]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dwarf2out.c
dwarf2out.c (struct gcc_debug_hooks): Call dwarf2out_begin_function at the beginning...
[thirdparty/gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67 #include "cgraph.h"
68 #include "input.h"
69
70 #ifdef DWARF2_DEBUGGING_INFO
71 static void dwarf2out_source_line (unsigned int, const char *);
72 #endif
73
74 /* DWARF2 Abbreviation Glossary:
75 CFA = Canonical Frame Address
76 a fixed address on the stack which identifies a call frame.
77 We define it to be the value of SP just before the call insn.
78 The CFA register and offset, which may change during the course
79 of the function, are used to calculate its value at runtime.
80 CFI = Call Frame Instruction
81 an instruction for the DWARF2 abstract machine
82 CIE = Common Information Entry
83 information describing information common to one or more FDEs
84 DIE = Debugging Information Entry
85 FDE = Frame Description Entry
86 information describing the stack call frame, in particular,
87 how to restore registers
88
89 DW_CFA_... = DWARF2 CFA call frame instruction
90 DW_TAG_... = DWARF2 DIE tag */
91
92 /* Decide whether we want to emit frame unwind information for the current
93 translation unit. */
94
95 int
96 dwarf2out_do_frame (void)
97 {
98 return (write_symbols == DWARF2_DEBUG
99 || write_symbols == VMS_AND_DWARF2_DEBUG
100 #ifdef DWARF2_FRAME_INFO
101 || DWARF2_FRAME_INFO
102 #endif
103 #ifdef DWARF2_UNWIND_INFO
104 || flag_unwind_tables
105 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
106 #endif
107 );
108 }
109
110 /* The size of the target's pointer type. */
111 #ifndef PTR_SIZE
112 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
113 #endif
114
115 /* Various versions of targetm.eh_frame_section. Note these must appear
116 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
117
118 /* Version of targetm.eh_frame_section for systems with named sections. */
119 void
120 named_section_eh_frame_section (void)
121 {
122 #ifdef EH_FRAME_SECTION_NAME
123 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
124 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
125 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
126 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
127 int flags;
128
129 flags = (! flag_pic
130 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
131 && (fde_encoding & 0x70) != DW_EH_PE_aligned
132 && (per_encoding & 0x70) != DW_EH_PE_absptr
133 && (per_encoding & 0x70) != DW_EH_PE_aligned
134 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
135 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
136 ? 0 : SECTION_WRITE;
137 named_section_flags (EH_FRAME_SECTION_NAME, flags);
138 #else
139 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
140 #endif
141 #endif
142 }
143
144 /* Version of targetm.eh_frame_section for systems using collect2. */
145 void
146 collect2_eh_frame_section (void)
147 {
148 tree label = get_file_function_name ('F');
149
150 data_section ();
151 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
152 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
153 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
154 }
155
156 /* Default version of targetm.eh_frame_section. */
157 void
158 default_eh_frame_section (void)
159 {
160 #ifdef EH_FRAME_SECTION_NAME
161 named_section_eh_frame_section ();
162 #else
163 collect2_eh_frame_section ();
164 #endif
165 }
166
167 /* Array of RTXes referenced by the debugging information, which therefore
168 must be kept around forever. */
169 static GTY(()) varray_type used_rtx_varray;
170
171 /* A pointer to the base of a list of incomplete types which might be
172 completed at some later time. incomplete_types_list needs to be a VARRAY
173 because we want to tell the garbage collector about it. */
174 static GTY(()) varray_type incomplete_types;
175
176 /* A pointer to the base of a table of references to declaration
177 scopes. This table is a display which tracks the nesting
178 of declaration scopes at the current scope and containing
179 scopes. This table is used to find the proper place to
180 define type declaration DIE's. */
181 static GTY(()) varray_type decl_scope_table;
182
183 /* How to start an assembler comment. */
184 #ifndef ASM_COMMENT_START
185 #define ASM_COMMENT_START ";#"
186 #endif
187
188 typedef struct dw_cfi_struct *dw_cfi_ref;
189 typedef struct dw_fde_struct *dw_fde_ref;
190 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
191
192 /* Call frames are described using a sequence of Call Frame
193 Information instructions. The register number, offset
194 and address fields are provided as possible operands;
195 their use is selected by the opcode field. */
196
197 enum dw_cfi_oprnd_type {
198 dw_cfi_oprnd_unused,
199 dw_cfi_oprnd_reg_num,
200 dw_cfi_oprnd_offset,
201 dw_cfi_oprnd_addr,
202 dw_cfi_oprnd_loc
203 };
204
205 typedef union dw_cfi_oprnd_struct GTY(())
206 {
207 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
208 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
209 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
210 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
211 }
212 dw_cfi_oprnd;
213
214 typedef struct dw_cfi_struct GTY(())
215 {
216 dw_cfi_ref dw_cfi_next;
217 enum dwarf_call_frame_info dw_cfi_opc;
218 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
219 dw_cfi_oprnd1;
220 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
221 dw_cfi_oprnd2;
222 }
223 dw_cfi_node;
224
225 /* This is how we define the location of the CFA. We use to handle it
226 as REG + OFFSET all the time, but now it can be more complex.
227 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
228 Instead of passing around REG and OFFSET, we pass a copy
229 of this structure. */
230 typedef struct cfa_loc GTY(())
231 {
232 unsigned long reg;
233 HOST_WIDE_INT offset;
234 HOST_WIDE_INT base_offset;
235 int indirect; /* 1 if CFA is accessed via a dereference. */
236 } dw_cfa_location;
237
238 /* All call frame descriptions (FDE's) in the GCC generated DWARF
239 refer to a single Common Information Entry (CIE), defined at
240 the beginning of the .debug_frame section. This use of a single
241 CIE obviates the need to keep track of multiple CIE's
242 in the DWARF generation routines below. */
243
244 typedef struct dw_fde_struct GTY(())
245 {
246 const char *dw_fde_begin;
247 const char *dw_fde_current_label;
248 const char *dw_fde_end;
249 dw_cfi_ref dw_fde_cfi;
250 unsigned funcdef_number;
251 unsigned all_throwers_are_sibcalls : 1;
252 unsigned nothrow : 1;
253 unsigned uses_eh_lsda : 1;
254 }
255 dw_fde_node;
256
257 /* Maximum size (in bytes) of an artificially generated label. */
258 #define MAX_ARTIFICIAL_LABEL_BYTES 30
259
260 /* The size of addresses as they appear in the Dwarf 2 data.
261 Some architectures use word addresses to refer to code locations,
262 but Dwarf 2 info always uses byte addresses. On such machines,
263 Dwarf 2 addresses need to be larger than the architecture's
264 pointers. */
265 #ifndef DWARF2_ADDR_SIZE
266 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
267 #endif
268
269 /* The size in bytes of a DWARF field indicating an offset or length
270 relative to a debug info section, specified to be 4 bytes in the
271 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
272 as PTR_SIZE. */
273
274 #ifndef DWARF_OFFSET_SIZE
275 #define DWARF_OFFSET_SIZE 4
276 #endif
277
278 /* According to the (draft) DWARF 3 specification, the initial length
279 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
280 bytes are 0xffffffff, followed by the length stored in the next 8
281 bytes.
282
283 However, the SGI/MIPS ABI uses an initial length which is equal to
284 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
285
286 #ifndef DWARF_INITIAL_LENGTH_SIZE
287 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
288 #endif
289
290 #define DWARF_VERSION 2
291
292 /* Round SIZE up to the nearest BOUNDARY. */
293 #define DWARF_ROUND(SIZE,BOUNDARY) \
294 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
295
296 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
297 #ifndef DWARF_CIE_DATA_ALIGNMENT
298 #ifdef STACK_GROWS_DOWNWARD
299 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
300 #else
301 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
302 #endif
303 #endif
304
305 /* A pointer to the base of a table that contains frame description
306 information for each routine. */
307 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
308
309 /* Number of elements currently allocated for fde_table. */
310 static GTY(()) unsigned fde_table_allocated;
311
312 /* Number of elements in fde_table currently in use. */
313 static GTY(()) unsigned fde_table_in_use;
314
315 /* Size (in elements) of increments by which we may expand the
316 fde_table. */
317 #define FDE_TABLE_INCREMENT 256
318
319 /* A list of call frame insns for the CIE. */
320 static GTY(()) dw_cfi_ref cie_cfi_head;
321
322 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
323 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
324 attribute that accelerates the lookup of the FDE associated
325 with the subprogram. This variable holds the table index of the FDE
326 associated with the current function (body) definition. */
327 static unsigned current_funcdef_fde;
328 #endif
329
330 struct indirect_string_node GTY(())
331 {
332 const char *str;
333 unsigned int refcount;
334 unsigned int form;
335 char *label;
336 };
337
338 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
339
340 static GTY(()) int dw2_string_counter;
341 static GTY(()) unsigned long dwarf2out_cfi_label_num;
342
343 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
344
345 /* Forward declarations for functions defined in this file. */
346
347 static char *stripattributes (const char *);
348 static const char *dwarf_cfi_name (unsigned);
349 static dw_cfi_ref new_cfi (void);
350 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
351 static void add_fde_cfi (const char *, dw_cfi_ref);
352 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
353 static void lookup_cfa (dw_cfa_location *);
354 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
355 static void initial_return_save (rtx);
356 static HOST_WIDE_INT stack_adjust_offset (rtx);
357 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
358 static void output_call_frame_info (int);
359 static void dwarf2out_stack_adjust (rtx);
360 static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
361 static void flush_queued_reg_saves (void);
362 static bool clobbers_queued_reg_save (rtx);
363 static void dwarf2out_frame_debug_expr (rtx, const char *);
364
365 /* Support for complex CFA locations. */
366 static void output_cfa_loc (dw_cfi_ref);
367 static void get_cfa_from_loc_descr (dw_cfa_location *,
368 struct dw_loc_descr_struct *);
369 static struct dw_loc_descr_struct *build_cfa_loc
370 (dw_cfa_location *);
371 static void def_cfa_1 (const char *, dw_cfa_location *);
372
373 /* How to start an assembler comment. */
374 #ifndef ASM_COMMENT_START
375 #define ASM_COMMENT_START ";#"
376 #endif
377
378 /* Data and reference forms for relocatable data. */
379 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
380 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
381
382 #ifndef DEBUG_FRAME_SECTION
383 #define DEBUG_FRAME_SECTION ".debug_frame"
384 #endif
385
386 #ifndef FUNC_BEGIN_LABEL
387 #define FUNC_BEGIN_LABEL "LFB"
388 #endif
389
390 #ifndef FUNC_END_LABEL
391 #define FUNC_END_LABEL "LFE"
392 #endif
393
394 #define FRAME_BEGIN_LABEL "Lframe"
395 #define CIE_AFTER_SIZE_LABEL "LSCIE"
396 #define CIE_END_LABEL "LECIE"
397 #define FDE_LABEL "LSFDE"
398 #define FDE_AFTER_SIZE_LABEL "LASFDE"
399 #define FDE_END_LABEL "LEFDE"
400 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
401 #define LINE_NUMBER_END_LABEL "LELT"
402 #define LN_PROLOG_AS_LABEL "LASLTP"
403 #define LN_PROLOG_END_LABEL "LELTP"
404 #define DIE_LABEL_PREFIX "DW"
405
406 /* The DWARF 2 CFA column which tracks the return address. Normally this
407 is the column for PC, or the first column after all of the hard
408 registers. */
409 #ifndef DWARF_FRAME_RETURN_COLUMN
410 #ifdef PC_REGNUM
411 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
412 #else
413 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
414 #endif
415 #endif
416
417 /* The mapping from gcc register number to DWARF 2 CFA column number. By
418 default, we just provide columns for all registers. */
419 #ifndef DWARF_FRAME_REGNUM
420 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
421 #endif
422
423 /* The offset from the incoming value of %sp to the top of the stack frame
424 for the current function. */
425 #ifndef INCOMING_FRAME_SP_OFFSET
426 #define INCOMING_FRAME_SP_OFFSET 0
427 #endif
428 \f
429 /* Hook used by __throw. */
430
431 rtx
432 expand_builtin_dwarf_sp_column (void)
433 {
434 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
435 }
436
437 /* Return a pointer to a copy of the section string name S with all
438 attributes stripped off, and an asterisk prepended (for assemble_name). */
439
440 static inline char *
441 stripattributes (const char *s)
442 {
443 char *stripped = xmalloc (strlen (s) + 2);
444 char *p = stripped;
445
446 *p++ = '*';
447
448 while (*s && *s != ',')
449 *p++ = *s++;
450
451 *p = '\0';
452 return stripped;
453 }
454
455 /* Generate code to initialize the register size table. */
456
457 void
458 expand_builtin_init_dwarf_reg_sizes (tree address)
459 {
460 int i;
461 enum machine_mode mode = TYPE_MODE (char_type_node);
462 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
463 rtx mem = gen_rtx_MEM (BLKmode, addr);
464 bool wrote_return_column = false;
465
466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
467 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
468 {
469 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
470 enum machine_mode save_mode = reg_raw_mode[i];
471 HOST_WIDE_INT size;
472
473 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
474 save_mode = choose_hard_reg_mode (i, 1, true);
475 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
476 {
477 if (save_mode == VOIDmode)
478 continue;
479 wrote_return_column = true;
480 }
481 size = GET_MODE_SIZE (save_mode);
482 if (offset < 0)
483 continue;
484
485 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
486 }
487
488 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
489 if (! wrote_return_column)
490 abort ();
491 i = DWARF_ALT_FRAME_RETURN_COLUMN;
492 wrote_return_column = false;
493 #else
494 i = DWARF_FRAME_RETURN_COLUMN;
495 #endif
496
497 if (! wrote_return_column)
498 {
499 enum machine_mode save_mode = Pmode;
500 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
501 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
502 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
503 }
504 }
505
506 /* Convert a DWARF call frame info. operation to its string name */
507
508 static const char *
509 dwarf_cfi_name (unsigned int cfi_opc)
510 {
511 switch (cfi_opc)
512 {
513 case DW_CFA_advance_loc:
514 return "DW_CFA_advance_loc";
515 case DW_CFA_offset:
516 return "DW_CFA_offset";
517 case DW_CFA_restore:
518 return "DW_CFA_restore";
519 case DW_CFA_nop:
520 return "DW_CFA_nop";
521 case DW_CFA_set_loc:
522 return "DW_CFA_set_loc";
523 case DW_CFA_advance_loc1:
524 return "DW_CFA_advance_loc1";
525 case DW_CFA_advance_loc2:
526 return "DW_CFA_advance_loc2";
527 case DW_CFA_advance_loc4:
528 return "DW_CFA_advance_loc4";
529 case DW_CFA_offset_extended:
530 return "DW_CFA_offset_extended";
531 case DW_CFA_restore_extended:
532 return "DW_CFA_restore_extended";
533 case DW_CFA_undefined:
534 return "DW_CFA_undefined";
535 case DW_CFA_same_value:
536 return "DW_CFA_same_value";
537 case DW_CFA_register:
538 return "DW_CFA_register";
539 case DW_CFA_remember_state:
540 return "DW_CFA_remember_state";
541 case DW_CFA_restore_state:
542 return "DW_CFA_restore_state";
543 case DW_CFA_def_cfa:
544 return "DW_CFA_def_cfa";
545 case DW_CFA_def_cfa_register:
546 return "DW_CFA_def_cfa_register";
547 case DW_CFA_def_cfa_offset:
548 return "DW_CFA_def_cfa_offset";
549
550 /* DWARF 3 */
551 case DW_CFA_def_cfa_expression:
552 return "DW_CFA_def_cfa_expression";
553 case DW_CFA_expression:
554 return "DW_CFA_expression";
555 case DW_CFA_offset_extended_sf:
556 return "DW_CFA_offset_extended_sf";
557 case DW_CFA_def_cfa_sf:
558 return "DW_CFA_def_cfa_sf";
559 case DW_CFA_def_cfa_offset_sf:
560 return "DW_CFA_def_cfa_offset_sf";
561
562 /* SGI/MIPS specific */
563 case DW_CFA_MIPS_advance_loc8:
564 return "DW_CFA_MIPS_advance_loc8";
565
566 /* GNU extensions */
567 case DW_CFA_GNU_window_save:
568 return "DW_CFA_GNU_window_save";
569 case DW_CFA_GNU_args_size:
570 return "DW_CFA_GNU_args_size";
571 case DW_CFA_GNU_negative_offset_extended:
572 return "DW_CFA_GNU_negative_offset_extended";
573
574 default:
575 return "DW_CFA_<unknown>";
576 }
577 }
578
579 /* Return a pointer to a newly allocated Call Frame Instruction. */
580
581 static inline dw_cfi_ref
582 new_cfi (void)
583 {
584 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
585
586 cfi->dw_cfi_next = NULL;
587 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
588 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
589
590 return cfi;
591 }
592
593 /* Add a Call Frame Instruction to list of instructions. */
594
595 static inline void
596 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
597 {
598 dw_cfi_ref *p;
599
600 /* Find the end of the chain. */
601 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
602 ;
603
604 *p = cfi;
605 }
606
607 /* Generate a new label for the CFI info to refer to. */
608
609 char *
610 dwarf2out_cfi_label (void)
611 {
612 static char label[20];
613
614 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
615 ASM_OUTPUT_LABEL (asm_out_file, label);
616 return label;
617 }
618
619 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
620 or to the CIE if LABEL is NULL. */
621
622 static void
623 add_fde_cfi (const char *label, dw_cfi_ref cfi)
624 {
625 if (label)
626 {
627 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
628
629 if (*label == 0)
630 label = dwarf2out_cfi_label ();
631
632 if (fde->dw_fde_current_label == NULL
633 || strcmp (label, fde->dw_fde_current_label) != 0)
634 {
635 dw_cfi_ref xcfi;
636
637 fde->dw_fde_current_label = label = xstrdup (label);
638
639 /* Set the location counter to the new label. */
640 xcfi = new_cfi ();
641 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
642 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
643 add_cfi (&fde->dw_fde_cfi, xcfi);
644 }
645
646 add_cfi (&fde->dw_fde_cfi, cfi);
647 }
648
649 else
650 add_cfi (&cie_cfi_head, cfi);
651 }
652
653 /* Subroutine of lookup_cfa. */
654
655 static inline void
656 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
657 {
658 switch (cfi->dw_cfi_opc)
659 {
660 case DW_CFA_def_cfa_offset:
661 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
662 break;
663 case DW_CFA_def_cfa_register:
664 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
665 break;
666 case DW_CFA_def_cfa:
667 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
668 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
669 break;
670 case DW_CFA_def_cfa_expression:
671 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
672 break;
673 default:
674 break;
675 }
676 }
677
678 /* Find the previous value for the CFA. */
679
680 static void
681 lookup_cfa (dw_cfa_location *loc)
682 {
683 dw_cfi_ref cfi;
684
685 loc->reg = (unsigned long) -1;
686 loc->offset = 0;
687 loc->indirect = 0;
688 loc->base_offset = 0;
689
690 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
691 lookup_cfa_1 (cfi, loc);
692
693 if (fde_table_in_use)
694 {
695 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
696 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
697 lookup_cfa_1 (cfi, loc);
698 }
699 }
700
701 /* The current rule for calculating the DWARF2 canonical frame address. */
702 static dw_cfa_location cfa;
703
704 /* The register used for saving registers to the stack, and its offset
705 from the CFA. */
706 static dw_cfa_location cfa_store;
707
708 /* The running total of the size of arguments pushed onto the stack. */
709 static HOST_WIDE_INT args_size;
710
711 /* The last args_size we actually output. */
712 static HOST_WIDE_INT old_args_size;
713
714 /* Entry point to update the canonical frame address (CFA).
715 LABEL is passed to add_fde_cfi. The value of CFA is now to be
716 calculated from REG+OFFSET. */
717
718 void
719 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
720 {
721 dw_cfa_location loc;
722 loc.indirect = 0;
723 loc.base_offset = 0;
724 loc.reg = reg;
725 loc.offset = offset;
726 def_cfa_1 (label, &loc);
727 }
728
729 /* This routine does the actual work. The CFA is now calculated from
730 the dw_cfa_location structure. */
731
732 static void
733 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
734 {
735 dw_cfi_ref cfi;
736 dw_cfa_location old_cfa, loc;
737
738 cfa = *loc_p;
739 loc = *loc_p;
740
741 if (cfa_store.reg == loc.reg && loc.indirect == 0)
742 cfa_store.offset = loc.offset;
743
744 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
745 lookup_cfa (&old_cfa);
746
747 /* If nothing changed, no need to issue any call frame instructions. */
748 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
749 && loc.indirect == old_cfa.indirect
750 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
751 return;
752
753 cfi = new_cfi ();
754
755 if (loc.reg == old_cfa.reg && !loc.indirect)
756 {
757 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
758 indicating the CFA register did not change but the offset
759 did. */
760 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
761 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
762 }
763
764 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
765 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
766 && !loc.indirect)
767 {
768 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
769 indicating the CFA register has changed to <register> but the
770 offset has not changed. */
771 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
772 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
773 }
774 #endif
775
776 else if (loc.indirect == 0)
777 {
778 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
779 indicating the CFA register has changed to <register> with
780 the specified offset. */
781 cfi->dw_cfi_opc = DW_CFA_def_cfa;
782 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
783 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
784 }
785 else
786 {
787 /* Construct a DW_CFA_def_cfa_expression instruction to
788 calculate the CFA using a full location expression since no
789 register-offset pair is available. */
790 struct dw_loc_descr_struct *loc_list;
791
792 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
793 loc_list = build_cfa_loc (&loc);
794 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
795 }
796
797 add_fde_cfi (label, cfi);
798 }
799
800 /* Add the CFI for saving a register. REG is the CFA column number.
801 LABEL is passed to add_fde_cfi.
802 If SREG is -1, the register is saved at OFFSET from the CFA;
803 otherwise it is saved in SREG. */
804
805 static void
806 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
807 {
808 dw_cfi_ref cfi = new_cfi ();
809
810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
811
812 /* The following comparison is correct. -1 is used to indicate that
813 the value isn't a register number. */
814 if (sreg == (unsigned int) -1)
815 {
816 if (reg & ~0x3f)
817 /* The register number won't fit in 6 bits, so we have to use
818 the long form. */
819 cfi->dw_cfi_opc = DW_CFA_offset_extended;
820 else
821 cfi->dw_cfi_opc = DW_CFA_offset;
822
823 #ifdef ENABLE_CHECKING
824 {
825 /* If we get an offset that is not a multiple of
826 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
827 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
828 description. */
829 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
830
831 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
832 abort ();
833 }
834 #endif
835 offset /= DWARF_CIE_DATA_ALIGNMENT;
836 if (offset < 0)
837 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
838
839 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
840 }
841 else if (sreg == reg)
842 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
843 return;
844 else
845 {
846 cfi->dw_cfi_opc = DW_CFA_register;
847 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
848 }
849
850 add_fde_cfi (label, cfi);
851 }
852
853 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
854 This CFI tells the unwinder that it needs to restore the window registers
855 from the previous frame's window save area.
856
857 ??? Perhaps we should note in the CIE where windows are saved (instead of
858 assuming 0(cfa)) and what registers are in the window. */
859
860 void
861 dwarf2out_window_save (const char *label)
862 {
863 dw_cfi_ref cfi = new_cfi ();
864
865 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
866 add_fde_cfi (label, cfi);
867 }
868
869 /* Add a CFI to update the running total of the size of arguments
870 pushed onto the stack. */
871
872 void
873 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
874 {
875 dw_cfi_ref cfi;
876
877 if (size == old_args_size)
878 return;
879
880 old_args_size = size;
881
882 cfi = new_cfi ();
883 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
884 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
885 add_fde_cfi (label, cfi);
886 }
887
888 /* Entry point for saving a register to the stack. REG is the GCC register
889 number. LABEL and OFFSET are passed to reg_save. */
890
891 void
892 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
893 {
894 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
895 }
896
897 /* Entry point for saving the return address in the stack.
898 LABEL and OFFSET are passed to reg_save. */
899
900 void
901 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
902 {
903 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
904 }
905
906 /* Entry point for saving the return address in a register.
907 LABEL and SREG are passed to reg_save. */
908
909 void
910 dwarf2out_return_reg (const char *label, unsigned int sreg)
911 {
912 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
913 }
914
915 /* Record the initial position of the return address. RTL is
916 INCOMING_RETURN_ADDR_RTX. */
917
918 static void
919 initial_return_save (rtx rtl)
920 {
921 unsigned int reg = (unsigned int) -1;
922 HOST_WIDE_INT offset = 0;
923
924 switch (GET_CODE (rtl))
925 {
926 case REG:
927 /* RA is in a register. */
928 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
929 break;
930
931 case MEM:
932 /* RA is on the stack. */
933 rtl = XEXP (rtl, 0);
934 switch (GET_CODE (rtl))
935 {
936 case REG:
937 if (REGNO (rtl) != STACK_POINTER_REGNUM)
938 abort ();
939 offset = 0;
940 break;
941
942 case PLUS:
943 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
944 abort ();
945 offset = INTVAL (XEXP (rtl, 1));
946 break;
947
948 case MINUS:
949 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
950 abort ();
951 offset = -INTVAL (XEXP (rtl, 1));
952 break;
953
954 default:
955 abort ();
956 }
957
958 break;
959
960 case PLUS:
961 /* The return address is at some offset from any value we can
962 actually load. For instance, on the SPARC it is in %i7+8. Just
963 ignore the offset for now; it doesn't matter for unwinding frames. */
964 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
965 abort ();
966 initial_return_save (XEXP (rtl, 0));
967 return;
968
969 default:
970 abort ();
971 }
972
973 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
974 }
975
976 /* Given a SET, calculate the amount of stack adjustment it
977 contains. */
978
979 static HOST_WIDE_INT
980 stack_adjust_offset (rtx pattern)
981 {
982 rtx src = SET_SRC (pattern);
983 rtx dest = SET_DEST (pattern);
984 HOST_WIDE_INT offset = 0;
985 enum rtx_code code;
986
987 if (dest == stack_pointer_rtx)
988 {
989 /* (set (reg sp) (plus (reg sp) (const_int))) */
990 code = GET_CODE (src);
991 if (! (code == PLUS || code == MINUS)
992 || XEXP (src, 0) != stack_pointer_rtx
993 || GET_CODE (XEXP (src, 1)) != CONST_INT)
994 return 0;
995
996 offset = INTVAL (XEXP (src, 1));
997 if (code == PLUS)
998 offset = -offset;
999 }
1000 else if (GET_CODE (dest) == MEM)
1001 {
1002 /* (set (mem (pre_dec (reg sp))) (foo)) */
1003 src = XEXP (dest, 0);
1004 code = GET_CODE (src);
1005
1006 switch (code)
1007 {
1008 case PRE_MODIFY:
1009 case POST_MODIFY:
1010 if (XEXP (src, 0) == stack_pointer_rtx)
1011 {
1012 rtx val = XEXP (XEXP (src, 1), 1);
1013 /* We handle only adjustments by constant amount. */
1014 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1015 GET_CODE (val) != CONST_INT)
1016 abort ();
1017 offset = -INTVAL (val);
1018 break;
1019 }
1020 return 0;
1021
1022 case PRE_DEC:
1023 case POST_DEC:
1024 if (XEXP (src, 0) == stack_pointer_rtx)
1025 {
1026 offset = GET_MODE_SIZE (GET_MODE (dest));
1027 break;
1028 }
1029 return 0;
1030
1031 case PRE_INC:
1032 case POST_INC:
1033 if (XEXP (src, 0) == stack_pointer_rtx)
1034 {
1035 offset = -GET_MODE_SIZE (GET_MODE (dest));
1036 break;
1037 }
1038 return 0;
1039
1040 default:
1041 return 0;
1042 }
1043 }
1044 else
1045 return 0;
1046
1047 return offset;
1048 }
1049
1050 /* Check INSN to see if it looks like a push or a stack adjustment, and
1051 make a note of it if it does. EH uses this information to find out how
1052 much extra space it needs to pop off the stack. */
1053
1054 static void
1055 dwarf2out_stack_adjust (rtx insn)
1056 {
1057 HOST_WIDE_INT offset;
1058 const char *label;
1059 int i;
1060
1061 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1062 with this function. Proper support would require all frame-related
1063 insns to be marked, and to be able to handle saving state around
1064 epilogues textually in the middle of the function. */
1065 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1066 return;
1067
1068 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1069 {
1070 /* Extract the size of the args from the CALL rtx itself. */
1071 insn = PATTERN (insn);
1072 if (GET_CODE (insn) == PARALLEL)
1073 insn = XVECEXP (insn, 0, 0);
1074 if (GET_CODE (insn) == SET)
1075 insn = SET_SRC (insn);
1076 if (GET_CODE (insn) != CALL)
1077 abort ();
1078
1079 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1080 return;
1081 }
1082
1083 /* If only calls can throw, and we have a frame pointer,
1084 save up adjustments until we see the CALL_INSN. */
1085 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1086 return;
1087
1088 if (GET_CODE (insn) == BARRIER)
1089 {
1090 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1091 the compiler will have already emitted a stack adjustment, but
1092 doesn't bother for calls to noreturn functions. */
1093 #ifdef STACK_GROWS_DOWNWARD
1094 offset = -args_size;
1095 #else
1096 offset = args_size;
1097 #endif
1098 }
1099 else if (GET_CODE (PATTERN (insn)) == SET)
1100 offset = stack_adjust_offset (PATTERN (insn));
1101 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1102 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1103 {
1104 /* There may be stack adjustments inside compound insns. Search
1105 for them. */
1106 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1107 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1108 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1109 }
1110 else
1111 return;
1112
1113 if (offset == 0)
1114 return;
1115
1116 if (cfa.reg == STACK_POINTER_REGNUM)
1117 cfa.offset += offset;
1118
1119 #ifndef STACK_GROWS_DOWNWARD
1120 offset = -offset;
1121 #endif
1122
1123 args_size += offset;
1124 if (args_size < 0)
1125 args_size = 0;
1126
1127 label = dwarf2out_cfi_label ();
1128 def_cfa_1 (label, &cfa);
1129 dwarf2out_args_size (label, args_size);
1130 }
1131
1132 #endif
1133
1134 /* We delay emitting a register save until either (a) we reach the end
1135 of the prologue or (b) the register is clobbered. This clusters
1136 register saves so that there are fewer pc advances. */
1137
1138 struct queued_reg_save GTY(())
1139 {
1140 struct queued_reg_save *next;
1141 rtx reg;
1142 HOST_WIDE_INT cfa_offset;
1143 };
1144
1145 static GTY(()) struct queued_reg_save *queued_reg_saves;
1146
1147 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1148 static const char *last_reg_save_label;
1149
1150 static void
1151 queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1152 {
1153 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1154
1155 q->next = queued_reg_saves;
1156 q->reg = reg;
1157 q->cfa_offset = offset;
1158 queued_reg_saves = q;
1159
1160 last_reg_save_label = label;
1161 }
1162
1163 static void
1164 flush_queued_reg_saves (void)
1165 {
1166 struct queued_reg_save *q, *next;
1167
1168 for (q = queued_reg_saves; q; q = next)
1169 {
1170 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1171 next = q->next;
1172 }
1173
1174 queued_reg_saves = NULL;
1175 last_reg_save_label = NULL;
1176 }
1177
1178 static bool
1179 clobbers_queued_reg_save (rtx insn)
1180 {
1181 struct queued_reg_save *q;
1182
1183 for (q = queued_reg_saves; q; q = q->next)
1184 if (modified_in_p (q->reg, insn))
1185 return true;
1186
1187 return false;
1188 }
1189
1190
1191 /* A temporary register holding an integral value used in adjusting SP
1192 or setting up the store_reg. The "offset" field holds the integer
1193 value, not an offset. */
1194 static dw_cfa_location cfa_temp;
1195
1196 /* Record call frame debugging information for an expression EXPR,
1197 which either sets SP or FP (adjusting how we calculate the frame
1198 address) or saves a register to the stack. LABEL indicates the
1199 address of EXPR.
1200
1201 This function encodes a state machine mapping rtxes to actions on
1202 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1203 users need not read the source code.
1204
1205 The High-Level Picture
1206
1207 Changes in the register we use to calculate the CFA: Currently we
1208 assume that if you copy the CFA register into another register, we
1209 should take the other one as the new CFA register; this seems to
1210 work pretty well. If it's wrong for some target, it's simple
1211 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1212
1213 Changes in the register we use for saving registers to the stack:
1214 This is usually SP, but not always. Again, we deduce that if you
1215 copy SP into another register (and SP is not the CFA register),
1216 then the new register is the one we will be using for register
1217 saves. This also seems to work.
1218
1219 Register saves: There's not much guesswork about this one; if
1220 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1221 register save, and the register used to calculate the destination
1222 had better be the one we think we're using for this purpose.
1223
1224 Except: If the register being saved is the CFA register, and the
1225 offset is nonzero, we are saving the CFA, so we assume we have to
1226 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1227 the intent is to save the value of SP from the previous frame.
1228
1229 Invariants / Summaries of Rules
1230
1231 cfa current rule for calculating the CFA. It usually
1232 consists of a register and an offset.
1233 cfa_store register used by prologue code to save things to the stack
1234 cfa_store.offset is the offset from the value of
1235 cfa_store.reg to the actual CFA
1236 cfa_temp register holding an integral value. cfa_temp.offset
1237 stores the value, which will be used to adjust the
1238 stack pointer. cfa_temp is also used like cfa_store,
1239 to track stores to the stack via fp or a temp reg.
1240
1241 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1242 with cfa.reg as the first operand changes the cfa.reg and its
1243 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1244 cfa_temp.offset.
1245
1246 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1247 expression yielding a constant. This sets cfa_temp.reg
1248 and cfa_temp.offset.
1249
1250 Rule 5: Create a new register cfa_store used to save items to the
1251 stack.
1252
1253 Rules 10-14: Save a register to the stack. Define offset as the
1254 difference of the original location and cfa_store's
1255 location (or cfa_temp's location if cfa_temp is used).
1256
1257 The Rules
1258
1259 "{a,b}" indicates a choice of a xor b.
1260 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1261
1262 Rule 1:
1263 (set <reg1> <reg2>:cfa.reg)
1264 effects: cfa.reg = <reg1>
1265 cfa.offset unchanged
1266 cfa_temp.reg = <reg1>
1267 cfa_temp.offset = cfa.offset
1268
1269 Rule 2:
1270 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1271 {<const_int>,<reg>:cfa_temp.reg}))
1272 effects: cfa.reg = sp if fp used
1273 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1274 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1275 if cfa_store.reg==sp
1276
1277 Rule 3:
1278 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1279 effects: cfa.reg = fp
1280 cfa_offset += +/- <const_int>
1281
1282 Rule 4:
1283 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1284 constraints: <reg1> != fp
1285 <reg1> != sp
1286 effects: cfa.reg = <reg1>
1287 cfa_temp.reg = <reg1>
1288 cfa_temp.offset = cfa.offset
1289
1290 Rule 5:
1291 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1292 constraints: <reg1> != fp
1293 <reg1> != sp
1294 effects: cfa_store.reg = <reg1>
1295 cfa_store.offset = cfa.offset - cfa_temp.offset
1296
1297 Rule 6:
1298 (set <reg> <const_int>)
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1301
1302 Rule 7:
1303 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1304 effects: cfa_temp.reg = <reg1>
1305 cfa_temp.offset |= <const_int>
1306
1307 Rule 8:
1308 (set <reg> (high <exp>))
1309 effects: none
1310
1311 Rule 9:
1312 (set <reg> (lo_sum <exp> <const_int>))
1313 effects: cfa_temp.reg = <reg>
1314 cfa_temp.offset = <const_int>
1315
1316 Rule 10:
1317 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1318 effects: cfa_store.offset -= <const_int>
1319 cfa.offset = cfa_store.offset if cfa.reg == sp
1320 cfa.reg = sp
1321 cfa.base_offset = -cfa_store.offset
1322
1323 Rule 11:
1324 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1325 effects: cfa_store.offset += -/+ mode_size(mem)
1326 cfa.offset = cfa_store.offset if cfa.reg == sp
1327 cfa.reg = sp
1328 cfa.base_offset = -cfa_store.offset
1329
1330 Rule 12:
1331 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1332
1333 <reg2>)
1334 effects: cfa.reg = <reg1>
1335 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1336
1337 Rule 13:
1338 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1339 effects: cfa.reg = <reg1>
1340 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1341
1342 Rule 14:
1343 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1344 effects: cfa.reg = <reg1>
1345 cfa.base_offset = -cfa_temp.offset
1346 cfa_temp.offset -= mode_size(mem) */
1347
1348 static void
1349 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1350 {
1351 rtx src, dest;
1352 HOST_WIDE_INT offset;
1353
1354 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1355 the PARALLEL independently. The first element is always processed if
1356 it is a SET. This is for backward compatibility. Other elements
1357 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1358 flag is set in them. */
1359 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1360 {
1361 int par_index;
1362 int limit = XVECLEN (expr, 0);
1363
1364 for (par_index = 0; par_index < limit; par_index++)
1365 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1366 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1367 || par_index == 0))
1368 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1369
1370 return;
1371 }
1372
1373 if (GET_CODE (expr) != SET)
1374 abort ();
1375
1376 src = SET_SRC (expr);
1377 dest = SET_DEST (expr);
1378
1379 switch (GET_CODE (dest))
1380 {
1381 case REG:
1382 /* Rule 1 */
1383 /* Update the CFA rule wrt SP or FP. Make sure src is
1384 relative to the current CFA register. */
1385 switch (GET_CODE (src))
1386 {
1387 /* Setting FP from SP. */
1388 case REG:
1389 if (cfa.reg == (unsigned) REGNO (src))
1390 /* OK. */
1391 ;
1392 else
1393 abort ();
1394
1395 /* We used to require that dest be either SP or FP, but the
1396 ARM copies SP to a temporary register, and from there to
1397 FP. So we just rely on the backends to only set
1398 RTX_FRAME_RELATED_P on appropriate insns. */
1399 cfa.reg = REGNO (dest);
1400 cfa_temp.reg = cfa.reg;
1401 cfa_temp.offset = cfa.offset;
1402 break;
1403
1404 case PLUS:
1405 case MINUS:
1406 case LO_SUM:
1407 if (dest == stack_pointer_rtx)
1408 {
1409 /* Rule 2 */
1410 /* Adjusting SP. */
1411 switch (GET_CODE (XEXP (src, 1)))
1412 {
1413 case CONST_INT:
1414 offset = INTVAL (XEXP (src, 1));
1415 break;
1416 case REG:
1417 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1418 abort ();
1419 offset = cfa_temp.offset;
1420 break;
1421 default:
1422 abort ();
1423 }
1424
1425 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1426 {
1427 /* Restoring SP from FP in the epilogue. */
1428 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1429 abort ();
1430 cfa.reg = STACK_POINTER_REGNUM;
1431 }
1432 else if (GET_CODE (src) == LO_SUM)
1433 /* Assume we've set the source reg of the LO_SUM from sp. */
1434 ;
1435 else if (XEXP (src, 0) != stack_pointer_rtx)
1436 abort ();
1437
1438 if (GET_CODE (src) != MINUS)
1439 offset = -offset;
1440 if (cfa.reg == STACK_POINTER_REGNUM)
1441 cfa.offset += offset;
1442 if (cfa_store.reg == STACK_POINTER_REGNUM)
1443 cfa_store.offset += offset;
1444 }
1445 else if (dest == hard_frame_pointer_rtx)
1446 {
1447 /* Rule 3 */
1448 /* Either setting the FP from an offset of the SP,
1449 or adjusting the FP */
1450 if (! frame_pointer_needed)
1451 abort ();
1452
1453 if (GET_CODE (XEXP (src, 0)) == REG
1454 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1455 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1456 {
1457 offset = INTVAL (XEXP (src, 1));
1458 if (GET_CODE (src) != MINUS)
1459 offset = -offset;
1460 cfa.offset += offset;
1461 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1462 }
1463 else
1464 abort ();
1465 }
1466 else
1467 {
1468 if (GET_CODE (src) == MINUS)
1469 abort ();
1470
1471 /* Rule 4 */
1472 if (GET_CODE (XEXP (src, 0)) == REG
1473 && REGNO (XEXP (src, 0)) == cfa.reg
1474 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1475 {
1476 /* Setting a temporary CFA register that will be copied
1477 into the FP later on. */
1478 offset = - INTVAL (XEXP (src, 1));
1479 cfa.offset += offset;
1480 cfa.reg = REGNO (dest);
1481 /* Or used to save regs to the stack. */
1482 cfa_temp.reg = cfa.reg;
1483 cfa_temp.offset = cfa.offset;
1484 }
1485
1486 /* Rule 5 */
1487 else if (GET_CODE (XEXP (src, 0)) == REG
1488 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1489 && XEXP (src, 1) == stack_pointer_rtx)
1490 {
1491 /* Setting a scratch register that we will use instead
1492 of SP for saving registers to the stack. */
1493 if (cfa.reg != STACK_POINTER_REGNUM)
1494 abort ();
1495 cfa_store.reg = REGNO (dest);
1496 cfa_store.offset = cfa.offset - cfa_temp.offset;
1497 }
1498
1499 /* Rule 9 */
1500 else if (GET_CODE (src) == LO_SUM
1501 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1502 {
1503 cfa_temp.reg = REGNO (dest);
1504 cfa_temp.offset = INTVAL (XEXP (src, 1));
1505 }
1506 else
1507 abort ();
1508 }
1509 break;
1510
1511 /* Rule 6 */
1512 case CONST_INT:
1513 cfa_temp.reg = REGNO (dest);
1514 cfa_temp.offset = INTVAL (src);
1515 break;
1516
1517 /* Rule 7 */
1518 case IOR:
1519 if (GET_CODE (XEXP (src, 0)) != REG
1520 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1521 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1522 abort ();
1523
1524 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1525 cfa_temp.reg = REGNO (dest);
1526 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1527 break;
1528
1529 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1530 which will fill in all of the bits. */
1531 /* Rule 8 */
1532 case HIGH:
1533 break;
1534
1535 default:
1536 abort ();
1537 }
1538
1539 def_cfa_1 (label, &cfa);
1540 break;
1541
1542 case MEM:
1543 if (GET_CODE (src) != REG)
1544 abort ();
1545
1546 /* Saving a register to the stack. Make sure dest is relative to the
1547 CFA register. */
1548 switch (GET_CODE (XEXP (dest, 0)))
1549 {
1550 /* Rule 10 */
1551 /* With a push. */
1552 case PRE_MODIFY:
1553 /* We can't handle variable size modifications. */
1554 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1555 abort ();
1556 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1557
1558 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1559 || cfa_store.reg != STACK_POINTER_REGNUM)
1560 abort ();
1561
1562 cfa_store.offset += offset;
1563 if (cfa.reg == STACK_POINTER_REGNUM)
1564 cfa.offset = cfa_store.offset;
1565
1566 offset = -cfa_store.offset;
1567 break;
1568
1569 /* Rule 11 */
1570 case PRE_INC:
1571 case PRE_DEC:
1572 offset = GET_MODE_SIZE (GET_MODE (dest));
1573 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1574 offset = -offset;
1575
1576 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1577 || cfa_store.reg != STACK_POINTER_REGNUM)
1578 abort ();
1579
1580 cfa_store.offset += offset;
1581 if (cfa.reg == STACK_POINTER_REGNUM)
1582 cfa.offset = cfa_store.offset;
1583
1584 offset = -cfa_store.offset;
1585 break;
1586
1587 /* Rule 12 */
1588 /* With an offset. */
1589 case PLUS:
1590 case MINUS:
1591 case LO_SUM:
1592 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1593 abort ();
1594 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1595 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1596 offset = -offset;
1597
1598 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1599 offset -= cfa_store.offset;
1600 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1601 offset -= cfa_temp.offset;
1602 else
1603 abort ();
1604 break;
1605
1606 /* Rule 13 */
1607 /* Without an offset. */
1608 case REG:
1609 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1610 offset = -cfa_store.offset;
1611 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1612 offset = -cfa_temp.offset;
1613 else
1614 abort ();
1615 break;
1616
1617 /* Rule 14 */
1618 case POST_INC:
1619 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1620 abort ();
1621 offset = -cfa_temp.offset;
1622 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1623 break;
1624
1625 default:
1626 abort ();
1627 }
1628
1629 if (REGNO (src) != STACK_POINTER_REGNUM
1630 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1631 && (unsigned) REGNO (src) == cfa.reg)
1632 {
1633 /* We're storing the current CFA reg into the stack. */
1634
1635 if (cfa.offset == 0)
1636 {
1637 /* If the source register is exactly the CFA, assume
1638 we're saving SP like any other register; this happens
1639 on the ARM. */
1640 def_cfa_1 (label, &cfa);
1641 queue_reg_save (label, stack_pointer_rtx, offset);
1642 break;
1643 }
1644 else
1645 {
1646 /* Otherwise, we'll need to look in the stack to
1647 calculate the CFA. */
1648 rtx x = XEXP (dest, 0);
1649
1650 if (GET_CODE (x) != REG)
1651 x = XEXP (x, 0);
1652 if (GET_CODE (x) != REG)
1653 abort ();
1654
1655 cfa.reg = REGNO (x);
1656 cfa.base_offset = offset;
1657 cfa.indirect = 1;
1658 def_cfa_1 (label, &cfa);
1659 break;
1660 }
1661 }
1662
1663 def_cfa_1 (label, &cfa);
1664 queue_reg_save (label, src, offset);
1665 break;
1666
1667 default:
1668 abort ();
1669 }
1670 }
1671
1672 /* Record call frame debugging information for INSN, which either
1673 sets SP or FP (adjusting how we calculate the frame address) or saves a
1674 register to the stack. If INSN is NULL_RTX, initialize our state. */
1675
1676 void
1677 dwarf2out_frame_debug (rtx insn)
1678 {
1679 const char *label;
1680 rtx src;
1681
1682 if (insn == NULL_RTX)
1683 {
1684 /* Flush any queued register saves. */
1685 flush_queued_reg_saves ();
1686
1687 /* Set up state for generating call frame debug info. */
1688 lookup_cfa (&cfa);
1689 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1690 abort ();
1691
1692 cfa.reg = STACK_POINTER_REGNUM;
1693 cfa_store = cfa;
1694 cfa_temp.reg = -1;
1695 cfa_temp.offset = 0;
1696 return;
1697 }
1698
1699 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1700 flush_queued_reg_saves ();
1701
1702 if (! RTX_FRAME_RELATED_P (insn))
1703 {
1704 if (!ACCUMULATE_OUTGOING_ARGS)
1705 dwarf2out_stack_adjust (insn);
1706
1707 return;
1708 }
1709
1710 label = dwarf2out_cfi_label ();
1711 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1712 if (src)
1713 insn = XEXP (src, 0);
1714 else
1715 insn = PATTERN (insn);
1716
1717 dwarf2out_frame_debug_expr (insn, label);
1718 }
1719
1720 #endif
1721
1722 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1723 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1724 (enum dwarf_call_frame_info cfi);
1725
1726 static enum dw_cfi_oprnd_type
1727 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1728 {
1729 switch (cfi)
1730 {
1731 case DW_CFA_nop:
1732 case DW_CFA_GNU_window_save:
1733 return dw_cfi_oprnd_unused;
1734
1735 case DW_CFA_set_loc:
1736 case DW_CFA_advance_loc1:
1737 case DW_CFA_advance_loc2:
1738 case DW_CFA_advance_loc4:
1739 case DW_CFA_MIPS_advance_loc8:
1740 return dw_cfi_oprnd_addr;
1741
1742 case DW_CFA_offset:
1743 case DW_CFA_offset_extended:
1744 case DW_CFA_def_cfa:
1745 case DW_CFA_offset_extended_sf:
1746 case DW_CFA_def_cfa_sf:
1747 case DW_CFA_restore_extended:
1748 case DW_CFA_undefined:
1749 case DW_CFA_same_value:
1750 case DW_CFA_def_cfa_register:
1751 case DW_CFA_register:
1752 return dw_cfi_oprnd_reg_num;
1753
1754 case DW_CFA_def_cfa_offset:
1755 case DW_CFA_GNU_args_size:
1756 case DW_CFA_def_cfa_offset_sf:
1757 return dw_cfi_oprnd_offset;
1758
1759 case DW_CFA_def_cfa_expression:
1760 case DW_CFA_expression:
1761 return dw_cfi_oprnd_loc;
1762
1763 default:
1764 abort ();
1765 }
1766 }
1767
1768 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1769 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1770 (enum dwarf_call_frame_info cfi);
1771
1772 static enum dw_cfi_oprnd_type
1773 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1774 {
1775 switch (cfi)
1776 {
1777 case DW_CFA_def_cfa:
1778 case DW_CFA_def_cfa_sf:
1779 case DW_CFA_offset:
1780 case DW_CFA_offset_extended_sf:
1781 case DW_CFA_offset_extended:
1782 return dw_cfi_oprnd_offset;
1783
1784 case DW_CFA_register:
1785 return dw_cfi_oprnd_reg_num;
1786
1787 default:
1788 return dw_cfi_oprnd_unused;
1789 }
1790 }
1791
1792 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1793
1794 /* Map register numbers held in the call frame info that gcc has
1795 collected using DWARF_FRAME_REGNUM to those that should be output in
1796 .debug_frame and .eh_frame. */
1797 #ifndef DWARF2_FRAME_REG_OUT
1798 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1799 #endif
1800
1801 /* Output a Call Frame Information opcode and its operand(s). */
1802
1803 static void
1804 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1805 {
1806 unsigned long r;
1807 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1808 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1809 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1810 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1811 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1812 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1813 {
1814 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1815 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1816 "DW_CFA_offset, column 0x%lx", r);
1817 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1818 }
1819 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1820 {
1821 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1822 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1823 "DW_CFA_restore, column 0x%lx", r);
1824 }
1825 else
1826 {
1827 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1828 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1829
1830 switch (cfi->dw_cfi_opc)
1831 {
1832 case DW_CFA_set_loc:
1833 if (for_eh)
1834 dw2_asm_output_encoded_addr_rtx (
1835 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1836 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1837 NULL);
1838 else
1839 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1840 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1841 break;
1842
1843 case DW_CFA_advance_loc1:
1844 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1845 fde->dw_fde_current_label, NULL);
1846 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1847 break;
1848
1849 case DW_CFA_advance_loc2:
1850 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1851 fde->dw_fde_current_label, NULL);
1852 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1853 break;
1854
1855 case DW_CFA_advance_loc4:
1856 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1857 fde->dw_fde_current_label, NULL);
1858 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1859 break;
1860
1861 case DW_CFA_MIPS_advance_loc8:
1862 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1863 fde->dw_fde_current_label, NULL);
1864 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1865 break;
1866
1867 case DW_CFA_offset_extended:
1868 case DW_CFA_def_cfa:
1869 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1870 dw2_asm_output_data_uleb128 (r, NULL);
1871 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1872 break;
1873
1874 case DW_CFA_offset_extended_sf:
1875 case DW_CFA_def_cfa_sf:
1876 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1877 dw2_asm_output_data_uleb128 (r, NULL);
1878 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1879 break;
1880
1881 case DW_CFA_restore_extended:
1882 case DW_CFA_undefined:
1883 case DW_CFA_same_value:
1884 case DW_CFA_def_cfa_register:
1885 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1886 dw2_asm_output_data_uleb128 (r, NULL);
1887 break;
1888
1889 case DW_CFA_register:
1890 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1891 dw2_asm_output_data_uleb128 (r, NULL);
1892 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
1893 dw2_asm_output_data_uleb128 (r, NULL);
1894 break;
1895
1896 case DW_CFA_def_cfa_offset:
1897 case DW_CFA_GNU_args_size:
1898 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1899 break;
1900
1901 case DW_CFA_def_cfa_offset_sf:
1902 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1903 break;
1904
1905 case DW_CFA_GNU_window_save:
1906 break;
1907
1908 case DW_CFA_def_cfa_expression:
1909 case DW_CFA_expression:
1910 output_cfa_loc (cfi);
1911 break;
1912
1913 case DW_CFA_GNU_negative_offset_extended:
1914 /* Obsoleted by DW_CFA_offset_extended_sf. */
1915 abort ();
1916
1917 default:
1918 break;
1919 }
1920 }
1921 }
1922
1923 /* Output the call frame information used to record information
1924 that relates to calculating the frame pointer, and records the
1925 location of saved registers. */
1926
1927 static void
1928 output_call_frame_info (int for_eh)
1929 {
1930 unsigned int i;
1931 dw_fde_ref fde;
1932 dw_cfi_ref cfi;
1933 char l1[20], l2[20], section_start_label[20];
1934 bool any_lsda_needed = false;
1935 char augmentation[6];
1936 int augmentation_size;
1937 int fde_encoding = DW_EH_PE_absptr;
1938 int per_encoding = DW_EH_PE_absptr;
1939 int lsda_encoding = DW_EH_PE_absptr;
1940
1941 /* Don't emit a CIE if there won't be any FDEs. */
1942 if (fde_table_in_use == 0)
1943 return;
1944
1945 /* If we don't have any functions we'll want to unwind out of, don't
1946 emit any EH unwind information. Note that if exceptions aren't
1947 enabled, we won't have collected nothrow information, and if we
1948 asked for asynchronous tables, we always want this info. */
1949 if (for_eh)
1950 {
1951 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1952
1953 for (i = 0; i < fde_table_in_use; i++)
1954 if (fde_table[i].uses_eh_lsda)
1955 any_eh_needed = any_lsda_needed = true;
1956 else if (! fde_table[i].nothrow
1957 && ! fde_table[i].all_throwers_are_sibcalls)
1958 any_eh_needed = true;
1959
1960 if (! any_eh_needed)
1961 return;
1962 }
1963
1964 /* We're going to be generating comments, so turn on app. */
1965 if (flag_debug_asm)
1966 app_enable ();
1967
1968 if (for_eh)
1969 (*targetm.asm_out.eh_frame_section) ();
1970 else
1971 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1972
1973 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1974 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1975
1976 /* Output the CIE. */
1977 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1978 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1979 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1980 "Length of Common Information Entry");
1981 ASM_OUTPUT_LABEL (asm_out_file, l1);
1982
1983 /* Now that the CIE pointer is PC-relative for EH,
1984 use 0 to identify the CIE. */
1985 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1986 (for_eh ? 0 : DW_CIE_ID),
1987 "CIE Identifier Tag");
1988
1989 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1990
1991 augmentation[0] = 0;
1992 augmentation_size = 0;
1993 if (for_eh)
1994 {
1995 char *p;
1996
1997 /* Augmentation:
1998 z Indicates that a uleb128 is present to size the
1999 augmentation section.
