]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
Merge dataflow branch into mainline
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* Middle-to-low level generation of rtx code and insns.
25
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
28
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "toplev.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "real.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61
62 /* Commonly used modes. */
63
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
68
69
70 /* This is *not* reset after each function. It gives each CODE_LABEL
71 in the entire compilation a unique label number. */
72
73 static GTY(()) int label_num = 1;
74
75 /* Nonzero means do not generate NOTEs for source line numbers. */
76
77 static int no_line_numbers;
78
79 /* Commonly used rtx's, so that we only need space for one copy.
80 These are initialized once for the entire compilation.
81 All of these are unique; no other rtx-object will be equal to any
82 of these. */
83
84 rtx global_rtl[GR_MAX];
85
86 /* Commonly used RTL for hard registers. These objects are not necessarily
87 unique, so we allocate them separately from global_rtl. They are
88 initialized once per compilation unit, then copied into regno_reg_rtx
89 at the beginning of each function. */
90 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
91
92 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx. */
95
96 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
97
98 rtx const_true_rtx;
99
100 REAL_VALUE_TYPE dconst0;
101 REAL_VALUE_TYPE dconst1;
102 REAL_VALUE_TYPE dconst2;
103 REAL_VALUE_TYPE dconst3;
104 REAL_VALUE_TYPE dconst10;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconstm2;
107 REAL_VALUE_TYPE dconsthalf;
108 REAL_VALUE_TYPE dconstthird;
109 REAL_VALUE_TYPE dconstsqrt2;
110 REAL_VALUE_TYPE dconste;
111
112 /* All references to the following fixed hard registers go through
113 these unique rtl objects. On machines where the frame-pointer and
114 arg-pointer are the same register, they use the same unique object.
115
116 After register allocation, other rtl objects which used to be pseudo-regs
117 may be clobbered to refer to the frame-pointer register.
118 But references that were originally to the frame-pointer can be
119 distinguished from the others because they contain frame_pointer_rtx.
120
121 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
122 tricky: until register elimination has taken place hard_frame_pointer_rtx
123 should be used if it is being set, and frame_pointer_rtx otherwise. After
124 register elimination hard_frame_pointer_rtx should always be used.
125 On machines where the two registers are same (most) then these are the
126 same.
127
128 In an inline procedure, the stack and frame pointer rtxs may not be
129 used for anything else. */
130 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
131 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
132 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
133
134 /* This is used to implement __builtin_return_address for some machines.
135 See for instance the MIPS port. */
136 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
137
138 /* We make one copy of (const_int C) where C is in
139 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
140 to save space during the compilation and simplify comparisons of
141 integers. */
142
143 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
144
145 /* A hash table storing CONST_INTs whose absolute value is greater
146 than MAX_SAVED_CONST_INT. */
147
148 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
149 htab_t const_int_htab;
150
151 /* A hash table storing memory attribute structures. */
152 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
153 htab_t mem_attrs_htab;
154
155 /* A hash table storing register attribute structures. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
157 htab_t reg_attrs_htab;
158
159 /* A hash table storing all CONST_DOUBLEs. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
161 htab_t const_double_htab;
162
163 #define first_insn (cfun->emit->x_first_insn)
164 #define last_insn (cfun->emit->x_last_insn)
165 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
166 #define last_location (cfun->emit->x_last_location)
167 #define first_label_num (cfun->emit->x_first_label_num)
168
169 static rtx make_call_insn_raw (rtx);
170 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
188
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
192 \f
193 /* Returns a hash code for X (which is a really a CONST_INT). */
194
195 static hashval_t
196 const_int_htab_hash (const void *x)
197 {
198 return (hashval_t) INTVAL ((rtx) x);
199 }
200
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
204
205 static int
206 const_int_htab_eq (const void *x, const void *y)
207 {
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
209 }
210
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
214 {
215 rtx value = (rtx) x;
216 hashval_t h;
217
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
221 {
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
225 }
226 return h;
227 }
228
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
233 {
234 rtx a = (rtx)x, b = (rtx)y;
235
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
244 }
245
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
247
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
250 {
251 mem_attrs *p = (mem_attrs *) x;
252
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) iterative_hash_expr (p->expr, 0));
257 }
258
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
262
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
265 {
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
268
269 return (p->alias == q->alias && p->offset == q->offset
270 && p->size == q->size && p->align == q->align
271 && (p->expr == q->expr
272 || (p->expr != NULL_TREE && q->expr != NULL_TREE
273 && operand_equal_p (p->expr, q->expr, 0))));
274 }
275
276 /* Allocate a new mem_attrs structure and insert it into the hash table if
277 one identical to it is not already in the table. We are doing this for
278 MEM of mode MODE. */
279
280 static mem_attrs *
281 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
282 unsigned int align, enum machine_mode mode)
283 {
284 mem_attrs attrs;
285 void **slot;
286
287 /* If everything is the default, we can just return zero.
