]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dwarf2out.c
dwarf2out.c (loclabel_num): Move into #ifdef DWARF2_DEBUGGING_INFO.
[thirdparty/gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67 #include "cgraph.h"
68 #include "input.h"
69
70 #ifdef DWARF2_DEBUGGING_INFO
71 static void dwarf2out_source_line (unsigned int, const char *);
72 #endif
73
74 /* DWARF2 Abbreviation Glossary:
75 CFA = Canonical Frame Address
76 a fixed address on the stack which identifies a call frame.
77 We define it to be the value of SP just before the call insn.
78 The CFA register and offset, which may change during the course
79 of the function, are used to calculate its value at runtime.
80 CFI = Call Frame Instruction
81 an instruction for the DWARF2 abstract machine
82 CIE = Common Information Entry
83 information describing information common to one or more FDEs
84 DIE = Debugging Information Entry
85 FDE = Frame Description Entry
86 information describing the stack call frame, in particular,
87 how to restore registers
88
89 DW_CFA_... = DWARF2 CFA call frame instruction
90 DW_TAG_... = DWARF2 DIE tag */
91
92 /* Decide whether we want to emit frame unwind information for the current
93 translation unit. */
94
95 int
96 dwarf2out_do_frame (void)
97 {
98 return (write_symbols == DWARF2_DEBUG
99 || write_symbols == VMS_AND_DWARF2_DEBUG
100 #ifdef DWARF2_FRAME_INFO
101 || DWARF2_FRAME_INFO
102 #endif
103 #ifdef DWARF2_UNWIND_INFO
104 || flag_unwind_tables
105 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
106 #endif
107 );
108 }
109
110 /* The size of the target's pointer type. */
111 #ifndef PTR_SIZE
112 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
113 #endif
114
115 /* Various versions of targetm.eh_frame_section. Note these must appear
116 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
117
118 /* Version of targetm.eh_frame_section for systems with named sections. */
119 void
120 named_section_eh_frame_section (void)
121 {
122 #ifdef EH_FRAME_SECTION_NAME
123 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
124 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
125 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
126 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
127 int flags;
128
129 flags = (! flag_pic
130 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
131 && (fde_encoding & 0x70) != DW_EH_PE_aligned
132 && (per_encoding & 0x70) != DW_EH_PE_absptr
133 && (per_encoding & 0x70) != DW_EH_PE_aligned
134 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
135 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
136 ? 0 : SECTION_WRITE;
137 named_section_flags (EH_FRAME_SECTION_NAME, flags);
138 #else
139 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
140 #endif
141 #endif
142 }
143
144 /* Version of targetm.eh_frame_section for systems using collect2. */
145 void
146 collect2_eh_frame_section (void)
147 {
148 tree label = get_file_function_name ('F');
149
150 data_section ();
151 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
152 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
153 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
154 }
155
156 /* Default version of targetm.eh_frame_section. */
157 void
158 default_eh_frame_section (void)
159 {
160 #ifdef EH_FRAME_SECTION_NAME
161 named_section_eh_frame_section ();
162 #else
163 collect2_eh_frame_section ();
164 #endif
165 }
166
167 /* Array of RTXes referenced by the debugging information, which therefore
168 must be kept around forever. */
169 static GTY(()) varray_type used_rtx_varray;
170
171 /* A pointer to the base of a list of incomplete types which might be
172 completed at some later time. incomplete_types_list needs to be a VARRAY
173 because we want to tell the garbage collector about it. */
174 static GTY(()) varray_type incomplete_types;
175
176 /* A pointer to the base of a table of references to declaration
177 scopes. This table is a display which tracks the nesting
178 of declaration scopes at the current scope and containing
179 scopes. This table is used to find the proper place to
180 define type declaration DIE's. */
181 static GTY(()) varray_type decl_scope_table;
182
183 /* How to start an assembler comment. */
184 #ifndef ASM_COMMENT_START
185 #define ASM_COMMENT_START ";#"
186 #endif
187
188 typedef struct dw_cfi_struct *dw_cfi_ref;
189 typedef struct dw_fde_struct *dw_fde_ref;
190 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
191
192 /* Call frames are described using a sequence of Call Frame
193 Information instructions. The register number, offset
194 and address fields are provided as possible operands;
195 their use is selected by the opcode field. */
196
197 enum dw_cfi_oprnd_type {
198 dw_cfi_oprnd_unused,
199 dw_cfi_oprnd_reg_num,
200 dw_cfi_oprnd_offset,
201 dw_cfi_oprnd_addr,
202 dw_cfi_oprnd_loc
203 };
204
205 typedef union dw_cfi_oprnd_struct GTY(())
206 {
207 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
208 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
209 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
210 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
211 }
212 dw_cfi_oprnd;
213
214 typedef struct dw_cfi_struct GTY(())
215 {
216 dw_cfi_ref dw_cfi_next;
217 enum dwarf_call_frame_info dw_cfi_opc;
218 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
219 dw_cfi_oprnd1;
220 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
221 dw_cfi_oprnd2;
222 }
223 dw_cfi_node;
224
225 /* This is how we define the location of the CFA. We use to handle it
226 as REG + OFFSET all the time, but now it can be more complex.
227 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
228 Instead of passing around REG and OFFSET, we pass a copy
229 of this structure. */
230 typedef struct cfa_loc GTY(())
231 {
232 unsigned long reg;
233 HOST_WIDE_INT offset;
234 HOST_WIDE_INT base_offset;
235 int indirect; /* 1 if CFA is accessed via a dereference. */
236 } dw_cfa_location;
237
238 /* All call frame descriptions (FDE's) in the GCC generated DWARF
239 refer to a single Common Information Entry (CIE), defined at
240 the beginning of the .debug_frame section. This use of a single
241 CIE obviates the need to keep track of multiple CIE's
242 in the DWARF generation routines below. */
243
244 typedef struct dw_fde_struct GTY(())
245 {
246 const char *dw_fde_begin;
247 const char *dw_fde_current_label;
248 const char *dw_fde_end;
249 dw_cfi_ref dw_fde_cfi;
250 unsigned funcdef_number;
251 unsigned all_throwers_are_sibcalls : 1;
252 unsigned nothrow : 1;
253 unsigned uses_eh_lsda : 1;
254 }
255 dw_fde_node;
256
257 /* Maximum size (in bytes) of an artificially generated label. */
258 #define MAX_ARTIFICIAL_LABEL_BYTES 30
259
260 /* The size of addresses as they appear in the Dwarf 2 data.
261 Some architectures use word addresses to refer to code locations,
262 but Dwarf 2 info always uses byte addresses. On such machines,
263 Dwarf 2 addresses need to be larger than the architecture's
264 pointers. */
265 #ifndef DWARF2_ADDR_SIZE
266 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
267 #endif
268
269 /* The size in bytes of a DWARF field indicating an offset or length
270 relative to a debug info section, specified to be 4 bytes in the
271 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
272 as PTR_SIZE. */
273
274 #ifndef DWARF_OFFSET_SIZE
275 #define DWARF_OFFSET_SIZE 4
276 #endif
277
278 /* According to the (draft) DWARF 3 specification, the initial length
279 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
280 bytes are 0xffffffff, followed by the length stored in the next 8
281 bytes.
282
283 However, the SGI/MIPS ABI uses an initial length which is equal to
284 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
285
286 #ifndef DWARF_INITIAL_LENGTH_SIZE
287 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
288 #endif
289
290 #define DWARF_VERSION 2
291
292 /* Round SIZE up to the nearest BOUNDARY. */
293 #define DWARF_ROUND(SIZE,BOUNDARY) \
294 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
295
296 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
297 #ifndef DWARF_CIE_DATA_ALIGNMENT
298 #ifdef STACK_GROWS_DOWNWARD
299 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
300 #else
301 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
302 #endif
303 #endif
304
305 /* A pointer to the base of a table that contains frame description
306 information for each routine. */
307 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
308
309 /* Number of elements currently allocated for fde_table. */
310 static GTY(()) unsigned fde_table_allocated;
311
312 /* Number of elements in fde_table currently in use. */
313 static GTY(()) unsigned fde_table_in_use;
314
315 /* Size (in elements) of increments by which we may expand the
316 fde_table. */
317 #define FDE_TABLE_INCREMENT 256
318
319 /* A list of call frame insns for the CIE. */
320 static GTY(()) dw_cfi_ref cie_cfi_head;
321
322 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
323 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
324 attribute that accelerates the lookup of the FDE associated
325 with the subprogram. This variable holds the table index of the FDE
326 associated with the current function (body) definition. */
327 static unsigned current_funcdef_fde;
328 #endif
329
330 struct indirect_string_node GTY(())
331 {
332 const char *str;
333 unsigned int refcount;
334 unsigned int form;
335 char *label;
336 };
337
338 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
339
340 static GTY(()) int dw2_string_counter;
341 static GTY(()) unsigned long dwarf2out_cfi_label_num;
342
343 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
344
345 /* Forward declarations for functions defined in this file. */
346
347 static char *stripattributes (const char *);
348 static const char *dwarf_cfi_name (unsigned);
349 static dw_cfi_ref new_cfi (void);
350 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
351 static void add_fde_cfi (const char *, dw_cfi_ref);
352 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
353 static void lookup_cfa (dw_cfa_location *);
354 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
355 static void initial_return_save (rtx);
356 static HOST_WIDE_INT stack_adjust_offset (rtx);
357 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
358 static void output_call_frame_info (int);
359 static void dwarf2out_stack_adjust (rtx);
360 static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
361 static void flush_queued_reg_saves (void);
362 static bool clobbers_queued_reg_save (rtx);
363 static void dwarf2out_frame_debug_expr (rtx, const char *);
364
365 /* Support for complex CFA locations. */
366 static void output_cfa_loc (dw_cfi_ref);
367 static void get_cfa_from_loc_descr (dw_cfa_location *,
368 struct dw_loc_descr_struct *);
369 static struct dw_loc_descr_struct *build_cfa_loc
370 (dw_cfa_location *);
371 static void def_cfa_1 (const char *, dw_cfa_location *);
372
373 /* How to start an assembler comment. */
374 #ifndef ASM_COMMENT_START
375 #define ASM_COMMENT_START ";#"
376 #endif
377
378 /* Data and reference forms for relocatable data. */
379 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
380 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
381
382 #ifndef DEBUG_FRAME_SECTION
383 #define DEBUG_FRAME_SECTION ".debug_frame"
384 #endif
385
386 #ifndef FUNC_BEGIN_LABEL
387 #define FUNC_BEGIN_LABEL "LFB"
388 #endif
389
390 #ifndef FUNC_END_LABEL
391 #define FUNC_END_LABEL "LFE"
392 #endif
393
394 #define FRAME_BEGIN_LABEL "Lframe"
395 #define CIE_AFTER_SIZE_LABEL "LSCIE"
396 #define CIE_END_LABEL "LECIE"
397 #define FDE_LABEL "LSFDE"
398 #define FDE_AFTER_SIZE_LABEL "LASFDE"
399 #define FDE_END_LABEL "LEFDE"
400 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
401 #define LINE_NUMBER_END_LABEL "LELT"
402 #define LN_PROLOG_AS_LABEL "LASLTP"
403 #define LN_PROLOG_END_LABEL "LELTP"
404 #define DIE_LABEL_PREFIX "DW"
405
406 /* The DWARF 2 CFA column which tracks the return address. Normally this
407 is the column for PC, or the first column after all of the hard
408 registers. */
409 #ifndef DWARF_FRAME_RETURN_COLUMN
410 #ifdef PC_REGNUM
411 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
412 #else
413 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
414 #endif
415 #endif
416
417 /* The mapping from gcc register number to DWARF 2 CFA column number. By
418 default, we just provide columns for all registers. */
419 #ifndef DWARF_FRAME_REGNUM
420 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
421 #endif
422
423 /* The offset from the incoming value of %sp to the top of the stack frame
424 for the current function. */
425 #ifndef INCOMING_FRAME_SP_OFFSET
426 #define INCOMING_FRAME_SP_OFFSET 0
427 #endif
428 \f
429 /* Hook used by __throw. */
430
431 rtx
432 expand_builtin_dwarf_sp_column (void)
433 {
434 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
435 }
436
437 /* Return a pointer to a copy of the section string name S with all
438 attributes stripped off, and an asterisk prepended (for assemble_name). */
439
440 static inline char *
441 stripattributes (const char *s)
442 {
443 char *stripped = xmalloc (strlen (s) + 2);
444 char *p = stripped;
445
446 *p++ = '*';
447
448 while (*s && *s != ',')
449 *p++ = *s++;
450
451 *p = '\0';
452 return stripped;
453 }
454
455 /* Generate code to initialize the register size table. */
456
457 void
458 expand_builtin_init_dwarf_reg_sizes (tree address)
459 {
460 int i;
461 enum machine_mode mode = TYPE_MODE (char_type_node);
462 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
463 rtx mem = gen_rtx_MEM (BLKmode, addr);
464 bool wrote_return_column = false;
465
466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
467 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
468 {
469 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
470 enum machine_mode save_mode = reg_raw_mode[i];
471 HOST_WIDE_INT size;
472
473 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
474 save_mode = choose_hard_reg_mode (i, 1, true);
475 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
476 {
477 if (save_mode == VOIDmode)
478 continue;
479 wrote_return_column = true;
480 }
481 size = GET_MODE_SIZE (save_mode);
482 if (offset < 0)
483 continue;
484
485 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
486 }
487
488 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
489 if (! wrote_return_column)
490 abort ();
491 i = DWARF_ALT_FRAME_RETURN_COLUMN;
492 wrote_return_column = false;
493 #else
494 i = DWARF_FRAME_RETURN_COLUMN;
495 #endif
496
497 if (! wrote_return_column)
498 {
499 enum machine_mode save_mode = Pmode;
500 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
501 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
502 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
503 }
504 }
505
506 /* Convert a DWARF call frame info. operation to its string name */
507
508 static const char *
509 dwarf_cfi_name (unsigned int cfi_opc)
510 {
511 switch (cfi_opc)
512 {
513 case DW_CFA_advance_loc:
514 return "DW_CFA_advance_loc";
515 case DW_CFA_offset:
516 return "DW_CFA_offset";
517 case DW_CFA_restore:
518 return "DW_CFA_restore";
519 case DW_CFA_nop:
520 return "DW_CFA_nop";
521 case DW_CFA_set_loc:
522 return "DW_CFA_set_loc";
523 case DW_CFA_advance_loc1:
524 return "DW_CFA_advance_loc1";
525 case DW_CFA_advance_loc2:
526 return "DW_CFA_advance_loc2";
527 case DW_CFA_advance_loc4:
528 return "DW_CFA_advance_loc4";
529 case DW_CFA_offset_extended:
530 return "DW_CFA_offset_extended";
531 case DW_CFA_restore_extended:
532 return "DW_CFA_restore_extended";
533 case DW_CFA_undefined:
534 return "DW_CFA_undefined";
535 case DW_CFA_same_value:
536 return "DW_CFA_same_value";
537 case DW_CFA_register:
538 return "DW_CFA_register";
539 case DW_CFA_remember_state:
540 return "DW_CFA_remember_state";
541 case DW_CFA_restore_state:
542 return "DW_CFA_restore_state";
543 case DW_CFA_def_cfa:
544 return "DW_CFA_def_cfa";
545 case DW_CFA_def_cfa_register:
546 return "DW_CFA_def_cfa_register";
547 case DW_CFA_def_cfa_offset:
548 return "DW_CFA_def_cfa_offset";
549
550 /* DWARF 3 */
551 case DW_CFA_def_cfa_expression:
552 return "DW_CFA_def_cfa_expression";
553 case DW_CFA_expression:
554 return "DW_CFA_expression";
555 case DW_CFA_offset_extended_sf:
556 return "DW_CFA_offset_extended_sf";
557 case DW_CFA_def_cfa_sf:
558 return "DW_CFA_def_cfa_sf";
559 case DW_CFA_def_cfa_offset_sf:
560 return "DW_CFA_def_cfa_offset_sf";
561
562 /* SGI/MIPS specific */
563 case DW_CFA_MIPS_advance_loc8:
564 return "DW_CFA_MIPS_advance_loc8";
565
566 /* GNU extensions */
567 case DW_CFA_GNU_window_save:
568 return "DW_CFA_GNU_window_save";
569 case DW_CFA_GNU_args_size:
570 return "DW_CFA_GNU_args_size";
571 case DW_CFA_GNU_negative_offset_extended:
572 return "DW_CFA_GNU_negative_offset_extended";
573
574 default:
575 return "DW_CFA_<unknown>";
576 }
577 }
578
579 /* Return a pointer to a newly allocated Call Frame Instruction. */
580
581 static inline dw_cfi_ref
582 new_cfi (void)
583 {
584 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
585
586 cfi->dw_cfi_next = NULL;
587 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
588 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
589
590 return cfi;
591 }
592
593 /* Add a Call Frame Instruction to list of instructions. */
594
595 static inline void
596 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
597 {
598 dw_cfi_ref *p;
599
600 /* Find the end of the chain. */
601 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
602 ;
603
604 *p = cfi;
605 }
606
607 /* Generate a new label for the CFI info to refer to. */
608
609 char *
610 dwarf2out_cfi_label (void)
611 {
612 static char label[20];
613
614 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
615 ASM_OUTPUT_LABEL (asm_out_file, label);
616 return label;
617 }
618
619 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
620 or to the CIE if LABEL is NULL. */
621
622 static void
623 add_fde_cfi (const char *label, dw_cfi_ref cfi)
624 {
625 if (label)
626 {
627 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
628
629 if (*label == 0)
630 label = dwarf2out_cfi_label ();
631
632 if (fde->dw_fde_current_label == NULL
633 || strcmp (label, fde->dw_fde_current_label) != 0)
634 {
635 dw_cfi_ref xcfi;
636
637 fde->dw_fde_current_label = label = xstrdup (label);
638
639 /* Set the location counter to the new label. */
640 xcfi = new_cfi ();
641 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
642 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
643 add_cfi (&fde->dw_fde_cfi, xcfi);
644 }
645
646 add_cfi (&fde->dw_fde_cfi, cfi);
647 }
648
649 else
650 add_cfi (&cie_cfi_head, cfi);
651 }
652
653 /* Subroutine of lookup_cfa. */
654
655 static inline void
656 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
657 {
658 switch (cfi->dw_cfi_opc)
659 {
660 case DW_CFA_def_cfa_offset:
661 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
662 break;
663 case DW_CFA_def_cfa_register:
664 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
665 break;
666 case DW_CFA_def_cfa:
667 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
668 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
669 break;
670 case DW_CFA_def_cfa_expression:
671 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
672 break;
673 default:
674 break;
675 }
676 }
677
678 /* Find the previous value for the CFA. */
679
680 static void
681 lookup_cfa (dw_cfa_location *loc)
682 {
683 dw_cfi_ref cfi;
684
685 loc->reg = (unsigned long) -1;
686 loc->offset = 0;
687 loc->indirect = 0;
688 loc->base_offset = 0;
689
690 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
691 lookup_cfa_1 (cfi, loc);
692
693 if (fde_table_in_use)
694 {
695 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
696 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
697 lookup_cfa_1 (cfi, loc);
698 }
699 }
700
701 /* The current rule for calculating the DWARF2 canonical frame address. */
702 static dw_cfa_location cfa;
703
704 /* The register used for saving registers to the stack, and its offset
705 from the CFA. */
706 static dw_cfa_location cfa_store;
707
708 /* The running total of the size of arguments pushed onto the stack. */
709 static HOST_WIDE_INT args_size;
710
711 /* The last args_size we actually output. */
712 static HOST_WIDE_INT old_args_size;
713
714 /* Entry point to update the canonical frame address (CFA).
715 LABEL is passed to add_fde_cfi. The value of CFA is now to be
716 calculated from REG+OFFSET. */
717
718 void
719 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
720 {
721 dw_cfa_location loc;
722 loc.indirect = 0;
723 loc.base_offset = 0;
724 loc.reg = reg;
725 loc.offset = offset;
726 def_cfa_1 (label, &loc);
727 }
728
729 /* This routine does the actual work. The CFA is now calculated from
730 the dw_cfa_location structure. */
731
732 static void
733 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
734 {
735 dw_cfi_ref cfi;
736 dw_cfa_location old_cfa, loc;
737
738 cfa = *loc_p;
739 loc = *loc_p;
740
741 if (cfa_store.reg == loc.reg && loc.indirect == 0)
742 cfa_store.offset = loc.offset;
743
744 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
745 lookup_cfa (&old_cfa);
746
747 /* If nothing changed, no need to issue any call frame instructions. */
748 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
749 && loc.indirect == old_cfa.indirect
750 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
751 return;
752
753 cfi = new_cfi ();
754
755 if (loc.reg == old_cfa.reg && !loc.indirect)
756 {
757 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
758 indicating the CFA register did not change but the offset
759 did. */
760 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
761 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
762 }
763
764 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
765 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
766 && !loc.indirect)
767 {
768 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
769 indicating the CFA register has changed to <register> but the
770 offset has not changed. */
771 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
772 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
773 }
774 #endif
775
776 else if (loc.indirect == 0)
777 {
778 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
779 indicating the CFA register has changed to <register> with
780 the specified offset. */
781 cfi->dw_cfi_opc = DW_CFA_def_cfa;
782 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
783 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
784 }
785 else
786 {
787 /* Construct a DW_CFA_def_cfa_expression instruction to
788 calculate the CFA using a full location expression since no
789 register-offset pair is available. */
790 struct dw_loc_descr_struct *loc_list;
791
792 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
793 loc_list = build_cfa_loc (&loc);
794 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
795 }
796
797 add_fde_cfi (label, cfi);
798 }
799
800 /* Add the CFI for saving a register. REG is the CFA column number.
801 LABEL is passed to add_fde_cfi.
802 If SREG is -1, the register is saved at OFFSET from the CFA;
803 otherwise it is saved in SREG. */
804
805 static void
806 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
807 {
808 dw_cfi_ref cfi = new_cfi ();
809
810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
811
812 /* The following comparison is correct. -1 is used to indicate that
813 the value isn't a register number. */
814 if (sreg == (unsigned int) -1)
815 {
816 if (reg & ~0x3f)
817 /* The register number won't fit in 6 bits, so we have to use
818 the long form. */
819 cfi->dw_cfi_opc = DW_CFA_offset_extended;
820 else
821 cfi->dw_cfi_opc = DW_CFA_offset;
822
823 #ifdef ENABLE_CHECKING
824 {
825 /* If we get an offset that is not a multiple of
826 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
827 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
828 description. */
829 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
830
831 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
832 abort ();
833 }
834 #endif
835 offset /= DWARF_CIE_DATA_ALIGNMENT;
836 if (offset < 0)
837 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
838
839 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
840 }
841 else if (sreg == reg)
842 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
843 return;
844 else
845 {
846 cfi->dw_cfi_opc = DW_CFA_register;
847 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
848 }
849
850 add_fde_cfi (label, cfi);
851 }
852
853 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
854 This CFI tells the unwinder that it needs to restore the window registers
855 from the previous frame's window save area.
856
857 ??? Perhaps we should note in the CIE where windows are saved (instead of
858 assuming 0(cfa)) and what registers are in the window. */
859
860 void
861 dwarf2out_window_save (const char *label)
862 {
863 dw_cfi_ref cfi = new_cfi ();
864
865 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
866 add_fde_cfi (label, cfi);
867 }
868
869 /* Add a CFI to update the running total of the size of arguments
870 pushed onto the stack. */
871
872 void
873 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
874 {
875 dw_cfi_ref cfi;
876
877 if (size == old_args_size)
878 return;
879
880 old_args_size = size;
881
882 cfi = new_cfi ();
883 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
884 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
885 add_fde_cfi (label, cfi);
886 }
887
888 /* Entry point for saving a register to the stack. REG is the GCC register
889 number. LABEL and OFFSET are passed to reg_save. */
890
891 void
892 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
893 {
894 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
895 }
896
897 /* Entry point for saving the return address in the stack.
898 LABEL and OFFSET are passed to reg_save. */
899
900 void
901 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
902 {
903 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
904 }
905
906 /* Entry point for saving the return address in a register.
907 LABEL and SREG are passed to reg_save. */
908
909 void
910 dwarf2out_return_reg (const char *label, unsigned int sreg)
911 {
912 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
913 }
914
915 /* Record the initial position of the return address. RTL is
916 INCOMING_RETURN_ADDR_RTX. */
917
918 static void
919 initial_return_save (rtx rtl)
920 {
921 unsigned int reg = (unsigned int) -1;
922 HOST_WIDE_INT offset = 0;
923
924 switch (GET_CODE (rtl))
925 {
926 case REG:
927 /* RA is in a register. */
928 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
929 break;
930
931 case MEM:
932 /* RA is on the stack. */
933 rtl = XEXP (rtl, 0);
934 switch (GET_CODE (rtl))
935 {
936 case REG:
937 if (REGNO (rtl) != STACK_POINTER_REGNUM)
938 abort ();
939 offset = 0;
940 break;
941
942 case PLUS:
943 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
944 abort ();
945 offset = INTVAL (XEXP (rtl, 1));
946 break;
947
948 case MINUS:
949 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
950 abort ();
951 offset = -INTVAL (XEXP (rtl, 1));
952 break;
953
954 default:
955 abort ();
956 }
957
958 break;
959
960 case PLUS:
961 /* The return address is at some offset from any value we can
962 actually load. For instance, on the SPARC it is in %i7+8. Just
963 ignore the offset for now; it doesn't matter for unwinding frames. */
964 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
965 abort ();
966 initial_return_save (XEXP (rtl, 0));
967 return;
968
969 default:
970 abort ();
971 }
972
973 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
974 }
975
976 /* Given a SET, calculate the amount of stack adjustment it
977 contains. */
978
979 static HOST_WIDE_INT
980 stack_adjust_offset (rtx pattern)
981 {
982 rtx src = SET_SRC (pattern);
983 rtx dest = SET_DEST (pattern);
984 HOST_WIDE_INT offset = 0;
985 enum rtx_code code;
986
987 if (dest == stack_pointer_rtx)
988 {
989 /* (set (reg sp) (plus (reg sp) (const_int))) */
990 code = GET_CODE (src);
991 if (! (code == PLUS || code == MINUS)
992 || XEXP (src, 0) != stack_pointer_rtx
993 || GET_CODE (XEXP (src, 1)) != CONST_INT)
994 return 0;
995
996 offset = INTVAL (XEXP (src, 1));
997 if (code == PLUS)
998 offset = -offset;
999 }
1000 else if (GET_CODE (dest) == MEM)
1001 {
1002 /* (set (mem (pre_dec (reg sp))) (foo)) */
1003 src = XEXP (dest, 0);
1004 code = GET_CODE (src);
1005
1006 switch (code)
1007 {
1008 case PRE_MODIFY:
1009 case POST_MODIFY:
1010 if (XEXP (src, 0) == stack_pointer_rtx)
1011 {
1012 rtx val = XEXP (XEXP (src, 1), 1);
1013 /* We handle only adjustments by constant amount. */
1014 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1015 GET_CODE (val) != CONST_INT)
1016 abort ();
1017 offset = -INTVAL (val);
1018 break;
1019 }
1020 return 0;
1021
1022 case PRE_DEC:
1023 case POST_DEC:
1024 if (XEXP (src, 0) == stack_pointer_rtx)
1025 {
1026 offset = GET_MODE_SIZE (GET_MODE (dest));
1027 break;
1028 }
1029 return 0;
1030
1031 case PRE_INC:
1032 case POST_INC:
1033 if (XEXP (src, 0) == stack_pointer_rtx)
1034 {
1035 offset = -GET_MODE_SIZE (GET_MODE (dest));
1036 break;
1037 }
1038 return 0;
1039
1040 default:
1041 return 0;
1042 }
1043 }
1044 else
1045 return 0;
1046
1047 return offset;
1048 }
1049
1050 /* Check INSN to see if it looks like a push or a stack adjustment, and
1051 make a note of it if it does. EH uses this information to find out how
1052 much extra space it needs to pop off the stack. */
1053
1054 static void
1055 dwarf2out_stack_adjust (rtx insn)
1056 {
1057 HOST_WIDE_INT offset;
1058 const char *label;
1059 int i;
1060
1061 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1062 with this function. Proper support would require all frame-related
1063 insns to be marked, and to be able to handle saving state around
1064 epilogues textually in the middle of the function. */
1065 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1066 return;
1067
1068 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1069 {
1070 /* Extract the size of the args from the CALL rtx itself. */
1071 insn = PATTERN (insn);
1072 if (GET_CODE (insn) == PARALLEL)
1073 insn = XVECEXP (insn, 0, 0);
1074 if (GET_CODE (insn) == SET)
1075 insn = SET_SRC (insn);
1076 if (GET_CODE (insn) != CALL)
1077 abort ();
1078
1079 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1080 return;
1081 }
1082
1083 /* If only calls can throw, and we have a frame pointer,
1084 save up adjustments until we see the CALL_INSN. */
1085 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1086 return;
1087
1088 if (GET_CODE (insn) == BARRIER)
1089 {
1090 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1091 the compiler will have already emitted a stack adjustment, but
1092 doesn't bother for calls to noreturn functions. */
1093 #ifdef STACK_GROWS_DOWNWARD
1094 offset = -args_size;
1095 #else
1096 offset = args_size;
1097 #endif
1098 }
1099 else if (GET_CODE (PATTERN (insn)) == SET)
1100 offset = stack_adjust_offset (PATTERN (insn));
1101 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1102 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1103 {
1104 /* There may be stack adjustments inside compound insns. Search
1105 for them. */
1106 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1107 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1108 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1109 }
1110 else
1111 return;
1112
1113 if (offset == 0)
1114 return;
1115
1116 if (cfa.reg == STACK_POINTER_REGNUM)
1117 cfa.offset += offset;
1118
1119 #ifndef STACK_GROWS_DOWNWARD
1120 offset = -offset;
1121 #endif
1122
1123 args_size += offset;
1124 if (args_size < 0)
1125 args_size = 0;
1126
1127 label = dwarf2out_cfi_label ();
1128 def_cfa_1 (label, &cfa);
1129 dwarf2out_args_size (label, args_size);
1130 }
1131
1132 #endif
1133
1134 /* We delay emitting a register save until either (a) we reach the end
1135 of the prologue or (b) the register is clobbered. This clusters
1136 register saves so that there are fewer pc advances. */
1137
1138 struct queued_reg_save GTY(())
1139 {
1140 struct queued_reg_save *next;
1141 rtx reg;
1142 HOST_WIDE_INT cfa_offset;
1143 };
1144
1145 static GTY(()) struct queued_reg_save *queued_reg_saves;
1146
1147 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1148 static const char *last_reg_save_label;
1149
1150 static void
1151 queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1152 {
1153 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1154
1155 q->next = queued_reg_saves;
1156 q->reg = reg;
1157 q->cfa_offset = offset;
1158 queued_reg_saves = q;
1159
1160 last_reg_save_label = label;
1161 }
1162
1163 static void
1164 flush_queued_reg_saves (void)
1165 {
1166 struct queued_reg_save *q, *next;
1167
1168 for (q = queued_reg_saves; q; q = next)
1169 {
1170 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1171 next = q->next;
1172 }
1173
1174 queued_reg_saves = NULL;
1175 last_reg_save_label = NULL;
1176 }
1177
1178 static bool
1179 clobbers_queued_reg_save (rtx insn)
1180 {
1181 struct queued_reg_save *q;
1182
1183 for (q = queued_reg_saves; q; q = q->next)
1184 if (modified_in_p (q->reg, insn))
1185 return true;
1186
1187 return false;
1188 }
1189
1190
1191 /* A temporary register holding an integral value used in adjusting SP
1192 or setting up the store_reg. The "offset" field holds the integer
1193 value, not an offset. */
1194 static dw_cfa_location cfa_temp;
1195
1196 /* Record call frame debugging information for an expression EXPR,
1197 which either sets SP or FP (adjusting how we calculate the frame
1198 address) or saves a register to the stack. LABEL indicates the
1199 address of EXPR.
1200
1201 This function encodes a state machine mapping rtxes to actions on
1202 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1203 users need not read the source code.
1204
1205 The High-Level Picture
1206
1207 Changes in the register we use to calculate the CFA: Currently we
1208 assume that if you copy the CFA register into another register, we
1209 should take the other one as the new CFA register; this seems to
1210 work pretty well. If it's wrong for some target, it's simple
1211 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1212
1213 Changes in the register we use for saving registers to the stack:
1214 This is usually SP, but not always. Again, we deduce that if you
1215 copy SP into another register (and SP is not the CFA register),
1216 then the new register is the one we will be using for register
1217 saves. This also seems to work.
1218
1219 Register saves: There's not much guesswork about this one; if
1220 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1221 register save, and the register used to calculate the destination
1222 had better be the one we think we're using for this purpose.
1223
1224 Except: If the register being saved is the CFA register, and the
1225 offset is nonzero, we are saving the CFA, so we assume we have to
1226 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1227 the intent is to save the value of SP from the previous frame.
1228
1229 Invariants / Summaries of Rules
1230
1231 cfa current rule for calculating the CFA. It usually
1232 consists of a register and an offset.
1233 cfa_store register used by prologue code to save things to the stack
1234 cfa_store.offset is the offset from the value of
1235 cfa_store.reg to the actual CFA
1236 cfa_temp register holding an integral value. cfa_temp.offset
1237 stores the value, which will be used to adjust the
1238 stack pointer. cfa_temp is also used like cfa_store,
1239 to track stores to the stack via fp or a temp reg.
1240
1241 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1242 with cfa.reg as the first operand changes the cfa.reg and its
1243 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1244 cfa_temp.offset.
1245
1246 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1247 expression yielding a constant. This sets cfa_temp.reg
1248 and cfa_temp.offset.
1249
1250 Rule 5: Create a new register cfa_store used to save items to the
1251 stack.
1252
1253 Rules 10-14: Save a register to the stack. Define offset as the
1254 difference of the original location and cfa_store's
1255 location (or cfa_temp's location if cfa_temp is used).
1256
1257 The Rules
1258
1259 "{a,b}" indicates a choice of a xor b.
1260 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1261
1262 Rule 1:
1263 (set <reg1> <reg2>:cfa.reg)
1264 effects: cfa.reg = <reg1>
1265 cfa.offset unchanged
1266 cfa_temp.reg = <reg1>
1267 cfa_temp.offset = cfa.offset
1268
1269 Rule 2:
1270 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1271 {<const_int>,<reg>:cfa_temp.reg}))
1272 effects: cfa.reg = sp if fp used
1273 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1274 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1275 if cfa_store.reg==sp
1276
1277 Rule 3:
1278 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1279 effects: cfa.reg = fp
1280 cfa_offset += +/- <const_int>
1281
1282 Rule 4:
1283 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1284 constraints: <reg1> != fp
1285 <reg1> != sp
1286 effects: cfa.reg = <reg1>
1287 cfa_temp.reg = <reg1>
1288 cfa_temp.offset = cfa.offset
1289
1290 Rule 5:
1291 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1292 constraints: <reg1> != fp
1293 <reg1> != sp
1294 effects: cfa_store.reg = <reg1>
1295 cfa_store.offset = cfa.offset - cfa_temp.offset
1296
1297 Rule 6:
1298 (set <reg> <const_int>)
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1301
1302 Rule 7:
1303 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1304 effects: cfa_temp.reg = <reg1>
1305 cfa_temp.offset |= <const_int>
1306
1307 Rule 8:
1308 (set <reg> (high <exp>))
1309 effects: none
1310
1311 Rule 9:
1312 (set <reg> (lo_sum <exp> <const_int>))
1313 effects: cfa_temp.reg = <reg>
1314 cfa_temp.offset = <const_int>
1315
1316 Rule 10:
1317 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1318 effects: cfa_store.offset -= <const_int>
1319 cfa.offset = cfa_store.offset if cfa.reg == sp
1320 cfa.reg = sp
1321 cfa.base_offset = -cfa_store.offset
1322
1323 Rule 11:
1324 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1325 effects: cfa_store.offset += -/+ mode_size(mem)
1326 cfa.offset = cfa_store.offset if cfa.reg == sp
1327 cfa.reg = sp
1328 cfa.base_offset = -cfa_store.offset
1329
1330 Rule 12:
1331 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1332
1333 <reg2>)
1334 effects: cfa.reg = <reg1>
1335 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1336
1337 Rule 13:
1338 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1339 effects: cfa.reg = <reg1>
1340 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1341
1342 Rule 14:
1343 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1344 effects: cfa.reg = <reg1>
1345 cfa.base_offset = -cfa_temp.offset
1346 cfa_temp.offset -= mode_size(mem) */
1347
1348 static void
1349 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1350 {
1351 rtx src, dest;
1352 HOST_WIDE_INT offset;
1353
1354 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1355 the PARALLEL independently. The first element is always processed if
1356 it is a SET. This is for backward compatibility. Other elements
1357 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1358 flag is set in them. */
1359 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1360 {
1361 int par_index;
1362 int limit = XVECLEN (expr, 0);
1363
1364 for (par_index = 0; par_index < limit; par_index++)
1365 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1366 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1367 || par_index == 0))
1368 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1369
1370 return;
1371 }
1372
1373 if (GET_CODE (expr) != SET)
1374 abort ();
1375
1376 src = SET_SRC (expr);
1377 dest = SET_DEST (expr);
1378
1379 switch (GET_CODE (dest))
1380 {
1381 case REG:
1382 /* Rule 1 */
1383 /* Update the CFA rule wrt SP or FP. Make sure src is
1384 relative to the current CFA register. */
1385 switch (GET_CODE (src))
1386 {
1387 /* Setting FP from SP. */
1388 case REG:
1389 if (cfa.reg == (unsigned) REGNO (src))
1390 /* OK. */
1391 ;
1392 else
1393 abort ();
1394
1395 /* We used to require that dest be either SP or FP, but the
1396 ARM copies SP to a temporary register, and from there to
1397 FP. So we just rely on the backends to only set
1398 RTX_FRAME_RELATED_P on appropriate insns. */
1399 cfa.reg = REGNO (dest);
1400 cfa_temp.reg = cfa.reg;
1401 cfa_temp.offset = cfa.offset;
1402 break;
1403
1404 case PLUS:
1405 case MINUS:
1406 case LO_SUM:
1407 if (dest == stack_pointer_rtx)
1408 {
1409 /* Rule 2 */
1410 /* Adjusting SP. */
1411 switch (GET_CODE (XEXP (src, 1)))
1412 {
1413 case CONST_INT:
1414 offset = INTVAL (XEXP (src, 1));
1415 break;
1416 case REG:
1417 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1418 abort ();
1419 offset = cfa_temp.offset;
1420 break;
1421 default:
1422 abort ();
1423 }
1424
1425 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1426 {
1427 /* Restoring SP from FP in the epilogue. */
1428 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1429 abort ();
1430 cfa.reg = STACK_POINTER_REGNUM;
1431 }
1432 else if (GET_CODE (src) == LO_SUM)
1433 /* Assume we've set the source reg of the LO_SUM from sp. */
1434 ;
1435 else if (XEXP (src, 0) != stack_pointer_rtx)
1436 abort ();
1437
1438 if (GET_CODE (src) != MINUS)
1439 offset = -offset;
1440 if (cfa.reg == STACK_POINTER_REGNUM)
1441 cfa.offset += offset;
1442 if (cfa_store.reg == STACK_POINTER_REGNUM)
1443 cfa_store.offset += offset;
1444 }
1445 else if (dest == hard_frame_pointer_rtx)
1446 {
1447 /* Rule 3 */
1448 /* Either setting the FP from an offset of the SP,
1449 or adjusting the FP */
1450 if (! frame_pointer_needed)
1451 abort ();
1452
1453 if (GET_CODE (XEXP (src, 0)) == REG
1454 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1455 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1456 {
1457 offset = INTVAL (XEXP (src, 1));
1458 if (GET_CODE (src) != MINUS)
1459 offset = -offset;
1460 cfa.offset += offset;
1461 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1462 }
1463 else
1464 abort ();
1465 }
1466 else
1467 {
1468 if (GET_CODE (src) == MINUS)
1469 abort ();
1470
1471 /* Rule 4 */
1472 if (GET_CODE (XEXP (src, 0)) == REG
1473 && REGNO (XEXP (src, 0)) == cfa.reg
1474 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1475 {
1476 /* Setting a temporary CFA register that will be copied
1477 into the FP later on. */
1478 offset = - INTVAL (XEXP (src, 1));
1479 cfa.offset += offset;
1480 cfa.reg = REGNO (dest);
1481 /* Or used to save regs to the stack. */
1482 cfa_temp.reg = cfa.reg;
1483 cfa_temp.offset = cfa.offset;
1484 }
1485
1486 /* Rule 5 */
1487 else if (GET_CODE (XEXP (src, 0)) == REG
1488 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1489 && XEXP (src, 1) == stack_pointer_rtx)
1490 {
1491 /* Setting a scratch register that we will use instead
1492 of SP for saving registers to the stack. */
1493 if (cfa.reg != STACK_POINTER_REGNUM)
1494 abort ();
1495 cfa_store.reg = REGNO (dest);
1496 cfa_store.offset = cfa.offset - cfa_temp.offset;
1497 }
1498
1499 /* Rule 9 */
1500 else if (GET_CODE (src) == LO_SUM
1501 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1502 {
1503 cfa_temp.reg = REGNO (dest);
1504 cfa_temp.offset = INTVAL (XEXP (src, 1));
1505 }
1506 else
1507 abort ();
1508 }
1509 break;
1510
1511 /* Rule 6 */
1512 case CONST_INT:
1513 cfa_temp.reg = REGNO (dest);
1514 cfa_temp.offset = INTVAL (src);
1515 break;
1516
1517 /* Rule 7 */
1518 case IOR:
1519 if (GET_CODE (XEXP (src, 0)) != REG
1520 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1521 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1522 abort ();
1523
1524 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1525 cfa_temp.reg = REGNO (dest);
1526 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1527 break;
1528
1529 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1530 which will fill in all of the bits. */
1531 /* Rule 8 */
1532 case HIGH:
1533 break;
1534
1535 default:
1536 abort ();
1537 }
1538
1539 def_cfa_1 (label, &cfa);
1540 break;
1541
1542 case MEM:
1543 if (GET_CODE (src) != REG)
1544 abort ();
1545
1546 /* Saving a register to the stack. Make sure dest is relative to the
1547 CFA register. */
1548 switch (GET_CODE (XEXP (dest, 0)))
1549 {
1550 /* Rule 10 */
1551 /* With a push. */
1552 case PRE_MODIFY:
1553 /* We can't handle variable size modifications. */
1554 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1555 abort ();
1556 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1557
1558 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1559 || cfa_store.reg != STACK_POINTER_REGNUM)
1560 abort ();
1561
1562 cfa_store.offset += offset;
1563 if (cfa.reg == STACK_POINTER_REGNUM)
1564 cfa.offset = cfa_store.offset;
1565
1566 offset = -cfa_store.offset;
1567 break;
1568
1569 /* Rule 11 */
1570 case PRE_INC:
1571 case PRE_DEC:
1572 offset = GET_MODE_SIZE (GET_MODE (dest));
1573 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1574 offset = -offset;
1575
1576 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1577 || cfa_store.reg != STACK_POINTER_REGNUM)
1578 abort ();
1579
1580 cfa_store.offset += offset;
1581 if (cfa.reg == STACK_POINTER_REGNUM)
1582 cfa.offset = cfa_store.offset;
1583
1584 offset = -cfa_store.offset;
1585 break;
1586
1587 /* Rule 12 */
1588 /* With an offset. */
1589 case PLUS:
1590 case MINUS:
1591 case LO_SUM:
1592 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1593 abort ();
1594 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1595 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1596 offset = -offset;
1597
1598 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1599 offset -= cfa_store.offset;
1600 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1601 offset -= cfa_temp.offset;
1602 else
1603 abort ();
1604 break;
1605
1606 /* Rule 13 */
1607 /* Without an offset. */
1608 case REG:
1609 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1610 offset = -cfa_store.offset;
1611 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1612 offset = -cfa_temp.offset;
1613 else
1614 abort ();
1615 break;
1616
1617 /* Rule 14 */
1618 case POST_INC:
1619 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1620 abort ();
1621 offset = -cfa_temp.offset;
1622 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1623 break;
1624
1625 default:
1626 abort ();
1627 }
1628
1629 if (REGNO (src) != STACK_POINTER_REGNUM
1630 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1631 && (unsigned) REGNO (src) == cfa.reg)
1632 {
1633 /* We're storing the current CFA reg into the stack. */
1634
1635 if (cfa.offset == 0)
1636 {
1637 /* If the source register is exactly the CFA, assume
1638 we're saving SP like any other register; this happens
1639 on the ARM. */
1640 def_cfa_1 (label, &cfa);
1641 queue_reg_save (label, stack_pointer_rtx, offset);
1642 break;
1643 }
1644 else
1645 {
1646 /* Otherwise, we'll need to look in the stack to
1647 calculate the CFA. */
1648 rtx x = XEXP (dest, 0);
1649
1650 if (GET_CODE (x) != REG)
1651 x = XEXP (x, 0);
1652 if (GET_CODE (x) != REG)
1653 abort ();
1654
1655 cfa.reg = REGNO (x);
1656 cfa.base_offset = offset;
1657 cfa.indirect = 1;
1658 def_cfa_1 (label, &cfa);
1659 break;
1660 }
1661 }
1662
1663 def_cfa_1 (label, &cfa);
1664 queue_reg_save (label, src, offset);
1665 break;
1666
1667 default:
1668 abort ();
1669 }
1670 }
1671
1672 /* Record call frame debugging information for INSN, which either
1673 sets SP or FP (adjusting how we calculate the frame address) or saves a
1674 register to the stack. If INSN is NULL_RTX, initialize our state. */
1675
1676 void
1677 dwarf2out_frame_debug (rtx insn)
1678 {
1679 const char *label;
1680 rtx src;
1681
1682 if (insn == NULL_RTX)
1683 {
1684 /* Flush any queued register saves. */
1685 flush_queued_reg_saves ();
1686
1687 /* Set up state for generating call frame debug info. */
1688 lookup_cfa (&cfa);
1689 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1690 abort ();
1691
1692 cfa.reg = STACK_POINTER_REGNUM;
1693 cfa_store = cfa;
1694 cfa_temp.reg = -1;
1695 cfa_temp.offset = 0;
1696 return;
1697 }
1698
1699 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1700 flush_queued_reg_saves ();
1701
1702 if (! RTX_FRAME_RELATED_P (insn))
1703 {
1704 if (!ACCUMULATE_OUTGOING_ARGS)
1705 dwarf2out_stack_adjust (insn);
1706
1707 return;
1708 }
1709
1710 label = dwarf2out_cfi_label ();
1711 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1712 if (src)
1713 insn = XEXP (src, 0);
1714 else
1715 insn = PATTERN (insn);
1716
1717 dwarf2out_frame_debug_expr (insn, label);
1718 }
1719
1720 #endif
1721
1722 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1723 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1724 (enum dwarf_call_frame_info cfi);
1725
1726 static enum dw_cfi_oprnd_type
1727 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1728 {
1729 switch (cfi)
1730 {
1731 case DW_CFA_nop:
1732 case DW_CFA_GNU_window_save:
1733 return dw_cfi_oprnd_unused;
1734
1735 case DW_CFA_set_loc:
1736 case DW_CFA_advance_loc1:
1737 case DW_CFA_advance_loc2:
1738 case DW_CFA_advance_loc4:
1739 case DW_CFA_MIPS_advance_loc8:
1740 return dw_cfi_oprnd_addr;
1741
1742 case DW_CFA_offset:
1743 case DW_CFA_offset_extended:
1744 case DW_CFA_def_cfa:
1745 case DW_CFA_offset_extended_sf:
1746 case DW_CFA_def_cfa_sf:
1747 case DW_CFA_restore_extended:
1748 case DW_CFA_undefined:
1749 case DW_CFA_same_value:
1750 case DW_CFA_def_cfa_register:
1751 case DW_CFA_register:
1752 return dw_cfi_oprnd_reg_num;
1753
1754 case DW_CFA_def_cfa_offset:
1755 case DW_CFA_GNU_args_size:
1756 case DW_CFA_def_cfa_offset_sf:
1757 return dw_cfi_oprnd_offset;
1758
1759 case DW_CFA_def_cfa_expression:
1760 case DW_CFA_expression:
1761 return dw_cfi_oprnd_loc;
1762
1763 default:
1764 abort ();
1765 }
1766 }
1767
1768 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1769 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1770 (enum dwarf_call_frame_info cfi);
1771
1772 static enum dw_cfi_oprnd_type
1773 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1774 {
1775 switch (cfi)
1776 {
1777 case DW_CFA_def_cfa:
1778 case DW_CFA_def_cfa_sf:
1779 case DW_CFA_offset:
1780 case DW_CFA_offset_extended_sf:
1781 case DW_CFA_offset_extended:
1782 return dw_cfi_oprnd_offset;
1783
1784 case DW_CFA_register:
1785 return dw_cfi_oprnd_reg_num;
1786
1787 default:
1788 return dw_cfi_oprnd_unused;
1789 }
1790 }
1791
1792 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1793
1794 /* Map register numbers held in the call frame info that gcc has
1795 collected using DWARF_FRAME_REGNUM to those that should be output in
1796 .debug_frame and .eh_frame. */
1797 #ifndef DWARF2_FRAME_REG_OUT
1798 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1799 #endif
1800
1801 /* Output a Call Frame Information opcode and its operand(s). */
1802
1803 static void
1804 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1805 {
1806 unsigned long r;
1807 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1808 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1809 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1810 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1811 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1812 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1813 {
1814 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1815 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1816 "DW_CFA_offset, column 0x%lx", r);
1817 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1818 }
1819 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1820 {
1821 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1822 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1823 "DW_CFA_restore, column 0x%lx", r);
1824 }
1825 else
1826 {
1827 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1828 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1829
1830 switch (cfi->dw_cfi_opc)
1831 {
1832 case DW_CFA_set_loc:
1833 if (for_eh)
1834 dw2_asm_output_encoded_addr_rtx (
1835 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1836 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1837 NULL);
1838 else
1839 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1840 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1841 break;
1842
1843 case DW_CFA_advance_loc1:
1844 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1845 fde->dw_fde_current_label, NULL);
1846 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1847 break;
1848
1849 case DW_CFA_advance_loc2:
1850 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1851 fde->dw_fde_current_label, NULL);
1852 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1853 break;
1854
1855 case DW_CFA_advance_loc4:
1856 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1857 fde->dw_fde_current_label, NULL);
1858 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1859 break;
1860
1861 case DW_CFA_MIPS_advance_loc8:
1862 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1863 fde->dw_fde_current_label, NULL);
1864 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1865 break;
1866
1867 case DW_CFA_offset_extended:
1868 case DW_CFA_def_cfa:
1869 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1870 dw2_asm_output_data_uleb128 (r, NULL);
1871 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1872 break;
1873
1874 case DW_CFA_offset_extended_sf:
1875 case DW_CFA_def_cfa_sf:
1876 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1877 dw2_asm_output_data_uleb128 (r, NULL);
1878 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1879 break;
1880
1881 case DW_CFA_restore_extended:
1882 case DW_CFA_undefined:
1883 case DW_CFA_same_value:
1884 case DW_CFA_def_cfa_register:
1885 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1886 dw2_asm_output_data_uleb128 (r, NULL);
1887 break;
1888
1889 case DW_CFA_register:
1890 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1891 dw2_asm_output_data_uleb128 (r, NULL);
1892 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
1893 dw2_asm_output_data_uleb128 (r, NULL);
1894 break;
1895
1896 case DW_CFA_def_cfa_offset:
1897 case DW_CFA_GNU_args_size:
1898 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1899 break;
1900
1901 case DW_CFA_def_cfa_offset_sf:
1902 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1903 break;
1904
1905 case DW_CFA_GNU_window_save:
1906 break;
1907
1908 case DW_CFA_def_cfa_expression:
1909 case DW_CFA_expression:
1910 output_cfa_loc (cfi);
1911 break;
1912
1913 case DW_CFA_GNU_negative_offset_extended:
1914 /* Obsoleted by DW_CFA_offset_extended_sf. */
1915 abort ();
1916
1917 default:
1918 break;
1919 }
1920 }
1921 }
1922
1923 /* Output the call frame information used to record information
1924 that relates to calculating the frame pointer, and records the
1925 location of saved registers. */
1926
1927 static void
1928 output_call_frame_info (int for_eh)
1929 {
1930 unsigned int i;
1931 dw_fde_ref fde;
1932 dw_cfi_ref cfi;
1933 char l1[20], l2[20], section_start_label[20];
1934 bool any_lsda_needed = false;
1935 char augmentation[6];
1936 int augmentation_size;
1937 int fde_encoding = DW_EH_PE_absptr;
1938 int per_encoding = DW_EH_PE_absptr;
1939 int lsda_encoding = DW_EH_PE_absptr;
1940
1941 /* Don't emit a CIE if there won't be any FDEs. */
1942 if (fde_table_in_use == 0)
1943 return;
1944
1945 /* If we don't have any functions we'll want to unwind out of, don't
1946 emit any EH unwind information. Note that if exceptions aren't
1947 enabled, we won't have collected nothrow information, and if we
1948 asked for asynchronous tables, we always want this info. */
1949 if (for_eh)
1950 {
1951 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1952
1953 for (i = 0; i < fde_table_in_use; i++)
1954 if (fde_table[i].uses_eh_lsda)
1955 any_eh_needed = any_lsda_needed = true;
1956 else if (! fde_table[i].nothrow
1957 && ! fde_table[i].all_throwers_are_sibcalls)
1958 any_eh_needed = true;
1959
1960 if (! any_eh_needed)
1961 return;
1962 }
1963
1964 /* We're going to be generating comments, so turn on app. */
1965 if (flag_debug_asm)
1966 app_enable ();
1967
1968 if (for_eh)
1969 (*targetm.asm_out.eh_frame_section) ();
1970 else
1971 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1972
1973 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1974 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1975
1976 /* Output the CIE. */
1977 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1978 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1979 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1980 "Length of Common Information Entry");
1981 ASM_OUTPUT_LABEL (asm_out_file, l1);
1982
1983 /* Now that the CIE pointer is PC-relative for EH,
1984 use 0 to identify the CIE. */
1985 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1986 (for_eh ? 0 : DW_CIE_ID),
1987 "CIE Identifier Tag");
1988
1989 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1990
1991 augmentation[0] = 0;
1992 augmentation_size = 0;
1993 if (for_eh)
1994 {
1995 char *p;
1996
1997 /* Augmentation:
1998 z Indicates that a uleb128 is present to size the
1999 augmentation section.