2000 L Indicates the encoding (and thus presence) of
2001 an LSDA pointer in the FDE augmentation.
2002 R Indicates a non-default pointer encoding for
2003 FDE code pointers.
2004 P Indicates the presence of an encoding + language
2005 personality routine in the CIE augmentation. */
2006
2007 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2008 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2009 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2010
2011 p = augmentation + 1;
2012 if (eh_personality_libfunc)
2013 {
2014 *p++ = 'P';
2015 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2016 }
2017 if (any_lsda_needed)
2018 {
2019 *p++ = 'L';
2020 augmentation_size += 1;
2021 }
2022 if (fde_encoding != DW_EH_PE_absptr)
2023 {
2024 *p++ = 'R';
2025 augmentation_size += 1;
2026 }
2027 if (p > augmentation + 1)
2028 {
2029 augmentation[0] = 'z';
2030 *p = '\0';
2031 }
2032
2033 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2034 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2035 {
2036 int offset = ( 4 /* Length */
2037 + 4 /* CIE Id */
2038 + 1 /* CIE version */
2039 + strlen (augmentation) + 1 /* Augmentation */
2040 + size_of_uleb128 (1) /* Code alignment */
2041 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2042 + 1 /* RA column */
2043 + 1 /* Augmentation size */
2044 + 1 /* Personality encoding */ );
2045 int pad = -offset & (PTR_SIZE - 1);
2046
2047 augmentation_size += pad;
2048
2049 /* Augmentations should be small, so there's scarce need to
2050 iterate for a solution. Die if we exceed one uleb128 byte. */
2051 if (size_of_uleb128 (augmentation_size) != 1)
2052 abort ();
2053 }
2054 }
2055
2056 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2057 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2058 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2059 "CIE Data Alignment Factor");
2060 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2061
2062 if (augmentation[0])
2063 {
2064 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2065 if (eh_personality_libfunc)
2066 {
2067 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2068 eh_data_format_name (per_encoding));
2069 dw2_asm_output_encoded_addr_rtx (per_encoding,
2070 eh_personality_libfunc, NULL);
2071 }
2072
2073 if (any_lsda_needed)
2074 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2075 eh_data_format_name (lsda_encoding));
2076
2077 if (fde_encoding != DW_EH_PE_absptr)
2078 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2079 eh_data_format_name (fde_encoding));
2080 }
2081
2082 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2083 output_cfi (cfi, NULL, for_eh);
2084
2085 /* Pad the CIE out to an address sized boundary. */
2086 ASM_OUTPUT_ALIGN (asm_out_file,
2087 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2088 ASM_OUTPUT_LABEL (asm_out_file, l2);
2089
2090 /* Loop through all of the FDE's. */
2091 for (i = 0; i < fde_table_in_use; i++)
2092 {
2093 fde = &fde_table[i];
2094
2095 /* Don't emit EH unwind info for leaf functions that don't need it. */
2096 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2097 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2098 && !fde->uses_eh_lsda)
2099 continue;
2100
2101 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2102 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2103 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2104 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2105 "FDE Length");
2106 ASM_OUTPUT_LABEL (asm_out_file, l1);
2107
2108 if (for_eh)
2109 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2110 else
2111 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2112 "FDE CIE offset");
2113
2114 if (for_eh)
2115 {
2116 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2117 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2118 "FDE initial location");
2119 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2120 fde->dw_fde_end, fde->dw_fde_begin,
2121 "FDE address range");
2122 }
2123 else
2124 {
2125 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2126 "FDE initial location");
2127 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2128 fde->dw_fde_end, fde->dw_fde_begin,
2129 "FDE address range");
2130 }
2131
2132 if (augmentation[0])
2133 {
2134 if (any_lsda_needed)
2135 {
2136 int size = size_of_encoded_value (lsda_encoding);
2137
2138 if (lsda_encoding == DW_EH_PE_aligned)
2139 {
2140 int offset = ( 4 /* Length */
2141 + 4 /* CIE offset */
2142 + 2 * size_of_encoded_value (fde_encoding)
2143 + 1 /* Augmentation size */ );
2144 int pad = -offset & (PTR_SIZE - 1);
2145
2146 size += pad;
2147 if (size_of_uleb128 (size) != 1)
2148 abort ();
2149 }
2150
2151 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2152
2153 if (fde->uses_eh_lsda)
2154 {
2155 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2156 fde->funcdef_number);
2157 dw2_asm_output_encoded_addr_rtx (
2158 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2159 "Language Specific Data Area");
2160 }
2161 else
2162 {
2163 if (lsda_encoding == DW_EH_PE_aligned)
2164 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2165 dw2_asm_output_data
2166 (size_of_encoded_value (lsda_encoding), 0,
2167 "Language Specific Data Area (none)");
2168 }
2169 }
2170 else
2171 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2172 }
2173
2174 /* Loop through the Call Frame Instructions associated with
2175 this FDE. */
2176 fde->dw_fde_current_label = fde->dw_fde_begin;
2177 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2178 output_cfi (cfi, fde, for_eh);
2179
2180 /* Pad the FDE out to an address sized boundary. */
2181 ASM_OUTPUT_ALIGN (asm_out_file,
2182 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2183 ASM_OUTPUT_LABEL (asm_out_file, l2);
2184 }
2185
2186 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2187 dw2_asm_output_data (4, 0, "End of Table");
2188 #ifdef MIPS_DEBUGGING_INFO
2189 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2190 get a value of 0. Putting .align 0 after the label fixes it. */
2191 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2192 #endif
2193
2194 /* Turn off app to make assembly quicker. */
2195 if (flag_debug_asm)
2196 app_disable ();
2197 }
2198
2199 /* Output a marker (i.e. a label) for the beginning of a function, before
2200 the prologue. */
2201
2202 void
2203 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2204 const char *file ATTRIBUTE_UNUSED)
2205 {
2206 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2207 dw_fde_ref fde;
2208
2209 current_function_func_begin_label = 0;
2210
2211 #ifdef IA64_UNWIND_INFO
2212 /* ??? current_function_func_begin_label is also used by except.c
2213 for call-site information. We must emit this label if it might
2214 be used. */
2215 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2216 && ! dwarf2out_do_frame ())
2217 return;
2218 #else
2219 if (! dwarf2out_do_frame ())
2220 return;
2221 #endif
2222
2223 function_section (current_function_decl);
2224 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2225 current_function_funcdef_no);
2226 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2227 current_function_funcdef_no);
2228 current_function_func_begin_label = get_identifier (label);
2229
2230 #ifdef IA64_UNWIND_INFO
2231 /* We can elide the fde allocation if we're not emitting debug info. */
2232 if (! dwarf2out_do_frame ())
2233 return;
2234 #endif
2235
2236 /* Expand the fde table if necessary. */
2237 if (fde_table_in_use == fde_table_allocated)
2238 {
2239 fde_table_allocated += FDE_TABLE_INCREMENT;
2240 fde_table = ggc_realloc (fde_table,
2241 fde_table_allocated * sizeof (dw_fde_node));
2242 memset (fde_table + fde_table_in_use, 0,
2243 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2244 }
2245
2246 /* Record the FDE associated with this function. */
2247 current_funcdef_fde = fde_table_in_use;
2248
2249 /* Add the new FDE at the end of the fde_table. */
2250 fde = &fde_table[fde_table_in_use++];
2251 fde->dw_fde_begin = xstrdup (label);
2252 fde->dw_fde_current_label = NULL;
2253 fde->dw_fde_end = NULL;
2254 fde->dw_fde_cfi = NULL;
2255 fde->funcdef_number = current_function_funcdef_no;
2256 fde->nothrow = current_function_nothrow;
2257 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2258 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2259
2260 args_size = old_args_size = 0;
2261
2262 /* We only want to output line number information for the genuine dwarf2
2263 prologue case, not the eh frame case. */
2264 #ifdef DWARF2_DEBUGGING_INFO
2265 if (file)
2266 dwarf2out_source_line (line, file);
2267 #endif
2268 }
2269
2270 /* Output a marker (i.e. a label) for the absolute end of the generated code
2271 for a function definition. This gets called *after* the epilogue code has
2272 been generated. */
2273
2274 void
2275 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2276 const char *file ATTRIBUTE_UNUSED)
2277 {
2278 dw_fde_ref fde;
2279 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2280
2281 /* Output a label to mark the endpoint of the code generated for this
2282 function. */
2283 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2284 current_function_funcdef_no);
2285 ASM_OUTPUT_LABEL (asm_out_file, label);
2286 fde = &fde_table[fde_table_in_use - 1];
2287 fde->dw_fde_end = xstrdup (label);
2288 }
2289
2290 void
2291 dwarf2out_frame_init (void)
2292 {
2293 /* Allocate the initial hunk of the fde_table. */
2294 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2295 fde_table_allocated = FDE_TABLE_INCREMENT;
2296 fde_table_in_use = 0;
2297
2298 /* Generate the CFA instructions common to all FDE's. Do it now for the
2299 sake of lookup_cfa. */
2300
2301 #ifdef DWARF2_UNWIND_INFO
2302 /* On entry, the Canonical Frame Address is at SP. */
2303 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2304 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2305 #endif
2306 }
2307
2308 void
2309 dwarf2out_frame_finish (void)
2310 {
2311 /* Output call frame information. */
2312 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2313 output_call_frame_info (0);
2314
2315 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2316 output_call_frame_info (1);
2317 }
2318 #endif
2319 \f
2320 /* And now, the subset of the debugging information support code necessary
2321 for emitting location expressions. */
2322
2323 /* We need some way to distinguish DW_OP_addr with a direct symbol
2324 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2325 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2326
2327
2328 typedef struct dw_val_struct *dw_val_ref;
2329 typedef struct die_struct *dw_die_ref;
2330 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2331 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2332
2333 /* Each DIE may have a series of attribute/value pairs. Values
2334 can take on several forms. The forms that are used in this
2335 implementation are listed below. */
2336
2337 enum dw_val_class
2338 {
2339 dw_val_class_addr,
2340 dw_val_class_offset,
2341 dw_val_class_loc,
2342 dw_val_class_loc_list,
2343 dw_val_class_range_list,
2344 dw_val_class_const,
2345 dw_val_class_unsigned_const,
2346 dw_val_class_long_long,
2347 dw_val_class_float,
2348 dw_val_class_flag,
2349 dw_val_class_die_ref,
2350 dw_val_class_fde_ref,
2351 dw_val_class_lbl_id,
2352 dw_val_class_lbl_offset,
2353 dw_val_class_str
2354 };
2355
2356 /* Describe a double word constant value. */
2357 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2358
2359 typedef struct dw_long_long_struct GTY(())
2360 {
2361 unsigned long hi;
2362 unsigned long low;
2363 }
2364 dw_long_long_const;
2365
2366 /* Describe a floating point constant value. */
2367
2368 typedef struct dw_fp_struct GTY(())
2369 {
2370 long * GTY((length ("%h.length"))) array;
2371 unsigned length;
2372 }
2373 dw_float_const;
2374
2375 /* The dw_val_node describes an attribute's value, as it is
2376 represented internally. */
2377
2378 typedef struct dw_val_struct GTY(())
2379 {
2380 enum dw_val_class val_class;
2381 union dw_val_struct_union
2382 {
2383 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2384 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2385 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2386 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2387 HOST_WIDE_INT GTY ((default (""))) val_int;
2388 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2389 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2390 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2391 struct dw_val_die_union
2392 {
2393 dw_die_ref die;
2394 int external;
2395 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2396 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2397 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2398 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2399 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2400 }
2401 GTY ((desc ("%1.val_class"))) v;
2402 }
2403 dw_val_node;
2404
2405 /* Locations in memory are described using a sequence of stack machine
2406 operations. */
2407
2408 typedef struct dw_loc_descr_struct GTY(())
2409 {
2410 dw_loc_descr_ref dw_loc_next;
2411 enum dwarf_location_atom dw_loc_opc;
2412 dw_val_node dw_loc_oprnd1;
2413 dw_val_node dw_loc_oprnd2;
2414 int dw_loc_addr;
2415 }
2416 dw_loc_descr_node;
2417
2418 /* Location lists are ranges + location descriptions for that range,
2419 so you can track variables that are in different places over
2420 their entire life. */
2421 typedef struct dw_loc_list_struct GTY(())
2422 {
2423 dw_loc_list_ref dw_loc_next;
2424 const char *begin; /* Label for begin address of range */
2425 const char *end; /* Label for end address of range */
2426 char *ll_symbol; /* Label for beginning of location list.
2427 Only on head of list */
2428 const char *section; /* Section this loclist is relative to */
2429 dw_loc_descr_ref expr;
2430 } dw_loc_list_node;
2431
2432 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2433
2434 static const char *dwarf_stack_op_name (unsigned);
2435 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2436 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2437 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2438 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2439 static unsigned long size_of_locs (dw_loc_descr_ref);
2440 static void output_loc_operands (dw_loc_descr_ref);
2441 static void output_loc_sequence (dw_loc_descr_ref);
2442
2443 /* Convert a DWARF stack opcode into its string name. */
2444
2445 static const char *
2446 dwarf_stack_op_name (unsigned int op)
2447 {
2448 switch (op)
2449 {
2450 case DW_OP_addr:
2451 case INTERNAL_DW_OP_tls_addr:
2452 return "DW_OP_addr";
2453 case DW_OP_deref:
2454 return "DW_OP_deref";
2455 case DW_OP_const1u:
2456 return "DW_OP_const1u";
2457 case DW_OP_const1s:
2458 return "DW_OP_const1s";
2459 case DW_OP_const2u:
2460 return "DW_OP_const2u";
2461 case DW_OP_const2s:
2462 return "DW_OP_const2s";
2463 case DW_OP_const4u:
2464 return "DW_OP_const4u";
2465 case DW_OP_const4s:
2466 return "DW_OP_const4s";
2467 case DW_OP_const8u:
2468 return "DW_OP_const8u";
2469 case DW_OP_const8s:
2470 return "DW_OP_const8s";
2471 case DW_OP_constu:
2472 return "DW_OP_constu";
2473 case DW_OP_consts:
2474 return "DW_OP_consts";
2475 case DW_OP_dup:
2476 return "DW_OP_dup";
2477 case DW_OP_drop:
2478 return "DW_OP_drop";
2479 case DW_OP_over:
2480 return "DW_OP_over";
2481 case DW_OP_pick:
2482 return "DW_OP_pick";
2483 case DW_OP_swap:
2484 return "DW_OP_swap";
2485 case DW_OP_rot:
2486 return "DW_OP_rot";
2487 case DW_OP_xderef:
2488 return "DW_OP_xderef";
2489 case DW_OP_abs:
2490 return "DW_OP_abs";
2491 case DW_OP_and:
2492 return "DW_OP_and";
2493 case DW_OP_div:
2494 return "DW_OP_div";
2495 case DW_OP_minus:
2496 return "DW_OP_minus";
2497 case DW_OP_mod:
2498 return "DW_OP_mod";
2499 case DW_OP_mul:
2500 return "DW_OP_mul";
2501 case DW_OP_neg:
2502 return "DW_OP_neg";
2503 case DW_OP_not:
2504 return "DW_OP_not";
2505 case DW_OP_or:
2506 return "DW_OP_or";
2507 case DW_OP_plus:
2508 return "DW_OP_plus";
2509 case DW_OP_plus_uconst:
2510 return "DW_OP_plus_uconst";
2511 case DW_OP_shl:
2512 return "DW_OP_shl";
2513 case DW_OP_shr:
2514 return "DW_OP_shr";
2515 case DW_OP_shra:
2516 return "DW_OP_shra";
2517 case DW_OP_xor:
2518 return "DW_OP_xor";
2519 case DW_OP_bra:
2520 return "DW_OP_bra";
2521 case DW_OP_eq:
2522 return "DW_OP_eq";
2523 case DW_OP_ge:
2524 return "DW_OP_ge";
2525 case DW_OP_gt:
2526 return "DW_OP_gt";
2527 case DW_OP_le:
2528 return "DW_OP_le";
2529 case DW_OP_lt:
2530 return "DW_OP_lt";
2531 case DW_OP_ne:
2532 return "DW_OP_ne";
2533 case DW_OP_skip:
2534 return "DW_OP_skip";
2535 case DW_OP_lit0:
2536 return "DW_OP_lit0";
2537 case DW_OP_lit1:
2538 return "DW_OP_lit1";
2539 case DW_OP_lit2:
2540 return "DW_OP_lit2";
2541 case DW_OP_lit3:
2542 return "DW_OP_lit3";
2543 case DW_OP_lit4:
2544 return "DW_OP_lit4";
2545 case DW_OP_lit5:
2546 return "DW_OP_lit5";
2547 case DW_OP_lit6:
2548 return "DW_OP_lit6";
2549 case DW_OP_lit7:
2550 return "DW_OP_lit7";
2551 case DW_OP_lit8:
2552 return "DW_OP_lit8";
2553 case DW_OP_lit9:
2554 return "DW_OP_lit9";
2555 case DW_OP_lit10:
2556 return "DW_OP_lit10";
2557 case DW_OP_lit11:
2558 return "DW_OP_lit11";
2559 case DW_OP_lit12:
2560 return "DW_OP_lit12";
2561 case DW_OP_lit13:
2562 return "DW_OP_lit13";
2563 case DW_OP_lit14:
2564 return "DW_OP_lit14";
2565 case DW_OP_lit15:
2566 return "DW_OP_lit15";
2567 case DW_OP_lit16:
2568 return "DW_OP_lit16";
2569 case DW_OP_lit17:
2570 return "DW_OP_lit17";
2571 case DW_OP_lit18:
2572 return "DW_OP_lit18";
2573 case DW_OP_lit19:
2574 return "DW_OP_lit19";
2575 case DW_OP_lit20:
2576 return "DW_OP_lit20";
2577 case DW_OP_lit21:
2578 return "DW_OP_lit21";
2579 case DW_OP_lit22:
2580 return "DW_OP_lit22";
2581 case DW_OP_lit23:
2582 return "DW_OP_lit23";
2583 case DW_OP_lit24:
2584 return "DW_OP_lit24";
2585 case DW_OP_lit25:
2586 return "DW_OP_lit25";
2587 case DW_OP_lit26:
2588 return "DW_OP_lit26";
2589 case DW_OP_lit27:
2590 return "DW_OP_lit27";
2591 case DW_OP_lit28:
2592 return "DW_OP_lit28";
2593 case DW_OP_lit29:
2594 return "DW_OP_lit29";
2595 case DW_OP_lit30:
2596 return "DW_OP_lit30";
2597 case DW_OP_lit31:
2598 return "DW_OP_lit31";
2599 case DW_OP_reg0:
2600 return "DW_OP_reg0";
2601 case DW_OP_reg1:
2602 return "DW_OP_reg1";
2603 case DW_OP_reg2:
2604 return "DW_OP_reg2";
2605 case DW_OP_reg3:
2606 return "DW_OP_reg3";
2607 case DW_OP_reg4:
2608 return "DW_OP_reg4";
2609 case DW_OP_reg5:
2610 return "DW_OP_reg5";
2611 case DW_OP_reg6:
2612 return "DW_OP_reg6";
2613 case DW_OP_reg7:
2614 return "DW_OP_reg7";
2615 case DW_OP_reg8:
2616 return "DW_OP_reg8";
2617 case DW_OP_reg9:
2618 return "DW_OP_reg9";
2619 case DW_OP_reg10:
2620 return "DW_OP_reg10";
2621 case DW_OP_reg11:
2622 return "DW_OP_reg11";
2623 case DW_OP_reg12:
2624 return "DW_OP_reg12";
2625 case DW_OP_reg13:
2626 return "DW_OP_reg13";
2627 case DW_OP_reg14:
2628 return "DW_OP_reg14";
2629 case DW_OP_reg15:
2630 return "DW_OP_reg15";
2631 case DW_OP_reg16:
2632 return "DW_OP_reg16";
2633 case DW_OP_reg17:
2634 return "DW_OP_reg17";
2635 case DW_OP_reg18:
2636 return "DW_OP_reg18";
2637 case DW_OP_reg19:
2638 return "DW_OP_reg19";
2639 case DW_OP_reg20:
2640 return "DW_OP_reg20";
2641 case DW_OP_reg21:
2642 return "DW_OP_reg21";
2643 case DW_OP_reg22:
2644 return "DW_OP_reg22";
2645 case DW_OP_reg23:
2646 return "DW_OP_reg23";
2647 case DW_OP_reg24:
2648 return "DW_OP_reg24";
2649 case DW_OP_reg25:
2650 return "DW_OP_reg25";
2651 case DW_OP_reg26:
2652 return "DW_OP_reg26";
2653 case DW_OP_reg27:
2654 return "DW_OP_reg27";
2655 case DW_OP_reg28:
2656 return "DW_OP_reg28";
2657 case DW_OP_reg29:
2658 return "DW_OP_reg29";
2659 case DW_OP_reg30:
2660 return "DW_OP_reg30";
2661 case DW_OP_reg31:
2662 return "DW_OP_reg31";
2663 case DW_OP_breg0:
2664 return "DW_OP_breg0";
2665 case DW_OP_breg1:
2666 return "DW_OP_breg1";
2667 case DW_OP_breg2:
2668 return "DW_OP_breg2";
2669 case DW_OP_breg3:
2670 return "DW_OP_breg3";
2671 case DW_OP_breg4:
2672 return "DW_OP_breg4";
2673 case DW_OP_breg5:
2674 return "DW_OP_breg5";
2675 case DW_OP_breg6:
2676 return "DW_OP_breg6";
2677 case DW_OP_breg7:
2678 return "DW_OP_breg7";
2679 case DW_OP_breg8:
2680 return "DW_OP_breg8";
2681 case DW_OP_breg9:
2682 return "DW_OP_breg9";
2683 case DW_OP_breg10:
2684 return "DW_OP_breg10";
2685 case DW_OP_breg11:
2686 return "DW_OP_breg11";
2687 case DW_OP_breg12:
2688 return "DW_OP_breg12";
2689 case DW_OP_breg13:
2690 return "DW_OP_breg13";
2691 case DW_OP_breg14:
2692 return "DW_OP_breg14";
2693 case DW_OP_breg15:
2694 return "DW_OP_breg15";
2695 case DW_OP_breg16:
2696 return "DW_OP_breg16";
2697 case DW_OP_breg17:
2698 return "DW_OP_breg17";
2699 case DW_OP_breg18:
2700 return "DW_OP_breg18";
2701 case DW_OP_breg19:
2702 return "DW_OP_breg19";
2703 case DW_OP_breg20:
2704 return "DW_OP_breg20";
2705 case DW_OP_breg21:
2706 return "DW_OP_breg21";
2707 case DW_OP_breg22:
2708 return "DW_OP_breg22";
2709 case DW_OP_breg23:
2710 return "DW_OP_breg23";
2711 case DW_OP_breg24:
2712 return "DW_OP_breg24";
2713 case DW_OP_breg25:
2714 return "DW_OP_breg25";
2715 case DW_OP_breg26:
2716 return "DW_OP_breg26";
2717 case DW_OP_breg27:
2718 return "DW_OP_breg27";
2719 case DW_OP_breg28:
2720 return "DW_OP_breg28";
2721 case DW_OP_breg29:
2722 return "DW_OP_breg29";
2723 case DW_OP_breg30:
2724 return "DW_OP_breg30";
2725 case DW_OP_breg31:
2726 return "DW_OP_breg31";
2727 case DW_OP_regx:
2728 return "DW_OP_regx";
2729 case DW_OP_fbreg:
2730 return "DW_OP_fbreg";
2731 case DW_OP_bregx:
2732 return "DW_OP_bregx";
2733 case DW_OP_piece:
2734 return "DW_OP_piece";
2735 case DW_OP_deref_size:
2736 return "DW_OP_deref_size";
2737 case DW_OP_xderef_size:
2738 return "DW_OP_xderef_size";
2739 case DW_OP_nop:
2740 return "DW_OP_nop";
2741 case DW_OP_push_object_address:
2742 return "DW_OP_push_object_address";
2743 case DW_OP_call2:
2744 return "DW_OP_call2";
2745 case DW_OP_call4:
2746 return "DW_OP_call4";
2747 case DW_OP_call_ref:
2748 return "DW_OP_call_ref";
2749 case DW_OP_GNU_push_tls_address:
2750 return "DW_OP_GNU_push_tls_address";
2751 default:
2752 return "OP_<unknown>";
2753 }
2754 }
2755
2756 /* Return a pointer to a newly allocated location description. Location
2757 descriptions are simple expression terms that can be strung
2758 together to form more complicated location (address) descriptions. */
2759
2760 static inline dw_loc_descr_ref
2761 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2762 unsigned HOST_WIDE_INT oprnd2)
2763 {
2764 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2765
2766 descr->dw_loc_opc = op;
2767 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2768 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2769 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2770 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2771
2772 return descr;
2773 }
2774
2775
2776 /* Add a location description term to a location description expression. */
2777
2778 static inline void
2779 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2780 {
2781 dw_loc_descr_ref *d;
2782
2783 /* Find the end of the chain. */
2784 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2785 ;
2786
2787 *d = descr;
2788 }
2789
2790 /* Return the size of a location descriptor. */
2791
2792 static unsigned long
2793 size_of_loc_descr (dw_loc_descr_ref loc)
2794 {
2795 unsigned long size = 1;
2796
2797 switch (loc->dw_loc_opc)
2798 {
2799 case DW_OP_addr:
2800 case INTERNAL_DW_OP_tls_addr:
2801 size += DWARF2_ADDR_SIZE;
2802 break;
2803 case DW_OP_const1u:
2804 case DW_OP_const1s:
2805 size += 1;
2806 break;
2807 case DW_OP_const2u:
2808 case DW_OP_const2s:
2809 size += 2;
2810 break;
2811 case DW_OP_const4u:
2812 case DW_OP_const4s:
2813 size += 4;
2814 break;
2815 case DW_OP_const8u:
2816 case DW_OP_const8s:
2817 size += 8;
2818 break;
2819 case DW_OP_constu:
2820 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2821 break;
2822 case DW_OP_consts:
2823 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2824 break;
2825 case DW_OP_pick:
2826 size += 1;
2827 break;
2828 case DW_OP_plus_uconst:
2829 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2830 break;
2831 case DW_OP_skip:
2832 case DW_OP_bra:
2833 size += 2;
2834 break;
2835 case DW_OP_breg0:
2836 case DW_OP_breg1:
2837 case DW_OP_breg2:
2838 case DW_OP_breg3:
2839 case DW_OP_breg4:
2840 case DW_OP_breg5:
2841 case DW_OP_breg6:
2842 case DW_OP_breg7:
2843 case DW_OP_breg8:
2844 case DW_OP_breg9:
2845 case DW_OP_breg10:
2846 case DW_OP_breg11:
2847 case DW_OP_breg12:
2848 case DW_OP_breg13:
2849 case DW_OP_breg14:
2850 case DW_OP_breg15:
2851 case DW_OP_breg16:
2852 case DW_OP_breg17:
2853 case DW_OP_breg18:
2854 case DW_OP_breg19:
2855 case DW_OP_breg20:
2856 case DW_OP_breg21:
2857 case DW_OP_breg22:
2858 case DW_OP_breg23:
2859 case DW_OP_breg24:
2860 case DW_OP_breg25:
2861 case DW_OP_breg26:
2862 case DW_OP_breg27:
2863 case DW_OP_breg28:
2864 case DW_OP_breg29:
2865 case DW_OP_breg30:
2866 case DW_OP_breg31:
2867 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2868 break;
2869 case DW_OP_regx:
2870 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2871 break;
2872 case DW_OP_fbreg:
2873 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2874 break;
2875 case DW_OP_bregx:
2876 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2877 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2878 break;
2879 case DW_OP_piece:
2880 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2881 break;
2882 case DW_OP_deref_size:
2883 case DW_OP_xderef_size:
2884 size += 1;
2885 break;
2886 case DW_OP_call2:
2887 size += 2;
2888 break;
2889 case DW_OP_call4:
2890 size += 4;
2891 break;
2892 case DW_OP_call_ref:
2893 size += DWARF2_ADDR_SIZE;
2894 break;
2895 default:
2896 break;
2897 }
2898
2899 return size;
2900 }
2901
2902 /* Return the size of a series of location descriptors. */
2903
2904 static unsigned long
2905 size_of_locs (dw_loc_descr_ref loc)
2906 {
2907 unsigned long size;
2908
2909 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2910 {
2911 loc->dw_loc_addr = size;
2912 size += size_of_loc_descr (loc);
2913 }
2914
2915 return size;
2916 }
2917
2918 /* Output location description stack opcode's operands (if any). */
2919
2920 static void
2921 output_loc_operands (dw_loc_descr_ref loc)
2922 {
2923 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2924 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2925
2926 switch (loc->dw_loc_opc)
2927 {
2928 #ifdef DWARF2_DEBUGGING_INFO
2929 case DW_OP_addr:
2930 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2931 break;
2932 case DW_OP_const2u:
2933 case DW_OP_const2s:
2934 dw2_asm_output_data (2, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_const4u:
2937 case DW_OP_const4s:
2938 dw2_asm_output_data (4, val1->v.val_int, NULL);
2939 break;
2940 case DW_OP_const8u:
2941 case DW_OP_const8s:
2942 if (HOST_BITS_PER_LONG < 64)
2943 abort ();
2944 dw2_asm_output_data (8, val1->v.val_int, NULL);
2945 break;
2946 case DW_OP_skip:
2947 case DW_OP_bra:
2948 {
2949 int offset;
2950
2951 if (val1->val_class == dw_val_class_loc)
2952 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2953 else
2954 abort ();
2955
2956 dw2_asm_output_data (2, offset, NULL);
2957 }
2958 break;
2959 #else
2960 case DW_OP_addr:
2961 case DW_OP_const2u:
2962 case DW_OP_const2s:
2963 case DW_OP_const4u:
2964 case DW_OP_const4s:
2965 case DW_OP_const8u:
2966 case DW_OP_const8s:
2967 case DW_OP_skip:
2968 case DW_OP_bra:
2969 /* We currently don't make any attempt to make sure these are
2970 aligned properly like we do for the main unwind info, so
2971 don't support emitting things larger than a byte if we're
2972 only doing unwinding. */
2973 abort ();
2974 #endif
2975 case DW_OP_const1u:
2976 case DW_OP_const1s:
2977 dw2_asm_output_data (1, val1->v.val_int, NULL);
2978 break;
2979 case DW_OP_constu:
2980 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981 break;
2982 case DW_OP_consts:
2983 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2984 break;
2985 case DW_OP_pick:
2986 dw2_asm_output_data (1, val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_plus_uconst:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 break;
2991 case DW_OP_breg0:
2992 case DW_OP_breg1:
2993 case DW_OP_breg2:
2994 case DW_OP_breg3:
2995 case DW_OP_breg4:
2996 case DW_OP_breg5:
2997 case DW_OP_breg6:
2998 case DW_OP_breg7:
2999 case DW_OP_breg8:
3000 case DW_OP_breg9:
3001 case DW_OP_breg10:
3002 case DW_OP_breg11:
3003 case DW_OP_breg12:
3004 case DW_OP_breg13:
3005 case DW_OP_breg14:
3006 case DW_OP_breg15:
3007 case DW_OP_breg16:
3008 case DW_OP_breg17:
3009 case DW_OP_breg18:
3010 case DW_OP_breg19:
3011 case DW_OP_breg20:
3012 case DW_OP_breg21:
3013 case DW_OP_breg22:
3014 case DW_OP_breg23:
3015 case DW_OP_breg24:
3016 case DW_OP_breg25:
3017 case DW_OP_breg26:
3018 case DW_OP_breg27:
3019 case DW_OP_breg28:
3020 case DW_OP_breg29:
3021 case DW_OP_breg30:
3022 case DW_OP_breg31:
3023 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3024 break;
3025 case DW_OP_regx:
3026 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3027 break;
3028 case DW_OP_fbreg:
3029 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3030 break;
3031 case DW_OP_bregx:
3032 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3033 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3034 break;
3035 case DW_OP_piece:
3036 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3037 break;
3038 case DW_OP_deref_size:
3039 case DW_OP_xderef_size:
3040 dw2_asm_output_data (1, val1->v.val_int, NULL);
3041 break;
3042
3043 case INTERNAL_DW_OP_tls_addr:
3044 #ifdef ASM_OUTPUT_DWARF_DTPREL
3045 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3046 val1->v.val_addr);
3047 fputc ('\n', asm_out_file);
3048 #else
3049 abort ();
3050 #endif
3051 break;
3052
3053 default:
3054 /* Other codes have no operands. */
3055 break;
3056 }
3057 }
3058
3059 /* Output a sequence of location operations. */
3060
3061 static void
3062 output_loc_sequence (dw_loc_descr_ref loc)
3063 {
3064 for (; loc != NULL; loc = loc->dw_loc_next)
3065 {
3066 /* Output the opcode. */
3067 dw2_asm_output_data (1, loc->dw_loc_opc,
3068 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3069
3070 /* Output the operand(s) (if any). */
3071 output_loc_operands (loc);
3072 }
3073 }
3074
3075 /* This routine will generate the correct assembly data for a location
3076 description based on a cfi entry with a complex address. */
3077
3078 static void
3079 output_cfa_loc (dw_cfi_ref cfi)
3080 {
3081 dw_loc_descr_ref loc;
3082 unsigned long size;
3083
3084 /* Output the size of the block. */
3085 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3086 size = size_of_locs (loc);
3087 dw2_asm_output_data_uleb128 (size, NULL);
3088
3089 /* Now output the operations themselves. */
3090 output_loc_sequence (loc);
3091 }
3092
3093 /* This function builds a dwarf location descriptor sequence from
3094 a dw_cfa_location. */
3095
3096 static struct dw_loc_descr_struct *
3097 build_cfa_loc (dw_cfa_location *cfa)
3098 {
3099 struct dw_loc_descr_struct *head, *tmp;
3100
3101 if (cfa->indirect == 0)
3102 abort ();
3103
3104 if (cfa->base_offset)
3105 {
3106 if (cfa->reg <= 31)
3107 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3108 else
3109 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3110 }
3111 else if (cfa->reg <= 31)
3112 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3113 else
3114 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3115
3116 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3117 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3118 add_loc_descr (&head, tmp);
3119 if (cfa->offset != 0)
3120 {
3121 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3122 add_loc_descr (&head, tmp);
3123 }
3124
3125 return head;
3126 }
3127
3128 /* This function fills in aa dw_cfa_location structure from a dwarf location
3129 descriptor sequence. */
3130
3131 static void
3132 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3133 {
3134 struct dw_loc_descr_struct *ptr;
3135 cfa->offset = 0;
3136 cfa->base_offset = 0;
3137 cfa->indirect = 0;
3138 cfa->reg = -1;
3139
3140 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3141 {
3142 enum dwarf_location_atom op = ptr->dw_loc_opc;
3143
3144 switch (op)
3145 {
3146 case DW_OP_reg0:
3147 case DW_OP_reg1:
3148 case DW_OP_reg2:
3149 case DW_OP_reg3:
3150 case DW_OP_reg4:
3151 case DW_OP_reg5:
3152 case DW_OP_reg6:
3153 case DW_OP_reg7:
3154 case DW_OP_reg8:
3155 case DW_OP_reg9:
3156 case DW_OP_reg10:
3157 case DW_OP_reg11:
3158 case DW_OP_reg12:
3159 case DW_OP_reg13:
3160 case DW_OP_reg14:
3161 case DW_OP_reg15:
3162 case DW_OP_reg16:
3163 case DW_OP_reg17:
3164 case DW_OP_reg18:
3165 case DW_OP_reg19:
3166 case DW_OP_reg20:
3167 case DW_OP_reg21:
3168 case DW_OP_reg22:
3169 case DW_OP_reg23:
3170 case DW_OP_reg24:
3171 case DW_OP_reg25:
3172 case DW_OP_reg26:
3173 case DW_OP_reg27:
3174 case DW_OP_reg28:
3175 case DW_OP_reg29:
3176 case DW_OP_reg30:
3177 case DW_OP_reg31:
3178 cfa->reg = op - DW_OP_reg0;
3179 break;
3180 case DW_OP_regx:
3181 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3182 break;
3183 case DW_OP_breg0:
3184 case DW_OP_breg1:
3185 case DW_OP_breg2:
3186 case DW_OP_breg3:
3187 case DW_OP_breg4:
3188 case DW_OP_breg5:
3189 case DW_OP_breg6:
3190 case DW_OP_breg7:
3191 case DW_OP_breg8:
3192 case DW_OP_breg9:
3193 case DW_OP_breg10:
3194 case DW_OP_breg11:
3195 case DW_OP_breg12:
3196 case DW_OP_breg13:
3197 case DW_OP_breg14:
3198 case DW_OP_breg15:
3199 case DW_OP_breg16:
3200 case DW_OP_breg17:
3201 case DW_OP_breg18:
3202 case DW_OP_breg19:
3203 case DW_OP_breg20:
3204 case DW_OP_breg21:
3205 case DW_OP_breg22:
3206 case DW_OP_breg23:
3207 case DW_OP_breg24:
3208 case DW_OP_breg25:
3209 case DW_OP_breg26:
3210 case DW_OP_breg27:
3211 case DW_OP_breg28:
3212 case DW_OP_breg29:
3213 case DW_OP_breg30:
3214 case DW_OP_breg31:
3215 cfa->reg = op - DW_OP_breg0;
3216 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3217 break;
3218 case DW_OP_bregx:
3219 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3220 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3221 break;
3222 case DW_OP_deref:
3223 cfa->indirect = 1;
3224 break;
3225 case DW_OP_plus_uconst:
3226 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3227 break;
3228 default:
3229 internal_error ("DW_LOC_OP %s not implemented\n",
3230 dwarf_stack_op_name (ptr->dw_loc_opc));
3231 }
3232 }
3233 }
3234 #endif /* .debug_frame support */
3235 \f
3236 /* And now, the support for symbolic debugging information. */
3237 #ifdef DWARF2_DEBUGGING_INFO
3238
3239 /* .debug_str support. */
3240 static int output_indirect_string (void **, void *);
3241
3242 static void dwarf2out_init (const char *);
3243 static void dwarf2out_finish (const char *);
3244 static void dwarf2out_define (unsigned int, const char *);
3245 static void dwarf2out_undef (unsigned int, const char *);
3246 static void dwarf2out_start_source_file (unsigned, const char *);
3247 static void dwarf2out_end_source_file (unsigned);
3248 static void dwarf2out_begin_block (unsigned, unsigned);
3249 static void dwarf2out_end_block (unsigned, unsigned);
3250 static bool dwarf2out_ignore_block (tree);
3251 static void dwarf2out_global_decl (tree);
3252 static void dwarf2out_imported_module_or_decl (tree, tree);
3253 static void dwarf2out_abstract_function (tree);
3254 static void dwarf2out_var_location (rtx);
3255 static void dwarf2out_begin_function (tree);
3256
3257 /* The debug hooks structure. */
3258
3259 const struct gcc_debug_hooks dwarf2_debug_hooks =
3260 {
3261 dwarf2out_init,
3262 dwarf2out_finish,
3263 dwarf2out_define,
3264 dwarf2out_undef,
3265 dwarf2out_start_source_file,
3266 dwarf2out_end_source_file,
3267 dwarf2out_begin_block,
3268 dwarf2out_end_block,
3269 dwarf2out_ignore_block,
3270 dwarf2out_source_line,
3271 dwarf2out_begin_prologue,
3272 debug_nothing_int_charstar, /* end_prologue */
3273 dwarf2out_end_epilogue,
3274 dwarf2out_begin_function,
3275 debug_nothing_int, /* end_function */
3276 dwarf2out_decl, /* function_decl */
3277 dwarf2out_global_decl,
3278 dwarf2out_imported_module_or_decl,
3279 debug_nothing_tree, /* deferred_inline_function */
3280 /* The DWARF 2 backend tries to reduce debugging bloat by not
3281 emitting the abstract description of inline functions until
3282 something tries to reference them. */
3283 dwarf2out_abstract_function, /* outlining_inline_function */
3284 debug_nothing_rtx, /* label */
3285 debug_nothing_int, /* handle_pch */
3286 dwarf2out_var_location
3287 };
3288 #endif
3289 \f
3290 /* NOTE: In the comments in this file, many references are made to
3291 "Debugging Information Entries". This term is abbreviated as `DIE'
3292 throughout the remainder of this file. */
3293
3294 /* An internal representation of the DWARF output is built, and then
3295 walked to generate the DWARF debugging info. The walk of the internal
3296 representation is done after the entire program has been compiled.
3297 The types below are used to describe the internal representation. */
3298
3299 /* Various DIE's use offsets relative to the beginning of the
3300 .debug_info section to refer to each other. */
3301
3302 typedef long int dw_offset;
3303
3304 /* Define typedefs here to avoid circular dependencies. */
3305
3306 typedef struct dw_attr_struct *dw_attr_ref;
3307 typedef struct dw_line_info_struct *dw_line_info_ref;
3308 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3309 typedef struct pubname_struct *pubname_ref;
3310 typedef struct dw_ranges_struct *dw_ranges_ref;
3311
3312 /* Each entry in the line_info_table maintains the file and
3313 line number associated with the label generated for that
3314 entry. The label gives the PC value associated with
3315 the line number entry. */
3316
3317 typedef struct dw_line_info_struct GTY(())
3318 {
3319 unsigned long dw_file_num;
3320 unsigned long dw_line_num;
3321 }
3322 dw_line_info_entry;
3323
3324 /* Line information for functions in separate sections; each one gets its
3325 own sequence. */
3326 typedef struct dw_separate_line_info_struct GTY(())
3327 {
3328 unsigned long dw_file_num;
3329 unsigned long dw_line_num;
3330 unsigned long function;
3331 }
3332 dw_separate_line_info_entry;
3333
3334 /* Each DIE attribute has a field specifying the attribute kind,
3335 a link to the next attribute in the chain, and an attribute value.
3336 Attributes are typically linked below the DIE they modify. */
3337
3338 typedef struct dw_attr_struct GTY(())
3339 {
3340 enum dwarf_attribute dw_attr;
3341 dw_attr_ref dw_attr_next;
3342 dw_val_node dw_attr_val;
3343 }
3344 dw_attr_node;
3345
3346 /* The Debugging Information Entry (DIE) structure */
3347
3348 typedef struct die_struct GTY(())
3349 {
3350 enum dwarf_tag die_tag;
3351 char *die_symbol;
3352 dw_attr_ref die_attr;
3353 dw_die_ref die_parent;
3354 dw_die_ref die_child;
3355 dw_die_ref die_sib;
3356 dw_die_ref die_definition; /* ref from a specification to its definition */
3357 dw_offset die_offset;
3358 unsigned long die_abbrev;
3359 int die_mark;
3360 unsigned int decl_id;
3361 }
3362 die_node;
3363
3364 /* The pubname structure */
3365
3366 typedef struct pubname_struct GTY(())
3367 {
3368 dw_die_ref die;
3369 char *name;
3370 }
3371 pubname_entry;
3372
3373 struct dw_ranges_struct GTY(())
3374 {
3375 int block_num;
3376 };
3377
3378 /* The limbo die list structure. */
3379 typedef struct limbo_die_struct GTY(())
3380 {
3381 dw_die_ref die;
3382 tree created_for;
3383 struct limbo_die_struct *next;
3384 }
3385 limbo_die_node;
3386
3387 /* How to start an assembler comment. */
3388 #ifndef ASM_COMMENT_START
3389 #define ASM_COMMENT_START ";#"
3390 #endif
3391
3392 /* Define a macro which returns nonzero for a TYPE_DECL which was
3393 implicitly generated for a tagged type.
3394
3395 Note that unlike the gcc front end (which generates a NULL named
3396 TYPE_DECL node for each complete tagged type, each array type, and
3397 each function type node created) the g++ front end generates a
3398 _named_ TYPE_DECL node for each tagged type node created.
3399 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3400 generate a DW_TAG_typedef DIE for them. */
3401
3402 #define TYPE_DECL_IS_STUB(decl) \
3403 (DECL_NAME (decl) == NULL_TREE \
3404 || (DECL_ARTIFICIAL (decl) \
3405 && is_tagged_type (TREE_TYPE (decl)) \
3406 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3407 /* This is necessary for stub decls that \
3408 appear in nested inline functions. */ \
3409 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3410 && (decl_ultimate_origin (decl) \
3411 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3412
3413 /* Information concerning the compilation unit's programming
3414 language, and compiler version. */
3415
3416 /* Fixed size portion of the DWARF compilation unit header. */
3417 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3418 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3419
3420 /* Fixed size portion of public names info. */
3421 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3422
3423 /* Fixed size portion of the address range info. */
3424 #define DWARF_ARANGES_HEADER_SIZE \
3425 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3426 DWARF2_ADDR_SIZE * 2) \
3427 - DWARF_INITIAL_LENGTH_SIZE)
3428
3429 /* Size of padding portion in the address range info. It must be
3430 aligned to twice the pointer size. */
3431 #define DWARF_ARANGES_PAD_SIZE \
3432 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3433 DWARF2_ADDR_SIZE * 2) \
3434 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3435
3436 /* Use assembler line directives if available. */
3437 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3438 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3439 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3440 #else
3441 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3442 #endif
3443 #endif
3444
3445 /* Minimum line offset in a special line info. opcode.
3446 This value was chosen to give a reasonable range of values. */
3447 #define DWARF_LINE_BASE -10
3448
3449 /* First special line opcode - leave room for the standard opcodes. */
3450 #define DWARF_LINE_OPCODE_BASE 10
3451
3452 /* Range of line offsets in a special line info. opcode. */
3453 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3454
3455 /* Flag that indicates the initial value of the is_stmt_start flag.
3456 In the present implementation, we do not mark any lines as
3457 the beginning of a source statement, because that information
3458 is not made available by the GCC front-end. */
3459 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3460
3461 #ifdef DWARF2_DEBUGGING_INFO
3462 /* This location is used by calc_die_sizes() to keep track
3463 the offset of each DIE within the .debug_info section. */
3464 static unsigned long next_die_offset;
3465 #endif
3466
3467 /* Record the root of the DIE's built for the current compilation unit. */
3468 static GTY(()) dw_die_ref comp_unit_die;
3469
3470 /* A list of DIEs with a NULL parent waiting to be relocated. */
3471 static GTY(()) limbo_die_node *limbo_die_list;
3472
3473 /* Filenames referenced by this compilation unit. */
3474 static GTY(()) varray_type file_table;
3475 static GTY(()) varray_type file_table_emitted;
3476 static GTY(()) size_t file_table_last_lookup_index;
3477
3478 /* A hash table of references to DIE's that describe declarations.