288 This must match what the corresponding MEM_* macros return when the
289 field is not present. */
290 if (alias == 0 && expr == 0 && offset == 0
291 && (size == 0
292 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
293 && (STRICT_ALIGNMENT && mode != BLKmode
294 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
295 return 0;
296
297 attrs.alias = alias;
298 attrs.expr = expr;
299 attrs.offset = offset;
300 attrs.size = size;
301 attrs.align = align;
302
303 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
304 if (*slot == 0)
305 {
306 *slot = ggc_alloc (sizeof (mem_attrs));
307 memcpy (*slot, &attrs, sizeof (mem_attrs));
308 }
309
310 return *slot;
311 }
312
313 /* Returns a hash code for X (which is a really a reg_attrs *). */
314
315 static hashval_t
316 reg_attrs_htab_hash (const void *x)
317 {
318 reg_attrs *p = (reg_attrs *) x;
319
320 return ((p->offset * 1000) ^ (long) p->decl);
321 }
322
323 /* Returns nonzero if the value represented by X (which is really a
324 reg_attrs *) is the same as that given by Y (which is also really a
325 reg_attrs *). */
326
327 static int
328 reg_attrs_htab_eq (const void *x, const void *y)
329 {
330 reg_attrs *p = (reg_attrs *) x;
331 reg_attrs *q = (reg_attrs *) y;
332
333 return (p->decl == q->decl && p->offset == q->offset);
334 }
335 /* Allocate a new reg_attrs structure and insert it into the hash table if
336 one identical to it is not already in the table. We are doing this for
337 MEM of mode MODE. */
338
339 static reg_attrs *
340 get_reg_attrs (tree decl, int offset)
341 {
342 reg_attrs attrs;
343 void **slot;
344
345 /* If everything is the default, we can just return zero. */
346 if (decl == 0 && offset == 0)
347 return 0;
348
349 attrs.decl = decl;
350 attrs.offset = offset;
351
352 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
353 if (*slot == 0)
354 {
355 *slot = ggc_alloc (sizeof (reg_attrs));
356 memcpy (*slot, &attrs, sizeof (reg_attrs));
357 }
358
359 return *slot;
360 }
361
362
363 #if !HAVE_blockage
364 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
365 across this insn. */
366
367 rtx
368 gen_blockage (void)
369 {
370 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
371 MEM_VOLATILE_P (x) = true;
372 return x;
373 }
374 #endif
375
376
377 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
378 don't attempt to share with the various global pieces of rtl (such as
379 frame_pointer_rtx). */
380
381 rtx
382 gen_raw_REG (enum machine_mode mode, int regno)
383 {
384 rtx x = gen_rtx_raw_REG (mode, regno);
385 ORIGINAL_REGNO (x) = regno;
386 return x;
387 }
388
389 /* There are some RTL codes that require special attention; the generation
390 functions do the raw handling. If you add to this list, modify
391 special_rtx in gengenrtl.c as well. */
392
393 rtx
394 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
395 {
396 void **slot;
397
398 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
399 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
400
401 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
402 if (const_true_rtx && arg == STORE_FLAG_VALUE)
403 return const_true_rtx;
404 #endif
405
406 /* Look up the CONST_INT in the hash table. */
407 slot = htab_find_slot_with_hash (const_int_htab, &arg,
408 (hashval_t) arg, INSERT);
409 if (*slot == 0)
410 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
411
412 return (rtx) *slot;
413 }
414
415 rtx
416 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
417 {
418 return GEN_INT (trunc_int_for_mode (c, mode));
419 }
420
421 /* CONST_DOUBLEs might be created from pairs of integers, or from
422 REAL_VALUE_TYPEs. Also, their length is known only at run time,
423 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
424
425 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
426 hash table. If so, return its counterpart; otherwise add it
427 to the hash table and return it. */
428 static rtx
429 lookup_const_double (rtx real)
430 {
431 void **slot = htab_find_slot (const_double_htab, real, INSERT);
432 if (*slot == 0)
433 *slot = real;
434
435 return (rtx) *slot;
436 }
437
438 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
439 VALUE in mode MODE. */
440 rtx
441 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
442 {
443 rtx real = rtx_alloc (CONST_DOUBLE);
444 PUT_MODE (real, mode);
445
446 real->u.rv = value;
447
448 return lookup_const_double (real);
449 }
450
451 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
452 of ints: I0 is the low-order word and I1 is the high-order word.
453 Do not use this routine for non-integer modes; convert to
454 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
455
456 rtx
457 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
458 {
459 rtx value;
460 unsigned int i;
461
462 /* There are the following cases (note that there are no modes with
463 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
464
465 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
466 gen_int_mode.
