]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dwarfout.c
Warning Fixes:
[thirdparty/gcc.git] / gcc / dwarfout.c
1 /* Output Dwarf format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997 Free Software Foundation, Inc.
3 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23
24 #ifdef DWARF_DEBUGGING_INFO
25 #include "system.h"
26 #include "dwarf.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "defaults.h"
35 #include "dwarfout.h"
36 #include "toplev.h"
37
38 #if defined(DWARF_TIMESTAMPS)
39 #if !defined(POSIX)
40 extern time_t time PROTO ((time_t *)); /* FIXME: use NEED_DECLARATION_TIME */
41 #endif /* !defined(POSIX) */
42 #endif /* defined(DWARF_TIMESTAMPS) */
43
44 /* We cannot use <assert.h> in GCC source, since that would include
45 GCC's assert.h, which may not be compatible with the host compiler. */
46 #undef assert
47 #ifdef NDEBUG
48 # define assert(e)
49 #else
50 # define assert(e) do { if (! (e)) abort (); } while (0)
51 #endif
52
53 extern char *getpwd ();
54
55 /* IMPORTANT NOTE: Please see the file README.DWARF for important details
56 regarding the GNU implementation of Dwarf. */
57
58 /* NOTE: In the comments in this file, many references are made to
59 so called "Debugging Information Entries". For the sake of brevity,
60 this term is abbreviated to `DIE' throughout the remainder of this
61 file. */
62
63 /* Note that the implementation of C++ support herein is (as yet) unfinished.
64 If you want to try to complete it, more power to you. */
65
66 #if !defined(__GNUC__) || (NDEBUG != 1)
67 #define inline
68 #endif
69
70 /* How to start an assembler comment. */
71 #ifndef ASM_COMMENT_START
72 #define ASM_COMMENT_START ";#"
73 #endif
74
75 /* How to print out a register name. */
76 #ifndef PRINT_REG
77 #define PRINT_REG(RTX, CODE, FILE) \
78 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
79 #endif
80
81 /* Define a macro which returns non-zero for any tagged type which is
82 used (directly or indirectly) in the specification of either some
83 function's return type or some formal parameter of some function.
84 We use this macro when we are operating in "terse" mode to help us
85 know what tagged types have to be represented in Dwarf (even in
86 terse mode) and which ones don't.
87
88 A flag bit with this meaning really should be a part of the normal
89 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
90 for these nodes. For now, we have to just fake it. It it safe for
91 us to simply return zero for all complete tagged types (which will
92 get forced out anyway if they were used in the specification of some
93 formal or return type) and non-zero for all incomplete tagged types.
94 */
95
96 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
97
98 /* Define a macro which returns non-zero for a TYPE_DECL which was
99 implicitly generated for a tagged type.
100
101 Note that unlike the gcc front end (which generates a NULL named
102 TYPE_DECL node for each complete tagged type, each array type, and
103 each function type node created) the g++ front end generates a
104 _named_ TYPE_DECL node for each tagged type node created.
105 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
106 generate a DW_TAG_typedef DIE for them. */
107 #define TYPE_DECL_IS_STUB(decl) \
108 (DECL_NAME (decl) == NULL \
109 || (DECL_ARTIFICIAL (decl) \
110 && is_tagged_type (TREE_TYPE (decl)) \
111 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
112
113 extern int flag_traditional;
114 extern char *version_string;
115 extern char *language_string;
116
117 /* Maximum size (in bytes) of an artificially generated label. */
118
119 #define MAX_ARTIFICIAL_LABEL_BYTES 30
120 \f
121 /* Make sure we know the sizes of the various types dwarf can describe.
122 These are only defaults. If the sizes are different for your target,
123 you should override these values by defining the appropriate symbols
124 in your tm.h file. */
125
126 #ifndef CHAR_TYPE_SIZE
127 #define CHAR_TYPE_SIZE BITS_PER_UNIT
128 #endif
129
130 #ifndef SHORT_TYPE_SIZE
131 #define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
132 #endif
133
134 #ifndef INT_TYPE_SIZE
135 #define INT_TYPE_SIZE BITS_PER_WORD
136 #endif
137
138 #ifndef LONG_TYPE_SIZE
139 #define LONG_TYPE_SIZE BITS_PER_WORD
140 #endif
141
142 #ifndef LONG_LONG_TYPE_SIZE
143 #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
144 #endif
145
146 #ifndef WCHAR_TYPE_SIZE
147 #define WCHAR_TYPE_SIZE INT_TYPE_SIZE
148 #endif
149
150 #ifndef WCHAR_UNSIGNED
151 #define WCHAR_UNSIGNED 0
152 #endif
153
154 #ifndef FLOAT_TYPE_SIZE
155 #define FLOAT_TYPE_SIZE BITS_PER_WORD
156 #endif
157
158 #ifndef DOUBLE_TYPE_SIZE
159 #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
160 #endif
161
162 #ifndef LONG_DOUBLE_TYPE_SIZE
163 #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
164 #endif
165 \f
166 /* Structure to keep track of source filenames. */
167
168 struct filename_entry {
169 unsigned number;
170 char * name;
171 };
172
173 typedef struct filename_entry filename_entry;
174
175 /* Pointer to an array of elements, each one having the structure above. */
176
177 static filename_entry *filename_table;
178
179 /* Total number of entries in the table (i.e. array) pointed to by
180 `filename_table'. This is the *total* and includes both used and
181 unused slots. */
182
183 static unsigned ft_entries_allocated;
184
185 /* Number of entries in the filename_table which are actually in use. */
186
187 static unsigned ft_entries;
188
189 /* Size (in elements) of increments by which we may expand the filename
190 table. Actually, a single hunk of space of this size should be enough
191 for most typical programs. */
192
193 #define FT_ENTRIES_INCREMENT 64
194
195 /* Local pointer to the name of the main input file. Initialized in
196 dwarfout_init. */
197
198 static char *primary_filename;
199
200 /* Pointer to the most recent filename for which we produced some line info. */
201
202 static char *last_filename;
203
204 /* For Dwarf output, we must assign lexical-blocks id numbers
205 in the order in which their beginnings are encountered.
206 We output Dwarf debugging info that refers to the beginnings
207 and ends of the ranges of code for each lexical block with
208 assembler labels ..Bn and ..Bn.e, where n is the block number.
209 The labels themselves are generated in final.c, which assigns
210 numbers to the blocks in the same way. */
211
212 static unsigned next_block_number = 2;
213
214 /* Counter to generate unique names for DIEs. */
215
216 static unsigned next_unused_dienum = 1;
217
218 /* Number of the DIE which is currently being generated. */
219
220 static unsigned current_dienum;
221
222 /* Number to use for the special "pubname" label on the next DIE which
223 represents a function or data object defined in this compilation
224 unit which has "extern" linkage. */
225
226 static int next_pubname_number = 0;
227
228 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
229
230 /* Pointer to a dynamically allocated list of pre-reserved and still
231 pending sibling DIE numbers. Note that this list will grow as needed. */
232
233 static unsigned *pending_sibling_stack;
234
235 /* Counter to keep track of the number of pre-reserved and still pending
236 sibling DIE numbers. */
237
238 static unsigned pending_siblings;
239
240 /* The currently allocated size of the above list (expressed in number of
241 list elements). */
242
243 static unsigned pending_siblings_allocated;
244
245 /* Size (in elements) of increments by which we may expand the pending
246 sibling stack. Actually, a single hunk of space of this size should
247 be enough for most typical programs. */
248
249 #define PENDING_SIBLINGS_INCREMENT 64
250
251 /* Non-zero if we are performing our file-scope finalization pass and if
252 we should force out Dwarf descriptions of any and all file-scope
253 tagged types which are still incomplete types. */
254
255 static int finalizing = 0;
256
257 /* A pointer to the base of a list of pending types which we haven't
258 generated DIEs for yet, but which we will have to come back to
259 later on. */
260
261 static tree *pending_types_list;
262
263 /* Number of elements currently allocated for the pending_types_list. */
264
265 static unsigned pending_types_allocated;
266
267 /* Number of elements of pending_types_list currently in use. */
268
269 static unsigned pending_types;
270
271 /* Size (in elements) of increments by which we may expand the pending
272 types list. Actually, a single hunk of space of this size should
273 be enough for most typical programs. */
274
275 #define PENDING_TYPES_INCREMENT 64
276
277 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
278 This is used in a hack to help us get the DIEs describing types of
279 formal parameters to come *after* all of the DIEs describing the formal
280 parameters themselves. That's necessary in order to be compatible
281 with what the brain-damaged svr4 SDB debugger requires. */
282
283 static tree fake_containing_scope;
284
285 /* The number of the current function definition that we are generating
286 debugging information for. These numbers range from 1 up to the maximum
287 number of function definitions contained within the current compilation
288 unit. These numbers are used to create unique labels for various things
289 contained within various function definitions. */
290
291 static unsigned current_funcdef_number = 1;
292
293 /* A pointer to the ..._DECL node which we have most recently been working
294 on. We keep this around just in case something about it looks screwy
295 and we want to tell the user what the source coordinates for the actual
296 declaration are. */
297
298 static tree dwarf_last_decl;
299
300 /* A flag indicating that we are emitting the member declarations of a
301 class, so member functions and variables should not be entirely emitted.
302 This is a kludge to avoid passing a second argument to output_*_die. */
303
304 static int in_class;
305
306 /* Forward declarations for functions defined in this file. */
307
308 static char *dwarf_tag_name PROTO((unsigned));
309 static char *dwarf_attr_name PROTO((unsigned));
310 static char *dwarf_stack_op_name PROTO((unsigned));
311 static char *dwarf_typemod_name PROTO((unsigned));
312 static char *dwarf_fmt_byte_name PROTO((unsigned));
313 static char *dwarf_fund_type_name PROTO((unsigned));
314 static tree decl_ultimate_origin PROTO((tree));
315 static tree block_ultimate_origin PROTO((tree));
316 static tree decl_class_context PROTO((tree));
317 #if 0
318 static void output_unsigned_leb128 PROTO((unsigned long));
319 static void output_signed_leb128 PROTO((long));
320 #endif
321 static inline int is_body_block PROTO((tree));
322 static int fundamental_type_code PROTO((tree));
323 static tree root_type_1 PROTO((tree, int));
324 static tree root_type PROTO((tree));
325 static void write_modifier_bytes_1 PROTO((tree, int, int, int));
326 static void write_modifier_bytes PROTO((tree, int, int));
327 static inline int type_is_fundamental PROTO((tree));
328 static void equate_decl_number_to_die_number PROTO((tree));
329 static inline void equate_type_number_to_die_number PROTO((tree));
330 static void output_reg_number PROTO((rtx));
331 static void output_mem_loc_descriptor PROTO((rtx));
332 static void output_loc_descriptor PROTO((rtx));
333 static void output_bound_representation PROTO((tree, unsigned, int));
334 static void output_enumeral_list PROTO((tree));
335 static inline unsigned ceiling PROTO((unsigned, unsigned));
336 static inline tree field_type PROTO((tree));
337 static inline unsigned simple_type_align_in_bits PROTO((tree));
338 static inline unsigned simple_type_size_in_bits PROTO((tree));
339 static unsigned field_byte_offset PROTO((tree));
340 static inline void sibling_attribute PROTO((void));
341 static void location_attribute PROTO((rtx));
342 static void data_member_location_attribute PROTO((tree));
343 static void const_value_attribute PROTO((rtx));
344 static void location_or_const_value_attribute PROTO((tree));
345 static inline void name_attribute PROTO((char *));
346 static inline void fund_type_attribute PROTO((unsigned));
347 static void mod_fund_type_attribute PROTO((tree, int, int));
348 static inline void user_def_type_attribute PROTO((tree));
349 static void mod_u_d_type_attribute PROTO((tree, int, int));
350 #ifdef USE_ORDERING_ATTRIBUTE
351 static inline void ordering_attribute PROTO((unsigned));
352 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
353 static void subscript_data_attribute PROTO((tree));
354 static void byte_size_attribute PROTO((tree));
355 static inline void bit_offset_attribute PROTO((tree));
356 static inline void bit_size_attribute PROTO((tree));
357 static inline void element_list_attribute PROTO((tree));
358 static inline void stmt_list_attribute PROTO((char *));
359 static inline void low_pc_attribute PROTO((char *));
360 static inline void high_pc_attribute PROTO((char *));
361 static inline void body_begin_attribute PROTO((char *));
362 static inline void body_end_attribute PROTO((char *));
363 static inline void language_attribute PROTO((unsigned));
364 static inline void member_attribute PROTO((tree));
365 static inline void string_length_attribute PROTO((tree));
366 static inline void comp_dir_attribute PROTO((char *));
367 static inline void sf_names_attribute PROTO((char *));
368 static inline void src_info_attribute PROTO((char *));
369 static inline void mac_info_attribute PROTO((char *));
370 static inline void prototyped_attribute PROTO((tree));
371 static inline void producer_attribute PROTO((char *));
372 static inline void inline_attribute PROTO((tree));
373 static inline void containing_type_attribute PROTO((tree));
374 static inline void abstract_origin_attribute PROTO((tree));
375 #ifdef DWARF_DECL_COORDINATES
376 static inline void src_coords_attribute PROTO((unsigned, unsigned));
377 #endif /* defined(DWARF_DECL_COORDINATES) */
378 static inline void pure_or_virtual_attribute PROTO((tree));
379 static void name_and_src_coords_attributes PROTO((tree));
380 static void type_attribute PROTO((tree, int, int));
381 static char *type_tag PROTO((tree));
382 static inline void dienum_push PROTO((void));
383 static inline void dienum_pop PROTO((void));
384 static inline tree member_declared_type PROTO((tree));
385 static char *function_start_label PROTO((tree));
386 static void output_array_type_die PROTO((void *));
387 static void output_set_type_die PROTO((void *));
388 #if 0
389 static void output_entry_point_die PROTO((void *));
390 #endif
391 static void output_inlined_enumeration_type_die PROTO((void *));
392 static void output_inlined_structure_type_die PROTO((void *));
393 static void output_inlined_union_type_die PROTO((void *));
394 static void output_enumeration_type_die PROTO((void *));
395 static void output_formal_parameter_die PROTO((void *));
396 static void output_global_subroutine_die PROTO((void *));
397 static void output_global_variable_die PROTO((void *));
398 static void output_label_die PROTO((void *));
399 static void output_lexical_block_die PROTO((void *));
400 static void output_inlined_subroutine_die PROTO((void *));
401 static void output_local_variable_die PROTO((void *));
402 static void output_member_die PROTO((void *));
403 #if 0
404 static void output_pointer_type_die PROTO((void *));
405 static void output_reference_type_die PROTO((void *));
406 #endif
407 static void output_ptr_to_mbr_type_die PROTO((void *));
408 static void output_compile_unit_die PROTO((void *));
409 static void output_string_type_die PROTO((void *));
410 static void output_inheritance_die PROTO((void *));
411 static void output_structure_type_die PROTO((void *));
412 static void output_local_subroutine_die PROTO((void *));
413 static void output_subroutine_type_die PROTO((void *));
414 static void output_typedef_die PROTO((void *));
415 static void output_union_type_die PROTO((void *));
416 static void output_unspecified_parameters_die PROTO((void *));
417 static void output_padded_null_die PROTO((void *));
418 static void output_die PROTO((void (*) PROTO((void *)), void *));
419 static void end_sibling_chain PROTO((void));
420 static void output_formal_types PROTO((tree));
421 static void pend_type PROTO((tree));
422 static int type_ok_for_scope PROTO((tree, tree));
423 static void output_pending_types_for_scope PROTO((tree));
424 static void output_type PROTO((tree, tree));
425 static void output_tagged_type_instantiation PROTO((tree));
426 static void output_block PROTO((tree, int));
427 static void output_decls_for_scope PROTO((tree, int));
428 static void output_decl PROTO((tree, tree));
429 static void shuffle_filename_entry PROTO((filename_entry *));
430 static void generate_new_sfname_entry PROTO((void));
431 static unsigned lookup_filename PROTO((char *));
432 static void generate_srcinfo_entry PROTO((unsigned, unsigned));
433 static void generate_macinfo_entry PROTO((char *, char *));
434 \f
435 /* Definitions of defaults for assembler-dependent names of various
436 pseudo-ops and section names.
437
438 Theses may be overridden in your tm.h file (if necessary) for your
439 particular assembler. The default values provided here correspond to
440 what is expected by "standard" AT&T System V.4 assemblers. */
441
442 #ifndef FILE_ASM_OP
443 #define FILE_ASM_OP ".file"
444 #endif
445 #ifndef VERSION_ASM_OP
446 #define VERSION_ASM_OP ".version"
447 #endif
448 #ifndef UNALIGNED_SHORT_ASM_OP
449 #define UNALIGNED_SHORT_ASM_OP ".2byte"
450 #endif
451 #ifndef UNALIGNED_INT_ASM_OP
452 #define UNALIGNED_INT_ASM_OP ".4byte"
453 #endif
454 #ifndef ASM_BYTE_OP
455 #define ASM_BYTE_OP ".byte"
456 #endif
457 #ifndef SET_ASM_OP
458 #define SET_ASM_OP ".set"
459 #endif
460
461 /* Pseudo-ops for pushing the current section onto the section stack (and
462 simultaneously changing to a new section) and for poping back to the
463 section we were in immediately before this one. Note that most svr4
464 assemblers only maintain a one level stack... you can push all the
465 sections you want, but you can only pop out one level. (The sparc
466 svr4 assembler is an exception to this general rule.) That's
467 OK because we only use at most one level of the section stack herein. */
468
469 #ifndef PUSHSECTION_ASM_OP
470 #define PUSHSECTION_ASM_OP ".section"
471 #endif
472 #ifndef POPSECTION_ASM_OP
473 #define POPSECTION_ASM_OP ".previous"
474 #endif
475
476 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
477 to print the PUSHSECTION_ASM_OP and the section name. The default here
478 works for almost all svr4 assemblers, except for the sparc, where the
479 section name must be enclosed in double quotes. (See sparcv4.h.) */
480
481 #ifndef PUSHSECTION_FORMAT
482 #define PUSHSECTION_FORMAT "\t%s\t%s\n"
483 #endif
484
485 #ifndef DEBUG_SECTION
486 #define DEBUG_SECTION ".debug"
487 #endif
488 #ifndef LINE_SECTION
489 #define LINE_SECTION ".line"
490 #endif
491 #ifndef SFNAMES_SECTION
492 #define SFNAMES_SECTION ".debug_sfnames"
493 #endif
494 #ifndef SRCINFO_SECTION
495 #define SRCINFO_SECTION ".debug_srcinfo"
496 #endif
497 #ifndef MACINFO_SECTION
498 #define MACINFO_SECTION ".debug_macinfo"
499 #endif
500 #ifndef PUBNAMES_SECTION
501 #define PUBNAMES_SECTION ".debug_pubnames"
502 #endif
503 #ifndef ARANGES_SECTION
504 #define ARANGES_SECTION ".debug_aranges"
505 #endif
506 #ifndef TEXT_SECTION
507 #define TEXT_SECTION ".text"
508 #endif
509 #ifndef DATA_SECTION
510 #define DATA_SECTION ".data"
511 #endif
512 #ifndef DATA1_SECTION
513 #define DATA1_SECTION ".data1"
514 #endif
515 #ifndef RODATA_SECTION
516 #define RODATA_SECTION ".rodata"
517 #endif
518 #ifndef RODATA1_SECTION
519 #define RODATA1_SECTION ".rodata1"
520 #endif
521 #ifndef BSS_SECTION
522 #define BSS_SECTION ".bss"
523 #endif
524 \f
525 /* Definitions of defaults for formats and names of various special
526 (artificial) labels which may be generated within this file (when
527 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
528
529 If necessary, these may be overridden from within your tm.h file,
530 but typically, you should never need to override these.
531
532 These labels have been hacked (temporarily) so that they all begin with
533 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
534 stock m88k/svr4 assembler, both of which need to see .L at the start of
535 a label in order to prevent that label from going into the linker symbol
536 table). When I get time, I'll have to fix this the right way so that we
537 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
538 but that will require a rather massive set of changes. For the moment,
539 the following definitions out to produce the right results for all svr4
540 and svr3 assemblers. -- rfg
541 */
542
543 #ifndef TEXT_BEGIN_LABEL
544 #define TEXT_BEGIN_LABEL "*.L_text_b"
545 #endif
546 #ifndef TEXT_END_LABEL
547 #define TEXT_END_LABEL "*.L_text_e"
548 #endif
549
550 #ifndef DATA_BEGIN_LABEL
551 #define DATA_BEGIN_LABEL "*.L_data_b"
552 #endif
553 #ifndef DATA_END_LABEL
554 #define DATA_END_LABEL "*.L_data_e"
555 #endif
556
557 #ifndef DATA1_BEGIN_LABEL
558 #define DATA1_BEGIN_LABEL "*.L_data1_b"
559 #endif
560 #ifndef DATA1_END_LABEL
561 #define DATA1_END_LABEL "*.L_data1_e"
562 #endif
563
564 #ifndef RODATA_BEGIN_LABEL
565 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
566 #endif
567 #ifndef RODATA_END_LABEL
568 #define RODATA_END_LABEL "*.L_rodata_e"
569 #endif
570
571 #ifndef RODATA1_BEGIN_LABEL
572 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
573 #endif
574 #ifndef RODATA1_END_LABEL
575 #define RODATA1_END_LABEL "*.L_rodata1_e"
576 #endif
577
578 #ifndef BSS_BEGIN_LABEL
579 #define BSS_BEGIN_LABEL "*.L_bss_b"
580 #endif
581 #ifndef BSS_END_LABEL
582 #define BSS_END_LABEL "*.L_bss_e"
583 #endif
584
585 #ifndef LINE_BEGIN_LABEL
586 #define LINE_BEGIN_LABEL "*.L_line_b"
587 #endif
588 #ifndef LINE_LAST_ENTRY_LABEL
589 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
590 #endif
591 #ifndef LINE_END_LABEL
592 #define LINE_END_LABEL "*.L_line_e"
593 #endif
594
595 #ifndef DEBUG_BEGIN_LABEL
596 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
597 #endif
598 #ifndef SFNAMES_BEGIN_LABEL
599 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
600 #endif
601 #ifndef SRCINFO_BEGIN_LABEL
602 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
603 #endif
604 #ifndef MACINFO_BEGIN_LABEL
605 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
606 #endif
607
608 #ifndef DIE_BEGIN_LABEL_FMT
609 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
610 #endif
611 #ifndef DIE_END_LABEL_FMT
612 #define DIE_END_LABEL_FMT "*.L_D%u_e"
613 #endif
614 #ifndef PUB_DIE_LABEL_FMT
615 #define PUB_DIE_LABEL_FMT "*.L_P%u"
616 #endif
617 #ifndef INSN_LABEL_FMT
618 #define INSN_LABEL_FMT "*.L_I%u_%u"
619 #endif
620 #ifndef BLOCK_BEGIN_LABEL_FMT
621 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
622 #endif
623 #ifndef BLOCK_END_LABEL_FMT
624 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
625 #endif
626 #ifndef SS_BEGIN_LABEL_FMT
627 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
628 #endif
629 #ifndef SS_END_LABEL_FMT
630 #define SS_END_LABEL_FMT "*.L_s%u_e"
631 #endif
632 #ifndef EE_BEGIN_LABEL_FMT
633 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
634 #endif
635 #ifndef EE_END_LABEL_FMT
636 #define EE_END_LABEL_FMT "*.L_e%u_e"
637 #endif
638 #ifndef MT_BEGIN_LABEL_FMT
639 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
640 #endif
641 #ifndef MT_END_LABEL_FMT
642 #define MT_END_LABEL_FMT "*.L_t%u_e"
643 #endif
644 #ifndef LOC_BEGIN_LABEL_FMT
645 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
646 #endif
647 #ifndef LOC_END_LABEL_FMT
648 #define LOC_END_LABEL_FMT "*.L_l%u_e"
649 #endif
650 #ifndef BOUND_BEGIN_LABEL_FMT
651 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
652 #endif
653 #ifndef BOUND_END_LABEL_FMT
654 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
655 #endif
656 #ifndef DERIV_BEGIN_LABEL_FMT
657 #define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
658 #endif
659 #ifndef DERIV_END_LABEL_FMT
660 #define DERIV_END_LABEL_FMT "*.L_d%u_e"
661 #endif
662 #ifndef SL_BEGIN_LABEL_FMT
663 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
664 #endif
665 #ifndef SL_END_LABEL_FMT
666 #define SL_END_LABEL_FMT "*.L_sl%u_e"
667 #endif
668 #ifndef BODY_BEGIN_LABEL_FMT
669 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
670 #endif
671 #ifndef BODY_END_LABEL_FMT
672 #define BODY_END_LABEL_FMT "*.L_b%u_e"
673 #endif
674 #ifndef FUNC_END_LABEL_FMT
675 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
676 #endif
677 #ifndef TYPE_NAME_FMT
678 #define TYPE_NAME_FMT "*.L_T%u"
679 #endif
680 #ifndef DECL_NAME_FMT
681 #define DECL_NAME_FMT "*.L_E%u"
682 #endif
683 #ifndef LINE_CODE_LABEL_FMT
684 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
685 #endif
686 #ifndef SFNAMES_ENTRY_LABEL_FMT
687 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
688 #endif
689 #ifndef LINE_ENTRY_LABEL_FMT
690 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
691 #endif
692 \f
693 /* Definitions of defaults for various types of primitive assembly language
694 output operations.