3479 The key is a DECL_UID() which is a unique number identifying each decl. */
3480 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3481
3482 /* Node of the variable location list. */
3483 struct var_loc_node GTY ((chain_next ("%h.next")))
3484 {
3485 rtx GTY (()) var_loc_note;
3486 const char * GTY (()) label;
3487 struct var_loc_node * GTY (()) next;
3488 };
3489
3490 /* Variable location list. */
3491 struct var_loc_list_def GTY (())
3492 {
3493 struct var_loc_node * GTY (()) first;
3494
3495 /* Do not mark the last element of the chained list because
3496 it is marked through the chain. */
3497 struct var_loc_node * GTY ((skip ("%h"))) last;
3498
3499 /* DECL_UID of the variable decl. */
3500 unsigned int decl_id;
3501 };
3502 typedef struct var_loc_list_def var_loc_list;
3503
3504 /* Unique label counter. */
3505 static unsigned int loclabel_num = 0;
3506
3507 /* Table of decl location linked lists. */
3508 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3509
3510 /* A pointer to the base of a list of references to DIE's that
3511 are uniquely identified by their tag, presence/absence of
3512 children DIE's, and list of attribute/value pairs. */
3513 static GTY((length ("abbrev_die_table_allocated")))
3514 dw_die_ref *abbrev_die_table;
3515
3516 /* Number of elements currently allocated for abbrev_die_table. */
3517 static GTY(()) unsigned abbrev_die_table_allocated;
3518
3519 /* Number of elements in type_die_table currently in use. */
3520 static GTY(()) unsigned abbrev_die_table_in_use;
3521
3522 /* Size (in elements) of increments by which we may expand the
3523 abbrev_die_table. */
3524 #define ABBREV_DIE_TABLE_INCREMENT 256
3525
3526 /* A pointer to the base of a table that contains line information
3527 for each source code line in .text in the compilation unit. */
3528 static GTY((length ("line_info_table_allocated")))
3529 dw_line_info_ref line_info_table;
3530
3531 /* Number of elements currently allocated for line_info_table. */
3532 static GTY(()) unsigned line_info_table_allocated;
3533
3534 /* Number of elements in line_info_table currently in use. */
3535 static GTY(()) unsigned line_info_table_in_use;
3536
3537 /* A pointer to the base of a table that contains line information
3538 for each source code line outside of .text in the compilation unit. */
3539 static GTY ((length ("separate_line_info_table_allocated")))
3540 dw_separate_line_info_ref separate_line_info_table;
3541
3542 /* Number of elements currently allocated for separate_line_info_table. */
3543 static GTY(()) unsigned separate_line_info_table_allocated;
3544
3545 /* Number of elements in separate_line_info_table currently in use. */
3546 static GTY(()) unsigned separate_line_info_table_in_use;
3547
3548 /* Size (in elements) of increments by which we may expand the
3549 line_info_table. */
3550 #define LINE_INFO_TABLE_INCREMENT 1024
3551
3552 /* A pointer to the base of a table that contains a list of publicly
3553 accessible names. */
3554 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3555
3556 /* Number of elements currently allocated for pubname_table. */
3557 static GTY(()) unsigned pubname_table_allocated;
3558
3559 /* Number of elements in pubname_table currently in use. */
3560 static GTY(()) unsigned pubname_table_in_use;
3561
3562 /* Size (in elements) of increments by which we may expand the
3563 pubname_table. */
3564 #define PUBNAME_TABLE_INCREMENT 64
3565
3566 /* Array of dies for which we should generate .debug_arange info. */
3567 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3568
3569 /* Number of elements currently allocated for arange_table. */
3570 static GTY(()) unsigned arange_table_allocated;
3571
3572 /* Number of elements in arange_table currently in use. */
3573 static GTY(()) unsigned arange_table_in_use;
3574
3575 /* Size (in elements) of increments by which we may expand the
3576 arange_table. */
3577 #define ARANGE_TABLE_INCREMENT 64
3578
3579 /* Array of dies for which we should generate .debug_ranges info. */
3580 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3581
3582 /* Number of elements currently allocated for ranges_table. */
3583 static GTY(()) unsigned ranges_table_allocated;
3584
3585 /* Number of elements in ranges_table currently in use. */
3586 static GTY(()) unsigned ranges_table_in_use;
3587
3588 /* Size (in elements) of increments by which we may expand the
3589 ranges_table. */
3590 #define RANGES_TABLE_INCREMENT 64
3591
3592 /* Whether we have location lists that need outputting */
3593 static GTY(()) unsigned have_location_lists;
3594
3595 #ifdef DWARF2_DEBUGGING_INFO
3596 /* Record whether the function being analyzed contains inlined functions. */
3597 static int current_function_has_inlines;
3598 #endif
3599 #if 0 && defined (MIPS_DEBUGGING_INFO)
3600 static int comp_unit_has_inlines;
3601 #endif
3602
3603 /* Number of file tables emitted in maybe_emit_file(). */
3604 static GTY(()) int emitcount = 0;
3605
3606 /* Number of internal labels generated by gen_internal_sym(). */
3607 static GTY(()) int label_num;
3608
3609 #ifdef DWARF2_DEBUGGING_INFO
3610
3611 /* Forward declarations for functions defined in this file. */
3612
3613 static int is_pseudo_reg (rtx);
3614 static tree type_main_variant (tree);
3615 static int is_tagged_type (tree);
3616 static const char *dwarf_tag_name (unsigned);
3617 static const char *dwarf_attr_name (unsigned);
3618 static const char *dwarf_form_name (unsigned);
3619 #if 0
3620 static const char *dwarf_type_encoding_name (unsigned);
3621 #endif
3622 static tree decl_ultimate_origin (tree);
3623 static tree block_ultimate_origin (tree);
3624 static tree decl_class_context (tree);
3625 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3626 static inline enum dw_val_class AT_class (dw_attr_ref);
3627 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3628 static inline unsigned AT_flag (dw_attr_ref);
3629 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3630 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3631 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3632 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3633 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3634 unsigned long);
3635 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3636 static hashval_t debug_str_do_hash (const void *);
3637 static int debug_str_eq (const void *, const void *);
3638 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3639 static inline const char *AT_string (dw_attr_ref);
3640 static int AT_string_form (dw_attr_ref);
3641 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3642 static void add_AT_specification (dw_die_ref, dw_die_ref);
3643 static inline dw_die_ref AT_ref (dw_attr_ref);
3644 static inline int AT_ref_external (dw_attr_ref);
3645 static inline void set_AT_ref_external (dw_attr_ref, int);
3646 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3647 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3648 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3649 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3650 dw_loc_list_ref);
3651 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3652 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3653 static inline rtx AT_addr (dw_attr_ref);
3654 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3655 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3656 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3657 unsigned HOST_WIDE_INT);
3658 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3659 unsigned long);
3660 static inline const char *AT_lbl (dw_attr_ref);
3661 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3662 static const char *get_AT_low_pc (dw_die_ref);
3663 static const char *get_AT_hi_pc (dw_die_ref);
3664 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3665 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3666 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3667 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3668 static bool is_c_family (void);
3669 static bool is_cxx (void);
3670 static bool is_java (void);
3671 static bool is_fortran (void);
3672 static bool is_ada (void);
3673 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3674 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3675 static inline void free_die (dw_die_ref);
3676 static void remove_children (dw_die_ref);
3677 static void add_child_die (dw_die_ref, dw_die_ref);
3678 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3679 static dw_die_ref lookup_type_die (tree);
3680 static void equate_type_number_to_die (tree, dw_die_ref);
3681 static hashval_t decl_die_table_hash (const void *);
3682 static int decl_die_table_eq (const void *, const void *);
3683 static dw_die_ref lookup_decl_die (tree);
3684 static hashval_t decl_loc_table_hash (const void *);
3685 static int decl_loc_table_eq (const void *, const void *);
3686 static var_loc_list *lookup_decl_loc (tree);
3687 static void equate_decl_number_to_die (tree, dw_die_ref);
3688 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3689 static void print_spaces (FILE *);
3690 static void print_die (dw_die_ref, FILE *);
3691 static void print_dwarf_line_table (FILE *);
3692 static void reverse_die_lists (dw_die_ref);
3693 static void reverse_all_dies (dw_die_ref);
3694 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3695 static dw_die_ref pop_compile_unit (dw_die_ref);
3696 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3697 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3698 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3699 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3700 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3701 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3702 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3703 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3704 static void compute_section_prefix (dw_die_ref);
3705 static int is_type_die (dw_die_ref);
3706 static int is_comdat_die (dw_die_ref);
3707 static int is_symbol_die (dw_die_ref);
3708 static void assign_symbol_names (dw_die_ref);
3709 static void break_out_includes (dw_die_ref);
3710 static hashval_t htab_cu_hash (const void *);
3711 static int htab_cu_eq (const void *, const void *);
3712 static void htab_cu_del (void *);
3713 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3714 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3715 static void add_sibling_attributes (dw_die_ref);
3716 static void build_abbrev_table (dw_die_ref);
3717 static void output_location_lists (dw_die_ref);
3718 static int constant_size (long unsigned);
3719 static unsigned long size_of_die (dw_die_ref);
3720 static void calc_die_sizes (dw_die_ref);
3721 static void mark_dies (dw_die_ref);
3722 static void unmark_dies (dw_die_ref);
3723 static void unmark_all_dies (dw_die_ref);
3724 static unsigned long size_of_pubnames (void);
3725 static unsigned long size_of_aranges (void);
3726 static enum dwarf_form value_format (dw_attr_ref);
3727 static void output_value_format (dw_attr_ref);
3728 static void output_abbrev_section (void);
3729 static void output_die_symbol (dw_die_ref);
3730 static void output_die (dw_die_ref);
3731 static void output_compilation_unit_header (void);
3732 static void output_comp_unit (dw_die_ref, int);
3733 static const char *dwarf2_name (tree, int);
3734 static void add_pubname (tree, dw_die_ref);
3735 static void output_pubnames (void);
3736 static void add_arange (tree, dw_die_ref);
3737 static void output_aranges (void);
3738 static unsigned int add_ranges (tree);
3739 static void output_ranges (void);
3740 static void output_line_info (void);
3741 static void output_file_names (void);
3742 static dw_die_ref base_type_die (tree);
3743 static tree root_type (tree);
3744 static int is_base_type (tree);
3745 static bool is_subrange_type (tree);
3746 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3747 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3748 static int type_is_enum (tree);
3749 static unsigned int reg_number (rtx);
3750 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3751 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3752 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3753 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3754 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3755 static int is_based_loc (rtx);
3756 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3757 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3758 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3759 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3760 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3761 static tree field_type (tree);
3762 static unsigned int simple_type_align_in_bits (tree);
3763 static unsigned int simple_decl_align_in_bits (tree);
3764 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3765 static HOST_WIDE_INT field_byte_offset (tree);
3766 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3767 dw_loc_descr_ref);
3768 static void add_data_member_location_attribute (dw_die_ref, tree);
3769 static void add_const_value_attribute (dw_die_ref, rtx);
3770 static rtx rtl_for_decl_location (tree);
3771 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3772 enum dwarf_attribute);
3773 static void tree_add_const_value_attribute (dw_die_ref, tree);
3774 static void add_name_attribute (dw_die_ref, const char *);
3775 static void add_comp_dir_attribute (dw_die_ref);
3776 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3777 static void add_subscript_info (dw_die_ref, tree);
3778 static void add_byte_size_attribute (dw_die_ref, tree);
3779 static void add_bit_offset_attribute (dw_die_ref, tree);
3780 static void add_bit_size_attribute (dw_die_ref, tree);
3781 static void add_prototyped_attribute (dw_die_ref, tree);
3782 static void add_abstract_origin_attribute (dw_die_ref, tree);
3783 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3784 static void add_src_coords_attributes (dw_die_ref, tree);
3785 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3786 static void push_decl_scope (tree);
3787 static void pop_decl_scope (void);
3788 static dw_die_ref scope_die_for (tree, dw_die_ref);
3789 static inline int local_scope_p (dw_die_ref);
3790 static inline int class_or_namespace_scope_p (dw_die_ref);
3791 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3792 static const char *type_tag (tree);
3793 static tree member_declared_type (tree);
3794 #if 0
3795 static const char *decl_start_label (tree);
3796 #endif
3797 static void gen_array_type_die (tree, dw_die_ref);
3798 static void gen_set_type_die (tree, dw_die_ref);
3799 #if 0
3800 static void gen_entry_point_die (tree, dw_die_ref);
3801 #endif
3802 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3803 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3804 static void gen_inlined_union_type_die (tree, dw_die_ref);
3805 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3806 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3807 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3808 static void gen_formal_types_die (tree, dw_die_ref);
3809 static void gen_subprogram_die (tree, dw_die_ref);
3810 static void gen_variable_die (tree, dw_die_ref);
3811 static void gen_label_die (tree, dw_die_ref);
3812 static void gen_lexical_block_die (tree, dw_die_ref, int);
3813 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3814 static void gen_field_die (tree, dw_die_ref);
3815 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3816 static dw_die_ref gen_compile_unit_die (const char *);
3817 static void gen_string_type_die (tree, dw_die_ref);
3818 static void gen_inheritance_die (tree, tree, dw_die_ref);
3819 static void gen_member_die (tree, dw_die_ref);
3820 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3821 static void gen_subroutine_type_die (tree, dw_die_ref);
3822 static void gen_typedef_die (tree, dw_die_ref);
3823 static void gen_type_die (tree, dw_die_ref);
3824 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3825 static void gen_block_die (tree, dw_die_ref, int);
3826 static void decls_for_scope (tree, dw_die_ref, int);
3827 static int is_redundant_typedef (tree);
3828 static void gen_namespace_die (tree);
3829 static void gen_decl_die (tree, dw_die_ref);
3830 static dw_die_ref force_decl_die (tree);
3831 static dw_die_ref force_type_die (tree);
3832 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3833 static void declare_in_namespace (tree, dw_die_ref);
3834 static unsigned lookup_filename (const char *);
3835 static void init_file_table (void);
3836 static void retry_incomplete_types (void);
3837 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3838 static void splice_child_die (dw_die_ref, dw_die_ref);
3839 static int file_info_cmp (const void *, const void *);
3840 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3841 const char *, const char *, unsigned);
3842 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3843 const char *, const char *,
3844 const char *);
3845 static void output_loc_list (dw_loc_list_ref);
3846 static char *gen_internal_sym (const char *);
3847
3848 static void prune_unmark_dies (dw_die_ref);
3849 static void prune_unused_types_mark (dw_die_ref, int);
3850 static void prune_unused_types_walk (dw_die_ref);
3851 static void prune_unused_types_walk_attribs (dw_die_ref);
3852 static void prune_unused_types_prune (dw_die_ref);
3853 static void prune_unused_types (void);
3854 static int maybe_emit_file (int);
3855
3856 /* Section names used to hold DWARF debugging information. */
3857 #ifndef DEBUG_INFO_SECTION
3858 #define DEBUG_INFO_SECTION ".debug_info"
3859 #endif
3860 #ifndef DEBUG_ABBREV_SECTION
3861 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3862 #endif
3863 #ifndef DEBUG_ARANGES_SECTION
3864 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3865 #endif
3866 #ifndef DEBUG_MACINFO_SECTION
3867 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3868 #endif
3869 #ifndef DEBUG_LINE_SECTION
3870 #define DEBUG_LINE_SECTION ".debug_line"
3871 #endif
3872 #ifndef DEBUG_LOC_SECTION
3873 #define DEBUG_LOC_SECTION ".debug_loc"
3874 #endif
3875 #ifndef DEBUG_PUBNAMES_SECTION
3876 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3877 #endif
3878 #ifndef DEBUG_STR_SECTION
3879 #define DEBUG_STR_SECTION ".debug_str"
3880 #endif
3881 #ifndef DEBUG_RANGES_SECTION
3882 #define DEBUG_RANGES_SECTION ".debug_ranges"
3883 #endif
3884
3885 /* Standard ELF section names for compiled code and data. */
3886 #ifndef TEXT_SECTION_NAME
3887 #define TEXT_SECTION_NAME ".text"
3888 #endif
3889
3890 /* Section flags for .debug_str section. */
3891 #define DEBUG_STR_SECTION_FLAGS \
3892 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3893 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3894 : SECTION_DEBUG)
3895
3896 /* Labels we insert at beginning sections we can reference instead of
3897 the section names themselves. */
3898
3899 #ifndef TEXT_SECTION_LABEL
3900 #define TEXT_SECTION_LABEL "Ltext"
3901 #endif
3902 #ifndef DEBUG_LINE_SECTION_LABEL
3903 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3904 #endif
3905 #ifndef DEBUG_INFO_SECTION_LABEL
3906 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3907 #endif
3908 #ifndef DEBUG_ABBREV_SECTION_LABEL
3909 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3910 #endif
3911 #ifndef DEBUG_LOC_SECTION_LABEL
3912 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3913 #endif
3914 #ifndef DEBUG_RANGES_SECTION_LABEL
3915 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3916 #endif
3917 #ifndef DEBUG_MACINFO_SECTION_LABEL
3918 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3919 #endif
3920
3921 /* Definitions of defaults for formats and names of various special
3922 (artificial) labels which may be generated within this file (when the -g
3923 options is used and DWARF2_DEBUGGING_INFO is in effect.
3924 If necessary, these may be overridden from within the tm.h file, but
3925 typically, overriding these defaults is unnecessary. */
3926
3927 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3928 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3929 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3930 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3931 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3932 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3933 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3934 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3935
3936 #ifndef TEXT_END_LABEL
3937 #define TEXT_END_LABEL "Letext"
3938 #endif
3939 #ifndef BLOCK_BEGIN_LABEL
3940 #define BLOCK_BEGIN_LABEL "LBB"
3941 #endif
3942 #ifndef BLOCK_END_LABEL
3943 #define BLOCK_END_LABEL "LBE"
3944 #endif
3945 #ifndef LINE_CODE_LABEL
3946 #define LINE_CODE_LABEL "LM"
3947 #endif
3948 #ifndef SEPARATE_LINE_CODE_LABEL
3949 #define SEPARATE_LINE_CODE_LABEL "LSM"
3950 #endif
3951 \f
3952 /* We allow a language front-end to designate a function that is to be
3953 called to "demangle" any name before it it put into a DIE. */
3954
3955 static const char *(*demangle_name_func) (const char *);
3956
3957 void
3958 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3959 {
3960 demangle_name_func = func;
3961 }
3962
3963 /* Test if rtl node points to a pseudo register. */
3964
3965 static inline int
3966 is_pseudo_reg (rtx rtl)
3967 {
3968 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3969 || (GET_CODE (rtl) == SUBREG
3970 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3971 }
3972
3973 /* Return a reference to a type, with its const and volatile qualifiers
3974 removed. */
3975
3976 static inline tree
3977 type_main_variant (tree type)
3978 {
3979 type = TYPE_MAIN_VARIANT (type);
3980
3981 /* ??? There really should be only one main variant among any group of
3982 variants of a given type (and all of the MAIN_VARIANT values for all
3983 members of the group should point to that one type) but sometimes the C
3984 front-end messes this up for array types, so we work around that bug
3985 here. */
3986 if (TREE_CODE (type) == ARRAY_TYPE)
3987 while (type != TYPE_MAIN_VARIANT (type))
3988 type = TYPE_MAIN_VARIANT (type);
3989
3990 return type;
3991 }
3992
3993 /* Return nonzero if the given type node represents a tagged type. */
3994
3995 static inline int
3996 is_tagged_type (tree type)
3997 {
3998 enum tree_code code = TREE_CODE (type);
3999
4000 return (code == RECORD_TYPE || code == UNION_TYPE
4001 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4002 }
4003
4004 /* Convert a DIE tag into its string name. */
4005
4006 static const char *
4007 dwarf_tag_name (unsigned int tag)
4008 {
4009 switch (tag)
4010 {
4011 case DW_TAG_padding:
4012 return "DW_TAG_padding";
4013 case DW_TAG_array_type:
4014 return "DW_TAG_array_type";
4015 case DW_TAG_class_type:
4016 return "DW_TAG_class_type";
4017 case DW_TAG_entry_point:
4018 return "DW_TAG_entry_point";
4019 case DW_TAG_enumeration_type:
4020 return "DW_TAG_enumeration_type";
4021 case DW_TAG_formal_parameter:
4022 return "DW_TAG_formal_parameter";
4023 case DW_TAG_imported_declaration:
4024 return "DW_TAG_imported_declaration";
4025 case DW_TAG_label:
4026 return "DW_TAG_label";
4027 case DW_TAG_lexical_block:
4028 return "DW_TAG_lexical_block";
4029 case DW_TAG_member:
4030 return "DW_TAG_member";
4031 case DW_TAG_pointer_type:
4032 return "DW_TAG_pointer_type";
4033 case DW_TAG_reference_type:
4034 return "DW_TAG_reference_type";
4035 case DW_TAG_compile_unit:
4036 return "DW_TAG_compile_unit";
4037 case DW_TAG_string_type:
4038 return "DW_TAG_string_type";
4039 case DW_TAG_structure_type:
4040 return "DW_TAG_structure_type";
4041 case DW_TAG_subroutine_type:
4042 return "DW_TAG_subroutine_type";
4043 case DW_TAG_typedef:
4044 return "DW_TAG_typedef";
4045 case DW_TAG_union_type:
4046 return "DW_TAG_union_type";
4047 case DW_TAG_unspecified_parameters:
4048 return "DW_TAG_unspecified_parameters";
4049 case DW_TAG_variant:
4050 return "DW_TAG_variant";
4051 case DW_TAG_common_block:
4052 return "DW_TAG_common_block";
4053 case DW_TAG_common_inclusion:
4054 return "DW_TAG_common_inclusion";
4055 case DW_TAG_inheritance:
4056 return "DW_TAG_inheritance";
4057 case DW_TAG_inlined_subroutine:
4058 return "DW_TAG_inlined_subroutine";
4059 case DW_TAG_module:
4060 return "DW_TAG_module";
4061 case DW_TAG_ptr_to_member_type:
4062 return "DW_TAG_ptr_to_member_type";
4063 case DW_TAG_set_type:
4064 return "DW_TAG_set_type";
4065 case DW_TAG_subrange_type:
4066 return "DW_TAG_subrange_type";
4067 case DW_TAG_with_stmt:
4068 return "DW_TAG_with_stmt";
4069 case DW_TAG_access_declaration:
4070 return "DW_TAG_access_declaration";
4071 case DW_TAG_base_type:
4072 return "DW_TAG_base_type";
4073 case DW_TAG_catch_block:
4074 return "DW_TAG_catch_block";
4075 case DW_TAG_const_type:
4076 return "DW_TAG_const_type";
4077 case DW_TAG_constant:
4078 return "DW_TAG_constant";
4079 case DW_TAG_enumerator:
4080 return "DW_TAG_enumerator";
4081 case DW_TAG_file_type:
4082 return "DW_TAG_file_type";
4083 case DW_TAG_friend:
4084 return "DW_TAG_friend";
4085 case DW_TAG_namelist:
4086 return "DW_TAG_namelist";
4087 case DW_TAG_namelist_item:
4088 return "DW_TAG_namelist_item";
4089 case DW_TAG_namespace:
4090 return "DW_TAG_namespace";
4091 case DW_TAG_packed_type:
4092 return "DW_TAG_packed_type";
4093 case DW_TAG_subprogram:
4094 return "DW_TAG_subprogram";
4095 case DW_TAG_template_type_param:
4096 return "DW_TAG_template_type_param";
4097 case DW_TAG_template_value_param:
4098 return "DW_TAG_template_value_param";
4099 case DW_TAG_thrown_type:
4100 return "DW_TAG_thrown_type";
4101 case DW_TAG_try_block:
4102 return "DW_TAG_try_block";
4103 case DW_TAG_variant_part:
4104 return "DW_TAG_variant_part";
4105 case DW_TAG_variable:
4106 return "DW_TAG_variable";
4107 case DW_TAG_volatile_type:
4108 return "DW_TAG_volatile_type";
4109 case DW_TAG_imported_module:
4110 return "DW_TAG_imported_module";
4111 case DW_TAG_MIPS_loop:
4112 return "DW_TAG_MIPS_loop";
4113 case DW_TAG_format_label:
4114 return "DW_TAG_format_label";
4115 case DW_TAG_function_template:
4116 return "DW_TAG_function_template";
4117 case DW_TAG_class_template:
4118 return "DW_TAG_class_template";
4119 case DW_TAG_GNU_BINCL:
4120 return "DW_TAG_GNU_BINCL";
4121 case DW_TAG_GNU_EINCL:
4122 return "DW_TAG_GNU_EINCL";
4123 default:
4124 return "DW_TAG_<unknown>";
4125 }
4126 }
4127
4128 /* Convert a DWARF attribute code into its string name. */
4129
4130 static const char *
4131 dwarf_attr_name (unsigned int attr)
4132 {
4133 switch (attr)
4134 {
4135 case DW_AT_sibling:
4136 return "DW_AT_sibling";
4137 case DW_AT_location:
4138 return "DW_AT_location";
4139 case DW_AT_name:
4140 return "DW_AT_name";
4141 case DW_AT_ordering:
4142 return "DW_AT_ordering";
4143 case DW_AT_subscr_data:
4144 return "DW_AT_subscr_data";
4145 case DW_AT_byte_size:
4146 return "DW_AT_byte_size";
4147 case DW_AT_bit_offset:
4148 return "DW_AT_bit_offset";
4149 case DW_AT_bit_size:
4150 return "DW_AT_bit_size";
4151 case DW_AT_element_list:
4152 return "DW_AT_element_list";
4153 case DW_AT_stmt_list:
4154 return "DW_AT_stmt_list";
4155 case DW_AT_low_pc:
4156 return "DW_AT_low_pc";
4157 case DW_AT_high_pc:
4158 return "DW_AT_high_pc";
4159 case DW_AT_language:
4160 return "DW_AT_language";
4161 case DW_AT_member:
4162 return "DW_AT_member";
4163 case DW_AT_discr:
4164 return "DW_AT_discr";
4165 case DW_AT_discr_value:
4166 return "DW_AT_discr_value";
4167 case DW_AT_visibility:
4168 return "DW_AT_visibility";
4169 case DW_AT_import:
4170 return "DW_AT_import";
4171 case DW_AT_string_length:
4172 return "DW_AT_string_length";
4173 case DW_AT_common_reference:
4174 return "DW_AT_common_reference";
4175 case DW_AT_comp_dir:
4176 return "DW_AT_comp_dir";
4177 case DW_AT_const_value:
4178 return "DW_AT_const_value";
4179 case DW_AT_containing_type:
4180 return "DW_AT_containing_type";
4181 case DW_AT_default_value:
4182 return "DW_AT_default_value";
4183 case DW_AT_inline:
4184 return "DW_AT_inline";
4185 case DW_AT_is_optional:
4186 return "DW_AT_is_optional";
4187 case DW_AT_lower_bound:
4188 return "DW_AT_lower_bound";
4189 case DW_AT_producer:
4190 return "DW_AT_producer";
4191 case DW_AT_prototyped:
4192 return "DW_AT_prototyped";
4193 case DW_AT_return_addr:
4194 return "DW_AT_return_addr";
4195 case DW_AT_start_scope:
4196 return "DW_AT_start_scope";
4197 case DW_AT_stride_size:
4198 return "DW_AT_stride_size";
4199 case DW_AT_upper_bound:
4200 return "DW_AT_upper_bound";
4201 case DW_AT_abstract_origin:
4202 return "DW_AT_abstract_origin";
4203 case DW_AT_accessibility:
4204 return "DW_AT_accessibility";
4205 case DW_AT_address_class:
4206 return "DW_AT_address_class";
4207 case DW_AT_artificial:
4208 return "DW_AT_artificial";
4209 case DW_AT_base_types:
4210 return "DW_AT_base_types";
4211 case DW_AT_calling_convention:
4212 return "DW_AT_calling_convention";
4213 case DW_AT_count:
4214 return "DW_AT_count";
4215 case DW_AT_data_member_location:
4216 return "DW_AT_data_member_location";
4217 case DW_AT_decl_column:
4218 return "DW_AT_decl_column";
4219 case DW_AT_decl_file:
4220 return "DW_AT_decl_file";
4221 case DW_AT_decl_line:
4222 return "DW_AT_decl_line";
4223 case DW_AT_declaration:
4224 return "DW_AT_declaration";
4225 case DW_AT_discr_list:
4226 return "DW_AT_discr_list";
4227 case DW_AT_encoding:
4228 return "DW_AT_encoding";
4229 case DW_AT_external:
4230 return "DW_AT_external";
4231 case DW_AT_frame_base:
4232 return "DW_AT_frame_base";
4233 case DW_AT_friend:
4234 return "DW_AT_friend";
4235 case DW_AT_identifier_case:
4236 return "DW_AT_identifier_case";
4237 case DW_AT_macro_info:
4238 return "DW_AT_macro_info";
4239 case DW_AT_namelist_items:
4240 return "DW_AT_namelist_items";
4241 case DW_AT_priority:
4242 return "DW_AT_priority";
4243 case DW_AT_segment:
4244 return "DW_AT_segment";
4245 case DW_AT_specification:
4246 return "DW_AT_specification";
4247 case DW_AT_static_link:
4248 return "DW_AT_static_link";
4249 case DW_AT_type:
4250 return "DW_AT_type";
4251 case DW_AT_use_location:
4252 return "DW_AT_use_location";
4253 case DW_AT_variable_parameter:
4254 return "DW_AT_variable_parameter";
4255 case DW_AT_virtuality:
4256 return "DW_AT_virtuality";
4257 case DW_AT_vtable_elem_location:
4258 return "DW_AT_vtable_elem_location";
4259
4260 case DW_AT_allocated:
4261 return "DW_AT_allocated";
4262 case DW_AT_associated:
4263 return "DW_AT_associated";
4264 case DW_AT_data_location:
4265 return "DW_AT_data_location";
4266 case DW_AT_stride:
4267 return "DW_AT_stride";
4268 case DW_AT_entry_pc:
4269 return "DW_AT_entry_pc";
4270 case DW_AT_use_UTF8:
4271 return "DW_AT_use_UTF8";
4272 case DW_AT_extension:
4273 return "DW_AT_extension";
4274 case DW_AT_ranges:
4275 return "DW_AT_ranges";
4276 case DW_AT_trampoline:
4277 return "DW_AT_trampoline";
4278 case DW_AT_call_column:
4279 return "DW_AT_call_column";
4280 case DW_AT_call_file:
4281 return "DW_AT_call_file";
4282 case DW_AT_call_line:
4283 return "DW_AT_call_line";
4284
4285 case DW_AT_MIPS_fde:
4286 return "DW_AT_MIPS_fde";
4287 case DW_AT_MIPS_loop_begin:
4288 return "DW_AT_MIPS_loop_begin";
4289 case DW_AT_MIPS_tail_loop_begin:
4290 return "DW_AT_MIPS_tail_loop_begin";
4291 case DW_AT_MIPS_epilog_begin:
4292 return "DW_AT_MIPS_epilog_begin";
4293 case DW_AT_MIPS_loop_unroll_factor:
4294 return "DW_AT_MIPS_loop_unroll_factor";
4295 case DW_AT_MIPS_software_pipeline_depth:
4296 return "DW_AT_MIPS_software_pipeline_depth";
4297 case DW_AT_MIPS_linkage_name:
4298 return "DW_AT_MIPS_linkage_name";
4299 case DW_AT_MIPS_stride:
4300 return "DW_AT_MIPS_stride";
4301 case DW_AT_MIPS_abstract_name:
4302 return "DW_AT_MIPS_abstract_name";
4303 case DW_AT_MIPS_clone_origin:
4304 return "DW_AT_MIPS_clone_origin";
4305 case DW_AT_MIPS_has_inlines:
4306 return "DW_AT_MIPS_has_inlines";
4307
4308 case DW_AT_sf_names:
4309 return "DW_AT_sf_names";
4310 case DW_AT_src_info:
4311 return "DW_AT_src_info";
4312 case DW_AT_mac_info:
4313 return "DW_AT_mac_info";
4314 case DW_AT_src_coords:
4315 return "DW_AT_src_coords";
4316 case DW_AT_body_begin:
4317 return "DW_AT_body_begin";
4318 case DW_AT_body_end:
4319 return "DW_AT_body_end";
4320 case DW_AT_GNU_vector:
4321 return "DW_AT_GNU_vector";
4322
4323 case DW_AT_VMS_rtnbeg_pd_address:
4324 return "DW_AT_VMS_rtnbeg_pd_address";
4325
4326 default:
4327 return "DW_AT_<unknown>";
4328 }
4329 }
4330
4331 /* Convert a DWARF value form code into its string name. */
4332
4333 static const char *
4334 dwarf_form_name (unsigned int form)
4335 {
4336 switch (form)
4337 {
4338 case DW_FORM_addr:
4339 return "DW_FORM_addr";
4340 case DW_FORM_block2:
4341 return "DW_FORM_block2";
4342 case DW_FORM_block4:
4343 return "DW_FORM_block4";
4344 case DW_FORM_data2:
4345 return "DW_FORM_data2";
4346 case DW_FORM_data4:
4347 return "DW_FORM_data4";
4348 case DW_FORM_data8:
4349 return "DW_FORM_data8";
4350 case DW_FORM_string:
4351 return "DW_FORM_string";
4352 case DW_FORM_block:
4353 return "DW_FORM_block";
4354 case DW_FORM_block1:
4355 return "DW_FORM_block1";
4356 case DW_FORM_data1:
4357 return "DW_FORM_data1";
4358 case DW_FORM_flag:
4359 return "DW_FORM_flag";
4360 case DW_FORM_sdata:
4361 return "DW_FORM_sdata";
4362 case DW_FORM_strp:
4363 return "DW_FORM_strp";
4364 case DW_FORM_udata:
4365 return "DW_FORM_udata";
4366 case DW_FORM_ref_addr:
4367 return "DW_FORM_ref_addr";
4368 case DW_FORM_ref1:
4369 return "DW_FORM_ref1";
4370 case DW_FORM_ref2:
4371 return "DW_FORM_ref2";
4372 case DW_FORM_ref4:
4373 return "DW_FORM_ref4";
4374 case DW_FORM_ref8:
4375 return "DW_FORM_ref8";
4376 case DW_FORM_ref_udata:
4377 return "DW_FORM_ref_udata";
4378 case DW_FORM_indirect:
4379 return "DW_FORM_indirect";
4380 default:
4381 return "DW_FORM_<unknown>";
4382 }
4383 }
4384
4385 /* Convert a DWARF type code into its string name. */
4386
4387 #if 0
4388 static const char *
4389 dwarf_type_encoding_name (unsigned enc)
4390 {
4391 switch (enc)
4392 {
4393 case DW_ATE_address:
4394 return "DW_ATE_address";
4395 case DW_ATE_boolean:
4396 return "DW_ATE_boolean";
4397 case DW_ATE_complex_float:
4398 return "DW_ATE_complex_float";
4399 case DW_ATE_float:
4400 return "DW_ATE_float";
4401 case DW_ATE_signed:
4402 return "DW_ATE_signed";
4403 case DW_ATE_signed_char:
4404 return "DW_ATE_signed_char";
4405 case DW_ATE_unsigned:
4406 return "DW_ATE_unsigned";
4407 case DW_ATE_unsigned_char:
4408 return "DW_ATE_unsigned_char";
4409 default:
4410 return "DW_ATE_<unknown>";
4411 }
4412 }
4413 #endif
4414 \f
4415 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4416 instance of an inlined instance of a decl which is local to an inline
4417 function, so we have to trace all of the way back through the origin chain
4418 to find out what sort of node actually served as the original seed for the
4419 given block. */
4420
4421 static tree
4422 decl_ultimate_origin (tree decl)
4423 {
4424 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4425 nodes in the function to point to themselves; ignore that if
4426 we're trying to output the abstract instance of this function. */
4427 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4428 return NULL_TREE;
4429
4430 #ifdef ENABLE_CHECKING
4431 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4432 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4433 most distant ancestor, this should never happen. */
4434 abort ();
4435 #endif
4436
4437 return DECL_ABSTRACT_ORIGIN (decl);
4438 }
4439
4440 /* Determine the "ultimate origin" of a block. The block may be an inlined
4441 instance of an inlined instance of a block which is local to an inline
4442 function, so we have to trace all of the way back through the origin chain
4443 to find out what sort of node actually served as the original seed for the
4444 given block. */
4445
4446 static tree
4447 block_ultimate_origin (tree block)
4448 {
4449 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4450
4451 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4452 nodes in the function to point to themselves; ignore that if
4453 we're trying to output the abstract instance of this function. */
4454 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4455 return NULL_TREE;
4456
4457 if (immediate_origin == NULL_TREE)
4458 return NULL_TREE;
4459 else
4460 {
4461 tree ret_val;
4462 tree lookahead = immediate_origin;
4463
4464 do
4465 {
4466 ret_val = lookahead;
4467 lookahead = (TREE_CODE (ret_val) == BLOCK
4468 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4469 }
4470 while (lookahead != NULL && lookahead != ret_val);
4471
4472 return ret_val;
4473 }
4474 }
4475
4476 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4477 of a virtual function may refer to a base class, so we check the 'this'
4478 parameter. */
4479
4480 static tree
4481 decl_class_context (tree decl)
4482 {
4483 tree context = NULL_TREE;
4484
4485 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4486 context = DECL_CONTEXT (decl);
4487 else
4488 context = TYPE_MAIN_VARIANT
4489 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4490
4491 if (context && !TYPE_P (context))
4492 context = NULL_TREE;
4493
4494 return context;
4495 }
4496 \f
4497 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4498 addition order, and correct that in reverse_all_dies. */
4499
4500 static inline void
4501 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4502 {
4503 if (die != NULL && attr != NULL)
4504 {
4505 attr->dw_attr_next = die->die_attr;
4506 die->die_attr = attr;
4507 }
4508 }
4509
4510 static inline enum dw_val_class
4511 AT_class (dw_attr_ref a)
4512 {
4513 return a->dw_attr_val.val_class;
4514 }
4515
4516 /* Add a flag value attribute to a DIE. */
4517
4518 static inline void
4519 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4520 {
4521 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4522
4523 attr->dw_attr_next = NULL;
4524 attr->dw_attr = attr_kind;
4525 attr->dw_attr_val.val_class = dw_val_class_flag;
4526 attr->dw_attr_val.v.val_flag = flag;
4527 add_dwarf_attr (die, attr);
4528 }
4529
4530 static inline unsigned
4531 AT_flag (dw_attr_ref a)
4532 {
4533 if (a && AT_class (a) == dw_val_class_flag)
4534 return a->dw_attr_val.v.val_flag;
4535
4536 abort ();
4537 }
4538
4539 /* Add a signed integer attribute value to a DIE. */
4540
4541 static inline void
4542 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4543 {
4544 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4545
4546 attr->dw_attr_next = NULL;
4547 attr->dw_attr = attr_kind;
4548 attr->dw_attr_val.val_class = dw_val_class_const;
4549 attr->dw_attr_val.v.val_int = int_val;
4550 add_dwarf_attr (die, attr);
4551 }
4552
4553 static inline HOST_WIDE_INT
4554 AT_int (dw_attr_ref a)
4555 {
4556 if (a && AT_class (a) == dw_val_class_const)
4557 return a->dw_attr_val.v.val_int;
4558
4559 abort ();
4560 }
4561
4562 /* Add an unsigned integer attribute value to a DIE. */
4563
4564 static inline void
4565 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4566 unsigned HOST_WIDE_INT unsigned_val)
4567 {
4568 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4569
4570 attr->dw_attr_next = NULL;
4571 attr->dw_attr = attr_kind;
4572 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4573 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4574 add_dwarf_attr (die, attr);
4575 }
4576
4577 static inline unsigned HOST_WIDE_INT
4578 AT_unsigned (dw_attr_ref a)
4579 {
4580 if (a && AT_class (a) == dw_val_class_unsigned_const)
4581 return a->dw_attr_val.v.val_unsigned;
4582
4583 abort ();
4584 }
4585
4586 /* Add an unsigned double integer attribute value to a DIE. */
4587
4588 static inline void
4589 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4590 long unsigned int val_hi, long unsigned int val_low)
4591 {
4592 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4593
4594 attr->dw_attr_next = NULL;
4595 attr->dw_attr = attr_kind;
4596 attr->dw_attr_val.val_class = dw_val_class_long_long;
4597 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4598 attr->dw_attr_val.v.val_long_long.low = val_low;
4599 add_dwarf_attr (die, attr);
4600 }
4601
4602 /* Add a floating point attribute value to a DIE and return it. */
4603
4604 static inline void
4605 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4606 unsigned int length, long int *array)
4607 {
4608 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4609
4610 attr->dw_attr_next = NULL;
4611 attr->dw_attr = attr_kind;
4612 attr->dw_attr_val.val_class = dw_val_class_float;
4613 attr->dw_attr_val.v.val_float.length = length;
4614 attr->dw_attr_val.v.val_float.array = array;
4615 add_dwarf_attr (die, attr);
4616 }
4617
4618 /* Hash and equality functions for debug_str_hash. */
4619
4620 static hashval_t
4621 debug_str_do_hash (const void *x)
4622 {
4623 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4624 }
4625
4626 static int
4627 debug_str_eq (const void *x1, const void *x2)
4628 {
4629 return strcmp ((((const struct indirect_string_node *)x1)->str),
4630 (const char *)x2) == 0;
4631 }
4632
4633 /* Add a string attribute value to a DIE. */
4634
4635 static inline void
4636 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4637 {
4638 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4639 struct indirect_string_node *node;
4640 void **slot;
4641
4642 if (! debug_str_hash)
4643 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4644 debug_str_eq, NULL);
4645
4646 slot = htab_find_slot_with_hash (debug_str_hash, str,
4647 htab_hash_string (str), INSERT);
4648 if (*slot == NULL)
4649 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4650 node = (struct indirect_string_node *) *slot;
4651 node->str = ggc_strdup (str);
4652 node->refcount++;
4653
4654 attr->dw_attr_next = NULL;
4655 attr->dw_attr = attr_kind;
4656 attr->dw_attr_val.val_class = dw_val_class_str;
4657 attr->dw_attr_val.v.val_str = node;
4658 add_dwarf_attr (die, attr);
4659 }
4660
4661 static inline const char *
4662 AT_string (dw_attr_ref a)
4663 {
4664 if (a && AT_class (a) == dw_val_class_str)
4665 return a->dw_attr_val.v.val_str->str;
4666
4667 abort ();
4668 }
4669
4670 /* Find out whether a string should be output inline in DIE
4671 or out-of-line in .debug_str section. */
4672
4673 static int
4674 AT_string_form (dw_attr_ref a)
4675 {
4676 if (a && AT_class (a) == dw_val_class_str)
4677 {
4678 struct indirect_string_node *node;
4679 unsigned int len;
4680 char label[32];
4681
4682 node = a->dw_attr_val.v.val_str;
4683 if (node->form)
4684 return node->form;
4685
4686 len = strlen (node->str) + 1;
4687
4688 /* If the string is shorter or equal to the size of the reference, it is
4689 always better to put it inline. */
4690 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4691 return node->form = DW_FORM_string;
4692
4693 /* If we cannot expect the linker to merge strings in .debug_str
4694 section, only put it into .debug_str if it is worth even in this
4695 single module. */
4696 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4697 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4698 return node->form = DW_FORM_string;
4699
4700 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4701 ++dw2_string_counter;
4702 node->label = xstrdup (label);
4703
4704 return node->form = DW_FORM_strp;
4705 }
4706
4707 abort ();
4708 }
4709
4710 /* Add a DIE reference attribute value to a DIE. */
4711
4712 static inline void
4713 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4714 {
4715 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4716
4717 attr->dw_attr_next = NULL;
4718 attr->dw_attr = attr_kind;
4719 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4720 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4721 attr->dw_attr_val.v.val_die_ref.external = 0;
4722 add_dwarf_attr (die, attr);
4723 }
4724
4725 /* Add an AT_specification attribute to a DIE, and also make the back
4726 pointer from the specification to the definition. */
4727
4728 static inline void
4729 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4730 {
4731 add_AT_die_ref (die, DW_AT_specification, targ_die);
4732 if (targ_die->die_definition)
4733 abort ();
4734 targ_die->die_definition = die;
4735 }
4736
4737 static inline dw_die_ref
4738 AT_ref (dw_attr_ref a)
4739 {
4740 if (a && AT_class (a) == dw_val_class_die_ref)
4741 return a->dw_attr_val.v.val_die_ref.die;
4742
4743 abort ();
4744 }
4745
4746 static inline int
4747 AT_ref_external (dw_attr_ref a)
4748 {
4749 if (a && AT_class (a) == dw_val_class_die_ref)
4750 return a->dw_attr_val.v.val_die_ref.external;
4751
4752 return 0;
4753 }
4754
4755 static inline void
4756 set_AT_ref_external (dw_attr_ref a, int i)
4757 {
4758 if (a && AT_class (a) == dw_val_class_die_ref)
4759 a->dw_attr_val.v.val_die_ref.external = i;
4760 else
4761 abort ();
4762 }
4763
4764 /* Add an FDE reference attribute value to a DIE. */
4765
4766 static inline void
4767 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4768 {
4769 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4770
4771 attr->dw_attr_next = NULL;
4772 attr->dw_attr = attr_kind;
4773 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4774 attr->dw_attr_val.v.val_fde_index = targ_fde;
4775 add_dwarf_attr (die, attr);
4776 }
4777
4778 /* Add a location description attribute value to a DIE. */
4779
4780 static inline void
4781 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4782 {
4783 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4784
4785 attr->dw_attr_next = NULL;
4786 attr->dw_attr = attr_kind;
4787 attr->dw_attr_val.val_class = dw_val_class_loc;
4788 attr->dw_attr_val.v.val_loc = loc;
4789 add_dwarf_attr (die, attr);
4790 }
4791
4792 static inline dw_loc_descr_ref
4793 AT_loc (dw_attr_ref a)
4794 {
4795 if (a && AT_class (a) == dw_val_class_loc)
4796 return a->dw_attr_val.v.val_loc;
4797
4798 abort ();
4799 }
4800
4801 static inline void
4802 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4803 {
4804 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4805
4806 attr->dw_attr_next = NULL;
4807 attr->dw_attr = attr_kind;
4808 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4809 attr->dw_attr_val.v.val_loc_list = loc_list;
4810 add_dwarf_attr (die, attr);
4811 have_location_lists = 1;
4812 }
4813
4814 static inline dw_loc_list_ref
4815 AT_loc_list (dw_attr_ref a)
4816 {
4817 if (a && AT_class (a) == dw_val_class_loc_list)
4818 return a->dw_attr_val.v.val_loc_list;
4819
4820 abort ();
4821 }
4822
4823 /* Add an address constant attribute value to a DIE. */
4824
4825 static inline void
4826 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4827 {
4828 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4829
4830 attr->dw_attr_next = NULL;
4831 attr->dw_attr = attr_kind;
4832 attr->dw_attr_val.val_class = dw_val_class_addr;
4833 attr->dw_attr_val.v.val_addr = addr;
4834 add_dwarf_attr (die, attr);
4835 }
4836
4837 static inline rtx
4838 AT_addr (dw_attr_ref a)
4839 {
4840 if (a && AT_class (a) == dw_val_class_addr)
4841 return a->dw_attr_val.v.val_addr;
4842
4843 abort ();
4844 }
4845
4846 /* Add a label identifier attribute value to a DIE. */
4847
4848 static inline void
4849 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4850 {
4851 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4852
4853 attr->dw_attr_next = NULL;
4854 attr->dw_attr = attr_kind;
4855 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4856 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4857 add_dwarf_attr (die, attr);
4858 }
4859
4860 /* Add a section offset attribute value to a DIE. */
4861
4862 static inline void
4863 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4864 {
4865 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4866
4867 attr->dw_attr_next = NULL;
4868 attr->dw_attr = attr_kind;
4869 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4870 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4871 add_dwarf_attr (die, attr);
4872 }
4873
4874 /* Add an offset attribute value to a DIE. */
4875
4876 static inline void
4877 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4878 unsigned HOST_WIDE_INT offset)
4879 {
4880 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4881
4882 attr->dw_attr_next = NULL;
4883 attr->dw_attr = attr_kind;
4884 attr->dw_attr_val.val_class = dw_val_class_offset;
4885 attr->dw_attr_val.v.val_offset = offset;
4886 add_dwarf_attr (die, attr);
4887 }
4888
4889 /* Add an range_list attribute value to a DIE. */
4890
4891 static void
4892 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4893 long unsigned int offset)
4894 {
4895 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4896
4897 attr->dw_attr_next = NULL;
4898 attr->dw_attr = attr_kind;
4899 attr->dw_attr_val.val_class = dw_val_class_range_list;
4900 attr->dw_attr_val.v.val_offset = offset;
4901 add_dwarf_attr (die, attr);
4902 }
4903
4904 static inline const char *
4905 AT_lbl (dw_attr_ref a)
4906 {
4907 if (a && (AT_class (a) == dw_val_class_lbl_id
4908 || AT_class (a) == dw_val_class_lbl_offset))
4909 return a->dw_attr_val.v.val_lbl_id;
4910
4911 abort ();
4912 }
4913
4914 /* Get the attribute of type attr_kind. */
4915
4916 static dw_attr_ref
4917 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4918 {
4919 dw_attr_ref a;
4920 dw_die_ref spec = NULL;
4921
4922 if (die != NULL)
4923 {
4924 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4925 if (a->dw_attr == attr_kind)
4926 return a;
4927 else if (a->dw_attr == DW_AT_specification
4928 || a->dw_attr == DW_AT_abstract_origin)
4929 spec = AT_ref (a);
4930
4931 if (spec)
4932 return get_AT (spec, attr_kind);
4933 }
4934
4935 return NULL;
4936 }
4937
4938 /* Return the "low pc" attribute value, typically associated with a subprogram
4939 DIE. Return null if the "low pc" attribute is either not present, or if it
4940 cannot be represented as an assembler label identifier. */
4941
4942 static inline const char *
4943 get_AT_low_pc (dw_die_ref die)
4944 {
4945 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4946
4947 return a ? AT_lbl (a) : NULL;
4948 }
4949
4950 /* Return the "high pc" attribute value, typically associated with a subprogram
4951 DIE. Return null if the "high pc" attribute is either not present, or if it
4952 cannot be represented as an assembler label identifier. */
4953
4954 static inline const char *
4955 get_AT_hi_pc (dw_die_ref die)
4956 {
4957 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4958
4959 return a ? AT_lbl (a) : NULL;
4960 }
4961
4962 /* Return the value of the string attribute designated by ATTR_KIND, or
4963 NULL if it is not present. */
4964
4965 static inline const char *
4966 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4967 {
4968 dw_attr_ref a = get_AT (die, attr_kind);
4969
4970 return a ? AT_string (a) : NULL;
4971 }
4972
4973 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4974 if it is not present. */
4975
4976 static inline int
4977 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4978 {
4979 dw_attr_ref a = get_AT (die, attr_kind);
4980
4981 return a ? AT_flag (a) : 0;
4982 }
4983
4984 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4985 if it is not present. */
4986
4987 static inline unsigned
4988 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4989 {
4990 dw_attr_ref a = get_AT (die, attr_kind);
4991
4992 return a ? AT_unsigned (a) : 0;
4993 }
4994
4995 static inline dw_die_ref
4996 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4997 {
4998 dw_attr_ref a = get_AT (die, attr_kind);
4999
5000 return a ? AT_ref (a) : NULL;
5001 }
5002
5003 /* Return TRUE if the language is C or C++. */
5004
5005 static inline bool
5006 is_c_family (void)
5007 {
5008 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5009
5010 return (lang == DW_LANG_C || lang == DW_LANG_C89
5011 || lang == DW_LANG_C_plus_plus);
5012 }
5013
5014 /* Return TRUE if the language is C++. */
5015
5016 static inline bool
5017 is_cxx (void)
5018 {
5019 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5020 == DW_LANG_C_plus_plus);
5021 }
5022
5023 /* Return TRUE if the language is Fortran. */
5024
5025 static inline bool
5026 is_fortran (void)
5027 {
5028 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5029
5030 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
5031 }
5032
5033 /* Return TRUE if the language is Java. */
5034
5035 static inline bool
5036 is_java (void)
5037 {
5038 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5039
5040 return lang == DW_LANG_Java;
5041 }
5042
5043 /* Return TRUE if the language is Ada. */
5044
5045 static inline bool
5046 is_ada (void)
5047 {
5048 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5049
5050 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5051 }
5052
5053 /* Free up the memory used by A. */
5054
5055 static inline void free_AT (dw_attr_ref);
5056 static inline void
5057 free_AT (dw_attr_ref a)
5058 {
5059 if (AT_class (a) == dw_val_class_str)
5060 if (a->dw_attr_val.v.val_str->refcount)
5061 a->dw_attr_val.v.val_str->refcount--;
5062 }
5063
5064 /* Remove the specified attribute if present. */
5065
5066 static void
5067 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5068 {
5069 dw_attr_ref *p;
5070 dw_attr_ref removed = NULL;
5071
5072 if (die != NULL)
5073 {
5074 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5075 if ((*p)->dw_attr == attr_kind)
5076 {
5077 removed = *p;
5078 *p = (*p)->dw_attr_next;
5079 break;
5080 }
5081
5082 if (removed != 0)
5083 free_AT (removed);
5084 }
5085 }
5086
5087 /* Remove child die whose die_tag is specified tag. */
5088
5089 static void
5090 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5091 {
5092 dw_die_ref current, prev, next;
5093 current = die->die_child;
5094 prev = NULL;
5095 while (current != NULL)
5096 {
5097 if (current->die_tag == tag)
5098 {
5099 next = current->die_sib;
5100 if (prev == NULL)
5101 die->die_child = next;
5102 else
5103 prev->die_sib = next;
5104 free_die (current);
5105 current = next;
5106 }
5107 else
5108 {
5109 prev = current;
5110 current = current->die_sib;
5111 }
5112 }
5113 }
5114
5115 /* Free up the memory used by DIE. */
5116
5117 static inline void
5118 free_die (dw_die_ref die)
5119 {
5120 remove_children (die);
5121 }
5122
5123 /* Discard the children of this DIE. */
5124
5125 static void
5126 remove_children (dw_die_ref die)
5127 {
5128 dw_die_ref child_die = die->die_child;
5129
5130 die->die_child = NULL;
5131
5132 while (child_die != NULL)
5133 {
5134 dw_die_ref tmp_die = child_die;
5135 dw_attr_ref a;
5136
5137 child_die = child_die->die_sib;
5138
5139 for (a = tmp_die->die_attr; a != NULL;)
5140 {
5141 dw_attr_ref tmp_a = a;
5142
5143 a = a->dw_attr_next;
5144 free_AT (tmp_a);
5145 }
5146
5147 free_die (tmp_die);
5148 }
5149 }
5150
5151 /* Add a child DIE below its parent. We build the lists up in reverse
5152 addition order, and correct that in reverse_all_dies. */
5153
5154 static inline void
5155 add_child_die (dw_die_ref die, dw_die_ref child_die)
5156 {
5157 if (die != NULL && child_die != NULL)
5158 {
5159 if (die == child_die)
5160 abort ();
5161
5162 child_die->die_parent = die;
5163 child_die->die_sib = die->die_child;
5164 die->die_child = child_die;
5165 }
5166 }
5167
5168 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5169 is the specification, to the front of PARENT's list of children. */
5170
5171 static void
5172 splice_child_die (dw_die_ref parent, dw_die_ref child)
5173 {
5174 dw_die_ref *p;
5175
5176 /* We want the declaration DIE from inside the class, not the
5177 specification DIE at toplevel. */
5178 if (child->die_parent != parent)
5179 {
5180 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5181
5182 if (tmp)
5183 child = tmp;
5184 }
5185
5186 if (child->die_parent != parent
5187 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5188 abort ();
5189
5190 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5191 if (*p == child)
5192 {
5193 *p = child->die_sib;
5194 break;
5195 }
5196
5197 child->die_parent = parent;
5198 child->die_sib = parent->die_child;
5199 parent->die_child = child;
5200 }
5201
5202 /* Return a pointer to a newly created DIE node. */
5203
5204 static inline dw_die_ref
5205 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5206 {
5207 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5208
5209 die->die_tag = tag_value;
5210
5211 if (parent_die != NULL)
5212 add_child_die (parent_die, die);
5213 else
5214 {
5215 limbo_die_node *limbo_node;
5216
5217 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5218 limbo_node->die = die;
5219 limbo_node->created_for = t;
5220 limbo_node->next = limbo_die_list;
5221 limbo_die_list = limbo_node;
5222 }
5223
5224 return die;
5225 }
5226
5227 /* Return the DIE associated with the given type specifier. */
5228
5229 static inline dw_die_ref
5230 lookup_type_die (tree type)
5231 {
5232 return TYPE_SYMTAB_DIE (type);
5233 }
5234
5235 /* Equate a DIE to a given type specifier. */
5236
5237 static inline void
5238 equate_type_number_to_die (tree type, dw_die_ref type_die)
5239 {
5240 TYPE_SYMTAB_DIE (type) = type_die;
5241 }
5242
5243 /* Returns a hash value for X (which really is a die_struct). */
5244
5245 static hashval_t
5246 decl_die_table_hash (const void *x)
5247 {
5248 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5249 }
5250
5251 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5252
5253 static int
5254 decl_die_table_eq (const void *x, const void *y)
5255 {
5256 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5257 }
5258
5259 /* Return the DIE associated with a given declaration. */
5260
5261 static inline dw_die_ref
5262 lookup_decl_die (tree decl)
5263 {
5264 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5265 }
5266
5267 /* Returns a hash value for X (which really is a var_loc_list). */
5268
5269 static hashval_t
5270 decl_loc_table_hash (const void *x)
5271 {
5272 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5273 }
5274
5275 /* Return nonzero if decl_id of var_loc_list X is the same as
5276 UID of decl *Y. */
5277
5278 static int
5279 decl_loc_table_eq (const void *x, const void *y)
5280 {
5281 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5282 }
5283
5284 /* Return the var_loc list associated with a given declaration. */
5285
5286 static inline var_loc_list *
5287 lookup_decl_loc (tree decl)
5288 {
5289 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5290 }
5291
5292 /* Equate a DIE to a particular declaration. */
5293
5294 static void
5295 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5296 {
5297 unsigned int decl_id = DECL_UID (decl);
5298 void **slot;
5299
5300 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5301 *slot = decl_die;
5302 decl_die->decl_id = decl_id;
5303 }
5304
5305 /* Add a variable location node to the linked list for DECL. */
5306
5307 static void
5308 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5309 {
5310 unsigned int decl_id = DECL_UID (decl);
5311 var_loc_list *temp;
5312 void **slot;
5313
5314 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5315 if (*slot == NULL)
5316 {
5317 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5318 temp->decl_id = decl_id;
5319 *slot = temp;
5320 }
5321 else
5322 temp = *slot;
5323
5324 if (temp->last)
5325 {
5326 /* If the current location is the same as the end of the list,
5327 we have nothing to do. */
5328 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5329 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5330 {
5331 /* Add LOC to the end of list and update LAST. */
5332 temp->last->next = loc;
5333 temp->last = loc;
5334 }
5335 }
5336 /* Do not add empty location to the beginning of the list. */
5337 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5338 {
5339 temp->first = loc;
5340 temp->last = loc;
5341 }
5342 }
5343 \f
5344 /* Keep track of the number of spaces used to indent the
5345 output of the debugging routines that print the structure of
5346 the DIE internal representation. */
5347 static int print_indent;
5348
5349 /* Indent the line the number of spaces given by print_indent. */
5350
5351 static inline void
5352 print_spaces (FILE *outfile)
5353 {
5354 fprintf (outfile, "%*s", print_indent, "");
5355 }
5356
5357 /* Print the information associated with a given DIE, and its children.