2000 L Indicates the encoding (and thus presence) of
2001 an LSDA pointer in the FDE augmentation.
2002 R Indicates a non-default pointer encoding for
2003 FDE code pointers.
2004 P Indicates the presence of an encoding + language
2005 personality routine in the CIE augmentation. */
2006
2007 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2008 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2009 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2010
2011 p = augmentation + 1;
2012 if (eh_personality_libfunc)
2013 {
2014 *p++ = 'P';
2015 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2016 }
2017 if (any_lsda_needed)
2018 {
2019 *p++ = 'L';
2020 augmentation_size += 1;
2021 }
2022 if (fde_encoding != DW_EH_PE_absptr)
2023 {
2024 *p++ = 'R';
2025 augmentation_size += 1;
2026 }
2027 if (p > augmentation + 1)
2028 {
2029 augmentation[0] = 'z';
2030 *p = '\0';
2031 }
2032
2033 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2034 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2035 {
2036 int offset = ( 4 /* Length */
2037 + 4 /* CIE Id */
2038 + 1 /* CIE version */
2039 + strlen (augmentation) + 1 /* Augmentation */
2040 + size_of_uleb128 (1) /* Code alignment */
2041 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2042 + 1 /* RA column */
2043 + 1 /* Augmentation size */
2044 + 1 /* Personality encoding */ );
2045 int pad = -offset & (PTR_SIZE - 1);
2046
2047 augmentation_size += pad;
2048
2049 /* Augmentations should be small, so there's scarce need to
2050 iterate for a solution. Die if we exceed one uleb128 byte. */
2051 if (size_of_uleb128 (augmentation_size) != 1)
2052 abort ();
2053 }
2054 }
2055
2056 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2057 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2058 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2059 "CIE Data Alignment Factor");
2060 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2061
2062 if (augmentation[0])
2063 {
2064 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2065 if (eh_personality_libfunc)
2066 {
2067 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2068 eh_data_format_name (per_encoding));
2069 dw2_asm_output_encoded_addr_rtx (per_encoding,
2070 eh_personality_libfunc, NULL);
2071 }
2072
2073 if (any_lsda_needed)
2074 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2075 eh_data_format_name (lsda_encoding));
2076
2077 if (fde_encoding != DW_EH_PE_absptr)
2078 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2079 eh_data_format_name (fde_encoding));
2080 }
2081
2082 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2083 output_cfi (cfi, NULL, for_eh);
2084
2085 /* Pad the CIE out to an address sized boundary. */
2086 ASM_OUTPUT_ALIGN (asm_out_file,
2087 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2088 ASM_OUTPUT_LABEL (asm_out_file, l2);
2089
2090 /* Loop through all of the FDE's. */
2091 for (i = 0; i < fde_table_in_use; i++)
2092 {
2093 fde = &fde_table[i];
2094
2095 /* Don't emit EH unwind info for leaf functions that don't need it. */
2096 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2097 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2098 && !fde->uses_eh_lsda)
2099 continue;
2100
2101 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2102 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2103 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2104 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2105 "FDE Length");
2106 ASM_OUTPUT_LABEL (asm_out_file, l1);
2107
2108 if (for_eh)
2109 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2110 else
2111 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2112 "FDE CIE offset");
2113
2114 if (for_eh)
2115 {
2116 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2117 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2118 "FDE initial location");
2119 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2120 fde->dw_fde_end, fde->dw_fde_begin,
2121 "FDE address range");
2122 }
2123 else
2124 {
2125 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2126 "FDE initial location");
2127 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2128 fde->dw_fde_end, fde->dw_fde_begin,
2129 "FDE address range");
2130 }
2131
2132 if (augmentation[0])
2133 {
2134 if (any_lsda_needed)
2135 {
2136 int size = size_of_encoded_value (lsda_encoding);
2137
2138 if (lsda_encoding == DW_EH_PE_aligned)
2139 {
2140 int offset = ( 4 /* Length */
2141 + 4 /* CIE offset */
2142 + 2 * size_of_encoded_value (fde_encoding)
2143 + 1 /* Augmentation size */ );
2144 int pad = -offset & (PTR_SIZE - 1);
2145
2146 size += pad;
2147 if (size_of_uleb128 (size) != 1)
2148 abort ();
2149 }
2150
2151 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2152
2153 if (fde->uses_eh_lsda)
2154 {
2155 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2156 fde->funcdef_number);
2157 dw2_asm_output_encoded_addr_rtx (
2158 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2159 "Language Specific Data Area");
2160 }
2161 else
2162 {
2163 if (lsda_encoding == DW_EH_PE_aligned)
2164 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2165 dw2_asm_output_data
2166 (size_of_encoded_value (lsda_encoding), 0,
2167 "Language Specific Data Area (none)");
2168 }
2169 }
2170 else
2171 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2172 }
2173
2174 /* Loop through the Call Frame Instructions associated with
2175 this FDE. */
2176 fde->dw_fde_current_label = fde->dw_fde_begin;
2177 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2178 output_cfi (cfi, fde, for_eh);
2179
2180 /* Pad the FDE out to an address sized boundary. */
2181 ASM_OUTPUT_ALIGN (asm_out_file,
2182 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2183 ASM_OUTPUT_LABEL (asm_out_file, l2);
2184 }
2185
2186 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2187 dw2_asm_output_data (4, 0, "End of Table");
2188 #ifdef MIPS_DEBUGGING_INFO
2189 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2190 get a value of 0. Putting .align 0 after the label fixes it. */
2191 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2192 #endif
2193
2194 /* Turn off app to make assembly quicker. */
2195 if (flag_debug_asm)
2196 app_disable ();
2197 }
2198
2199 /* Output a marker (i.e. a label) for the beginning of a function, before
2200 the prologue. */
2201
2202 void
2203 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2204 const char *file ATTRIBUTE_UNUSED)
2205 {
2206 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2207 dw_fde_ref fde;
2208
2209 current_function_func_begin_label = 0;
2210
2211 #ifdef IA64_UNWIND_INFO
2212 /* ??? current_function_func_begin_label is also used by except.c
2213 for call-site information. We must emit this label if it might
2214 be used. */
2215 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2216 && ! dwarf2out_do_frame ())
2217 return;
2218 #else
2219 if (! dwarf2out_do_frame ())
2220 return;
2221 #endif
2222
2223 function_section (current_function_decl);
2224 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2225 current_function_funcdef_no);
2226 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2227 current_function_funcdef_no);
2228 current_function_func_begin_label = get_identifier (label);
2229
2230 #ifdef IA64_UNWIND_INFO
2231 /* We can elide the fde allocation if we're not emitting debug info. */
2232 if (! dwarf2out_do_frame ())
2233 return;
2234 #endif
2235
2236 /* Expand the fde table if necessary. */
2237 if (fde_table_in_use == fde_table_allocated)
2238 {
2239 fde_table_allocated += FDE_TABLE_INCREMENT;
2240 fde_table = ggc_realloc (fde_table,
2241 fde_table_allocated * sizeof (dw_fde_node));
2242 memset (fde_table + fde_table_in_use, 0,
2243 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2244 }
2245
2246 /* Record the FDE associated with this function. */
2247 current_funcdef_fde = fde_table_in_use;
2248
2249 /* Add the new FDE at the end of the fde_table. */
2250 fde = &fde_table[fde_table_in_use++];
2251 fde->dw_fde_begin = xstrdup (label);
2252 fde->dw_fde_current_label = NULL;
2253 fde->dw_fde_end = NULL;
2254 fde->dw_fde_cfi = NULL;
2255 fde->funcdef_number = current_function_funcdef_no;
2256 fde->nothrow = current_function_nothrow;
2257 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2258 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2259
2260 args_size = old_args_size = 0;
2261
2262 /* We only want to output line number information for the genuine dwarf2
2263 prologue case, not the eh frame case. */
2264 #ifdef DWARF2_DEBUGGING_INFO
2265 if (file)
2266 dwarf2out_source_line (line, file);
2267 #endif
2268 }
2269
2270 /* Output a marker (i.e. a label) for the absolute end of the generated code
2271 for a function definition. This gets called *after* the epilogue code has
2272 been generated. */
2273
2274 void
2275 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2276 const char *file ATTRIBUTE_UNUSED)
2277 {
2278 dw_fde_ref fde;
2279 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2280
2281 /* Output a label to mark the endpoint of the code generated for this
2282 function. */
2283 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2284 current_function_funcdef_no);
2285 ASM_OUTPUT_LABEL (asm_out_file, label);
2286 fde = &fde_table[fde_table_in_use - 1];
2287 fde->dw_fde_end = xstrdup (label);
2288 }
2289
2290 void
2291 dwarf2out_frame_init (void)
2292 {
2293 /* Allocate the initial hunk of the fde_table. */
2294 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2295 fde_table_allocated = FDE_TABLE_INCREMENT;
2296 fde_table_in_use = 0;
2297
2298 /* Generate the CFA instructions common to all FDE's. Do it now for the
2299 sake of lookup_cfa. */
2300
2301 #ifdef DWARF2_UNWIND_INFO
2302 /* On entry, the Canonical Frame Address is at SP. */
2303 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2304 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2305 #endif
2306 }
2307
2308 void
2309 dwarf2out_frame_finish (void)
2310 {
2311 /* Output call frame information. */
2312 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2313 output_call_frame_info (0);
2314
2315 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2316 output_call_frame_info (1);
2317 }
2318 #endif
2319 \f
2320 /* And now, the subset of the debugging information support code necessary
2321 for emitting location expressions. */
2322
2323 /* We need some way to distinguish DW_OP_addr with a direct symbol
2324 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2325 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2326
2327
2328 typedef struct dw_val_struct *dw_val_ref;
2329 typedef struct die_struct *dw_die_ref;
2330 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2331 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2332
2333 /* Each DIE may have a series of attribute/value pairs. Values
2334 can take on several forms. The forms that are used in this
2335 implementation are listed below. */
2336
2337 enum dw_val_class
2338 {
2339 dw_val_class_addr,
2340 dw_val_class_offset,
2341 dw_val_class_loc,
2342 dw_val_class_loc_list,
2343 dw_val_class_range_list,
2344 dw_val_class_const,
2345 dw_val_class_unsigned_const,
2346 dw_val_class_long_long,
2347 dw_val_class_float,
2348 dw_val_class_flag,
2349 dw_val_class_die_ref,
2350 dw_val_class_fde_ref,
2351 dw_val_class_lbl_id,
2352 dw_val_class_lbl_offset,
2353 dw_val_class_str
2354 };
2355
2356 /* Describe a double word constant value. */
2357 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2358
2359 typedef struct dw_long_long_struct GTY(())
2360 {
2361 unsigned long hi;
2362 unsigned long low;
2363 }
2364 dw_long_long_const;
2365
2366 /* Describe a floating point constant value. */
2367
2368 typedef struct dw_fp_struct GTY(())
2369 {
2370 long * GTY((length ("%h.length"))) array;
2371 unsigned length;
2372 }
2373 dw_float_const;
2374
2375 /* The dw_val_node describes an attribute's value, as it is
2376 represented internally. */
2377
2378 typedef struct dw_val_struct GTY(())
2379 {
2380 enum dw_val_class val_class;
2381 union dw_val_struct_union
2382 {
2383 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2384 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2385 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2386 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2387 HOST_WIDE_INT GTY ((default (""))) val_int;
2388 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2389 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2390 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2391 struct dw_val_die_union
2392 {
2393 dw_die_ref die;
2394 int external;
2395 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2396 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2397 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2398 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2399 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2400 }
2401 GTY ((desc ("%1.val_class"))) v;
2402 }
2403 dw_val_node;
2404
2405 /* Locations in memory are described using a sequence of stack machine
2406 operations. */
2407
2408 typedef struct dw_loc_descr_struct GTY(())
2409 {
2410 dw_loc_descr_ref dw_loc_next;
2411 enum dwarf_location_atom dw_loc_opc;
2412 dw_val_node dw_loc_oprnd1;
2413 dw_val_node dw_loc_oprnd2;
2414 int dw_loc_addr;
2415 }
2416 dw_loc_descr_node;
2417
2418 /* Location lists are ranges + location descriptions for that range,
2419 so you can track variables that are in different places over
2420 their entire life. */
2421 typedef struct dw_loc_list_struct GTY(())
2422 {
2423 dw_loc_list_ref dw_loc_next;
2424 const char *begin; /* Label for begin address of range */
2425 const char *end; /* Label for end address of range */
2426 char *ll_symbol; /* Label for beginning of location list.
2427 Only on head of list */
2428 const char *section; /* Section this loclist is relative to */
2429 dw_loc_descr_ref expr;
2430 } dw_loc_list_node;
2431
2432 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2433
2434 static const char *dwarf_stack_op_name (unsigned);
2435 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2436 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2437 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2438 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2439 static unsigned long size_of_locs (dw_loc_descr_ref);
2440 static void output_loc_operands (dw_loc_descr_ref);
2441 static void output_loc_sequence (dw_loc_descr_ref);
2442
2443 /* Convert a DWARF stack opcode into its string name. */
2444
2445 static const char *
2446 dwarf_stack_op_name (unsigned int op)
2447 {
2448 switch (op)
2449 {
2450 case DW_OP_addr:
2451 case INTERNAL_DW_OP_tls_addr:
2452 return "DW_OP_addr";
2453 case DW_OP_deref:
2454 return "DW_OP_deref";
2455 case DW_OP_const1u:
2456 return "DW_OP_const1u";
2457 case DW_OP_const1s:
2458 return "DW_OP_const1s";
2459 case DW_OP_const2u:
2460 return "DW_OP_const2u";
2461 case DW_OP_const2s:
2462 return "DW_OP_const2s";
2463 case DW_OP_const4u:
2464 return "DW_OP_const4u";
2465 case DW_OP_const4s:
2466 return "DW_OP_const4s";
2467 case DW_OP_const8u:
2468 return "DW_OP_const8u";
2469 case DW_OP_const8s:
2470 return "DW_OP_const8s";
2471 case DW_OP_constu:
2472 return "DW_OP_constu";
2473 case DW_OP_consts:
2474 return "DW_OP_consts";
2475 case DW_OP_dup:
2476 return "DW_OP_dup";
2477 case DW_OP_drop:
2478 return "DW_OP_drop";
2479 case DW_OP_over:
2480 return "DW_OP_over";
2481 case DW_OP_pick:
2482 return "DW_OP_pick";
2483 case DW_OP_swap:
2484 return "DW_OP_swap";
2485 case DW_OP_rot:
2486 return "DW_OP_rot";
2487 case DW_OP_xderef:
2488 return "DW_OP_xderef";
2489 case DW_OP_abs:
2490 return "DW_OP_abs";
2491 case DW_OP_and:
2492 return "DW_OP_and";
2493 case DW_OP_div:
2494 return "DW_OP_div";
2495 case DW_OP_minus:
2496 return "DW_OP_minus";
2497 case DW_OP_mod:
2498 return "DW_OP_mod";
2499 case DW_OP_mul:
2500 return "DW_OP_mul";
2501 case DW_OP_neg:
2502 return "DW_OP_neg";
2503 case DW_OP_not:
2504 return "DW_OP_not";
2505 case DW_OP_or:
2506 return "DW_OP_or";
2507 case DW_OP_plus:
2508 return "DW_OP_plus";
2509 case DW_OP_plus_uconst:
2510 return "DW_OP_plus_uconst";
2511 case DW_OP_shl:
2512 return "DW_OP_shl";
2513 case DW_OP_shr:
2514 return "DW_OP_shr";
2515 case DW_OP_shra:
2516 return "DW_OP_shra";
2517 case DW_OP_xor:
2518 return "DW_OP_xor";
2519 case DW_OP_bra:
2520 return "DW_OP_bra";
2521 case DW_OP_eq:
2522 return "DW_OP_eq";
2523 case DW_OP_ge:
2524 return "DW_OP_ge";
2525 case DW_OP_gt:
2526 return "DW_OP_gt";
2527 case DW_OP_le:
2528 return "DW_OP_le";
2529 case DW_OP_lt:
2530 return "DW_OP_lt";
2531 case DW_OP_ne:
2532 return "DW_OP_ne";
2533 case DW_OP_skip:
2534 return "DW_OP_skip";
2535 case DW_OP_lit0:
2536 return "DW_OP_lit0";
2537 case DW_OP_lit1:
2538 return "DW_OP_lit1";
2539 case DW_OP_lit2:
2540 return "DW_OP_lit2";
2541 case DW_OP_lit3:
2542 return "DW_OP_lit3";
2543 case DW_OP_lit4:
2544 return "DW_OP_lit4";
2545 case DW_OP_lit5:
2546 return "DW_OP_lit5";
2547 case DW_OP_lit6:
2548 return "DW_OP_lit6";
2549 case DW_OP_lit7:
2550 return "DW_OP_lit7";
2551 case DW_OP_lit8:
2552 return "DW_OP_lit8";
2553 case DW_OP_lit9:
2554 return "DW_OP_lit9";
2555 case DW_OP_lit10:
2556 return "DW_OP_lit10";
2557 case DW_OP_lit11:
2558 return "DW_OP_lit11";
2559 case DW_OP_lit12:
2560 return "DW_OP_lit12";
2561 case DW_OP_lit13:
2562 return "DW_OP_lit13";
2563 case DW_OP_lit14:
2564 return "DW_OP_lit14";
2565 case DW_OP_lit15:
2566 return "DW_OP_lit15";
2567 case DW_OP_lit16:
2568 return "DW_OP_lit16";
2569 case DW_OP_lit17:
2570 return "DW_OP_lit17";
2571 case DW_OP_lit18:
2572 return "DW_OP_lit18";
2573 case DW_OP_lit19:
2574 return "DW_OP_lit19";
2575 case DW_OP_lit20:
2576 return "DW_OP_lit20";
2577 case DW_OP_lit21:
2578 return "DW_OP_lit21";
2579 case DW_OP_lit22:
2580 return "DW_OP_lit22";
2581 case DW_OP_lit23:
2582 return "DW_OP_lit23";
2583 case DW_OP_lit24:
2584 return "DW_OP_lit24";
2585 case DW_OP_lit25:
2586 return "DW_OP_lit25";
2587 case DW_OP_lit26:
2588 return "DW_OP_lit26";
2589 case DW_OP_lit27:
2590 return "DW_OP_lit27";
2591 case DW_OP_lit28:
2592 return "DW_OP_lit28";
2593 case DW_OP_lit29:
2594 return "DW_OP_lit29";
2595 case DW_OP_lit30:
2596 return "DW_OP_lit30";
2597 case DW_OP_lit31:
2598 return "DW_OP_lit31";
2599 case DW_OP_reg0:
2600 return "DW_OP_reg0";
2601 case DW_OP_reg1:
2602 return "DW_OP_reg1";
2603 case DW_OP_reg2:
2604 return "DW_OP_reg2";
2605 case DW_OP_reg3:
2606 return "DW_OP_reg3";
2607 case DW_OP_reg4:
2608 return "DW_OP_reg4";
2609 case DW_OP_reg5:
2610 return "DW_OP_reg5";
2611 case DW_OP_reg6:
2612 return "DW_OP_reg6";
2613 case DW_OP_reg7:
2614 return "DW_OP_reg7";
2615 case DW_OP_reg8:
2616 return "DW_OP_reg8";
2617 case DW_OP_reg9:
2618 return "DW_OP_reg9";
2619 case DW_OP_reg10:
2620 return "DW_OP_reg10";
2621 case DW_OP_reg11:
2622 return "DW_OP_reg11";
2623 case DW_OP_reg12:
2624 return "DW_OP_reg12";
2625 case DW_OP_reg13:
2626 return "DW_OP_reg13";
2627 case DW_OP_reg14:
2628 return "DW_OP_reg14";
2629 case DW_OP_reg15:
2630 return "DW_OP_reg15";
2631 case DW_OP_reg16:
2632 return "DW_OP_reg16";
2633 case DW_OP_reg17:
2634 return "DW_OP_reg17";
2635 case DW_OP_reg18:
2636 return "DW_OP_reg18";
2637 case DW_OP_reg19:
2638 return "DW_OP_reg19";
2639 case DW_OP_reg20:
2640 return "DW_OP_reg20";
2641 case DW_OP_reg21:
2642 return "DW_OP_reg21";
2643 case DW_OP_reg22:
2644 return "DW_OP_reg22";
2645 case DW_OP_reg23:
2646 return "DW_OP_reg23";
2647 case DW_OP_reg24:
2648 return "DW_OP_reg24";
2649 case DW_OP_reg25:
2650 return "DW_OP_reg25";
2651 case DW_OP_reg26:
2652 return "DW_OP_reg26";
2653 case DW_OP_reg27:
2654 return "DW_OP_reg27";
2655 case DW_OP_reg28:
2656 return "DW_OP_reg28";
2657 case DW_OP_reg29:
2658 return "DW_OP_reg29";
2659 case DW_OP_reg30:
2660 return "DW_OP_reg30";
2661 case DW_OP_reg31:
2662 return "DW_OP_reg31";
2663 case DW_OP_breg0:
2664 return "DW_OP_breg0";
2665 case DW_OP_breg1:
2666 return "DW_OP_breg1";
2667 case DW_OP_breg2:
2668 return "DW_OP_breg2";
2669 case DW_OP_breg3:
2670 return "DW_OP_breg3";
2671 case DW_OP_breg4:
2672 return "DW_OP_breg4";
2673 case DW_OP_breg5:
2674 return "DW_OP_breg5";
2675 case DW_OP_breg6:
2676 return "DW_OP_breg6";
2677 case DW_OP_breg7:
2678 return "DW_OP_breg7";
2679 case DW_OP_breg8:
2680 return "DW_OP_breg8";
2681 case DW_OP_breg9:
2682 return "DW_OP_breg9";
2683 case DW_OP_breg10:
2684 return "DW_OP_breg10";
2685 case DW_OP_breg11:
2686 return "DW_OP_breg11";
2687 case DW_OP_breg12:
2688 return "DW_OP_breg12";
2689 case DW_OP_breg13:
2690 return "DW_OP_breg13";
2691 case DW_OP_breg14:
2692 return "DW_OP_breg14";
2693 case DW_OP_breg15:
2694 return "DW_OP_breg15";
2695 case DW_OP_breg16:
2696 return "DW_OP_breg16";
2697 case DW_OP_breg17:
2698 return "DW_OP_breg17";
2699 case DW_OP_breg18:
2700 return "DW_OP_breg18";
2701 case DW_OP_breg19:
2702 return "DW_OP_breg19";
2703 case DW_OP_breg20:
2704 return "DW_OP_breg20";
2705 case DW_OP_breg21:
2706 return "DW_OP_breg21";
2707 case DW_OP_breg22:
2708 return "DW_OP_breg22";
2709 case DW_OP_breg23:
2710 return "DW_OP_breg23";
2711 case DW_OP_breg24:
2712 return "DW_OP_breg24";
2713 case DW_OP_breg25:
2714 return "DW_OP_breg25";
2715 case DW_OP_breg26:
2716 return "DW_OP_breg26";
2717 case DW_OP_breg27:
2718 return "DW_OP_breg27";
2719 case DW_OP_breg28:
2720 return "DW_OP_breg28";
2721 case DW_OP_breg29:
2722 return "DW_OP_breg29";
2723 case DW_OP_breg30:
2724 return "DW_OP_breg30";
2725 case DW_OP_breg31:
2726 return "DW_OP_breg31";
2727 case DW_OP_regx:
2728 return "DW_OP_regx";
2729 case DW_OP_fbreg:
2730 return "DW_OP_fbreg";
2731 case DW_OP_bregx:
2732 return "DW_OP_bregx";
2733 case DW_OP_piece:
2734 return "DW_OP_piece";
2735 case DW_OP_deref_size:
2736 return "DW_OP_deref_size";
2737 case DW_OP_xderef_size:
2738 return "DW_OP_xderef_size";
2739 case DW_OP_nop:
2740 return "DW_OP_nop";
2741 case DW_OP_push_object_address:
2742 return "DW_OP_push_object_address";
2743 case DW_OP_call2:
2744 return "DW_OP_call2";
2745 case DW_OP_call4:
2746 return "DW_OP_call4";
2747 case DW_OP_call_ref:
2748 return "DW_OP_call_ref";
2749 case DW_OP_GNU_push_tls_address:
2750 return "DW_OP_GNU_push_tls_address";
2751 default:
2752 return "OP_<unknown>";
2753 }
2754 }
2755
2756 /* Return a pointer to a newly allocated location description. Location
2757 descriptions are simple expression terms that can be strung
2758 together to form more complicated location (address) descriptions. */
2759
2760 static inline dw_loc_descr_ref
2761 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2762 unsigned HOST_WIDE_INT oprnd2)
2763 {
2764 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2765
2766 descr->dw_loc_opc = op;
2767 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2768 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2769 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2770 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2771
2772 return descr;
2773 }
2774
2775
2776 /* Add a location description term to a location description expression. */
2777
2778 static inline void
2779 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2780 {
2781 dw_loc_descr_ref *d;
2782
2783 /* Find the end of the chain. */
2784 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2785 ;
2786
2787 *d = descr;
2788 }
2789
2790 /* Return the size of a location descriptor. */
2791
2792 static unsigned long
2793 size_of_loc_descr (dw_loc_descr_ref loc)
2794 {
2795 unsigned long size = 1;
2796
2797 switch (loc->dw_loc_opc)
2798 {
2799 case DW_OP_addr:
2800 case INTERNAL_DW_OP_tls_addr:
2801 size += DWARF2_ADDR_SIZE;
2802 break;
2803 case DW_OP_const1u:
2804 case DW_OP_const1s:
2805 size += 1;
2806 break;
2807 case DW_OP_const2u:
2808 case DW_OP_const2s:
2809 size += 2;
2810 break;
2811 case DW_OP_const4u:
2812 case DW_OP_const4s:
2813 size += 4;
2814 break;
2815 case DW_OP_const8u:
2816 case DW_OP_const8s:
2817 size += 8;
2818 break;
2819 case DW_OP_constu:
2820 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2821 break;
2822 case DW_OP_consts:
2823 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2824 break;
2825 case DW_OP_pick:
2826 size += 1;
2827 break;
2828 case DW_OP_plus_uconst:
2829 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2830 break;
2831 case DW_OP_skip:
2832 case DW_OP_bra:
2833 size += 2;
2834 break;
2835 case DW_OP_breg0:
2836 case DW_OP_breg1:
2837 case DW_OP_breg2:
2838 case DW_OP_breg3:
2839 case DW_OP_breg4:
2840 case DW_OP_breg5:
2841 case DW_OP_breg6:
2842 case DW_OP_breg7:
2843 case DW_OP_breg8:
2844 case DW_OP_breg9:
2845 case DW_OP_breg10:
2846 case DW_OP_breg11:
2847 case DW_OP_breg12:
2848 case DW_OP_breg13:
2849 case DW_OP_breg14:
2850 case DW_OP_breg15:
2851 case DW_OP_breg16:
2852 case DW_OP_breg17:
2853 case DW_OP_breg18:
2854 case DW_OP_breg19:
2855 case DW_OP_breg20:
2856 case DW_OP_breg21:
2857 case DW_OP_breg22:
2858 case DW_OP_breg23:
2859 case DW_OP_breg24:
2860 case DW_OP_breg25:
2861 case DW_OP_breg26:
2862 case DW_OP_breg27:
2863 case DW_OP_breg28:
2864 case DW_OP_breg29:
2865 case DW_OP_breg30:
2866 case DW_OP_breg31:
2867 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2868 break;
2869 case DW_OP_regx:
2870 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2871 break;
2872 case DW_OP_fbreg:
2873 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2874 break;
2875 case DW_OP_bregx:
2876 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2877 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2878 break;
2879 case DW_OP_piece:
2880 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2881 break;
2882 case DW_OP_deref_size:
2883 case DW_OP_xderef_size:
2884 size += 1;
2885 break;
2886 case DW_OP_call2:
2887 size += 2;
2888 break;
2889 case DW_OP_call4:
2890 size += 4;
2891 break;
2892 case DW_OP_call_ref:
2893 size += DWARF2_ADDR_SIZE;
2894 break;
2895 default:
2896 break;
2897 }
2898
2899 return size;
2900 }
2901
2902 /* Return the size of a series of location descriptors. */
2903
2904 static unsigned long
2905 size_of_locs (dw_loc_descr_ref loc)
2906 {
2907 unsigned long size;
2908
2909 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2910 {
2911 loc->dw_loc_addr = size;
2912 size += size_of_loc_descr (loc);
2913 }
2914
2915 return size;
2916 }
2917
2918 /* Output location description stack opcode's operands (if any). */
2919
2920 static void
2921 output_loc_operands (dw_loc_descr_ref loc)
2922 {
2923 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2924 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2925
2926 switch (loc->dw_loc_opc)
2927 {
2928 #ifdef DWARF2_DEBUGGING_INFO
2929 case DW_OP_addr:
2930 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2931 break;
2932 case DW_OP_const2u:
2933 case DW_OP_const2s:
2934 dw2_asm_output_data (2, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_const4u:
2937 case DW_OP_const4s:
2938 dw2_asm_output_data (4, val1->v.val_int, NULL);
2939 break;
2940 case DW_OP_const8u:
2941 case DW_OP_const8s:
2942 if (HOST_BITS_PER_LONG < 64)
2943 abort ();
2944 dw2_asm_output_data (8, val1->v.val_int, NULL);
2945 break;
2946 case DW_OP_skip:
2947 case DW_OP_bra:
2948 {
2949 int offset;
2950
2951 if (val1->val_class == dw_val_class_loc)
2952 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2953 else
2954 abort ();
2955
2956 dw2_asm_output_data (2, offset, NULL);
2957 }
2958 break;
2959 #else
2960 case DW_OP_addr:
2961 case DW_OP_const2u:
2962 case DW_OP_const2s:
2963 case DW_OP_const4u:
2964 case DW_OP_const4s:
2965 case DW_OP_const8u:
2966 case DW_OP_const8s:
2967 case DW_OP_skip:
2968 case DW_OP_bra:
2969 /* We currently don't make any attempt to make sure these are
2970 aligned properly like we do for the main unwind info, so
2971 don't support emitting things larger than a byte if we're
2972 only doing unwinding. */
2973 abort ();
2974 #endif
2975 case DW_OP_const1u:
2976 case DW_OP_const1s:
2977 dw2_asm_output_data (1, val1->v.val_int, NULL);
2978 break;
2979 case DW_OP_constu:
2980 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981 break;
2982 case DW_OP_consts:
2983 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2984 break;
2985 case DW_OP_pick:
2986 dw2_asm_output_data (1, val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_plus_uconst:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 break;
2991 case DW_OP_breg0:
2992 case DW_OP_breg1:
2993 case DW_OP_breg2:
2994 case DW_OP_breg3:
2995 case DW_OP_breg4:
2996 case DW_OP_breg5:
2997 case DW_OP_breg6:
2998 case DW_OP_breg7:
2999 case DW_OP_breg8:
3000 case DW_OP_breg9:
3001 case DW_OP_breg10:
3002 case DW_OP_breg11:
3003 case DW_OP_breg12:
3004 case DW_OP_breg13:
3005 case DW_OP_breg14:
3006 case DW_OP_breg15:
3007 case DW_OP_breg16:
3008 case DW_OP_breg17:
3009 case DW_OP_breg18:
3010 case DW_OP_breg19:
3011 case DW_OP_breg20:
3012 case DW_OP_breg21:
3013 case DW_OP_breg22:
3014 case DW_OP_breg23:
3015 case DW_OP_breg24:
3016 case DW_OP_breg25:
3017 case DW_OP_breg26:
3018 case DW_OP_breg27:
3019 case DW_OP_breg28:
3020 case DW_OP_breg29:
3021 case DW_OP_breg30:
3022 case DW_OP_breg31:
3023 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3024 break;
3025 case DW_OP_regx:
3026 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3027 break;
3028 case DW_OP_fbreg:
3029 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3030 break;
3031 case DW_OP_bregx:
3032 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3033 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3034 break;
3035 case DW_OP_piece:
3036 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3037 break;
3038 case DW_OP_deref_size:
3039 case DW_OP_xderef_size:
3040 dw2_asm_output_data (1, val1->v.val_int, NULL);
3041 break;
3042
3043 case INTERNAL_DW_OP_tls_addr:
3044 #ifdef ASM_OUTPUT_DWARF_DTPREL
3045 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3046 val1->v.val_addr);
3047 fputc ('\n', asm_out_file);
3048 #else
3049 abort ();
3050 #endif
3051 break;
3052
3053 default:
3054 /* Other codes have no operands. */
3055 break;
3056 }
3057 }
3058
3059 /* Output a sequence of location operations. */
3060
3061 static void
3062 output_loc_sequence (dw_loc_descr_ref loc)
3063 {
3064 for (; loc != NULL; loc = loc->dw_loc_next)
3065 {
3066 /* Output the opcode. */
3067 dw2_asm_output_data (1, loc->dw_loc_opc,
3068 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3069
3070 /* Output the operand(s) (if any). */
3071 output_loc_operands (loc);
3072 }
3073 }
3074
3075 /* This routine will generate the correct assembly data for a location
3076 description based on a cfi entry with a complex address. */
3077
3078 static void
3079 output_cfa_loc (dw_cfi_ref cfi)
3080 {
3081 dw_loc_descr_ref loc;
3082 unsigned long size;
3083
3084 /* Output the size of the block. */
3085 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3086 size = size_of_locs (loc);
3087 dw2_asm_output_data_uleb128 (size, NULL);
3088
3089 /* Now output the operations themselves. */
3090 output_loc_sequence (loc);
3091 }
3092
3093 /* This function builds a dwarf location descriptor sequence from
3094 a dw_cfa_location. */
3095
3096 static struct dw_loc_descr_struct *
3097 build_cfa_loc (dw_cfa_location *cfa)
3098 {
3099 struct dw_loc_descr_struct *head, *tmp;
3100
3101 if (cfa->indirect == 0)
3102 abort ();
3103
3104 if (cfa->base_offset)
3105 {
3106 if (cfa->reg <= 31)
3107 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3108 else
3109 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3110 }
3111 else if (cfa->reg <= 31)
3112 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3113 else
3114 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3115
3116 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3117 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3118 add_loc_descr (&head, tmp);
3119 if (cfa->offset != 0)
3120 {
3121 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3122 add_loc_descr (&head, tmp);
3123 }
3124
3125 return head;
3126 }
3127
3128 /* This function fills in aa dw_cfa_location structure from a dwarf location
3129 descriptor sequence. */
3130
3131 static void
3132 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3133 {
3134 struct dw_loc_descr_struct *ptr;
3135 cfa->offset = 0;
3136 cfa->base_offset = 0;
3137 cfa->indirect = 0;
3138 cfa->reg = -1;
3139
3140 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3141 {
3142 enum dwarf_location_atom op = ptr->dw_loc_opc;
3143
3144 switch (op)
3145 {
3146 case DW_OP_reg0:
3147 case DW_OP_reg1:
3148 case DW_OP_reg2:
3149 case DW_OP_reg3:
3150 case DW_OP_reg4:
3151 case DW_OP_reg5:
3152 case DW_OP_reg6:
3153 case DW_OP_reg7:
3154 case DW_OP_reg8:
3155 case DW_OP_reg9:
3156 case DW_OP_reg10:
3157 case DW_OP_reg11:
3158 case DW_OP_reg12:
3159 case DW_OP_reg13:
3160 case DW_OP_reg14:
3161 case DW_OP_reg15:
3162 case DW_OP_reg16:
3163 case DW_OP_reg17:
3164 case DW_OP_reg18:
3165 case DW_OP_reg19:
3166 case DW_OP_reg20:
3167 case DW_OP_reg21:
3168 case DW_OP_reg22:
3169 case DW_OP_reg23:
3170 case DW_OP_reg24:
3171 case DW_OP_reg25:
3172 case DW_OP_reg26:
3173 case DW_OP_reg27:
3174 case DW_OP_reg28:
3175 case DW_OP_reg29:
3176 case DW_OP_reg30:
3177 case DW_OP_reg31:
3178 cfa->reg = op - DW_OP_reg0;
3179 break;
3180 case DW_OP_regx:
3181 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3182 break;
3183 case DW_OP_breg0:
3184 case DW_OP_breg1:
3185 case DW_OP_breg2:
3186 case DW_OP_breg3:
3187 case DW_OP_breg4:
3188 case DW_OP_breg5:
3189 case DW_OP_breg6:
3190 case DW_OP_breg7:
3191 case DW_OP_breg8:
3192 case DW_OP_breg9:
3193 case DW_OP_breg10:
3194 case DW_OP_breg11:
3195 case DW_OP_breg12:
3196 case DW_OP_breg13:
3197 case DW_OP_breg14:
3198 case DW_OP_breg15:
3199 case DW_OP_breg16:
3200 case DW_OP_breg17:
3201 case DW_OP_breg18:
3202 case DW_OP_breg19:
3203 case DW_OP_breg20:
3204 case DW_OP_breg21:
3205 case DW_OP_breg22:
3206 case DW_OP_breg23:
3207 case DW_OP_breg24:
3208 case DW_OP_breg25:
3209 case DW_OP_breg26:
3210 case DW_OP_breg27:
3211 case DW_OP_breg28:
3212 case DW_OP_breg29:
3213 case DW_OP_breg30:
3214 case DW_OP_breg31:
3215 cfa->reg = op - DW_OP_breg0;
3216 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3217 break;
3218 case DW_OP_bregx:
3219 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3220 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3221 break;
3222 case DW_OP_deref:
3223 cfa->indirect = 1;
3224 break;
3225 case DW_OP_plus_uconst:
3226 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3227 break;
3228 default:
3229 internal_error ("DW_LOC_OP %s not implemented\n",
3230 dwarf_stack_op_name (ptr->dw_loc_opc));
3231 }
3232 }
3233 }
3234 #endif /* .debug_frame support */
3235 \f
3236 /* And now, the support for symbolic debugging information. */
3237 #ifdef DWARF2_DEBUGGING_INFO
3238
3239 /* .debug_str support. */
3240 static int output_indirect_string (void **, void *);
3241
3242 static void dwarf2out_init (const char *);
3243 static void dwarf2out_finish (const char *);
3244 static void dwarf2out_define (unsigned int, const char *);
3245 static void dwarf2out_undef (unsigned int, const char *);
3246 static void dwarf2out_start_source_file (unsigned, const char *);
3247 static void dwarf2out_end_source_file (unsigned);
3248 static void dwarf2out_begin_block (unsigned, unsigned);
3249 static void dwarf2out_end_block (unsigned, unsigned);
3250 static bool dwarf2out_ignore_block (tree);
3251 static void dwarf2out_global_decl (tree);
3252 static void dwarf2out_imported_module_or_decl (tree, tree);
3253 static void dwarf2out_abstract_function (tree);
3254 static void dwarf2out_var_location (rtx);
3255 static void dwarf2out_begin_function (tree);
3256
3257 /* The debug hooks structure. */
3258
3259 const struct gcc_debug_hooks dwarf2_debug_hooks =
3260 {
3261 dwarf2out_init,
3262 dwarf2out_finish,
3263 dwarf2out_define,
3264 dwarf2out_undef,
3265 dwarf2out_start_source_file,
3266 dwarf2out_end_source_file,
3267 dwarf2out_begin_block,
3268 dwarf2out_end_block,
3269 dwarf2out_ignore_block,
3270 dwarf2out_source_line,
3271 dwarf2out_begin_prologue,
3272 debug_nothing_int_charstar, /* end_prologue */
3273 dwarf2out_end_epilogue,
3274 dwarf2out_begin_function,
3275 debug_nothing_int, /* end_function */
3276 dwarf2out_decl, /* function_decl */
3277 dwarf2out_global_decl,
3278 dwarf2out_imported_module_or_decl,
3279 debug_nothing_tree, /* deferred_inline_function */
3280 /* The DWARF 2 backend tries to reduce debugging bloat by not
3281 emitting the abstract description of inline functions until
3282 something tries to reference them. */
3283 dwarf2out_abstract_function, /* outlining_inline_function */
3284 debug_nothing_rtx, /* label */
3285 debug_nothing_int, /* handle_pch */
3286 dwarf2out_var_location
3287 };
3288 #endif
3289 \f
3290 /* NOTE: In the comments in this file, many references are made to
3291 "Debugging Information Entries". This term is abbreviated as `DIE'
3292 throughout the remainder of this file. */
3293
3294 /* An internal representation of the DWARF output is built, and then
3295 walked to generate the DWARF debugging info. The walk of the internal
3296 representation is done after the entire program has been compiled.
3297 The types below are used to describe the internal representation. */
3298
3299 /* Various DIE's use offsets relative to the beginning of the
3300 .debug_info section to refer to each other. */
3301
3302 typedef long int dw_offset;
3303
3304 /* Define typedefs here to avoid circular dependencies. */
3305
3306 typedef struct dw_attr_struct *dw_attr_ref;
3307 typedef struct dw_line_info_struct *dw_line_info_ref;
3308 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3309 typedef struct pubname_struct *pubname_ref;
3310 typedef struct dw_ranges_struct *dw_ranges_ref;
3311
3312 /* Each entry in the line_info_table maintains the file and
3313 line number associated with the label generated for that
3314 entry. The label gives the PC value associated with
3315 the line number entry. */
3316
3317 typedef struct dw_line_info_struct GTY(())
3318 {
3319 unsigned long dw_file_num;
3320 unsigned long dw_line_num;
3321 }
3322 dw_line_info_entry;
3323
3324 /* Line information for functions in separate sections; each one gets its
3325 own sequence. */
3326 typedef struct dw_separate_line_info_struct GTY(())
3327 {
3328 unsigned long dw_file_num;
3329 unsigned long dw_line_num;
3330 unsigned long function;
3331 }
3332 dw_separate_line_info_entry;
3333
3334 /* Each DIE attribute has a field specifying the attribute kind,
3335 a link to the next attribute in the chain, and an attribute value.
3336 Attributes are typically linked below the DIE they modify. */
3337
3338 typedef struct dw_attr_struct GTY(())
3339 {
3340 enum dwarf_attribute dw_attr;
3341 dw_attr_ref dw_attr_next;
3342 dw_val_node dw_attr_val;
3343 }
3344 dw_attr_node;
3345
3346 /* The Debugging Information Entry (DIE) structure */
3347
3348 typedef struct die_struct GTY(())
3349 {
3350 enum dwarf_tag die_tag;
3351 char *die_symbol;
3352 dw_attr_ref die_attr;
3353 dw_die_ref die_parent;
3354 dw_die_ref die_child;
3355 dw_die_ref die_sib;
3356 dw_die_ref die_definition; /* ref from a specification to its definition */
3357 dw_offset die_offset;
3358 unsigned long die_abbrev;
3359 int die_mark;
3360 unsigned int decl_id;
3361 }
3362 die_node;
3363
3364 /* The pubname structure */
3365
3366 typedef struct pubname_struct GTY(())
3367 {
3368 dw_die_ref die;
3369 char *name;
3370 }
3371 pubname_entry;
3372
3373 struct dw_ranges_struct GTY(())
3374 {
3375 int block_num;
3376 };
3377
3378 /* The limbo die list structure. */
3379 typedef struct limbo_die_struct GTY(())
3380 {
3381 dw_die_ref die;
3382 tree created_for;
3383 struct limbo_die_struct *next;
3384 }
3385 limbo_die_node;
3386
3387 /* How to start an assembler comment. */
3388 #ifndef ASM_COMMENT_START
3389 #define ASM_COMMENT_START ";#"
3390 #endif
3391
3392 /* Define a macro which returns nonzero for a TYPE_DECL which was
3393 implicitly generated for a tagged type.
3394
3395 Note that unlike the gcc front end (which generates a NULL named
3396 TYPE_DECL node for each complete tagged type, each array type, and
3397 each function type node created) the g++ front end generates a
3398 _named_ TYPE_DECL node for each tagged type node created.
3399 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3400 generate a DW_TAG_typedef DIE for them. */
3401
3402 #define TYPE_DECL_IS_STUB(decl) \
3403 (DECL_NAME (decl) == NULL_TREE \
3404 || (DECL_ARTIFICIAL (decl) \
3405 && is_tagged_type (TREE_TYPE (decl)) \
3406 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3407 /* This is necessary for stub decls that \
3408 appear in nested inline functions. */ \
3409 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3410 && (decl_ultimate_origin (decl) \
3411 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3412
3413 /* Information concerning the compilation unit's programming
3414 language, and compiler version. */
3415
3416 /* Fixed size portion of the DWARF compilation unit header. */
3417 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3418 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3419
3420 /* Fixed size portion of public names info. */
3421 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3422
3423 /* Fixed size portion of the address range info. */
3424 #define DWARF_ARANGES_HEADER_SIZE \
3425 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3426 DWARF2_ADDR_SIZE * 2) \
3427 - DWARF_INITIAL_LENGTH_SIZE)
3428
3429 /* Size of padding portion in the address range info. It must be
3430 aligned to twice the pointer size. */
3431 #define DWARF_ARANGES_PAD_SIZE \
3432 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3433 DWARF2_ADDR_SIZE * 2) \
3434 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3435
3436 /* Use assembler line directives if available. */
3437 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3438 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3439 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3440 #else
3441 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3442 #endif
3443 #endif
3444
3445 /* Minimum line offset in a special line info. opcode.
3446 This value was chosen to give a reasonable range of values. */
3447 #define DWARF_LINE_BASE -10
3448
3449 /* First special line opcode - leave room for the standard opcodes. */
3450 #define DWARF_LINE_OPCODE_BASE 10
3451
3452 /* Range of line offsets in a special line info. opcode. */
3453 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3454
3455 /* Flag that indicates the initial value of the is_stmt_start flag.
3456 In the present implementation, we do not mark any lines as
3457 the beginning of a source statement, because that information
3458 is not made available by the GCC front-end. */
3459 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3460
3461 #ifdef DWARF2_DEBUGGING_INFO
3462 /* This location is used by calc_die_sizes() to keep track
3463 the offset of each DIE within the .debug_info section. */
3464 static unsigned long next_die_offset;
3465 #endif
3466
3467 /* Record the root of the DIE's built for the current compilation unit. */
3468 static GTY(()) dw_die_ref comp_unit_die;
3469
3470 /* A list of DIEs with a NULL parent waiting to be relocated. */
3471 static GTY(()) limbo_die_node *limbo_die_list;
3472
3473 /* Filenames referenced by this compilation unit. */
3474 static GTY(()) varray_type file_table;
3475 static GTY(()) varray_type file_table_emitted;
3476 static GTY(()) size_t file_table_last_lookup_index;
3477
3478 /* A hash table of references to DIE's that describe declarations.
