1968 case DW_CFA_def_cfa:
1969 case DW_CFA_def_cfa_sf:
1970 case DW_CFA_offset:
1971 case DW_CFA_offset_extended_sf:
1972 case DW_CFA_offset_extended:
1973 return dw_cfi_oprnd_offset;
1974
1975 case DW_CFA_register:
1976 return dw_cfi_oprnd_reg_num;
1977
1978 default:
1979 return dw_cfi_oprnd_unused;
1980 }
1981 }
1982
1983 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1984
1985 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1986 switch to the data section instead, and write out a synthetic label
1987 for collect2. */
1988
1989 static void
1990 switch_to_eh_frame_section (void)
1991 {
1992 tree label;
1993
1994 #ifdef EH_FRAME_SECTION_NAME
1995 if (eh_frame_section == 0)
1996 {
1997 int flags;
1998
1999 if (EH_TABLES_CAN_BE_READ_ONLY)
2000 {
2001 int fde_encoding;
2002 int per_encoding;
2003 int lsda_encoding;
2004
2005 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2006 /*global=*/0);
2007 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2008 /*global=*/1);
2009 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2010 /*global=*/0);
2011 flags = ((! flag_pic
2012 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2013 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2014 && (per_encoding & 0x70) != DW_EH_PE_absptr
2015 && (per_encoding & 0x70) != DW_EH_PE_aligned
2016 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2017 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2018 ? 0 : SECTION_WRITE);
2019 }
2020 else
2021 flags = SECTION_WRITE;
2022 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2023 }
2024 #endif
2025
2026 if (eh_frame_section)
2027 switch_to_section (eh_frame_section);
2028 else
2029 {
2030 /* We have no special eh_frame section. Put the information in
2031 the data section and emit special labels to guide collect2. */
2032 switch_to_section (data_section);
2033 label = get_file_function_name ('F');
2034 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2035 targetm.asm_out.globalize_label (asm_out_file,
2036 IDENTIFIER_POINTER (label));
2037 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2038 }
2039 }
2040
2041 /* Output a Call Frame Information opcode and its operand(s). */
2042
2043 static void
2044 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2045 {
2046 unsigned long r;
2047 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2048 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2049 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2050 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2051 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2052 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2053 {
2054 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2055 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2056 "DW_CFA_offset, column 0x%lx", r);
2057 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2058 }
2059 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2060 {
2061 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2062 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2063 "DW_CFA_restore, column 0x%lx", r);
2064 }
2065 else
2066 {
2067 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2068 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2069
2070 switch (cfi->dw_cfi_opc)
2071 {
2072 case DW_CFA_set_loc:
2073 if (for_eh)
2074 dw2_asm_output_encoded_addr_rtx (
2075 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2076 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2077 false, NULL);
2078 else
2079 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2080 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2081 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2082 break;
2083
2084 case DW_CFA_advance_loc1:
2085 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2086 fde->dw_fde_current_label, NULL);
2087 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2088 break;
2089
2090 case DW_CFA_advance_loc2:
2091 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2092 fde->dw_fde_current_label, NULL);
2093 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2094 break;
2095
2096 case DW_CFA_advance_loc4:
2097 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2098 fde->dw_fde_current_label, NULL);
2099 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2100 break;
2101
2102 case DW_CFA_MIPS_advance_loc8:
2103 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2104 fde->dw_fde_current_label, NULL);
2105 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2106 break;
2107
2108 case DW_CFA_offset_extended:
2109 case DW_CFA_def_cfa:
2110 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2111 dw2_asm_output_data_uleb128 (r, NULL);
2112 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2113 break;
2114
2115 case DW_CFA_offset_extended_sf:
2116 case DW_CFA_def_cfa_sf:
2117 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2118 dw2_asm_output_data_uleb128 (r, NULL);
2119 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2120 break;
2121
2122 case DW_CFA_restore_extended:
2123 case DW_CFA_undefined:
2124 case DW_CFA_same_value:
2125 case DW_CFA_def_cfa_register:
2126 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2127 dw2_asm_output_data_uleb128 (r, NULL);
2128 break;
2129
2130 case DW_CFA_register:
2131 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2132 dw2_asm_output_data_uleb128 (r, NULL);
2133 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2134 dw2_asm_output_data_uleb128 (r, NULL);
2135 break;
2136
2137 case DW_CFA_def_cfa_offset:
2138 case DW_CFA_GNU_args_size:
2139 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2140 break;
2141
2142 case DW_CFA_def_cfa_offset_sf:
2143 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2144 break;
2145
2146 case DW_CFA_GNU_window_save:
2147 break;
2148
2149 case DW_CFA_def_cfa_expression:
2150 case DW_CFA_expression:
2151 output_cfa_loc (cfi);
2152 break;
2153
2154 case DW_CFA_GNU_negative_offset_extended:
2155 /* Obsoleted by DW_CFA_offset_extended_sf. */
2156 gcc_unreachable ();
2157
2158 default:
2159 break;
2160 }
2161 }
2162 }
2163
2164 /* Output the call frame information used to record information
2165 that relates to calculating the frame pointer, and records the
2166 location of saved registers. */
2167
2168 static void
2169 output_call_frame_info (int for_eh)
2170 {
2171 unsigned int i;
2172 dw_fde_ref fde;
2173 dw_cfi_ref cfi;
2174 char l1[20], l2[20], section_start_label[20];
2175 bool any_lsda_needed = false;
2176 char augmentation[6];
2177 int augmentation_size;
2178 int fde_encoding = DW_EH_PE_absptr;
2179 int per_encoding = DW_EH_PE_absptr;
2180 int lsda_encoding = DW_EH_PE_absptr;
2181 int return_reg;
2182
2183 /* Don't emit a CIE if there won't be any FDEs. */
2184 if (fde_table_in_use == 0)
2185 return;
2186
2187 /* If we make FDEs linkonce, we may have to emit an empty label for
2188 an FDE that wouldn't otherwise be emitted. We want to avoid
2189 having an FDE kept around when the function it refers to is
2190 discarded. Example where this matters: a primary function
2191 template in C++ requires EH information, but an explicit
2192 specialization doesn't. */
2193 if (TARGET_USES_WEAK_UNWIND_INFO
2194 && ! flag_asynchronous_unwind_tables
2195 && for_eh)
2196 for (i = 0; i < fde_table_in_use; i++)
2197 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2198 && !fde_table[i].uses_eh_lsda
2199 && ! DECL_WEAK (fde_table[i].decl))
2200 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2201 for_eh, /* empty */ 1);
2202
2203 /* If we don't have any functions we'll want to unwind out of, don't
2204 emit any EH unwind information. Note that if exceptions aren't
2205 enabled, we won't have collected nothrow information, and if we
2206 asked for asynchronous tables, we always want this info. */
2207 if (for_eh)
2208 {
2209 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2210
2211 for (i = 0; i < fde_table_in_use; i++)
2212 if (fde_table[i].uses_eh_lsda)
2213 any_eh_needed = any_lsda_needed = true;
2214 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2215 any_eh_needed = true;
2216 else if (! fde_table[i].nothrow
2217 && ! fde_table[i].all_throwers_are_sibcalls)
2218 any_eh_needed = true;
2219
2220 if (! any_eh_needed)
2221 return;
2222 }
2223
2224 /* We're going to be generating comments, so turn on app. */
2225 if (flag_debug_asm)
2226 app_enable ();
2227
2228 if (for_eh)
2229 switch_to_eh_frame_section ();
2230 else
2231 {
2232 if (!debug_frame_section)
2233 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2234 SECTION_DEBUG, NULL);
2235 switch_to_section (debug_frame_section);
2236 }
2237
2238 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2239 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2240
2241 /* Output the CIE. */
2242 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2243 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2244 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2245 dw2_asm_output_data (4, 0xffffffff,
2246 "Initial length escape value indicating 64-bit DWARF extension");
2247 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2248 "Length of Common Information Entry");
2249 ASM_OUTPUT_LABEL (asm_out_file, l1);
2250
2251 /* Now that the CIE pointer is PC-relative for EH,
2252 use 0 to identify the CIE. */
2253 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2254 (for_eh ? 0 : DWARF_CIE_ID),
2255 "CIE Identifier Tag");
2256
2257 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2258
2259 augmentation[0] = 0;
2260 augmentation_size = 0;
2261 if (for_eh)
2262 {
2263 char *p;
2264
2265 /* Augmentation:
2266 z Indicates that a uleb128 is present to size the
2267 augmentation section.
2268 L Indicates the encoding (and thus presence) of
2269 an LSDA pointer in the FDE augmentation.
2270 R Indicates a non-default pointer encoding for
2271 FDE code pointers.
2272 P Indicates the presence of an encoding + language
2273 personality routine in the CIE augmentation. */
2274
2275 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2276 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2277 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2278
2279 p = augmentation + 1;
2280 if (eh_personality_libfunc)
2281 {
2282 *p++ = 'P';
2283 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2284 }
2285 if (any_lsda_needed)
2286 {
2287 *p++ = 'L';
2288 augmentation_size += 1;
2289 }
2290 if (fde_encoding != DW_EH_PE_absptr)
2291 {
2292 *p++ = 'R';
2293 augmentation_size += 1;
2294 }
2295 if (p > augmentation + 1)
2296 {
2297 augmentation[0] = 'z';
2298 *p = '\0';
2299 }
2300
2301 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2302 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2303 {
2304 int offset = ( 4 /* Length */
2305 + 4 /* CIE Id */
2306 + 1 /* CIE version */
2307 + strlen (augmentation) + 1 /* Augmentation */
2308 + size_of_uleb128 (1) /* Code alignment */
2309 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2310 + 1 /* RA column */
2311 + 1 /* Augmentation size */
2312 + 1 /* Personality encoding */ );
2313 int pad = -offset & (PTR_SIZE - 1);
2314
2315 augmentation_size += pad;
2316
2317 /* Augmentations should be small, so there's scarce need to
2318 iterate for a solution. Die if we exceed one uleb128 byte. */
2319 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2320 }
2321 }
2322
2323 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2324 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2325 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2326 "CIE Data Alignment Factor");
2327
2328 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2329 if (DW_CIE_VERSION == 1)
2330 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2331 else
2332 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2333
2334 if (augmentation[0])
2335 {
2336 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2337 if (eh_personality_libfunc)
2338 {
2339 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2340 eh_data_format_name (per_encoding));
2341 dw2_asm_output_encoded_addr_rtx (per_encoding,
2342 eh_personality_libfunc,
2343 true, NULL);
2344 }
2345
2346 if (any_lsda_needed)
2347 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2348 eh_data_format_name (lsda_encoding));
2349
2350 if (fde_encoding != DW_EH_PE_absptr)
2351 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2352 eh_data_format_name (fde_encoding));
2353 }
2354
2355 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2356 output_cfi (cfi, NULL, for_eh);
2357
2358 /* Pad the CIE out to an address sized boundary. */
2359 ASM_OUTPUT_ALIGN (asm_out_file,
2360 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2361 ASM_OUTPUT_LABEL (asm_out_file, l2);
2362
2363 /* Loop through all of the FDE's. */
2364 for (i = 0; i < fde_table_in_use; i++)
2365 {
2366 fde = &fde_table[i];
2367
2368 /* Don't emit EH unwind info for leaf functions that don't need it. */
2369 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2370 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2371 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2372 && !fde->uses_eh_lsda)
2373 continue;
2374
2375 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2376 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2377 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2378 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2379 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2380 dw2_asm_output_data (4, 0xffffffff,
2381 "Initial length escape value indicating 64-bit DWARF extension");
2382 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2383 "FDE Length");
2384 ASM_OUTPUT_LABEL (asm_out_file, l1);
2385
2386 if (for_eh)
2387 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2388 else
2389 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2390 debug_frame_section, "FDE CIE offset");
2391
2392 if (for_eh)
2393 {
2394 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2395 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2396 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2397 sym_ref,
2398 false,
2399 "FDE initial location");
2400 if (fde->dw_fde_switched_sections)
2401 {
2402 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2403 fde->dw_fde_unlikely_section_label);
2404 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2405 fde->dw_fde_hot_section_label);
2406 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2407 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2408 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2409 "FDE initial location");
2410 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2411 fde->dw_fde_hot_section_end_label,
2412 fde->dw_fde_hot_section_label,
2413 "FDE address range");
2414 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2415 "FDE initial location");
2416 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2417 fde->dw_fde_unlikely_section_end_label,
2418 fde->dw_fde_unlikely_section_label,
2419 "FDE address range");
2420 }
2421 else
2422 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2423 fde->dw_fde_end, fde->dw_fde_begin,
2424 "FDE address range");
2425 }
2426 else
2427 {
2428 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2429 "FDE initial location");
2430 if (fde->dw_fde_switched_sections)
2431 {
2432 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2433 fde->dw_fde_hot_section_label,
2434 "FDE initial location");
2435 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2436 fde->dw_fde_hot_section_end_label,
2437 fde->dw_fde_hot_section_label,
2438 "FDE address range");
2439 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2440 fde->dw_fde_unlikely_section_label,
2441 "FDE initial location");
2442 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2443 fde->dw_fde_unlikely_section_end_label,
2444 fde->dw_fde_unlikely_section_label,
2445 "FDE address range");
2446 }
2447 else
2448 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2449 fde->dw_fde_end, fde->dw_fde_begin,
2450 "FDE address range");
2451 }
2452
2453 if (augmentation[0])
2454 {
2455 if (any_lsda_needed)
2456 {
2457 int size = size_of_encoded_value (lsda_encoding);
2458
2459 if (lsda_encoding == DW_EH_PE_aligned)
2460 {
2461 int offset = ( 4 /* Length */
2462 + 4 /* CIE offset */
2463 + 2 * size_of_encoded_value (fde_encoding)
2464 + 1 /* Augmentation size */ );
2465 int pad = -offset & (PTR_SIZE - 1);
2466
2467 size += pad;
2468 gcc_assert (size_of_uleb128 (size) == 1);
2469 }
2470
2471 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2472
2473 if (fde->uses_eh_lsda)
2474 {
2475 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2476 fde->funcdef_number);
2477 dw2_asm_output_encoded_addr_rtx (
2478 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2479 false, "Language Specific Data Area");
2480 }
2481 else
2482 {
2483 if (lsda_encoding == DW_EH_PE_aligned)
2484 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2485 dw2_asm_output_data
2486 (size_of_encoded_value (lsda_encoding), 0,
2487 "Language Specific Data Area (none)");
2488 }
2489 }
2490 else
2491 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2492 }
2493
2494 /* Loop through the Call Frame Instructions associated with
2495 this FDE. */
2496 fde->dw_fde_current_label = fde->dw_fde_begin;
2497 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2498 output_cfi (cfi, fde, for_eh);
2499
2500 /* Pad the FDE out to an address sized boundary. */
2501 ASM_OUTPUT_ALIGN (asm_out_file,
2502 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2503 ASM_OUTPUT_LABEL (asm_out_file, l2);
2504 }
2505
2506 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2507 dw2_asm_output_data (4, 0, "End of Table");
2508 #ifdef MIPS_DEBUGGING_INFO
2509 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2510 get a value of 0. Putting .align 0 after the label fixes it. */
2511 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2512 #endif
2513
2514 /* Turn off app to make assembly quicker. */
2515 if (flag_debug_asm)
2516 app_disable ();
2517 }
2518
2519 /* Output a marker (i.e. a label) for the beginning of a function, before
2520 the prologue. */
2521
2522 void
2523 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2524 const char *file ATTRIBUTE_UNUSED)
2525 {
2526 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2527 char * dup_label;
2528 dw_fde_ref fde;
2529
2530 current_function_func_begin_label = NULL;
2531
2532 #ifdef TARGET_UNWIND_INFO
2533 /* ??? current_function_func_begin_label is also used by except.c
2534 for call-site information. We must emit this label if it might
2535 be used. */
2536 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2537 && ! dwarf2out_do_frame ())
2538 return;
2539 #else
2540 if (! dwarf2out_do_frame ())
2541 return;
2542 #endif
2543
2544 switch_to_section (function_section (current_function_decl));
2545 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2546 current_function_funcdef_no);
2547 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2548 current_function_funcdef_no);
2549 dup_label = xstrdup (label);
2550 current_function_func_begin_label = dup_label;
2551
2552 #ifdef TARGET_UNWIND_INFO
2553 /* We can elide the fde allocation if we're not emitting debug info. */
2554 if (! dwarf2out_do_frame ())
2555 return;
2556 #endif
2557
2558 /* Expand the fde table if necessary. */
2559 if (fde_table_in_use == fde_table_allocated)
2560 {
2561 fde_table_allocated += FDE_TABLE_INCREMENT;
2562 fde_table = ggc_realloc (fde_table,
2563 fde_table_allocated * sizeof (dw_fde_node));
2564 memset (fde_table + fde_table_in_use, 0,
2565 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2566 }
2567
2568 /* Record the FDE associated with this function. */
2569 current_funcdef_fde = fde_table_in_use;
2570
2571 /* Add the new FDE at the end of the fde_table. */
2572 fde = &fde_table[fde_table_in_use++];
2573 fde->decl = current_function_decl;
2574 fde->dw_fde_begin = dup_label;
2575 fde->dw_fde_current_label = dup_label;
2576 fde->dw_fde_hot_section_label = NULL;
2577 fde->dw_fde_hot_section_end_label = NULL;
2578 fde->dw_fde_unlikely_section_label = NULL;
2579 fde->dw_fde_unlikely_section_end_label = NULL;
2580 fde->dw_fde_switched_sections = false;
2581 fde->dw_fde_end = NULL;
2582 fde->dw_fde_cfi = NULL;
2583 fde->funcdef_number = current_function_funcdef_no;
2584 fde->nothrow = TREE_NOTHROW (current_function_decl);
2585 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2586 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2587
2588 args_size = old_args_size = 0;
2589
2590 /* We only want to output line number information for the genuine dwarf2
2591 prologue case, not the eh frame case. */
2592 #ifdef DWARF2_DEBUGGING_INFO
2593 if (file)
2594 dwarf2out_source_line (line, file);
2595 #endif
2596 }
2597
2598 /* Output a marker (i.e. a label) for the absolute end of the generated code
2599 for a function definition. This gets called *after* the epilogue code has
2600 been generated. */
2601
2602 void
2603 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2604 const char *file ATTRIBUTE_UNUSED)
2605 {
2606 dw_fde_ref fde;
2607 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2608
2609 /* Output a label to mark the endpoint of the code generated for this
2610 function. */
2611 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2612 current_function_funcdef_no);
2613 ASM_OUTPUT_LABEL (asm_out_file, label);
2614 fde = &fde_table[fde_table_in_use - 1];
2615 fde->dw_fde_end = xstrdup (label);
2616 }
2617
2618 void
2619 dwarf2out_frame_init (void)
2620 {
2621 /* Allocate the initial hunk of the fde_table. */
2622 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2623 fde_table_allocated = FDE_TABLE_INCREMENT;
2624 fde_table_in_use = 0;
2625
2626 /* Generate the CFA instructions common to all FDE's. Do it now for the
2627 sake of lookup_cfa. */
2628
2629 /* On entry, the Canonical Frame Address is at SP. */
2630 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2631
2632 #ifdef DWARF2_UNWIND_INFO
2633 if (DWARF2_UNWIND_INFO)
2634 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2635 #endif
2636 }
2637
2638 void
2639 dwarf2out_frame_finish (void)
2640 {
2641 /* Output call frame information. */
2642 if (DWARF2_FRAME_INFO)
2643 output_call_frame_info (0);
2644
2645 #ifndef TARGET_UNWIND_INFO
2646 /* Output another copy for the unwinder. */
2647 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2648 output_call_frame_info (1);
2649 #endif
2650 }
2651 #endif
2652 \f
2653 /* And now, the subset of the debugging information support code necessary
2654 for emitting location expressions. */
2655
2656 /* Data about a single source file. */
2657 struct dwarf_file_data GTY(())
2658 {
2659 const char * filename;
2660 int emitted_number;
2661 };
2662
2663 /* We need some way to distinguish DW_OP_addr with a direct symbol
2664 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2665 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2666
2667
2668 typedef struct dw_val_struct *dw_val_ref;
2669 typedef struct die_struct *dw_die_ref;
2670 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2671 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2672
2673 /* Each DIE may have a series of attribute/value pairs. Values
2674 can take on several forms. The forms that are used in this
2675 implementation are listed below. */
2676
2677 enum dw_val_class
2678 {
2679 dw_val_class_addr,
2680 dw_val_class_offset,
2681 dw_val_class_loc,
2682 dw_val_class_loc_list,
2683 dw_val_class_range_list,
2684 dw_val_class_const,
2685 dw_val_class_unsigned_const,
2686 dw_val_class_long_long,
2687 dw_val_class_vec,
2688 dw_val_class_flag,
2689 dw_val_class_die_ref,
2690 dw_val_class_fde_ref,
2691 dw_val_class_lbl_id,
2692 dw_val_class_lineptr,
2693 dw_val_class_str,
2694 dw_val_class_macptr,
2695 dw_val_class_file
2696 };
2697
2698 /* Describe a double word constant value. */
2699 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2700
2701 typedef struct dw_long_long_struct GTY(())
2702 {
2703 unsigned long hi;
2704 unsigned long low;
2705 }
2706 dw_long_long_const;
2707
2708 /* Describe a floating point constant value, or a vector constant value. */
2709
2710 typedef struct dw_vec_struct GTY(())
2711 {
2712 unsigned char * GTY((length ("%h.length"))) array;
2713 unsigned length;
2714 unsigned elt_size;
2715 }
2716 dw_vec_const;
2717
2718 /* The dw_val_node describes an attribute's value, as it is
2719 represented internally. */
2720
2721 typedef struct dw_val_struct GTY(())
2722 {
2723 enum dw_val_class val_class;
2724 union dw_val_struct_union
2725 {
2726 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2727 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2728 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2729 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2730 HOST_WIDE_INT GTY ((default)) val_int;
2731 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2732 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2733 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2734 struct dw_val_die_union
2735 {
2736 dw_die_ref die;
2737 int external;
2738 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2739 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2740 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2741 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2742 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2743 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2744 }
2745 GTY ((desc ("%1.val_class"))) v;
2746 }
2747 dw_val_node;
2748
2749 /* Locations in memory are described using a sequence of stack machine
2750 operations. */
2751
2752 typedef struct dw_loc_descr_struct GTY(())
2753 {
2754 dw_loc_descr_ref dw_loc_next;
2755 enum dwarf_location_atom dw_loc_opc;
2756 dw_val_node dw_loc_oprnd1;
2757 dw_val_node dw_loc_oprnd2;
2758 int dw_loc_addr;
2759 }
2760 dw_loc_descr_node;
2761
2762 /* Location lists are ranges + location descriptions for that range,
2763 so you can track variables that are in different places over
2764 their entire life. */
2765 typedef struct dw_loc_list_struct GTY(())
2766 {
2767 dw_loc_list_ref dw_loc_next;
2768 const char *begin; /* Label for begin address of range */
2769 const char *end; /* Label for end address of range */
2770 char *ll_symbol; /* Label for beginning of location list.
2771 Only on head of list */
2772 const char *section; /* Section this loclist is relative to */
2773 dw_loc_descr_ref expr;
2774 } dw_loc_list_node;
2775
2776 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2777
2778 static const char *dwarf_stack_op_name (unsigned);
2779 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2780 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2781 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2782 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2783 static unsigned long size_of_locs (dw_loc_descr_ref);
2784 static void output_loc_operands (dw_loc_descr_ref);
2785 static void output_loc_sequence (dw_loc_descr_ref);
2786
2787 /* Convert a DWARF stack opcode into its string name. */
2788
2789 static const char *
2790 dwarf_stack_op_name (unsigned int op)
2791 {
2792 switch (op)
2793 {
2794 case DW_OP_addr:
2795 case INTERNAL_DW_OP_tls_addr:
2796 return "DW_OP_addr";
2797 case DW_OP_deref:
2798 return "DW_OP_deref";
2799 case DW_OP_const1u:
2800 return "DW_OP_const1u";
2801 case DW_OP_const1s:
2802 return "DW_OP_const1s";
2803 case DW_OP_const2u:
2804 return "DW_OP_const2u";
2805 case DW_OP_const2s:
2806 return "DW_OP_const2s";
2807 case DW_OP_const4u:
2808 return "DW_OP_const4u";
2809 case DW_OP_const4s:
2810 return "DW_OP_const4s";
2811 case DW_OP_const8u:
2812 return "DW_OP_const8u";
2813 case DW_OP_const8s:
2814 return "DW_OP_const8s";
2815 case DW_OP_constu:
2816 return "DW_OP_constu";
2817 case DW_OP_consts:
2818 return "DW_OP_consts";
2819 case DW_OP_dup:
2820 return "DW_OP_dup";
2821 case DW_OP_drop:
2822 return "DW_OP_drop";
2823 case DW_OP_over:
2824 return "DW_OP_over";
2825 case DW_OP_pick:
2826 return "DW_OP_pick";
2827 case DW_OP_swap:
2828 return "DW_OP_swap";
2829 case DW_OP_rot:
2830 return "DW_OP_rot";
2831 case DW_OP_xderef:
2832 return "DW_OP_xderef";
2833 case DW_OP_abs:
2834 return "DW_OP_abs";
2835 case DW_OP_and:
2836 return "DW_OP_and";
2837 case DW_OP_div:
2838 return "DW_OP_div";
2839 case DW_OP_minus:
2840 return "DW_OP_minus";
2841 case DW_OP_mod:
2842 return "DW_OP_mod";
2843 case DW_OP_mul:
2844 return "DW_OP_mul";
2845 case DW_OP_neg:
2846 return "DW_OP_neg";
2847 case DW_OP_not:
2848 return "DW_OP_not";
2849 case DW_OP_or:
2850 return "DW_OP_or";
2851 case DW_OP_plus:
2852 return "DW_OP_plus";
2853 case DW_OP_plus_uconst:
2854 return "DW_OP_plus_uconst";
2855 case DW_OP_shl:
2856 return "DW_OP_shl";
2857 case DW_OP_shr:
2858 return "DW_OP_shr";
2859 case DW_OP_shra:
2860 return "DW_OP_shra";
2861 case DW_OP_xor:
2862 return "DW_OP_xor";
2863 case DW_OP_bra:
2864 return "DW_OP_bra";
2865 case DW_OP_eq:
2866 return "DW_OP_eq";
2867 case DW_OP_ge:
2868 return "DW_OP_ge";
2869 case DW_OP_gt:
2870 return "DW_OP_gt";
2871 case DW_OP_le:
2872 return "DW_OP_le";
2873 case DW_OP_lt:
2874 return "DW_OP_lt";
2875 case DW_OP_ne:
2876 return "DW_OP_ne";
2877 case DW_OP_skip:
2878 return "DW_OP_skip";
2879 case DW_OP_lit0:
2880 return "DW_OP_lit0";
2881 case DW_OP_lit1:
2882 return "DW_OP_lit1";
2883 case DW_OP_lit2:
2884 return "DW_OP_lit2";
2885 case DW_OP_lit3:
2886 return "DW_OP_lit3";
2887 case DW_OP_lit4:
2888 return "DW_OP_lit4";
2889 case DW_OP_lit5:
2890 return "DW_OP_lit5";
2891 case DW_OP_lit6:
2892 return "DW_OP_lit6";
2893 case DW_OP_lit7:
2894 return "DW_OP_lit7";
2895 case DW_OP_lit8:
2896 return "DW_OP_lit8";
2897 case DW_OP_lit9:
2898 return "DW_OP_lit9";
2899 case DW_OP_lit10:
2900 return "DW_OP_lit10";
2901 case DW_OP_lit11:
2902 return "DW_OP_lit11";
2903 case DW_OP_lit12:
2904 return "DW_OP_lit12";
2905 case DW_OP_lit13:
2906 return "DW_OP_lit13";
2907 case DW_OP_lit14:
2908 return "DW_OP_lit14";
2909 case DW_OP_lit15:
2910 return "DW_OP_lit15";
2911 case DW_OP_lit16:
2912 return "DW_OP_lit16";
2913 case DW_OP_lit17:
2914 return "DW_OP_lit17";
2915 case DW_OP_lit18:
2916 return "DW_OP_lit18";
2917 case DW_OP_lit19:
2918 return "DW_OP_lit19";
2919 case DW_OP_lit20:
2920 return "DW_OP_lit20";
2921 case DW_OP_lit21:
2922 return "DW_OP_lit21";
2923 case DW_OP_lit22:
2924 return "DW_OP_lit22";
2925 case DW_OP_lit23:
2926 return "DW_OP_lit23";
2927 case DW_OP_lit24:
2928 return "DW_OP_lit24";
2929 case DW_OP_lit25:
2930 return "DW_OP_lit25";
2931 case DW_OP_lit26:
2932 return "DW_OP_lit26";
2933 case DW_OP_lit27:
2934 return "DW_OP_lit27";
2935 case DW_OP_lit28:
2936 return "DW_OP_lit28";
2937 case DW_OP_lit29:
2938 return "DW_OP_lit29";
2939 case DW_OP_lit30:
2940 return "DW_OP_lit30";
2941 case DW_OP_lit31:
2942 return "DW_OP_lit31";
2943 case DW_OP_reg0:
2944 return "DW_OP_reg0";
2945 case DW_OP_reg1:
2946 return "DW_OP_reg1";
2947 case DW_OP_reg2:
2948 return "DW_OP_reg2";
2949 case DW_OP_reg3:
2950 return "DW_OP_reg3";
2951 case DW_OP_reg4:
2952 return "DW_OP_reg4";
2953 case DW_OP_reg5:
2954 return "DW_OP_reg5";
2955 case DW_OP_reg6:
2956 return "DW_OP_reg6";
2957 case DW_OP_reg7:
2958 return "DW_OP_reg7";
2959 case DW_OP_reg8:
2960 return "DW_OP_reg8";
2961 case DW_OP_reg9:
2962 return "DW_OP_reg9";
2963 case DW_OP_reg10:
2964 return "DW_OP_reg10";
2965 case DW_OP_reg11:
2966 return "DW_OP_reg11";
2967 case DW_OP_reg12:
2968 return "DW_OP_reg12";
2969 case DW_OP_reg13:
2970 return "DW_OP_reg13";
2971 case DW_OP_reg14:
2972 return "DW_OP_reg14";
2973 case DW_OP_reg15:
2974 return "DW_OP_reg15";
2975 case DW_OP_reg16:
2976 return "DW_OP_reg16";
2977 case DW_OP_reg17:
2978 return "DW_OP_reg17";
2979 case DW_OP_reg18:
2980 return "DW_OP_reg18";
2981 case DW_OP_reg19:
2982 return "DW_OP_reg19";
2983 case DW_OP_reg20:
2984 return "DW_OP_reg20";
2985 case DW_OP_reg21:
2986 return "DW_OP_reg21";
2987 case DW_OP_reg22:
2988 return "DW_OP_reg22";
2989 case DW_OP_reg23:
2990 return "DW_OP_reg23";
2991 case DW_OP_reg24:
2992 return "DW_OP_reg24";
2993 case DW_OP_reg25:
2994 return "DW_OP_reg25";
2995 case DW_OP_reg26:
2996 return "DW_OP_reg26";
2997 case DW_OP_reg27:
2998 return "DW_OP_reg27";
2999 case DW_OP_reg28:
3000 return "DW_OP_reg28";
3001 case DW_OP_reg29:
3002 return "DW_OP_reg29";
3003 case DW_OP_reg30:
3004 return "DW_OP_reg30";
3005 case DW_OP_reg31:
3006 return "DW_OP_reg31";
3007 case DW_OP_breg0:
3008 return "DW_OP_breg0";
3009 case DW_OP_breg1:
3010 return "DW_OP_breg1";
3011 case DW_OP_breg2:
3012 return "DW_OP_breg2";
3013 case DW_OP_breg3:
3014 return "DW_OP_breg3";
3015 case DW_OP_breg4:
3016 return "DW_OP_breg4";
3017 case DW_OP_breg5:
3018 return "DW_OP_breg5";
3019 case DW_OP_breg6:
3020 return "DW_OP_breg6";
3021 case DW_OP_breg7:
3022 return "DW_OP_breg7";
3023 case DW_OP_breg8:
3024 return "DW_OP_breg8";
3025 case DW_OP_breg9:
3026 return "DW_OP_breg9";
3027 case DW_OP_breg10:
3028 return "DW_OP_breg10";
3029 case DW_OP_breg11:
3030 return "DW_OP_breg11";
3031 case DW_OP_breg12:
3032 return "DW_OP_breg12";
3033 case DW_OP_breg13:
3034 return "DW_OP_breg13";
3035 case DW_OP_breg14:
3036 return "DW_OP_breg14";
3037 case DW_OP_breg15:
3038 return "DW_OP_breg15";
3039 case DW_OP_breg16:
3040 return "DW_OP_breg16";
3041 case DW_OP_breg17:
3042 return "DW_OP_breg17";
3043 case DW_OP_breg18:
3044 return "DW_OP_breg18";
3045 case DW_OP_breg19:
3046 return "DW_OP_breg19";
3047 case DW_OP_breg20:
3048 return "DW_OP_breg20";
3049 case DW_OP_breg21:
3050 return "DW_OP_breg21";
3051 case DW_OP_breg22:
3052 return "DW_OP_breg22";
3053 case DW_OP_breg23:
3054 return "DW_OP_breg23";
3055 case DW_OP_breg24:
3056 return "DW_OP_breg24";
3057 case DW_OP_breg25:
3058 return "DW_OP_breg25";
3059 case DW_OP_breg26:
3060 return "DW_OP_breg26";
3061 case DW_OP_breg27:
3062 return "DW_OP_breg27";
3063 case DW_OP_breg28:
3064 return "DW_OP_breg28";
3065 case DW_OP_breg29:
3066 return "DW_OP_breg29";
3067 case DW_OP_breg30:
3068 return "DW_OP_breg30";
3069 case DW_OP_breg31:
3070 return "DW_OP_breg31";
3071 case DW_OP_regx:
3072 return "DW_OP_regx";
3073 case DW_OP_fbreg:
3074 return "DW_OP_fbreg";
3075 case DW_OP_bregx:
3076 return "DW_OP_bregx";
3077 case DW_OP_piece:
3078 return "DW_OP_piece";
3079 case DW_OP_deref_size:
3080 return "DW_OP_deref_size";
3081 case DW_OP_xderef_size:
3082 return "DW_OP_xderef_size";
3083 case DW_OP_nop:
3084 return "DW_OP_nop";
3085 case DW_OP_push_object_address:
3086 return "DW_OP_push_object_address";
3087 case DW_OP_call2:
3088 return "DW_OP_call2";
3089 case DW_OP_call4:
3090 return "DW_OP_call4";
3091 case DW_OP_call_ref:
3092 return "DW_OP_call_ref";
3093 case DW_OP_GNU_push_tls_address:
3094 return "DW_OP_GNU_push_tls_address";
3095 default:
3096 return "OP_<unknown>";
3097 }
3098 }
3099
3100 /* Return a pointer to a newly allocated location description. Location
3101 descriptions are simple expression terms that can be strung
3102 together to form more complicated location (address) descriptions. */
3103
3104 static inline dw_loc_descr_ref
3105 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3106 unsigned HOST_WIDE_INT oprnd2)
3107 {
3108 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3109
3110 descr->dw_loc_opc = op;
3111 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3112 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3113 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3114 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3115
3116 return descr;
3117 }
3118
3119 /* Add a location description term to a location description expression. */
3120
3121 static inline void
3122 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3123 {
3124 dw_loc_descr_ref *d;
3125
3126 /* Find the end of the chain. */
3127 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3128 ;
3129
3130 *d = descr;
3131 }
3132
3133 /* Return the size of a location descriptor. */
3134
3135 static unsigned long
3136 size_of_loc_descr (dw_loc_descr_ref loc)
3137 {
3138 unsigned long size = 1;
3139
3140 switch (loc->dw_loc_opc)
3141 {
3142 case DW_OP_addr:
3143 case INTERNAL_DW_OP_tls_addr:
3144 size += DWARF2_ADDR_SIZE;
3145 break;
3146 case DW_OP_const1u:
3147 case DW_OP_const1s:
3148 size += 1;
3149 break;
3150 case DW_OP_const2u:
3151 case DW_OP_const2s:
3152 size += 2;
3153 break;
3154 case DW_OP_const4u:
3155 case DW_OP_const4s:
3156 size += 4;
3157 break;
3158 case DW_OP_const8u:
3159 case DW_OP_const8s:
3160 size += 8;
3161 break;
3162 case DW_OP_constu:
3163 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3164 break;
3165 case DW_OP_consts:
3166 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3167 break;
3168 case DW_OP_pick:
3169 size += 1;
3170 break;
3171 case DW_OP_plus_uconst:
3172 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3173 break;
3174 case DW_OP_skip:
3175 case DW_OP_bra:
3176 size += 2;
3177 break;
3178 case DW_OP_breg0:
3179 case DW_OP_breg1:
3180 case DW_OP_breg2:
3181 case DW_OP_breg3:
3182 case DW_OP_breg4:
3183 case DW_OP_breg5:
3184 case DW_OP_breg6:
3185 case DW_OP_breg7:
3186 case DW_OP_breg8:
3187 case DW_OP_breg9:
3188 case DW_OP_breg10:
3189 case DW_OP_breg11:
3190 case DW_OP_breg12:
3191 case DW_OP_breg13:
3192 case DW_OP_breg14:
3193 case DW_OP_breg15:
3194 case DW_OP_breg16:
3195 case DW_OP_breg17:
3196 case DW_OP_breg18:
3197 case DW_OP_breg19:
3198 case DW_OP_breg20:
3199 case DW_OP_breg21:
3200 case DW_OP_breg22:
3201 case DW_OP_breg23:
3202 case DW_OP_breg24:
3203 case DW_OP_breg25:
3204 case DW_OP_breg26:
3205 case DW_OP_breg27:
3206 case DW_OP_breg28:
3207 case DW_OP_breg29:
3208 case DW_OP_breg30:
3209 case DW_OP_breg31:
3210 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3211 break;
3212 case DW_OP_regx:
3213 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3214 break;
3215 case DW_OP_fbreg:
3216 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3217 break;
3218 case DW_OP_bregx:
3219 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3220 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3221 break;
3222 case DW_OP_piece:
3223 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3224 break;
3225 case DW_OP_deref_size:
3226 case DW_OP_xderef_size:
3227 size += 1;
3228 break;
3229 case DW_OP_call2:
3230 size += 2;
3231 break;
3232 case DW_OP_call4:
3233 size += 4;
3234 break;
3235 case DW_OP_call_ref:
3236 size += DWARF2_ADDR_SIZE;
3237 break;
3238 default:
3239 break;
3240 }
3241
3242 return size;
3243 }
3244
3245 /* Return the size of a series of location descriptors. */
3246
3247 static unsigned long
3248 size_of_locs (dw_loc_descr_ref loc)
3249 {
3250 dw_loc_descr_ref l;
3251 unsigned long size;
3252
3253 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3254 field, to avoid writing to a PCH file. */
3255 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3256 {
3257 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3258 break;
3259 size += size_of_loc_descr (l);
3260 }
3261 if (! l)
3262 return size;
3263
3264 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3265 {
3266 l->dw_loc_addr = size;
3267 size += size_of_loc_descr (l);
3268 }
3269
3270 return size;
3271 }
3272
3273 /* Output location description stack opcode's operands (if any). */
3274
3275 static void
3276 output_loc_operands (dw_loc_descr_ref loc)
3277 {
3278 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3279 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3280
3281 switch (loc->dw_loc_opc)
3282 {
3283 #ifdef DWARF2_DEBUGGING_INFO
3284 case DW_OP_addr:
3285 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3286 break;
3287 case DW_OP_const2u:
3288 case DW_OP_const2s:
3289 dw2_asm_output_data (2, val1->v.val_int, NULL);
3290 break;
3291 case DW_OP_const4u:
3292 case DW_OP_const4s:
3293 dw2_asm_output_data (4, val1->v.val_int, NULL);
3294 break;
3295 case DW_OP_const8u:
3296 case DW_OP_const8s:
3297 gcc_assert (HOST_BITS_PER_LONG >= 64);
3298 dw2_asm_output_data (8, val1->v.val_int, NULL);
3299 break;
3300 case DW_OP_skip:
3301 case DW_OP_bra:
3302 {
3303 int offset;
3304
3305 gcc_assert (val1->val_class == dw_val_class_loc);
3306 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3307
3308 dw2_asm_output_data (2, offset, NULL);
3309 }
3310 break;
3311 #else
3312 case DW_OP_addr:
3313 case DW_OP_const2u:
3314 case DW_OP_const2s:
3315 case DW_OP_const4u:
3316 case DW_OP_const4s:
3317 case DW_OP_const8u:
3318 case DW_OP_const8s:
3319 case DW_OP_skip:
3320 case DW_OP_bra:
3321 /* We currently don't make any attempt to make sure these are
3322 aligned properly like we do for the main unwind info, so
3323 don't support emitting things larger than a byte if we're
3324 only doing unwinding. */
3325 gcc_unreachable ();
3326 #endif
3327 case DW_OP_const1u:
3328 case DW_OP_const1s:
3329 dw2_asm_output_data (1, val1->v.val_int, NULL);
3330 break;
3331 case DW_OP_constu:
3332 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3333 break;
3334 case DW_OP_consts:
3335 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3336 break;
3337 case DW_OP_pick:
3338 dw2_asm_output_data (1, val1->v.val_int, NULL);
3339 break;
3340 case DW_OP_plus_uconst:
3341 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3342 break;
3343 case DW_OP_breg0:
3344 case DW_OP_breg1:
3345 case DW_OP_breg2:
3346 case DW_OP_breg3:
3347 case DW_OP_breg4:
3348 case DW_OP_breg5:
3349 case DW_OP_breg6:
3350 case DW_OP_breg7:
3351 case DW_OP_breg8:
3352 case DW_OP_breg9:
3353 case DW_OP_breg10:
3354 case DW_OP_breg11:
3355 case DW_OP_breg12:
3356 case DW_OP_breg13:
3357 case DW_OP_breg14:
3358 case DW_OP_breg15:
3359 case DW_OP_breg16:
3360 case DW_OP_breg17:
3361 case DW_OP_breg18:
3362 case DW_OP_breg19:
3363 case DW_OP_breg20:
3364 case DW_OP_breg21:
3365 case DW_OP_breg22:
3366 case DW_OP_breg23:
3367 case DW_OP_breg24:
3368 case DW_OP_breg25:
3369 case DW_OP_breg26:
3370 case DW_OP_breg27:
3371 case DW_OP_breg28:
3372 case DW_OP_breg29:
3373 case DW_OP_breg30:
3374 case DW_OP_breg31:
3375 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3376 break;
3377 case DW_OP_regx:
3378 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3379 break;
3380 case DW_OP_fbreg:
3381 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3382 break;
3383 case DW_OP_bregx:
3384 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3385 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3386 break;
3387 case DW_OP_piece:
3388 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3389 break;
3390 case DW_OP_deref_size:
3391 case DW_OP_xderef_size:
3392 dw2_asm_output_data (1, val1->v.val_int, NULL);
3393 break;
3394
3395 case INTERNAL_DW_OP_tls_addr:
3396 if (targetm.asm_out.output_dwarf_dtprel)
3397 {
3398 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3399 DWARF2_ADDR_SIZE,
3400 val1->v.val_addr);
3401 fputc ('\n', asm_out_file);
3402 }
3403 else
3404 gcc_unreachable ();
3405 break;
3406
3407 default:
3408 /* Other codes have no operands. */
3409 break;
3410 }
3411 }
3412
3413 /* Output a sequence of location operations. */
3414
3415 static void
3416 output_loc_sequence (dw_loc_descr_ref loc)
3417 {
3418 for (; loc != NULL; loc = loc->dw_loc_next)
3419 {
3420 /* Output the opcode. */
3421 dw2_asm_output_data (1, loc->dw_loc_opc,
3422 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3423
3424 /* Output the operand(s) (if any). */
3425 output_loc_operands (loc);
3426 }
3427 }
3428
3429 /* This routine will generate the correct assembly data for a location
3430 description based on a cfi entry with a complex address. */
3431
3432 static void
3433 output_cfa_loc (dw_cfi_ref cfi)
3434 {
3435 dw_loc_descr_ref loc;
3436 unsigned long size;
3437
3438 /* Output the size of the block. */
3439 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3440 size = size_of_locs (loc);
3441 dw2_asm_output_data_uleb128 (size, NULL);
3442
3443 /* Now output the operations themselves. */
3444 output_loc_sequence (loc);
3445 }
3446
3447 /* This function builds a dwarf location descriptor sequence from a
3448 dw_cfa_location, adding the given OFFSET to the result of the
3449 expression. */
3450
3451 static struct dw_loc_descr_struct *
3452 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3453 {
3454 struct dw_loc_descr_struct *head, *tmp;
3455
3456 offset += cfa->offset;
3457
3458 if (cfa->indirect)
3459 {
3460 if (cfa->base_offset)
3461 {
3462 if (cfa->reg <= 31)
3463 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3464 else
3465 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3466 }
3467 else if (cfa->reg <= 31)
3468 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3469 else
3470 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3471
3472 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3473 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3474 add_loc_descr (&head, tmp);
3475 if (offset != 0)
3476 {
3477 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3478 add_loc_descr (&head, tmp);
3479 }
3480 }
3481 else
3482 {
3483 if (offset == 0)
3484 if (cfa->reg <= 31)
3485 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3486 else
3487 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3488 else if (cfa->reg <= 31)
3489 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3490 else
3491 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3492 }
3493
3494 return head;
3495 }
3496
3497 /* This function fills in aa dw_cfa_location structure from a dwarf location
3498 descriptor sequence. */
3499
3500 static void
3501 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3502 {
3503 struct dw_loc_descr_struct *ptr;
3504 cfa->offset = 0;
3505 cfa->base_offset = 0;
3506 cfa->indirect = 0;
3507 cfa->reg = -1;
3508
3509 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3510 {
3511 enum dwarf_location_atom op = ptr->dw_loc_opc;
3512
3513 switch (op)
3514 {
3515 case DW_OP_reg0:
3516 case DW_OP_reg1:
3517 case DW_OP_reg2:
3518 case DW_OP_reg3:
3519 case DW_OP_reg4:
3520 case DW_OP_reg5:
3521 case DW_OP_reg6:
3522 case DW_OP_reg7:
3523 case DW_OP_reg8:
3524 case DW_OP_reg9:
3525 case DW_OP_reg10:
3526 case DW_OP_reg11:
3527 case DW_OP_reg12:
3528 case DW_OP_reg13:
3529 case DW_OP_reg14:
3530 case DW_OP_reg15:
3531 case DW_OP_reg16:
3532 case DW_OP_reg17:
3533 case DW_OP_reg18:
3534 case DW_OP_reg19:
3535 case DW_OP_reg20:
3536 case DW_OP_reg21:
3537 case DW_OP_reg22:
3538 case DW_OP_reg23:
3539 case DW_OP_reg24:
3540 case DW_OP_reg25:
3541 case DW_OP_reg26:
3542 case DW_OP_reg27:
3543 case DW_OP_reg28:
3544 case DW_OP_reg29:
3545 case DW_OP_reg30:
3546 case DW_OP_reg31:
3547 cfa->reg = op - DW_OP_reg0;
3548 break;
3549 case DW_OP_regx:
3550 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3551 break;
3552 case DW_OP_breg0:
3553 case DW_OP_breg1:
3554 case DW_OP_breg2:
3555 case DW_OP_breg3:
3556 case DW_OP_breg4:
3557 case DW_OP_breg5:
3558 case DW_OP_breg6:
3559 case DW_OP_breg7:
3560 case DW_OP_breg8:
3561 case DW_OP_breg9:
3562 case DW_OP_breg10:
3563 case DW_OP_breg11:
3564 case DW_OP_breg12:
3565 case DW_OP_breg13:
3566 case DW_OP_breg14:
3567 case DW_OP_breg15:
3568 case DW_OP_breg16:
3569 case DW_OP_breg17:
3570 case DW_OP_breg18:
3571 case DW_OP_breg19:
3572 case DW_OP_breg20:
3573 case DW_OP_breg21:
3574 case DW_OP_breg22:
3575 case DW_OP_breg23:
3576 case DW_OP_breg24:
3577 case DW_OP_breg25:
3578 case DW_OP_breg26:
3579 case DW_OP_breg27:
3580 case DW_OP_breg28:
3581 case DW_OP_breg29:
3582 case DW_OP_breg30:
3583 case DW_OP_breg31:
3584 cfa->reg = op - DW_OP_breg0;
3585 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3586 break;
3587 case DW_OP_bregx:
3588 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3589 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3590 break;
3591 case DW_OP_deref:
3592 cfa->indirect = 1;
3593 break;
3594 case DW_OP_plus_uconst:
3595 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3596 break;
3597 default:
3598 internal_error ("DW_LOC_OP %s not implemented",
3599 dwarf_stack_op_name (ptr->dw_loc_opc));
3600 }
3601 }
3602 }
3603 #endif /* .debug_frame support */
3604 \f
3605 /* And now, the support for symbolic debugging information. */
3606 #ifdef DWARF2_DEBUGGING_INFO
3607
3608 /* .debug_str support. */
3609 static int output_indirect_string (void **, void *);
3610
3611 static void dwarf2out_init (const char *);
3612 static void dwarf2out_finish (const char *);
3613 static void dwarf2out_define (unsigned int, const char *);
3614 static void dwarf2out_undef (unsigned int, const char *);
3615 static void dwarf2out_start_source_file (unsigned, const char *);
3616 static void dwarf2out_end_source_file (unsigned);
3617 static void dwarf2out_begin_block (unsigned, unsigned);
3618 static void dwarf2out_end_block (unsigned, unsigned);
3619 static bool dwarf2out_ignore_block (tree);
3620 static void dwarf2out_global_decl (tree);
3621 static void dwarf2out_type_decl (tree, int);
3622 static void dwarf2out_imported_module_or_decl (tree, tree);
3623 static void dwarf2out_abstract_function (tree);
3624 static void dwarf2out_var_location (rtx);
3625 static void dwarf2out_begin_function (tree);
3626 static void dwarf2out_switch_text_section (void);
3627
3628 /* The debug hooks structure. */
3629
3630 const struct gcc_debug_hooks dwarf2_debug_hooks =
3631 {
3632 dwarf2out_init,
3633 dwarf2out_finish,
3634 dwarf2out_define,
3635 dwarf2out_undef,
3636 dwarf2out_start_source_file,
3637 dwarf2out_end_source_file,
3638 dwarf2out_begin_block,
3639 dwarf2out_end_block,
3640 dwarf2out_ignore_block,
3641 dwarf2out_source_line,
3642 dwarf2out_begin_prologue,
3643 debug_nothing_int_charstar, /* end_prologue */
3644 dwarf2out_end_epilogue,
3645 dwarf2out_begin_function,
3646 debug_nothing_int, /* end_function */
3647 dwarf2out_decl, /* function_decl */
3648 dwarf2out_global_decl,
3649 dwarf2out_type_decl, /* type_decl */
3650 dwarf2out_imported_module_or_decl,
3651 debug_nothing_tree, /* deferred_inline_function */
3652 /* The DWARF 2 backend tries to reduce debugging bloat by not
3653 emitting the abstract description of inline functions until
3654 something tries to reference them. */
3655 dwarf2out_abstract_function, /* outlining_inline_function */
3656 debug_nothing_rtx, /* label */
3657 debug_nothing_int, /* handle_pch */
3658 dwarf2out_var_location,
3659 dwarf2out_switch_text_section,
3660 1 /* start_end_main_source_file */
3661 };
3662 #endif
3663 \f
3664 /* NOTE: In the comments in this file, many references are made to
3665 "Debugging Information Entries". This term is abbreviated as `DIE'
3666 throughout the remainder of this file. */
3667
3668 /* An internal representation of the DWARF output is built, and then
3669 walked to generate the DWARF debugging info. The walk of the internal
3670 representation is done after the entire program has been compiled.