5358 This routine is a debugging aid only. */
5359
5360 static void
5361 print_die (dw_die_ref die, FILE *outfile)
5362 {
5363 dw_attr_ref a;
5364 dw_die_ref c;
5365
5366 print_spaces (outfile);
5367 fprintf (outfile, "DIE %4lu: %s\n",
5368 die->die_offset, dwarf_tag_name (die->die_tag));
5369 print_spaces (outfile);
5370 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5371 fprintf (outfile, " offset: %lu\n", die->die_offset);
5372
5373 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5374 {
5375 print_spaces (outfile);
5376 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5377
5378 switch (AT_class (a))
5379 {
5380 case dw_val_class_addr:
5381 fprintf (outfile, "address");
5382 break;
5383 case dw_val_class_offset:
5384 fprintf (outfile, "offset");
5385 break;
5386 case dw_val_class_loc:
5387 fprintf (outfile, "location descriptor");
5388 break;
5389 case dw_val_class_loc_list:
5390 fprintf (outfile, "location list -> label:%s",
5391 AT_loc_list (a)->ll_symbol);
5392 break;
5393 case dw_val_class_range_list:
5394 fprintf (outfile, "range list");
5395 break;
5396 case dw_val_class_const:
5397 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5398 break;
5399 case dw_val_class_unsigned_const:
5400 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5401 break;
5402 case dw_val_class_long_long:
5403 fprintf (outfile, "constant (%lu,%lu)",
5404 a->dw_attr_val.v.val_long_long.hi,
5405 a->dw_attr_val.v.val_long_long.low);
5406 break;
5407 case dw_val_class_float:
5408 fprintf (outfile, "floating-point constant");
5409 break;
5410 case dw_val_class_flag:
5411 fprintf (outfile, "%u", AT_flag (a));
5412 break;
5413 case dw_val_class_die_ref:
5414 if (AT_ref (a) != NULL)
5415 {
5416 if (AT_ref (a)->die_symbol)
5417 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5418 else
5419 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5420 }
5421 else
5422 fprintf (outfile, "die -> <null>");
5423 break;
5424 case dw_val_class_lbl_id:
5425 case dw_val_class_lbl_offset:
5426 fprintf (outfile, "label: %s", AT_lbl (a));
5427 break;
5428 case dw_val_class_str:
5429 if (AT_string (a) != NULL)
5430 fprintf (outfile, "\"%s\"", AT_string (a));
5431 else
5432 fprintf (outfile, "<null>");
5433 break;
5434 default:
5435 break;
5436 }
5437
5438 fprintf (outfile, "\n");
5439 }
5440
5441 if (die->die_child != NULL)
5442 {
5443 print_indent += 4;
5444 for (c = die->die_child; c != NULL; c = c->die_sib)
5445 print_die (c, outfile);
5446
5447 print_indent -= 4;
5448 }
5449 if (print_indent == 0)
5450 fprintf (outfile, "\n");
5451 }
5452
5453 /* Print the contents of the source code line number correspondence table.
5454 This routine is a debugging aid only. */
5455
5456 static void
5457 print_dwarf_line_table (FILE *outfile)
5458 {
5459 unsigned i;
5460 dw_line_info_ref line_info;
5461
5462 fprintf (outfile, "\n\nDWARF source line information\n");
5463 for (i = 1; i < line_info_table_in_use; i++)
5464 {
5465 line_info = &line_info_table[i];
5466 fprintf (outfile, "%5d: ", i);
5467 fprintf (outfile, "%-20s",
5468 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5469 fprintf (outfile, "%6ld", line_info->dw_line_num);
5470 fprintf (outfile, "\n");
5471 }
5472
5473 fprintf (outfile, "\n\n");
5474 }
5475
5476 /* Print the information collected for a given DIE. */
5477
5478 void
5479 debug_dwarf_die (dw_die_ref die)
5480 {
5481 print_die (die, stderr);
5482 }
5483
5484 /* Print all DWARF information collected for the compilation unit.
5485 This routine is a debugging aid only. */
5486
5487 void
5488 debug_dwarf (void)
5489 {
5490 print_indent = 0;
5491 print_die (comp_unit_die, stderr);
5492 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5493 print_dwarf_line_table (stderr);
5494 }
5495 \f
5496 /* We build up the lists of children and attributes by pushing new ones
5497 onto the beginning of the list. Reverse the lists for DIE so that
5498 they are in order of addition. */
5499
5500 static void
5501 reverse_die_lists (dw_die_ref die)
5502 {
5503 dw_die_ref c, cp, cn;
5504 dw_attr_ref a, ap, an;
5505
5506 for (a = die->die_attr, ap = 0; a; a = an)
5507 {
5508 an = a->dw_attr_next;
5509 a->dw_attr_next = ap;
5510 ap = a;
5511 }
5512
5513 die->die_attr = ap;
5514
5515 for (c = die->die_child, cp = 0; c; c = cn)
5516 {
5517 cn = c->die_sib;
5518 c->die_sib = cp;
5519 cp = c;
5520 }
5521
5522 die->die_child = cp;
5523 }
5524
5525 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5526 reverse all dies in add_sibling_attributes, which runs through all the dies,
5527 it would reverse all the dies. Now, however, since we don't call
5528 reverse_die_lists in add_sibling_attributes, we need a routine to
5529 recursively reverse all the dies. This is that routine. */
5530
5531 static void
5532 reverse_all_dies (dw_die_ref die)
5533 {
5534 dw_die_ref c;
5535
5536 reverse_die_lists (die);
5537
5538 for (c = die->die_child; c; c = c->die_sib)
5539 reverse_all_dies (c);
5540 }
5541
5542 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5543 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5544 DIE that marks the start of the DIEs for this include file. */
5545
5546 static dw_die_ref
5547 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5548 {
5549 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5550 dw_die_ref new_unit = gen_compile_unit_die (filename);
5551
5552 new_unit->die_sib = old_unit;
5553 return new_unit;
5554 }
5555
5556 /* Close an include-file CU and reopen the enclosing one. */
5557
5558 static dw_die_ref
5559 pop_compile_unit (dw_die_ref old_unit)
5560 {
5561 dw_die_ref new_unit = old_unit->die_sib;
5562
5563 old_unit->die_sib = NULL;
5564 return new_unit;
5565 }
5566
5567 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5568 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5569
5570 /* Calculate the checksum of a location expression. */
5571
5572 static inline void
5573 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5574 {
5575 CHECKSUM (loc->dw_loc_opc);
5576 CHECKSUM (loc->dw_loc_oprnd1);
5577 CHECKSUM (loc->dw_loc_oprnd2);
5578 }
5579
5580 /* Calculate the checksum of an attribute. */
5581
5582 static void
5583 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5584 {
5585 dw_loc_descr_ref loc;
5586 rtx r;
5587
5588 CHECKSUM (at->dw_attr);
5589
5590 /* We don't care about differences in file numbering. */
5591 if (at->dw_attr == DW_AT_decl_file
5592 /* Or that this was compiled with a different compiler snapshot; if
5593 the output is the same, that's what matters. */
5594 || at->dw_attr == DW_AT_producer)
5595 return;
5596
5597 switch (AT_class (at))
5598 {
5599 case dw_val_class_const:
5600 CHECKSUM (at->dw_attr_val.v.val_int);
5601 break;
5602 case dw_val_class_unsigned_const:
5603 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5604 break;
5605 case dw_val_class_long_long:
5606 CHECKSUM (at->dw_attr_val.v.val_long_long);
5607 break;
5608 case dw_val_class_float:
5609 CHECKSUM (at->dw_attr_val.v.val_float);
5610 break;
5611 case dw_val_class_flag:
5612 CHECKSUM (at->dw_attr_val.v.val_flag);
5613 break;
5614 case dw_val_class_str:
5615 CHECKSUM_STRING (AT_string (at));
5616 break;
5617
5618 case dw_val_class_addr:
5619 r = AT_addr (at);
5620 switch (GET_CODE (r))
5621 {
5622 case SYMBOL_REF:
5623 CHECKSUM_STRING (XSTR (r, 0));
5624 break;
5625
5626 default:
5627 abort ();
5628 }
5629 break;
5630
5631 case dw_val_class_offset:
5632 CHECKSUM (at->dw_attr_val.v.val_offset);
5633 break;
5634
5635 case dw_val_class_loc:
5636 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5637 loc_checksum (loc, ctx);
5638 break;
5639
5640 case dw_val_class_die_ref:
5641 die_checksum (AT_ref (at), ctx, mark);
5642 break;
5643
5644 case dw_val_class_fde_ref:
5645 case dw_val_class_lbl_id:
5646 case dw_val_class_lbl_offset:
5647 break;
5648
5649 default:
5650 break;
5651 }
5652 }
5653
5654 /* Calculate the checksum of a DIE. */
5655
5656 static void
5657 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5658 {
5659 dw_die_ref c;
5660 dw_attr_ref a;
5661
5662 /* To avoid infinite recursion. */
5663 if (die->die_mark)
5664 {
5665 CHECKSUM (die->die_mark);
5666 return;
5667 }
5668 die->die_mark = ++(*mark);
5669
5670 CHECKSUM (die->die_tag);
5671
5672 for (a = die->die_attr; a; a = a->dw_attr_next)
5673 attr_checksum (a, ctx, mark);
5674
5675 for (c = die->die_child; c; c = c->die_sib)
5676 die_checksum (c, ctx, mark);
5677 }
5678
5679 #undef CHECKSUM
5680 #undef CHECKSUM_STRING
5681
5682 /* Do the location expressions look same? */
5683 static inline int
5684 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5685 {
5686 return loc1->dw_loc_opc == loc2->dw_loc_opc
5687 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5688 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5689 }
5690
5691 /* Do the values look the same? */
5692 static int
5693 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5694 {
5695 dw_loc_descr_ref loc1, loc2;
5696 rtx r1, r2;
5697 unsigned i;
5698
5699 if (v1->val_class != v2->val_class)
5700 return 0;
5701
5702 switch (v1->val_class)
5703 {
5704 case dw_val_class_const:
5705 return v1->v.val_int == v2->v.val_int;
5706 case dw_val_class_unsigned_const:
5707 return v1->v.val_unsigned == v2->v.val_unsigned;
5708 case dw_val_class_long_long:
5709 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5710 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5711 case dw_val_class_float:
5712 if (v1->v.val_float.length != v2->v.val_float.length)
5713 return 0;
5714 for (i = 0; i < v1->v.val_float.length; i++)
5715 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5716 return 0;
5717 return 1;
5718 case dw_val_class_flag:
5719 return v1->v.val_flag == v2->v.val_flag;
5720 case dw_val_class_str:
5721 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5722
5723 case dw_val_class_addr:
5724 r1 = v1->v.val_addr;
5725 r2 = v2->v.val_addr;
5726 if (GET_CODE (r1) != GET_CODE (r2))
5727 return 0;
5728 switch (GET_CODE (r1))
5729 {
5730 case SYMBOL_REF:
5731 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5732
5733 default:
5734 abort ();
5735 }
5736
5737 case dw_val_class_offset:
5738 return v1->v.val_offset == v2->v.val_offset;
5739
5740 case dw_val_class_loc:
5741 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5742 loc1 && loc2;
5743 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5744 if (!same_loc_p (loc1, loc2, mark))
5745 return 0;
5746 return !loc1 && !loc2;
5747
5748 case dw_val_class_die_ref:
5749 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5750
5751 case dw_val_class_fde_ref:
5752 case dw_val_class_lbl_id:
5753 case dw_val_class_lbl_offset:
5754 return 1;
5755
5756 default:
5757 return 1;
5758 }
5759 }
5760
5761 /* Do the attributes look the same? */
5762
5763 static int
5764 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5765 {
5766 if (at1->dw_attr != at2->dw_attr)
5767 return 0;
5768
5769 /* We don't care about differences in file numbering. */
5770 if (at1->dw_attr == DW_AT_decl_file
5771 /* Or that this was compiled with a different compiler snapshot; if
5772 the output is the same, that's what matters. */
5773 || at1->dw_attr == DW_AT_producer)
5774 return 1;
5775
5776 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5777 }
5778
5779 /* Do the dies look the same? */
5780
5781 static int
5782 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5783 {
5784 dw_die_ref c1, c2;
5785 dw_attr_ref a1, a2;
5786
5787 /* To avoid infinite recursion. */
5788 if (die1->die_mark)
5789 return die1->die_mark == die2->die_mark;
5790 die1->die_mark = die2->die_mark = ++(*mark);
5791
5792 if (die1->die_tag != die2->die_tag)
5793 return 0;
5794
5795 for (a1 = die1->die_attr, a2 = die2->die_attr;
5796 a1 && a2;
5797 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5798 if (!same_attr_p (a1, a2, mark))
5799 return 0;
5800 if (a1 || a2)
5801 return 0;
5802
5803 for (c1 = die1->die_child, c2 = die2->die_child;
5804 c1 && c2;
5805 c1 = c1->die_sib, c2 = c2->die_sib)
5806 if (!same_die_p (c1, c2, mark))
5807 return 0;
5808 if (c1 || c2)
5809 return 0;
5810
5811 return 1;
5812 }
5813
5814 /* Do the dies look the same? Wrapper around same_die_p. */
5815
5816 static int
5817 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5818 {
5819 int mark = 0;
5820 int ret = same_die_p (die1, die2, &mark);
5821
5822 unmark_all_dies (die1);
5823 unmark_all_dies (die2);
5824
5825 return ret;
5826 }
5827
5828 /* The prefix to attach to symbols on DIEs in the current comdat debug
5829 info section. */
5830 static char *comdat_symbol_id;
5831
5832 /* The index of the current symbol within the current comdat CU. */
5833 static unsigned int comdat_symbol_number;
5834
5835 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5836 children, and set comdat_symbol_id accordingly. */
5837
5838 static void
5839 compute_section_prefix (dw_die_ref unit_die)
5840 {
5841 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5842 const char *base = die_name ? lbasename (die_name) : "anonymous";
5843 char *name = alloca (strlen (base) + 64);
5844 char *p;
5845 int i, mark;
5846 unsigned char checksum[16];
5847 struct md5_ctx ctx;
5848
5849 /* Compute the checksum of the DIE, then append part of it as hex digits to
5850 the name filename of the unit. */
5851
5852 md5_init_ctx (&ctx);
5853 mark = 0;
5854 die_checksum (unit_die, &ctx, &mark);
5855 unmark_all_dies (unit_die);
5856 md5_finish_ctx (&ctx, checksum);
5857
5858 sprintf (name, "%s.", base);
5859 clean_symbol_name (name);
5860
5861 p = name + strlen (name);
5862 for (i = 0; i < 4; i++)
5863 {
5864 sprintf (p, "%.2x", checksum[i]);
5865 p += 2;
5866 }
5867
5868 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5869 comdat_symbol_number = 0;
5870 }
5871
5872 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5873
5874 static int
5875 is_type_die (dw_die_ref die)
5876 {
5877 switch (die->die_tag)
5878 {
5879 case DW_TAG_array_type:
5880 case DW_TAG_class_type:
5881 case DW_TAG_enumeration_type:
5882 case DW_TAG_pointer_type:
5883 case DW_TAG_reference_type:
5884 case DW_TAG_string_type:
5885 case DW_TAG_structure_type:
5886 case DW_TAG_subroutine_type:
5887 case DW_TAG_union_type:
5888 case DW_TAG_ptr_to_member_type:
5889 case DW_TAG_set_type:
5890 case DW_TAG_subrange_type:
5891 case DW_TAG_base_type:
5892 case DW_TAG_const_type:
5893 case DW_TAG_file_type:
5894 case DW_TAG_packed_type:
5895 case DW_TAG_volatile_type:
5896 case DW_TAG_typedef:
5897 return 1;
5898 default:
5899 return 0;
5900 }
5901 }
5902
5903 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5904 Basically, we want to choose the bits that are likely to be shared between
5905 compilations (types) and leave out the bits that are specific to individual
5906 compilations (functions). */
5907
5908 static int
5909 is_comdat_die (dw_die_ref c)
5910 {
5911 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5912 we do for stabs. The advantage is a greater likelihood of sharing between
5913 objects that don't include headers in the same order (and therefore would
5914 put the base types in a different comdat). jason 8/28/00 */
5915
5916 if (c->die_tag == DW_TAG_base_type)
5917 return 0;
5918
5919 if (c->die_tag == DW_TAG_pointer_type
5920 || c->die_tag == DW_TAG_reference_type
5921 || c->die_tag == DW_TAG_const_type
5922 || c->die_tag == DW_TAG_volatile_type)
5923 {
5924 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5925
5926 return t ? is_comdat_die (t) : 0;
5927 }
5928
5929 return is_type_die (c);
5930 }
5931
5932 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5933 compilation unit. */
5934
5935 static int
5936 is_symbol_die (dw_die_ref c)
5937 {
5938 return (is_type_die (c)
5939 || (get_AT (c, DW_AT_declaration)
5940 && !get_AT (c, DW_AT_specification)));
5941 }
5942
5943 static char *
5944 gen_internal_sym (const char *prefix)
5945 {
5946 char buf[256];
5947
5948 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5949 return xstrdup (buf);
5950 }
5951
5952 /* Assign symbols to all worthy DIEs under DIE. */
5953
5954 static void
5955 assign_symbol_names (dw_die_ref die)
5956 {
5957 dw_die_ref c;
5958
5959 if (is_symbol_die (die))
5960 {
5961 if (comdat_symbol_id)
5962 {
5963 char *p = alloca (strlen (comdat_symbol_id) + 64);
5964
5965 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5966 comdat_symbol_id, comdat_symbol_number++);
5967 die->die_symbol = xstrdup (p);
5968 }
5969 else
5970 die->die_symbol = gen_internal_sym ("LDIE");
5971 }
5972
5973 for (c = die->die_child; c != NULL; c = c->die_sib)
5974 assign_symbol_names (c);
5975 }
5976
5977 struct cu_hash_table_entry
5978 {
5979 dw_die_ref cu;
5980 unsigned min_comdat_num, max_comdat_num;
5981 struct cu_hash_table_entry *next;
5982 };
5983
5984 /* Routines to manipulate hash table of CUs. */
5985 static hashval_t
5986 htab_cu_hash (const void *of)
5987 {
5988 const struct cu_hash_table_entry *entry = of;
5989
5990 return htab_hash_string (entry->cu->die_symbol);
5991 }
5992
5993 static int
5994 htab_cu_eq (const void *of1, const void *of2)
5995 {
5996 const struct cu_hash_table_entry *entry1 = of1;
5997 const struct die_struct *entry2 = of2;
5998
5999 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6000 }
6001
6002 static void
6003 htab_cu_del (void *what)
6004 {
6005 struct cu_hash_table_entry *next, *entry = what;
6006
6007 while (entry)
6008 {
6009 next = entry->next;
6010 free (entry);
6011 entry = next;
6012 }
6013 }
6014
6015 /* Check whether we have already seen this CU and set up SYM_NUM
6016 accordingly. */
6017 static int
6018 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6019 {
6020 struct cu_hash_table_entry dummy;
6021 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6022
6023 dummy.max_comdat_num = 0;
6024
6025 slot = (struct cu_hash_table_entry **)
6026 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6027 INSERT);
6028 entry = *slot;
6029
6030 for (; entry; last = entry, entry = entry->next)
6031 {
6032 if (same_die_p_wrap (cu, entry->cu))
6033 break;
6034 }
6035
6036 if (entry)
6037 {
6038 *sym_num = entry->min_comdat_num;
6039 return 1;
6040 }
6041
6042 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6043 entry->cu = cu;
6044 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6045 entry->next = *slot;
6046 *slot = entry;
6047
6048 return 0;
6049 }
6050
6051 /* Record SYM_NUM to record of CU in HTABLE. */
6052 static void
6053 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6054 {
6055 struct cu_hash_table_entry **slot, *entry;
6056
6057 slot = (struct cu_hash_table_entry **)
6058 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6059 NO_INSERT);
6060 entry = *slot;
6061
6062 entry->max_comdat_num = sym_num;
6063 }
6064
6065 /* Traverse the DIE (which is always comp_unit_die), and set up
6066 additional compilation units for each of the include files we see
6067 bracketed by BINCL/EINCL. */
6068
6069 static void
6070 break_out_includes (dw_die_ref die)
6071 {
6072 dw_die_ref *ptr;
6073 dw_die_ref unit = NULL;
6074 limbo_die_node *node, **pnode;
6075 htab_t cu_hash_table;
6076
6077 for (ptr = &(die->die_child); *ptr;)
6078 {
6079 dw_die_ref c = *ptr;
6080
6081 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6082 || (unit && is_comdat_die (c)))
6083 {
6084 /* This DIE is for a secondary CU; remove it from the main one. */
6085 *ptr = c->die_sib;
6086
6087 if (c->die_tag == DW_TAG_GNU_BINCL)
6088 {
6089 unit = push_new_compile_unit (unit, c);
6090 free_die (c);
6091 }
6092 else if (c->die_tag == DW_TAG_GNU_EINCL)
6093 {
6094 unit = pop_compile_unit (unit);
6095 free_die (c);
6096 }
6097 else
6098 add_child_die (unit, c);
6099 }
6100 else
6101 {
6102 /* Leave this DIE in the main CU. */
6103 ptr = &(c->die_sib);
6104 continue;
6105 }
6106 }
6107
6108 #if 0
6109 /* We can only use this in debugging, since the frontend doesn't check
6110 to make sure that we leave every include file we enter. */
6111 if (unit != NULL)
6112 abort ();
6113 #endif
6114
6115 assign_symbol_names (die);
6116 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6117 for (node = limbo_die_list, pnode = &limbo_die_list;
6118 node;
6119 node = node->next)
6120 {
6121 int is_dupl;
6122
6123 compute_section_prefix (node->die);
6124 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6125 &comdat_symbol_number);
6126 assign_symbol_names (node->die);
6127 if (is_dupl)
6128 *pnode = node->next;
6129 else
6130 {
6131 pnode = &node->next;
6132 record_comdat_symbol_number (node->die, cu_hash_table,
6133 comdat_symbol_number);
6134 }
6135 }
6136 htab_delete (cu_hash_table);
6137 }
6138
6139 /* Traverse the DIE and add a sibling attribute if it may have the
6140 effect of speeding up access to siblings. To save some space,
6141 avoid generating sibling attributes for DIE's without children. */
6142
6143 static void
6144 add_sibling_attributes (dw_die_ref die)
6145 {
6146 dw_die_ref c;
6147
6148 if (die->die_tag != DW_TAG_compile_unit
6149 && die->die_sib && die->die_child != NULL)
6150 /* Add the sibling link to the front of the attribute list. */
6151 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6152
6153 for (c = die->die_child; c != NULL; c = c->die_sib)
6154 add_sibling_attributes (c);
6155 }
6156
6157 /* Output all location lists for the DIE and its children. */
6158
6159 static void
6160 output_location_lists (dw_die_ref die)
6161 {
6162 dw_die_ref c;
6163 dw_attr_ref d_attr;
6164
6165 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6166 if (AT_class (d_attr) == dw_val_class_loc_list)
6167 output_loc_list (AT_loc_list (d_attr));
6168
6169 for (c = die->die_child; c != NULL; c = c->die_sib)
6170 output_location_lists (c);
6171
6172 }
6173
6174 /* The format of each DIE (and its attribute value pairs) is encoded in an
6175 abbreviation table. This routine builds the abbreviation table and assigns
6176 a unique abbreviation id for each abbreviation entry. The children of each
6177 die are visited recursively. */
6178
6179 static void
6180 build_abbrev_table (dw_die_ref die)
6181 {
6182 unsigned long abbrev_id;
6183 unsigned int n_alloc;
6184 dw_die_ref c;
6185 dw_attr_ref d_attr, a_attr;
6186
6187 /* Scan the DIE references, and mark as external any that refer to
6188 DIEs from other CUs (i.e. those which are not marked). */
6189 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6190 if (AT_class (d_attr) == dw_val_class_die_ref
6191 && AT_ref (d_attr)->die_mark == 0)
6192 {
6193 if (AT_ref (d_attr)->die_symbol == 0)
6194 abort ();
6195
6196 set_AT_ref_external (d_attr, 1);
6197 }
6198
6199 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6200 {
6201 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6202
6203 if (abbrev->die_tag == die->die_tag)
6204 {
6205 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6206 {
6207 a_attr = abbrev->die_attr;
6208 d_attr = die->die_attr;
6209
6210 while (a_attr != NULL && d_attr != NULL)
6211 {
6212 if ((a_attr->dw_attr != d_attr->dw_attr)
6213 || (value_format (a_attr) != value_format (d_attr)))
6214 break;
6215
6216 a_attr = a_attr->dw_attr_next;
6217 d_attr = d_attr->dw_attr_next;
6218 }
6219
6220 if (a_attr == NULL && d_attr == NULL)
6221 break;
6222 }
6223 }
6224 }
6225
6226 if (abbrev_id >= abbrev_die_table_in_use)
6227 {
6228 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6229 {
6230 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6231 abbrev_die_table = ggc_realloc (abbrev_die_table,
6232 sizeof (dw_die_ref) * n_alloc);
6233
6234 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6235 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6236 abbrev_die_table_allocated = n_alloc;
6237 }
6238
6239 ++abbrev_die_table_in_use;
6240 abbrev_die_table[abbrev_id] = die;
6241 }
6242
6243 die->die_abbrev = abbrev_id;
6244 for (c = die->die_child; c != NULL; c = c->die_sib)
6245 build_abbrev_table (c);
6246 }
6247 \f
6248 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6249
6250 static int
6251 constant_size (long unsigned int value)
6252 {
6253 int log;
6254
6255 if (value == 0)
6256 log = 0;
6257 else
6258 log = floor_log2 (value);
6259
6260 log = log / 8;
6261 log = 1 << (floor_log2 (log) + 1);
6262
6263 return log;
6264 }
6265
6266 /* Return the size of a DIE as it is represented in the
6267 .debug_info section. */
6268
6269 static unsigned long
6270 size_of_die (dw_die_ref die)
6271 {
6272 unsigned long size = 0;
6273 dw_attr_ref a;
6274
6275 size += size_of_uleb128 (die->die_abbrev);
6276 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6277 {
6278 switch (AT_class (a))
6279 {
6280 case dw_val_class_addr:
6281 size += DWARF2_ADDR_SIZE;
6282 break;
6283 case dw_val_class_offset:
6284 size += DWARF_OFFSET_SIZE;
6285 break;
6286 case dw_val_class_loc:
6287 {
6288 unsigned long lsize = size_of_locs (AT_loc (a));
6289
6290 /* Block length. */
6291 size += constant_size (lsize);
6292 size += lsize;
6293 }
6294 break;
6295 case dw_val_class_loc_list:
6296 size += DWARF_OFFSET_SIZE;
6297 break;
6298 case dw_val_class_range_list:
6299 size += DWARF_OFFSET_SIZE;
6300 break;
6301 case dw_val_class_const:
6302 size += size_of_sleb128 (AT_int (a));
6303 break;
6304 case dw_val_class_unsigned_const:
6305 size += constant_size (AT_unsigned (a));
6306 break;
6307 case dw_val_class_long_long:
6308 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6309 break;
6310 case dw_val_class_float:
6311 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6312 break;
6313 case dw_val_class_flag:
6314 size += 1;
6315 break;
6316 case dw_val_class_die_ref:
6317 if (AT_ref_external (a))
6318 size += DWARF2_ADDR_SIZE;
6319 else
6320 size += DWARF_OFFSET_SIZE;
6321 break;
6322 case dw_val_class_fde_ref:
6323 size += DWARF_OFFSET_SIZE;
6324 break;
6325 case dw_val_class_lbl_id:
6326 size += DWARF2_ADDR_SIZE;
6327 break;
6328 case dw_val_class_lbl_offset:
6329 size += DWARF_OFFSET_SIZE;
6330 break;
6331 case dw_val_class_str:
6332 if (AT_string_form (a) == DW_FORM_strp)
6333 size += DWARF_OFFSET_SIZE;
6334 else
6335 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6336 break;
6337 default:
6338 abort ();
6339 }
6340 }
6341
6342 return size;
6343 }
6344
6345 /* Size the debugging information associated with a given DIE. Visits the
6346 DIE's children recursively. Updates the global variable next_die_offset, on
6347 each time through. Uses the current value of next_die_offset to update the
6348 die_offset field in each DIE. */
6349
6350 static void
6351 calc_die_sizes (dw_die_ref die)
6352 {
6353 dw_die_ref c;
6354
6355 die->die_offset = next_die_offset;
6356 next_die_offset += size_of_die (die);
6357
6358 for (c = die->die_child; c != NULL; c = c->die_sib)
6359 calc_die_sizes (c);
6360
6361 if (die->die_child != NULL)
6362 /* Count the null byte used to terminate sibling lists. */
6363 next_die_offset += 1;
6364 }
6365
6366 /* Set the marks for a die and its children. We do this so
6367 that we know whether or not a reference needs to use FORM_ref_addr; only
6368 DIEs in the same CU will be marked. We used to clear out the offset
6369 and use that as the flag, but ran into ordering problems. */
6370
6371 static void
6372 mark_dies (dw_die_ref die)
6373 {
6374 dw_die_ref c;
6375
6376 if (die->die_mark)
6377 abort ();
6378
6379 die->die_mark = 1;
6380 for (c = die->die_child; c; c = c->die_sib)
6381 mark_dies (c);
6382 }
6383
6384 /* Clear the marks for a die and its children. */
6385
6386 static void
6387 unmark_dies (dw_die_ref die)
6388 {
6389 dw_die_ref c;
6390
6391 if (!die->die_mark)
6392 abort ();
6393
6394 die->die_mark = 0;
6395 for (c = die->die_child; c; c = c->die_sib)
6396 unmark_dies (c);
6397 }
6398
6399 /* Clear the marks for a die, its children and referred dies. */
6400
6401 static void
6402 unmark_all_dies (dw_die_ref die)
6403 {
6404 dw_die_ref c;
6405 dw_attr_ref a;
6406
6407 if (!die->die_mark)
6408 return;
6409 die->die_mark = 0;
6410
6411 for (c = die->die_child; c; c = c->die_sib)
6412 unmark_all_dies (c);
6413
6414 for (a = die->die_attr; a; a = a->dw_attr_next)
6415 if (AT_class (a) == dw_val_class_die_ref)
6416 unmark_all_dies (AT_ref (a));
6417 }
6418
6419 /* Return the size of the .debug_pubnames table generated for the
6420 compilation unit. */
6421
6422 static unsigned long
6423 size_of_pubnames (void)
6424 {
6425 unsigned long size;
6426 unsigned i;
6427
6428 size = DWARF_PUBNAMES_HEADER_SIZE;
6429 for (i = 0; i < pubname_table_in_use; i++)
6430 {
6431 pubname_ref p = &pubname_table[i];
6432 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6433 }
6434
6435 size += DWARF_OFFSET_SIZE;
6436 return size;
6437 }
6438
6439 /* Return the size of the information in the .debug_aranges section. */
6440
6441 static unsigned long
6442 size_of_aranges (void)
6443 {
6444 unsigned long size;
6445
6446 size = DWARF_ARANGES_HEADER_SIZE;
6447
6448 /* Count the address/length pair for this compilation unit. */
6449 size += 2 * DWARF2_ADDR_SIZE;
6450 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6451
6452 /* Count the two zero words used to terminated the address range table. */
6453 size += 2 * DWARF2_ADDR_SIZE;
6454 return size;
6455 }
6456 \f
6457 /* Select the encoding of an attribute value. */
6458
6459 static enum dwarf_form
6460 value_format (dw_attr_ref a)
6461 {
6462 switch (a->dw_attr_val.val_class)
6463 {
6464 case dw_val_class_addr:
6465 return DW_FORM_addr;
6466 case dw_val_class_range_list:
6467 case dw_val_class_offset:
6468 if (DWARF_OFFSET_SIZE == 4)
6469 return DW_FORM_data4;
6470 if (DWARF_OFFSET_SIZE == 8)
6471 return DW_FORM_data8;
6472 abort ();
6473 case dw_val_class_loc_list:
6474 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6475 .debug_loc section */
6476 return DW_FORM_data4;
6477 case dw_val_class_loc:
6478 switch (constant_size (size_of_locs (AT_loc (a))))
6479 {
6480 case 1:
6481 return DW_FORM_block1;
6482 case 2:
6483 return DW_FORM_block2;
6484 default:
6485 abort ();
6486 }
6487 case dw_val_class_const:
6488 return DW_FORM_sdata;
6489 case dw_val_class_unsigned_const:
6490 switch (constant_size (AT_unsigned (a)))
6491 {
6492 case 1:
6493 return DW_FORM_data1;
6494 case 2:
6495 return DW_FORM_data2;
6496 case 4:
6497 return DW_FORM_data4;
6498 case 8:
6499 return DW_FORM_data8;
6500 default:
6501 abort ();
6502 }
6503 case dw_val_class_long_long:
6504 return DW_FORM_block1;
6505 case dw_val_class_float:
6506 return DW_FORM_block1;
6507 case dw_val_class_flag:
6508 return DW_FORM_flag;
6509 case dw_val_class_die_ref:
6510 if (AT_ref_external (a))
6511 return DW_FORM_ref_addr;
6512 else
6513 return DW_FORM_ref;
6514 case dw_val_class_fde_ref:
6515 return DW_FORM_data;
6516 case dw_val_class_lbl_id:
6517 return DW_FORM_addr;
6518 case dw_val_class_lbl_offset:
6519 return DW_FORM_data;
6520 case dw_val_class_str:
6521 return AT_string_form (a);
6522
6523 default:
6524 abort ();
6525 }
6526 }
6527
6528 /* Output the encoding of an attribute value. */
6529
6530 static void
6531 output_value_format (dw_attr_ref a)
6532 {
6533 enum dwarf_form form = value_format (a);
6534
6535 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6536 }
6537
6538 /* Output the .debug_abbrev section which defines the DIE abbreviation
6539 table. */
6540
6541 static void
6542 output_abbrev_section (void)
6543 {
6544 unsigned long abbrev_id;
6545
6546 dw_attr_ref a_attr;
6547
6548 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6549 {
6550 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6551
6552 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6553 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6554 dwarf_tag_name (abbrev->die_tag));
6555
6556 if (abbrev->die_child != NULL)
6557 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6558 else
6559 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6560
6561 for (a_attr = abbrev->die_attr; a_attr != NULL;
6562 a_attr = a_attr->dw_attr_next)
6563 {
6564 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6565 dwarf_attr_name (a_attr->dw_attr));
6566 output_value_format (a_attr);
6567 }
6568
6569 dw2_asm_output_data (1, 0, NULL);
6570 dw2_asm_output_data (1, 0, NULL);
6571 }
6572
6573 /* Terminate the table. */
6574 dw2_asm_output_data (1, 0, NULL);
6575 }
6576
6577 /* Output a symbol we can use to refer to this DIE from another CU. */
6578
6579 static inline void
6580 output_die_symbol (dw_die_ref die)
6581 {
6582 char *sym = die->die_symbol;
6583
6584 if (sym == 0)
6585 return;
6586
6587 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6588 /* We make these global, not weak; if the target doesn't support
6589 .linkonce, it doesn't support combining the sections, so debugging
6590 will break. */
6591 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6592
6593 ASM_OUTPUT_LABEL (asm_out_file, sym);
6594 }
6595
6596 /* Return a new location list, given the begin and end range, and the
6597 expression. gensym tells us whether to generate a new internal symbol for
6598 this location list node, which is done for the head of the list only. */
6599
6600 static inline dw_loc_list_ref
6601 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6602 const char *section, unsigned int gensym)
6603 {
6604 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6605
6606 retlist->begin = begin;
6607 retlist->end = end;
6608 retlist->expr = expr;
6609 retlist->section = section;
6610 if (gensym)
6611 retlist->ll_symbol = gen_internal_sym ("LLST");
6612
6613 return retlist;
6614 }
6615
6616 /* Add a location description expression to a location list. */
6617
6618 static inline void
6619 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6620 const char *begin, const char *end,
6621 const char *section)
6622 {
6623 dw_loc_list_ref *d;
6624
6625 /* Find the end of the chain. */
6626 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6627 ;
6628
6629 /* Add a new location list node to the list. */
6630 *d = new_loc_list (descr, begin, end, section, 0);
6631 }
6632
6633 /* Output the location list given to us. */
6634
6635 static void
6636 output_loc_list (dw_loc_list_ref list_head)
6637 {
6638 dw_loc_list_ref curr = list_head;
6639
6640 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6641
6642 /* ??? This shouldn't be needed now that we've forced the
6643 compilation unit base address to zero when there is code
6644 in more than one section. */
6645 if (strcmp (curr->section, ".text") == 0)
6646 {
6647 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6648 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6649 "Location list base address specifier fake entry");
6650 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6651 "Location list base address specifier base");
6652 }
6653
6654 /* Walk the location list, and output each range + expression. */
6655 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6656 {
6657 unsigned long size;
6658 if (separate_line_info_table_in_use == 0)
6659 {
6660 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6661 "Location list begin address (%s)",
6662 list_head->ll_symbol);
6663 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6664 "Location list end address (%s)",
6665 list_head->ll_symbol);
6666 }
6667 else
6668 {
6669 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6670 "Location list begin address (%s)",
6671 list_head->ll_symbol);
6672 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6673 "Location list end address (%s)",
6674 list_head->ll_symbol);
6675 }
6676 size = size_of_locs (curr->expr);
6677
6678 /* Output the block length for this list of location operations. */
6679 if (size > 0xffff)
6680 abort ();
6681 dw2_asm_output_data (2, size, "%s", "Location expression size");
6682
6683 output_loc_sequence (curr->expr);
6684 }
6685
6686 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6687 "Location list terminator begin (%s)",
6688 list_head->ll_symbol);
6689 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6690 "Location list terminator end (%s)",
6691 list_head->ll_symbol);
6692 }
6693
6694 /* Output the DIE and its attributes. Called recursively to generate
6695 the definitions of each child DIE. */
6696
6697 static void
6698 output_die (dw_die_ref die)
6699 {
6700 dw_attr_ref a;
6701 dw_die_ref c;
6702 unsigned long size;
6703
6704 /* If someone in another CU might refer to us, set up a symbol for
6705 them to point to. */
6706 if (die->die_symbol)
6707 output_die_symbol (die);
6708
6709 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6710 die->die_offset, dwarf_tag_name (die->die_tag));
6711
6712 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6713 {
6714 const char *name = dwarf_attr_name (a->dw_attr);
6715
6716 switch (AT_class (a))
6717 {
6718 case dw_val_class_addr:
6719 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6720 break;
6721
6722 case dw_val_class_offset:
6723 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6724 "%s", name);
6725 break;
6726
6727 case dw_val_class_range_list:
6728 {
6729 char *p = strchr (ranges_section_label, '\0');
6730
6731 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6732 a->dw_attr_val.v.val_offset);
6733 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6734 "%s", name);
6735 *p = '\0';
6736 }
6737 break;
6738
6739 case dw_val_class_loc:
6740 size = size_of_locs (AT_loc (a));
6741
6742 /* Output the block length for this list of location operations. */
6743 dw2_asm_output_data (constant_size (size), size, "%s", name);
6744
6745 output_loc_sequence (AT_loc (a));
6746 break;
6747
6748 case dw_val_class_const:
6749 /* ??? It would be slightly more efficient to use a scheme like is
6750 used for unsigned constants below, but gdb 4.x does not sign
6751 extend. Gdb 5.x does sign extend. */
6752 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6753 break;
6754
6755 case dw_val_class_unsigned_const:
6756 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6757 AT_unsigned (a), "%s", name);
6758 break;
6759
6760 case dw_val_class_long_long:
6761 {
6762 unsigned HOST_WIDE_INT first, second;
6763
6764 dw2_asm_output_data (1,
6765 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6766 "%s", name);
6767
6768 if (WORDS_BIG_ENDIAN)
6769 {
6770 first = a->dw_attr_val.v.val_long_long.hi;
6771 second = a->dw_attr_val.v.val_long_long.low;
6772 }
6773 else
6774 {
6775 first = a->dw_attr_val.v.val_long_long.low;
6776 second = a->dw_attr_val.v.val_long_long.hi;
6777 }
6778
6779 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6780 first, "long long constant");
6781 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6782 second, NULL);
6783 }
6784 break;
6785
6786 case dw_val_class_float:
6787 {
6788 unsigned int i;
6789
6790 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6791 "%s", name);
6792
6793 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6794 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6795 "fp constant word %u", i);
6796 break;
6797 }
6798
6799 case dw_val_class_flag:
6800 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6801 break;
6802
6803 case dw_val_class_loc_list:
6804 {
6805 char *sym = AT_loc_list (a)->ll_symbol;
6806
6807 if (sym == 0)
6808 abort ();
6809 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6810 }
6811 break;
6812
6813 case dw_val_class_die_ref:
6814 if (AT_ref_external (a))
6815 {
6816 char *sym = AT_ref (a)->die_symbol;
6817
6818 if (sym == 0)
6819 abort ();
6820 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6821 }
6822 else if (AT_ref (a)->die_offset == 0)
6823 abort ();
6824 else
6825 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6826 "%s", name);
6827 break;
6828
6829 case dw_val_class_fde_ref:
6830 {
6831 char l1[20];
6832
6833 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6834 a->dw_attr_val.v.val_fde_index * 2);
6835 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6836 }
6837 break;
6838
6839 case dw_val_class_lbl_id:
6840 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6841 break;
6842
6843 case dw_val_class_lbl_offset:
6844 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6845 break;
6846
6847 case dw_val_class_str:
6848 if (AT_string_form (a) == DW_FORM_strp)
6849 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6850 a->dw_attr_val.v.val_str->label,
6851 "%s: \"%s\"", name, AT_string (a));
6852 else
6853 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6854 break;
6855
6856 default:
6857 abort ();
6858 }
6859 }
6860
6861 for (c = die->die_child; c != NULL; c = c->die_sib)
6862 output_die (c);
6863
6864 /* Add null byte to terminate sibling list. */
6865 if (die->die_child != NULL)
6866 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6867 die->die_offset);
6868 }
6869
6870 /* Output the compilation unit that appears at the beginning of the
6871 .debug_info section, and precedes the DIE descriptions. */
6872
6873 static void
6874 output_compilation_unit_header (void)
6875 {
6876 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6877 dw2_asm_output_data (4, 0xffffffff,
6878 "Initial length escape value indicating 64-bit DWARF extension");
6879 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6880 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6881 "Length of Compilation Unit Info");
6882 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6883 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6884 "Offset Into Abbrev. Section");
6885 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6886 }
6887
6888 /* Output the compilation unit DIE and its children. */
6889
6890 static void
6891 output_comp_unit (dw_die_ref die, int output_if_empty)
6892 {
6893 const char *secname;
6894 char *oldsym, *tmp;
6895
6896 /* Unless we are outputting main CU, we may throw away empty ones. */
6897 if (!output_if_empty && die->die_child == NULL)
6898 return;
6899
6900 /* Even if there are no children of this DIE, we must output the information
6901 about the compilation unit. Otherwise, on an empty translation unit, we
6902 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6903 will then complain when examining the file. First mark all the DIEs in
6904 this CU so we know which get local refs. */
6905 mark_dies (die);
6906
6907 build_abbrev_table (die);
6908
6909 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6910 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6911 calc_die_sizes (die);
6912
6913 oldsym = die->die_symbol;
6914 if (oldsym)
6915 {
6916 tmp = alloca (strlen (oldsym) + 24);
6917
6918 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6919 secname = tmp;
6920 die->die_symbol = NULL;
6921 }
6922 else
6923 secname = (const char *) DEBUG_INFO_SECTION;
6924
6925 /* Output debugging information. */
6926 named_section_flags (secname, SECTION_DEBUG);
6927 output_compilation_unit_header ();
6928 output_die (die);
6929
6930 /* Leave the marks on the main CU, so we can check them in
6931 output_pubnames. */
6932 if (oldsym)
6933 {
6934 unmark_dies (die);
6935 die->die_symbol = oldsym;
6936 }
6937 }
6938
6939 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6940 output of lang_hooks.decl_printable_name for C++ looks like
6941 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6942
6943 static const char *
6944 dwarf2_name (tree decl, int scope)
6945 {
6946 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6947 }
6948
6949 /* Add a new entry to .debug_pubnames if appropriate. */
6950
6951 static void
6952 add_pubname (tree decl, dw_die_ref die)
6953 {
6954 pubname_ref p;
6955
6956 if (! TREE_PUBLIC (decl))
6957 return;
6958
6959 if (pubname_table_in_use == pubname_table_allocated)
6960 {
6961 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6962 pubname_table
6963 = ggc_realloc (pubname_table,
6964 (pubname_table_allocated * sizeof (pubname_entry)));
6965 memset (pubname_table + pubname_table_in_use, 0,
6966 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6967 }
6968
6969 p = &pubname_table[pubname_table_in_use++];
6970 p->die = die;
6971 p->name = xstrdup (dwarf2_name (decl, 1));
6972 }
6973
6974 /* Output the public names table used to speed up access to externally
6975 visible names. For now, only generate entries for externally
6976 visible procedures. */
6977
6978 static void
6979 output_pubnames (void)
6980 {
6981 unsigned i;
6982 unsigned long pubnames_length = size_of_pubnames ();
6983
6984 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6985 dw2_asm_output_data (4, 0xffffffff,
6986 "Initial length escape value indicating 64-bit DWARF extension");
6987 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6988 "Length of Public Names Info");
6989 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6990 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6991 "Offset of Compilation Unit Info");
6992 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6993 "Compilation Unit Length");
6994
6995 for (i = 0; i < pubname_table_in_use; i++)
6996 {
6997 pubname_ref pub = &pubname_table[i];
6998
6999 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7000 if (pub->die->die_mark == 0)
7001 abort ();
7002
7003 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7004 "DIE offset");
7005
7006 dw2_asm_output_nstring (pub->name, -1, "external name");
7007 }
7008
7009 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7010 }
7011
7012 /* Add a new entry to .debug_aranges if appropriate. */
7013
7014 static void
7015 add_arange (tree decl, dw_die_ref die)
7016 {
7017 if (! DECL_SECTION_NAME (decl))
7018 return;
7019
7020 if (arange_table_in_use == arange_table_allocated)
7021 {
7022 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7023 arange_table = ggc_realloc (arange_table,
7024 (arange_table_allocated
7025 * sizeof (dw_die_ref)));
7026 memset (arange_table + arange_table_in_use, 0,
7027 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7028 }
7029
7030 arange_table[arange_table_in_use++] = die;
7031 }
7032
7033 /* Output the information that goes into the .debug_aranges table.