3479 The key is a DECL_UID() which is a unique number identifying each decl. */
3480 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3481
3482 /* Node of the variable location list. */
3483 struct var_loc_node GTY ((chain_next ("%h.next")))
3484 {
3485 rtx GTY (()) var_loc_note;
3486 const char * GTY (()) label;
3487 struct var_loc_node * GTY (()) next;
3488 };
3489
3490 /* Variable location list. */
3491 struct var_loc_list_def GTY (())
3492 {
3493 struct var_loc_node * GTY (()) first;
3494
3495 /* Do not mark the last element of the chained list because
3496 it is marked through the chain. */
3497 struct var_loc_node * GTY ((skip ("%h"))) last;
3498
3499 /* DECL_UID of the variable decl. */
3500 unsigned int decl_id;
3501 };
3502 typedef struct var_loc_list_def var_loc_list;
3503
3504
3505 /* Table of decl location linked lists. */
3506 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3507
3508 /* A pointer to the base of a list of references to DIE's that
3509 are uniquely identified by their tag, presence/absence of
3510 children DIE's, and list of attribute/value pairs. */
3511 static GTY((length ("abbrev_die_table_allocated")))
3512 dw_die_ref *abbrev_die_table;
3513
3514 /* Number of elements currently allocated for abbrev_die_table. */
3515 static GTY(()) unsigned abbrev_die_table_allocated;
3516
3517 /* Number of elements in type_die_table currently in use. */
3518 static GTY(()) unsigned abbrev_die_table_in_use;
3519
3520 /* Size (in elements) of increments by which we may expand the
3521 abbrev_die_table. */
3522 #define ABBREV_DIE_TABLE_INCREMENT 256
3523
3524 /* A pointer to the base of a table that contains line information
3525 for each source code line in .text in the compilation unit. */
3526 static GTY((length ("line_info_table_allocated")))
3527 dw_line_info_ref line_info_table;
3528
3529 /* Number of elements currently allocated for line_info_table. */
3530 static GTY(()) unsigned line_info_table_allocated;
3531
3532 /* Number of elements in line_info_table currently in use. */
3533 static GTY(()) unsigned line_info_table_in_use;
3534
3535 /* A pointer to the base of a table that contains line information
3536 for each source code line outside of .text in the compilation unit. */
3537 static GTY ((length ("separate_line_info_table_allocated")))
3538 dw_separate_line_info_ref separate_line_info_table;
3539
3540 /* Number of elements currently allocated for separate_line_info_table. */
3541 static GTY(()) unsigned separate_line_info_table_allocated;
3542
3543 /* Number of elements in separate_line_info_table currently in use. */
3544 static GTY(()) unsigned separate_line_info_table_in_use;
3545
3546 /* Size (in elements) of increments by which we may expand the
3547 line_info_table. */
3548 #define LINE_INFO_TABLE_INCREMENT 1024
3549
3550 /* A pointer to the base of a table that contains a list of publicly
3551 accessible names. */
3552 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3553
3554 /* Number of elements currently allocated for pubname_table. */
3555 static GTY(()) unsigned pubname_table_allocated;
3556
3557 /* Number of elements in pubname_table currently in use. */
3558 static GTY(()) unsigned pubname_table_in_use;
3559
3560 /* Size (in elements) of increments by which we may expand the
3561 pubname_table. */
3562 #define PUBNAME_TABLE_INCREMENT 64
3563
3564 /* Array of dies for which we should generate .debug_arange info. */
3565 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3566
3567 /* Number of elements currently allocated for arange_table. */
3568 static GTY(()) unsigned arange_table_allocated;
3569
3570 /* Number of elements in arange_table currently in use. */
3571 static GTY(()) unsigned arange_table_in_use;
3572
3573 /* Size (in elements) of increments by which we may expand the
3574 arange_table. */
3575 #define ARANGE_TABLE_INCREMENT 64
3576
3577 /* Array of dies for which we should generate .debug_ranges info. */
3578 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3579
3580 /* Number of elements currently allocated for ranges_table. */
3581 static GTY(()) unsigned ranges_table_allocated;
3582
3583 /* Number of elements in ranges_table currently in use. */
3584 static GTY(()) unsigned ranges_table_in_use;
3585
3586 /* Size (in elements) of increments by which we may expand the
3587 ranges_table. */
3588 #define RANGES_TABLE_INCREMENT 64
3589
3590 /* Whether we have location lists that need outputting */
3591 static GTY(()) unsigned have_location_lists;
3592
3593 #ifdef DWARF2_DEBUGGING_INFO
3594 /* Record whether the function being analyzed contains inlined functions. */
3595 static int current_function_has_inlines;
3596
3597 /* Unique label counter. */
3598 static unsigned int loclabel_num = 0;
3599 #endif
3600 #if 0 && defined (MIPS_DEBUGGING_INFO)
3601 static int comp_unit_has_inlines;
3602 #endif
3603
3604 /* Number of file tables emitted in maybe_emit_file(). */
3605 static GTY(()) int emitcount = 0;
3606
3607 /* Number of internal labels generated by gen_internal_sym(). */
3608 static GTY(()) int label_num;
3609
3610 #ifdef DWARF2_DEBUGGING_INFO
3611
3612 /* Forward declarations for functions defined in this file. */
3613
3614 static int is_pseudo_reg (rtx);
3615 static tree type_main_variant (tree);
3616 static int is_tagged_type (tree);
3617 static const char *dwarf_tag_name (unsigned);
3618 static const char *dwarf_attr_name (unsigned);
3619 static const char *dwarf_form_name (unsigned);
3620 #if 0
3621 static const char *dwarf_type_encoding_name (unsigned);
3622 #endif
3623 static tree decl_ultimate_origin (tree);
3624 static tree block_ultimate_origin (tree);
3625 static tree decl_class_context (tree);
3626 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3627 static inline enum dw_val_class AT_class (dw_attr_ref);
3628 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3629 static inline unsigned AT_flag (dw_attr_ref);
3630 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3631 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3632 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3633 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3634 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3635 unsigned long);
3636 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3637 static hashval_t debug_str_do_hash (const void *);
3638 static int debug_str_eq (const void *, const void *);
3639 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3640 static inline const char *AT_string (dw_attr_ref);
3641 static int AT_string_form (dw_attr_ref);
3642 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3643 static void add_AT_specification (dw_die_ref, dw_die_ref);
3644 static inline dw_die_ref AT_ref (dw_attr_ref);
3645 static inline int AT_ref_external (dw_attr_ref);
3646 static inline void set_AT_ref_external (dw_attr_ref, int);
3647 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3648 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3649 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3650 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3651 dw_loc_list_ref);
3652 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3653 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3654 static inline rtx AT_addr (dw_attr_ref);
3655 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3656 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3657 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3658 unsigned HOST_WIDE_INT);
3659 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3660 unsigned long);
3661 static inline const char *AT_lbl (dw_attr_ref);
3662 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3663 static const char *get_AT_low_pc (dw_die_ref);
3664 static const char *get_AT_hi_pc (dw_die_ref);
3665 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3666 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3667 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3668 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3669 static bool is_c_family (void);
3670 static bool is_cxx (void);
3671 static bool is_java (void);
3672 static bool is_fortran (void);
3673 static bool is_ada (void);
3674 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3675 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3676 static inline void free_die (dw_die_ref);
3677 static void remove_children (dw_die_ref);
3678 static void add_child_die (dw_die_ref, dw_die_ref);
3679 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3680 static dw_die_ref lookup_type_die (tree);
3681 static void equate_type_number_to_die (tree, dw_die_ref);
3682 static hashval_t decl_die_table_hash (const void *);
3683 static int decl_die_table_eq (const void *, const void *);
3684 static dw_die_ref lookup_decl_die (tree);
3685 static hashval_t decl_loc_table_hash (const void *);
3686 static int decl_loc_table_eq (const void *, const void *);
3687 static var_loc_list *lookup_decl_loc (tree);
3688 static void equate_decl_number_to_die (tree, dw_die_ref);
3689 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3690 static void print_spaces (FILE *);
3691 static void print_die (dw_die_ref, FILE *);
3692 static void print_dwarf_line_table (FILE *);
3693 static void reverse_die_lists (dw_die_ref);
3694 static void reverse_all_dies (dw_die_ref);
3695 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3696 static dw_die_ref pop_compile_unit (dw_die_ref);
3697 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3698 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3699 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3700 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3701 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3702 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3703 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3704 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3705 static void compute_section_prefix (dw_die_ref);
3706 static int is_type_die (dw_die_ref);
3707 static int is_comdat_die (dw_die_ref);
3708 static int is_symbol_die (dw_die_ref);
3709 static void assign_symbol_names (dw_die_ref);
3710 static void break_out_includes (dw_die_ref);
3711 static hashval_t htab_cu_hash (const void *);
3712 static int htab_cu_eq (const void *, const void *);
3713 static void htab_cu_del (void *);
3714 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3715 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3716 static void add_sibling_attributes (dw_die_ref);
3717 static void build_abbrev_table (dw_die_ref);
3718 static void output_location_lists (dw_die_ref);
3719 static int constant_size (long unsigned);
3720 static unsigned long size_of_die (dw_die_ref);
3721 static void calc_die_sizes (dw_die_ref);
3722 static void mark_dies (dw_die_ref);
3723 static void unmark_dies (dw_die_ref);
3724 static void unmark_all_dies (dw_die_ref);
3725 static unsigned long size_of_pubnames (void);
3726 static unsigned long size_of_aranges (void);
3727 static enum dwarf_form value_format (dw_attr_ref);
3728 static void output_value_format (dw_attr_ref);
3729 static void output_abbrev_section (void);
3730 static void output_die_symbol (dw_die_ref);
3731 static void output_die (dw_die_ref);
3732 static void output_compilation_unit_header (void);
3733 static void output_comp_unit (dw_die_ref, int);
3734 static const char *dwarf2_name (tree, int);
3735 static void add_pubname (tree, dw_die_ref);
3736 static void output_pubnames (void);
3737 static void add_arange (tree, dw_die_ref);
3738 static void output_aranges (void);
3739 static unsigned int add_ranges (tree);
3740 static void output_ranges (void);
3741 static void output_line_info (void);
3742 static void output_file_names (void);
3743 static dw_die_ref base_type_die (tree);
3744 static tree root_type (tree);
3745 static int is_base_type (tree);
3746 static bool is_subrange_type (tree);
3747 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3748 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3749 static int type_is_enum (tree);
3750 static unsigned int reg_number (rtx);
3751 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3752 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3753 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3754 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3755 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3756 static int is_based_loc (rtx);
3757 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3758 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3759 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3760 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3761 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3762 static tree field_type (tree);
3763 static unsigned int simple_type_align_in_bits (tree);
3764 static unsigned int simple_decl_align_in_bits (tree);
3765 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3766 static HOST_WIDE_INT field_byte_offset (tree);
3767 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3768 dw_loc_descr_ref);
3769 static void add_data_member_location_attribute (dw_die_ref, tree);
3770 static void add_const_value_attribute (dw_die_ref, rtx);
3771 static rtx rtl_for_decl_location (tree);
3772 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3773 enum dwarf_attribute);
3774 static void tree_add_const_value_attribute (dw_die_ref, tree);
3775 static void add_name_attribute (dw_die_ref, const char *);
3776 static void add_comp_dir_attribute (dw_die_ref);
3777 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3778 static void add_subscript_info (dw_die_ref, tree);
3779 static void add_byte_size_attribute (dw_die_ref, tree);
3780 static void add_bit_offset_attribute (dw_die_ref, tree);
3781 static void add_bit_size_attribute (dw_die_ref, tree);
3782 static void add_prototyped_attribute (dw_die_ref, tree);
3783 static void add_abstract_origin_attribute (dw_die_ref, tree);
3784 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3785 static void add_src_coords_attributes (dw_die_ref, tree);
3786 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3787 static void push_decl_scope (tree);
3788 static void pop_decl_scope (void);
3789 static dw_die_ref scope_die_for (tree, dw_die_ref);
3790 static inline int local_scope_p (dw_die_ref);
3791 static inline int class_or_namespace_scope_p (dw_die_ref);
3792 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3793 static const char *type_tag (tree);
3794 static tree member_declared_type (tree);
3795 #if 0
3796 static const char *decl_start_label (tree);
3797 #endif
3798 static void gen_array_type_die (tree, dw_die_ref);
3799 static void gen_set_type_die (tree, dw_die_ref);
3800 #if 0
3801 static void gen_entry_point_die (tree, dw_die_ref);
3802 #endif
3803 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3804 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3805 static void gen_inlined_union_type_die (tree, dw_die_ref);
3806 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3807 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3808 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3809 static void gen_formal_types_die (tree, dw_die_ref);
3810 static void gen_subprogram_die (tree, dw_die_ref);
3811 static void gen_variable_die (tree, dw_die_ref);
3812 static void gen_label_die (tree, dw_die_ref);
3813 static void gen_lexical_block_die (tree, dw_die_ref, int);
3814 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3815 static void gen_field_die (tree, dw_die_ref);
3816 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3817 static dw_die_ref gen_compile_unit_die (const char *);
3818 static void gen_string_type_die (tree, dw_die_ref);
3819 static void gen_inheritance_die (tree, tree, dw_die_ref);
3820 static void gen_member_die (tree, dw_die_ref);
3821 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3822 static void gen_subroutine_type_die (tree, dw_die_ref);
3823 static void gen_typedef_die (tree, dw_die_ref);
3824 static void gen_type_die (tree, dw_die_ref);
3825 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3826 static void gen_block_die (tree, dw_die_ref, int);
3827 static void decls_for_scope (tree, dw_die_ref, int);
3828 static int is_redundant_typedef (tree);
3829 static void gen_namespace_die (tree);
3830 static void gen_decl_die (tree, dw_die_ref);
3831 static dw_die_ref force_decl_die (tree);
3832 static dw_die_ref force_type_die (tree);
3833 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3834 static void declare_in_namespace (tree, dw_die_ref);
3835 static unsigned lookup_filename (const char *);
3836 static void init_file_table (void);
3837 static void retry_incomplete_types (void);
3838 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3839 static void splice_child_die (dw_die_ref, dw_die_ref);
3840 static int file_info_cmp (const void *, const void *);
3841 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3842 const char *, const char *, unsigned);
3843 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3844 const char *, const char *,
3845 const char *);
3846 static void output_loc_list (dw_loc_list_ref);
3847 static char *gen_internal_sym (const char *);
3848
3849 static void prune_unmark_dies (dw_die_ref);
3850 static void prune_unused_types_mark (dw_die_ref, int);
3851 static void prune_unused_types_walk (dw_die_ref);
3852 static void prune_unused_types_walk_attribs (dw_die_ref);
3853 static void prune_unused_types_prune (dw_die_ref);
3854 static void prune_unused_types (void);
3855 static int maybe_emit_file (int);
3856
3857 /* Section names used to hold DWARF debugging information. */
3858 #ifndef DEBUG_INFO_SECTION
3859 #define DEBUG_INFO_SECTION ".debug_info"
3860 #endif
3861 #ifndef DEBUG_ABBREV_SECTION
3862 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3863 #endif
3864 #ifndef DEBUG_ARANGES_SECTION
3865 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3866 #endif
3867 #ifndef DEBUG_MACINFO_SECTION
3868 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3869 #endif
3870 #ifndef DEBUG_LINE_SECTION
3871 #define DEBUG_LINE_SECTION ".debug_line"
3872 #endif
3873 #ifndef DEBUG_LOC_SECTION
3874 #define DEBUG_LOC_SECTION ".debug_loc"
3875 #endif
3876 #ifndef DEBUG_PUBNAMES_SECTION
3877 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3878 #endif
3879 #ifndef DEBUG_STR_SECTION
3880 #define DEBUG_STR_SECTION ".debug_str"
3881 #endif
3882 #ifndef DEBUG_RANGES_SECTION
3883 #define DEBUG_RANGES_SECTION ".debug_ranges"
3884 #endif
3885
3886 /* Standard ELF section names for compiled code and data. */
3887 #ifndef TEXT_SECTION_NAME
3888 #define TEXT_SECTION_NAME ".text"
3889 #endif
3890
3891 /* Section flags for .debug_str section. */
3892 #define DEBUG_STR_SECTION_FLAGS \
3893 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3894 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3895 : SECTION_DEBUG)
3896
3897 /* Labels we insert at beginning sections we can reference instead of
3898 the section names themselves. */
3899
3900 #ifndef TEXT_SECTION_LABEL
3901 #define TEXT_SECTION_LABEL "Ltext"
3902 #endif
3903 #ifndef DEBUG_LINE_SECTION_LABEL
3904 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3905 #endif
3906 #ifndef DEBUG_INFO_SECTION_LABEL
3907 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3908 #endif
3909 #ifndef DEBUG_ABBREV_SECTION_LABEL
3910 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3911 #endif
3912 #ifndef DEBUG_LOC_SECTION_LABEL
3913 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3914 #endif
3915 #ifndef DEBUG_RANGES_SECTION_LABEL
3916 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3917 #endif
3918 #ifndef DEBUG_MACINFO_SECTION_LABEL
3919 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3920 #endif
3921
3922 /* Definitions of defaults for formats and names of various special
3923 (artificial) labels which may be generated within this file (when the -g
3924 options is used and DWARF2_DEBUGGING_INFO is in effect.
3925 If necessary, these may be overridden from within the tm.h file, but
3926 typically, overriding these defaults is unnecessary. */
3927
3928 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3929 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3930 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3931 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3932 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3933 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3934 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3935 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3936
3937 #ifndef TEXT_END_LABEL
3938 #define TEXT_END_LABEL "Letext"
3939 #endif
3940 #ifndef BLOCK_BEGIN_LABEL
3941 #define BLOCK_BEGIN_LABEL "LBB"
3942 #endif
3943 #ifndef BLOCK_END_LABEL
3944 #define BLOCK_END_LABEL "LBE"
3945 #endif
3946 #ifndef LINE_CODE_LABEL
3947 #define LINE_CODE_LABEL "LM"
3948 #endif
3949 #ifndef SEPARATE_LINE_CODE_LABEL
3950 #define SEPARATE_LINE_CODE_LABEL "LSM"
3951 #endif
3952 \f
3953 /* We allow a language front-end to designate a function that is to be
3954 called to "demangle" any name before it it put into a DIE. */
3955
3956 static const char *(*demangle_name_func) (const char *);
3957
3958 void
3959 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3960 {
3961 demangle_name_func = func;
3962 }
3963
3964 /* Test if rtl node points to a pseudo register. */
3965
3966 static inline int
3967 is_pseudo_reg (rtx rtl)
3968 {
3969 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3970 || (GET_CODE (rtl) == SUBREG
3971 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3972 }
3973
3974 /* Return a reference to a type, with its const and volatile qualifiers
3975 removed. */
3976
3977 static inline tree
3978 type_main_variant (tree type)
3979 {
3980 type = TYPE_MAIN_VARIANT (type);
3981
3982 /* ??? There really should be only one main variant among any group of
3983 variants of a given type (and all of the MAIN_VARIANT values for all
3984 members of the group should point to that one type) but sometimes the C
3985 front-end messes this up for array types, so we work around that bug
3986 here. */
3987 if (TREE_CODE (type) == ARRAY_TYPE)
3988 while (type != TYPE_MAIN_VARIANT (type))
3989 type = TYPE_MAIN_VARIANT (type);
3990
3991 return type;
3992 }
3993
3994 /* Return nonzero if the given type node represents a tagged type. */
3995
3996 static inline int
3997 is_tagged_type (tree type)
3998 {
3999 enum tree_code code = TREE_CODE (type);
4000
4001 return (code == RECORD_TYPE || code == UNION_TYPE
4002 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4003 }
4004
4005 /* Convert a DIE tag into its string name. */
4006
4007 static const char *
4008 dwarf_tag_name (unsigned int tag)
4009 {
4010 switch (tag)
4011 {
4012 case DW_TAG_padding:
4013 return "DW_TAG_padding";
4014 case DW_TAG_array_type:
4015 return "DW_TAG_array_type";
4016 case DW_TAG_class_type:
4017 return "DW_TAG_class_type";
4018 case DW_TAG_entry_point:
4019 return "DW_TAG_entry_point";
4020 case DW_TAG_enumeration_type:
4021 return "DW_TAG_enumeration_type";
4022 case DW_TAG_formal_parameter:
4023 return "DW_TAG_formal_parameter";
4024 case DW_TAG_imported_declaration:
4025 return "DW_TAG_imported_declaration";
4026 case DW_TAG_label:
4027 return "DW_TAG_label";
4028 case DW_TAG_lexical_block:
4029 return "DW_TAG_lexical_block";
4030 case DW_TAG_member:
4031 return "DW_TAG_member";
4032 case DW_TAG_pointer_type:
4033 return "DW_TAG_pointer_type";
4034 case DW_TAG_reference_type:
4035 return "DW_TAG_reference_type";
4036 case DW_TAG_compile_unit:
4037 return "DW_TAG_compile_unit";
4038 case DW_TAG_string_type:
4039 return "DW_TAG_string_type";
4040 case DW_TAG_structure_type:
4041 return "DW_TAG_structure_type";
4042 case DW_TAG_subroutine_type:
4043 return "DW_TAG_subroutine_type";
4044 case DW_TAG_typedef:
4045 return "DW_TAG_typedef";
4046 case DW_TAG_union_type:
4047 return "DW_TAG_union_type";
4048 case DW_TAG_unspecified_parameters:
4049 return "DW_TAG_unspecified_parameters";
4050 case DW_TAG_variant:
4051 return "DW_TAG_variant";
4052 case DW_TAG_common_block:
4053 return "DW_TAG_common_block";
4054 case DW_TAG_common_inclusion:
4055 return "DW_TAG_common_inclusion";
4056 case DW_TAG_inheritance:
4057 return "DW_TAG_inheritance";
4058 case DW_TAG_inlined_subroutine:
4059 return "DW_TAG_inlined_subroutine";
4060 case DW_TAG_module:
4061 return "DW_TAG_module";
4062 case DW_TAG_ptr_to_member_type:
4063 return "DW_TAG_ptr_to_member_type";
4064 case DW_TAG_set_type:
4065 return "DW_TAG_set_type";
4066 case DW_TAG_subrange_type:
4067 return "DW_TAG_subrange_type";
4068 case DW_TAG_with_stmt:
4069 return "DW_TAG_with_stmt";
4070 case DW_TAG_access_declaration:
4071 return "DW_TAG_access_declaration";
4072 case DW_TAG_base_type:
4073 return "DW_TAG_base_type";
4074 case DW_TAG_catch_block:
4075 return "DW_TAG_catch_block";
4076 case DW_TAG_const_type:
4077 return "DW_TAG_const_type";
4078 case DW_TAG_constant:
4079 return "DW_TAG_constant";
4080 case DW_TAG_enumerator:
4081 return "DW_TAG_enumerator";
4082 case DW_TAG_file_type:
4083 return "DW_TAG_file_type";
4084 case DW_TAG_friend:
4085 return "DW_TAG_friend";
4086 case DW_TAG_namelist:
4087 return "DW_TAG_namelist";
4088 case DW_TAG_namelist_item:
4089 return "DW_TAG_namelist_item";
4090 case DW_TAG_namespace:
4091 return "DW_TAG_namespace";
4092 case DW_TAG_packed_type:
4093 return "DW_TAG_packed_type";
4094 case DW_TAG_subprogram:
4095 return "DW_TAG_subprogram";
4096 case DW_TAG_template_type_param:
4097 return "DW_TAG_template_type_param";
4098 case DW_TAG_template_value_param:
4099 return "DW_TAG_template_value_param";
4100 case DW_TAG_thrown_type:
4101 return "DW_TAG_thrown_type";
4102 case DW_TAG_try_block:
4103 return "DW_TAG_try_block";
4104 case DW_TAG_variant_part:
4105 return "DW_TAG_variant_part";
4106 case DW_TAG_variable:
4107 return "DW_TAG_variable";
4108 case DW_TAG_volatile_type:
4109 return "DW_TAG_volatile_type";
4110 case DW_TAG_imported_module:
4111 return "DW_TAG_imported_module";
4112 case DW_TAG_MIPS_loop:
4113 return "DW_TAG_MIPS_loop";
4114 case DW_TAG_format_label:
4115 return "DW_TAG_format_label";
4116 case DW_TAG_function_template:
4117 return "DW_TAG_function_template";
4118 case DW_TAG_class_template:
4119 return "DW_TAG_class_template";
4120 case DW_TAG_GNU_BINCL:
4121 return "DW_TAG_GNU_BINCL";
4122 case DW_TAG_GNU_EINCL:
4123 return "DW_TAG_GNU_EINCL";
4124 default:
4125 return "DW_TAG_<unknown>";
4126 }
4127 }
4128
4129 /* Convert a DWARF attribute code into its string name. */
4130
4131 static const char *
4132 dwarf_attr_name (unsigned int attr)
4133 {
4134 switch (attr)
4135 {
4136 case DW_AT_sibling:
4137 return "DW_AT_sibling";
4138 case DW_AT_location:
4139 return "DW_AT_location";
4140 case DW_AT_name:
4141 return "DW_AT_name";
4142 case DW_AT_ordering:
4143 return "DW_AT_ordering";
4144 case DW_AT_subscr_data:
4145 return "DW_AT_subscr_data";
4146 case DW_AT_byte_size:
4147 return "DW_AT_byte_size";
4148 case DW_AT_bit_offset:
4149 return "DW_AT_bit_offset";
4150 case DW_AT_bit_size:
4151 return "DW_AT_bit_size";
4152 case DW_AT_element_list:
4153 return "DW_AT_element_list";
4154 case DW_AT_stmt_list:
4155 return "DW_AT_stmt_list";
4156 case DW_AT_low_pc:
4157 return "DW_AT_low_pc";
4158 case DW_AT_high_pc:
4159 return "DW_AT_high_pc";
4160 case DW_AT_language:
4161 return "DW_AT_language";
4162 case DW_AT_member:
4163 return "DW_AT_member";
4164 case DW_AT_discr:
4165 return "DW_AT_discr";
4166 case DW_AT_discr_value:
4167 return "DW_AT_discr_value";
4168 case DW_AT_visibility:
4169 return "DW_AT_visibility";
4170 case DW_AT_import:
4171 return "DW_AT_import";
4172 case DW_AT_string_length:
4173 return "DW_AT_string_length";
4174 case DW_AT_common_reference:
4175 return "DW_AT_common_reference";
4176 case DW_AT_comp_dir:
4177 return "DW_AT_comp_dir";
4178 case DW_AT_const_value:
4179 return "DW_AT_const_value";
4180 case DW_AT_containing_type:
4181 return "DW_AT_containing_type";
4182 case DW_AT_default_value:
4183 return "DW_AT_default_value";
4184 case DW_AT_inline:
4185 return "DW_AT_inline";
4186 case DW_AT_is_optional:
4187 return "DW_AT_is_optional";
4188 case DW_AT_lower_bound:
4189 return "DW_AT_lower_bound";
4190 case DW_AT_producer:
4191 return "DW_AT_producer";
4192 case DW_AT_prototyped:
4193 return "DW_AT_prototyped";
4194 case DW_AT_return_addr:
4195 return "DW_AT_return_addr";
4196 case DW_AT_start_scope:
4197 return "DW_AT_start_scope";
4198 case DW_AT_stride_size:
4199 return "DW_AT_stride_size";
4200 case DW_AT_upper_bound:
4201 return "DW_AT_upper_bound";
4202 case DW_AT_abstract_origin:
4203 return "DW_AT_abstract_origin";
4204 case DW_AT_accessibility:
4205 return "DW_AT_accessibility";
4206 case DW_AT_address_class:
4207 return "DW_AT_address_class";
4208 case DW_AT_artificial:
4209 return "DW_AT_artificial";
4210 case DW_AT_base_types:
4211 return "DW_AT_base_types";
4212 case DW_AT_calling_convention:
4213 return "DW_AT_calling_convention";
4214 case DW_AT_count:
4215 return "DW_AT_count";
4216 case DW_AT_data_member_location:
4217 return "DW_AT_data_member_location";
4218 case DW_AT_decl_column:
4219 return "DW_AT_decl_column";
4220 case DW_AT_decl_file:
4221 return "DW_AT_decl_file";
4222 case DW_AT_decl_line:
4223 return "DW_AT_decl_line";
4224 case DW_AT_declaration:
4225 return "DW_AT_declaration";
4226 case DW_AT_discr_list:
4227 return "DW_AT_discr_list";
4228 case DW_AT_encoding:
4229 return "DW_AT_encoding";
4230 case DW_AT_external:
4231 return "DW_AT_external";
4232 case DW_AT_frame_base:
4233 return "DW_AT_frame_base";
4234 case DW_AT_friend:
4235 return "DW_AT_friend";
4236 case DW_AT_identifier_case:
4237 return "DW_AT_identifier_case";
4238 case DW_AT_macro_info:
4239 return "DW_AT_macro_info";
4240 case DW_AT_namelist_items:
4241 return "DW_AT_namelist_items";
4242 case DW_AT_priority:
4243 return "DW_AT_priority";
4244 case DW_AT_segment:
4245 return "DW_AT_segment";
4246 case DW_AT_specification:
4247 return "DW_AT_specification";
4248 case DW_AT_static_link:
4249 return "DW_AT_static_link";
4250 case DW_AT_type:
4251 return "DW_AT_type";
4252 case DW_AT_use_location:
4253 return "DW_AT_use_location";
4254 case DW_AT_variable_parameter:
4255 return "DW_AT_variable_parameter";
4256 case DW_AT_virtuality:
4257 return "DW_AT_virtuality";
4258 case DW_AT_vtable_elem_location:
4259 return "DW_AT_vtable_elem_location";
4260
4261 case DW_AT_allocated:
4262 return "DW_AT_allocated";
4263 case DW_AT_associated:
4264 return "DW_AT_associated";
4265 case DW_AT_data_location:
4266 return "DW_AT_data_location";
4267 case DW_AT_stride:
4268 return "DW_AT_stride";
4269 case DW_AT_entry_pc:
4270 return "DW_AT_entry_pc";
4271 case DW_AT_use_UTF8:
4272 return "DW_AT_use_UTF8";
4273 case DW_AT_extension:
4274 return "DW_AT_extension";
4275 case DW_AT_ranges:
4276 return "DW_AT_ranges";
4277 case DW_AT_trampoline:
4278 return "DW_AT_trampoline";
4279 case DW_AT_call_column:
4280 return "DW_AT_call_column";
4281 case DW_AT_call_file:
4282 return "DW_AT_call_file";
4283 case DW_AT_call_line:
4284 return "DW_AT_call_line";
4285
4286 case DW_AT_MIPS_fde:
4287 return "DW_AT_MIPS_fde";
4288 case DW_AT_MIPS_loop_begin:
4289 return "DW_AT_MIPS_loop_begin";
4290 case DW_AT_MIPS_tail_loop_begin:
4291 return "DW_AT_MIPS_tail_loop_begin";
4292 case DW_AT_MIPS_epilog_begin:
4293 return "DW_AT_MIPS_epilog_begin";
4294 case DW_AT_MIPS_loop_unroll_factor:
4295 return "DW_AT_MIPS_loop_unroll_factor";
4296 case DW_AT_MIPS_software_pipeline_depth:
4297 return "DW_AT_MIPS_software_pipeline_depth";
4298 case DW_AT_MIPS_linkage_name:
4299 return "DW_AT_MIPS_linkage_name";
4300 case DW_AT_MIPS_stride:
4301 return "DW_AT_MIPS_stride";
4302 case DW_AT_MIPS_abstract_name:
4303 return "DW_AT_MIPS_abstract_name";
4304 case DW_AT_MIPS_clone_origin:
4305 return "DW_AT_MIPS_clone_origin";
4306 case DW_AT_MIPS_has_inlines:
4307 return "DW_AT_MIPS_has_inlines";
4308
4309 case DW_AT_sf_names:
4310 return "DW_AT_sf_names";
4311 case DW_AT_src_info:
4312 return "DW_AT_src_info";
4313 case DW_AT_mac_info:
4314 return "DW_AT_mac_info";
4315 case DW_AT_src_coords:
4316 return "DW_AT_src_coords";
4317 case DW_AT_body_begin:
4318 return "DW_AT_body_begin";
4319 case DW_AT_body_end:
4320 return "DW_AT_body_end";
4321 case DW_AT_GNU_vector:
4322 return "DW_AT_GNU_vector";
4323
4324 case DW_AT_VMS_rtnbeg_pd_address:
4325 return "DW_AT_VMS_rtnbeg_pd_address";
4326
4327 default:
4328 return "DW_AT_<unknown>";
4329 }
4330 }
4331
4332 /* Convert a DWARF value form code into its string name. */
4333
4334 static const char *
4335 dwarf_form_name (unsigned int form)
4336 {
4337 switch (form)
4338 {
4339 case DW_FORM_addr:
4340 return "DW_FORM_addr";
4341 case DW_FORM_block2:
4342 return "DW_FORM_block2";
4343 case DW_FORM_block4:
4344 return "DW_FORM_block4";
4345 case DW_FORM_data2:
4346 return "DW_FORM_data2";
4347 case DW_FORM_data4:
4348 return "DW_FORM_data4";
4349 case DW_FORM_data8:
4350 return "DW_FORM_data8";
4351 case DW_FORM_string:
4352 return "DW_FORM_string";
4353 case DW_FORM_block:
4354 return "DW_FORM_block";
4355 case DW_FORM_block1:
4356 return "DW_FORM_block1";
4357 case DW_FORM_data1:
4358 return "DW_FORM_data1";
4359 case DW_FORM_flag:
4360 return "DW_FORM_flag";
4361 case DW_FORM_sdata:
4362 return "DW_FORM_sdata";
4363 case DW_FORM_strp:
4364 return "DW_FORM_strp";
4365 case DW_FORM_udata:
4366 return "DW_FORM_udata";
4367 case DW_FORM_ref_addr:
4368 return "DW_FORM_ref_addr";
4369 case DW_FORM_ref1:
4370 return "DW_FORM_ref1";
4371 case DW_FORM_ref2:
4372 return "DW_FORM_ref2";
4373 case DW_FORM_ref4:
4374 return "DW_FORM_ref4";
4375 case DW_FORM_ref8:
4376 return "DW_FORM_ref8";
4377 case DW_FORM_ref_udata:
4378 return "DW_FORM_ref_udata";
4379 case DW_FORM_indirect:
4380 return "DW_FORM_indirect";
4381 default:
4382 return "DW_FORM_<unknown>";
4383 }
4384 }
4385
4386 /* Convert a DWARF type code into its string name. */
4387
4388 #if 0
4389 static const char *
4390 dwarf_type_encoding_name (unsigned enc)
4391 {
4392 switch (enc)
4393 {
4394 case DW_ATE_address:
4395 return "DW_ATE_address";
4396 case DW_ATE_boolean:
4397 return "DW_ATE_boolean";
4398 case DW_ATE_complex_float:
4399 return "DW_ATE_complex_float";
4400 case DW_ATE_float:
4401 return "DW_ATE_float";
4402 case DW_ATE_signed:
4403 return "DW_ATE_signed";
4404 case DW_ATE_signed_char:
4405 return "DW_ATE_signed_char";
4406 case DW_ATE_unsigned:
4407 return "DW_ATE_unsigned";
4408 case DW_ATE_unsigned_char:
4409 return "DW_ATE_unsigned_char";
4410 default:
4411 return "DW_ATE_<unknown>";
4412 }
4413 }
4414 #endif
4415 \f
4416 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4417 instance of an inlined instance of a decl which is local to an inline
4418 function, so we have to trace all of the way back through the origin chain
4419 to find out what sort of node actually served as the original seed for the
4420 given block. */
4421
4422 static tree
4423 decl_ultimate_origin (tree decl)
4424 {
4425 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4426 nodes in the function to point to themselves; ignore that if
4427 we're trying to output the abstract instance of this function. */
4428 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4429 return NULL_TREE;
4430
4431 #ifdef ENABLE_CHECKING
4432 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4433 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4434 most distant ancestor, this should never happen. */
4435 abort ();
4436 #endif
4437
4438 return DECL_ABSTRACT_ORIGIN (decl);
4439 }
4440
4441 /* Determine the "ultimate origin" of a block. The block may be an inlined
4442 instance of an inlined instance of a block which is local to an inline
4443 function, so we have to trace all of the way back through the origin chain
4444 to find out what sort of node actually served as the original seed for the
4445 given block. */
4446
4447 static tree
4448 block_ultimate_origin (tree block)
4449 {
4450 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4451
4452 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4453 nodes in the function to point to themselves; ignore that if
4454 we're trying to output the abstract instance of this function. */
4455 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4456 return NULL_TREE;
4457
4458 if (immediate_origin == NULL_TREE)
4459 return NULL_TREE;
4460 else
4461 {
4462 tree ret_val;
4463 tree lookahead = immediate_origin;
4464
4465 do
4466 {
4467 ret_val = lookahead;
4468 lookahead = (TREE_CODE (ret_val) == BLOCK
4469 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4470 }
4471 while (lookahead != NULL && lookahead != ret_val);
4472
4473 return ret_val;
4474 }
4475 }
4476
4477 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4478 of a virtual function may refer to a base class, so we check the 'this'
4479 parameter. */
4480
4481 static tree
4482 decl_class_context (tree decl)
4483 {
4484 tree context = NULL_TREE;
4485
4486 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4487 context = DECL_CONTEXT (decl);
4488 else
4489 context = TYPE_MAIN_VARIANT
4490 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4491
4492 if (context && !TYPE_P (context))
4493 context = NULL_TREE;
4494
4495 return context;
4496 }
4497 \f
4498 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4499 addition order, and correct that in reverse_all_dies. */
4500
4501 static inline void
4502 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4503 {
4504 if (die != NULL && attr != NULL)
4505 {
4506 attr->dw_attr_next = die->die_attr;
4507 die->die_attr = attr;
4508 }
4509 }
4510
4511 static inline enum dw_val_class
4512 AT_class (dw_attr_ref a)
4513 {
4514 return a->dw_attr_val.val_class;
4515 }
4516
4517 /* Add a flag value attribute to a DIE. */
4518
4519 static inline void
4520 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4521 {
4522 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4523
4524 attr->dw_attr_next = NULL;
4525 attr->dw_attr = attr_kind;
4526 attr->dw_attr_val.val_class = dw_val_class_flag;
4527 attr->dw_attr_val.v.val_flag = flag;
4528 add_dwarf_attr (die, attr);
4529 }
4530
4531 static inline unsigned
4532 AT_flag (dw_attr_ref a)
4533 {
4534 if (a && AT_class (a) == dw_val_class_flag)
4535 return a->dw_attr_val.v.val_flag;
4536
4537 abort ();
4538 }
4539
4540 /* Add a signed integer attribute value to a DIE. */
4541
4542 static inline void
4543 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4544 {
4545 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4546
4547 attr->dw_attr_next = NULL;
4548 attr->dw_attr = attr_kind;
4549 attr->dw_attr_val.val_class = dw_val_class_const;
4550 attr->dw_attr_val.v.val_int = int_val;
4551 add_dwarf_attr (die, attr);
4552 }
4553
4554 static inline HOST_WIDE_INT
4555 AT_int (dw_attr_ref a)
4556 {
4557 if (a && AT_class (a) == dw_val_class_const)
4558 return a->dw_attr_val.v.val_int;
4559
4560 abort ();
4561 }
4562
4563 /* Add an unsigned integer attribute value to a DIE. */
4564
4565 static inline void
4566 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4567 unsigned HOST_WIDE_INT unsigned_val)
4568 {
4569 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4570
4571 attr->dw_attr_next = NULL;
4572 attr->dw_attr = attr_kind;
4573 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4574 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4575 add_dwarf_attr (die, attr);
4576 }
4577
4578 static inline unsigned HOST_WIDE_INT
4579 AT_unsigned (dw_attr_ref a)
4580 {
4581 if (a && AT_class (a) == dw_val_class_unsigned_const)
4582 return a->dw_attr_val.v.val_unsigned;
4583
4584 abort ();
4585 }
4586
4587 /* Add an unsigned double integer attribute value to a DIE. */
4588
4589 static inline void
4590 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4591 long unsigned int val_hi, long unsigned int val_low)
4592 {
4593 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4594
4595 attr->dw_attr_next = NULL;
4596 attr->dw_attr = attr_kind;
4597 attr->dw_attr_val.val_class = dw_val_class_long_long;
4598 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4599 attr->dw_attr_val.v.val_long_long.low = val_low;
4600 add_dwarf_attr (die, attr);
4601 }
4602
4603 /* Add a floating point attribute value to a DIE and return it. */
4604
4605 static inline void
4606 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4607 unsigned int length, long int *array)
4608 {
4609 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4610
4611 attr->dw_attr_next = NULL;
4612 attr->dw_attr = attr_kind;
4613 attr->dw_attr_val.val_class = dw_val_class_float;
4614 attr->dw_attr_val.v.val_float.length = length;
4615 attr->dw_attr_val.v.val_float.array = array;
4616 add_dwarf_attr (die, attr);
4617 }
4618
4619 /* Hash and equality functions for debug_str_hash. */
4620
4621 static hashval_t
4622 debug_str_do_hash (const void *x)
4623 {
4624 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4625 }
4626
4627 static int
4628 debug_str_eq (const void *x1, const void *x2)
4629 {
4630 return strcmp ((((const struct indirect_string_node *)x1)->str),
4631 (const char *)x2) == 0;
4632 }
4633
4634 /* Add a string attribute value to a DIE. */
4635
4636 static inline void
4637 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4638 {
4639 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4640 struct indirect_string_node *node;
4641 void **slot;
4642
4643 if (! debug_str_hash)
4644 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4645 debug_str_eq, NULL);
4646
4647 slot = htab_find_slot_with_hash (debug_str_hash, str,
4648 htab_hash_string (str), INSERT);
4649 if (*slot == NULL)
4650 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4651 node = (struct indirect_string_node *) *slot;
4652 node->str = ggc_strdup (str);
4653 node->refcount++;
4654
4655 attr->dw_attr_next = NULL;
4656 attr->dw_attr = attr_kind;
4657 attr->dw_attr_val.val_class = dw_val_class_str;
4658 attr->dw_attr_val.v.val_str = node;
4659 add_dwarf_attr (die, attr);
4660 }
4661
4662 static inline const char *
4663 AT_string (dw_attr_ref a)
4664 {
4665 if (a && AT_class (a) == dw_val_class_str)
4666 return a->dw_attr_val.v.val_str->str;
4667
4668 abort ();
4669 }
4670
4671 /* Find out whether a string should be output inline in DIE
4672 or out-of-line in .debug_str section. */
4673
4674 static int
4675 AT_string_form (dw_attr_ref a)
4676 {
4677 if (a && AT_class (a) == dw_val_class_str)
4678 {
4679 struct indirect_string_node *node;
4680 unsigned int len;
4681 char label[32];
4682
4683 node = a->dw_attr_val.v.val_str;
4684 if (node->form)
4685 return node->form;
4686
4687 len = strlen (node->str) + 1;
4688
4689 /* If the string is shorter or equal to the size of the reference, it is
4690 always better to put it inline. */
4691 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4692 return node->form = DW_FORM_string;
4693
4694 /* If we cannot expect the linker to merge strings in .debug_str
4695 section, only put it into .debug_str if it is worth even in this
4696 single module. */
4697 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4698 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4699 return node->form = DW_FORM_string;
4700
4701 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4702 ++dw2_string_counter;
4703 node->label = xstrdup (label);
4704
4705 return node->form = DW_FORM_strp;
4706 }
4707
4708 abort ();
4709 }
4710
4711 /* Add a DIE reference attribute value to a DIE. */
4712
4713 static inline void
4714 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4715 {
4716 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4717
4718 attr->dw_attr_next = NULL;
4719 attr->dw_attr = attr_kind;
4720 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4721 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4722 attr->dw_attr_val.v.val_die_ref.external = 0;
4723 add_dwarf_attr (die, attr);
4724 }
4725
4726 /* Add an AT_specification attribute to a DIE, and also make the back
4727 pointer from the specification to the definition. */
4728
4729 static inline void
4730 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4731 {
4732 add_AT_die_ref (die, DW_AT_specification, targ_die);
4733 if (targ_die->die_definition)
4734 abort ();
4735 targ_die->die_definition = die;
4736 }
4737
4738 static inline dw_die_ref
4739 AT_ref (dw_attr_ref a)
4740 {
4741 if (a && AT_class (a) == dw_val_class_die_ref)
4742 return a->dw_attr_val.v.val_die_ref.die;
4743
4744 abort ();
4745 }
4746
4747 static inline int
4748 AT_ref_external (dw_attr_ref a)
4749 {
4750 if (a && AT_class (a) == dw_val_class_die_ref)
4751 return a->dw_attr_val.v.val_die_ref.external;
4752
4753 return 0;
4754 }
4755
4756 static inline void
4757 set_AT_ref_external (dw_attr_ref a, int i)
4758 {
4759 if (a && AT_class (a) == dw_val_class_die_ref)
4760 a->dw_attr_val.v.val_die_ref.external = i;
4761 else
4762 abort ();
4763 }
4764
4765 /* Add an FDE reference attribute value to a DIE. */
4766
4767 static inline void
4768 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4769 {
4770 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4771
4772 attr->dw_attr_next = NULL;
4773 attr->dw_attr = attr_kind;
4774 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4775 attr->dw_attr_val.v.val_fde_index = targ_fde;
4776 add_dwarf_attr (die, attr);
4777 }
4778
4779 /* Add a location description attribute value to a DIE. */
4780
4781 static inline void
4782 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4783 {
4784 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4785
4786 attr->dw_attr_next = NULL;
4787 attr->dw_attr = attr_kind;
4788 attr->dw_attr_val.val_class = dw_val_class_loc;
4789 attr->dw_attr_val.v.val_loc = loc;
4790 add_dwarf_attr (die, attr);
4791 }
4792
4793 static inline dw_loc_descr_ref
4794 AT_loc (dw_attr_ref a)
4795 {
4796 if (a && AT_class (a) == dw_val_class_loc)
4797 return a->dw_attr_val.v.val_loc;
4798
4799 abort ();
4800 }
4801
4802 static inline void
4803 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4804 {
4805 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4806
4807 attr->dw_attr_next = NULL;
4808 attr->dw_attr = attr_kind;
4809 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4810 attr->dw_attr_val.v.val_loc_list = loc_list;
4811 add_dwarf_attr (die, attr);
4812 have_location_lists = 1;
4813 }
4814
4815 static inline dw_loc_list_ref
4816 AT_loc_list (dw_attr_ref a)
4817 {
4818 if (a && AT_class (a) == dw_val_class_loc_list)
4819 return a->dw_attr_val.v.val_loc_list;
4820
4821 abort ();
4822 }
4823
4824 /* Add an address constant attribute value to a DIE. */
4825
4826 static inline void
4827 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4828 {
4829 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4830
4831 attr->dw_attr_next = NULL;
4832 attr->dw_attr = attr_kind;
4833 attr->dw_attr_val.val_class = dw_val_class_addr;
4834 attr->dw_attr_val.v.val_addr = addr;
4835 add_dwarf_attr (die, attr);
4836 }
4837
4838 static inline rtx
4839 AT_addr (dw_attr_ref a)
4840 {
4841 if (a && AT_class (a) == dw_val_class_addr)
4842 return a->dw_attr_val.v.val_addr;
4843
4844 abort ();
4845 }
4846
4847 /* Add a label identifier attribute value to a DIE. */
4848
4849 static inline void
4850 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4851 {
4852 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4853
4854 attr->dw_attr_next = NULL;
4855 attr->dw_attr = attr_kind;
4856 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4857 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4858 add_dwarf_attr (die, attr);
4859 }
4860
4861 /* Add a section offset attribute value to a DIE. */
4862
4863 static inline void
4864 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4865 {
4866 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4867
4868 attr->dw_attr_next = NULL;
4869 attr->dw_attr = attr_kind;
4870 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4871 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4872 add_dwarf_attr (die, attr);
4873 }
4874
4875 /* Add an offset attribute value to a DIE. */
4876
4877 static inline void
4878 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4879 unsigned HOST_WIDE_INT offset)
4880 {
4881 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4882
4883 attr->dw_attr_next = NULL;
4884 attr->dw_attr = attr_kind;
4885 attr->dw_attr_val.val_class = dw_val_class_offset;
4886 attr->dw_attr_val.v.val_offset = offset;
4887 add_dwarf_attr (die, attr);
4888 }
4889
4890 /* Add an range_list attribute value to a DIE. */
4891
4892 static void
4893 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4894 long unsigned int offset)
4895 {
4896 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4897
4898 attr->dw_attr_next = NULL;
4899 attr->dw_attr = attr_kind;
4900 attr->dw_attr_val.val_class = dw_val_class_range_list;
4901 attr->dw_attr_val.v.val_offset = offset;
4902 add_dwarf_attr (die, attr);
4903 }
4904
4905 static inline const char *
4906 AT_lbl (dw_attr_ref a)
4907 {
4908 if (a && (AT_class (a) == dw_val_class_lbl_id
4909 || AT_class (a) == dw_val_class_lbl_offset))
4910 return a->dw_attr_val.v.val_lbl_id;
4911
4912 abort ();
4913 }
4914
4915 /* Get the attribute of type attr_kind. */
4916
4917 static dw_attr_ref
4918 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4919 {
4920 dw_attr_ref a;
4921 dw_die_ref spec = NULL;
4922
4923 if (die != NULL)
4924 {
4925 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4926 if (a->dw_attr == attr_kind)
4927 return a;
4928 else if (a->dw_attr == DW_AT_specification
4929 || a->dw_attr == DW_AT_abstract_origin)
4930 spec = AT_ref (a);
4931
4932 if (spec)
4933 return get_AT (spec, attr_kind);
4934 }
4935
4936 return NULL;
4937 }
4938
4939 /* Return the "low pc" attribute value, typically associated with a subprogram
4940 DIE. Return null if the "low pc" attribute is either not present, or if it
4941 cannot be represented as an assembler label identifier. */
4942
4943 static inline const char *
4944 get_AT_low_pc (dw_die_ref die)
4945 {
4946 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4947
4948 return a ? AT_lbl (a) : NULL;
4949 }
4950
4951 /* Return the "high pc" attribute value, typically associated with a subprogram
4952 DIE. Return null if the "high pc" attribute is either not present, or if it
4953 cannot be represented as an assembler label identifier. */
4954
4955 static inline const char *
4956 get_AT_hi_pc (dw_die_ref die)
4957 {
4958 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4959
4960 return a ? AT_lbl (a) : NULL;
4961 }
4962
4963 /* Return the value of the string attribute designated by ATTR_KIND, or
4964 NULL if it is not present. */
4965
4966 static inline const char *
4967 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4968 {
4969 dw_attr_ref a = get_AT (die, attr_kind);
4970
4971 return a ? AT_string (a) : NULL;
4972 }
4973
4974 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4975 if it is not present. */
4976
4977 static inline int
4978 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4979 {
4980 dw_attr_ref a = get_AT (die, attr_kind);
4981
4982 return a ? AT_flag (a) : 0;
4983 }
4984
4985 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4986 if it is not present. */
4987
4988 static inline unsigned
4989 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4990 {
4991 dw_attr_ref a = get_AT (die, attr_kind);
4992
4993 return a ? AT_unsigned (a) : 0;
4994 }
4995
4996 static inline dw_die_ref
4997 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4998 {
4999 dw_attr_ref a = get_AT (die, attr_kind);
5000
5001 return a ? AT_ref (a) : NULL;
5002 }
5003
5004 /* Return TRUE if the language is C or C++. */
5005
5006 static inline bool
5007 is_c_family (void)
5008 {
5009 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5010
5011 return (lang == DW_LANG_C || lang == DW_LANG_C89
5012 || lang == DW_LANG_C_plus_plus);
5013 }
5014
5015 /* Return TRUE if the language is C++. */
5016
5017 static inline bool
5018 is_cxx (void)
5019 {
5020 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5021 == DW_LANG_C_plus_plus);
5022 }
5023
5024 /* Return TRUE if the language is Fortran. */
5025
5026 static inline bool
5027 is_fortran (void)
5028 {
5029 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5030
5031 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
5032 }
5033
5034 /* Return TRUE if the language is Java. */
5035
5036 static inline bool
5037 is_java (void)
5038 {
5039 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5040
5041 return lang == DW_LANG_Java;
5042 }
5043
5044 /* Return TRUE if the language is Ada. */
5045
5046 static inline bool
5047 is_ada (void)
5048 {
5049 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5050
5051 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5052 }
5053
5054 /* Free up the memory used by A. */
5055
5056 static inline void free_AT (dw_attr_ref);
5057 static inline void
5058 free_AT (dw_attr_ref a)
5059 {
5060 if (AT_class (a) == dw_val_class_str)
5061 if (a->dw_attr_val.v.val_str->refcount)
5062 a->dw_attr_val.v.val_str->refcount--;
5063 }
5064
5065 /* Remove the specified attribute if present. */
5066
5067 static void
5068 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5069 {
5070 dw_attr_ref *p;
5071 dw_attr_ref removed = NULL;
5072
5073 if (die != NULL)
5074 {
5075 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5076 if ((*p)->dw_attr == attr_kind)
5077 {
5078 removed = *p;
5079 *p = (*p)->dw_attr_next;
5080 break;
5081 }
5082
5083 if (removed != 0)
5084 free_AT (removed);
5085 }
5086 }
5087
5088 /* Remove child die whose die_tag is specified tag. */
5089
5090 static void
5091 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5092 {
5093 dw_die_ref current, prev, next;
5094 current = die->die_child;
5095 prev = NULL;
5096 while (current != NULL)
5097 {
5098 if (current->die_tag == tag)
5099 {
5100 next = current->die_sib;
5101 if (prev == NULL)
5102 die->die_child = next;
5103 else
5104 prev->die_sib = next;
5105 free_die (current);
5106 current = next;
5107 }
5108 else
5109 {
5110 prev = current;
5111 current = current->die_sib;
5112 }
5113 }
5114 }
5115
5116 /* Free up the memory used by DIE. */
5117
5118 static inline void
5119 free_die (dw_die_ref die)
5120 {
5121 remove_children (die);
5122 }
5123
5124 /* Discard the children of this DIE. */
5125
5126 static void
5127 remove_children (dw_die_ref die)
5128 {
5129 dw_die_ref child_die = die->die_child;
5130
5131 die->die_child = NULL;
5132
5133 while (child_die != NULL)
5134 {
5135 dw_die_ref tmp_die = child_die;
5136 dw_attr_ref a;
5137
5138 child_die = child_die->die_sib;
5139
5140 for (a = tmp_die->die_attr; a != NULL;)
5141 {
5142 dw_attr_ref tmp_a = a;
5143
5144 a = a->dw_attr_next;
5145 free_AT (tmp_a);
5146 }
5147
5148 free_die (tmp_die);
5149 }
5150 }
5151
5152 /* Add a child DIE below its parent. We build the lists up in reverse
5153 addition order, and correct that in reverse_all_dies. */
5154
5155 static inline void
5156 add_child_die (dw_die_ref die, dw_die_ref child_die)
5157 {
5158 if (die != NULL && child_die != NULL)
5159 {
5160 if (die == child_die)
5161 abort ();
5162
5163 child_die->die_parent = die;
5164 child_die->die_sib = die->die_child;
5165 die->die_child = child_die;
5166 }
5167 }
5168
5169 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5170 is the specification, to the front of PARENT's list of children. */
5171
5172 static void
5173 splice_child_die (dw_die_ref parent, dw_die_ref child)
5174 {
5175 dw_die_ref *p;
5176
5177 /* We want the declaration DIE from inside the class, not the
5178 specification DIE at toplevel. */
5179 if (child->die_parent != parent)
5180 {
5181 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5182
5183 if (tmp)
5184 child = tmp;
5185 }
5186
5187 if (child->die_parent != parent
5188 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5189 abort ();
5190
5191 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5192 if (*p == child)
5193 {
5194 *p = child->die_sib;
5195 break;
5196 }
5197
5198 child->die_parent = parent;
5199 child->die_sib = parent->die_child;
5200 parent->die_child = child;
5201 }
5202
5203 /* Return a pointer to a newly created DIE node. */
5204
5205 static inline dw_die_ref
5206 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5207 {
5208 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5209
5210 die->die_tag = tag_value;
5211
5212 if (parent_die != NULL)
5213 add_child_die (parent_die, die);
5214 else
5215 {
5216 limbo_die_node *limbo_node;
5217
5218 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5219 limbo_node->die = die;
5220 limbo_node->created_for = t;
5221 limbo_node->next = limbo_die_list;
5222 limbo_die_list = limbo_node;
5223 }
5224
5225 return die;
5226 }
5227
5228 /* Return the DIE associated with the given type specifier. */
5229
5230 static inline dw_die_ref
5231 lookup_type_die (tree type)
5232 {
5233 return TYPE_SYMTAB_DIE (type);
5234 }
5235
5236 /* Equate a DIE to a given type specifier. */
5237
5238 static inline void
5239 equate_type_number_to_die (tree type, dw_die_ref type_die)
5240 {
5241 TYPE_SYMTAB_DIE (type) = type_die;
5242 }
5243
5244 /* Returns a hash value for X (which really is a die_struct). */
5245
5246 static hashval_t
5247 decl_die_table_hash (const void *x)
5248 {
5249 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5250 }
5251
5252 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5253
5254 static int
5255 decl_die_table_eq (const void *x, const void *y)
5256 {
5257 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5258 }
5259
5260 /* Return the DIE associated with a given declaration. */
5261
5262 static inline dw_die_ref
5263 lookup_decl_die (tree decl)
5264 {
5265 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5266 }
5267
5268 /* Returns a hash value for X (which really is a var_loc_list). */
5269
5270 static hashval_t
5271 decl_loc_table_hash (const void *x)
5272 {
5273 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5274 }
5275
5276 /* Return nonzero if decl_id of var_loc_list X is the same as
5277 UID of decl *Y. */
5278
5279 static int
5280 decl_loc_table_eq (const void *x, const void *y)
5281 {
5282 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5283 }
5284
5285 /* Return the var_loc list associated with a given declaration. */
5286
5287 static inline var_loc_list *
5288 lookup_decl_loc (tree decl)
5289 {
5290 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5291 }
5292
5293 /* Equate a DIE to a particular declaration. */
5294
5295 static void
5296 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5297 {
5298 unsigned int decl_id = DECL_UID (decl);
5299 void **slot;
5300
5301 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5302 *slot = decl_die;
5303 decl_die->decl_id = decl_id;
5304 }
5305
5306 /* Add a variable location node to the linked list for DECL. */
5307
5308 static void
5309 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5310 {
5311 unsigned int decl_id = DECL_UID (decl);
5312 var_loc_list *temp;
5313 void **slot;
5314
5315 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5316 if (*slot == NULL)
5317 {
5318 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5319 temp->decl_id = decl_id;
5320 *slot = temp;
5321 }
5322 else
5323 temp = *slot;
5324
5325 if (temp->last)
5326 {
5327 /* If the current location is the same as the end of the list,
5328 we have nothing to do. */
5329 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5330 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5331 {
5332 /* Add LOC to the end of list and update LAST. */
5333 temp->last->next = loc;
5334 temp->last = loc;
5335 }
5336 }
5337 /* Do not add empty location to the beginning of the list. */
5338 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5339 {
5340 temp->first = loc;
5341 temp->last = loc;
5342 }
5343 }
5344 \f
5345 /* Keep track of the number of spaces used to indent the
5346 output of the debugging routines that print the structure of
5347 the DIE internal representation. */
5348 static int print_indent;
5349
5350 /* Indent the line the number of spaces given by print_indent. */
5351
5352 static inline void
5353 print_spaces (FILE *outfile)
5354 {
5355 fprintf (outfile, "%*s", print_indent, "");
5356 }
5357
5358 /* Print the information associated with a given DIE, and its children.