695
696 If necessary, these may be overridden from within your tm.h file,
697 but typically, you shouldn't need to override these. */
698
699 #ifndef ASM_OUTPUT_PUSH_SECTION
700 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
701 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
702 #endif
703
704 #ifndef ASM_OUTPUT_POP_SECTION
705 #define ASM_OUTPUT_POP_SECTION(FILE) \
706 fprintf ((FILE), "\t%s\n", POPSECTION_ASM_OP)
707 #endif
708
709 #ifndef ASM_OUTPUT_DWARF_DELTA2
710 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
711 do { fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP); \
712 assemble_name (FILE, LABEL1); \
713 fprintf (FILE, "-"); \
714 assemble_name (FILE, LABEL2); \
715 fprintf (FILE, "\n"); \
716 } while (0)
717 #endif
718
719 #ifndef ASM_OUTPUT_DWARF_DELTA4
720 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
721 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
722 assemble_name (FILE, LABEL1); \
723 fprintf (FILE, "-"); \
724 assemble_name (FILE, LABEL2); \
725 fprintf (FILE, "\n"); \
726 } while (0)
727 #endif
728
729 #ifndef ASM_OUTPUT_DWARF_TAG
730 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
731 do { \
732 fprintf ((FILE), "\t%s\t0x%x", \
733 UNALIGNED_SHORT_ASM_OP, (unsigned) TAG); \
734 if (flag_debug_asm) \
735 fprintf ((FILE), "\t%s %s", \
736 ASM_COMMENT_START, dwarf_tag_name (TAG)); \
737 fputc ('\n', (FILE)); \
738 } while (0)
739 #endif
740
741 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
742 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
743 do { \
744 fprintf ((FILE), "\t%s\t0x%x", \
745 UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR); \
746 if (flag_debug_asm) \
747 fprintf ((FILE), "\t%s %s", \
748 ASM_COMMENT_START, dwarf_attr_name (ATTR)); \
749 fputc ('\n', (FILE)); \
750 } while (0)
751 #endif
752
753 #ifndef ASM_OUTPUT_DWARF_STACK_OP
754 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
755 do { \
756 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) OP); \
757 if (flag_debug_asm) \
758 fprintf ((FILE), "\t%s %s", \
759 ASM_COMMENT_START, dwarf_stack_op_name (OP)); \
760 fputc ('\n', (FILE)); \
761 } while (0)
762 #endif
763
764 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
765 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
766 do { \
767 fprintf ((FILE), "\t%s\t0x%x", \
768 UNALIGNED_SHORT_ASM_OP, (unsigned) FT); \
769 if (flag_debug_asm) \
770 fprintf ((FILE), "\t%s %s", \
771 ASM_COMMENT_START, dwarf_fund_type_name (FT)); \
772 fputc ('\n', (FILE)); \
773 } while (0)
774 #endif
775
776 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
777 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
778 do { \
779 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) FMT); \
780 if (flag_debug_asm) \
781 fprintf ((FILE), "\t%s %s", \
782 ASM_COMMENT_START, dwarf_fmt_byte_name (FMT)); \
783 fputc ('\n', (FILE)); \
784 } while (0)
785 #endif
786
787 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
788 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
789 do { \
790 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) MOD); \
791 if (flag_debug_asm) \
792 fprintf ((FILE), "\t%s %s", \
793 ASM_COMMENT_START, dwarf_typemod_name (MOD)); \
794 fputc ('\n', (FILE)); \
795 } while (0)
796 #endif
797 \f
798 #ifndef ASM_OUTPUT_DWARF_ADDR
799 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
800 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
801 assemble_name (FILE, LABEL); \
802 fprintf (FILE, "\n"); \
803 } while (0)
804 #endif
805
806 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
807 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
808 do { \
809 fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
810 output_addr_const ((FILE), (RTX)); \
811 fputc ('\n', (FILE)); \
812 } while (0)
813 #endif
814
815 #ifndef ASM_OUTPUT_DWARF_REF
816 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
817 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
818 assemble_name (FILE, LABEL); \
819 fprintf (FILE, "\n"); \
820 } while (0)
821 #endif
822
823 #ifndef ASM_OUTPUT_DWARF_DATA1
824 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
825 fprintf ((FILE), "\t%s\t0x%x\n", ASM_BYTE_OP, VALUE)
826 #endif
827
828 #ifndef ASM_OUTPUT_DWARF_DATA2
829 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
830 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
831 #endif
832
833 #ifndef ASM_OUTPUT_DWARF_DATA4
834 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
835 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
836 #endif
837
838 #ifndef ASM_OUTPUT_DWARF_DATA8
839 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
840 do { \
841 if (WORDS_BIG_ENDIAN) \
842 { \
843 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
844 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
845 } \
846 else \
847 { \
848 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
849 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
850 } \
851 } while (0)
852 #endif
853
854 #ifndef ASM_OUTPUT_DWARF_STRING
855 #define ASM_OUTPUT_DWARF_STRING(FILE,P) \
856 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
857 #endif
858 \f
859 /************************ general utility functions **************************/
860
861 inline int
862 is_pseudo_reg (rtl)
863 register rtx rtl;
864 {
865 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
866 || ((GET_CODE (rtl) == SUBREG)
867 && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
868 }
869
870 inline tree
871 type_main_variant (type)
872 register tree type;
873 {
874 type = TYPE_MAIN_VARIANT (type);
875
876 /* There really should be only one main variant among any group of variants
877 of a given type (and all of the MAIN_VARIANT values for all members of
878 the group should point to that one type) but sometimes the C front-end
879 messes this up for array types, so we work around that bug here. */
880
881 if (TREE_CODE (type) == ARRAY_TYPE)
882 {
883 while (type != TYPE_MAIN_VARIANT (type))
884 type = TYPE_MAIN_VARIANT (type);
885 }
886
887 return type;
888 }
889
890 /* Return non-zero if the given type node represents a tagged type. */
891
892 inline int
893 is_tagged_type (type)
894 register tree type;
895 {
896 register enum tree_code code = TREE_CODE (type);
897
898 return (code == RECORD_TYPE || code == UNION_TYPE
899 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
900 }
901
902 static char *
903 dwarf_tag_name (tag)
904 register unsigned tag;
905 {
906 switch (tag)
907 {
908 case TAG_padding: return "TAG_padding";
909 case TAG_array_type: return "TAG_array_type";
910 case TAG_class_type: return "TAG_class_type";
911 case TAG_entry_point: return "TAG_entry_point";
912 case TAG_enumeration_type: return "TAG_enumeration_type";
913 case TAG_formal_parameter: return "TAG_formal_parameter";
914 case TAG_global_subroutine: return "TAG_global_subroutine";
915 case TAG_global_variable: return "TAG_global_variable";
916 case TAG_label: return "TAG_label";
917 case TAG_lexical_block: return "TAG_lexical_block";
918 case TAG_local_variable: return "TAG_local_variable";
919 case TAG_member: return "TAG_member";
920 case TAG_pointer_type: return "TAG_pointer_type";
921 case TAG_reference_type: return "TAG_reference_type";
922 case TAG_compile_unit: return "TAG_compile_unit";
923 case TAG_string_type: return "TAG_string_type";
924 case TAG_structure_type: return "TAG_structure_type";
925 case TAG_subroutine: return "TAG_subroutine";
926 case TAG_subroutine_type: return "TAG_subroutine_type";
927 case TAG_typedef: return "TAG_typedef";
928 case TAG_union_type: return "TAG_union_type";
929 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
930 case TAG_variant: return "TAG_variant";
931 case TAG_common_block: return "TAG_common_block";
932 case TAG_common_inclusion: return "TAG_common_inclusion";
933 case TAG_inheritance: return "TAG_inheritance";
934 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
935 case TAG_module: return "TAG_module";
936 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
937 case TAG_set_type: return "TAG_set_type";
938 case TAG_subrange_type: return "TAG_subrange_type";
939 case TAG_with_stmt: return "TAG_with_stmt";
940
941 /* GNU extensions. */
942
943 case TAG_format_label: return "TAG_format_label";
944 case TAG_namelist: return "TAG_namelist";
945 case TAG_function_template: return "TAG_function_template";
946 case TAG_class_template: return "TAG_class_template";
947
948 default: return "TAG_<unknown>";
949 }
950 }
951
952 static char *
953 dwarf_attr_name (attr)
954 register unsigned attr;
955 {
956 switch (attr)
957 {
958 case AT_sibling: return "AT_sibling";
959 case AT_location: return "AT_location";
960 case AT_name: return "AT_name";
961 case AT_fund_type: return "AT_fund_type";
962 case AT_mod_fund_type: return "AT_mod_fund_type";
963 case AT_user_def_type: return "AT_user_def_type";
964 case AT_mod_u_d_type: return "AT_mod_u_d_type";
965 case AT_ordering: return "AT_ordering";
966 case AT_subscr_data: return "AT_subscr_data";
967 case AT_byte_size: return "AT_byte_size";
968 case AT_bit_offset: return "AT_bit_offset";
969 case AT_bit_size: return "AT_bit_size";
970 case AT_element_list: return "AT_element_list";
971 case AT_stmt_list: return "AT_stmt_list";
972 case AT_low_pc: return "AT_low_pc";
973 case AT_high_pc: return "AT_high_pc";
974 case AT_language: return "AT_language";
975 case AT_member: return "AT_member";
976 case AT_discr: return "AT_discr";
977 case AT_discr_value: return "AT_discr_value";
978 case AT_string_length: return "AT_string_length";
979 case AT_common_reference: return "AT_common_reference";
980 case AT_comp_dir: return "AT_comp_dir";
981 case AT_const_value_string: return "AT_const_value_string";
982 case AT_const_value_data2: return "AT_const_value_data2";
983 case AT_const_value_data4: return "AT_const_value_data4";
984 case AT_const_value_data8: return "AT_const_value_data8";
985 case AT_const_value_block2: return "AT_const_value_block2";
986 case AT_const_value_block4: return "AT_const_value_block4";
987 case AT_containing_type: return "AT_containing_type";
988 case AT_default_value_addr: return "AT_default_value_addr";
989 case AT_default_value_data2: return "AT_default_value_data2";
990 case AT_default_value_data4: return "AT_default_value_data4";
991 case AT_default_value_data8: return "AT_default_value_data8";
992 case AT_default_value_string: return "AT_default_value_string";
993 case AT_friends: return "AT_friends";
994 case AT_inline: return "AT_inline";
995 case AT_is_optional: return "AT_is_optional";
996 case AT_lower_bound_ref: return "AT_lower_bound_ref";
997 case AT_lower_bound_data2: return "AT_lower_bound_data2";
998 case AT_lower_bound_data4: return "AT_lower_bound_data4";
999 case AT_lower_bound_data8: return "AT_lower_bound_data8";
1000 case AT_private: return "AT_private";
1001 case AT_producer: return "AT_producer";
1002 case AT_program: return "AT_program";
1003 case AT_protected: return "AT_protected";
1004 case AT_prototyped: return "AT_prototyped";
1005 case AT_public: return "AT_public";
1006 case AT_pure_virtual: return "AT_pure_virtual";
1007 case AT_return_addr: return "AT_return_addr";
1008 case AT_abstract_origin: return "AT_abstract_origin";
1009 case AT_start_scope: return "AT_start_scope";
1010 case AT_stride_size: return "AT_stride_size";
1011 case AT_upper_bound_ref: return "AT_upper_bound_ref";
1012 case AT_upper_bound_data2: return "AT_upper_bound_data2";
1013 case AT_upper_bound_data4: return "AT_upper_bound_data4";
1014 case AT_upper_bound_data8: return "AT_upper_bound_data8";
1015 case AT_virtual: return "AT_virtual";
1016
1017 /* GNU extensions */
1018
1019 case AT_sf_names: return "AT_sf_names";
1020 case AT_src_info: return "AT_src_info";
1021 case AT_mac_info: return "AT_mac_info";
1022 case AT_src_coords: return "AT_src_coords";
1023 case AT_body_begin: return "AT_body_begin";
1024 case AT_body_end: return "AT_body_end";
1025
1026 default: return "AT_<unknown>";
1027 }
1028 }
1029
1030 static char *
1031 dwarf_stack_op_name (op)
1032 register unsigned op;
1033 {
1034 switch (op)
1035 {
1036 case OP_REG: return "OP_REG";
1037 case OP_BASEREG: return "OP_BASEREG";
1038 case OP_ADDR: return "OP_ADDR";
1039 case OP_CONST: return "OP_CONST";
1040 case OP_DEREF2: return "OP_DEREF2";
1041 case OP_DEREF4: return "OP_DEREF4";
1042 case OP_ADD: return "OP_ADD";
1043 default: return "OP_<unknown>";
1044 }
1045 }
1046
1047 static char *
1048 dwarf_typemod_name (mod)
1049 register unsigned mod;
1050 {
1051 switch (mod)
1052 {
1053 case MOD_pointer_to: return "MOD_pointer_to";
1054 case MOD_reference_to: return "MOD_reference_to";
1055 case MOD_const: return "MOD_const";
1056 case MOD_volatile: return "MOD_volatile";
1057 default: return "MOD_<unknown>";
1058 }
1059 }
1060
1061 static char *
1062 dwarf_fmt_byte_name (fmt)
1063 register unsigned fmt;
1064 {
1065 switch (fmt)
1066 {
1067 case FMT_FT_C_C: return "FMT_FT_C_C";
1068 case FMT_FT_C_X: return "FMT_FT_C_X";
1069 case FMT_FT_X_C: return "FMT_FT_X_C";
1070 case FMT_FT_X_X: return "FMT_FT_X_X";
1071 case FMT_UT_C_C: return "FMT_UT_C_C";
1072 case FMT_UT_C_X: return "FMT_UT_C_X";
1073 case FMT_UT_X_C: return "FMT_UT_X_C";
1074 case FMT_UT_X_X: return "FMT_UT_X_X";
1075 case FMT_ET: return "FMT_ET";
1076 default: return "FMT_<unknown>";
1077 }
1078 }
1079
1080 static char *
1081 dwarf_fund_type_name (ft)
1082 register unsigned ft;
1083 {
1084 switch (ft)
1085 {
1086 case FT_char: return "FT_char";
1087 case FT_signed_char: return "FT_signed_char";
1088 case FT_unsigned_char: return "FT_unsigned_char";
1089 case FT_short: return "FT_short";
1090 case FT_signed_short: return "FT_signed_short";
1091 case FT_unsigned_short: return "FT_unsigned_short";
1092 case FT_integer: return "FT_integer";
1093 case FT_signed_integer: return "FT_signed_integer";
1094 case FT_unsigned_integer: return "FT_unsigned_integer";
1095 case FT_long: return "FT_long";
1096 case FT_signed_long: return "FT_signed_long";
1097 case FT_unsigned_long: return "FT_unsigned_long";
1098 case FT_pointer: return "FT_pointer";
1099 case FT_float: return "FT_float";
1100 case FT_dbl_prec_float: return "FT_dbl_prec_float";
1101 case FT_ext_prec_float: return "FT_ext_prec_float";
1102 case FT_complex: return "FT_complex";
1103 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
1104 case FT_void: return "FT_void";
1105 case FT_boolean: return "FT_boolean";
1106 case FT_ext_prec_complex: return "FT_ext_prec_complex";
1107 case FT_label: return "FT_label";
1108
1109 /* GNU extensions. */
1110
1111 case FT_long_long: return "FT_long_long";
1112 case FT_signed_long_long: return "FT_signed_long_long";
1113 case FT_unsigned_long_long: return "FT_unsigned_long_long";
1114
1115 case FT_int8: return "FT_int8";
1116 case FT_signed_int8: return "FT_signed_int8";
1117 case FT_unsigned_int8: return "FT_unsigned_int8";
1118 case FT_int16: return "FT_int16";
1119 case FT_signed_int16: return "FT_signed_int16";
1120 case FT_unsigned_int16: return "FT_unsigned_int16";
1121 case FT_int32: return "FT_int32";
1122 case FT_signed_int32: return "FT_signed_int32";
1123 case FT_unsigned_int32: return "FT_unsigned_int32";
1124 case FT_int64: return "FT_int64";
1125 case FT_signed_int64: return "FT_signed_int64";
1126 case FT_unsigned_int64: return "FT_unsigned_int64";
1127
1128 case FT_real32: return "FT_real32";
1129 case FT_real64: return "FT_real64";
1130 case FT_real96: return "FT_real96";
1131 case FT_real128: return "FT_real128";
1132
1133 default: return "FT_<unknown>";
1134 }
1135 }
1136
1137 /* Determine the "ultimate origin" of a decl. The decl may be an
1138 inlined instance of an inlined instance of a decl which is local
1139 to an inline function, so we have to trace all of the way back
1140 through the origin chain to find out what sort of node actually
1141 served as the original seed for the given block. */
1142
1143 static tree
1144 decl_ultimate_origin (decl)
1145 register tree decl;
1146 {
1147 register tree immediate_origin = DECL_ABSTRACT_ORIGIN (decl);
1148
1149 if (immediate_origin == NULL)
1150 return NULL;
1151 else
1152 {
1153 register tree ret_val;
1154 register tree lookahead = immediate_origin;
1155
1156 do
1157 {
1158 ret_val = lookahead;
1159 lookahead = DECL_ABSTRACT_ORIGIN (ret_val);
1160 }
1161 while (lookahead != NULL && lookahead != ret_val);
1162 return ret_val;
1163 }
1164 }
1165
1166 /* Determine the "ultimate origin" of a block. The block may be an
1167 inlined instance of an inlined instance of a block which is local
1168 to an inline function, so we have to trace all of the way back
1169 through the origin chain to find out what sort of node actually
1170 served as the original seed for the given block. */
1171
1172 static tree
1173 block_ultimate_origin (block)
1174 register tree block;
1175 {
1176 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1177
1178 if (immediate_origin == NULL)
1179 return NULL;
1180 else
1181 {
1182 register tree ret_val;
1183 register tree lookahead = immediate_origin;
1184
1185 do
1186 {
1187 ret_val = lookahead;
1188 lookahead = (TREE_CODE (ret_val) == BLOCK)
1189 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1190 : NULL;
1191 }
1192 while (lookahead != NULL && lookahead != ret_val);
1193 return ret_val;
1194 }
1195 }
1196
1197 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1198 of a virtual function may refer to a base class, so we check the 'this'
1199 parameter. */
1200
1201 static tree
1202 decl_class_context (decl)
1203 tree decl;
1204 {
1205 tree context = NULL_TREE;
1206 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1207 context = DECL_CONTEXT (decl);
1208 else
1209 context = TYPE_MAIN_VARIANT
1210 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1211
1212 if (context && TREE_CODE_CLASS (TREE_CODE (context)) != 't')
1213 context = NULL_TREE;
1214
1215 return context;
1216 }
1217
1218 #if 0
1219 static void
1220 output_unsigned_leb128 (value)
1221 register unsigned long value;
1222 {
1223 register unsigned long orig_value = value;
1224
1225 do
1226 {
1227 register unsigned byte = (value & 0x7f);
1228
1229 value >>= 7;
1230 if (value != 0) /* more bytes to follow */
1231 byte |= 0x80;
1232 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1233 if (flag_debug_asm && value == 0)
1234 fprintf (asm_out_file, "\t%s ULEB128 number - value = %lu",
1235 ASM_COMMENT_START, orig_value);
1236 fputc ('\n', asm_out_file);
1237 }
1238 while (value != 0);
1239 }
1240
1241 static void
1242 output_signed_leb128 (value)
1243 register long value;
1244 {
1245 register long orig_value = value;
1246 register int negative = (value < 0);
1247 register int more;
1248
1249 do
1250 {
1251 register unsigned byte = (value & 0x7f);
1252
1253 value >>= 7;
1254 if (negative)
1255 value |= 0xfe000000; /* manually sign extend */
1256 if (((value == 0) && ((byte & 0x40) == 0))
1257 || ((value == -1) && ((byte & 0x40) == 1)))
1258 more = 0;
1259 else
1260 {
1261 byte |= 0x80;
1262 more = 1;
1263 }
1264 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1265 if (flag_debug_asm && more == 0)
1266 fprintf (asm_out_file, "\t%s SLEB128 number - value = %ld",
1267 ASM_COMMENT_START, orig_value);
1268 fputc ('\n', asm_out_file);
1269 }
1270 while (more);
1271 }
1272 #endif
1273 \f
1274 /**************** utility functions for attribute functions ******************/
1275
1276 /* Given a pointer to a BLOCK node return non-zero if (and only if) the
1277 node in question represents the outermost pair of curly braces (i.e.
1278 the "body block") of a function or method.
1279
1280 For any BLOCK node representing a "body block" of a function or method,
1281 the BLOCK_SUPERCONTEXT of the node will point to another BLOCK node
1282 which represents the outermost (function) scope for the function or
1283 method (i.e. the one which includes the formal parameters). The
1284 BLOCK_SUPERCONTEXT of *that* node in turn will point to the relevant
1285 FUNCTION_DECL node.
1286 */
1287
1288 static inline int
1289 is_body_block (stmt)
1290 register tree stmt;
1291 {
1292 if (TREE_CODE (stmt) == BLOCK)
1293 {
1294 register tree parent = BLOCK_SUPERCONTEXT (stmt);
1295
1296 if (TREE_CODE (parent) == BLOCK)
1297 {
1298 register tree grandparent = BLOCK_SUPERCONTEXT (parent);
1299
1300 if (TREE_CODE (grandparent) == FUNCTION_DECL)
1301 return 1;
1302 }
1303 }
1304 return 0;
1305 }
1306
1307 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1308 type code for the given type.