7034 Namely, define the beginning and ending address range of the
7035 text section generated for this compilation unit. */
7036
7037 static void
7038 output_aranges (void)
7039 {
7040 unsigned i;
7041 unsigned long aranges_length = size_of_aranges ();
7042
7043 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7044 dw2_asm_output_data (4, 0xffffffff,
7045 "Initial length escape value indicating 64-bit DWARF extension");
7046 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7047 "Length of Address Ranges Info");
7048 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7049 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7050 "Offset of Compilation Unit Info");
7051 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7052 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7053
7054 /* We need to align to twice the pointer size here. */
7055 if (DWARF_ARANGES_PAD_SIZE)
7056 {
7057 /* Pad using a 2 byte words so that padding is correct for any
7058 pointer size. */
7059 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7060 2 * DWARF2_ADDR_SIZE);
7061 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7062 dw2_asm_output_data (2, 0, NULL);
7063 }
7064
7065 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7066 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7067 text_section_label, "Length");
7068
7069 for (i = 0; i < arange_table_in_use; i++)
7070 {
7071 dw_die_ref die = arange_table[i];
7072
7073 /* We shouldn't see aranges for DIEs outside of the main CU. */
7074 if (die->die_mark == 0)
7075 abort ();
7076
7077 if (die->die_tag == DW_TAG_subprogram)
7078 {
7079 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7080 "Address");
7081 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7082 get_AT_low_pc (die), "Length");
7083 }
7084 else
7085 {
7086 /* A static variable; extract the symbol from DW_AT_location.
7087 Note that this code isn't currently hit, as we only emit
7088 aranges for functions (jason 9/23/99). */
7089 dw_attr_ref a = get_AT (die, DW_AT_location);
7090 dw_loc_descr_ref loc;
7091
7092 if (! a || AT_class (a) != dw_val_class_loc)
7093 abort ();
7094
7095 loc = AT_loc (a);
7096 if (loc->dw_loc_opc != DW_OP_addr)
7097 abort ();
7098
7099 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7100 loc->dw_loc_oprnd1.v.val_addr, "Address");
7101 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7102 get_AT_unsigned (die, DW_AT_byte_size),
7103 "Length");
7104 }
7105 }
7106
7107 /* Output the terminator words. */
7108 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7109 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7110 }
7111
7112 /* Add a new entry to .debug_ranges. Return the offset at which it
7113 was placed. */
7114
7115 static unsigned int
7116 add_ranges (tree block)
7117 {
7118 unsigned int in_use = ranges_table_in_use;
7119
7120 if (in_use == ranges_table_allocated)
7121 {
7122 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7123 ranges_table
7124 = ggc_realloc (ranges_table, (ranges_table_allocated
7125 * sizeof (struct dw_ranges_struct)));
7126 memset (ranges_table + ranges_table_in_use, 0,
7127 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7128 }
7129
7130 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7131 ranges_table_in_use = in_use + 1;
7132
7133 return in_use * 2 * DWARF2_ADDR_SIZE;
7134 }
7135
7136 static void
7137 output_ranges (void)
7138 {
7139 unsigned i;
7140 static const char *const start_fmt = "Offset 0x%x";
7141 const char *fmt = start_fmt;
7142
7143 for (i = 0; i < ranges_table_in_use; i++)
7144 {
7145 int block_num = ranges_table[i].block_num;
7146
7147 if (block_num)
7148 {
7149 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7150 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7151
7152 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7153 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7154
7155 /* If all code is in the text section, then the compilation
7156 unit base address defaults to DW_AT_low_pc, which is the
7157 base of the text section. */
7158 if (separate_line_info_table_in_use == 0)
7159 {
7160 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7161 text_section_label,
7162 fmt, i * 2 * DWARF2_ADDR_SIZE);
7163 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7164 text_section_label, NULL);
7165 }
7166
7167 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7168 compilation unit base address to zero, which allows us to
7169 use absolute addresses, and not worry about whether the
7170 target supports cross-section arithmetic. */
7171 else
7172 {
7173 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7174 fmt, i * 2 * DWARF2_ADDR_SIZE);
7175 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7176 }
7177
7178 fmt = NULL;
7179 }
7180 else
7181 {
7182 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7183 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7184 fmt = start_fmt;
7185 }
7186 }
7187 }
7188
7189 /* Data structure containing information about input files. */
7190 struct file_info
7191 {
7192 char *path; /* Complete file name. */
7193 char *fname; /* File name part. */
7194 int length; /* Length of entire string. */
7195 int file_idx; /* Index in input file table. */
7196 int dir_idx; /* Index in directory table. */
7197 };
7198
7199 /* Data structure containing information about directories with source
7200 files. */
7201 struct dir_info
7202 {
7203 char *path; /* Path including directory name. */
7204 int length; /* Path length. */
7205 int prefix; /* Index of directory entry which is a prefix. */
7206 int count; /* Number of files in this directory. */
7207 int dir_idx; /* Index of directory used as base. */
7208 int used; /* Used in the end? */
7209 };
7210
7211 /* Callback function for file_info comparison. We sort by looking at
7212 the directories in the path. */
7213
7214 static int
7215 file_info_cmp (const void *p1, const void *p2)
7216 {
7217 const struct file_info *s1 = p1;
7218 const struct file_info *s2 = p2;
7219 unsigned char *cp1;
7220 unsigned char *cp2;
7221
7222 /* Take care of file names without directories. We need to make sure that
7223 we return consistent values to qsort since some will get confused if
7224 we return the same value when identical operands are passed in opposite
7225 orders. So if neither has a directory, return 0 and otherwise return
7226 1 or -1 depending on which one has the directory. */
7227 if ((s1->path == s1->fname || s2->path == s2->fname))
7228 return (s2->path == s2->fname) - (s1->path == s1->fname);
7229
7230 cp1 = (unsigned char *) s1->path;
7231 cp2 = (unsigned char *) s2->path;
7232
7233 while (1)
7234 {
7235 ++cp1;
7236 ++cp2;
7237 /* Reached the end of the first path? If so, handle like above. */
7238 if ((cp1 == (unsigned char *) s1->fname)
7239 || (cp2 == (unsigned char *) s2->fname))
7240 return ((cp2 == (unsigned char *) s2->fname)
7241 - (cp1 == (unsigned char *) s1->fname));
7242
7243 /* Character of current path component the same? */
7244 else if (*cp1 != *cp2)
7245 return *cp1 - *cp2;
7246 }
7247 }
7248
7249 /* Output the directory table and the file name table. We try to minimize
7250 the total amount of memory needed. A heuristic is used to avoid large
7251 slowdowns with many input files. */
7252
7253 static void
7254 output_file_names (void)
7255 {
7256 struct file_info *files;
7257 struct dir_info *dirs;
7258 int *saved;
7259 int *savehere;
7260 int *backmap;
7261 size_t ndirs;
7262 int idx_offset;
7263 size_t i;
7264 int idx;
7265
7266 /* Handle the case where file_table is empty. */
7267 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7268 {
7269 dw2_asm_output_data (1, 0, "End directory table");
7270 dw2_asm_output_data (1, 0, "End file name table");
7271 return;
7272 }
7273
7274 /* Allocate the various arrays we need. */
7275 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7276 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7277
7278 /* Sort the file names. */
7279 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7280 {
7281 char *f;
7282
7283 /* Skip all leading "./". */
7284 f = VARRAY_CHAR_PTR (file_table, i);
7285 while (f[0] == '.' && f[1] == '/')
7286 f += 2;
7287
7288 /* Create a new array entry. */
7289 files[i].path = f;
7290 files[i].length = strlen (f);
7291 files[i].file_idx = i;
7292
7293 /* Search for the file name part. */
7294 f = strrchr (f, '/');
7295 files[i].fname = f == NULL ? files[i].path : f + 1;
7296 }
7297
7298 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7299 sizeof (files[0]), file_info_cmp);
7300
7301 /* Find all the different directories used. */
7302 dirs[0].path = files[1].path;
7303 dirs[0].length = files[1].fname - files[1].path;
7304 dirs[0].prefix = -1;
7305 dirs[0].count = 1;
7306 dirs[0].dir_idx = 0;
7307 dirs[0].used = 0;
7308 files[1].dir_idx = 0;
7309 ndirs = 1;
7310
7311 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7312 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7313 && memcmp (dirs[ndirs - 1].path, files[i].path,
7314 dirs[ndirs - 1].length) == 0)
7315 {
7316 /* Same directory as last entry. */
7317 files[i].dir_idx = ndirs - 1;
7318 ++dirs[ndirs - 1].count;
7319 }
7320 else
7321 {
7322 size_t j;
7323
7324 /* This is a new directory. */
7325 dirs[ndirs].path = files[i].path;
7326 dirs[ndirs].length = files[i].fname - files[i].path;
7327 dirs[ndirs].count = 1;
7328 dirs[ndirs].dir_idx = ndirs;
7329 dirs[ndirs].used = 0;
7330 files[i].dir_idx = ndirs;
7331
7332 /* Search for a prefix. */
7333 dirs[ndirs].prefix = -1;
7334 for (j = 0; j < ndirs; j++)
7335 if (dirs[j].length < dirs[ndirs].length
7336 && dirs[j].length > 1
7337 && (dirs[ndirs].prefix == -1
7338 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7339 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7340 dirs[ndirs].prefix = j;
7341
7342 ++ndirs;
7343 }
7344
7345 /* Now to the actual work. We have to find a subset of the directories which
7346 allow expressing the file name using references to the directory table
7347 with the least amount of characters. We do not do an exhaustive search
7348 where we would have to check out every combination of every single
7349 possible prefix. Instead we use a heuristic which provides nearly optimal
7350 results in most cases and never is much off. */
7351 saved = alloca (ndirs * sizeof (int));
7352 savehere = alloca (ndirs * sizeof (int));
7353
7354 memset (saved, '\0', ndirs * sizeof (saved[0]));
7355 for (i = 0; i < ndirs; i++)
7356 {
7357 size_t j;
7358 int total;
7359
7360 /* We can always save some space for the current directory. But this
7361 does not mean it will be enough to justify adding the directory. */
7362 savehere[i] = dirs[i].length;
7363 total = (savehere[i] - saved[i]) * dirs[i].count;
7364
7365 for (j = i + 1; j < ndirs; j++)
7366 {
7367 savehere[j] = 0;
7368 if (saved[j] < dirs[i].length)
7369 {
7370 /* Determine whether the dirs[i] path is a prefix of the
7371 dirs[j] path. */
7372 int k;
7373
7374 k = dirs[j].prefix;
7375 while (k != -1 && k != (int) i)
7376 k = dirs[k].prefix;
7377
7378 if (k == (int) i)
7379 {
7380 /* Yes it is. We can possibly safe some memory but
7381 writing the filenames in dirs[j] relative to
7382 dirs[i]. */
7383 savehere[j] = dirs[i].length;
7384 total += (savehere[j] - saved[j]) * dirs[j].count;
7385 }
7386 }
7387 }
7388
7389 /* Check whether we can safe enough to justify adding the dirs[i]
7390 directory. */
7391 if (total > dirs[i].length + 1)
7392 {
7393 /* It's worthwhile adding. */
7394 for (j = i; j < ndirs; j++)
7395 if (savehere[j] > 0)
7396 {
7397 /* Remember how much we saved for this directory so far. */
7398 saved[j] = savehere[j];
7399
7400 /* Remember the prefix directory. */
7401 dirs[j].dir_idx = i;
7402 }
7403 }
7404 }
7405
7406 /* We have to emit them in the order they appear in the file_table array
7407 since the index is used in the debug info generation. To do this
7408 efficiently we generate a back-mapping of the indices first. */
7409 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7410 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7411 {
7412 backmap[files[i].file_idx] = i;
7413
7414 /* Mark this directory as used. */
7415 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7416 }
7417
7418 /* That was it. We are ready to emit the information. First emit the
7419 directory name table. We have to make sure the first actually emitted
7420 directory name has index one; zero is reserved for the current working
7421 directory. Make sure we do not confuse these indices with the one for the
7422 constructed table (even though most of the time they are identical). */
7423 idx = 1;
7424 idx_offset = dirs[0].length > 0 ? 1 : 0;
7425 for (i = 1 - idx_offset; i < ndirs; i++)
7426 if (dirs[i].used != 0)
7427 {
7428 dirs[i].used = idx++;
7429 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7430 "Directory Entry: 0x%x", dirs[i].used);
7431 }
7432
7433 dw2_asm_output_data (1, 0, "End directory table");
7434
7435 /* Correct the index for the current working directory entry if it
7436 exists. */
7437 if (idx_offset == 0)
7438 dirs[0].used = 0;
7439
7440 /* Now write all the file names. */
7441 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7442 {
7443 int file_idx = backmap[i];
7444 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7445
7446 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7447 "File Entry: 0x%lx", (unsigned long) i);
7448
7449 /* Include directory index. */
7450 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7451
7452 /* Modification time. */
7453 dw2_asm_output_data_uleb128 (0, NULL);
7454
7455 /* File length in bytes. */
7456 dw2_asm_output_data_uleb128 (0, NULL);
7457 }
7458
7459 dw2_asm_output_data (1, 0, "End file name table");
7460 }
7461
7462
7463 /* Output the source line number correspondence information. This
7464 information goes into the .debug_line section. */
7465
7466 static void
7467 output_line_info (void)
7468 {
7469 char l1[20], l2[20], p1[20], p2[20];
7470 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7471 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7472 unsigned opc;
7473 unsigned n_op_args;
7474 unsigned long lt_index;
7475 unsigned long current_line;
7476 long line_offset;
7477 long line_delta;
7478 unsigned long current_file;
7479 unsigned long function;
7480
7481 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7482 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7483 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7484 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7485
7486 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7487 dw2_asm_output_data (4, 0xffffffff,
7488 "Initial length escape value indicating 64-bit DWARF extension");
7489 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7490 "Length of Source Line Info");
7491 ASM_OUTPUT_LABEL (asm_out_file, l1);
7492
7493 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7494 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7495 ASM_OUTPUT_LABEL (asm_out_file, p1);
7496
7497 /* Define the architecture-dependent minimum instruction length (in
7498 bytes). In this implementation of DWARF, this field is used for
7499 information purposes only. Since GCC generates assembly language,
7500 we have no a priori knowledge of how many instruction bytes are
7501 generated for each source line, and therefore can use only the
7502 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7503 commands. Accordingly, we fix this as `1', which is "correct
7504 enough" for all architectures, and don't let the target override. */
7505 dw2_asm_output_data (1, 1,
7506 "Minimum Instruction Length");
7507
7508 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7509 "Default is_stmt_start flag");
7510 dw2_asm_output_data (1, DWARF_LINE_BASE,
7511 "Line Base Value (Special Opcodes)");
7512 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7513 "Line Range Value (Special Opcodes)");
7514 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7515 "Special Opcode Base");
7516
7517 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7518 {
7519 switch (opc)
7520 {
7521 case DW_LNS_advance_pc:
7522 case DW_LNS_advance_line:
7523 case DW_LNS_set_file:
7524 case DW_LNS_set_column:
7525 case DW_LNS_fixed_advance_pc:
7526 n_op_args = 1;
7527 break;
7528 default:
7529 n_op_args = 0;
7530 break;
7531 }
7532
7533 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7534 opc, n_op_args);
7535 }
7536
7537 /* Write out the information about the files we use. */
7538 output_file_names ();
7539 ASM_OUTPUT_LABEL (asm_out_file, p2);
7540
7541 /* We used to set the address register to the first location in the text
7542 section here, but that didn't accomplish anything since we already
7543 have a line note for the opening brace of the first function. */
7544
7545 /* Generate the line number to PC correspondence table, encoded as
7546 a series of state machine operations. */
7547 current_file = 1;
7548 current_line = 1;
7549 strcpy (prev_line_label, text_section_label);
7550 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7551 {
7552 dw_line_info_ref line_info = &line_info_table[lt_index];
7553
7554 #if 0
7555 /* Disable this optimization for now; GDB wants to see two line notes
7556 at the beginning of a function so it can find the end of the
7557 prologue. */
7558
7559 /* Don't emit anything for redundant notes. Just updating the
7560 address doesn't accomplish anything, because we already assume
7561 that anything after the last address is this line. */
7562 if (line_info->dw_line_num == current_line
7563 && line_info->dw_file_num == current_file)
7564 continue;
7565 #endif
7566
7567 /* Emit debug info for the address of the current line.
7568
7569 Unfortunately, we have little choice here currently, and must always
7570 use the most general form. GCC does not know the address delta
7571 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7572 attributes which will give an upper bound on the address range. We
7573 could perhaps use length attributes to determine when it is safe to
7574 use DW_LNS_fixed_advance_pc. */
7575
7576 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7577 if (0)
7578 {
7579 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7580 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7581 "DW_LNS_fixed_advance_pc");
7582 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7583 }
7584 else
7585 {
7586 /* This can handle any delta. This takes
7587 4+DWARF2_ADDR_SIZE bytes. */
7588 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7589 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7590 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7591 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7592 }
7593
7594 strcpy (prev_line_label, line_label);
7595
7596 /* Emit debug info for the source file of the current line, if
7597 different from the previous line. */
7598 if (line_info->dw_file_num != current_file)
7599 {
7600 current_file = line_info->dw_file_num;
7601 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7602 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7603 VARRAY_CHAR_PTR (file_table,
7604 current_file));
7605 }
7606
7607 /* Emit debug info for the current line number, choosing the encoding
7608 that uses the least amount of space. */
7609 if (line_info->dw_line_num != current_line)
7610 {
7611 line_offset = line_info->dw_line_num - current_line;
7612 line_delta = line_offset - DWARF_LINE_BASE;
7613 current_line = line_info->dw_line_num;
7614 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7615 /* This can handle deltas from -10 to 234, using the current
7616 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7617 takes 1 byte. */
7618 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7619 "line %lu", current_line);
7620 else
7621 {
7622 /* This can handle any delta. This takes at least 4 bytes,
7623 depending on the value being encoded. */
7624 dw2_asm_output_data (1, DW_LNS_advance_line,
7625 "advance to line %lu", current_line);
7626 dw2_asm_output_data_sleb128 (line_offset, NULL);
7627 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7628 }
7629 }
7630 else
7631 /* We still need to start a new row, so output a copy insn. */
7632 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7633 }
7634
7635 /* Emit debug info for the address of the end of the function. */
7636 if (0)
7637 {
7638 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7639 "DW_LNS_fixed_advance_pc");
7640 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7641 }
7642 else
7643 {
7644 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7645 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7646 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7647 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7648 }
7649
7650 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7651 dw2_asm_output_data_uleb128 (1, NULL);
7652 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7653
7654 function = 0;
7655 current_file = 1;
7656 current_line = 1;
7657 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7658 {
7659 dw_separate_line_info_ref line_info
7660 = &separate_line_info_table[lt_index];
7661
7662 #if 0
7663 /* Don't emit anything for redundant notes. */
7664 if (line_info->dw_line_num == current_line
7665 && line_info->dw_file_num == current_file
7666 && line_info->function == function)
7667 goto cont;
7668 #endif
7669
7670 /* Emit debug info for the address of the current line. If this is
7671 a new function, or the first line of a function, then we need
7672 to handle it differently. */
7673 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7674 lt_index);
7675 if (function != line_info->function)
7676 {
7677 function = line_info->function;
7678
7679 /* Set the address register to the first line in the function. */
7680 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7681 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7682 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7683 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7684 }
7685 else
7686 {
7687 /* ??? See the DW_LNS_advance_pc comment above. */
7688 if (0)
7689 {
7690 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7691 "DW_LNS_fixed_advance_pc");
7692 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7693 }
7694 else
7695 {
7696 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7697 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7698 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7699 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7700 }
7701 }
7702
7703 strcpy (prev_line_label, line_label);
7704
7705 /* Emit debug info for the source file of the current line, if
7706 different from the previous line. */
7707 if (line_info->dw_file_num != current_file)
7708 {
7709 current_file = line_info->dw_file_num;
7710 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7711 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7712 VARRAY_CHAR_PTR (file_table,
7713 current_file));
7714 }
7715
7716 /* Emit debug info for the current line number, choosing the encoding
7717 that uses the least amount of space. */
7718 if (line_info->dw_line_num != current_line)
7719 {
7720 line_offset = line_info->dw_line_num - current_line;
7721 line_delta = line_offset - DWARF_LINE_BASE;
7722 current_line = line_info->dw_line_num;
7723 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7724 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7725 "line %lu", current_line);
7726 else
7727 {
7728 dw2_asm_output_data (1, DW_LNS_advance_line,
7729 "advance to line %lu", current_line);
7730 dw2_asm_output_data_sleb128 (line_offset, NULL);
7731 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7732 }
7733 }
7734 else
7735 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7736
7737 #if 0
7738 cont:
7739 #endif
7740
7741 lt_index++;
7742
7743 /* If we're done with a function, end its sequence. */
7744 if (lt_index == separate_line_info_table_in_use
7745 || separate_line_info_table[lt_index].function != function)
7746 {
7747 current_file = 1;
7748 current_line = 1;
7749
7750 /* Emit debug info for the address of the end of the function. */
7751 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7752 if (0)
7753 {
7754 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7755 "DW_LNS_fixed_advance_pc");
7756 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7757 }
7758 else
7759 {
7760 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7761 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7762 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7763 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7764 }
7765
7766 /* Output the marker for the end of this sequence. */
7767 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7768 dw2_asm_output_data_uleb128 (1, NULL);
7769 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7770 }
7771 }
7772
7773 /* Output the marker for the end of the line number info. */
7774 ASM_OUTPUT_LABEL (asm_out_file, l2);
7775 }
7776 \f
7777 /* Given a pointer to a tree node for some base type, return a pointer to
7778 a DIE that describes the given type.
7779
7780 This routine must only be called for GCC type nodes that correspond to
7781 Dwarf base (fundamental) types. */
7782
7783 static dw_die_ref
7784 base_type_die (tree type)
7785 {
7786 dw_die_ref base_type_result;
7787 const char *type_name;
7788 enum dwarf_type encoding;
7789 tree name = TYPE_NAME (type);
7790
7791 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7792 return 0;
7793
7794 if (name)
7795 {
7796 if (TREE_CODE (name) == TYPE_DECL)
7797 name = DECL_NAME (name);
7798
7799 type_name = IDENTIFIER_POINTER (name);
7800 }
7801 else
7802 type_name = "__unknown__";
7803
7804 switch (TREE_CODE (type))
7805 {
7806 case INTEGER_TYPE:
7807 /* Carefully distinguish the C character types, without messing
7808 up if the language is not C. Note that we check only for the names
7809 that contain spaces; other names might occur by coincidence in other
7810 languages. */
7811 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7812 && (type == char_type_node
7813 || ! strcmp (type_name, "signed char")
7814 || ! strcmp (type_name, "unsigned char"))))
7815 {
7816 if (TREE_UNSIGNED (type))
7817 encoding = DW_ATE_unsigned;
7818 else
7819 encoding = DW_ATE_signed;
7820 break;
7821 }
7822 /* else fall through. */
7823
7824 case CHAR_TYPE:
7825 /* GNU Pascal/Ada CHAR type. Not used in C. */
7826 if (TREE_UNSIGNED (type))
7827 encoding = DW_ATE_unsigned_char;
7828 else
7829 encoding = DW_ATE_signed_char;
7830 break;
7831
7832 case REAL_TYPE:
7833 encoding = DW_ATE_float;
7834 break;
7835
7836 /* Dwarf2 doesn't know anything about complex ints, so use
7837 a user defined type for it. */
7838 case COMPLEX_TYPE:
7839 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7840 encoding = DW_ATE_complex_float;
7841 else
7842 encoding = DW_ATE_lo_user;
7843 break;
7844
7845 case BOOLEAN_TYPE:
7846 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7847 encoding = DW_ATE_boolean;
7848 break;
7849
7850 default:
7851 /* No other TREE_CODEs are Dwarf fundamental types. */
7852 abort ();
7853 }
7854
7855 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7856 if (demangle_name_func)
7857 type_name = (*demangle_name_func) (type_name);
7858
7859 add_AT_string (base_type_result, DW_AT_name, type_name);
7860 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7861 int_size_in_bytes (type));
7862 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7863
7864 return base_type_result;
7865 }
7866
7867 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7868 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7869 a given type is generally the same as the given type, except that if the
7870 given type is a pointer or reference type, then the root type of the given
7871 type is the root type of the "basis" type for the pointer or reference
7872 type. (This definition of the "root" type is recursive.) Also, the root
7873 type of a `const' qualified type or a `volatile' qualified type is the
7874 root type of the given type without the qualifiers. */
7875
7876 static tree
7877 root_type (tree type)
7878 {
7879 if (TREE_CODE (type) == ERROR_MARK)
7880 return error_mark_node;
7881
7882 switch (TREE_CODE (type))
7883 {
7884 case ERROR_MARK:
7885 return error_mark_node;
7886
7887 case POINTER_TYPE:
7888 case REFERENCE_TYPE:
7889 return type_main_variant (root_type (TREE_TYPE (type)));
7890
7891 default:
7892 return type_main_variant (type);
7893 }
7894 }
7895
7896 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7897 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7898
7899 static inline int
7900 is_base_type (tree type)
7901 {
7902 switch (TREE_CODE (type))
7903 {
7904 case ERROR_MARK:
7905 case VOID_TYPE:
7906 case INTEGER_TYPE:
7907 case REAL_TYPE:
7908 case COMPLEX_TYPE:
7909 case BOOLEAN_TYPE:
7910 case CHAR_TYPE:
7911 return 1;
7912
7913 case SET_TYPE:
7914 case ARRAY_TYPE:
7915 case RECORD_TYPE:
7916 case UNION_TYPE:
7917 case QUAL_UNION_TYPE:
7918 case ENUMERAL_TYPE:
7919 case FUNCTION_TYPE:
7920 case METHOD_TYPE:
7921 case POINTER_TYPE:
7922 case REFERENCE_TYPE:
7923 case FILE_TYPE:
7924 case OFFSET_TYPE:
7925 case LANG_TYPE:
7926 case VECTOR_TYPE:
7927 return 0;
7928
7929 default:
7930 abort ();
7931 }
7932
7933 return 0;
7934 }
7935
7936 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7937 node, return the size in bits for the type if it is a constant, or else
7938 return the alignment for the type if the type's size is not constant, or
7939 else return BITS_PER_WORD if the type actually turns out to be an
7940 ERROR_MARK node. */
7941
7942 static inline unsigned HOST_WIDE_INT
7943 simple_type_size_in_bits (tree type)
7944 {
7945 if (TREE_CODE (type) == ERROR_MARK)
7946 return BITS_PER_WORD;
7947 else if (TYPE_SIZE (type) == NULL_TREE)
7948 return 0;
7949 else if (host_integerp (TYPE_SIZE (type), 1))
7950 return tree_low_cst (TYPE_SIZE (type), 1);
7951 else
7952 return TYPE_ALIGN (type);
7953 }
7954
7955 /* Return true if the debug information for the given type should be
7956 emitted as a subrange type. */
7957
7958 static inline bool
7959 is_subrange_type (tree type)
7960 {
7961 tree subtype = TREE_TYPE (type);
7962
7963 if (TREE_CODE (type) == INTEGER_TYPE
7964 && subtype != NULL_TREE)
7965 {
7966 if (TREE_CODE (subtype) == INTEGER_TYPE)
7967 return true;
7968 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
7969 return true;
7970 }
7971 return false;
7972 }
7973
7974 /* Given a pointer to a tree node for a subrange type, return a pointer
7975 to a DIE that describes the given type. */
7976
7977 static dw_die_ref
7978 subrange_type_die (tree type, dw_die_ref context_die)
7979 {
7980 dw_die_ref subtype_die;
7981 dw_die_ref subrange_die;
7982 tree name = TYPE_NAME (type);
7983 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
7984
7985 if (context_die == NULL)
7986 context_die = comp_unit_die;
7987
7988 if (TREE_CODE (TREE_TYPE (type)) == ENUMERAL_TYPE)
7989 subtype_die = gen_enumeration_type_die (TREE_TYPE (type), context_die);
7990 else
7991 subtype_die = base_type_die (TREE_TYPE (type));
7992
7993 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
7994
7995 if (name != NULL)
7996 {
7997 if (TREE_CODE (name) == TYPE_DECL)
7998 name = DECL_NAME (name);
7999 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8000 }
8001
8002 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8003 {
8004 /* The size of the subrange type and its base type do not match,
8005 so we need to generate a size attribute for the subrange type. */
8006 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8007 }
8008
8009 if (TYPE_MIN_VALUE (type) != NULL)
8010 add_bound_info (subrange_die, DW_AT_lower_bound,
8011 TYPE_MIN_VALUE (type));
8012 if (TYPE_MAX_VALUE (type) != NULL)
8013 add_bound_info (subrange_die, DW_AT_upper_bound,
8014 TYPE_MAX_VALUE (type));
8015 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8016
8017 return subrange_die;
8018 }
8019
8020 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8021 entry that chains various modifiers in front of the given type. */
8022
8023 static dw_die_ref
8024 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8025 dw_die_ref context_die)
8026 {
8027 enum tree_code code = TREE_CODE (type);
8028 dw_die_ref mod_type_die = NULL;
8029 dw_die_ref sub_die = NULL;
8030 tree item_type = NULL;
8031
8032 if (code != ERROR_MARK)
8033 {
8034 tree qualified_type;
8035
8036 /* See if we already have the appropriately qualified variant of
8037 this type. */
8038 qualified_type
8039 = get_qualified_type (type,
8040 ((is_const_type ? TYPE_QUAL_CONST : 0)
8041 | (is_volatile_type
8042 ? TYPE_QUAL_VOLATILE : 0)));
8043
8044 /* If we do, then we can just use its DIE, if it exists. */
8045 if (qualified_type)
8046 {
8047 mod_type_die = lookup_type_die (qualified_type);
8048 if (mod_type_die)
8049 return mod_type_die;
8050 }
8051
8052 /* Handle C typedef types. */
8053 if (qualified_type && TYPE_NAME (qualified_type)
8054 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8055 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8056 {
8057 tree type_name = TYPE_NAME (qualified_type);
8058 tree dtype = TREE_TYPE (type_name);
8059
8060 if (qualified_type == dtype)
8061 {
8062 /* For a named type, use the typedef. */
8063 gen_type_die (qualified_type, context_die);
8064 mod_type_die = lookup_type_die (qualified_type);
8065 }
8066 else if (is_const_type < TYPE_READONLY (dtype)
8067 || is_volatile_type < TYPE_VOLATILE (dtype))
8068 /* cv-unqualified version of named type. Just use the unnamed
8069 type to which it refers. */
8070 mod_type_die
8071 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8072 is_const_type, is_volatile_type,
8073 context_die);
8074
8075 /* Else cv-qualified version of named type; fall through. */
8076 }
8077
8078 if (mod_type_die)
8079 /* OK. */
8080 ;
8081 else if (is_const_type)
8082 {
8083 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8084 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8085 }
8086 else if (is_volatile_type)
8087 {
8088 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8089 sub_die = modified_type_die (type, 0, 0, context_die);
8090 }
8091 else if (code == POINTER_TYPE)
8092 {
8093 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8094 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8095 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8096 #if 0
8097 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8098 #endif
8099 item_type = TREE_TYPE (type);
8100 }
8101 else if (code == REFERENCE_TYPE)
8102 {
8103 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8104 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8105 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8106 #if 0
8107 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8108 #endif
8109 item_type = TREE_TYPE (type);
8110 }
8111 else if (is_subrange_type (type))
8112 mod_type_die = subrange_type_die (type, context_die);
8113 else if (is_base_type (type))
8114 mod_type_die = base_type_die (type);
8115 else
8116 {
8117 gen_type_die (type, context_die);
8118
8119 /* We have to get the type_main_variant here (and pass that to the
8120 `lookup_type_die' routine) because the ..._TYPE node we have
8121 might simply be a *copy* of some original type node (where the
8122 copy was created to help us keep track of typedef names) and
8123 that copy might have a different TYPE_UID from the original
8124 ..._TYPE node. */
8125 if (TREE_CODE (type) != VECTOR_TYPE)
8126 mod_type_die = lookup_type_die (type_main_variant (type));
8127 else
8128 /* Vectors have the debugging information in the type,
8129 not the main variant. */
8130 mod_type_die = lookup_type_die (type);
8131 if (mod_type_die == NULL)
8132 abort ();
8133 }
8134
8135 /* We want to equate the qualified type to the die below. */
8136 type = qualified_type;
8137 }
8138
8139 if (type)
8140 equate_type_number_to_die (type, mod_type_die);
8141 if (item_type)
8142 /* We must do this after the equate_type_number_to_die call, in case
8143 this is a recursive type. This ensures that the modified_type_die
8144 recursion will terminate even if the type is recursive. Recursive
8145 types are possible in Ada. */
8146 sub_die = modified_type_die (item_type,
8147 TYPE_READONLY (item_type),
8148 TYPE_VOLATILE (item_type),
8149 context_die);
8150
8151 if (sub_die != NULL)
8152 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8153
8154 return mod_type_die;
8155 }
8156
8157 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8158 an enumerated type. */
8159
8160 static inline int
8161 type_is_enum (tree type)
8162 {
8163 return TREE_CODE (type) == ENUMERAL_TYPE;
8164 }
8165
8166 /* Return the register number described by a given RTL node. */
8167
8168 static unsigned int
8169 reg_number (rtx rtl)
8170 {
8171 unsigned regno = REGNO (rtl);
8172
8173 if (regno >= FIRST_PSEUDO_REGISTER)
8174 abort ();
8175
8176 return DBX_REGISTER_NUMBER (regno);
8177 }
8178
8179 /* Return a location descriptor that designates a machine register or
8180 zero if there is none. */
8181
8182 static dw_loc_descr_ref
8183 reg_loc_descriptor (rtx rtl)
8184 {
8185 unsigned reg;
8186 rtx regs;
8187
8188 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8189 return 0;
8190
8191 reg = reg_number (rtl);
8192 regs = (*targetm.dwarf_register_span) (rtl);
8193
8194 if (hard_regno_nregs[reg][GET_MODE (rtl)] > 1
8195 || regs)
8196 return multiple_reg_loc_descriptor (rtl, regs);
8197 else
8198 return one_reg_loc_descriptor (reg);
8199 }
8200
8201 /* Return a location descriptor that designates a machine register for
8202 a given hard register number. */
8203
8204 static dw_loc_descr_ref
8205 one_reg_loc_descriptor (unsigned int regno)
8206 {
8207 if (regno <= 31)
8208 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8209 else
8210 return new_loc_descr (DW_OP_regx, regno, 0);
8211 }
8212
8213 /* Given an RTL of a register, return a location descriptor that
8214 designates a value that spans more than one register. */
8215
8216 static dw_loc_descr_ref
8217 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8218 {
8219 int nregs, size, i;
8220 unsigned reg;
8221 dw_loc_descr_ref loc_result = NULL;
8222
8223 reg = reg_number (rtl);
8224 nregs = hard_regno_nregs[reg][GET_MODE (rtl)];
8225
8226 /* Simple, contiguous registers. */
8227 if (regs == NULL_RTX)
8228 {
8229 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8230
8231 loc_result = NULL;
8232 while (nregs--)
8233 {
8234 dw_loc_descr_ref t;
8235
8236 t = one_reg_loc_descriptor (reg);
8237 add_loc_descr (&loc_result, t);
8238 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8239 ++reg;
8240 }
8241 return loc_result;
8242 }
8243
8244 /* Now onto stupid register sets in non contiguous locations. */
8245
8246 if (GET_CODE (regs) != PARALLEL)
8247 abort ();
8248
8249 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8250 loc_result = NULL;
8251
8252 for (i = 0; i < XVECLEN (regs, 0); ++i)
8253 {
8254 dw_loc_descr_ref t;
8255
8256 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8257 add_loc_descr (&loc_result, t);
8258 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8259 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8260 }
8261 return loc_result;
8262 }
8263
8264 /* Return a location descriptor that designates a constant. */
8265
8266 static dw_loc_descr_ref
8267 int_loc_descriptor (HOST_WIDE_INT i)
8268 {
8269 enum dwarf_location_atom op;
8270
8271 /* Pick the smallest representation of a constant, rather than just
8272 defaulting to the LEB encoding. */
8273 if (i >= 0)
8274 {
8275 if (i <= 31)
8276 op = DW_OP_lit0 + i;
8277 else if (i <= 0xff)
8278 op = DW_OP_const1u;
8279 else if (i <= 0xffff)
8280 op = DW_OP_const2u;
8281 else if (HOST_BITS_PER_WIDE_INT == 32
8282 || i <= 0xffffffff)
8283 op = DW_OP_const4u;
8284 else
8285 op = DW_OP_constu;
8286 }
8287 else
8288 {
8289 if (i >= -0x80)
8290 op = DW_OP_const1s;
8291 else if (i >= -0x8000)
8292 op = DW_OP_const2s;
8293 else if (HOST_BITS_PER_WIDE_INT == 32
8294 || i >= -0x80000000)
8295 op = DW_OP_const4s;
8296 else
8297 op = DW_OP_consts;
8298 }
8299
8300 return new_loc_descr (op, i, 0);
8301 }
8302
8303 /* Return a location descriptor that designates a base+offset location. */
8304
8305 static dw_loc_descr_ref
8306 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8307 {
8308 dw_loc_descr_ref loc_result;
8309 /* For the "frame base", we use the frame pointer or stack pointer
8310 registers, since the RTL for local variables is relative to one of
8311 them. */
8312 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8313 ? HARD_FRAME_POINTER_REGNUM
8314 : STACK_POINTER_REGNUM);
8315
8316 if (reg == fp_reg && can_use_fbreg)
8317 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8318 else if (reg <= 31)
8319 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8320 else
8321 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8322
8323 return loc_result;
8324 }
8325
8326 /* Return true if this RTL expression describes a base+offset calculation. */
8327
8328 static inline int
8329 is_based_loc (rtx rtl)
8330 {
8331 return (GET_CODE (rtl) == PLUS
8332 && ((GET_CODE (XEXP (rtl, 0)) == REG
8333 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8334 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8335 }
8336
8337 /* The following routine converts the RTL for a variable or parameter
8338 (resident in memory) into an equivalent Dwarf representation of a
8339 mechanism for getting the address of that same variable onto the top of a
8340 hypothetical "address evaluation" stack.
8341
8342 When creating memory location descriptors, we are effectively transforming
8343 the RTL for a memory-resident object into its Dwarf postfix expression
8344 equivalent. This routine recursively descends an RTL tree, turning
8345 it into Dwarf postfix code as it goes.
8346
8347 MODE is the mode of the memory reference, needed to handle some
8348 autoincrement addressing modes.
8349
8350 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8351 list for RTL. We can't use it when we are emitting location list for
8352 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8353 which describes how frame base changes when !frame_pointer_needed.
8354
8355 Return 0 if we can't represent the location. */
8356
8357 static dw_loc_descr_ref
8358 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8359 {
8360 dw_loc_descr_ref mem_loc_result = NULL;
8361
8362 /* Note that for a dynamically sized array, the location we will generate a
8363 description of here will be the lowest numbered location which is
8364 actually within the array. That's *not* necessarily the same as the
8365 zeroth element of the array. */
8366
8367 rtl = (*targetm.delegitimize_address) (rtl);
8368
8369 switch (GET_CODE (rtl))
8370 {
8371 case POST_INC:
8372 case POST_DEC:
8373 case POST_MODIFY:
8374 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8375 just fall into the SUBREG code. */
8376
8377 /* ... fall through ... */
8378
8379 case SUBREG:
8380 /* The case of a subreg may arise when we have a local (register)
8381 variable or a formal (register) parameter which doesn't quite fill
8382 up an entire register. For now, just assume that it is
8383 legitimate to make the Dwarf info refer to the whole register which
8384 contains the given subreg. */
8385 rtl = SUBREG_REG (rtl);
8386
8387 /* ... fall through ... */
8388
8389 case REG:
8390 /* Whenever a register number forms a part of the description of the
8391 method for calculating the (dynamic) address of a memory resident
8392 object, DWARF rules require the register number be referred to as
8393 a "base register". This distinction is not based in any way upon
8394 what category of register the hardware believes the given register
8395 belongs to. This is strictly DWARF terminology we're dealing with
8396 here. Note that in cases where the location of a memory-resident
8397 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8398 OP_CONST (0)) the actual DWARF location descriptor that we generate
8399 may just be OP_BASEREG (basereg). This may look deceptively like
8400 the object in question was allocated to a register (rather than in
8401 memory) so DWARF consumers need to be aware of the subtle
8402 distinction between OP_REG and OP_BASEREG. */
8403 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8404 mem_loc_result = based_loc_descr (reg_number (rtl), 0, can_use_fbreg);
8405 break;
8406
8407 case MEM:
8408 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8409 can_use_fbreg);
8410 if (mem_loc_result != 0)
8411 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8412 break;
8413
8414 case LO_SUM:
8415 rtl = XEXP (rtl, 1);
8416
8417 /* ... fall through ... */
8418
8419 case LABEL_REF:
8420 /* Some ports can transform a symbol ref into a label ref, because
8421 the symbol ref is too far away and has to be dumped into a constant
8422 pool. */
8423 case CONST:
8424 case SYMBOL_REF:
8425 /* Alternatively, the symbol in the constant pool might be referenced
8426 by a different symbol. */
8427 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8428 {
8429 bool marked;
8430 rtx tmp = get_pool_constant_mark (rtl, &marked);
8431
8432 if (GET_CODE (tmp) == SYMBOL_REF)
8433 {
8434 rtl = tmp;
8435 if (CONSTANT_POOL_ADDRESS_P (tmp))
8436 get_pool_constant_mark (tmp, &marked);
8437 else
8438 marked = true;
8439 }
8440
8441 /* If all references to this pool constant were optimized away,
8442 it was not output and thus we can't represent it.
8443 FIXME: might try to use DW_OP_const_value here, though
8444 DW_OP_piece complicates it. */
8445 if (!marked)
8446 return 0;
8447 }
8448
8449 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8450 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8451 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8452 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8453 break;
8454
8455 case PRE_MODIFY:
8456 /* Extract the PLUS expression nested inside and fall into
8457 PLUS code below. */
8458 rtl = XEXP (rtl, 1);
8459 goto plus;
8460
8461 case PRE_INC:
8462 case PRE_DEC:
8463 /* Turn these into a PLUS expression and fall into the PLUS code
8464 below. */
8465 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8466 GEN_INT (GET_CODE (rtl) == PRE_INC
8467 ? GET_MODE_UNIT_SIZE (mode)
8468 : -GET_MODE_UNIT_SIZE (mode)));
8469
8470 /* ... fall through ... */
8471
8472 case PLUS:
8473 plus:
8474 if (is_based_loc (rtl))
8475 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8476 INTVAL (XEXP (rtl, 1)),
8477 can_use_fbreg);
8478 else
8479 {
8480 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8481 can_use_fbreg);
8482 if (mem_loc_result == 0)
8483 break;
8484
8485 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8486 && INTVAL (XEXP (rtl, 1)) >= 0)
8487 add_loc_descr (&mem_loc_result,
8488 new_loc_descr (DW_OP_plus_uconst,
8489 INTVAL (XEXP (rtl, 1)), 0));
8490 else
8491 {
8492 add_loc_descr (&mem_loc_result,
8493 mem_loc_descriptor (XEXP (rtl, 1), mode,
8494 can_use_fbreg));
8495 add_loc_descr (&mem_loc_result,
8496 new_loc_descr (DW_OP_plus, 0, 0));
8497 }
8498 }
8499 break;
8500
8501 case MULT:
8502 {
8503 /* If a pseudo-reg is optimized away, it is possible for it to
8504 be replaced with a MEM containing a multiply. */
8505 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8506 can_use_fbreg);
8507 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8508 can_use_fbreg);
8509
8510 if (op0 == 0 || op1 == 0)
8511 break;
8512
8513 mem_loc_result = op0;
8514 add_loc_descr (&mem_loc_result, op1);
8515 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8516 break;
8517 }
8518
8519 case CONST_INT:
8520 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8521 break;
8522
8523 case ADDRESSOF:
8524 /* If this is a MEM, return its address. Otherwise, we can't
8525 represent this. */
8526 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8527 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode,
8528 can_use_fbreg);
8529 else
8530 return 0;
8531
8532 default:
8533 abort ();
8534 }
8535
8536 return mem_loc_result;
8537 }
8538
8539 /* Return a descriptor that describes the concatenation of two locations.
8540 This is typically a complex variable. */
8541
8542 static dw_loc_descr_ref
8543 concat_loc_descriptor (rtx x0, rtx x1)
8544 {
8545 dw_loc_descr_ref cc_loc_result = NULL;
8546 dw_loc_descr_ref x0_ref = loc_descriptor (x0, true);
8547 dw_loc_descr_ref x1_ref = loc_descriptor (x1, true);
8548
8549 if (x0_ref == 0 || x1_ref == 0)
8550 return 0;
8551
8552 cc_loc_result = x0_ref;
8553 add_loc_descr (&cc_loc_result,
8554 new_loc_descr (DW_OP_piece,
8555 GET_MODE_SIZE (GET_MODE (x0)), 0));
8556
8557 add_loc_descr (&cc_loc_result, x1_ref);
8558 add_loc_descr (&cc_loc_result,
8559 new_loc_descr (DW_OP_piece,
8560 GET_MODE_SIZE (GET_MODE (x1)), 0));
8561
8562 return cc_loc_result;
8563 }
8564
8565 /* Output a proper Dwarf location descriptor for a variable or parameter
8566 which is either allocated in a register or in a memory location. For a
8567 register, we just generate an OP_REG and the register number. For a
8568 memory location we provide a Dwarf postfix expression describing how to
8569 generate the (dynamic) address of the object onto the address stack.