5359 This routine is a debugging aid only. */
5360
5361 static void
5362 print_die (dw_die_ref die, FILE *outfile)
5363 {
5364 dw_attr_ref a;
5365 dw_die_ref c;
5366
5367 print_spaces (outfile);
5368 fprintf (outfile, "DIE %4lu: %s\n",
5369 die->die_offset, dwarf_tag_name (die->die_tag));
5370 print_spaces (outfile);
5371 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5372 fprintf (outfile, " offset: %lu\n", die->die_offset);
5373
5374 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5375 {
5376 print_spaces (outfile);
5377 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5378
5379 switch (AT_class (a))
5380 {
5381 case dw_val_class_addr:
5382 fprintf (outfile, "address");
5383 break;
5384 case dw_val_class_offset:
5385 fprintf (outfile, "offset");
5386 break;
5387 case dw_val_class_loc:
5388 fprintf (outfile, "location descriptor");
5389 break;
5390 case dw_val_class_loc_list:
5391 fprintf (outfile, "location list -> label:%s",
5392 AT_loc_list (a)->ll_symbol);
5393 break;
5394 case dw_val_class_range_list:
5395 fprintf (outfile, "range list");
5396 break;
5397 case dw_val_class_const:
5398 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5399 break;
5400 case dw_val_class_unsigned_const:
5401 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5402 break;
5403 case dw_val_class_long_long:
5404 fprintf (outfile, "constant (%lu,%lu)",
5405 a->dw_attr_val.v.val_long_long.hi,
5406 a->dw_attr_val.v.val_long_long.low);
5407 break;
5408 case dw_val_class_float:
5409 fprintf (outfile, "floating-point constant");
5410 break;
5411 case dw_val_class_flag:
5412 fprintf (outfile, "%u", AT_flag (a));
5413 break;
5414 case dw_val_class_die_ref:
5415 if (AT_ref (a) != NULL)
5416 {
5417 if (AT_ref (a)->die_symbol)
5418 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5419 else
5420 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5421 }
5422 else
5423 fprintf (outfile, "die -> <null>");
5424 break;
5425 case dw_val_class_lbl_id:
5426 case dw_val_class_lbl_offset:
5427 fprintf (outfile, "label: %s", AT_lbl (a));
5428 break;
5429 case dw_val_class_str:
5430 if (AT_string (a) != NULL)
5431 fprintf (outfile, "\"%s\"", AT_string (a));
5432 else
5433 fprintf (outfile, "<null>");
5434 break;
5435 default:
5436 break;
5437 }
5438
5439 fprintf (outfile, "\n");
5440 }
5441
5442 if (die->die_child != NULL)
5443 {
5444 print_indent += 4;
5445 for (c = die->die_child; c != NULL; c = c->die_sib)
5446 print_die (c, outfile);
5447
5448 print_indent -= 4;
5449 }
5450 if (print_indent == 0)
5451 fprintf (outfile, "\n");
5452 }
5453
5454 /* Print the contents of the source code line number correspondence table.
5455 This routine is a debugging aid only. */
5456
5457 static void
5458 print_dwarf_line_table (FILE *outfile)
5459 {
5460 unsigned i;
5461 dw_line_info_ref line_info;
5462
5463 fprintf (outfile, "\n\nDWARF source line information\n");
5464 for (i = 1; i < line_info_table_in_use; i++)
5465 {
5466 line_info = &line_info_table[i];
5467 fprintf (outfile, "%5d: ", i);
5468 fprintf (outfile, "%-20s",
5469 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5470 fprintf (outfile, "%6ld", line_info->dw_line_num);
5471 fprintf (outfile, "\n");
5472 }
5473
5474 fprintf (outfile, "\n\n");
5475 }
5476
5477 /* Print the information collected for a given DIE. */
5478
5479 void
5480 debug_dwarf_die (dw_die_ref die)
5481 {
5482 print_die (die, stderr);
5483 }
5484
5485 /* Print all DWARF information collected for the compilation unit.
5486 This routine is a debugging aid only. */
5487
5488 void
5489 debug_dwarf (void)
5490 {
5491 print_indent = 0;
5492 print_die (comp_unit_die, stderr);
5493 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5494 print_dwarf_line_table (stderr);
5495 }
5496 \f
5497 /* We build up the lists of children and attributes by pushing new ones
5498 onto the beginning of the list. Reverse the lists for DIE so that
5499 they are in order of addition. */
5500
5501 static void
5502 reverse_die_lists (dw_die_ref die)
5503 {
5504 dw_die_ref c, cp, cn;
5505 dw_attr_ref a, ap, an;
5506
5507 for (a = die->die_attr, ap = 0; a; a = an)
5508 {
5509 an = a->dw_attr_next;
5510 a->dw_attr_next = ap;
5511 ap = a;
5512 }
5513
5514 die->die_attr = ap;
5515
5516 for (c = die->die_child, cp = 0; c; c = cn)
5517 {
5518 cn = c->die_sib;
5519 c->die_sib = cp;
5520 cp = c;
5521 }
5522
5523 die->die_child = cp;
5524 }
5525
5526 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5527 reverse all dies in add_sibling_attributes, which runs through all the dies,
5528 it would reverse all the dies. Now, however, since we don't call
5529 reverse_die_lists in add_sibling_attributes, we need a routine to
5530 recursively reverse all the dies. This is that routine. */
5531
5532 static void
5533 reverse_all_dies (dw_die_ref die)
5534 {
5535 dw_die_ref c;
5536
5537 reverse_die_lists (die);
5538
5539 for (c = die->die_child; c; c = c->die_sib)
5540 reverse_all_dies (c);
5541 }
5542
5543 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5544 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5545 DIE that marks the start of the DIEs for this include file. */
5546
5547 static dw_die_ref
5548 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5549 {
5550 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5551 dw_die_ref new_unit = gen_compile_unit_die (filename);
5552
5553 new_unit->die_sib = old_unit;
5554 return new_unit;
5555 }
5556
5557 /* Close an include-file CU and reopen the enclosing one. */
5558
5559 static dw_die_ref
5560 pop_compile_unit (dw_die_ref old_unit)
5561 {
5562 dw_die_ref new_unit = old_unit->die_sib;
5563
5564 old_unit->die_sib = NULL;
5565 return new_unit;
5566 }
5567
5568 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5569 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5570
5571 /* Calculate the checksum of a location expression. */
5572
5573 static inline void
5574 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5575 {
5576 CHECKSUM (loc->dw_loc_opc);
5577 CHECKSUM (loc->dw_loc_oprnd1);
5578 CHECKSUM (loc->dw_loc_oprnd2);
5579 }
5580
5581 /* Calculate the checksum of an attribute. */
5582
5583 static void
5584 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5585 {
5586 dw_loc_descr_ref loc;
5587 rtx r;
5588
5589 CHECKSUM (at->dw_attr);
5590
5591 /* We don't care about differences in file numbering. */
5592 if (at->dw_attr == DW_AT_decl_file
5593 /* Or that this was compiled with a different compiler snapshot; if
5594 the output is the same, that's what matters. */
5595 || at->dw_attr == DW_AT_producer)
5596 return;
5597
5598 switch (AT_class (at))
5599 {
5600 case dw_val_class_const:
5601 CHECKSUM (at->dw_attr_val.v.val_int);
5602 break;
5603 case dw_val_class_unsigned_const:
5604 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5605 break;
5606 case dw_val_class_long_long:
5607 CHECKSUM (at->dw_attr_val.v.val_long_long);
5608 break;
5609 case dw_val_class_float:
5610 CHECKSUM (at->dw_attr_val.v.val_float);
5611 break;
5612 case dw_val_class_flag:
5613 CHECKSUM (at->dw_attr_val.v.val_flag);
5614 break;
5615 case dw_val_class_str:
5616 CHECKSUM_STRING (AT_string (at));
5617 break;
5618
5619 case dw_val_class_addr:
5620 r = AT_addr (at);
5621 switch (GET_CODE (r))
5622 {
5623 case SYMBOL_REF:
5624 CHECKSUM_STRING (XSTR (r, 0));
5625 break;
5626
5627 default:
5628 abort ();
5629 }
5630 break;
5631
5632 case dw_val_class_offset:
5633 CHECKSUM (at->dw_attr_val.v.val_offset);
5634 break;
5635
5636 case dw_val_class_loc:
5637 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5638 loc_checksum (loc, ctx);
5639 break;
5640
5641 case dw_val_class_die_ref:
5642 die_checksum (AT_ref (at), ctx, mark);
5643 break;
5644
5645 case dw_val_class_fde_ref:
5646 case dw_val_class_lbl_id:
5647 case dw_val_class_lbl_offset:
5648 break;
5649
5650 default:
5651 break;
5652 }
5653 }
5654
5655 /* Calculate the checksum of a DIE. */
5656
5657 static void
5658 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5659 {
5660 dw_die_ref c;
5661 dw_attr_ref a;
5662
5663 /* To avoid infinite recursion. */
5664 if (die->die_mark)
5665 {
5666 CHECKSUM (die->die_mark);
5667 return;
5668 }
5669 die->die_mark = ++(*mark);
5670
5671 CHECKSUM (die->die_tag);
5672
5673 for (a = die->die_attr; a; a = a->dw_attr_next)
5674 attr_checksum (a, ctx, mark);
5675
5676 for (c = die->die_child; c; c = c->die_sib)
5677 die_checksum (c, ctx, mark);
5678 }
5679
5680 #undef CHECKSUM
5681 #undef CHECKSUM_STRING
5682
5683 /* Do the location expressions look same? */
5684 static inline int
5685 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5686 {
5687 return loc1->dw_loc_opc == loc2->dw_loc_opc
5688 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5689 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5690 }
5691
5692 /* Do the values look the same? */
5693 static int
5694 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5695 {
5696 dw_loc_descr_ref loc1, loc2;
5697 rtx r1, r2;
5698 unsigned i;
5699
5700 if (v1->val_class != v2->val_class)
5701 return 0;
5702
5703 switch (v1->val_class)
5704 {
5705 case dw_val_class_const:
5706 return v1->v.val_int == v2->v.val_int;
5707 case dw_val_class_unsigned_const:
5708 return v1->v.val_unsigned == v2->v.val_unsigned;
5709 case dw_val_class_long_long:
5710 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5711 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5712 case dw_val_class_float:
5713 if (v1->v.val_float.length != v2->v.val_float.length)
5714 return 0;
5715 for (i = 0; i < v1->v.val_float.length; i++)
5716 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5717 return 0;
5718 return 1;
5719 case dw_val_class_flag:
5720 return v1->v.val_flag == v2->v.val_flag;
5721 case dw_val_class_str:
5722 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5723
5724 case dw_val_class_addr:
5725 r1 = v1->v.val_addr;
5726 r2 = v2->v.val_addr;
5727 if (GET_CODE (r1) != GET_CODE (r2))
5728 return 0;
5729 switch (GET_CODE (r1))
5730 {
5731 case SYMBOL_REF:
5732 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5733
5734 default:
5735 abort ();
5736 }
5737
5738 case dw_val_class_offset:
5739 return v1->v.val_offset == v2->v.val_offset;
5740
5741 case dw_val_class_loc:
5742 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5743 loc1 && loc2;
5744 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5745 if (!same_loc_p (loc1, loc2, mark))
5746 return 0;
5747 return !loc1 && !loc2;
5748
5749 case dw_val_class_die_ref:
5750 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5751
5752 case dw_val_class_fde_ref:
5753 case dw_val_class_lbl_id:
5754 case dw_val_class_lbl_offset:
5755 return 1;
5756
5757 default:
5758 return 1;
5759 }
5760 }
5761
5762 /* Do the attributes look the same? */
5763
5764 static int
5765 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5766 {
5767 if (at1->dw_attr != at2->dw_attr)
5768 return 0;
5769
5770 /* We don't care about differences in file numbering. */
5771 if (at1->dw_attr == DW_AT_decl_file
5772 /* Or that this was compiled with a different compiler snapshot; if
5773 the output is the same, that's what matters. */
5774 || at1->dw_attr == DW_AT_producer)
5775 return 1;
5776
5777 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5778 }
5779
5780 /* Do the dies look the same? */
5781
5782 static int
5783 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5784 {
5785 dw_die_ref c1, c2;
5786 dw_attr_ref a1, a2;
5787
5788 /* To avoid infinite recursion. */
5789 if (die1->die_mark)
5790 return die1->die_mark == die2->die_mark;
5791 die1->die_mark = die2->die_mark = ++(*mark);
5792
5793 if (die1->die_tag != die2->die_tag)
5794 return 0;
5795
5796 for (a1 = die1->die_attr, a2 = die2->die_attr;
5797 a1 && a2;
5798 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5799 if (!same_attr_p (a1, a2, mark))
5800 return 0;
5801 if (a1 || a2)
5802 return 0;
5803
5804 for (c1 = die1->die_child, c2 = die2->die_child;
5805 c1 && c2;
5806 c1 = c1->die_sib, c2 = c2->die_sib)
5807 if (!same_die_p (c1, c2, mark))
5808 return 0;
5809 if (c1 || c2)
5810 return 0;
5811
5812 return 1;
5813 }
5814
5815 /* Do the dies look the same? Wrapper around same_die_p. */
5816
5817 static int
5818 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5819 {
5820 int mark = 0;
5821 int ret = same_die_p (die1, die2, &mark);
5822
5823 unmark_all_dies (die1);
5824 unmark_all_dies (die2);
5825
5826 return ret;
5827 }
5828
5829 /* The prefix to attach to symbols on DIEs in the current comdat debug
5830 info section. */
5831 static char *comdat_symbol_id;
5832
5833 /* The index of the current symbol within the current comdat CU. */
5834 static unsigned int comdat_symbol_number;
5835
5836 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5837 children, and set comdat_symbol_id accordingly. */
5838
5839 static void
5840 compute_section_prefix (dw_die_ref unit_die)
5841 {
5842 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5843 const char *base = die_name ? lbasename (die_name) : "anonymous";
5844 char *name = alloca (strlen (base) + 64);
5845 char *p;
5846 int i, mark;
5847 unsigned char checksum[16];
5848 struct md5_ctx ctx;
5849
5850 /* Compute the checksum of the DIE, then append part of it as hex digits to
5851 the name filename of the unit. */
5852
5853 md5_init_ctx (&ctx);
5854 mark = 0;
5855 die_checksum (unit_die, &ctx, &mark);
5856 unmark_all_dies (unit_die);
5857 md5_finish_ctx (&ctx, checksum);
5858
5859 sprintf (name, "%s.", base);
5860 clean_symbol_name (name);
5861
5862 p = name + strlen (name);
5863 for (i = 0; i < 4; i++)
5864 {
5865 sprintf (p, "%.2x", checksum[i]);
5866 p += 2;
5867 }
5868
5869 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5870 comdat_symbol_number = 0;
5871 }
5872
5873 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5874
5875 static int
5876 is_type_die (dw_die_ref die)
5877 {
5878 switch (die->die_tag)
5879 {
5880 case DW_TAG_array_type:
5881 case DW_TAG_class_type:
5882 case DW_TAG_enumeration_type:
5883 case DW_TAG_pointer_type:
5884 case DW_TAG_reference_type:
5885 case DW_TAG_string_type:
5886 case DW_TAG_structure_type:
5887 case DW_TAG_subroutine_type:
5888 case DW_TAG_union_type:
5889 case DW_TAG_ptr_to_member_type:
5890 case DW_TAG_set_type:
5891 case DW_TAG_subrange_type:
5892 case DW_TAG_base_type:
5893 case DW_TAG_const_type:
5894 case DW_TAG_file_type:
5895 case DW_TAG_packed_type:
5896 case DW_TAG_volatile_type:
5897 case DW_TAG_typedef:
5898 return 1;
5899 default:
5900 return 0;
5901 }
5902 }
5903
5904 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5905 Basically, we want to choose the bits that are likely to be shared between
5906 compilations (types) and leave out the bits that are specific to individual
5907 compilations (functions). */
5908
5909 static int
5910 is_comdat_die (dw_die_ref c)
5911 {
5912 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5913 we do for stabs. The advantage is a greater likelihood of sharing between
5914 objects that don't include headers in the same order (and therefore would
5915 put the base types in a different comdat). jason 8/28/00 */
5916
5917 if (c->die_tag == DW_TAG_base_type)
5918 return 0;
5919
5920 if (c->die_tag == DW_TAG_pointer_type
5921 || c->die_tag == DW_TAG_reference_type
5922 || c->die_tag == DW_TAG_const_type
5923 || c->die_tag == DW_TAG_volatile_type)
5924 {
5925 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5926
5927 return t ? is_comdat_die (t) : 0;
5928 }
5929
5930 return is_type_die (c);
5931 }
5932
5933 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5934 compilation unit. */
5935
5936 static int
5937 is_symbol_die (dw_die_ref c)
5938 {
5939 return (is_type_die (c)
5940 || (get_AT (c, DW_AT_declaration)
5941 && !get_AT (c, DW_AT_specification)));
5942 }
5943
5944 static char *
5945 gen_internal_sym (const char *prefix)
5946 {
5947 char buf[256];
5948
5949 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5950 return xstrdup (buf);
5951 }
5952
5953 /* Assign symbols to all worthy DIEs under DIE. */
5954
5955 static void
5956 assign_symbol_names (dw_die_ref die)
5957 {
5958 dw_die_ref c;
5959
5960 if (is_symbol_die (die))
5961 {
5962 if (comdat_symbol_id)
5963 {
5964 char *p = alloca (strlen (comdat_symbol_id) + 64);
5965
5966 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5967 comdat_symbol_id, comdat_symbol_number++);
5968 die->die_symbol = xstrdup (p);
5969 }
5970 else
5971 die->die_symbol = gen_internal_sym ("LDIE");
5972 }
5973
5974 for (c = die->die_child; c != NULL; c = c->die_sib)
5975 assign_symbol_names (c);
5976 }
5977
5978 struct cu_hash_table_entry
5979 {
5980 dw_die_ref cu;
5981 unsigned min_comdat_num, max_comdat_num;
5982 struct cu_hash_table_entry *next;
5983 };
5984
5985 /* Routines to manipulate hash table of CUs. */
5986 static hashval_t
5987 htab_cu_hash (const void *of)
5988 {
5989 const struct cu_hash_table_entry *entry = of;
5990
5991 return htab_hash_string (entry->cu->die_symbol);
5992 }
5993
5994 static int
5995 htab_cu_eq (const void *of1, const void *of2)
5996 {
5997 const struct cu_hash_table_entry *entry1 = of1;
5998 const struct die_struct *entry2 = of2;
5999
6000 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6001 }
6002
6003 static void
6004 htab_cu_del (void *what)
6005 {
6006 struct cu_hash_table_entry *next, *entry = what;
6007
6008 while (entry)
6009 {
6010 next = entry->next;
6011 free (entry);
6012 entry = next;
6013 }
6014 }
6015
6016 /* Check whether we have already seen this CU and set up SYM_NUM
6017 accordingly. */
6018 static int
6019 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6020 {
6021 struct cu_hash_table_entry dummy;
6022 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6023
6024 dummy.max_comdat_num = 0;
6025
6026 slot = (struct cu_hash_table_entry **)
6027 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6028 INSERT);
6029 entry = *slot;
6030
6031 for (; entry; last = entry, entry = entry->next)
6032 {
6033 if (same_die_p_wrap (cu, entry->cu))
6034 break;
6035 }
6036
6037 if (entry)
6038 {
6039 *sym_num = entry->min_comdat_num;
6040 return 1;
6041 }
6042
6043 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6044 entry->cu = cu;
6045 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6046 entry->next = *slot;
6047 *slot = entry;
6048
6049 return 0;
6050 }
6051
6052 /* Record SYM_NUM to record of CU in HTABLE. */
6053 static void
6054 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6055 {
6056 struct cu_hash_table_entry **slot, *entry;
6057
6058 slot = (struct cu_hash_table_entry **)
6059 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6060 NO_INSERT);
6061 entry = *slot;
6062
6063 entry->max_comdat_num = sym_num;
6064 }
6065
6066 /* Traverse the DIE (which is always comp_unit_die), and set up
6067 additional compilation units for each of the include files we see
6068 bracketed by BINCL/EINCL. */
6069
6070 static void
6071 break_out_includes (dw_die_ref die)
6072 {
6073 dw_die_ref *ptr;
6074 dw_die_ref unit = NULL;
6075 limbo_die_node *node, **pnode;
6076 htab_t cu_hash_table;
6077
6078 for (ptr = &(die->die_child); *ptr;)
6079 {
6080 dw_die_ref c = *ptr;
6081
6082 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6083 || (unit && is_comdat_die (c)))
6084 {
6085 /* This DIE is for a secondary CU; remove it from the main one. */
6086 *ptr = c->die_sib;
6087
6088 if (c->die_tag == DW_TAG_GNU_BINCL)
6089 {
6090 unit = push_new_compile_unit (unit, c);
6091 free_die (c);
6092 }
6093 else if (c->die_tag == DW_TAG_GNU_EINCL)
6094 {
6095 unit = pop_compile_unit (unit);
6096 free_die (c);
6097 }
6098 else
6099 add_child_die (unit, c);
6100 }
6101 else
6102 {
6103 /* Leave this DIE in the main CU. */
6104 ptr = &(c->die_sib);
6105 continue;
6106 }
6107 }
6108
6109 #if 0
6110 /* We can only use this in debugging, since the frontend doesn't check
6111 to make sure that we leave every include file we enter. */
6112 if (unit != NULL)
6113 abort ();
6114 #endif
6115
6116 assign_symbol_names (die);
6117 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6118 for (node = limbo_die_list, pnode = &limbo_die_list;
6119 node;
6120 node = node->next)
6121 {
6122 int is_dupl;
6123
6124 compute_section_prefix (node->die);
6125 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6126 &comdat_symbol_number);
6127 assign_symbol_names (node->die);
6128 if (is_dupl)
6129 *pnode = node->next;
6130 else
6131 {
6132 pnode = &node->next;
6133 record_comdat_symbol_number (node->die, cu_hash_table,
6134 comdat_symbol_number);
6135 }
6136 }
6137 htab_delete (cu_hash_table);
6138 }
6139
6140 /* Traverse the DIE and add a sibling attribute if it may have the
6141 effect of speeding up access to siblings. To save some space,
6142 avoid generating sibling attributes for DIE's without children. */
6143
6144 static void
6145 add_sibling_attributes (dw_die_ref die)
6146 {
6147 dw_die_ref c;
6148
6149 if (die->die_tag != DW_TAG_compile_unit
6150 && die->die_sib && die->die_child != NULL)
6151 /* Add the sibling link to the front of the attribute list. */
6152 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6153
6154 for (c = die->die_child; c != NULL; c = c->die_sib)
6155 add_sibling_attributes (c);
6156 }
6157
6158 /* Output all location lists for the DIE and its children. */
6159
6160 static void
6161 output_location_lists (dw_die_ref die)
6162 {
6163 dw_die_ref c;
6164 dw_attr_ref d_attr;
6165
6166 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6167 if (AT_class (d_attr) == dw_val_class_loc_list)
6168 output_loc_list (AT_loc_list (d_attr));
6169
6170 for (c = die->die_child; c != NULL; c = c->die_sib)
6171 output_location_lists (c);
6172
6173 }
6174
6175 /* The format of each DIE (and its attribute value pairs) is encoded in an
6176 abbreviation table. This routine builds the abbreviation table and assigns
6177 a unique abbreviation id for each abbreviation entry. The children of each
6178 die are visited recursively. */
6179
6180 static void
6181 build_abbrev_table (dw_die_ref die)
6182 {
6183 unsigned long abbrev_id;
6184 unsigned int n_alloc;
6185 dw_die_ref c;
6186 dw_attr_ref d_attr, a_attr;
6187
6188 /* Scan the DIE references, and mark as external any that refer to
6189 DIEs from other CUs (i.e. those which are not marked). */
6190 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6191 if (AT_class (d_attr) == dw_val_class_die_ref
6192 && AT_ref (d_attr)->die_mark == 0)
6193 {
6194 if (AT_ref (d_attr)->die_symbol == 0)
6195 abort ();
6196
6197 set_AT_ref_external (d_attr, 1);
6198 }
6199
6200 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6201 {
6202 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6203
6204 if (abbrev->die_tag == die->die_tag)
6205 {
6206 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6207 {
6208 a_attr = abbrev->die_attr;
6209 d_attr = die->die_attr;
6210
6211 while (a_attr != NULL && d_attr != NULL)
6212 {
6213 if ((a_attr->dw_attr != d_attr->dw_attr)
6214 || (value_format (a_attr) != value_format (d_attr)))
6215 break;
6216
6217 a_attr = a_attr->dw_attr_next;
6218 d_attr = d_attr->dw_attr_next;
6219 }
6220
6221 if (a_attr == NULL && d_attr == NULL)
6222 break;
6223 }
6224 }
6225 }
6226
6227 if (abbrev_id >= abbrev_die_table_in_use)
6228 {
6229 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6230 {
6231 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6232 abbrev_die_table = ggc_realloc (abbrev_die_table,
6233 sizeof (dw_die_ref) * n_alloc);
6234
6235 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6236 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6237 abbrev_die_table_allocated = n_alloc;
6238 }
6239
6240 ++abbrev_die_table_in_use;
6241 abbrev_die_table[abbrev_id] = die;
6242 }
6243
6244 die->die_abbrev = abbrev_id;
6245 for (c = die->die_child; c != NULL; c = c->die_sib)
6246 build_abbrev_table (c);
6247 }
6248 \f
6249 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6250
6251 static int
6252 constant_size (long unsigned int value)
6253 {
6254 int log;
6255
6256 if (value == 0)
6257 log = 0;
6258 else
6259 log = floor_log2 (value);
6260
6261 log = log / 8;
6262 log = 1 << (floor_log2 (log) + 1);
6263
6264 return log;
6265 }
6266
6267 /* Return the size of a DIE as it is represented in the
6268 .debug_info section. */
6269
6270 static unsigned long
6271 size_of_die (dw_die_ref die)
6272 {
6273 unsigned long size = 0;
6274 dw_attr_ref a;
6275
6276 size += size_of_uleb128 (die->die_abbrev);
6277 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6278 {
6279 switch (AT_class (a))
6280 {
6281 case dw_val_class_addr:
6282 size += DWARF2_ADDR_SIZE;
6283 break;
6284 case dw_val_class_offset:
6285 size += DWARF_OFFSET_SIZE;
6286 break;
6287 case dw_val_class_loc:
6288 {
6289 unsigned long lsize = size_of_locs (AT_loc (a));
6290
6291 /* Block length. */
6292 size += constant_size (lsize);
6293 size += lsize;
6294 }
6295 break;
6296 case dw_val_class_loc_list:
6297 size += DWARF_OFFSET_SIZE;
6298 break;
6299 case dw_val_class_range_list:
6300 size += DWARF_OFFSET_SIZE;
6301 break;
6302 case dw_val_class_const:
6303 size += size_of_sleb128 (AT_int (a));
6304 break;
6305 case dw_val_class_unsigned_const:
6306 size += constant_size (AT_unsigned (a));
6307 break;
6308 case dw_val_class_long_long:
6309 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6310 break;
6311 case dw_val_class_float:
6312 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6313 break;
6314 case dw_val_class_flag:
6315 size += 1;
6316 break;
6317 case dw_val_class_die_ref:
6318 if (AT_ref_external (a))
6319 size += DWARF2_ADDR_SIZE;
6320 else
6321 size += DWARF_OFFSET_SIZE;
6322 break;
6323 case dw_val_class_fde_ref:
6324 size += DWARF_OFFSET_SIZE;
6325 break;
6326 case dw_val_class_lbl_id:
6327 size += DWARF2_ADDR_SIZE;
6328 break;
6329 case dw_val_class_lbl_offset:
6330 size += DWARF_OFFSET_SIZE;
6331 break;
6332 case dw_val_class_str:
6333 if (AT_string_form (a) == DW_FORM_strp)
6334 size += DWARF_OFFSET_SIZE;
6335 else
6336 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6337 break;
6338 default:
6339 abort ();
6340 }
6341 }
6342
6343 return size;
6344 }
6345
6346 /* Size the debugging information associated with a given DIE. Visits the
6347 DIE's children recursively. Updates the global variable next_die_offset, on
6348 each time through. Uses the current value of next_die_offset to update the
6349 die_offset field in each DIE. */
6350
6351 static void
6352 calc_die_sizes (dw_die_ref die)
6353 {
6354 dw_die_ref c;
6355
6356 die->die_offset = next_die_offset;
6357 next_die_offset += size_of_die (die);
6358
6359 for (c = die->die_child; c != NULL; c = c->die_sib)
6360 calc_die_sizes (c);
6361
6362 if (die->die_child != NULL)
6363 /* Count the null byte used to terminate sibling lists. */
6364 next_die_offset += 1;
6365 }
6366
6367 /* Set the marks for a die and its children. We do this so
6368 that we know whether or not a reference needs to use FORM_ref_addr; only
6369 DIEs in the same CU will be marked. We used to clear out the offset
6370 and use that as the flag, but ran into ordering problems. */
6371
6372 static void
6373 mark_dies (dw_die_ref die)
6374 {
6375 dw_die_ref c;
6376
6377 if (die->die_mark)
6378 abort ();
6379
6380 die->die_mark = 1;
6381 for (c = die->die_child; c; c = c->die_sib)
6382 mark_dies (c);
6383 }
6384
6385 /* Clear the marks for a die and its children. */
6386
6387 static void
6388 unmark_dies (dw_die_ref die)
6389 {
6390 dw_die_ref c;
6391
6392 if (!die->die_mark)
6393 abort ();
6394
6395 die->die_mark = 0;
6396 for (c = die->die_child; c; c = c->die_sib)
6397 unmark_dies (c);
6398 }
6399
6400 /* Clear the marks for a die, its children and referred dies. */
6401
6402 static void
6403 unmark_all_dies (dw_die_ref die)
6404 {
6405 dw_die_ref c;
6406 dw_attr_ref a;
6407
6408 if (!die->die_mark)
6409 return;
6410 die->die_mark = 0;
6411
6412 for (c = die->die_child; c; c = c->die_sib)
6413 unmark_all_dies (c);
6414
6415 for (a = die->die_attr; a; a = a->dw_attr_next)
6416 if (AT_class (a) == dw_val_class_die_ref)
6417 unmark_all_dies (AT_ref (a));
6418 }
6419
6420 /* Return the size of the .debug_pubnames table generated for the
6421 compilation unit. */
6422
6423 static unsigned long
6424 size_of_pubnames (void)
6425 {
6426 unsigned long size;
6427 unsigned i;
6428
6429 size = DWARF_PUBNAMES_HEADER_SIZE;
6430 for (i = 0; i < pubname_table_in_use; i++)
6431 {
6432 pubname_ref p = &pubname_table[i];
6433 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6434 }
6435
6436 size += DWARF_OFFSET_SIZE;
6437 return size;
6438 }
6439
6440 /* Return the size of the information in the .debug_aranges section. */
6441
6442 static unsigned long
6443 size_of_aranges (void)
6444 {
6445 unsigned long size;
6446
6447 size = DWARF_ARANGES_HEADER_SIZE;
6448
6449 /* Count the address/length pair for this compilation unit. */
6450 size += 2 * DWARF2_ADDR_SIZE;
6451 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6452
6453 /* Count the two zero words used to terminated the address range table. */
6454 size += 2 * DWARF2_ADDR_SIZE;
6455 return size;
6456 }
6457 \f
6458 /* Select the encoding of an attribute value. */
6459
6460 static enum dwarf_form
6461 value_format (dw_attr_ref a)
6462 {
6463 switch (a->dw_attr_val.val_class)
6464 {
6465 case dw_val_class_addr:
6466 return DW_FORM_addr;
6467 case dw_val_class_range_list:
6468 case dw_val_class_offset:
6469 if (DWARF_OFFSET_SIZE == 4)
6470 return DW_FORM_data4;
6471 if (DWARF_OFFSET_SIZE == 8)
6472 return DW_FORM_data8;
6473 abort ();
6474 case dw_val_class_loc_list:
6475 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6476 .debug_loc section */
6477 return DW_FORM_data4;
6478 case dw_val_class_loc:
6479 switch (constant_size (size_of_locs (AT_loc (a))))
6480 {
6481 case 1:
6482 return DW_FORM_block1;
6483 case 2:
6484 return DW_FORM_block2;
6485 default:
6486 abort ();
6487 }
6488 case dw_val_class_const:
6489 return DW_FORM_sdata;
6490 case dw_val_class_unsigned_const:
6491 switch (constant_size (AT_unsigned (a)))
6492 {
6493 case 1:
6494 return DW_FORM_data1;
6495 case 2:
6496 return DW_FORM_data2;
6497 case 4:
6498 return DW_FORM_data4;
6499 case 8:
6500 return DW_FORM_data8;
6501 default:
6502 abort ();
6503 }
6504 case dw_val_class_long_long:
6505 return DW_FORM_block1;
6506 case dw_val_class_float:
6507 return DW_FORM_block1;
6508 case dw_val_class_flag:
6509 return DW_FORM_flag;
6510 case dw_val_class_die_ref:
6511 if (AT_ref_external (a))
6512 return DW_FORM_ref_addr;
6513 else
6514 return DW_FORM_ref;
6515 case dw_val_class_fde_ref:
6516 return DW_FORM_data;
6517 case dw_val_class_lbl_id:
6518 return DW_FORM_addr;
6519 case dw_val_class_lbl_offset:
6520 return DW_FORM_data;
6521 case dw_val_class_str:
6522 return AT_string_form (a);
6523
6524 default:
6525 abort ();
6526 }
6527 }
6528
6529 /* Output the encoding of an attribute value. */
6530
6531 static void
6532 output_value_format (dw_attr_ref a)
6533 {
6534 enum dwarf_form form = value_format (a);
6535
6536 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6537 }
6538
6539 /* Output the .debug_abbrev section which defines the DIE abbreviation
6540 table. */
6541
6542 static void
6543 output_abbrev_section (void)
6544 {
6545 unsigned long abbrev_id;
6546
6547 dw_attr_ref a_attr;
6548
6549 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6550 {
6551 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6552
6553 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6554 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6555 dwarf_tag_name (abbrev->die_tag));
6556
6557 if (abbrev->die_child != NULL)
6558 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6559 else
6560 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6561
6562 for (a_attr = abbrev->die_attr; a_attr != NULL;
6563 a_attr = a_attr->dw_attr_next)
6564 {
6565 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6566 dwarf_attr_name (a_attr->dw_attr));
6567 output_value_format (a_attr);
6568 }
6569
6570 dw2_asm_output_data (1, 0, NULL);
6571 dw2_asm_output_data (1, 0, NULL);
6572 }
6573
6574 /* Terminate the table. */
6575 dw2_asm_output_data (1, 0, NULL);
6576 }
6577
6578 /* Output a symbol we can use to refer to this DIE from another CU. */
6579
6580 static inline void
6581 output_die_symbol (dw_die_ref die)
6582 {
6583 char *sym = die->die_symbol;
6584
6585 if (sym == 0)
6586 return;
6587
6588 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6589 /* We make these global, not weak; if the target doesn't support
6590 .linkonce, it doesn't support combining the sections, so debugging
6591 will break. */
6592 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6593
6594 ASM_OUTPUT_LABEL (asm_out_file, sym);
6595 }
6596
6597 /* Return a new location list, given the begin and end range, and the
6598 expression. gensym tells us whether to generate a new internal symbol for
6599 this location list node, which is done for the head of the list only. */
6600
6601 static inline dw_loc_list_ref
6602 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6603 const char *section, unsigned int gensym)
6604 {
6605 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6606
6607 retlist->begin = begin;
6608 retlist->end = end;
6609 retlist->expr = expr;
6610 retlist->section = section;
6611 if (gensym)
6612 retlist->ll_symbol = gen_internal_sym ("LLST");
6613
6614 return retlist;
6615 }
6616
6617 /* Add a location description expression to a location list. */
6618
6619 static inline void
6620 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6621 const char *begin, const char *end,
6622 const char *section)
6623 {
6624 dw_loc_list_ref *d;
6625
6626 /* Find the end of the chain. */
6627 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6628 ;
6629
6630 /* Add a new location list node to the list. */
6631 *d = new_loc_list (descr, begin, end, section, 0);
6632 }
6633
6634 /* Output the location list given to us. */
6635
6636 static void
6637 output_loc_list (dw_loc_list_ref list_head)
6638 {
6639 dw_loc_list_ref curr = list_head;
6640
6641 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6642
6643 /* ??? This shouldn't be needed now that we've forced the
6644 compilation unit base address to zero when there is code
6645 in more than one section. */
6646 if (strcmp (curr->section, ".text") == 0)
6647 {
6648 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6649 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6650 "Location list base address specifier fake entry");
6651 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6652 "Location list base address specifier base");
6653 }
6654
6655 /* Walk the location list, and output each range + expression. */
6656 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6657 {
6658 unsigned long size;
6659 if (separate_line_info_table_in_use == 0)
6660 {
6661 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6662 "Location list begin address (%s)",
6663 list_head->ll_symbol);
6664 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6665 "Location list end address (%s)",
6666 list_head->ll_symbol);
6667 }
6668 else
6669 {
6670 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6671 "Location list begin address (%s)",
6672 list_head->ll_symbol);
6673 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6674 "Location list end address (%s)",
6675 list_head->ll_symbol);
6676 }
6677 size = size_of_locs (curr->expr);
6678
6679 /* Output the block length for this list of location operations. */
6680 if (size > 0xffff)
6681 abort ();
6682 dw2_asm_output_data (2, size, "%s", "Location expression size");
6683
6684 output_loc_sequence (curr->expr);
6685 }
6686
6687 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6688 "Location list terminator begin (%s)",
6689 list_head->ll_symbol);
6690 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6691 "Location list terminator end (%s)",
6692 list_head->ll_symbol);
6693 }
6694
6695 /* Output the DIE and its attributes. Called recursively to generate
6696 the definitions of each child DIE. */
6697
6698 static void
6699 output_die (dw_die_ref die)
6700 {
6701 dw_attr_ref a;
6702 dw_die_ref c;
6703 unsigned long size;
6704
6705 /* If someone in another CU might refer to us, set up a symbol for
6706 them to point to. */
6707 if (die->die_symbol)
6708 output_die_symbol (die);
6709
6710 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6711 die->die_offset, dwarf_tag_name (die->die_tag));
6712
6713 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6714 {
6715 const char *name = dwarf_attr_name (a->dw_attr);
6716
6717 switch (AT_class (a))
6718 {
6719 case dw_val_class_addr:
6720 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6721 break;
6722
6723 case dw_val_class_offset:
6724 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6725 "%s", name);
6726 break;
6727
6728 case dw_val_class_range_list:
6729 {
6730 char *p = strchr (ranges_section_label, '\0');
6731
6732 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6733 a->dw_attr_val.v.val_offset);
6734 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6735 "%s", name);
6736 *p = '\0';
6737 }
6738 break;
6739
6740 case dw_val_class_loc:
6741 size = size_of_locs (AT_loc (a));
6742
6743 /* Output the block length for this list of location operations. */
6744 dw2_asm_output_data (constant_size (size), size, "%s", name);
6745
6746 output_loc_sequence (AT_loc (a));
6747 break;
6748
6749 case dw_val_class_const:
6750 /* ??? It would be slightly more efficient to use a scheme like is
6751 used for unsigned constants below, but gdb 4.x does not sign
6752 extend. Gdb 5.x does sign extend. */
6753 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6754 break;
6755
6756 case dw_val_class_unsigned_const:
6757 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6758 AT_unsigned (a), "%s", name);
6759 break;
6760
6761 case dw_val_class_long_long:
6762 {
6763 unsigned HOST_WIDE_INT first, second;
6764
6765 dw2_asm_output_data (1,
6766 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6767 "%s", name);
6768
6769 if (WORDS_BIG_ENDIAN)
6770 {
6771 first = a->dw_attr_val.v.val_long_long.hi;
6772 second = a->dw_attr_val.v.val_long_long.low;
6773 }
6774 else
6775 {
6776 first = a->dw_attr_val.v.val_long_long.low;
6777 second = a->dw_attr_val.v.val_long_long.hi;
6778 }
6779
6780 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6781 first, "long long constant");
6782 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6783 second, NULL);
6784 }
6785 break;
6786
6787 case dw_val_class_float:
6788 {
6789 unsigned int i;
6790
6791 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6792 "%s", name);
6793
6794 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6795 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6796 "fp constant word %u", i);
6797 break;
6798 }
6799
6800 case dw_val_class_flag:
6801 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6802 break;
6803
6804 case dw_val_class_loc_list:
6805 {
6806 char *sym = AT_loc_list (a)->ll_symbol;
6807
6808 if (sym == 0)
6809 abort ();
6810 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6811 }
6812 break;
6813
6814 case dw_val_class_die_ref:
6815 if (AT_ref_external (a))
6816 {
6817 char *sym = AT_ref (a)->die_symbol;
6818
6819 if (sym == 0)
6820 abort ();
6821 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6822 }
6823 else if (AT_ref (a)->die_offset == 0)
6824 abort ();
6825 else
6826 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6827 "%s", name);
6828 break;
6829
6830 case dw_val_class_fde_ref:
6831 {
6832 char l1[20];
6833
6834 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6835 a->dw_attr_val.v.val_fde_index * 2);
6836 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6837 }
6838 break;
6839
6840 case dw_val_class_lbl_id:
6841 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6842 break;
6843
6844 case dw_val_class_lbl_offset:
6845 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6846 break;
6847
6848 case dw_val_class_str:
6849 if (AT_string_form (a) == DW_FORM_strp)
6850 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6851 a->dw_attr_val.v.val_str->label,
6852 "%s: \"%s\"", name, AT_string (a));
6853 else
6854 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6855 break;
6856
6857 default:
6858 abort ();
6859 }
6860 }
6861
6862 for (c = die->die_child; c != NULL; c = c->die_sib)
6863 output_die (c);
6864
6865 /* Add null byte to terminate sibling list. */
6866 if (die->die_child != NULL)
6867 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6868 die->die_offset);
6869 }
6870
6871 /* Output the compilation unit that appears at the beginning of the
6872 .debug_info section, and precedes the DIE descriptions. */
6873
6874 static void
6875 output_compilation_unit_header (void)
6876 {
6877 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6878 dw2_asm_output_data (4, 0xffffffff,
6879 "Initial length escape value indicating 64-bit DWARF extension");
6880 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6881 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6882 "Length of Compilation Unit Info");
6883 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6884 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6885 "Offset Into Abbrev. Section");
6886 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6887 }
6888
6889 /* Output the compilation unit DIE and its children. */
6890
6891 static void
6892 output_comp_unit (dw_die_ref die, int output_if_empty)
6893 {
6894 const char *secname;
6895 char *oldsym, *tmp;
6896
6897 /* Unless we are outputting main CU, we may throw away empty ones. */
6898 if (!output_if_empty && die->die_child == NULL)
6899 return;
6900
6901 /* Even if there are no children of this DIE, we must output the information
6902 about the compilation unit. Otherwise, on an empty translation unit, we
6903 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6904 will then complain when examining the file. First mark all the DIEs in
6905 this CU so we know which get local refs. */
6906 mark_dies (die);
6907
6908 build_abbrev_table (die);
6909
6910 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6911 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6912 calc_die_sizes (die);
6913
6914 oldsym = die->die_symbol;
6915 if (oldsym)
6916 {
6917 tmp = alloca (strlen (oldsym) + 24);
6918
6919 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6920 secname = tmp;
6921 die->die_symbol = NULL;
6922 }
6923 else
6924 secname = (const char *) DEBUG_INFO_SECTION;
6925
6926 /* Output debugging information. */
6927 named_section_flags (secname, SECTION_DEBUG);
6928 output_compilation_unit_header ();
6929 output_die (die);
6930
6931 /* Leave the marks on the main CU, so we can check them in
6932 output_pubnames. */
6933 if (oldsym)
6934 {
6935 unmark_dies (die);
6936 die->die_symbol = oldsym;
6937 }
6938 }
6939
6940 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6941 output of lang_hooks.decl_printable_name for C++ looks like
6942 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6943
6944 static const char *
6945 dwarf2_name (tree decl, int scope)
6946 {
6947 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6948 }
6949
6950 /* Add a new entry to .debug_pubnames if appropriate. */
6951
6952 static void
6953 add_pubname (tree decl, dw_die_ref die)
6954 {
6955 pubname_ref p;
6956
6957 if (! TREE_PUBLIC (decl))
6958 return;
6959
6960 if (pubname_table_in_use == pubname_table_allocated)
6961 {
6962 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6963 pubname_table
6964 = ggc_realloc (pubname_table,
6965 (pubname_table_allocated * sizeof (pubname_entry)));
6966 memset (pubname_table + pubname_table_in_use, 0,
6967 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6968 }
6969
6970 p = &pubname_table[pubname_table_in_use++];
6971 p->die = die;
6972 p->name = xstrdup (dwarf2_name (decl, 1));
6973 }
6974
6975 /* Output the public names table used to speed up access to externally
6976 visible names. For now, only generate entries for externally
6977 visible procedures. */
6978
6979 static void
6980 output_pubnames (void)
6981 {
6982 unsigned i;
6983 unsigned long pubnames_length = size_of_pubnames ();
6984
6985 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6986 dw2_asm_output_data (4, 0xffffffff,
6987 "Initial length escape value indicating 64-bit DWARF extension");
6988 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6989 "Length of Public Names Info");
6990 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6991 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6992 "Offset of Compilation Unit Info");
6993 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6994 "Compilation Unit Length");
6995
6996 for (i = 0; i < pubname_table_in_use; i++)
6997 {
6998 pubname_ref pub = &pubname_table[i];
6999
7000 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7001 if (pub->die->die_mark == 0)
7002 abort ();
7003
7004 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7005 "DIE offset");
7006
7007 dw2_asm_output_nstring (pub->name, -1, "external name");
7008 }
7009
7010 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7011 }
7012
7013 /* Add a new entry to .debug_aranges if appropriate. */
7014
7015 static void
7016 add_arange (tree decl, dw_die_ref die)
7017 {
7018 if (! DECL_SECTION_NAME (decl))
7019 return;
7020
7021 if (arange_table_in_use == arange_table_allocated)
7022 {
7023 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7024 arange_table = ggc_realloc (arange_table,
7025 (arange_table_allocated
7026 * sizeof (dw_die_ref)));
7027 memset (arange_table + arange_table_in_use, 0,
7028 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7029 }
7030
7031 arange_table[arange_table_in_use++] = die;
7032 }
7033
7034 /* Output the information that goes into the .debug_aranges table.