467 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
468 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
469 from copies of the sign bit, and sign of i0 and i1 are the same), then
470 we return a CONST_INT for i0.
471 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
472 if (mode != VOIDmode)
473 {
474 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
475 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
476 /* We can get a 0 for an error mark. */
477 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
478 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
479
480 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
481 return gen_int_mode (i0, mode);
482
483 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
484 }
485
486 /* If this integer fits in one word, return a CONST_INT. */
487 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
488 return GEN_INT (i0);
489
490 /* We use VOIDmode for integers. */
491 value = rtx_alloc (CONST_DOUBLE);
492 PUT_MODE (value, VOIDmode);
493
494 CONST_DOUBLE_LOW (value) = i0;
495 CONST_DOUBLE_HIGH (value) = i1;
496
497 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
498 XWINT (value, i) = 0;
499
500 return lookup_const_double (value);
501 }
502
503 rtx
504 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
505 {
506 /* In case the MD file explicitly references the frame pointer, have
507 all such references point to the same frame pointer. This is
508 used during frame pointer elimination to distinguish the explicit
509 references to these registers from pseudos that happened to be
510 assigned to them.
511
512 If we have eliminated the frame pointer or arg pointer, we will
513 be using it as a normal register, for example as a spill
514 register. In such cases, we might be accessing it in a mode that
515 is not Pmode and therefore cannot use the pre-allocated rtx.
516
517 Also don't do this when we are making new REGs in reload, since
518 we don't want to get confused with the real pointers. */
519
520 if (mode == Pmode && !reload_in_progress)
521 {
522 if (regno == FRAME_POINTER_REGNUM
523 && (!reload_completed || frame_pointer_needed))
524 return frame_pointer_rtx;
525 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
526 if (regno == HARD_FRAME_POINTER_REGNUM
527 && (!reload_completed || frame_pointer_needed))
528 return hard_frame_pointer_rtx;
529 #endif
530 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
531 if (regno == ARG_POINTER_REGNUM)
532 return arg_pointer_rtx;
533 #endif
534 #ifdef RETURN_ADDRESS_POINTER_REGNUM
535 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
536 return return_address_pointer_rtx;
537 #endif
538 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
539 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
540 return pic_offset_table_rtx;
541 if (regno == STACK_POINTER_REGNUM)
542 return stack_pointer_rtx;
543 }
544
545 #if 0
546 /* If the per-function register table has been set up, try to re-use
547 an existing entry in that table to avoid useless generation of RTL.
548
549 This code is disabled for now until we can fix the various backends
550 which depend on having non-shared hard registers in some cases. Long
551 term we want to re-enable this code as it can significantly cut down
552 on the amount of useless RTL that gets generated.
553
554 We'll also need to fix some code that runs after reload that wants to
555 set ORIGINAL_REGNO. */
556
557 if (cfun
558 && cfun->emit
559 && regno_reg_rtx
560 && regno < FIRST_PSEUDO_REGISTER
561 && reg_raw_mode[regno] == mode)
562 return regno_reg_rtx[regno];
563 #endif
564
565 return gen_raw_REG (mode, regno);
566 }
567
568 rtx
569 gen_rtx_MEM (enum machine_mode mode, rtx addr)
570 {
571 rtx rt = gen_rtx_raw_MEM (mode, addr);
572
573 /* This field is not cleared by the mere allocation of the rtx, so
574 we clear it here. */
575 MEM_ATTRS (rt) = 0;
576
577 return rt;
578 }
579
580 /* Generate a memory referring to non-trapping constant memory. */
581
582 rtx
583 gen_const_mem (enum machine_mode mode, rtx addr)
584 {
585 rtx mem = gen_rtx_MEM (mode, addr);
586 MEM_READONLY_P (mem) = 1;
587 MEM_NOTRAP_P (mem) = 1;
588 return mem;
589 }
590
591 /* Generate a MEM referring to fixed portions of the frame, e.g., register
592 save areas. */
593
594 rtx
595 gen_frame_mem (enum machine_mode mode, rtx addr)
596 {
597 rtx mem = gen_rtx_MEM (mode, addr);
598 MEM_NOTRAP_P (mem) = 1;
599 set_mem_alias_set (mem, get_frame_alias_set ());
600 return mem;
601 }
602
603 /* Generate a MEM referring to a temporary use of the stack, not part
604 of the fixed stack frame. For example, something which is pushed
605 by a target splitter. */
606 rtx
607 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
608 {
609 rtx mem = gen_rtx_MEM (mode, addr);
610 MEM_NOTRAP_P (mem) = 1;
611 if (!current_function_calls_alloca)
612 set_mem_alias_set (mem, get_frame_alias_set ());
613 return mem;
614 }
615
616 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
617 this construct would be valid, and false otherwise. */