3671 The types below are used to describe the internal representation. */
3672
3673 /* Various DIE's use offsets relative to the beginning of the
3674 .debug_info section to refer to each other. */
3675
3676 typedef long int dw_offset;
3677
3678 /* Define typedefs here to avoid circular dependencies. */
3679
3680 typedef struct dw_attr_struct *dw_attr_ref;
3681 typedef struct dw_line_info_struct *dw_line_info_ref;
3682 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3683 typedef struct pubname_struct *pubname_ref;
3684 typedef struct dw_ranges_struct *dw_ranges_ref;
3685
3686 /* Each entry in the line_info_table maintains the file and
3687 line number associated with the label generated for that
3688 entry. The label gives the PC value associated with
3689 the line number entry. */
3690
3691 typedef struct dw_line_info_struct GTY(())
3692 {
3693 unsigned long dw_file_num;
3694 unsigned long dw_line_num;
3695 }
3696 dw_line_info_entry;
3697
3698 /* Line information for functions in separate sections; each one gets its
3699 own sequence. */
3700 typedef struct dw_separate_line_info_struct GTY(())
3701 {
3702 unsigned long dw_file_num;
3703 unsigned long dw_line_num;
3704 unsigned long function;
3705 }
3706 dw_separate_line_info_entry;
3707
3708 /* Each DIE attribute has a field specifying the attribute kind,
3709 a link to the next attribute in the chain, and an attribute value.
3710 Attributes are typically linked below the DIE they modify. */
3711
3712 typedef struct dw_attr_struct GTY(())
3713 {
3714 enum dwarf_attribute dw_attr;
3715 dw_val_node dw_attr_val;
3716 }
3717 dw_attr_node;
3718
3719 DEF_VEC_O(dw_attr_node);
3720 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3721
3722 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3723 The children of each node form a circular list linked by
3724 die_sib. die_child points to the node *before* the "first" child node. */
3725
3726 typedef struct die_struct GTY(())
3727 {
3728 enum dwarf_tag die_tag;
3729 char *die_symbol;
3730 VEC(dw_attr_node,gc) * die_attr;
3731 dw_die_ref die_parent;
3732 dw_die_ref die_child;
3733 dw_die_ref die_sib;
3734 dw_die_ref die_definition; /* ref from a specification to its definition */
3735 dw_offset die_offset;
3736 unsigned long die_abbrev;
3737 int die_mark;
3738 /* Die is used and must not be pruned as unused. */
3739 int die_perennial_p;
3740 unsigned int decl_id;
3741 }
3742 die_node;
3743
3744 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3745 #define FOR_EACH_CHILD(die, c, expr) do { \
3746 c = die->die_child; \
3747 if (c) do { \
3748 c = c->die_sib; \
3749 expr; \
3750 } while (c != die->die_child); \
3751 } while (0)
3752
3753 /* The pubname structure */
3754
3755 typedef struct pubname_struct GTY(())
3756 {
3757 dw_die_ref die;
3758 char *name;
3759 }
3760 pubname_entry;
3761
3762 struct dw_ranges_struct GTY(())
3763 {
3764 int block_num;
3765 };
3766
3767 /* The limbo die list structure. */
3768 typedef struct limbo_die_struct GTY(())
3769 {
3770 dw_die_ref die;
3771 tree created_for;
3772 struct limbo_die_struct *next;
3773 }
3774 limbo_die_node;
3775
3776 /* How to start an assembler comment. */
3777 #ifndef ASM_COMMENT_START
3778 #define ASM_COMMENT_START ";#"
3779 #endif
3780
3781 /* Define a macro which returns nonzero for a TYPE_DECL which was
3782 implicitly generated for a tagged type.
3783
3784 Note that unlike the gcc front end (which generates a NULL named
3785 TYPE_DECL node for each complete tagged type, each array type, and
3786 each function type node created) the g++ front end generates a
3787 _named_ TYPE_DECL node for each tagged type node created.
3788 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3789 generate a DW_TAG_typedef DIE for them. */
3790
3791 #define TYPE_DECL_IS_STUB(decl) \
3792 (DECL_NAME (decl) == NULL_TREE \
3793 || (DECL_ARTIFICIAL (decl) \
3794 && is_tagged_type (TREE_TYPE (decl)) \
3795 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3796 /* This is necessary for stub decls that \
3797 appear in nested inline functions. */ \
3798 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3799 && (decl_ultimate_origin (decl) \
3800 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3801
3802 /* Information concerning the compilation unit's programming
3803 language, and compiler version. */
3804
3805 /* Fixed size portion of the DWARF compilation unit header. */
3806 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3807 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3808
3809 /* Fixed size portion of public names info. */
3810 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3811
3812 /* Fixed size portion of the address range info. */
3813 #define DWARF_ARANGES_HEADER_SIZE \
3814 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3815 DWARF2_ADDR_SIZE * 2) \
3816 - DWARF_INITIAL_LENGTH_SIZE)
3817
3818 /* Size of padding portion in the address range info. It must be
3819 aligned to twice the pointer size. */
3820 #define DWARF_ARANGES_PAD_SIZE \
3821 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3822 DWARF2_ADDR_SIZE * 2) \
3823 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3824
3825 /* Use assembler line directives if available. */
3826 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3827 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3828 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3829 #else
3830 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3831 #endif
3832 #endif
3833
3834 /* Minimum line offset in a special line info. opcode.
3835 This value was chosen to give a reasonable range of values. */
3836 #define DWARF_LINE_BASE -10
3837
3838 /* First special line opcode - leave room for the standard opcodes. */
3839 #define DWARF_LINE_OPCODE_BASE 10
3840
3841 /* Range of line offsets in a special line info. opcode. */
3842 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3843
3844 /* Flag that indicates the initial value of the is_stmt_start flag.
3845 In the present implementation, we do not mark any lines as
3846 the beginning of a source statement, because that information
3847 is not made available by the GCC front-end. */
3848 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3849
3850 #ifdef DWARF2_DEBUGGING_INFO
3851 /* This location is used by calc_die_sizes() to keep track
3852 the offset of each DIE within the .debug_info section. */
3853 static unsigned long next_die_offset;
3854 #endif
3855
3856 /* Record the root of the DIE's built for the current compilation unit. */
3857 static GTY(()) dw_die_ref comp_unit_die;
3858
3859 /* A list of DIEs with a NULL parent waiting to be relocated. */
3860 static GTY(()) limbo_die_node *limbo_die_list;
3861
3862 /* Filenames referenced by this compilation unit. */
3863 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3864
3865 /* A hash table of references to DIE's that describe declarations.
3866 The key is a DECL_UID() which is a unique number identifying each decl. */
3867 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3868
3869 /* Node of the variable location list. */
3870 struct var_loc_node GTY ((chain_next ("%h.next")))
3871 {
3872 rtx GTY (()) var_loc_note;
3873 const char * GTY (()) label;
3874 const char * GTY (()) section_label;
3875 struct var_loc_node * GTY (()) next;
3876 };
3877
3878 /* Variable location list. */
3879 struct var_loc_list_def GTY (())
3880 {
3881 struct var_loc_node * GTY (()) first;
3882
3883 /* Do not mark the last element of the chained list because
3884 it is marked through the chain. */
3885 struct var_loc_node * GTY ((skip ("%h"))) last;
3886
3887 /* DECL_UID of the variable decl. */
3888 unsigned int decl_id;
3889 };
3890 typedef struct var_loc_list_def var_loc_list;
3891
3892
3893 /* Table of decl location linked lists. */
3894 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3895
3896 /* A pointer to the base of a list of references to DIE's that
3897 are uniquely identified by their tag, presence/absence of
3898 children DIE's, and list of attribute/value pairs. */
3899 static GTY((length ("abbrev_die_table_allocated")))
3900 dw_die_ref *abbrev_die_table;
3901
3902 /* Number of elements currently allocated for abbrev_die_table. */
3903 static GTY(()) unsigned abbrev_die_table_allocated;
3904
3905 /* Number of elements in type_die_table currently in use. */
3906 static GTY(()) unsigned abbrev_die_table_in_use;
3907
3908 /* Size (in elements) of increments by which we may expand the
3909 abbrev_die_table. */
3910 #define ABBREV_DIE_TABLE_INCREMENT 256
3911
3912 /* A pointer to the base of a table that contains line information
3913 for each source code line in .text in the compilation unit. */
3914 static GTY((length ("line_info_table_allocated")))
3915 dw_line_info_ref line_info_table;
3916
3917 /* Number of elements currently allocated for line_info_table. */
3918 static GTY(()) unsigned line_info_table_allocated;
3919
3920 /* Number of elements in line_info_table currently in use. */
3921 static GTY(()) unsigned line_info_table_in_use;
3922
3923 /* True if the compilation unit places functions in more than one section. */
3924 static GTY(()) bool have_multiple_function_sections = false;
3925
3926 /* A pointer to the base of a table that contains line information
3927 for each source code line outside of .text in the compilation unit. */
3928 static GTY ((length ("separate_line_info_table_allocated")))
3929 dw_separate_line_info_ref separate_line_info_table;
3930
3931 /* Number of elements currently allocated for separate_line_info_table. */
3932 static GTY(()) unsigned separate_line_info_table_allocated;
3933
3934 /* Number of elements in separate_line_info_table currently in use. */
3935 static GTY(()) unsigned separate_line_info_table_in_use;
3936
3937 /* Size (in elements) of increments by which we may expand the
3938 line_info_table. */
3939 #define LINE_INFO_TABLE_INCREMENT 1024
3940
3941 /* A pointer to the base of a table that contains a list of publicly
3942 accessible names. */
3943 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3944
3945 /* Number of elements currently allocated for pubname_table. */
3946 static GTY(()) unsigned pubname_table_allocated;
3947
3948 /* Number of elements in pubname_table currently in use. */
3949 static GTY(()) unsigned pubname_table_in_use;
3950
3951 /* Size (in elements) of increments by which we may expand the
3952 pubname_table. */
3953 #define PUBNAME_TABLE_INCREMENT 64
3954
3955 /* Array of dies for which we should generate .debug_arange info. */
3956 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3957
3958 /* Number of elements currently allocated for arange_table. */
3959 static GTY(()) unsigned arange_table_allocated;
3960
3961 /* Number of elements in arange_table currently in use. */
3962 static GTY(()) unsigned arange_table_in_use;
3963
3964 /* Size (in elements) of increments by which we may expand the
3965 arange_table. */
3966 #define ARANGE_TABLE_INCREMENT 64
3967
3968 /* Array of dies for which we should generate .debug_ranges info. */
3969 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3970
3971 /* Number of elements currently allocated for ranges_table. */
3972 static GTY(()) unsigned ranges_table_allocated;
3973
3974 /* Number of elements in ranges_table currently in use. */
3975 static GTY(()) unsigned ranges_table_in_use;
3976
3977 /* Size (in elements) of increments by which we may expand the
3978 ranges_table. */
3979 #define RANGES_TABLE_INCREMENT 64
3980
3981 /* Whether we have location lists that need outputting */
3982 static GTY(()) bool have_location_lists;
3983
3984 /* Unique label counter. */
3985 static GTY(()) unsigned int loclabel_num;
3986
3987 #ifdef DWARF2_DEBUGGING_INFO
3988 /* Record whether the function being analyzed contains inlined functions. */
3989 static int current_function_has_inlines;
3990 #endif
3991 #if 0 && defined (MIPS_DEBUGGING_INFO)
3992 static int comp_unit_has_inlines;
3993 #endif
3994
3995 /* The last file entry emitted by maybe_emit_file(). */
3996 static GTY(()) struct dwarf_file_data * last_emitted_file;
3997
3998 /* Number of internal labels generated by gen_internal_sym(). */
3999 static GTY(()) int label_num;
4000
4001 /* Cached result of previous call to lookup_filename. */
4002 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4003
4004 #ifdef DWARF2_DEBUGGING_INFO
4005
4006 /* Offset from the "steady-state frame pointer" to the frame base,
4007 within the current function. */
4008 static HOST_WIDE_INT frame_pointer_fb_offset;
4009
4010 /* Forward declarations for functions defined in this file. */
4011
4012 static int is_pseudo_reg (rtx);
4013 static tree type_main_variant (tree);
4014 static int is_tagged_type (tree);
4015 static const char *dwarf_tag_name (unsigned);
4016 static const char *dwarf_attr_name (unsigned);
4017 static const char *dwarf_form_name (unsigned);
4018 static tree decl_ultimate_origin (tree);
4019 static tree block_ultimate_origin (tree);
4020 static tree decl_class_context (tree);
4021 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4022 static inline enum dw_val_class AT_class (dw_attr_ref);
4023 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4024 static inline unsigned AT_flag (dw_attr_ref);
4025 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4026 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4027 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4028 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4029 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4030 unsigned long);
4031 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4032 unsigned int, unsigned char *);
4033 static hashval_t debug_str_do_hash (const void *);
4034 static int debug_str_eq (const void *, const void *);
4035 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4036 static inline const char *AT_string (dw_attr_ref);
4037 static int AT_string_form (dw_attr_ref);
4038 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4039 static void add_AT_specification (dw_die_ref, dw_die_ref);
4040 static inline dw_die_ref AT_ref (dw_attr_ref);
4041 static inline int AT_ref_external (dw_attr_ref);
4042 static inline void set_AT_ref_external (dw_attr_ref, int);
4043 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4044 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4045 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4046 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4047 dw_loc_list_ref);
4048 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4049 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4050 static inline rtx AT_addr (dw_attr_ref);
4051 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4052 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4053 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4054 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4055 unsigned HOST_WIDE_INT);
4056 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4057 unsigned long);
4058 static inline const char *AT_lbl (dw_attr_ref);
4059 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4060 static const char *get_AT_low_pc (dw_die_ref);
4061 static const char *get_AT_hi_pc (dw_die_ref);
4062 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4063 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4064 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4065 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4066 static bool is_c_family (void);
4067 static bool is_cxx (void);
4068 static bool is_java (void);
4069 static bool is_fortran (void);
4070 static bool is_ada (void);
4071 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4072 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4073 static void add_child_die (dw_die_ref, dw_die_ref);
4074 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4075 static dw_die_ref lookup_type_die (tree);
4076 static void equate_type_number_to_die (tree, dw_die_ref);
4077 static hashval_t decl_die_table_hash (const void *);
4078 static int decl_die_table_eq (const void *, const void *);
4079 static dw_die_ref lookup_decl_die (tree);
4080 static hashval_t decl_loc_table_hash (const void *);
4081 static int decl_loc_table_eq (const void *, const void *);
4082 static var_loc_list *lookup_decl_loc (tree);
4083 static void equate_decl_number_to_die (tree, dw_die_ref);
4084 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4085 static void print_spaces (FILE *);
4086 static void print_die (dw_die_ref, FILE *);
4087 static void print_dwarf_line_table (FILE *);
4088 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4089 static dw_die_ref pop_compile_unit (dw_die_ref);
4090 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4091 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4092 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4093 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4094 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4095 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4096 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4097 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4098 static void compute_section_prefix (dw_die_ref);
4099 static int is_type_die (dw_die_ref);
4100 static int is_comdat_die (dw_die_ref);
4101 static int is_symbol_die (dw_die_ref);
4102 static void assign_symbol_names (dw_die_ref);
4103 static void break_out_includes (dw_die_ref);
4104 static hashval_t htab_cu_hash (const void *);
4105 static int htab_cu_eq (const void *, const void *);
4106 static void htab_cu_del (void *);
4107 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4108 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4109 static void add_sibling_attributes (dw_die_ref);
4110 static void build_abbrev_table (dw_die_ref);
4111 static void output_location_lists (dw_die_ref);
4112 static int constant_size (long unsigned);
4113 static unsigned long size_of_die (dw_die_ref);
4114 static void calc_die_sizes (dw_die_ref);
4115 static void mark_dies (dw_die_ref);
4116 static void unmark_dies (dw_die_ref);
4117 static void unmark_all_dies (dw_die_ref);
4118 static unsigned long size_of_pubnames (void);
4119 static unsigned long size_of_aranges (void);
4120 static enum dwarf_form value_format (dw_attr_ref);
4121 static void output_value_format (dw_attr_ref);
4122 static void output_abbrev_section (void);
4123 static void output_die_symbol (dw_die_ref);
4124 static void output_die (dw_die_ref);
4125 static void output_compilation_unit_header (void);
4126 static void output_comp_unit (dw_die_ref, int);
4127 static const char *dwarf2_name (tree, int);
4128 static void add_pubname (tree, dw_die_ref);
4129 static void output_pubnames (void);
4130 static void add_arange (tree, dw_die_ref);
4131 static void output_aranges (void);
4132 static unsigned int add_ranges (tree);
4133 static void output_ranges (void);
4134 static void output_line_info (void);
4135 static void output_file_names (void);
4136 static dw_die_ref base_type_die (tree);
4137 static tree root_type (tree);
4138 static int is_base_type (tree);
4139 static bool is_subrange_type (tree);
4140 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4141 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4142 static int type_is_enum (tree);
4143 static unsigned int dbx_reg_number (rtx);
4144 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4145 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4146 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4147 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4148 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4149 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4150 static int is_based_loc (rtx);
4151 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4152 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4153 static dw_loc_descr_ref loc_descriptor (rtx);
4154 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4155 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4156 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4157 static tree field_type (tree);
4158 static unsigned int simple_type_align_in_bits (tree);
4159 static unsigned int simple_decl_align_in_bits (tree);
4160 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4161 static HOST_WIDE_INT field_byte_offset (tree);
4162 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4163 dw_loc_descr_ref);
4164 static void add_data_member_location_attribute (dw_die_ref, tree);
4165 static void add_const_value_attribute (dw_die_ref, rtx);
4166 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4167 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4168 static void insert_float (rtx, unsigned char *);
4169 static rtx rtl_for_decl_location (tree);
4170 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4171 enum dwarf_attribute);
4172 static void tree_add_const_value_attribute (dw_die_ref, tree);
4173 static void add_name_attribute (dw_die_ref, const char *);
4174 static void add_comp_dir_attribute (dw_die_ref);
4175 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4176 static void add_subscript_info (dw_die_ref, tree);
4177 static void add_byte_size_attribute (dw_die_ref, tree);
4178 static void add_bit_offset_attribute (dw_die_ref, tree);
4179 static void add_bit_size_attribute (dw_die_ref, tree);
4180 static void add_prototyped_attribute (dw_die_ref, tree);
4181 static void add_abstract_origin_attribute (dw_die_ref, tree);
4182 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4183 static void add_src_coords_attributes (dw_die_ref, tree);
4184 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4185 static void push_decl_scope (tree);
4186 static void pop_decl_scope (void);
4187 static dw_die_ref scope_die_for (tree, dw_die_ref);
4188 static inline int local_scope_p (dw_die_ref);
4189 static inline int class_or_namespace_scope_p (dw_die_ref);
4190 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4191 static void add_calling_convention_attribute (dw_die_ref, tree);
4192 static const char *type_tag (tree);
4193 static tree member_declared_type (tree);
4194 #if 0
4195 static const char *decl_start_label (tree);
4196 #endif
4197 static void gen_array_type_die (tree, dw_die_ref);
4198 #if 0
4199 static void gen_entry_point_die (tree, dw_die_ref);
4200 #endif
4201 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4202 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4203 static void gen_inlined_union_type_die (tree, dw_die_ref);
4204 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4205 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4206 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4207 static void gen_formal_types_die (tree, dw_die_ref);
4208 static void gen_subprogram_die (tree, dw_die_ref);
4209 static void gen_variable_die (tree, dw_die_ref);
4210 static void gen_label_die (tree, dw_die_ref);
4211 static void gen_lexical_block_die (tree, dw_die_ref, int);
4212 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4213 static void gen_field_die (tree, dw_die_ref);
4214 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4215 static dw_die_ref gen_compile_unit_die (const char *);
4216 static void gen_inheritance_die (tree, tree, dw_die_ref);
4217 static void gen_member_die (tree, dw_die_ref);
4218 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4219 static void gen_subroutine_type_die (tree, dw_die_ref);
4220 static void gen_typedef_die (tree, dw_die_ref);
4221 static void gen_type_die (tree, dw_die_ref);
4222 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4223 static void gen_block_die (tree, dw_die_ref, int);
4224 static void decls_for_scope (tree, dw_die_ref, int);
4225 static int is_redundant_typedef (tree);
4226 static void gen_namespace_die (tree);
4227 static void gen_decl_die (tree, dw_die_ref);
4228 static dw_die_ref force_decl_die (tree);
4229 static dw_die_ref force_type_die (tree);
4230 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4231 static void declare_in_namespace (tree, dw_die_ref);
4232 static struct dwarf_file_data * lookup_filename (const char *);
4233 static void retry_incomplete_types (void);
4234 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4235 static void splice_child_die (dw_die_ref, dw_die_ref);
4236 static int file_info_cmp (const void *, const void *);
4237 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4238 const char *, const char *, unsigned);
4239 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4240 const char *, const char *,
4241 const char *);
4242 static void output_loc_list (dw_loc_list_ref);
4243 static char *gen_internal_sym (const char *);
4244
4245 static void prune_unmark_dies (dw_die_ref);
4246 static void prune_unused_types_mark (dw_die_ref, int);
4247 static void prune_unused_types_walk (dw_die_ref);
4248 static void prune_unused_types_walk_attribs (dw_die_ref);
4249 static void prune_unused_types_prune (dw_die_ref);
4250 static void prune_unused_types (void);
4251 static int maybe_emit_file (struct dwarf_file_data *fd);
4252
4253 /* Section names used to hold DWARF debugging information. */
4254 #ifndef DEBUG_INFO_SECTION
4255 #define DEBUG_INFO_SECTION ".debug_info"
4256 #endif
4257 #ifndef DEBUG_ABBREV_SECTION
4258 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4259 #endif
4260 #ifndef DEBUG_ARANGES_SECTION
4261 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4262 #endif
4263 #ifndef DEBUG_MACINFO_SECTION
4264 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4265 #endif
4266 #ifndef DEBUG_LINE_SECTION
4267 #define DEBUG_LINE_SECTION ".debug_line"
4268 #endif
4269 #ifndef DEBUG_LOC_SECTION
4270 #define DEBUG_LOC_SECTION ".debug_loc"
4271 #endif
4272 #ifndef DEBUG_PUBNAMES_SECTION
4273 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4274 #endif
4275 #ifndef DEBUG_STR_SECTION
4276 #define DEBUG_STR_SECTION ".debug_str"
4277 #endif
4278 #ifndef DEBUG_RANGES_SECTION
4279 #define DEBUG_RANGES_SECTION ".debug_ranges"
4280 #endif
4281
4282 /* Standard ELF section names for compiled code and data. */
4283 #ifndef TEXT_SECTION_NAME
4284 #define TEXT_SECTION_NAME ".text"
4285 #endif
4286
4287 /* Section flags for .debug_str section. */
4288 #define DEBUG_STR_SECTION_FLAGS \
4289 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4290 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4291 : SECTION_DEBUG)
4292
4293 /* Labels we insert at beginning sections we can reference instead of
4294 the section names themselves. */
4295
4296 #ifndef TEXT_SECTION_LABEL
4297 #define TEXT_SECTION_LABEL "Ltext"
4298 #endif
4299 #ifndef COLD_TEXT_SECTION_LABEL
4300 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4301 #endif
4302 #ifndef DEBUG_LINE_SECTION_LABEL
4303 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4304 #endif
4305 #ifndef DEBUG_INFO_SECTION_LABEL
4306 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4307 #endif
4308 #ifndef DEBUG_ABBREV_SECTION_LABEL
4309 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4310 #endif
4311 #ifndef DEBUG_LOC_SECTION_LABEL
4312 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4313 #endif
4314 #ifndef DEBUG_RANGES_SECTION_LABEL
4315 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4316 #endif
4317 #ifndef DEBUG_MACINFO_SECTION_LABEL
4318 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4319 #endif
4320
4321 /* Definitions of defaults for formats and names of various special
4322 (artificial) labels which may be generated within this file (when the -g
4323 options is used and DWARF2_DEBUGGING_INFO is in effect.
4324 If necessary, these may be overridden from within the tm.h file, but
4325 typically, overriding these defaults is unnecessary. */
4326
4327 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4329 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4331 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4334 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4335 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4336 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4337
4338 #ifndef TEXT_END_LABEL
4339 #define TEXT_END_LABEL "Letext"
4340 #endif
4341 #ifndef COLD_END_LABEL
4342 #define COLD_END_LABEL "Letext_cold"
4343 #endif
4344 #ifndef BLOCK_BEGIN_LABEL
4345 #define BLOCK_BEGIN_LABEL "LBB"
4346 #endif
4347 #ifndef BLOCK_END_LABEL
4348 #define BLOCK_END_LABEL "LBE"
4349 #endif
4350 #ifndef LINE_CODE_LABEL
4351 #define LINE_CODE_LABEL "LM"
4352 #endif
4353 #ifndef SEPARATE_LINE_CODE_LABEL
4354 #define SEPARATE_LINE_CODE_LABEL "LSM"
4355 #endif
4356 \f
4357 /* We allow a language front-end to designate a function that is to be
4358 called to "demangle" any name before it is put into a DIE. */
4359
4360 static const char *(*demangle_name_func) (const char *);
4361
4362 void
4363 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4364 {
4365 demangle_name_func = func;
4366 }
4367
4368 /* Test if rtl node points to a pseudo register. */
4369
4370 static inline int
4371 is_pseudo_reg (rtx rtl)
4372 {
4373 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4374 || (GET_CODE (rtl) == SUBREG
4375 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4376 }
4377
4378 /* Return a reference to a type, with its const and volatile qualifiers
4379 removed. */
4380
4381 static inline tree
4382 type_main_variant (tree type)
4383 {
4384 type = TYPE_MAIN_VARIANT (type);
4385
4386 /* ??? There really should be only one main variant among any group of
4387 variants of a given type (and all of the MAIN_VARIANT values for all
4388 members of the group should point to that one type) but sometimes the C
4389 front-end messes this up for array types, so we work around that bug
4390 here. */
4391 if (TREE_CODE (type) == ARRAY_TYPE)
4392 while (type != TYPE_MAIN_VARIANT (type))
4393 type = TYPE_MAIN_VARIANT (type);
4394
4395 return type;
4396 }
4397
4398 /* Return nonzero if the given type node represents a tagged type. */
4399
4400 static inline int
4401 is_tagged_type (tree type)
4402 {
4403 enum tree_code code = TREE_CODE (type);
4404
4405 return (code == RECORD_TYPE || code == UNION_TYPE
4406 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4407 }
4408
4409 /* Convert a DIE tag into its string name. */
4410
4411 static const char *
4412 dwarf_tag_name (unsigned int tag)
4413 {
4414 switch (tag)
4415 {
4416 case DW_TAG_padding:
4417 return "DW_TAG_padding";
4418 case DW_TAG_array_type:
4419 return "DW_TAG_array_type";
4420 case DW_TAG_class_type:
4421 return "DW_TAG_class_type";
4422 case DW_TAG_entry_point:
4423 return "DW_TAG_entry_point";
4424 case DW_TAG_enumeration_type:
4425 return "DW_TAG_enumeration_type";
4426 case DW_TAG_formal_parameter:
4427 return "DW_TAG_formal_parameter";
4428 case DW_TAG_imported_declaration:
4429 return "DW_TAG_imported_declaration";
4430 case DW_TAG_label:
4431 return "DW_TAG_label";
4432 case DW_TAG_lexical_block:
4433 return "DW_TAG_lexical_block";
4434 case DW_TAG_member:
4435 return "DW_TAG_member";
4436 case DW_TAG_pointer_type:
4437 return "DW_TAG_pointer_type";
4438 case DW_TAG_reference_type:
4439 return "DW_TAG_reference_type";
4440 case DW_TAG_compile_unit:
4441 return "DW_TAG_compile_unit";
4442 case DW_TAG_string_type:
4443 return "DW_TAG_string_type";
4444 case DW_TAG_structure_type:
4445 return "DW_TAG_structure_type";
4446 case DW_TAG_subroutine_type:
4447 return "DW_TAG_subroutine_type";
4448 case DW_TAG_typedef:
4449 return "DW_TAG_typedef";
4450 case DW_TAG_union_type:
4451 return "DW_TAG_union_type";
4452 case DW_TAG_unspecified_parameters:
4453 return "DW_TAG_unspecified_parameters";
4454 case DW_TAG_variant:
4455 return "DW_TAG_variant";
4456 case DW_TAG_common_block:
4457 return "DW_TAG_common_block";
4458 case DW_TAG_common_inclusion:
4459 return "DW_TAG_common_inclusion";
4460 case DW_TAG_inheritance:
4461 return "DW_TAG_inheritance";
4462 case DW_TAG_inlined_subroutine:
4463 return "DW_TAG_inlined_subroutine";
4464 case DW_TAG_module:
4465 return "DW_TAG_module";
4466 case DW_TAG_ptr_to_member_type:
4467 return "DW_TAG_ptr_to_member_type";
4468 case DW_TAG_set_type:
4469 return "DW_TAG_set_type";
4470 case DW_TAG_subrange_type:
4471 return "DW_TAG_subrange_type";
4472 case DW_TAG_with_stmt:
4473 return "DW_TAG_with_stmt";
4474 case DW_TAG_access_declaration:
4475 return "DW_TAG_access_declaration";
4476 case DW_TAG_base_type:
4477 return "DW_TAG_base_type";
4478 case DW_TAG_catch_block:
4479 return "DW_TAG_catch_block";
4480 case DW_TAG_const_type:
4481 return "DW_TAG_const_type";
4482 case DW_TAG_constant:
4483 return "DW_TAG_constant";
4484 case DW_TAG_enumerator:
4485 return "DW_TAG_enumerator";
4486 case DW_TAG_file_type:
4487 return "DW_TAG_file_type";
4488 case DW_TAG_friend:
4489 return "DW_TAG_friend";
4490 case DW_TAG_namelist:
4491 return "DW_TAG_namelist";
4492 case DW_TAG_namelist_item:
4493 return "DW_TAG_namelist_item";
4494 case DW_TAG_namespace:
4495 return "DW_TAG_namespace";
4496 case DW_TAG_packed_type:
4497 return "DW_TAG_packed_type";
4498 case DW_TAG_subprogram:
4499 return "DW_TAG_subprogram";
4500 case DW_TAG_template_type_param:
4501 return "DW_TAG_template_type_param";
4502 case DW_TAG_template_value_param:
4503 return "DW_TAG_template_value_param";
4504 case DW_TAG_thrown_type:
4505 return "DW_TAG_thrown_type";
4506 case DW_TAG_try_block:
4507 return "DW_TAG_try_block";
4508 case DW_TAG_variant_part:
4509 return "DW_TAG_variant_part";
4510 case DW_TAG_variable:
4511 return "DW_TAG_variable";
4512 case DW_TAG_volatile_type:
4513 return "DW_TAG_volatile_type";
4514 case DW_TAG_imported_module:
4515 return "DW_TAG_imported_module";
4516 case DW_TAG_MIPS_loop:
4517 return "DW_TAG_MIPS_loop";
4518 case DW_TAG_format_label:
4519 return "DW_TAG_format_label";
4520 case DW_TAG_function_template:
4521 return "DW_TAG_function_template";
4522 case DW_TAG_class_template:
4523 return "DW_TAG_class_template";
4524 case DW_TAG_GNU_BINCL:
4525 return "DW_TAG_GNU_BINCL";
4526 case DW_TAG_GNU_EINCL:
4527 return "DW_TAG_GNU_EINCL";
4528 default:
4529 return "DW_TAG_<unknown>";
4530 }
4531 }
4532
4533 /* Convert a DWARF attribute code into its string name. */
4534
4535 static const char *
4536 dwarf_attr_name (unsigned int attr)
4537 {
4538 switch (attr)
4539 {
4540 case DW_AT_sibling:
4541 return "DW_AT_sibling";
4542 case DW_AT_location:
4543 return "DW_AT_location";
4544 case DW_AT_name:
4545 return "DW_AT_name";
4546 case DW_AT_ordering:
4547 return "DW_AT_ordering";
4548 case DW_AT_subscr_data:
4549 return "DW_AT_subscr_data";
4550 case DW_AT_byte_size:
4551 return "DW_AT_byte_size";
4552 case DW_AT_bit_offset:
4553 return "DW_AT_bit_offset";
4554 case DW_AT_bit_size:
4555 return "DW_AT_bit_size";
4556 case DW_AT_element_list:
4557 return "DW_AT_element_list";
4558 case DW_AT_stmt_list:
4559 return "DW_AT_stmt_list";
4560 case DW_AT_low_pc:
4561 return "DW_AT_low_pc";
4562 case DW_AT_high_pc:
4563 return "DW_AT_high_pc";
4564 case DW_AT_language:
4565 return "DW_AT_language";
4566 case DW_AT_member:
4567 return "DW_AT_member";
4568 case DW_AT_discr:
4569 return "DW_AT_discr";
4570 case DW_AT_discr_value:
4571 return "DW_AT_discr_value";
4572 case DW_AT_visibility:
4573 return "DW_AT_visibility";
4574 case DW_AT_import:
4575 return "DW_AT_import";
4576 case DW_AT_string_length:
4577 return "DW_AT_string_length";
4578 case DW_AT_common_reference:
4579 return "DW_AT_common_reference";
4580 case DW_AT_comp_dir:
4581 return "DW_AT_comp_dir";
4582 case DW_AT_const_value:
4583 return "DW_AT_const_value";
4584 case DW_AT_containing_type:
4585 return "DW_AT_containing_type";
4586 case DW_AT_default_value:
4587 return "DW_AT_default_value";
4588 case DW_AT_inline:
4589 return "DW_AT_inline";
4590 case DW_AT_is_optional:
4591 return "DW_AT_is_optional";
4592 case DW_AT_lower_bound:
4593 return "DW_AT_lower_bound";
4594 case DW_AT_producer:
4595 return "DW_AT_producer";
4596 case DW_AT_prototyped:
4597 return "DW_AT_prototyped";
4598 case DW_AT_return_addr:
4599 return "DW_AT_return_addr";
4600 case DW_AT_start_scope:
4601 return "DW_AT_start_scope";
4602 case DW_AT_stride_size:
4603 return "DW_AT_stride_size";
4604 case DW_AT_upper_bound:
4605 return "DW_AT_upper_bound";
4606 case DW_AT_abstract_origin:
4607 return "DW_AT_abstract_origin";
4608 case DW_AT_accessibility:
4609 return "DW_AT_accessibility";
4610 case DW_AT_address_class:
4611 return "DW_AT_address_class";
4612 case DW_AT_artificial:
4613 return "DW_AT_artificial";
4614 case DW_AT_base_types:
4615 return "DW_AT_base_types";
4616 case DW_AT_calling_convention:
4617 return "DW_AT_calling_convention";
4618 case DW_AT_count:
4619 return "DW_AT_count";
4620 case DW_AT_data_member_location:
4621 return "DW_AT_data_member_location";
4622 case DW_AT_decl_column:
4623 return "DW_AT_decl_column";
4624 case DW_AT_decl_file:
4625 return "DW_AT_decl_file";
4626 case DW_AT_decl_line:
4627 return "DW_AT_decl_line";
4628 case DW_AT_declaration:
4629 return "DW_AT_declaration";
4630 case DW_AT_discr_list:
4631 return "DW_AT_discr_list";
4632 case DW_AT_encoding:
4633 return "DW_AT_encoding";
4634 case DW_AT_external:
4635 return "DW_AT_external";
4636 case DW_AT_frame_base:
4637 return "DW_AT_frame_base";
4638 case DW_AT_friend:
4639 return "DW_AT_friend";
4640 case DW_AT_identifier_case:
4641 return "DW_AT_identifier_case";
4642 case DW_AT_macro_info:
4643 return "DW_AT_macro_info";
4644 case DW_AT_namelist_items:
4645 return "DW_AT_namelist_items";
4646 case DW_AT_priority:
4647 return "DW_AT_priority";
4648 case DW_AT_segment:
4649 return "DW_AT_segment";
4650 case DW_AT_specification:
4651 return "DW_AT_specification";
4652 case DW_AT_static_link:
4653 return "DW_AT_static_link";
4654 case DW_AT_type:
4655 return "DW_AT_type";
4656 case DW_AT_use_location:
4657 return "DW_AT_use_location";
4658 case DW_AT_variable_parameter:
4659 return "DW_AT_variable_parameter";
4660 case DW_AT_virtuality:
4661 return "DW_AT_virtuality";
4662 case DW_AT_vtable_elem_location:
4663 return "DW_AT_vtable_elem_location";
4664
4665 case DW_AT_allocated:
4666 return "DW_AT_allocated";
4667 case DW_AT_associated:
4668 return "DW_AT_associated";
4669 case DW_AT_data_location:
4670 return "DW_AT_data_location";
4671 case DW_AT_stride:
4672 return "DW_AT_stride";
4673 case DW_AT_entry_pc:
4674 return "DW_AT_entry_pc";
4675 case DW_AT_use_UTF8:
4676 return "DW_AT_use_UTF8";
4677 case DW_AT_extension:
4678 return "DW_AT_extension";
4679 case DW_AT_ranges:
4680 return "DW_AT_ranges";
4681 case DW_AT_trampoline:
4682 return "DW_AT_trampoline";
4683 case DW_AT_call_column:
4684 return "DW_AT_call_column";
4685 case DW_AT_call_file:
4686 return "DW_AT_call_file";
4687 case DW_AT_call_line:
4688 return "DW_AT_call_line";
4689
4690 case DW_AT_MIPS_fde:
4691 return "DW_AT_MIPS_fde";
4692 case DW_AT_MIPS_loop_begin:
4693 return "DW_AT_MIPS_loop_begin";
4694 case DW_AT_MIPS_tail_loop_begin:
4695 return "DW_AT_MIPS_tail_loop_begin";
4696 case DW_AT_MIPS_epilog_begin:
4697 return "DW_AT_MIPS_epilog_begin";
4698 case DW_AT_MIPS_loop_unroll_factor:
4699 return "DW_AT_MIPS_loop_unroll_factor";
4700 case DW_AT_MIPS_software_pipeline_depth:
4701 return "DW_AT_MIPS_software_pipeline_depth";
4702 case DW_AT_MIPS_linkage_name:
4703 return "DW_AT_MIPS_linkage_name";
4704 case DW_AT_MIPS_stride:
4705 return "DW_AT_MIPS_stride";
4706 case DW_AT_MIPS_abstract_name:
4707 return "DW_AT_MIPS_abstract_name";
4708 case DW_AT_MIPS_clone_origin:
4709 return "DW_AT_MIPS_clone_origin";
4710 case DW_AT_MIPS_has_inlines:
4711 return "DW_AT_MIPS_has_inlines";
4712
4713 case DW_AT_sf_names:
4714 return "DW_AT_sf_names";
4715 case DW_AT_src_info:
4716 return "DW_AT_src_info";
4717 case DW_AT_mac_info:
4718 return "DW_AT_mac_info";
4719 case DW_AT_src_coords:
4720 return "DW_AT_src_coords";
4721 case DW_AT_body_begin:
4722 return "DW_AT_body_begin";
4723 case DW_AT_body_end:
4724 return "DW_AT_body_end";
4725 case DW_AT_GNU_vector:
4726 return "DW_AT_GNU_vector";
4727
4728 case DW_AT_VMS_rtnbeg_pd_address:
4729 return "DW_AT_VMS_rtnbeg_pd_address";
4730
4731 default:
4732 return "DW_AT_<unknown>";
4733 }
4734 }
4735
4736 /* Convert a DWARF value form code into its string name. */
4737
4738 static const char *
4739 dwarf_form_name (unsigned int form)
4740 {
4741 switch (form)
4742 {
4743 case DW_FORM_addr:
4744 return "DW_FORM_addr";
4745 case DW_FORM_block2:
4746 return "DW_FORM_block2";
4747 case DW_FORM_block4:
4748 return "DW_FORM_block4";
4749 case DW_FORM_data2:
4750 return "DW_FORM_data2";
4751 case DW_FORM_data4:
4752 return "DW_FORM_data4";
4753 case DW_FORM_data8:
4754 return "DW_FORM_data8";
4755 case DW_FORM_string:
4756 return "DW_FORM_string";
4757 case DW_FORM_block:
4758 return "DW_FORM_block";
4759 case DW_FORM_block1:
4760 return "DW_FORM_block1";
4761 case DW_FORM_data1:
4762 return "DW_FORM_data1";
4763 case DW_FORM_flag:
4764 return "DW_FORM_flag";
4765 case DW_FORM_sdata:
4766 return "DW_FORM_sdata";
4767 case DW_FORM_strp:
4768 return "DW_FORM_strp";
4769 case DW_FORM_udata:
4770 return "DW_FORM_udata";
4771 case DW_FORM_ref_addr:
4772 return "DW_FORM_ref_addr";
4773 case DW_FORM_ref1:
4774 return "DW_FORM_ref1";
4775 case DW_FORM_ref2:
4776 return "DW_FORM_ref2";
4777 case DW_FORM_ref4:
4778 return "DW_FORM_ref4";
4779 case DW_FORM_ref8:
4780 return "DW_FORM_ref8";
4781 case DW_FORM_ref_udata:
4782 return "DW_FORM_ref_udata";
4783 case DW_FORM_indirect:
4784 return "DW_FORM_indirect";
4785 default:
4786 return "DW_FORM_<unknown>";
4787 }
4788 }
4789 \f
4790 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4791 instance of an inlined instance of a decl which is local to an inline
4792 function, so we have to trace all of the way back through the origin chain
4793 to find out what sort of node actually served as the original seed for the
4794 given block. */
4795
4796 static tree
4797 decl_ultimate_origin (tree decl)
4798 {
4799 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4800 return NULL_TREE;
4801
4802 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4803 nodes in the function to point to themselves; ignore that if
4804 we're trying to output the abstract instance of this function. */
4805 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4806 return NULL_TREE;
4807
4808 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4809 most distant ancestor, this should never happen. */
4810 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4811
4812 return DECL_ABSTRACT_ORIGIN (decl);
4813 }
4814
4815 /* Determine the "ultimate origin" of a block. The block may be an inlined
4816 instance of an inlined instance of a block which is local to an inline
4817 function, so we have to trace all of the way back through the origin chain
4818 to find out what sort of node actually served as the original seed for the
4819 given block. */
4820
4821 static tree
4822 block_ultimate_origin (tree block)
4823 {
4824 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4825
4826 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4827 nodes in the function to point to themselves; ignore that if
4828 we're trying to output the abstract instance of this function. */
4829 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4830 return NULL_TREE;
4831
4832 if (immediate_origin == NULL_TREE)
4833 return NULL_TREE;
4834 else
4835 {
4836 tree ret_val;
4837 tree lookahead = immediate_origin;
4838
4839 do
4840 {
4841 ret_val = lookahead;
4842 lookahead = (TREE_CODE (ret_val) == BLOCK
4843 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4844 }
4845 while (lookahead != NULL && lookahead != ret_val);
4846
4847 /* The block's abstract origin chain may not be the *ultimate* origin of
4848 the block. It could lead to a DECL that has an abstract origin set.