7035 Namely, define the beginning and ending address range of the
7036 text section generated for this compilation unit. */
7037
7038 static void
7039 output_aranges (void)
7040 {
7041 unsigned i;
7042 unsigned long aranges_length = size_of_aranges ();
7043
7044 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7045 dw2_asm_output_data (4, 0xffffffff,
7046 "Initial length escape value indicating 64-bit DWARF extension");
7047 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7048 "Length of Address Ranges Info");
7049 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7050 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7051 "Offset of Compilation Unit Info");
7052 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7053 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7054
7055 /* We need to align to twice the pointer size here. */
7056 if (DWARF_ARANGES_PAD_SIZE)
7057 {
7058 /* Pad using a 2 byte words so that padding is correct for any
7059 pointer size. */
7060 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7061 2 * DWARF2_ADDR_SIZE);
7062 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7063 dw2_asm_output_data (2, 0, NULL);
7064 }
7065
7066 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7067 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7068 text_section_label, "Length");
7069
7070 for (i = 0; i < arange_table_in_use; i++)
7071 {
7072 dw_die_ref die = arange_table[i];
7073
7074 /* We shouldn't see aranges for DIEs outside of the main CU. */
7075 if (die->die_mark == 0)
7076 abort ();
7077
7078 if (die->die_tag == DW_TAG_subprogram)
7079 {
7080 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7081 "Address");
7082 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7083 get_AT_low_pc (die), "Length");
7084 }
7085 else
7086 {
7087 /* A static variable; extract the symbol from DW_AT_location.
7088 Note that this code isn't currently hit, as we only emit
7089 aranges for functions (jason 9/23/99). */
7090 dw_attr_ref a = get_AT (die, DW_AT_location);
7091 dw_loc_descr_ref loc;
7092
7093 if (! a || AT_class (a) != dw_val_class_loc)
7094 abort ();
7095
7096 loc = AT_loc (a);
7097 if (loc->dw_loc_opc != DW_OP_addr)
7098 abort ();
7099
7100 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7101 loc->dw_loc_oprnd1.v.val_addr, "Address");
7102 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7103 get_AT_unsigned (die, DW_AT_byte_size),
7104 "Length");
7105 }
7106 }
7107
7108 /* Output the terminator words. */
7109 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7110 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7111 }
7112
7113 /* Add a new entry to .debug_ranges. Return the offset at which it
7114 was placed. */
7115
7116 static unsigned int
7117 add_ranges (tree block)
7118 {
7119 unsigned int in_use = ranges_table_in_use;
7120
7121 if (in_use == ranges_table_allocated)
7122 {
7123 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7124 ranges_table
7125 = ggc_realloc (ranges_table, (ranges_table_allocated
7126 * sizeof (struct dw_ranges_struct)));
7127 memset (ranges_table + ranges_table_in_use, 0,
7128 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7129 }
7130
7131 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7132 ranges_table_in_use = in_use + 1;
7133
7134 return in_use * 2 * DWARF2_ADDR_SIZE;
7135 }
7136
7137 static void
7138 output_ranges (void)
7139 {
7140 unsigned i;
7141 static const char *const start_fmt = "Offset 0x%x";
7142 const char *fmt = start_fmt;
7143
7144 for (i = 0; i < ranges_table_in_use; i++)
7145 {
7146 int block_num = ranges_table[i].block_num;
7147
7148 if (block_num)
7149 {
7150 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7151 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7152
7153 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7154 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7155
7156 /* If all code is in the text section, then the compilation
7157 unit base address defaults to DW_AT_low_pc, which is the
7158 base of the text section. */
7159 if (separate_line_info_table_in_use == 0)
7160 {
7161 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7162 text_section_label,
7163 fmt, i * 2 * DWARF2_ADDR_SIZE);
7164 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7165 text_section_label, NULL);
7166 }
7167
7168 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7169 compilation unit base address to zero, which allows us to
7170 use absolute addresses, and not worry about whether the
7171 target supports cross-section arithmetic. */
7172 else
7173 {
7174 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7175 fmt, i * 2 * DWARF2_ADDR_SIZE);
7176 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7177 }
7178
7179 fmt = NULL;
7180 }
7181 else
7182 {
7183 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7184 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7185 fmt = start_fmt;
7186 }
7187 }
7188 }
7189
7190 /* Data structure containing information about input files. */
7191 struct file_info
7192 {
7193 char *path; /* Complete file name. */
7194 char *fname; /* File name part. */
7195 int length; /* Length of entire string. */
7196 int file_idx; /* Index in input file table. */
7197 int dir_idx; /* Index in directory table. */
7198 };
7199
7200 /* Data structure containing information about directories with source
7201 files. */
7202 struct dir_info
7203 {
7204 char *path; /* Path including directory name. */
7205 int length; /* Path length. */
7206 int prefix; /* Index of directory entry which is a prefix. */
7207 int count; /* Number of files in this directory. */
7208 int dir_idx; /* Index of directory used as base. */
7209 int used; /* Used in the end? */
7210 };
7211
7212 /* Callback function for file_info comparison. We sort by looking at
7213 the directories in the path. */
7214
7215 static int
7216 file_info_cmp (const void *p1, const void *p2)
7217 {
7218 const struct file_info *s1 = p1;
7219 const struct file_info *s2 = p2;
7220 unsigned char *cp1;
7221 unsigned char *cp2;
7222
7223 /* Take care of file names without directories. We need to make sure that
7224 we return consistent values to qsort since some will get confused if
7225 we return the same value when identical operands are passed in opposite
7226 orders. So if neither has a directory, return 0 and otherwise return
7227 1 or -1 depending on which one has the directory. */
7228 if ((s1->path == s1->fname || s2->path == s2->fname))
7229 return (s2->path == s2->fname) - (s1->path == s1->fname);
7230
7231 cp1 = (unsigned char *) s1->path;
7232 cp2 = (unsigned char *) s2->path;
7233
7234 while (1)
7235 {
7236 ++cp1;
7237 ++cp2;
7238 /* Reached the end of the first path? If so, handle like above. */
7239 if ((cp1 == (unsigned char *) s1->fname)
7240 || (cp2 == (unsigned char *) s2->fname))
7241 return ((cp2 == (unsigned char *) s2->fname)
7242 - (cp1 == (unsigned char *) s1->fname));
7243
7244 /* Character of current path component the same? */
7245 else if (*cp1 != *cp2)
7246 return *cp1 - *cp2;
7247 }
7248 }
7249
7250 /* Output the directory table and the file name table. We try to minimize
7251 the total amount of memory needed. A heuristic is used to avoid large
7252 slowdowns with many input files. */
7253
7254 static void
7255 output_file_names (void)
7256 {
7257 struct file_info *files;
7258 struct dir_info *dirs;
7259 int *saved;
7260 int *savehere;
7261 int *backmap;
7262 size_t ndirs;
7263 int idx_offset;
7264 size_t i;
7265 int idx;
7266
7267 /* Handle the case where file_table is empty. */
7268 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7269 {
7270 dw2_asm_output_data (1, 0, "End directory table");
7271 dw2_asm_output_data (1, 0, "End file name table");
7272 return;
7273 }
7274
7275 /* Allocate the various arrays we need. */
7276 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7277 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7278
7279 /* Sort the file names. */
7280 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7281 {
7282 char *f;
7283
7284 /* Skip all leading "./". */
7285 f = VARRAY_CHAR_PTR (file_table, i);
7286 while (f[0] == '.' && f[1] == '/')
7287 f += 2;
7288
7289 /* Create a new array entry. */
7290 files[i].path = f;
7291 files[i].length = strlen (f);
7292 files[i].file_idx = i;
7293
7294 /* Search for the file name part. */
7295 f = strrchr (f, '/');
7296 files[i].fname = f == NULL ? files[i].path : f + 1;
7297 }
7298
7299 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7300 sizeof (files[0]), file_info_cmp);
7301
7302 /* Find all the different directories used. */
7303 dirs[0].path = files[1].path;
7304 dirs[0].length = files[1].fname - files[1].path;
7305 dirs[0].prefix = -1;
7306 dirs[0].count = 1;
7307 dirs[0].dir_idx = 0;
7308 dirs[0].used = 0;
7309 files[1].dir_idx = 0;
7310 ndirs = 1;
7311
7312 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7313 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7314 && memcmp (dirs[ndirs - 1].path, files[i].path,
7315 dirs[ndirs - 1].length) == 0)
7316 {
7317 /* Same directory as last entry. */
7318 files[i].dir_idx = ndirs - 1;
7319 ++dirs[ndirs - 1].count;
7320 }
7321 else
7322 {
7323 size_t j;
7324
7325 /* This is a new directory. */
7326 dirs[ndirs].path = files[i].path;
7327 dirs[ndirs].length = files[i].fname - files[i].path;
7328 dirs[ndirs].count = 1;
7329 dirs[ndirs].dir_idx = ndirs;
7330 dirs[ndirs].used = 0;
7331 files[i].dir_idx = ndirs;
7332
7333 /* Search for a prefix. */
7334 dirs[ndirs].prefix = -1;
7335 for (j = 0; j < ndirs; j++)
7336 if (dirs[j].length < dirs[ndirs].length
7337 && dirs[j].length > 1
7338 && (dirs[ndirs].prefix == -1
7339 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7340 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7341 dirs[ndirs].prefix = j;
7342
7343 ++ndirs;
7344 }
7345
7346 /* Now to the actual work. We have to find a subset of the directories which
7347 allow expressing the file name using references to the directory table
7348 with the least amount of characters. We do not do an exhaustive search
7349 where we would have to check out every combination of every single
7350 possible prefix. Instead we use a heuristic which provides nearly optimal
7351 results in most cases and never is much off. */
7352 saved = alloca (ndirs * sizeof (int));
7353 savehere = alloca (ndirs * sizeof (int));
7354
7355 memset (saved, '\0', ndirs * sizeof (saved[0]));
7356 for (i = 0; i < ndirs; i++)
7357 {
7358 size_t j;
7359 int total;
7360
7361 /* We can always save some space for the current directory. But this
7362 does not mean it will be enough to justify adding the directory. */
7363 savehere[i] = dirs[i].length;
7364 total = (savehere[i] - saved[i]) * dirs[i].count;
7365
7366 for (j = i + 1; j < ndirs; j++)
7367 {
7368 savehere[j] = 0;
7369 if (saved[j] < dirs[i].length)
7370 {
7371 /* Determine whether the dirs[i] path is a prefix of the
7372 dirs[j] path. */
7373 int k;
7374
7375 k = dirs[j].prefix;
7376 while (k != -1 && k != (int) i)
7377 k = dirs[k].prefix;
7378
7379 if (k == (int) i)
7380 {
7381 /* Yes it is. We can possibly safe some memory but
7382 writing the filenames in dirs[j] relative to
7383 dirs[i]. */
7384 savehere[j] = dirs[i].length;
7385 total += (savehere[j] - saved[j]) * dirs[j].count;
7386 }
7387 }
7388 }
7389
7390 /* Check whether we can safe enough to justify adding the dirs[i]
7391 directory. */
7392 if (total > dirs[i].length + 1)
7393 {
7394 /* It's worthwhile adding. */
7395 for (j = i; j < ndirs; j++)
7396 if (savehere[j] > 0)
7397 {
7398 /* Remember how much we saved for this directory so far. */
7399 saved[j] = savehere[j];
7400
7401 /* Remember the prefix directory. */
7402 dirs[j].dir_idx = i;
7403 }
7404 }
7405 }
7406
7407 /* We have to emit them in the order they appear in the file_table array
7408 since the index is used in the debug info generation. To do this
7409 efficiently we generate a back-mapping of the indices first. */
7410 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7411 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7412 {
7413 backmap[files[i].file_idx] = i;
7414
7415 /* Mark this directory as used. */
7416 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7417 }
7418
7419 /* That was it. We are ready to emit the information. First emit the
7420 directory name table. We have to make sure the first actually emitted
7421 directory name has index one; zero is reserved for the current working
7422 directory. Make sure we do not confuse these indices with the one for the
7423 constructed table (even though most of the time they are identical). */
7424 idx = 1;
7425 idx_offset = dirs[0].length > 0 ? 1 : 0;
7426 for (i = 1 - idx_offset; i < ndirs; i++)
7427 if (dirs[i].used != 0)
7428 {
7429 dirs[i].used = idx++;
7430 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7431 "Directory Entry: 0x%x", dirs[i].used);
7432 }
7433
7434 dw2_asm_output_data (1, 0, "End directory table");
7435
7436 /* Correct the index for the current working directory entry if it
7437 exists. */
7438 if (idx_offset == 0)
7439 dirs[0].used = 0;
7440
7441 /* Now write all the file names. */
7442 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7443 {
7444 int file_idx = backmap[i];
7445 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7446
7447 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7448 "File Entry: 0x%lx", (unsigned long) i);
7449
7450 /* Include directory index. */
7451 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7452
7453 /* Modification time. */
7454 dw2_asm_output_data_uleb128 (0, NULL);
7455
7456 /* File length in bytes. */
7457 dw2_asm_output_data_uleb128 (0, NULL);
7458 }
7459
7460 dw2_asm_output_data (1, 0, "End file name table");
7461 }
7462
7463
7464 /* Output the source line number correspondence information. This
7465 information goes into the .debug_line section. */
7466
7467 static void
7468 output_line_info (void)
7469 {
7470 char l1[20], l2[20], p1[20], p2[20];
7471 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7472 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7473 unsigned opc;
7474 unsigned n_op_args;
7475 unsigned long lt_index;
7476 unsigned long current_line;
7477 long line_offset;
7478 long line_delta;
7479 unsigned long current_file;
7480 unsigned long function;
7481
7482 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7483 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7484 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7485 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7486
7487 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7488 dw2_asm_output_data (4, 0xffffffff,
7489 "Initial length escape value indicating 64-bit DWARF extension");
7490 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7491 "Length of Source Line Info");
7492 ASM_OUTPUT_LABEL (asm_out_file, l1);
7493
7494 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7495 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7496 ASM_OUTPUT_LABEL (asm_out_file, p1);
7497
7498 /* Define the architecture-dependent minimum instruction length (in
7499 bytes). In this implementation of DWARF, this field is used for
7500 information purposes only. Since GCC generates assembly language,
7501 we have no a priori knowledge of how many instruction bytes are
7502 generated for each source line, and therefore can use only the
7503 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7504 commands. Accordingly, we fix this as `1', which is "correct
7505 enough" for all architectures, and don't let the target override. */
7506 dw2_asm_output_data (1, 1,
7507 "Minimum Instruction Length");
7508
7509 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7510 "Default is_stmt_start flag");
7511 dw2_asm_output_data (1, DWARF_LINE_BASE,
7512 "Line Base Value (Special Opcodes)");
7513 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7514 "Line Range Value (Special Opcodes)");
7515 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7516 "Special Opcode Base");
7517
7518 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7519 {
7520 switch (opc)
7521 {
7522 case DW_LNS_advance_pc:
7523 case DW_LNS_advance_line:
7524 case DW_LNS_set_file:
7525 case DW_LNS_set_column:
7526 case DW_LNS_fixed_advance_pc:
7527 n_op_args = 1;
7528 break;
7529 default:
7530 n_op_args = 0;
7531 break;
7532 }
7533
7534 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7535 opc, n_op_args);
7536 }
7537
7538 /* Write out the information about the files we use. */
7539 output_file_names ();
7540 ASM_OUTPUT_LABEL (asm_out_file, p2);
7541
7542 /* We used to set the address register to the first location in the text
7543 section here, but that didn't accomplish anything since we already
7544 have a line note for the opening brace of the first function. */
7545
7546 /* Generate the line number to PC correspondence table, encoded as
7547 a series of state machine operations. */
7548 current_file = 1;
7549 current_line = 1;
7550 strcpy (prev_line_label, text_section_label);
7551 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7552 {
7553 dw_line_info_ref line_info = &line_info_table[lt_index];
7554
7555 #if 0
7556 /* Disable this optimization for now; GDB wants to see two line notes
7557 at the beginning of a function so it can find the end of the
7558 prologue. */
7559
7560 /* Don't emit anything for redundant notes. Just updating the
7561 address doesn't accomplish anything, because we already assume
7562 that anything after the last address is this line. */
7563 if (line_info->dw_line_num == current_line
7564 && line_info->dw_file_num == current_file)
7565 continue;
7566 #endif
7567
7568 /* Emit debug info for the address of the current line.
7569
7570 Unfortunately, we have little choice here currently, and must always
7571 use the most general form. GCC does not know the address delta
7572 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7573 attributes which will give an upper bound on the address range. We
7574 could perhaps use length attributes to determine when it is safe to
7575 use DW_LNS_fixed_advance_pc. */
7576
7577 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7578 if (0)
7579 {
7580 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7581 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7582 "DW_LNS_fixed_advance_pc");
7583 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7584 }
7585 else
7586 {
7587 /* This can handle any delta. This takes
7588 4+DWARF2_ADDR_SIZE bytes. */
7589 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7590 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7591 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7592 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7593 }
7594
7595 strcpy (prev_line_label, line_label);
7596
7597 /* Emit debug info for the source file of the current line, if
7598 different from the previous line. */
7599 if (line_info->dw_file_num != current_file)
7600 {
7601 current_file = line_info->dw_file_num;
7602 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7603 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7604 VARRAY_CHAR_PTR (file_table,
7605 current_file));
7606 }
7607
7608 /* Emit debug info for the current line number, choosing the encoding
7609 that uses the least amount of space. */
7610 if (line_info->dw_line_num != current_line)
7611 {
7612 line_offset = line_info->dw_line_num - current_line;
7613 line_delta = line_offset - DWARF_LINE_BASE;
7614 current_line = line_info->dw_line_num;
7615 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7616 /* This can handle deltas from -10 to 234, using the current
7617 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7618 takes 1 byte. */
7619 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7620 "line %lu", current_line);
7621 else
7622 {
7623 /* This can handle any delta. This takes at least 4 bytes,
7624 depending on the value being encoded. */
7625 dw2_asm_output_data (1, DW_LNS_advance_line,
7626 "advance to line %lu", current_line);
7627 dw2_asm_output_data_sleb128 (line_offset, NULL);
7628 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7629 }
7630 }
7631 else
7632 /* We still need to start a new row, so output a copy insn. */
7633 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7634 }
7635
7636 /* Emit debug info for the address of the end of the function. */
7637 if (0)
7638 {
7639 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7640 "DW_LNS_fixed_advance_pc");
7641 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7642 }
7643 else
7644 {
7645 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7646 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7647 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7648 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7649 }
7650
7651 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7652 dw2_asm_output_data_uleb128 (1, NULL);
7653 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7654
7655 function = 0;
7656 current_file = 1;
7657 current_line = 1;
7658 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7659 {
7660 dw_separate_line_info_ref line_info
7661 = &separate_line_info_table[lt_index];
7662
7663 #if 0
7664 /* Don't emit anything for redundant notes. */
7665 if (line_info->dw_line_num == current_line
7666 && line_info->dw_file_num == current_file
7667 && line_info->function == function)
7668 goto cont;
7669 #endif
7670
7671 /* Emit debug info for the address of the current line. If this is
7672 a new function, or the first line of a function, then we need
7673 to handle it differently. */
7674 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7675 lt_index);
7676 if (function != line_info->function)
7677 {
7678 function = line_info->function;
7679
7680 /* Set the address register to the first line in the function. */
7681 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7682 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7683 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7684 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7685 }
7686 else
7687 {
7688 /* ??? See the DW_LNS_advance_pc comment above. */
7689 if (0)
7690 {
7691 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7692 "DW_LNS_fixed_advance_pc");
7693 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7694 }
7695 else
7696 {
7697 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7698 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7699 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7700 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7701 }
7702 }
7703
7704 strcpy (prev_line_label, line_label);
7705
7706 /* Emit debug info for the source file of the current line, if
7707 different from the previous line. */
7708 if (line_info->dw_file_num != current_file)
7709 {
7710 current_file = line_info->dw_file_num;
7711 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7712 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7713 VARRAY_CHAR_PTR (file_table,
7714 current_file));
7715 }
7716
7717 /* Emit debug info for the current line number, choosing the encoding
7718 that uses the least amount of space. */
7719 if (line_info->dw_line_num != current_line)
7720 {
7721 line_offset = line_info->dw_line_num - current_line;
7722 line_delta = line_offset - DWARF_LINE_BASE;
7723 current_line = line_info->dw_line_num;
7724 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7725 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7726 "line %lu", current_line);
7727 else
7728 {
7729 dw2_asm_output_data (1, DW_LNS_advance_line,
7730 "advance to line %lu", current_line);
7731 dw2_asm_output_data_sleb128 (line_offset, NULL);
7732 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7733 }
7734 }
7735 else
7736 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7737
7738 #if 0
7739 cont:
7740 #endif
7741
7742 lt_index++;
7743
7744 /* If we're done with a function, end its sequence. */
7745 if (lt_index == separate_line_info_table_in_use
7746 || separate_line_info_table[lt_index].function != function)
7747 {
7748 current_file = 1;
7749 current_line = 1;
7750
7751 /* Emit debug info for the address of the end of the function. */
7752 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7753 if (0)
7754 {
7755 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7756 "DW_LNS_fixed_advance_pc");
7757 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7758 }
7759 else
7760 {
7761 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7762 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7763 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7764 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7765 }
7766
7767 /* Output the marker for the end of this sequence. */
7768 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7769 dw2_asm_output_data_uleb128 (1, NULL);
7770 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7771 }
7772 }
7773
7774 /* Output the marker for the end of the line number info. */
7775 ASM_OUTPUT_LABEL (asm_out_file, l2);
7776 }
7777 \f
7778 /* Given a pointer to a tree node for some base type, return a pointer to
7779 a DIE that describes the given type.
7780
7781 This routine must only be called for GCC type nodes that correspond to
7782 Dwarf base (fundamental) types. */
7783
7784 static dw_die_ref
7785 base_type_die (tree type)
7786 {
7787 dw_die_ref base_type_result;
7788 const char *type_name;
7789 enum dwarf_type encoding;
7790 tree name = TYPE_NAME (type);
7791
7792 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7793 return 0;
7794
7795 if (name)
7796 {
7797 if (TREE_CODE (name) == TYPE_DECL)
7798 name = DECL_NAME (name);
7799
7800 type_name = IDENTIFIER_POINTER (name);
7801 }
7802 else
7803 type_name = "__unknown__";
7804
7805 switch (TREE_CODE (type))
7806 {
7807 case INTEGER_TYPE:
7808 /* Carefully distinguish the C character types, without messing
7809 up if the language is not C. Note that we check only for the names
7810 that contain spaces; other names might occur by coincidence in other
7811 languages. */
7812 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7813 && (type == char_type_node
7814 || ! strcmp (type_name, "signed char")
7815 || ! strcmp (type_name, "unsigned char"))))
7816 {
7817 if (TREE_UNSIGNED (type))
7818 encoding = DW_ATE_unsigned;
7819 else
7820 encoding = DW_ATE_signed;
7821 break;
7822 }
7823 /* else fall through. */
7824
7825 case CHAR_TYPE:
7826 /* GNU Pascal/Ada CHAR type. Not used in C. */
7827 if (TREE_UNSIGNED (type))
7828 encoding = DW_ATE_unsigned_char;
7829 else
7830 encoding = DW_ATE_signed_char;
7831 break;
7832
7833 case REAL_TYPE:
7834 encoding = DW_ATE_float;
7835 break;
7836
7837 /* Dwarf2 doesn't know anything about complex ints, so use
7838 a user defined type for it. */
7839 case COMPLEX_TYPE:
7840 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7841 encoding = DW_ATE_complex_float;
7842 else
7843 encoding = DW_ATE_lo_user;
7844 break;
7845
7846 case BOOLEAN_TYPE:
7847 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7848 encoding = DW_ATE_boolean;
7849 break;
7850
7851 default:
7852 /* No other TREE_CODEs are Dwarf fundamental types. */
7853 abort ();
7854 }
7855
7856 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7857 if (demangle_name_func)
7858 type_name = (*demangle_name_func) (type_name);
7859
7860 add_AT_string (base_type_result, DW_AT_name, type_name);
7861 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7862 int_size_in_bytes (type));
7863 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7864
7865 return base_type_result;
7866 }
7867
7868 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7869 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7870 a given type is generally the same as the given type, except that if the
7871 given type is a pointer or reference type, then the root type of the given
7872 type is the root type of the "basis" type for the pointer or reference
7873 type. (This definition of the "root" type is recursive.) Also, the root
7874 type of a `const' qualified type or a `volatile' qualified type is the
7875 root type of the given type without the qualifiers. */
7876
7877 static tree
7878 root_type (tree type)
7879 {
7880 if (TREE_CODE (type) == ERROR_MARK)
7881 return error_mark_node;
7882
7883 switch (TREE_CODE (type))
7884 {
7885 case ERROR_MARK:
7886 return error_mark_node;
7887
7888 case POINTER_TYPE:
7889 case REFERENCE_TYPE:
7890 return type_main_variant (root_type (TREE_TYPE (type)));
7891
7892 default:
7893 return type_main_variant (type);
7894 }
7895 }
7896
7897 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7898 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7899
7900 static inline int
7901 is_base_type (tree type)
7902 {
7903 switch (TREE_CODE (type))
7904 {
7905 case ERROR_MARK:
7906 case VOID_TYPE:
7907 case INTEGER_TYPE:
7908 case REAL_TYPE:
7909 case COMPLEX_TYPE:
7910 case BOOLEAN_TYPE:
7911 case CHAR_TYPE:
7912 return 1;
7913
7914 case SET_TYPE:
7915 case ARRAY_TYPE:
7916 case RECORD_TYPE:
7917 case UNION_TYPE:
7918 case QUAL_UNION_TYPE:
7919 case ENUMERAL_TYPE:
7920 case FUNCTION_TYPE:
7921 case METHOD_TYPE:
7922 case POINTER_TYPE:
7923 case REFERENCE_TYPE:
7924 case FILE_TYPE:
7925 case OFFSET_TYPE:
7926 case LANG_TYPE:
7927 case VECTOR_TYPE:
7928 return 0;
7929
7930 default:
7931 abort ();
7932 }
7933
7934 return 0;
7935 }
7936
7937 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7938 node, return the size in bits for the type if it is a constant, or else
7939 return the alignment for the type if the type's size is not constant, or
7940 else return BITS_PER_WORD if the type actually turns out to be an
7941 ERROR_MARK node. */
7942
7943 static inline unsigned HOST_WIDE_INT
7944 simple_type_size_in_bits (tree type)
7945 {
7946 if (TREE_CODE (type) == ERROR_MARK)
7947 return BITS_PER_WORD;
7948 else if (TYPE_SIZE (type) == NULL_TREE)
7949 return 0;
7950 else if (host_integerp (TYPE_SIZE (type), 1))
7951 return tree_low_cst (TYPE_SIZE (type), 1);
7952 else
7953 return TYPE_ALIGN (type);
7954 }
7955
7956 /* Return true if the debug information for the given type should be
7957 emitted as a subrange type. */
7958
7959 static inline bool
7960 is_subrange_type (tree type)
7961 {
7962 tree subtype = TREE_TYPE (type);
7963
7964 if (TREE_CODE (type) == INTEGER_TYPE
7965 && subtype != NULL_TREE)
7966 {
7967 if (TREE_CODE (subtype) == INTEGER_TYPE)
7968 return true;
7969 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
7970 return true;
7971 }
7972 return false;
7973 }
7974
7975 /* Given a pointer to a tree node for a subrange type, return a pointer
7976 to a DIE that describes the given type. */
7977
7978 static dw_die_ref
7979 subrange_type_die (tree type, dw_die_ref context_die)
7980 {
7981 dw_die_ref subtype_die;
7982 dw_die_ref subrange_die;
7983 tree name = TYPE_NAME (type);
7984 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
7985
7986 if (context_die == NULL)
7987 context_die = comp_unit_die;
7988
7989 if (TREE_CODE (TREE_TYPE (type)) == ENUMERAL_TYPE)
7990 subtype_die = gen_enumeration_type_die (TREE_TYPE (type), context_die);
7991 else
7992 subtype_die = base_type_die (TREE_TYPE (type));
7993
7994 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
7995
7996 if (name != NULL)
7997 {
7998 if (TREE_CODE (name) == TYPE_DECL)
7999 name = DECL_NAME (name);
8000 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8001 }
8002
8003 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8004 {
8005 /* The size of the subrange type and its base type do not match,
8006 so we need to generate a size attribute for the subrange type. */
8007 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8008 }
8009
8010 if (TYPE_MIN_VALUE (type) != NULL)
8011 add_bound_info (subrange_die, DW_AT_lower_bound,
8012 TYPE_MIN_VALUE (type));
8013 if (TYPE_MAX_VALUE (type) != NULL)
8014 add_bound_info (subrange_die, DW_AT_upper_bound,
8015 TYPE_MAX_VALUE (type));
8016 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8017
8018 return subrange_die;
8019 }
8020
8021 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8022 entry that chains various modifiers in front of the given type. */
8023
8024 static dw_die_ref
8025 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8026 dw_die_ref context_die)
8027 {
8028 enum tree_code code = TREE_CODE (type);
8029 dw_die_ref mod_type_die = NULL;
8030 dw_die_ref sub_die = NULL;
8031 tree item_type = NULL;
8032
8033 if (code != ERROR_MARK)
8034 {
8035 tree qualified_type;
8036
8037 /* See if we already have the appropriately qualified variant of
8038 this type. */
8039 qualified_type
8040 = get_qualified_type (type,
8041 ((is_const_type ? TYPE_QUAL_CONST : 0)
8042 | (is_volatile_type
8043 ? TYPE_QUAL_VOLATILE : 0)));
8044
8045 /* If we do, then we can just use its DIE, if it exists. */
8046 if (qualified_type)
8047 {
8048 mod_type_die = lookup_type_die (qualified_type);
8049 if (mod_type_die)
8050 return mod_type_die;
8051 }
8052
8053 /* Handle C typedef types. */
8054 if (qualified_type && TYPE_NAME (qualified_type)
8055 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8056 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8057 {
8058 tree type_name = TYPE_NAME (qualified_type);
8059 tree dtype = TREE_TYPE (type_name);
8060
8061 if (qualified_type == dtype)
8062 {
8063 /* For a named type, use the typedef. */
8064 gen_type_die (qualified_type, context_die);
8065 mod_type_die = lookup_type_die (qualified_type);
8066 }
8067 else if (is_const_type < TYPE_READONLY (dtype)
8068 || is_volatile_type < TYPE_VOLATILE (dtype))
8069 /* cv-unqualified version of named type. Just use the unnamed
8070 type to which it refers. */
8071 mod_type_die
8072 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8073 is_const_type, is_volatile_type,
8074 context_die);
8075
8076 /* Else cv-qualified version of named type; fall through. */
8077 }
8078
8079 if (mod_type_die)
8080 /* OK. */
8081 ;
8082 else if (is_const_type)
8083 {
8084 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8085 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8086 }
8087 else if (is_volatile_type)
8088 {
8089 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8090 sub_die = modified_type_die (type, 0, 0, context_die);
8091 }
8092 else if (code == POINTER_TYPE)
8093 {
8094 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8095 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8096 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8097 #if 0
8098 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8099 #endif
8100 item_type = TREE_TYPE (type);
8101 }
8102 else if (code == REFERENCE_TYPE)
8103 {
8104 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8105 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8106 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8107 #if 0
8108 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8109 #endif
8110 item_type = TREE_TYPE (type);
8111 }
8112 else if (is_subrange_type (type))
8113 mod_type_die = subrange_type_die (type, context_die);
8114 else if (is_base_type (type))
8115 mod_type_die = base_type_die (type);
8116 else
8117 {
8118 gen_type_die (type, context_die);
8119
8120 /* We have to get the type_main_variant here (and pass that to the
8121 `lookup_type_die' routine) because the ..._TYPE node we have
8122 might simply be a *copy* of some original type node (where the
8123 copy was created to help us keep track of typedef names) and
8124 that copy might have a different TYPE_UID from the original
8125 ..._TYPE node. */
8126 if (TREE_CODE (type) != VECTOR_TYPE)
8127 mod_type_die = lookup_type_die (type_main_variant (type));
8128 else
8129 /* Vectors have the debugging information in the type,
8130 not the main variant. */
8131 mod_type_die = lookup_type_die (type);
8132 if (mod_type_die == NULL)
8133 abort ();
8134 }
8135
8136 /* We want to equate the qualified type to the die below. */
8137 type = qualified_type;
8138 }
8139
8140 if (type)
8141 equate_type_number_to_die (type, mod_type_die);
8142 if (item_type)
8143 /* We must do this after the equate_type_number_to_die call, in case
8144 this is a recursive type. This ensures that the modified_type_die
8145 recursion will terminate even if the type is recursive. Recursive
8146 types are possible in Ada. */
8147 sub_die = modified_type_die (item_type,
8148 TYPE_READONLY (item_type),
8149 TYPE_VOLATILE (item_type),
8150 context_die);
8151
8152 if (sub_die != NULL)
8153 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8154
8155 return mod_type_die;
8156 }
8157
8158 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8159 an enumerated type. */
8160
8161 static inline int
8162 type_is_enum (tree type)
8163 {
8164 return TREE_CODE (type) == ENUMERAL_TYPE;
8165 }
8166
8167 /* Return the register number described by a given RTL node. */
8168
8169 static unsigned int
8170 reg_number (rtx rtl)
8171 {
8172 unsigned regno = REGNO (rtl);
8173
8174 if (regno >= FIRST_PSEUDO_REGISTER)
8175 abort ();
8176
8177 return DBX_REGISTER_NUMBER (regno);
8178 }
8179
8180 /* Return a location descriptor that designates a machine register or
8181 zero if there is none. */
8182
8183 static dw_loc_descr_ref
8184 reg_loc_descriptor (rtx rtl)
8185 {
8186 unsigned reg;
8187 rtx regs;
8188
8189 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8190 return 0;
8191
8192 reg = reg_number (rtl);
8193 regs = (*targetm.dwarf_register_span) (rtl);
8194
8195 if (hard_regno_nregs[reg][GET_MODE (rtl)] > 1
8196 || regs)
8197 return multiple_reg_loc_descriptor (rtl, regs);
8198 else
8199 return one_reg_loc_descriptor (reg);
8200 }
8201
8202 /* Return a location descriptor that designates a machine register for
8203 a given hard register number. */
8204
8205 static dw_loc_descr_ref
8206 one_reg_loc_descriptor (unsigned int regno)
8207 {
8208 if (regno <= 31)
8209 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8210 else
8211 return new_loc_descr (DW_OP_regx, regno, 0);
8212 }
8213
8214 /* Given an RTL of a register, return a location descriptor that
8215 designates a value that spans more than one register. */
8216
8217 static dw_loc_descr_ref
8218 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8219 {
8220 int nregs, size, i;
8221 unsigned reg;
8222 dw_loc_descr_ref loc_result = NULL;
8223
8224 reg = reg_number (rtl);
8225 nregs = hard_regno_nregs[reg][GET_MODE (rtl)];
8226
8227 /* Simple, contiguous registers. */
8228 if (regs == NULL_RTX)
8229 {
8230 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8231
8232 loc_result = NULL;
8233 while (nregs--)
8234 {
8235 dw_loc_descr_ref t;
8236
8237 t = one_reg_loc_descriptor (reg);
8238 add_loc_descr (&loc_result, t);
8239 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8240 ++reg;
8241 }
8242 return loc_result;
8243 }
8244
8245 /* Now onto stupid register sets in non contiguous locations. */
8246
8247 if (GET_CODE (regs) != PARALLEL)
8248 abort ();
8249
8250 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8251 loc_result = NULL;
8252
8253 for (i = 0; i < XVECLEN (regs, 0); ++i)
8254 {
8255 dw_loc_descr_ref t;
8256
8257 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8258 add_loc_descr (&loc_result, t);
8259 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8260 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8261 }
8262 return loc_result;
8263 }
8264
8265 /* Return a location descriptor that designates a constant. */
8266
8267 static dw_loc_descr_ref
8268 int_loc_descriptor (HOST_WIDE_INT i)
8269 {
8270 enum dwarf_location_atom op;
8271
8272 /* Pick the smallest representation of a constant, rather than just
8273 defaulting to the LEB encoding. */
8274 if (i >= 0)
8275 {
8276 if (i <= 31)
8277 op = DW_OP_lit0 + i;
8278 else if (i <= 0xff)
8279 op = DW_OP_const1u;
8280 else if (i <= 0xffff)
8281 op = DW_OP_const2u;
8282 else if (HOST_BITS_PER_WIDE_INT == 32
8283 || i <= 0xffffffff)
8284 op = DW_OP_const4u;
8285 else
8286 op = DW_OP_constu;
8287 }
8288 else
8289 {
8290 if (i >= -0x80)
8291 op = DW_OP_const1s;
8292 else if (i >= -0x8000)
8293 op = DW_OP_const2s;
8294 else if (HOST_BITS_PER_WIDE_INT == 32
8295 || i >= -0x80000000)
8296 op = DW_OP_const4s;
8297 else
8298 op = DW_OP_consts;
8299 }
8300
8301 return new_loc_descr (op, i, 0);
8302 }
8303
8304 /* Return a location descriptor that designates a base+offset location. */
8305
8306 static dw_loc_descr_ref
8307 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8308 {
8309 dw_loc_descr_ref loc_result;
8310 /* For the "frame base", we use the frame pointer or stack pointer
8311 registers, since the RTL for local variables is relative to one of
8312 them. */
8313 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8314 ? HARD_FRAME_POINTER_REGNUM
8315 : STACK_POINTER_REGNUM);
8316
8317 if (reg == fp_reg && can_use_fbreg)
8318 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8319 else if (reg <= 31)
8320 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8321 else
8322 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8323
8324 return loc_result;
8325 }
8326
8327 /* Return true if this RTL expression describes a base+offset calculation. */
8328
8329 static inline int
8330 is_based_loc (rtx rtl)
8331 {
8332 return (GET_CODE (rtl) == PLUS
8333 && ((GET_CODE (XEXP (rtl, 0)) == REG
8334 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8335 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8336 }
8337
8338 /* The following routine converts the RTL for a variable or parameter
8339 (resident in memory) into an equivalent Dwarf representation of a
8340 mechanism for getting the address of that same variable onto the top of a
8341 hypothetical "address evaluation" stack.
8342
8343 When creating memory location descriptors, we are effectively transforming
8344 the RTL for a memory-resident object into its Dwarf postfix expression
8345 equivalent. This routine recursively descends an RTL tree, turning
8346 it into Dwarf postfix code as it goes.
8347
8348 MODE is the mode of the memory reference, needed to handle some
8349 autoincrement addressing modes.
8350
8351 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8352 list for RTL. We can't use it when we are emitting location list for
8353 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8354 which describes how frame base changes when !frame_pointer_needed.
8355
8356 Return 0 if we can't represent the location. */
8357
8358 static dw_loc_descr_ref
8359 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8360 {
8361 dw_loc_descr_ref mem_loc_result = NULL;
8362
8363 /* Note that for a dynamically sized array, the location we will generate a
8364 description of here will be the lowest numbered location which is
8365 actually within the array. That's *not* necessarily the same as the
8366 zeroth element of the array. */
8367
8368 rtl = (*targetm.delegitimize_address) (rtl);
8369
8370 switch (GET_CODE (rtl))
8371 {
8372 case POST_INC:
8373 case POST_DEC:
8374 case POST_MODIFY:
8375 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8376 just fall into the SUBREG code. */
8377
8378 /* ... fall through ... */
8379
8380 case SUBREG:
8381 /* The case of a subreg may arise when we have a local (register)
8382 variable or a formal (register) parameter which doesn't quite fill
8383 up an entire register. For now, just assume that it is
8384 legitimate to make the Dwarf info refer to the whole register which
8385 contains the given subreg. */
8386 rtl = SUBREG_REG (rtl);
8387
8388 /* ... fall through ... */
8389
8390 case REG:
8391 /* Whenever a register number forms a part of the description of the
8392 method for calculating the (dynamic) address of a memory resident
8393 object, DWARF rules require the register number be referred to as
8394 a "base register". This distinction is not based in any way upon
8395 what category of register the hardware believes the given register
8396 belongs to. This is strictly DWARF terminology we're dealing with
8397 here. Note that in cases where the location of a memory-resident
8398 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8399 OP_CONST (0)) the actual DWARF location descriptor that we generate
8400 may just be OP_BASEREG (basereg). This may look deceptively like
8401 the object in question was allocated to a register (rather than in
8402 memory) so DWARF consumers need to be aware of the subtle
8403 distinction between OP_REG and OP_BASEREG. */
8404 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8405 mem_loc_result = based_loc_descr (reg_number (rtl), 0, can_use_fbreg);
8406 break;
8407
8408 case MEM:
8409 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8410 can_use_fbreg);
8411 if (mem_loc_result != 0)
8412 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8413 break;
8414
8415 case LO_SUM:
8416 rtl = XEXP (rtl, 1);
8417
8418 /* ... fall through ... */
8419
8420 case LABEL_REF:
8421 /* Some ports can transform a symbol ref into a label ref, because
8422 the symbol ref is too far away and has to be dumped into a constant
8423 pool. */
8424 case CONST:
8425 case SYMBOL_REF:
8426 /* Alternatively, the symbol in the constant pool might be referenced
8427 by a different symbol. */
8428 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8429 {
8430 bool marked;
8431 rtx tmp = get_pool_constant_mark (rtl, &marked);
8432
8433 if (GET_CODE (tmp) == SYMBOL_REF)
8434 {
8435 rtl = tmp;
8436 if (CONSTANT_POOL_ADDRESS_P (tmp))
8437 get_pool_constant_mark (tmp, &marked);
8438 else
8439 marked = true;
8440 }
8441
8442 /* If all references to this pool constant were optimized away,
8443 it was not output and thus we can't represent it.
8444 FIXME: might try to use DW_OP_const_value here, though
8445 DW_OP_piece complicates it. */
8446 if (!marked)
8447 return 0;
8448 }
8449
8450 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8451 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8452 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8453 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8454 break;
8455
8456 case PRE_MODIFY:
8457 /* Extract the PLUS expression nested inside and fall into
8458 PLUS code below. */
8459 rtl = XEXP (rtl, 1);
8460 goto plus;
8461
8462 case PRE_INC:
8463 case PRE_DEC:
8464 /* Turn these into a PLUS expression and fall into the PLUS code
8465 below. */
8466 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8467 GEN_INT (GET_CODE (rtl) == PRE_INC
8468 ? GET_MODE_UNIT_SIZE (mode)
8469 : -GET_MODE_UNIT_SIZE (mode)));
8470
8471 /* ... fall through ... */
8472
8473 case PLUS:
8474 plus:
8475 if (is_based_loc (rtl))
8476 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8477 INTVAL (XEXP (rtl, 1)),
8478 can_use_fbreg);
8479 else
8480 {
8481 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8482 can_use_fbreg);
8483 if (mem_loc_result == 0)
8484 break;
8485
8486 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8487 && INTVAL (XEXP (rtl, 1)) >= 0)
8488 add_loc_descr (&mem_loc_result,
8489 new_loc_descr (DW_OP_plus_uconst,
8490 INTVAL (XEXP (rtl, 1)), 0));
8491 else
8492 {
8493 add_loc_descr (&mem_loc_result,
8494 mem_loc_descriptor (XEXP (rtl, 1), mode,
8495 can_use_fbreg));
8496 add_loc_descr (&mem_loc_result,
8497 new_loc_descr (DW_OP_plus, 0, 0));
8498 }
8499 }
8500 break;
8501
8502 case MULT:
8503 {
8504 /* If a pseudo-reg is optimized away, it is possible for it to
8505 be replaced with a MEM containing a multiply. */
8506 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8507 can_use_fbreg);
8508 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8509 can_use_fbreg);
8510
8511 if (op0 == 0 || op1 == 0)
8512 break;
8513
8514 mem_loc_result = op0;
8515 add_loc_descr (&mem_loc_result, op1);
8516 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8517 break;
8518 }
8519
8520 case CONST_INT:
8521 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8522 break;
8523
8524 case ADDRESSOF:
8525 /* If this is a MEM, return its address. Otherwise, we can't
8526 represent this. */
8527 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8528 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode,
8529 can_use_fbreg);
8530 else
8531 return 0;
8532
8533 default:
8534 abort ();
8535 }
8536
8537 return mem_loc_result;
8538 }
8539
8540 /* Return a descriptor that describes the concatenation of two locations.
8541 This is typically a complex variable. */
8542
8543 static dw_loc_descr_ref
8544 concat_loc_descriptor (rtx x0, rtx x1)
8545 {
8546 dw_loc_descr_ref cc_loc_result = NULL;
8547 dw_loc_descr_ref x0_ref = loc_descriptor (x0, true);
8548 dw_loc_descr_ref x1_ref = loc_descriptor (x1, true);
8549
8550 if (x0_ref == 0 || x1_ref == 0)
8551 return 0;
8552
8553 cc_loc_result = x0_ref;
8554 add_loc_descr (&cc_loc_result,
8555 new_loc_descr (DW_OP_piece,
8556 GET_MODE_SIZE (GET_MODE (x0)), 0));
8557
8558 add_loc_descr (&cc_loc_result, x1_ref);
8559 add_loc_descr (&cc_loc_result,
8560 new_loc_descr (DW_OP_piece,
8561 GET_MODE_SIZE (GET_MODE (x1)), 0));
8562
8563 return cc_loc_result;
8564 }
8565
8566 /* Output a proper Dwarf location descriptor for a variable or parameter
8567 which is either allocated in a register or in a memory location. For a
8568 register, we just generate an OP_REG and the register number. For a
8569 memory location we provide a Dwarf postfix expression describing how to
8570 generate the (dynamic) address of the object onto the address stack.