8570
8571 If we don't know how to describe it, return 0. */
8572
8573 static dw_loc_descr_ref
8574 loc_descriptor (rtx rtl, bool can_use_fbreg)
8575 {
8576 dw_loc_descr_ref loc_result = NULL;
8577
8578 switch (GET_CODE (rtl))
8579 {
8580 case SUBREG:
8581 /* The case of a subreg may arise when we have a local (register)
8582 variable or a formal (register) parameter which doesn't quite fill
8583 up an entire register. For now, just assume that it is
8584 legitimate to make the Dwarf info refer to the whole register which
8585 contains the given subreg. */
8586 rtl = SUBREG_REG (rtl);
8587
8588 /* ... fall through ... */
8589
8590 case REG:
8591 loc_result = reg_loc_descriptor (rtl);
8592 break;
8593
8594 case MEM:
8595 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8596 can_use_fbreg);
8597 break;
8598
8599 case CONCAT:
8600 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8601 break;
8602
8603 case VAR_LOCATION:
8604 /* Single part. */
8605 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8606 {
8607 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8608 }
8609 /* Multiple parts. */
8610 else
8611 {
8612 rtvec par_elems = XVEC (XEXP (rtl, 1), 0);
8613 int num_elem = GET_NUM_ELEM (par_elems);
8614 enum machine_mode mode;
8615 int i;
8616
8617 /* Create the first one, so we have something to add to. */
8618 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8619 can_use_fbreg);
8620 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8621 add_loc_descr (&loc_result,
8622 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8623 for (i = 1; i < num_elem; i++)
8624 {
8625 dw_loc_descr_ref temp;
8626
8627 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8628 can_use_fbreg);
8629 add_loc_descr (&loc_result, temp);
8630 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8631 add_loc_descr (&loc_result,
8632 new_loc_descr (DW_OP_piece,
8633 GET_MODE_SIZE (mode), 0));
8634 }
8635 }
8636 break;
8637
8638 default:
8639 abort ();
8640 }
8641
8642 return loc_result;
8643 }
8644
8645 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8646 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8647 looking for an address. Otherwise, we return a value. If we can't make a
8648 descriptor, return 0. */
8649
8650 static dw_loc_descr_ref
8651 loc_descriptor_from_tree (tree loc, int addressp)
8652 {
8653 dw_loc_descr_ref ret, ret1;
8654 int indirect_p = 0;
8655 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8656 enum dwarf_location_atom op;
8657
8658 /* ??? Most of the time we do not take proper care for sign/zero
8659 extending the values properly. Hopefully this won't be a real
8660 problem... */
8661
8662 switch (TREE_CODE (loc))
8663 {
8664 case ERROR_MARK:
8665 return 0;
8666
8667 case WITH_RECORD_EXPR:
8668 case PLACEHOLDER_EXPR:
8669 /* This case involves extracting fields from an object to determine the
8670 position of other fields. We don't try to encode this here. The
8671 only user of this is Ada, which encodes the needed information using
8672 the names of types. */
8673 return 0;
8674
8675 case CALL_EXPR:
8676 return 0;
8677
8678 case ADDR_EXPR:
8679 /* We can support this only if we can look through conversions and
8680 find an INDIRECT_EXPR. */
8681 for (loc = TREE_OPERAND (loc, 0);
8682 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8683 || TREE_CODE (loc) == NON_LVALUE_EXPR
8684 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8685 || TREE_CODE (loc) == SAVE_EXPR;
8686 loc = TREE_OPERAND (loc, 0))
8687 ;
8688
8689 return (TREE_CODE (loc) == INDIRECT_REF
8690 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8691 : 0);
8692
8693 case VAR_DECL:
8694 if (DECL_THREAD_LOCAL (loc))
8695 {
8696 rtx rtl;
8697
8698 #ifndef ASM_OUTPUT_DWARF_DTPREL
8699 /* If this is not defined, we have no way to emit the data. */
8700 return 0;
8701 #endif
8702
8703 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8704 look up addresses of objects in the current module. */
8705 if (DECL_EXTERNAL (loc))
8706 return 0;
8707
8708 rtl = rtl_for_decl_location (loc);
8709 if (rtl == NULL_RTX)
8710 return 0;
8711
8712 if (GET_CODE (rtl) != MEM)
8713 return 0;
8714 rtl = XEXP (rtl, 0);
8715 if (! CONSTANT_P (rtl))
8716 return 0;
8717
8718 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8719 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8720 ret->dw_loc_oprnd1.v.val_addr = rtl;
8721
8722 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8723 add_loc_descr (&ret, ret1);
8724
8725 indirect_p = 1;
8726 break;
8727 }
8728 /* Fall through. */
8729
8730 case PARM_DECL:
8731 {
8732 rtx rtl = rtl_for_decl_location (loc);
8733
8734 if (rtl == NULL_RTX)
8735 return 0;
8736 else if (CONSTANT_P (rtl))
8737 {
8738 ret = new_loc_descr (DW_OP_addr, 0, 0);
8739 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8740 ret->dw_loc_oprnd1.v.val_addr = rtl;
8741 indirect_p = 1;
8742 }
8743 else
8744 {
8745 enum machine_mode mode = GET_MODE (rtl);
8746
8747 if (GET_CODE (rtl) == MEM)
8748 {
8749 indirect_p = 1;
8750 rtl = XEXP (rtl, 0);
8751 }
8752
8753 ret = mem_loc_descriptor (rtl, mode, true);
8754 }
8755 }
8756 break;
8757
8758 case INDIRECT_REF:
8759 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8760 indirect_p = 1;
8761 break;
8762
8763 case COMPOUND_EXPR:
8764 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8765
8766 case NOP_EXPR:
8767 case CONVERT_EXPR:
8768 case NON_LVALUE_EXPR:
8769 case VIEW_CONVERT_EXPR:
8770 case SAVE_EXPR:
8771 case MODIFY_EXPR:
8772 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8773
8774 case COMPONENT_REF:
8775 case BIT_FIELD_REF:
8776 case ARRAY_REF:
8777 case ARRAY_RANGE_REF:
8778 {
8779 tree obj, offset;
8780 HOST_WIDE_INT bitsize, bitpos, bytepos;
8781 enum machine_mode mode;
8782 int volatilep;
8783
8784 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8785 &unsignedp, &volatilep);
8786
8787 if (obj == loc)
8788 return 0;
8789
8790 ret = loc_descriptor_from_tree (obj, 1);
8791 if (ret == 0
8792 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8793 return 0;
8794
8795 if (offset != NULL_TREE)
8796 {
8797 /* Variable offset. */
8798 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8799 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8800 }
8801
8802 if (!addressp)
8803 indirect_p = 1;
8804
8805 bytepos = bitpos / BITS_PER_UNIT;
8806 if (bytepos > 0)
8807 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8808 else if (bytepos < 0)
8809 {
8810 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8811 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8812 }
8813 break;
8814 }
8815
8816 case INTEGER_CST:
8817 if (host_integerp (loc, 0))
8818 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8819 else
8820 return 0;
8821 break;
8822
8823 case CONSTRUCTOR:
8824 {
8825 /* Get an RTL for this, if something has been emitted. */
8826 rtx rtl = lookup_constant_def (loc);
8827 enum machine_mode mode;
8828
8829 if (GET_CODE (rtl) != MEM)
8830 return 0;
8831 mode = GET_MODE (rtl);
8832 rtl = XEXP (rtl, 0);
8833
8834 rtl = (*targetm.delegitimize_address) (rtl);
8835
8836 indirect_p = 1;
8837 ret = mem_loc_descriptor (rtl, mode, true);
8838 break;
8839 }
8840
8841 case TRUTH_AND_EXPR:
8842 case TRUTH_ANDIF_EXPR:
8843 case BIT_AND_EXPR:
8844 op = DW_OP_and;
8845 goto do_binop;
8846
8847 case TRUTH_XOR_EXPR:
8848 case BIT_XOR_EXPR:
8849 op = DW_OP_xor;
8850 goto do_binop;
8851
8852 case TRUTH_OR_EXPR:
8853 case TRUTH_ORIF_EXPR:
8854 case BIT_IOR_EXPR:
8855 op = DW_OP_or;
8856 goto do_binop;
8857
8858 case FLOOR_DIV_EXPR:
8859 case CEIL_DIV_EXPR:
8860 case ROUND_DIV_EXPR:
8861 case TRUNC_DIV_EXPR:
8862 op = DW_OP_div;
8863 goto do_binop;
8864
8865 case MINUS_EXPR:
8866 op = DW_OP_minus;
8867 goto do_binop;
8868
8869 case FLOOR_MOD_EXPR:
8870 case CEIL_MOD_EXPR:
8871 case ROUND_MOD_EXPR:
8872 case TRUNC_MOD_EXPR:
8873 op = DW_OP_mod;
8874 goto do_binop;
8875
8876 case MULT_EXPR:
8877 op = DW_OP_mul;
8878 goto do_binop;
8879
8880 case LSHIFT_EXPR:
8881 op = DW_OP_shl;
8882 goto do_binop;
8883
8884 case RSHIFT_EXPR:
8885 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8886 goto do_binop;
8887
8888 case PLUS_EXPR:
8889 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8890 && host_integerp (TREE_OPERAND (loc, 1), 0))
8891 {
8892 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8893 if (ret == 0)
8894 return 0;
8895
8896 add_loc_descr (&ret,
8897 new_loc_descr (DW_OP_plus_uconst,
8898 tree_low_cst (TREE_OPERAND (loc, 1),
8899 0),
8900 0));
8901 break;
8902 }
8903
8904 op = DW_OP_plus;
8905 goto do_binop;
8906
8907 case LE_EXPR:
8908 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8909 return 0;
8910
8911 op = DW_OP_le;
8912 goto do_binop;
8913
8914 case GE_EXPR:
8915 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8916 return 0;
8917
8918 op = DW_OP_ge;
8919 goto do_binop;
8920
8921 case LT_EXPR:
8922 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8923 return 0;
8924
8925 op = DW_OP_lt;
8926 goto do_binop;
8927
8928 case GT_EXPR:
8929 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8930 return 0;
8931
8932 op = DW_OP_gt;
8933 goto do_binop;
8934
8935 case EQ_EXPR:
8936 op = DW_OP_eq;
8937 goto do_binop;
8938
8939 case NE_EXPR:
8940 op = DW_OP_ne;
8941 goto do_binop;
8942
8943 do_binop:
8944 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8945 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8946 if (ret == 0 || ret1 == 0)
8947 return 0;
8948
8949 add_loc_descr (&ret, ret1);
8950 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8951 break;
8952
8953 case TRUTH_NOT_EXPR:
8954 case BIT_NOT_EXPR:
8955 op = DW_OP_not;
8956 goto do_unop;
8957
8958 case ABS_EXPR:
8959 op = DW_OP_abs;
8960 goto do_unop;
8961
8962 case NEGATE_EXPR:
8963 op = DW_OP_neg;
8964 goto do_unop;
8965
8966 do_unop:
8967 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8968 if (ret == 0)
8969 return 0;
8970
8971 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8972 break;
8973
8974 case MAX_EXPR:
8975 loc = build (COND_EXPR, TREE_TYPE (loc),
8976 build (LT_EXPR, integer_type_node,
8977 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8978 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8979
8980 /* ... fall through ... */
8981
8982 case COND_EXPR:
8983 {
8984 dw_loc_descr_ref lhs
8985 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8986 dw_loc_descr_ref rhs
8987 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8988 dw_loc_descr_ref bra_node, jump_node, tmp;
8989
8990 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8991 if (ret == 0 || lhs == 0 || rhs == 0)
8992 return 0;
8993
8994 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8995 add_loc_descr (&ret, bra_node);
8996
8997 add_loc_descr (&ret, rhs);
8998 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8999 add_loc_descr (&ret, jump_node);
9000
9001 add_loc_descr (&ret, lhs);
9002 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9003 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9004
9005 /* ??? Need a node to point the skip at. Use a nop. */
9006 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9007 add_loc_descr (&ret, tmp);
9008 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9009 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9010 }
9011 break;
9012
9013 default:
9014 /* Leave front-end specific codes as simply unknown. This comes
9015 up, for instance, with the C STMT_EXPR. */
9016 if ((unsigned int) TREE_CODE (loc)
9017 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9018 return 0;
9019
9020 /* Otherwise this is a generic code; we should just lists all of
9021 these explicitly. Aborting means we forgot one. */
9022 abort ();
9023 }
9024
9025 /* Show if we can't fill the request for an address. */
9026 if (addressp && indirect_p == 0)
9027 return 0;
9028
9029 /* If we've got an address and don't want one, dereference. */
9030 if (!addressp && indirect_p > 0)
9031 {
9032 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9033
9034 if (size > DWARF2_ADDR_SIZE || size == -1)
9035 return 0;
9036 else if (size == DWARF2_ADDR_SIZE)
9037 op = DW_OP_deref;
9038 else
9039 op = DW_OP_deref_size;
9040
9041 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9042 }
9043
9044 return ret;
9045 }
9046
9047 /* Given a value, round it up to the lowest multiple of `boundary'
9048 which is not less than the value itself. */
9049
9050 static inline HOST_WIDE_INT
9051 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9052 {
9053 return (((value + boundary - 1) / boundary) * boundary);
9054 }
9055
9056 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9057 pointer to the declared type for the relevant field variable, or return
9058 `integer_type_node' if the given node turns out to be an
9059 ERROR_MARK node. */
9060
9061 static inline tree
9062 field_type (tree decl)
9063 {
9064 tree type;
9065
9066 if (TREE_CODE (decl) == ERROR_MARK)
9067 return integer_type_node;
9068
9069 type = DECL_BIT_FIELD_TYPE (decl);
9070 if (type == NULL_TREE)
9071 type = TREE_TYPE (decl);
9072
9073 return type;
9074 }
9075
9076 /* Given a pointer to a tree node, return the alignment in bits for
9077 it, or else return BITS_PER_WORD if the node actually turns out to
9078 be an ERROR_MARK node. */
9079
9080 static inline unsigned
9081 simple_type_align_in_bits (tree type)
9082 {
9083 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9084 }
9085
9086 static inline unsigned
9087 simple_decl_align_in_bits (tree decl)
9088 {
9089 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9090 }
9091
9092 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9093 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9094 or return 0 if we are unable to determine what that offset is, either
9095 because the argument turns out to be a pointer to an ERROR_MARK node, or
9096 because the offset is actually variable. (We can't handle the latter case
9097 just yet). */
9098
9099 static HOST_WIDE_INT
9100 field_byte_offset (tree decl)
9101 {
9102 unsigned int type_align_in_bits;
9103 unsigned int decl_align_in_bits;
9104 unsigned HOST_WIDE_INT type_size_in_bits;
9105 HOST_WIDE_INT object_offset_in_bits;
9106 tree type;
9107 tree field_size_tree;
9108 HOST_WIDE_INT bitpos_int;
9109 HOST_WIDE_INT deepest_bitpos;
9110 unsigned HOST_WIDE_INT field_size_in_bits;
9111
9112 if (TREE_CODE (decl) == ERROR_MARK)
9113 return 0;
9114 else if (TREE_CODE (decl) != FIELD_DECL)
9115 abort ();
9116
9117 type = field_type (decl);
9118 field_size_tree = DECL_SIZE (decl);
9119
9120 /* The size could be unspecified if there was an error, or for
9121 a flexible array member. */
9122 if (! field_size_tree)
9123 field_size_tree = bitsize_zero_node;
9124
9125 /* We cannot yet cope with fields whose positions are variable, so
9126 for now, when we see such things, we simply return 0. Someday, we may
9127 be able to handle such cases, but it will be damn difficult. */
9128 if (! host_integerp (bit_position (decl), 0))
9129 return 0;
9130
9131 bitpos_int = int_bit_position (decl);
9132
9133 /* If we don't know the size of the field, pretend it's a full word. */
9134 if (host_integerp (field_size_tree, 1))
9135 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9136 else
9137 field_size_in_bits = BITS_PER_WORD;
9138
9139 type_size_in_bits = simple_type_size_in_bits (type);
9140 type_align_in_bits = simple_type_align_in_bits (type);
9141 decl_align_in_bits = simple_decl_align_in_bits (decl);
9142
9143 /* The GCC front-end doesn't make any attempt to keep track of the starting
9144 bit offset (relative to the start of the containing structure type) of the
9145 hypothetical "containing object" for a bit-field. Thus, when computing
9146 the byte offset value for the start of the "containing object" of a
9147 bit-field, we must deduce this information on our own. This can be rather
9148 tricky to do in some cases. For example, handling the following structure
9149 type definition when compiling for an i386/i486 target (which only aligns
9150 long long's to 32-bit boundaries) can be very tricky:
9151
9152 struct S { int field1; long long field2:31; };
9153
9154 Fortunately, there is a simple rule-of-thumb which can be used in such
9155 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9156 structure shown above. It decides to do this based upon one simple rule
9157 for bit-field allocation. GCC allocates each "containing object" for each
9158 bit-field at the first (i.e. lowest addressed) legitimate alignment
9159 boundary (based upon the required minimum alignment for the declared type
9160 of the field) which it can possibly use, subject to the condition that
9161 there is still enough available space remaining in the containing object
9162 (when allocated at the selected point) to fully accommodate all of the
9163 bits of the bit-field itself.
9164
9165 This simple rule makes it obvious why GCC allocates 8 bytes for each
9166 object of the structure type shown above. When looking for a place to
9167 allocate the "containing object" for `field2', the compiler simply tries
9168 to allocate a 64-bit "containing object" at each successive 32-bit
9169 boundary (starting at zero) until it finds a place to allocate that 64-
9170 bit field such that at least 31 contiguous (and previously unallocated)
9171 bits remain within that selected 64 bit field. (As it turns out, for the
9172 example above, the compiler finds it is OK to allocate the "containing
9173 object" 64-bit field at bit-offset zero within the structure type.)
9174
9175 Here we attempt to work backwards from the limited set of facts we're
9176 given, and we try to deduce from those facts, where GCC must have believed
9177 that the containing object started (within the structure type). The value
9178 we deduce is then used (by the callers of this routine) to generate
9179 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9180 and, in the case of DW_AT_location, regular fields as well). */
9181
9182 /* Figure out the bit-distance from the start of the structure to the
9183 "deepest" bit of the bit-field. */
9184 deepest_bitpos = bitpos_int + field_size_in_bits;
9185
9186 /* This is the tricky part. Use some fancy footwork to deduce where the
9187 lowest addressed bit of the containing object must be. */
9188 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9189
9190 /* Round up to type_align by default. This works best for bitfields. */
9191 object_offset_in_bits += type_align_in_bits - 1;
9192 object_offset_in_bits /= type_align_in_bits;
9193 object_offset_in_bits *= type_align_in_bits;
9194
9195 if (object_offset_in_bits > bitpos_int)
9196 {
9197 /* Sigh, the decl must be packed. */
9198 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9199
9200 /* Round up to decl_align instead. */
9201 object_offset_in_bits += decl_align_in_bits - 1;
9202 object_offset_in_bits /= decl_align_in_bits;
9203 object_offset_in_bits *= decl_align_in_bits;
9204 }
9205
9206 return object_offset_in_bits / BITS_PER_UNIT;
9207 }
9208 \f
9209 /* The following routines define various Dwarf attributes and any data
9210 associated with them. */
9211
9212 /* Add a location description attribute value to a DIE.
9213
9214 This emits location attributes suitable for whole variables and
9215 whole parameters. Note that the location attributes for struct fields are
9216 generated by the routine `data_member_location_attribute' below. */
9217
9218 static inline void
9219 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9220 dw_loc_descr_ref descr)
9221 {
9222 if (descr != 0)
9223 add_AT_loc (die, attr_kind, descr);
9224 }
9225
9226 /* Attach the specialized form of location attribute used for data members of
9227 struct and union types. In the special case of a FIELD_DECL node which
9228 represents a bit-field, the "offset" part of this special location
9229 descriptor must indicate the distance in bytes from the lowest-addressed
9230 byte of the containing struct or union type to the lowest-addressed byte of
9231 the "containing object" for the bit-field. (See the `field_byte_offset'
9232 function above).
9233
9234 For any given bit-field, the "containing object" is a hypothetical object
9235 (of some integral or enum type) within which the given bit-field lives. The
9236 type of this hypothetical "containing object" is always the same as the
9237 declared type of the individual bit-field itself (for GCC anyway... the
9238 DWARF spec doesn't actually mandate this). Note that it is the size (in
9239 bytes) of the hypothetical "containing object" which will be given in the
9240 DW_AT_byte_size attribute for this bit-field. (See the
9241 `byte_size_attribute' function below.) It is also used when calculating the
9242 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9243 function below.) */
9244
9245 static void
9246 add_data_member_location_attribute (dw_die_ref die, tree decl)
9247 {
9248 HOST_WIDE_INT offset;
9249 dw_loc_descr_ref loc_descr = 0;
9250
9251 if (TREE_CODE (decl) == TREE_VEC)
9252 {
9253 /* We're working on the TAG_inheritance for a base class. */
9254 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9255 {
9256 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9257 aren't at a fixed offset from all (sub)objects of the same
9258 type. We need to extract the appropriate offset from our
9259 vtable. The following dwarf expression means
9260
9261 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9262
9263 This is specific to the V3 ABI, of course. */
9264
9265 dw_loc_descr_ref tmp;
9266
9267 /* Make a copy of the object address. */
9268 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9269 add_loc_descr (&loc_descr, tmp);
9270
9271 /* Extract the vtable address. */
9272 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9273 add_loc_descr (&loc_descr, tmp);
9274
9275 /* Calculate the address of the offset. */
9276 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9277 if (offset >= 0)
9278 abort ();
9279
9280 tmp = int_loc_descriptor (-offset);
9281 add_loc_descr (&loc_descr, tmp);
9282 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9283 add_loc_descr (&loc_descr, tmp);
9284
9285 /* Extract the offset. */
9286 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9287 add_loc_descr (&loc_descr, tmp);
9288
9289 /* Add it to the object address. */
9290 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9291 add_loc_descr (&loc_descr, tmp);
9292 }
9293 else
9294 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9295 }
9296 else
9297 offset = field_byte_offset (decl);
9298
9299 if (! loc_descr)
9300 {
9301 enum dwarf_location_atom op;
9302
9303 /* The DWARF2 standard says that we should assume that the structure
9304 address is already on the stack, so we can specify a structure field
9305 address by using DW_OP_plus_uconst. */
9306
9307 #ifdef MIPS_DEBUGGING_INFO
9308 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9309 operator correctly. It works only if we leave the offset on the
9310 stack. */
9311 op = DW_OP_constu;
9312 #else
9313 op = DW_OP_plus_uconst;
9314 #endif
9315
9316 loc_descr = new_loc_descr (op, offset, 0);
9317 }
9318
9319 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9320 }
9321
9322 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9323 does not have a "location" either in memory or in a register. These
9324 things can arise in GNU C when a constant is passed as an actual parameter
9325 to an inlined function. They can also arise in C++ where declared
9326 constants do not necessarily get memory "homes". */
9327
9328 static void
9329 add_const_value_attribute (dw_die_ref die, rtx rtl)
9330 {
9331 switch (GET_CODE (rtl))
9332 {
9333 case CONST_INT:
9334 {
9335 HOST_WIDE_INT val = INTVAL (rtl);
9336
9337 if (val < 0)
9338 add_AT_int (die, DW_AT_const_value, val);
9339 else
9340 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9341 }
9342 break;
9343
9344 case CONST_DOUBLE:
9345 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9346 floating-point constant. A CONST_DOUBLE is used whenever the
9347 constant requires more than one word in order to be adequately
9348 represented. We output CONST_DOUBLEs as blocks. */
9349 {
9350 enum machine_mode mode = GET_MODE (rtl);
9351
9352 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9353 {
9354 unsigned length = GET_MODE_SIZE (mode) / 4;
9355 long *array = ggc_alloc (sizeof (long) * length);
9356 REAL_VALUE_TYPE rv;
9357
9358 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9359 real_to_target (array, &rv, mode);
9360
9361 add_AT_float (die, DW_AT_const_value, length, array);
9362 }
9363 else
9364 {
9365 /* ??? We really should be using HOST_WIDE_INT throughout. */
9366 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9367 abort ();
9368
9369 add_AT_long_long (die, DW_AT_const_value,
9370 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9371 }
9372 }
9373 break;
9374
9375 case CONST_STRING:
9376 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9377 break;
9378
9379 case SYMBOL_REF:
9380 case LABEL_REF:
9381 case CONST:
9382 add_AT_addr (die, DW_AT_const_value, rtl);
9383 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9384 break;
9385
9386 case PLUS:
9387 /* In cases where an inlined instance of an inline function is passed
9388 the address of an `auto' variable (which is local to the caller) we
9389 can get a situation where the DECL_RTL of the artificial local
9390 variable (for the inlining) which acts as a stand-in for the
9391 corresponding formal parameter (of the inline function) will look
9392 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9393 exactly a compile-time constant expression, but it isn't the address
9394 of the (artificial) local variable either. Rather, it represents the
9395 *value* which the artificial local variable always has during its
9396 lifetime. We currently have no way to represent such quasi-constant
9397 values in Dwarf, so for now we just punt and generate nothing. */
9398 break;
9399
9400 default:
9401 /* No other kinds of rtx should be possible here. */
9402 abort ();
9403 }
9404
9405 }
9406
9407 static rtx
9408 rtl_for_decl_location (tree decl)
9409 {
9410 rtx rtl;
9411
9412 /* Here we have to decide where we are going to say the parameter "lives"
9413 (as far as the debugger is concerned). We only have a couple of
9414 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9415
9416 DECL_RTL normally indicates where the parameter lives during most of the
9417 activation of the function. If optimization is enabled however, this
9418 could be either NULL or else a pseudo-reg. Both of those cases indicate
9419 that the parameter doesn't really live anywhere (as far as the code
9420 generation parts of GCC are concerned) during most of the function's
9421 activation. That will happen (for example) if the parameter is never
9422 referenced within the function.
9423
9424 We could just generate a location descriptor here for all non-NULL
9425 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9426 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9427 where DECL_RTL is NULL or is a pseudo-reg.
9428
9429 Note however that we can only get away with using DECL_INCOMING_RTL as
9430 a backup substitute for DECL_RTL in certain limited cases. In cases
9431 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9432 we can be sure that the parameter was passed using the same type as it is
9433 declared to have within the function, and that its DECL_INCOMING_RTL
9434 points us to a place where a value of that type is passed.
9435
9436 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9437 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9438 because in these cases DECL_INCOMING_RTL points us to a value of some
9439 type which is *different* from the type of the parameter itself. Thus,
9440 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9441 such cases, the debugger would end up (for example) trying to fetch a
9442 `float' from a place which actually contains the first part of a
9443 `double'. That would lead to really incorrect and confusing
9444 output at debug-time.
9445
9446 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9447 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9448 are a couple of exceptions however. On little-endian machines we can
9449 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9450 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9451 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9452 when (on a little-endian machine) a non-prototyped function has a
9453 parameter declared to be of type `short' or `char'. In such cases,
9454 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9455 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9456 passed `int' value. If the debugger then uses that address to fetch
9457 a `short' or a `char' (on a little-endian machine) the result will be
9458 the correct data, so we allow for such exceptional cases below.
9459
9460 Note that our goal here is to describe the place where the given formal
9461 parameter lives during most of the function's activation (i.e. between the
9462 end of the prologue and the start of the epilogue). We'll do that as best
9463 as we can. Note however that if the given formal parameter is modified
9464 sometime during the execution of the function, then a stack backtrace (at
9465 debug-time) will show the function as having been called with the *new*
9466 value rather than the value which was originally passed in. This happens
9467 rarely enough that it is not a major problem, but it *is* a problem, and
9468 I'd like to fix it.
9469
9470 A future version of dwarf2out.c may generate two additional attributes for
9471 any given DW_TAG_formal_parameter DIE which will describe the "passed
9472 type" and the "passed location" for the given formal parameter in addition
9473 to the attributes we now generate to indicate the "declared type" and the
9474 "active location" for each parameter. This additional set of attributes
9475 could be used by debuggers for stack backtraces. Separately, note that
9476 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9477 This happens (for example) for inlined-instances of inline function formal
9478 parameters which are never referenced. This really shouldn't be
9479 happening. All PARM_DECL nodes should get valid non-NULL
9480 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9481 values for inlined instances of inline function parameters, so when we see
9482 such cases, we are just out-of-luck for the time being (until integrate.c
9483 gets fixed). */
9484
9485 /* Use DECL_RTL as the "location" unless we find something better. */
9486 rtl = DECL_RTL_IF_SET (decl);
9487
9488 /* When generating abstract instances, ignore everything except
9489 constants, symbols living in memory, and symbols living in
9490 fixed registers. */
9491 if (! reload_completed)
9492 {
9493 if (rtl
9494 && (CONSTANT_P (rtl)
9495 || (GET_CODE (rtl) == MEM
9496 && CONSTANT_P (XEXP (rtl, 0)))
9497 || (GET_CODE (rtl) == REG
9498 && TREE_CODE (decl) == VAR_DECL
9499 && TREE_STATIC (decl))))
9500 {
9501 rtl = (*targetm.delegitimize_address) (rtl);
9502 return rtl;
9503 }
9504 rtl = NULL_RTX;
9505 }
9506 else if (TREE_CODE (decl) == PARM_DECL)
9507 {
9508 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9509 {
9510 tree declared_type = type_main_variant (TREE_TYPE (decl));
9511 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9512
9513 /* This decl represents a formal parameter which was optimized out.
9514 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9515 all cases where (rtl == NULL_RTX) just below. */
9516 if (declared_type == passed_type)
9517 rtl = DECL_INCOMING_RTL (decl);
9518 else if (! BYTES_BIG_ENDIAN
9519 && TREE_CODE (declared_type) == INTEGER_TYPE
9520 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9521 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9522 rtl = DECL_INCOMING_RTL (decl);
9523 }
9524
9525 /* If the parm was passed in registers, but lives on the stack, then
9526 make a big endian correction if the mode of the type of the
9527 parameter is not the same as the mode of the rtl. */
9528 /* ??? This is the same series of checks that are made in dbxout.c before
9529 we reach the big endian correction code there. It isn't clear if all
9530 of these checks are necessary here, but keeping them all is the safe
9531 thing to do. */
9532 else if (GET_CODE (rtl) == MEM
9533 && XEXP (rtl, 0) != const0_rtx
9534 && ! CONSTANT_P (XEXP (rtl, 0))
9535 /* Not passed in memory. */
9536 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9537 /* Not passed by invisible reference. */
9538 && (GET_CODE (XEXP (rtl, 0)) != REG
9539 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9540 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9541 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9542 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9543 #endif
9544 )
9545 /* Big endian correction check. */
9546 && BYTES_BIG_ENDIAN
9547 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9548 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9549 < UNITS_PER_WORD))
9550 {
9551 int offset = (UNITS_PER_WORD
9552 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9553
9554 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9555 plus_constant (XEXP (rtl, 0), offset));
9556 }
9557 }
9558
9559 if (rtl != NULL_RTX)
9560 {
9561 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9562 #ifdef LEAF_REG_REMAP
9563 if (current_function_uses_only_leaf_regs)
9564 leaf_renumber_regs_insn (rtl);
9565 #endif
9566 }
9567
9568 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9569 and will have been substituted directly into all expressions that use it.
9570 C does not have such a concept, but C++ and other languages do. */
9571 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9572 {
9573 /* If a variable is initialized with a string constant without embedded
9574 zeros, build CONST_STRING. */
9575 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9576 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9577 {
9578 tree arrtype = TREE_TYPE (decl);
9579 tree enttype = TREE_TYPE (arrtype);
9580 tree domain = TYPE_DOMAIN (arrtype);
9581 tree init = DECL_INITIAL (decl);
9582 enum machine_mode mode = TYPE_MODE (enttype);
9583
9584 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9585 && domain
9586 && integer_zerop (TYPE_MIN_VALUE (domain))
9587 && compare_tree_int (TYPE_MAX_VALUE (domain),
9588 TREE_STRING_LENGTH (init) - 1) == 0
9589 && ((size_t) TREE_STRING_LENGTH (init)
9590 == strlen (TREE_STRING_POINTER (init)) + 1))
9591 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9592 }
9593 /* If the initializer is something that we know will expand into an
9594 immediate RTL constant, expand it now. Expanding anything else
9595 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9596 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9597 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9598 {
9599 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9600 EXPAND_INITIALIZER);
9601 /* If expand_expr returns a MEM, it wasn't immediate. */
9602 if (rtl && GET_CODE (rtl) == MEM)
9603 abort ();
9604 }
9605 }
9606
9607 if (rtl)
9608 rtl = (*targetm.delegitimize_address) (rtl);
9609
9610 /* If we don't look past the constant pool, we risk emitting a
9611 reference to a constant pool entry that isn't referenced from
9612 code, and thus is not emitted. */
9613 if (rtl)
9614 rtl = avoid_constant_pool_reference (rtl);
9615
9616 return rtl;
9617 }
9618
9619 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9620 data attribute for a variable or a parameter. We generate the
9621 DW_AT_const_value attribute only in those cases where the given variable
9622 or parameter does not have a true "location" either in memory or in a
9623 register. This can happen (for example) when a constant is passed as an
9624 actual argument in a call to an inline function. (It's possible that
9625 these things can crop up in other ways also.) Note that one type of
9626 constant value which can be passed into an inlined function is a constant
9627 pointer. This can happen for example if an actual argument in an inlined
9628 function call evaluates to a compile-time constant address. */
9629
9630 static void
9631 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
9632 enum dwarf_attribute attr)
9633 {
9634 rtx rtl;
9635 dw_loc_descr_ref descr;
9636 var_loc_list *loc_list;
9637
9638 if (TREE_CODE (decl) == ERROR_MARK)
9639 return;
9640 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9641 abort ();
9642
9643 /* See if we possibly have multiple locations for this variable. */
9644 loc_list = lookup_decl_loc (decl);
9645
9646 /* If it truly has multiple locations, the first and last node will
9647 differ. */
9648 if (loc_list && loc_list->first != loc_list->last)
9649 {
9650 const char *secname;
9651 const char *endname;
9652 dw_loc_list_ref list;
9653 rtx varloc;
9654 struct var_loc_node *node;
9655
9656 /* We need to figure out what section we should use as the base
9657 for the address ranges where a given location is valid.
9658 1. If this particular DECL has a section associated with it,
9659 use that.
9660 2. If this function has a section associated with it, use
9661 that.
9662 3. Otherwise, use the text section.
9663 XXX: If you split a variable across multiple sections, this
9664 won't notice. */
9665
9666 if (DECL_SECTION_NAME (decl))
9667 {
9668 tree sectree = DECL_SECTION_NAME (decl);
9669 secname = TREE_STRING_POINTER (sectree);
9670 }
9671 else if (current_function_decl
9672 && DECL_SECTION_NAME (current_function_decl))
9673 {
9674 tree sectree = DECL_SECTION_NAME (current_function_decl);
9675 secname = TREE_STRING_POINTER (sectree);
9676 }
9677 else
9678 secname = TEXT_SECTION_NAME;
9679
9680 /* Now that we know what section we are using for a base,
9681 actually construct the list of locations.
9682 The first location information is what is passed to the
9683 function that creates the location list, and the remaining
9684 locations just get added on to that list.
9685 Note that we only know the start address for a location
9686 (IE location changes), so to build the range, we use
9687 the range [current location start, next location start].
9688 This means we have to special case the last node, and generate
9689 a range of [last location start, end of function label]. */
9690
9691 node = loc_list->first;
9692 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9693 list = new_loc_list (loc_descriptor (varloc, attr != DW_AT_frame_base),
9694 node->label, node->next->label, secname, 1);
9695 node = node->next;
9696
9697 for (; node->next; node = node->next)
9698 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
9699 {
9700 /* The variable has a location between NODE->LABEL and
9701 NODE->NEXT->LABEL. */
9702 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9703 add_loc_descr_to_loc_list (&list,
9704 loc_descriptor (varloc,
9705 attr != DW_AT_frame_base),
9706 node->label, node->next->label, secname);
9707 }
9708
9709 /* If the variable has a location at the last label
9710 it keeps its location until the end of function. */
9711 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
9712 {
9713 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
9714
9715 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9716 if (!current_function_decl)
9717 endname = text_end_label;
9718 else
9719 {
9720 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
9721 current_function_funcdef_no);
9722 endname = ggc_strdup (label_id);
9723 }
9724 add_loc_descr_to_loc_list (&list,
9725 loc_descriptor (varloc,
9726 attr != DW_AT_frame_base),
9727 node->label, endname, secname);
9728 }
9729
9730 /* Finally, add the location list to the DIE, and we are done. */
9731 add_AT_loc_list (die, attr, list);
9732 return;
9733 }
9734
9735 rtl = rtl_for_decl_location (decl);
9736 if (rtl == NULL_RTX)
9737 return;
9738
9739 switch (GET_CODE (rtl))
9740 {
9741 case ADDRESSOF:
9742 /* The address of a variable that was optimized away;
9743 don't emit anything. */
9744 break;
9745
9746 case CONST_INT:
9747 case CONST_DOUBLE:
9748 case CONST_STRING:
9749 case SYMBOL_REF:
9750 case LABEL_REF:
9751 case CONST:
9752 case PLUS:
9753 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9754 add_const_value_attribute (die, rtl);
9755 break;
9756
9757 case MEM:
9758 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9759 {
9760 /* Need loc_descriptor_from_tree since that's where we know
9761 how to handle TLS variables. Want the object's address
9762 since the top-level DW_AT_location assumes such. See
9763 the confusion in loc_descriptor for reference. */
9764 descr = loc_descriptor_from_tree (decl, 1);
9765 }
9766 else
9767 {
9768 case REG:
9769 case SUBREG:
9770 case CONCAT:
9771 descr = loc_descriptor (rtl, true);
9772 }
9773 add_AT_location_description (die, attr, descr);
9774 break;
9775
9776 case PARALLEL:
9777 {
9778 rtvec par_elems = XVEC (rtl, 0);
9779 int num_elem = GET_NUM_ELEM (par_elems);
9780 enum machine_mode mode;
9781 int i;
9782
9783 /* Create the first one, so we have something to add to. */
9784 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0), true);
9785 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9786 add_loc_descr (&descr,
9787 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
9788 for (i = 1; i < num_elem; i++)
9789 {
9790 dw_loc_descr_ref temp;
9791
9792 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0), true);
9793 add_loc_descr (&descr, temp);
9794 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9795 add_loc_descr (&descr,
9796 new_loc_descr (DW_OP_piece,
9797 GET_MODE_SIZE (mode), 0));
9798 }
9799 }
9800 add_AT_location_description (die, DW_AT_location, descr);
9801 break;
9802
9803 default:
9804 abort ();
9805 }
9806 }
9807
9808 /* If we don't have a copy of this variable in memory for some reason (such
9809 as a C++ member constant that doesn't have an out-of-line definition),
9810 we should tell the debugger about the constant value. */
9811
9812 static void
9813 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9814 {
9815 tree init = DECL_INITIAL (decl);
9816 tree type = TREE_TYPE (decl);
9817
9818 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9819 && initializer_constant_valid_p (init, type) == null_pointer_node)
9820 /* OK */;
9821 else
9822 return;
9823
9824 switch (TREE_CODE (type))
9825 {
9826 case INTEGER_TYPE:
9827 if (host_integerp (init, 0))
9828 add_AT_unsigned (var_die, DW_AT_const_value,
9829 tree_low_cst (init, 0));
9830 else
9831 add_AT_long_long (var_die, DW_AT_const_value,
9832 TREE_INT_CST_HIGH (init),
9833 TREE_INT_CST_LOW (init));
9834 break;
9835
9836 default:;
9837 }
9838 }
9839
9840 /* Generate a DW_AT_name attribute given some string value to be included as
9841 the value of the attribute. */
9842
9843 static void
9844 add_name_attribute (dw_die_ref die, const char *name_string)
9845 {
9846 if (name_string != NULL && *name_string != 0)
9847 {
9848 if (demangle_name_func)
9849 name_string = (*demangle_name_func) (name_string);
9850
9851 add_AT_string (die, DW_AT_name, name_string);
9852 }
9853 }
9854
9855 /* Generate a DW_AT_comp_dir attribute for DIE. */
9856
9857 static void
9858 add_comp_dir_attribute (dw_die_ref die)
9859 {
9860 const char *wd = get_src_pwd ();
9861 if (wd != NULL)
9862 add_AT_string (die, DW_AT_comp_dir, wd);
9863 }
9864
9865 /* Given a tree node describing an array bound (either lower or upper) output
9866 a representation for that bound. */
9867
9868 static void
9869 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9870 {
9871 switch (TREE_CODE (bound))
9872 {
9873 case ERROR_MARK:
9874 return;
9875
9876 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9877 case INTEGER_CST:
9878 if (! host_integerp (bound, 0)
9879 || (bound_attr == DW_AT_lower_bound
9880 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9881 || (is_fortran () && integer_onep (bound)))))
9882 /* use the default */
9883 ;
9884 else
9885 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9886 break;
9887
9888 case CONVERT_EXPR:
9889 case NOP_EXPR:
9890 case NON_LVALUE_EXPR:
9891 case VIEW_CONVERT_EXPR:
9892 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9893 break;
9894
9895 case SAVE_EXPR:
9896 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9897 access the upper bound values may be bogus. If they refer to a
9898 register, they may only describe how to get at these values at the
9899 points in the generated code right after they have just been
9900 computed. Worse yet, in the typical case, the upper bound values
9901 will not even *be* computed in the optimized code (though the
9902 number of elements will), so these SAVE_EXPRs are entirely
9903 bogus. In order to compensate for this fact, we check here to see
9904 if optimization is enabled, and if so, we don't add an attribute
9905 for the (unknown and unknowable) upper bound. This should not
9906 cause too much trouble for existing (stupid?) debuggers because
9907 they have to deal with empty upper bounds location descriptions
9908 anyway in order to be able to deal with incomplete array types.
9909 Of course an intelligent debugger (GDB?) should be able to
9910 comprehend that a missing upper bound specification in an array
9911 type used for a storage class `auto' local array variable
9912 indicates that the upper bound is both unknown (at compile- time)
9913 and unknowable (at run-time) due to optimization.
9914
9915 We assume that a MEM rtx is safe because gcc wouldn't put the
9916 value there unless it was going to be used repeatedly in the
9917 function, i.e. for cleanups. */
9918 if (SAVE_EXPR_RTL (bound)
9919 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9920 {
9921 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9922 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9923 rtx loc = SAVE_EXPR_RTL (bound);
9924
9925 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9926 it references an outer function's frame. */
9927 if (GET_CODE (loc) == MEM)
9928 {
9929 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9930
9931 if (XEXP (loc, 0) != new_addr)
9932 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9933 }
9934
9935 add_AT_flag (decl_die, DW_AT_artificial, 1);
9936 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9937 add_AT_location_description (decl_die, DW_AT_location,
9938 loc_descriptor (loc, true));
9939 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9940 }
9941
9942 /* Else leave out the attribute. */
9943 break;
9944
9945 case VAR_DECL:
9946 case PARM_DECL:
9947 {
9948 dw_die_ref decl_die = lookup_decl_die (bound);
9949
9950 /* ??? Can this happen, or should the variable have been bound
9951 first? Probably it can, since I imagine that we try to create
9952 the types of parameters in the order in which they exist in
9953 the list, and won't have created a forward reference to a
9954 later parameter. */
9955 if (decl_die != NULL)
9956 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9957 break;
9958 }
9959
9960 default:
9961 {
9962 /* Otherwise try to create a stack operation procedure to
9963 evaluate the value of the array bound. */
9964
9965 dw_die_ref ctx, decl_die;
9966 dw_loc_descr_ref loc;
9967
9968 loc = loc_descriptor_from_tree (bound, 0);
9969 if (loc == NULL)
9970 break;
9971
9972 if (current_function_decl == 0)
9973 ctx = comp_unit_die;
9974 else
9975 ctx = lookup_decl_die (current_function_decl);
9976
9977 /* If we weren't able to find a context, it's most likely the case
9978 that we are processing the return type of the function. So
9979 make a SAVE_EXPR to point to it and have the limbo DIE code
9980 find the proper die. The save_expr function doesn't always
9981 make a SAVE_EXPR, so do it ourselves. */
9982 if (ctx == 0)
9983 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9984 current_function_decl, NULL_TREE);
9985
9986 decl_die = new_die (DW_TAG_variable, ctx, bound);
9987 add_AT_flag (decl_die, DW_AT_artificial, 1);
9988 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9989 add_AT_loc (decl_die, DW_AT_location, loc);
9990
9991 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9992 break;
9993 }
9994 }
9995 }
9996
9997 /* Note that the block of subscript information for an array type also
9998 includes information about the element type of type given array type. */
9999
10000 static void
10001 add_subscript_info (dw_die_ref type_die, tree type)
10002 {
10003 #ifndef MIPS_DEBUGGING_INFO
10004 unsigned dimension_number;
10005 #endif
10006 tree lower, upper;
10007 dw_die_ref subrange_die;
10008
10009 /* The GNU compilers represent multidimensional array types as sequences of
10010 one dimensional array types whose element types are themselves array
10011 types. Here we squish that down, so that each multidimensional array
10012 type gets only one array_type DIE in the Dwarf debugging info. The draft
10013 Dwarf specification say that we are allowed to do this kind of
10014 compression in C (because there is no difference between an array or
10015 arrays and a multidimensional array in C) but for other source languages
10016 (e.g. Ada) we probably shouldn't do this. */
10017
10018 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10019 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10020 We work around this by disabling this feature. See also
10021 gen_array_type_die. */
10022 #ifndef MIPS_DEBUGGING_INFO
10023 for (dimension_number = 0;
10024 TREE_CODE (type) == ARRAY_TYPE;
10025 type = TREE_TYPE (type), dimension_number++)
10026 #endif
10027 {
10028 tree domain = TYPE_DOMAIN (type);
10029
10030 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10031 and (in GNU C only) variable bounds. Handle all three forms
10032 here. */
10033 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10034 if (domain)
10035 {
10036 /* We have an array type with specified bounds. */
10037 lower = TYPE_MIN_VALUE (domain);
10038 upper = TYPE_MAX_VALUE (domain);
10039
10040 /* Define the index type. */
10041 if (TREE_TYPE (domain))
10042 {
10043 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10044 TREE_TYPE field. We can't emit debug info for this
10045 because it is an unnamed integral type. */
10046 if (TREE_CODE (domain) == INTEGER_TYPE
10047 && TYPE_NAME (domain) == NULL_TREE
10048 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10049 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10050 ;
10051 else
10052 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10053 type_die);
10054 }
10055
10056 /* ??? If upper is NULL, the array has unspecified length,
10057 but it does have a lower bound. This happens with Fortran
10058 dimension arr(N:*)
10059 Since the debugger is definitely going to need to know N
10060 to produce useful results, go ahead and output the lower
10061 bound solo, and hope the debugger can cope. */
10062
10063 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10064 if (upper)
10065 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10066 }
10067
10068 /* Otherwise we have an array type with an unspecified length. The
10069 DWARF-2 spec does not say how to handle this; let's just leave out the
10070 bounds. */
10071 }
10072 }
10073
10074 static void
10075 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10076 {
10077 unsigned size;
10078
10079 switch (TREE_CODE (tree_node))
10080 {
10081 case ERROR_MARK:
10082 size = 0;
10083 break;
10084 case ENUMERAL_TYPE:
10085 case RECORD_TYPE:
10086 case UNION_TYPE:
10087 case QUAL_UNION_TYPE:
10088 size = int_size_in_bytes (tree_node);
10089 break;
10090 case FIELD_DECL:
10091 /* For a data member of a struct or union, the DW_AT_byte_size is
10092 generally given as the number of bytes normally allocated for an
10093 object of the *declared* type of the member itself. This is true
10094 even for bit-fields. */
10095 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10096 break;
10097 default:
10098 abort ();
10099 }
10100
10101 /* Note that `size' might be -1 when we get to this point. If it is, that
10102 indicates that the byte size of the entity in question is variable. We
10103 have no good way of expressing this fact in Dwarf at the present time,
10104 so just let the -1 pass on through. */
10105 add_AT_unsigned (die, DW_AT_byte_size, size);
10106 }
10107
10108 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10109 which specifies the distance in bits from the highest order bit of the
10110 "containing object" for the bit-field to the highest order bit of the
10111 bit-field itself.
10112
10113 For any given bit-field, the "containing object" is a hypothetical object
10114 (of some integral or enum type) within which the given bit-field lives. The
10115 type of this hypothetical "containing object" is always the same as the
10116 declared type of the individual bit-field itself. The determination of the
10117 exact location of the "containing object" for a bit-field is rather
10118 complicated. It's handled by the `field_byte_offset' function (above).
10119
10120 Note that it is the size (in bytes) of the hypothetical "containing object"
10121 which will be given in the DW_AT_byte_size attribute for this bit-field.
10122 (See `byte_size_attribute' above). */
10123
10124 static inline void
10125 add_bit_offset_attribute (dw_die_ref die, tree decl)
10126 {
10127 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10128 tree type = DECL_BIT_FIELD_TYPE (decl);
10129 HOST_WIDE_INT bitpos_int;
10130 HOST_WIDE_INT highest_order_object_bit_offset;
10131 HOST_WIDE_INT highest_order_field_bit_offset;
10132 HOST_WIDE_INT unsigned bit_offset;
10133
10134 /* Must be a field and a bit field. */
10135 if (!type
10136 || TREE_CODE (decl) != FIELD_DECL)
10137 abort ();
10138
10139 /* We can't yet handle bit-fields whose offsets are variable, so if we
10140 encounter such things, just return without generating any attribute
10141 whatsoever. Likewise for variable or too large size. */
10142 if (! host_integerp (bit_position (decl), 0)
10143 || ! host_integerp (DECL_SIZE (decl), 1))
10144 return;
10145
10146 bitpos_int = int_bit_position (decl);
10147
10148 /* Note that the bit offset is always the distance (in bits) from the
10149 highest-order bit of the "containing object" to the highest-order bit of
10150 the bit-field itself. Since the "high-order end" of any object or field
10151 is different on big-endian and little-endian machines, the computation
10152 below must take account of these differences. */
10153 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10154 highest_order_field_bit_offset = bitpos_int;
10155
10156 if (! BYTES_BIG_ENDIAN)
10157 {
10158 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10159 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10160 }
10161
10162 bit_offset
10163 = (! BYTES_BIG_ENDIAN
10164 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10165 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10166
10167 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10168 }
10169
10170 /* For a FIELD_DECL node which represents a bit field, output an attribute
10171 which specifies the length in bits of the given field. */
10172
10173 static inline void
10174 add_bit_size_attribute (dw_die_ref die, tree decl)
10175 {
10176 /* Must be a field and a bit field. */
10177 if (TREE_CODE (decl) != FIELD_DECL
10178 || ! DECL_BIT_FIELD_TYPE (decl))
10179 abort ();
10180
10181 if (host_integerp (DECL_SIZE (decl), 1))
10182 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10183 }
10184
10185 /* If the compiled language is ANSI C, then add a 'prototyped'
10186 attribute, if arg types are given for the parameters of a function. */
10187
10188 static inline void
10189 add_prototyped_attribute (dw_die_ref die, tree func_type)
10190 {
10191 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10192 && TYPE_ARG_TYPES (func_type) != NULL)
10193 add_AT_flag (die, DW_AT_prototyped, 1);
10194 }
10195
10196 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10197 by looking in either the type declaration or object declaration
10198 equate table. */
10199
10200 static inline void
10201 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10202 {
10203 dw_die_ref origin_die = NULL;
10204
10205 if (TREE_CODE (origin) != FUNCTION_DECL)
10206 {
10207 /* We may have gotten separated from the block for the inlined
10208 function, if we're in an exception handler or some such; make
10209 sure that the abstract function has been written out.