1309
1310 This routine must only be called for GCC type nodes that correspond to
1311 Dwarf fundamental types.
1312
1313 The current Dwarf draft specification calls for Dwarf fundamental types
1314 to accurately reflect the fact that a given type was either a "plain"
1315 integral type or an explicitly "signed" integral type. Unfortunately,
1316 we can't always do this, because GCC may already have thrown away the
1317 information about the precise way in which the type was originally
1318 specified, as in:
1319
1320 typedef signed int my_type;
1321
1322 struct s { my_type f; };
1323
1324 Since we may be stuck here without enought information to do exactly
1325 what is called for in the Dwarf draft specification, we do the best
1326 that we can under the circumstances and always use the "plain" integral
1327 fundamental type codes for int, short, and long types. That's probably
1328 good enough. The additional accuracy called for in the current DWARF
1329 draft specification is probably never even useful in practice. */
1330
1331 static int
1332 fundamental_type_code (type)
1333 register tree type;
1334 {
1335 if (TREE_CODE (type) == ERROR_MARK)
1336 return 0;
1337
1338 switch (TREE_CODE (type))
1339 {
1340 case ERROR_MARK:
1341 return FT_void;
1342
1343 case VOID_TYPE:
1344 return FT_void;
1345
1346 case INTEGER_TYPE:
1347 /* Carefully distinguish all the standard types of C,
1348 without messing up if the language is not C.
1349 Note that we check only for the names that contain spaces;
1350 other names might occur by coincidence in other languages. */
1351 if (TYPE_NAME (type) != 0
1352 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1353 && DECL_NAME (TYPE_NAME (type)) != 0
1354 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1355 {
1356 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1357
1358 if (!strcmp (name, "unsigned char"))
1359 return FT_unsigned_char;
1360 if (!strcmp (name, "signed char"))
1361 return FT_signed_char;
1362 if (!strcmp (name, "unsigned int"))
1363 return FT_unsigned_integer;
1364 if (!strcmp (name, "short int"))
1365 return FT_short;
1366 if (!strcmp (name, "short unsigned int"))
1367 return FT_unsigned_short;
1368 if (!strcmp (name, "long int"))
1369 return FT_long;
1370 if (!strcmp (name, "long unsigned int"))
1371 return FT_unsigned_long;
1372 if (!strcmp (name, "long long int"))
1373 return FT_long_long; /* Not grok'ed by svr4 SDB */
1374 if (!strcmp (name, "long long unsigned int"))
1375 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1376 }
1377
1378 /* Most integer types will be sorted out above, however, for the
1379 sake of special `array index' integer types, the following code
1380 is also provided. */
1381
1382 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1383 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1384
1385 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1386 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1387
1388 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1389 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1390
1391 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1392 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1393
1394 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1395 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1396
1397 abort ();
1398
1399 case REAL_TYPE:
1400 /* Carefully distinguish all the standard types of C,
1401 without messing up if the language is not C. */
1402 if (TYPE_NAME (type) != 0
1403 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1404 && DECL_NAME (TYPE_NAME (type)) != 0
1405 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1406 {
1407 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1408
1409 /* Note that here we can run afowl of a serious bug in "classic"
1410 svr4 SDB debuggers. They don't seem to understand the
1411 FT_ext_prec_float type (even though they should). */
1412
1413 if (!strcmp (name, "long double"))
1414 return FT_ext_prec_float;
1415 }
1416
1417 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1418 return FT_dbl_prec_float;
1419 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1420 return FT_float;
1421
1422 /* Note that here we can run afowl of a serious bug in "classic"
1423 svr4 SDB debuggers. They don't seem to understand the
1424 FT_ext_prec_float type (even though they should). */
1425
1426 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1427 return FT_ext_prec_float;
1428 abort ();
1429
1430 case COMPLEX_TYPE:
1431 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1432
1433 case CHAR_TYPE:
1434 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1435
1436 case BOOLEAN_TYPE:
1437 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1438
1439 default:
1440 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1441 }
1442 return 0;
1443 }
1444 \f
1445 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1446 the Dwarf "root" type for the given input type. The Dwarf "root" type
1447 of a given type is generally the same as the given type, except that if
1448 the given type is a pointer or reference type, then the root type of
1449 the given type is the root type of the "basis" type for the pointer or
1450 reference type. (This definition of the "root" type is recursive.)
1451 Also, the root type of a `const' qualified type or a `volatile'
1452 qualified type is the root type of the given type without the
1453 qualifiers. */
1454
1455 static tree
1456 root_type_1 (type, count)
1457 register tree type;
1458 register int count;
1459 {
1460 /* Give up after searching 1000 levels, in case this is a recursive
1461 pointer type. Such types are possible in Ada, but it is not possible
1462 to represent them in DWARF1 debug info. */
1463 if (count > 1000)
1464 return error_mark_node;
1465
1466 switch (TREE_CODE (type))
1467 {
1468 case ERROR_MARK:
1469 return error_mark_node;
1470
1471 case POINTER_TYPE:
1472 case REFERENCE_TYPE:
1473 return root_type_1 (TREE_TYPE (type), count+1);
1474
1475 default:
1476 return type;
1477 }
1478 }
1479
1480 static tree
1481 root_type (type)
1482 register tree type;
1483 {
1484 type = root_type_1 (type, 0);
1485 if (type != error_mark_node)
1486 type = type_main_variant (type);
1487 return type;
1488 }
1489
1490 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1491 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1492
1493 static void
1494 write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
1495 register tree type;
1496 register int decl_const;
1497 register int decl_volatile;
1498 register int count;
1499 {
1500 if (TREE_CODE (type) == ERROR_MARK)
1501 return;
1502
1503 /* Give up after searching 1000 levels, in case this is a recursive
1504 pointer type. Such types are possible in Ada, but it is not possible
1505 to represent them in DWARF1 debug info. */
1506 if (count > 1000)
1507 return;
1508
1509 if (TYPE_READONLY (type) || decl_const)
1510 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1511 if (TYPE_VOLATILE (type) || decl_volatile)
1512 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1513 switch (TREE_CODE (type))
1514 {
1515 case POINTER_TYPE:
1516 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1517 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1518 return;
1519
1520 case REFERENCE_TYPE:
1521 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1522 write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1523 return;
1524
1525 case ERROR_MARK:
1526 default:
1527 return;
1528 }
1529 }
1530
1531 static void
1532 write_modifier_bytes (type, decl_const, decl_volatile)
1533 register tree type;
1534 register int decl_const;
1535 register int decl_volatile;
1536 {
1537 write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1538 }
1539 \f
1540 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1541 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1542
1543 static inline int
1544 type_is_fundamental (type)
1545 register tree type;
1546 {
1547 switch (TREE_CODE (type))
1548 {
1549 case ERROR_MARK:
1550 case VOID_TYPE:
1551 case INTEGER_TYPE:
1552 case REAL_TYPE:
1553 case COMPLEX_TYPE:
1554 case BOOLEAN_TYPE:
1555 case CHAR_TYPE:
1556 return 1;
1557
1558 case SET_TYPE:
1559 case ARRAY_TYPE:
1560 case RECORD_TYPE:
1561 case UNION_TYPE:
1562 case QUAL_UNION_TYPE:
1563 case ENUMERAL_TYPE:
1564 case FUNCTION_TYPE:
1565 case METHOD_TYPE:
1566 case POINTER_TYPE:
1567 case REFERENCE_TYPE:
1568 case FILE_TYPE:
1569 case OFFSET_TYPE:
1570 case LANG_TYPE:
1571 return 0;
1572
1573 default:
1574 abort ();
1575 }
1576 return 0;
1577 }
1578
1579 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1580 equate directive which will associate a symbolic name with the current DIE.
1581
1582 The name used is an artificial label generated from the DECL_UID number
1583 associated with the given decl node. The name it gets equated to is the
1584 symbolic label that we (previously) output at the start of the DIE that
1585 we are currently generating.
1586
1587 Calling this function while generating some "decl related" form of DIE
1588 makes it possible to later refer to the DIE which represents the given
1589 decl simply by re-generating the symbolic name from the ..._DECL node's
1590 UID number. */
1591
1592 static void
1593 equate_decl_number_to_die_number (decl)
1594 register tree decl;
1595 {
1596 /* In the case where we are generating a DIE for some ..._DECL node
1597 which represents either some inline function declaration or some
1598 entity declared within an inline function declaration/definition,
1599 setup a symbolic name for the current DIE so that we have a name
1600 for this DIE that we can easily refer to later on within
1601 AT_abstract_origin attributes. */
1602
1603 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1604 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1605
1606 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1607 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1608 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
1609 }
1610
1611 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
1612 equate directive which will associate a symbolic name with the current DIE.
1613
1614 The name used is an artificial label generated from the TYPE_UID number
1615 associated with the given type node. The name it gets equated to is the
1616 symbolic label that we (previously) output at the start of the DIE that
1617 we are currently generating.
1618
1619 Calling this function while generating some "type related" form of DIE
1620 makes it easy to later refer to the DIE which represents the given type
1621 simply by re-generating the alternative name from the ..._TYPE node's
1622 UID number. */
1623
1624 static inline void
1625 equate_type_number_to_die_number (type)
1626 register tree type;
1627 {
1628 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
1629 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1630
1631 /* We are generating a DIE to represent the main variant of this type
1632 (i.e the type without any const or volatile qualifiers) so in order
1633 to get the equate to come out right, we need to get the main variant
1634 itself here. */
1635
1636 type = type_main_variant (type);
1637
1638 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
1639 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1640 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
1641 }
1642
1643 static void
1644 output_reg_number (rtl)
1645 register rtx rtl;
1646 {
1647 register unsigned regno = REGNO (rtl);
1648
1649 if (regno >= FIRST_PSEUDO_REGISTER)
1650 {
1651 warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n",
1652 regno);
1653 regno = 0;
1654 }
1655 fprintf (asm_out_file, "\t%s\t0x%x",
1656 UNALIGNED_INT_ASM_OP, DBX_REGISTER_NUMBER (regno));
1657 if (flag_debug_asm)
1658 {
1659 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
1660 PRINT_REG (rtl, 0, asm_out_file);
1661 }
1662 fputc ('\n', asm_out_file);
1663 }
1664
1665 /* The following routine is a nice and simple transducer. It converts the
1666 RTL for a variable or parameter (resident in memory) into an equivalent
1667 Dwarf representation of a mechanism for getting the address of that same
1668 variable onto the top of a hypothetical "address evaluation" stack.
1669
1670 When creating memory location descriptors, we are effectively trans-
1671 forming the RTL for a memory-resident object into its Dwarf postfix
1672 expression equivalent. This routine just recursively descends an
1673 RTL tree, turning it into Dwarf postfix code as it goes. */
1674
1675 static void
1676 output_mem_loc_descriptor (rtl)
1677 register rtx rtl;
1678 {
1679 /* Note that for a dynamically sized array, the location we will
1680 generate a description of here will be the lowest numbered location
1681 which is actually within the array. That's *not* necessarily the
1682 same as the zeroth element of the array. */
1683
1684 switch (GET_CODE (rtl))
1685 {
1686 case SUBREG:
1687
1688 /* The case of a subreg may arise when we have a local (register)
1689 variable or a formal (register) parameter which doesn't quite
1690 fill up an entire register. For now, just assume that it is
1691 legitimate to make the Dwarf info refer to the whole register
1692 which contains the given subreg. */
1693
1694 rtl = XEXP (rtl, 0);
1695 /* Drop thru. */
1696
1697 case REG:
1698
1699 /* Whenever a register number forms a part of the description of
1700 the method for calculating the (dynamic) address of a memory
1701 resident object, DWARF rules require the register number to
1702 be referred to as a "base register". This distinction is not
1703 based in any way upon what category of register the hardware
1704 believes the given register belongs to. This is strictly
1705 DWARF terminology we're dealing with here.
1706
1707 Note that in cases where the location of a memory-resident data
1708 object could be expressed as:
1709
1710 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1711
1712 the actual DWARF location descriptor that we generate may just
1713 be OP_BASEREG (basereg). This may look deceptively like the
1714 object in question was allocated to a register (rather than
1715 in memory) so DWARF consumers need to be aware of the subtle
1716 distinction between OP_REG and OP_BASEREG. */
1717
1718 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
1719 output_reg_number (rtl);
1720 break;
1721
1722 case MEM:
1723 output_mem_loc_descriptor (XEXP (rtl, 0));
1724 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
1725 break;
1726
1727 case CONST:
1728 case SYMBOL_REF:
1729 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
1730 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
1731 break;
1732
1733 case PLUS:
1734 output_mem_loc_descriptor (XEXP (rtl, 0));
1735 output_mem_loc_descriptor (XEXP (rtl, 1));
1736 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1737 break;
1738
1739 case CONST_INT:
1740 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1741 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
1742 break;
1743
1744 case MULT:
1745 /* If a pseudo-reg is optimized away, it is possible for it to
1746 be replaced with a MEM containing a multiply. Use a GNU extension
1747 to describe it. */
1748 output_mem_loc_descriptor (XEXP (rtl, 0));
1749 output_mem_loc_descriptor (XEXP (rtl, 1));
1750 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
1751 break;
1752
1753 default:
1754 abort ();
1755 }
1756 }
1757
1758 /* Output a proper Dwarf location descriptor for a variable or parameter
1759 which is either allocated in a register or in a memory location. For
1760 a register, we just generate an OP_REG and the register number. For a
1761 memory location we provide a Dwarf postfix expression describing how to
1762 generate the (dynamic) address of the object onto the address stack. */
1763
1764 static void
1765 output_loc_descriptor (rtl)
1766 register rtx rtl;
1767 {
1768 switch (GET_CODE (rtl))
1769 {
1770 case SUBREG:
1771
1772 /* The case of a subreg may arise when we have a local (register)
1773 variable or a formal (register) parameter which doesn't quite
1774 fill up an entire register. For now, just assume that it is
1775 legitimate to make the Dwarf info refer to the whole register
1776 which contains the given subreg. */
1777
1778 rtl = XEXP (rtl, 0);
1779 /* Drop thru. */
1780
1781 case REG:
1782 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
1783 output_reg_number (rtl);
1784 break;
1785
1786 case MEM:
1787 output_mem_loc_descriptor (XEXP (rtl, 0));
1788 break;
1789
1790 default:
1791 abort (); /* Should never happen */
1792 }
1793 }
1794
1795 /* Given a tree node describing an array bound (either lower or upper)
1796 output a representation for that bound. */
1797
1798 static void
1799 output_bound_representation (bound, dim_num, u_or_l)
1800 register tree bound;
1801 register unsigned dim_num; /* For multi-dimensional arrays. */
1802 register char u_or_l; /* Designates upper or lower bound. */
1803 {
1804 switch (TREE_CODE (bound))
1805 {
1806
1807 case ERROR_MARK:
1808 return;
1809
1810 /* All fixed-bounds are represented by INTEGER_CST nodes. */
1811
1812 case INTEGER_CST:
1813 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1814 (unsigned) TREE_INT_CST_LOW (bound));
1815 break;
1816
1817 default:
1818
1819 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
1820 SAVE_EXPR nodes, in which case we can do something, or as
1821 an expression, which we cannot represent. */
1822 {
1823 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1824 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1825
1826 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
1827 current_dienum, dim_num, u_or_l);
1828
1829 sprintf (end_label, BOUND_END_LABEL_FMT,
1830 current_dienum, dim_num, u_or_l);
1831
1832 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1833 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1834
1835 /* If optimization is turned on, the SAVE_EXPRs that describe
1836 how to access the upper bound values are essentially bogus.
1837 They only describe (at best) how to get at these values at
1838 the points in the generated code right after they have just
1839 been computed. Worse yet, in the typical case, the upper
1840 bound values will not even *be* computed in the optimized
1841 code, so these SAVE_EXPRs are entirely bogus.
1842
1843 In order to compensate for this fact, we check here to see
1844 if optimization is enabled, and if so, we effectively create
1845 an empty location description for the (unknown and unknowable)
1846 upper bound.
1847
1848 This should not cause too much trouble for existing (stupid?)
1849 debuggers because they have to deal with empty upper bounds
1850 location descriptions anyway in order to be able to deal with
1851 incomplete array types.
1852
1853 Of course an intelligent debugger (GDB?) should be able to
1854 comprehend that a missing upper bound specification in a
1855 array type used for a storage class `auto' local array variable
1856 indicates that the upper bound is both unknown (at compile-
1857 time) and unknowable (at run-time) due to optimization. */
1858
1859 if (! optimize)
1860 {
1861 while (TREE_CODE (bound) == NOP_EXPR
1862 || TREE_CODE (bound) == CONVERT_EXPR)
1863 bound = TREE_OPERAND (bound, 0);
1864
1865 if (TREE_CODE (bound) == SAVE_EXPR)
1866 output_loc_descriptor
1867 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
1868 }
1869
1870 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1871 }
1872 break;
1873
1874 }
1875 }
1876
1877 /* Recursive function to output a sequence of value/name pairs for
1878 enumeration constants in reversed order. This is called from
1879 enumeration_type_die. */
1880
1881 static void
1882 output_enumeral_list (link)
1883 register tree link;
1884 {
1885 if (link)
1886 {
1887 output_enumeral_list (TREE_CHAIN (link));
1888 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1889 (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link)));
1890 ASM_OUTPUT_DWARF_STRING (asm_out_file,
1891 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
1892 }
1893 }
1894
1895 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
1896 which is not less than the value itself. */
1897
1898 static inline unsigned
1899 ceiling (value, boundary)
1900 register unsigned value;
1901 register unsigned boundary;
1902 {
1903 return (((value + boundary - 1) / boundary) * boundary);
1904 }
1905
1906 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1907 pointer to the declared type for the relevant field variable, or return
1908 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
1909
1910 static inline tree
1911 field_type (decl)
1912 register tree decl;
1913 {
1914 register tree type;
1915
1916 if (TREE_CODE (decl) == ERROR_MARK)
1917 return integer_type_node;
1918
1919 type = DECL_BIT_FIELD_TYPE (decl);
1920 if (type == NULL)
1921 type = TREE_TYPE (decl);
1922 return type;
1923 }
1924
1925 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1926 node, return the alignment in bits for the type, or else return
1927 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
1928
1929 static inline unsigned
1930 simple_type_align_in_bits (type)
1931 register tree type;
1932 {
1933 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
1934 }
1935
1936 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1937 node, return the size in bits for the type if it is a constant, or
1938 else return the alignment for the type if the type's size is not
1939 constant, or else return BITS_PER_WORD if the type actually turns out
1940 to be an ERROR_MARK node. */
1941
1942 static inline unsigned
1943 simple_type_size_in_bits (type)
1944 register tree type;
1945 {
1946 if (TREE_CODE (type) == ERROR_MARK)
1947 return BITS_PER_WORD;
1948 else
1949 {
1950 register tree type_size_tree = TYPE_SIZE (type);
1951
1952 if (TREE_CODE (type_size_tree) != INTEGER_CST)
1953 return TYPE_ALIGN (type);
1954
1955 return (unsigned) TREE_INT_CST_LOW (type_size_tree);
1956 }
1957 }
1958
1959 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1960 return the byte offset of the lowest addressed byte of the "containing
1961 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
1962 mine what that offset is, either because the argument turns out to be a
1963 pointer to an ERROR_MARK node, or because the offset is actually variable.
1964 (We can't handle the latter case just yet.) */
1965
1966 static unsigned
1967 field_byte_offset (decl)
1968 register tree decl;
1969 {
1970 register unsigned type_align_in_bytes;
1971 register unsigned type_align_in_bits;
1972 register unsigned type_size_in_bits;
1973 register unsigned object_offset_in_align_units;
1974 register unsigned object_offset_in_bits;
1975 register unsigned object_offset_in_bytes;
1976 register tree type;
1977 register tree bitpos_tree;
1978 register tree field_size_tree;
1979 register unsigned bitpos_int;
1980 register unsigned deepest_bitpos;
1981 register unsigned field_size_in_bits;
1982
1983 if (TREE_CODE (decl) == ERROR_MARK)
1984 return 0;
1985
1986 if (TREE_CODE (decl) != FIELD_DECL)
1987 abort ();
1988
1989 type = field_type (decl);
1990
1991 bitpos_tree = DECL_FIELD_BITPOS (decl);
1992 field_size_tree = DECL_SIZE (decl);
1993
1994 /* We cannot yet cope with fields whose positions or sizes are variable,
1995 so for now, when we see such things, we simply return 0. Someday,
1996 we may be able to handle such cases, but it will be damn difficult. */
1997
1998 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
1999 return 0;
2000 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2001
2002 if (TREE_CODE (field_size_tree) != INTEGER_CST)
2003 return 0;
2004 field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree);
2005
2006 type_size_in_bits = simple_type_size_in_bits (type);
2007
2008 type_align_in_bits = simple_type_align_in_bits (type);
2009 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2010
2011 /* Note that the GCC front-end doesn't make any attempt to keep track
2012 of the starting bit offset (relative to the start of the containing
2013 structure type) of the hypothetical "containing object" for a bit-
2014 field. Thus, when computing the byte offset value for the start of
2015 the "containing object" of a bit-field, we must deduce this infor-
2016 mation on our own.
2017
2018 This can be rather tricky to do in some cases. For example, handling
2019 the following structure type definition when compiling for an i386/i486
2020 target (which only aligns long long's to 32-bit boundaries) can be very
2021 tricky:
2022
2023 struct S {
2024 int field1;
2025 long long field2:31;
2026 };
2027
2028 Fortunately, there is a simple rule-of-thumb which can be used in such
2029 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
2030 the structure shown above. It decides to do this based upon one simple
2031 rule for bit-field allocation. Quite simply, GCC allocates each "con-
2032 taining object" for each bit-field at the first (i.e. lowest addressed)
2033 legitimate alignment boundary (based upon the required minimum alignment
2034 for the declared type of the field) which it can possibly use, subject
2035 to the condition that there is still enough available space remaining
2036 in the containing object (when allocated at the selected point) to
2037 fully accommodate all of the bits of the bit-field itself.
2038
2039 This simple rule makes it obvious why GCC allocates 8 bytes for each
2040 object of the structure type shown above. When looking for a place to
2041 allocate the "containing object" for `field2', the compiler simply tries
2042 to allocate a 64-bit "containing object" at each successive 32-bit
2043 boundary (starting at zero) until it finds a place to allocate that 64-
2044 bit field such that at least 31 contiguous (and previously unallocated)
2045 bits remain within that selected 64 bit field. (As it turns out, for
2046 the example above, the compiler finds that it is OK to allocate the
2047 "containing object" 64-bit field at bit-offset zero within the
2048 structure type.)
2049
2050 Here we attempt to work backwards from the limited set of facts we're
2051 given, and we try to deduce from those facts, where GCC must have
2052 believed that the containing object started (within the structure type).
2053
2054 The value we deduce is then used (by the callers of this routine) to
2055 generate AT_location and AT_bit_offset attributes for fields (both
2056 bit-fields and, in the case of AT_location, regular fields as well).
2057 */
2058
2059 /* Figure out the bit-distance from the start of the structure to the
2060 "deepest" bit of the bit-field. */
2061 deepest_bitpos = bitpos_int + field_size_in_bits;
2062
2063 /* This is the tricky part. Use some fancy footwork to deduce where the
2064 lowest addressed bit of the containing object must be. */
2065 object_offset_in_bits
2066 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2067
2068 /* Compute the offset of the containing object in "alignment units". */
2069 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2070
2071 /* Compute the offset of the containing object in bytes. */
2072 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2073
2074 /* The above code assumes that the field does not cross an alignment
2075 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2076 or if the structure is packed. If this happens, then we get an object
2077 which starts after the bitfield, which means that the bit offset is
2078 negative. Gdb fails when given negative bit offsets. We avoid this
2079 by recomputing using the first bit of the bitfield. This will give
2080 us an object which does not completely contain the bitfield, but it
2081 will be aligned, and it will contain the first bit of the bitfield. */
2082 if (object_offset_in_bits > bitpos_int)
2083 {
2084 deepest_bitpos = bitpos_int + 1;
2085 object_offset_in_bits
2086 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2087 object_offset_in_align_units = (object_offset_in_bits
2088 / type_align_in_bits);
2089 object_offset_in_bytes = (object_offset_in_align_units
2090 * type_align_in_bytes);
2091 }
2092
2093 return object_offset_in_bytes;
2094 }
2095
2096 /****************************** attributes *********************************/
2097
2098 /* The following routines are responsible for writing out the various types
2099 of Dwarf attributes (and any following data bytes associated with them).