8571
8572 If we don't know how to describe it, return 0. */
8573
8574 static dw_loc_descr_ref
8575 loc_descriptor (rtx rtl, bool can_use_fbreg)
8576 {
8577 dw_loc_descr_ref loc_result = NULL;
8578
8579 switch (GET_CODE (rtl))
8580 {
8581 case SUBREG:
8582 /* The case of a subreg may arise when we have a local (register)
8583 variable or a formal (register) parameter which doesn't quite fill
8584 up an entire register. For now, just assume that it is
8585 legitimate to make the Dwarf info refer to the whole register which
8586 contains the given subreg. */
8587 rtl = SUBREG_REG (rtl);
8588
8589 /* ... fall through ... */
8590
8591 case REG:
8592 loc_result = reg_loc_descriptor (rtl);
8593 break;
8594
8595 case MEM:
8596 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8597 can_use_fbreg);
8598 break;
8599
8600 case CONCAT:
8601 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8602 break;
8603
8604 case VAR_LOCATION:
8605 /* Single part. */
8606 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8607 {
8608 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8609 }
8610 /* Multiple parts. */
8611 else
8612 {
8613 rtvec par_elems = XVEC (XEXP (rtl, 1), 0);
8614 int num_elem = GET_NUM_ELEM (par_elems);
8615 enum machine_mode mode;
8616 int i;
8617
8618 /* Create the first one, so we have something to add to. */
8619 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8620 can_use_fbreg);
8621 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8622 add_loc_descr (&loc_result,
8623 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8624 for (i = 1; i < num_elem; i++)
8625 {
8626 dw_loc_descr_ref temp;
8627
8628 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8629 can_use_fbreg);
8630 add_loc_descr (&loc_result, temp);
8631 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8632 add_loc_descr (&loc_result,
8633 new_loc_descr (DW_OP_piece,
8634 GET_MODE_SIZE (mode), 0));
8635 }
8636 }
8637 break;
8638
8639 default:
8640 abort ();
8641 }
8642
8643 return loc_result;
8644 }
8645
8646 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8647 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8648 looking for an address. Otherwise, we return a value. If we can't make a
8649 descriptor, return 0. */
8650
8651 static dw_loc_descr_ref
8652 loc_descriptor_from_tree (tree loc, int addressp)
8653 {
8654 dw_loc_descr_ref ret, ret1;
8655 int indirect_p = 0;
8656 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8657 enum dwarf_location_atom op;
8658
8659 /* ??? Most of the time we do not take proper care for sign/zero
8660 extending the values properly. Hopefully this won't be a real
8661 problem... */
8662
8663 switch (TREE_CODE (loc))
8664 {
8665 case ERROR_MARK:
8666 return 0;
8667
8668 case WITH_RECORD_EXPR:
8669 case PLACEHOLDER_EXPR:
8670 /* This case involves extracting fields from an object to determine the
8671 position of other fields. We don't try to encode this here. The
8672 only user of this is Ada, which encodes the needed information using
8673 the names of types. */
8674 return 0;
8675
8676 case CALL_EXPR:
8677 return 0;
8678
8679 case ADDR_EXPR:
8680 /* We can support this only if we can look through conversions and
8681 find an INDIRECT_EXPR. */
8682 for (loc = TREE_OPERAND (loc, 0);
8683 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8684 || TREE_CODE (loc) == NON_LVALUE_EXPR
8685 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8686 || TREE_CODE (loc) == SAVE_EXPR;
8687 loc = TREE_OPERAND (loc, 0))
8688 ;
8689
8690 return (TREE_CODE (loc) == INDIRECT_REF
8691 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8692 : 0);
8693
8694 case VAR_DECL:
8695 if (DECL_THREAD_LOCAL (loc))
8696 {
8697 rtx rtl;
8698
8699 #ifndef ASM_OUTPUT_DWARF_DTPREL
8700 /* If this is not defined, we have no way to emit the data. */
8701 return 0;
8702 #endif
8703
8704 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8705 look up addresses of objects in the current module. */
8706 if (DECL_EXTERNAL (loc))
8707 return 0;
8708
8709 rtl = rtl_for_decl_location (loc);
8710 if (rtl == NULL_RTX)
8711 return 0;
8712
8713 if (GET_CODE (rtl) != MEM)
8714 return 0;
8715 rtl = XEXP (rtl, 0);
8716 if (! CONSTANT_P (rtl))
8717 return 0;
8718
8719 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8720 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8721 ret->dw_loc_oprnd1.v.val_addr = rtl;
8722
8723 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8724 add_loc_descr (&ret, ret1);
8725
8726 indirect_p = 1;
8727 break;
8728 }
8729 /* Fall through. */
8730
8731 case PARM_DECL:
8732 {
8733 rtx rtl = rtl_for_decl_location (loc);
8734
8735 if (rtl == NULL_RTX)
8736 return 0;
8737 else if (CONSTANT_P (rtl))
8738 {
8739 ret = new_loc_descr (DW_OP_addr, 0, 0);
8740 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8741 ret->dw_loc_oprnd1.v.val_addr = rtl;
8742 indirect_p = 1;
8743 }
8744 else
8745 {
8746 enum machine_mode mode = GET_MODE (rtl);
8747
8748 if (GET_CODE (rtl) == MEM)
8749 {
8750 indirect_p = 1;
8751 rtl = XEXP (rtl, 0);
8752 }
8753
8754 ret = mem_loc_descriptor (rtl, mode, true);
8755 }
8756 }
8757 break;
8758
8759 case INDIRECT_REF:
8760 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8761 indirect_p = 1;
8762 break;
8763
8764 case COMPOUND_EXPR:
8765 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8766
8767 case NOP_EXPR:
8768 case CONVERT_EXPR:
8769 case NON_LVALUE_EXPR:
8770 case VIEW_CONVERT_EXPR:
8771 case SAVE_EXPR:
8772 case MODIFY_EXPR:
8773 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8774
8775 case COMPONENT_REF:
8776 case BIT_FIELD_REF:
8777 case ARRAY_REF:
8778 case ARRAY_RANGE_REF:
8779 {
8780 tree obj, offset;
8781 HOST_WIDE_INT bitsize, bitpos, bytepos;
8782 enum machine_mode mode;
8783 int volatilep;
8784
8785 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8786 &unsignedp, &volatilep);
8787
8788 if (obj == loc)
8789 return 0;
8790
8791 ret = loc_descriptor_from_tree (obj, 1);
8792 if (ret == 0
8793 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8794 return 0;
8795
8796 if (offset != NULL_TREE)
8797 {
8798 /* Variable offset. */
8799 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8800 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8801 }
8802
8803 if (!addressp)
8804 indirect_p = 1;
8805
8806 bytepos = bitpos / BITS_PER_UNIT;
8807 if (bytepos > 0)
8808 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8809 else if (bytepos < 0)
8810 {
8811 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8812 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8813 }
8814 break;
8815 }
8816
8817 case INTEGER_CST:
8818 if (host_integerp (loc, 0))
8819 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8820 else
8821 return 0;
8822 break;
8823
8824 case CONSTRUCTOR:
8825 {
8826 /* Get an RTL for this, if something has been emitted. */
8827 rtx rtl = lookup_constant_def (loc);
8828 enum machine_mode mode;
8829
8830 if (GET_CODE (rtl) != MEM)
8831 return 0;
8832 mode = GET_MODE (rtl);
8833 rtl = XEXP (rtl, 0);
8834
8835 rtl = (*targetm.delegitimize_address) (rtl);
8836
8837 indirect_p = 1;
8838 ret = mem_loc_descriptor (rtl, mode, true);
8839 break;
8840 }
8841
8842 case TRUTH_AND_EXPR:
8843 case TRUTH_ANDIF_EXPR:
8844 case BIT_AND_EXPR:
8845 op = DW_OP_and;
8846 goto do_binop;
8847
8848 case TRUTH_XOR_EXPR:
8849 case BIT_XOR_EXPR:
8850 op = DW_OP_xor;
8851 goto do_binop;
8852
8853 case TRUTH_OR_EXPR:
8854 case TRUTH_ORIF_EXPR:
8855 case BIT_IOR_EXPR:
8856 op = DW_OP_or;
8857 goto do_binop;
8858
8859 case FLOOR_DIV_EXPR:
8860 case CEIL_DIV_EXPR:
8861 case ROUND_DIV_EXPR:
8862 case TRUNC_DIV_EXPR:
8863 op = DW_OP_div;
8864 goto do_binop;
8865
8866 case MINUS_EXPR:
8867 op = DW_OP_minus;
8868 goto do_binop;
8869
8870 case FLOOR_MOD_EXPR:
8871 case CEIL_MOD_EXPR:
8872 case ROUND_MOD_EXPR:
8873 case TRUNC_MOD_EXPR:
8874 op = DW_OP_mod;
8875 goto do_binop;
8876
8877 case MULT_EXPR:
8878 op = DW_OP_mul;
8879 goto do_binop;
8880
8881 case LSHIFT_EXPR:
8882 op = DW_OP_shl;
8883 goto do_binop;
8884
8885 case RSHIFT_EXPR:
8886 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8887 goto do_binop;
8888
8889 case PLUS_EXPR:
8890 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8891 && host_integerp (TREE_OPERAND (loc, 1), 0))
8892 {
8893 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8894 if (ret == 0)
8895 return 0;
8896
8897 add_loc_descr (&ret,
8898 new_loc_descr (DW_OP_plus_uconst,
8899 tree_low_cst (TREE_OPERAND (loc, 1),
8900 0),
8901 0));
8902 break;
8903 }
8904
8905 op = DW_OP_plus;
8906 goto do_binop;
8907
8908 case LE_EXPR:
8909 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8910 return 0;
8911
8912 op = DW_OP_le;
8913 goto do_binop;
8914
8915 case GE_EXPR:
8916 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8917 return 0;
8918
8919 op = DW_OP_ge;
8920 goto do_binop;
8921
8922 case LT_EXPR:
8923 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8924 return 0;
8925
8926 op = DW_OP_lt;
8927 goto do_binop;
8928
8929 case GT_EXPR:
8930 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8931 return 0;
8932
8933 op = DW_OP_gt;
8934 goto do_binop;
8935
8936 case EQ_EXPR:
8937 op = DW_OP_eq;
8938 goto do_binop;
8939
8940 case NE_EXPR:
8941 op = DW_OP_ne;
8942 goto do_binop;
8943
8944 do_binop:
8945 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8946 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8947 if (ret == 0 || ret1 == 0)
8948 return 0;
8949
8950 add_loc_descr (&ret, ret1);
8951 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8952 break;
8953
8954 case TRUTH_NOT_EXPR:
8955 case BIT_NOT_EXPR:
8956 op = DW_OP_not;
8957 goto do_unop;
8958
8959 case ABS_EXPR:
8960 op = DW_OP_abs;
8961 goto do_unop;
8962
8963 case NEGATE_EXPR:
8964 op = DW_OP_neg;
8965 goto do_unop;
8966
8967 do_unop:
8968 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8969 if (ret == 0)
8970 return 0;
8971
8972 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8973 break;
8974
8975 case MAX_EXPR:
8976 loc = build (COND_EXPR, TREE_TYPE (loc),
8977 build (LT_EXPR, integer_type_node,
8978 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8979 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8980
8981 /* ... fall through ... */
8982
8983 case COND_EXPR:
8984 {
8985 dw_loc_descr_ref lhs
8986 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8987 dw_loc_descr_ref rhs
8988 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8989 dw_loc_descr_ref bra_node, jump_node, tmp;
8990
8991 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8992 if (ret == 0 || lhs == 0 || rhs == 0)
8993 return 0;
8994
8995 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8996 add_loc_descr (&ret, bra_node);
8997
8998 add_loc_descr (&ret, rhs);
8999 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9000 add_loc_descr (&ret, jump_node);
9001
9002 add_loc_descr (&ret, lhs);
9003 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9004 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9005
9006 /* ??? Need a node to point the skip at. Use a nop. */
9007 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9008 add_loc_descr (&ret, tmp);
9009 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9010 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9011 }
9012 break;
9013
9014 default:
9015 /* Leave front-end specific codes as simply unknown. This comes
9016 up, for instance, with the C STMT_EXPR. */
9017 if ((unsigned int) TREE_CODE (loc)
9018 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9019 return 0;
9020
9021 /* Otherwise this is a generic code; we should just lists all of
9022 these explicitly. Aborting means we forgot one. */
9023 abort ();
9024 }
9025
9026 /* Show if we can't fill the request for an address. */
9027 if (addressp && indirect_p == 0)
9028 return 0;
9029
9030 /* If we've got an address and don't want one, dereference. */
9031 if (!addressp && indirect_p > 0)
9032 {
9033 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9034
9035 if (size > DWARF2_ADDR_SIZE || size == -1)
9036 return 0;
9037 else if (size == DWARF2_ADDR_SIZE)
9038 op = DW_OP_deref;
9039 else
9040 op = DW_OP_deref_size;
9041
9042 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9043 }
9044
9045 return ret;
9046 }
9047
9048 /* Given a value, round it up to the lowest multiple of `boundary'
9049 which is not less than the value itself. */
9050
9051 static inline HOST_WIDE_INT
9052 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9053 {
9054 return (((value + boundary - 1) / boundary) * boundary);
9055 }
9056
9057 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9058 pointer to the declared type for the relevant field variable, or return
9059 `integer_type_node' if the given node turns out to be an
9060 ERROR_MARK node. */
9061
9062 static inline tree
9063 field_type (tree decl)
9064 {
9065 tree type;
9066
9067 if (TREE_CODE (decl) == ERROR_MARK)
9068 return integer_type_node;
9069
9070 type = DECL_BIT_FIELD_TYPE (decl);
9071 if (type == NULL_TREE)
9072 type = TREE_TYPE (decl);
9073
9074 return type;
9075 }
9076
9077 /* Given a pointer to a tree node, return the alignment in bits for
9078 it, or else return BITS_PER_WORD if the node actually turns out to
9079 be an ERROR_MARK node. */
9080
9081 static inline unsigned
9082 simple_type_align_in_bits (tree type)
9083 {
9084 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9085 }
9086
9087 static inline unsigned
9088 simple_decl_align_in_bits (tree decl)
9089 {
9090 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9091 }
9092
9093 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9094 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9095 or return 0 if we are unable to determine what that offset is, either
9096 because the argument turns out to be a pointer to an ERROR_MARK node, or
9097 because the offset is actually variable. (We can't handle the latter case
9098 just yet). */
9099
9100 static HOST_WIDE_INT
9101 field_byte_offset (tree decl)
9102 {
9103 unsigned int type_align_in_bits;
9104 unsigned int decl_align_in_bits;
9105 unsigned HOST_WIDE_INT type_size_in_bits;
9106 HOST_WIDE_INT object_offset_in_bits;
9107 tree type;
9108 tree field_size_tree;
9109 HOST_WIDE_INT bitpos_int;
9110 HOST_WIDE_INT deepest_bitpos;
9111 unsigned HOST_WIDE_INT field_size_in_bits;
9112
9113 if (TREE_CODE (decl) == ERROR_MARK)
9114 return 0;
9115 else if (TREE_CODE (decl) != FIELD_DECL)
9116 abort ();
9117
9118 type = field_type (decl);
9119 field_size_tree = DECL_SIZE (decl);
9120
9121 /* The size could be unspecified if there was an error, or for
9122 a flexible array member. */
9123 if (! field_size_tree)
9124 field_size_tree = bitsize_zero_node;
9125
9126 /* We cannot yet cope with fields whose positions are variable, so
9127 for now, when we see such things, we simply return 0. Someday, we may
9128 be able to handle such cases, but it will be damn difficult. */
9129 if (! host_integerp (bit_position (decl), 0))
9130 return 0;
9131
9132 bitpos_int = int_bit_position (decl);
9133
9134 /* If we don't know the size of the field, pretend it's a full word. */
9135 if (host_integerp (field_size_tree, 1))
9136 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9137 else
9138 field_size_in_bits = BITS_PER_WORD;
9139
9140 type_size_in_bits = simple_type_size_in_bits (type);
9141 type_align_in_bits = simple_type_align_in_bits (type);
9142 decl_align_in_bits = simple_decl_align_in_bits (decl);
9143
9144 /* The GCC front-end doesn't make any attempt to keep track of the starting
9145 bit offset (relative to the start of the containing structure type) of the
9146 hypothetical "containing object" for a bit-field. Thus, when computing
9147 the byte offset value for the start of the "containing object" of a
9148 bit-field, we must deduce this information on our own. This can be rather
9149 tricky to do in some cases. For example, handling the following structure
9150 type definition when compiling for an i386/i486 target (which only aligns
9151 long long's to 32-bit boundaries) can be very tricky:
9152
9153 struct S { int field1; long long field2:31; };
9154
9155 Fortunately, there is a simple rule-of-thumb which can be used in such
9156 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9157 structure shown above. It decides to do this based upon one simple rule
9158 for bit-field allocation. GCC allocates each "containing object" for each
9159 bit-field at the first (i.e. lowest addressed) legitimate alignment
9160 boundary (based upon the required minimum alignment for the declared type
9161 of the field) which it can possibly use, subject to the condition that
9162 there is still enough available space remaining in the containing object
9163 (when allocated at the selected point) to fully accommodate all of the
9164 bits of the bit-field itself.
9165
9166 This simple rule makes it obvious why GCC allocates 8 bytes for each
9167 object of the structure type shown above. When looking for a place to
9168 allocate the "containing object" for `field2', the compiler simply tries
9169 to allocate a 64-bit "containing object" at each successive 32-bit
9170 boundary (starting at zero) until it finds a place to allocate that 64-
9171 bit field such that at least 31 contiguous (and previously unallocated)
9172 bits remain within that selected 64 bit field. (As it turns out, for the
9173 example above, the compiler finds it is OK to allocate the "containing
9174 object" 64-bit field at bit-offset zero within the structure type.)
9175
9176 Here we attempt to work backwards from the limited set of facts we're
9177 given, and we try to deduce from those facts, where GCC must have believed
9178 that the containing object started (within the structure type). The value
9179 we deduce is then used (by the callers of this routine) to generate
9180 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9181 and, in the case of DW_AT_location, regular fields as well). */
9182
9183 /* Figure out the bit-distance from the start of the structure to the
9184 "deepest" bit of the bit-field. */
9185 deepest_bitpos = bitpos_int + field_size_in_bits;
9186
9187 /* This is the tricky part. Use some fancy footwork to deduce where the
9188 lowest addressed bit of the containing object must be. */
9189 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9190
9191 /* Round up to type_align by default. This works best for bitfields. */
9192 object_offset_in_bits += type_align_in_bits - 1;
9193 object_offset_in_bits /= type_align_in_bits;
9194 object_offset_in_bits *= type_align_in_bits;
9195
9196 if (object_offset_in_bits > bitpos_int)
9197 {
9198 /* Sigh, the decl must be packed. */
9199 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9200
9201 /* Round up to decl_align instead. */
9202 object_offset_in_bits += decl_align_in_bits - 1;
9203 object_offset_in_bits /= decl_align_in_bits;
9204 object_offset_in_bits *= decl_align_in_bits;
9205 }
9206
9207 return object_offset_in_bits / BITS_PER_UNIT;
9208 }
9209 \f
9210 /* The following routines define various Dwarf attributes and any data
9211 associated with them. */
9212
9213 /* Add a location description attribute value to a DIE.
9214
9215 This emits location attributes suitable for whole variables and
9216 whole parameters. Note that the location attributes for struct fields are
9217 generated by the routine `data_member_location_attribute' below. */
9218
9219 static inline void
9220 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9221 dw_loc_descr_ref descr)
9222 {
9223 if (descr != 0)
9224 add_AT_loc (die, attr_kind, descr);
9225 }
9226
9227 /* Attach the specialized form of location attribute used for data members of
9228 struct and union types. In the special case of a FIELD_DECL node which
9229 represents a bit-field, the "offset" part of this special location
9230 descriptor must indicate the distance in bytes from the lowest-addressed
9231 byte of the containing struct or union type to the lowest-addressed byte of
9232 the "containing object" for the bit-field. (See the `field_byte_offset'
9233 function above).
9234
9235 For any given bit-field, the "containing object" is a hypothetical object
9236 (of some integral or enum type) within which the given bit-field lives. The
9237 type of this hypothetical "containing object" is always the same as the
9238 declared type of the individual bit-field itself (for GCC anyway... the
9239 DWARF spec doesn't actually mandate this). Note that it is the size (in
9240 bytes) of the hypothetical "containing object" which will be given in the
9241 DW_AT_byte_size attribute for this bit-field. (See the
9242 `byte_size_attribute' function below.) It is also used when calculating the
9243 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9244 function below.) */
9245
9246 static void
9247 add_data_member_location_attribute (dw_die_ref die, tree decl)
9248 {
9249 HOST_WIDE_INT offset;
9250 dw_loc_descr_ref loc_descr = 0;
9251
9252 if (TREE_CODE (decl) == TREE_VEC)
9253 {
9254 /* We're working on the TAG_inheritance for a base class. */
9255 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9256 {
9257 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9258 aren't at a fixed offset from all (sub)objects of the same
9259 type. We need to extract the appropriate offset from our
9260 vtable. The following dwarf expression means
9261
9262 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9263
9264 This is specific to the V3 ABI, of course. */
9265
9266 dw_loc_descr_ref tmp;
9267
9268 /* Make a copy of the object address. */
9269 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9270 add_loc_descr (&loc_descr, tmp);
9271
9272 /* Extract the vtable address. */
9273 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9274 add_loc_descr (&loc_descr, tmp);
9275
9276 /* Calculate the address of the offset. */
9277 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9278 if (offset >= 0)
9279 abort ();
9280
9281 tmp = int_loc_descriptor (-offset);
9282 add_loc_descr (&loc_descr, tmp);
9283 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9284 add_loc_descr (&loc_descr, tmp);
9285
9286 /* Extract the offset. */
9287 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9288 add_loc_descr (&loc_descr, tmp);
9289
9290 /* Add it to the object address. */
9291 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9292 add_loc_descr (&loc_descr, tmp);
9293 }
9294 else
9295 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9296 }
9297 else
9298 offset = field_byte_offset (decl);
9299
9300 if (! loc_descr)
9301 {
9302 enum dwarf_location_atom op;
9303
9304 /* The DWARF2 standard says that we should assume that the structure
9305 address is already on the stack, so we can specify a structure field
9306 address by using DW_OP_plus_uconst. */
9307
9308 #ifdef MIPS_DEBUGGING_INFO
9309 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9310 operator correctly. It works only if we leave the offset on the
9311 stack. */
9312 op = DW_OP_constu;
9313 #else
9314 op = DW_OP_plus_uconst;
9315 #endif
9316
9317 loc_descr = new_loc_descr (op, offset, 0);
9318 }
9319
9320 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9321 }
9322
9323 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9324 does not have a "location" either in memory or in a register. These
9325 things can arise in GNU C when a constant is passed as an actual parameter
9326 to an inlined function. They can also arise in C++ where declared
9327 constants do not necessarily get memory "homes". */
9328
9329 static void
9330 add_const_value_attribute (dw_die_ref die, rtx rtl)
9331 {
9332 switch (GET_CODE (rtl))
9333 {
9334 case CONST_INT:
9335 {
9336 HOST_WIDE_INT val = INTVAL (rtl);
9337
9338 if (val < 0)
9339 add_AT_int (die, DW_AT_const_value, val);
9340 else
9341 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9342 }
9343 break;
9344
9345 case CONST_DOUBLE:
9346 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9347 floating-point constant. A CONST_DOUBLE is used whenever the
9348 constant requires more than one word in order to be adequately
9349 represented. We output CONST_DOUBLEs as blocks. */
9350 {
9351 enum machine_mode mode = GET_MODE (rtl);
9352
9353 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9354 {
9355 unsigned length = GET_MODE_SIZE (mode) / 4;
9356 long *array = ggc_alloc (sizeof (long) * length);
9357 REAL_VALUE_TYPE rv;
9358
9359 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9360 real_to_target (array, &rv, mode);
9361
9362 add_AT_float (die, DW_AT_const_value, length, array);
9363 }
9364 else
9365 {
9366 /* ??? We really should be using HOST_WIDE_INT throughout. */
9367 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9368 abort ();
9369
9370 add_AT_long_long (die, DW_AT_const_value,
9371 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9372 }
9373 }
9374 break;
9375
9376 case CONST_STRING:
9377 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9378 break;
9379
9380 case SYMBOL_REF:
9381 case LABEL_REF:
9382 case CONST:
9383 add_AT_addr (die, DW_AT_const_value, rtl);
9384 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9385 break;
9386
9387 case PLUS:
9388 /* In cases where an inlined instance of an inline function is passed
9389 the address of an `auto' variable (which is local to the caller) we
9390 can get a situation where the DECL_RTL of the artificial local
9391 variable (for the inlining) which acts as a stand-in for the
9392 corresponding formal parameter (of the inline function) will look
9393 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9394 exactly a compile-time constant expression, but it isn't the address
9395 of the (artificial) local variable either. Rather, it represents the
9396 *value* which the artificial local variable always has during its
9397 lifetime. We currently have no way to represent such quasi-constant
9398 values in Dwarf, so for now we just punt and generate nothing. */
9399 break;
9400
9401 default:
9402 /* No other kinds of rtx should be possible here. */
9403 abort ();
9404 }
9405
9406 }
9407
9408 static rtx
9409 rtl_for_decl_location (tree decl)
9410 {
9411 rtx rtl;
9412
9413 /* Here we have to decide where we are going to say the parameter "lives"
9414 (as far as the debugger is concerned). We only have a couple of
9415 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9416
9417 DECL_RTL normally indicates where the parameter lives during most of the
9418 activation of the function. If optimization is enabled however, this
9419 could be either NULL or else a pseudo-reg. Both of those cases indicate
9420 that the parameter doesn't really live anywhere (as far as the code
9421 generation parts of GCC are concerned) during most of the function's
9422 activation. That will happen (for example) if the parameter is never
9423 referenced within the function.
9424
9425 We could just generate a location descriptor here for all non-NULL
9426 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9427 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9428 where DECL_RTL is NULL or is a pseudo-reg.
9429
9430 Note however that we can only get away with using DECL_INCOMING_RTL as
9431 a backup substitute for DECL_RTL in certain limited cases. In cases
9432 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9433 we can be sure that the parameter was passed using the same type as it is
9434 declared to have within the function, and that its DECL_INCOMING_RTL
9435 points us to a place where a value of that type is passed.
9436
9437 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9438 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9439 because in these cases DECL_INCOMING_RTL points us to a value of some
9440 type which is *different* from the type of the parameter itself. Thus,
9441 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9442 such cases, the debugger would end up (for example) trying to fetch a
9443 `float' from a place which actually contains the first part of a
9444 `double'. That would lead to really incorrect and confusing
9445 output at debug-time.
9446
9447 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9448 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9449 are a couple of exceptions however. On little-endian machines we can
9450 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9451 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9452 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9453 when (on a little-endian machine) a non-prototyped function has a
9454 parameter declared to be of type `short' or `char'. In such cases,
9455 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9456 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9457 passed `int' value. If the debugger then uses that address to fetch
9458 a `short' or a `char' (on a little-endian machine) the result will be
9459 the correct data, so we allow for such exceptional cases below.
9460
9461 Note that our goal here is to describe the place where the given formal
9462 parameter lives during most of the function's activation (i.e. between the
9463 end of the prologue and the start of the epilogue). We'll do that as best
9464 as we can. Note however that if the given formal parameter is modified
9465 sometime during the execution of the function, then a stack backtrace (at
9466 debug-time) will show the function as having been called with the *new*
9467 value rather than the value which was originally passed in. This happens
9468 rarely enough that it is not a major problem, but it *is* a problem, and
9469 I'd like to fix it.
9470
9471 A future version of dwarf2out.c may generate two additional attributes for
9472 any given DW_TAG_formal_parameter DIE which will describe the "passed
9473 type" and the "passed location" for the given formal parameter in addition
9474 to the attributes we now generate to indicate the "declared type" and the
9475 "active location" for each parameter. This additional set of attributes
9476 could be used by debuggers for stack backtraces. Separately, note that
9477 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9478 This happens (for example) for inlined-instances of inline function formal
9479 parameters which are never referenced. This really shouldn't be
9480 happening. All PARM_DECL nodes should get valid non-NULL
9481 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9482 values for inlined instances of inline function parameters, so when we see
9483 such cases, we are just out-of-luck for the time being (until integrate.c
9484 gets fixed). */
9485
9486 /* Use DECL_RTL as the "location" unless we find something better. */
9487 rtl = DECL_RTL_IF_SET (decl);
9488
9489 /* When generating abstract instances, ignore everything except
9490 constants, symbols living in memory, and symbols living in
9491 fixed registers. */
9492 if (! reload_completed)
9493 {
9494 if (rtl
9495 && (CONSTANT_P (rtl)
9496 || (GET_CODE (rtl) == MEM
9497 && CONSTANT_P (XEXP (rtl, 0)))
9498 || (GET_CODE (rtl) == REG
9499 && TREE_CODE (decl) == VAR_DECL
9500 && TREE_STATIC (decl))))
9501 {
9502 rtl = (*targetm.delegitimize_address) (rtl);
9503 return rtl;
9504 }
9505 rtl = NULL_RTX;
9506 }
9507 else if (TREE_CODE (decl) == PARM_DECL)
9508 {
9509 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9510 {
9511 tree declared_type = type_main_variant (TREE_TYPE (decl));
9512 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9513
9514 /* This decl represents a formal parameter which was optimized out.
9515 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9516 all cases where (rtl == NULL_RTX) just below. */
9517 if (declared_type == passed_type)
9518 rtl = DECL_INCOMING_RTL (decl);
9519 else if (! BYTES_BIG_ENDIAN
9520 && TREE_CODE (declared_type) == INTEGER_TYPE
9521 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9522 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9523 rtl = DECL_INCOMING_RTL (decl);
9524 }
9525
9526 /* If the parm was passed in registers, but lives on the stack, then
9527 make a big endian correction if the mode of the type of the
9528 parameter is not the same as the mode of the rtl. */
9529 /* ??? This is the same series of checks that are made in dbxout.c before
9530 we reach the big endian correction code there. It isn't clear if all
9531 of these checks are necessary here, but keeping them all is the safe
9532 thing to do. */
9533 else if (GET_CODE (rtl) == MEM
9534 && XEXP (rtl, 0) != const0_rtx
9535 && ! CONSTANT_P (XEXP (rtl, 0))
9536 /* Not passed in memory. */
9537 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9538 /* Not passed by invisible reference. */
9539 && (GET_CODE (XEXP (rtl, 0)) != REG
9540 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9541 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9542 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9543 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9544 #endif
9545 )
9546 /* Big endian correction check. */
9547 && BYTES_BIG_ENDIAN
9548 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9549 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9550 < UNITS_PER_WORD))
9551 {
9552 int offset = (UNITS_PER_WORD
9553 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9554
9555 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9556 plus_constant (XEXP (rtl, 0), offset));
9557 }
9558 }
9559
9560 if (rtl != NULL_RTX)
9561 {
9562 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9563 #ifdef LEAF_REG_REMAP
9564 if (current_function_uses_only_leaf_regs)
9565 leaf_renumber_regs_insn (rtl);
9566 #endif
9567 }
9568
9569 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9570 and will have been substituted directly into all expressions that use it.
9571 C does not have such a concept, but C++ and other languages do. */
9572 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9573 {
9574 /* If a variable is initialized with a string constant without embedded
9575 zeros, build CONST_STRING. */
9576 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9577 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9578 {
9579 tree arrtype = TREE_TYPE (decl);
9580 tree enttype = TREE_TYPE (arrtype);
9581 tree domain = TYPE_DOMAIN (arrtype);
9582 tree init = DECL_INITIAL (decl);
9583 enum machine_mode mode = TYPE_MODE (enttype);
9584
9585 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9586 && domain
9587 && integer_zerop (TYPE_MIN_VALUE (domain))
9588 && compare_tree_int (TYPE_MAX_VALUE (domain),
9589 TREE_STRING_LENGTH (init) - 1) == 0
9590 && ((size_t) TREE_STRING_LENGTH (init)
9591 == strlen (TREE_STRING_POINTER (init)) + 1))
9592 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9593 }
9594 /* If the initializer is something that we know will expand into an
9595 immediate RTL constant, expand it now. Expanding anything else
9596 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9597 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9598 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9599 {
9600 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9601 EXPAND_INITIALIZER);
9602 /* If expand_expr returns a MEM, it wasn't immediate. */
9603 if (rtl && GET_CODE (rtl) == MEM)
9604 abort ();
9605 }
9606 }
9607
9608 if (rtl)
9609 rtl = (*targetm.delegitimize_address) (rtl);
9610
9611 /* If we don't look past the constant pool, we risk emitting a
9612 reference to a constant pool entry that isn't referenced from
9613 code, and thus is not emitted. */
9614 if (rtl)
9615 rtl = avoid_constant_pool_reference (rtl);
9616
9617 return rtl;
9618 }
9619
9620 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9621 data attribute for a variable or a parameter. We generate the
9622 DW_AT_const_value attribute only in those cases where the given variable
9623 or parameter does not have a true "location" either in memory or in a
9624 register. This can happen (for example) when a constant is passed as an
9625 actual argument in a call to an inline function. (It's possible that
9626 these things can crop up in other ways also.) Note that one type of
9627 constant value which can be passed into an inlined function is a constant
9628 pointer. This can happen for example if an actual argument in an inlined
9629 function call evaluates to a compile-time constant address. */
9630
9631 static void
9632 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
9633 enum dwarf_attribute attr)
9634 {
9635 rtx rtl;
9636 dw_loc_descr_ref descr;
9637 var_loc_list *loc_list;
9638
9639 if (TREE_CODE (decl) == ERROR_MARK)
9640 return;
9641 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9642 abort ();
9643
9644 /* See if we possibly have multiple locations for this variable. */
9645 loc_list = lookup_decl_loc (decl);
9646
9647 /* If it truly has multiple locations, the first and last node will
9648 differ. */
9649 if (loc_list && loc_list->first != loc_list->last)
9650 {
9651 const char *secname;
9652 const char *endname;
9653 dw_loc_list_ref list;
9654 rtx varloc;
9655 struct var_loc_node *node;
9656
9657 /* We need to figure out what section we should use as the base
9658 for the address ranges where a given location is valid.
9659 1. If this particular DECL has a section associated with it,
9660 use that.
9661 2. If this function has a section associated with it, use
9662 that.
9663 3. Otherwise, use the text section.
9664 XXX: If you split a variable across multiple sections, this
9665 won't notice. */
9666
9667 if (DECL_SECTION_NAME (decl))
9668 {
9669 tree sectree = DECL_SECTION_NAME (decl);
9670 secname = TREE_STRING_POINTER (sectree);
9671 }
9672 else if (current_function_decl
9673 && DECL_SECTION_NAME (current_function_decl))
9674 {
9675 tree sectree = DECL_SECTION_NAME (current_function_decl);
9676 secname = TREE_STRING_POINTER (sectree);
9677 }
9678 else
9679 secname = TEXT_SECTION_NAME;
9680
9681 /* Now that we know what section we are using for a base,
9682 actually construct the list of locations.
9683 The first location information is what is passed to the
9684 function that creates the location list, and the remaining
9685 locations just get added on to that list.
9686 Note that we only know the start address for a location
9687 (IE location changes), so to build the range, we use
9688 the range [current location start, next location start].
9689 This means we have to special case the last node, and generate
9690 a range of [last location start, end of function label]. */
9691
9692 node = loc_list->first;
9693 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9694 list = new_loc_list (loc_descriptor (varloc, attr != DW_AT_frame_base),
9695 node->label, node->next->label, secname, 1);
9696 node = node->next;
9697
9698 for (; node->next; node = node->next)
9699 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
9700 {
9701 /* The variable has a location between NODE->LABEL and
9702 NODE->NEXT->LABEL. */
9703 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9704 add_loc_descr_to_loc_list (&list,
9705 loc_descriptor (varloc,
9706 attr != DW_AT_frame_base),
9707 node->label, node->next->label, secname);
9708 }
9709
9710 /* If the variable has a location at the last label
9711 it keeps its location until the end of function. */
9712 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
9713 {
9714 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
9715
9716 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
9717 if (!current_function_decl)
9718 endname = text_end_label;
9719 else
9720 {
9721 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
9722 current_function_funcdef_no);
9723 endname = ggc_strdup (label_id);
9724 }
9725 add_loc_descr_to_loc_list (&list,
9726 loc_descriptor (varloc,
9727 attr != DW_AT_frame_base),
9728 node->label, endname, secname);
9729 }
9730
9731 /* Finally, add the location list to the DIE, and we are done. */
9732 add_AT_loc_list (die, attr, list);
9733 return;
9734 }
9735
9736 rtl = rtl_for_decl_location (decl);
9737 if (rtl == NULL_RTX)
9738 return;
9739
9740 switch (GET_CODE (rtl))
9741 {
9742 case ADDRESSOF:
9743 /* The address of a variable that was optimized away;
9744 don't emit anything. */
9745 break;
9746
9747 case CONST_INT:
9748 case CONST_DOUBLE:
9749 case CONST_STRING:
9750 case SYMBOL_REF:
9751 case LABEL_REF:
9752 case CONST:
9753 case PLUS:
9754 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9755 add_const_value_attribute (die, rtl);
9756 break;
9757
9758 case MEM:
9759 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9760 {
9761 /* Need loc_descriptor_from_tree since that's where we know
9762 how to handle TLS variables. Want the object's address
9763 since the top-level DW_AT_location assumes such. See
9764 the confusion in loc_descriptor for reference. */
9765 descr = loc_descriptor_from_tree (decl, 1);
9766 }
9767 else
9768 {
9769 case REG:
9770 case SUBREG:
9771 case CONCAT:
9772 descr = loc_descriptor (rtl, true);
9773 }
9774 add_AT_location_description (die, attr, descr);
9775 break;
9776
9777 case PARALLEL:
9778 {
9779 rtvec par_elems = XVEC (rtl, 0);
9780 int num_elem = GET_NUM_ELEM (par_elems);
9781 enum machine_mode mode;
9782 int i;
9783
9784 /* Create the first one, so we have something to add to. */
9785 descr = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0), true);
9786 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9787 add_loc_descr (&descr,
9788 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
9789 for (i = 1; i < num_elem; i++)
9790 {
9791 dw_loc_descr_ref temp;
9792
9793 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0), true);
9794 add_loc_descr (&descr, temp);
9795 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9796 add_loc_descr (&descr,
9797 new_loc_descr (DW_OP_piece,
9798 GET_MODE_SIZE (mode), 0));
9799 }
9800 }
9801 add_AT_location_description (die, DW_AT_location, descr);
9802 break;
9803
9804 default:
9805 abort ();
9806 }
9807 }
9808
9809 /* If we don't have a copy of this variable in memory for some reason (such
9810 as a C++ member constant that doesn't have an out-of-line definition),
9811 we should tell the debugger about the constant value. */
9812
9813 static void
9814 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9815 {
9816 tree init = DECL_INITIAL (decl);
9817 tree type = TREE_TYPE (decl);
9818
9819 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9820 && initializer_constant_valid_p (init, type) == null_pointer_node)
9821 /* OK */;
9822 else
9823 return;
9824
9825 switch (TREE_CODE (type))
9826 {
9827 case INTEGER_TYPE:
9828 if (host_integerp (init, 0))
9829 add_AT_unsigned (var_die, DW_AT_const_value,
9830 tree_low_cst (init, 0));
9831 else
9832 add_AT_long_long (var_die, DW_AT_const_value,
9833 TREE_INT_CST_HIGH (init),
9834 TREE_INT_CST_LOW (init));
9835 break;
9836
9837 default:;
9838 }
9839 }
9840
9841 /* Generate a DW_AT_name attribute given some string value to be included as
9842 the value of the attribute. */
9843
9844 static void
9845 add_name_attribute (dw_die_ref die, const char *name_string)
9846 {
9847 if (name_string != NULL && *name_string != 0)
9848 {
9849 if (demangle_name_func)
9850 name_string = (*demangle_name_func) (name_string);
9851
9852 add_AT_string (die, DW_AT_name, name_string);
9853 }
9854 }
9855
9856 /* Generate a DW_AT_comp_dir attribute for DIE. */
9857
9858 static void
9859 add_comp_dir_attribute (dw_die_ref die)
9860 {
9861 const char *wd = get_src_pwd ();
9862 if (wd != NULL)
9863 add_AT_string (die, DW_AT_comp_dir, wd);
9864 }
9865
9866 /* Given a tree node describing an array bound (either lower or upper) output
9867 a representation for that bound. */
9868
9869 static void
9870 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9871 {
9872 switch (TREE_CODE (bound))
9873 {
9874 case ERROR_MARK:
9875 return;
9876
9877 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9878 case INTEGER_CST:
9879 if (! host_integerp (bound, 0)
9880 || (bound_attr == DW_AT_lower_bound
9881 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9882 || (is_fortran () && integer_onep (bound)))))
9883 /* use the default */
9884 ;
9885 else
9886 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9887 break;
9888
9889 case CONVERT_EXPR:
9890 case NOP_EXPR:
9891 case NON_LVALUE_EXPR:
9892 case VIEW_CONVERT_EXPR:
9893 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9894 break;
9895
9896 case SAVE_EXPR:
9897 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9898 access the upper bound values may be bogus. If they refer to a
9899 register, they may only describe how to get at these values at the
9900 points in the generated code right after they have just been
9901 computed. Worse yet, in the typical case, the upper bound values
9902 will not even *be* computed in the optimized code (though the
9903 number of elements will), so these SAVE_EXPRs are entirely
9904 bogus. In order to compensate for this fact, we check here to see
9905 if optimization is enabled, and if so, we don't add an attribute
9906 for the (unknown and unknowable) upper bound. This should not
9907 cause too much trouble for existing (stupid?) debuggers because
9908 they have to deal with empty upper bounds location descriptions
9909 anyway in order to be able to deal with incomplete array types.
9910 Of course an intelligent debugger (GDB?) should be able to
9911 comprehend that a missing upper bound specification in an array
9912 type used for a storage class `auto' local array variable
9913 indicates that the upper bound is both unknown (at compile- time)
9914 and unknowable (at run-time) due to optimization.
9915
9916 We assume that a MEM rtx is safe because gcc wouldn't put the
9917 value there unless it was going to be used repeatedly in the
9918 function, i.e. for cleanups. */
9919 if (SAVE_EXPR_RTL (bound)
9920 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9921 {
9922 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9923 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9924 rtx loc = SAVE_EXPR_RTL (bound);
9925
9926 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9927 it references an outer function's frame. */
9928 if (GET_CODE (loc) == MEM)
9929 {
9930 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9931
9932 if (XEXP (loc, 0) != new_addr)
9933 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9934 }
9935
9936 add_AT_flag (decl_die, DW_AT_artificial, 1);
9937 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9938 add_AT_location_description (decl_die, DW_AT_location,
9939 loc_descriptor (loc, true));
9940 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9941 }
9942
9943 /* Else leave out the attribute. */
9944 break;
9945
9946 case VAR_DECL:
9947 case PARM_DECL:
9948 {
9949 dw_die_ref decl_die = lookup_decl_die (bound);
9950
9951 /* ??? Can this happen, or should the variable have been bound
9952 first? Probably it can, since I imagine that we try to create
9953 the types of parameters in the order in which they exist in
9954 the list, and won't have created a forward reference to a
9955 later parameter. */
9956 if (decl_die != NULL)
9957 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9958 break;
9959 }
9960
9961 default:
9962 {
9963 /* Otherwise try to create a stack operation procedure to
9964 evaluate the value of the array bound. */
9965
9966 dw_die_ref ctx, decl_die;
9967 dw_loc_descr_ref loc;
9968
9969 loc = loc_descriptor_from_tree (bound, 0);
9970 if (loc == NULL)
9971 break;
9972
9973 if (current_function_decl == 0)
9974 ctx = comp_unit_die;
9975 else
9976 ctx = lookup_decl_die (current_function_decl);
9977
9978 /* If we weren't able to find a context, it's most likely the case
9979 that we are processing the return type of the function. So
9980 make a SAVE_EXPR to point to it and have the limbo DIE code
9981 find the proper die. The save_expr function doesn't always
9982 make a SAVE_EXPR, so do it ourselves. */
9983 if (ctx == 0)
9984 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9985 current_function_decl, NULL_TREE);
9986
9987 decl_die = new_die (DW_TAG_variable, ctx, bound);
9988 add_AT_flag (decl_die, DW_AT_artificial, 1);
9989 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9990 add_AT_loc (decl_die, DW_AT_location, loc);
9991
9992 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9993 break;
9994 }
9995 }
9996 }
9997
9998 /* Note that the block of subscript information for an array type also
9999 includes information about the element type of type given array type. */
10000
10001 static void
10002 add_subscript_info (dw_die_ref type_die, tree type)
10003 {
10004 #ifndef MIPS_DEBUGGING_INFO
10005 unsigned dimension_number;
10006 #endif
10007 tree lower, upper;
10008 dw_die_ref subrange_die;
10009
10010 /* The GNU compilers represent multidimensional array types as sequences of
10011 one dimensional array types whose element types are themselves array
10012 types. Here we squish that down, so that each multidimensional array
10013 type gets only one array_type DIE in the Dwarf debugging info. The draft
10014 Dwarf specification say that we are allowed to do this kind of
10015 compression in C (because there is no difference between an array or
10016 arrays and a multidimensional array in C) but for other source languages
10017 (e.g. Ada) we probably shouldn't do this. */
10018
10019 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10020 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10021 We work around this by disabling this feature. See also
10022 gen_array_type_die. */
10023 #ifndef MIPS_DEBUGGING_INFO
10024 for (dimension_number = 0;
10025 TREE_CODE (type) == ARRAY_TYPE;
10026 type = TREE_TYPE (type), dimension_number++)
10027 #endif
10028 {
10029 tree domain = TYPE_DOMAIN (type);
10030
10031 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10032 and (in GNU C only) variable bounds. Handle all three forms
10033 here. */
10034 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10035 if (domain)
10036 {
10037 /* We have an array type with specified bounds. */
10038 lower = TYPE_MIN_VALUE (domain);
10039 upper = TYPE_MAX_VALUE (domain);
10040
10041 /* Define the index type. */
10042 if (TREE_TYPE (domain))
10043 {
10044 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10045 TREE_TYPE field. We can't emit debug info for this
10046 because it is an unnamed integral type. */
10047 if (TREE_CODE (domain) == INTEGER_TYPE
10048 && TYPE_NAME (domain) == NULL_TREE
10049 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10050 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10051 ;
10052 else
10053 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10054 type_die);
10055 }
10056
10057 /* ??? If upper is NULL, the array has unspecified length,
10058 but it does have a lower bound. This happens with Fortran
10059 dimension arr(N:*)
10060 Since the debugger is definitely going to need to know N
10061 to produce useful results, go ahead and output the lower
10062 bound solo, and hope the debugger can cope. */
10063
10064 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10065 if (upper)
10066 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10067 }
10068
10069 /* Otherwise we have an array type with an unspecified length. The
10070 DWARF-2 spec does not say how to handle this; let's just leave out the
10071 bounds. */
10072 }
10073 }
10074
10075 static void
10076 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10077 {
10078 unsigned size;
10079
10080 switch (TREE_CODE (tree_node))
10081 {
10082 case ERROR_MARK:
10083 size = 0;
10084 break;
10085 case ENUMERAL_TYPE:
10086 case RECORD_TYPE:
10087 case UNION_TYPE:
10088 case QUAL_UNION_TYPE:
10089 size = int_size_in_bytes (tree_node);
10090 break;
10091 case FIELD_DECL:
10092 /* For a data member of a struct or union, the DW_AT_byte_size is
10093 generally given as the number of bytes normally allocated for an
10094 object of the *declared* type of the member itself. This is true
10095 even for bit-fields. */
10096 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10097 break;
10098 default:
10099 abort ();
10100 }
10101
10102 /* Note that `size' might be -1 when we get to this point. If it is, that
10103 indicates that the byte size of the entity in question is variable. We
10104 have no good way of expressing this fact in Dwarf at the present time,
10105 so just let the -1 pass on through. */
10106 add_AT_unsigned (die, DW_AT_byte_size, size);
10107 }
10108
10109 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10110 which specifies the distance in bits from the highest order bit of the
10111 "containing object" for the bit-field to the highest order bit of the
10112 bit-field itself.
10113
10114 For any given bit-field, the "containing object" is a hypothetical object
10115 (of some integral or enum type) within which the given bit-field lives. The
10116 type of this hypothetical "containing object" is always the same as the
10117 declared type of the individual bit-field itself. The determination of the
10118 exact location of the "containing object" for a bit-field is rather
10119 complicated. It's handled by the `field_byte_offset' function (above).
10120
10121 Note that it is the size (in bytes) of the hypothetical "containing object"
10122 which will be given in the DW_AT_byte_size attribute for this bit-field.
10123 (See `byte_size_attribute' above). */
10124
10125 static inline void
10126 add_bit_offset_attribute (dw_die_ref die, tree decl)
10127 {
10128 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10129 tree type = DECL_BIT_FIELD_TYPE (decl);
10130 HOST_WIDE_INT bitpos_int;
10131 HOST_WIDE_INT highest_order_object_bit_offset;
10132 HOST_WIDE_INT highest_order_field_bit_offset;
10133 HOST_WIDE_INT unsigned bit_offset;
10134
10135 /* Must be a field and a bit field. */
10136 if (!type
10137 || TREE_CODE (decl) != FIELD_DECL)
10138 abort ();
10139
10140 /* We can't yet handle bit-fields whose offsets are variable, so if we
10141 encounter such things, just return without generating any attribute
10142 whatsoever. Likewise for variable or too large size. */
10143 if (! host_integerp (bit_position (decl), 0)
10144 || ! host_integerp (DECL_SIZE (decl), 1))
10145 return;
10146
10147 bitpos_int = int_bit_position (decl);
10148
10149 /* Note that the bit offset is always the distance (in bits) from the
10150 highest-order bit of the "containing object" to the highest-order bit of
10151 the bit-field itself. Since the "high-order end" of any object or field
10152 is different on big-endian and little-endian machines, the computation
10153 below must take account of these differences. */
10154 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10155 highest_order_field_bit_offset = bitpos_int;
10156
10157 if (! BYTES_BIG_ENDIAN)
10158 {
10159 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10160 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10161 }
10162
10163 bit_offset
10164 = (! BYTES_BIG_ENDIAN
10165 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10166 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10167
10168 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10169 }
10170
10171 /* For a FIELD_DECL node which represents a bit field, output an attribute
10172 which specifies the length in bits of the given field. */
10173
10174 static inline void
10175 add_bit_size_attribute (dw_die_ref die, tree decl)
10176 {
10177 /* Must be a field and a bit field. */
10178 if (TREE_CODE (decl) != FIELD_DECL
10179 || ! DECL_BIT_FIELD_TYPE (decl))
10180 abort ();
10181
10182 if (host_integerp (DECL_SIZE (decl), 1))
10183 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10184 }
10185
10186 /* If the compiled language is ANSI C, then add a 'prototyped'
10187 attribute, if arg types are given for the parameters of a function. */
10188
10189 static inline void
10190 add_prototyped_attribute (dw_die_ref die, tree func_type)
10191 {
10192 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10193 && TYPE_ARG_TYPES (func_type) != NULL)
10194 add_AT_flag (die, DW_AT_prototyped, 1);
10195 }
10196
10197 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10198 by looking in either the type declaration or object declaration
10199 equate table. */
10200
10201 static inline void
10202 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10203 {
10204 dw_die_ref origin_die = NULL;
10205
10206 if (TREE_CODE (origin) != FUNCTION_DECL)
10207 {
10208 /* We may have gotten separated from the block for the inlined
10209 function, if we're in an exception handler or some such; make
10210 sure that the abstract function has been written out.