4849 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4850 will give us if it has one). Note that DECL's abstract origins are
4851 supposed to be the most distant ancestor (or so decl_ultimate_origin
4852 claims), so we don't need to loop following the DECL origins. */
4853 if (DECL_P (ret_val))
4854 return DECL_ORIGIN (ret_val);
4855
4856 return ret_val;
4857 }
4858 }
4859
4860 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4861 of a virtual function may refer to a base class, so we check the 'this'
4862 parameter. */
4863
4864 static tree
4865 decl_class_context (tree decl)
4866 {
4867 tree context = NULL_TREE;
4868
4869 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4870 context = DECL_CONTEXT (decl);
4871 else
4872 context = TYPE_MAIN_VARIANT
4873 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4874
4875 if (context && !TYPE_P (context))
4876 context = NULL_TREE;
4877
4878 return context;
4879 }
4880 \f
4881 /* Add an attribute/value pair to a DIE. */
4882
4883 static inline void
4884 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4885 {
4886 /* Maybe this should be an assert? */
4887 if (die == NULL)
4888 return;
4889
4890 if (die->die_attr == NULL)
4891 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4892 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4893 }
4894
4895 static inline enum dw_val_class
4896 AT_class (dw_attr_ref a)
4897 {
4898 return a->dw_attr_val.val_class;
4899 }
4900
4901 /* Add a flag value attribute to a DIE. */
4902
4903 static inline void
4904 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4905 {
4906 dw_attr_node attr;
4907
4908 attr.dw_attr = attr_kind;
4909 attr.dw_attr_val.val_class = dw_val_class_flag;
4910 attr.dw_attr_val.v.val_flag = flag;
4911 add_dwarf_attr (die, &attr);
4912 }
4913
4914 static inline unsigned
4915 AT_flag (dw_attr_ref a)
4916 {
4917 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4918 return a->dw_attr_val.v.val_flag;
4919 }
4920
4921 /* Add a signed integer attribute value to a DIE. */
4922
4923 static inline void
4924 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4925 {
4926 dw_attr_node attr;
4927
4928 attr.dw_attr = attr_kind;
4929 attr.dw_attr_val.val_class = dw_val_class_const;
4930 attr.dw_attr_val.v.val_int = int_val;
4931 add_dwarf_attr (die, &attr);
4932 }
4933
4934 static inline HOST_WIDE_INT
4935 AT_int (dw_attr_ref a)
4936 {
4937 gcc_assert (a && AT_class (a) == dw_val_class_const);
4938 return a->dw_attr_val.v.val_int;
4939 }
4940
4941 /* Add an unsigned integer attribute value to a DIE. */
4942
4943 static inline void
4944 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4945 unsigned HOST_WIDE_INT unsigned_val)
4946 {
4947 dw_attr_node attr;
4948
4949 attr.dw_attr = attr_kind;
4950 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4951 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4952 add_dwarf_attr (die, &attr);
4953 }
4954
4955 static inline unsigned HOST_WIDE_INT
4956 AT_unsigned (dw_attr_ref a)
4957 {
4958 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4959 return a->dw_attr_val.v.val_unsigned;
4960 }
4961
4962 /* Add an unsigned double integer attribute value to a DIE. */
4963
4964 static inline void
4965 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4966 long unsigned int val_hi, long unsigned int val_low)
4967 {
4968 dw_attr_node attr;
4969
4970 attr.dw_attr = attr_kind;
4971 attr.dw_attr_val.val_class = dw_val_class_long_long;
4972 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4973 attr.dw_attr_val.v.val_long_long.low = val_low;
4974 add_dwarf_attr (die, &attr);
4975 }
4976
4977 /* Add a floating point attribute value to a DIE and return it. */
4978
4979 static inline void
4980 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4981 unsigned int length, unsigned int elt_size, unsigned char *array)
4982 {
4983 dw_attr_node attr;
4984
4985 attr.dw_attr = attr_kind;
4986 attr.dw_attr_val.val_class = dw_val_class_vec;
4987 attr.dw_attr_val.v.val_vec.length = length;
4988 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4989 attr.dw_attr_val.v.val_vec.array = array;
4990 add_dwarf_attr (die, &attr);
4991 }
4992
4993 /* Hash and equality functions for debug_str_hash. */
4994
4995 static hashval_t
4996 debug_str_do_hash (const void *x)
4997 {
4998 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4999 }
5000
5001 static int
5002 debug_str_eq (const void *x1, const void *x2)
5003 {
5004 return strcmp ((((const struct indirect_string_node *)x1)->str),
5005 (const char *)x2) == 0;
5006 }
5007
5008 /* Add a string attribute value to a DIE. */
5009
5010 static inline void
5011 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5012 {
5013 dw_attr_node attr;
5014 struct indirect_string_node *node;
5015 void **slot;
5016
5017 if (! debug_str_hash)
5018 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5019 debug_str_eq, NULL);
5020
5021 slot = htab_find_slot_with_hash (debug_str_hash, str,
5022 htab_hash_string (str), INSERT);
5023 if (*slot == NULL)
5024 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5025 node = (struct indirect_string_node *) *slot;
5026 node->str = ggc_strdup (str);
5027 node->refcount++;
5028
5029 attr.dw_attr = attr_kind;
5030 attr.dw_attr_val.val_class = dw_val_class_str;
5031 attr.dw_attr_val.v.val_str = node;
5032 add_dwarf_attr (die, &attr);
5033 }
5034
5035 static inline const char *
5036 AT_string (dw_attr_ref a)
5037 {
5038 gcc_assert (a && AT_class (a) == dw_val_class_str);
5039 return a->dw_attr_val.v.val_str->str;
5040 }
5041
5042 /* Find out whether a string should be output inline in DIE
5043 or out-of-line in .debug_str section. */
5044
5045 static int
5046 AT_string_form (dw_attr_ref a)
5047 {
5048 struct indirect_string_node *node;
5049 unsigned int len;
5050 char label[32];
5051
5052 gcc_assert (a && AT_class (a) == dw_val_class_str);
5053
5054 node = a->dw_attr_val.v.val_str;
5055 if (node->form)
5056 return node->form;
5057
5058 len = strlen (node->str) + 1;
5059
5060 /* If the string is shorter or equal to the size of the reference, it is
5061 always better to put it inline. */
5062 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5063 return node->form = DW_FORM_string;
5064
5065 /* If we cannot expect the linker to merge strings in .debug_str
5066 section, only put it into .debug_str if it is worth even in this
5067 single module. */
5068 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5069 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5070 return node->form = DW_FORM_string;
5071
5072 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5073 ++dw2_string_counter;
5074 node->label = xstrdup (label);
5075
5076 return node->form = DW_FORM_strp;
5077 }
5078
5079 /* Add a DIE reference attribute value to a DIE. */
5080
5081 static inline void
5082 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5083 {
5084 dw_attr_node attr;
5085
5086 attr.dw_attr = attr_kind;
5087 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5088 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5089 attr.dw_attr_val.v.val_die_ref.external = 0;
5090 add_dwarf_attr (die, &attr);
5091 }
5092
5093 /* Add an AT_specification attribute to a DIE, and also make the back
5094 pointer from the specification to the definition. */
5095
5096 static inline void
5097 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5098 {
5099 add_AT_die_ref (die, DW_AT_specification, targ_die);
5100 gcc_assert (!targ_die->die_definition);
5101 targ_die->die_definition = die;
5102 }
5103
5104 static inline dw_die_ref
5105 AT_ref (dw_attr_ref a)
5106 {
5107 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5108 return a->dw_attr_val.v.val_die_ref.die;
5109 }
5110
5111 static inline int
5112 AT_ref_external (dw_attr_ref a)
5113 {
5114 if (a && AT_class (a) == dw_val_class_die_ref)
5115 return a->dw_attr_val.v.val_die_ref.external;
5116
5117 return 0;
5118 }
5119
5120 static inline void
5121 set_AT_ref_external (dw_attr_ref a, int i)
5122 {
5123 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5124 a->dw_attr_val.v.val_die_ref.external = i;
5125 }
5126
5127 /* Add an FDE reference attribute value to a DIE. */
5128
5129 static inline void
5130 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5131 {
5132 dw_attr_node attr;
5133
5134 attr.dw_attr = attr_kind;
5135 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5136 attr.dw_attr_val.v.val_fde_index = targ_fde;
5137 add_dwarf_attr (die, &attr);
5138 }
5139
5140 /* Add a location description attribute value to a DIE. */
5141
5142 static inline void
5143 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5144 {
5145 dw_attr_node attr;
5146
5147 attr.dw_attr = attr_kind;
5148 attr.dw_attr_val.val_class = dw_val_class_loc;
5149 attr.dw_attr_val.v.val_loc = loc;
5150 add_dwarf_attr (die, &attr);
5151 }
5152
5153 static inline dw_loc_descr_ref
5154 AT_loc (dw_attr_ref a)
5155 {
5156 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5157 return a->dw_attr_val.v.val_loc;
5158 }
5159
5160 static inline void
5161 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5162 {
5163 dw_attr_node attr;
5164
5165 attr.dw_attr = attr_kind;
5166 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5167 attr.dw_attr_val.v.val_loc_list = loc_list;
5168 add_dwarf_attr (die, &attr);
5169 have_location_lists = true;
5170 }
5171
5172 static inline dw_loc_list_ref
5173 AT_loc_list (dw_attr_ref a)
5174 {
5175 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5176 return a->dw_attr_val.v.val_loc_list;
5177 }
5178
5179 /* Add an address constant attribute value to a DIE. */
5180
5181 static inline void
5182 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5183 {
5184 dw_attr_node attr;
5185
5186 attr.dw_attr = attr_kind;
5187 attr.dw_attr_val.val_class = dw_val_class_addr;
5188 attr.dw_attr_val.v.val_addr = addr;
5189 add_dwarf_attr (die, &attr);
5190 }
5191
5192 /* Get the RTX from to an address DIE attribute. */
5193
5194 static inline rtx
5195 AT_addr (dw_attr_ref a)
5196 {
5197 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5198 return a->dw_attr_val.v.val_addr;
5199 }
5200
5201 /* Add a file attribute value to a DIE. */
5202
5203 static inline void
5204 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5205 struct dwarf_file_data *fd)
5206 {
5207 dw_attr_node attr;
5208
5209 attr.dw_attr = attr_kind;
5210 attr.dw_attr_val.val_class = dw_val_class_file;
5211 attr.dw_attr_val.v.val_file = fd;
5212 add_dwarf_attr (die, &attr);
5213 }
5214
5215 /* Get the dwarf_file_data from a file DIE attribute. */
5216
5217 static inline struct dwarf_file_data *
5218 AT_file (dw_attr_ref a)
5219 {
5220 gcc_assert (a && AT_class (a) == dw_val_class_file);
5221 return a->dw_attr_val.v.val_file;
5222 }
5223
5224 /* Add a label identifier attribute value to a DIE. */
5225
5226 static inline void
5227 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5228 {
5229 dw_attr_node attr;
5230
5231 attr.dw_attr = attr_kind;
5232 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5233 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5234 add_dwarf_attr (die, &attr);
5235 }
5236
5237 /* Add a section offset attribute value to a DIE, an offset into the
5238 debug_line section. */
5239
5240 static inline void
5241 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5242 const char *label)
5243 {
5244 dw_attr_node attr;
5245
5246 attr.dw_attr = attr_kind;
5247 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5248 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5249 add_dwarf_attr (die, &attr);
5250 }
5251
5252 /* Add a section offset attribute value to a DIE, an offset into the
5253 debug_macinfo section. */
5254
5255 static inline void
5256 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5257 const char *label)
5258 {
5259 dw_attr_node attr;
5260
5261 attr.dw_attr = attr_kind;
5262 attr.dw_attr_val.val_class = dw_val_class_macptr;
5263 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5264 add_dwarf_attr (die, &attr);
5265 }
5266
5267 /* Add an offset attribute value to a DIE. */
5268
5269 static inline void
5270 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5271 unsigned HOST_WIDE_INT offset)
5272 {
5273 dw_attr_node attr;
5274
5275 attr.dw_attr = attr_kind;
5276 attr.dw_attr_val.val_class = dw_val_class_offset;
5277 attr.dw_attr_val.v.val_offset = offset;
5278 add_dwarf_attr (die, &attr);
5279 }
5280
5281 /* Add an range_list attribute value to a DIE. */
5282
5283 static void
5284 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5285 long unsigned int offset)
5286 {
5287 dw_attr_node attr;
5288
5289 attr.dw_attr = attr_kind;
5290 attr.dw_attr_val.val_class = dw_val_class_range_list;
5291 attr.dw_attr_val.v.val_offset = offset;
5292 add_dwarf_attr (die, &attr);
5293 }
5294
5295 static inline const char *
5296 AT_lbl (dw_attr_ref a)
5297 {
5298 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5299 || AT_class (a) == dw_val_class_lineptr
5300 || AT_class (a) == dw_val_class_macptr));
5301 return a->dw_attr_val.v.val_lbl_id;
5302 }
5303
5304 /* Get the attribute of type attr_kind. */
5305
5306 static dw_attr_ref
5307 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5308 {
5309 dw_attr_ref a;
5310 unsigned ix;
5311 dw_die_ref spec = NULL;
5312
5313 if (! die)
5314 return NULL;
5315
5316 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5317 if (a->dw_attr == attr_kind)
5318 return a;
5319 else if (a->dw_attr == DW_AT_specification
5320 || a->dw_attr == DW_AT_abstract_origin)
5321 spec = AT_ref (a);
5322
5323 if (spec)
5324 return get_AT (spec, attr_kind);
5325
5326 return NULL;
5327 }
5328
5329 /* Return the "low pc" attribute value, typically associated with a subprogram
5330 DIE. Return null if the "low pc" attribute is either not present, or if it
5331 cannot be represented as an assembler label identifier. */
5332
5333 static inline const char *
5334 get_AT_low_pc (dw_die_ref die)
5335 {
5336 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5337
5338 return a ? AT_lbl (a) : NULL;
5339 }
5340
5341 /* Return the "high pc" attribute value, typically associated with a subprogram
5342 DIE. Return null if the "high pc" attribute is either not present, or if it
5343 cannot be represented as an assembler label identifier. */
5344
5345 static inline const char *
5346 get_AT_hi_pc (dw_die_ref die)
5347 {
5348 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5349
5350 return a ? AT_lbl (a) : NULL;
5351 }
5352
5353 /* Return the value of the string attribute designated by ATTR_KIND, or
5354 NULL if it is not present. */
5355
5356 static inline const char *
5357 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5358 {
5359 dw_attr_ref a = get_AT (die, attr_kind);
5360
5361 return a ? AT_string (a) : NULL;
5362 }
5363
5364 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5365 if it is not present. */
5366
5367 static inline int
5368 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5369 {
5370 dw_attr_ref a = get_AT (die, attr_kind);
5371
5372 return a ? AT_flag (a) : 0;
5373 }
5374
5375 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5376 if it is not present. */
5377
5378 static inline unsigned
5379 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5380 {
5381 dw_attr_ref a = get_AT (die, attr_kind);
5382
5383 return a ? AT_unsigned (a) : 0;
5384 }
5385
5386 static inline dw_die_ref
5387 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5388 {
5389 dw_attr_ref a = get_AT (die, attr_kind);
5390
5391 return a ? AT_ref (a) : NULL;
5392 }
5393
5394 static inline struct dwarf_file_data *
5395 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5396 {
5397 dw_attr_ref a = get_AT (die, attr_kind);
5398
5399 return a ? AT_file (a) : NULL;
5400 }
5401
5402 /* Return TRUE if the language is C or C++. */
5403
5404 static inline bool
5405 is_c_family (void)
5406 {
5407 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5408
5409 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5410 || lang == DW_LANG_C99
5411 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5412 }
5413
5414 /* Return TRUE if the language is C++. */
5415
5416 static inline bool
5417 is_cxx (void)
5418 {
5419 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5420
5421 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5422 }
5423
5424 /* Return TRUE if the language is Fortran. */
5425
5426 static inline bool
5427 is_fortran (void)
5428 {
5429 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5430
5431 return (lang == DW_LANG_Fortran77
5432 || lang == DW_LANG_Fortran90
5433 || lang == DW_LANG_Fortran95);
5434 }
5435
5436 /* Return TRUE if the language is Java. */
5437
5438 static inline bool
5439 is_java (void)
5440 {
5441 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5442
5443 return lang == DW_LANG_Java;
5444 }
5445
5446 /* Return TRUE if the language is Ada. */
5447
5448 static inline bool
5449 is_ada (void)
5450 {
5451 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5452
5453 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5454 }
5455
5456 /* Remove the specified attribute if present. */
5457
5458 static void
5459 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5460 {
5461 dw_attr_ref a;
5462 unsigned ix;
5463
5464 if (! die)
5465 return;
5466
5467 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5468 if (a->dw_attr == attr_kind)
5469 {
5470 if (AT_class (a) == dw_val_class_str)
5471 if (a->dw_attr_val.v.val_str->refcount)
5472 a->dw_attr_val.v.val_str->refcount--;
5473
5474 /* VEC_ordered_remove should help reduce the number of abbrevs
5475 that are needed. */
5476 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5477 return;
5478 }
5479 }
5480
5481 /* Remove CHILD from its parent. PREV must have the property that
5482 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5483
5484 static void
5485 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5486 {
5487 gcc_assert (child->die_parent == prev->die_parent);
5488 gcc_assert (prev->die_sib == child);
5489 if (prev == child)
5490 {
5491 gcc_assert (child->die_parent->die_child == child);
5492 prev = NULL;
5493 }
5494 else
5495 prev->die_sib = child->die_sib;
5496 if (child->die_parent->die_child == child)
5497 child->die_parent->die_child = prev;
5498 }
5499
5500 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5501 matches TAG. */
5502
5503 static void
5504 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5505 {
5506 dw_die_ref c;
5507
5508 c = die->die_child;
5509 if (c) do {
5510 dw_die_ref prev = c;
5511 c = c->die_sib;
5512 while (c->die_tag == tag)
5513 {
5514 remove_child_with_prev (c, prev);
5515 /* Might have removed every child. */
5516 if (c == c->die_sib)
5517 return;
5518 c = c->die_sib;
5519 }
5520 } while (c != die->die_child);
5521 }
5522
5523 /* Add a CHILD_DIE as the last child of DIE. */
5524
5525 static void
5526 add_child_die (dw_die_ref die, dw_die_ref child_die)
5527 {
5528 /* FIXME this should probably be an assert. */
5529 if (! die || ! child_die)
5530 return;
5531 gcc_assert (die != child_die);
5532
5533 child_die->die_parent = die;
5534 if (die->die_child)
5535 {
5536 child_die->die_sib = die->die_child->die_sib;
5537 die->die_child->die_sib = child_die;
5538 }
5539 else
5540 child_die->die_sib = child_die;
5541 die->die_child = child_die;
5542 }
5543
5544 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5545 is the specification, to the end of PARENT's list of children.
5546 This is done by removing and re-adding it. */
5547
5548 static void
5549 splice_child_die (dw_die_ref parent, dw_die_ref child)
5550 {
5551 dw_die_ref p;
5552
5553 /* We want the declaration DIE from inside the class, not the
5554 specification DIE at toplevel. */
5555 if (child->die_parent != parent)
5556 {
5557 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5558
5559 if (tmp)
5560 child = tmp;
5561 }
5562
5563 gcc_assert (child->die_parent == parent
5564 || (child->die_parent
5565 == get_AT_ref (parent, DW_AT_specification)));
5566
5567 for (p = child->die_parent->die_child; ; p = p->die_sib)
5568 if (p->die_sib == child)
5569 {
5570 remove_child_with_prev (child, p);
5571 break;
5572 }
5573
5574 add_child_die (parent, child);
5575 }
5576
5577 /* Return a pointer to a newly created DIE node. */
5578
5579 static inline dw_die_ref
5580 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5581 {
5582 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5583
5584 die->die_tag = tag_value;
5585
5586 if (parent_die != NULL)
5587 add_child_die (parent_die, die);
5588 else
5589 {
5590 limbo_die_node *limbo_node;
5591
5592 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5593 limbo_node->die = die;
5594 limbo_node->created_for = t;
5595 limbo_node->next = limbo_die_list;
5596 limbo_die_list = limbo_node;
5597 }
5598
5599 return die;
5600 }
5601
5602 /* Return the DIE associated with the given type specifier. */
5603
5604 static inline dw_die_ref
5605 lookup_type_die (tree type)
5606 {
5607 return TYPE_SYMTAB_DIE (type);
5608 }
5609
5610 /* Equate a DIE to a given type specifier. */
5611
5612 static inline void
5613 equate_type_number_to_die (tree type, dw_die_ref type_die)
5614 {
5615 TYPE_SYMTAB_DIE (type) = type_die;
5616 }
5617
5618 /* Returns a hash value for X (which really is a die_struct). */
5619
5620 static hashval_t
5621 decl_die_table_hash (const void *x)
5622 {
5623 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5624 }
5625
5626 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5627
5628 static int
5629 decl_die_table_eq (const void *x, const void *y)
5630 {
5631 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5632 }
5633
5634 /* Return the DIE associated with a given declaration. */
5635
5636 static inline dw_die_ref
5637 lookup_decl_die (tree decl)
5638 {
5639 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5640 }
5641
5642 /* Returns a hash value for X (which really is a var_loc_list). */
5643
5644 static hashval_t
5645 decl_loc_table_hash (const void *x)
5646 {
5647 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5648 }
5649
5650 /* Return nonzero if decl_id of var_loc_list X is the same as
5651 UID of decl *Y. */
5652
5653 static int
5654 decl_loc_table_eq (const void *x, const void *y)
5655 {
5656 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5657 }
5658
5659 /* Return the var_loc list associated with a given declaration. */
5660
5661 static inline var_loc_list *
5662 lookup_decl_loc (tree decl)
5663 {
5664 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5665 }
5666
5667 /* Equate a DIE to a particular declaration. */
5668
5669 static void
5670 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5671 {
5672 unsigned int decl_id = DECL_UID (decl);
5673 void **slot;
5674
5675 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5676 *slot = decl_die;
5677 decl_die->decl_id = decl_id;
5678 }
5679
5680 /* Add a variable location node to the linked list for DECL. */
5681
5682 static void
5683 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5684 {
5685 unsigned int decl_id = DECL_UID (decl);
5686 var_loc_list *temp;
5687 void **slot;
5688
5689 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5690 if (*slot == NULL)
5691 {
5692 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5693 temp->decl_id = decl_id;
5694 *slot = temp;
5695 }
5696 else
5697 temp = *slot;
5698
5699 if (temp->last)
5700 {
5701 /* If the current location is the same as the end of the list,
5702 we have nothing to do. */
5703 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5704 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5705 {
5706 /* Add LOC to the end of list and update LAST. */
5707 temp->last->next = loc;
5708 temp->last = loc;
5709 }
5710 }
5711 /* Do not add empty location to the beginning of the list. */
5712 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5713 {
5714 temp->first = loc;
5715 temp->last = loc;
5716 }
5717 }
5718 \f
5719 /* Keep track of the number of spaces used to indent the
5720 output of the debugging routines that print the structure of
5721 the DIE internal representation. */
5722 static int print_indent;
5723
5724 /* Indent the line the number of spaces given by print_indent. */
5725
5726 static inline void
5727 print_spaces (FILE *outfile)
5728 {
5729 fprintf (outfile, "%*s", print_indent, "");
5730 }
5731
5732 /* Print the information associated with a given DIE, and its children.
5733 This routine is a debugging aid only. */
5734
5735 static void
5736 print_die (dw_die_ref die, FILE *outfile)
5737 {
5738 dw_attr_ref a;
5739 dw_die_ref c;
5740 unsigned ix;
5741
5742 print_spaces (outfile);
5743 fprintf (outfile, "DIE %4lu: %s\n",
5744 die->die_offset, dwarf_tag_name (die->die_tag));
5745 print_spaces (outfile);
5746 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5747 fprintf (outfile, " offset: %lu\n", die->die_offset);
5748
5749 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5750 {
5751 print_spaces (outfile);
5752 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5753
5754 switch (AT_class (a))
5755 {
5756 case dw_val_class_addr:
5757 fprintf (outfile, "address");
5758 break;
5759 case dw_val_class_offset:
5760 fprintf (outfile, "offset");
5761 break;
5762 case dw_val_class_loc:
5763 fprintf (outfile, "location descriptor");
5764 break;
5765 case dw_val_class_loc_list:
5766 fprintf (outfile, "location list -> label:%s",
5767 AT_loc_list (a)->ll_symbol);
5768 break;
5769 case dw_val_class_range_list:
5770 fprintf (outfile, "range list");
5771 break;
5772 case dw_val_class_const:
5773 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5774 break;
5775 case dw_val_class_unsigned_const:
5776 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5777 break;
5778 case dw_val_class_long_long:
5779 fprintf (outfile, "constant (%lu,%lu)",
5780 a->dw_attr_val.v.val_long_long.hi,
5781 a->dw_attr_val.v.val_long_long.low);
5782 break;
5783 case dw_val_class_vec:
5784 fprintf (outfile, "floating-point or vector constant");
5785 break;
5786 case dw_val_class_flag:
5787 fprintf (outfile, "%u", AT_flag (a));
5788 break;
5789 case dw_val_class_die_ref:
5790 if (AT_ref (a) != NULL)
5791 {
5792 if (AT_ref (a)->die_symbol)
5793 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5794 else
5795 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5796 }
5797 else
5798 fprintf (outfile, "die -> <null>");
5799 break;
5800 case dw_val_class_lbl_id:
5801 case dw_val_class_lineptr:
5802 case dw_val_class_macptr:
5803 fprintf (outfile, "label: %s", AT_lbl (a));
5804 break;
5805 case dw_val_class_str:
5806 if (AT_string (a) != NULL)
5807 fprintf (outfile, "\"%s\"", AT_string (a));
5808 else
5809 fprintf (outfile, "<null>");
5810 break;
5811 case dw_val_class_file:
5812 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5813 AT_file (a)->emitted_number);
5814 break;
5815 default:
5816 break;
5817 }
5818
5819 fprintf (outfile, "\n");
5820 }
5821
5822 if (die->die_child != NULL)
5823 {
5824 print_indent += 4;
5825 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5826 print_indent -= 4;
5827 }
5828 if (print_indent == 0)
5829 fprintf (outfile, "\n");
5830 }
5831
5832 /* Print the contents of the source code line number correspondence table.
5833 This routine is a debugging aid only. */
5834
5835 static void
5836 print_dwarf_line_table (FILE *outfile)
5837 {
5838 unsigned i;
5839 dw_line_info_ref line_info;
5840
5841 fprintf (outfile, "\n\nDWARF source line information\n");
5842 for (i = 1; i < line_info_table_in_use; i++)
5843 {
5844 line_info = &line_info_table[i];
5845 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5846 line_info->dw_file_num,
5847 line_info->dw_line_num);
5848 }
5849
5850 fprintf (outfile, "\n\n");
5851 }
5852
5853 /* Print the information collected for a given DIE. */
5854
5855 void
5856 debug_dwarf_die (dw_die_ref die)
5857 {
5858 print_die (die, stderr);
5859 }
5860
5861 /* Print all DWARF information collected for the compilation unit.
5862 This routine is a debugging aid only. */
5863
5864 void
5865 debug_dwarf (void)
5866 {
5867 print_indent = 0;
5868 print_die (comp_unit_die, stderr);
5869 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5870 print_dwarf_line_table (stderr);
5871 }
5872 \f
5873 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5874 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5875 DIE that marks the start of the DIEs for this include file. */
5876
5877 static dw_die_ref
5878 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5879 {
5880 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5881 dw_die_ref new_unit = gen_compile_unit_die (filename);
5882
5883 new_unit->die_sib = old_unit;
5884 return new_unit;
5885 }
5886
5887 /* Close an include-file CU and reopen the enclosing one. */
5888
5889 static dw_die_ref
5890 pop_compile_unit (dw_die_ref old_unit)
5891 {
5892 dw_die_ref new_unit = old_unit->die_sib;
5893
5894 old_unit->die_sib = NULL;
5895 return new_unit;
5896 }
5897
5898 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5899 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5900
5901 /* Calculate the checksum of a location expression. */
5902
5903 static inline void
5904 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5905 {
5906 CHECKSUM (loc->dw_loc_opc);
5907 CHECKSUM (loc->dw_loc_oprnd1);
5908 CHECKSUM (loc->dw_loc_oprnd2);
5909 }
5910
5911 /* Calculate the checksum of an attribute. */
5912
5913 static void
5914 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5915 {
5916 dw_loc_descr_ref loc;
5917 rtx r;
5918
5919 CHECKSUM (at->dw_attr);
5920
5921 /* We don't care that this was compiled with a different compiler
5922 snapshot; if the output is the same, that's what matters. */
5923 if (at->dw_attr == DW_AT_producer)
5924 return;
5925
5926 switch (AT_class (at))
5927 {
5928 case dw_val_class_const:
5929 CHECKSUM (at->dw_attr_val.v.val_int);
5930 break;
5931 case dw_val_class_unsigned_const:
5932 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5933 break;
5934 case dw_val_class_long_long:
5935 CHECKSUM (at->dw_attr_val.v.val_long_long);
5936 break;
5937 case dw_val_class_vec:
5938 CHECKSUM (at->dw_attr_val.v.val_vec);
5939 break;
5940 case dw_val_class_flag:
5941 CHECKSUM (at->dw_attr_val.v.val_flag);
5942 break;
5943 case dw_val_class_str:
5944 CHECKSUM_STRING (AT_string (at));
5945 break;
5946
5947 case dw_val_class_addr:
5948 r = AT_addr (at);
5949 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5950 CHECKSUM_STRING (XSTR (r, 0));
5951 break;
5952
5953 case dw_val_class_offset:
5954 CHECKSUM (at->dw_attr_val.v.val_offset);
5955 break;
5956
5957 case dw_val_class_loc:
5958 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5959 loc_checksum (loc, ctx);
5960 break;
5961
5962 case dw_val_class_die_ref:
5963 die_checksum (AT_ref (at), ctx, mark);
5964 break;
5965
5966 case dw_val_class_fde_ref:
5967 case dw_val_class_lbl_id:
5968 case dw_val_class_lineptr:
5969 case dw_val_class_macptr:
5970 break;
5971
5972 case dw_val_class_file:
5973 CHECKSUM_STRING (AT_file (at)->filename);
5974 break;
5975
5976 default:
5977 break;
5978 }
5979 }
5980
5981 /* Calculate the checksum of a DIE. */
5982
5983 static void
5984 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5985 {
5986 dw_die_ref c;
5987 dw_attr_ref a;
5988 unsigned ix;
5989
5990 /* To avoid infinite recursion. */
5991 if (die->die_mark)
5992 {
5993 CHECKSUM (die->die_mark);
5994 return;
5995 }
5996 die->die_mark = ++(*mark);
5997
5998 CHECKSUM (die->die_tag);
5999
6000 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6001 attr_checksum (a, ctx, mark);
6002
6003 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6004 }
6005
6006 #undef CHECKSUM
6007 #undef CHECKSUM_STRING
6008
6009 /* Do the location expressions look same? */
6010 static inline int
6011 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6012 {
6013 return loc1->dw_loc_opc == loc2->dw_loc_opc
6014 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6015 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6016 }
6017
6018 /* Do the values look the same? */
6019 static int
6020 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6021 {
6022 dw_loc_descr_ref loc1, loc2;
6023 rtx r1, r2;
6024
6025 if (v1->val_class != v2->val_class)
6026 return 0;
6027
6028 switch (v1->val_class)
6029 {
6030 case dw_val_class_const:
6031 return v1->v.val_int == v2->v.val_int;
6032 case dw_val_class_unsigned_const:
6033 return v1->v.val_unsigned == v2->v.val_unsigned;
6034 case dw_val_class_long_long:
6035 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6036 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6037 case dw_val_class_vec:
6038 if (v1->v.val_vec.length != v2->v.val_vec.length
6039 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6040 return 0;
6041 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6042 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6043 return 0;
6044 return 1;
6045 case dw_val_class_flag:
6046 return v1->v.val_flag == v2->v.val_flag;
6047 case dw_val_class_str:
6048 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6049
6050 case dw_val_class_addr:
6051 r1 = v1->v.val_addr;
6052 r2 = v2->v.val_addr;
6053 if (GET_CODE (r1) != GET_CODE (r2))
6054 return 0;
6055 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6056 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6057
6058 case dw_val_class_offset:
6059 return v1->v.val_offset == v2->v.val_offset;
6060
6061 case dw_val_class_loc:
6062 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6063 loc1 && loc2;
6064 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6065 if (!same_loc_p (loc1, loc2, mark))
6066 return 0;
6067 return !loc1 && !loc2;
6068
6069 case dw_val_class_die_ref:
6070 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6071
6072 case dw_val_class_fde_ref:
6073 case dw_val_class_lbl_id:
6074 case dw_val_class_lineptr:
6075 case dw_val_class_macptr:
6076 return 1;
6077
6078 case dw_val_class_file:
6079 return v1->v.val_file == v2->v.val_file;
6080
6081 default:
6082 return 1;
6083 }
6084 }
6085
6086 /* Do the attributes look the same? */
6087
6088 static int
6089 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6090 {
6091 if (at1->dw_attr != at2->dw_attr)
6092 return 0;
6093
6094 /* We don't care that this was compiled with a different compiler
6095 snapshot; if the output is the same, that's what matters. */
6096 if (at1->dw_attr == DW_AT_producer)
6097 return 1;
6098
6099 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6100 }
6101
6102 /* Do the dies look the same? */
6103
6104 static int
6105 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6106 {
6107 dw_die_ref c1, c2;
6108 dw_attr_ref a1;
6109 unsigned ix;
6110
6111 /* To avoid infinite recursion. */
6112 if (die1->die_mark)
6113 return die1->die_mark == die2->die_mark;
6114 die1->die_mark = die2->die_mark = ++(*mark);
6115
6116 if (die1->die_tag != die2->die_tag)
6117 return 0;
6118
6119 if (VEC_length (dw_attr_node, die1->die_attr)
6120 != VEC_length (dw_attr_node, die2->die_attr))
6121 return 0;
6122
6123 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6124 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6125 return 0;
6126
6127 c1 = die1->die_child;
6128 c2 = die2->die_child;
6129 if (! c1)
6130 {
6131 if (c2)
6132 return 0;
6133 }
6134 else
6135 for (;;)
6136 {
6137 if (!same_die_p (c1, c2, mark))
6138 return 0;
6139 c1 = c1->die_sib;
6140 c2 = c2->die_sib;
6141 if (c1 == die1->die_child)
6142 {
6143 if (c2 == die2->die_child)
6144 break;
6145 else
6146 return 0;
6147 }
6148 }
6149
6150 return 1;
6151 }
6152
6153 /* Do the dies look the same? Wrapper around same_die_p. */
6154
6155 static int
6156 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6157 {
6158 int mark = 0;
6159 int ret = same_die_p (die1, die2, &mark);
6160
6161 unmark_all_dies (die1);
6162 unmark_all_dies (die2);
6163
6164 return ret;
6165 }
6166
6167 /* The prefix to attach to symbols on DIEs in the current comdat debug
6168 info section. */
6169 static char *comdat_symbol_id;
6170
6171 /* The index of the current symbol within the current comdat CU. */
6172 static unsigned int comdat_symbol_number;
6173
6174 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6175 children, and set comdat_symbol_id accordingly. */
6176
6177 static void
6178 compute_section_prefix (dw_die_ref unit_die)
6179 {
6180 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6181 const char *base = die_name ? lbasename (die_name) : "anonymous";
6182 char *name = alloca (strlen (base) + 64);
6183 char *p;
6184 int i, mark;
6185 unsigned char checksum[16];
6186 struct md5_ctx ctx;
6187
6188 /* Compute the checksum of the DIE, then append part of it as hex digits to
6189 the name filename of the unit. */
6190
6191 md5_init_ctx (&ctx);
6192 mark = 0;
6193 die_checksum (unit_die, &ctx, &mark);
6194 unmark_all_dies (unit_die);
6195 md5_finish_ctx (&ctx, checksum);
6196
6197 sprintf (name, "%s.", base);
6198 clean_symbol_name (name);
6199
6200 p = name + strlen (name);
6201 for (i = 0; i < 4; i++)
6202 {
6203 sprintf (p, "%.2x", checksum[i]);
6204 p += 2;
6205 }
6206
6207 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6208 comdat_symbol_number = 0;
6209 }
6210
6211 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6212
6213 static int
6214 is_type_die (dw_die_ref die)
6215 {
6216 switch (die->die_tag)
6217 {
6218 case DW_TAG_array_type:
6219 case DW_TAG_class_type:
6220 case DW_TAG_enumeration_type:
6221 case DW_TAG_pointer_type:
6222 case DW_TAG_reference_type:
6223 case DW_TAG_string_type:
6224 case DW_TAG_structure_type:
6225 case DW_TAG_subroutine_type:
6226 case DW_TAG_union_type:
6227 case DW_TAG_ptr_to_member_type:
6228 case DW_TAG_set_type:
6229 case DW_TAG_subrange_type:
6230 case DW_TAG_base_type:
6231 case DW_TAG_const_type:
6232 case DW_TAG_file_type:
6233 case DW_TAG_packed_type:
6234 case DW_TAG_volatile_type:
6235 case DW_TAG_typedef:
6236 return 1;
6237 default:
6238 return 0;
6239 }
6240 }
6241
6242 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6243 Basically, we want to choose the bits that are likely to be shared between
6244 compilations (types) and leave out the bits that are specific to individual
6245 compilations (functions). */
6246
6247 static int
6248 is_comdat_die (dw_die_ref c)
6249 {
6250 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6251 we do for stabs. The advantage is a greater likelihood of sharing between
6252 objects that don't include headers in the same order (and therefore would
6253 put the base types in a different comdat). jason 8/28/00 */
6254
6255 if (c->die_tag == DW_TAG_base_type)
6256 return 0;
6257
6258 if (c->die_tag == DW_TAG_pointer_type
6259 || c->die_tag == DW_TAG_reference_type
6260 || c->die_tag == DW_TAG_const_type
6261 || c->die_tag == DW_TAG_volatile_type)
6262 {
6263 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6264
6265 return t ? is_comdat_die (t) : 0;
6266 }
6267
6268 return is_type_die (c);
6269 }
6270
6271 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6272 compilation unit. */
6273
6274 static int
6275 is_symbol_die (dw_die_ref c)
6276 {
6277 return (is_type_die (c)
6278 || (get_AT (c, DW_AT_declaration)
6279 && !get_AT (c, DW_AT_specification))
6280 || c->die_tag == DW_TAG_namespace);
6281 }
6282
6283 static char *
6284 gen_internal_sym (const char *prefix)
6285 {
6286 char buf[256];
6287
6288 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6289 return xstrdup (buf);
6290 }
6291
6292 /* Assign symbols to all worthy DIEs under DIE. */
6293
6294 static void
6295 assign_symbol_names (dw_die_ref die)
6296 {
6297 dw_die_ref c;
6298
6299 if (is_symbol_die (die))
6300 {
6301 if (comdat_symbol_id)
6302 {
6303 char *p = alloca (strlen (comdat_symbol_id) + 64);
6304
6305 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6306 comdat_symbol_id, comdat_symbol_number++);
6307 die->die_symbol = xstrdup (p);
6308 }
6309 else
6310 die->die_symbol = gen_internal_sym ("LDIE");
6311 }
6312
6313 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6314 }
6315
6316 struct cu_hash_table_entry
6317 {
6318 dw_die_ref cu;
6319 unsigned min_comdat_num, max_comdat_num;
6320 struct cu_hash_table_entry *next;
6321 };
6322
6323 /* Routines to manipulate hash table of CUs. */
6324 static hashval_t
6325 htab_cu_hash (const void *of)
6326 {
6327 const struct cu_hash_table_entry *entry = of;
6328
6329 return htab_hash_string (entry->cu->die_symbol);
6330 }
6331
6332 static int
6333 htab_cu_eq (const void *of1, const void *of2)
6334 {
6335 const struct cu_hash_table_entry *entry1 = of1;
6336 const struct die_struct *entry2 = of2;
6337
6338 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6339 }
6340
6341 static void
6342 htab_cu_del (void *what)
6343 {
6344 struct cu_hash_table_entry *next, *entry = what;
6345
6346 while (entry)
6347 {
6348 next = entry->next;
6349 free (entry);
6350 entry = next;
6351 }
6352 }
6353
6354 /* Check whether we have already seen this CU and set up SYM_NUM
6355 accordingly. */
6356 static int
6357 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6358 {
6359 struct cu_hash_table_entry dummy;
6360 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6361
6362 dummy.max_comdat_num = 0;
6363
6364 slot = (struct cu_hash_table_entry **)
6365 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6366 INSERT);
6367 entry = *slot;
6368
6369 for (; entry; last = entry, entry = entry->next)
6370 {
6371 if (same_die_p_wrap (cu, entry->cu))
6372 break;
6373 }
6374
6375 if (entry)
6376 {
6377 *sym_num = entry->min_comdat_num;
6378 return 1;
6379 }
6380
6381 entry = XCNEW (struct cu_hash_table_entry);
6382 entry->cu = cu;
6383 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6384 entry->next = *slot;
6385 *slot = entry;
6386
6387 return 0;
6388 }
6389
6390 /* Record SYM_NUM to record of CU in HTABLE. */
6391 static void
6392 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6393 {
6394 struct cu_hash_table_entry **slot, *entry;
6395
6396 slot = (struct cu_hash_table_entry **)
6397 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6398 NO_INSERT);
6399 entry = *slot;
6400
6401 entry->max_comdat_num = sym_num;
6402 }
6403
6404 /* Traverse the DIE (which is always comp_unit_die), and set up
6405 additional compilation units for each of the include files we see
6406 bracketed by BINCL/EINCL. */
6407
6408 static void
6409 break_out_includes (dw_die_ref die)
6410 {
6411 dw_die_ref c;
6412 dw_die_ref unit = NULL;
6413 limbo_die_node *node, **pnode;
6414 htab_t cu_hash_table;
6415
6416 c = die->die_child;
6417 if (c) do {
6418 dw_die_ref prev = c;
6419 c = c->die_sib;
6420 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6421 || (unit && is_comdat_die (c)))
6422 {
6423 dw_die_ref next = c->die_sib;
6424
6425 /* This DIE is for a secondary CU; remove it from the main one. */
6426 remove_child_with_prev (c, prev);
6427
6428 if (c->die_tag == DW_TAG_GNU_BINCL)
6429 unit = push_new_compile_unit (unit, c);
6430 else if (c->die_tag == DW_TAG_GNU_EINCL)
6431 unit = pop_compile_unit (unit);
6432 else
6433 add_child_die (unit, c);
6434 c = next;
6435 if (c == die->die_child)
6436 break;
6437 }
6438 } while (c != die->die_child);
6439
6440 #if 0
6441 /* We can only use this in debugging, since the frontend doesn't check
6442 to make sure that we leave every include file we enter. */
6443 gcc_assert (!unit);
6444 #endif
6445
6446 assign_symbol_names (die);
6447 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6448 for (node = limbo_die_list, pnode = &limbo_die_list;
6449 node;
6450 node = node->next)
6451 {
6452 int is_dupl;
6453
6454 compute_section_prefix (node->die);
6455 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6456 &comdat_symbol_number);
6457 assign_symbol_names (node->die);
6458 if (is_dupl)
6459 *pnode = node->next;
6460 else
6461 {
6462 pnode = &node->next;
6463 record_comdat_symbol_number (node->die, cu_hash_table,
6464 comdat_symbol_number);
6465 }
6466 }
6467 htab_delete (cu_hash_table);
6468 }
6469
6470 /* Traverse the DIE and add a sibling attribute if it may have the
6471 effect of speeding up access to siblings. To save some space,
6472 avoid generating sibling attributes for DIE's without children. */
6473
6474 static void
6475 add_sibling_attributes (dw_die_ref die)
6476 {
6477 dw_die_ref c;
6478
6479 if (! die->die_child)
6480 return;
6481
6482 if (die->die_parent && die != die->die_parent->die_child)
6483 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6484
6485 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6486 }
6487
6488 /* Output all location lists for the DIE and its children. */
6489
6490 static void
6491 output_location_lists (dw_die_ref die)
6492 {
6493 dw_die_ref c;
6494 dw_attr_ref a;
6495 unsigned ix;
6496
6497 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6498 if (AT_class (a) == dw_val_class_loc_list)
6499 output_loc_list (AT_loc_list (a));
6500
6501 FOR_EACH_CHILD (die, c, output_location_lists (c));
6502 }
6503
6504 /* The format of each DIE (and its attribute value pairs) is encoded in an
6505 abbreviation table. This routine builds the abbreviation table and assigns
6506 a unique abbreviation id for each abbreviation entry. The children of each
6507 die are visited recursively. */
6508
6509 static void
6510 build_abbrev_table (dw_die_ref die)
6511 {
6512 unsigned long abbrev_id;
6513 unsigned int n_alloc;
6514 dw_die_ref c;
6515 dw_attr_ref a;
6516 unsigned ix;
6517
6518 /* Scan the DIE references, and mark as external any that refer to
6519 DIEs from other CUs (i.e. those which are not marked). */
6520 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6521 if (AT_class (a) == dw_val_class_die_ref
6522 && AT_ref (a)->die_mark == 0)
6523 {
6524 gcc_assert (AT_ref (a)->die_symbol);
6525
6526 set_AT_ref_external (a, 1);
6527 }
6528
6529 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6530 {
6531 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6532 dw_attr_ref die_a, abbrev_a;
6533 unsigned ix;
6534 bool ok = true;
6535
6536 if (abbrev->die_tag != die->die_tag)
6537 continue;
6538 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6539 continue;
6540
6541 if (VEC_length (dw_attr_node, abbrev->die_attr)
6542 != VEC_length (dw_attr_node, die->die_attr))
6543 continue;
6544
6545 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6546 {
6547 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6548 if ((abbrev_a->dw_attr != die_a->dw_attr)
6549 || (value_format (abbrev_a) != value_format (die_a)))
6550 {
6551 ok = false;
6552 break;
6553 }
6554 }
6555 if (ok)
6556 break;
6557 }
6558
6559 if (abbrev_id >= abbrev_die_table_in_use)
6560 {
6561 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6562 {
6563 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6564 abbrev_die_table = ggc_realloc (abbrev_die_table,
6565 sizeof (dw_die_ref) * n_alloc);
6566
6567 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6568 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6569 abbrev_die_table_allocated = n_alloc;
6570 }
6571
6572 ++abbrev_die_table_in_use;
6573 abbrev_die_table[abbrev_id] = die;
6574 }
6575
6576 die->die_abbrev = abbrev_id;
6577 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6578 }
6579 \f
6580 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6581
6582 static int
6583 constant_size (long unsigned int value)
6584 {
6585 int log;
6586
6587 if (value == 0)
6588 log = 0;
6589 else
6590 log = floor_log2 (value);
6591
6592 log = log / 8;
6593 log = 1 << (floor_log2 (log) + 1);
6594
6595 return log;
6596 }
6597
6598 /* Return the size of a DIE as it is represented in the
6599 .debug_info section. */
6600
6601 static unsigned long
6602 size_of_die (dw_die_ref die)
6603 {
6604 unsigned long size = 0;
6605 dw_attr_ref a;
6606 unsigned ix;
6607
6608 size += size_of_uleb128 (die->die_abbrev);