2100 These routines are listed in order based on the numerical codes of their
2101 associated attributes. */
2102
2103 /* Generate an AT_sibling attribute. */
2104
2105 static inline void
2106 sibling_attribute ()
2107 {
2108 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2109
2110 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2111 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2112 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2113 }
2114
2115 /* Output the form of location attributes suitable for whole variables and
2116 whole parameters. Note that the location attributes for struct fields
2117 are generated by the routine `data_member_location_attribute' below. */
2118
2119 static void
2120 location_attribute (rtl)
2121 register rtx rtl;
2122 {
2123 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2124 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2125
2126 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2127 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2128 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2129 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2130 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2131
2132 /* Handle a special case. If we are about to output a location descriptor
2133 for a variable or parameter which has been optimized out of existence,
2134 don't do that. Instead we output a zero-length location descriptor
2135 value as part of the location attribute.
2136
2137 A variable which has been optimized out of existence will have a
2138 DECL_RTL value which denotes a pseudo-reg.
2139
2140 Currently, in some rare cases, variables can have DECL_RTL values
2141 which look like (MEM (REG pseudo-reg#)). These cases are due to
2142 bugs elsewhere in the compiler. We treat such cases
2143 as if the variable(s) in question had been optimized out of existence.
2144
2145 Note that in all cases where we wish to express the fact that a
2146 variable has been optimized out of existence, we do not simply
2147 suppress the generation of the entire location attribute because
2148 the absence of a location attribute in certain kinds of DIEs is
2149 used to indicate something else entirely... i.e. that the DIE
2150 represents an object declaration, but not a definition. So saith
2151 the PLSIG.
2152 */
2153
2154 if (! is_pseudo_reg (rtl)
2155 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2156 output_loc_descriptor (rtl);
2157
2158 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2159 }
2160
2161 /* Output the specialized form of location attribute used for data members
2162 of struct and union types.
2163
2164 In the special case of a FIELD_DECL node which represents a bit-field,
2165 the "offset" part of this special location descriptor must indicate the
2166 distance in bytes from the lowest-addressed byte of the containing
2167 struct or union type to the lowest-addressed byte of the "containing
2168 object" for the bit-field. (See the `field_byte_offset' function above.)
2169
2170 For any given bit-field, the "containing object" is a hypothetical
2171 object (of some integral or enum type) within which the given bit-field
2172 lives. The type of this hypothetical "containing object" is always the
2173 same as the declared type of the individual bit-field itself (for GCC
2174 anyway... the DWARF spec doesn't actually mandate this).
2175
2176 Note that it is the size (in bytes) of the hypothetical "containing
2177 object" which will be given in the AT_byte_size attribute for this
2178 bit-field. (See the `byte_size_attribute' function below.) It is
2179 also used when calculating the value of the AT_bit_offset attribute.
2180 (See the `bit_offset_attribute' function below.) */
2181
2182 static void
2183 data_member_location_attribute (t)
2184 register tree t;
2185 {
2186 register unsigned object_offset_in_bytes;
2187 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2188 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2189
2190 if (TREE_CODE (t) == TREE_VEC)
2191 object_offset_in_bytes = TREE_INT_CST_LOW (BINFO_OFFSET (t));
2192 else
2193 object_offset_in_bytes = field_byte_offset (t);
2194
2195 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2196 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2197 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2198 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2199 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2200 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2201 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2202 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2203 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2204 }
2205
2206 /* Output an AT_const_value attribute for a variable or a parameter which
2207 does not have a "location" either in memory or in a register. These
2208 things can arise in GNU C when a constant is passed as an actual
2209 parameter to an inlined function. They can also arise in C++ where
2210 declared constants do not necessarily get memory "homes". */
2211
2212 static void
2213 const_value_attribute (rtl)
2214 register rtx rtl;
2215 {
2216 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2217 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2218
2219 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2220 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2221 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2222 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2223 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2224
2225 switch (GET_CODE (rtl))
2226 {
2227 case CONST_INT:
2228 /* Note that a CONST_INT rtx could represent either an integer or
2229 a floating-point constant. A CONST_INT is used whenever the
2230 constant will fit into a single word. In all such cases, the
2231 original mode of the constant value is wiped out, and the
2232 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2233 precise mode information for these constants, we always just
2234 output them using 4 bytes. */
2235
2236 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2237 break;
2238
2239 case CONST_DOUBLE:
2240 /* Note that a CONST_DOUBLE rtx could represent either an integer
2241 or a floating-point constant. A CONST_DOUBLE is used whenever
2242 the constant requires more than one word in order to be adequately
2243 represented. In all such cases, the original mode of the constant
2244 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2245 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2246
2247 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2248 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (rtl),
2249 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (rtl));
2250 break;
2251
2252 case CONST_STRING:
2253 ASM_OUTPUT_DWARF_STRING (asm_out_file, XSTR (rtl, 0));
2254 break;
2255
2256 case SYMBOL_REF:
2257 case LABEL_REF:
2258 case CONST:
2259 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2260 break;
2261
2262 case PLUS:
2263 /* In cases where an inlined instance of an inline function is passed
2264 the address of an `auto' variable (which is local to the caller)
2265 we can get a situation where the DECL_RTL of the artificial
2266 local variable (for the inlining) which acts as a stand-in for
2267 the corresponding formal parameter (of the inline function)
2268 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2269 This is not exactly a compile-time constant expression, but it
2270 isn't the address of the (artificial) local variable either.
2271 Rather, it represents the *value* which the artificial local
2272 variable always has during its lifetime. We currently have no
2273 way to represent such quasi-constant values in Dwarf, so for now
2274 we just punt and generate an AT_const_value attribute with form
2275 FORM_BLOCK4 and a length of zero. */
2276 break;
2277
2278 default:
2279 abort (); /* No other kinds of rtx should be possible here. */
2280 }
2281
2282 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2283 }
2284
2285 /* Generate *either* an AT_location attribute or else an AT_const_value
2286 data attribute for a variable or a parameter. We generate the
2287 AT_const_value attribute only in those cases where the given
2288 variable or parameter does not have a true "location" either in
2289 memory or in a register. This can happen (for example) when a
2290 constant is passed as an actual argument in a call to an inline
2291 function. (It's possible that these things can crop up in other
2292 ways also.) Note that one type of constant value which can be
2293 passed into an inlined function is a constant pointer. This can
2294 happen for example if an actual argument in an inlined function
2295 call evaluates to a compile-time constant address. */
2296
2297 static void
2298 location_or_const_value_attribute (decl)
2299 register tree decl;
2300 {
2301 register rtx rtl;
2302
2303 if (TREE_CODE (decl) == ERROR_MARK)
2304 return;
2305
2306 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2307 {
2308 /* Should never happen. */
2309 abort ();
2310 return;
2311 }
2312
2313 /* Here we have to decide where we are going to say the parameter "lives"
2314 (as far as the debugger is concerned). We only have a couple of choices.
2315 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2316 normally indicates where the parameter lives during most of the activa-
2317 tion of the function. If optimization is enabled however, this could
2318 be either NULL or else a pseudo-reg. Both of those cases indicate that
2319 the parameter doesn't really live anywhere (as far as the code generation
2320 parts of GCC are concerned) during most of the function's activation.
2321 That will happen (for example) if the parameter is never referenced
2322 within the function.
2323
2324 We could just generate a location descriptor here for all non-NULL
2325 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2326 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2327 cases where DECL_RTL is NULL or is a pseudo-reg.
2328
2329 Note however that we can only get away with using DECL_INCOMING_RTL as
2330 a backup substitute for DECL_RTL in certain limited cases. In cases
2331 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2332 we can be sure that the parameter was passed using the same type as it
2333 is declared to have within the function, and that its DECL_INCOMING_RTL
2334 points us to a place where a value of that type is passed. In cases
2335 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2336 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2337 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2338 points us to a value of some type which is *different* from the type
2339 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2340 to generate a location attribute in such cases, the debugger would
2341 end up (for example) trying to fetch a `float' from a place which
2342 actually contains the first part of a `double'. That would lead to
2343 really incorrect and confusing output at debug-time, and we don't
2344 want that now do we?
2345
2346 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2347 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2348 couple of cute exceptions however. On little-endian machines we can
2349 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2350 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2351 an integral type which is smaller than TREE_TYPE(decl). These cases
2352 arise when (on a little-endian machine) a non-prototyped function has
2353 a parameter declared to be of type `short' or `char'. In such cases,
2354 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2355 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2356 passed `int' value. If the debugger then uses that address to fetch a
2357 `short' or a `char' (on a little-endian machine) the result will be the
2358 correct data, so we allow for such exceptional cases below.
2359
2360 Note that our goal here is to describe the place where the given formal
2361 parameter lives during most of the function's activation (i.e. between
2362 the end of the prologue and the start of the epilogue). We'll do that
2363 as best as we can. Note however that if the given formal parameter is
2364 modified sometime during the execution of the function, then a stack
2365 backtrace (at debug-time) will show the function as having been called
2366 with the *new* value rather than the value which was originally passed
2367 in. This happens rarely enough that it is not a major problem, but it
2368 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2369 may generate two additional attributes for any given TAG_formal_parameter
2370 DIE which will describe the "passed type" and the "passed location" for
2371 the given formal parameter in addition to the attributes we now generate
2372 to indicate the "declared type" and the "active location" for each
2373 parameter. This additional set of attributes could be used by debuggers
2374 for stack backtraces.
2375
2376 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2377 can be NULL also. This happens (for example) for inlined-instances of
2378 inline function formal parameters which are never referenced. This really
2379 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2380 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2381 these values for inlined instances of inline function parameters, so
2382 when we see such cases, we are just out-of-luck for the time
2383 being (until integrate.c gets fixed).
2384 */
2385
2386 /* Use DECL_RTL as the "location" unless we find something better. */
2387 rtl = DECL_RTL (decl);
2388
2389 if (TREE_CODE (decl) == PARM_DECL)
2390 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2391 {
2392 /* This decl represents a formal parameter which was optimized out. */
2393 register tree declared_type = type_main_variant (TREE_TYPE (decl));
2394 register tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2395
2396 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2397 *all* cases where (rtl == NULL_RTX) just below. */
2398
2399 if (declared_type == passed_type)
2400 rtl = DECL_INCOMING_RTL (decl);
2401 else if (! BYTES_BIG_ENDIAN)
2402 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2403 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2404 rtl = DECL_INCOMING_RTL (decl);
2405 }
2406
2407 if (rtl == NULL_RTX)
2408 return;
2409
2410 rtl = eliminate_regs (rtl, 0, NULL_RTX);
2411 #ifdef LEAF_REG_REMAP
2412 if (leaf_function)
2413 leaf_renumber_regs_insn (rtl);
2414 #endif
2415
2416 switch (GET_CODE (rtl))
2417 {
2418 case ADDRESSOF:
2419 /* The address of a variable that was optimized away; don't emit
2420 anything. */
2421 break;
2422
2423 case CONST_INT:
2424 case CONST_DOUBLE:
2425 case CONST_STRING:
2426 case SYMBOL_REF:
2427 case LABEL_REF:
2428 case CONST:
2429 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2430 const_value_attribute (rtl);
2431 break;
2432
2433 case MEM:
2434 case REG:
2435 case SUBREG:
2436 location_attribute (rtl);
2437 break;
2438
2439 case CONCAT:
2440 /* ??? CONCAT is used for complex variables, which may have the real
2441 part stored in one place and the imag part stored somewhere else.
2442 DWARF1 has no way to describe a variable that lives in two different
2443 places, so we just describe where the first part lives, and hope that
2444 the second part is stored after it. */
2445 location_attribute (XEXP (rtl, 0));
2446 break;
2447
2448 default:
2449 abort (); /* Should never happen. */
2450 }
2451 }
2452
2453 /* Generate an AT_name attribute given some string value to be included as
2454 the value of the attribute. */
2455
2456 static inline void
2457 name_attribute (name_string)
2458 register char *name_string;
2459 {
2460 if (name_string && *name_string)
2461 {
2462 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2463 ASM_OUTPUT_DWARF_STRING (asm_out_file, name_string);
2464 }
2465 }
2466
2467 static inline void
2468 fund_type_attribute (ft_code)
2469 register unsigned ft_code;
2470 {
2471 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2472 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2473 }
2474
2475 static void
2476 mod_fund_type_attribute (type, decl_const, decl_volatile)
2477 register tree type;
2478 register int decl_const;
2479 register int decl_volatile;
2480 {
2481 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2482 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2483
2484 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2485 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2486 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2487 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2488 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2489 write_modifier_bytes (type, decl_const, decl_volatile);
2490 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2491 fundamental_type_code (root_type (type)));
2492 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2493 }
2494
2495 static inline void
2496 user_def_type_attribute (type)
2497 register tree type;
2498 {
2499 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2500
2501 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2502 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2503 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2504 }
2505
2506 static void
2507 mod_u_d_type_attribute (type, decl_const, decl_volatile)
2508 register tree type;
2509 register int decl_const;
2510 register int decl_volatile;
2511 {
2512 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2513 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2514 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2515
2516 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2517 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2518 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2519 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2520 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2521 write_modifier_bytes (type, decl_const, decl_volatile);
2522 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2523 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2524 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2525 }
2526
2527 #ifdef USE_ORDERING_ATTRIBUTE
2528 static inline void
2529 ordering_attribute (ordering)
2530 register unsigned ordering;
2531 {
2532 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2533 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2534 }
2535 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2536
2537 /* Note that the block of subscript information for an array type also
2538 includes information about the element type of type given array type. */
2539
2540 static void
2541 subscript_data_attribute (type)
2542 register tree type;
2543 {
2544 register unsigned dimension_number;
2545 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2546 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2547
2548 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2549 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2550 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2551 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2552 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2553
2554 /* The GNU compilers represent multidimensional array types as sequences
2555 of one dimensional array types whose element types are themselves array
2556 types. Here we squish that down, so that each multidimensional array
2557 type gets only one array_type DIE in the Dwarf debugging info. The
2558 draft Dwarf specification say that we are allowed to do this kind
2559 of compression in C (because there is no difference between an
2560 array or arrays and a multidimensional array in C) but for other
2561 source languages (e.g. Ada) we probably shouldn't do this. */
2562
2563 for (dimension_number = 0;
2564 TREE_CODE (type) == ARRAY_TYPE;
2565 type = TREE_TYPE (type), dimension_number++)
2566 {
2567 register tree domain = TYPE_DOMAIN (type);
2568
2569 /* Arrays come in three flavors. Unspecified bounds, fixed
2570 bounds, and (in GNU C only) variable bounds. Handle all
2571 three forms here. */
2572
2573 if (domain)
2574 {
2575 /* We have an array type with specified bounds. */
2576
2577 register tree lower = TYPE_MIN_VALUE (domain);
2578 register tree upper = TYPE_MAX_VALUE (domain);
2579
2580 /* Handle only fundamental types as index types for now. */
2581
2582 if (! type_is_fundamental (domain))
2583 abort ();
2584
2585 /* Output the representation format byte for this dimension. */
2586
2587 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
2588 FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
2589 (upper && TREE_CODE (upper) == INTEGER_CST)));
2590
2591 /* Output the index type for this dimension. */
2592
2593 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2594 fundamental_type_code (domain));
2595
2596 /* Output the representation for the lower bound. */
2597
2598 output_bound_representation (lower, dimension_number, 'l');
2599
2600 /* Output the representation for the upper bound. */
2601
2602 output_bound_representation (upper, dimension_number, 'u');
2603 }
2604 else
2605 {
2606 /* We have an array type with an unspecified length. For C and
2607 C++ we can assume that this really means that (a) the index
2608 type is an integral type, and (b) the lower bound is zero.
2609 Note that Dwarf defines the representation of an unspecified
2610 (upper) bound as being a zero-length location description. */
2611
2612 /* Output the array-bounds format byte. */
2613
2614 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2615
2616 /* Output the (assumed) index type. */
2617
2618 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2619
2620 /* Output the (assumed) lower bound (constant) value. */
2621
2622 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2623
2624 /* Output the (empty) location description for the upper bound. */
2625
2626 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2627 }
2628 }
2629
2630 /* Output the prefix byte that says that the element type is coming up. */
2631
2632 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
2633
2634 /* Output a representation of the type of the elements of this array type. */
2635
2636 type_attribute (type, 0, 0);
2637
2638 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2639 }
2640
2641 static void
2642 byte_size_attribute (tree_node)
2643 register tree tree_node;
2644 {
2645 register unsigned size;
2646
2647 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
2648 switch (TREE_CODE (tree_node))
2649 {
2650 case ERROR_MARK:
2651 size = 0;
2652 break;
2653
2654 case ENUMERAL_TYPE:
2655 case RECORD_TYPE:
2656 case UNION_TYPE:
2657 case QUAL_UNION_TYPE:
2658 case ARRAY_TYPE:
2659 size = int_size_in_bytes (tree_node);
2660 break;
2661
2662 case FIELD_DECL:
2663 /* For a data member of a struct or union, the AT_byte_size is
2664 generally given as the number of bytes normally allocated for
2665 an object of the *declared* type of the member itself. This
2666 is true even for bit-fields. */
2667 size = simple_type_size_in_bits (field_type (tree_node))
2668 / BITS_PER_UNIT;
2669 break;
2670
2671 default:
2672 abort ();
2673 }
2674
2675 /* Note that `size' might be -1 when we get to this point. If it
2676 is, that indicates that the byte size of the entity in question
2677 is variable. We have no good way of expressing this fact in Dwarf
2678 at the present time, so just let the -1 pass on through. */
2679
2680 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
2681 }
2682
2683 /* For a FIELD_DECL node which represents a bit-field, output an attribute
2684 which specifies the distance in bits from the highest order bit of the
2685 "containing object" for the bit-field to the highest order bit of the
2686 bit-field itself.
2687
2688 For any given bit-field, the "containing object" is a hypothetical
2689 object (of some integral or enum type) within which the given bit-field
2690 lives. The type of this hypothetical "containing object" is always the
2691 same as the declared type of the individual bit-field itself.
2692
2693 The determination of the exact location of the "containing object" for
2694 a bit-field is rather complicated. It's handled by the `field_byte_offset'
2695 function (above).