10210
10211 Doing this for nested functions is wrong, however; functions are
10212 distinct units, and our context might not even be inline. */
10213 tree fn = origin;
10214
10215 if (TYPE_P (fn))
10216 fn = TYPE_STUB_DECL (fn);
10217
10218 fn = decl_function_context (fn);
10219 if (fn)
10220 dwarf2out_abstract_function (fn);
10221 }
10222
10223 if (DECL_P (origin))
10224 origin_die = lookup_decl_die (origin);
10225 else if (TYPE_P (origin))
10226 origin_die = lookup_type_die (origin);
10227
10228 if (origin_die == NULL)
10229 abort ();
10230
10231 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10232 }
10233
10234 /* We do not currently support the pure_virtual attribute. */
10235
10236 static inline void
10237 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10238 {
10239 if (DECL_VINDEX (func_decl))
10240 {
10241 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10242
10243 if (host_integerp (DECL_VINDEX (func_decl), 0))
10244 add_AT_loc (die, DW_AT_vtable_elem_location,
10245 new_loc_descr (DW_OP_constu,
10246 tree_low_cst (DECL_VINDEX (func_decl), 0),
10247 0));
10248
10249 /* GNU extension: Record what type this method came from originally. */
10250 if (debug_info_level > DINFO_LEVEL_TERSE)
10251 add_AT_die_ref (die, DW_AT_containing_type,
10252 lookup_type_die (DECL_CONTEXT (func_decl)));
10253 }
10254 }
10255 \f
10256 /* Add source coordinate attributes for the given decl. */
10257
10258 static void
10259 add_src_coords_attributes (dw_die_ref die, tree decl)
10260 {
10261 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10262
10263 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10264 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10265 }
10266
10267 /* Add a DW_AT_name attribute and source coordinate attribute for the
10268 given decl, but only if it actually has a name. */
10269
10270 static void
10271 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10272 {
10273 tree decl_name;
10274
10275 decl_name = DECL_NAME (decl);
10276 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10277 {
10278 add_name_attribute (die, dwarf2_name (decl, 0));
10279 if (! DECL_ARTIFICIAL (decl))
10280 add_src_coords_attributes (die, decl);
10281
10282 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10283 && TREE_PUBLIC (decl)
10284 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10285 && !DECL_ABSTRACT (decl))
10286 add_AT_string (die, DW_AT_MIPS_linkage_name,
10287 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10288 }
10289
10290 #ifdef VMS_DEBUGGING_INFO
10291 /* Get the function's name, as described by its RTL. This may be different
10292 from the DECL_NAME name used in the source file. */
10293 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10294 {
10295 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10296 XEXP (DECL_RTL (decl), 0));
10297 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10298 }
10299 #endif
10300 }
10301
10302 /* Push a new declaration scope. */
10303
10304 static void
10305 push_decl_scope (tree scope)
10306 {
10307 VARRAY_PUSH_TREE (decl_scope_table, scope);
10308 }
10309
10310 /* Pop a declaration scope. */
10311
10312 static inline void
10313 pop_decl_scope (void)
10314 {
10315 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10316 abort ();
10317
10318 VARRAY_POP (decl_scope_table);
10319 }
10320
10321 /* Return the DIE for the scope that immediately contains this type.
10322 Non-named types get global scope. Named types nested in other
10323 types get their containing scope if it's open, or global scope
10324 otherwise. All other types (i.e. function-local named types) get
10325 the current active scope. */
10326
10327 static dw_die_ref
10328 scope_die_for (tree t, dw_die_ref context_die)
10329 {
10330 dw_die_ref scope_die = NULL;
10331 tree containing_scope;
10332 int i;
10333
10334 /* Non-types always go in the current scope. */
10335 if (! TYPE_P (t))
10336 abort ();
10337
10338 containing_scope = TYPE_CONTEXT (t);
10339
10340 /* Use the containing namespace if it was passed in (for a declaration). */
10341 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10342 {
10343 if (context_die == lookup_decl_die (containing_scope))
10344 /* OK */;
10345 else
10346 containing_scope = NULL_TREE;
10347 }
10348
10349 /* Ignore function type "scopes" from the C frontend. They mean that
10350 a tagged type is local to a parmlist of a function declarator, but
10351 that isn't useful to DWARF. */
10352 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10353 containing_scope = NULL_TREE;
10354
10355 if (containing_scope == NULL_TREE)
10356 scope_die = comp_unit_die;
10357 else if (TYPE_P (containing_scope))
10358 {
10359 /* For types, we can just look up the appropriate DIE. But
10360 first we check to see if we're in the middle of emitting it
10361 so we know where the new DIE should go. */
10362 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10363 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10364 break;
10365
10366 if (i < 0)
10367 {
10368 if (debug_info_level > DINFO_LEVEL_TERSE
10369 && !TREE_ASM_WRITTEN (containing_scope))
10370 abort ();
10371
10372 /* If none of the current dies are suitable, we get file scope. */
10373 scope_die = comp_unit_die;
10374 }
10375 else
10376 scope_die = lookup_type_die (containing_scope);
10377 }
10378 else
10379 scope_die = context_die;
10380
10381 return scope_die;
10382 }
10383
10384 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10385
10386 static inline int
10387 local_scope_p (dw_die_ref context_die)
10388 {
10389 for (; context_die; context_die = context_die->die_parent)
10390 if (context_die->die_tag == DW_TAG_inlined_subroutine
10391 || context_die->die_tag == DW_TAG_subprogram)
10392 return 1;
10393
10394 return 0;
10395 }
10396
10397 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10398 whether or not to treat a DIE in this context as a declaration. */
10399
10400 static inline int
10401 class_or_namespace_scope_p (dw_die_ref context_die)
10402 {
10403 return (context_die
10404 && (context_die->die_tag == DW_TAG_structure_type
10405 || context_die->die_tag == DW_TAG_union_type
10406 || context_die->die_tag == DW_TAG_namespace));
10407 }
10408
10409 /* Many forms of DIEs require a "type description" attribute. This
10410 routine locates the proper "type descriptor" die for the type given
10411 by 'type', and adds a DW_AT_type attribute below the given die. */
10412
10413 static void
10414 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10415 int decl_volatile, dw_die_ref context_die)
10416 {
10417 enum tree_code code = TREE_CODE (type);
10418 dw_die_ref type_die = NULL;
10419
10420 /* ??? If this type is an unnamed subrange type of an integral or
10421 floating-point type, use the inner type. This is because we have no
10422 support for unnamed types in base_type_die. This can happen if this is
10423 an Ada subrange type. Correct solution is emit a subrange type die. */
10424 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10425 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10426 type = TREE_TYPE (type), code = TREE_CODE (type);
10427
10428 if (code == ERROR_MARK
10429 /* Handle a special case. For functions whose return type is void, we
10430 generate *no* type attribute. (Note that no object may have type
10431 `void', so this only applies to function return types). */
10432 || code == VOID_TYPE)
10433 return;
10434
10435 type_die = modified_type_die (type,
10436 decl_const || TYPE_READONLY (type),
10437 decl_volatile || TYPE_VOLATILE (type),
10438 context_die);
10439
10440 if (type_die != NULL)
10441 add_AT_die_ref (object_die, DW_AT_type, type_die);
10442 }
10443
10444 /* Given a tree pointer to a struct, class, union, or enum type node, return
10445 a pointer to the (string) tag name for the given type, or zero if the type
10446 was declared without a tag. */
10447
10448 static const char *
10449 type_tag (tree type)
10450 {
10451 const char *name = 0;
10452
10453 if (TYPE_NAME (type) != 0)
10454 {
10455 tree t = 0;
10456
10457 /* Find the IDENTIFIER_NODE for the type name. */
10458 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10459 t = TYPE_NAME (type);
10460
10461 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10462 a TYPE_DECL node, regardless of whether or not a `typedef' was
10463 involved. */
10464 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10465 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10466 t = DECL_NAME (TYPE_NAME (type));
10467
10468 /* Now get the name as a string, or invent one. */
10469 if (t != 0)
10470 name = IDENTIFIER_POINTER (t);
10471 }
10472
10473 return (name == 0 || *name == '\0') ? 0 : name;
10474 }
10475
10476 /* Return the type associated with a data member, make a special check
10477 for bit field types. */
10478
10479 static inline tree
10480 member_declared_type (tree member)
10481 {
10482 return (DECL_BIT_FIELD_TYPE (member)
10483 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10484 }
10485
10486 /* Get the decl's label, as described by its RTL. This may be different
10487 from the DECL_NAME name used in the source file. */
10488
10489 #if 0
10490 static const char *
10491 decl_start_label (tree decl)
10492 {
10493 rtx x;
10494 const char *fnname;
10495
10496 x = DECL_RTL (decl);
10497 if (GET_CODE (x) != MEM)
10498 abort ();
10499
10500 x = XEXP (x, 0);
10501 if (GET_CODE (x) != SYMBOL_REF)
10502 abort ();
10503
10504 fnname = XSTR (x, 0);
10505 return fnname;
10506 }
10507 #endif
10508 \f
10509 /* These routines generate the internal representation of the DIE's for
10510 the compilation unit. Debugging information is collected by walking
10511 the declaration trees passed in from dwarf2out_decl(). */
10512
10513 static void
10514 gen_array_type_die (tree type, dw_die_ref context_die)
10515 {
10516 dw_die_ref scope_die = scope_die_for (type, context_die);
10517 dw_die_ref array_die;
10518 tree element_type;
10519
10520 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10521 the inner array type comes before the outer array type. Thus we must
10522 call gen_type_die before we call new_die. See below also. */
10523 #ifdef MIPS_DEBUGGING_INFO
10524 gen_type_die (TREE_TYPE (type), context_die);
10525 #endif
10526
10527 array_die = new_die (DW_TAG_array_type, scope_die, type);
10528 add_name_attribute (array_die, type_tag (type));
10529 equate_type_number_to_die (type, array_die);
10530
10531 if (TREE_CODE (type) == VECTOR_TYPE)
10532 {
10533 /* The frontend feeds us a representation for the vector as a struct
10534 containing an array. Pull out the array type. */
10535 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10536 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10537 }
10538
10539 #if 0
10540 /* We default the array ordering. SDB will probably do
10541 the right things even if DW_AT_ordering is not present. It's not even
10542 an issue until we start to get into multidimensional arrays anyway. If
10543 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10544 then we'll have to put the DW_AT_ordering attribute back in. (But if
10545 and when we find out that we need to put these in, we will only do so
10546 for multidimensional arrays. */
10547 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10548 #endif
10549
10550 #ifdef MIPS_DEBUGGING_INFO
10551 /* The SGI compilers handle arrays of unknown bound by setting
10552 AT_declaration and not emitting any subrange DIEs. */
10553 if (! TYPE_DOMAIN (type))
10554 add_AT_flag (array_die, DW_AT_declaration, 1);
10555 else
10556 #endif
10557 add_subscript_info (array_die, type);
10558
10559 /* Add representation of the type of the elements of this array type. */
10560 element_type = TREE_TYPE (type);
10561
10562 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10563 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10564 We work around this by disabling this feature. See also
10565 add_subscript_info. */
10566 #ifndef MIPS_DEBUGGING_INFO
10567 while (TREE_CODE (element_type) == ARRAY_TYPE)
10568 element_type = TREE_TYPE (element_type);
10569
10570 gen_type_die (element_type, context_die);
10571 #endif
10572
10573 add_type_attribute (array_die, element_type, 0, 0, context_die);
10574 }
10575
10576 static void
10577 gen_set_type_die (tree type, dw_die_ref context_die)
10578 {
10579 dw_die_ref type_die
10580 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10581
10582 equate_type_number_to_die (type, type_die);
10583 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10584 }
10585
10586 #if 0
10587 static void
10588 gen_entry_point_die (tree decl, dw_die_ref context_die)
10589 {
10590 tree origin = decl_ultimate_origin (decl);
10591 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10592
10593 if (origin != NULL)
10594 add_abstract_origin_attribute (decl_die, origin);
10595 else
10596 {
10597 add_name_and_src_coords_attributes (decl_die, decl);
10598 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10599 0, 0, context_die);
10600 }
10601
10602 if (DECL_ABSTRACT (decl))
10603 equate_decl_number_to_die (decl, decl_die);
10604 else
10605 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10606 }
10607 #endif
10608
10609 /* Walk through the list of incomplete types again, trying once more to
10610 emit full debugging info for them. */
10611
10612 static void
10613 retry_incomplete_types (void)
10614 {
10615 int i;
10616
10617 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10618 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10619 }
10620
10621 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10622
10623 static void
10624 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10625 {
10626 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10627
10628 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10629 be incomplete and such types are not marked. */
10630 add_abstract_origin_attribute (type_die, type);
10631 }
10632
10633 /* Generate a DIE to represent an inlined instance of a structure type. */
10634
10635 static void
10636 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10637 {
10638 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10639
10640 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10641 be incomplete and such types are not marked. */
10642 add_abstract_origin_attribute (type_die, type);
10643 }
10644
10645 /* Generate a DIE to represent an inlined instance of a union type. */
10646
10647 static void
10648 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10649 {
10650 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10651
10652 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10653 be incomplete and such types are not marked. */
10654 add_abstract_origin_attribute (type_die, type);
10655 }
10656
10657 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10658 include all of the information about the enumeration values also. Each
10659 enumerated type name/value is listed as a child of the enumerated type
10660 DIE. */
10661
10662 static dw_die_ref
10663 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10664 {
10665 dw_die_ref type_die = lookup_type_die (type);
10666
10667 if (type_die == NULL)
10668 {
10669 type_die = new_die (DW_TAG_enumeration_type,
10670 scope_die_for (type, context_die), type);
10671 equate_type_number_to_die (type, type_die);
10672 add_name_attribute (type_die, type_tag (type));
10673 }
10674 else if (! TYPE_SIZE (type))
10675 return type_die;
10676 else
10677 remove_AT (type_die, DW_AT_declaration);
10678
10679 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10680 given enum type is incomplete, do not generate the DW_AT_byte_size
10681 attribute or the DW_AT_element_list attribute. */
10682 if (TYPE_SIZE (type))
10683 {
10684 tree link;
10685
10686 TREE_ASM_WRITTEN (type) = 1;
10687 add_byte_size_attribute (type_die, type);
10688 if (TYPE_STUB_DECL (type) != NULL_TREE)
10689 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10690
10691 /* If the first reference to this type was as the return type of an
10692 inline function, then it may not have a parent. Fix this now. */
10693 if (type_die->die_parent == NULL)
10694 add_child_die (scope_die_for (type, context_die), type_die);
10695
10696 for (link = TYPE_FIELDS (type);
10697 link != NULL; link = TREE_CHAIN (link))
10698 {
10699 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10700
10701 add_name_attribute (enum_die,
10702 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10703
10704 if (host_integerp (TREE_VALUE (link),
10705 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10706 {
10707 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10708 add_AT_int (enum_die, DW_AT_const_value,
10709 tree_low_cst (TREE_VALUE (link), 0));
10710 else
10711 add_AT_unsigned (enum_die, DW_AT_const_value,
10712 tree_low_cst (TREE_VALUE (link), 1));
10713 }
10714 }
10715 }
10716 else
10717 add_AT_flag (type_die, DW_AT_declaration, 1);
10718
10719 return type_die;
10720 }
10721
10722 /* Generate a DIE to represent either a real live formal parameter decl or to
10723 represent just the type of some formal parameter position in some function
10724 type.
10725
10726 Note that this routine is a bit unusual because its argument may be a
10727 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10728 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10729 node. If it's the former then this function is being called to output a
10730 DIE to represent a formal parameter object (or some inlining thereof). If
10731 it's the latter, then this function is only being called to output a
10732 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10733 argument type of some subprogram type. */
10734
10735 static dw_die_ref
10736 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10737 {
10738 dw_die_ref parm_die
10739 = new_die (DW_TAG_formal_parameter, context_die, node);
10740 tree origin;
10741
10742 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10743 {
10744 case 'd':
10745 origin = decl_ultimate_origin (node);
10746 if (origin != NULL)
10747 add_abstract_origin_attribute (parm_die, origin);
10748 else
10749 {
10750 add_name_and_src_coords_attributes (parm_die, node);
10751 add_type_attribute (parm_die, TREE_TYPE (node),
10752 TREE_READONLY (node),
10753 TREE_THIS_VOLATILE (node),
10754 context_die);
10755 if (DECL_ARTIFICIAL (node))
10756 add_AT_flag (parm_die, DW_AT_artificial, 1);
10757 }
10758
10759 equate_decl_number_to_die (node, parm_die);
10760 if (! DECL_ABSTRACT (node))
10761 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
10762
10763 break;
10764
10765 case 't':
10766 /* We were called with some kind of a ..._TYPE node. */
10767 add_type_attribute (parm_die, node, 0, 0, context_die);
10768 break;
10769
10770 default:
10771 abort ();
10772 }
10773
10774 return parm_die;
10775 }
10776
10777 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10778 at the end of an (ANSI prototyped) formal parameters list. */
10779
10780 static void
10781 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10782 {
10783 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10784 }
10785
10786 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10787 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10788 parameters as specified in some function type specification (except for
10789 those which appear as part of a function *definition*). */
10790
10791 static void
10792 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10793 {
10794 tree link;
10795 tree formal_type = NULL;
10796 tree first_parm_type;
10797 tree arg;
10798
10799 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10800 {
10801 arg = DECL_ARGUMENTS (function_or_method_type);
10802 function_or_method_type = TREE_TYPE (function_or_method_type);
10803 }
10804 else
10805 arg = NULL_TREE;
10806
10807 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10808
10809 /* Make our first pass over the list of formal parameter types and output a
10810 DW_TAG_formal_parameter DIE for each one. */
10811 for (link = first_parm_type; link; )
10812 {
10813 dw_die_ref parm_die;
10814
10815 formal_type = TREE_VALUE (link);
10816 if (formal_type == void_type_node)
10817 break;
10818
10819 /* Output a (nameless) DIE to represent the formal parameter itself. */
10820 parm_die = gen_formal_parameter_die (formal_type, context_die);
10821 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10822 && link == first_parm_type)
10823 || (arg && DECL_ARTIFICIAL (arg)))
10824 add_AT_flag (parm_die, DW_AT_artificial, 1);
10825
10826 link = TREE_CHAIN (link);
10827 if (arg)
10828 arg = TREE_CHAIN (arg);
10829 }
10830
10831 /* If this function type has an ellipsis, add a
10832 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10833 if (formal_type != void_type_node)
10834 gen_unspecified_parameters_die (function_or_method_type, context_die);
10835
10836 /* Make our second (and final) pass over the list of formal parameter types
10837 and output DIEs to represent those types (as necessary). */
10838 for (link = TYPE_ARG_TYPES (function_or_method_type);
10839 link && TREE_VALUE (link);
10840 link = TREE_CHAIN (link))
10841 gen_type_die (TREE_VALUE (link), context_die);
10842 }
10843
10844 /* We want to generate the DIE for TYPE so that we can generate the
10845 die for MEMBER, which has been defined; we will need to refer back
10846 to the member declaration nested within TYPE. If we're trying to
10847 generate minimal debug info for TYPE, processing TYPE won't do the
10848 trick; we need to attach the member declaration by hand. */
10849
10850 static void
10851 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10852 {
10853 gen_type_die (type, context_die);
10854
10855 /* If we're trying to avoid duplicate debug info, we may not have
10856 emitted the member decl for this function. Emit it now. */
10857 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10858 && ! lookup_decl_die (member))
10859 {
10860 if (decl_ultimate_origin (member))
10861 abort ();
10862
10863 push_decl_scope (type);
10864 if (TREE_CODE (member) == FUNCTION_DECL)
10865 gen_subprogram_die (member, lookup_type_die (type));
10866 else
10867 gen_variable_die (member, lookup_type_die (type));
10868
10869 pop_decl_scope ();
10870 }
10871 }
10872
10873 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10874 may later generate inlined and/or out-of-line instances of. */
10875
10876 static void
10877 dwarf2out_abstract_function (tree decl)
10878 {
10879 dw_die_ref old_die;
10880 tree save_fn;
10881 tree context;
10882 int was_abstract = DECL_ABSTRACT (decl);
10883
10884 /* Make sure we have the actual abstract inline, not a clone. */
10885 decl = DECL_ORIGIN (decl);
10886
10887 old_die = lookup_decl_die (decl);
10888 if (old_die && get_AT (old_die, DW_AT_inline))
10889 /* We've already generated the abstract instance. */
10890 return;
10891
10892 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10893 we don't get confused by DECL_ABSTRACT. */
10894 if (debug_info_level > DINFO_LEVEL_TERSE)
10895 {
10896 context = decl_class_context (decl);
10897 if (context)
10898 gen_type_die_for_member
10899 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10900 }
10901
10902 /* Pretend we've just finished compiling this function. */
10903 save_fn = current_function_decl;
10904 current_function_decl = decl;
10905
10906 set_decl_abstract_flags (decl, 1);
10907 dwarf2out_decl (decl);
10908 if (! was_abstract)
10909 set_decl_abstract_flags (decl, 0);
10910
10911 current_function_decl = save_fn;
10912 }
10913
10914 /* Generate a DIE to represent a declared function (either file-scope or
10915 block-local). */
10916
10917 static void
10918 gen_subprogram_die (tree decl, dw_die_ref context_die)
10919 {
10920 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10921 tree origin = decl_ultimate_origin (decl);
10922 dw_die_ref subr_die;
10923 rtx fp_reg;
10924 tree fn_arg_types;
10925 tree outer_scope;
10926 dw_die_ref old_die = lookup_decl_die (decl);
10927 int declaration = (current_function_decl != decl
10928 || class_or_namespace_scope_p (context_die));
10929
10930 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10931 started to generate the abstract instance of an inline, decided to output
10932 its containing class, and proceeded to emit the declaration of the inline
10933 from the member list for the class. If so, DECLARATION takes priority;
10934 we'll get back to the abstract instance when done with the class. */
10935
10936 /* The class-scope declaration DIE must be the primary DIE. */
10937 if (origin && declaration && class_or_namespace_scope_p (context_die))
10938 {
10939 origin = NULL;
10940 if (old_die)
10941 abort ();
10942 }
10943
10944 if (origin != NULL)
10945 {
10946 if (declaration && ! local_scope_p (context_die))
10947 abort ();
10948
10949 /* Fixup die_parent for the abstract instance of a nested
10950 inline function. */
10951 if (old_die && old_die->die_parent == NULL)
10952 add_child_die (context_die, old_die);
10953
10954 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10955 add_abstract_origin_attribute (subr_die, origin);
10956 }
10957 else if (old_die)
10958 {
10959 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10960
10961 if (!get_AT_flag (old_die, DW_AT_declaration)
10962 /* We can have a normal definition following an inline one in the
10963 case of redefinition of GNU C extern inlines.
10964 It seems reasonable to use AT_specification in this case. */
10965 && !get_AT (old_die, DW_AT_inline))
10966 {
10967 /* ??? This can happen if there is a bug in the program, for
10968 instance, if it has duplicate function definitions. Ideally,
10969 we should detect this case and ignore it. For now, if we have
10970 already reported an error, any error at all, then assume that
10971 we got here because of an input error, not a dwarf2 bug. */
10972 if (errorcount)
10973 return;
10974 abort ();
10975 }
10976
10977 /* If the definition comes from the same place as the declaration,
10978 maybe use the old DIE. We always want the DIE for this function
10979 that has the *_pc attributes to be under comp_unit_die so the
10980 debugger can find it. We also need to do this for abstract
10981 instances of inlines, since the spec requires the out-of-line copy
10982 to have the same parent. For local class methods, this doesn't
10983 apply; we just use the old DIE. */
10984 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10985 && (DECL_ARTIFICIAL (decl)
10986 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10987 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10988 == (unsigned) DECL_SOURCE_LINE (decl)))))
10989 {
10990 subr_die = old_die;
10991
10992 /* Clear out the declaration attribute and the formal parameters.
10993 Do not remove all children, because it is possible that this
10994 declaration die was forced using force_decl_die(). In such
10995 cases die that forced declaration die (e.g. TAG_imported_module)
10996 is one of the children that we do not want to remove. */
10997 remove_AT (subr_die, DW_AT_declaration);
10998 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
10999 }
11000 else
11001 {
11002 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11003 add_AT_specification (subr_die, old_die);
11004 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11005 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11006 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11007 != (unsigned) DECL_SOURCE_LINE (decl))
11008 add_AT_unsigned
11009 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
11010 }
11011 }
11012 else
11013 {
11014 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11015
11016 if (TREE_PUBLIC (decl))
11017 add_AT_flag (subr_die, DW_AT_external, 1);
11018
11019 add_name_and_src_coords_attributes (subr_die, decl);
11020 if (debug_info_level > DINFO_LEVEL_TERSE)
11021 {
11022 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11023 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11024 0, 0, context_die);
11025 }
11026
11027 add_pure_or_virtual_attribute (subr_die, decl);
11028 if (DECL_ARTIFICIAL (decl))
11029 add_AT_flag (subr_die, DW_AT_artificial, 1);
11030
11031 if (TREE_PROTECTED (decl))
11032 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11033 else if (TREE_PRIVATE (decl))
11034 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11035 }
11036
11037 if (declaration)
11038 {
11039 if (!old_die || !get_AT (old_die, DW_AT_inline))
11040 {
11041 add_AT_flag (subr_die, DW_AT_declaration, 1);
11042
11043 /* The first time we see a member function, it is in the context of
11044 the class to which it belongs. We make sure of this by emitting
11045 the class first. The next time is the definition, which is
11046 handled above. The two may come from the same source text.
11047
11048 Note that force_decl_die() forces function declaration die. It is
11049 later reused to represent definition. */
11050 equate_decl_number_to_die (decl, subr_die);
11051 }
11052 }
11053 else if (DECL_ABSTRACT (decl))
11054 {
11055 if (DECL_DECLARED_INLINE_P (decl))
11056 {
11057 if (cgraph_function_possibly_inlined_p (decl))
11058 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11059 else
11060 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11061 }
11062 else
11063 {
11064 if (cgraph_function_possibly_inlined_p (decl))
11065 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11066 else
11067 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11068 }
11069
11070 equate_decl_number_to_die (decl, subr_die);
11071 }
11072 else if (!DECL_EXTERNAL (decl))
11073 {
11074 if (!old_die || !get_AT (old_die, DW_AT_inline))
11075 equate_decl_number_to_die (decl, subr_die);
11076
11077 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11078 current_function_funcdef_no);
11079 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11080 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11081 current_function_funcdef_no);
11082 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11083
11084 add_pubname (decl, subr_die);
11085 add_arange (decl, subr_die);
11086
11087 #ifdef MIPS_DEBUGGING_INFO
11088 /* Add a reference to the FDE for this routine. */
11089 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11090 #endif
11091
11092 /* Define the "frame base" location for this routine. We use the
11093 frame pointer or stack pointer registers, since the RTL for local
11094 variables is relative to one of them. */
11095 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11096 {
11097 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11098 DW_AT_frame_base);
11099 }
11100 else
11101 {
11102 fp_reg
11103 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11104 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11105 }
11106
11107 #if 0
11108 /* ??? This fails for nested inline functions, because context_display
11109 is not part of the state saved/restored for inline functions. */
11110 if (current_function_needs_context)
11111 add_AT_location_description (subr_die, DW_AT_static_link,
11112 loc_descriptor (lookup_static_chain (decl)));
11113 #endif
11114 }
11115
11116 /* Now output descriptions of the arguments for this function. This gets
11117 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11118 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11119 `...' at the end of the formal parameter list. In order to find out if
11120 there was a trailing ellipsis or not, we must instead look at the type
11121 associated with the FUNCTION_DECL. This will be a node of type
11122 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11123 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11124 an ellipsis at the end. */
11125
11126 /* In the case where we are describing a mere function declaration, all we
11127 need to do here (and all we *can* do here) is to describe the *types* of
11128 its formal parameters. */
11129 if (debug_info_level <= DINFO_LEVEL_TERSE)
11130 ;
11131 else if (declaration)
11132 gen_formal_types_die (decl, subr_die);
11133 else
11134 {
11135 /* Generate DIEs to represent all known formal parameters. */
11136 tree arg_decls = DECL_ARGUMENTS (decl);
11137 tree parm;
11138
11139 /* When generating DIEs, generate the unspecified_parameters DIE
11140 instead if we come across the arg "__builtin_va_alist" */
11141 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11142 if (TREE_CODE (parm) == PARM_DECL)
11143 {
11144 if (DECL_NAME (parm)
11145 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11146 "__builtin_va_alist"))
11147 gen_unspecified_parameters_die (parm, subr_die);
11148 else
11149 gen_decl_die (parm, subr_die);
11150 }
11151
11152 /* Decide whether we need an unspecified_parameters DIE at the end.
11153 There are 2 more cases to do this for: 1) the ansi ... declaration -
11154 this is detectable when the end of the arg list is not a
11155 void_type_node 2) an unprototyped function declaration (not a
11156 definition). This just means that we have no info about the
11157 parameters at all. */
11158 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11159 if (fn_arg_types != NULL)
11160 {
11161 /* This is the prototyped case, check for.... */
11162 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11163 gen_unspecified_parameters_die (decl, subr_die);
11164 }
11165 else if (DECL_INITIAL (decl) == NULL_TREE)
11166 gen_unspecified_parameters_die (decl, subr_die);
11167 }
11168
11169 /* Output Dwarf info for all of the stuff within the body of the function
11170 (if it has one - it may be just a declaration). */
11171 outer_scope = DECL_INITIAL (decl);
11172
11173 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11174 a function. This BLOCK actually represents the outermost binding contour
11175 for the function, i.e. the contour in which the function's formal
11176 parameters and labels get declared. Curiously, it appears that the front
11177 end doesn't actually put the PARM_DECL nodes for the current function onto
11178 the BLOCK_VARS list for this outer scope, but are strung off of the
11179 DECL_ARGUMENTS list for the function instead.
11180
11181 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11182 the LABEL_DECL nodes for the function however, and we output DWARF info
11183 for those in decls_for_scope. Just within the `outer_scope' there will be
11184 a BLOCK node representing the function's outermost pair of curly braces,
11185 and any blocks used for the base and member initializers of a C++
11186 constructor function. */
11187 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11188 {
11189 current_function_has_inlines = 0;
11190 decls_for_scope (outer_scope, subr_die, 0);
11191
11192 #if 0 && defined (MIPS_DEBUGGING_INFO)
11193 if (current_function_has_inlines)
11194 {
11195 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11196 if (! comp_unit_has_inlines)
11197 {
11198 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11199 comp_unit_has_inlines = 1;
11200 }
11201 }
11202 #endif
11203 }
11204 }
11205
11206 /* Generate a DIE to represent a declared data object. */
11207
11208 static void
11209 gen_variable_die (tree decl, dw_die_ref context_die)
11210 {
11211 tree origin = decl_ultimate_origin (decl);
11212 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11213
11214 dw_die_ref old_die = lookup_decl_die (decl);
11215 int declaration = (DECL_EXTERNAL (decl)
11216 || class_or_namespace_scope_p (context_die));
11217
11218 if (origin != NULL)
11219 add_abstract_origin_attribute (var_die, origin);
11220
11221 /* Loop unrolling can create multiple blocks that refer to the same
11222 static variable, so we must test for the DW_AT_declaration flag.
11223
11224 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11225 copy decls and set the DECL_ABSTRACT flag on them instead of
11226 sharing them.
11227
11228 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11229 else if (old_die && TREE_STATIC (decl)
11230 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11231 {
11232 /* This is a definition of a C++ class level static. */
11233 add_AT_specification (var_die, old_die);
11234 if (DECL_NAME (decl))
11235 {
11236 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11237
11238 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11239 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11240
11241 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11242 != (unsigned) DECL_SOURCE_LINE (decl))
11243
11244 add_AT_unsigned (var_die, DW_AT_decl_line,
11245 DECL_SOURCE_LINE (decl));
11246 }
11247 }
11248 else
11249 {
11250 add_name_and_src_coords_attributes (var_die, decl);
11251 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11252 TREE_THIS_VOLATILE (decl), context_die);
11253
11254 if (TREE_PUBLIC (decl))
11255 add_AT_flag (var_die, DW_AT_external, 1);
11256
11257 if (DECL_ARTIFICIAL (decl))
11258 add_AT_flag (var_die, DW_AT_artificial, 1);
11259
11260 if (TREE_PROTECTED (decl))
11261 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11262 else if (TREE_PRIVATE (decl))
11263 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11264 }
11265
11266 if (declaration)
11267 add_AT_flag (var_die, DW_AT_declaration, 1);
11268
11269 if (DECL_ABSTRACT (decl) || declaration)
11270 equate_decl_number_to_die (decl, var_die);
11271
11272 if (! declaration && ! DECL_ABSTRACT (decl))
11273 {
11274 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11275 add_pubname (decl, var_die);
11276 }
11277 else
11278 tree_add_const_value_attribute (var_die, decl);
11279 }
11280
11281 /* Generate a DIE to represent a label identifier. */
11282
11283 static void
11284 gen_label_die (tree decl, dw_die_ref context_die)
11285 {
11286 tree origin = decl_ultimate_origin (decl);
11287 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11288 rtx insn;
11289 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11290
11291 if (origin != NULL)
11292 add_abstract_origin_attribute (lbl_die, origin);
11293 else
11294 add_name_and_src_coords_attributes (lbl_die, decl);
11295
11296 if (DECL_ABSTRACT (decl))
11297 equate_decl_number_to_die (decl, lbl_die);
11298 else
11299 {
11300 insn = DECL_RTL_IF_SET (decl);
11301
11302 /* Deleted labels are programmer specified labels which have been
11303 eliminated because of various optimizations. We still emit them
11304 here so that it is possible to put breakpoints on them. */
11305 if (insn
11306 && (GET_CODE (insn) == CODE_LABEL
11307 || ((GET_CODE (insn) == NOTE
11308 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11309 {
11310 /* When optimization is enabled (via -O) some parts of the compiler
11311 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11312 represent source-level labels which were explicitly declared by
11313 the user. This really shouldn't be happening though, so catch
11314 it if it ever does happen. */
11315 if (INSN_DELETED_P (insn))
11316 abort ();
11317
11318 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11319 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11320 }
11321 }
11322 }
11323
11324 /* Generate a DIE for a lexical block. */
11325
11326 static void
11327 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11328 {
11329 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11330 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11331
11332 if (! BLOCK_ABSTRACT (stmt))
11333 {
11334 if (BLOCK_FRAGMENT_CHAIN (stmt))
11335 {
11336 tree chain;
11337
11338 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11339
11340 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11341 do
11342 {
11343 add_ranges (chain);
11344 chain = BLOCK_FRAGMENT_CHAIN (chain);
11345 }
11346 while (chain);
11347 add_ranges (NULL);
11348 }
11349 else
11350 {
11351 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11352 BLOCK_NUMBER (stmt));
11353 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11354 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11355 BLOCK_NUMBER (stmt));
11356 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11357 }
11358 }
11359
11360 decls_for_scope (stmt, stmt_die, depth);
11361 }
11362
11363 /* Generate a DIE for an inlined subprogram. */
11364
11365 static void
11366 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11367 {
11368 tree decl = block_ultimate_origin (stmt);
11369
11370 /* Emit info for the abstract instance first, if we haven't yet. We
11371 must emit this even if the block is abstract, otherwise when we
11372 emit the block below (or elsewhere), we may end up trying to emit
11373 a die whose origin die hasn't been emitted, and crashing. */
11374 dwarf2out_abstract_function (decl);
11375
11376 if (! BLOCK_ABSTRACT (stmt))
11377 {
11378 dw_die_ref subr_die
11379 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11380 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11381
11382 add_abstract_origin_attribute (subr_die, decl);
11383 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11384 BLOCK_NUMBER (stmt));
11385 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11386 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11387 BLOCK_NUMBER (stmt));
11388 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11389 decls_for_scope (stmt, subr_die, depth);
11390 current_function_has_inlines = 1;
11391 }
11392 else
11393 /* We may get here if we're the outer block of function A that was
11394 inlined into function B that was inlined into function C. When
11395 generating debugging info for C, dwarf2out_abstract_function(B)
11396 would mark all inlined blocks as abstract, including this one.
11397 So, we wouldn't (and shouldn't) expect labels to be generated
11398 for this one. Instead, just emit debugging info for
11399 declarations within the block. This is particularly important
11400 in the case of initializers of arguments passed from B to us:
11401 if they're statement expressions containing declarations, we
11402 wouldn't generate dies for their abstract variables, and then,
11403 when generating dies for the real variables, we'd die (pun
11404 intended :-) */
11405 gen_lexical_block_die (stmt, context_die, depth);
11406 }
11407
11408 /* Generate a DIE for a field in a record, or structure. */
11409
11410 static void
11411 gen_field_die (tree decl, dw_die_ref context_die)
11412 {
11413 dw_die_ref decl_die;
11414
11415 if (TREE_TYPE (decl) == error_mark_node)
11416 return;
11417
11418 decl_die = new_die (DW_TAG_member, context_die, decl);
11419 add_name_and_src_coords_attributes (decl_die, decl);
11420 add_type_attribute (decl_die, member_declared_type (decl),
11421 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11422 context_die);
11423
11424 if (DECL_BIT_FIELD_TYPE (decl))
11425 {
11426 add_byte_size_attribute (decl_die, decl);
11427 add_bit_size_attribute (decl_die, decl);
11428 add_bit_offset_attribute (decl_die, decl);
11429 }
11430
11431 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11432 add_data_member_location_attribute (decl_die, decl);
11433
11434 if (DECL_ARTIFICIAL (decl))
11435 add_AT_flag (decl_die, DW_AT_artificial, 1);
11436
11437 if (TREE_PROTECTED (decl))
11438 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11439 else if (TREE_PRIVATE (decl))
11440 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11441 }
11442
11443 #if 0
11444 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11445 Use modified_type_die instead.
11446 We keep this code here just in case these types of DIEs may be needed to
11447 represent certain things in other languages (e.g. Pascal) someday. */
11448
11449 static void
11450 gen_pointer_type_die (tree type, dw_die_ref context_die)
11451 {
11452 dw_die_ref ptr_die
11453 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11454
11455 equate_type_number_to_die (type, ptr_die);
11456 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11457 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11458 }
11459
11460 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11461 Use modified_type_die instead.
11462 We keep this code here just in case these types of DIEs may be needed to
11463 represent certain things in other languages (e.g. Pascal) someday. */
11464
11465 static void
11466 gen_reference_type_die (tree type, dw_die_ref context_die)
11467 {
11468 dw_die_ref ref_die
11469 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11470
11471 equate_type_number_to_die (type, ref_die);
11472 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11473 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11474 }
11475 #endif
11476
11477 /* Generate a DIE for a pointer to a member type. */
11478
11479 static void
11480 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11481 {
11482 dw_die_ref ptr_die
11483 = new_die (DW_TAG_ptr_to_member_type,
11484 scope_die_for (type, context_die), type);
11485
11486 equate_type_number_to_die (type, ptr_die);
11487 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11488 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11489 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11490 }
11491
11492 /* Generate the DIE for the compilation unit. */
11493
11494 static dw_die_ref
11495 gen_compile_unit_die (const char *filename)
11496 {
11497 dw_die_ref die;
11498 char producer[250];
11499 const char *language_string = lang_hooks.name;
11500 int language;
11501
11502 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11503
11504 if (filename)
11505 {
11506 add_name_attribute (die, filename);
11507 /* Don't add cwd for <built-in>. */
11508 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11509 add_comp_dir_attribute (die);
11510 }
11511
11512 sprintf (producer, "%s %s", language_string, version_string);
11513
11514 #ifdef MIPS_DEBUGGING_INFO
11515 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11516 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11517 not appear in the producer string, the debugger reaches the conclusion
11518 that the object file is stripped and has no debugging information.
11519 To get the MIPS/SGI debugger to believe that there is debugging
11520 information in the object file, we add a -g to the producer string. */
11521 if (debug_info_level > DINFO_LEVEL_TERSE)
11522 strcat (producer, " -g");
11523 #endif
11524
11525 add_AT_string (die, DW_AT_producer, producer);
11526
11527 if (strcmp (language_string, "GNU C++") == 0)
11528 language = DW_LANG_C_plus_plus;
11529 else if (strcmp (language_string, "GNU Ada") == 0)
11530 language = DW_LANG_Ada95;
11531 else if (strcmp (language_string, "GNU F77") == 0)
11532 language = DW_LANG_Fortran77;
11533 else if (strcmp (language_string, "GNU Pascal") == 0)
11534 language = DW_LANG_Pascal83;
11535 else if (strcmp (language_string, "GNU Java") == 0)
11536 language = DW_LANG_Java;
11537 else
11538 language = DW_LANG_C89;
11539
11540 add_AT_unsigned (die, DW_AT_language, language);
11541 return die;
11542 }
11543
11544 /* Generate a DIE for a string type. */
11545
11546 static void
11547 gen_string_type_die (tree type, dw_die_ref context_die)
11548 {
11549 dw_die_ref type_die
11550 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11551
11552 equate_type_number_to_die (type, type_die);
11553
11554 /* ??? Fudge the string length attribute for now.
11555 TODO: add string length info. */
11556 #if 0
11557 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11558 bound_representation (upper_bound, 0, 'u');
11559 #endif
11560 }
11561
11562 /* Generate the DIE for a base class. */
11563
11564 static void
11565 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11566 {
11567 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11568
11569 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11570 add_data_member_location_attribute (die, binfo);
11571
11572 if (TREE_VIA_VIRTUAL (binfo))
11573 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11574
11575 if (access == access_public_node)
11576 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11577 else if (access == access_protected_node)
11578 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11579 }
11580
11581 /* Generate a DIE for a class member. */
11582
11583 static void
11584 gen_member_die (tree type, dw_die_ref context_die)
11585 {
11586 tree member;
11587 tree binfo = TYPE_BINFO (type);
11588 dw_die_ref child;
11589
11590 /* If this is not an incomplete type, output descriptions of each of its
11591 members. Note that as we output the DIEs necessary to represent the
11592 members of this record or union type, we will also be trying to output
11593 DIEs to represent the *types* of those members. However the `type'
11594 function (above) will specifically avoid generating type DIEs for member
11595 types *within* the list of member DIEs for this (containing) type except
11596 for those types (of members) which are explicitly marked as also being
11597 members of this (containing) type themselves. The g++ front- end can
11598 force any given type to be treated as a member of some other (containing)
11599 type by setting the TYPE_CONTEXT of the given (member) type to point to
11600 the TREE node representing the appropriate (containing) type. */
11601
11602 /* First output info about the base classes. */
11603 if (binfo && BINFO_BASETYPES (binfo))
11604 {
11605 tree bases = BINFO_BASETYPES (binfo);
11606 tree accesses = BINFO_BASEACCESSES (binfo);
11607 int n_bases = TREE_VEC_LENGTH (bases);
11608 int i;
11609
11610 for (i = 0; i < n_bases; i++)
11611 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11612 (accesses ? TREE_VEC_ELT (accesses, i)
11613 : access_public_node), context_die);
11614 }
11615
11616 /* Now output info about the data members and type members. */
11617 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11618 {
11619 /* If we thought we were generating minimal debug info for TYPE
11620 and then changed our minds, some of the member declarations
11621 may have already been defined. Don't define them again, but
11622 do put them in the right order. */
11623
11624 child = lookup_decl_die (member);
11625 if (child)
11626 splice_child_die (context_die, child);
11627 else
11628 gen_decl_die (member, context_die);
11629 }
11630
11631 /* Now output info about the function members (if any). */
11632 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11633 {
11634 /* Don't include clones in the member list. */
11635 if (DECL_ABSTRACT_ORIGIN (member))
11636 continue;
11637
11638 child = lookup_decl_die (member);
11639 if (child)
11640 splice_child_die (context_die, child);
11641 else
11642 gen_decl_die (member, context_die);
11643 }
11644 }
11645
11646 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11647 is set, we pretend that the type was never defined, so we only get the
11648 member DIEs needed by later specification DIEs. */
11649
11650 static void
11651 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11652 {
11653 dw_die_ref type_die = lookup_type_die (type);
11654 dw_die_ref scope_die = 0;
11655 int nested = 0;
11656 int complete = (TYPE_SIZE (type)
11657 && (! TYPE_STUB_DECL (type)
11658 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11659 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11660
11661 if (type_die && ! complete)
11662 return;
11663
11664 if (TYPE_CONTEXT (type) != NULL_TREE
11665 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11666 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11667 nested = 1;
11668
11669 scope_die = scope_die_for (type, context_die);
11670
11671 if (! type_die || (nested && scope_die == comp_unit_die))
11672 /* First occurrence of type or toplevel definition of nested class. */
11673 {
11674 dw_die_ref old_die = type_die;
11675
11676 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11677 ? DW_TAG_structure_type : DW_TAG_union_type,
11678 scope_die, type);
11679 equate_type_number_to_die (type, type_die);
11680 if (old_die)
11681 add_AT_specification (type_die, old_die);
11682 else
11683 add_name_attribute (type_die, type_tag (type));
11684 }
11685 else
11686 remove_AT (type_die, DW_AT_declaration);
11687
11688 /* If this type has been completed, then give it a byte_size attribute and
11689 then give a list of members. */
11690 if (complete && !ns_decl)
11691 {
11692 /* Prevent infinite recursion in cases where the type of some member of
11693 this type is expressed in terms of this type itself. */
11694 TREE_ASM_WRITTEN (type) = 1;
11695 add_byte_size_attribute (type_die, type);
11696 if (TYPE_STUB_DECL (type) != NULL_TREE)
11697 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11698
11699 /* If the first reference to this type was as the return type of an
11700 inline function, then it may not have a parent. Fix this now. */
11701 if (type_die->die_parent == NULL)
11702 add_child_die (scope_die, type_die);
11703
11704 push_decl_scope (type);
11705 gen_member_die (type, type_die);
11706 pop_decl_scope ();
11707
11708 /* GNU extension: Record what type our vtable lives in. */
11709 if (TYPE_VFIELD (type))
11710 {
11711 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11712
11713 gen_type_die (vtype, context_die);
11714 add_AT_die_ref (type_die, DW_AT_containing_type,
11715 lookup_type_die (vtype));
11716 }
11717 }
11718 else
11719 {
11720 add_AT_flag (type_die, DW_AT_declaration, 1);
11721
11722 /* We don't need to do this for function-local types. */
11723 if (TYPE_STUB_DECL (type)
11724 && ! decl_function_context (TYPE_STUB_DECL (type)))
11725 VARRAY_PUSH_TREE (incomplete_types, type);
11726 }
11727 }
11728
11729 /* Generate a DIE for a subroutine _type_. */
11730
11731 static void
11732 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11733 {
11734 tree return_type = TREE_TYPE (type);
11735 dw_die_ref subr_die
11736 = new_die (DW_TAG_subroutine_type,
11737 scope_die_for (type, context_die), type);
11738
11739 equate_type_number_to_die (type, subr_die);
11740 add_prototyped_attribute (subr_die, type);
11741 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11742 gen_formal_types_die (type, subr_die);
11743 }
11744
11745 /* Generate a DIE for a type definition. */
11746
11747 static void
11748 gen_typedef_die (tree decl, dw_die_ref context_die)
11749 {
11750 dw_die_ref type_die;
11751 tree origin;
11752
11753 if (TREE_ASM_WRITTEN (decl))
11754 return;
11755
11756 TREE_ASM_WRITTEN (decl) = 1;
11757 type_die = new_die (DW_TAG_typedef, context_die, decl);
11758 origin = decl_ultimate_origin (decl);
11759 if (origin != NULL)
11760 add_abstract_origin_attribute (type_die, origin);
11761 else
11762 {
11763 tree type;
11764
11765 add_name_and_src_coords_attributes (type_die, decl);
11766 if (DECL_ORIGINAL_TYPE (decl))
11767 {
11768 type = DECL_ORIGINAL_TYPE (decl);
11769
11770 if (type == TREE_TYPE (decl))
11771 abort ();
11772 else
11773 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11774 }
11775 else
11776 type = TREE_TYPE (decl);
11777
11778 add_type_attribute (type_die, type, TREE_READONLY (decl),
11779 TREE_THIS_VOLATILE (decl), context_die);
11780 }
11781
11782 if (DECL_ABSTRACT (decl))
11783 equate_decl_number_to_die (decl, type_die);
11784 }
11785
11786 /* Generate a type description DIE. */
11787
11788 static void
11789 gen_type_die (tree type, dw_die_ref context_die)
11790 {
11791 int need_pop;
11792
11793 if (type == NULL_TREE || type == error_mark_node)
11794 return;
11795
11796 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11797 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11798 {
11799 if (TREE_ASM_WRITTEN (type))
11800 return;
11801
11802 /* Prevent broken recursion; we can't hand off to the same type. */
11803 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11804 abort ();
11805
11806 TREE_ASM_WRITTEN (type) = 1;
11807 gen_decl_die (TYPE_NAME (type), context_die);
11808 return;
11809 }
11810
11811 /* We are going to output a DIE to represent the unqualified version
11812 of this type (i.e. without any const or volatile qualifiers) so
11813 get the main variant (i.e. the unqualified version) of this type
11814 now. (Vectors are special because the debugging info is in the
11815 cloned type itself). */
11816 if (TREE_CODE (type) != VECTOR_TYPE)
11817 type = type_main_variant (type);
11818
11819 if (TREE_ASM_WRITTEN (type))
11820 return;
11821
11822 switch (TREE_CODE (type))
11823 {
11824 case ERROR_MARK:
11825 break;
11826
11827 case POINTER_TYPE:
11828 case REFERENCE_TYPE:
11829 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11830 ensures that the gen_type_die recursion will terminate even if the
11831 type is recursive. Recursive types are possible in Ada. */
11832 /* ??? We could perhaps do this for all types before the switch
11833 statement. */
11834 TREE_ASM_WRITTEN (type) = 1;
11835
11836 /* For these types, all that is required is that we output a DIE (or a
11837 set of DIEs) to represent the "basis" type. */
11838 gen_type_die (TREE_TYPE (type), context_die);
11839 break;
11840
11841 case OFFSET_TYPE:
11842 /* This code is used for C++ pointer-to-data-member types.