6609 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6610 {
6611 switch (AT_class (a))
6612 {
6613 case dw_val_class_addr:
6614 size += DWARF2_ADDR_SIZE;
6615 break;
6616 case dw_val_class_offset:
6617 size += DWARF_OFFSET_SIZE;
6618 break;
6619 case dw_val_class_loc:
6620 {
6621 unsigned long lsize = size_of_locs (AT_loc (a));
6622
6623 /* Block length. */
6624 size += constant_size (lsize);
6625 size += lsize;
6626 }
6627 break;
6628 case dw_val_class_loc_list:
6629 size += DWARF_OFFSET_SIZE;
6630 break;
6631 case dw_val_class_range_list:
6632 size += DWARF_OFFSET_SIZE;
6633 break;
6634 case dw_val_class_const:
6635 size += size_of_sleb128 (AT_int (a));
6636 break;
6637 case dw_val_class_unsigned_const:
6638 size += constant_size (AT_unsigned (a));
6639 break;
6640 case dw_val_class_long_long:
6641 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6642 break;
6643 case dw_val_class_vec:
6644 size += 1 + (a->dw_attr_val.v.val_vec.length
6645 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6646 break;
6647 case dw_val_class_flag:
6648 size += 1;
6649 break;
6650 case dw_val_class_die_ref:
6651 if (AT_ref_external (a))
6652 size += DWARF2_ADDR_SIZE;
6653 else
6654 size += DWARF_OFFSET_SIZE;
6655 break;
6656 case dw_val_class_fde_ref:
6657 size += DWARF_OFFSET_SIZE;
6658 break;
6659 case dw_val_class_lbl_id:
6660 size += DWARF2_ADDR_SIZE;
6661 break;
6662 case dw_val_class_lineptr:
6663 case dw_val_class_macptr:
6664 size += DWARF_OFFSET_SIZE;
6665 break;
6666 case dw_val_class_str:
6667 if (AT_string_form (a) == DW_FORM_strp)
6668 size += DWARF_OFFSET_SIZE;
6669 else
6670 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6671 break;
6672 case dw_val_class_file:
6673 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6674 break;
6675 default:
6676 gcc_unreachable ();
6677 }
6678 }
6679
6680 return size;
6681 }
6682
6683 /* Size the debugging information associated with a given DIE. Visits the
6684 DIE's children recursively. Updates the global variable next_die_offset, on
6685 each time through. Uses the current value of next_die_offset to update the
6686 die_offset field in each DIE. */
6687
6688 static void
6689 calc_die_sizes (dw_die_ref die)
6690 {
6691 dw_die_ref c;
6692
6693 die->die_offset = next_die_offset;
6694 next_die_offset += size_of_die (die);
6695
6696 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6697
6698 if (die->die_child != NULL)
6699 /* Count the null byte used to terminate sibling lists. */
6700 next_die_offset += 1;
6701 }
6702
6703 /* Set the marks for a die and its children. We do this so
6704 that we know whether or not a reference needs to use FORM_ref_addr; only
6705 DIEs in the same CU will be marked. We used to clear out the offset
6706 and use that as the flag, but ran into ordering problems. */
6707
6708 static void
6709 mark_dies (dw_die_ref die)
6710 {
6711 dw_die_ref c;
6712
6713 gcc_assert (!die->die_mark);
6714
6715 die->die_mark = 1;
6716 FOR_EACH_CHILD (die, c, mark_dies (c));
6717 }
6718
6719 /* Clear the marks for a die and its children. */
6720
6721 static void
6722 unmark_dies (dw_die_ref die)
6723 {
6724 dw_die_ref c;
6725
6726 gcc_assert (die->die_mark);
6727
6728 die->die_mark = 0;
6729 FOR_EACH_CHILD (die, c, unmark_dies (c));
6730 }
6731
6732 /* Clear the marks for a die, its children and referred dies. */
6733
6734 static void
6735 unmark_all_dies (dw_die_ref die)
6736 {
6737 dw_die_ref c;
6738 dw_attr_ref a;
6739 unsigned ix;
6740
6741 if (!die->die_mark)
6742 return;
6743 die->die_mark = 0;
6744
6745 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6746
6747 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6748 if (AT_class (a) == dw_val_class_die_ref)
6749 unmark_all_dies (AT_ref (a));
6750 }
6751
6752 /* Return the size of the .debug_pubnames table generated for the
6753 compilation unit. */
6754
6755 static unsigned long
6756 size_of_pubnames (void)
6757 {
6758 unsigned long size;
6759 unsigned i;
6760
6761 size = DWARF_PUBNAMES_HEADER_SIZE;
6762 for (i = 0; i < pubname_table_in_use; i++)
6763 {
6764 pubname_ref p = &pubname_table[i];
6765 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6766 }
6767
6768 size += DWARF_OFFSET_SIZE;
6769 return size;
6770 }
6771
6772 /* Return the size of the information in the .debug_aranges section. */
6773
6774 static unsigned long
6775 size_of_aranges (void)
6776 {
6777 unsigned long size;
6778
6779 size = DWARF_ARANGES_HEADER_SIZE;
6780
6781 /* Count the address/length pair for this compilation unit. */
6782 size += 2 * DWARF2_ADDR_SIZE;
6783 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6784
6785 /* Count the two zero words used to terminated the address range table. */
6786 size += 2 * DWARF2_ADDR_SIZE;
6787 return size;
6788 }
6789 \f
6790 /* Select the encoding of an attribute value. */
6791
6792 static enum dwarf_form
6793 value_format (dw_attr_ref a)
6794 {
6795 switch (a->dw_attr_val.val_class)
6796 {
6797 case dw_val_class_addr:
6798 return DW_FORM_addr;
6799 case dw_val_class_range_list:
6800 case dw_val_class_offset:
6801 case dw_val_class_loc_list:
6802 switch (DWARF_OFFSET_SIZE)
6803 {
6804 case 4:
6805 return DW_FORM_data4;
6806 case 8:
6807 return DW_FORM_data8;
6808 default:
6809 gcc_unreachable ();
6810 }
6811 case dw_val_class_loc:
6812 switch (constant_size (size_of_locs (AT_loc (a))))
6813 {
6814 case 1:
6815 return DW_FORM_block1;
6816 case 2:
6817 return DW_FORM_block2;
6818 default:
6819 gcc_unreachable ();
6820 }
6821 case dw_val_class_const:
6822 return DW_FORM_sdata;
6823 case dw_val_class_unsigned_const:
6824 switch (constant_size (AT_unsigned (a)))
6825 {
6826 case 1:
6827 return DW_FORM_data1;
6828 case 2:
6829 return DW_FORM_data2;
6830 case 4:
6831 return DW_FORM_data4;
6832 case 8:
6833 return DW_FORM_data8;
6834 default:
6835 gcc_unreachable ();
6836 }
6837 case dw_val_class_long_long:
6838 return DW_FORM_block1;
6839 case dw_val_class_vec:
6840 return DW_FORM_block1;
6841 case dw_val_class_flag:
6842 return DW_FORM_flag;
6843 case dw_val_class_die_ref:
6844 if (AT_ref_external (a))
6845 return DW_FORM_ref_addr;
6846 else
6847 return DW_FORM_ref;
6848 case dw_val_class_fde_ref:
6849 return DW_FORM_data;
6850 case dw_val_class_lbl_id:
6851 return DW_FORM_addr;
6852 case dw_val_class_lineptr:
6853 case dw_val_class_macptr:
6854 return DW_FORM_data;
6855 case dw_val_class_str:
6856 return AT_string_form (a);
6857 case dw_val_class_file:
6858 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6859 {
6860 case 1:
6861 return DW_FORM_data1;
6862 case 2:
6863 return DW_FORM_data2;
6864 case 4:
6865 return DW_FORM_data4;
6866 default:
6867 gcc_unreachable ();
6868 }
6869
6870 default:
6871 gcc_unreachable ();
6872 }
6873 }
6874
6875 /* Output the encoding of an attribute value. */
6876
6877 static void
6878 output_value_format (dw_attr_ref a)
6879 {
6880 enum dwarf_form form = value_format (a);
6881
6882 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6883 }
6884
6885 /* Output the .debug_abbrev section which defines the DIE abbreviation
6886 table. */
6887
6888 static void
6889 output_abbrev_section (void)
6890 {
6891 unsigned long abbrev_id;
6892
6893 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6894 {
6895 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6896 unsigned ix;
6897 dw_attr_ref a_attr;
6898
6899 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6900 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6901 dwarf_tag_name (abbrev->die_tag));
6902
6903 if (abbrev->die_child != NULL)
6904 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6905 else
6906 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6907
6908 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6909 ix++)
6910 {
6911 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6912 dwarf_attr_name (a_attr->dw_attr));
6913 output_value_format (a_attr);
6914 }
6915
6916 dw2_asm_output_data (1, 0, NULL);
6917 dw2_asm_output_data (1, 0, NULL);
6918 }
6919
6920 /* Terminate the table. */
6921 dw2_asm_output_data (1, 0, NULL);
6922 }
6923
6924 /* Output a symbol we can use to refer to this DIE from another CU. */
6925
6926 static inline void
6927 output_die_symbol (dw_die_ref die)
6928 {
6929 char *sym = die->die_symbol;
6930
6931 if (sym == 0)
6932 return;
6933
6934 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6935 /* We make these global, not weak; if the target doesn't support
6936 .linkonce, it doesn't support combining the sections, so debugging
6937 will break. */
6938 targetm.asm_out.globalize_label (asm_out_file, sym);
6939
6940 ASM_OUTPUT_LABEL (asm_out_file, sym);
6941 }
6942
6943 /* Return a new location list, given the begin and end range, and the
6944 expression. gensym tells us whether to generate a new internal symbol for
6945 this location list node, which is done for the head of the list only. */
6946
6947 static inline dw_loc_list_ref
6948 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6949 const char *section, unsigned int gensym)
6950 {
6951 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6952
6953 retlist->begin = begin;
6954 retlist->end = end;
6955 retlist->expr = expr;
6956 retlist->section = section;
6957 if (gensym)
6958 retlist->ll_symbol = gen_internal_sym ("LLST");
6959
6960 return retlist;
6961 }
6962
6963 /* Add a location description expression to a location list. */
6964
6965 static inline void
6966 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6967 const char *begin, const char *end,
6968 const char *section)
6969 {
6970 dw_loc_list_ref *d;
6971
6972 /* Find the end of the chain. */
6973 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6974 ;
6975
6976 /* Add a new location list node to the list. */
6977 *d = new_loc_list (descr, begin, end, section, 0);
6978 }
6979
6980 static void
6981 dwarf2out_switch_text_section (void)
6982 {
6983 dw_fde_ref fde;
6984
6985 gcc_assert (cfun);
6986
6987 fde = &fde_table[fde_table_in_use - 1];
6988 fde->dw_fde_switched_sections = true;
6989 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6990 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6991 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6992 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6993 have_multiple_function_sections = true;
6994
6995 /* Reset the current label on switching text sections, so that we
6996 don't attempt to advance_loc4 between labels in different sections. */
6997 fde->dw_fde_current_label = NULL;
6998 }
6999
7000 /* Output the location list given to us. */
7001
7002 static void
7003 output_loc_list (dw_loc_list_ref list_head)
7004 {
7005 dw_loc_list_ref curr = list_head;
7006
7007 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7008
7009 /* Walk the location list, and output each range + expression. */
7010 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7011 {
7012 unsigned long size;
7013 if (!have_multiple_function_sections)
7014 {
7015 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7016 "Location list begin address (%s)",
7017 list_head->ll_symbol);
7018 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7019 "Location list end address (%s)",
7020 list_head->ll_symbol);
7021 }
7022 else
7023 {
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7025 "Location list begin address (%s)",
7026 list_head->ll_symbol);
7027 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7028 "Location list end address (%s)",
7029 list_head->ll_symbol);
7030 }
7031 size = size_of_locs (curr->expr);
7032
7033 /* Output the block length for this list of location operations. */
7034 gcc_assert (size <= 0xffff);
7035 dw2_asm_output_data (2, size, "%s", "Location expression size");
7036
7037 output_loc_sequence (curr->expr);
7038 }
7039
7040 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7041 "Location list terminator begin (%s)",
7042 list_head->ll_symbol);
7043 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7044 "Location list terminator end (%s)",
7045 list_head->ll_symbol);
7046 }
7047
7048 /* Output the DIE and its attributes. Called recursively to generate
7049 the definitions of each child DIE. */
7050
7051 static void
7052 output_die (dw_die_ref die)
7053 {
7054 dw_attr_ref a;
7055 dw_die_ref c;
7056 unsigned long size;
7057 unsigned ix;
7058
7059 /* If someone in another CU might refer to us, set up a symbol for
7060 them to point to. */
7061 if (die->die_symbol)
7062 output_die_symbol (die);
7063
7064 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7065 die->die_offset, dwarf_tag_name (die->die_tag));
7066
7067 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7068 {
7069 const char *name = dwarf_attr_name (a->dw_attr);
7070
7071 switch (AT_class (a))
7072 {
7073 case dw_val_class_addr:
7074 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7075 break;
7076
7077 case dw_val_class_offset:
7078 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7079 "%s", name);
7080 break;
7081
7082 case dw_val_class_range_list:
7083 {
7084 char *p = strchr (ranges_section_label, '\0');
7085
7086 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7087 a->dw_attr_val.v.val_offset);
7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7089 debug_ranges_section, "%s", name);
7090 *p = '\0';
7091 }
7092 break;
7093
7094 case dw_val_class_loc:
7095 size = size_of_locs (AT_loc (a));
7096
7097 /* Output the block length for this list of location operations. */
7098 dw2_asm_output_data (constant_size (size), size, "%s", name);
7099
7100 output_loc_sequence (AT_loc (a));
7101 break;
7102
7103 case dw_val_class_const:
7104 /* ??? It would be slightly more efficient to use a scheme like is
7105 used for unsigned constants below, but gdb 4.x does not sign
7106 extend. Gdb 5.x does sign extend. */
7107 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7108 break;
7109
7110 case dw_val_class_unsigned_const:
7111 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7112 AT_unsigned (a), "%s", name);
7113 break;
7114
7115 case dw_val_class_long_long:
7116 {
7117 unsigned HOST_WIDE_INT first, second;
7118
7119 dw2_asm_output_data (1,
7120 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7121 "%s", name);
7122
7123 if (WORDS_BIG_ENDIAN)
7124 {
7125 first = a->dw_attr_val.v.val_long_long.hi;
7126 second = a->dw_attr_val.v.val_long_long.low;
7127 }
7128 else
7129 {
7130 first = a->dw_attr_val.v.val_long_long.low;
7131 second = a->dw_attr_val.v.val_long_long.hi;
7132 }
7133
7134 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7135 first, "long long constant");
7136 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7137 second, NULL);
7138 }
7139 break;
7140
7141 case dw_val_class_vec:
7142 {
7143 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7144 unsigned int len = a->dw_attr_val.v.val_vec.length;
7145 unsigned int i;
7146 unsigned char *p;
7147
7148 dw2_asm_output_data (1, len * elt_size, "%s", name);
7149 if (elt_size > sizeof (HOST_WIDE_INT))
7150 {
7151 elt_size /= 2;
7152 len *= 2;
7153 }
7154 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7155 i < len;
7156 i++, p += elt_size)
7157 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7158 "fp or vector constant word %u", i);
7159 break;
7160 }
7161
7162 case dw_val_class_flag:
7163 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7164 break;
7165
7166 case dw_val_class_loc_list:
7167 {
7168 char *sym = AT_loc_list (a)->ll_symbol;
7169
7170 gcc_assert (sym);
7171 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7172 "%s", name);
7173 }
7174 break;
7175
7176 case dw_val_class_die_ref:
7177 if (AT_ref_external (a))
7178 {
7179 char *sym = AT_ref (a)->die_symbol;
7180
7181 gcc_assert (sym);
7182 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7183 "%s", name);
7184 }
7185 else
7186 {
7187 gcc_assert (AT_ref (a)->die_offset);
7188 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7189 "%s", name);
7190 }
7191 break;
7192
7193 case dw_val_class_fde_ref:
7194 {
7195 char l1[20];
7196
7197 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7198 a->dw_attr_val.v.val_fde_index * 2);
7199 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7200 "%s", name);
7201 }
7202 break;
7203
7204 case dw_val_class_lbl_id:
7205 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7206 break;
7207
7208 case dw_val_class_lineptr:
7209 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7210 debug_line_section, "%s", name);
7211 break;
7212
7213 case dw_val_class_macptr:
7214 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7215 debug_macinfo_section, "%s", name);
7216 break;
7217
7218 case dw_val_class_str:
7219 if (AT_string_form (a) == DW_FORM_strp)
7220 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7221 a->dw_attr_val.v.val_str->label,
7222 debug_str_section,
7223 "%s: \"%s\"", name, AT_string (a));
7224 else
7225 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7226 break;
7227
7228 case dw_val_class_file:
7229 {
7230 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7231
7232 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7233 a->dw_attr_val.v.val_file->filename);
7234 break;
7235 }
7236
7237 default:
7238 gcc_unreachable ();
7239 }
7240 }
7241
7242 FOR_EACH_CHILD (die, c, output_die (c));
7243
7244 /* Add null byte to terminate sibling list. */
7245 if (die->die_child != NULL)
7246 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7247 die->die_offset);
7248 }
7249
7250 /* Output the compilation unit that appears at the beginning of the
7251 .debug_info section, and precedes the DIE descriptions. */
7252
7253 static void
7254 output_compilation_unit_header (void)
7255 {
7256 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7257 dw2_asm_output_data (4, 0xffffffff,
7258 "Initial length escape value indicating 64-bit DWARF extension");
7259 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7260 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7261 "Length of Compilation Unit Info");
7262 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7263 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7264 debug_abbrev_section,
7265 "Offset Into Abbrev. Section");
7266 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7267 }
7268
7269 /* Output the compilation unit DIE and its children. */
7270
7271 static void
7272 output_comp_unit (dw_die_ref die, int output_if_empty)
7273 {
7274 const char *secname;
7275 char *oldsym, *tmp;
7276
7277 /* Unless we are outputting main CU, we may throw away empty ones. */
7278 if (!output_if_empty && die->die_child == NULL)
7279 return;
7280
7281 /* Even if there are no children of this DIE, we must output the information
7282 about the compilation unit. Otherwise, on an empty translation unit, we
7283 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7284 will then complain when examining the file. First mark all the DIEs in
7285 this CU so we know which get local refs. */
7286 mark_dies (die);
7287
7288 build_abbrev_table (die);
7289
7290 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7291 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7292 calc_die_sizes (die);
7293
7294 oldsym = die->die_symbol;
7295 if (oldsym)
7296 {
7297 tmp = alloca (strlen (oldsym) + 24);
7298
7299 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7300 secname = tmp;
7301 die->die_symbol = NULL;
7302 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7303 }
7304 else
7305 switch_to_section (debug_info_section);
7306
7307 /* Output debugging information. */
7308 output_compilation_unit_header ();
7309 output_die (die);
7310
7311 /* Leave the marks on the main CU, so we can check them in
7312 output_pubnames. */
7313 if (oldsym)
7314 {
7315 unmark_dies (die);
7316 die->die_symbol = oldsym;
7317 }
7318 }
7319
7320 /* Return the DWARF2/3 pubname associated with a decl. */
7321
7322 static const char *
7323 dwarf2_name (tree decl, int scope)
7324 {
7325 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7326 }
7327
7328 /* Add a new entry to .debug_pubnames if appropriate. */
7329
7330 static void
7331 add_pubname (tree decl, dw_die_ref die)
7332 {
7333 pubname_ref p;
7334
7335 if (! TREE_PUBLIC (decl))
7336 return;
7337
7338 if (pubname_table_in_use == pubname_table_allocated)
7339 {
7340 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7341 pubname_table
7342 = ggc_realloc (pubname_table,
7343 (pubname_table_allocated * sizeof (pubname_entry)));
7344 memset (pubname_table + pubname_table_in_use, 0,
7345 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7346 }
7347
7348 p = &pubname_table[pubname_table_in_use++];
7349 p->die = die;
7350 p->name = xstrdup (dwarf2_name (decl, 1));
7351 }
7352
7353 /* Output the public names table used to speed up access to externally
7354 visible names. For now, only generate entries for externally
7355 visible procedures. */
7356
7357 static void
7358 output_pubnames (void)
7359 {
7360 unsigned i;
7361 unsigned long pubnames_length = size_of_pubnames ();
7362
7363 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7364 dw2_asm_output_data (4, 0xffffffff,
7365 "Initial length escape value indicating 64-bit DWARF extension");
7366 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7367 "Length of Public Names Info");
7368 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7369 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7370 debug_info_section,
7371 "Offset of Compilation Unit Info");
7372 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7373 "Compilation Unit Length");
7374
7375 for (i = 0; i < pubname_table_in_use; i++)
7376 {
7377 pubname_ref pub = &pubname_table[i];
7378
7379 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7380 gcc_assert (pub->die->die_mark);
7381
7382 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7383 "DIE offset");
7384
7385 dw2_asm_output_nstring (pub->name, -1, "external name");
7386 }
7387
7388 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7389 }
7390
7391 /* Add a new entry to .debug_aranges if appropriate. */
7392
7393 static void
7394 add_arange (tree decl, dw_die_ref die)
7395 {
7396 if (! DECL_SECTION_NAME (decl))
7397 return;
7398
7399 if (arange_table_in_use == arange_table_allocated)
7400 {
7401 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7402 arange_table = ggc_realloc (arange_table,
7403 (arange_table_allocated
7404 * sizeof (dw_die_ref)));
7405 memset (arange_table + arange_table_in_use, 0,
7406 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7407 }
7408
7409 arange_table[arange_table_in_use++] = die;
7410 }
7411
7412 /* Output the information that goes into the .debug_aranges table.
7413 Namely, define the beginning and ending address range of the
7414 text section generated for this compilation unit. */
7415
7416 static void
7417 output_aranges (void)
7418 {
7419 unsigned i;
7420 unsigned long aranges_length = size_of_aranges ();
7421
7422 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7423 dw2_asm_output_data (4, 0xffffffff,
7424 "Initial length escape value indicating 64-bit DWARF extension");
7425 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7426 "Length of Address Ranges Info");
7427 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7428 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7429 debug_info_section,
7430 "Offset of Compilation Unit Info");
7431 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7432 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7433
7434 /* We need to align to twice the pointer size here. */
7435 if (DWARF_ARANGES_PAD_SIZE)
7436 {
7437 /* Pad using a 2 byte words so that padding is correct for any
7438 pointer size. */
7439 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7440 2 * DWARF2_ADDR_SIZE);
7441 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7442 dw2_asm_output_data (2, 0, NULL);
7443 }
7444
7445 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7446 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7447 text_section_label, "Length");
7448 if (flag_reorder_blocks_and_partition)
7449 {
7450 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7451 "Address");
7452 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7453 cold_text_section_label, "Length");
7454 }
7455
7456 for (i = 0; i < arange_table_in_use; i++)
7457 {
7458 dw_die_ref die = arange_table[i];
7459
7460 /* We shouldn't see aranges for DIEs outside of the main CU. */
7461 gcc_assert (die->die_mark);
7462
7463 if (die->die_tag == DW_TAG_subprogram)
7464 {
7465 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7466 "Address");
7467 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7468 get_AT_low_pc (die), "Length");
7469 }
7470 else
7471 {
7472 /* A static variable; extract the symbol from DW_AT_location.
7473 Note that this code isn't currently hit, as we only emit
7474 aranges for functions (jason 9/23/99). */
7475 dw_attr_ref a = get_AT (die, DW_AT_location);
7476 dw_loc_descr_ref loc;
7477
7478 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7479
7480 loc = AT_loc (a);
7481 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7482
7483 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7484 loc->dw_loc_oprnd1.v.val_addr, "Address");
7485 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7486 get_AT_unsigned (die, DW_AT_byte_size),
7487 "Length");
7488 }
7489 }
7490
7491 /* Output the terminator words. */
7492 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7493 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7494 }
7495
7496 /* Add a new entry to .debug_ranges. Return the offset at which it
7497 was placed. */
7498
7499 static unsigned int
7500 add_ranges (tree block)
7501 {
7502 unsigned int in_use = ranges_table_in_use;
7503
7504 if (in_use == ranges_table_allocated)
7505 {
7506 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7507 ranges_table
7508 = ggc_realloc (ranges_table, (ranges_table_allocated
7509 * sizeof (struct dw_ranges_struct)));
7510 memset (ranges_table + ranges_table_in_use, 0,
7511 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7512 }
7513
7514 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7515 ranges_table_in_use = in_use + 1;
7516
7517 return in_use * 2 * DWARF2_ADDR_SIZE;
7518 }
7519
7520 static void
7521 output_ranges (void)
7522 {
7523 unsigned i;
7524 static const char *const start_fmt = "Offset 0x%x";
7525 const char *fmt = start_fmt;
7526
7527 for (i = 0; i < ranges_table_in_use; i++)
7528 {
7529 int block_num = ranges_table[i].block_num;
7530
7531 if (block_num)
7532 {
7533 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7534 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7535
7536 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7537 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7538
7539 /* If all code is in the text section, then the compilation
7540 unit base address defaults to DW_AT_low_pc, which is the
7541 base of the text section. */
7542 if (!have_multiple_function_sections)
7543 {
7544 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7545 text_section_label,
7546 fmt, i * 2 * DWARF2_ADDR_SIZE);
7547 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7548 text_section_label, NULL);
7549 }
7550
7551 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7552 compilation unit base address to zero, which allows us to
7553 use absolute addresses, and not worry about whether the
7554 target supports cross-section arithmetic. */
7555 else
7556 {
7557 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7558 fmt, i * 2 * DWARF2_ADDR_SIZE);
7559 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7560 }
7561
7562 fmt = NULL;
7563 }
7564 else
7565 {
7566 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7567 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7568 fmt = start_fmt;
7569 }
7570 }
7571 }
7572
7573 /* Data structure containing information about input files. */
7574 struct file_info
7575 {
7576 const char *path; /* Complete file name. */
7577 const char *fname; /* File name part. */
7578 int length; /* Length of entire string. */
7579 struct dwarf_file_data * file_idx; /* Index in input file table. */
7580 int dir_idx; /* Index in directory table. */
7581 };
7582
7583 /* Data structure containing information about directories with source
7584 files. */
7585 struct dir_info
7586 {
7587 const char *path; /* Path including directory name. */
7588 int length; /* Path length. */
7589 int prefix; /* Index of directory entry which is a prefix. */
7590 int count; /* Number of files in this directory. */
7591 int dir_idx; /* Index of directory used as base. */
7592 };
7593
7594 /* Callback function for file_info comparison. We sort by looking at
7595 the directories in the path. */
7596
7597 static int
7598 file_info_cmp (const void *p1, const void *p2)
7599 {
7600 const struct file_info *s1 = p1;
7601 const struct file_info *s2 = p2;
7602 unsigned char *cp1;
7603 unsigned char *cp2;
7604
7605 /* Take care of file names without directories. We need to make sure that
7606 we return consistent values to qsort since some will get confused if
7607 we return the same value when identical operands are passed in opposite
7608 orders. So if neither has a directory, return 0 and otherwise return
7609 1 or -1 depending on which one has the directory. */
7610 if ((s1->path == s1->fname || s2->path == s2->fname))
7611 return (s2->path == s2->fname) - (s1->path == s1->fname);
7612
7613 cp1 = (unsigned char *) s1->path;
7614 cp2 = (unsigned char *) s2->path;
7615
7616 while (1)
7617 {
7618 ++cp1;
7619 ++cp2;
7620 /* Reached the end of the first path? If so, handle like above. */
7621 if ((cp1 == (unsigned char *) s1->fname)
7622 || (cp2 == (unsigned char *) s2->fname))
7623 return ((cp2 == (unsigned char *) s2->fname)
7624 - (cp1 == (unsigned char *) s1->fname));
7625
7626 /* Character of current path component the same? */
7627 else if (*cp1 != *cp2)
7628 return *cp1 - *cp2;
7629 }
7630 }
7631
7632 struct file_name_acquire_data
7633 {
7634 struct file_info *files;
7635 int used_files;
7636 int max_files;
7637 };
7638
7639 /* Traversal function for the hash table. */
7640
7641 static int
7642 file_name_acquire (void ** slot, void *data)
7643 {
7644 struct file_name_acquire_data *fnad = data;
7645 struct dwarf_file_data *d = *slot;
7646 struct file_info *fi;
7647 const char *f;
7648
7649 gcc_assert (fnad->max_files >= d->emitted_number);
7650
7651 if (! d->emitted_number)
7652 return 1;
7653
7654 gcc_assert (fnad->max_files != fnad->used_files);
7655
7656 fi = fnad->files + fnad->used_files++;
7657
7658 /* Skip all leading "./". */
7659 f = d->filename;
7660 while (f[0] == '.' && f[1] == '/')
7661 f += 2;
7662
7663 /* Create a new array entry. */
7664 fi->path = f;
7665 fi->length = strlen (f);
7666 fi->file_idx = d;
7667
7668 /* Search for the file name part. */
7669 f = strrchr (f, '/');
7670 fi->fname = f == NULL ? fi->path : f + 1;
7671 return 1;
7672 }
7673
7674 /* Output the directory table and the file name table. We try to minimize
7675 the total amount of memory needed. A heuristic is used to avoid large
7676 slowdowns with many input files. */
7677
7678 static void
7679 output_file_names (void)
7680 {
7681 struct file_name_acquire_data fnad;
7682 int numfiles;
7683 struct file_info *files;
7684 struct dir_info *dirs;
7685 int *saved;
7686 int *savehere;
7687 int *backmap;
7688 int ndirs;
7689 int idx_offset;
7690 int i;
7691 int idx;
7692
7693 if (!last_emitted_file)
7694 {
7695 dw2_asm_output_data (1, 0, "End directory table");
7696 dw2_asm_output_data (1, 0, "End file name table");
7697 return;
7698 }
7699
7700 numfiles = last_emitted_file->emitted_number;
7701
7702 /* Allocate the various arrays we need. */
7703 files = alloca (numfiles * sizeof (struct file_info));
7704 dirs = alloca (numfiles * sizeof (struct dir_info));
7705
7706 fnad.files = files;
7707 fnad.used_files = 0;
7708 fnad.max_files = numfiles;
7709 htab_traverse (file_table, file_name_acquire, &fnad);
7710 gcc_assert (fnad.used_files == fnad.max_files);
7711
7712 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7713
7714 /* Find all the different directories used. */
7715 dirs[0].path = files[0].path;
7716 dirs[0].length = files[0].fname - files[0].path;
7717 dirs[0].prefix = -1;
7718 dirs[0].count = 1;
7719 dirs[0].dir_idx = 0;
7720 files[0].dir_idx = 0;
7721 ndirs = 1;
7722
7723 for (i = 1; i < numfiles; i++)
7724 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7725 && memcmp (dirs[ndirs - 1].path, files[i].path,
7726 dirs[ndirs - 1].length) == 0)
7727 {
7728 /* Same directory as last entry. */
7729 files[i].dir_idx = ndirs - 1;
7730 ++dirs[ndirs - 1].count;
7731 }
7732 else
7733 {
7734 int j;
7735
7736 /* This is a new directory. */
7737 dirs[ndirs].path = files[i].path;
7738 dirs[ndirs].length = files[i].fname - files[i].path;
7739 dirs[ndirs].count = 1;
7740 dirs[ndirs].dir_idx = ndirs;
7741 files[i].dir_idx = ndirs;
7742
7743 /* Search for a prefix. */
7744 dirs[ndirs].prefix = -1;
7745 for (j = 0; j < ndirs; j++)
7746 if (dirs[j].length < dirs[ndirs].length
7747 && dirs[j].length > 1
7748 && (dirs[ndirs].prefix == -1
7749 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7750 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7751 dirs[ndirs].prefix = j;
7752
7753 ++ndirs;
7754 }
7755
7756 /* Now to the actual work. We have to find a subset of the directories which
7757 allow expressing the file name using references to the directory table
7758 with the least amount of characters. We do not do an exhaustive search
7759 where we would have to check out every combination of every single
7760 possible prefix. Instead we use a heuristic which provides nearly optimal
7761 results in most cases and never is much off. */
7762 saved = alloca (ndirs * sizeof (int));
7763 savehere = alloca (ndirs * sizeof (int));
7764
7765 memset (saved, '\0', ndirs * sizeof (saved[0]));
7766 for (i = 0; i < ndirs; i++)
7767 {
7768 int j;
7769 int total;
7770
7771 /* We can always save some space for the current directory. But this
7772 does not mean it will be enough to justify adding the directory. */
7773 savehere[i] = dirs[i].length;
7774 total = (savehere[i] - saved[i]) * dirs[i].count;
7775
7776 for (j = i + 1; j < ndirs; j++)
7777 {
7778 savehere[j] = 0;
7779 if (saved[j] < dirs[i].length)
7780 {
7781 /* Determine whether the dirs[i] path is a prefix of the
7782 dirs[j] path. */
7783 int k;
7784
7785 k = dirs[j].prefix;
7786 while (k != -1 && k != (int) i)
7787 k = dirs[k].prefix;
7788
7789 if (k == (int) i)
7790 {
7791 /* Yes it is. We can possibly save some memory by
7792 writing the filenames in dirs[j] relative to
7793 dirs[i]. */
7794 savehere[j] = dirs[i].length;
7795 total += (savehere[j] - saved[j]) * dirs[j].count;
7796 }
7797 }
7798 }
7799
7800 /* Check whether we can save enough to justify adding the dirs[i]
7801 directory. */
7802 if (total > dirs[i].length + 1)
7803 {
7804 /* It's worthwhile adding. */
7805 for (j = i; j < ndirs; j++)
7806 if (savehere[j] > 0)
7807 {
7808 /* Remember how much we saved for this directory so far. */
7809 saved[j] = savehere[j];
7810
7811 /* Remember the prefix directory. */
7812 dirs[j].dir_idx = i;
7813 }
7814 }
7815 }
7816
7817 /* Emit the directory name table. */
7818 idx = 1;
7819 idx_offset = dirs[0].length > 0 ? 1 : 0;
7820 for (i = 1 - idx_offset; i < ndirs; i++)
7821 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7822 "Directory Entry: 0x%x", i + idx_offset);
7823
7824 dw2_asm_output_data (1, 0, "End directory table");
7825
7826 /* We have to emit them in the order of emitted_number since that's
7827 used in the debug info generation. To do this efficiently we
7828 generate a back-mapping of the indices first. */
7829 backmap = alloca (numfiles * sizeof (int));
7830 for (i = 0; i < numfiles; i++)
7831 backmap[files[i].file_idx->emitted_number - 1] = i;
7832
7833 /* Now write all the file names. */
7834 for (i = 0; i < numfiles; i++)
7835 {
7836 int file_idx = backmap[i];
7837 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7838
7839 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7840 "File Entry: 0x%x", (unsigned) i + 1);
7841
7842 /* Include directory index. */
7843 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7844
7845 /* Modification time. */
7846 dw2_asm_output_data_uleb128 (0, NULL);
7847
7848 /* File length in bytes. */
7849 dw2_asm_output_data_uleb128 (0, NULL);
7850 }
7851
7852 dw2_asm_output_data (1, 0, "End file name table");
7853 }
7854
7855
7856 /* Output the source line number correspondence information. This
7857 information goes into the .debug_line section. */
7858
7859 static void
7860 output_line_info (void)
7861 {
7862 char l1[20], l2[20], p1[20], p2[20];
7863 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7864 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7865 unsigned opc;
7866 unsigned n_op_args;
7867 unsigned long lt_index;
7868 unsigned long current_line;
7869 long line_offset;
7870 long line_delta;
7871 unsigned long current_file;
7872 unsigned long function;
7873
7874 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7875 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7876 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7877 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7878
7879 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7880 dw2_asm_output_data (4, 0xffffffff,
7881 "Initial length escape value indicating 64-bit DWARF extension");
7882 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7883 "Length of Source Line Info");
7884 ASM_OUTPUT_LABEL (asm_out_file, l1);
7885
7886 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7887 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7888 ASM_OUTPUT_LABEL (asm_out_file, p1);
7889
7890 /* Define the architecture-dependent minimum instruction length (in
7891 bytes). In this implementation of DWARF, this field is used for
7892 information purposes only. Since GCC generates assembly language,
7893 we have no a priori knowledge of how many instruction bytes are
7894 generated for each source line, and therefore can use only the
7895 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7896 commands. Accordingly, we fix this as `1', which is "correct
7897 enough" for all architectures, and don't let the target override. */
7898 dw2_asm_output_data (1, 1,
7899 "Minimum Instruction Length");
7900
7901 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7902 "Default is_stmt_start flag");
7903 dw2_asm_output_data (1, DWARF_LINE_BASE,
7904 "Line Base Value (Special Opcodes)");
7905 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7906 "Line Range Value (Special Opcodes)");
7907 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7908 "Special Opcode Base");
7909
7910 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7911 {
7912 switch (opc)
7913 {
7914 case DW_LNS_advance_pc:
7915 case DW_LNS_advance_line:
7916 case DW_LNS_set_file:
7917 case DW_LNS_set_column:
7918 case DW_LNS_fixed_advance_pc:
7919 n_op_args = 1;
7920 break;
7921 default:
7922 n_op_args = 0;
7923 break;
7924 }
7925
7926 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7927 opc, n_op_args);
7928 }
7929
7930 /* Write out the information about the files we use. */
7931 output_file_names ();
7932 ASM_OUTPUT_LABEL (asm_out_file, p2);
7933
7934 /* We used to set the address register to the first location in the text
7935 section here, but that didn't accomplish anything since we already
7936 have a line note for the opening brace of the first function. */
7937
7938 /* Generate the line number to PC correspondence table, encoded as
7939 a series of state machine operations. */
7940 current_file = 1;
7941 current_line = 1;
7942
7943 if (cfun && in_cold_section_p)
7944 strcpy (prev_line_label, cfun->cold_section_label);
7945 else
7946 strcpy (prev_line_label, text_section_label);
7947 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7948 {
7949 dw_line_info_ref line_info = &line_info_table[lt_index];
7950
7951 #if 0
7952 /* Disable this optimization for now; GDB wants to see two line notes
7953 at the beginning of a function so it can find the end of the
7954 prologue. */
7955
7956 /* Don't emit anything for redundant notes. Just updating the
7957 address doesn't accomplish anything, because we already assume
7958 that anything after the last address is this line. */
7959 if (line_info->dw_line_num == current_line
7960 && line_info->dw_file_num == current_file)
7961 continue;
7962 #endif
7963
7964 /* Emit debug info for the address of the current line.
7965
7966 Unfortunately, we have little choice here currently, and must always
7967 use the most general form. GCC does not know the address delta
7968 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7969 attributes which will give an upper bound on the address range. We
7970 could perhaps use length attributes to determine when it is safe to
7971 use DW_LNS_fixed_advance_pc. */
7972
7973 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7974 if (0)
7975 {
7976 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7977 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7978 "DW_LNS_fixed_advance_pc");
7979 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7980 }
7981 else
7982 {
7983 /* This can handle any delta. This takes
7984 4+DWARF2_ADDR_SIZE bytes. */
7985 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7986 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7987 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7988 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7989 }
7990
7991 strcpy (prev_line_label, line_label);
7992
7993 /* Emit debug info for the source file of the current line, if
7994 different from the previous line. */
7995 if (line_info->dw_file_num != current_file)
7996 {
7997 current_file = line_info->dw_file_num;
7998 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7999 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8000 }
8001
8002 /* Emit debug info for the current line number, choosing the encoding
8003 that uses the least amount of space. */
8004 if (line_info->dw_line_num != current_line)
8005 {
8006 line_offset = line_info->dw_line_num - current_line;
8007 line_delta = line_offset - DWARF_LINE_BASE;
8008 current_line = line_info->dw_line_num;
8009 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8010 /* This can handle deltas from -10 to 234, using the current
8011 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8012 takes 1 byte. */
8013 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8014 "line %lu", current_line);
8015 else
8016 {
8017 /* This can handle any delta. This takes at least 4 bytes,
8018 depending on the value being encoded. */
8019 dw2_asm_output_data (1, DW_LNS_advance_line,
8020 "advance to line %lu", current_line);
8021 dw2_asm_output_data_sleb128 (line_offset, NULL);
8022 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8023 }
8024 }
8025 else
8026 /* We still need to start a new row, so output a copy insn. */
8027 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8028 }
8029
8030 /* Emit debug info for the address of the end of the function. */
8031 if (0)
8032 {
8033 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8034 "DW_LNS_fixed_advance_pc");
8035 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8036 }
8037 else
8038 {
8039 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8040 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8041 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8042 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8043 }
8044
8045 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8046 dw2_asm_output_data_uleb128 (1, NULL);
8047 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8048
8049 function = 0;
8050 current_file = 1;
8051 current_line = 1;
8052 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8053 {
8054 dw_separate_line_info_ref line_info
8055 = &separate_line_info_table[lt_index];
8056
8057 #if 0
8058 /* Don't emit anything for redundant notes. */
8059 if (line_info->dw_line_num == current_line
8060 && line_info->dw_file_num == current_file
8061 && line_info->function == function)
8062 goto cont;
8063 #endif
8064
8065 /* Emit debug info for the address of the current line. If this is
8066 a new function, or the first line of a function, then we need
8067 to handle it differently. */
8068 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8069 lt_index);
8070 if (function != line_info->function)
8071 {
8072 function = line_info->function;
8073
8074 /* Set the address register to the first line in the function. */
8075 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8076 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8077 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8078 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8079 }
8080 else
8081 {
8082 /* ??? See the DW_LNS_advance_pc comment above. */
8083 if (0)
8084 {
8085 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8086 "DW_LNS_fixed_advance_pc");
8087 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8088 }
8089 else
8090 {
8091 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8092 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8093 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8094 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8095 }
8096 }
8097
8098 strcpy (prev_line_label, line_label);
8099
8100 /* Emit debug info for the source file of the current line, if
8101 different from the previous line. */
8102 if (line_info->dw_file_num != current_file)
8103 {
8104 current_file = line_info->dw_file_num;
8105 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8106 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8107 }
8108
8109 /* Emit debug info for the current line number, choosing the encoding
8110 that uses the least amount of space. */
8111 if (line_info->dw_line_num != current_line)
8112 {
8113 line_offset = line_info->dw_line_num - current_line;
8114 line_delta = line_offset - DWARF_LINE_BASE;
8115 current_line = line_info->dw_line_num;
8116 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8117 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8118 "line %lu", current_line);
8119 else
8120 {
8121 dw2_asm_output_data (1, DW_LNS_advance_line,
8122 "advance to line %lu", current_line);
8123 dw2_asm_output_data_sleb128 (line_offset, NULL);
8124 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8125 }
8126 }
8127 else
8128 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8129
8130 #if 0
8131 cont:
8132 #endif
8133
8134 lt_index++;
8135
8136 /* If we're done with a function, end its sequence. */
8137 if (lt_index == separate_line_info_table_in_use
8138 || separate_line_info_table[lt_index].function != function)
8139 {
8140 current_file = 1;
8141 current_line = 1;
8142
8143 /* Emit debug info for the address of the end of the function. */
8144 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8145 if (0)
8146 {
8147 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8148 "DW_LNS_fixed_advance_pc");
8149 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8150 }
8151 else
8152 {
8153 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8154 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8155 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8156 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8157 }
8158
8159 /* Output the marker for the end of this sequence. */
8160 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8161 dw2_asm_output_data_uleb128 (1, NULL);
8162 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8163 }
8164 }
8165
8166 /* Output the marker for the end of the line number info. */
8167 ASM_OUTPUT_LABEL (asm_out_file, l2);
8168 }
8169 \f
8170 /* Given a pointer to a tree node for some base type, return a pointer to
8171 a DIE that describes the given type.