2696
2697 Note that it is the size (in bytes) of the hypothetical "containing
2698 object" which will be given in the AT_byte_size attribute for this
2699 bit-field. (See `byte_size_attribute' above.) */
2700
2701 static inline void
2702 bit_offset_attribute (decl)
2703 register tree decl;
2704 {
2705 register unsigned object_offset_in_bytes = field_byte_offset (decl);
2706 register tree type = DECL_BIT_FIELD_TYPE (decl);
2707 register tree bitpos_tree = DECL_FIELD_BITPOS (decl);
2708 register unsigned bitpos_int;
2709 register unsigned highest_order_object_bit_offset;
2710 register unsigned highest_order_field_bit_offset;
2711 register unsigned bit_offset;
2712
2713 /* Must be a bit field. */
2714 if (!type
2715 || TREE_CODE (decl) != FIELD_DECL)
2716 abort ();
2717
2718 /* We can't yet handle bit-fields whose offsets are variable, so if we
2719 encounter such things, just return without generating any attribute
2720 whatsoever. */
2721
2722 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2723 return;
2724 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2725
2726 /* Note that the bit offset is always the distance (in bits) from the
2727 highest-order bit of the "containing object" to the highest-order
2728 bit of the bit-field itself. Since the "high-order end" of any
2729 object or field is different on big-endian and little-endian machines,
2730 the computation below must take account of these differences. */
2731
2732 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
2733 highest_order_field_bit_offset = bitpos_int;
2734
2735 if (! BYTES_BIG_ENDIAN)
2736 {
2737 highest_order_field_bit_offset
2738 += (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl));
2739
2740 highest_order_object_bit_offset += simple_type_size_in_bits (type);
2741 }
2742
2743 bit_offset =
2744 (! BYTES_BIG_ENDIAN
2745 ? highest_order_object_bit_offset - highest_order_field_bit_offset
2746 : highest_order_field_bit_offset - highest_order_object_bit_offset);
2747
2748 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
2749 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
2750 }
2751
2752 /* For a FIELD_DECL node which represents a bit field, output an attribute
2753 which specifies the length in bits of the given field. */
2754
2755 static inline void
2756 bit_size_attribute (decl)
2757 register tree decl;
2758 {
2759 /* Must be a field and a bit field. */
2760 if (TREE_CODE (decl) != FIELD_DECL
2761 || ! DECL_BIT_FIELD_TYPE (decl))
2762 abort ();
2763
2764 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
2765 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2766 (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)));
2767 }
2768
2769 /* The following routine outputs the `element_list' attribute for enumeration
2770 type DIEs. The element_lits attribute includes the names and values of
2771 all of the enumeration constants associated with the given enumeration
2772 type. */
2773
2774 static inline void
2775 element_list_attribute (element)
2776 register tree element;
2777 {
2778 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2779 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2780
2781 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
2782 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
2783 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
2784 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2785 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2786
2787 /* Here we output a list of value/name pairs for each enumeration constant
2788 defined for this enumeration type (as required), but we do it in REVERSE
2789 order. The order is the one required by the draft #5 Dwarf specification
2790 published by the UI/PLSIG. */
2791
2792 output_enumeral_list (element); /* Recursively output the whole list. */
2793
2794 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2795 }
2796
2797 /* Generate an AT_stmt_list attribute. These are normally present only in
2798 DIEs with a TAG_compile_unit tag. */
2799
2800 static inline void
2801 stmt_list_attribute (label)
2802 register char *label;
2803 {
2804 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
2805 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2806 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
2807 }
2808
2809 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2810 for a subroutine DIE. */
2811
2812 static inline void
2813 low_pc_attribute (asm_low_label)
2814 register char *asm_low_label;
2815 {
2816 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
2817 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
2818 }
2819
2820 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2821 subroutine DIE. */
2822
2823 static inline void
2824 high_pc_attribute (asm_high_label)
2825 register char *asm_high_label;
2826 {
2827 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
2828 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
2829 }
2830
2831 /* Generate an AT_body_begin attribute for a subroutine DIE. */
2832
2833 static inline void
2834 body_begin_attribute (asm_begin_label)
2835 register char *asm_begin_label;
2836 {
2837 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
2838 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
2839 }
2840
2841 /* Generate an AT_body_end attribute for a subroutine DIE. */
2842
2843 static inline void
2844 body_end_attribute (asm_end_label)
2845 register char *asm_end_label;
2846 {
2847 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
2848 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
2849 }
2850
2851 /* Generate an AT_language attribute given a LANG value. These attributes
2852 are used only within TAG_compile_unit DIEs. */
2853
2854 static inline void
2855 language_attribute (language_code)
2856 register unsigned language_code;
2857 {
2858 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
2859 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
2860 }
2861
2862 static inline void
2863 member_attribute (context)
2864 register tree context;
2865 {
2866 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2867
2868 /* Generate this attribute only for members in C++. */
2869
2870 if (context != NULL && is_tagged_type (context))
2871 {
2872 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
2873 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
2874 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2875 }
2876 }
2877
2878 static inline void
2879 string_length_attribute (upper_bound)
2880 register tree upper_bound;
2881 {
2882 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2883 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2884
2885 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
2886 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
2887 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
2888 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2889 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2890 output_bound_representation (upper_bound, 0, 'u');
2891 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2892 }
2893
2894 static inline void
2895 comp_dir_attribute (dirname)
2896 register char *dirname;
2897 {
2898 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
2899 ASM_OUTPUT_DWARF_STRING (asm_out_file, dirname);
2900 }
2901
2902 static inline void
2903 sf_names_attribute (sf_names_start_label)
2904 register char *sf_names_start_label;
2905 {
2906 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
2907 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2908 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
2909 }
2910
2911 static inline void
2912 src_info_attribute (src_info_start_label)
2913 register char *src_info_start_label;
2914 {
2915 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
2916 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2917 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
2918 }
2919
2920 static inline void
2921 mac_info_attribute (mac_info_start_label)
2922 register char *mac_info_start_label;
2923 {
2924 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
2925 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2926 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
2927 }
2928
2929 static inline void
2930 prototyped_attribute (func_type)
2931 register tree func_type;
2932 {
2933 if ((strcmp (language_string, "GNU C") == 0)
2934 && (TYPE_ARG_TYPES (func_type) != NULL))
2935 {
2936 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
2937 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2938 }
2939 }
2940
2941 static inline void
2942 producer_attribute (producer)
2943 register char *producer;
2944 {
2945 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
2946 ASM_OUTPUT_DWARF_STRING (asm_out_file, producer);
2947 }
2948
2949 static inline void
2950 inline_attribute (decl)
2951 register tree decl;
2952 {
2953 if (DECL_INLINE (decl))
2954 {
2955 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
2956 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2957 }
2958 }
2959
2960 static inline void
2961 containing_type_attribute (containing_type)
2962 register tree containing_type;
2963 {
2964 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2965
2966 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
2967 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
2968 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2969 }
2970
2971 static inline void
2972 abstract_origin_attribute (origin)
2973 register tree origin;
2974 {
2975 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2976
2977 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
2978 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
2979 {
2980 case 'd':
2981 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
2982 break;
2983
2984 case 't':
2985 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
2986 break;
2987
2988 default:
2989 abort (); /* Should never happen. */
2990
2991 }
2992 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2993 }
2994
2995 #ifdef DWARF_DECL_COORDINATES
2996 static inline void
2997 src_coords_attribute (src_fileno, src_lineno)
2998 register unsigned src_fileno;
2999 register unsigned src_lineno;
3000 {
3001 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3002 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3003 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
3004 }
3005 #endif /* defined(DWARF_DECL_COORDINATES) */
3006
3007 static inline void
3008 pure_or_virtual_attribute (func_decl)
3009 register tree func_decl;
3010 {
3011 if (DECL_VIRTUAL_P (func_decl))
3012 {
3013 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
3014 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3015 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3016 else
3017 #endif
3018 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3019 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3020 }
3021 }
3022
3023 /************************* end of attributes *****************************/
3024
3025 /********************* utility routines for DIEs *************************/
3026
3027 /* Output an AT_name attribute and an AT_src_coords attribute for the
3028 given decl, but only if it actually has a name. */
3029
3030 static void
3031 name_and_src_coords_attributes (decl)
3032 register tree decl;
3033 {
3034 register tree decl_name = DECL_NAME (decl);
3035
3036 if (decl_name && IDENTIFIER_POINTER (decl_name))
3037 {
3038 name_attribute (IDENTIFIER_POINTER (decl_name));
3039 #ifdef DWARF_DECL_COORDINATES
3040 {
3041 register unsigned file_index;
3042
3043 /* This is annoying, but we have to pop out of the .debug section
3044 for a moment while we call `lookup_filename' because calling it
3045 may cause a temporary switch into the .debug_sfnames section and
3046 most svr4 assemblers are not smart enough to be able to nest
3047 section switches to any depth greater than one. Note that we
3048 also can't skirt this issue by delaying all output to the
3049 .debug_sfnames section unit the end of compilation because that
3050 would cause us to have inter-section forward references and
3051 Fred Fish sez that m68k/svr4 assemblers botch those. */
3052
3053 ASM_OUTPUT_POP_SECTION (asm_out_file);
3054 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3055 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3056
3057 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3058 }
3059 #endif /* defined(DWARF_DECL_COORDINATES) */
3060 }
3061 }
3062
3063 /* Many forms of DIEs contain a "type description" part. The following
3064 routine writes out these "type descriptor" parts. */
3065
3066 static void
3067 type_attribute (type, decl_const, decl_volatile)
3068 register tree type;
3069 register int decl_const;
3070 register int decl_volatile;
3071 {
3072 register enum tree_code code = TREE_CODE (type);
3073 register int root_type_modified;
3074
3075 if (code == ERROR_MARK)
3076 return;
3077
3078 /* Handle a special case. For functions whose return type is void,
3079 we generate *no* type attribute. (Note that no object may have
3080 type `void', so this only applies to function return types. */
3081
3082 if (code == VOID_TYPE)
3083 return;
3084
3085 /* If this is a subtype, find the underlying type. Eventually,
3086 this should write out the appropriate subtype info. */
3087 while ((code == INTEGER_TYPE || code == REAL_TYPE)
3088 && TREE_TYPE (type) != 0)
3089 type = TREE_TYPE (type), code = TREE_CODE (type);
3090
3091 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3092 || decl_const || decl_volatile
3093 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
3094
3095 if (type_is_fundamental (root_type (type)))
3096 {
3097 if (root_type_modified)
3098 mod_fund_type_attribute (type, decl_const, decl_volatile);
3099 else
3100 fund_type_attribute (fundamental_type_code (type));
3101 }
3102 else
3103 {
3104 if (root_type_modified)
3105 mod_u_d_type_attribute (type, decl_const, decl_volatile);
3106 else
3107 /* We have to get the type_main_variant here (and pass that to the
3108 `user_def_type_attribute' routine) because the ..._TYPE node we
3109 have might simply be a *copy* of some original type node (where
3110 the copy was created to help us keep track of typedef names)
3111 and that copy might have a different TYPE_UID from the original
3112 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3113 is labeling a given type DIE for future reference, it always and
3114 only creates labels for DIEs representing *main variants*, and it
3115 never even knows about non-main-variants.) */
3116 user_def_type_attribute (type_main_variant (type));
3117 }
3118 }
3119
3120 /* Given a tree pointer to a struct, class, union, or enum type node, return
3121 a pointer to the (string) tag name for the given type, or zero if the
3122 type was declared without a tag. */
3123
3124 static char *
3125 type_tag (type)
3126 register tree type;
3127 {
3128 register char *name = 0;
3129
3130 if (TYPE_NAME (type) != 0)
3131 {
3132 register tree t = 0;
3133
3134 /* Find the IDENTIFIER_NODE for the type name. */
3135 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3136 t = TYPE_NAME (type);
3137
3138 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3139 a TYPE_DECL node, regardless of whether or not a `typedef' was
3140 involved. */
3141 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3142 && ! DECL_IGNORED_P (TYPE_NAME (type)))
3143 t = DECL_NAME (TYPE_NAME (type));
3144
3145 /* Now get the name as a string, or invent one. */
3146 if (t != 0)
3147 name = IDENTIFIER_POINTER (t);
3148 }
3149
3150 return (name == 0 || *name == '\0') ? 0 : name;
3151 }
3152
3153 static inline void
3154 dienum_push ()
3155 {
3156 /* Start by checking if the pending_sibling_stack needs to be expanded.
3157 If necessary, expand it. */
3158
3159 if (pending_siblings == pending_siblings_allocated)
3160 {
3161 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3162 pending_sibling_stack
3163 = (unsigned *) xrealloc (pending_sibling_stack,
3164 pending_siblings_allocated * sizeof(unsigned));
3165 }
3166
3167 pending_siblings++;
3168 NEXT_DIE_NUM = next_unused_dienum++;
3169 }
3170
3171 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3172 NEXT_DIE_NUM. */
3173
3174 static inline void
3175 dienum_pop ()
3176 {
3177 pending_siblings--;
3178 }
3179
3180 static inline tree
3181 member_declared_type (member)
3182 register tree member;
3183 {
3184 return (DECL_BIT_FIELD_TYPE (member))
3185 ? DECL_BIT_FIELD_TYPE (member)
3186 : TREE_TYPE (member);
3187 }
3188
3189 /* Get the function's label, as described by its RTL.
3190 This may be different from the DECL_NAME name used
3191 in the source file. */
3192
3193 static char *
3194 function_start_label (decl)
3195 register tree decl;
3196 {
3197 rtx x;
3198 char *fnname;
3199
3200 x = DECL_RTL (decl);
3201 if (GET_CODE (x) != MEM)
3202 abort ();
3203 x = XEXP (x, 0);
3204 if (GET_CODE (x) != SYMBOL_REF)
3205 abort ();
3206 fnname = XSTR (x, 0);
3207 return fnname;
3208 }
3209
3210
3211 /******************************* DIEs ************************************/
3212
3213 /* Output routines for individual types of DIEs. */
3214
3215 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3216
3217 static void
3218 output_array_type_die (arg)
3219 register void *arg;
3220 {
3221 register tree type = arg;
3222
3223 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3224 sibling_attribute ();
3225 equate_type_number_to_die_number (type);
3226 member_attribute (TYPE_CONTEXT (type));
3227
3228 /* I believe that we can default the array ordering. SDB will probably
3229 do the right things even if AT_ordering is not present. It's not
3230 even an issue until we start to get into multidimensional arrays
3231 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3232 dimensional arrays, then we'll have to put the AT_ordering attribute
3233 back in. (But if and when we find out that we need to put these in,
3234 we will only do so for multidimensional arrays. After all, we don't
3235 want to waste space in the .debug section now do we?) */
3236
3237 #ifdef USE_ORDERING_ATTRIBUTE
3238 ordering_attribute (ORD_row_major);
3239 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3240
3241 subscript_data_attribute (type);
3242 }
3243
3244 static void
3245 output_set_type_die (arg)
3246 register void *arg;
3247 {
3248 register tree type = arg;
3249
3250 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3251 sibling_attribute ();
3252 equate_type_number_to_die_number (type);
3253 member_attribute (TYPE_CONTEXT (type));
3254 type_attribute (TREE_TYPE (type), 0, 0);
3255 }
3256
3257 #if 0
3258 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3259
3260 static void
3261 output_entry_point_die (arg)
3262 register void *arg;
3263 {
3264 register tree decl = arg;
3265 register tree origin = decl_ultimate_origin (decl);
3266
3267 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3268 sibling_attribute ();
3269 dienum_push ();
3270 if (origin != NULL)
3271 abstract_origin_attribute (origin);
3272 else
3273 {
3274 name_and_src_coords_attributes (decl);
3275 member_attribute (DECL_CONTEXT (decl));
3276 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3277 }
3278 if (DECL_ABSTRACT (decl))
3279 equate_decl_number_to_die_number (decl);
3280 else
3281 low_pc_attribute (function_start_label (decl));
3282 }
3283 #endif
3284
3285 /* Output a DIE to represent an inlined instance of an enumeration type. */
3286
3287 static void
3288 output_inlined_enumeration_type_die (arg)
3289 register void *arg;
3290 {
3291 register tree type = arg;
3292
3293 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3294 sibling_attribute ();
3295 if (!TREE_ASM_WRITTEN (type))
3296 abort ();
3297 abstract_origin_attribute (type);
3298 }
3299
3300 /* Output a DIE to represent an inlined instance of a structure type. */
3301
3302 static void
3303 output_inlined_structure_type_die (arg)
3304 register void *arg;
3305 {
3306 register tree type = arg;
3307
3308 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3309 sibling_attribute ();
3310 if (!TREE_ASM_WRITTEN (type))
3311 abort ();
3312 abstract_origin_attribute (type);
3313 }
3314
3315 /* Output a DIE to represent an inlined instance of a union type. */
3316
3317 static void
3318 output_inlined_union_type_die (arg)
3319 register void *arg;
3320 {
3321 register tree type = arg;
3322
3323 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3324 sibling_attribute ();
3325 if (!TREE_ASM_WRITTEN (type))
3326 abort ();
3327 abstract_origin_attribute (type);
3328 }
3329
3330 /* Output a DIE to represent an enumeration type. Note that these DIEs
3331 include all of the information about the enumeration values also.
3332 This information is encoded into the element_list attribute. */
3333
3334 static void
3335 output_enumeration_type_die (arg)
3336 register void *arg;
3337 {
3338 register tree type = arg;
3339
3340 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3341 sibling_attribute ();
3342 equate_type_number_to_die_number (type);
3343 name_attribute (type_tag (type));
3344 member_attribute (TYPE_CONTEXT (type));
3345
3346 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3347 given enum type is incomplete, do not generate the AT_byte_size
3348 attribute or the AT_element_list attribute. */
3349
3350 if (TYPE_SIZE (type))
3351 {
3352 byte_size_attribute (type);
3353 element_list_attribute (TYPE_FIELDS (type));
3354 }
3355 }
3356
3357 /* Output a DIE to represent either a real live formal parameter decl or
3358 to represent just the type of some formal parameter position in some
3359 function type.
3360
3361 Note that this routine is a bit unusual because its argument may be
3362 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3363 represents an inlining of some PARM_DECL) or else some sort of a
3364 ..._TYPE node. If it's the former then this function is being called
3365 to output a DIE to represent a formal parameter object (or some inlining
3366 thereof). If it's the latter, then this function is only being called
3367 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3368 formal argument type of some subprogram type. */
3369
3370 static void
3371 output_formal_parameter_die (arg)
3372 register void *arg;
3373 {
3374 register tree node = arg;
3375
3376 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3377 sibling_attribute ();
3378
3379 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3380 {
3381 case 'd': /* We were called with some kind of a ..._DECL node. */
3382 {
3383 register tree origin = decl_ultimate_origin (node);
3384
3385 if (origin != NULL)
3386 abstract_origin_attribute (origin);
3387 else
3388 {
3389 name_and_src_coords_attributes (node);
3390 type_attribute (TREE_TYPE (node),
3391 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3392 }
3393 if (DECL_ABSTRACT (node))
3394 equate_decl_number_to_die_number (node);
3395 else
3396 location_or_const_value_attribute (node);
3397 }
3398 break;
3399
3400 case 't': /* We were called with some kind of a ..._TYPE node. */
3401 type_attribute (node, 0, 0);
3402 break;
3403
3404 default:
3405 abort (); /* Should never happen. */
3406 }
3407 }
3408
3409 /* Output a DIE to represent a declared function (either file-scope
3410 or block-local) which has "external linkage" (according to ANSI-C). */
3411
3412 static void
3413 output_global_subroutine_die (arg)
3414 register void *arg;
3415 {
3416 register tree decl = arg;
3417 register tree origin = decl_ultimate_origin (decl);
3418
3419 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3420 sibling_attribute ();
3421 dienum_push ();
3422 if (origin != NULL)
3423 abstract_origin_attribute (origin);
3424 else
3425 {
3426 register tree type = TREE_TYPE (decl);
3427
3428 name_and_src_coords_attributes (decl);
3429 inline_attribute (decl);
3430 prototyped_attribute (type);
3431 member_attribute (DECL_CONTEXT (decl));
3432 type_attribute (TREE_TYPE (type), 0, 0);
3433 pure_or_virtual_attribute (decl);
3434 }
3435 if (DECL_ABSTRACT (decl))
3436 equate_decl_number_to_die_number (decl);
3437 else
3438 {
3439 if (! DECL_EXTERNAL (decl) && ! in_class
3440 && decl == current_function_decl)
3441 {
3442 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3443
3444 low_pc_attribute (function_start_label (decl));
3445 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3446 high_pc_attribute (label);
3447 if (use_gnu_debug_info_extensions)
3448 {
3449 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3450 body_begin_attribute (label);
3451 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3452 body_end_attribute (label);
3453 }
3454 }
3455 }
3456 }
3457
3458 /* Output a DIE to represent a declared data object (either file-scope
3459 or block-local) which has "external linkage" (according to ANSI-C). */
3460
3461 static void
3462 output_global_variable_die (arg)
3463 register void *arg;
3464 {
3465 register tree decl = arg;
3466 register tree origin = decl_ultimate_origin (decl);
3467
3468 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3469 sibling_attribute ();
3470 if (origin != NULL)
3471 abstract_origin_attribute (origin);
3472 else
3473 {
3474 name_and_src_coords_attributes (decl);
3475 member_attribute (DECL_CONTEXT (decl));
3476 type_attribute (TREE_TYPE (decl),
3477 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3478 }
3479 if (DECL_ABSTRACT (decl))
3480 equate_decl_number_to_die_number (decl);
3481 else
3482 {
3483 if (! DECL_EXTERNAL (decl) && ! in_class
3484 && current_function_decl == decl_function_context (decl))
3485 location_or_const_value_attribute (decl);
3486 }
3487 }
3488
3489 static void
3490 output_label_die (arg)
3491 register void *arg;
3492 {
3493 register tree decl = arg;
3494 register tree origin = decl_ultimate_origin (decl);
3495
3496 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3497 sibling_attribute ();
3498 if (origin != NULL)
3499 abstract_origin_attribute (origin);
3500 else
3501 name_and_src_coords_attributes (decl);
3502 if (DECL_ABSTRACT (decl))
3503 equate_decl_number_to_die_number (decl);
3504 else
3505 {
3506 register rtx insn = DECL_RTL (decl);
3507
3508 if (GET_CODE (insn) == CODE_LABEL)
3509 {
3510 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3511
3512 /* When optimization is enabled (via -O) some parts of the compiler
3513 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3514 represent source-level labels which were explicitly declared by
3515 the user. This really shouldn't be happening though, so catch
3516 it if it ever does happen. */
3517
3518 if (INSN_DELETED_P (insn))
3519 abort (); /* Should never happen. */
3520
3521 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
3522 (unsigned) INSN_UID (insn));
3523 low_pc_attribute (label);
3524 }
3525 }
3526 }
3527
3528 static void
3529 output_lexical_block_die (arg)
3530 register void *arg;
3531 {
3532 register tree stmt = arg;
3533
3534 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3535 sibling_attribute ();
3536 dienum_push ();
3537 if (! BLOCK_ABSTRACT (stmt))
3538 {
3539 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3540 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3541
3542 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3543 low_pc_attribute (begin_label);
3544 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3545 high_pc_attribute (end_label);
3546 }
3547 }
3548
3549 static void
3550 output_inlined_subroutine_die (arg)
3551 register void *arg;
3552 {
3553 register tree stmt = arg;
3554
3555 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3556 sibling_attribute ();
3557 dienum_push ();
3558 abstract_origin_attribute (block_ultimate_origin (stmt));
3559 if (! BLOCK_ABSTRACT (stmt))
3560 {
3561 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3562 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3563
3564 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3565 low_pc_attribute (begin_label);
3566 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3567 high_pc_attribute (end_label);
3568 }
3569 }
3570
3571 /* Output a DIE to represent a declared data object (either file-scope
3572 or block-local) which has "internal linkage" (according to ANSI-C). */
3573
3574 static void
3575 output_local_variable_die (arg)
3576 register void *arg;
3577 {
3578 register tree decl = arg;
3579 register tree origin = decl_ultimate_origin (decl);
3580
3581 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3582 sibling_attribute ();
3583 if (origin != NULL)
3584 abstract_origin_attribute (origin);
3585 else
3586 {
3587 name_and_src_coords_attributes (decl);
3588 member_attribute (DECL_CONTEXT (decl));
3589 type_attribute (TREE_TYPE (decl),
3590 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3591 }
3592 if (DECL_ABSTRACT (decl))
3593 equate_decl_number_to_die_number (decl);
3594 else
3595 location_or_const_value_attribute (decl);
3596 }
3597
3598 static void
3599 output_member_die (arg)
3600 register void *arg;
3601 {
3602 register tree decl = arg;
3603
3604 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3605 sibling_attribute ();
3606 name_and_src_coords_attributes (decl);
3607 member_attribute (DECL_CONTEXT (decl));
3608 type_attribute (member_declared_type (decl),
3609 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3610 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
3611 {
3612 byte_size_attribute (decl);
3613 bit_size_attribute (decl);
3614 bit_offset_attribute (decl);
3615 }
3616 data_member_location_attribute (decl);
3617 }
3618
3619 #if 0
3620 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3621 modified types instead.