11843 Output a description of the relevant class type. */
11844 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11845
11846 /* Output a description of the type of the object pointed to. */
11847 gen_type_die (TREE_TYPE (type), context_die);
11848
11849 /* Now output a DIE to represent this pointer-to-data-member type
11850 itself. */
11851 gen_ptr_to_mbr_type_die (type, context_die);
11852 break;
11853
11854 case SET_TYPE:
11855 gen_type_die (TYPE_DOMAIN (type), context_die);
11856 gen_set_type_die (type, context_die);
11857 break;
11858
11859 case FILE_TYPE:
11860 gen_type_die (TREE_TYPE (type), context_die);
11861 abort (); /* No way to represent these in Dwarf yet! */
11862 break;
11863
11864 case FUNCTION_TYPE:
11865 /* Force out return type (in case it wasn't forced out already). */
11866 gen_type_die (TREE_TYPE (type), context_die);
11867 gen_subroutine_type_die (type, context_die);
11868 break;
11869
11870 case METHOD_TYPE:
11871 /* Force out return type (in case it wasn't forced out already). */
11872 gen_type_die (TREE_TYPE (type), context_die);
11873 gen_subroutine_type_die (type, context_die);
11874 break;
11875
11876 case ARRAY_TYPE:
11877 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11878 {
11879 gen_type_die (TREE_TYPE (type), context_die);
11880 gen_string_type_die (type, context_die);
11881 }
11882 else
11883 gen_array_type_die (type, context_die);
11884 break;
11885
11886 case VECTOR_TYPE:
11887 gen_array_type_die (type, context_die);
11888 break;
11889
11890 case ENUMERAL_TYPE:
11891 case RECORD_TYPE:
11892 case UNION_TYPE:
11893 case QUAL_UNION_TYPE:
11894 /* If this is a nested type whose containing class hasn't been written
11895 out yet, writing it out will cover this one, too. This does not apply
11896 to instantiations of member class templates; they need to be added to
11897 the containing class as they are generated. FIXME: This hurts the
11898 idea of combining type decls from multiple TUs, since we can't predict
11899 what set of template instantiations we'll get. */
11900 if (TYPE_CONTEXT (type)
11901 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11902 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11903 {
11904 gen_type_die (TYPE_CONTEXT (type), context_die);
11905
11906 if (TREE_ASM_WRITTEN (type))
11907 return;
11908
11909 /* If that failed, attach ourselves to the stub. */
11910 push_decl_scope (TYPE_CONTEXT (type));
11911 context_die = lookup_type_die (TYPE_CONTEXT (type));
11912 need_pop = 1;
11913 }
11914 else
11915 {
11916 declare_in_namespace (type, context_die);
11917 need_pop = 0;
11918 }
11919
11920 if (TREE_CODE (type) == ENUMERAL_TYPE)
11921 gen_enumeration_type_die (type, context_die);
11922 else
11923 gen_struct_or_union_type_die (type, context_die);
11924
11925 if (need_pop)
11926 pop_decl_scope ();
11927
11928 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11929 it up if it is ever completed. gen_*_type_die will set it for us
11930 when appropriate. */
11931 return;
11932
11933 case VOID_TYPE:
11934 case INTEGER_TYPE:
11935 case REAL_TYPE:
11936 case COMPLEX_TYPE:
11937 case BOOLEAN_TYPE:
11938 case CHAR_TYPE:
11939 /* No DIEs needed for fundamental types. */
11940 break;
11941
11942 case LANG_TYPE:
11943 /* No Dwarf representation currently defined. */
11944 break;
11945
11946 default:
11947 abort ();
11948 }
11949
11950 TREE_ASM_WRITTEN (type) = 1;
11951 }
11952
11953 /* Generate a DIE for a tagged type instantiation. */
11954
11955 static void
11956 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11957 {
11958 if (type == NULL_TREE || type == error_mark_node)
11959 return;
11960
11961 /* We are going to output a DIE to represent the unqualified version of
11962 this type (i.e. without any const or volatile qualifiers) so make sure
11963 that we have the main variant (i.e. the unqualified version) of this
11964 type now. */
11965 if (type != type_main_variant (type))
11966 abort ();
11967
11968 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11969 an instance of an unresolved type. */
11970
11971 switch (TREE_CODE (type))
11972 {
11973 case ERROR_MARK:
11974 break;
11975
11976 case ENUMERAL_TYPE:
11977 gen_inlined_enumeration_type_die (type, context_die);
11978 break;
11979
11980 case RECORD_TYPE:
11981 gen_inlined_structure_type_die (type, context_die);
11982 break;
11983
11984 case UNION_TYPE:
11985 case QUAL_UNION_TYPE:
11986 gen_inlined_union_type_die (type, context_die);
11987 break;
11988
11989 default:
11990 abort ();
11991 }
11992 }
11993
11994 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11995 things which are local to the given block. */
11996
11997 static void
11998 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11999 {
12000 int must_output_die = 0;
12001 tree origin;
12002 tree decl;
12003 enum tree_code origin_code;
12004
12005 /* Ignore blocks never really used to make RTL. */
12006 if (stmt == NULL_TREE || !TREE_USED (stmt)
12007 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12008 return;
12009
12010 /* If the block is one fragment of a non-contiguous block, do not
12011 process the variables, since they will have been done by the
12012 origin block. Do process subblocks. */
12013 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12014 {
12015 tree sub;
12016
12017 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12018 gen_block_die (sub, context_die, depth + 1);
12019
12020 return;
12021 }
12022
12023 /* Determine the "ultimate origin" of this block. This block may be an
12024 inlined instance of an inlined instance of inline function, so we have
12025 to trace all of the way back through the origin chain to find out what
12026 sort of node actually served as the original seed for the creation of
12027 the current block. */
12028 origin = block_ultimate_origin (stmt);
12029 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12030
12031 /* Determine if we need to output any Dwarf DIEs at all to represent this
12032 block. */
12033 if (origin_code == FUNCTION_DECL)
12034 /* The outer scopes for inlinings *must* always be represented. We
12035 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12036 must_output_die = 1;
12037 else
12038 {
12039 /* In the case where the current block represents an inlining of the
12040 "body block" of an inline function, we must *NOT* output any DIE for
12041 this block because we have already output a DIE to represent the whole
12042 inlined function scope and the "body block" of any function doesn't
12043 really represent a different scope according to ANSI C rules. So we
12044 check here to make sure that this block does not represent a "body
12045 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12046 if (! is_body_block (origin ? origin : stmt))
12047 {
12048 /* Determine if this block directly contains any "significant"
12049 local declarations which we will need to output DIEs for. */
12050 if (debug_info_level > DINFO_LEVEL_TERSE)
12051 /* We are not in terse mode so *any* local declaration counts
12052 as being a "significant" one. */
12053 must_output_die = (BLOCK_VARS (stmt) != NULL);
12054 else
12055 /* We are in terse mode, so only local (nested) function
12056 definitions count as "significant" local declarations. */
12057 for (decl = BLOCK_VARS (stmt);
12058 decl != NULL; decl = TREE_CHAIN (decl))
12059 if (TREE_CODE (decl) == FUNCTION_DECL
12060 && DECL_INITIAL (decl))
12061 {
12062 must_output_die = 1;
12063 break;
12064 }
12065 }
12066 }
12067
12068 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12069 DIE for any block which contains no significant local declarations at
12070 all. Rather, in such cases we just call `decls_for_scope' so that any
12071 needed Dwarf info for any sub-blocks will get properly generated. Note
12072 that in terse mode, our definition of what constitutes a "significant"
12073 local declaration gets restricted to include only inlined function
12074 instances and local (nested) function definitions. */
12075 if (must_output_die)
12076 {
12077 if (origin_code == FUNCTION_DECL)
12078 gen_inlined_subroutine_die (stmt, context_die, depth);
12079 else
12080 gen_lexical_block_die (stmt, context_die, depth);
12081 }
12082 else
12083 decls_for_scope (stmt, context_die, depth);
12084 }
12085
12086 /* Generate all of the decls declared within a given scope and (recursively)
12087 all of its sub-blocks. */
12088
12089 static void
12090 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12091 {
12092 tree decl;
12093 tree subblocks;
12094
12095 /* Ignore blocks never really used to make RTL. */
12096 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12097 return;
12098
12099 /* Output the DIEs to represent all of the data objects and typedefs
12100 declared directly within this block but not within any nested
12101 sub-blocks. Also, nested function and tag DIEs have been
12102 generated with a parent of NULL; fix that up now. */
12103 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12104 {
12105 dw_die_ref die;
12106
12107 if (TREE_CODE (decl) == FUNCTION_DECL)
12108 die = lookup_decl_die (decl);
12109 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12110 die = lookup_type_die (TREE_TYPE (decl));
12111 else
12112 die = NULL;
12113
12114 if (die != NULL && die->die_parent == NULL)
12115 add_child_die (context_die, die);
12116 else
12117 gen_decl_die (decl, context_die);
12118 }
12119
12120 /* If we're at -g1, we're not interested in subblocks. */
12121 if (debug_info_level <= DINFO_LEVEL_TERSE)
12122 return;
12123
12124 /* Output the DIEs to represent all sub-blocks (and the items declared
12125 therein) of this block. */
12126 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12127 subblocks != NULL;
12128 subblocks = BLOCK_CHAIN (subblocks))
12129 gen_block_die (subblocks, context_die, depth + 1);
12130 }
12131
12132 /* Is this a typedef we can avoid emitting? */
12133
12134 static inline int
12135 is_redundant_typedef (tree decl)
12136 {
12137 if (TYPE_DECL_IS_STUB (decl))
12138 return 1;
12139
12140 if (DECL_ARTIFICIAL (decl)
12141 && DECL_CONTEXT (decl)
12142 && is_tagged_type (DECL_CONTEXT (decl))
12143 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12144 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12145 /* Also ignore the artificial member typedef for the class name. */
12146 return 1;
12147
12148 return 0;
12149 }
12150
12151 /* Returns the DIE for decl or aborts. */
12152
12153 static dw_die_ref
12154 force_decl_die (tree decl)
12155 {
12156 dw_die_ref decl_die;
12157 unsigned saved_external_flag;
12158 tree save_fn = NULL_TREE;
12159 decl_die = lookup_decl_die (decl);
12160 if (!decl_die)
12161 {
12162 dw_die_ref context_die;
12163 tree decl_context = DECL_CONTEXT (decl);
12164 if (decl_context)
12165 {
12166 /* Find die that represents this context. */
12167 if (TYPE_P (decl_context))
12168 context_die = force_type_die (decl_context);
12169 else
12170 context_die = force_decl_die (decl_context);
12171 }
12172 else
12173 context_die = comp_unit_die;
12174
12175 switch (TREE_CODE (decl))
12176 {
12177 case FUNCTION_DECL:
12178 /* Clear current_function_decl, so that gen_subprogram_die thinks
12179 that this is a declaration. At this point, we just want to force
12180 declaration die. */
12181 save_fn = current_function_decl;
12182 current_function_decl = NULL_TREE;
12183 gen_subprogram_die (decl, context_die);
12184 current_function_decl = save_fn;
12185 break;
12186
12187 case VAR_DECL:
12188 /* Set external flag to force declaration die. Restore it after
12189 gen_decl_die() call. */
12190 saved_external_flag = DECL_EXTERNAL (decl);
12191 DECL_EXTERNAL (decl) = 1;
12192 gen_decl_die (decl, context_die);
12193 DECL_EXTERNAL (decl) = saved_external_flag;
12194 break;
12195
12196 case NAMESPACE_DECL:
12197 dwarf2out_decl (decl);
12198 break;
12199
12200 default:
12201 abort ();
12202 }
12203
12204 /* See if we can find the die for this deci now.
12205 If not then abort. */
12206 if (!decl_die)
12207 decl_die = lookup_decl_die (decl);
12208 if (!decl_die)
12209 abort ();
12210 }
12211
12212 return decl_die;
12213 }
12214
12215 /* Returns the DIE for decl or aborts. */
12216
12217 static dw_die_ref
12218 force_type_die (tree type)
12219 {
12220 dw_die_ref type_die;
12221
12222 type_die = lookup_type_die (type);
12223 if (!type_die)
12224 {
12225 dw_die_ref context_die;
12226 if (TYPE_CONTEXT (type))
12227 if (TYPE_P (TYPE_CONTEXT (type)))
12228 context_die = force_type_die (TYPE_CONTEXT (type));
12229 else
12230 context_die = force_decl_die (TYPE_CONTEXT (type));
12231 else
12232 context_die = comp_unit_die;
12233
12234 gen_type_die (type, context_die);
12235 type_die = lookup_type_die (type);
12236 if (!type_die)
12237 abort();
12238 }
12239 return type_die;
12240 }
12241
12242 /* Force out any required namespaces to be able to output DECL,
12243 and return the new context_die for it, if it's changed. */
12244
12245 static dw_die_ref
12246 setup_namespace_context (tree thing, dw_die_ref context_die)
12247 {
12248 tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
12249 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12250 /* Force out the namespace. */
12251 context_die = force_decl_die (context);
12252
12253 return context_die;
12254 }
12255
12256 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12257 type) within its namespace, if appropriate.
12258
12259 For compatibility with older debuggers, namespace DIEs only contain
12260 declarations; all definitions are emitted at CU scope. */
12261
12262 static void
12263 declare_in_namespace (tree thing, dw_die_ref context_die)
12264 {
12265 dw_die_ref ns_context;
12266
12267 if (debug_info_level <= DINFO_LEVEL_TERSE)
12268 return;
12269
12270 ns_context = setup_namespace_context (thing, context_die);
12271
12272 if (ns_context != context_die)
12273 {
12274 if (DECL_P (thing))
12275 gen_decl_die (thing, ns_context);
12276 else
12277 gen_type_die (thing, ns_context);
12278 }
12279 }
12280
12281 /* Generate a DIE for a namespace or namespace alias. */
12282
12283 static void
12284 gen_namespace_die (tree decl)
12285 {
12286 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12287
12288 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12289 they are an alias of. */
12290 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12291 {
12292 /* Output a real namespace. */
12293 dw_die_ref namespace_die
12294 = new_die (DW_TAG_namespace, context_die, decl);
12295 add_name_and_src_coords_attributes (namespace_die, decl);
12296 equate_decl_number_to_die (decl, namespace_die);
12297 }
12298 else
12299 {
12300 /* Output a namespace alias. */
12301
12302 /* Force out the namespace we are an alias of, if necessary. */
12303 dw_die_ref origin_die
12304 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12305
12306 /* Now create the namespace alias DIE. */
12307 dw_die_ref namespace_die
12308 = new_die (DW_TAG_imported_declaration, context_die, decl);
12309 add_name_and_src_coords_attributes (namespace_die, decl);
12310 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12311 equate_decl_number_to_die (decl, namespace_die);
12312 }
12313 }
12314
12315 /* Generate Dwarf debug information for a decl described by DECL. */
12316
12317 static void
12318 gen_decl_die (tree decl, dw_die_ref context_die)
12319 {
12320 tree origin;
12321
12322 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12323 return;
12324
12325 switch (TREE_CODE (decl))
12326 {
12327 case ERROR_MARK:
12328 break;
12329
12330 case CONST_DECL:
12331 /* The individual enumerators of an enum type get output when we output
12332 the Dwarf representation of the relevant enum type itself. */
12333 break;
12334
12335 case FUNCTION_DECL:
12336 /* Don't output any DIEs to represent mere function declarations,
12337 unless they are class members or explicit block externs. */
12338 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12339 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12340 break;
12341
12342 /* If we're emitting a clone, emit info for the abstract instance. */
12343 if (DECL_ORIGIN (decl) != decl)
12344 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12345
12346 /* If we're emitting an out-of-line copy of an inline function,
12347 emit info for the abstract instance and set up to refer to it. */
12348 else if (cgraph_function_possibly_inlined_p (decl)
12349 && ! DECL_ABSTRACT (decl)
12350 && ! class_or_namespace_scope_p (context_die)
12351 /* dwarf2out_abstract_function won't emit a die if this is just
12352 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12353 that case, because that works only if we have a die. */
12354 && DECL_INITIAL (decl) != NULL_TREE)
12355 {
12356 dwarf2out_abstract_function (decl);
12357 set_decl_origin_self (decl);
12358 }
12359
12360 /* Otherwise we're emitting the primary DIE for this decl. */
12361 else if (debug_info_level > DINFO_LEVEL_TERSE)
12362 {
12363 /* Before we describe the FUNCTION_DECL itself, make sure that we
12364 have described its return type. */
12365 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12366
12367 /* And its virtual context. */
12368 if (DECL_VINDEX (decl) != NULL_TREE)
12369 gen_type_die (DECL_CONTEXT (decl), context_die);
12370
12371 /* And its containing type. */
12372 origin = decl_class_context (decl);
12373 if (origin != NULL_TREE)
12374 gen_type_die_for_member (origin, decl, context_die);
12375
12376 /* And its containing namespace. */
12377 declare_in_namespace (decl, context_die);
12378 }
12379
12380 /* Now output a DIE to represent the function itself. */
12381 gen_subprogram_die (decl, context_die);
12382 break;
12383
12384 case TYPE_DECL:
12385 /* If we are in terse mode, don't generate any DIEs to represent any
12386 actual typedefs. */
12387 if (debug_info_level <= DINFO_LEVEL_TERSE)
12388 break;
12389
12390 /* In the special case of a TYPE_DECL node representing the declaration
12391 of some type tag, if the given TYPE_DECL is marked as having been
12392 instantiated from some other (original) TYPE_DECL node (e.g. one which
12393 was generated within the original definition of an inline function) we
12394 have to generate a special (abbreviated) DW_TAG_structure_type,
12395 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12396 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12397 {
12398 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12399 break;
12400 }
12401
12402 if (is_redundant_typedef (decl))
12403 gen_type_die (TREE_TYPE (decl), context_die);
12404 else
12405 /* Output a DIE to represent the typedef itself. */
12406 gen_typedef_die (decl, context_die);
12407 break;
12408
12409 case LABEL_DECL:
12410 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12411 gen_label_die (decl, context_die);
12412 break;
12413
12414 case VAR_DECL:
12415 /* If we are in terse mode, don't generate any DIEs to represent any
12416 variable declarations or definitions. */
12417 if (debug_info_level <= DINFO_LEVEL_TERSE)
12418 break;
12419
12420 /* Output any DIEs that are needed to specify the type of this data
12421 object. */
12422 gen_type_die (TREE_TYPE (decl), context_die);
12423
12424 /* And its containing type. */
12425 origin = decl_class_context (decl);
12426 if (origin != NULL_TREE)
12427 gen_type_die_for_member (origin, decl, context_die);
12428
12429 /* And its containing namespace. */
12430 declare_in_namespace (decl, context_die);
12431
12432 /* Now output the DIE to represent the data object itself. This gets
12433 complicated because of the possibility that the VAR_DECL really
12434 represents an inlined instance of a formal parameter for an inline
12435 function. */
12436 origin = decl_ultimate_origin (decl);
12437 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12438 gen_formal_parameter_die (decl, context_die);
12439 else
12440 gen_variable_die (decl, context_die);
12441 break;
12442
12443 case FIELD_DECL:
12444 /* Ignore the nameless fields that are used to skip bits but handle C++
12445 anonymous unions and structs. */
12446 if (DECL_NAME (decl) != NULL_TREE
12447 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12448 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12449 {
12450 gen_type_die (member_declared_type (decl), context_die);
12451 gen_field_die (decl, context_die);
12452 }
12453 break;
12454
12455 case PARM_DECL:
12456 gen_type_die (TREE_TYPE (decl), context_die);
12457 gen_formal_parameter_die (decl, context_die);
12458 break;
12459
12460 case NAMESPACE_DECL:
12461 gen_namespace_die (decl);
12462 break;
12463
12464 default:
12465 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12466 /* Probably some frontend-internal decl. Assume we don't care. */
12467 break;
12468 abort ();
12469 }
12470 }
12471 \f
12472 /* Add Ada "use" clause information for SGI Workshop debugger. */
12473
12474 void
12475 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12476 {
12477 unsigned int file_index;
12478
12479 if (filename != NULL)
12480 {
12481 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12482 tree context_list_decl
12483 = build_decl (LABEL_DECL, get_identifier (context_list),
12484 void_type_node);
12485
12486 TREE_PUBLIC (context_list_decl) = TRUE;
12487 add_name_attribute (unit_die, context_list);
12488 file_index = lookup_filename (filename);
12489 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12490 add_pubname (context_list_decl, unit_die);
12491 }
12492 }
12493
12494 /* Output debug information for global decl DECL. Called from toplev.c after
12495 compilation proper has finished. */
12496
12497 static void
12498 dwarf2out_global_decl (tree decl)
12499 {
12500 /* Output DWARF2 information for file-scope tentative data object
12501 declarations, file-scope (extern) function declarations (which had no
12502 corresponding body) and file-scope tagged type declarations and
12503 definitions which have not yet been forced out. */
12504 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12505 dwarf2out_decl (decl);
12506 }
12507
12508 /* Output debug information for imported module or decl. */
12509
12510 static void
12511 dwarf2out_imported_module_or_decl (tree decl, tree context)
12512 {
12513 dw_die_ref imported_die, at_import_die;
12514 dw_die_ref scope_die;
12515 unsigned file_index;
12516
12517 if (debug_info_level <= DINFO_LEVEL_TERSE)
12518 return;
12519
12520 if (!decl)
12521 abort ();
12522
12523 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12524 We need decl DIE for reference and scope die. First, get DIE for the decl
12525 itself. */
12526
12527 /* Get the scope die for decl context. Use comp_unit_die for global module
12528 or decl. If die is not found for non globals, force new die. */
12529 if (!context)
12530 scope_die = comp_unit_die;
12531 else if (TYPE_P (context))
12532 scope_die = force_type_die (context);
12533 else
12534 scope_die = force_decl_die (context);
12535
12536 /* For TYPE_DECL, lookup TREE_TYPE. */
12537 if (TREE_CODE (decl) == TYPE_DECL)
12538 at_import_die = force_type_die (TREE_TYPE (decl));
12539 else
12540 at_import_die = force_decl_die (decl);
12541
12542 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12543 if (TREE_CODE (decl) == NAMESPACE_DECL)
12544 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12545 else
12546 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12547
12548 file_index = lookup_filename (input_filename);
12549 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12550 add_AT_unsigned (imported_die, DW_AT_decl_line, input_line);
12551 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12552 }
12553
12554 /* Write the debugging output for DECL. */
12555
12556 void
12557 dwarf2out_decl (tree decl)
12558 {
12559 dw_die_ref context_die = comp_unit_die;
12560
12561 switch (TREE_CODE (decl))
12562 {
12563 case ERROR_MARK:
12564 return;
12565
12566 case FUNCTION_DECL:
12567 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12568 builtin function. Explicit programmer-supplied declarations of
12569 these same functions should NOT be ignored however. */
12570 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12571 return;
12572
12573 /* What we would really like to do here is to filter out all mere
12574 file-scope declarations of file-scope functions which are never
12575 referenced later within this translation unit (and keep all of ones
12576 that *are* referenced later on) but we aren't clairvoyant, so we have
12577 no idea which functions will be referenced in the future (i.e. later
12578 on within the current translation unit). So here we just ignore all
12579 file-scope function declarations which are not also definitions. If
12580 and when the debugger needs to know something about these functions,
12581 it will have to hunt around and find the DWARF information associated
12582 with the definition of the function.
12583
12584 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12585 nodes represent definitions and which ones represent mere
12586 declarations. We have to check DECL_INITIAL instead. That's because
12587 the C front-end supports some weird semantics for "extern inline"
12588 function definitions. These can get inlined within the current
12589 translation unit (an thus, we need to generate Dwarf info for their
12590 abstract instances so that the Dwarf info for the concrete inlined
12591 instances can have something to refer to) but the compiler never
12592 generates any out-of-lines instances of such things (despite the fact
12593 that they *are* definitions).
12594
12595 The important point is that the C front-end marks these "extern
12596 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12597 them anyway. Note that the C++ front-end also plays some similar games
12598 for inline function definitions appearing within include files which
12599 also contain `#pragma interface' pragmas. */
12600 if (DECL_INITIAL (decl) == NULL_TREE)
12601 return;
12602
12603 /* If we're a nested function, initially use a parent of NULL; if we're
12604 a plain function, this will be fixed up in decls_for_scope. If
12605 we're a method, it will be ignored, since we already have a DIE. */
12606 if (decl_function_context (decl)
12607 /* But if we're in terse mode, we don't care about scope. */
12608 && debug_info_level > DINFO_LEVEL_TERSE)
12609 context_die = NULL;
12610 break;
12611
12612 case VAR_DECL:
12613 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12614 declaration and if the declaration was never even referenced from
12615 within this entire compilation unit. We suppress these DIEs in
12616 order to save space in the .debug section (by eliminating entries
12617 which are probably useless). Note that we must not suppress
12618 block-local extern declarations (whether used or not) because that
12619 would screw-up the debugger's name lookup mechanism and cause it to
12620 miss things which really ought to be in scope at a given point. */
12621 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12622 return;
12623
12624 /* If we are in terse mode, don't generate any DIEs to represent any
12625 variable declarations or definitions. */
12626 if (debug_info_level <= DINFO_LEVEL_TERSE)
12627 return;
12628 break;
12629
12630 case NAMESPACE_DECL:
12631 if (debug_info_level <= DINFO_LEVEL_TERSE)
12632 return;
12633 if (lookup_decl_die (decl) != NULL)
12634 return;
12635 break;
12636
12637 case TYPE_DECL:
12638 /* Don't emit stubs for types unless they are needed by other DIEs. */
12639 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12640 return;
12641
12642 /* Don't bother trying to generate any DIEs to represent any of the
12643 normal built-in types for the language we are compiling. */
12644 if (DECL_SOURCE_LINE (decl) == 0)
12645 {
12646 /* OK, we need to generate one for `bool' so GDB knows what type
12647 comparisons have. */
12648 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12649 == DW_LANG_C_plus_plus)
12650 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12651 && ! DECL_IGNORED_P (decl))
12652 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12653
12654 return;
12655 }
12656
12657 /* If we are in terse mode, don't generate any DIEs for types. */
12658 if (debug_info_level <= DINFO_LEVEL_TERSE)
12659 return;
12660
12661 /* If we're a function-scope tag, initially use a parent of NULL;
12662 this will be fixed up in decls_for_scope. */
12663 if (decl_function_context (decl))
12664 context_die = NULL;
12665
12666 break;
12667
12668 default:
12669 return;
12670 }
12671
12672 gen_decl_die (decl, context_die);
12673 }
12674
12675 /* Output a marker (i.e. a label) for the beginning of the generated code for
12676 a lexical block. */
12677
12678 static void
12679 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12680 unsigned int blocknum)
12681 {
12682 function_section (current_function_decl);
12683 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12684 }
12685
12686 /* Output a marker (i.e. a label) for the end of the generated code for a
12687 lexical block. */
12688
12689 static void
12690 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12691 {
12692 function_section (current_function_decl);
12693 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12694 }
12695
12696 /* Returns nonzero if it is appropriate not to emit any debugging
12697 information for BLOCK, because it doesn't contain any instructions.
12698
12699 Don't allow this for blocks with nested functions or local classes
12700 as we would end up with orphans, and in the presence of scheduling
12701 we may end up calling them anyway. */
12702
12703 static bool
12704 dwarf2out_ignore_block (tree block)
12705 {
12706 tree decl;
12707
12708 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12709 if (TREE_CODE (decl) == FUNCTION_DECL
12710 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12711 return 0;
12712
12713 return 1;
12714 }
12715
12716 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12717 dwarf2out.c) and return its "index". The index of each (known) filename is
12718 just a unique number which is associated with only that one filename. We
12719 need such numbers for the sake of generating labels (in the .debug_sfnames
12720 section) and references to those files numbers (in the .debug_srcinfo
12721 and.debug_macinfo sections). If the filename given as an argument is not
12722 found in our current list, add it to the list and assign it the next
12723 available unique index number. In order to speed up searches, we remember
12724 the index of the filename was looked up last. This handles the majority of
12725 all searches. */
12726
12727 static unsigned
12728 lookup_filename (const char *file_name)
12729 {
12730 size_t i, n;
12731 char *save_file_name;
12732
12733 /* Check to see if the file name that was searched on the previous
12734 call matches this file name. If so, return the index. */
12735 if (file_table_last_lookup_index != 0)
12736 {
12737 const char *last
12738 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12739 if (strcmp (file_name, last) == 0)
12740 return file_table_last_lookup_index;
12741 }
12742
12743 /* Didn't match the previous lookup, search the table */
12744 n = VARRAY_ACTIVE_SIZE (file_table);
12745 for (i = 1; i < n; i++)
12746 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12747 {
12748 file_table_last_lookup_index = i;
12749 return i;
12750 }
12751
12752 /* Add the new entry to the end of the filename table. */
12753 file_table_last_lookup_index = n;
12754 save_file_name = (char *) ggc_strdup (file_name);
12755 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12756 VARRAY_PUSH_UINT (file_table_emitted, 0);
12757
12758 return i;
12759 }
12760
12761 static int
12762 maybe_emit_file (int fileno)
12763 {
12764 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12765 {
12766 if (!VARRAY_UINT (file_table_emitted, fileno))
12767 {
12768 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12769 fprintf (asm_out_file, "\t.file %u ",
12770 VARRAY_UINT (file_table_emitted, fileno));
12771 output_quoted_string (asm_out_file,
12772 VARRAY_CHAR_PTR (file_table, fileno));
12773 fputc ('\n', asm_out_file);
12774 }
12775 return VARRAY_UINT (file_table_emitted, fileno);
12776 }
12777 else
12778 return fileno;
12779 }
12780
12781 static void
12782 init_file_table (void)
12783 {
12784 /* Allocate the initial hunk of the file_table. */
12785 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12786 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12787
12788 /* Skip the first entry - file numbers begin at 1. */
12789 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12790 VARRAY_PUSH_UINT (file_table_emitted, 0);
12791 file_table_last_lookup_index = 0;
12792 }
12793
12794 /* Called by the final INSN scan whenever we see a var location. We
12795 use it to drop labels in the right places, and throw the location in
12796 our lookup table. */
12797
12798 static void
12799 dwarf2out_var_location (rtx loc_note)
12800 {
12801 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
12802 struct var_loc_node *newloc;
12803 rtx prev_insn;
12804 static rtx last_insn;
12805 static const char *last_label;
12806
12807 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
12808 return;
12809 prev_insn = PREV_INSN (loc_note);
12810
12811 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
12812 /* If the insn we processed last time is the previous insn
12813 and it is also a var location note, use the label we emitted
12814 last time. */
12815 if (last_insn != NULL_RTX
12816 && last_insn == prev_insn
12817 && GET_CODE (prev_insn) == NOTE
12818 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
12819 {
12820 newloc->label = last_label;
12821 }
12822 else
12823 {
12824 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
12825 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
12826 loclabel_num++;
12827 newloc->label = ggc_strdup (loclabel);
12828 }
12829 newloc->var_loc_note = loc_note;
12830 newloc->next = NULL;
12831
12832 last_insn = loc_note;
12833 last_label = newloc->label;
12834
12835 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note), newloc);
12836 }
12837
12838 /* We need to reset the locations at the beginning of each
12839 function. We can't do this in the end_function hook, because the
12840 declarations that use the locations won't have been outputted when
12841 that hook is called. */
12842
12843 static void
12844 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
12845 {
12846 htab_empty (decl_loc_table);
12847 }
12848
12849 /* Output a label to mark the beginning of a source code line entry
12850 and record information relating to this source line, in
12851 'line_info_table' for later output of the .debug_line section. */
12852
12853 static void
12854 dwarf2out_source_line (unsigned int line, const char *filename)
12855 {
12856 if (debug_info_level >= DINFO_LEVEL_NORMAL
12857 && line != 0)
12858 {
12859 function_section (current_function_decl);
12860
12861 /* If requested, emit something human-readable. */
12862 if (flag_debug_asm)
12863 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12864 filename, line);
12865
12866 if (DWARF2_ASM_LINE_DEBUG_INFO)
12867 {
12868 unsigned file_num = lookup_filename (filename);
12869
12870 file_num = maybe_emit_file (file_num);
12871
12872 /* Emit the .loc directive understood by GNU as. */
12873 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12874
12875 /* Indicate that line number info exists. */
12876 line_info_table_in_use++;
12877
12878 /* Indicate that multiple line number tables exist. */
12879 if (DECL_SECTION_NAME (current_function_decl))
12880 separate_line_info_table_in_use++;
12881 }
12882 else if (DECL_SECTION_NAME (current_function_decl))
12883 {
12884 dw_separate_line_info_ref line_info;
12885 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12886 separate_line_info_table_in_use);
12887
12888 /* expand the line info table if necessary */
12889 if (separate_line_info_table_in_use
12890 == separate_line_info_table_allocated)
12891 {
12892 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12893 separate_line_info_table
12894 = ggc_realloc (separate_line_info_table,
12895 separate_line_info_table_allocated
12896 * sizeof (dw_separate_line_info_entry));
12897 memset (separate_line_info_table
12898 + separate_line_info_table_in_use,
12899 0,
12900 (LINE_INFO_TABLE_INCREMENT
12901 * sizeof (dw_separate_line_info_entry)));
12902 }
12903
12904 /* Add the new entry at the end of the line_info_table. */
12905 line_info
12906 = &separate_line_info_table[separate_line_info_table_in_use++];
12907 line_info->dw_file_num = lookup_filename (filename);
12908 line_info->dw_line_num = line;
12909 line_info->function = current_function_funcdef_no;
12910 }
12911 else
12912 {
12913 dw_line_info_ref line_info;
12914
12915 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12916 line_info_table_in_use);
12917
12918 /* Expand the line info table if necessary. */
12919 if (line_info_table_in_use == line_info_table_allocated)
12920 {
12921 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12922 line_info_table
12923 = ggc_realloc (line_info_table,
12924 (line_info_table_allocated
12925 * sizeof (dw_line_info_entry)));
12926 memset (line_info_table + line_info_table_in_use, 0,
12927 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12928 }
12929
12930 /* Add the new entry at the end of the line_info_table. */
12931 line_info = &line_info_table[line_info_table_in_use++];
12932 line_info->dw_file_num = lookup_filename (filename);
12933 line_info->dw_line_num = line;
12934 }
12935 }
12936 }
12937
12938 /* Record the beginning of a new source file. */
12939
12940 static void
12941 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12942 {
12943 if (flag_eliminate_dwarf2_dups)
12944 {
12945 /* Record the beginning of the file for break_out_includes. */
12946 dw_die_ref bincl_die;
12947
12948 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12949 add_AT_string (bincl_die, DW_AT_name, filename);
12950 }
12951
12952 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12953 {
12954 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12955 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12956 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12957 lineno);
12958 maybe_emit_file (lookup_filename (filename));
12959 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12960 "Filename we just started");
12961 }
12962 }
12963
12964 /* Record the end of a source file. */
12965
12966 static void
12967 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12968 {
12969 if (flag_eliminate_dwarf2_dups)
12970 /* Record the end of the file for break_out_includes. */
12971 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12972
12973 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12974 {
12975 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12976 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12977 }
12978 }
12979
12980 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12981 the tail part of the directive line, i.e. the part which is past the
12982 initial whitespace, #, whitespace, directive-name, whitespace part. */
12983
12984 static void
12985 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12986 const char *buffer ATTRIBUTE_UNUSED)
12987 {
12988 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12989 {
12990 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12991 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12992 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12993 dw2_asm_output_nstring (buffer, -1, "The macro");
12994 }
12995 }
12996
12997 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12998 the tail part of the directive line, i.e. the part which is past the
12999 initial whitespace, #, whitespace, directive-name, whitespace part. */
13000
13001 static void
13002 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13003 const char *buffer ATTRIBUTE_UNUSED)
13004 {
13005 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13006 {
13007 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13008 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13009 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13010 dw2_asm_output_nstring (buffer, -1, "The macro");
13011 }
13012 }
13013
13014 /* Set up for Dwarf output at the start of compilation. */
13015
13016 static void
13017 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13018 {
13019 init_file_table ();
13020
13021 /* Allocate the decl_die_table. */
13022 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13023 decl_die_table_eq, NULL);
13024
13025 /* Allocate the decl_loc_table. */
13026 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13027 decl_loc_table_eq, NULL);
13028
13029 /* Allocate the initial hunk of the decl_scope_table. */
13030 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13031
13032 /* Allocate the initial hunk of the abbrev_die_table. */
13033 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13034 * sizeof (dw_die_ref));
13035 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13036 /* Zero-th entry is allocated, but unused */
13037 abbrev_die_table_in_use = 1;
13038
13039 /* Allocate the initial hunk of the line_info_table. */
13040 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13041 * sizeof (dw_line_info_entry));
13042 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13043
13044 /* Zero-th entry is allocated, but unused */
13045 line_info_table_in_use = 1;
13046
13047 /* Generate the initial DIE for the .debug section. Note that the (string)
13048 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13049 will (typically) be a relative pathname and that this pathname should be
13050 taken as being relative to the directory from which the compiler was
13051 invoked when the given (base) source file was compiled. We will fill
13052 in this value in dwarf2out_finish. */
13053 comp_unit_die = gen_compile_unit_die (NULL);
13054
13055 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13056
13057 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13058
13059 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13060 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13061 DEBUG_ABBREV_SECTION_LABEL, 0);
13062 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13063 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13064 else
13065 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
13066
13067 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13068 DEBUG_INFO_SECTION_LABEL, 0);
13069 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13070 DEBUG_LINE_SECTION_LABEL, 0);
13071 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13072 DEBUG_RANGES_SECTION_LABEL, 0);
13073 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13074 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13075 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13076 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13077 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13078 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13079
13080 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13081 {
13082 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13083 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13084 DEBUG_MACINFO_SECTION_LABEL, 0);
13085 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13086 }
13087
13088 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13089 {
13090 text_section ();
13091 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13092 }
13093 }
13094
13095 /* A helper function for dwarf2out_finish called through
13096 ht_forall. Emit one queued .debug_str string. */
13097
13098 static int
13099 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13100 {
13101 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13102
13103 if (node->form == DW_FORM_strp)
13104 {
13105 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13106 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13107 assemble_string (node->str, strlen (node->str) + 1);
13108 }
13109
13110 return 1;
13111 }
13112
13113
13114
13115 /* Clear the marks for a die and its children.
13116 Be cool if the mark isn't set. */
13117
13118 static void
13119 prune_unmark_dies (dw_die_ref die)
13120 {
13121 dw_die_ref c;
13122 die->die_mark = 0;
13123 for (c = die->die_child; c; c = c->die_sib)
13124 prune_unmark_dies (c);
13125 }
13126
13127
13128 /* Given DIE that we're marking as used, find any other dies
13129 it references as attributes and mark them as used. */
13130
13131 static void
13132 prune_unused_types_walk_attribs (dw_die_ref die)
13133 {
13134 dw_attr_ref a;
13135
13136 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13137 {
13138 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13139 {
13140 /* A reference to another DIE.
13141 Make sure that it will get emitted. */
13142 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13143 }
13144 else if (a->dw_attr == DW_AT_decl_file)
13145 {
13146 /* A reference to a file. Make sure the file name is emitted. */
13147 a->dw_attr_val.v.val_unsigned =
13148 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13149 }
13150 }
13151 }
13152
13153
13154 /* Mark DIE as being used. If DOKIDS is true, then walk down
13155 to DIE's children. */
13156
13157 static void
13158 prune_unused_types_mark (dw_die_ref die, int dokids)
13159 {
13160 dw_die_ref c;
13161
13162 if (die->die_mark == 0)
13163 {
13164 /* We haven't done this node yet. Mark it as used. */
13165 die->die_mark = 1;
13166
13167 /* We also have to mark its parents as used.
13168 (But we don't want to mark our parents' kids due to this.) */
13169 if (die->die_parent)
13170 prune_unused_types_mark (die->die_parent, 0);
13171
13172 /* Mark any referenced nodes. */
13173 prune_unused_types_walk_attribs (die);
13174
13175 /* If this node is a specification,
13176 also mark the definition, if it exists. */
13177 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13178 prune_unused_types_mark (die->die_definition, 1);
13179 }
13180
13181 if (dokids && die->die_mark != 2)
13182 {
13183 /* We need to walk the children, but haven't done so yet.
13184 Remember that we've walked the kids. */
13185 die->die_mark = 2;
13186
13187 /* Walk them. */
13188 for (c = die->die_child; c; c = c->die_sib)
13189 {
13190 /* If this is an array type, we need to make sure our
13191 kids get marked, even if they're types. */
13192 if (die->die_tag == DW_TAG_array_type)
13193 prune_unused_types_mark (c, 1);
13194 else
13195 prune_unused_types_walk (c);
13196 }
13197 }
13198 }
13199
13200
13201 /* Walk the tree DIE and mark types that we actually use. */
13202
13203 static void
13204 prune_unused_types_walk (dw_die_ref die)
13205 {
13206 dw_die_ref c;
13207
13208 /* Don't do anything if this node is already marked. */
13209 if (die->die_mark)
13210 return;
13211
13212 switch (die->die_tag) {
13213 case DW_TAG_const_type:
13214 case DW_TAG_packed_type:
13215 case DW_TAG_pointer_type:
13216 case DW_TAG_reference_type:
13217 case DW_TAG_volatile_type:
13218 case DW_TAG_typedef:
13219 case DW_TAG_array_type:
13220 case DW_TAG_structure_type:
13221 case DW_TAG_union_type:
13222 case DW_TAG_class_type:
13223 case DW_TAG_friend:
13224 case DW_TAG_variant_part:
13225 case DW_TAG_enumeration_type:
13226 case DW_TAG_subroutine_type:
13227 case DW_TAG_string_type:
13228 case DW_TAG_set_type:
13229 case DW_TAG_subrange_type:
13230 case DW_TAG_ptr_to_member_type:
13231 case DW_TAG_file_type:
13232 /* It's a type node --- don't mark it. */
13233 return;
13234
13235 default:
13236 /* Mark everything else. */
13237 break;
13238 }
13239
13240 die->die_mark = 1;
13241
13242 /* Now, mark any dies referenced from here. */
13243 prune_unused_types_walk_attribs (die);
13244
13245 /* Mark children. */
13246 for (c = die->die_child; c; c = c->die_sib)
13247 prune_unused_types_walk (c);
13248 }
13249
13250
13251 /* Remove from the tree DIE any dies that aren't marked. */
13252
13253 static void
13254 prune_unused_types_prune (dw_die_ref die)
13255 {
13256 dw_die_ref c, p, n;
13257 if (!die->die_mark)
13258 abort();
13259
13260 p = NULL;
13261 for (c = die->die_child; c; c = n)
13262 {
13263 n = c->die_sib;
13264 if (c->die_mark)
13265 {
13266 prune_unused_types_prune (c);
13267 p = c;
13268 }
13269 else
13270 {
13271 if (p)
13272 p->die_sib = n;
13273 else
13274 die->die_child = n;
13275 free_die (c);
13276 }
13277 }
13278 }
13279
13280
13281 /* Remove dies representing declarations that we never use. */
13282
13283 static void
13284 prune_unused_types (void)
13285 {
13286 unsigned int i;
13287 limbo_die_node *node;
13288
13289 /* Clear all the marks. */
13290 prune_unmark_dies (comp_unit_die);
13291 for (node = limbo_die_list; node; node = node->next)
13292 prune_unmark_dies (node->die);
13293
13294 /* Set the mark on nodes that are actually used. */
13295 prune_unused_types_walk (comp_unit_die);
13296 for (node = limbo_die_list; node; node = node->next)
13297 prune_unused_types_walk (node->die);
13298
13299 /* Also set the mark on nodes referenced from the
13300 pubname_table or arange_table. */
13301 for (i = 0; i < pubname_table_in_use; i++)
13302 prune_unused_types_mark (pubname_table[i].die, 1);
13303 for (i = 0; i < arange_table_in_use; i++)
13304 prune_unused_types_mark (arange_table[i], 1);
13305
13306 /* Get rid of nodes that aren't marked. */
13307 prune_unused_types_prune (comp_unit_die);
13308 for (node = limbo_die_list; node; node = node->next)
13309 prune_unused_types_prune (node->die);
13310
13311 /* Leave the marks clear. */
13312 prune_unmark_dies (comp_unit_die);
13313 for (node = limbo_die_list; node; node = node->next)
13314 prune_unmark_dies (node->die);
13315 }
13316
13317 /* Output stuff that dwarf requires at the end of every file,
13318 and generate the DWARF-2 debugging info. */
13319
13320 static void
13321 dwarf2out_finish (const char *filename)
13322 {
13323 limbo_die_node *node, *next_node;
13324 dw_die_ref die = 0;
13325
13326 /* Add the name for the main input file now. We delayed this from
13327 dwarf2out_init to avoid complications with PCH. */
13328 add_name_attribute (comp_unit_die, filename);
13329 if (filename[0] != DIR_SEPARATOR)
13330 add_comp_dir_attribute (comp_unit_die);
13331 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13332 {
13333 size_t i;
13334 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13335 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13336 /* Don't add cwd for <built-in>. */
13337 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13338 {
13339 add_comp_dir_attribute (comp_unit_die);
13340 break;
13341 }
13342 }
13343
13344 /* Traverse the limbo die list, and add parent/child links. The only
13345 dies without parents that should be here are concrete instances of
13346 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13347 For concrete instances, we can get the parent die from the abstract
13348 instance. */
13349 for (node = limbo_die_list; node; node = next_node)
13350 {
13351 next_node = node->next;
13352 die = node->die;
13353
13354 if (die->die_parent == NULL)
13355 {
13356 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13357 tree context;
13358
13359 if (origin)
13360 add_child_die (origin->die_parent, die);
13361 else if (die == comp_unit_die)
13362 ;
13363 /* If this was an expression for a bound involved in a function
13364 return type, it may be a SAVE_EXPR for which we weren't able
13365 to find a DIE previously. So try now. */
13366 else if (node->created_for
13367 && TREE_CODE (node->created_for) == SAVE_EXPR
13368 && 0 != (origin = (lookup_decl_die
13369 (SAVE_EXPR_CONTEXT
13370 (node->created_for)))))
13371 add_child_die (origin, die);
13372 else if (errorcount > 0 || sorrycount > 0)
13373 /* It's OK to be confused by errors in the input. */
13374 add_child_die (comp_unit_die, die);
13375 else if (node->created_for
13376 && ((DECL_P (node->created_for)
13377 && (context = DECL_CONTEXT (node->created_for)))
13378 || (TYPE_P (node->created_for)
13379 && (context = TYPE_CONTEXT (node->created_for))))
13380 && TREE_CODE (context) == FUNCTION_DECL)
13381 {
13382 /* In certain situations, the lexical block containing a
13383 nested function can be optimized away, which results
13384 in the nested function die being orphaned. Likewise
13385 with the return type of that nested function. Force
13386 this to be a child of the containing function. */
13387 origin = lookup_decl_die (context);
13388 if (! origin)
13389 abort ();
13390 add_child_die (origin, die);
13391 }
13392 else
13393 abort ();
13394 }
13395 }
13396
13397 limbo_die_list = NULL;
13398
13399 /* Walk through the list of incomplete types again, trying once more to
13400 emit full debugging info for them. */
13401 retry_incomplete_types ();
13402
13403 /* We need to reverse all the dies before break_out_includes, or
13404 we'll see the end of an include file before the beginning. */
13405 reverse_all_dies (comp_unit_die);
13406
13407 if (flag_eliminate_unused_debug_types)
13408 prune_unused_types ();
13409
13410 /* Generate separate CUs for each of the include files we've seen.
13411 They will go into limbo_die_list. */
13412 if (flag_eliminate_dwarf2_dups)
13413 break_out_includes (comp_unit_die);
13414
13415 /* Traverse the DIE's and add add sibling attributes to those DIE's
13416 that have children. */
13417 add_sibling_attributes (comp_unit_die);
13418 for (node = limbo_die_list; node; node = node->next)
13419 add_sibling_attributes (node->die);
13420
13421 /* Output a terminator label for the .text section. */
13422 text_section ();
13423 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13424
13425 /* Output the source line correspondence table. We must do this
13426 even if there is no line information. Otherwise, on an empty
13427 translation unit, we will generate a present, but empty,
13428 .debug_info section. IRIX 6.5 `nm' will then complain when
13429 examining the file. */
13430 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13431 {
13432 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13433 output_line_info ();
13434 }
13435
13436 /* Output location list section if necessary. */
13437 if (have_location_lists)
13438 {
13439 /* Output the location lists info. */
13440 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13441 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13442 DEBUG_LOC_SECTION_LABEL, 0);
13443 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13444 output_location_lists (die);
13445 have_location_lists = 0;
13446 }
13447
13448 /* We can only use the low/high_pc attributes if all of the code was
13449 in .text. */
13450 if (separate_line_info_table_in_use == 0)
13451 {
13452 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13453 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13454 }
13455
13456 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13457 "base address". Use zero so that these addresses become absolute. */
13458 else if (have_location_lists || ranges_table_in_use)
13459 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13460
13461 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13462 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13463 debug_line_section_label);
13464
13465 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13466 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13467
13468 /* Output all of the compilation units. We put the main one last so that
13469 the offsets are available to output_pubnames. */
13470 for (node = limbo_die_list; node; node = node->next)
13471 output_comp_unit (node->die, 0);
13472
13473 output_comp_unit (comp_unit_die, 0);
13474
13475 /* Output the abbreviation table. */
13476 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13477 output_abbrev_section ();
13478
13479 /* Output public names table if necessary. */
13480 if (pubname_table_in_use)
13481 {
13482 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13483 output_pubnames ();
13484 }
13485
13486 /* Output the address range information. We only put functions in the arange
13487 table, so don't write it out if we don't have any. */
13488 if (fde_table_in_use)
13489 {
13490 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13491 output_aranges ();
13492 }
13493
13494 /* Output ranges section if necessary. */
13495 if (ranges_table_in_use)
13496 {
13497 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13498 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13499 output_ranges ();
13500 }
13501
13502 /* Have to end the primary source file. */
13503 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13504 {
13505 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13506 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13507 dw2_asm_output_data (1, 0, "End compilation unit");
13508 }
13509
13510 /* If we emitted any DW_FORM_strp form attribute, output the string
13511 table too. */
13512 if (debug_str_hash)
13513 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13514 }
13515 #else
13516
13517 /* This should never be used, but its address is needed for comparisons. */
13518 const struct gcc_debug_hooks dwarf2_debug_hooks;
13519
13520 #endif /* DWARF2_DEBUGGING_INFO */
13521
13522 #include "gt-dwarf2out.h"