8172
8173 This routine must only be called for GCC type nodes that correspond to
8174 Dwarf base (fundamental) types. */
8175
8176 static dw_die_ref
8177 base_type_die (tree type)
8178 {
8179 dw_die_ref base_type_result;
8180 enum dwarf_type encoding;
8181
8182 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8183 return 0;
8184
8185 switch (TREE_CODE (type))
8186 {
8187 case INTEGER_TYPE:
8188 if (TYPE_STRING_FLAG (type))
8189 {
8190 if (TYPE_UNSIGNED (type))
8191 encoding = DW_ATE_unsigned_char;
8192 else
8193 encoding = DW_ATE_signed_char;
8194 }
8195 else if (TYPE_UNSIGNED (type))
8196 encoding = DW_ATE_unsigned;
8197 else
8198 encoding = DW_ATE_signed;
8199 break;
8200
8201 case REAL_TYPE:
8202 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8203 encoding = DW_ATE_decimal_float;
8204 else
8205 encoding = DW_ATE_float;
8206 break;
8207
8208 /* Dwarf2 doesn't know anything about complex ints, so use
8209 a user defined type for it. */
8210 case COMPLEX_TYPE:
8211 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8212 encoding = DW_ATE_complex_float;
8213 else
8214 encoding = DW_ATE_lo_user;
8215 break;
8216
8217 case BOOLEAN_TYPE:
8218 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8219 encoding = DW_ATE_boolean;
8220 break;
8221
8222 default:
8223 /* No other TREE_CODEs are Dwarf fundamental types. */
8224 gcc_unreachable ();
8225 }
8226
8227 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8228
8229 /* This probably indicates a bug. */
8230 if (! TYPE_NAME (type))
8231 add_name_attribute (base_type_result, "__unknown__");
8232
8233 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8234 int_size_in_bytes (type));
8235 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8236
8237 return base_type_result;
8238 }
8239
8240 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8241 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8242 a given type is generally the same as the given type, except that if the
8243 given type is a pointer or reference type, then the root type of the given
8244 type is the root type of the "basis" type for the pointer or reference
8245 type. (This definition of the "root" type is recursive.) Also, the root
8246 type of a `const' qualified type or a `volatile' qualified type is the
8247 root type of the given type without the qualifiers. */
8248
8249 static tree
8250 root_type (tree type)
8251 {
8252 if (TREE_CODE (type) == ERROR_MARK)
8253 return error_mark_node;
8254
8255 switch (TREE_CODE (type))
8256 {
8257 case ERROR_MARK:
8258 return error_mark_node;
8259
8260 case POINTER_TYPE:
8261 case REFERENCE_TYPE:
8262 return type_main_variant (root_type (TREE_TYPE (type)));
8263
8264 default:
8265 return type_main_variant (type);
8266 }
8267 }
8268
8269 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8270 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8271
8272 static inline int
8273 is_base_type (tree type)
8274 {
8275 switch (TREE_CODE (type))
8276 {
8277 case ERROR_MARK:
8278 case VOID_TYPE:
8279 case INTEGER_TYPE:
8280 case REAL_TYPE:
8281 case COMPLEX_TYPE:
8282 case BOOLEAN_TYPE:
8283 return 1;
8284
8285 case ARRAY_TYPE:
8286 case RECORD_TYPE:
8287 case UNION_TYPE:
8288 case QUAL_UNION_TYPE:
8289 case ENUMERAL_TYPE:
8290 case FUNCTION_TYPE:
8291 case METHOD_TYPE:
8292 case POINTER_TYPE:
8293 case REFERENCE_TYPE:
8294 case OFFSET_TYPE:
8295 case LANG_TYPE:
8296 case VECTOR_TYPE:
8297 return 0;
8298
8299 default:
8300 gcc_unreachable ();
8301 }
8302
8303 return 0;
8304 }
8305
8306 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8307 node, return the size in bits for the type if it is a constant, or else
8308 return the alignment for the type if the type's size is not constant, or
8309 else return BITS_PER_WORD if the type actually turns out to be an
8310 ERROR_MARK node. */
8311
8312 static inline unsigned HOST_WIDE_INT
8313 simple_type_size_in_bits (tree type)
8314 {
8315 if (TREE_CODE (type) == ERROR_MARK)
8316 return BITS_PER_WORD;
8317 else if (TYPE_SIZE (type) == NULL_TREE)
8318 return 0;
8319 else if (host_integerp (TYPE_SIZE (type), 1))
8320 return tree_low_cst (TYPE_SIZE (type), 1);
8321 else
8322 return TYPE_ALIGN (type);
8323 }
8324
8325 /* Return true if the debug information for the given type should be
8326 emitted as a subrange type. */
8327
8328 static inline bool
8329 is_subrange_type (tree type)
8330 {
8331 tree subtype = TREE_TYPE (type);
8332
8333 /* Subrange types are identified by the fact that they are integer
8334 types, and that they have a subtype which is either an integer type
8335 or an enumeral type. */
8336
8337 if (TREE_CODE (type) != INTEGER_TYPE
8338 || subtype == NULL_TREE)
8339 return false;
8340
8341 if (TREE_CODE (subtype) != INTEGER_TYPE
8342 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8343 return false;
8344
8345 if (TREE_CODE (type) == TREE_CODE (subtype)
8346 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8347 && TYPE_MIN_VALUE (type) != NULL
8348 && TYPE_MIN_VALUE (subtype) != NULL
8349 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8350 && TYPE_MAX_VALUE (type) != NULL
8351 && TYPE_MAX_VALUE (subtype) != NULL
8352 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8353 {
8354 /* The type and its subtype have the same representation. If in
8355 addition the two types also have the same name, then the given
8356 type is not a subrange type, but rather a plain base type. */
8357 /* FIXME: brobecker/2004-03-22:
8358 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8359 therefore be sufficient to check the TYPE_SIZE node pointers
8360 rather than checking the actual size. Unfortunately, we have
8361 found some cases, such as in the Ada "integer" type, where
8362 this is not the case. Until this problem is solved, we need to
8363 keep checking the actual size. */
8364 tree type_name = TYPE_NAME (type);
8365 tree subtype_name = TYPE_NAME (subtype);
8366
8367 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8368 type_name = DECL_NAME (type_name);
8369
8370 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8371 subtype_name = DECL_NAME (subtype_name);
8372
8373 if (type_name == subtype_name)
8374 return false;
8375 }
8376
8377 return true;
8378 }
8379
8380 /* Given a pointer to a tree node for a subrange type, return a pointer
8381 to a DIE that describes the given type. */
8382
8383 static dw_die_ref
8384 subrange_type_die (tree type, dw_die_ref context_die)
8385 {
8386 dw_die_ref subrange_die;
8387 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8388
8389 if (context_die == NULL)
8390 context_die = comp_unit_die;
8391
8392 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8393
8394 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8395 {
8396 /* The size of the subrange type and its base type do not match,
8397 so we need to generate a size attribute for the subrange type. */
8398 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8399 }
8400
8401 if (TYPE_MIN_VALUE (type) != NULL)
8402 add_bound_info (subrange_die, DW_AT_lower_bound,
8403 TYPE_MIN_VALUE (type));
8404 if (TYPE_MAX_VALUE (type) != NULL)
8405 add_bound_info (subrange_die, DW_AT_upper_bound,
8406 TYPE_MAX_VALUE (type));
8407
8408 return subrange_die;
8409 }
8410
8411 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8412 entry that chains various modifiers in front of the given type. */
8413
8414 static dw_die_ref
8415 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8416 dw_die_ref context_die)
8417 {
8418 enum tree_code code = TREE_CODE (type);
8419 dw_die_ref mod_type_die;
8420 dw_die_ref sub_die = NULL;
8421 tree item_type = NULL;
8422 tree qualified_type;
8423 tree name;
8424
8425 if (code == ERROR_MARK)
8426 return NULL;
8427
8428 /* See if we already have the appropriately qualified variant of
8429 this type. */
8430 qualified_type
8431 = get_qualified_type (type,
8432 ((is_const_type ? TYPE_QUAL_CONST : 0)
8433 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8434
8435 /* If we do, then we can just use its DIE, if it exists. */
8436 if (qualified_type)
8437 {
8438 mod_type_die = lookup_type_die (qualified_type);
8439 if (mod_type_die)
8440 return mod_type_die;
8441 }
8442
8443 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8444
8445 /* Handle C typedef types. */
8446 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8447 {
8448 tree dtype = TREE_TYPE (name);
8449
8450 if (qualified_type == dtype)
8451 {
8452 /* For a named type, use the typedef. */
8453 gen_type_die (qualified_type, context_die);
8454 return lookup_type_die (qualified_type);
8455 }
8456 else if (DECL_ORIGINAL_TYPE (name)
8457 && (is_const_type < TYPE_READONLY (dtype)
8458 || is_volatile_type < TYPE_VOLATILE (dtype)))
8459 /* cv-unqualified version of named type. Just use the unnamed
8460 type to which it refers. */
8461 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8462 is_const_type, is_volatile_type,
8463 context_die);
8464 /* Else cv-qualified version of named type; fall through. */
8465 }
8466
8467 if (is_const_type)
8468 {
8469 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8470 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8471 }
8472 else if (is_volatile_type)
8473 {
8474 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8475 sub_die = modified_type_die (type, 0, 0, context_die);
8476 }
8477 else if (code == POINTER_TYPE)
8478 {
8479 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8480 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8481 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8482 item_type = TREE_TYPE (type);
8483 }
8484 else if (code == REFERENCE_TYPE)
8485 {
8486 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8487 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8488 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8489 item_type = TREE_TYPE (type);
8490 }
8491 else if (is_subrange_type (type))
8492 {
8493 mod_type_die = subrange_type_die (type, context_die);
8494 item_type = TREE_TYPE (type);
8495 }
8496 else if (is_base_type (type))
8497 mod_type_die = base_type_die (type);
8498 else
8499 {
8500 gen_type_die (type, context_die);
8501
8502 /* We have to get the type_main_variant here (and pass that to the
8503 `lookup_type_die' routine) because the ..._TYPE node we have
8504 might simply be a *copy* of some original type node (where the
8505 copy was created to help us keep track of typedef names) and
8506 that copy might have a different TYPE_UID from the original
8507 ..._TYPE node. */
8508 if (TREE_CODE (type) != VECTOR_TYPE)
8509 return lookup_type_die (type_main_variant (type));
8510 else
8511 /* Vectors have the debugging information in the type,
8512 not the main variant. */
8513 return lookup_type_die (type);
8514 }
8515
8516 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8517 don't output a DW_TAG_typedef, since there isn't one in the
8518 user's program; just attach a DW_AT_name to the type. */
8519 if (name
8520 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8521 {
8522 if (TREE_CODE (name) == TYPE_DECL)
8523 /* Could just call add_name_and_src_coords_attributes here,
8524 but since this is a builtin type it doesn't have any
8525 useful source coordinates anyway. */
8526 name = DECL_NAME (name);
8527 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8528 }
8529
8530 if (qualified_type)
8531 equate_type_number_to_die (qualified_type, mod_type_die);
8532
8533 if (item_type)
8534 /* We must do this after the equate_type_number_to_die call, in case
8535 this is a recursive type. This ensures that the modified_type_die
8536 recursion will terminate even if the type is recursive. Recursive
8537 types are possible in Ada. */
8538 sub_die = modified_type_die (item_type,
8539 TYPE_READONLY (item_type),
8540 TYPE_VOLATILE (item_type),
8541 context_die);
8542
8543 if (sub_die != NULL)
8544 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8545
8546 return mod_type_die;
8547 }
8548
8549 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8550 an enumerated type. */
8551
8552 static inline int
8553 type_is_enum (tree type)
8554 {
8555 return TREE_CODE (type) == ENUMERAL_TYPE;
8556 }
8557
8558 /* Return the DBX register number described by a given RTL node. */
8559
8560 static unsigned int
8561 dbx_reg_number (rtx rtl)
8562 {
8563 unsigned regno = REGNO (rtl);
8564
8565 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8566
8567 #ifdef LEAF_REG_REMAP
8568 {
8569 int leaf_reg;
8570
8571 leaf_reg = LEAF_REG_REMAP (regno);
8572 if (leaf_reg != -1)
8573 regno = (unsigned) leaf_reg;
8574 }
8575 #endif
8576
8577 return DBX_REGISTER_NUMBER (regno);
8578 }
8579
8580 /* Optionally add a DW_OP_piece term to a location description expression.
8581 DW_OP_piece is only added if the location description expression already
8582 doesn't end with DW_OP_piece. */
8583
8584 static void
8585 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8586 {
8587 dw_loc_descr_ref loc;
8588
8589 if (*list_head != NULL)
8590 {
8591 /* Find the end of the chain. */
8592 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8593 ;
8594
8595 if (loc->dw_loc_opc != DW_OP_piece)
8596 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8597 }
8598 }
8599
8600 /* Return a location descriptor that designates a machine register or
8601 zero if there is none. */
8602
8603 static dw_loc_descr_ref
8604 reg_loc_descriptor (rtx rtl)
8605 {
8606 rtx regs;
8607
8608 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8609 return 0;
8610
8611 regs = targetm.dwarf_register_span (rtl);
8612
8613 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8614 return multiple_reg_loc_descriptor (rtl, regs);
8615 else
8616 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8617 }
8618
8619 /* Return a location descriptor that designates a machine register for
8620 a given hard register number. */
8621
8622 static dw_loc_descr_ref
8623 one_reg_loc_descriptor (unsigned int regno)
8624 {
8625 if (regno <= 31)
8626 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8627 else
8628 return new_loc_descr (DW_OP_regx, regno, 0);
8629 }
8630
8631 /* Given an RTL of a register, return a location descriptor that
8632 designates a value that spans more than one register. */
8633
8634 static dw_loc_descr_ref
8635 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8636 {
8637 int nregs, size, i;
8638 unsigned reg;
8639 dw_loc_descr_ref loc_result = NULL;
8640
8641 reg = REGNO (rtl);
8642 #ifdef LEAF_REG_REMAP
8643 {
8644 int leaf_reg;
8645
8646 leaf_reg = LEAF_REG_REMAP (reg);
8647 if (leaf_reg != -1)
8648 reg = (unsigned) leaf_reg;
8649 }
8650 #endif
8651 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8652 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8653
8654 /* Simple, contiguous registers. */
8655 if (regs == NULL_RTX)
8656 {
8657 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8658
8659 loc_result = NULL;
8660 while (nregs--)
8661 {
8662 dw_loc_descr_ref t;
8663
8664 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8665 add_loc_descr (&loc_result, t);
8666 add_loc_descr_op_piece (&loc_result, size);
8667 ++reg;
8668 }
8669 return loc_result;
8670 }
8671
8672 /* Now onto stupid register sets in non contiguous locations. */
8673
8674 gcc_assert (GET_CODE (regs) == PARALLEL);
8675
8676 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8677 loc_result = NULL;
8678
8679 for (i = 0; i < XVECLEN (regs, 0); ++i)
8680 {
8681 dw_loc_descr_ref t;
8682
8683 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8684 add_loc_descr (&loc_result, t);
8685 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8686 add_loc_descr_op_piece (&loc_result, size);
8687 }
8688 return loc_result;
8689 }
8690
8691 /* Return a location descriptor that designates a constant. */
8692
8693 static dw_loc_descr_ref
8694 int_loc_descriptor (HOST_WIDE_INT i)
8695 {
8696 enum dwarf_location_atom op;
8697
8698 /* Pick the smallest representation of a constant, rather than just
8699 defaulting to the LEB encoding. */
8700 if (i >= 0)
8701 {
8702 if (i <= 31)
8703 op = DW_OP_lit0 + i;
8704 else if (i <= 0xff)
8705 op = DW_OP_const1u;
8706 else if (i <= 0xffff)
8707 op = DW_OP_const2u;
8708 else if (HOST_BITS_PER_WIDE_INT == 32
8709 || i <= 0xffffffff)
8710 op = DW_OP_const4u;
8711 else
8712 op = DW_OP_constu;
8713 }
8714 else
8715 {
8716 if (i >= -0x80)
8717 op = DW_OP_const1s;
8718 else if (i >= -0x8000)
8719 op = DW_OP_const2s;
8720 else if (HOST_BITS_PER_WIDE_INT == 32
8721 || i >= -0x80000000)
8722 op = DW_OP_const4s;
8723 else
8724 op = DW_OP_consts;
8725 }
8726
8727 return new_loc_descr (op, i, 0);
8728 }
8729
8730 /* Return a location descriptor that designates a base+offset location. */
8731
8732 static dw_loc_descr_ref
8733 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8734 {
8735 unsigned int regno;
8736
8737 /* We only use "frame base" when we're sure we're talking about the
8738 post-prologue local stack frame. We do this by *not* running
8739 register elimination until this point, and recognizing the special
8740 argument pointer and soft frame pointer rtx's. */
8741 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8742 {
8743 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8744
8745 if (elim != reg)
8746 {
8747 if (GET_CODE (elim) == PLUS)
8748 {
8749 offset += INTVAL (XEXP (elim, 1));
8750 elim = XEXP (elim, 0);
8751 }
8752 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8753 : stack_pointer_rtx));
8754 offset += frame_pointer_fb_offset;
8755
8756 return new_loc_descr (DW_OP_fbreg, offset, 0);
8757 }
8758 }
8759
8760 regno = dbx_reg_number (reg);
8761 if (regno <= 31)
8762 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8763 else
8764 return new_loc_descr (DW_OP_bregx, regno, offset);
8765 }
8766
8767 /* Return true if this RTL expression describes a base+offset calculation. */
8768
8769 static inline int
8770 is_based_loc (rtx rtl)
8771 {
8772 return (GET_CODE (rtl) == PLUS
8773 && ((REG_P (XEXP (rtl, 0))
8774 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8775 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8776 }
8777
8778 /* The following routine converts the RTL for a variable or parameter
8779 (resident in memory) into an equivalent Dwarf representation of a
8780 mechanism for getting the address of that same variable onto the top of a
8781 hypothetical "address evaluation" stack.
8782
8783 When creating memory location descriptors, we are effectively transforming
8784 the RTL for a memory-resident object into its Dwarf postfix expression
8785 equivalent. This routine recursively descends an RTL tree, turning
8786 it into Dwarf postfix code as it goes.
8787
8788 MODE is the mode of the memory reference, needed to handle some
8789 autoincrement addressing modes.
8790
8791 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8792 location list for RTL.
8793
8794 Return 0 if we can't represent the location. */
8795
8796 static dw_loc_descr_ref
8797 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8798 {
8799 dw_loc_descr_ref mem_loc_result = NULL;
8800 enum dwarf_location_atom op;
8801
8802 /* Note that for a dynamically sized array, the location we will generate a
8803 description of here will be the lowest numbered location which is
8804 actually within the array. That's *not* necessarily the same as the
8805 zeroth element of the array. */
8806
8807 rtl = targetm.delegitimize_address (rtl);
8808
8809 switch (GET_CODE (rtl))
8810 {
8811 case POST_INC:
8812 case POST_DEC:
8813 case POST_MODIFY:
8814 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8815 just fall into the SUBREG code. */
8816
8817 /* ... fall through ... */
8818
8819 case SUBREG:
8820 /* The case of a subreg may arise when we have a local (register)
8821 variable or a formal (register) parameter which doesn't quite fill
8822 up an entire register. For now, just assume that it is
8823 legitimate to make the Dwarf info refer to the whole register which
8824 contains the given subreg. */
8825 rtl = XEXP (rtl, 0);
8826
8827 /* ... fall through ... */
8828
8829 case REG:
8830 /* Whenever a register number forms a part of the description of the
8831 method for calculating the (dynamic) address of a memory resident
8832 object, DWARF rules require the register number be referred to as
8833 a "base register". This distinction is not based in any way upon
8834 what category of register the hardware believes the given register
8835 belongs to. This is strictly DWARF terminology we're dealing with
8836 here. Note that in cases where the location of a memory-resident
8837 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8838 OP_CONST (0)) the actual DWARF location descriptor that we generate
8839 may just be OP_BASEREG (basereg). This may look deceptively like
8840 the object in question was allocated to a register (rather than in
8841 memory) so DWARF consumers need to be aware of the subtle
8842 distinction between OP_REG and OP_BASEREG. */
8843 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8844 mem_loc_result = based_loc_descr (rtl, 0);
8845 break;
8846
8847 case MEM:
8848 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8849 if (mem_loc_result != 0)
8850 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8851 break;
8852
8853 case LO_SUM:
8854 rtl = XEXP (rtl, 1);
8855
8856 /* ... fall through ... */
8857
8858 case LABEL_REF:
8859 /* Some ports can transform a symbol ref into a label ref, because
8860 the symbol ref is too far away and has to be dumped into a constant
8861 pool. */
8862 case CONST:
8863 case SYMBOL_REF:
8864 /* Alternatively, the symbol in the constant pool might be referenced
8865 by a different symbol. */
8866 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8867 {
8868 bool marked;
8869 rtx tmp = get_pool_constant_mark (rtl, &marked);
8870
8871 if (GET_CODE (tmp) == SYMBOL_REF)
8872 {
8873 rtl = tmp;
8874 if (CONSTANT_POOL_ADDRESS_P (tmp))
8875 get_pool_constant_mark (tmp, &marked);
8876 else
8877 marked = true;
8878 }
8879
8880 /* If all references to this pool constant were optimized away,
8881 it was not output and thus we can't represent it.
8882 FIXME: might try to use DW_OP_const_value here, though
8883 DW_OP_piece complicates it. */
8884 if (!marked)
8885 return 0;
8886 }
8887
8888 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8889 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8890 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8891 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8892 break;
8893
8894 case PRE_MODIFY:
8895 /* Extract the PLUS expression nested inside and fall into
8896 PLUS code below. */
8897 rtl = XEXP (rtl, 1);
8898 goto plus;
8899
8900 case PRE_INC:
8901 case PRE_DEC:
8902 /* Turn these into a PLUS expression and fall into the PLUS code
8903 below. */
8904 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8905 GEN_INT (GET_CODE (rtl) == PRE_INC
8906 ? GET_MODE_UNIT_SIZE (mode)
8907 : -GET_MODE_UNIT_SIZE (mode)));
8908
8909 /* ... fall through ... */
8910
8911 case PLUS:
8912 plus:
8913 if (is_based_loc (rtl))
8914 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8915 INTVAL (XEXP (rtl, 1)));
8916 else
8917 {
8918 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8919 if (mem_loc_result == 0)
8920 break;
8921
8922 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8923 && INTVAL (XEXP (rtl, 1)) >= 0)
8924 add_loc_descr (&mem_loc_result,
8925 new_loc_descr (DW_OP_plus_uconst,
8926 INTVAL (XEXP (rtl, 1)), 0));
8927 else
8928 {
8929 add_loc_descr (&mem_loc_result,
8930 mem_loc_descriptor (XEXP (rtl, 1), mode));
8931 add_loc_descr (&mem_loc_result,
8932 new_loc_descr (DW_OP_plus, 0, 0));
8933 }
8934 }
8935 break;
8936
8937 /* If a pseudo-reg is optimized away, it is possible for it to
8938 be replaced with a MEM containing a multiply or shift. */
8939 case MULT:
8940 op = DW_OP_mul;
8941 goto do_binop;
8942
8943 case ASHIFT:
8944 op = DW_OP_shl;
8945 goto do_binop;
8946
8947 case ASHIFTRT:
8948 op = DW_OP_shra;
8949 goto do_binop;
8950
8951 case LSHIFTRT:
8952 op = DW_OP_shr;
8953 goto do_binop;
8954
8955 do_binop:
8956 {
8957 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8958 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8959
8960 if (op0 == 0 || op1 == 0)
8961 break;
8962
8963 mem_loc_result = op0;
8964 add_loc_descr (&mem_loc_result, op1);
8965 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8966 break;
8967 }
8968
8969 case CONST_INT:
8970 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8971 break;
8972
8973 default:
8974 gcc_unreachable ();
8975 }
8976
8977 return mem_loc_result;
8978 }
8979
8980 /* Return a descriptor that describes the concatenation of two locations.
8981 This is typically a complex variable. */
8982
8983 static dw_loc_descr_ref
8984 concat_loc_descriptor (rtx x0, rtx x1)
8985 {
8986 dw_loc_descr_ref cc_loc_result = NULL;
8987 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8988 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8989
8990 if (x0_ref == 0 || x1_ref == 0)
8991 return 0;
8992
8993 cc_loc_result = x0_ref;
8994 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8995
8996 add_loc_descr (&cc_loc_result, x1_ref);
8997 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8998
8999 return cc_loc_result;
9000 }
9001
9002 /* Output a proper Dwarf location descriptor for a variable or parameter
9003 which is either allocated in a register or in a memory location. For a
9004 register, we just generate an OP_REG and the register number. For a
9005 memory location we provide a Dwarf postfix expression describing how to
9006 generate the (dynamic) address of the object onto the address stack.
9007
9008 If we don't know how to describe it, return 0. */
9009
9010 static dw_loc_descr_ref
9011 loc_descriptor (rtx rtl)
9012 {
9013 dw_loc_descr_ref loc_result = NULL;
9014
9015 switch (GET_CODE (rtl))
9016 {
9017 case SUBREG:
9018 /* The case of a subreg may arise when we have a local (register)
9019 variable or a formal (register) parameter which doesn't quite fill
9020 up an entire register. For now, just assume that it is
9021 legitimate to make the Dwarf info refer to the whole register which
9022 contains the given subreg. */
9023 rtl = SUBREG_REG (rtl);
9024
9025 /* ... fall through ... */
9026
9027 case REG:
9028 loc_result = reg_loc_descriptor (rtl);
9029 break;
9030
9031 case MEM:
9032 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9033 break;
9034
9035 case CONCAT:
9036 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9037 break;
9038
9039 case VAR_LOCATION:
9040 /* Single part. */
9041 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9042 {
9043 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9044 break;
9045 }
9046
9047 rtl = XEXP (rtl, 1);
9048 /* FALLTHRU */
9049
9050 case PARALLEL:
9051 {
9052 rtvec par_elems = XVEC (rtl, 0);
9053 int num_elem = GET_NUM_ELEM (par_elems);
9054 enum machine_mode mode;
9055 int i;
9056
9057 /* Create the first one, so we have something to add to. */
9058 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9059 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9060 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9061 for (i = 1; i < num_elem; i++)
9062 {
9063 dw_loc_descr_ref temp;
9064
9065 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9066 add_loc_descr (&loc_result, temp);
9067 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9068 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9069 }
9070 }
9071 break;
9072
9073 default:
9074 gcc_unreachable ();
9075 }
9076
9077 return loc_result;
9078 }
9079
9080 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9081 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9082 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9083 top-level invocation, and we require the address of LOC; is 0 if we require
9084 the value of LOC. */
9085
9086 static dw_loc_descr_ref
9087 loc_descriptor_from_tree_1 (tree loc, int want_address)
9088 {
9089 dw_loc_descr_ref ret, ret1;
9090 int have_address = 0;
9091 enum dwarf_location_atom op;
9092
9093 /* ??? Most of the time we do not take proper care for sign/zero
9094 extending the values properly. Hopefully this won't be a real
9095 problem... */
9096
9097 switch (TREE_CODE (loc))
9098 {
9099 case ERROR_MARK:
9100 return 0;
9101
9102 case PLACEHOLDER_EXPR:
9103 /* This case involves extracting fields from an object to determine the
9104 position of other fields. We don't try to encode this here. The
9105 only user of this is Ada, which encodes the needed information using
9106 the names of types. */
9107 return 0;
9108
9109 case CALL_EXPR:
9110 return 0;
9111
9112 case PREINCREMENT_EXPR:
9113 case PREDECREMENT_EXPR:
9114 case POSTINCREMENT_EXPR:
9115 case POSTDECREMENT_EXPR:
9116 /* There are no opcodes for these operations. */
9117 return 0;
9118
9119 case ADDR_EXPR:
9120 /* If we already want an address, there's nothing we can do. */
9121 if (want_address)
9122 return 0;
9123
9124 /* Otherwise, process the argument and look for the address. */
9125 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9126
9127 case VAR_DECL:
9128 if (DECL_THREAD_LOCAL_P (loc))
9129 {
9130 rtx rtl;
9131
9132 /* If this is not defined, we have no way to emit the data. */
9133 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
9134 return 0;
9135
9136 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9137 look up addresses of objects in the current module. */
9138 if (DECL_EXTERNAL (loc))
9139 return 0;
9140
9141 rtl = rtl_for_decl_location (loc);
9142 if (rtl == NULL_RTX)
9143 return 0;
9144
9145 if (!MEM_P (rtl))
9146 return 0;
9147 rtl = XEXP (rtl, 0);
9148 if (! CONSTANT_P (rtl))
9149 return 0;
9150
9151 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9152 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9153 ret->dw_loc_oprnd1.v.val_addr = rtl;
9154
9155 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9156 add_loc_descr (&ret, ret1);
9157
9158 have_address = 1;
9159 break;
9160 }
9161 /* FALLTHRU */
9162
9163 case PARM_DECL:
9164 if (DECL_HAS_VALUE_EXPR_P (loc))
9165 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9166 want_address);
9167 /* FALLTHRU */
9168
9169 case RESULT_DECL:
9170 case FUNCTION_DECL:
9171 {
9172 rtx rtl = rtl_for_decl_location (loc);
9173
9174 if (rtl == NULL_RTX)
9175 return 0;
9176 else if (GET_CODE (rtl) == CONST_INT)
9177 {
9178 HOST_WIDE_INT val = INTVAL (rtl);
9179 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9180 val &= GET_MODE_MASK (DECL_MODE (loc));
9181 ret = int_loc_descriptor (val);
9182 }
9183 else if (GET_CODE (rtl) == CONST_STRING)
9184 return 0;
9185 else if (CONSTANT_P (rtl))
9186 {
9187 ret = new_loc_descr (DW_OP_addr, 0, 0);
9188 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9189 ret->dw_loc_oprnd1.v.val_addr = rtl;
9190 }
9191 else
9192 {
9193 enum machine_mode mode;
9194
9195 /* Certain constructs can only be represented at top-level. */
9196 if (want_address == 2)
9197 return loc_descriptor (rtl);
9198
9199 mode = GET_MODE (rtl);
9200 if (MEM_P (rtl))
9201 {
9202 rtl = XEXP (rtl, 0);
9203 have_address = 1;
9204 }
9205 ret = mem_loc_descriptor (rtl, mode);
9206 }
9207 }
9208 break;
9209
9210 case INDIRECT_REF:
9211 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9212 have_address = 1;
9213 break;
9214
9215 case COMPOUND_EXPR:
9216 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9217
9218 case NOP_EXPR:
9219 case CONVERT_EXPR:
9220 case NON_LVALUE_EXPR:
9221 case VIEW_CONVERT_EXPR:
9222 case SAVE_EXPR:
9223 case MODIFY_EXPR:
9224 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9225
9226 case COMPONENT_REF:
9227 case BIT_FIELD_REF:
9228 case ARRAY_REF:
9229 case ARRAY_RANGE_REF:
9230 {
9231 tree obj, offset;
9232 HOST_WIDE_INT bitsize, bitpos, bytepos;
9233 enum machine_mode mode;
9234 int volatilep;
9235 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9236
9237 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9238 &unsignedp, &volatilep, false);
9239
9240 if (obj == loc)
9241 return 0;
9242
9243 ret = loc_descriptor_from_tree_1 (obj, 1);
9244 if (ret == 0
9245 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9246 return 0;
9247
9248 if (offset != NULL_TREE)
9249 {
9250 /* Variable offset. */
9251 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9252 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9253 }
9254
9255 bytepos = bitpos / BITS_PER_UNIT;
9256 if (bytepos > 0)
9257 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9258 else if (bytepos < 0)
9259 {
9260 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9261 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9262 }
9263
9264 have_address = 1;
9265 break;
9266 }
9267
9268 case INTEGER_CST:
9269 if (host_integerp (loc, 0))
9270 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9271 else
9272 return 0;
9273 break;
9274
9275 case CONSTRUCTOR:
9276 {
9277 /* Get an RTL for this, if something has been emitted. */
9278 rtx rtl = lookup_constant_def (loc);
9279 enum machine_mode mode;
9280
9281 if (!rtl || !MEM_P (rtl))
9282 return 0;
9283 mode = GET_MODE (rtl);
9284 rtl = XEXP (rtl, 0);
9285 ret = mem_loc_descriptor (rtl, mode);
9286 have_address = 1;
9287 break;
9288 }
9289
9290 case TRUTH_AND_EXPR:
9291 case TRUTH_ANDIF_EXPR:
9292 case BIT_AND_EXPR:
9293 op = DW_OP_and;
9294 goto do_binop;
9295
9296 case TRUTH_XOR_EXPR:
9297 case BIT_XOR_EXPR:
9298 op = DW_OP_xor;
9299 goto do_binop;
9300
9301 case TRUTH_OR_EXPR:
9302 case TRUTH_ORIF_EXPR:
9303 case BIT_IOR_EXPR:
9304 op = DW_OP_or;
9305 goto do_binop;
9306
9307 case FLOOR_DIV_EXPR:
9308 case CEIL_DIV_EXPR:
9309 case ROUND_DIV_EXPR:
9310 case TRUNC_DIV_EXPR:
9311 op = DW_OP_div;
9312 goto do_binop;
9313
9314 case MINUS_EXPR:
9315 op = DW_OP_minus;
9316 goto do_binop;
9317
9318 case FLOOR_MOD_EXPR:
9319 case CEIL_MOD_EXPR:
9320 case ROUND_MOD_EXPR:
9321 case TRUNC_MOD_EXPR:
9322 op = DW_OP_mod;
9323 goto do_binop;
9324
9325 case MULT_EXPR:
9326 op = DW_OP_mul;
9327 goto do_binop;
9328
9329 case LSHIFT_EXPR:
9330 op = DW_OP_shl;
9331 goto do_binop;
9332
9333 case RSHIFT_EXPR:
9334 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9335 goto do_binop;
9336
9337 case PLUS_EXPR:
9338 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9339 && host_integerp (TREE_OPERAND (loc, 1), 0))
9340 {
9341 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9342 if (ret == 0)
9343 return 0;
9344
9345 add_loc_descr (&ret,
9346 new_loc_descr (DW_OP_plus_uconst,
9347 tree_low_cst (TREE_OPERAND (loc, 1),
9348 0),
9349 0));
9350 break;
9351 }
9352
9353 op = DW_OP_plus;
9354 goto do_binop;
9355
9356 case LE_EXPR:
9357 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9358 return 0;
9359
9360 op = DW_OP_le;
9361 goto do_binop;
9362
9363 case GE_EXPR:
9364 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9365 return 0;
9366
9367 op = DW_OP_ge;
9368 goto do_binop;
9369
9370 case LT_EXPR:
9371 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9372 return 0;
9373
9374 op = DW_OP_lt;
9375 goto do_binop;
9376
9377 case GT_EXPR:
9378 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9379 return 0;
9380
9381 op = DW_OP_gt;
9382 goto do_binop;
9383
9384 case EQ_EXPR:
9385 op = DW_OP_eq;
9386 goto do_binop;
9387
9388 case NE_EXPR:
9389 op = DW_OP_ne;
9390 goto do_binop;
9391
9392 do_binop:
9393 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9394 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9395 if (ret == 0 || ret1 == 0)
9396 return 0;
9397
9398 add_loc_descr (&ret, ret1);
9399 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9400 break;
9401
9402 case TRUTH_NOT_EXPR:
9403 case BIT_NOT_EXPR:
9404 op = DW_OP_not;
9405 goto do_unop;
9406
9407 case ABS_EXPR:
9408 op = DW_OP_abs;
9409 goto do_unop;
9410
9411 case NEGATE_EXPR:
9412 op = DW_OP_neg;
9413 goto do_unop;
9414
9415 do_unop:
9416 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9417 if (ret == 0)
9418 return 0;
9419
9420 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9421 break;
9422
9423 case MIN_EXPR:
9424 case MAX_EXPR:
9425 {
9426 const enum tree_code code =
9427 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9428
9429 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9430 build2 (code, integer_type_node,
9431 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9432 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9433 }
9434
9435 /* ... fall through ... */
9436
9437 case COND_EXPR:
9438 {
9439 dw_loc_descr_ref lhs
9440 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9441 dw_loc_descr_ref rhs
9442 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9443 dw_loc_descr_ref bra_node, jump_node, tmp;
9444
9445 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9446 if (ret == 0 || lhs == 0 || rhs == 0)
9447 return 0;
9448
9449 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9450 add_loc_descr (&ret, bra_node);
9451
9452 add_loc_descr (&ret, rhs);
9453 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9454 add_loc_descr (&ret, jump_node);
9455
9456 add_loc_descr (&ret, lhs);
9457 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9458 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9459
9460 /* ??? Need a node to point the skip at. Use a nop. */
9461 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9462 add_loc_descr (&ret, tmp);
9463 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9464 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9465 }
9466 break;
9467
9468 case FIX_TRUNC_EXPR:
9469 case FIX_CEIL_EXPR:
9470 case FIX_FLOOR_EXPR:
9471 case FIX_ROUND_EXPR:
9472 return 0;
9473
9474 default:
9475 /* Leave front-end specific codes as simply unknown. This comes
9476 up, for instance, with the C STMT_EXPR. */
9477 if ((unsigned int) TREE_CODE (loc)
9478 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9479 return 0;
9480
9481 #ifdef ENABLE_CHECKING
9482 /* Otherwise this is a generic code; we should just lists all of
9483 these explicitly. We forgot one. */
9484 gcc_unreachable ();
9485 #else
9486 /* In a release build, we want to degrade gracefully: better to
9487 generate incomplete debugging information than to crash. */
9488 return NULL;
9489 #endif
9490 }
9491
9492 /* Show if we can't fill the request for an address. */
9493 if (want_address && !have_address)
9494 return 0;
9495
9496 /* If we've got an address and don't want one, dereference. */
9497 if (!want_address && have_address && ret)
9498 {
9499 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9500
9501 if (size > DWARF2_ADDR_SIZE || size == -1)
9502 return 0;
9503 else if (size == DWARF2_ADDR_SIZE)
9504 op = DW_OP_deref;
9505 else
9506 op = DW_OP_deref_size;
9507
9508 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9509 }
9510
9511 return ret;
9512 }
9513
9514 static inline dw_loc_descr_ref
9515 loc_descriptor_from_tree (tree loc)
9516 {
9517 return loc_descriptor_from_tree_1 (loc, 2);
9518 }
9519
9520 /* Given a value, round it up to the lowest multiple of `boundary'
9521 which is not less than the value itself. */
9522
9523 static inline HOST_WIDE_INT
9524 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9525 {
9526 return (((value + boundary - 1) / boundary) * boundary);
9527 }
9528
9529 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9530 pointer to the declared type for the relevant field variable, or return
9531 `integer_type_node' if the given node turns out to be an
9532 ERROR_MARK node. */
9533
9534 static inline tree
9535 field_type (tree decl)
9536 {
9537 tree type;
9538
9539 if (TREE_CODE (decl) == ERROR_MARK)
9540 return integer_type_node;
9541
9542 type = DECL_BIT_FIELD_TYPE (decl);
9543 if (type == NULL_TREE)
9544 type = TREE_TYPE (decl);
9545
9546 return type;
9547 }
9548
9549 /* Given a pointer to a tree node, return the alignment in bits for
9550 it, or else return BITS_PER_WORD if the node actually turns out to
9551 be an ERROR_MARK node. */
9552
9553 static inline unsigned
9554 simple_type_align_in_bits (tree type)
9555 {
9556 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9557 }
9558
9559 static inline unsigned
9560 simple_decl_align_in_bits (tree decl)
9561 {
9562 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9563 }
9564
9565 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9566 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9567 or return 0 if we are unable to determine what that offset is, either
9568 because the argument turns out to be a pointer to an ERROR_MARK node, or
9569 because the offset is actually variable. (We can't handle the latter case
9570 just yet). */
9571
9572 static HOST_WIDE_INT
9573 field_byte_offset (tree decl)
9574 {
9575 unsigned int type_align_in_bits;
9576 unsigned int decl_align_in_bits;
9577 unsigned HOST_WIDE_INT type_size_in_bits;
9578 HOST_WIDE_INT object_offset_in_bits;
9579 tree type;
9580 tree field_size_tree;
9581 HOST_WIDE_INT bitpos_int;
9582 HOST_WIDE_INT deepest_bitpos;
9583 unsigned HOST_WIDE_INT field_size_in_bits;
9584
9585 if (TREE_CODE (decl) == ERROR_MARK)
9586 return 0;
9587
9588 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9589
9590 type = field_type (decl);
9591 field_size_tree = DECL_SIZE (decl);
9592
9593 /* The size could be unspecified if there was an error, or for
9594 a flexible array member. */
9595 if (! field_size_tree)
9596 field_size_tree = bitsize_zero_node;
9597
9598 /* We cannot yet cope with fields whose positions are variable, so
9599 for now, when we see such things, we simply return 0. Someday, we may
9600 be able to handle such cases, but it will be damn difficult. */
9601 if (! host_integerp (bit_position (decl), 0))
9602 return 0;
9603
9604 bitpos_int = int_bit_position (decl);
9605
9606 /* If we don't know the size of the field, pretend it's a full word. */
9607 if (host_integerp (field_size_tree, 1))
9608 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9609 else
9610 field_size_in_bits = BITS_PER_WORD;
9611
9612 type_size_in_bits = simple_type_size_in_bits (type);
9613 type_align_in_bits = simple_type_align_in_bits (type);
9614 decl_align_in_bits = simple_decl_align_in_bits (decl);
9615
9616 /* The GCC front-end doesn't make any attempt to keep track of the starting
9617 bit offset (relative to the start of the containing structure type) of the
9618 hypothetical "containing object" for a bit-field. Thus, when computing
9619 the byte offset value for the start of the "containing object" of a
9620 bit-field, we must deduce this information on our own. This can be rather
9621 tricky to do in some cases. For example, handling the following structure
9622 type definition when compiling for an i386/i486 target (which only aligns
9623 long long's to 32-bit boundaries) can be very tricky:
9624
9625 struct S { int field1; long long field2:31; };
9626
9627 Fortunately, there is a simple rule-of-thumb which can be used in such
9628 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9629 structure shown above. It decides to do this based upon one simple rule
9630 for bit-field allocation. GCC allocates each "containing object" for each
9631 bit-field at the first (i.e. lowest addressed) legitimate alignment
9632 boundary (based upon the required minimum alignment for the declared type
9633 of the field) which it can possibly use, subject to the condition that
9634 there is still enough available space remaining in the containing object
9635 (when allocated at the selected point) to fully accommodate all of the
9636 bits of the bit-field itself.
9637
9638 This simple rule makes it obvious why GCC allocates 8 bytes for each
9639 object of the structure type shown above. When looking for a place to
9640 allocate the "containing object" for `field2', the compiler simply tries
9641 to allocate a 64-bit "containing object" at each successive 32-bit
9642 boundary (starting at zero) until it finds a place to allocate that 64-
9643 bit field such that at least 31 contiguous (and previously unallocated)
9644 bits remain within that selected 64 bit field. (As it turns out, for the
9645 example above, the compiler finds it is OK to allocate the "containing
9646 object" 64-bit field at bit-offset zero within the structure type.)
9647
9648 Here we attempt to work backwards from the limited set of facts we're
9649 given, and we try to deduce from those facts, where GCC must have believed
9650 that the containing object started (within the structure type). The value
9651 we deduce is then used (by the callers of this routine) to generate
9652 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9653 and, in the case of DW_AT_location, regular fields as well). */
9654
9655 /* Figure out the bit-distance from the start of the structure to the
9656 "deepest" bit of the bit-field. */
9657 deepest_bitpos = bitpos_int + field_size_in_bits;
9658
9659 /* This is the tricky part. Use some fancy footwork to deduce where the
9660 lowest addressed bit of the containing object must be. */
9661 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9662
9663 /* Round up to type_align by default. This works best for bitfields. */
9664 object_offset_in_bits += type_align_in_bits - 1;
9665 object_offset_in_bits /= type_align_in_bits;
9666 object_offset_in_bits *= type_align_in_bits;
9667
9668 if (object_offset_in_bits > bitpos_int)
9669 {
9670 /* Sigh, the decl must be packed. */
9671 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9672
9673 /* Round up to decl_align instead. */
9674 object_offset_in_bits += decl_align_in_bits - 1;
9675 object_offset_in_bits /= decl_align_in_bits;
9676 object_offset_in_bits *= decl_align_in_bits;
9677 }
9678
9679 return object_offset_in_bits / BITS_PER_UNIT;
9680 }
9681 \f
9682 /* The following routines define various Dwarf attributes and any data
9683 associated with them. */
9684
9685 /* Add a location description attribute value to a DIE.
9686
9687 This emits location attributes suitable for whole variables and
9688 whole parameters. Note that the location attributes for struct fields are
9689 generated by the routine `data_member_location_attribute' below. */
9690
9691 static inline void
9692 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9693 dw_loc_descr_ref descr)
9694 {
9695 if (descr != 0)
9696 add_AT_loc (die, attr_kind, descr);
9697 }
9698
9699 /* Attach the specialized form of location attribute used for data members of
9700 struct and union types. In the special case of a FIELD_DECL node which
9701 represents a bit-field, the "offset" part of this special location
9702 descriptor must indicate the distance in bytes from the lowest-addressed
9703 byte of the containing struct or union type to the lowest-addressed byte of
9704 the "containing object" for the bit-field. (See the `field_byte_offset'
9705 function above).