3622
3623 We keep this code here just in case these types of DIEs may be
3624 needed to represent certain things in other languages (e.g. Pascal)
3625 someday. */
3626
3627 static void
3628 output_pointer_type_die (arg)
3629 register void *arg;
3630 {
3631 register tree type = arg;
3632
3633 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3634 sibling_attribute ();
3635 equate_type_number_to_die_number (type);
3636 member_attribute (TYPE_CONTEXT (type));
3637 type_attribute (TREE_TYPE (type), 0, 0);
3638 }
3639
3640 static void
3641 output_reference_type_die (arg)
3642 register void *arg;
3643 {
3644 register tree type = arg;
3645
3646 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3647 sibling_attribute ();
3648 equate_type_number_to_die_number (type);
3649 member_attribute (TYPE_CONTEXT (type));
3650 type_attribute (TREE_TYPE (type), 0, 0);
3651 }
3652 #endif
3653
3654 static void
3655 output_ptr_to_mbr_type_die (arg)
3656 register void *arg;
3657 {
3658 register tree type = arg;
3659
3660 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
3661 sibling_attribute ();
3662 equate_type_number_to_die_number (type);
3663 member_attribute (TYPE_CONTEXT (type));
3664 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
3665 type_attribute (TREE_TYPE (type), 0, 0);
3666 }
3667
3668 static void
3669 output_compile_unit_die (arg)
3670 register void *arg;
3671 {
3672 register char *main_input_filename = arg;
3673
3674 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
3675 sibling_attribute ();
3676 dienum_push ();
3677 name_attribute (main_input_filename);
3678
3679 {
3680 char producer[250];
3681
3682 sprintf (producer, "%s %s", language_string, version_string);
3683 producer_attribute (producer);
3684 }
3685
3686 if (strcmp (language_string, "GNU C++") == 0)
3687 language_attribute (LANG_C_PLUS_PLUS);
3688 else if (strcmp (language_string, "GNU Ada") == 0)
3689 language_attribute (LANG_ADA83);
3690 else if (strcmp (language_string, "GNU F77") == 0)
3691 language_attribute (LANG_FORTRAN77);
3692 else if (strcmp (language_string, "GNU Pascal") == 0)
3693 language_attribute (LANG_PASCAL83);
3694 else if (flag_traditional)
3695 language_attribute (LANG_C);
3696 else
3697 language_attribute (LANG_C89);
3698 low_pc_attribute (TEXT_BEGIN_LABEL);
3699 high_pc_attribute (TEXT_END_LABEL);
3700 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3701 stmt_list_attribute (LINE_BEGIN_LABEL);
3702 last_filename = xstrdup (main_input_filename);
3703
3704 {
3705 char *wd = getpwd ();
3706 if (wd)
3707 comp_dir_attribute (wd);
3708 }
3709
3710 if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
3711 {
3712 sf_names_attribute (SFNAMES_BEGIN_LABEL);
3713 src_info_attribute (SRCINFO_BEGIN_LABEL);
3714 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
3715 mac_info_attribute (MACINFO_BEGIN_LABEL);
3716 }
3717 }
3718
3719 static void
3720 output_string_type_die (arg)
3721 register void *arg;
3722 {
3723 register tree type = arg;
3724
3725 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
3726 sibling_attribute ();
3727 equate_type_number_to_die_number (type);
3728 member_attribute (TYPE_CONTEXT (type));
3729 /* this is a fixed length string */
3730 byte_size_attribute (type);
3731 }
3732
3733 static void
3734 output_inheritance_die (arg)
3735 register void *arg;
3736 {
3737 register tree binfo = arg;
3738
3739 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
3740 sibling_attribute ();
3741 type_attribute (BINFO_TYPE (binfo), 0, 0);
3742 data_member_location_attribute (binfo);
3743 if (TREE_VIA_VIRTUAL (binfo))
3744 {
3745 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3746 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3747 }
3748 if (TREE_VIA_PUBLIC (binfo))
3749 {
3750 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
3751 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3752 }
3753 else if (TREE_VIA_PROTECTED (binfo))
3754 {
3755 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
3756 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
3757 }
3758 }
3759
3760 static void
3761 output_structure_type_die (arg)
3762 register void *arg;
3763 {
3764 register tree type = arg;
3765
3766 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3767 sibling_attribute ();
3768 equate_type_number_to_die_number (type);
3769 name_attribute (type_tag (type));
3770 member_attribute (TYPE_CONTEXT (type));
3771
3772 /* If this type has been completed, then give it a byte_size attribute
3773 and prepare to give a list of members. Otherwise, don't do either of
3774 these things. In the latter case, we will not be generating a list
3775 of members (since we don't have any idea what they might be for an
3776 incomplete type). */
3777
3778 if (TYPE_SIZE (type))
3779 {
3780 dienum_push ();
3781 byte_size_attribute (type);
3782 }
3783 }
3784
3785 /* Output a DIE to represent a declared function (either file-scope
3786 or block-local) which has "internal linkage" (according to ANSI-C). */
3787
3788 static void
3789 output_local_subroutine_die (arg)
3790 register void *arg;
3791 {
3792 register tree decl = arg;
3793 register tree origin = decl_ultimate_origin (decl);
3794
3795 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
3796 sibling_attribute ();
3797 dienum_push ();
3798 if (origin != NULL)
3799 abstract_origin_attribute (origin);
3800 else
3801 {
3802 register tree type = TREE_TYPE (decl);
3803
3804 name_and_src_coords_attributes (decl);
3805 inline_attribute (decl);
3806 prototyped_attribute (type);
3807 member_attribute (DECL_CONTEXT (decl));
3808 type_attribute (TREE_TYPE (type), 0, 0);
3809 pure_or_virtual_attribute (decl);
3810 }
3811 if (DECL_ABSTRACT (decl))
3812 equate_decl_number_to_die_number (decl);
3813 else
3814 {
3815 /* Avoid getting screwed up in cases where a function was declared
3816 static but where no definition was ever given for it. */
3817
3818 if (TREE_ASM_WRITTEN (decl))
3819 {
3820 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3821 low_pc_attribute (function_start_label (decl));
3822 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3823 high_pc_attribute (label);
3824 if (use_gnu_debug_info_extensions)
3825 {
3826 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3827 body_begin_attribute (label);
3828 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3829 body_end_attribute (label);
3830 }
3831 }
3832 }
3833 }
3834
3835 static void
3836 output_subroutine_type_die (arg)
3837 register void *arg;
3838 {
3839 register tree type = arg;
3840 register tree return_type = TREE_TYPE (type);
3841
3842 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
3843 sibling_attribute ();
3844 dienum_push ();
3845 equate_type_number_to_die_number (type);
3846 prototyped_attribute (type);
3847 member_attribute (TYPE_CONTEXT (type));
3848 type_attribute (return_type, 0, 0);
3849 }
3850
3851 static void
3852 output_typedef_die (arg)
3853 register void *arg;
3854 {
3855 register tree decl = arg;
3856 register tree origin = decl_ultimate_origin (decl);
3857
3858 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
3859 sibling_attribute ();
3860 if (origin != NULL)
3861 abstract_origin_attribute (origin);
3862 else
3863 {
3864 name_and_src_coords_attributes (decl);
3865 member_attribute (DECL_CONTEXT (decl));
3866 type_attribute (TREE_TYPE (decl),
3867 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3868 }
3869 if (DECL_ABSTRACT (decl))
3870 equate_decl_number_to_die_number (decl);
3871 }
3872
3873 static void
3874 output_union_type_die (arg)
3875 register void *arg;
3876 {
3877 register tree type = arg;
3878
3879 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3880 sibling_attribute ();
3881 equate_type_number_to_die_number (type);
3882 name_attribute (type_tag (type));
3883 member_attribute (TYPE_CONTEXT (type));
3884
3885 /* If this type has been completed, then give it a byte_size attribute
3886 and prepare to give a list of members. Otherwise, don't do either of
3887 these things. In the latter case, we will not be generating a list
3888 of members (since we don't have any idea what they might be for an
3889 incomplete type). */
3890
3891 if (TYPE_SIZE (type))
3892 {
3893 dienum_push ();
3894 byte_size_attribute (type);
3895 }
3896 }
3897
3898 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3899 at the end of an (ANSI prototyped) formal parameters list. */
3900
3901 static void
3902 output_unspecified_parameters_die (arg)
3903 register void *arg;
3904 {
3905 register tree decl_or_type = arg;
3906
3907 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
3908 sibling_attribute ();
3909
3910 /* This kludge is here only for the sake of being compatible with what
3911 the USL CI5 C compiler does. The specification of Dwarf Version 1
3912 doesn't say that TAG_unspecified_parameters DIEs should contain any
3913 attributes other than the AT_sibling attribute, but they are certainly
3914 allowed to contain additional attributes, and the CI5 compiler
3915 generates AT_name, AT_fund_type, and AT_location attributes within
3916 TAG_unspecified_parameters DIEs which appear in the child lists for
3917 DIEs representing function definitions, so we do likewise here. */
3918
3919 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
3920 {
3921 name_attribute ("...");
3922 fund_type_attribute (FT_pointer);
3923 /* location_attribute (?); */
3924 }
3925 }
3926
3927 static void
3928 output_padded_null_die (arg)
3929 register void *arg ATTRIBUTE_UNUSED;
3930 {
3931 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
3932 }
3933
3934 /*************************** end of DIEs *********************************/
3935
3936 /* Generate some type of DIE. This routine generates the generic outer
3937 wrapper stuff which goes around all types of DIE's (regardless of their
3938 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
3939 DIE-length word, followed by the guts of the DIE itself. After the guts
3940 of the DIE, there must always be a terminator label for the DIE. */
3941
3942 static void
3943 output_die (die_specific_output_function, param)
3944 register void (*die_specific_output_function) PROTO ((void *));
3945 register void *param;
3946 {
3947 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3948 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3949
3950 current_dienum = NEXT_DIE_NUM;
3951 NEXT_DIE_NUM = next_unused_dienum;
3952
3953 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3954 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
3955
3956 /* Write a label which will act as the name for the start of this DIE. */
3957
3958 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3959
3960 /* Write the DIE-length word. */
3961
3962 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3963
3964 /* Fill in the guts of the DIE. */
3965
3966 next_unused_dienum++;
3967 die_specific_output_function (param);
3968
3969 /* Write a label which will act as the name for the end of this DIE. */
3970
3971 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3972 }
3973
3974 static void
3975 end_sibling_chain ()
3976 {
3977 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3978
3979 current_dienum = NEXT_DIE_NUM;
3980 NEXT_DIE_NUM = next_unused_dienum;
3981
3982 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3983
3984 /* Write a label which will act as the name for the start of this DIE. */
3985
3986 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3987
3988 /* Write the DIE-length word. */
3989
3990 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
3991
3992 dienum_pop ();
3993 }
3994 \f
3995 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
3996 TAG_unspecified_parameters DIE) to represent the types of the formal
3997 parameters as specified in some function type specification (except
3998 for those which appear as part of a function *definition*).
3999
4000 Note that we must be careful here to output all of the parameter
4001 DIEs *before* we output any DIEs needed to represent the types of
4002 the formal parameters. This keeps svr4 SDB happy because it
4003 (incorrectly) thinks that the first non-parameter DIE it sees ends
4004 the formal parameter list. */
4005
4006 static void
4007 output_formal_types (function_or_method_type)
4008 register tree function_or_method_type;
4009 {
4010 register tree link;
4011 register tree formal_type = NULL;
4012 register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4013
4014 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4015 get bogus recursion when outputting tagged types local to a
4016 function declaration. */
4017 int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4018 TREE_ASM_WRITTEN (function_or_method_type) = 1;
4019
4020 /* In the case where we are generating a formal types list for a C++
4021 non-static member function type, skip over the first thing on the
4022 TYPE_ARG_TYPES list because it only represents the type of the
4023 hidden `this pointer'. The debugger should be able to figure
4024 out (without being explicitly told) that this non-static member
4025 function type takes a `this pointer' and should be able to figure
4026 what the type of that hidden parameter is from the AT_member
4027 attribute of the parent TAG_subroutine_type DIE. */
4028
4029 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4030 first_parm_type = TREE_CHAIN (first_parm_type);
4031
4032 /* Make our first pass over the list of formal parameter types and output
4033 a TAG_formal_parameter DIE for each one. */
4034
4035 for (link = first_parm_type; link; link = TREE_CHAIN (link))
4036 {
4037 formal_type = TREE_VALUE (link);
4038 if (formal_type == void_type_node)
4039 break;
4040
4041 /* Output a (nameless) DIE to represent the formal parameter itself. */
4042
4043 output_die (output_formal_parameter_die, formal_type);
4044 }
4045
4046 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4047 DIE to the end of the parameter list. */
4048
4049 if (formal_type != void_type_node)
4050 output_die (output_unspecified_parameters_die, function_or_method_type);
4051
4052 /* Make our second (and final) pass over the list of formal parameter types
4053 and output DIEs to represent those types (as necessary). */
4054
4055 for (link = TYPE_ARG_TYPES (function_or_method_type);
4056 link;
4057 link = TREE_CHAIN (link))
4058 {
4059 formal_type = TREE_VALUE (link);
4060 if (formal_type == void_type_node)
4061 break;
4062
4063 output_type (formal_type, function_or_method_type);
4064 }
4065
4066 TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
4067 }
4068 \f
4069 /* Remember a type in the pending_types_list. */
4070
4071 static void
4072 pend_type (type)
4073 register tree type;
4074 {
4075 if (pending_types == pending_types_allocated)
4076 {
4077 pending_types_allocated += PENDING_TYPES_INCREMENT;
4078 pending_types_list
4079 = (tree *) xrealloc (pending_types_list,
4080 sizeof (tree) * pending_types_allocated);
4081 }
4082 pending_types_list[pending_types++] = type;
4083
4084 /* Mark the pending type as having been output already (even though
4085 it hasn't been). This prevents the type from being added to the
4086 pending_types_list more than once. */
4087
4088 TREE_ASM_WRITTEN (type) = 1;
4089 }
4090
4091 /* Return non-zero if it is legitimate to output DIEs to represent a
4092 given type while we are generating the list of child DIEs for some
4093 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4094
4095 See the comments within the function for a description of when it is
4096 considered legitimate to output DIEs for various kinds of types.
4097
4098 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4099 or it may point to a BLOCK node (for types local to a block), or to a
4100 FUNCTION_DECL node (for types local to the heading of some function
4101 definition), or to a FUNCTION_TYPE node (for types local to the
4102 prototyped parameter list of a function type specification), or to a
4103 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4104 (in the case of C++ nested types).
4105
4106 The `scope' parameter should likewise be NULL or should point to a
4107 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4108 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4109
4110 This function is used only for deciding when to "pend" and when to
4111 "un-pend" types to/from the pending_types_list.
4112
4113 Note that we sometimes make use of this "type pending" feature in a
4114 rather twisted way to temporarily delay the production of DIEs for the
4115 types of formal parameters. (We do this just to make svr4 SDB happy.)
4116 It order to delay the production of DIEs representing types of formal
4117 parameters, callers of this function supply `fake_containing_scope' as
4118 the `scope' parameter to this function. Given that fake_containing_scope
4119 is a tagged type which is *not* the containing scope for *any* other type,
4120 the desired effect is achieved, i.e. output of DIEs representing types
4121 is temporarily suspended, and any type DIEs which would have otherwise
4122 been output are instead placed onto the pending_types_list. Later on,
4123 we force these (temporarily pended) types to be output simply by calling
4124 `output_pending_types_for_scope' with an actual argument equal to the
4125 true scope of the types we temporarily pended. */
4126
4127 static inline int
4128 type_ok_for_scope (type, scope)
4129 register tree type;
4130 register tree scope;
4131 {
4132 /* Tagged types (i.e. struct, union, and enum types) must always be
4133 output only in the scopes where they actually belong (or else the
4134 scoping of their own tag names and the scoping of their member
4135 names will be incorrect). Non-tagged-types on the other hand can
4136 generally be output anywhere, except that svr4 SDB really doesn't
4137 want to see them nested within struct or union types, so here we
4138 say it is always OK to immediately output any such a (non-tagged)
4139 type, so long as we are not within such a context. Note that the
4140 only kinds of non-tagged types which we will be dealing with here
4141 (for C and C++ anyway) will be array types and function types. */
4142
4143 return is_tagged_type (type)
4144 ? (TYPE_CONTEXT (type) == scope
4145 /* Ignore namespaces for the moment. */
4146 || (scope == NULL_TREE
4147 && TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4148 || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4149 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4150 : (scope == NULL_TREE || ! is_tagged_type (scope));
4151 }
4152
4153 /* Output any pending types (from the pending_types list) which we can output
4154 now (taking into account the scope that we are working on now).
4155
4156 For each type output, remove the given type from the pending_types_list
4157 *before* we try to output it.
4158
4159 Note that we have to process the list in beginning-to-end order,
4160 because the call made here to output_type may cause yet more types
4161 to be added to the end of the list, and we may have to output some
4162 of them too. */
4163
4164 static void
4165 output_pending_types_for_scope (containing_scope)
4166 register tree containing_scope;
4167 {
4168 register unsigned i;
4169
4170 for (i = 0; i < pending_types; )
4171 {
4172 register tree type = pending_types_list[i];
4173
4174 if (type_ok_for_scope (type, containing_scope))
4175 {
4176 register tree *mover;
4177 register tree *limit;
4178
4179 pending_types--;
4180 limit = &pending_types_list[pending_types];
4181 for (mover = &pending_types_list[i]; mover < limit; mover++)
4182 *mover = *(mover+1);
4183
4184 /* Un-mark the type as having been output already (because it
4185 hasn't been, really). Then call output_type to generate a
4186 Dwarf representation of it. */
4187
4188 TREE_ASM_WRITTEN (type) = 0;
4189 output_type (type, containing_scope);
4190
4191 /* Don't increment the loop counter in this case because we
4192 have shifted all of the subsequent pending types down one
4193 element in the pending_types_list array. */
4194 }
4195 else
4196 i++;
4197 }
4198 }
4199
4200 static void
4201 output_type (type, containing_scope)
4202 register tree type;
4203 register tree containing_scope;
4204 {
4205 if (type == 0 || type == error_mark_node)
4206 return;
4207
4208 /* We are going to output a DIE to represent the unqualified version of
4209 this type (i.e. without any const or volatile qualifiers) so get
4210 the main variant (i.e. the unqualified version) of this type now. */
4211
4212 type = type_main_variant (type);
4213
4214 if (TREE_ASM_WRITTEN (type))
4215 {
4216 if (finalizing && AGGREGATE_TYPE_P (type))
4217 {
4218 register tree member;
4219
4220 /* Some of our nested types might not have been defined when we
4221 were written out before; force them out now. */
4222
4223 for (member = TYPE_FIELDS (type); member;
4224 member = TREE_CHAIN (member))
4225 if (TREE_CODE (member) == TYPE_DECL
4226 && ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4227 output_type (TREE_TYPE (member), containing_scope);
4228 }
4229 return;
4230 }
4231
4232 /* If this is a nested type whose containing class hasn't been
4233 written out yet, writing it out will cover this one, too. */
4234
4235 if (TYPE_CONTEXT (type)
4236 && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4237 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4238 {
4239 output_type (TYPE_CONTEXT (type), containing_scope);
4240 return;
4241 }
4242
4243 /* Don't generate any DIEs for this type now unless it is OK to do so
4244 (based upon what `type_ok_for_scope' tells us). */
4245
4246 if (! type_ok_for_scope (type, containing_scope))
4247 {
4248 pend_type (type);
4249 return;
4250 }
4251
4252 switch (TREE_CODE (type))
4253 {
4254 case ERROR_MARK:
4255 break;
4256
4257 case POINTER_TYPE:
4258 case REFERENCE_TYPE:
4259 /* Prevent infinite recursion in cases where this is a recursive
4260 type. Recursive types are possible in Ada. */
4261 TREE_ASM_WRITTEN (type) = 1;
4262 /* For these types, all that is required is that we output a DIE
4263 (or a set of DIEs) to represent the "basis" type. */
4264 output_type (TREE_TYPE (type), containing_scope);
4265 break;
4266
4267 case OFFSET_TYPE:
4268 /* This code is used for C++ pointer-to-data-member types. */
4269 /* Output a description of the relevant class type. */
4270 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4271 /* Output a description of the type of the object pointed to. */
4272 output_type (TREE_TYPE (type), containing_scope);
4273 /* Now output a DIE to represent this pointer-to-data-member type
4274 itself. */
4275 output_die (output_ptr_to_mbr_type_die, type);
4276 break;
4277
4278 case SET_TYPE:
4279 output_type (TYPE_DOMAIN (type), containing_scope);
4280 output_die (output_set_type_die, type);
4281 break;
4282
4283 case FILE_TYPE:
4284 output_type (TREE_TYPE (type), containing_scope);
4285 abort (); /* No way to represent these in Dwarf yet! */
4286 break;
4287
4288 case FUNCTION_TYPE:
4289 /* Force out return type (in case it wasn't forced out already). */
4290 output_type (TREE_TYPE (type), containing_scope);
4291 output_die (output_subroutine_type_die, type);
4292 output_formal_types (type);
4293 end_sibling_chain ();
4294 break;
4295
4296 case METHOD_TYPE:
4297 /* Force out return type (in case it wasn't forced out already). */
4298 output_type (TREE_TYPE (type), containing_scope);
4299 output_die (output_subroutine_type_die, type);
4300 output_formal_types (type);
4301 end_sibling_chain ();
4302 break;
4303
4304 case ARRAY_TYPE:
4305 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4306 {
4307 output_type (TREE_TYPE (type), containing_scope);
4308 output_die (output_string_type_die, type);
4309 }
4310 else
4311 {
4312 register tree element_type;
4313
4314 element_type = TREE_TYPE (type);
4315 while (TREE_CODE (element_type) == ARRAY_TYPE)
4316 element_type = TREE_TYPE (element_type);
4317
4318 output_type (element_type, containing_scope);
4319 output_die (output_array_type_die, type);
4320 }
4321 break;
4322
4323 case ENUMERAL_TYPE:
4324 case RECORD_TYPE:
4325 case UNION_TYPE:
4326 case QUAL_UNION_TYPE:
4327
4328 /* For a non-file-scope tagged type, we can always go ahead and
4329 output a Dwarf description of this type right now, even if
4330 the type in question is still incomplete, because if this
4331 local type *was* ever completed anywhere within its scope,
4332 that complete definition would already have been attached to
4333 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4334 node by the time we reach this point. That's true because of the
4335 way the front-end does its processing of file-scope declarations (of
4336 functions and class types) within which other types might be
4337 nested. The C and C++ front-ends always gobble up such "local
4338 scope" things en-mass before they try to output *any* debugging
4339 information for any of the stuff contained inside them and thus,
4340 we get the benefit here of what is (in effect) a pre-resolution
4341 of forward references to tagged types in local scopes.
4342
4343 Note however that for file-scope tagged types we cannot assume
4344 that such pre-resolution of forward references has taken place.
4345 A given file-scope tagged type may appear to be incomplete when
4346 we reach this point, but it may yet be given a full definition
4347 (at file-scope) later on during compilation. In order to avoid
4348 generating a premature (and possibly incorrect) set of Dwarf
4349 DIEs for such (as yet incomplete) file-scope tagged types, we
4350 generate nothing at all for as-yet incomplete file-scope tagged
4351 types here unless we are making our special "finalization" pass
4352 for file-scope things at the very end of compilation. At that
4353 time, we will certainly know as much about each file-scope tagged
4354 type as we are ever going to know, so at that point in time, we
4355 can safely generate correct Dwarf descriptions for these file-
4356 scope tagged types. */
4357
4358 if (TYPE_SIZE (type) == 0
4359 && (TYPE_CONTEXT (type) == NULL
4360 || (TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't'
4361 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_TYPE
4362 && TREE_CODE (TYPE_CONTEXT (type)) != METHOD_TYPE))
4363 && !finalizing)
4364 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4365
4366 /* Prevent infinite recursion in cases where the type of some
4367 member of this type is expressed in terms of this type itself. */
4368
4369 TREE_ASM_WRITTEN (type) = 1;
4370
4371 /* Output a DIE to represent the tagged type itself. */
4372
4373 switch (TREE_CODE (type))
4374 {
4375 case ENUMERAL_TYPE:
4376 output_die (output_enumeration_type_die, type);
4377 return; /* a special case -- nothing left to do so just return */
4378
4379 case RECORD_TYPE:
4380 output_die (output_structure_type_die, type);
4381 break;
4382
4383 case UNION_TYPE:
4384 case QUAL_UNION_TYPE:
4385 output_die (output_union_type_die, type);
4386 break;
4387
4388 default:
4389 abort (); /* Should never happen. */
4390 }
4391
4392 /* If this is not an incomplete type, output descriptions of
4393 each of its members.
4394
4395 Note that as we output the DIEs necessary to represent the
4396 members of this record or union type, we will also be trying
4397 to output DIEs to represent the *types* of those members.
4398 However the `output_type' function (above) will specifically
4399 avoid generating type DIEs for member types *within* the list
4400 of member DIEs for this (containing) type execpt for those
4401 types (of members) which are explicitly marked as also being
4402 members of this (containing) type themselves. The g++ front-
4403 end can force any given type to be treated as a member of some
4404 other (containing) type by setting the TYPE_CONTEXT of the
4405 given (member) type to point to the TREE node representing the
4406 appropriate (containing) type.