10211
10212 Doing this for nested functions is wrong, however; functions are
10213 distinct units, and our context might not even be inline. */
10214 tree fn = origin;
10215
10216 if (TYPE_P (fn))
10217 fn = TYPE_STUB_DECL (fn);
10218
10219 fn = decl_function_context (fn);
10220 if (fn)
10221 dwarf2out_abstract_function (fn);
10222 }
10223
10224 if (DECL_P (origin))
10225 origin_die = lookup_decl_die (origin);
10226 else if (TYPE_P (origin))
10227 origin_die = lookup_type_die (origin);
10228
10229 if (origin_die == NULL)
10230 abort ();
10231
10232 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10233 }
10234
10235 /* We do not currently support the pure_virtual attribute. */
10236
10237 static inline void
10238 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10239 {
10240 if (DECL_VINDEX (func_decl))
10241 {
10242 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10243
10244 if (host_integerp (DECL_VINDEX (func_decl), 0))
10245 add_AT_loc (die, DW_AT_vtable_elem_location,
10246 new_loc_descr (DW_OP_constu,
10247 tree_low_cst (DECL_VINDEX (func_decl), 0),
10248 0));
10249
10250 /* GNU extension: Record what type this method came from originally. */
10251 if (debug_info_level > DINFO_LEVEL_TERSE)
10252 add_AT_die_ref (die, DW_AT_containing_type,
10253 lookup_type_die (DECL_CONTEXT (func_decl)));
10254 }
10255 }
10256 \f
10257 /* Add source coordinate attributes for the given decl. */
10258
10259 static void
10260 add_src_coords_attributes (dw_die_ref die, tree decl)
10261 {
10262 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10263
10264 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10265 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10266 }
10267
10268 /* Add a DW_AT_name attribute and source coordinate attribute for the
10269 given decl, but only if it actually has a name. */
10270
10271 static void
10272 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10273 {
10274 tree decl_name;
10275
10276 decl_name = DECL_NAME (decl);
10277 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10278 {
10279 add_name_attribute (die, dwarf2_name (decl, 0));
10280 if (! DECL_ARTIFICIAL (decl))
10281 add_src_coords_attributes (die, decl);
10282
10283 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10284 && TREE_PUBLIC (decl)
10285 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10286 && !DECL_ABSTRACT (decl))
10287 add_AT_string (die, DW_AT_MIPS_linkage_name,
10288 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10289 }
10290
10291 #ifdef VMS_DEBUGGING_INFO
10292 /* Get the function's name, as described by its RTL. This may be different
10293 from the DECL_NAME name used in the source file. */
10294 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10295 {
10296 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10297 XEXP (DECL_RTL (decl), 0));
10298 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10299 }
10300 #endif
10301 }
10302
10303 /* Push a new declaration scope. */
10304
10305 static void
10306 push_decl_scope (tree scope)
10307 {
10308 VARRAY_PUSH_TREE (decl_scope_table, scope);
10309 }
10310
10311 /* Pop a declaration scope. */
10312
10313 static inline void
10314 pop_decl_scope (void)
10315 {
10316 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10317 abort ();
10318
10319 VARRAY_POP (decl_scope_table);
10320 }
10321
10322 /* Return the DIE for the scope that immediately contains this type.
10323 Non-named types get global scope. Named types nested in other
10324 types get their containing scope if it's open, or global scope
10325 otherwise. All other types (i.e. function-local named types) get
10326 the current active scope. */
10327
10328 static dw_die_ref
10329 scope_die_for (tree t, dw_die_ref context_die)
10330 {
10331 dw_die_ref scope_die = NULL;
10332 tree containing_scope;
10333 int i;
10334
10335 /* Non-types always go in the current scope. */
10336 if (! TYPE_P (t))
10337 abort ();
10338
10339 containing_scope = TYPE_CONTEXT (t);
10340
10341 /* Use the containing namespace if it was passed in (for a declaration). */
10342 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10343 {
10344 if (context_die == lookup_decl_die (containing_scope))
10345 /* OK */;
10346 else
10347 containing_scope = NULL_TREE;
10348 }
10349
10350 /* Ignore function type "scopes" from the C frontend. They mean that
10351 a tagged type is local to a parmlist of a function declarator, but
10352 that isn't useful to DWARF. */
10353 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10354 containing_scope = NULL_TREE;
10355
10356 if (containing_scope == NULL_TREE)
10357 scope_die = comp_unit_die;
10358 else if (TYPE_P (containing_scope))
10359 {
10360 /* For types, we can just look up the appropriate DIE. But
10361 first we check to see if we're in the middle of emitting it
10362 so we know where the new DIE should go. */
10363 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10364 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10365 break;
10366
10367 if (i < 0)
10368 {
10369 if (debug_info_level > DINFO_LEVEL_TERSE
10370 && !TREE_ASM_WRITTEN (containing_scope))
10371 abort ();
10372
10373 /* If none of the current dies are suitable, we get file scope. */
10374 scope_die = comp_unit_die;
10375 }
10376 else
10377 scope_die = lookup_type_die (containing_scope);
10378 }
10379 else
10380 scope_die = context_die;
10381
10382 return scope_die;
10383 }
10384
10385 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10386
10387 static inline int
10388 local_scope_p (dw_die_ref context_die)
10389 {
10390 for (; context_die; context_die = context_die->die_parent)
10391 if (context_die->die_tag == DW_TAG_inlined_subroutine
10392 || context_die->die_tag == DW_TAG_subprogram)
10393 return 1;
10394
10395 return 0;
10396 }
10397
10398 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10399 whether or not to treat a DIE in this context as a declaration. */
10400
10401 static inline int
10402 class_or_namespace_scope_p (dw_die_ref context_die)
10403 {
10404 return (context_die
10405 && (context_die->die_tag == DW_TAG_structure_type
10406 || context_die->die_tag == DW_TAG_union_type
10407 || context_die->die_tag == DW_TAG_namespace));
10408 }
10409
10410 /* Many forms of DIEs require a "type description" attribute. This
10411 routine locates the proper "type descriptor" die for the type given
10412 by 'type', and adds a DW_AT_type attribute below the given die. */
10413
10414 static void
10415 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10416 int decl_volatile, dw_die_ref context_die)
10417 {
10418 enum tree_code code = TREE_CODE (type);
10419 dw_die_ref type_die = NULL;
10420
10421 /* ??? If this type is an unnamed subrange type of an integral or
10422 floating-point type, use the inner type. This is because we have no
10423 support for unnamed types in base_type_die. This can happen if this is
10424 an Ada subrange type. Correct solution is emit a subrange type die. */
10425 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10426 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10427 type = TREE_TYPE (type), code = TREE_CODE (type);
10428
10429 if (code == ERROR_MARK
10430 /* Handle a special case. For functions whose return type is void, we
10431 generate *no* type attribute. (Note that no object may have type
10432 `void', so this only applies to function return types). */
10433 || code == VOID_TYPE)
10434 return;
10435
10436 type_die = modified_type_die (type,
10437 decl_const || TYPE_READONLY (type),
10438 decl_volatile || TYPE_VOLATILE (type),
10439 context_die);
10440
10441 if (type_die != NULL)
10442 add_AT_die_ref (object_die, DW_AT_type, type_die);
10443 }
10444
10445 /* Given a tree pointer to a struct, class, union, or enum type node, return
10446 a pointer to the (string) tag name for the given type, or zero if the type
10447 was declared without a tag. */
10448
10449 static const char *
10450 type_tag (tree type)
10451 {
10452 const char *name = 0;
10453
10454 if (TYPE_NAME (type) != 0)
10455 {
10456 tree t = 0;
10457
10458 /* Find the IDENTIFIER_NODE for the type name. */
10459 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10460 t = TYPE_NAME (type);
10461
10462 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10463 a TYPE_DECL node, regardless of whether or not a `typedef' was
10464 involved. */
10465 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10466 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10467 t = DECL_NAME (TYPE_NAME (type));
10468
10469 /* Now get the name as a string, or invent one. */
10470 if (t != 0)
10471 name = IDENTIFIER_POINTER (t);
10472 }
10473
10474 return (name == 0 || *name == '\0') ? 0 : name;
10475 }
10476
10477 /* Return the type associated with a data member, make a special check
10478 for bit field types. */
10479
10480 static inline tree
10481 member_declared_type (tree member)
10482 {
10483 return (DECL_BIT_FIELD_TYPE (member)
10484 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10485 }
10486
10487 /* Get the decl's label, as described by its RTL. This may be different
10488 from the DECL_NAME name used in the source file. */
10489
10490 #if 0
10491 static const char *
10492 decl_start_label (tree decl)
10493 {
10494 rtx x;
10495 const char *fnname;
10496
10497 x = DECL_RTL (decl);
10498 if (GET_CODE (x) != MEM)
10499 abort ();
10500
10501 x = XEXP (x, 0);
10502 if (GET_CODE (x) != SYMBOL_REF)
10503 abort ();
10504
10505 fnname = XSTR (x, 0);
10506 return fnname;
10507 }
10508 #endif
10509 \f
10510 /* These routines generate the internal representation of the DIE's for
10511 the compilation unit. Debugging information is collected by walking
10512 the declaration trees passed in from dwarf2out_decl(). */
10513
10514 static void
10515 gen_array_type_die (tree type, dw_die_ref context_die)
10516 {
10517 dw_die_ref scope_die = scope_die_for (type, context_die);
10518 dw_die_ref array_die;
10519 tree element_type;
10520
10521 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10522 the inner array type comes before the outer array type. Thus we must
10523 call gen_type_die before we call new_die. See below also. */
10524 #ifdef MIPS_DEBUGGING_INFO
10525 gen_type_die (TREE_TYPE (type), context_die);
10526 #endif
10527
10528 array_die = new_die (DW_TAG_array_type, scope_die, type);
10529 add_name_attribute (array_die, type_tag (type));
10530 equate_type_number_to_die (type, array_die);
10531
10532 if (TREE_CODE (type) == VECTOR_TYPE)
10533 {
10534 /* The frontend feeds us a representation for the vector as a struct
10535 containing an array. Pull out the array type. */
10536 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10537 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10538 }
10539
10540 #if 0
10541 /* We default the array ordering. SDB will probably do
10542 the right things even if DW_AT_ordering is not present. It's not even
10543 an issue until we start to get into multidimensional arrays anyway. If
10544 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10545 then we'll have to put the DW_AT_ordering attribute back in. (But if
10546 and when we find out that we need to put these in, we will only do so
10547 for multidimensional arrays. */
10548 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10549 #endif
10550
10551 #ifdef MIPS_DEBUGGING_INFO
10552 /* The SGI compilers handle arrays of unknown bound by setting
10553 AT_declaration and not emitting any subrange DIEs. */
10554 if (! TYPE_DOMAIN (type))
10555 add_AT_flag (array_die, DW_AT_declaration, 1);
10556 else
10557 #endif
10558 add_subscript_info (array_die, type);
10559
10560 /* Add representation of the type of the elements of this array type. */
10561 element_type = TREE_TYPE (type);
10562
10563 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10564 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10565 We work around this by disabling this feature. See also
10566 add_subscript_info. */
10567 #ifndef MIPS_DEBUGGING_INFO
10568 while (TREE_CODE (element_type) == ARRAY_TYPE)
10569 element_type = TREE_TYPE (element_type);
10570
10571 gen_type_die (element_type, context_die);
10572 #endif
10573
10574 add_type_attribute (array_die, element_type, 0, 0, context_die);
10575 }
10576
10577 static void
10578 gen_set_type_die (tree type, dw_die_ref context_die)
10579 {
10580 dw_die_ref type_die
10581 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10582
10583 equate_type_number_to_die (type, type_die);
10584 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10585 }
10586
10587 #if 0
10588 static void
10589 gen_entry_point_die (tree decl, dw_die_ref context_die)
10590 {
10591 tree origin = decl_ultimate_origin (decl);
10592 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10593
10594 if (origin != NULL)
10595 add_abstract_origin_attribute (decl_die, origin);
10596 else
10597 {
10598 add_name_and_src_coords_attributes (decl_die, decl);
10599 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10600 0, 0, context_die);
10601 }
10602
10603 if (DECL_ABSTRACT (decl))
10604 equate_decl_number_to_die (decl, decl_die);
10605 else
10606 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10607 }
10608 #endif
10609
10610 /* Walk through the list of incomplete types again, trying once more to
10611 emit full debugging info for them. */
10612
10613 static void
10614 retry_incomplete_types (void)
10615 {
10616 int i;
10617
10618 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10619 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10620 }
10621
10622 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10623
10624 static void
10625 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10626 {
10627 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10628
10629 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10630 be incomplete and such types are not marked. */
10631 add_abstract_origin_attribute (type_die, type);
10632 }
10633
10634 /* Generate a DIE to represent an inlined instance of a structure type. */
10635
10636 static void
10637 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10638 {
10639 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10640
10641 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10642 be incomplete and such types are not marked. */
10643 add_abstract_origin_attribute (type_die, type);
10644 }
10645
10646 /* Generate a DIE to represent an inlined instance of a union type. */
10647
10648 static void
10649 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10650 {
10651 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10652
10653 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10654 be incomplete and such types are not marked. */
10655 add_abstract_origin_attribute (type_die, type);
10656 }
10657
10658 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10659 include all of the information about the enumeration values also. Each
10660 enumerated type name/value is listed as a child of the enumerated type
10661 DIE. */
10662
10663 static dw_die_ref
10664 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10665 {
10666 dw_die_ref type_die = lookup_type_die (type);
10667
10668 if (type_die == NULL)
10669 {
10670 type_die = new_die (DW_TAG_enumeration_type,
10671 scope_die_for (type, context_die), type);
10672 equate_type_number_to_die (type, type_die);
10673 add_name_attribute (type_die, type_tag (type));
10674 }
10675 else if (! TYPE_SIZE (type))
10676 return type_die;
10677 else
10678 remove_AT (type_die, DW_AT_declaration);
10679
10680 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10681 given enum type is incomplete, do not generate the DW_AT_byte_size
10682 attribute or the DW_AT_element_list attribute. */
10683 if (TYPE_SIZE (type))
10684 {
10685 tree link;
10686
10687 TREE_ASM_WRITTEN (type) = 1;
10688 add_byte_size_attribute (type_die, type);
10689 if (TYPE_STUB_DECL (type) != NULL_TREE)
10690 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10691
10692 /* If the first reference to this type was as the return type of an
10693 inline function, then it may not have a parent. Fix this now. */
10694 if (type_die->die_parent == NULL)
10695 add_child_die (scope_die_for (type, context_die), type_die);
10696
10697 for (link = TYPE_FIELDS (type);
10698 link != NULL; link = TREE_CHAIN (link))
10699 {
10700 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10701
10702 add_name_attribute (enum_die,
10703 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10704
10705 if (host_integerp (TREE_VALUE (link),
10706 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10707 {
10708 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10709 add_AT_int (enum_die, DW_AT_const_value,
10710 tree_low_cst (TREE_VALUE (link), 0));
10711 else
10712 add_AT_unsigned (enum_die, DW_AT_const_value,
10713 tree_low_cst (TREE_VALUE (link), 1));
10714 }
10715 }
10716 }
10717 else
10718 add_AT_flag (type_die, DW_AT_declaration, 1);
10719
10720 return type_die;
10721 }
10722
10723 /* Generate a DIE to represent either a real live formal parameter decl or to
10724 represent just the type of some formal parameter position in some function
10725 type.
10726
10727 Note that this routine is a bit unusual because its argument may be a
10728 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10729 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10730 node. If it's the former then this function is being called to output a
10731 DIE to represent a formal parameter object (or some inlining thereof). If
10732 it's the latter, then this function is only being called to output a
10733 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10734 argument type of some subprogram type. */
10735
10736 static dw_die_ref
10737 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10738 {
10739 dw_die_ref parm_die
10740 = new_die (DW_TAG_formal_parameter, context_die, node);
10741 tree origin;
10742
10743 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10744 {
10745 case 'd':
10746 origin = decl_ultimate_origin (node);
10747 if (origin != NULL)
10748 add_abstract_origin_attribute (parm_die, origin);
10749 else
10750 {
10751 add_name_and_src_coords_attributes (parm_die, node);
10752 add_type_attribute (parm_die, TREE_TYPE (node),
10753 TREE_READONLY (node),
10754 TREE_THIS_VOLATILE (node),
10755 context_die);
10756 if (DECL_ARTIFICIAL (node))
10757 add_AT_flag (parm_die, DW_AT_artificial, 1);
10758 }
10759
10760 equate_decl_number_to_die (node, parm_die);
10761 if (! DECL_ABSTRACT (node))
10762 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
10763
10764 break;
10765
10766 case 't':
10767 /* We were called with some kind of a ..._TYPE node. */
10768 add_type_attribute (parm_die, node, 0, 0, context_die);
10769 break;
10770
10771 default:
10772 abort ();
10773 }
10774
10775 return parm_die;
10776 }
10777
10778 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10779 at the end of an (ANSI prototyped) formal parameters list. */
10780
10781 static void
10782 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10783 {
10784 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10785 }
10786
10787 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10788 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10789 parameters as specified in some function type specification (except for
10790 those which appear as part of a function *definition*). */
10791
10792 static void
10793 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10794 {
10795 tree link;
10796 tree formal_type = NULL;
10797 tree first_parm_type;
10798 tree arg;
10799
10800 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10801 {
10802 arg = DECL_ARGUMENTS (function_or_method_type);
10803 function_or_method_type = TREE_TYPE (function_or_method_type);
10804 }
10805 else
10806 arg = NULL_TREE;
10807
10808 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10809
10810 /* Make our first pass over the list of formal parameter types and output a
10811 DW_TAG_formal_parameter DIE for each one. */
10812 for (link = first_parm_type; link; )
10813 {
10814 dw_die_ref parm_die;
10815
10816 formal_type = TREE_VALUE (link);
10817 if (formal_type == void_type_node)
10818 break;
10819
10820 /* Output a (nameless) DIE to represent the formal parameter itself. */
10821 parm_die = gen_formal_parameter_die (formal_type, context_die);
10822 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10823 && link == first_parm_type)
10824 || (arg && DECL_ARTIFICIAL (arg)))
10825 add_AT_flag (parm_die, DW_AT_artificial, 1);
10826
10827 link = TREE_CHAIN (link);
10828 if (arg)
10829 arg = TREE_CHAIN (arg);
10830 }
10831
10832 /* If this function type has an ellipsis, add a
10833 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10834 if (formal_type != void_type_node)
10835 gen_unspecified_parameters_die (function_or_method_type, context_die);
10836
10837 /* Make our second (and final) pass over the list of formal parameter types
10838 and output DIEs to represent those types (as necessary). */
10839 for (link = TYPE_ARG_TYPES (function_or_method_type);
10840 link && TREE_VALUE (link);
10841 link = TREE_CHAIN (link))
10842 gen_type_die (TREE_VALUE (link), context_die);
10843 }
10844
10845 /* We want to generate the DIE for TYPE so that we can generate the
10846 die for MEMBER, which has been defined; we will need to refer back
10847 to the member declaration nested within TYPE. If we're trying to
10848 generate minimal debug info for TYPE, processing TYPE won't do the
10849 trick; we need to attach the member declaration by hand. */
10850
10851 static void
10852 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10853 {
10854 gen_type_die (type, context_die);
10855
10856 /* If we're trying to avoid duplicate debug info, we may not have
10857 emitted the member decl for this function. Emit it now. */
10858 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10859 && ! lookup_decl_die (member))
10860 {
10861 if (decl_ultimate_origin (member))
10862 abort ();
10863
10864 push_decl_scope (type);
10865 if (TREE_CODE (member) == FUNCTION_DECL)
10866 gen_subprogram_die (member, lookup_type_die (type));
10867 else
10868 gen_variable_die (member, lookup_type_die (type));
10869
10870 pop_decl_scope ();
10871 }
10872 }
10873
10874 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10875 may later generate inlined and/or out-of-line instances of. */
10876
10877 static void
10878 dwarf2out_abstract_function (tree decl)
10879 {
10880 dw_die_ref old_die;
10881 tree save_fn;
10882 tree context;
10883 int was_abstract = DECL_ABSTRACT (decl);
10884
10885 /* Make sure we have the actual abstract inline, not a clone. */
10886 decl = DECL_ORIGIN (decl);
10887
10888 old_die = lookup_decl_die (decl);
10889 if (old_die && get_AT (old_die, DW_AT_inline))
10890 /* We've already generated the abstract instance. */
10891 return;
10892
10893 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10894 we don't get confused by DECL_ABSTRACT. */
10895 if (debug_info_level > DINFO_LEVEL_TERSE)
10896 {
10897 context = decl_class_context (decl);
10898 if (context)
10899 gen_type_die_for_member
10900 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10901 }
10902
10903 /* Pretend we've just finished compiling this function. */
10904 save_fn = current_function_decl;
10905 current_function_decl = decl;
10906
10907 set_decl_abstract_flags (decl, 1);
10908 dwarf2out_decl (decl);
10909 if (! was_abstract)
10910 set_decl_abstract_flags (decl, 0);
10911
10912 current_function_decl = save_fn;
10913 }
10914
10915 /* Generate a DIE to represent a declared function (either file-scope or
10916 block-local). */
10917
10918 static void
10919 gen_subprogram_die (tree decl, dw_die_ref context_die)
10920 {
10921 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10922 tree origin = decl_ultimate_origin (decl);
10923 dw_die_ref subr_die;
10924 rtx fp_reg;
10925 tree fn_arg_types;
10926 tree outer_scope;
10927 dw_die_ref old_die = lookup_decl_die (decl);
10928 int declaration = (current_function_decl != decl
10929 || class_or_namespace_scope_p (context_die));
10930
10931 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10932 started to generate the abstract instance of an inline, decided to output
10933 its containing class, and proceeded to emit the declaration of the inline
10934 from the member list for the class. If so, DECLARATION takes priority;
10935 we'll get back to the abstract instance when done with the class. */
10936
10937 /* The class-scope declaration DIE must be the primary DIE. */
10938 if (origin && declaration && class_or_namespace_scope_p (context_die))
10939 {
10940 origin = NULL;
10941 if (old_die)
10942 abort ();
10943 }
10944
10945 if (origin != NULL)
10946 {
10947 if (declaration && ! local_scope_p (context_die))
10948 abort ();
10949
10950 /* Fixup die_parent for the abstract instance of a nested
10951 inline function. */
10952 if (old_die && old_die->die_parent == NULL)
10953 add_child_die (context_die, old_die);
10954
10955 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10956 add_abstract_origin_attribute (subr_die, origin);
10957 }
10958 else if (old_die)
10959 {
10960 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10961
10962 if (!get_AT_flag (old_die, DW_AT_declaration)
10963 /* We can have a normal definition following an inline one in the
10964 case of redefinition of GNU C extern inlines.
10965 It seems reasonable to use AT_specification in this case. */
10966 && !get_AT (old_die, DW_AT_inline))
10967 {
10968 /* ??? This can happen if there is a bug in the program, for
10969 instance, if it has duplicate function definitions. Ideally,
10970 we should detect this case and ignore it. For now, if we have
10971 already reported an error, any error at all, then assume that
10972 we got here because of an input error, not a dwarf2 bug. */
10973 if (errorcount)
10974 return;
10975 abort ();
10976 }
10977
10978 /* If the definition comes from the same place as the declaration,
10979 maybe use the old DIE. We always want the DIE for this function
10980 that has the *_pc attributes to be under comp_unit_die so the
10981 debugger can find it. We also need to do this for abstract
10982 instances of inlines, since the spec requires the out-of-line copy
10983 to have the same parent. For local class methods, this doesn't
10984 apply; we just use the old DIE. */
10985 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10986 && (DECL_ARTIFICIAL (decl)
10987 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10988 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10989 == (unsigned) DECL_SOURCE_LINE (decl)))))
10990 {
10991 subr_die = old_die;
10992
10993 /* Clear out the declaration attribute and the formal parameters.
10994 Do not remove all children, because it is possible that this
10995 declaration die was forced using force_decl_die(). In such
10996 cases die that forced declaration die (e.g. TAG_imported_module)
10997 is one of the children that we do not want to remove. */
10998 remove_AT (subr_die, DW_AT_declaration);
10999 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11000 }
11001 else
11002 {
11003 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11004 add_AT_specification (subr_die, old_die);
11005 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11006 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11007 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11008 != (unsigned) DECL_SOURCE_LINE (decl))
11009 add_AT_unsigned
11010 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
11011 }
11012 }
11013 else
11014 {
11015 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11016
11017 if (TREE_PUBLIC (decl))
11018 add_AT_flag (subr_die, DW_AT_external, 1);
11019
11020 add_name_and_src_coords_attributes (subr_die, decl);
11021 if (debug_info_level > DINFO_LEVEL_TERSE)
11022 {
11023 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11024 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11025 0, 0, context_die);
11026 }
11027
11028 add_pure_or_virtual_attribute (subr_die, decl);
11029 if (DECL_ARTIFICIAL (decl))
11030 add_AT_flag (subr_die, DW_AT_artificial, 1);
11031
11032 if (TREE_PROTECTED (decl))
11033 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11034 else if (TREE_PRIVATE (decl))
11035 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11036 }
11037
11038 if (declaration)
11039 {
11040 if (!old_die || !get_AT (old_die, DW_AT_inline))
11041 {
11042 add_AT_flag (subr_die, DW_AT_declaration, 1);
11043
11044 /* The first time we see a member function, it is in the context of
11045 the class to which it belongs. We make sure of this by emitting
11046 the class first. The next time is the definition, which is
11047 handled above. The two may come from the same source text.
11048
11049 Note that force_decl_die() forces function declaration die. It is
11050 later reused to represent definition. */
11051 equate_decl_number_to_die (decl, subr_die);
11052 }
11053 }
11054 else if (DECL_ABSTRACT (decl))
11055 {
11056 if (DECL_DECLARED_INLINE_P (decl))
11057 {
11058 if (cgraph_function_possibly_inlined_p (decl))
11059 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11060 else
11061 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11062 }
11063 else
11064 {
11065 if (cgraph_function_possibly_inlined_p (decl))
11066 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11067 else
11068 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11069 }
11070
11071 equate_decl_number_to_die (decl, subr_die);
11072 }
11073 else if (!DECL_EXTERNAL (decl))
11074 {
11075 if (!old_die || !get_AT (old_die, DW_AT_inline))
11076 equate_decl_number_to_die (decl, subr_die);
11077
11078 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11079 current_function_funcdef_no);
11080 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11081 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11082 current_function_funcdef_no);
11083 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11084
11085 add_pubname (decl, subr_die);
11086 add_arange (decl, subr_die);
11087
11088 #ifdef MIPS_DEBUGGING_INFO
11089 /* Add a reference to the FDE for this routine. */
11090 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11091 #endif
11092
11093 /* Define the "frame base" location for this routine. We use the
11094 frame pointer or stack pointer registers, since the RTL for local
11095 variables is relative to one of them. */
11096 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11097 {
11098 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11099 DW_AT_frame_base);
11100 }
11101 else
11102 {
11103 fp_reg
11104 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11105 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11106 }
11107
11108 #if 0
11109 /* ??? This fails for nested inline functions, because context_display
11110 is not part of the state saved/restored for inline functions. */
11111 if (current_function_needs_context)
11112 add_AT_location_description (subr_die, DW_AT_static_link,
11113 loc_descriptor (lookup_static_chain (decl)));
11114 #endif
11115 }
11116
11117 /* Now output descriptions of the arguments for this function. This gets
11118 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11119 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11120 `...' at the end of the formal parameter list. In order to find out if
11121 there was a trailing ellipsis or not, we must instead look at the type
11122 associated with the FUNCTION_DECL. This will be a node of type
11123 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11124 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11125 an ellipsis at the end. */
11126
11127 /* In the case where we are describing a mere function declaration, all we
11128 need to do here (and all we *can* do here) is to describe the *types* of
11129 its formal parameters. */
11130 if (debug_info_level <= DINFO_LEVEL_TERSE)
11131 ;
11132 else if (declaration)
11133 gen_formal_types_die (decl, subr_die);
11134 else
11135 {
11136 /* Generate DIEs to represent all known formal parameters. */
11137 tree arg_decls = DECL_ARGUMENTS (decl);
11138 tree parm;
11139
11140 /* When generating DIEs, generate the unspecified_parameters DIE
11141 instead if we come across the arg "__builtin_va_alist" */
11142 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11143 if (TREE_CODE (parm) == PARM_DECL)
11144 {
11145 if (DECL_NAME (parm)
11146 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11147 "__builtin_va_alist"))
11148 gen_unspecified_parameters_die (parm, subr_die);
11149 else
11150 gen_decl_die (parm, subr_die);
11151 }
11152
11153 /* Decide whether we need an unspecified_parameters DIE at the end.
11154 There are 2 more cases to do this for: 1) the ansi ... declaration -
11155 this is detectable when the end of the arg list is not a
11156 void_type_node 2) an unprototyped function declaration (not a
11157 definition). This just means that we have no info about the
11158 parameters at all. */
11159 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11160 if (fn_arg_types != NULL)
11161 {
11162 /* This is the prototyped case, check for.... */
11163 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11164 gen_unspecified_parameters_die (decl, subr_die);
11165 }
11166 else if (DECL_INITIAL (decl) == NULL_TREE)
11167 gen_unspecified_parameters_die (decl, subr_die);
11168 }
11169
11170 /* Output Dwarf info for all of the stuff within the body of the function
11171 (if it has one - it may be just a declaration). */
11172 outer_scope = DECL_INITIAL (decl);
11173
11174 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11175 a function. This BLOCK actually represents the outermost binding contour
11176 for the function, i.e. the contour in which the function's formal
11177 parameters and labels get declared. Curiously, it appears that the front
11178 end doesn't actually put the PARM_DECL nodes for the current function onto
11179 the BLOCK_VARS list for this outer scope, but are strung off of the
11180 DECL_ARGUMENTS list for the function instead.
11181
11182 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11183 the LABEL_DECL nodes for the function however, and we output DWARF info
11184 for those in decls_for_scope. Just within the `outer_scope' there will be
11185 a BLOCK node representing the function's outermost pair of curly braces,
11186 and any blocks used for the base and member initializers of a C++
11187 constructor function. */
11188 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11189 {
11190 current_function_has_inlines = 0;
11191 decls_for_scope (outer_scope, subr_die, 0);
11192
11193 #if 0 && defined (MIPS_DEBUGGING_INFO)
11194 if (current_function_has_inlines)
11195 {
11196 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11197 if (! comp_unit_has_inlines)
11198 {
11199 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11200 comp_unit_has_inlines = 1;
11201 }
11202 }
11203 #endif
11204 }
11205 }
11206
11207 /* Generate a DIE to represent a declared data object. */
11208
11209 static void
11210 gen_variable_die (tree decl, dw_die_ref context_die)
11211 {
11212 tree origin = decl_ultimate_origin (decl);
11213 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11214
11215 dw_die_ref old_die = lookup_decl_die (decl);
11216 int declaration = (DECL_EXTERNAL (decl)
11217 || class_or_namespace_scope_p (context_die));
11218
11219 if (origin != NULL)
11220 add_abstract_origin_attribute (var_die, origin);
11221
11222 /* Loop unrolling can create multiple blocks that refer to the same
11223 static variable, so we must test for the DW_AT_declaration flag.
11224
11225 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11226 copy decls and set the DECL_ABSTRACT flag on them instead of
11227 sharing them.
11228
11229 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11230 else if (old_die && TREE_STATIC (decl)
11231 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11232 {
11233 /* This is a definition of a C++ class level static. */
11234 add_AT_specification (var_die, old_die);
11235 if (DECL_NAME (decl))
11236 {
11237 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11238
11239 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11240 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11241
11242 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11243 != (unsigned) DECL_SOURCE_LINE (decl))
11244
11245 add_AT_unsigned (var_die, DW_AT_decl_line,
11246 DECL_SOURCE_LINE (decl));
11247 }
11248 }
11249 else
11250 {
11251 add_name_and_src_coords_attributes (var_die, decl);
11252 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11253 TREE_THIS_VOLATILE (decl), context_die);
11254
11255 if (TREE_PUBLIC (decl))
11256 add_AT_flag (var_die, DW_AT_external, 1);
11257
11258 if (DECL_ARTIFICIAL (decl))
11259 add_AT_flag (var_die, DW_AT_artificial, 1);
11260
11261 if (TREE_PROTECTED (decl))
11262 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11263 else if (TREE_PRIVATE (decl))
11264 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11265 }
11266
11267 if (declaration)
11268 add_AT_flag (var_die, DW_AT_declaration, 1);
11269
11270 if (DECL_ABSTRACT (decl) || declaration)
11271 equate_decl_number_to_die (decl, var_die);
11272
11273 if (! declaration && ! DECL_ABSTRACT (decl))
11274 {
11275 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11276 add_pubname (decl, var_die);
11277 }
11278 else
11279 tree_add_const_value_attribute (var_die, decl);
11280 }
11281
11282 /* Generate a DIE to represent a label identifier. */
11283
11284 static void
11285 gen_label_die (tree decl, dw_die_ref context_die)
11286 {
11287 tree origin = decl_ultimate_origin (decl);
11288 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11289 rtx insn;
11290 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11291
11292 if (origin != NULL)
11293 add_abstract_origin_attribute (lbl_die, origin);
11294 else
11295 add_name_and_src_coords_attributes (lbl_die, decl);
11296
11297 if (DECL_ABSTRACT (decl))
11298 equate_decl_number_to_die (decl, lbl_die);
11299 else
11300 {
11301 insn = DECL_RTL_IF_SET (decl);
11302
11303 /* Deleted labels are programmer specified labels which have been
11304 eliminated because of various optimizations. We still emit them
11305 here so that it is possible to put breakpoints on them. */
11306 if (insn
11307 && (GET_CODE (insn) == CODE_LABEL
11308 || ((GET_CODE (insn) == NOTE
11309 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11310 {
11311 /* When optimization is enabled (via -O) some parts of the compiler
11312 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11313 represent source-level labels which were explicitly declared by
11314 the user. This really shouldn't be happening though, so catch
11315 it if it ever does happen. */
11316 if (INSN_DELETED_P (insn))
11317 abort ();
11318
11319 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11320 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11321 }
11322 }
11323 }
11324
11325 /* Generate a DIE for a lexical block. */
11326
11327 static void
11328 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11329 {
11330 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11331 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11332
11333 if (! BLOCK_ABSTRACT (stmt))
11334 {
11335 if (BLOCK_FRAGMENT_CHAIN (stmt))
11336 {
11337 tree chain;
11338
11339 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11340
11341 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11342 do
11343 {
11344 add_ranges (chain);
11345 chain = BLOCK_FRAGMENT_CHAIN (chain);
11346 }
11347 while (chain);
11348 add_ranges (NULL);
11349 }
11350 else
11351 {
11352 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11353 BLOCK_NUMBER (stmt));
11354 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11355 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11356 BLOCK_NUMBER (stmt));
11357 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11358 }
11359 }
11360
11361 decls_for_scope (stmt, stmt_die, depth);
11362 }
11363
11364 /* Generate a DIE for an inlined subprogram. */
11365
11366 static void
11367 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11368 {
11369 tree decl = block_ultimate_origin (stmt);
11370
11371 /* Emit info for the abstract instance first, if we haven't yet. We
11372 must emit this even if the block is abstract, otherwise when we
11373 emit the block below (or elsewhere), we may end up trying to emit
11374 a die whose origin die hasn't been emitted, and crashing. */
11375 dwarf2out_abstract_function (decl);
11376
11377 if (! BLOCK_ABSTRACT (stmt))
11378 {
11379 dw_die_ref subr_die
11380 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11381 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11382
11383 add_abstract_origin_attribute (subr_die, decl);
11384 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11385 BLOCK_NUMBER (stmt));
11386 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11387 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11388 BLOCK_NUMBER (stmt));
11389 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11390 decls_for_scope (stmt, subr_die, depth);
11391 current_function_has_inlines = 1;
11392 }
11393 else
11394 /* We may get here if we're the outer block of function A that was
11395 inlined into function B that was inlined into function C. When
11396 generating debugging info for C, dwarf2out_abstract_function(B)
11397 would mark all inlined blocks as abstract, including this one.
11398 So, we wouldn't (and shouldn't) expect labels to be generated
11399 for this one. Instead, just emit debugging info for
11400 declarations within the block. This is particularly important
11401 in the case of initializers of arguments passed from B to us:
11402 if they're statement expressions containing declarations, we
11403 wouldn't generate dies for their abstract variables, and then,
11404 when generating dies for the real variables, we'd die (pun
11405 intended :-) */
11406 gen_lexical_block_die (stmt, context_die, depth);
11407 }
11408
11409 /* Generate a DIE for a field in a record, or structure. */
11410
11411 static void
11412 gen_field_die (tree decl, dw_die_ref context_die)
11413 {
11414 dw_die_ref decl_die;
11415
11416 if (TREE_TYPE (decl) == error_mark_node)
11417 return;
11418
11419 decl_die = new_die (DW_TAG_member, context_die, decl);
11420 add_name_and_src_coords_attributes (decl_die, decl);
11421 add_type_attribute (decl_die, member_declared_type (decl),
11422 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11423 context_die);
11424
11425 if (DECL_BIT_FIELD_TYPE (decl))
11426 {
11427 add_byte_size_attribute (decl_die, decl);
11428 add_bit_size_attribute (decl_die, decl);
11429 add_bit_offset_attribute (decl_die, decl);
11430 }
11431
11432 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11433 add_data_member_location_attribute (decl_die, decl);
11434
11435 if (DECL_ARTIFICIAL (decl))
11436 add_AT_flag (decl_die, DW_AT_artificial, 1);
11437
11438 if (TREE_PROTECTED (decl))
11439 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11440 else if (TREE_PRIVATE (decl))
11441 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11442 }
11443
11444 #if 0
11445 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11446 Use modified_type_die instead.
11447 We keep this code here just in case these types of DIEs may be needed to
11448 represent certain things in other languages (e.g. Pascal) someday. */
11449
11450 static void
11451 gen_pointer_type_die (tree type, dw_die_ref context_die)
11452 {
11453 dw_die_ref ptr_die
11454 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11455
11456 equate_type_number_to_die (type, ptr_die);
11457 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11458 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11459 }
11460
11461 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11462 Use modified_type_die instead.
11463 We keep this code here just in case these types of DIEs may be needed to
11464 represent certain things in other languages (e.g. Pascal) someday. */
11465
11466 static void
11467 gen_reference_type_die (tree type, dw_die_ref context_die)
11468 {
11469 dw_die_ref ref_die
11470 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11471
11472 equate_type_number_to_die (type, ref_die);
11473 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11474 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11475 }
11476 #endif
11477
11478 /* Generate a DIE for a pointer to a member type. */
11479
11480 static void
11481 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11482 {
11483 dw_die_ref ptr_die
11484 = new_die (DW_TAG_ptr_to_member_type,
11485 scope_die_for (type, context_die), type);
11486
11487 equate_type_number_to_die (type, ptr_die);
11488 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11489 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11490 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11491 }
11492
11493 /* Generate the DIE for the compilation unit. */
11494
11495 static dw_die_ref
11496 gen_compile_unit_die (const char *filename)
11497 {
11498 dw_die_ref die;
11499 char producer[250];
11500 const char *language_string = lang_hooks.name;
11501 int language;
11502
11503 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11504
11505 if (filename)
11506 {
11507 add_name_attribute (die, filename);
11508 /* Don't add cwd for <built-in>. */
11509 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11510 add_comp_dir_attribute (die);
11511 }
11512
11513 sprintf (producer, "%s %s", language_string, version_string);
11514
11515 #ifdef MIPS_DEBUGGING_INFO
11516 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11517 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11518 not appear in the producer string, the debugger reaches the conclusion
11519 that the object file is stripped and has no debugging information.
11520 To get the MIPS/SGI debugger to believe that there is debugging
11521 information in the object file, we add a -g to the producer string. */
11522 if (debug_info_level > DINFO_LEVEL_TERSE)
11523 strcat (producer, " -g");
11524 #endif
11525
11526 add_AT_string (die, DW_AT_producer, producer);
11527
11528 if (strcmp (language_string, "GNU C++") == 0)
11529 language = DW_LANG_C_plus_plus;
11530 else if (strcmp (language_string, "GNU Ada") == 0)
11531 language = DW_LANG_Ada95;
11532 else if (strcmp (language_string, "GNU F77") == 0)
11533 language = DW_LANG_Fortran77;
11534 else if (strcmp (language_string, "GNU Pascal") == 0)
11535 language = DW_LANG_Pascal83;
11536 else if (strcmp (language_string, "GNU Java") == 0)
11537 language = DW_LANG_Java;
11538 else
11539 language = DW_LANG_C89;
11540
11541 add_AT_unsigned (die, DW_AT_language, language);
11542 return die;
11543 }
11544
11545 /* Generate a DIE for a string type. */
11546
11547 static void
11548 gen_string_type_die (tree type, dw_die_ref context_die)
11549 {
11550 dw_die_ref type_die
11551 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11552
11553 equate_type_number_to_die (type, type_die);
11554
11555 /* ??? Fudge the string length attribute for now.
11556 TODO: add string length info. */
11557 #if 0
11558 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11559 bound_representation (upper_bound, 0, 'u');
11560 #endif
11561 }
11562
11563 /* Generate the DIE for a base class. */
11564
11565 static void
11566 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11567 {
11568 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11569
11570 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11571 add_data_member_location_attribute (die, binfo);
11572
11573 if (TREE_VIA_VIRTUAL (binfo))
11574 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11575
11576 if (access == access_public_node)
11577 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11578 else if (access == access_protected_node)
11579 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11580 }
11581
11582 /* Generate a DIE for a class member. */
11583
11584 static void
11585 gen_member_die (tree type, dw_die_ref context_die)
11586 {
11587 tree member;
11588 tree binfo = TYPE_BINFO (type);
11589 dw_die_ref child;
11590
11591 /* If this is not an incomplete type, output descriptions of each of its
11592 members. Note that as we output the DIEs necessary to represent the
11593 members of this record or union type, we will also be trying to output
11594 DIEs to represent the *types* of those members. However the `type'
11595 function (above) will specifically avoid generating type DIEs for member
11596 types *within* the list of member DIEs for this (containing) type except
11597 for those types (of members) which are explicitly marked as also being
11598 members of this (containing) type themselves. The g++ front- end can
11599 force any given type to be treated as a member of some other (containing)
11600 type by setting the TYPE_CONTEXT of the given (member) type to point to
11601 the TREE node representing the appropriate (containing) type. */
11602
11603 /* First output info about the base classes. */
11604 if (binfo && BINFO_BASETYPES (binfo))
11605 {
11606 tree bases = BINFO_BASETYPES (binfo);
11607 tree accesses = BINFO_BASEACCESSES (binfo);
11608 int n_bases = TREE_VEC_LENGTH (bases);
11609 int i;
11610
11611 for (i = 0; i < n_bases; i++)
11612 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11613 (accesses ? TREE_VEC_ELT (accesses, i)
11614 : access_public_node), context_die);
11615 }
11616
11617 /* Now output info about the data members and type members. */
11618 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11619 {
11620 /* If we thought we were generating minimal debug info for TYPE
11621 and then changed our minds, some of the member declarations
11622 may have already been defined. Don't define them again, but
11623 do put them in the right order. */
11624
11625 child = lookup_decl_die (member);
11626 if (child)
11627 splice_child_die (context_die, child);
11628 else
11629 gen_decl_die (member, context_die);
11630 }
11631
11632 /* Now output info about the function members (if any). */
11633 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11634 {
11635 /* Don't include clones in the member list. */
11636 if (DECL_ABSTRACT_ORIGIN (member))
11637 continue;
11638
11639 child = lookup_decl_die (member);
11640 if (child)
11641 splice_child_die (context_die, child);
11642 else
11643 gen_decl_die (member, context_die);
11644 }
11645 }
11646
11647 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11648 is set, we pretend that the type was never defined, so we only get the
11649 member DIEs needed by later specification DIEs. */
11650
11651 static void
11652 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11653 {
11654 dw_die_ref type_die = lookup_type_die (type);
11655 dw_die_ref scope_die = 0;
11656 int nested = 0;
11657 int complete = (TYPE_SIZE (type)
11658 && (! TYPE_STUB_DECL (type)
11659 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11660 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11661
11662 if (type_die && ! complete)
11663 return;
11664
11665 if (TYPE_CONTEXT (type) != NULL_TREE
11666 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11667 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11668 nested = 1;
11669
11670 scope_die = scope_die_for (type, context_die);
11671
11672 if (! type_die || (nested && scope_die == comp_unit_die))
11673 /* First occurrence of type or toplevel definition of nested class. */
11674 {
11675 dw_die_ref old_die = type_die;
11676
11677 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11678 ? DW_TAG_structure_type : DW_TAG_union_type,
11679 scope_die, type);
11680 equate_type_number_to_die (type, type_die);
11681 if (old_die)
11682 add_AT_specification (type_die, old_die);
11683 else
11684 add_name_attribute (type_die, type_tag (type));
11685 }
11686 else
11687 remove_AT (type_die, DW_AT_declaration);
11688
11689 /* If this type has been completed, then give it a byte_size attribute and
11690 then give a list of members. */
11691 if (complete && !ns_decl)
11692 {
11693 /* Prevent infinite recursion in cases where the type of some member of
11694 this type is expressed in terms of this type itself. */
11695 TREE_ASM_WRITTEN (type) = 1;
11696 add_byte_size_attribute (type_die, type);
11697 if (TYPE_STUB_DECL (type) != NULL_TREE)
11698 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11699
11700 /* If the first reference to this type was as the return type of an
11701 inline function, then it may not have a parent. Fix this now. */
11702 if (type_die->die_parent == NULL)
11703 add_child_die (scope_die, type_die);
11704
11705 push_decl_scope (type);
11706 gen_member_die (type, type_die);
11707 pop_decl_scope ();
11708
11709 /* GNU extension: Record what type our vtable lives in. */
11710 if (TYPE_VFIELD (type))
11711 {
11712 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11713
11714 gen_type_die (vtype, context_die);
11715 add_AT_die_ref (type_die, DW_AT_containing_type,
11716 lookup_type_die (vtype));
11717 }
11718 }
11719 else
11720 {
11721 add_AT_flag (type_die, DW_AT_declaration, 1);
11722
11723 /* We don't need to do this for function-local types. */
11724 if (TYPE_STUB_DECL (type)
11725 && ! decl_function_context (TYPE_STUB_DECL (type)))
11726 VARRAY_PUSH_TREE (incomplete_types, type);
11727 }
11728 }
11729
11730 /* Generate a DIE for a subroutine _type_. */
11731
11732 static void
11733 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11734 {
11735 tree return_type = TREE_TYPE (type);
11736 dw_die_ref subr_die
11737 = new_die (DW_TAG_subroutine_type,
11738 scope_die_for (type, context_die), type);
11739
11740 equate_type_number_to_die (type, subr_die);
11741 add_prototyped_attribute (subr_die, type);
11742 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11743 gen_formal_types_die (type, subr_die);
11744 }
11745
11746 /* Generate a DIE for a type definition. */
11747
11748 static void
11749 gen_typedef_die (tree decl, dw_die_ref context_die)
11750 {
11751 dw_die_ref type_die;
11752 tree origin;
11753
11754 if (TREE_ASM_WRITTEN (decl))
11755 return;
11756
11757 TREE_ASM_WRITTEN (decl) = 1;
11758 type_die = new_die (DW_TAG_typedef, context_die, decl);
11759 origin = decl_ultimate_origin (decl);
11760 if (origin != NULL)
11761 add_abstract_origin_attribute (type_die, origin);
11762 else
11763 {
11764 tree type;
11765
11766 add_name_and_src_coords_attributes (type_die, decl);
11767 if (DECL_ORIGINAL_TYPE (decl))
11768 {
11769 type = DECL_ORIGINAL_TYPE (decl);
11770
11771 if (type == TREE_TYPE (decl))
11772 abort ();
11773 else
11774 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11775 }
11776 else
11777 type = TREE_TYPE (decl);
11778
11779 add_type_attribute (type_die, type, TREE_READONLY (decl),
11780 TREE_THIS_VOLATILE (decl), context_die);
11781 }
11782
11783 if (DECL_ABSTRACT (decl))
11784 equate_decl_number_to_die (decl, type_die);
11785 }
11786
11787 /* Generate a type description DIE. */
11788
11789 static void
11790 gen_type_die (tree type, dw_die_ref context_die)
11791 {
11792 int need_pop;
11793
11794 if (type == NULL_TREE || type == error_mark_node)
11795 return;
11796
11797 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11798 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11799 {
11800 if (TREE_ASM_WRITTEN (type))
11801 return;
11802
11803 /* Prevent broken recursion; we can't hand off to the same type. */
11804 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11805 abort ();
11806
11807 TREE_ASM_WRITTEN (type) = 1;
11808 gen_decl_die (TYPE_NAME (type), context_die);
11809 return;
11810 }
11811
11812 /* We are going to output a DIE to represent the unqualified version
11813 of this type (i.e. without any const or volatile qualifiers) so
11814 get the main variant (i.e. the unqualified version) of this type
11815 now. (Vectors are special because the debugging info is in the
11816 cloned type itself). */
11817 if (TREE_CODE (type) != VECTOR_TYPE)
11818 type = type_main_variant (type);
11819
11820 if (TREE_ASM_WRITTEN (type))
11821 return;
11822
11823 switch (TREE_CODE (type))
11824 {
11825 case ERROR_MARK:
11826 break;
11827
11828 case POINTER_TYPE:
11829 case REFERENCE_TYPE:
11830 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11831 ensures that the gen_type_die recursion will terminate even if the
11832 type is recursive. Recursive types are possible in Ada. */
11833 /* ??? We could perhaps do this for all types before the switch
11834 statement. */
11835 TREE_ASM_WRITTEN (type) = 1;
11836
11837 /* For these types, all that is required is that we output a DIE (or a
11838 set of DIEs) to represent the "basis" type. */
11839 gen_type_die (TREE_TYPE (type), context_die);
11840 break;
11841
11842 case OFFSET_TYPE:
11843 /* This code is used for C++ pointer-to-data-member types.