9706
9707 For any given bit-field, the "containing object" is a hypothetical object
9708 (of some integral or enum type) within which the given bit-field lives. The
9709 type of this hypothetical "containing object" is always the same as the
9710 declared type of the individual bit-field itself (for GCC anyway... the
9711 DWARF spec doesn't actually mandate this). Note that it is the size (in
9712 bytes) of the hypothetical "containing object" which will be given in the
9713 DW_AT_byte_size attribute for this bit-field. (See the
9714 `byte_size_attribute' function below.) It is also used when calculating the
9715 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9716 function below.) */
9717
9718 static void
9719 add_data_member_location_attribute (dw_die_ref die, tree decl)
9720 {
9721 HOST_WIDE_INT offset;
9722 dw_loc_descr_ref loc_descr = 0;
9723
9724 if (TREE_CODE (decl) == TREE_BINFO)
9725 {
9726 /* We're working on the TAG_inheritance for a base class. */
9727 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9728 {
9729 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9730 aren't at a fixed offset from all (sub)objects of the same
9731 type. We need to extract the appropriate offset from our
9732 vtable. The following dwarf expression means
9733
9734 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9735
9736 This is specific to the V3 ABI, of course. */
9737
9738 dw_loc_descr_ref tmp;
9739
9740 /* Make a copy of the object address. */
9741 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9742 add_loc_descr (&loc_descr, tmp);
9743
9744 /* Extract the vtable address. */
9745 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9746 add_loc_descr (&loc_descr, tmp);
9747
9748 /* Calculate the address of the offset. */
9749 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9750 gcc_assert (offset < 0);
9751
9752 tmp = int_loc_descriptor (-offset);
9753 add_loc_descr (&loc_descr, tmp);
9754 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9755 add_loc_descr (&loc_descr, tmp);
9756
9757 /* Extract the offset. */
9758 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9759 add_loc_descr (&loc_descr, tmp);
9760
9761 /* Add it to the object address. */
9762 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9763 add_loc_descr (&loc_descr, tmp);
9764 }
9765 else
9766 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9767 }
9768 else
9769 offset = field_byte_offset (decl);
9770
9771 if (! loc_descr)
9772 {
9773 enum dwarf_location_atom op;
9774
9775 /* The DWARF2 standard says that we should assume that the structure
9776 address is already on the stack, so we can specify a structure field
9777 address by using DW_OP_plus_uconst. */
9778
9779 #ifdef MIPS_DEBUGGING_INFO
9780 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9781 operator correctly. It works only if we leave the offset on the
9782 stack. */
9783 op = DW_OP_constu;
9784 #else
9785 op = DW_OP_plus_uconst;
9786 #endif
9787
9788 loc_descr = new_loc_descr (op, offset, 0);
9789 }
9790
9791 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9792 }
9793
9794 /* Writes integer values to dw_vec_const array. */
9795
9796 static void
9797 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9798 {
9799 while (size != 0)
9800 {
9801 *dest++ = val & 0xff;
9802 val >>= 8;
9803 --size;
9804 }
9805 }
9806
9807 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9808
9809 static HOST_WIDE_INT
9810 extract_int (const unsigned char *src, unsigned int size)
9811 {
9812 HOST_WIDE_INT val = 0;
9813
9814 src += size;
9815 while (size != 0)
9816 {
9817 val <<= 8;
9818 val |= *--src & 0xff;
9819 --size;
9820 }
9821 return val;
9822 }
9823
9824 /* Writes floating point values to dw_vec_const array. */
9825
9826 static void
9827 insert_float (rtx rtl, unsigned char *array)
9828 {
9829 REAL_VALUE_TYPE rv;
9830 long val[4];
9831 int i;
9832
9833 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9834 real_to_target (val, &rv, GET_MODE (rtl));
9835
9836 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9837 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9838 {
9839 insert_int (val[i], 4, array);
9840 array += 4;
9841 }
9842 }
9843
9844 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9845 does not have a "location" either in memory or in a register. These
9846 things can arise in GNU C when a constant is passed as an actual parameter
9847 to an inlined function. They can also arise in C++ where declared
9848 constants do not necessarily get memory "homes". */
9849
9850 static void
9851 add_const_value_attribute (dw_die_ref die, rtx rtl)
9852 {
9853 switch (GET_CODE (rtl))
9854 {
9855 case CONST_INT:
9856 {
9857 HOST_WIDE_INT val = INTVAL (rtl);
9858
9859 if (val < 0)
9860 add_AT_int (die, DW_AT_const_value, val);
9861 else
9862 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9863 }
9864 break;
9865
9866 case CONST_DOUBLE:
9867 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9868 floating-point constant. A CONST_DOUBLE is used whenever the
9869 constant requires more than one word in order to be adequately
9870 represented. We output CONST_DOUBLEs as blocks. */
9871 {
9872 enum machine_mode mode = GET_MODE (rtl);
9873
9874 if (SCALAR_FLOAT_MODE_P (mode))
9875 {
9876 unsigned int length = GET_MODE_SIZE (mode);
9877 unsigned char *array = ggc_alloc (length);
9878
9879 insert_float (rtl, array);
9880 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9881 }
9882 else
9883 {
9884 /* ??? We really should be using HOST_WIDE_INT throughout. */
9885 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9886
9887 add_AT_long_long (die, DW_AT_const_value,
9888 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9889 }
9890 }
9891 break;
9892
9893 case CONST_VECTOR:
9894 {
9895 enum machine_mode mode = GET_MODE (rtl);
9896 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9897 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9898 unsigned char *array = ggc_alloc (length * elt_size);
9899 unsigned int i;
9900 unsigned char *p;
9901
9902 switch (GET_MODE_CLASS (mode))
9903 {
9904 case MODE_VECTOR_INT:
9905 for (i = 0, p = array; i < length; i++, p += elt_size)
9906 {
9907 rtx elt = CONST_VECTOR_ELT (rtl, i);
9908 HOST_WIDE_INT lo, hi;
9909
9910 switch (GET_CODE (elt))
9911 {
9912 case CONST_INT:
9913 lo = INTVAL (elt);
9914 hi = -(lo < 0);
9915 break;
9916
9917 case CONST_DOUBLE:
9918 lo = CONST_DOUBLE_LOW (elt);
9919 hi = CONST_DOUBLE_HIGH (elt);
9920 break;
9921
9922 default:
9923 gcc_unreachable ();
9924 }
9925
9926 if (elt_size <= sizeof (HOST_WIDE_INT))
9927 insert_int (lo, elt_size, p);
9928 else
9929 {
9930 unsigned char *p0 = p;
9931 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9932
9933 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9934 if (WORDS_BIG_ENDIAN)
9935 {
9936 p0 = p1;
9937 p1 = p;
9938 }
9939 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9940 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9941 }
9942 }
9943 break;
9944
9945 case MODE_VECTOR_FLOAT:
9946 for (i = 0, p = array; i < length; i++, p += elt_size)
9947 {
9948 rtx elt = CONST_VECTOR_ELT (rtl, i);
9949 insert_float (elt, p);
9950 }
9951 break;
9952
9953 default:
9954 gcc_unreachable ();
9955 }
9956
9957 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9958 }
9959 break;
9960
9961 case CONST_STRING:
9962 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9963 break;
9964
9965 case SYMBOL_REF:
9966 case LABEL_REF:
9967 case CONST:
9968 add_AT_addr (die, DW_AT_const_value, rtl);
9969 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9970 break;
9971
9972 case PLUS:
9973 /* In cases where an inlined instance of an inline function is passed
9974 the address of an `auto' variable (which is local to the caller) we
9975 can get a situation where the DECL_RTL of the artificial local
9976 variable (for the inlining) which acts as a stand-in for the
9977 corresponding formal parameter (of the inline function) will look
9978 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9979 exactly a compile-time constant expression, but it isn't the address
9980 of the (artificial) local variable either. Rather, it represents the
9981 *value* which the artificial local variable always has during its
9982 lifetime. We currently have no way to represent such quasi-constant
9983 values in Dwarf, so for now we just punt and generate nothing. */
9984 break;
9985
9986 default:
9987 /* No other kinds of rtx should be possible here. */
9988 gcc_unreachable ();
9989 }
9990
9991 }
9992
9993 /* Determine whether the evaluation of EXPR references any variables
9994 or functions which aren't otherwise used (and therefore may not be
9995 output). */
9996 static tree
9997 reference_to_unused (tree * tp, int * walk_subtrees,
9998 void * data ATTRIBUTE_UNUSED)
9999 {
10000 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10001 *walk_subtrees = 0;
10002
10003 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10004 && ! TREE_ASM_WRITTEN (*tp))
10005 return *tp;
10006 else
10007 return NULL_TREE;
10008 }
10009
10010 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10011 for use in a later add_const_value_attribute call. */
10012
10013 static rtx
10014 rtl_for_decl_init (tree init, tree type)
10015 {
10016 rtx rtl = NULL_RTX;
10017
10018 /* If a variable is initialized with a string constant without embedded
10019 zeros, build CONST_STRING. */
10020 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10021 {
10022 tree enttype = TREE_TYPE (type);
10023 tree domain = TYPE_DOMAIN (type);
10024 enum machine_mode mode = TYPE_MODE (enttype);
10025
10026 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10027 && domain
10028 && integer_zerop (TYPE_MIN_VALUE (domain))
10029 && compare_tree_int (TYPE_MAX_VALUE (domain),
10030 TREE_STRING_LENGTH (init) - 1) == 0
10031 && ((size_t) TREE_STRING_LENGTH (init)
10032 == strlen (TREE_STRING_POINTER (init)) + 1))
10033 rtl = gen_rtx_CONST_STRING (VOIDmode,
10034 ggc_strdup (TREE_STRING_POINTER (init)));
10035 }
10036 /* Other aggregates, and complex values, could be represented using
10037 CONCAT: FIXME! */
10038 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10039 ;
10040 /* Vectors only work if their mode is supported by the target.
10041 FIXME: generic vectors ought to work too. */
10042 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10043 ;
10044 /* If the initializer is something that we know will expand into an
10045 immediate RTL constant, expand it now. We must be careful not to
10046 reference variables which won't be output. */
10047 else if (initializer_constant_valid_p (init, type)
10048 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10049 {
10050 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10051
10052 /* If expand_expr returns a MEM, it wasn't immediate. */
10053 gcc_assert (!rtl || !MEM_P (rtl));
10054 }
10055
10056 return rtl;
10057 }
10058
10059 /* Generate RTL for the variable DECL to represent its location. */
10060
10061 static rtx
10062 rtl_for_decl_location (tree decl)
10063 {
10064 rtx rtl;
10065
10066 /* Here we have to decide where we are going to say the parameter "lives"
10067 (as far as the debugger is concerned). We only have a couple of
10068 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10069
10070 DECL_RTL normally indicates where the parameter lives during most of the
10071 activation of the function. If optimization is enabled however, this
10072 could be either NULL or else a pseudo-reg. Both of those cases indicate
10073 that the parameter doesn't really live anywhere (as far as the code
10074 generation parts of GCC are concerned) during most of the function's
10075 activation. That will happen (for example) if the parameter is never
10076 referenced within the function.
10077
10078 We could just generate a location descriptor here for all non-NULL
10079 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10080 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10081 where DECL_RTL is NULL or is a pseudo-reg.
10082
10083 Note however that we can only get away with using DECL_INCOMING_RTL as
10084 a backup substitute for DECL_RTL in certain limited cases. In cases
10085 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10086 we can be sure that the parameter was passed using the same type as it is
10087 declared to have within the function, and that its DECL_INCOMING_RTL
10088 points us to a place where a value of that type is passed.
10089
10090 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10091 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10092 because in these cases DECL_INCOMING_RTL points us to a value of some
10093 type which is *different* from the type of the parameter itself. Thus,
10094 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10095 such cases, the debugger would end up (for example) trying to fetch a
10096 `float' from a place which actually contains the first part of a
10097 `double'. That would lead to really incorrect and confusing
10098 output at debug-time.
10099
10100 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10101 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10102 are a couple of exceptions however. On little-endian machines we can
10103 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10104 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10105 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10106 when (on a little-endian machine) a non-prototyped function has a
10107 parameter declared to be of type `short' or `char'. In such cases,
10108 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10109 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10110 passed `int' value. If the debugger then uses that address to fetch
10111 a `short' or a `char' (on a little-endian machine) the result will be
10112 the correct data, so we allow for such exceptional cases below.
10113
10114 Note that our goal here is to describe the place where the given formal
10115 parameter lives during most of the function's activation (i.e. between the
10116 end of the prologue and the start of the epilogue). We'll do that as best
10117 as we can. Note however that if the given formal parameter is modified
10118 sometime during the execution of the function, then a stack backtrace (at
10119 debug-time) will show the function as having been called with the *new*
10120 value rather than the value which was originally passed in. This happens
10121 rarely enough that it is not a major problem, but it *is* a problem, and
10122 I'd like to fix it.
10123
10124 A future version of dwarf2out.c may generate two additional attributes for
10125 any given DW_TAG_formal_parameter DIE which will describe the "passed
10126 type" and the "passed location" for the given formal parameter in addition
10127 to the attributes we now generate to indicate the "declared type" and the
10128 "active location" for each parameter. This additional set of attributes
10129 could be used by debuggers for stack backtraces. Separately, note that
10130 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10131 This happens (for example) for inlined-instances of inline function formal
10132 parameters which are never referenced. This really shouldn't be
10133 happening. All PARM_DECL nodes should get valid non-NULL
10134 DECL_INCOMING_RTL values. FIXME. */
10135
10136 /* Use DECL_RTL as the "location" unless we find something better. */
10137 rtl = DECL_RTL_IF_SET (decl);
10138
10139 /* When generating abstract instances, ignore everything except
10140 constants, symbols living in memory, and symbols living in
10141 fixed registers. */
10142 if (! reload_completed)
10143 {
10144 if (rtl
10145 && (CONSTANT_P (rtl)
10146 || (MEM_P (rtl)
10147 && CONSTANT_P (XEXP (rtl, 0)))
10148 || (REG_P (rtl)
10149 && TREE_CODE (decl) == VAR_DECL
10150 && TREE_STATIC (decl))))
10151 {
10152 rtl = targetm.delegitimize_address (rtl);
10153 return rtl;
10154 }
10155 rtl = NULL_RTX;
10156 }
10157 else if (TREE_CODE (decl) == PARM_DECL)
10158 {
10159 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10160 {
10161 tree declared_type = TREE_TYPE (decl);
10162 tree passed_type = DECL_ARG_TYPE (decl);
10163 enum machine_mode dmode = TYPE_MODE (declared_type);
10164 enum machine_mode pmode = TYPE_MODE (passed_type);
10165
10166 /* This decl represents a formal parameter which was optimized out.
10167 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10168 all cases where (rtl == NULL_RTX) just below. */
10169 if (dmode == pmode)
10170 rtl = DECL_INCOMING_RTL (decl);
10171 else if (SCALAR_INT_MODE_P (dmode)
10172 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10173 && DECL_INCOMING_RTL (decl))
10174 {
10175 rtx inc = DECL_INCOMING_RTL (decl);
10176 if (REG_P (inc))
10177 rtl = inc;
10178 else if (MEM_P (inc))
10179 {
10180 if (BYTES_BIG_ENDIAN)
10181 rtl = adjust_address_nv (inc, dmode,
10182 GET_MODE_SIZE (pmode)
10183 - GET_MODE_SIZE (dmode));
10184 else
10185 rtl = inc;
10186 }
10187 }
10188 }
10189
10190 /* If the parm was passed in registers, but lives on the stack, then
10191 make a big endian correction if the mode of the type of the
10192 parameter is not the same as the mode of the rtl. */
10193 /* ??? This is the same series of checks that are made in dbxout.c before
10194 we reach the big endian correction code there. It isn't clear if all
10195 of these checks are necessary here, but keeping them all is the safe
10196 thing to do. */
10197 else if (MEM_P (rtl)
10198 && XEXP (rtl, 0) != const0_rtx
10199 && ! CONSTANT_P (XEXP (rtl, 0))
10200 /* Not passed in memory. */
10201 && !MEM_P (DECL_INCOMING_RTL (decl))
10202 /* Not passed by invisible reference. */
10203 && (!REG_P (XEXP (rtl, 0))
10204 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10205 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10206 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10207 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10208 #endif
10209 )
10210 /* Big endian correction check. */
10211 && BYTES_BIG_ENDIAN
10212 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10213 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10214 < UNITS_PER_WORD))
10215 {
10216 int offset = (UNITS_PER_WORD
10217 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10218
10219 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10220 plus_constant (XEXP (rtl, 0), offset));
10221 }
10222 }
10223 else if (TREE_CODE (decl) == VAR_DECL
10224 && rtl
10225 && MEM_P (rtl)
10226 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10227 && BYTES_BIG_ENDIAN)
10228 {
10229 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10230 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10231
10232 /* If a variable is declared "register" yet is smaller than
10233 a register, then if we store the variable to memory, it
10234 looks like we're storing a register-sized value, when in
10235 fact we are not. We need to adjust the offset of the
10236 storage location to reflect the actual value's bytes,
10237 else gdb will not be able to display it. */
10238 if (rsize > dsize)
10239 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10240 plus_constant (XEXP (rtl, 0), rsize-dsize));
10241 }
10242
10243 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10244 and will have been substituted directly into all expressions that use it.
10245 C does not have such a concept, but C++ and other languages do. */
10246 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10247 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10248
10249 if (rtl)
10250 rtl = targetm.delegitimize_address (rtl);
10251
10252 /* If we don't look past the constant pool, we risk emitting a
10253 reference to a constant pool entry that isn't referenced from
10254 code, and thus is not emitted. */
10255 if (rtl)
10256 rtl = avoid_constant_pool_reference (rtl);
10257
10258 return rtl;
10259 }
10260
10261 /* We need to figure out what section we should use as the base for the
10262 address ranges where a given location is valid.
10263 1. If this particular DECL has a section associated with it, use that.
10264 2. If this function has a section associated with it, use that.
10265 3. Otherwise, use the text section.
10266 XXX: If you split a variable across multiple sections, we won't notice. */
10267
10268 static const char *
10269 secname_for_decl (tree decl)
10270 {
10271 const char *secname;
10272
10273 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10274 {
10275 tree sectree = DECL_SECTION_NAME (decl);
10276 secname = TREE_STRING_POINTER (sectree);
10277 }
10278 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10279 {
10280 tree sectree = DECL_SECTION_NAME (current_function_decl);
10281 secname = TREE_STRING_POINTER (sectree);
10282 }
10283 else if (cfun && in_cold_section_p)
10284 secname = cfun->cold_section_label;
10285 else
10286 secname = text_section_label;
10287
10288 return secname;
10289 }
10290
10291 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10292 data attribute for a variable or a parameter. We generate the
10293 DW_AT_const_value attribute only in those cases where the given variable
10294 or parameter does not have a true "location" either in memory or in a
10295 register. This can happen (for example) when a constant is passed as an
10296 actual argument in a call to an inline function. (It's possible that
10297 these things can crop up in other ways also.) Note that one type of
10298 constant value which can be passed into an inlined function is a constant
10299 pointer. This can happen for example if an actual argument in an inlined
10300 function call evaluates to a compile-time constant address. */
10301
10302 static void
10303 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10304 enum dwarf_attribute attr)
10305 {
10306 rtx rtl;
10307 dw_loc_descr_ref descr;
10308 var_loc_list *loc_list;
10309 struct var_loc_node *node;
10310 if (TREE_CODE (decl) == ERROR_MARK)
10311 return;
10312
10313 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10314 || TREE_CODE (decl) == RESULT_DECL);
10315
10316 /* See if we possibly have multiple locations for this variable. */
10317 loc_list = lookup_decl_loc (decl);
10318
10319 /* If it truly has multiple locations, the first and last node will
10320 differ. */
10321 if (loc_list && loc_list->first != loc_list->last)
10322 {
10323 const char *endname, *secname;
10324 dw_loc_list_ref list;
10325 rtx varloc;
10326
10327 /* Now that we know what section we are using for a base,
10328 actually construct the list of locations.
10329 The first location information is what is passed to the
10330 function that creates the location list, and the remaining
10331 locations just get added on to that list.
10332 Note that we only know the start address for a location
10333 (IE location changes), so to build the range, we use
10334 the range [current location start, next location start].
10335 This means we have to special case the last node, and generate
10336 a range of [last location start, end of function label]. */
10337
10338 node = loc_list->first;
10339 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10340 secname = secname_for_decl (decl);
10341
10342 list = new_loc_list (loc_descriptor (varloc),
10343 node->label, node->next->label, secname, 1);
10344 node = node->next;
10345
10346 for (; node->next; node = node->next)
10347 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10348 {
10349 /* The variable has a location between NODE->LABEL and
10350 NODE->NEXT->LABEL. */
10351 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10352 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10353 node->label, node->next->label, secname);
10354 }
10355
10356 /* If the variable has a location at the last label
10357 it keeps its location until the end of function. */
10358 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10359 {
10360 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10361
10362 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10363 if (!current_function_decl)
10364 endname = text_end_label;
10365 else
10366 {
10367 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10368 current_function_funcdef_no);
10369 endname = ggc_strdup (label_id);
10370 }
10371 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10372 node->label, endname, secname);
10373 }
10374
10375 /* Finally, add the location list to the DIE, and we are done. */
10376 add_AT_loc_list (die, attr, list);
10377 return;
10378 }
10379
10380 /* Try to get some constant RTL for this decl, and use that as the value of
10381 the location. */
10382
10383 rtl = rtl_for_decl_location (decl);
10384 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10385 {
10386 add_const_value_attribute (die, rtl);
10387 return;
10388 }
10389
10390 /* If we have tried to generate the location otherwise, and it
10391 didn't work out (we wouldn't be here if we did), and we have a one entry
10392 location list, try generating a location from that. */
10393 if (loc_list && loc_list->first)
10394 {
10395 node = loc_list->first;
10396 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10397 if (descr)
10398 {
10399 add_AT_location_description (die, attr, descr);
10400 return;
10401 }
10402 }
10403
10404 /* We couldn't get any rtl, so try directly generating the location
10405 description from the tree. */
10406 descr = loc_descriptor_from_tree (decl);
10407 if (descr)
10408 {
10409 add_AT_location_description (die, attr, descr);
10410 return;
10411 }
10412 /* None of that worked, so it must not really have a location;
10413 try adding a constant value attribute from the DECL_INITIAL. */
10414 tree_add_const_value_attribute (die, decl);
10415 }
10416
10417 /* If we don't have a copy of this variable in memory for some reason (such
10418 as a C++ member constant that doesn't have an out-of-line definition),
10419 we should tell the debugger about the constant value. */
10420
10421 static void
10422 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10423 {
10424 tree init = DECL_INITIAL (decl);
10425 tree type = TREE_TYPE (decl);
10426 rtx rtl;
10427
10428 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10429 /* OK */;
10430 else
10431 return;
10432
10433 rtl = rtl_for_decl_init (init, type);
10434 if (rtl)
10435 add_const_value_attribute (var_die, rtl);
10436 }
10437
10438 /* Convert the CFI instructions for the current function into a
10439 location list. This is used for DW_AT_frame_base when we targeting
10440 a dwarf2 consumer that does not support the dwarf3
10441 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10442 expressions. */
10443
10444 static dw_loc_list_ref
10445 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10446 {
10447 dw_fde_ref fde;
10448 dw_loc_list_ref list, *list_tail;
10449 dw_cfi_ref cfi;
10450 dw_cfa_location last_cfa, next_cfa;
10451 const char *start_label, *last_label, *section;
10452
10453 fde = &fde_table[fde_table_in_use - 1];
10454
10455 section = secname_for_decl (current_function_decl);
10456 list_tail = &list;
10457 list = NULL;
10458
10459 next_cfa.reg = INVALID_REGNUM;
10460 next_cfa.offset = 0;
10461 next_cfa.indirect = 0;
10462 next_cfa.base_offset = 0;
10463
10464 start_label = fde->dw_fde_begin;
10465
10466 /* ??? Bald assumption that the CIE opcode list does not contain
10467 advance opcodes. */
10468 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10469 lookup_cfa_1 (cfi, &next_cfa);
10470
10471 last_cfa = next_cfa;
10472 last_label = start_label;
10473
10474 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10475 switch (cfi->dw_cfi_opc)
10476 {
10477 case DW_CFA_set_loc:
10478 case DW_CFA_advance_loc1:
10479 case DW_CFA_advance_loc2:
10480 case DW_CFA_advance_loc4:
10481 if (!cfa_equal_p (&last_cfa, &next_cfa))
10482 {
10483 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10484 start_label, last_label, section,
10485 list == NULL);
10486
10487 list_tail = &(*list_tail)->dw_loc_next;
10488 last_cfa = next_cfa;
10489 start_label = last_label;
10490 }
10491 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10492 break;
10493
10494 case DW_CFA_advance_loc:
10495 /* The encoding is complex enough that we should never emit this. */
10496 case DW_CFA_remember_state:
10497 case DW_CFA_restore_state:
10498 /* We don't handle these two in this function. It would be possible
10499 if it were to be required. */
10500 gcc_unreachable ();
10501
10502 default:
10503 lookup_cfa_1 (cfi, &next_cfa);
10504 break;
10505 }
10506
10507 if (!cfa_equal_p (&last_cfa, &next_cfa))
10508 {
10509 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10510 start_label, last_label, section,
10511 list == NULL);
10512 list_tail = &(*list_tail)->dw_loc_next;
10513 start_label = last_label;
10514 }
10515 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10516 start_label, fde->dw_fde_end, section,
10517 list == NULL);
10518
10519 return list;
10520 }
10521
10522 /* Compute a displacement from the "steady-state frame pointer" to the
10523 frame base (often the same as the CFA), and store it in
10524 frame_pointer_fb_offset. OFFSET is added to the displacement
10525 before the latter is negated. */
10526
10527 static void
10528 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10529 {
10530 rtx reg, elim;
10531
10532 #ifdef FRAME_POINTER_CFA_OFFSET
10533 reg = frame_pointer_rtx;
10534 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10535 #else
10536 reg = arg_pointer_rtx;
10537 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10538 #endif
10539
10540 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10541 if (GET_CODE (elim) == PLUS)
10542 {
10543 offset += INTVAL (XEXP (elim, 1));
10544 elim = XEXP (elim, 0);
10545 }
10546 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10547 : stack_pointer_rtx));
10548
10549 frame_pointer_fb_offset = -offset;
10550 }
10551
10552 /* Generate a DW_AT_name attribute given some string value to be included as
10553 the value of the attribute. */
10554
10555 static void
10556 add_name_attribute (dw_die_ref die, const char *name_string)
10557 {
10558 if (name_string != NULL && *name_string != 0)
10559 {
10560 if (demangle_name_func)
10561 name_string = (*demangle_name_func) (name_string);
10562
10563 add_AT_string (die, DW_AT_name, name_string);
10564 }
10565 }
10566
10567 /* Generate a DW_AT_comp_dir attribute for DIE. */
10568
10569 static void
10570 add_comp_dir_attribute (dw_die_ref die)
10571 {
10572 const char *wd = get_src_pwd ();
10573 if (wd != NULL)
10574 add_AT_string (die, DW_AT_comp_dir, wd);
10575 }
10576
10577 /* Given a tree node describing an array bound (either lower or upper) output
10578 a representation for that bound. */
10579
10580 static void
10581 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10582 {
10583 switch (TREE_CODE (bound))
10584 {
10585 case ERROR_MARK:
10586 return;
10587
10588 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10589 case INTEGER_CST:
10590 if (! host_integerp (bound, 0)
10591 || (bound_attr == DW_AT_lower_bound
10592 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10593 || (is_fortran () && integer_onep (bound)))))
10594 /* Use the default. */
10595 ;
10596 else
10597 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10598 break;
10599
10600 case CONVERT_EXPR:
10601 case NOP_EXPR:
10602 case NON_LVALUE_EXPR:
10603 case VIEW_CONVERT_EXPR:
10604 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10605 break;
10606
10607 case SAVE_EXPR:
10608 break;
10609
10610 case VAR_DECL:
10611 case PARM_DECL:
10612 case RESULT_DECL:
10613 {
10614 dw_die_ref decl_die = lookup_decl_die (bound);
10615
10616 /* ??? Can this happen, or should the variable have been bound
10617 first? Probably it can, since I imagine that we try to create
10618 the types of parameters in the order in which they exist in
10619 the list, and won't have created a forward reference to a
10620 later parameter. */
10621 if (decl_die != NULL)
10622 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10623 break;
10624 }
10625
10626 default:
10627 {
10628 /* Otherwise try to create a stack operation procedure to
10629 evaluate the value of the array bound. */
10630
10631 dw_die_ref ctx, decl_die;
10632 dw_loc_descr_ref loc;
10633
10634 loc = loc_descriptor_from_tree (bound);
10635 if (loc == NULL)
10636 break;
10637
10638 if (current_function_decl == 0)
10639 ctx = comp_unit_die;
10640 else
10641 ctx = lookup_decl_die (current_function_decl);
10642
10643 decl_die = new_die (DW_TAG_variable, ctx, bound);
10644 add_AT_flag (decl_die, DW_AT_artificial, 1);
10645 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10646 add_AT_loc (decl_die, DW_AT_location, loc);
10647
10648 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10649 break;
10650 }
10651 }
10652 }
10653
10654 /* Note that the block of subscript information for an array type also
10655 includes information about the element type of type given array type. */
10656
10657 static void
10658 add_subscript_info (dw_die_ref type_die, tree type)
10659 {
10660 #ifndef MIPS_DEBUGGING_INFO
10661 unsigned dimension_number;
10662 #endif
10663 tree lower, upper;
10664 dw_die_ref subrange_die;
10665
10666 /* The GNU compilers represent multidimensional array types as sequences of
10667 one dimensional array types whose element types are themselves array
10668 types. Here we squish that down, so that each multidimensional array
10669 type gets only one array_type DIE in the Dwarf debugging info. The draft
10670 Dwarf specification say that we are allowed to do this kind of
10671 compression in C (because there is no difference between an array or
10672 arrays and a multidimensional array in C) but for other source languages
10673 (e.g. Ada) we probably shouldn't do this. */
10674
10675 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10676 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10677 We work around this by disabling this feature. See also
10678 gen_array_type_die. */
10679 #ifndef MIPS_DEBUGGING_INFO
10680 for (dimension_number = 0;
10681 TREE_CODE (type) == ARRAY_TYPE;
10682 type = TREE_TYPE (type), dimension_number++)
10683 #endif
10684 {
10685 tree domain = TYPE_DOMAIN (type);
10686
10687 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10688 and (in GNU C only) variable bounds. Handle all three forms
10689 here. */
10690 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10691 if (domain)
10692 {
10693 /* We have an array type with specified bounds. */
10694 lower = TYPE_MIN_VALUE (domain);
10695 upper = TYPE_MAX_VALUE (domain);
10696
10697 /* Define the index type. */
10698 if (TREE_TYPE (domain))
10699 {
10700 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10701 TREE_TYPE field. We can't emit debug info for this
10702 because it is an unnamed integral type. */
10703 if (TREE_CODE (domain) == INTEGER_TYPE
10704 && TYPE_NAME (domain) == NULL_TREE
10705 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10706 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10707 ;
10708 else
10709 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10710 type_die);
10711 }
10712
10713 /* ??? If upper is NULL, the array has unspecified length,
10714 but it does have a lower bound. This happens with Fortran
10715 dimension arr(N:*)
10716 Since the debugger is definitely going to need to know N
10717 to produce useful results, go ahead and output the lower
10718 bound solo, and hope the debugger can cope. */
10719
10720 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10721 if (upper)
10722 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10723 }
10724
10725 /* Otherwise we have an array type with an unspecified length. The
10726 DWARF-2 spec does not say how to handle this; let's just leave out the
10727 bounds. */
10728 }
10729 }
10730
10731 static void
10732 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10733 {
10734 unsigned size;
10735
10736 switch (TREE_CODE (tree_node))
10737 {
10738 case ERROR_MARK:
10739 size = 0;
10740 break;
10741 case ENUMERAL_TYPE:
10742 case RECORD_TYPE:
10743 case UNION_TYPE:
10744 case QUAL_UNION_TYPE:
10745 size = int_size_in_bytes (tree_node);
10746 break;
10747 case FIELD_DECL:
10748 /* For a data member of a struct or union, the DW_AT_byte_size is
10749 generally given as the number of bytes normally allocated for an
10750 object of the *declared* type of the member itself. This is true
10751 even for bit-fields. */
10752 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10753 break;
10754 default:
10755 gcc_unreachable ();
10756 }
10757
10758 /* Note that `size' might be -1 when we get to this point. If it is, that
10759 indicates that the byte size of the entity in question is variable. We
10760 have no good way of expressing this fact in Dwarf at the present time,
10761 so just let the -1 pass on through. */
10762 add_AT_unsigned (die, DW_AT_byte_size, size);
10763 }
10764
10765 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10766 which specifies the distance in bits from the highest order bit of the
10767 "containing object" for the bit-field to the highest order bit of the
10768 bit-field itself.
10769
10770 For any given bit-field, the "containing object" is a hypothetical object
10771 (of some integral or enum type) within which the given bit-field lives. The
10772 type of this hypothetical "containing object" is always the same as the
10773 declared type of the individual bit-field itself. The determination of the
10774 exact location of the "containing object" for a bit-field is rather
10775 complicated. It's handled by the `field_byte_offset' function (above).
10776
10777 Note that it is the size (in bytes) of the hypothetical "containing object"
10778 which will be given in the DW_AT_byte_size attribute for this bit-field.
10779 (See `byte_size_attribute' above). */
10780
10781 static inline void
10782 add_bit_offset_attribute (dw_die_ref die, tree decl)
10783 {
10784 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10785 tree type = DECL_BIT_FIELD_TYPE (decl);
10786 HOST_WIDE_INT bitpos_int;
10787 HOST_WIDE_INT highest_order_object_bit_offset;
10788 HOST_WIDE_INT highest_order_field_bit_offset;
10789 HOST_WIDE_INT unsigned bit_offset;
10790
10791 /* Must be a field and a bit field. */
10792 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10793
10794 /* We can't yet handle bit-fields whose offsets are variable, so if we
10795 encounter such things, just return without generating any attribute
10796 whatsoever. Likewise for variable or too large size. */
10797 if (! host_integerp (bit_position (decl), 0)
10798 || ! host_integerp (DECL_SIZE (decl), 1))
10799 return;
10800
10801 bitpos_int = int_bit_position (decl);
10802
10803 /* Note that the bit offset is always the distance (in bits) from the
10804 highest-order bit of the "containing object" to the highest-order bit of
10805 the bit-field itself. Since the "high-order end" of any object or field
10806 is different on big-endian and little-endian machines, the computation
10807 below must take account of these differences. */
10808 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10809 highest_order_field_bit_offset = bitpos_int;
10810
10811 if (! BYTES_BIG_ENDIAN)
10812 {
10813 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10814 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10815 }
10816
10817 bit_offset
10818 = (! BYTES_BIG_ENDIAN
10819 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10820 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10821
10822 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10823 }
10824
10825 /* For a FIELD_DECL node which represents a bit field, output an attribute
10826 which specifies the length in bits of the given field. */
10827
10828 static inline void
10829 add_bit_size_attribute (dw_die_ref die, tree decl)
10830 {
10831 /* Must be a field and a bit field. */
10832 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10833 && DECL_BIT_FIELD_TYPE (decl));
10834
10835 if (host_integerp (DECL_SIZE (decl), 1))
10836 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10837 }
10838
10839 /* If the compiled language is ANSI C, then add a 'prototyped'
10840 attribute, if arg types are given for the parameters of a function. */
10841
10842 static inline void
10843 add_prototyped_attribute (dw_die_ref die, tree func_type)
10844 {
10845 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10846 && TYPE_ARG_TYPES (func_type) != NULL)
10847 add_AT_flag (die, DW_AT_prototyped, 1);
10848 }
10849
10850 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10851 by looking in either the type declaration or object declaration
10852 equate table. */
10853
10854 static inline void
10855 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10856 {
10857 dw_die_ref origin_die = NULL;
10858
10859 if (TREE_CODE (origin) != FUNCTION_DECL)
10860 {
10861 /* We may have gotten separated from the block for the inlined
10862 function, if we're in an exception handler or some such; make
10863 sure that the abstract function has been written out.
10864
10865 Doing this for nested functions is wrong, however; functions are
10866 distinct units, and our context might not even be inline. */
10867 tree fn = origin;
10868
10869 if (TYPE_P (fn))
10870 fn = TYPE_STUB_DECL (fn);
10871
10872 fn = decl_function_context (fn);
10873 if (fn)
10874 dwarf2out_abstract_function (fn);
10875 }
10876
10877 if (DECL_P (origin))
10878 origin_die = lookup_decl_die (origin);
10879 else if (TYPE_P (origin))
10880 origin_die = lookup_type_die (origin);
10881
10882 /* XXX: Functions that are never lowered don't always have correct block
10883 trees (in the case of java, they simply have no block tree, in some other
10884 languages). For these functions, there is nothing we can really do to
10885 output correct debug info for inlined functions in all cases. Rather
10886 than die, we'll just produce deficient debug info now, in that we will
10887 have variables without a proper abstract origin. In the future, when all
10888 functions are lowered, we should re-add a gcc_assert (origin_die)
10889 here. */
10890
10891 if (origin_die)
10892 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10893 }
10894
10895 /* We do not currently support the pure_virtual attribute. */
10896
10897 static inline void
10898 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10899 {
10900 if (DECL_VINDEX (func_decl))
10901 {
10902 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10903
10904 if (host_integerp (DECL_VINDEX (func_decl), 0))
10905 add_AT_loc (die, DW_AT_vtable_elem_location,
10906 new_loc_descr (DW_OP_constu,
10907 tree_low_cst (DECL_VINDEX (func_decl), 0),
10908 0));
10909
10910 /* GNU extension: Record what type this method came from originally. */
10911 if (debug_info_level > DINFO_LEVEL_TERSE)
10912 add_AT_die_ref (die, DW_AT_containing_type,
10913 lookup_type_die (DECL_CONTEXT (func_decl)));
10914 }
10915 }
10916 \f
10917 /* Add source coordinate attributes for the given decl. */
10918
10919 static void
10920 add_src_coords_attributes (dw_die_ref die, tree decl)
10921 {
10922 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10923
10924 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
10925 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10926 }
10927
10928 /* Add a DW_AT_name attribute and source coordinate attribute for the
10929 given decl, but only if it actually has a name. */
10930
10931 static void
10932 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10933 {
10934 tree decl_name;
10935
10936 decl_name = DECL_NAME (decl);
10937 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10938 {
10939 add_name_attribute (die, dwarf2_name (decl, 0));
10940 if (! DECL_ARTIFICIAL (decl))
10941 add_src_coords_attributes (die, decl);
10942
10943 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10944 && TREE_PUBLIC (decl)
10945 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10946 && !DECL_ABSTRACT (decl)
10947 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10948 add_AT_string (die, DW_AT_MIPS_linkage_name,
10949 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10950 }
10951
10952 #ifdef VMS_DEBUGGING_INFO
10953 /* Get the function's name, as described by its RTL. This may be different
10954 from the DECL_NAME name used in the source file. */
10955 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10956 {
10957 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10958 XEXP (DECL_RTL (decl), 0));
10959 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10960 }
10961 #endif
10962 }
10963
10964 /* Push a new declaration scope. */
10965
10966 static void
10967 push_decl_scope (tree scope)
10968 {
10969 VEC_safe_push (tree, gc, decl_scope_table, scope);
10970 }
10971
10972 /* Pop a declaration scope. */
10973
10974 static inline void
10975 pop_decl_scope (void)
10976 {
10977 VEC_pop (tree, decl_scope_table);
10978 }
10979
10980 /* Return the DIE for the scope that immediately contains this type.
10981 Non-named types get global scope. Named types nested in other
10982 types get their containing scope if it's open, or global scope
10983 otherwise. All other types (i.e. function-local named types) get
10984 the current active scope. */
10985
10986 static dw_die_ref
10987 scope_die_for (tree t, dw_die_ref context_die)
10988 {
10989 dw_die_ref scope_die = NULL;
10990 tree containing_scope;
10991 int i;
10992
10993 /* Non-types always go in the current scope. */
10994 gcc_assert (TYPE_P (t));
10995
10996 containing_scope = TYPE_CONTEXT (t);
10997
10998 /* Use the containing namespace if it was passed in (for a declaration). */
10999 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11000 {
11001 if (context_die == lookup_decl_die (containing_scope))
11002 /* OK */;
11003 else
11004 containing_scope = NULL_TREE;
11005 }
11006
11007 /* Ignore function type "scopes" from the C frontend. They mean that
11008 a tagged type is local to a parmlist of a function declarator, but
11009 that isn't useful to DWARF. */
11010 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11011 containing_scope = NULL_TREE;
11012
11013 if (containing_scope == NULL_TREE)
11014 scope_die = comp_unit_die;
11015 else if (TYPE_P (containing_scope))
11016 {
11017 /* For types, we can just look up the appropriate DIE. But
11018 first we check to see if we're in the middle of emitting it
11019 so we know where the new DIE should go. */
11020 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11021 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11022 break;
11023
11024 if (i < 0)
11025 {
11026 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11027 || TREE_ASM_WRITTEN (containing_scope));
11028
11029 /* If none of the current dies are suitable, we get file scope. */
11030 scope_die = comp_unit_die;
11031 }
11032 else
11033 scope_die = lookup_type_die (containing_scope);
11034 }
11035 else
11036 scope_die = context_die;
11037
11038 return scope_die;
11039 }
11040
11041 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11042
11043 static inline int
11044 local_scope_p (dw_die_ref context_die)
11045 {
11046 for (; context_die; context_die = context_die->die_parent)
11047 if (context_die->die_tag == DW_TAG_inlined_subroutine
11048 || context_die->die_tag == DW_TAG_subprogram)
11049 return 1;
11050
11051 return 0;
11052 }
11053
11054 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11055 whether or not to treat a DIE in this context as a declaration. */
11056
11057 static inline int
11058 class_or_namespace_scope_p (dw_die_ref context_die)
11059 {
11060 return (context_die
11061 && (context_die->die_tag == DW_TAG_structure_type
11062 || context_die->die_tag == DW_TAG_union_type
11063 || context_die->die_tag == DW_TAG_namespace));
11064 }
11065
11066 /* Many forms of DIEs require a "type description" attribute. This
11067 routine locates the proper "type descriptor" die for the type given
11068 by 'type', and adds a DW_AT_type attribute below the given die. */
11069
11070 static void
11071 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11072 int decl_volatile, dw_die_ref context_die)
11073 {
11074 enum tree_code code = TREE_CODE (type);
11075 dw_die_ref type_die = NULL;
11076
11077 /* ??? If this type is an unnamed subrange type of an integral or
11078 floating-point type, use the inner type. This is because we have no
11079 support for unnamed types in base_type_die. This can happen if this is
11080 an Ada subrange type. Correct solution is emit a subrange type die. */
11081 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11082 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11083 type = TREE_TYPE (type), code = TREE_CODE (type);
11084
11085 if (code == ERROR_MARK
11086 /* Handle a special case. For functions whose return type is void, we
11087 generate *no* type attribute. (Note that no object may have type
11088 `void', so this only applies to function return types). */
11089 || code == VOID_TYPE)
11090 return;
11091
11092 type_die = modified_type_die (type,
11093 decl_const || TYPE_READONLY (type),
11094 decl_volatile || TYPE_VOLATILE (type),
11095 context_die);
11096
11097 if (type_die != NULL)
11098 add_AT_die_ref (object_die, DW_AT_type, type_die);
11099 }
11100
11101 /* Given an object die, add the calling convention attribute for the
11102 function call type. */
11103 static void
11104 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11105 {
11106 enum dwarf_calling_convention value = DW_CC_normal;
11107
11108 value = targetm.dwarf_calling_convention (type);
11109
11110 /* Only add the attribute if the backend requests it, and
11111 is not DW_CC_normal. */
11112 if (value && (value != DW_CC_normal))
11113 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11114 }
11115
11116 /* Given a tree pointer to a struct, class, union, or enum type node, return
11117 a pointer to the (string) tag name for the given type, or zero if the type
11118 was declared without a tag. */
11119
11120 static const char *
11121 type_tag (tree type)
11122 {
11123 const char *name = 0;
11124
11125 if (TYPE_NAME (type) != 0)
11126 {
11127 tree t = 0;
11128
11129 /* Find the IDENTIFIER_NODE for the type name. */
11130 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11131 t = TYPE_NAME (type);
11132
11133 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11134 a TYPE_DECL node, regardless of whether or not a `typedef' was
11135 involved. */
11136 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11137 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11138 t = DECL_NAME (TYPE_NAME (type));
11139
11140 /* Now get the name as a string, or invent one. */
11141 if (t != 0)
11142 name = IDENTIFIER_POINTER (t);
11143 }
11144
11145 return (name == 0 || *name == '\0') ? 0 : name;
11146 }
11147
11148 /* Return the type associated with a data member, make a special check
11149 for bit field types. */
11150
11151 static inline tree
11152 member_declared_type (tree member)
11153 {
11154 return (DECL_BIT_FIELD_TYPE (member)
11155 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11156 }
11157
11158 /* Get the decl's label, as described by its RTL. This may be different
11159 from the DECL_NAME name used in the source file. */
11160
11161 #if 0
11162 static const char *
11163 decl_start_label (tree decl)
11164 {
11165 rtx x;
11166 const char *fnname;
11167
11168 x = DECL_RTL (decl);
11169 gcc_assert (MEM_P (x));
11170
11171 x = XEXP (x, 0);
11172 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11173
11174 fnname = XSTR (x, 0);
11175 return fnname;
11176 }
11177 #endif
11178 \f
11179 /* These routines generate the internal representation of the DIE's for
11180 the compilation unit. Debugging information is collected by walking
11181 the declaration trees passed in from dwarf2out_decl(). */
11182
11183 static void
11184 gen_array_type_die (tree type, dw_die_ref context_die)
11185 {
11186 dw_die_ref scope_die = scope_die_for (type, context_die);
11187 dw_die_ref array_die;
11188 tree element_type;
11189
11190 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11191 the inner array type comes before the outer array type. Thus we must
11192 call gen_type_die before we call new_die. See below also. */
11193 #ifdef MIPS_DEBUGGING_INFO
11194 gen_type_die (TREE_TYPE (type), context_die);
11195 #endif
11196
11197 array_die = new_die (DW_TAG_array_type, scope_die, type);
11198 add_name_attribute (array_die, type_tag (type));
11199 equate_type_number_to_die (type, array_die);
11200
11201 if (TREE_CODE (type) == VECTOR_TYPE)
11202 {
11203 /* The frontend feeds us a representation for the vector as a struct
11204 containing an array. Pull out the array type. */
11205 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11206 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11207 }
11208
11209 #if 0
11210 /* We default the array ordering. SDB will probably do
11211 the right things even if DW_AT_ordering is not present. It's not even
11212 an issue until we start to get into multidimensional arrays anyway. If
11213 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11214 then we'll have to put the DW_AT_ordering attribute back in. (But if
11215 and when we find out that we need to put these in, we will only do so
11216 for multidimensional arrays. */
11217 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11218 #endif
11219
11220 #ifdef MIPS_DEBUGGING_INFO
11221 /* The SGI compilers handle arrays of unknown bound by setting
11222 AT_declaration and not emitting any subrange DIEs. */
11223 if (! TYPE_DOMAIN (type))
11224 add_AT_flag (array_die, DW_AT_declaration, 1);
11225 else
11226 #endif
11227 add_subscript_info (array_die, type);
11228
11229 /* Add representation of the type of the elements of this array type. */
11230 element_type = TREE_TYPE (type);
11231
11232 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11233 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11234 We work around this by disabling this feature. See also
11235 add_subscript_info. */
11236 #ifndef MIPS_DEBUGGING_INFO
11237 while (TREE_CODE (element_type) == ARRAY_TYPE)
11238 element_type = TREE_TYPE (element_type);
11239
11240 gen_type_die (element_type, context_die);
11241 #endif
11242
11243 add_type_attribute (array_die, element_type, 0, 0, context_die);
11244 }
11245
11246 #if 0
11247 static void
11248 gen_entry_point_die (tree decl, dw_die_ref context_die)
11249 {
11250 tree origin = decl_ultimate_origin (decl);
11251 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11252
11253 if (origin != NULL)
11254 add_abstract_origin_attribute (decl_die, origin);
11255 else
11256 {
11257 add_name_and_src_coords_attributes (decl_die, decl);
11258 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11259 0, 0, context_die);
11260 }
11261
11262 if (DECL_ABSTRACT (decl))
11263 equate_decl_number_to_die (decl, decl_die);
11264 else
11265 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11266 }
11267 #endif
11268
11269 /* Walk through the list of incomplete types again, trying once more to
11270 emit full debugging info for them. */
11271
11272 static void
11273 retry_incomplete_types (void)
11274 {
11275 int i;
11276
11277 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11278 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11279 }
11280
11281 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11282
11283 static void
11284 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11285 {
11286 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11287
11288 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11289 be incomplete and such types are not marked. */
11290 add_abstract_origin_attribute (type_die, type);
11291 }
11292
11293 /* Generate a DIE to represent an inlined instance of a structure type. */
11294
11295 static void
11296 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11297 {
11298 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11299
11300 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11301 be incomplete and such types are not marked. */
11302 add_abstract_origin_attribute (type_die, type);
11303 }
11304
11305 /* Generate a DIE to represent an inlined instance of a union type. */
11306
11307 static void
11308 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11309 {
11310 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11311
11312 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11313 be incomplete and such types are not marked. */
11314 add_abstract_origin_attribute (type_die, type);
11315 }
11316
11317 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11318 include all of the information about the enumeration values also. Each
11319 enumerated type name/value is listed as a child of the enumerated type
11320 DIE. */
11321
11322 static dw_die_ref
11323 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11324 {
11325 dw_die_ref type_die = lookup_type_die (type);
11326
11327 if (type_die == NULL)
11328 {
11329 type_die = new_die (DW_TAG_enumeration_type,
11330 scope_die_for (type, context_die), type);
11331 equate_type_number_to_die (type, type_die);
11332 add_name_attribute (type_die, type_tag (type));
11333 }
11334 else if (! TYPE_SIZE (type))
11335 return type_die;
11336 else
11337 remove_AT (type_die, DW_AT_declaration);
11338
11339 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11340 given enum type is incomplete, do not generate the DW_AT_byte_size
11341 attribute or the DW_AT_element_list attribute. */
11342 if (TYPE_SIZE (type))
11343 {
11344 tree link;
11345
11346 TREE_ASM_WRITTEN (type) = 1;
11347 add_byte_size_attribute (type_die, type);
11348 if (TYPE_STUB_DECL (type) != NULL_TREE)
11349 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11350
11351 /* If the first reference to this type was as the return type of an
11352 inline function, then it may not have a parent. Fix this now. */
11353 if (type_die->die_parent == NULL)
11354 add_child_die (scope_die_for (type, context_die), type_die);
11355
11356 for (link = TYPE_VALUES (type);
11357 link != NULL; link = TREE_CHAIN (link))
11358 {
11359 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11360 tree value = TREE_VALUE (link);
11361
11362 add_name_attribute (enum_die,
11363 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11364
11365 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11366 /* DWARF2 does not provide a way of indicating whether or
11367 not enumeration constants are signed or unsigned. GDB
11368 always assumes the values are signed, so we output all
11369 values as if they were signed. That means that
11370 enumeration constants with very large unsigned values
11371 will appear to have negative values in the debugger. */
11372 add_AT_int (enum_die, DW_AT_const_value,
11373 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11374 }
11375 }
11376 else
11377 add_AT_flag (type_die, DW_AT_declaration, 1);
11378
11379 return type_die;
11380 }
11381
11382 /* Generate a DIE to represent either a real live formal parameter decl or to
11383 represent just the type of some formal parameter position in some function
11384 type.