4407 */
4408
4409 if (TYPE_SIZE (type))
4410 {
4411 /* First output info about the base classes. */
4412 if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4413 {
4414 register tree bases = TYPE_BINFO_BASETYPES (type);
4415 register int n_bases = TREE_VEC_LENGTH (bases);
4416 register int i;
4417
4418 for (i = 0; i < n_bases; i++)
4419 output_die (output_inheritance_die, TREE_VEC_ELT (bases, i));
4420 }
4421
4422 ++in_class;
4423
4424 {
4425 register tree normal_member;
4426
4427 /* Now output info about the data members and type members. */
4428
4429 for (normal_member = TYPE_FIELDS (type);
4430 normal_member;
4431 normal_member = TREE_CHAIN (normal_member))
4432 output_decl (normal_member, type);
4433 }
4434
4435 {
4436 register tree func_member;
4437
4438 /* Now output info about the function members (if any). */
4439
4440 for (func_member = TYPE_METHODS (type);
4441 func_member;
4442 func_member = TREE_CHAIN (func_member))
4443 output_decl (func_member, type);
4444 }
4445
4446 --in_class;
4447
4448 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4449 scopes (at least in C++) so we must now output any nested
4450 pending types which are local just to this type. */
4451
4452 output_pending_types_for_scope (type);
4453
4454 end_sibling_chain (); /* Terminate member chain. */
4455 }
4456
4457 break;
4458
4459 case VOID_TYPE:
4460 case INTEGER_TYPE:
4461 case REAL_TYPE:
4462 case COMPLEX_TYPE:
4463 case BOOLEAN_TYPE:
4464 case CHAR_TYPE:
4465 break; /* No DIEs needed for fundamental types. */
4466
4467 case LANG_TYPE: /* No Dwarf representation currently defined. */
4468 break;
4469
4470 default:
4471 abort ();
4472 }
4473
4474 TREE_ASM_WRITTEN (type) = 1;
4475 }
4476
4477 static void
4478 output_tagged_type_instantiation (type)
4479 register tree type;
4480 {
4481 if (type == 0 || type == error_mark_node)
4482 return;
4483
4484 /* We are going to output a DIE to represent the unqualified version of
4485 this type (i.e. without any const or volatile qualifiers) so make
4486 sure that we have the main variant (i.e. the unqualified version) of
4487 this type now. */
4488
4489 if (type != type_main_variant (type))
4490 abort ();
4491
4492 if (!TREE_ASM_WRITTEN (type))
4493 abort ();
4494
4495 switch (TREE_CODE (type))
4496 {
4497 case ERROR_MARK:
4498 break;
4499
4500 case ENUMERAL_TYPE:
4501 output_die (output_inlined_enumeration_type_die, type);
4502 break;
4503
4504 case RECORD_TYPE:
4505 output_die (output_inlined_structure_type_die, type);
4506 break;
4507
4508 case UNION_TYPE:
4509 case QUAL_UNION_TYPE:
4510 output_die (output_inlined_union_type_die, type);
4511 break;
4512
4513 default:
4514 abort (); /* Should never happen. */
4515 }
4516 }
4517 \f
4518 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4519 the things which are local to the given block. */
4520
4521 static void
4522 output_block (stmt, depth)
4523 register tree stmt;
4524 int depth;
4525 {
4526 register int must_output_die = 0;
4527 register tree origin;
4528 register enum tree_code origin_code;
4529
4530 /* Ignore blocks never really used to make RTL. */
4531
4532 if (! stmt || ! TREE_USED (stmt))
4533 return;
4534
4535 /* Determine the "ultimate origin" of this block. This block may be an
4536 inlined instance of an inlined instance of inline function, so we
4537 have to trace all of the way back through the origin chain to find
4538 out what sort of node actually served as the original seed for the
4539 creation of the current block. */
4540
4541 origin = block_ultimate_origin (stmt);
4542 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4543
4544 /* Determine if we need to output any Dwarf DIEs at all to represent this
4545 block. */
4546
4547 if (origin_code == FUNCTION_DECL)
4548 /* The outer scopes for inlinings *must* always be represented. We
4549 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4550 must_output_die = 1;
4551 else
4552 {
4553 /* In the case where the current block represents an inlining of the
4554 "body block" of an inline function, we must *NOT* output any DIE
4555 for this block because we have already output a DIE to represent
4556 the whole inlined function scope and the "body block" of any
4557 function doesn't really represent a different scope according to
4558 ANSI C rules. So we check here to make sure that this block does
4559 not represent a "body block inlining" before trying to set the
4560 `must_output_die' flag. */
4561
4562 if (! is_body_block (origin ? origin : stmt))
4563 {
4564 /* Determine if this block directly contains any "significant"
4565 local declarations which we will need to output DIEs for. */
4566
4567 if (debug_info_level > DINFO_LEVEL_TERSE)
4568 /* We are not in terse mode so *any* local declaration counts
4569 as being a "significant" one. */
4570 must_output_die = (BLOCK_VARS (stmt) != NULL);
4571 else
4572 {
4573 register tree decl;
4574
4575 /* We are in terse mode, so only local (nested) function
4576 definitions count as "significant" local declarations. */
4577
4578 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4579 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4580 {
4581 must_output_die = 1;
4582 break;
4583 }
4584 }
4585 }
4586 }
4587
4588 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4589 DIE for any block which contains no significant local declarations
4590 at all. Rather, in such cases we just call `output_decls_for_scope'
4591 so that any needed Dwarf info for any sub-blocks will get properly
4592 generated. Note that in terse mode, our definition of what constitutes
4593 a "significant" local declaration gets restricted to include only
4594 inlined function instances and local (nested) function definitions. */
4595
4596 if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
4597 /* We don't care about an abstract inlined subroutine. */;
4598 else if (must_output_die)
4599 {
4600 output_die ((origin_code == FUNCTION_DECL)
4601 ? output_inlined_subroutine_die
4602 : output_lexical_block_die,
4603 stmt);
4604 output_decls_for_scope (stmt, depth);
4605 end_sibling_chain ();
4606 }
4607 else
4608 output_decls_for_scope (stmt, depth);
4609 }
4610
4611 /* Output all of the decls declared within a given scope (also called
4612 a `binding contour') and (recursively) all of it's sub-blocks. */
4613
4614 static void
4615 output_decls_for_scope (stmt, depth)
4616 register tree stmt;
4617 int depth;
4618 {
4619 /* Ignore blocks never really used to make RTL. */
4620
4621 if (! stmt || ! TREE_USED (stmt))
4622 return;
4623
4624 if (! BLOCK_ABSTRACT (stmt) && depth > 0)
4625 next_block_number++;
4626
4627 /* Output the DIEs to represent all of the data objects, functions,
4628 typedefs, and tagged types declared directly within this block
4629 but not within any nested sub-blocks. */
4630
4631 {
4632 register tree decl;
4633
4634 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4635 output_decl (decl, stmt);
4636 }
4637
4638 output_pending_types_for_scope (stmt);
4639
4640 /* Output the DIEs to represent all sub-blocks (and the items declared
4641 therein) of this block. */
4642
4643 {
4644 register tree subblocks;
4645
4646 for (subblocks = BLOCK_SUBBLOCKS (stmt);
4647 subblocks;
4648 subblocks = BLOCK_CHAIN (subblocks))
4649 output_block (subblocks, depth + 1);
4650 }
4651 }
4652
4653 /* Is this a typedef we can avoid emitting? */
4654
4655 inline int
4656 is_redundant_typedef (decl)
4657 register tree decl;
4658 {
4659 if (TYPE_DECL_IS_STUB (decl))
4660 return 1;
4661 if (DECL_ARTIFICIAL (decl)
4662 && DECL_CONTEXT (decl)
4663 && is_tagged_type (DECL_CONTEXT (decl))
4664 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
4665 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
4666 /* Also ignore the artificial member typedef for the class name. */
4667 return 1;
4668 return 0;
4669 }
4670
4671 /* Output Dwarf .debug information for a decl described by DECL. */
4672
4673 static void
4674 output_decl (decl, containing_scope)
4675 register tree decl;
4676 register tree containing_scope;
4677 {
4678 /* Make a note of the decl node we are going to be working on. We may
4679 need to give the user the source coordinates of where it appeared in
4680 case we notice (later on) that something about it looks screwy. */
4681
4682 dwarf_last_decl = decl;
4683
4684 if (TREE_CODE (decl) == ERROR_MARK)
4685 return;
4686
4687 /* If a structure is declared within an initialization, e.g. as the
4688 operand of a sizeof, then it will not have a name. We don't want
4689 to output a DIE for it, as the tree nodes are in the temporary obstack */
4690
4691 if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4692 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
4693 && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
4694 || (TYPE_FIELDS (TREE_TYPE (decl))
4695 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
4696 return;
4697
4698 /* If this ..._DECL node is marked to be ignored, then ignore it.
4699 But don't ignore a function definition, since that would screw
4700 up our count of blocks, and that it turn will completely screw up the
4701 labels we will reference in subsequent AT_low_pc and AT_high_pc
4702 attributes (for subsequent blocks). */
4703
4704 if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL)
4705 return;
4706
4707 switch (TREE_CODE (decl))
4708 {
4709 case CONST_DECL:
4710 /* The individual enumerators of an enum type get output when we
4711 output the Dwarf representation of the relevant enum type itself. */
4712 break;
4713
4714 case FUNCTION_DECL:
4715 /* If we are in terse mode, don't output any DIEs to represent
4716 mere function declarations. Also, if we are conforming
4717 to the DWARF version 1 specification, don't output DIEs for
4718 mere function declarations. */
4719
4720 if (DECL_INITIAL (decl) == NULL_TREE)
4721 #if (DWARF_VERSION > 1)
4722 if (debug_info_level <= DINFO_LEVEL_TERSE)
4723 #endif
4724 break;
4725
4726 /* Before we describe the FUNCTION_DECL itself, make sure that we
4727 have described its return type. */
4728
4729 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
4730
4731 {
4732 /* And its containing type. */
4733 register tree origin = decl_class_context (decl);
4734 if (origin)
4735 output_type (origin, containing_scope);
4736 }
4737
4738 /* If the following DIE will represent a function definition for a
4739 function with "extern" linkage, output a special "pubnames" DIE
4740 label just ahead of the actual DIE. A reference to this label
4741 was already generated in the .debug_pubnames section sub-entry
4742 for this function definition. */
4743
4744 if (TREE_PUBLIC (decl))
4745 {
4746 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4747
4748 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4749 ASM_OUTPUT_LABEL (asm_out_file, label);
4750 }
4751
4752 /* Now output a DIE to represent the function itself. */
4753
4754 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
4755 ? output_global_subroutine_die
4756 : output_local_subroutine_die,
4757 decl);
4758
4759 /* Now output descriptions of the arguments for this function.
4760 This gets (unnecessarily?) complex because of the fact that
4761 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4762 cases where there was a trailing `...' at the end of the formal
4763 parameter list. In order to find out if there was a trailing
4764 ellipsis or not, we must instead look at the type associated
4765 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
4766 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4767 ends with a void_type_node then there should *not* be an ellipsis
4768 at the end. */
4769
4770 /* In the case where we are describing a mere function declaration, all
4771 we need to do here (and all we *can* do here) is to describe
4772 the *types* of its formal parameters. */
4773
4774 if (decl != current_function_decl || in_class)
4775 output_formal_types (TREE_TYPE (decl));
4776 else
4777 {
4778 /* Generate DIEs to represent all known formal parameters */
4779
4780 register tree arg_decls = DECL_ARGUMENTS (decl);
4781 register tree parm;
4782
4783 /* WARNING! Kludge zone ahead! Here we have a special
4784 hack for svr4 SDB compatibility. Instead of passing the
4785 current FUNCTION_DECL node as the second parameter (i.e.
4786 the `containing_scope' parameter) to `output_decl' (as
4787 we ought to) we instead pass a pointer to our own private
4788 fake_containing_scope node. That node is a RECORD_TYPE
4789 node which NO OTHER TYPE may ever actually be a member of.
4790
4791 This pointer will ultimately get passed into `output_type'
4792 as its `containing_scope' parameter. `Output_type' will
4793 then perform its part in the hack... i.e. it will pend
4794 the type of the formal parameter onto the pending_types
4795 list. Later on, when we are done generating the whole
4796 sequence of formal parameter DIEs for this function
4797 definition, we will un-pend all previously pended types
4798 of formal parameters for this function definition.
4799
4800 This whole kludge prevents any type DIEs from being
4801 mixed in with the formal parameter DIEs. That's good
4802 because svr4 SDB believes that the list of formal
4803 parameter DIEs for a function ends wherever the first
4804 non-formal-parameter DIE appears. Thus, we have to
4805 keep the formal parameter DIEs segregated. They must
4806 all appear (consecutively) at the start of the list of
4807 children for the DIE representing the function definition.
4808 Then (and only then) may we output any additional DIEs
4809 needed to represent the types of these formal parameters.
4810 */
4811
4812 /*
4813 When generating DIEs, generate the unspecified_parameters
4814 DIE instead if we come across the arg "__builtin_va_alist"
4815 */
4816
4817 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
4818 if (TREE_CODE (parm) == PARM_DECL)
4819 {
4820 if (DECL_NAME(parm) &&
4821 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
4822 "__builtin_va_alist") )
4823 output_die (output_unspecified_parameters_die, decl);
4824 else
4825 output_decl (parm, fake_containing_scope);
4826 }
4827
4828 /*
4829 Now that we have finished generating all of the DIEs to
4830 represent the formal parameters themselves, force out
4831 any DIEs needed to represent their types. We do this
4832 simply by un-pending all previously pended types which
4833 can legitimately go into the chain of children DIEs for
4834 the current FUNCTION_DECL.
4835 */
4836
4837 output_pending_types_for_scope (decl);
4838
4839 /*
4840 Decide whether we need a unspecified_parameters DIE at the end.
4841 There are 2 more cases to do this for:
4842 1) the ansi ... declaration - this is detectable when the end
4843 of the arg list is not a void_type_node
4844 2) an unprototyped function declaration (not a definition). This
4845 just means that we have no info about the parameters at all.
4846 */
4847
4848 {
4849 register tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
4850
4851 if (fn_arg_types)
4852 {
4853 /* this is the prototyped case, check for ... */
4854 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
4855 output_die (output_unspecified_parameters_die, decl);
4856 }
4857 else
4858 {
4859 /* this is unprototyped, check for undefined (just declaration) */
4860 if (!DECL_INITIAL (decl))
4861 output_die (output_unspecified_parameters_die, decl);
4862 }
4863 }
4864
4865 /* Output Dwarf info for all of the stuff within the body of the
4866 function (if it has one - it may be just a declaration). */
4867
4868 {
4869 register tree outer_scope = DECL_INITIAL (decl);
4870
4871 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
4872 {
4873 /* Note that here, `outer_scope' is a pointer to the outermost
4874 BLOCK node created to represent a function.
4875 This outermost BLOCK actually represents the outermost
4876 binding contour for the function, i.e. the contour in which
4877 the function's formal parameters and labels get declared.
4878
4879 Curiously, it appears that the front end doesn't actually
4880 put the PARM_DECL nodes for the current function onto the
4881 BLOCK_VARS list for this outer scope. (They are strung
4882 off of the DECL_ARGUMENTS list for the function instead.)
4883 The BLOCK_VARS list for the `outer_scope' does provide us
4884 with a list of the LABEL_DECL nodes for the function however,
4885 and we output DWARF info for those here.
4886
4887 Just within the `outer_scope' there will be a BLOCK node
4888 representing the function's outermost pair of curly braces,
4889 and any blocks used for the base and member initializers of
4890 a C++ constructor function. */
4891
4892 output_decls_for_scope (outer_scope, 0);
4893
4894 /* Finally, force out any pending types which are local to the
4895 outermost block of this function definition. These will
4896 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
4897 node itself. */
4898
4899 output_pending_types_for_scope (decl);
4900 }
4901 }
4902 }
4903
4904 /* Generate a terminator for the list of stuff `owned' by this
4905 function. */
4906
4907 end_sibling_chain ();
4908
4909 break;
4910
4911 case TYPE_DECL:
4912 /* If we are in terse mode, don't generate any DIEs to represent
4913 any actual typedefs. Note that even when we are in terse mode,
4914 we must still output DIEs to represent those tagged types which
4915 are used (directly or indirectly) in the specification of either
4916 a return type or a formal parameter type of some function. */
4917
4918 if (debug_info_level <= DINFO_LEVEL_TERSE)
4919 if (! TYPE_DECL_IS_STUB (decl)
4920 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
4921 return;
4922
4923 /* In the special case of a TYPE_DECL node representing
4924 the declaration of some type tag, if the given TYPE_DECL is
4925 marked as having been instantiated from some other (original)
4926 TYPE_DECL node (e.g. one which was generated within the original
4927 definition of an inline function) we have to generate a special
4928 (abbreviated) TAG_structure_type, TAG_union_type, or
4929 TAG_enumeration-type DIE here. */
4930
4931 if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
4932 {
4933 output_tagged_type_instantiation (TREE_TYPE (decl));
4934 return;
4935 }
4936
4937 output_type (TREE_TYPE (decl), containing_scope);
4938
4939 if (! is_redundant_typedef (decl))
4940 /* Output a DIE to represent the typedef itself. */
4941 output_die (output_typedef_die, decl);
4942 break;
4943
4944 case LABEL_DECL:
4945 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4946 output_die (output_label_die, decl);
4947 break;
4948
4949 case VAR_DECL:
4950 /* If we are conforming to the DWARF version 1 specification, don't
4951 generated any DIEs to represent mere external object declarations. */
4952
4953 #if (DWARF_VERSION <= 1)
4954 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
4955 break;
4956 #endif
4957
4958 /* If we are in terse mode, don't generate any DIEs to represent
4959 any variable declarations or definitions. */
4960
4961 if (debug_info_level <= DINFO_LEVEL_TERSE)
4962 break;
4963
4964 /* Output any DIEs that are needed to specify the type of this data
4965 object. */
4966
4967 output_type (TREE_TYPE (decl), containing_scope);
4968
4969 {
4970 /* And its containing type. */
4971 register tree origin = decl_class_context (decl);
4972 if (origin)
4973 output_type (origin, containing_scope);
4974 }
4975
4976 /* If the following DIE will represent a data object definition for a
4977 data object with "extern" linkage, output a special "pubnames" DIE
4978 label just ahead of the actual DIE. A reference to this label
4979 was already generated in the .debug_pubnames section sub-entry
4980 for this data object definition. */
4981
4982 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
4983 {
4984 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4985
4986 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4987 ASM_OUTPUT_LABEL (asm_out_file, label);
4988 }
4989
4990 /* Now output the DIE to represent the data object itself. This gets
4991 complicated because of the possibility that the VAR_DECL really
4992 represents an inlined instance of a formal parameter for an inline
4993 function. */
4994
4995 {
4996 register void (*func) ();
4997 register tree origin = decl_ultimate_origin (decl);
4998
4999 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5000 func = output_formal_parameter_die;
5001 else
5002 {
5003 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5004 func = output_global_variable_die;
5005 else
5006 func = output_local_variable_die;
5007 }
5008 output_die (func, decl);
5009 }
5010 break;
5011
5012 case FIELD_DECL:
5013 /* Ignore the nameless fields that are used to skip bits. */
5014 if (DECL_NAME (decl) != 0)
5015 {
5016 output_type (member_declared_type (decl), containing_scope);
5017 output_die (output_member_die, decl);
5018 }
5019 break;
5020
5021 case PARM_DECL:
5022 /* Force out the type of this formal, if it was not forced out yet.
5023 Note that here we can run afowl of a bug in "classic" svr4 SDB.
5024 It should be able to grok the presence of type DIEs within a list
5025 of TAG_formal_parameter DIEs, but it doesn't. */
5026
5027 output_type (TREE_TYPE (decl), containing_scope);
5028 output_die (output_formal_parameter_die, decl);
5029 break;
5030
5031 default:
5032 abort ();
5033 }
5034 }
5035 \f
5036 void
5037 dwarfout_file_scope_decl (decl, set_finalizing)
5038 register tree decl;
5039 register int set_finalizing;
5040 {
5041 if (TREE_CODE (decl) == ERROR_MARK)
5042 return;
5043
5044 /* If this ..._DECL node is marked to be ignored, then ignore it. We
5045 gotta hope that the node in question doesn't represent a function
5046 definition. If it does, then totally ignoring it is bound to screw
5047 up our count of blocks, and that it turn will completely screw up the
5048 labels we will reference in subsequent AT_low_pc and AT_high_pc
5049 attributes (for subsequent blocks). (It's too bad that BLOCK nodes
5050 don't carry their own sequence numbers with them!) */
5051
5052 if (DECL_IGNORED_P (decl))
5053 {
5054 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5055 abort ();
5056 return;
5057 }
5058
5059 switch (TREE_CODE (decl))
5060 {
5061 case FUNCTION_DECL:
5062
5063 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5064 a builtin function. Explicit programmer-supplied declarations of
5065 these same functions should NOT be ignored however. */
5066
5067 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5068 return;
5069
5070 /* What we would really like to do here is to filter out all mere
5071 file-scope declarations of file-scope functions which are never
5072 referenced later within this translation unit (and keep all of
5073 ones that *are* referenced later on) but we aren't clairvoyant,
5074 so we have no idea which functions will be referenced in the
5075 future (i.e. later on within the current translation unit).
5076 So here we just ignore all file-scope function declarations
5077 which are not also definitions. If and when the debugger needs
5078 to know something about these functions, it wil have to hunt
5079 around and find the DWARF information associated with the
5080 *definition* of the function.
5081
5082 Note that we can't just check `DECL_EXTERNAL' to find out which
5083 FUNCTION_DECL nodes represent definitions and which ones represent
5084 mere declarations. We have to check `DECL_INITIAL' instead. That's
5085 because the C front-end supports some weird semantics for "extern
5086 inline" function definitions. These can get inlined within the
5087 current translation unit (an thus, we need to generate DWARF info
5088 for their abstract instances so that the DWARF info for the
5089 concrete inlined instances can have something to refer to) but
5090 the compiler never generates any out-of-lines instances of such
5091 things (despite the fact that they *are* definitions). The
5092 important point is that the C front-end marks these "extern inline"
5093 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5094 anyway.