11844 Output a description of the relevant class type. */
11845 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11846
11847 /* Output a description of the type of the object pointed to. */
11848 gen_type_die (TREE_TYPE (type), context_die);
11849
11850 /* Now output a DIE to represent this pointer-to-data-member type
11851 itself. */
11852 gen_ptr_to_mbr_type_die (type, context_die);
11853 break;
11854
11855 case SET_TYPE:
11856 gen_type_die (TYPE_DOMAIN (type), context_die);
11857 gen_set_type_die (type, context_die);
11858 break;
11859
11860 case FILE_TYPE:
11861 gen_type_die (TREE_TYPE (type), context_die);
11862 abort (); /* No way to represent these in Dwarf yet! */
11863 break;
11864
11865 case FUNCTION_TYPE:
11866 /* Force out return type (in case it wasn't forced out already). */
11867 gen_type_die (TREE_TYPE (type), context_die);
11868 gen_subroutine_type_die (type, context_die);
11869 break;
11870
11871 case METHOD_TYPE:
11872 /* Force out return type (in case it wasn't forced out already). */
11873 gen_type_die (TREE_TYPE (type), context_die);
11874 gen_subroutine_type_die (type, context_die);
11875 break;
11876
11877 case ARRAY_TYPE:
11878 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11879 {
11880 gen_type_die (TREE_TYPE (type), context_die);
11881 gen_string_type_die (type, context_die);
11882 }
11883 else
11884 gen_array_type_die (type, context_die);
11885 break;
11886
11887 case VECTOR_TYPE:
11888 gen_array_type_die (type, context_die);
11889 break;
11890
11891 case ENUMERAL_TYPE:
11892 case RECORD_TYPE:
11893 case UNION_TYPE:
11894 case QUAL_UNION_TYPE:
11895 /* If this is a nested type whose containing class hasn't been written
11896 out yet, writing it out will cover this one, too. This does not apply
11897 to instantiations of member class templates; they need to be added to
11898 the containing class as they are generated. FIXME: This hurts the
11899 idea of combining type decls from multiple TUs, since we can't predict
11900 what set of template instantiations we'll get. */
11901 if (TYPE_CONTEXT (type)
11902 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11903 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11904 {
11905 gen_type_die (TYPE_CONTEXT (type), context_die);
11906
11907 if (TREE_ASM_WRITTEN (type))
11908 return;
11909
11910 /* If that failed, attach ourselves to the stub. */
11911 push_decl_scope (TYPE_CONTEXT (type));
11912 context_die = lookup_type_die (TYPE_CONTEXT (type));
11913 need_pop = 1;
11914 }
11915 else
11916 {
11917 declare_in_namespace (type, context_die);
11918 need_pop = 0;
11919 }
11920
11921 if (TREE_CODE (type) == ENUMERAL_TYPE)
11922 gen_enumeration_type_die (type, context_die);
11923 else
11924 gen_struct_or_union_type_die (type, context_die);
11925
11926 if (need_pop)
11927 pop_decl_scope ();
11928
11929 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11930 it up if it is ever completed. gen_*_type_die will set it for us
11931 when appropriate. */
11932 return;
11933
11934 case VOID_TYPE:
11935 case INTEGER_TYPE:
11936 case REAL_TYPE:
11937 case COMPLEX_TYPE:
11938 case BOOLEAN_TYPE:
11939 case CHAR_TYPE:
11940 /* No DIEs needed for fundamental types. */
11941 break;
11942
11943 case LANG_TYPE:
11944 /* No Dwarf representation currently defined. */
11945 break;
11946
11947 default:
11948 abort ();
11949 }
11950
11951 TREE_ASM_WRITTEN (type) = 1;
11952 }
11953
11954 /* Generate a DIE for a tagged type instantiation. */
11955
11956 static void
11957 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11958 {
11959 if (type == NULL_TREE || type == error_mark_node)
11960 return;
11961
11962 /* We are going to output a DIE to represent the unqualified version of
11963 this type (i.e. without any const or volatile qualifiers) so make sure
11964 that we have the main variant (i.e. the unqualified version) of this
11965 type now. */
11966 if (type != type_main_variant (type))
11967 abort ();
11968
11969 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11970 an instance of an unresolved type. */
11971
11972 switch (TREE_CODE (type))
11973 {
11974 case ERROR_MARK:
11975 break;
11976
11977 case ENUMERAL_TYPE:
11978 gen_inlined_enumeration_type_die (type, context_die);
11979 break;
11980
11981 case RECORD_TYPE:
11982 gen_inlined_structure_type_die (type, context_die);
11983 break;
11984
11985 case UNION_TYPE:
11986 case QUAL_UNION_TYPE:
11987 gen_inlined_union_type_die (type, context_die);
11988 break;
11989
11990 default:
11991 abort ();
11992 }
11993 }
11994
11995 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11996 things which are local to the given block. */
11997
11998 static void
11999 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12000 {
12001 int must_output_die = 0;
12002 tree origin;
12003 tree decl;
12004 enum tree_code origin_code;
12005
12006 /* Ignore blocks never really used to make RTL. */
12007 if (stmt == NULL_TREE || !TREE_USED (stmt)
12008 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12009 return;
12010
12011 /* If the block is one fragment of a non-contiguous block, do not
12012 process the variables, since they will have been done by the
12013 origin block. Do process subblocks. */
12014 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12015 {
12016 tree sub;
12017
12018 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12019 gen_block_die (sub, context_die, depth + 1);
12020
12021 return;
12022 }
12023
12024 /* Determine the "ultimate origin" of this block. This block may be an
12025 inlined instance of an inlined instance of inline function, so we have
12026 to trace all of the way back through the origin chain to find out what
12027 sort of node actually served as the original seed for the creation of
12028 the current block. */
12029 origin = block_ultimate_origin (stmt);
12030 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12031
12032 /* Determine if we need to output any Dwarf DIEs at all to represent this
12033 block. */
12034 if (origin_code == FUNCTION_DECL)
12035 /* The outer scopes for inlinings *must* always be represented. We
12036 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12037 must_output_die = 1;
12038 else
12039 {
12040 /* In the case where the current block represents an inlining of the
12041 "body block" of an inline function, we must *NOT* output any DIE for
12042 this block because we have already output a DIE to represent the whole
12043 inlined function scope and the "body block" of any function doesn't
12044 really represent a different scope according to ANSI C rules. So we
12045 check here to make sure that this block does not represent a "body
12046 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12047 if (! is_body_block (origin ? origin : stmt))
12048 {
12049 /* Determine if this block directly contains any "significant"
12050 local declarations which we will need to output DIEs for. */
12051 if (debug_info_level > DINFO_LEVEL_TERSE)
12052 /* We are not in terse mode so *any* local declaration counts
12053 as being a "significant" one. */
12054 must_output_die = (BLOCK_VARS (stmt) != NULL);
12055 else
12056 /* We are in terse mode, so only local (nested) function
12057 definitions count as "significant" local declarations. */
12058 for (decl = BLOCK_VARS (stmt);
12059 decl != NULL; decl = TREE_CHAIN (decl))
12060 if (TREE_CODE (decl) == FUNCTION_DECL
12061 && DECL_INITIAL (decl))
12062 {
12063 must_output_die = 1;
12064 break;
12065 }
12066 }
12067 }
12068
12069 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12070 DIE for any block which contains no significant local declarations at
12071 all. Rather, in such cases we just call `decls_for_scope' so that any
12072 needed Dwarf info for any sub-blocks will get properly generated. Note
12073 that in terse mode, our definition of what constitutes a "significant"
12074 local declaration gets restricted to include only inlined function
12075 instances and local (nested) function definitions. */
12076 if (must_output_die)
12077 {
12078 if (origin_code == FUNCTION_DECL)
12079 gen_inlined_subroutine_die (stmt, context_die, depth);
12080 else
12081 gen_lexical_block_die (stmt, context_die, depth);
12082 }
12083 else
12084 decls_for_scope (stmt, context_die, depth);
12085 }
12086
12087 /* Generate all of the decls declared within a given scope and (recursively)
12088 all of its sub-blocks. */
12089
12090 static void
12091 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12092 {
12093 tree decl;
12094 tree subblocks;
12095
12096 /* Ignore blocks never really used to make RTL. */
12097 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12098 return;
12099
12100 /* Output the DIEs to represent all of the data objects and typedefs
12101 declared directly within this block but not within any nested
12102 sub-blocks. Also, nested function and tag DIEs have been
12103 generated with a parent of NULL; fix that up now. */
12104 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12105 {
12106 dw_die_ref die;
12107
12108 if (TREE_CODE (decl) == FUNCTION_DECL)
12109 die = lookup_decl_die (decl);
12110 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12111 die = lookup_type_die (TREE_TYPE (decl));
12112 else
12113 die = NULL;
12114
12115 if (die != NULL && die->die_parent == NULL)
12116 add_child_die (context_die, die);
12117 else
12118 gen_decl_die (decl, context_die);
12119 }
12120
12121 /* If we're at -g1, we're not interested in subblocks. */
12122 if (debug_info_level <= DINFO_LEVEL_TERSE)
12123 return;
12124
12125 /* Output the DIEs to represent all sub-blocks (and the items declared
12126 therein) of this block. */
12127 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12128 subblocks != NULL;
12129 subblocks = BLOCK_CHAIN (subblocks))
12130 gen_block_die (subblocks, context_die, depth + 1);
12131 }
12132
12133 /* Is this a typedef we can avoid emitting? */
12134
12135 static inline int
12136 is_redundant_typedef (tree decl)
12137 {
12138 if (TYPE_DECL_IS_STUB (decl))
12139 return 1;
12140
12141 if (DECL_ARTIFICIAL (decl)
12142 && DECL_CONTEXT (decl)
12143 && is_tagged_type (DECL_CONTEXT (decl))
12144 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12145 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12146 /* Also ignore the artificial member typedef for the class name. */
12147 return 1;
12148
12149 return 0;
12150 }
12151
12152 /* Returns the DIE for decl or aborts. */
12153
12154 static dw_die_ref
12155 force_decl_die (tree decl)
12156 {
12157 dw_die_ref decl_die;
12158 unsigned saved_external_flag;
12159 tree save_fn = NULL_TREE;
12160 decl_die = lookup_decl_die (decl);
12161 if (!decl_die)
12162 {
12163 dw_die_ref context_die;
12164 tree decl_context = DECL_CONTEXT (decl);
12165 if (decl_context)
12166 {
12167 /* Find die that represents this context. */
12168 if (TYPE_P (decl_context))
12169 context_die = force_type_die (decl_context);
12170 else
12171 context_die = force_decl_die (decl_context);
12172 }
12173 else
12174 context_die = comp_unit_die;
12175
12176 switch (TREE_CODE (decl))
12177 {
12178 case FUNCTION_DECL:
12179 /* Clear current_function_decl, so that gen_subprogram_die thinks
12180 that this is a declaration. At this point, we just want to force
12181 declaration die. */
12182 save_fn = current_function_decl;
12183 current_function_decl = NULL_TREE;
12184 gen_subprogram_die (decl, context_die);
12185 current_function_decl = save_fn;
12186 break;
12187
12188 case VAR_DECL:
12189 /* Set external flag to force declaration die. Restore it after
12190 gen_decl_die() call. */
12191 saved_external_flag = DECL_EXTERNAL (decl);
12192 DECL_EXTERNAL (decl) = 1;
12193 gen_decl_die (decl, context_die);
12194 DECL_EXTERNAL (decl) = saved_external_flag;
12195 break;
12196
12197 case NAMESPACE_DECL:
12198 dwarf2out_decl (decl);
12199 break;
12200
12201 default:
12202 abort ();
12203 }
12204
12205 /* See if we can find the die for this deci now.
12206 If not then abort. */
12207 if (!decl_die)
12208 decl_die = lookup_decl_die (decl);
12209 if (!decl_die)
12210 abort ();
12211 }
12212
12213 return decl_die;
12214 }
12215
12216 /* Returns the DIE for decl or aborts. */
12217
12218 static dw_die_ref
12219 force_type_die (tree type)
12220 {
12221 dw_die_ref type_die;
12222
12223 type_die = lookup_type_die (type);
12224 if (!type_die)
12225 {
12226 dw_die_ref context_die;
12227 if (TYPE_CONTEXT (type))
12228 if (TYPE_P (TYPE_CONTEXT (type)))
12229 context_die = force_type_die (TYPE_CONTEXT (type));
12230 else
12231 context_die = force_decl_die (TYPE_CONTEXT (type));
12232 else
12233 context_die = comp_unit_die;
12234
12235 gen_type_die (type, context_die);
12236 type_die = lookup_type_die (type);
12237 if (!type_die)
12238 abort();
12239 }
12240 return type_die;
12241 }
12242
12243 /* Force out any required namespaces to be able to output DECL,
12244 and return the new context_die for it, if it's changed. */
12245
12246 static dw_die_ref
12247 setup_namespace_context (tree thing, dw_die_ref context_die)
12248 {
12249 tree context = DECL_P (thing) ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing);
12250 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12251 /* Force out the namespace. */
12252 context_die = force_decl_die (context);
12253
12254 return context_die;
12255 }
12256
12257 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12258 type) within its namespace, if appropriate.
12259
12260 For compatibility with older debuggers, namespace DIEs only contain
12261 declarations; all definitions are emitted at CU scope. */
12262
12263 static void
12264 declare_in_namespace (tree thing, dw_die_ref context_die)
12265 {
12266 dw_die_ref ns_context;
12267
12268 if (debug_info_level <= DINFO_LEVEL_TERSE)
12269 return;
12270
12271 ns_context = setup_namespace_context (thing, context_die);
12272
12273 if (ns_context != context_die)
12274 {
12275 if (DECL_P (thing))
12276 gen_decl_die (thing, ns_context);
12277 else
12278 gen_type_die (thing, ns_context);
12279 }
12280 }
12281
12282 /* Generate a DIE for a namespace or namespace alias. */
12283
12284 static void
12285 gen_namespace_die (tree decl)
12286 {
12287 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12288
12289 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12290 they are an alias of. */
12291 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12292 {
12293 /* Output a real namespace. */
12294 dw_die_ref namespace_die
12295 = new_die (DW_TAG_namespace, context_die, decl);
12296 add_name_and_src_coords_attributes (namespace_die, decl);
12297 equate_decl_number_to_die (decl, namespace_die);
12298 }
12299 else
12300 {
12301 /* Output a namespace alias. */
12302
12303 /* Force out the namespace we are an alias of, if necessary. */
12304 dw_die_ref origin_die
12305 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12306
12307 /* Now create the namespace alias DIE. */
12308 dw_die_ref namespace_die
12309 = new_die (DW_TAG_imported_declaration, context_die, decl);
12310 add_name_and_src_coords_attributes (namespace_die, decl);
12311 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12312 equate_decl_number_to_die (decl, namespace_die);
12313 }
12314 }
12315
12316 /* Generate Dwarf debug information for a decl described by DECL. */
12317
12318 static void
12319 gen_decl_die (tree decl, dw_die_ref context_die)
12320 {
12321 tree origin;
12322
12323 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12324 return;
12325
12326 switch (TREE_CODE (decl))
12327 {
12328 case ERROR_MARK:
12329 break;
12330
12331 case CONST_DECL:
12332 /* The individual enumerators of an enum type get output when we output
12333 the Dwarf representation of the relevant enum type itself. */
12334 break;
12335
12336 case FUNCTION_DECL:
12337 /* Don't output any DIEs to represent mere function declarations,
12338 unless they are class members or explicit block externs. */
12339 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12340 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12341 break;
12342
12343 /* If we're emitting a clone, emit info for the abstract instance. */
12344 if (DECL_ORIGIN (decl) != decl)
12345 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12346
12347 /* If we're emitting an out-of-line copy of an inline function,
12348 emit info for the abstract instance and set up to refer to it. */
12349 else if (cgraph_function_possibly_inlined_p (decl)
12350 && ! DECL_ABSTRACT (decl)
12351 && ! class_or_namespace_scope_p (context_die)
12352 /* dwarf2out_abstract_function won't emit a die if this is just
12353 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12354 that case, because that works only if we have a die. */
12355 && DECL_INITIAL (decl) != NULL_TREE)
12356 {
12357 dwarf2out_abstract_function (decl);
12358 set_decl_origin_self (decl);
12359 }
12360
12361 /* Otherwise we're emitting the primary DIE for this decl. */
12362 else if (debug_info_level > DINFO_LEVEL_TERSE)
12363 {
12364 /* Before we describe the FUNCTION_DECL itself, make sure that we
12365 have described its return type. */
12366 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12367
12368 /* And its virtual context. */
12369 if (DECL_VINDEX (decl) != NULL_TREE)
12370 gen_type_die (DECL_CONTEXT (decl), context_die);
12371
12372 /* And its containing type. */
12373 origin = decl_class_context (decl);
12374 if (origin != NULL_TREE)
12375 gen_type_die_for_member (origin, decl, context_die);
12376
12377 /* And its containing namespace. */
12378 declare_in_namespace (decl, context_die);
12379 }
12380
12381 /* Now output a DIE to represent the function itself. */
12382 gen_subprogram_die (decl, context_die);
12383 break;
12384
12385 case TYPE_DECL:
12386 /* If we are in terse mode, don't generate any DIEs to represent any
12387 actual typedefs. */
12388 if (debug_info_level <= DINFO_LEVEL_TERSE)
12389 break;
12390
12391 /* In the special case of a TYPE_DECL node representing the declaration
12392 of some type tag, if the given TYPE_DECL is marked as having been
12393 instantiated from some other (original) TYPE_DECL node (e.g. one which
12394 was generated within the original definition of an inline function) we
12395 have to generate a special (abbreviated) DW_TAG_structure_type,
12396 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12397 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12398 {
12399 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12400 break;
12401 }
12402
12403 if (is_redundant_typedef (decl))
12404 gen_type_die (TREE_TYPE (decl), context_die);
12405 else
12406 /* Output a DIE to represent the typedef itself. */
12407 gen_typedef_die (decl, context_die);
12408 break;
12409
12410 case LABEL_DECL:
12411 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12412 gen_label_die (decl, context_die);
12413 break;
12414
12415 case VAR_DECL:
12416 /* If we are in terse mode, don't generate any DIEs to represent any
12417 variable declarations or definitions. */
12418 if (debug_info_level <= DINFO_LEVEL_TERSE)
12419 break;
12420
12421 /* Output any DIEs that are needed to specify the type of this data
12422 object. */
12423 gen_type_die (TREE_TYPE (decl), context_die);
12424
12425 /* And its containing type. */
12426 origin = decl_class_context (decl);
12427 if (origin != NULL_TREE)
12428 gen_type_die_for_member (origin, decl, context_die);
12429
12430 /* And its containing namespace. */
12431 declare_in_namespace (decl, context_die);
12432
12433 /* Now output the DIE to represent the data object itself. This gets
12434 complicated because of the possibility that the VAR_DECL really
12435 represents an inlined instance of a formal parameter for an inline
12436 function. */
12437 origin = decl_ultimate_origin (decl);
12438 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12439 gen_formal_parameter_die (decl, context_die);
12440 else
12441 gen_variable_die (decl, context_die);
12442 break;
12443
12444 case FIELD_DECL:
12445 /* Ignore the nameless fields that are used to skip bits but handle C++
12446 anonymous unions and structs. */
12447 if (DECL_NAME (decl) != NULL_TREE
12448 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12449 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12450 {
12451 gen_type_die (member_declared_type (decl), context_die);
12452 gen_field_die (decl, context_die);
12453 }
12454 break;
12455
12456 case PARM_DECL:
12457 gen_type_die (TREE_TYPE (decl), context_die);
12458 gen_formal_parameter_die (decl, context_die);
12459 break;
12460
12461 case NAMESPACE_DECL:
12462 gen_namespace_die (decl);
12463 break;
12464
12465 default:
12466 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12467 /* Probably some frontend-internal decl. Assume we don't care. */
12468 break;
12469 abort ();
12470 }
12471 }
12472 \f
12473 /* Add Ada "use" clause information for SGI Workshop debugger. */
12474
12475 void
12476 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12477 {
12478 unsigned int file_index;
12479
12480 if (filename != NULL)
12481 {
12482 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12483 tree context_list_decl
12484 = build_decl (LABEL_DECL, get_identifier (context_list),
12485 void_type_node);
12486
12487 TREE_PUBLIC (context_list_decl) = TRUE;
12488 add_name_attribute (unit_die, context_list);
12489 file_index = lookup_filename (filename);
12490 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12491 add_pubname (context_list_decl, unit_die);
12492 }
12493 }
12494
12495 /* Output debug information for global decl DECL. Called from toplev.c after
12496 compilation proper has finished. */
12497
12498 static void
12499 dwarf2out_global_decl (tree decl)
12500 {
12501 /* Output DWARF2 information for file-scope tentative data object
12502 declarations, file-scope (extern) function declarations (which had no
12503 corresponding body) and file-scope tagged type declarations and
12504 definitions which have not yet been forced out. */
12505 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12506 dwarf2out_decl (decl);
12507 }
12508
12509 /* Output debug information for imported module or decl. */
12510
12511 static void
12512 dwarf2out_imported_module_or_decl (tree decl, tree context)
12513 {
12514 dw_die_ref imported_die, at_import_die;
12515 dw_die_ref scope_die;
12516 unsigned file_index;
12517
12518 if (debug_info_level <= DINFO_LEVEL_TERSE)
12519 return;
12520
12521 if (!decl)
12522 abort ();
12523
12524 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12525 We need decl DIE for reference and scope die. First, get DIE for the decl
12526 itself. */
12527
12528 /* Get the scope die for decl context. Use comp_unit_die for global module
12529 or decl. If die is not found for non globals, force new die. */
12530 if (!context)
12531 scope_die = comp_unit_die;
12532 else if (TYPE_P (context))
12533 scope_die = force_type_die (context);
12534 else
12535 scope_die = force_decl_die (context);
12536
12537 /* For TYPE_DECL, lookup TREE_TYPE. */
12538 if (TREE_CODE (decl) == TYPE_DECL)
12539 at_import_die = force_type_die (TREE_TYPE (decl));
12540 else
12541 at_import_die = force_decl_die (decl);
12542
12543 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12544 if (TREE_CODE (decl) == NAMESPACE_DECL)
12545 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12546 else
12547 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12548
12549 file_index = lookup_filename (input_filename);
12550 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12551 add_AT_unsigned (imported_die, DW_AT_decl_line, input_line);
12552 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12553 }
12554
12555 /* Write the debugging output for DECL. */
12556
12557 void
12558 dwarf2out_decl (tree decl)
12559 {
12560 dw_die_ref context_die = comp_unit_die;
12561
12562 switch (TREE_CODE (decl))
12563 {
12564 case ERROR_MARK:
12565 return;
12566
12567 case FUNCTION_DECL:
12568 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12569 builtin function. Explicit programmer-supplied declarations of
12570 these same functions should NOT be ignored however. */
12571 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12572 return;
12573
12574 /* What we would really like to do here is to filter out all mere
12575 file-scope declarations of file-scope functions which are never
12576 referenced later within this translation unit (and keep all of ones
12577 that *are* referenced later on) but we aren't clairvoyant, so we have
12578 no idea which functions will be referenced in the future (i.e. later
12579 on within the current translation unit). So here we just ignore all
12580 file-scope function declarations which are not also definitions. If
12581 and when the debugger needs to know something about these functions,
12582 it will have to hunt around and find the DWARF information associated
12583 with the definition of the function.
12584
12585 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12586 nodes represent definitions and which ones represent mere
12587 declarations. We have to check DECL_INITIAL instead. That's because
12588 the C front-end supports some weird semantics for "extern inline"
12589 function definitions. These can get inlined within the current
12590 translation unit (an thus, we need to generate Dwarf info for their
12591 abstract instances so that the Dwarf info for the concrete inlined
12592 instances can have something to refer to) but the compiler never
12593 generates any out-of-lines instances of such things (despite the fact
12594 that they *are* definitions).
12595
12596 The important point is that the C front-end marks these "extern
12597 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12598 them anyway. Note that the C++ front-end also plays some similar games
12599 for inline function definitions appearing within include files which
12600 also contain `#pragma interface' pragmas. */
12601 if (DECL_INITIAL (decl) == NULL_TREE)
12602 return;
12603
12604 /* If we're a nested function, initially use a parent of NULL; if we're
12605 a plain function, this will be fixed up in decls_for_scope. If
12606 we're a method, it will be ignored, since we already have a DIE. */
12607 if (decl_function_context (decl)
12608 /* But if we're in terse mode, we don't care about scope. */
12609 && debug_info_level > DINFO_LEVEL_TERSE)
12610 context_die = NULL;
12611 break;
12612
12613 case VAR_DECL:
12614 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12615 declaration and if the declaration was never even referenced from
12616 within this entire compilation unit. We suppress these DIEs in
12617 order to save space in the .debug section (by eliminating entries
12618 which are probably useless). Note that we must not suppress
12619 block-local extern declarations (whether used or not) because that
12620 would screw-up the debugger's name lookup mechanism and cause it to
12621 miss things which really ought to be in scope at a given point. */
12622 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12623 return;
12624
12625 /* If we are in terse mode, don't generate any DIEs to represent any
12626 variable declarations or definitions. */
12627 if (debug_info_level <= DINFO_LEVEL_TERSE)
12628 return;
12629 break;
12630
12631 case NAMESPACE_DECL:
12632 if (debug_info_level <= DINFO_LEVEL_TERSE)
12633 return;
12634 if (lookup_decl_die (decl) != NULL)
12635 return;
12636 break;
12637
12638 case TYPE_DECL:
12639 /* Don't emit stubs for types unless they are needed by other DIEs. */
12640 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12641 return;
12642
12643 /* Don't bother trying to generate any DIEs to represent any of the
12644 normal built-in types for the language we are compiling. */
12645 if (DECL_SOURCE_LINE (decl) == 0)
12646 {
12647 /* OK, we need to generate one for `bool' so GDB knows what type
12648 comparisons have. */
12649 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12650 == DW_LANG_C_plus_plus)
12651 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12652 && ! DECL_IGNORED_P (decl))
12653 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12654
12655 return;
12656 }
12657
12658 /* If we are in terse mode, don't generate any DIEs for types. */
12659 if (debug_info_level <= DINFO_LEVEL_TERSE)
12660 return;
12661
12662 /* If we're a function-scope tag, initially use a parent of NULL;
12663 this will be fixed up in decls_for_scope. */
12664 if (decl_function_context (decl))
12665 context_die = NULL;
12666
12667 break;
12668
12669 default:
12670 return;
12671 }
12672
12673 gen_decl_die (decl, context_die);
12674 }
12675
12676 /* Output a marker (i.e. a label) for the beginning of the generated code for
12677 a lexical block. */
12678
12679 static void
12680 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12681 unsigned int blocknum)
12682 {
12683 function_section (current_function_decl);
12684 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12685 }
12686
12687 /* Output a marker (i.e. a label) for the end of the generated code for a
12688 lexical block. */
12689
12690 static void
12691 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12692 {
12693 function_section (current_function_decl);
12694 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12695 }
12696
12697 /* Returns nonzero if it is appropriate not to emit any debugging
12698 information for BLOCK, because it doesn't contain any instructions.
12699
12700 Don't allow this for blocks with nested functions or local classes
12701 as we would end up with orphans, and in the presence of scheduling
12702 we may end up calling them anyway. */
12703
12704 static bool
12705 dwarf2out_ignore_block (tree block)
12706 {
12707 tree decl;
12708
12709 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12710 if (TREE_CODE (decl) == FUNCTION_DECL
12711 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12712 return 0;
12713
12714 return 1;
12715 }
12716
12717 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12718 dwarf2out.c) and return its "index". The index of each (known) filename is
12719 just a unique number which is associated with only that one filename. We
12720 need such numbers for the sake of generating labels (in the .debug_sfnames
12721 section) and references to those files numbers (in the .debug_srcinfo
12722 and.debug_macinfo sections). If the filename given as an argument is not
12723 found in our current list, add it to the list and assign it the next
12724 available unique index number. In order to speed up searches, we remember
12725 the index of the filename was looked up last. This handles the majority of
12726 all searches. */
12727
12728 static unsigned
12729 lookup_filename (const char *file_name)
12730 {
12731 size_t i, n;
12732 char *save_file_name;
12733
12734 /* Check to see if the file name that was searched on the previous
12735 call matches this file name. If so, return the index. */
12736 if (file_table_last_lookup_index != 0)
12737 {
12738 const char *last
12739 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12740 if (strcmp (file_name, last) == 0)
12741 return file_table_last_lookup_index;
12742 }
12743
12744 /* Didn't match the previous lookup, search the table */
12745 n = VARRAY_ACTIVE_SIZE (file_table);
12746 for (i = 1; i < n; i++)
12747 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12748 {
12749 file_table_last_lookup_index = i;
12750 return i;
12751 }
12752
12753 /* Add the new entry to the end of the filename table. */
12754 file_table_last_lookup_index = n;
12755 save_file_name = (char *) ggc_strdup (file_name);
12756 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12757 VARRAY_PUSH_UINT (file_table_emitted, 0);
12758
12759 return i;
12760 }
12761
12762 static int
12763 maybe_emit_file (int fileno)
12764 {
12765 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12766 {
12767 if (!VARRAY_UINT (file_table_emitted, fileno))
12768 {
12769 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12770 fprintf (asm_out_file, "\t.file %u ",
12771 VARRAY_UINT (file_table_emitted, fileno));
12772 output_quoted_string (asm_out_file,
12773 VARRAY_CHAR_PTR (file_table, fileno));
12774 fputc ('\n', asm_out_file);
12775 }
12776 return VARRAY_UINT (file_table_emitted, fileno);
12777 }
12778 else
12779 return fileno;
12780 }
12781
12782 static void
12783 init_file_table (void)
12784 {
12785 /* Allocate the initial hunk of the file_table. */
12786 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12787 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12788
12789 /* Skip the first entry - file numbers begin at 1. */
12790 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12791 VARRAY_PUSH_UINT (file_table_emitted, 0);
12792 file_table_last_lookup_index = 0;
12793 }
12794
12795 /* Called by the final INSN scan whenever we see a var location. We
12796 use it to drop labels in the right places, and throw the location in
12797 our lookup table. */
12798
12799 static void
12800 dwarf2out_var_location (rtx loc_note)
12801 {
12802 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
12803 struct var_loc_node *newloc;
12804 rtx prev_insn;
12805 static rtx last_insn;
12806 static const char *last_label;
12807
12808 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
12809 return;
12810 prev_insn = PREV_INSN (loc_note);
12811
12812 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
12813 /* If the insn we processed last time is the previous insn
12814 and it is also a var location note, use the label we emitted
12815 last time. */
12816 if (last_insn != NULL_RTX
12817 && last_insn == prev_insn
12818 && GET_CODE (prev_insn) == NOTE
12819 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
12820 {
12821 newloc->label = last_label;
12822 }
12823 else
12824 {
12825 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
12826 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
12827 loclabel_num++;
12828 newloc->label = ggc_strdup (loclabel);
12829 }
12830 newloc->var_loc_note = loc_note;
12831 newloc->next = NULL;
12832
12833 last_insn = loc_note;
12834 last_label = newloc->label;
12835
12836 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note), newloc);
12837 }
12838
12839 /* We need to reset the locations at the beginning of each
12840 function. We can't do this in the end_function hook, because the
12841 declarations that use the locations won't have been outputted when
12842 that hook is called. */
12843
12844 static void
12845 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
12846 {
12847 htab_empty (decl_loc_table);
12848 }
12849
12850 /* Output a label to mark the beginning of a source code line entry
12851 and record information relating to this source line, in
12852 'line_info_table' for later output of the .debug_line section. */
12853
12854 static void
12855 dwarf2out_source_line (unsigned int line, const char *filename)
12856 {
12857 if (debug_info_level >= DINFO_LEVEL_NORMAL
12858 && line != 0)
12859 {
12860 function_section (current_function_decl);
12861
12862 /* If requested, emit something human-readable. */
12863 if (flag_debug_asm)
12864 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12865 filename, line);
12866
12867 if (DWARF2_ASM_LINE_DEBUG_INFO)
12868 {
12869 unsigned file_num = lookup_filename (filename);
12870
12871 file_num = maybe_emit_file (file_num);
12872
12873 /* Emit the .loc directive understood by GNU as. */
12874 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12875
12876 /* Indicate that line number info exists. */
12877 line_info_table_in_use++;
12878
12879 /* Indicate that multiple line number tables exist. */
12880 if (DECL_SECTION_NAME (current_function_decl))
12881 separate_line_info_table_in_use++;
12882 }
12883 else if (DECL_SECTION_NAME (current_function_decl))
12884 {
12885 dw_separate_line_info_ref line_info;
12886 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12887 separate_line_info_table_in_use);
12888
12889 /* expand the line info table if necessary */
12890 if (separate_line_info_table_in_use
12891 == separate_line_info_table_allocated)
12892 {
12893 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12894 separate_line_info_table
12895 = ggc_realloc (separate_line_info_table,
12896 separate_line_info_table_allocated
12897 * sizeof (dw_separate_line_info_entry));
12898 memset (separate_line_info_table
12899 + separate_line_info_table_in_use,
12900 0,
12901 (LINE_INFO_TABLE_INCREMENT
12902 * sizeof (dw_separate_line_info_entry)));
12903 }
12904
12905 /* Add the new entry at the end of the line_info_table. */
12906 line_info
12907 = &separate_line_info_table[separate_line_info_table_in_use++];
12908 line_info->dw_file_num = lookup_filename (filename);
12909 line_info->dw_line_num = line;
12910 line_info->function = current_function_funcdef_no;
12911 }
12912 else
12913 {
12914 dw_line_info_ref line_info;
12915
12916 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12917 line_info_table_in_use);
12918
12919 /* Expand the line info table if necessary. */
12920 if (line_info_table_in_use == line_info_table_allocated)
12921 {
12922 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12923 line_info_table
12924 = ggc_realloc (line_info_table,
12925 (line_info_table_allocated
12926 * sizeof (dw_line_info_entry)));
12927 memset (line_info_table + line_info_table_in_use, 0,
12928 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12929 }
12930
12931 /* Add the new entry at the end of the line_info_table. */
12932 line_info = &line_info_table[line_info_table_in_use++];
12933 line_info->dw_file_num = lookup_filename (filename);
12934 line_info->dw_line_num = line;
12935 }
12936 }
12937 }
12938
12939 /* Record the beginning of a new source file. */
12940
12941 static void
12942 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12943 {
12944 if (flag_eliminate_dwarf2_dups)
12945 {
12946 /* Record the beginning of the file for break_out_includes. */
12947 dw_die_ref bincl_die;
12948
12949 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12950 add_AT_string (bincl_die, DW_AT_name, filename);
12951 }
12952
12953 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12954 {
12955 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12956 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12957 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12958 lineno);
12959 maybe_emit_file (lookup_filename (filename));
12960 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12961 "Filename we just started");
12962 }
12963 }
12964
12965 /* Record the end of a source file. */
12966
12967 static void
12968 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12969 {
12970 if (flag_eliminate_dwarf2_dups)
12971 /* Record the end of the file for break_out_includes. */
12972 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12973
12974 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12975 {
12976 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12977 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12978 }
12979 }
12980
12981 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12982 the tail part of the directive line, i.e. the part which is past the
12983 initial whitespace, #, whitespace, directive-name, whitespace part. */
12984
12985 static void
12986 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12987 const char *buffer ATTRIBUTE_UNUSED)
12988 {
12989 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12990 {
12991 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12992 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12993 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12994 dw2_asm_output_nstring (buffer, -1, "The macro");
12995 }
12996 }
12997
12998 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12999 the tail part of the directive line, i.e. the part which is past the
13000 initial whitespace, #, whitespace, directive-name, whitespace part. */
13001
13002 static void
13003 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13004 const char *buffer ATTRIBUTE_UNUSED)
13005 {
13006 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13007 {
13008 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13009 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13010 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13011 dw2_asm_output_nstring (buffer, -1, "The macro");
13012 }
13013 }
13014
13015 /* Set up for Dwarf output at the start of compilation. */
13016
13017 static void
13018 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13019 {
13020 init_file_table ();
13021
13022 /* Allocate the decl_die_table. */
13023 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13024 decl_die_table_eq, NULL);
13025
13026 /* Allocate the decl_loc_table. */
13027 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13028 decl_loc_table_eq, NULL);
13029
13030 /* Allocate the initial hunk of the decl_scope_table. */
13031 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13032
13033 /* Allocate the initial hunk of the abbrev_die_table. */
13034 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13035 * sizeof (dw_die_ref));
13036 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13037 /* Zero-th entry is allocated, but unused */
13038 abbrev_die_table_in_use = 1;
13039
13040 /* Allocate the initial hunk of the line_info_table. */
13041 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13042 * sizeof (dw_line_info_entry));
13043 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13044
13045 /* Zero-th entry is allocated, but unused */
13046 line_info_table_in_use = 1;
13047
13048 /* Generate the initial DIE for the .debug section. Note that the (string)
13049 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13050 will (typically) be a relative pathname and that this pathname should be
13051 taken as being relative to the directory from which the compiler was
13052 invoked when the given (base) source file was compiled. We will fill
13053 in this value in dwarf2out_finish. */
13054 comp_unit_die = gen_compile_unit_die (NULL);
13055
13056 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13057
13058 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13059
13060 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13061 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13062 DEBUG_ABBREV_SECTION_LABEL, 0);
13063 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13064 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13065 else
13066 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
13067
13068 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13069 DEBUG_INFO_SECTION_LABEL, 0);
13070 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13071 DEBUG_LINE_SECTION_LABEL, 0);
13072 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13073 DEBUG_RANGES_SECTION_LABEL, 0);
13074 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13075 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13076 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13077 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13078 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13079 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13080
13081 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13082 {
13083 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13084 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13085 DEBUG_MACINFO_SECTION_LABEL, 0);
13086 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13087 }
13088
13089 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
13090 {
13091 text_section ();
13092 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13093 }
13094 }
13095
13096 /* A helper function for dwarf2out_finish called through
13097 ht_forall. Emit one queued .debug_str string. */
13098
13099 static int
13100 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13101 {
13102 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13103
13104 if (node->form == DW_FORM_strp)
13105 {
13106 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13107 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13108 assemble_string (node->str, strlen (node->str) + 1);
13109 }
13110
13111 return 1;
13112 }
13113
13114
13115
13116 /* Clear the marks for a die and its children.
13117 Be cool if the mark isn't set. */
13118
13119 static void
13120 prune_unmark_dies (dw_die_ref die)
13121 {
13122 dw_die_ref c;
13123 die->die_mark = 0;
13124 for (c = die->die_child; c; c = c->die_sib)
13125 prune_unmark_dies (c);
13126 }
13127
13128
13129 /* Given DIE that we're marking as used, find any other dies
13130 it references as attributes and mark them as used. */
13131
13132 static void
13133 prune_unused_types_walk_attribs (dw_die_ref die)
13134 {
13135 dw_attr_ref a;
13136
13137 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13138 {
13139 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13140 {
13141 /* A reference to another DIE.
13142 Make sure that it will get emitted. */
13143 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13144 }
13145 else if (a->dw_attr == DW_AT_decl_file)
13146 {
13147 /* A reference to a file. Make sure the file name is emitted. */
13148 a->dw_attr_val.v.val_unsigned =
13149 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13150 }
13151 }
13152 }
13153
13154
13155 /* Mark DIE as being used. If DOKIDS is true, then walk down
13156 to DIE's children. */
13157
13158 static void
13159 prune_unused_types_mark (dw_die_ref die, int dokids)
13160 {
13161 dw_die_ref c;
13162
13163 if (die->die_mark == 0)
13164 {
13165 /* We haven't done this node yet. Mark it as used. */
13166 die->die_mark = 1;
13167
13168 /* We also have to mark its parents as used.
13169 (But we don't want to mark our parents' kids due to this.) */
13170 if (die->die_parent)
13171 prune_unused_types_mark (die->die_parent, 0);
13172
13173 /* Mark any referenced nodes. */
13174 prune_unused_types_walk_attribs (die);
13175
13176 /* If this node is a specification,
13177 also mark the definition, if it exists. */
13178 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13179 prune_unused_types_mark (die->die_definition, 1);
13180 }
13181
13182 if (dokids && die->die_mark != 2)
13183 {
13184 /* We need to walk the children, but haven't done so yet.
13185 Remember that we've walked the kids. */
13186 die->die_mark = 2;
13187
13188 /* Walk them. */
13189 for (c = die->die_child; c; c = c->die_sib)
13190 {
13191 /* If this is an array type, we need to make sure our
13192 kids get marked, even if they're types. */
13193 if (die->die_tag == DW_TAG_array_type)
13194 prune_unused_types_mark (c, 1);
13195 else
13196 prune_unused_types_walk (c);
13197 }
13198 }
13199 }
13200
13201
13202 /* Walk the tree DIE and mark types that we actually use. */
13203
13204 static void
13205 prune_unused_types_walk (dw_die_ref die)
13206 {
13207 dw_die_ref c;
13208
13209 /* Don't do anything if this node is already marked. */
13210 if (die->die_mark)
13211 return;
13212
13213 switch (die->die_tag) {
13214 case DW_TAG_const_type:
13215 case DW_TAG_packed_type:
13216 case DW_TAG_pointer_type:
13217 case DW_TAG_reference_type:
13218 case DW_TAG_volatile_type:
13219 case DW_TAG_typedef:
13220 case DW_TAG_array_type:
13221 case DW_TAG_structure_type:
13222 case DW_TAG_union_type:
13223 case DW_TAG_class_type:
13224 case DW_TAG_friend:
13225 case DW_TAG_variant_part:
13226 case DW_TAG_enumeration_type:
13227 case DW_TAG_subroutine_type:
13228 case DW_TAG_string_type:
13229 case DW_TAG_set_type:
13230 case DW_TAG_subrange_type:
13231 case DW_TAG_ptr_to_member_type:
13232 case DW_TAG_file_type:
13233 /* It's a type node --- don't mark it. */
13234 return;
13235
13236 default:
13237 /* Mark everything else. */
13238 break;
13239 }
13240
13241 die->die_mark = 1;
13242
13243 /* Now, mark any dies referenced from here. */
13244 prune_unused_types_walk_attribs (die);
13245
13246 /* Mark children. */
13247 for (c = die->die_child; c; c = c->die_sib)
13248 prune_unused_types_walk (c);
13249 }
13250
13251
13252 /* Remove from the tree DIE any dies that aren't marked. */
13253
13254 static void
13255 prune_unused_types_prune (dw_die_ref die)
13256 {
13257 dw_die_ref c, p, n;
13258 if (!die->die_mark)
13259 abort();
13260
13261 p = NULL;
13262 for (c = die->die_child; c; c = n)
13263 {
13264 n = c->die_sib;
13265 if (c->die_mark)
13266 {
13267 prune_unused_types_prune (c);
13268 p = c;
13269 }
13270 else
13271 {
13272 if (p)
13273 p->die_sib = n;
13274 else
13275 die->die_child = n;
13276 free_die (c);
13277 }
13278 }
13279 }
13280
13281
13282 /* Remove dies representing declarations that we never use. */
13283
13284 static void
13285 prune_unused_types (void)
13286 {
13287 unsigned int i;
13288 limbo_die_node *node;
13289
13290 /* Clear all the marks. */
13291 prune_unmark_dies (comp_unit_die);
13292 for (node = limbo_die_list; node; node = node->next)
13293 prune_unmark_dies (node->die);
13294
13295 /* Set the mark on nodes that are actually used. */
13296 prune_unused_types_walk (comp_unit_die);
13297 for (node = limbo_die_list; node; node = node->next)
13298 prune_unused_types_walk (node->die);
13299
13300 /* Also set the mark on nodes referenced from the
13301 pubname_table or arange_table. */
13302 for (i = 0; i < pubname_table_in_use; i++)
13303 prune_unused_types_mark (pubname_table[i].die, 1);
13304 for (i = 0; i < arange_table_in_use; i++)
13305 prune_unused_types_mark (arange_table[i], 1);
13306
13307 /* Get rid of nodes that aren't marked. */
13308 prune_unused_types_prune (comp_unit_die);
13309 for (node = limbo_die_list; node; node = node->next)
13310 prune_unused_types_prune (node->die);
13311
13312 /* Leave the marks clear. */
13313 prune_unmark_dies (comp_unit_die);
13314 for (node = limbo_die_list; node; node = node->next)
13315 prune_unmark_dies (node->die);
13316 }
13317
13318 /* Output stuff that dwarf requires at the end of every file,
13319 and generate the DWARF-2 debugging info. */
13320
13321 static void
13322 dwarf2out_finish (const char *filename)
13323 {
13324 limbo_die_node *node, *next_node;
13325 dw_die_ref die = 0;
13326
13327 /* Add the name for the main input file now. We delayed this from
13328 dwarf2out_init to avoid complications with PCH. */
13329 add_name_attribute (comp_unit_die, filename);
13330 if (filename[0] != DIR_SEPARATOR)
13331 add_comp_dir_attribute (comp_unit_die);
13332 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13333 {
13334 size_t i;
13335 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13336 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13337 /* Don't add cwd for <built-in>. */
13338 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13339 {
13340 add_comp_dir_attribute (comp_unit_die);
13341 break;
13342 }
13343 }
13344
13345 /* Traverse the limbo die list, and add parent/child links. The only
13346 dies without parents that should be here are concrete instances of
13347 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13348 For concrete instances, we can get the parent die from the abstract
13349 instance. */
13350 for (node = limbo_die_list; node; node = next_node)
13351 {
13352 next_node = node->next;
13353 die = node->die;
13354
13355 if (die->die_parent == NULL)
13356 {
13357 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13358 tree context;
13359
13360 if (origin)
13361 add_child_die (origin->die_parent, die);
13362 else if (die == comp_unit_die)
13363 ;
13364 /* If this was an expression for a bound involved in a function
13365 return type, it may be a SAVE_EXPR for which we weren't able
13366 to find a DIE previously. So try now. */
13367 else if (node->created_for
13368 && TREE_CODE (node->created_for) == SAVE_EXPR
13369 && 0 != (origin = (lookup_decl_die
13370 (SAVE_EXPR_CONTEXT
13371 (node->created_for)))))
13372 add_child_die (origin, die);
13373 else if (errorcount > 0 || sorrycount > 0)
13374 /* It's OK to be confused by errors in the input. */
13375 add_child_die (comp_unit_die, die);
13376 else if (node->created_for
13377 && ((DECL_P (node->created_for)
13378 && (context = DECL_CONTEXT (node->created_for)))
13379 || (TYPE_P (node->created_for)
13380 && (context = TYPE_CONTEXT (node->created_for))))
13381 && TREE_CODE (context) == FUNCTION_DECL)
13382 {
13383 /* In certain situations, the lexical block containing a
13384 nested function can be optimized away, which results
13385 in the nested function die being orphaned. Likewise
13386 with the return type of that nested function. Force
13387 this to be a child of the containing function. */
13388 origin = lookup_decl_die (context);
13389 if (! origin)
13390 abort ();
13391 add_child_die (origin, die);
13392 }
13393 else
13394 abort ();
13395 }
13396 }
13397
13398 limbo_die_list = NULL;
13399
13400 /* Walk through the list of incomplete types again, trying once more to
13401 emit full debugging info for them. */
13402 retry_incomplete_types ();
13403
13404 /* We need to reverse all the dies before break_out_includes, or
13405 we'll see the end of an include file before the beginning. */
13406 reverse_all_dies (comp_unit_die);
13407
13408 if (flag_eliminate_unused_debug_types)
13409 prune_unused_types ();
13410
13411 /* Generate separate CUs for each of the include files we've seen.
13412 They will go into limbo_die_list. */
13413 if (flag_eliminate_dwarf2_dups)
13414 break_out_includes (comp_unit_die);
13415
13416 /* Traverse the DIE's and add add sibling attributes to those DIE's
13417 that have children. */
13418 add_sibling_attributes (comp_unit_die);
13419 for (node = limbo_die_list; node; node = node->next)
13420 add_sibling_attributes (node->die);
13421
13422 /* Output a terminator label for the .text section. */
13423 text_section ();
13424 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13425
13426 /* Output the source line correspondence table. We must do this
13427 even if there is no line information. Otherwise, on an empty
13428 translation unit, we will generate a present, but empty,
13429 .debug_info section. IRIX 6.5 `nm' will then complain when
13430 examining the file. */
13431 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13432 {
13433 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13434 output_line_info ();
13435 }
13436
13437 /* Output location list section if necessary. */
13438 if (have_location_lists)
13439 {
13440 /* Output the location lists info. */
13441 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13442 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13443 DEBUG_LOC_SECTION_LABEL, 0);
13444 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13445 output_location_lists (die);
13446 have_location_lists = 0;
13447 }
13448
13449 /* We can only use the low/high_pc attributes if all of the code was
13450 in .text. */
13451 if (separate_line_info_table_in_use == 0)
13452 {
13453 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13454 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13455 }
13456
13457 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13458 "base address". Use zero so that these addresses become absolute. */
13459 else if (have_location_lists || ranges_table_in_use)
13460 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13461
13462 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13463 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13464 debug_line_section_label);
13465
13466 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13467 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13468
13469 /* Output all of the compilation units. We put the main one last so that
13470 the offsets are available to output_pubnames. */
13471 for (node = limbo_die_list; node; node = node->next)
13472 output_comp_unit (node->die, 0);
13473
13474 output_comp_unit (comp_unit_die, 0);
13475
13476 /* Output the abbreviation table. */
13477 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13478 output_abbrev_section ();
13479
13480 /* Output public names table if necessary. */
13481 if (pubname_table_in_use)
13482 {
13483 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13484 output_pubnames ();
13485 }
13486
13487 /* Output the address range information. We only put functions in the arange
13488 table, so don't write it out if we don't have any. */
13489 if (fde_table_in_use)
13490 {
13491 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13492 output_aranges ();
13493 }
13494
13495 /* Output ranges section if necessary. */
13496 if (ranges_table_in_use)
13497 {
13498 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13499 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13500 output_ranges ();
13501 }
13502
13503 /* Have to end the primary source file. */
13504 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13505 {
13506 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13507 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13508 dw2_asm_output_data (1, 0, "End compilation unit");
13509 }
13510
13511 /* If we emitted any DW_FORM_strp form attribute, output the string
13512 table too. */
13513 if (debug_str_hash)
13514 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13515 }
13516 #else
13517
13518 /* This should never be used, but its address is needed for comparisons. */
13519 const struct gcc_debug_hooks dwarf2_debug_hooks;
13520
13521 #endif /* DWARF2_DEBUGGING_INFO */
13522
13523 #include "gt-dwarf2out.h"