11385
11386 Note that this routine is a bit unusual because its argument may be a
11387 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11388 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11389 node. If it's the former then this function is being called to output a
11390 DIE to represent a formal parameter object (or some inlining thereof). If
11391 it's the latter, then this function is only being called to output a
11392 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11393 argument type of some subprogram type. */
11394
11395 static dw_die_ref
11396 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11397 {
11398 dw_die_ref parm_die
11399 = new_die (DW_TAG_formal_parameter, context_die, node);
11400 tree origin;
11401
11402 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11403 {
11404 case tcc_declaration:
11405 origin = decl_ultimate_origin (node);
11406 if (origin != NULL)
11407 add_abstract_origin_attribute (parm_die, origin);
11408 else
11409 {
11410 add_name_and_src_coords_attributes (parm_die, node);
11411 add_type_attribute (parm_die, TREE_TYPE (node),
11412 TREE_READONLY (node),
11413 TREE_THIS_VOLATILE (node),
11414 context_die);
11415 if (DECL_ARTIFICIAL (node))
11416 add_AT_flag (parm_die, DW_AT_artificial, 1);
11417 }
11418
11419 equate_decl_number_to_die (node, parm_die);
11420 if (! DECL_ABSTRACT (node))
11421 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11422
11423 break;
11424
11425 case tcc_type:
11426 /* We were called with some kind of a ..._TYPE node. */
11427 add_type_attribute (parm_die, node, 0, 0, context_die);
11428 break;
11429
11430 default:
11431 gcc_unreachable ();
11432 }
11433
11434 return parm_die;
11435 }
11436
11437 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11438 at the end of an (ANSI prototyped) formal parameters list. */
11439
11440 static void
11441 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11442 {
11443 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11444 }
11445
11446 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11447 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11448 parameters as specified in some function type specification (except for
11449 those which appear as part of a function *definition*). */
11450
11451 static void
11452 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11453 {
11454 tree link;
11455 tree formal_type = NULL;
11456 tree first_parm_type;
11457 tree arg;
11458
11459 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11460 {
11461 arg = DECL_ARGUMENTS (function_or_method_type);
11462 function_or_method_type = TREE_TYPE (function_or_method_type);
11463 }
11464 else
11465 arg = NULL_TREE;
11466
11467 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11468
11469 /* Make our first pass over the list of formal parameter types and output a
11470 DW_TAG_formal_parameter DIE for each one. */
11471 for (link = first_parm_type; link; )
11472 {
11473 dw_die_ref parm_die;
11474
11475 formal_type = TREE_VALUE (link);
11476 if (formal_type == void_type_node)
11477 break;
11478
11479 /* Output a (nameless) DIE to represent the formal parameter itself. */
11480 parm_die = gen_formal_parameter_die (formal_type, context_die);
11481 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11482 && link == first_parm_type)
11483 || (arg && DECL_ARTIFICIAL (arg)))
11484 add_AT_flag (parm_die, DW_AT_artificial, 1);
11485
11486 link = TREE_CHAIN (link);
11487 if (arg)
11488 arg = TREE_CHAIN (arg);
11489 }
11490
11491 /* If this function type has an ellipsis, add a
11492 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11493 if (formal_type != void_type_node)
11494 gen_unspecified_parameters_die (function_or_method_type, context_die);
11495
11496 /* Make our second (and final) pass over the list of formal parameter types
11497 and output DIEs to represent those types (as necessary). */
11498 for (link = TYPE_ARG_TYPES (function_or_method_type);
11499 link && TREE_VALUE (link);
11500 link = TREE_CHAIN (link))
11501 gen_type_die (TREE_VALUE (link), context_die);
11502 }
11503
11504 /* We want to generate the DIE for TYPE so that we can generate the
11505 die for MEMBER, which has been defined; we will need to refer back
11506 to the member declaration nested within TYPE. If we're trying to
11507 generate minimal debug info for TYPE, processing TYPE won't do the
11508 trick; we need to attach the member declaration by hand. */
11509
11510 static void
11511 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11512 {
11513 gen_type_die (type, context_die);
11514
11515 /* If we're trying to avoid duplicate debug info, we may not have
11516 emitted the member decl for this function. Emit it now. */
11517 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11518 && ! lookup_decl_die (member))
11519 {
11520 dw_die_ref type_die;
11521 gcc_assert (!decl_ultimate_origin (member));
11522
11523 push_decl_scope (type);
11524 type_die = lookup_type_die (type);
11525 if (TREE_CODE (member) == FUNCTION_DECL)
11526 gen_subprogram_die (member, type_die);
11527 else if (TREE_CODE (member) == FIELD_DECL)
11528 {
11529 /* Ignore the nameless fields that are used to skip bits but handle
11530 C++ anonymous unions and structs. */
11531 if (DECL_NAME (member) != NULL_TREE
11532 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11533 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11534 {
11535 gen_type_die (member_declared_type (member), type_die);
11536 gen_field_die (member, type_die);
11537 }
11538 }
11539 else
11540 gen_variable_die (member, type_die);
11541
11542 pop_decl_scope ();
11543 }
11544 }
11545
11546 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11547 may later generate inlined and/or out-of-line instances of. */
11548
11549 static void
11550 dwarf2out_abstract_function (tree decl)
11551 {
11552 dw_die_ref old_die;
11553 tree save_fn;
11554 struct function *save_cfun;
11555 tree context;
11556 int was_abstract = DECL_ABSTRACT (decl);
11557
11558 /* Make sure we have the actual abstract inline, not a clone. */
11559 decl = DECL_ORIGIN (decl);
11560
11561 old_die = lookup_decl_die (decl);
11562 if (old_die && get_AT (old_die, DW_AT_inline))
11563 /* We've already generated the abstract instance. */
11564 return;
11565
11566 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11567 we don't get confused by DECL_ABSTRACT. */
11568 if (debug_info_level > DINFO_LEVEL_TERSE)
11569 {
11570 context = decl_class_context (decl);
11571 if (context)
11572 gen_type_die_for_member
11573 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11574 }
11575
11576 /* Pretend we've just finished compiling this function. */
11577 save_fn = current_function_decl;
11578 save_cfun = cfun;
11579 current_function_decl = decl;
11580 cfun = DECL_STRUCT_FUNCTION (decl);
11581
11582 set_decl_abstract_flags (decl, 1);
11583 dwarf2out_decl (decl);
11584 if (! was_abstract)
11585 set_decl_abstract_flags (decl, 0);
11586
11587 current_function_decl = save_fn;
11588 cfun = save_cfun;
11589 }
11590
11591 /* Helper function of premark_used_types() which gets called through
11592 htab_traverse_resize().
11593
11594 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11595 marked as unused by prune_unused_types. */
11596 static int
11597 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11598 {
11599 tree type;
11600 dw_die_ref die;
11601
11602 type = *slot;
11603 die = lookup_type_die (type);
11604 if (die != NULL)
11605 die->die_perennial_p = 1;
11606 return 1;
11607 }
11608
11609 /* Mark all members of used_types_hash as perennial. */
11610 static void
11611 premark_used_types (void)
11612 {
11613 if (cfun && cfun->used_types_hash)
11614 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11615 }
11616
11617 /* Generate a DIE to represent a declared function (either file-scope or
11618 block-local). */
11619
11620 static void
11621 gen_subprogram_die (tree decl, dw_die_ref context_die)
11622 {
11623 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11624 tree origin = decl_ultimate_origin (decl);
11625 dw_die_ref subr_die;
11626 tree fn_arg_types;
11627 tree outer_scope;
11628 dw_die_ref old_die = lookup_decl_die (decl);
11629 int declaration = (current_function_decl != decl
11630 || class_or_namespace_scope_p (context_die));
11631
11632 premark_used_types ();
11633
11634 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11635 started to generate the abstract instance of an inline, decided to output
11636 its containing class, and proceeded to emit the declaration of the inline
11637 from the member list for the class. If so, DECLARATION takes priority;
11638 we'll get back to the abstract instance when done with the class. */
11639
11640 /* The class-scope declaration DIE must be the primary DIE. */
11641 if (origin && declaration && class_or_namespace_scope_p (context_die))
11642 {
11643 origin = NULL;
11644 gcc_assert (!old_die);
11645 }
11646
11647 /* Now that the C++ front end lazily declares artificial member fns, we
11648 might need to retrofit the declaration into its class. */
11649 if (!declaration && !origin && !old_die
11650 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11651 && !class_or_namespace_scope_p (context_die)
11652 && debug_info_level > DINFO_LEVEL_TERSE)
11653 old_die = force_decl_die (decl);
11654
11655 if (origin != NULL)
11656 {
11657 gcc_assert (!declaration || local_scope_p (context_die));
11658
11659 /* Fixup die_parent for the abstract instance of a nested
11660 inline function. */
11661 if (old_die && old_die->die_parent == NULL)
11662 add_child_die (context_die, old_die);
11663
11664 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11665 add_abstract_origin_attribute (subr_die, origin);
11666 }
11667 else if (old_die)
11668 {
11669 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11670 struct dwarf_file_data * file_index = lookup_filename (s.file);
11671
11672 if (!get_AT_flag (old_die, DW_AT_declaration)
11673 /* We can have a normal definition following an inline one in the
11674 case of redefinition of GNU C extern inlines.
11675 It seems reasonable to use AT_specification in this case. */
11676 && !get_AT (old_die, DW_AT_inline))
11677 {
11678 /* Detect and ignore this case, where we are trying to output
11679 something we have already output. */
11680 return;
11681 }
11682
11683 /* If the definition comes from the same place as the declaration,
11684 maybe use the old DIE. We always want the DIE for this function
11685 that has the *_pc attributes to be under comp_unit_die so the
11686 debugger can find it. We also need to do this for abstract
11687 instances of inlines, since the spec requires the out-of-line copy
11688 to have the same parent. For local class methods, this doesn't
11689 apply; we just use the old DIE. */
11690 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11691 && (DECL_ARTIFICIAL (decl)
11692 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11693 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11694 == (unsigned) s.line))))
11695 {
11696 subr_die = old_die;
11697
11698 /* Clear out the declaration attribute and the formal parameters.
11699 Do not remove all children, because it is possible that this
11700 declaration die was forced using force_decl_die(). In such
11701 cases die that forced declaration die (e.g. TAG_imported_module)
11702 is one of the children that we do not want to remove. */
11703 remove_AT (subr_die, DW_AT_declaration);
11704 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11705 }
11706 else
11707 {
11708 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11709 add_AT_specification (subr_die, old_die);
11710 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11711 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11712 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11713 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11714 }
11715 }
11716 else
11717 {
11718 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11719
11720 if (TREE_PUBLIC (decl))
11721 add_AT_flag (subr_die, DW_AT_external, 1);
11722
11723 add_name_and_src_coords_attributes (subr_die, decl);
11724 if (debug_info_level > DINFO_LEVEL_TERSE)
11725 {
11726 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11727 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11728 0, 0, context_die);
11729 }
11730
11731 add_pure_or_virtual_attribute (subr_die, decl);
11732 if (DECL_ARTIFICIAL (decl))
11733 add_AT_flag (subr_die, DW_AT_artificial, 1);
11734
11735 if (TREE_PROTECTED (decl))
11736 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11737 else if (TREE_PRIVATE (decl))
11738 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11739 }
11740
11741 if (declaration)
11742 {
11743 if (!old_die || !get_AT (old_die, DW_AT_inline))
11744 {
11745 add_AT_flag (subr_die, DW_AT_declaration, 1);
11746
11747 /* The first time we see a member function, it is in the context of
11748 the class to which it belongs. We make sure of this by emitting
11749 the class first. The next time is the definition, which is
11750 handled above. The two may come from the same source text.
11751
11752 Note that force_decl_die() forces function declaration die. It is
11753 later reused to represent definition. */
11754 equate_decl_number_to_die (decl, subr_die);
11755 }
11756 }
11757 else if (DECL_ABSTRACT (decl))
11758 {
11759 if (DECL_DECLARED_INLINE_P (decl))
11760 {
11761 if (cgraph_function_possibly_inlined_p (decl))
11762 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11763 else
11764 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11765 }
11766 else
11767 {
11768 if (cgraph_function_possibly_inlined_p (decl))
11769 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11770 else
11771 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11772 }
11773
11774 equate_decl_number_to_die (decl, subr_die);
11775 }
11776 else if (!DECL_EXTERNAL (decl))
11777 {
11778 HOST_WIDE_INT cfa_fb_offset;
11779
11780 if (!old_die || !get_AT (old_die, DW_AT_inline))
11781 equate_decl_number_to_die (decl, subr_die);
11782
11783 if (!flag_reorder_blocks_and_partition)
11784 {
11785 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11786 current_function_funcdef_no);
11787 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11788 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11789 current_function_funcdef_no);
11790 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11791
11792 add_pubname (decl, subr_die);
11793 add_arange (decl, subr_die);
11794 }
11795 else
11796 { /* Do nothing for now; maybe need to duplicate die, one for
11797 hot section and ond for cold section, then use the hot/cold
11798 section begin/end labels to generate the aranges... */
11799 /*
11800 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11801 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11802 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11803 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11804
11805 add_pubname (decl, subr_die);
11806 add_arange (decl, subr_die);
11807 add_arange (decl, subr_die);
11808 */
11809 }
11810
11811 #ifdef MIPS_DEBUGGING_INFO
11812 /* Add a reference to the FDE for this routine. */
11813 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11814 #endif
11815
11816 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11817
11818 /* We define the "frame base" as the function's CFA. This is more
11819 convenient for several reasons: (1) It's stable across the prologue
11820 and epilogue, which makes it better than just a frame pointer,
11821 (2) With dwarf3, there exists a one-byte encoding that allows us
11822 to reference the .debug_frame data by proxy, but failing that,
11823 (3) We can at least reuse the code inspection and interpretation
11824 code that determines the CFA position at various points in the
11825 function. */
11826 /* ??? Use some command-line or configury switch to enable the use
11827 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11828 consumers that understand it; fall back to "pure" dwarf2 and
11829 convert the CFA data into a location list. */
11830 {
11831 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11832 if (list->dw_loc_next)
11833 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11834 else
11835 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11836 }
11837
11838 /* Compute a displacement from the "steady-state frame pointer" to
11839 the CFA. The former is what all stack slots and argument slots
11840 will reference in the rtl; the later is what we've told the
11841 debugger about. We'll need to adjust all frame_base references
11842 by this displacement. */
11843 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11844
11845 if (cfun->static_chain_decl)
11846 add_AT_location_description (subr_die, DW_AT_static_link,
11847 loc_descriptor_from_tree (cfun->static_chain_decl));
11848 }
11849
11850 /* Now output descriptions of the arguments for this function. This gets
11851 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11852 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11853 `...' at the end of the formal parameter list. In order to find out if
11854 there was a trailing ellipsis or not, we must instead look at the type
11855 associated with the FUNCTION_DECL. This will be a node of type
11856 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11857 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11858 an ellipsis at the end. */
11859
11860 /* In the case where we are describing a mere function declaration, all we
11861 need to do here (and all we *can* do here) is to describe the *types* of
11862 its formal parameters. */
11863 if (debug_info_level <= DINFO_LEVEL_TERSE)
11864 ;
11865 else if (declaration)
11866 gen_formal_types_die (decl, subr_die);
11867 else
11868 {
11869 /* Generate DIEs to represent all known formal parameters. */
11870 tree arg_decls = DECL_ARGUMENTS (decl);
11871 tree parm;
11872
11873 /* When generating DIEs, generate the unspecified_parameters DIE
11874 instead if we come across the arg "__builtin_va_alist" */
11875 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11876 if (TREE_CODE (parm) == PARM_DECL)
11877 {
11878 if (DECL_NAME (parm)
11879 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11880 "__builtin_va_alist"))
11881 gen_unspecified_parameters_die (parm, subr_die);
11882 else
11883 gen_decl_die (parm, subr_die);
11884 }
11885
11886 /* Decide whether we need an unspecified_parameters DIE at the end.
11887 There are 2 more cases to do this for: 1) the ansi ... declaration -
11888 this is detectable when the end of the arg list is not a
11889 void_type_node 2) an unprototyped function declaration (not a
11890 definition). This just means that we have no info about the
11891 parameters at all. */
11892 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11893 if (fn_arg_types != NULL)
11894 {
11895 /* This is the prototyped case, check for.... */
11896 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11897 gen_unspecified_parameters_die (decl, subr_die);
11898 }
11899 else if (DECL_INITIAL (decl) == NULL_TREE)
11900 gen_unspecified_parameters_die (decl, subr_die);
11901 }
11902
11903 /* Output Dwarf info for all of the stuff within the body of the function
11904 (if it has one - it may be just a declaration). */
11905 outer_scope = DECL_INITIAL (decl);
11906
11907 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11908 a function. This BLOCK actually represents the outermost binding contour
11909 for the function, i.e. the contour in which the function's formal
11910 parameters and labels get declared. Curiously, it appears that the front
11911 end doesn't actually put the PARM_DECL nodes for the current function onto
11912 the BLOCK_VARS list for this outer scope, but are strung off of the
11913 DECL_ARGUMENTS list for the function instead.
11914
11915 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11916 the LABEL_DECL nodes for the function however, and we output DWARF info
11917 for those in decls_for_scope. Just within the `outer_scope' there will be
11918 a BLOCK node representing the function's outermost pair of curly braces,
11919 and any blocks used for the base and member initializers of a C++
11920 constructor function. */
11921 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11922 {
11923 /* Emit a DW_TAG_variable DIE for a named return value. */
11924 if (DECL_NAME (DECL_RESULT (decl)))
11925 gen_decl_die (DECL_RESULT (decl), subr_die);
11926
11927 current_function_has_inlines = 0;
11928 decls_for_scope (outer_scope, subr_die, 0);
11929
11930 #if 0 && defined (MIPS_DEBUGGING_INFO)
11931 if (current_function_has_inlines)
11932 {
11933 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11934 if (! comp_unit_has_inlines)
11935 {
11936 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11937 comp_unit_has_inlines = 1;
11938 }
11939 }
11940 #endif
11941 }
11942 /* Add the calling convention attribute if requested. */
11943 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11944
11945 }
11946
11947 /* Generate a DIE to represent a declared data object. */
11948
11949 static void
11950 gen_variable_die (tree decl, dw_die_ref context_die)
11951 {
11952 tree origin = decl_ultimate_origin (decl);
11953 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11954
11955 dw_die_ref old_die = lookup_decl_die (decl);
11956 int declaration = (DECL_EXTERNAL (decl)
11957 /* If DECL is COMDAT and has not actually been
11958 emitted, we cannot take its address; there
11959 might end up being no definition anywhere in
11960 the program. For example, consider the C++
11961 test case:
11962
11963 template <class T>
11964 struct S { static const int i = 7; };
11965
11966 template <class T>
11967 const int S<T>::i;
11968
11969 int f() { return S<int>::i; }
11970
11971 Here, S<int>::i is not DECL_EXTERNAL, but no
11972 definition is required, so the compiler will
11973 not emit a definition. */
11974 || (TREE_CODE (decl) == VAR_DECL
11975 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11976 || class_or_namespace_scope_p (context_die));
11977
11978 if (origin != NULL)
11979 add_abstract_origin_attribute (var_die, origin);
11980
11981 /* Loop unrolling can create multiple blocks that refer to the same
11982 static variable, so we must test for the DW_AT_declaration flag.
11983
11984 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11985 copy decls and set the DECL_ABSTRACT flag on them instead of
11986 sharing them.
11987
11988 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11989
11990 ??? The declare_in_namespace support causes us to get two DIEs for one
11991 variable, both of which are declarations. We want to avoid considering
11992 one to be a specification, so we must test that this DIE is not a
11993 declaration. */
11994 else if (old_die && TREE_STATIC (decl) && ! declaration
11995 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11996 {
11997 /* This is a definition of a C++ class level static. */
11998 add_AT_specification (var_die, old_die);
11999 if (DECL_NAME (decl))
12000 {
12001 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12002 struct dwarf_file_data * file_index = lookup_filename (s.file);
12003
12004 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12005 add_AT_file (var_die, DW_AT_decl_file, file_index);
12006
12007 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12008
12009 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12010 }
12011 }
12012 else
12013 {
12014 add_name_and_src_coords_attributes (var_die, decl);
12015 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12016 TREE_THIS_VOLATILE (decl), context_die);
12017
12018 if (TREE_PUBLIC (decl))
12019 add_AT_flag (var_die, DW_AT_external, 1);
12020
12021 if (DECL_ARTIFICIAL (decl))
12022 add_AT_flag (var_die, DW_AT_artificial, 1);
12023
12024 if (TREE_PROTECTED (decl))
12025 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12026 else if (TREE_PRIVATE (decl))
12027 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12028 }
12029
12030 if (declaration)
12031 add_AT_flag (var_die, DW_AT_declaration, 1);
12032
12033 if (DECL_ABSTRACT (decl) || declaration)
12034 equate_decl_number_to_die (decl, var_die);
12035
12036 if (! declaration && ! DECL_ABSTRACT (decl))
12037 {
12038 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12039 add_pubname (decl, var_die);
12040 }
12041 else
12042 tree_add_const_value_attribute (var_die, decl);
12043 }
12044
12045 /* Generate a DIE to represent a label identifier. */
12046
12047 static void
12048 gen_label_die (tree decl, dw_die_ref context_die)
12049 {
12050 tree origin = decl_ultimate_origin (decl);
12051 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12052 rtx insn;
12053 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12054
12055 if (origin != NULL)
12056 add_abstract_origin_attribute (lbl_die, origin);
12057 else
12058 add_name_and_src_coords_attributes (lbl_die, decl);
12059
12060 if (DECL_ABSTRACT (decl))
12061 equate_decl_number_to_die (decl, lbl_die);
12062 else
12063 {
12064 insn = DECL_RTL_IF_SET (decl);
12065
12066 /* Deleted labels are programmer specified labels which have been
12067 eliminated because of various optimizations. We still emit them
12068 here so that it is possible to put breakpoints on them. */
12069 if (insn
12070 && (LABEL_P (insn)
12071 || ((NOTE_P (insn)
12072 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12073 {
12074 /* When optimization is enabled (via -O) some parts of the compiler
12075 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12076 represent source-level labels which were explicitly declared by
12077 the user. This really shouldn't be happening though, so catch
12078 it if it ever does happen. */
12079 gcc_assert (!INSN_DELETED_P (insn));
12080
12081 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12082 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12083 }
12084 }
12085 }
12086
12087 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12088 attributes to the DIE for a block STMT, to describe where the inlined
12089 function was called from. This is similar to add_src_coords_attributes. */
12090
12091 static inline void
12092 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12093 {
12094 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12095
12096 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12097 add_AT_unsigned (die, DW_AT_call_line, s.line);
12098 }
12099
12100 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12101 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12102
12103 static inline void
12104 add_high_low_attributes (tree stmt, dw_die_ref die)
12105 {
12106 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12107
12108 if (BLOCK_FRAGMENT_CHAIN (stmt))
12109 {
12110 tree chain;
12111
12112 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12113
12114 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12115 do
12116 {
12117 add_ranges (chain);
12118 chain = BLOCK_FRAGMENT_CHAIN (chain);
12119 }
12120 while (chain);
12121 add_ranges (NULL);
12122 }
12123 else
12124 {
12125 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12126 BLOCK_NUMBER (stmt));
12127 add_AT_lbl_id (die, DW_AT_low_pc, label);
12128 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12129 BLOCK_NUMBER (stmt));
12130 add_AT_lbl_id (die, DW_AT_high_pc, label);
12131 }
12132 }
12133
12134 /* Generate a DIE for a lexical block. */
12135
12136 static void
12137 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12138 {
12139 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12140
12141 if (! BLOCK_ABSTRACT (stmt))
12142 add_high_low_attributes (stmt, stmt_die);
12143
12144 decls_for_scope (stmt, stmt_die, depth);
12145 }
12146
12147 /* Generate a DIE for an inlined subprogram. */
12148
12149 static void
12150 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12151 {
12152 tree decl = block_ultimate_origin (stmt);
12153
12154 /* Emit info for the abstract instance first, if we haven't yet. We
12155 must emit this even if the block is abstract, otherwise when we
12156 emit the block below (or elsewhere), we may end up trying to emit
12157 a die whose origin die hasn't been emitted, and crashing. */
12158 dwarf2out_abstract_function (decl);
12159
12160 if (! BLOCK_ABSTRACT (stmt))
12161 {
12162 dw_die_ref subr_die
12163 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12164
12165 add_abstract_origin_attribute (subr_die, decl);
12166 add_high_low_attributes (stmt, subr_die);
12167 add_call_src_coords_attributes (stmt, subr_die);
12168
12169 decls_for_scope (stmt, subr_die, depth);
12170 current_function_has_inlines = 1;
12171 }
12172 else
12173 /* We may get here if we're the outer block of function A that was
12174 inlined into function B that was inlined into function C. When
12175 generating debugging info for C, dwarf2out_abstract_function(B)
12176 would mark all inlined blocks as abstract, including this one.
12177 So, we wouldn't (and shouldn't) expect labels to be generated
12178 for this one. Instead, just emit debugging info for
12179 declarations within the block. This is particularly important
12180 in the case of initializers of arguments passed from B to us:
12181 if they're statement expressions containing declarations, we
12182 wouldn't generate dies for their abstract variables, and then,
12183 when generating dies for the real variables, we'd die (pun
12184 intended :-) */
12185 gen_lexical_block_die (stmt, context_die, depth);
12186 }
12187
12188 /* Generate a DIE for a field in a record, or structure. */
12189
12190 static void
12191 gen_field_die (tree decl, dw_die_ref context_die)
12192 {
12193 dw_die_ref decl_die;
12194
12195 if (TREE_TYPE (decl) == error_mark_node)
12196 return;
12197
12198 decl_die = new_die (DW_TAG_member, context_die, decl);
12199 add_name_and_src_coords_attributes (decl_die, decl);
12200 add_type_attribute (decl_die, member_declared_type (decl),
12201 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12202 context_die);
12203
12204 if (DECL_BIT_FIELD_TYPE (decl))
12205 {
12206 add_byte_size_attribute (decl_die, decl);
12207 add_bit_size_attribute (decl_die, decl);
12208 add_bit_offset_attribute (decl_die, decl);
12209 }
12210
12211 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12212 add_data_member_location_attribute (decl_die, decl);
12213
12214 if (DECL_ARTIFICIAL (decl))
12215 add_AT_flag (decl_die, DW_AT_artificial, 1);
12216
12217 if (TREE_PROTECTED (decl))
12218 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12219 else if (TREE_PRIVATE (decl))
12220 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12221
12222 /* Equate decl number to die, so that we can look up this decl later on. */
12223 equate_decl_number_to_die (decl, decl_die);
12224 }
12225
12226 #if 0
12227 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12228 Use modified_type_die instead.
12229 We keep this code here just in case these types of DIEs may be needed to
12230 represent certain things in other languages (e.g. Pascal) someday. */
12231
12232 static void
12233 gen_pointer_type_die (tree type, dw_die_ref context_die)
12234 {
12235 dw_die_ref ptr_die
12236 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12237
12238 equate_type_number_to_die (type, ptr_die);
12239 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12240 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12241 }
12242
12243 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12244 Use modified_type_die instead.
12245 We keep this code here just in case these types of DIEs may be needed to
12246 represent certain things in other languages (e.g. Pascal) someday. */
12247
12248 static void
12249 gen_reference_type_die (tree type, dw_die_ref context_die)
12250 {
12251 dw_die_ref ref_die
12252 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12253
12254 equate_type_number_to_die (type, ref_die);
12255 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12256 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12257 }
12258 #endif
12259
12260 /* Generate a DIE for a pointer to a member type. */
12261
12262 static void
12263 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12264 {
12265 dw_die_ref ptr_die
12266 = new_die (DW_TAG_ptr_to_member_type,
12267 scope_die_for (type, context_die), type);
12268
12269 equate_type_number_to_die (type, ptr_die);
12270 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12271 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12272 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12273 }
12274
12275 /* Generate the DIE for the compilation unit. */
12276
12277 static dw_die_ref
12278 gen_compile_unit_die (const char *filename)
12279 {
12280 dw_die_ref die;
12281 char producer[250];
12282 const char *language_string = lang_hooks.name;
12283 int language;
12284
12285 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12286
12287 if (filename)
12288 {
12289 add_name_attribute (die, filename);
12290 /* Don't add cwd for <built-in>. */
12291 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12292 add_comp_dir_attribute (die);
12293 }
12294
12295 sprintf (producer, "%s %s", language_string, version_string);
12296
12297 #ifdef MIPS_DEBUGGING_INFO
12298 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12299 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12300 not appear in the producer string, the debugger reaches the conclusion
12301 that the object file is stripped and has no debugging information.
12302 To get the MIPS/SGI debugger to believe that there is debugging
12303 information in the object file, we add a -g to the producer string. */
12304 if (debug_info_level > DINFO_LEVEL_TERSE)
12305 strcat (producer, " -g");
12306 #endif
12307
12308 add_AT_string (die, DW_AT_producer, producer);
12309
12310 if (strcmp (language_string, "GNU C++") == 0)
12311 language = DW_LANG_C_plus_plus;
12312 else if (strcmp (language_string, "GNU Ada") == 0)
12313 language = DW_LANG_Ada95;
12314 else if (strcmp (language_string, "GNU F77") == 0)
12315 language = DW_LANG_Fortran77;
12316 else if (strcmp (language_string, "GNU F95") == 0)
12317 language = DW_LANG_Fortran95;
12318 else if (strcmp (language_string, "GNU Pascal") == 0)
12319 language = DW_LANG_Pascal83;
12320 else if (strcmp (language_string, "GNU Java") == 0)
12321 language = DW_LANG_Java;
12322 else if (strcmp (language_string, "GNU Objective-C") == 0)
12323 language = DW_LANG_ObjC;
12324 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12325 language = DW_LANG_ObjC_plus_plus;
12326 else
12327 language = DW_LANG_C89;
12328
12329 add_AT_unsigned (die, DW_AT_language, language);
12330 return die;
12331 }
12332
12333 /* Generate the DIE for a base class. */
12334
12335 static void
12336 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12337 {
12338 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12339
12340 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12341 add_data_member_location_attribute (die, binfo);
12342
12343 if (BINFO_VIRTUAL_P (binfo))
12344 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12345
12346 if (access == access_public_node)
12347 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12348 else if (access == access_protected_node)
12349 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12350 }
12351
12352 /* Generate a DIE for a class member. */
12353
12354 static void
12355 gen_member_die (tree type, dw_die_ref context_die)
12356 {
12357 tree member;
12358 tree binfo = TYPE_BINFO (type);
12359 dw_die_ref child;
12360
12361 /* If this is not an incomplete type, output descriptions of each of its
12362 members. Note that as we output the DIEs necessary to represent the
12363 members of this record or union type, we will also be trying to output
12364 DIEs to represent the *types* of those members. However the `type'
12365 function (above) will specifically avoid generating type DIEs for member
12366 types *within* the list of member DIEs for this (containing) type except
12367 for those types (of members) which are explicitly marked as also being
12368 members of this (containing) type themselves. The g++ front- end can
12369 force any given type to be treated as a member of some other (containing)
12370 type by setting the TYPE_CONTEXT of the given (member) type to point to
12371 the TREE node representing the appropriate (containing) type. */
12372
12373 /* First output info about the base classes. */
12374 if (binfo)
12375 {
12376 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12377 int i;
12378 tree base;
12379
12380 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12381 gen_inheritance_die (base,
12382 (accesses ? VEC_index (tree, accesses, i)
12383 : access_public_node), context_die);
12384 }
12385
12386 /* Now output info about the data members and type members. */
12387 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12388 {
12389 /* If we thought we were generating minimal debug info for TYPE
12390 and then changed our minds, some of the member declarations
12391 may have already been defined. Don't define them again, but
12392 do put them in the right order. */
12393
12394 child = lookup_decl_die (member);
12395 if (child)
12396 splice_child_die (context_die, child);
12397 else
12398 gen_decl_die (member, context_die);
12399 }
12400
12401 /* Now output info about the function members (if any). */
12402 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12403 {
12404 /* Don't include clones in the member list. */
12405 if (DECL_ABSTRACT_ORIGIN (member))
12406 continue;
12407
12408 child = lookup_decl_die (member);
12409 if (child)
12410 splice_child_die (context_die, child);
12411 else
12412 gen_decl_die (member, context_die);
12413 }
12414 }
12415
12416 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12417 is set, we pretend that the type was never defined, so we only get the
12418 member DIEs needed by later specification DIEs. */
12419
12420 static void
12421 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12422 {
12423 dw_die_ref type_die = lookup_type_die (type);
12424 dw_die_ref scope_die = 0;
12425 int nested = 0;
12426 int complete = (TYPE_SIZE (type)
12427 && (! TYPE_STUB_DECL (type)
12428 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12429 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12430
12431 if (type_die && ! complete)
12432 return;
12433
12434 if (TYPE_CONTEXT (type) != NULL_TREE
12435 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12436 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12437 nested = 1;
12438
12439 scope_die = scope_die_for (type, context_die);
12440
12441 if (! type_die || (nested && scope_die == comp_unit_die))
12442 /* First occurrence of type or toplevel definition of nested class. */
12443 {
12444 dw_die_ref old_die = type_die;
12445
12446 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12447 ? DW_TAG_structure_type : DW_TAG_union_type,
12448 scope_die, type);
12449 equate_type_number_to_die (type, type_die);
12450 if (old_die)
12451 add_AT_specification (type_die, old_die);
12452 else
12453 add_name_attribute (type_die, type_tag (type));
12454 }
12455 else
12456 remove_AT (type_die, DW_AT_declaration);
12457
12458 /* If this type has been completed, then give it a byte_size attribute and
12459 then give a list of members. */
12460 if (complete && !ns_decl)
12461 {
12462 /* Prevent infinite recursion in cases where the type of some member of
12463 this type is expressed in terms of this type itself. */
12464 TREE_ASM_WRITTEN (type) = 1;
12465 add_byte_size_attribute (type_die, type);
12466 if (TYPE_STUB_DECL (type) != NULL_TREE)
12467 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12468
12469 /* If the first reference to this type was as the return type of an
12470 inline function, then it may not have a parent. Fix this now. */
12471 if (type_die->die_parent == NULL)
12472 add_child_die (scope_die, type_die);
12473
12474 push_decl_scope (type);
12475 gen_member_die (type, type_die);
12476 pop_decl_scope ();
12477
12478 /* GNU extension: Record what type our vtable lives in. */
12479 if (TYPE_VFIELD (type))
12480 {
12481 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12482
12483 gen_type_die (vtype, context_die);
12484 add_AT_die_ref (type_die, DW_AT_containing_type,
12485 lookup_type_die (vtype));
12486 }
12487 }
12488 else
12489 {
12490 add_AT_flag (type_die, DW_AT_declaration, 1);
12491
12492 /* We don't need to do this for function-local types. */
12493 if (TYPE_STUB_DECL (type)
12494 && ! decl_function_context (TYPE_STUB_DECL (type)))
12495 VEC_safe_push (tree, gc, incomplete_types, type);
12496 }
12497 }
12498
12499 /* Generate a DIE for a subroutine _type_. */
12500
12501 static void
12502 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12503 {
12504 tree return_type = TREE_TYPE (type);
12505 dw_die_ref subr_die
12506 = new_die (DW_TAG_subroutine_type,
12507 scope_die_for (type, context_die), type);
12508
12509 equate_type_number_to_die (type, subr_die);
12510 add_prototyped_attribute (subr_die, type);
12511 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12512 gen_formal_types_die (type, subr_die);
12513 }
12514
12515 /* Generate a DIE for a type definition. */
12516
12517 static void
12518 gen_typedef_die (tree decl, dw_die_ref context_die)
12519 {
12520 dw_die_ref type_die;
12521 tree origin;
12522
12523 if (TREE_ASM_WRITTEN (decl))
12524 return;
12525
12526 TREE_ASM_WRITTEN (decl) = 1;
12527 type_die = new_die (DW_TAG_typedef, context_die, decl);
12528 origin = decl_ultimate_origin (decl);
12529 if (origin != NULL)
12530 add_abstract_origin_attribute (type_die, origin);
12531 else
12532 {
12533 tree type;
12534
12535 add_name_and_src_coords_attributes (type_die, decl);
12536 if (DECL_ORIGINAL_TYPE (decl))
12537 {
12538 type = DECL_ORIGINAL_TYPE (decl);
12539
12540 gcc_assert (type != TREE_TYPE (decl));
12541 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12542 }
12543 else
12544 type = TREE_TYPE (decl);
12545
12546 add_type_attribute (type_die, type, TREE_READONLY (decl),
12547 TREE_THIS_VOLATILE (decl), context_die);
12548 }
12549
12550 if (DECL_ABSTRACT (decl))
12551 equate_decl_number_to_die (decl, type_die);
12552 }
12553
12554 /* Generate a type description DIE. */
12555
12556 static void
12557 gen_type_die (tree type, dw_die_ref context_die)
12558 {
12559 int need_pop;
12560
12561 if (type == NULL_TREE || type == error_mark_node)
12562 return;
12563
12564 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12565 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12566 {
12567 if (TREE_ASM_WRITTEN (type))
12568 return;
12569
12570 /* Prevent broken recursion; we can't hand off to the same type. */
12571 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12572
12573 TREE_ASM_WRITTEN (type) = 1;
12574 gen_decl_die (TYPE_NAME (type), context_die);
12575 return;
12576 }
12577
12578 /* We are going to output a DIE to represent the unqualified version
12579 of this type (i.e. without any const or volatile qualifiers) so
12580 get the main variant (i.e. the unqualified version) of this type
12581 now. (Vectors are special because the debugging info is in the
12582 cloned type itself). */
12583 if (TREE_CODE (type) != VECTOR_TYPE)
12584 type = type_main_variant (type);
12585
12586 if (TREE_ASM_WRITTEN (type))
12587 return;
12588
12589 switch (TREE_CODE (type))
12590 {
12591 case ERROR_MARK:
12592 break;
12593
12594 case POINTER_TYPE:
12595 case REFERENCE_TYPE:
12596 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12597 ensures that the gen_type_die recursion will terminate even if the
12598 type is recursive. Recursive types are possible in Ada. */
12599 /* ??? We could perhaps do this for all types before the switch
12600 statement. */
12601 TREE_ASM_WRITTEN (type) = 1;
12602
12603 /* For these types, all that is required is that we output a DIE (or a
12604 set of DIEs) to represent the "basis" type. */
12605 gen_type_die (TREE_TYPE (type), context_die);
12606 break;
12607
12608 case OFFSET_TYPE:
12609 /* This code is used for C++ pointer-to-data-member types.
12610 Output a description of the relevant class type. */
12611 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12612
12613 /* Output a description of the type of the object pointed to. */
12614 gen_type_die (TREE_TYPE (type), context_die);
12615
12616 /* Now output a DIE to represent this pointer-to-data-member type
12617 itself. */
12618 gen_ptr_to_mbr_type_die (type, context_die);
12619 break;
12620
12621 case FUNCTION_TYPE:
12622 /* Force out return type (in case it wasn't forced out already). */
12623 gen_type_die (TREE_TYPE (type), context_die);
12624 gen_subroutine_type_die (type, context_die);
12625 break;
12626
12627 case METHOD_TYPE:
12628 /* Force out return type (in case it wasn't forced out already). */
12629 gen_type_die (TREE_TYPE (type), context_die);
12630 gen_subroutine_type_die (type, context_die);
12631 break;
12632
12633 case ARRAY_TYPE:
12634 gen_array_type_die (type, context_die);
12635 break;
12636
12637 case VECTOR_TYPE:
12638 gen_array_type_die (type, context_die);
12639 break;
12640
12641 case ENUMERAL_TYPE:
12642 case RECORD_TYPE:
12643 case UNION_TYPE:
12644 case QUAL_UNION_TYPE:
12645 /* If this is a nested type whose containing class hasn't been written
12646 out yet, writing it out will cover this one, too. This does not apply
12647 to instantiations of member class templates; they need to be added to
12648 the containing class as they are generated. FIXME: This hurts the
12649 idea of combining type decls from multiple TUs, since we can't predict
12650 what set of template instantiations we'll get. */
12651 if (TYPE_CONTEXT (type)
12652 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12653 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12654 {
12655 gen_type_die (TYPE_CONTEXT (type), context_die);
12656
12657 if (TREE_ASM_WRITTEN (type))
12658 return;
12659
12660 /* If that failed, attach ourselves to the stub. */
12661 push_decl_scope (TYPE_CONTEXT (type));
12662 context_die = lookup_type_die (TYPE_CONTEXT (type));
12663 need_pop = 1;
12664 }
12665 else
12666 {
12667 declare_in_namespace (type, context_die);
12668 need_pop = 0;
12669 }
12670
12671 if (TREE_CODE (type) == ENUMERAL_TYPE)
12672 gen_enumeration_type_die (type, context_die);
12673 else
12674 gen_struct_or_union_type_die (type, context_die);
12675
12676 if (need_pop)
12677 pop_decl_scope ();
12678
12679 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12680 it up if it is ever completed. gen_*_type_die will set it for us
12681 when appropriate. */
12682 return;
12683
12684 case VOID_TYPE:
12685 case INTEGER_TYPE:
12686 case REAL_TYPE:
12687 case COMPLEX_TYPE:
12688 case BOOLEAN_TYPE:
12689 /* No DIEs needed for fundamental types. */
12690 break;
12691
12692 case LANG_TYPE:
12693 /* No Dwarf representation currently defined. */
12694 break;
12695
12696 default:
12697 gcc_unreachable ();
12698 }
12699
12700 TREE_ASM_WRITTEN (type) = 1;
12701 }
12702
12703 /* Generate a DIE for a tagged type instantiation. */
12704
12705 static void
12706 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12707 {
12708 if (type == NULL_TREE || type == error_mark_node)
12709 return;
12710
12711 /* We are going to output a DIE to represent the unqualified version of
12712 this type (i.e. without any const or volatile qualifiers) so make sure
12713 that we have the main variant (i.e. the unqualified version) of this
12714 type now. */
12715 gcc_assert (type == type_main_variant (type));
12716
12717 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12718 an instance of an unresolved type. */
12719
12720 switch (TREE_CODE (type))
12721 {
12722 case ERROR_MARK:
12723 break;
12724
12725 case ENUMERAL_TYPE:
12726 gen_inlined_enumeration_type_die (type, context_die);
12727 break;
12728
12729 case RECORD_TYPE:
12730 gen_inlined_structure_type_die (type, context_die);
12731 break;
12732
12733 case UNION_TYPE:
12734 case QUAL_UNION_TYPE:
12735 gen_inlined_union_type_die (type, context_die);
12736 break;
12737
12738 default:
12739 gcc_unreachable ();
12740 }
12741 }
12742
12743 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12744 things which are local to the given block. */
12745
12746 static void
12747 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12748 {
12749 int must_output_die = 0;
12750 tree origin;
12751 tree decl;
12752 enum tree_code origin_code;
12753
12754 /* Ignore blocks that are NULL. */
12755 if (stmt == NULL_TREE)
12756 return;
12757
12758 /* If the block is one fragment of a non-contiguous block, do not
12759 process the variables, since they will have been done by the
12760 origin block. Do process subblocks. */
12761 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12762 {
12763 tree sub;
12764
12765 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12766 gen_block_die (sub, context_die, depth + 1);
12767
12768 return;
12769 }
12770
12771 /* Determine the "ultimate origin" of this block. This block may be an
12772 inlined instance of an inlined instance of inline function, so we have
12773 to trace all of the way back through the origin chain to find out what
12774 sort of node actually served as the original seed for the creation of
12775 the current block. */
12776 origin = block_ultimate_origin (stmt);
12777 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12778
12779 /* Determine if we need to output any Dwarf DIEs at all to represent this
12780 block. */
12781 if (origin_code == FUNCTION_DECL)
12782 /* The outer scopes for inlinings *must* always be represented. We
12783 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12784 must_output_die = 1;
12785 else
12786 {
12787 /* In the case where the current block represents an inlining of the
12788 "body block" of an inline function, we must *NOT* output any DIE for
12789 this block because we have already output a DIE to represent the whole
12790 inlined function scope and the "body block" of any function doesn't
12791 really represent a different scope according to ANSI C rules. So we
12792 check here to make sure that this block does not represent a "body
12793 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12794 if (! is_body_block (origin ? origin : stmt))
12795 {
12796 /* Determine if this block directly contains any "significant"
12797 local declarations which we will need to output DIEs for. */
12798 if (debug_info_level > DINFO_LEVEL_TERSE)
12799 /* We are not in terse mode so *any* local declaration counts
12800 as being a "significant" one. */
12801 must_output_die = (BLOCK_VARS (stmt) != NULL
12802 && (TREE_USED (stmt)
12803 || TREE_ASM_WRITTEN (stmt)
12804 || BLOCK_ABSTRACT (stmt)));
12805 else
12806 /* We are in terse mode, so only local (nested) function
12807 definitions count as "significant" local declarations. */
12808 for (decl = BLOCK_VARS (stmt);
12809 decl != NULL; decl = TREE_CHAIN (decl))
12810 if (TREE_CODE (decl) == FUNCTION_DECL
12811 && DECL_INITIAL (decl))
12812 {
12813 must_output_die = 1;
12814 break;
12815 }
12816 }
12817 }
12818
12819 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12820 DIE for any block which contains no significant local declarations at
12821 all. Rather, in such cases we just call `decls_for_scope' so that any
12822 needed Dwarf info for any sub-blocks will get properly generated. Note
12823 that in terse mode, our definition of what constitutes a "significant"
12824 local declaration gets restricted to include only inlined function
12825 instances and local (nested) function definitions. */
12826 if (must_output_die)
12827 {
12828 if (origin_code == FUNCTION_DECL)
12829 gen_inlined_subroutine_die (stmt, context_die, depth);
12830 else
12831 gen_lexical_block_die (stmt, context_die, depth);
12832 }
12833 else
12834 decls_for_scope (stmt, context_die, depth);
12835 }
12836
12837 /* Generate all of the decls declared within a given scope and (recursively)
12838 all of its sub-blocks. */
12839
12840 static void
12841 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12842 {
12843 tree decl;
12844 tree subblocks;
12845
12846 /* Ignore NULL blocks. */
12847 if (stmt == NULL_TREE)
12848 return;
12849
12850 if (TREE_USED (stmt))
12851 {
12852 /* Output the DIEs to represent all of the data objects and typedefs
12853 declared directly within this block but not within any nested
12854 sub-blocks. Also, nested function and tag DIEs have been
12855 generated with a parent of NULL; fix that up now. */
12856 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12857 {
12858 dw_die_ref die;
12859
12860 if (TREE_CODE (decl) == FUNCTION_DECL)
12861 die = lookup_decl_die (decl);
12862 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12863 die = lookup_type_die (TREE_TYPE (decl));
12864 else
12865 die = NULL;
12866
12867 if (die != NULL && die->die_parent == NULL)
12868 add_child_die (context_die, die);
12869 /* Do not produce debug information for static variables since
12870 these might be optimized out. We are called for these later
12871 in cgraph_varpool_analyze_pending_decls. */
12872 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12873 ;
12874 else
12875 gen_decl_die (decl, context_die);
12876 }
12877 }
12878
12879 /* If we're at -g1, we're not interested in subblocks. */
12880 if (debug_info_level <= DINFO_LEVEL_TERSE)
12881 return;
12882
12883 /* Output the DIEs to represent all sub-blocks (and the items declared
12884 therein) of this block. */
12885 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12886 subblocks != NULL;
12887 subblocks = BLOCK_CHAIN (subblocks))
12888 gen_block_die (subblocks, context_die, depth + 1);
12889 }
12890
12891 /* Is this a typedef we can avoid emitting? */
12892
12893 static inline int
12894 is_redundant_typedef (tree decl)
12895 {
12896 if (TYPE_DECL_IS_STUB (decl))
12897 return 1;
12898
12899 if (DECL_ARTIFICIAL (decl)
12900 && DECL_CONTEXT (decl)
12901 && is_tagged_type (DECL_CONTEXT (decl))
12902 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12903 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12904 /* Also ignore the artificial member typedef for the class name. */
12905 return 1;
12906
12907 return 0;
12908 }
12909
12910 /* Returns the DIE for decl. A DIE will always be returned. */
12911
12912 static dw_die_ref
12913 force_decl_die (tree decl)
12914 {
12915 dw_die_ref decl_die;
12916 unsigned saved_external_flag;
12917 tree save_fn = NULL_TREE;
12918 decl_die = lookup_decl_die (decl);
12919 if (!decl_die)
12920 {
12921 dw_die_ref context_die;
12922 tree decl_context = DECL_CONTEXT (decl);
12923 if (decl_context)
12924 {
12925 /* Find die that represents this context. */
12926 if (TYPE_P (decl_context))
12927 context_die = force_type_die (decl_context);
12928 else
12929 context_die = force_decl_die (decl_context);
12930 }
12931 else
12932 context_die = comp_unit_die;
12933
12934 decl_die = lookup_decl_die (decl);
12935 if (decl_die)
12936 return decl_die;
12937
12938 switch (TREE_CODE (decl))
12939 {
12940 case FUNCTION_DECL:
12941 /* Clear current_function_decl, so that gen_subprogram_die thinks
12942 that this is a declaration. At this point, we just want to force
12943 declaration die. */
12944 save_fn = current_function_decl;
12945 current_function_decl = NULL_TREE;
12946 gen_subprogram_die (decl, context_die);
12947 current_function_decl = save_fn;
12948 break;
12949
12950 case VAR_DECL:
12951 /* Set external flag to force declaration die. Restore it after
12952 gen_decl_die() call. */
12953 saved_external_flag = DECL_EXTERNAL (decl);
12954 DECL_EXTERNAL (decl) = 1;
12955 gen_decl_die (decl, context_die);
12956 DECL_EXTERNAL (decl) = saved_external_flag;
12957 break;
12958
12959 case NAMESPACE_DECL:
12960 dwarf2out_decl (decl);
12961 break;
12962
12963 default:
12964 gcc_unreachable ();
12965 }
12966
12967 /* We should be able to find the DIE now. */
12968 if (!decl_die)
12969 decl_die = lookup_decl_die (decl);
12970 gcc_assert (decl_die);
12971 }
12972
12973 return decl_die;
12974 }
12975
12976 /* Returns the DIE for TYPE. A DIE is always returned. */
12977
12978 static dw_die_ref
12979 force_type_die (tree type)
12980 {
12981 dw_die_ref type_die;
12982
12983 type_die = lookup_type_die (type);
12984 if (!type_die)
12985 {
12986 dw_die_ref context_die;
12987 if (TYPE_CONTEXT (type))
12988 {
12989 if (TYPE_P (TYPE_CONTEXT (type)))
12990 context_die = force_type_die (TYPE_CONTEXT (type));
12991 else
12992 context_die = force_decl_die (TYPE_CONTEXT (type));
12993 }
12994 else
12995 context_die = comp_unit_die;
12996
12997 type_die = lookup_type_die (type);
12998 if (type_die)
12999 return type_die;
13000 gen_type_die (type, context_die);
13001 type_die = lookup_type_die (type);
13002 gcc_assert (type_die);
13003 }
13004 return type_die;
13005 }
13006
13007 /* Force out any required namespaces to be able to output DECL,
13008 and return the new context_die for it, if it's changed. */
13009
13010 static dw_die_ref
13011 setup_namespace_context (tree thing, dw_die_ref context_die)
13012 {
13013 tree context = (DECL_P (thing)
13014 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13015 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13016 /* Force out the namespace. */
13017 context_die = force_decl_die (context);
13018
13019 return context_die;
13020 }
13021
13022 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13023 type) within its namespace, if appropriate.