5095
5096 Note that the C++ front-end also plays some similar games for inline
5097 function definitions appearing within include files which also
5098 contain `#pragma interface' pragmas. */
5099
5100 if (DECL_INITIAL (decl) == NULL_TREE)
5101 return;
5102
5103 if (TREE_PUBLIC (decl)
5104 && ! DECL_EXTERNAL (decl)
5105 && ! DECL_ABSTRACT (decl))
5106 {
5107 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5108
5109 /* Output a .debug_pubnames entry for a public function
5110 defined in this compilation unit. */
5111
5112 fputc ('\n', asm_out_file);
5113 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5114 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5115 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5116 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5117 IDENTIFIER_POINTER (DECL_NAME (decl)));
5118 ASM_OUTPUT_POP_SECTION (asm_out_file);
5119 }
5120
5121 break;
5122
5123 case VAR_DECL:
5124
5125 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5126 object declaration and if the declaration was never even
5127 referenced from within this entire compilation unit. We
5128 suppress these DIEs in order to save space in the .debug section
5129 (by eliminating entries which are probably useless). Note that
5130 we must not suppress block-local extern declarations (whether
5131 used or not) because that would screw-up the debugger's name
5132 lookup mechanism and cause it to miss things which really ought
5133 to be in scope at a given point. */
5134
5135 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5136 return;
5137
5138 if (TREE_PUBLIC (decl)
5139 && ! DECL_EXTERNAL (decl)
5140 && GET_CODE (DECL_RTL (decl)) == MEM
5141 && ! DECL_ABSTRACT (decl))
5142 {
5143 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5144
5145 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5146 {
5147 /* Output a .debug_pubnames entry for a public variable
5148 defined in this compilation unit. */
5149
5150 fputc ('\n', asm_out_file);
5151 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5152 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5153 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5154 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5155 IDENTIFIER_POINTER (DECL_NAME (decl)));
5156 ASM_OUTPUT_POP_SECTION (asm_out_file);
5157 }
5158
5159 if (DECL_INITIAL (decl) == NULL)
5160 {
5161 /* Output a .debug_aranges entry for a public variable
5162 which is tentatively defined in this compilation unit. */
5163
5164 fputc ('\n', asm_out_file);
5165 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5166 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5167 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5168 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5169 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5170 ASM_OUTPUT_POP_SECTION (asm_out_file);
5171 }
5172 }
5173
5174 /* If we are in terse mode, don't generate any DIEs to represent
5175 any variable declarations or definitions. */
5176
5177 if (debug_info_level <= DINFO_LEVEL_TERSE)
5178 return;
5179
5180 break;
5181
5182 case TYPE_DECL:
5183 /* Don't bother trying to generate any DIEs to represent any of the
5184 normal built-in types for the language we are compiling, except
5185 in cases where the types in question are *not* DWARF fundamental
5186 types. We make an exception in the case of non-fundamental types
5187 for the sake of objective C (and perhaps C++) because the GNU
5188 front-ends for these languages may in fact create certain "built-in"
5189 types which are (for example) RECORD_TYPEs. In such cases, we
5190 really need to output these (non-fundamental) types because other
5191 DIEs may contain references to them. */
5192
5193 if (DECL_SOURCE_LINE (decl) == 0
5194 && type_is_fundamental (TREE_TYPE (decl)))
5195 return;
5196
5197 /* If we are in terse mode, don't generate any DIEs to represent
5198 any actual typedefs. Note that even when we are in terse mode,
5199 we must still output DIEs to represent those tagged types which
5200 are used (directly or indirectly) in the specification of either
5201 a return type or a formal parameter type of some function. */
5202
5203 if (debug_info_level <= DINFO_LEVEL_TERSE)
5204 if (! TYPE_DECL_IS_STUB (decl)
5205 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5206 return;
5207
5208 break;
5209
5210 default:
5211 return;
5212 }
5213
5214 fputc ('\n', asm_out_file);
5215 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5216 finalizing = set_finalizing;
5217 output_decl (decl, NULL_TREE);
5218
5219 /* NOTE: The call above to `output_decl' may have caused one or more
5220 file-scope named types (i.e. tagged types) to be placed onto the
5221 pending_types_list. We have to get those types off of that list
5222 at some point, and this is the perfect time to do it. If we didn't
5223 take them off now, they might still be on the list when cc1 finally
5224 exits. That might be OK if it weren't for the fact that when we put
5225 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5226 for these types, and that causes them never to be output unless
5227 `output_pending_types_for_scope' takes them off of the list and un-sets
5228 their TREE_ASM_WRITTEN flags. */
5229
5230 output_pending_types_for_scope (NULL_TREE);
5231
5232 /* The above call should have totally emptied the pending_types_list. */
5233
5234 if (pending_types != 0)
5235 abort ();
5236
5237 ASM_OUTPUT_POP_SECTION (asm_out_file);
5238
5239 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
5240 current_funcdef_number++;
5241 }
5242 \f
5243 /* Output a marker (i.e. a label) for the beginning of the generated code
5244 for a lexical block. */
5245
5246 void
5247 dwarfout_begin_block (blocknum)
5248 register unsigned blocknum;
5249 {
5250 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5251
5252 function_section (current_function_decl);
5253 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5254 ASM_OUTPUT_LABEL (asm_out_file, label);
5255 }
5256
5257 /* Output a marker (i.e. a label) for the end of the generated code
5258 for a lexical block. */
5259
5260 void
5261 dwarfout_end_block (blocknum)
5262 register unsigned blocknum;
5263 {
5264 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5265
5266 function_section (current_function_decl);
5267 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5268 ASM_OUTPUT_LABEL (asm_out_file, label);
5269 }
5270
5271 /* Output a marker (i.e. a label) at a point in the assembly code which
5272 corresponds to a given source level label. */
5273
5274 void
5275 dwarfout_label (insn)
5276 register rtx insn;
5277 {
5278 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5279 {
5280 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5281
5282 function_section (current_function_decl);
5283 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
5284 (unsigned) INSN_UID (insn));
5285 ASM_OUTPUT_LABEL (asm_out_file, label);
5286 }
5287 }
5288
5289 /* Output a marker (i.e. a label) for the point in the generated code where
5290 the real body of the function begins (after parameters have been moved
5291 to their home locations). */
5292
5293 void
5294 dwarfout_begin_function ()
5295 {
5296 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5297
5298 if (! use_gnu_debug_info_extensions)
5299 return;
5300 function_section (current_function_decl);
5301 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
5302 ASM_OUTPUT_LABEL (asm_out_file, label);
5303 }
5304
5305 /* Output a marker (i.e. a label) for the point in the generated code where
5306 the real body of the function ends (just before the epilogue code). */
5307
5308 void
5309 dwarfout_end_function ()
5310 {
5311 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5312
5313 if (! use_gnu_debug_info_extensions)
5314 return;
5315 function_section (current_function_decl);
5316 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
5317 ASM_OUTPUT_LABEL (asm_out_file, label);
5318 }
5319
5320 /* Output a marker (i.e. a label) for the absolute end of the generated code
5321 for a function definition. This gets called *after* the epilogue code
5322 has been generated. */
5323
5324 void
5325 dwarfout_end_epilogue ()
5326 {
5327 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5328
5329 /* Output a label to mark the endpoint of the code generated for this
5330 function. */
5331
5332 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
5333 ASM_OUTPUT_LABEL (asm_out_file, label);
5334 }
5335
5336 static void
5337 shuffle_filename_entry (new_zeroth)
5338 register filename_entry *new_zeroth;
5339 {
5340 filename_entry temp_entry;
5341 register filename_entry *limit_p;
5342 register filename_entry *move_p;
5343
5344 if (new_zeroth == &filename_table[0])
5345 return;
5346
5347 temp_entry = *new_zeroth;
5348
5349 /* Shift entries up in the table to make room at [0]. */
5350
5351 limit_p = &filename_table[0];
5352 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5353 *move_p = *(move_p-1);
5354
5355 /* Install the found entry at [0]. */
5356
5357 filename_table[0] = temp_entry;
5358 }
5359
5360 /* Create a new (string) entry for the .debug_sfnames section. */
5361
5362 static void
5363 generate_new_sfname_entry ()
5364 {
5365 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5366
5367 fputc ('\n', asm_out_file);
5368 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5369 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5370 ASM_OUTPUT_LABEL (asm_out_file, label);
5371 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5372 filename_table[0].name
5373 ? filename_table[0].name
5374 : "");
5375 ASM_OUTPUT_POP_SECTION (asm_out_file);
5376 }
5377
5378 /* Lookup a filename (in the list of filenames that we know about here in
5379 dwarfout.c) and return its "index". The index of each (known) filename
5380 is just a unique number which is associated with only that one filename.
5381 We need such numbers for the sake of generating labels (in the
5382 .debug_sfnames section) and references to those unique labels (in the
5383 .debug_srcinfo and .debug_macinfo sections).
5384
5385 If the filename given as an argument is not found in our current list,
5386 add it to the list and assign it the next available unique index number.
5387
5388 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5389 one), we shuffle the filename found (or added) up to the zeroth entry of
5390 our list of filenames (which is always searched linearly). We do this so
5391 as to optimize the most common case for these filename lookups within
5392 dwarfout.c. The most common case by far is the case where we call
5393 lookup_filename to lookup the very same filename that we did a lookup
5394 on the last time we called lookup_filename. We make sure that this
5395 common case is fast because such cases will constitute 99.9% of the
5396 lookups we ever do (in practice).
5397
5398 If we add a new filename entry to our table, we go ahead and generate
5399 the corresponding entry in the .debug_sfnames section right away.
5400 Doing so allows us to avoid tickling an assembler bug (present in some
5401 m68k assemblers) which yields assembly-time errors in cases where the
5402 difference of two label addresses is taken and where the two labels
5403 are in a section *other* than the one where the difference is being
5404 calculated, and where at least one of the two symbol references is a
5405 forward reference. (This bug could be tickled by our .debug_srcinfo
5406 entries if we don't output their corresponding .debug_sfnames entries
5407 before them.) */
5408
5409 static unsigned
5410 lookup_filename (file_name)
5411 char *file_name;
5412 {
5413 register filename_entry *search_p;
5414 register filename_entry *limit_p = &filename_table[ft_entries];
5415
5416 for (search_p = filename_table; search_p < limit_p; search_p++)
5417 if (!strcmp (file_name, search_p->name))
5418 {
5419 /* When we get here, we have found the filename that we were
5420 looking for in the filename_table. Now we want to make sure
5421 that it gets moved to the zero'th entry in the table (if it
5422 is not already there) so that subsequent attempts to find the
5423 same filename will find it as quickly as possible. */
5424
5425 shuffle_filename_entry (search_p);
5426 return filename_table[0].number;
5427 }
5428
5429 /* We come here whenever we have a new filename which is not registered
5430 in the current table. Here we add it to the table. */
5431
5432 /* Prepare to add a new table entry by making sure there is enough space
5433 in the table to do so. If not, expand the current table. */
5434
5435 if (ft_entries == ft_entries_allocated)
5436 {
5437 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5438 filename_table
5439 = (filename_entry *)
5440 xrealloc (filename_table,
5441 ft_entries_allocated * sizeof (filename_entry));
5442 }
5443
5444 /* Initially, add the new entry at the end of the filename table. */
5445
5446 filename_table[ft_entries].number = ft_entries;
5447 filename_table[ft_entries].name = xstrdup (file_name);
5448
5449 /* Shuffle the new entry into filename_table[0]. */
5450
5451 shuffle_filename_entry (&filename_table[ft_entries]);
5452
5453 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5454 generate_new_sfname_entry ();
5455
5456 ft_entries++;
5457 return filename_table[0].number;
5458 }
5459
5460 static void
5461 generate_srcinfo_entry (line_entry_num, files_entry_num)
5462 unsigned line_entry_num;
5463 unsigned files_entry_num;
5464 {
5465 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5466
5467 fputc ('\n', asm_out_file);
5468 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5469 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5470 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5471 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5472 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
5473 ASM_OUTPUT_POP_SECTION (asm_out_file);
5474 }
5475
5476 void
5477 dwarfout_line (filename, line)
5478 register char *filename;
5479 register unsigned line;
5480 {
5481 if (debug_info_level >= DINFO_LEVEL_NORMAL
5482 /* We can't emit line number info for functions in separate sections,
5483 because the assembler can't subtract labels in different sections. */
5484 && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
5485 {
5486 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5487 static unsigned last_line_entry_num = 0;
5488 static unsigned prev_file_entry_num = (unsigned) -1;
5489 register unsigned this_file_entry_num;
5490
5491 function_section (current_function_decl);
5492 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5493 ASM_OUTPUT_LABEL (asm_out_file, label);
5494
5495 fputc ('\n', asm_out_file);
5496
5497 if (use_gnu_debug_info_extensions)
5498 this_file_entry_num = lookup_filename (filename);
5499 else
5500 this_file_entry_num = (unsigned) -1;
5501
5502 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5503 if (this_file_entry_num != prev_file_entry_num)
5504 {
5505 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5506
5507 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5508 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5509 }
5510
5511 {
5512 register char *tail = rindex (filename, '/');
5513
5514 if (tail != NULL)
5515 filename = tail;
5516 }
5517
5518 fprintf (asm_out_file, "\t%s\t%u\t%s %s:%u\n",
5519 UNALIGNED_INT_ASM_OP, line, ASM_COMMENT_START,
5520 filename, line);
5521 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5522 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
5523 ASM_OUTPUT_POP_SECTION (asm_out_file);
5524
5525 if (this_file_entry_num != prev_file_entry_num)
5526 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5527 prev_file_entry_num = this_file_entry_num;
5528 }
5529 }
5530
5531 /* Generate an entry in the .debug_macinfo section. */
5532
5533 static void
5534 generate_macinfo_entry (type_and_offset, string)
5535 register char *type_and_offset;
5536 register char *string;
5537 {
5538 if (! use_gnu_debug_info_extensions)
5539 return;
5540
5541 fputc ('\n', asm_out_file);
5542 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5543 fprintf (asm_out_file, "\t%s\t%s\n", UNALIGNED_INT_ASM_OP, type_and_offset);
5544 ASM_OUTPUT_DWARF_STRING (asm_out_file, string);
5545 ASM_OUTPUT_POP_SECTION (asm_out_file);
5546 }
5547
5548 void
5549 dwarfout_start_new_source_file (filename)
5550 register char *filename;
5551 {
5552 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5553 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*3];
5554
5555 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5556 sprintf (type_and_offset, "0x%08x+%s-%s",
5557 ((unsigned) MACINFO_start << 24),
5558 /* Hack: skip leading '*' . */
5559 (*label == '*') + label,
5560 (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL);
5561 generate_macinfo_entry (type_and_offset, "");
5562 }
5563
5564 void
5565 dwarfout_resume_previous_source_file (lineno)
5566 register unsigned lineno;
5567 {
5568 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5569
5570 sprintf (type_and_offset, "0x%08x+%u",
5571 ((unsigned) MACINFO_resume << 24), lineno);
5572 generate_macinfo_entry (type_and_offset, "");
5573 }
5574
5575 /* Called from check_newline in c-parse.y. The `buffer' parameter
5576 contains the tail part of the directive line, i.e. the part which
5577 is past the initial whitespace, #, whitespace, directive-name,
5578 whitespace part. */
5579
5580 void
5581 dwarfout_define (lineno, buffer)
5582 register unsigned lineno;
5583 register char *buffer;
5584 {
5585 static int initialized = 0;
5586 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5587
5588 if (!initialized)
5589 {
5590 dwarfout_start_new_source_file (primary_filename);
5591 initialized = 1;
5592 }
5593 sprintf (type_and_offset, "0x%08x+%u",
5594 ((unsigned) MACINFO_define << 24), lineno);
5595 generate_macinfo_entry (type_and_offset, buffer);
5596 }
5597
5598 /* Called from check_newline in c-parse.y. The `buffer' parameter
5599 contains the tail part of the directive line, i.e. the part which
5600 is past the initial whitespace, #, whitespace, directive-name,
5601 whitespace part. */
5602
5603 void
5604 dwarfout_undef (lineno, buffer)
5605 register unsigned lineno;
5606 register char *buffer;
5607 {
5608 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5609
5610 sprintf (type_and_offset, "0x%08x+%u",
5611 ((unsigned) MACINFO_undef << 24), lineno);
5612 generate_macinfo_entry (type_and_offset, buffer);
5613 }
5614
5615 /* Set up for Dwarf output at the start of compilation. */
5616
5617 void
5618 dwarfout_init (asm_out_file, main_input_filename)
5619 register FILE *asm_out_file;
5620 register char *main_input_filename;
5621 {
5622 /* Remember the name of the primary input file. */
5623
5624 primary_filename = main_input_filename;
5625
5626 /* Allocate the initial hunk of the pending_sibling_stack. */
5627
5628 pending_sibling_stack
5629 = (unsigned *)
5630 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
5631 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
5632 pending_siblings = 1;
5633
5634 /* Allocate the initial hunk of the filename_table. */
5635
5636 filename_table
5637 = (filename_entry *)
5638 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
5639 ft_entries_allocated = FT_ENTRIES_INCREMENT;
5640 ft_entries = 0;
5641
5642 /* Allocate the initial hunk of the pending_types_list. */
5643
5644 pending_types_list
5645 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
5646 pending_types_allocated = PENDING_TYPES_INCREMENT;
5647 pending_types = 0;
5648
5649 /* Create an artificial RECORD_TYPE node which we can use in our hack
5650 to get the DIEs representing types of formal parameters to come out
5651 only *after* the DIEs for the formal parameters themselves. */
5652
5653 fake_containing_scope = make_node (RECORD_TYPE);
5654
5655 /* Output a starting label for the .text section. */
5656
5657 fputc ('\n', asm_out_file);
5658 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5659 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
5660 ASM_OUTPUT_POP_SECTION (asm_out_file);
5661
5662 /* Output a starting label for the .data section. */
5663
5664 fputc ('\n', asm_out_file);
5665 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5666 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
5667 ASM_OUTPUT_POP_SECTION (asm_out_file);
5668
5669 #if 0 /* GNU C doesn't currently use .data1. */
5670 /* Output a starting label for the .data1 section. */
5671
5672 fputc ('\n', asm_out_file);
5673 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5674 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
5675 ASM_OUTPUT_POP_SECTION (asm_out_file);
5676 #endif
5677
5678 /* Output a starting label for the .rodata section. */
5679
5680 fputc ('\n', asm_out_file);
5681 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5682 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
5683 ASM_OUTPUT_POP_SECTION (asm_out_file);
5684
5685 #if 0 /* GNU C doesn't currently use .rodata1. */
5686 /* Output a starting label for the .rodata1 section. */
5687
5688 fputc ('\n', asm_out_file);
5689 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5690 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
5691 ASM_OUTPUT_POP_SECTION (asm_out_file);
5692 #endif
5693
5694 /* Output a starting label for the .bss section. */
5695
5696 fputc ('\n', asm_out_file);
5697 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5698 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
5699 ASM_OUTPUT_POP_SECTION (asm_out_file);
5700
5701 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5702 {
5703 if (use_gnu_debug_info_extensions)
5704 {
5705 /* Output a starting label and an initial (compilation directory)
5706 entry for the .debug_sfnames section. The starting label will be
5707 referenced by the initial entry in the .debug_srcinfo section. */
5708
5709 fputc ('\n', asm_out_file);
5710 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5711 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
5712 {
5713 register char *pwd;
5714 register unsigned len;
5715 register char *dirname;
5716
5717 pwd = getpwd ();
5718 if (!pwd)
5719 pfatal_with_name ("getpwd");
5720 len = strlen (pwd);
5721 dirname = (char *) xmalloc (len + 2);
5722
5723 strcpy (dirname, pwd);
5724 strcpy (dirname + len, "/");
5725 ASM_OUTPUT_DWARF_STRING (asm_out_file, dirname);
5726 free (dirname);
5727 }
5728 ASM_OUTPUT_POP_SECTION (asm_out_file);
5729 }
5730
5731 if (debug_info_level >= DINFO_LEVEL_VERBOSE
5732 && use_gnu_debug_info_extensions)
5733 {
5734 /* Output a starting label for the .debug_macinfo section. This
5735 label will be referenced by the AT_mac_info attribute in the
5736 TAG_compile_unit DIE. */
5737
5738 fputc ('\n', asm_out_file);
5739 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5740 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
5741 ASM_OUTPUT_POP_SECTION (asm_out_file);
5742 }
5743
5744 /* Generate the initial entry for the .line section. */
5745
5746 fputc ('\n', asm_out_file);
5747 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5748 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
5749 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
5750 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5751 ASM_OUTPUT_POP_SECTION (asm_out_file);
5752
5753 if (use_gnu_debug_info_extensions)
5754 {
5755 /* Generate the initial entry for the .debug_srcinfo section. */
5756
5757 fputc ('\n', asm_out_file);
5758 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5759 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
5760 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
5761 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
5762 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5763 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
5764 #ifdef DWARF_TIMESTAMPS
5765 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
5766 #else
5767 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5768 #endif
5769 ASM_OUTPUT_POP_SECTION (asm_out_file);
5770 }
5771
5772 /* Generate the initial entry for the .debug_pubnames section. */
5773
5774 fputc ('\n', asm_out_file);
5775 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5776 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5777 ASM_OUTPUT_POP_SECTION (asm_out_file);
5778
5779 /* Generate the initial entry for the .debug_aranges section. */
5780
5781 fputc ('\n', asm_out_file);
5782 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5783 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5784 ASM_OUTPUT_POP_SECTION (asm_out_file);
5785 }
5786
5787 /* Setup first DIE number == 1. */
5788 NEXT_DIE_NUM = next_unused_dienum++;
5789
5790 /* Generate the initial DIE for the .debug section. Note that the
5791 (string) value given in the AT_name attribute of the TAG_compile_unit
5792 DIE will (typically) be a relative pathname and that this pathname
5793 should be taken as being relative to the directory from which the
5794 compiler was invoked when the given (base) source file was compiled. */
5795
5796 fputc ('\n', asm_out_file);
5797 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5798 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
5799 output_die (output_compile_unit_die, main_input_filename);
5800 ASM_OUTPUT_POP_SECTION (asm_out_file);
5801
5802 fputc ('\n', asm_out_file);
5803 }
5804
5805 /* Output stuff that dwarf requires at the end of every file. */
5806
5807 void
5808 dwarfout_finish ()
5809 {
5810 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5811
5812 fputc ('\n', asm_out_file);
5813 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5814
5815 /* Mark the end of the chain of siblings which represent all file-scope
5816 declarations in this compilation unit. */
5817
5818 /* The (null) DIE which represents the terminator for the (sibling linked)
5819 list of file-scope items is *special*. Normally, we would just call
5820 end_sibling_chain at this point in order to output a word with the
5821 value `4' and that word would act as the terminator for the list of
5822 DIEs describing file-scope items. Unfortunately, if we were to simply
5823 do that, the label that would follow this DIE in the .debug section
5824 (i.e. `..D2') would *not* be properly aligned (as it must be on some
5825 machines) to a 4 byte boundary.
5826
5827 In order to force the label `..D2' to get aligned to a 4 byte boundary,
5828 the trick used is to insert extra (otherwise useless) padding bytes
5829 into the (null) DIE that we know must precede the ..D2 label in the
5830 .debug section. The amount of padding required can be anywhere between
5831 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
5832 with the padding) would normally contain the value 4, but now it will
5833 also have to include the padding bytes, so it will instead have some
5834 value in the range 4..7.
5835
5836 Fortunately, the rules of Dwarf say that any DIE whose length word
5837 contains *any* value less than 8 should be treated as a null DIE, so
5838 this trick works out nicely. Clever, eh? Don't give me any credit
5839 (or blame). I didn't think of this scheme. I just conformed to it.
5840 */
5841
5842 output_die (output_padded_null_die, (void *) 0);
5843 dienum_pop ();
5844
5845 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
5846 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
5847 ASM_OUTPUT_POP_SECTION (asm_out_file);
5848
5849 /* Output a terminator label for the .text section. */
5850
5851 fputc ('\n', asm_out_file);
5852 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5853 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
5854 ASM_OUTPUT_POP_SECTION (asm_out_file);
5855
5856 /* Output a terminator label for the .data section. */
5857
5858 fputc ('\n', asm_out_file);
5859 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5860 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
5861 ASM_OUTPUT_POP_SECTION (asm_out_file);
5862
5863 #if 0 /* GNU C doesn't currently use .data1. */
5864 /* Output a terminator label for the .data1 section. */
5865
5866 fputc ('\n', asm_out_file);
5867 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5868 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
5869 ASM_OUTPUT_POP_SECTION (asm_out_file);
5870 #endif
5871
5872 /* Output a terminator label for the .rodata section. */
5873
5874 fputc ('\n', asm_out_file);
5875 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5876 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
5877 ASM_OUTPUT_POP_SECTION (asm_out_file);
5878
5879 #if 0 /* GNU C doesn't currently use .rodata1. */
5880 /* Output a terminator label for the .rodata1 section. */
5881
5882 fputc ('\n', asm_out_file);
5883 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5884 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
5885 ASM_OUTPUT_POP_SECTION (asm_out_file);
5886 #endif
5887
5888 /* Output a terminator label for the .bss section. */
5889
5890 fputc ('\n', asm_out_file);
5891 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5892 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
5893 ASM_OUTPUT_POP_SECTION (asm_out_file);
5894
5895 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5896 {
5897 /* Output a terminating entry for the .line section. */
5898
5899 fputc ('\n', asm_out_file);
5900 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5901 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
5902 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5903 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5904 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5905 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
5906 ASM_OUTPUT_POP_SECTION (asm_out_file);
5907
5908 if (use_gnu_debug_info_extensions)
5909 {
5910 /* Output a terminating entry for the .debug_srcinfo section. */
5911
5912 fputc ('\n', asm_out_file);
5913 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5914 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
5915 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
5916 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5917 ASM_OUTPUT_POP_SECTION (asm_out_file);
5918 }
5919
5920 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
5921 {
5922 /* Output terminating entries for the .debug_macinfo section. */
5923
5924 dwarfout_resume_previous_source_file (0);
5925
5926 fputc ('\n', asm_out_file);
5927 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5928 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5929 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
5930 ASM_OUTPUT_POP_SECTION (asm_out_file);
5931 }
5932
5933 /* Generate the terminating entry for the .debug_pubnames section. */
5934
5935 fputc ('\n', asm_out_file);
5936 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5937 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5938 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
5939 ASM_OUTPUT_POP_SECTION (asm_out_file);
5940
5941 /* Generate the terminating entries for the .debug_aranges section.
5942
5943 Note that we want to do this only *after* we have output the end
5944 labels (for the various program sections) which we are going to
5945 refer to here. This allows us to work around a bug in the m68k
5946 svr4 assembler. That assembler gives bogus assembly-time errors
5947 if (within any given section) you try to take the difference of
5948 two relocatable symbols, both of which are located within some
5949 other section, and if one (or both?) of the symbols involved is
5950 being forward-referenced. By generating the .debug_aranges
5951 entries at this late point in the assembly output, we skirt the
5952 issue simply by avoiding forward-references.
5953 */
5954
5955 fputc ('\n', asm_out_file);
5956 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5957
5958 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5959 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5960
5961 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
5962 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
5963
5964 #if 0 /* GNU C doesn't currently use .data1. */
5965 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
5966 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
5967 DATA1_BEGIN_LABEL);
5968 #endif
5969
5970 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
5971 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
5972 RODATA_BEGIN_LABEL);
5973
5974 #if 0 /* GNU C doesn't currently use .rodata1. */
5975 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
5976 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
5977 RODATA1_BEGIN_LABEL);
5978 #endif
5979
5980 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
5981 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
5982
5983 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5984 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5985
5986 ASM_OUTPUT_POP_SECTION (asm_out_file);
5987 }
5988 }
5989
5990 #endif /* DWARF_DEBUGGING_INFO */