13024
13025 For compatibility with older debuggers, namespace DIEs only contain
13026 declarations; all definitions are emitted at CU scope. */
13027
13028 static void
13029 declare_in_namespace (tree thing, dw_die_ref context_die)
13030 {
13031 dw_die_ref ns_context;
13032
13033 if (debug_info_level <= DINFO_LEVEL_TERSE)
13034 return;
13035
13036 /* If this decl is from an inlined function, then don't try to emit it in its
13037 namespace, as we will get confused. It would have already been emitted
13038 when the abstract instance of the inline function was emitted anyways. */
13039 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13040 return;
13041
13042 ns_context = setup_namespace_context (thing, context_die);
13043
13044 if (ns_context != context_die)
13045 {
13046 if (DECL_P (thing))
13047 gen_decl_die (thing, ns_context);
13048 else
13049 gen_type_die (thing, ns_context);
13050 }
13051 }
13052
13053 /* Generate a DIE for a namespace or namespace alias. */
13054
13055 static void
13056 gen_namespace_die (tree decl)
13057 {
13058 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13059
13060 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13061 they are an alias of. */
13062 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13063 {
13064 /* Output a real namespace. */
13065 dw_die_ref namespace_die
13066 = new_die (DW_TAG_namespace, context_die, decl);
13067 add_name_and_src_coords_attributes (namespace_die, decl);
13068 equate_decl_number_to_die (decl, namespace_die);
13069 }
13070 else
13071 {
13072 /* Output a namespace alias. */
13073
13074 /* Force out the namespace we are an alias of, if necessary. */
13075 dw_die_ref origin_die
13076 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13077
13078 /* Now create the namespace alias DIE. */
13079 dw_die_ref namespace_die
13080 = new_die (DW_TAG_imported_declaration, context_die, decl);
13081 add_name_and_src_coords_attributes (namespace_die, decl);
13082 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13083 equate_decl_number_to_die (decl, namespace_die);
13084 }
13085 }
13086
13087 /* Generate Dwarf debug information for a decl described by DECL. */
13088
13089 static void
13090 gen_decl_die (tree decl, dw_die_ref context_die)
13091 {
13092 tree origin;
13093
13094 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13095 return;
13096
13097 switch (TREE_CODE (decl))
13098 {
13099 case ERROR_MARK:
13100 break;
13101
13102 case CONST_DECL:
13103 /* The individual enumerators of an enum type get output when we output
13104 the Dwarf representation of the relevant enum type itself. */
13105 break;
13106
13107 case FUNCTION_DECL:
13108 /* Don't output any DIEs to represent mere function declarations,
13109 unless they are class members or explicit block externs. */
13110 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13111 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13112 break;
13113
13114 #if 0
13115 /* FIXME */
13116 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13117 on local redeclarations of global functions. That seems broken. */
13118 if (current_function_decl != decl)
13119 /* This is only a declaration. */;
13120 #endif
13121
13122 /* If we're emitting a clone, emit info for the abstract instance. */
13123 if (DECL_ORIGIN (decl) != decl)
13124 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13125
13126 /* If we're emitting an out-of-line copy of an inline function,
13127 emit info for the abstract instance and set up to refer to it. */
13128 else if (cgraph_function_possibly_inlined_p (decl)
13129 && ! DECL_ABSTRACT (decl)
13130 && ! class_or_namespace_scope_p (context_die)
13131 /* dwarf2out_abstract_function won't emit a die if this is just
13132 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13133 that case, because that works only if we have a die. */
13134 && DECL_INITIAL (decl) != NULL_TREE)
13135 {
13136 dwarf2out_abstract_function (decl);
13137 set_decl_origin_self (decl);
13138 }
13139
13140 /* Otherwise we're emitting the primary DIE for this decl. */
13141 else if (debug_info_level > DINFO_LEVEL_TERSE)
13142 {
13143 /* Before we describe the FUNCTION_DECL itself, make sure that we
13144 have described its return type. */
13145 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13146
13147 /* And its virtual context. */
13148 if (DECL_VINDEX (decl) != NULL_TREE)
13149 gen_type_die (DECL_CONTEXT (decl), context_die);
13150
13151 /* And its containing type. */
13152 origin = decl_class_context (decl);
13153 if (origin != NULL_TREE)
13154 gen_type_die_for_member (origin, decl, context_die);
13155
13156 /* And its containing namespace. */
13157 declare_in_namespace (decl, context_die);
13158 }
13159
13160 /* Now output a DIE to represent the function itself. */
13161 gen_subprogram_die (decl, context_die);
13162 break;
13163
13164 case TYPE_DECL:
13165 /* If we are in terse mode, don't generate any DIEs to represent any
13166 actual typedefs. */
13167 if (debug_info_level <= DINFO_LEVEL_TERSE)
13168 break;
13169
13170 /* In the special case of a TYPE_DECL node representing the declaration
13171 of some type tag, if the given TYPE_DECL is marked as having been
13172 instantiated from some other (original) TYPE_DECL node (e.g. one which
13173 was generated within the original definition of an inline function) we
13174 have to generate a special (abbreviated) DW_TAG_structure_type,
13175 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13176 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13177 {
13178 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13179 break;
13180 }
13181
13182 if (is_redundant_typedef (decl))
13183 gen_type_die (TREE_TYPE (decl), context_die);
13184 else
13185 /* Output a DIE to represent the typedef itself. */
13186 gen_typedef_die (decl, context_die);
13187 break;
13188
13189 case LABEL_DECL:
13190 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13191 gen_label_die (decl, context_die);
13192 break;
13193
13194 case VAR_DECL:
13195 case RESULT_DECL:
13196 /* If we are in terse mode, don't generate any DIEs to represent any
13197 variable declarations or definitions. */
13198 if (debug_info_level <= DINFO_LEVEL_TERSE)
13199 break;
13200
13201 /* Output any DIEs that are needed to specify the type of this data
13202 object. */
13203 gen_type_die (TREE_TYPE (decl), context_die);
13204
13205 /* And its containing type. */
13206 origin = decl_class_context (decl);
13207 if (origin != NULL_TREE)
13208 gen_type_die_for_member (origin, decl, context_die);
13209
13210 /* And its containing namespace. */
13211 declare_in_namespace (decl, context_die);
13212
13213 /* Now output the DIE to represent the data object itself. This gets
13214 complicated because of the possibility that the VAR_DECL really
13215 represents an inlined instance of a formal parameter for an inline
13216 function. */
13217 origin = decl_ultimate_origin (decl);
13218 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13219 gen_formal_parameter_die (decl, context_die);
13220 else
13221 gen_variable_die (decl, context_die);
13222 break;
13223
13224 case FIELD_DECL:
13225 /* Ignore the nameless fields that are used to skip bits but handle C++
13226 anonymous unions and structs. */
13227 if (DECL_NAME (decl) != NULL_TREE
13228 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13229 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13230 {
13231 gen_type_die (member_declared_type (decl), context_die);
13232 gen_field_die (decl, context_die);
13233 }
13234 break;
13235
13236 case PARM_DECL:
13237 gen_type_die (TREE_TYPE (decl), context_die);
13238 gen_formal_parameter_die (decl, context_die);
13239 break;
13240
13241 case NAMESPACE_DECL:
13242 gen_namespace_die (decl);
13243 break;
13244
13245 default:
13246 /* Probably some frontend-internal decl. Assume we don't care. */
13247 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13248 break;
13249 }
13250 }
13251 \f
13252 /* Output debug information for global decl DECL. Called from toplev.c after
13253 compilation proper has finished. */
13254
13255 static void
13256 dwarf2out_global_decl (tree decl)
13257 {
13258 /* Output DWARF2 information for file-scope tentative data object
13259 declarations, file-scope (extern) function declarations (which had no
13260 corresponding body) and file-scope tagged type declarations and
13261 definitions which have not yet been forced out. */
13262 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13263 dwarf2out_decl (decl);
13264 }
13265
13266 /* Output debug information for type decl DECL. Called from toplev.c
13267 and from language front ends (to record built-in types). */
13268 static void
13269 dwarf2out_type_decl (tree decl, int local)
13270 {
13271 if (!local)
13272 dwarf2out_decl (decl);
13273 }
13274
13275 /* Output debug information for imported module or decl. */
13276
13277 static void
13278 dwarf2out_imported_module_or_decl (tree decl, tree context)
13279 {
13280 dw_die_ref imported_die, at_import_die;
13281 dw_die_ref scope_die;
13282 expanded_location xloc;
13283
13284 if (debug_info_level <= DINFO_LEVEL_TERSE)
13285 return;
13286
13287 gcc_assert (decl);
13288
13289 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13290 We need decl DIE for reference and scope die. First, get DIE for the decl
13291 itself. */
13292
13293 /* Get the scope die for decl context. Use comp_unit_die for global module
13294 or decl. If die is not found for non globals, force new die. */
13295 if (!context)
13296 scope_die = comp_unit_die;
13297 else if (TYPE_P (context))
13298 scope_die = force_type_die (context);
13299 else
13300 scope_die = force_decl_die (context);
13301
13302 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13303 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13304 at_import_die = force_type_die (TREE_TYPE (decl));
13305 else
13306 {
13307 at_import_die = lookup_decl_die (decl);
13308 if (!at_import_die)
13309 {
13310 /* If we're trying to avoid duplicate debug info, we may not have
13311 emitted the member decl for this field. Emit it now. */
13312 if (TREE_CODE (decl) == FIELD_DECL)
13313 {
13314 tree type = DECL_CONTEXT (decl);
13315 dw_die_ref type_context_die;
13316
13317 if (TYPE_CONTEXT (type))
13318 if (TYPE_P (TYPE_CONTEXT (type)))
13319 type_context_die = force_type_die (TYPE_CONTEXT (type));
13320 else
13321 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13322 else
13323 type_context_die = comp_unit_die;
13324 gen_type_die_for_member (type, decl, type_context_die);
13325 }
13326 at_import_die = force_decl_die (decl);
13327 }
13328 }
13329
13330 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13331 if (TREE_CODE (decl) == NAMESPACE_DECL)
13332 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13333 else
13334 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13335
13336 xloc = expand_location (input_location);
13337 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13338 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13339 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13340 }
13341
13342 /* Write the debugging output for DECL. */
13343
13344 void
13345 dwarf2out_decl (tree decl)
13346 {
13347 dw_die_ref context_die = comp_unit_die;
13348
13349 switch (TREE_CODE (decl))
13350 {
13351 case ERROR_MARK:
13352 return;
13353
13354 case FUNCTION_DECL:
13355 /* What we would really like to do here is to filter out all mere
13356 file-scope declarations of file-scope functions which are never
13357 referenced later within this translation unit (and keep all of ones
13358 that *are* referenced later on) but we aren't clairvoyant, so we have
13359 no idea which functions will be referenced in the future (i.e. later
13360 on within the current translation unit). So here we just ignore all
13361 file-scope function declarations which are not also definitions. If
13362 and when the debugger needs to know something about these functions,
13363 it will have to hunt around and find the DWARF information associated
13364 with the definition of the function.
13365
13366 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13367 nodes represent definitions and which ones represent mere
13368 declarations. We have to check DECL_INITIAL instead. That's because
13369 the C front-end supports some weird semantics for "extern inline"
13370 function definitions. These can get inlined within the current
13371 translation unit (and thus, we need to generate Dwarf info for their
13372 abstract instances so that the Dwarf info for the concrete inlined
13373 instances can have something to refer to) but the compiler never
13374 generates any out-of-lines instances of such things (despite the fact
13375 that they *are* definitions).
13376
13377 The important point is that the C front-end marks these "extern
13378 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13379 them anyway. Note that the C++ front-end also plays some similar games
13380 for inline function definitions appearing within include files which
13381 also contain `#pragma interface' pragmas. */
13382 if (DECL_INITIAL (decl) == NULL_TREE)
13383 return;
13384
13385 /* If we're a nested function, initially use a parent of NULL; if we're
13386 a plain function, this will be fixed up in decls_for_scope. If
13387 we're a method, it will be ignored, since we already have a DIE. */
13388 if (decl_function_context (decl)
13389 /* But if we're in terse mode, we don't care about scope. */
13390 && debug_info_level > DINFO_LEVEL_TERSE)
13391 context_die = NULL;
13392 break;
13393
13394 case VAR_DECL:
13395 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13396 declaration and if the declaration was never even referenced from
13397 within this entire compilation unit. We suppress these DIEs in
13398 order to save space in the .debug section (by eliminating entries
13399 which are probably useless). Note that we must not suppress
13400 block-local extern declarations (whether used or not) because that
13401 would screw-up the debugger's name lookup mechanism and cause it to
13402 miss things which really ought to be in scope at a given point. */
13403 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13404 return;
13405
13406 /* For local statics lookup proper context die. */
13407 if (TREE_STATIC (decl) && decl_function_context (decl))
13408 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13409
13410 /* If we are in terse mode, don't generate any DIEs to represent any
13411 variable declarations or definitions. */
13412 if (debug_info_level <= DINFO_LEVEL_TERSE)
13413 return;
13414 break;
13415
13416 case NAMESPACE_DECL:
13417 if (debug_info_level <= DINFO_LEVEL_TERSE)
13418 return;
13419 if (lookup_decl_die (decl) != NULL)
13420 return;
13421 break;
13422
13423 case TYPE_DECL:
13424 /* Don't emit stubs for types unless they are needed by other DIEs. */
13425 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13426 return;
13427
13428 /* Don't bother trying to generate any DIEs to represent any of the
13429 normal built-in types for the language we are compiling. */
13430 if (DECL_IS_BUILTIN (decl))
13431 {
13432 /* OK, we need to generate one for `bool' so GDB knows what type
13433 comparisons have. */
13434 if (is_cxx ()
13435 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13436 && ! DECL_IGNORED_P (decl))
13437 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13438
13439 return;
13440 }
13441
13442 /* If we are in terse mode, don't generate any DIEs for types. */
13443 if (debug_info_level <= DINFO_LEVEL_TERSE)
13444 return;
13445
13446 /* If we're a function-scope tag, initially use a parent of NULL;
13447 this will be fixed up in decls_for_scope. */
13448 if (decl_function_context (decl))
13449 context_die = NULL;
13450
13451 break;
13452
13453 default:
13454 return;
13455 }
13456
13457 gen_decl_die (decl, context_die);
13458 }
13459
13460 /* Output a marker (i.e. a label) for the beginning of the generated code for
13461 a lexical block. */
13462
13463 static void
13464 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13465 unsigned int blocknum)
13466 {
13467 switch_to_section (current_function_section ());
13468 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13469 }
13470
13471 /* Output a marker (i.e. a label) for the end of the generated code for a
13472 lexical block. */
13473
13474 static void
13475 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13476 {
13477 switch_to_section (current_function_section ());
13478 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13479 }
13480
13481 /* Returns nonzero if it is appropriate not to emit any debugging
13482 information for BLOCK, because it doesn't contain any instructions.
13483
13484 Don't allow this for blocks with nested functions or local classes
13485 as we would end up with orphans, and in the presence of scheduling
13486 we may end up calling them anyway. */
13487
13488 static bool
13489 dwarf2out_ignore_block (tree block)
13490 {
13491 tree decl;
13492
13493 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13494 if (TREE_CODE (decl) == FUNCTION_DECL
13495 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13496 return 0;
13497
13498 return 1;
13499 }
13500
13501 /* Hash table routines for file_hash. */
13502
13503 static int
13504 file_table_eq (const void *p1_p, const void *p2_p)
13505 {
13506 const struct dwarf_file_data * p1 = p1_p;
13507 const char * p2 = p2_p;
13508 return strcmp (p1->filename, p2) == 0;
13509 }
13510
13511 static hashval_t
13512 file_table_hash (const void *p_p)
13513 {
13514 const struct dwarf_file_data * p = p_p;
13515 return htab_hash_string (p->filename);
13516 }
13517
13518 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13519 dwarf2out.c) and return its "index". The index of each (known) filename is
13520 just a unique number which is associated with only that one filename. We
13521 need such numbers for the sake of generating labels (in the .debug_sfnames
13522 section) and references to those files numbers (in the .debug_srcinfo
13523 and.debug_macinfo sections). If the filename given as an argument is not
13524 found in our current list, add it to the list and assign it the next
13525 available unique index number. In order to speed up searches, we remember
13526 the index of the filename was looked up last. This handles the majority of
13527 all searches. */
13528
13529 static struct dwarf_file_data *
13530 lookup_filename (const char *file_name)
13531 {
13532 void ** slot;
13533 struct dwarf_file_data * created;
13534
13535 /* Check to see if the file name that was searched on the previous
13536 call matches this file name. If so, return the index. */
13537 if (file_table_last_lookup
13538 && (file_name == file_table_last_lookup->filename
13539 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13540 return file_table_last_lookup;
13541
13542 /* Didn't match the previous lookup, search the table. */
13543 slot = htab_find_slot_with_hash (file_table, file_name,
13544 htab_hash_string (file_name), INSERT);
13545 if (*slot)
13546 return *slot;
13547
13548 created = ggc_alloc (sizeof (struct dwarf_file_data));
13549 created->filename = file_name;
13550 created->emitted_number = 0;
13551 *slot = created;
13552 return created;
13553 }
13554
13555 /* If the assembler will construct the file table, then translate the compiler
13556 internal file table number into the assembler file table number, and emit
13557 a .file directive if we haven't already emitted one yet. The file table
13558 numbers are different because we prune debug info for unused variables and
13559 types, which may include filenames. */
13560
13561 static int
13562 maybe_emit_file (struct dwarf_file_data * fd)
13563 {
13564 if (! fd->emitted_number)
13565 {
13566 if (last_emitted_file)
13567 fd->emitted_number = last_emitted_file->emitted_number + 1;
13568 else
13569 fd->emitted_number = 1;
13570 last_emitted_file = fd;
13571
13572 if (DWARF2_ASM_LINE_DEBUG_INFO)
13573 {
13574 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13575 output_quoted_string (asm_out_file, fd->filename);
13576 fputc ('\n', asm_out_file);
13577 }
13578 }
13579
13580 return fd->emitted_number;
13581 }
13582
13583 /* Called by the final INSN scan whenever we see a var location. We
13584 use it to drop labels in the right places, and throw the location in
13585 our lookup table. */
13586
13587 static void
13588 dwarf2out_var_location (rtx loc_note)
13589 {
13590 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13591 struct var_loc_node *newloc;
13592 rtx prev_insn;
13593 static rtx last_insn;
13594 static const char *last_label;
13595 tree decl;
13596
13597 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13598 return;
13599 prev_insn = PREV_INSN (loc_note);
13600
13601 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13602 /* If the insn we processed last time is the previous insn
13603 and it is also a var location note, use the label we emitted
13604 last time. */
13605 if (last_insn != NULL_RTX
13606 && last_insn == prev_insn
13607 && NOTE_P (prev_insn)
13608 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13609 {
13610 newloc->label = last_label;
13611 }
13612 else
13613 {
13614 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13615 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13616 loclabel_num++;
13617 newloc->label = ggc_strdup (loclabel);
13618 }
13619 newloc->var_loc_note = loc_note;
13620 newloc->next = NULL;
13621
13622 if (cfun && in_cold_section_p)
13623 newloc->section_label = cfun->cold_section_label;
13624 else
13625 newloc->section_label = text_section_label;
13626
13627 last_insn = loc_note;
13628 last_label = newloc->label;
13629 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13630 add_var_loc_to_decl (decl, newloc);
13631 }
13632
13633 /* We need to reset the locations at the beginning of each
13634 function. We can't do this in the end_function hook, because the
13635 declarations that use the locations won't have been output when
13636 that hook is called. Also compute have_multiple_function_sections here. */
13637
13638 static void
13639 dwarf2out_begin_function (tree fun)
13640 {
13641 htab_empty (decl_loc_table);
13642
13643 if (function_section (fun) != text_section)
13644 have_multiple_function_sections = true;
13645 }
13646
13647 /* Output a label to mark the beginning of a source code line entry
13648 and record information relating to this source line, in
13649 'line_info_table' for later output of the .debug_line section. */
13650
13651 static void
13652 dwarf2out_source_line (unsigned int line, const char *filename)
13653 {
13654 if (debug_info_level >= DINFO_LEVEL_NORMAL
13655 && line != 0)
13656 {
13657 int file_num = maybe_emit_file (lookup_filename (filename));
13658
13659 switch_to_section (current_function_section ());
13660
13661 /* If requested, emit something human-readable. */
13662 if (flag_debug_asm)
13663 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13664 filename, line);
13665
13666 if (DWARF2_ASM_LINE_DEBUG_INFO)
13667 {
13668 /* Emit the .loc directive understood by GNU as. */
13669 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13670
13671 /* Indicate that line number info exists. */
13672 line_info_table_in_use++;
13673 }
13674 else if (function_section (current_function_decl) != text_section)
13675 {
13676 dw_separate_line_info_ref line_info;
13677 targetm.asm_out.internal_label (asm_out_file,
13678 SEPARATE_LINE_CODE_LABEL,
13679 separate_line_info_table_in_use);
13680
13681 /* Expand the line info table if necessary. */
13682 if (separate_line_info_table_in_use
13683 == separate_line_info_table_allocated)
13684 {
13685 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13686 separate_line_info_table
13687 = ggc_realloc (separate_line_info_table,
13688 separate_line_info_table_allocated
13689 * sizeof (dw_separate_line_info_entry));
13690 memset (separate_line_info_table
13691 + separate_line_info_table_in_use,
13692 0,
13693 (LINE_INFO_TABLE_INCREMENT
13694 * sizeof (dw_separate_line_info_entry)));
13695 }
13696
13697 /* Add the new entry at the end of the line_info_table. */
13698 line_info
13699 = &separate_line_info_table[separate_line_info_table_in_use++];
13700 line_info->dw_file_num = file_num;
13701 line_info->dw_line_num = line;
13702 line_info->function = current_function_funcdef_no;
13703 }
13704 else
13705 {
13706 dw_line_info_ref line_info;
13707
13708 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13709 line_info_table_in_use);
13710
13711 /* Expand the line info table if necessary. */
13712 if (line_info_table_in_use == line_info_table_allocated)
13713 {
13714 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13715 line_info_table
13716 = ggc_realloc (line_info_table,
13717 (line_info_table_allocated
13718 * sizeof (dw_line_info_entry)));
13719 memset (line_info_table + line_info_table_in_use, 0,
13720 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13721 }
13722
13723 /* Add the new entry at the end of the line_info_table. */
13724 line_info = &line_info_table[line_info_table_in_use++];
13725 line_info->dw_file_num = file_num;
13726 line_info->dw_line_num = line;
13727 }
13728 }
13729 }
13730
13731 /* Record the beginning of a new source file. */
13732
13733 static void
13734 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13735 {
13736 if (flag_eliminate_dwarf2_dups)
13737 {
13738 /* Record the beginning of the file for break_out_includes. */
13739 dw_die_ref bincl_die;
13740
13741 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13742 add_AT_string (bincl_die, DW_AT_name, filename);
13743 }
13744
13745 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13746 {
13747 int file_num = maybe_emit_file (lookup_filename (filename));
13748
13749 switch_to_section (debug_macinfo_section);
13750 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13751 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13752 lineno);
13753
13754 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13755 }
13756 }
13757
13758 /* Record the end of a source file. */
13759
13760 static void
13761 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13762 {
13763 if (flag_eliminate_dwarf2_dups)
13764 /* Record the end of the file for break_out_includes. */
13765 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13766
13767 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13768 {
13769 switch_to_section (debug_macinfo_section);
13770 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13771 }
13772 }
13773
13774 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13775 the tail part of the directive line, i.e. the part which is past the
13776 initial whitespace, #, whitespace, directive-name, whitespace part. */
13777
13778 static void
13779 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13780 const char *buffer ATTRIBUTE_UNUSED)
13781 {
13782 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13783 {
13784 switch_to_section (debug_macinfo_section);
13785 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13786 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13787 dw2_asm_output_nstring (buffer, -1, "The macro");
13788 }
13789 }
13790
13791 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13792 the tail part of the directive line, i.e. the part which is past the
13793 initial whitespace, #, whitespace, directive-name, whitespace part. */
13794
13795 static void
13796 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13797 const char *buffer ATTRIBUTE_UNUSED)
13798 {
13799 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13800 {
13801 switch_to_section (debug_macinfo_section);
13802 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13803 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13804 dw2_asm_output_nstring (buffer, -1, "The macro");
13805 }
13806 }
13807
13808 /* Set up for Dwarf output at the start of compilation. */
13809
13810 static void
13811 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13812 {
13813 /* Allocate the file_table. */
13814 file_table = htab_create_ggc (50, file_table_hash,
13815 file_table_eq, NULL);
13816
13817 /* Allocate the decl_die_table. */
13818 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13819 decl_die_table_eq, NULL);
13820
13821 /* Allocate the decl_loc_table. */
13822 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13823 decl_loc_table_eq, NULL);
13824
13825 /* Allocate the initial hunk of the decl_scope_table. */
13826 decl_scope_table = VEC_alloc (tree, gc, 256);
13827
13828 /* Allocate the initial hunk of the abbrev_die_table. */
13829 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13830 * sizeof (dw_die_ref));
13831 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13832 /* Zero-th entry is allocated, but unused. */
13833 abbrev_die_table_in_use = 1;
13834
13835 /* Allocate the initial hunk of the line_info_table. */
13836 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13837 * sizeof (dw_line_info_entry));
13838 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13839
13840 /* Zero-th entry is allocated, but unused. */
13841 line_info_table_in_use = 1;
13842
13843 /* Generate the initial DIE for the .debug section. Note that the (string)
13844 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13845 will (typically) be a relative pathname and that this pathname should be
13846 taken as being relative to the directory from which the compiler was
13847 invoked when the given (base) source file was compiled. We will fill
13848 in this value in dwarf2out_finish. */
13849 comp_unit_die = gen_compile_unit_die (NULL);
13850
13851 incomplete_types = VEC_alloc (tree, gc, 64);
13852
13853 used_rtx_array = VEC_alloc (rtx, gc, 32);
13854
13855 debug_info_section = get_section (DEBUG_INFO_SECTION,
13856 SECTION_DEBUG, NULL);
13857 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13858 SECTION_DEBUG, NULL);
13859 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13860 SECTION_DEBUG, NULL);
13861 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13862 SECTION_DEBUG, NULL);
13863 debug_line_section = get_section (DEBUG_LINE_SECTION,
13864 SECTION_DEBUG, NULL);
13865 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13866 SECTION_DEBUG, NULL);
13867 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13868 SECTION_DEBUG, NULL);
13869 debug_str_section = get_section (DEBUG_STR_SECTION,
13870 DEBUG_STR_SECTION_FLAGS, NULL);
13871 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13872 SECTION_DEBUG, NULL);
13873 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13874 SECTION_DEBUG, NULL);
13875
13876 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13877 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13878 DEBUG_ABBREV_SECTION_LABEL, 0);
13879 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13880 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13881 COLD_TEXT_SECTION_LABEL, 0);
13882 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13883
13884 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13885 DEBUG_INFO_SECTION_LABEL, 0);
13886 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13887 DEBUG_LINE_SECTION_LABEL, 0);
13888 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13889 DEBUG_RANGES_SECTION_LABEL, 0);
13890 switch_to_section (debug_abbrev_section);
13891 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13892 switch_to_section (debug_info_section);
13893 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13894 switch_to_section (debug_line_section);
13895 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13896
13897 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13898 {
13899 switch_to_section (debug_macinfo_section);
13900 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13901 DEBUG_MACINFO_SECTION_LABEL, 0);
13902 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13903 }
13904
13905 switch_to_section (text_section);
13906 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13907 if (flag_reorder_blocks_and_partition)
13908 {
13909 switch_to_section (unlikely_text_section ());
13910 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13911 }
13912 }
13913
13914 /* A helper function for dwarf2out_finish called through
13915 ht_forall. Emit one queued .debug_str string. */
13916
13917 static int
13918 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13919 {
13920 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13921
13922 if (node->form == DW_FORM_strp)
13923 {
13924 switch_to_section (debug_str_section);
13925 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13926 assemble_string (node->str, strlen (node->str) + 1);
13927 }
13928
13929 return 1;
13930 }
13931
13932 #if ENABLE_ASSERT_CHECKING
13933 /* Verify that all marks are clear. */
13934
13935 static void
13936 verify_marks_clear (dw_die_ref die)
13937 {
13938 dw_die_ref c;
13939
13940 gcc_assert (! die->die_mark);
13941 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
13942 }
13943 #endif /* ENABLE_ASSERT_CHECKING */
13944
13945 /* Clear the marks for a die and its children.
13946 Be cool if the mark isn't set. */
13947
13948 static void
13949 prune_unmark_dies (dw_die_ref die)
13950 {
13951 dw_die_ref c;
13952
13953 if (die->die_mark)
13954 die->die_mark = 0;
13955 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
13956 }
13957
13958 /* Given DIE that we're marking as used, find any other dies
13959 it references as attributes and mark them as used. */
13960
13961 static void
13962 prune_unused_types_walk_attribs (dw_die_ref die)
13963 {
13964 dw_attr_ref a;
13965 unsigned ix;
13966
13967 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
13968 {
13969 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13970 {
13971 /* A reference to another DIE.
13972 Make sure that it will get emitted. */
13973 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13974 }
13975 /* Set the string's refcount to 0 so that prune_unused_types_mark
13976 accounts properly for it. */
13977 if (AT_class (a) == dw_val_class_str)
13978 a->dw_attr_val.v.val_str->refcount = 0;
13979 }
13980 }
13981
13982
13983 /* Mark DIE as being used. If DOKIDS is true, then walk down
13984 to DIE's children. */
13985
13986 static void
13987 prune_unused_types_mark (dw_die_ref die, int dokids)
13988 {
13989 dw_die_ref c;
13990
13991 if (die->die_mark == 0)
13992 {
13993 /* We haven't done this node yet. Mark it as used. */
13994 die->die_mark = 1;
13995
13996 /* We also have to mark its parents as used.
13997 (But we don't want to mark our parents' kids due to this.) */
13998 if (die->die_parent)
13999 prune_unused_types_mark (die->die_parent, 0);
14000
14001 /* Mark any referenced nodes. */
14002 prune_unused_types_walk_attribs (die);
14003
14004 /* If this node is a specification,
14005 also mark the definition, if it exists. */
14006 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14007 prune_unused_types_mark (die->die_definition, 1);
14008 }
14009
14010 if (dokids && die->die_mark != 2)
14011 {
14012 /* We need to walk the children, but haven't done so yet.
14013 Remember that we've walked the kids. */
14014 die->die_mark = 2;
14015
14016 /* If this is an array type, we need to make sure our
14017 kids get marked, even if they're types. */
14018 if (die->die_tag == DW_TAG_array_type)
14019 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14020 else
14021 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14022 }
14023 }
14024
14025
14026 /* Walk the tree DIE and mark types that we actually use. */
14027
14028 static void
14029 prune_unused_types_walk (dw_die_ref die)
14030 {
14031 dw_die_ref c;
14032
14033 /* Don't do anything if this node is already marked. */
14034 if (die->die_mark)
14035 return;
14036
14037 switch (die->die_tag) {
14038 case DW_TAG_const_type:
14039 case DW_TAG_packed_type:
14040 case DW_TAG_pointer_type:
14041 case DW_TAG_reference_type:
14042 case DW_TAG_volatile_type:
14043 case DW_TAG_typedef:
14044 case DW_TAG_array_type:
14045 case DW_TAG_structure_type:
14046 case DW_TAG_union_type:
14047 case DW_TAG_class_type:
14048 case DW_TAG_friend:
14049 case DW_TAG_variant_part:
14050 case DW_TAG_enumeration_type:
14051 case DW_TAG_subroutine_type:
14052 case DW_TAG_string_type:
14053 case DW_TAG_set_type:
14054 case DW_TAG_subrange_type:
14055 case DW_TAG_ptr_to_member_type:
14056 case DW_TAG_file_type:
14057 if (die->die_perennial_p)
14058 break;
14059
14060 /* It's a type node --- don't mark it. */
14061 return;
14062
14063 default:
14064 /* Mark everything else. */
14065 break;
14066 }
14067
14068 die->die_mark = 1;
14069
14070 /* Now, mark any dies referenced from here. */
14071 prune_unused_types_walk_attribs (die);
14072
14073 /* Mark children. */
14074 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14075 }
14076
14077 /* Increment the string counts on strings referred to from DIE's
14078 attributes. */
14079
14080 static void
14081 prune_unused_types_update_strings (dw_die_ref die)
14082 {
14083 dw_attr_ref a;
14084 unsigned ix;
14085
14086 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14087 if (AT_class (a) == dw_val_class_str)
14088 {
14089 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14090 s->refcount++;
14091 /* Avoid unnecessarily putting strings that are used less than
14092 twice in the hash table. */
14093 if (s->refcount
14094 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14095 {
14096 void ** slot;
14097 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14098 htab_hash_string (s->str),
14099 INSERT);
14100 gcc_assert (*slot == NULL);
14101 *slot = s;
14102 }
14103 }
14104 }
14105
14106 /* Remove from the tree DIE any dies that aren't marked. */
14107
14108 static void
14109 prune_unused_types_prune (dw_die_ref die)
14110 {
14111 dw_die_ref c;
14112
14113 gcc_assert (die->die_mark);
14114 prune_unused_types_update_strings (die);
14115
14116 if (! die->die_child)
14117 return;
14118
14119 c = die->die_child;
14120 do {
14121 dw_die_ref prev = c;
14122 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14123 if (c == die->die_child)
14124 {
14125 /* No marked children between 'prev' and the end of the list. */
14126 if (prev == c)
14127 /* No marked children at all. */
14128 die->die_child = NULL;
14129 else
14130 {
14131 prev->die_sib = c->die_sib;
14132 die->die_child = prev;
14133 }
14134 return;
14135 }
14136
14137 if (c != prev->die_sib)
14138 prev->die_sib = c;
14139 prune_unused_types_prune (c);
14140 } while (c != die->die_child);
14141 }
14142
14143
14144 /* Remove dies representing declarations that we never use. */
14145
14146 static void
14147 prune_unused_types (void)
14148 {
14149 unsigned int i;
14150 limbo_die_node *node;
14151
14152 #if ENABLE_ASSERT_CHECKING
14153 /* All the marks should already be clear. */
14154 verify_marks_clear (comp_unit_die);
14155 for (node = limbo_die_list; node; node = node->next)
14156 verify_marks_clear (node->die);
14157 #endif /* ENABLE_ASSERT_CHECKING */
14158
14159 /* Set the mark on nodes that are actually used. */
14160 prune_unused_types_walk (comp_unit_die);
14161 for (node = limbo_die_list; node; node = node->next)
14162 prune_unused_types_walk (node->die);
14163
14164 /* Also set the mark on nodes referenced from the
14165 pubname_table or arange_table. */
14166 for (i = 0; i < pubname_table_in_use; i++)
14167 prune_unused_types_mark (pubname_table[i].die, 1);
14168 for (i = 0; i < arange_table_in_use; i++)
14169 prune_unused_types_mark (arange_table[i], 1);
14170
14171 /* Get rid of nodes that aren't marked; and update the string counts. */
14172 if (debug_str_hash)
14173 htab_empty (debug_str_hash);
14174 prune_unused_types_prune (comp_unit_die);
14175 for (node = limbo_die_list; node; node = node->next)
14176 prune_unused_types_prune (node->die);
14177
14178 /* Leave the marks clear. */
14179 prune_unmark_dies (comp_unit_die);
14180 for (node = limbo_die_list; node; node = node->next)
14181 prune_unmark_dies (node->die);
14182 }
14183
14184 /* Set the parameter to true if there are any relative pathnames in
14185 the file table. */
14186 static int
14187 file_table_relative_p (void ** slot, void *param)
14188 {
14189 bool *p = param;
14190 struct dwarf_file_data *d = *slot;
14191 if (d->emitted_number && d->filename[0] != DIR_SEPARATOR)
14192 {
14193 *p = true;
14194 return 0;
14195 }
14196 return 1;
14197 }
14198
14199 /* Output stuff that dwarf requires at the end of every file,
14200 and generate the DWARF-2 debugging info. */
14201
14202 static void
14203 dwarf2out_finish (const char *filename)
14204 {
14205 limbo_die_node *node, *next_node;
14206 dw_die_ref die = 0;
14207
14208 /* Add the name for the main input file now. We delayed this from
14209 dwarf2out_init to avoid complications with PCH. */
14210 add_name_attribute (comp_unit_die, filename);
14211 if (filename[0] != DIR_SEPARATOR)
14212 add_comp_dir_attribute (comp_unit_die);
14213 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14214 {
14215 bool p = false;
14216 htab_traverse (file_table, file_table_relative_p, &p);
14217 if (p)
14218 add_comp_dir_attribute (comp_unit_die);
14219 }
14220
14221 /* Traverse the limbo die list, and add parent/child links. The only
14222 dies without parents that should be here are concrete instances of
14223 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14224 For concrete instances, we can get the parent die from the abstract
14225 instance. */
14226 for (node = limbo_die_list; node; node = next_node)
14227 {
14228 next_node = node->next;
14229 die = node->die;
14230
14231 if (die->die_parent == NULL)
14232 {
14233 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14234
14235 if (origin)
14236 add_child_die (origin->die_parent, die);
14237 else if (die == comp_unit_die)
14238 ;
14239 else if (errorcount > 0 || sorrycount > 0)
14240 /* It's OK to be confused by errors in the input. */
14241 add_child_die (comp_unit_die, die);
14242 else
14243 {
14244 /* In certain situations, the lexical block containing a
14245 nested function can be optimized away, which results
14246 in the nested function die being orphaned. Likewise
14247 with the return type of that nested function. Force
14248 this to be a child of the containing function.
14249
14250 It may happen that even the containing function got fully
14251 inlined and optimized out. In that case we are lost and
14252 assign the empty child. This should not be big issue as
14253 the function is likely unreachable too. */
14254 tree context = NULL_TREE;
14255
14256 gcc_assert (node->created_for);
14257
14258 if (DECL_P (node->created_for))
14259 context = DECL_CONTEXT (node->created_for);
14260 else if (TYPE_P (node->created_for))
14261 context = TYPE_CONTEXT (node->created_for);
14262
14263 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14264
14265 origin = lookup_decl_die (context);
14266 if (origin)
14267 add_child_die (origin, die);
14268 else
14269 add_child_die (comp_unit_die, die);
14270 }
14271 }
14272 }
14273
14274 limbo_die_list = NULL;
14275
14276 /* Walk through the list of incomplete types again, trying once more to
14277 emit full debugging info for them. */
14278 retry_incomplete_types ();
14279
14280 if (flag_eliminate_unused_debug_types)
14281 prune_unused_types ();
14282
14283 /* Generate separate CUs for each of the include files we've seen.
14284 They will go into limbo_die_list. */
14285 if (flag_eliminate_dwarf2_dups)
14286 break_out_includes (comp_unit_die);
14287
14288 /* Traverse the DIE's and add add sibling attributes to those DIE's
14289 that have children. */
14290 add_sibling_attributes (comp_unit_die);
14291 for (node = limbo_die_list; node; node = node->next)
14292 add_sibling_attributes (node->die);
14293
14294 /* Output a terminator label for the .text section. */
14295 switch_to_section (text_section);
14296 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14297 if (flag_reorder_blocks_and_partition)
14298 {
14299 switch_to_section (unlikely_text_section ());
14300 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14301 }
14302
14303 /* We can only use the low/high_pc attributes if all of the code was
14304 in .text. */
14305 if (!have_multiple_function_sections)
14306 {
14307 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14308 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14309 }
14310
14311 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14312 "base address". Use zero so that these addresses become absolute. */
14313 else if (have_location_lists || ranges_table_in_use)
14314 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14315
14316 /* Output location list section if necessary. */
14317 if (have_location_lists)
14318 {
14319 /* Output the location lists info. */
14320 switch_to_section (debug_loc_section);
14321 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14322 DEBUG_LOC_SECTION_LABEL, 0);
14323 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14324 output_location_lists (die);
14325 }
14326
14327 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14328 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14329 debug_line_section_label);
14330
14331 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14332 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14333
14334 /* Output all of the compilation units. We put the main one last so that
14335 the offsets are available to output_pubnames. */
14336 for (node = limbo_die_list; node; node = node->next)
14337 output_comp_unit (node->die, 0);
14338
14339 output_comp_unit (comp_unit_die, 0);
14340
14341 /* Output the abbreviation table. */
14342 switch_to_section (debug_abbrev_section);
14343 output_abbrev_section ();
14344
14345 /* Output public names table if necessary. */
14346 if (pubname_table_in_use)
14347 {
14348 switch_to_section (debug_pubnames_section);
14349 output_pubnames ();
14350 }
14351
14352 /* Output the address range information. We only put functions in the arange
14353 table, so don't write it out if we don't have any. */
14354 if (fde_table_in_use)
14355 {
14356 switch_to_section (debug_aranges_section);
14357 output_aranges ();
14358 }
14359
14360 /* Output ranges section if necessary. */
14361 if (ranges_table_in_use)
14362 {
14363 switch_to_section (debug_ranges_section);
14364 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14365 output_ranges ();
14366 }
14367
14368 /* Output the source line correspondence table. We must do this
14369 even if there is no line information. Otherwise, on an empty
14370 translation unit, we will generate a present, but empty,
14371 .debug_info section. IRIX 6.5 `nm' will then complain when
14372 examining the file. This is done late so that any filenames
14373 used by the debug_info section are marked as 'used'. */
14374 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14375 {
14376 switch_to_section (debug_line_section);
14377 output_line_info ();
14378 }
14379
14380 /* Have to end the macro section. */
14381 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14382 {
14383 switch_to_section (debug_macinfo_section);
14384 dw2_asm_output_data (1, 0, "End compilation unit");
14385 }
14386
14387 /* If we emitted any DW_FORM_strp form attribute, output the string
14388 table too. */
14389 if (debug_str_hash)
14390 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14391 }
14392 #else
14393
14394 /* This should never be used, but its address is needed for comparisons. */
14395 const struct gcc_debug_hooks dwarf2_debug_hooks;
14396
14397 #endif /* DWARF2_DEBUGGING_INFO */
14398
14399 #include "gt-dwarf2out.h"