618
619 bool
620 validate_subreg (enum machine_mode omode, enum machine_mode imode,
621 rtx reg, unsigned int offset)
622 {
623 unsigned int isize = GET_MODE_SIZE (imode);
624 unsigned int osize = GET_MODE_SIZE (omode);
625
626 /* All subregs must be aligned. */
627 if (offset % osize != 0)
628 return false;
629
630 /* The subreg offset cannot be outside the inner object. */
631 if (offset >= isize)
632 return false;
633
634 /* ??? This should not be here. Temporarily continue to allow word_mode
635 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
636 Generally, backends are doing something sketchy but it'll take time to
637 fix them all. */
638 if (omode == word_mode)
639 ;
640 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
641 is the culprit here, and not the backends. */
642 else if (osize >= UNITS_PER_WORD && isize >= osize)
643 ;
644 /* Allow component subregs of complex and vector. Though given the below
645 extraction rules, it's not always clear what that means. */
646 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
647 && GET_MODE_INNER (imode) == omode)
648 ;
649 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
650 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
651 represent this. It's questionable if this ought to be represented at
652 all -- why can't this all be hidden in post-reload splitters that make
653 arbitrarily mode changes to the registers themselves. */
654 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
655 ;
656 /* Subregs involving floating point modes are not allowed to
657 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
658 (subreg:SI (reg:DF) 0) isn't. */
659 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
660 {
661 if (isize != osize)
662 return false;
663 }
664
665 /* Paradoxical subregs must have offset zero. */
666 if (osize > isize)
667 return offset == 0;
668
669 /* This is a normal subreg. Verify that the offset is representable. */
670
671 /* For hard registers, we already have most of these rules collected in
672 subreg_offset_representable_p. */
673 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
674 {
675 unsigned int regno = REGNO (reg);
676
677 #ifdef CANNOT_CHANGE_MODE_CLASS
678 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
679 && GET_MODE_INNER (imode) == omode)
680 ;
681 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
682 return false;
683 #endif
684
685 return subreg_offset_representable_p (regno, imode, offset, omode);
686 }
687
688 /* For pseudo registers, we want most of the same checks. Namely:
689 If the register no larger than a word, the subreg must be lowpart.
690 If the register is larger than a word, the subreg must be the lowpart
691 of a subword. A subreg does *not* perform arbitrary bit extraction.
692 Given that we've already checked mode/offset alignment, we only have
693 to check subword subregs here. */
694 if (osize < UNITS_PER_WORD)
695 {
696 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
697 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
698 if (offset % UNITS_PER_WORD != low_off)
699 return false;
700 }
701 return true;
702 }
703
704 rtx
705 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
706 {
707 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
708 return gen_rtx_raw_SUBREG (mode, reg, offset);
709 }
710
711 /* Generate a SUBREG representing the least-significant part of REG if MODE
712 is smaller than mode of REG, otherwise paradoxical SUBREG. */
713
714 rtx
715 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
716 {
717 enum machine_mode inmode;
718
719 inmode = GET_MODE (reg);
720 if (inmode == VOIDmode)
721 inmode = mode;
722 return gen_rtx_SUBREG (mode, reg,
723 subreg_lowpart_offset (mode, inmode));
724 }
725 \f
726 /* gen_rtvec (n, [rt1, ..., rtn])
727 **
728 ** This routine creates an rtvec and stores within it the
729 ** pointers to rtx's which are its arguments.
730 */
731
732 /*VARARGS1*/
733 rtvec
734 gen_rtvec (int n, ...)
735 {
736 int i, save_n;
737 rtx *vector;
738 va_list p;
739
740 va_start (p, n);
741
742 if (n == 0)
743 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
744
745 vector = alloca (n * sizeof (rtx));
746
747 for (i = 0; i < n; i++)
748 vector[i] = va_arg (p, rtx);
749
750 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
751 save_n = n;
752 va_end (p);
753
754 return gen_rtvec_v (save_n, vector);
755 }
756
757 rtvec
758 gen_rtvec_v (int n, rtx *argp)
759 {
760 int i;
761 rtvec rt_val;
762
763 if (n == 0)
764 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
765
766 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
767
768 for (i = 0; i < n; i++)
769 rt_val->elem[i] = *argp++;
770
771 return rt_val;
772 }
773 \f
774 /* Generate a REG rtx for a new pseudo register of mode MODE.
775 This pseudo is assigned the next sequential register number. */
776
777 rtx
778 gen_reg_rtx (enum machine_mode mode)
779 {
780 struct function *f = cfun;
781 rtx val;
782
783 /* Don't let anything called after initial flow analysis create new
784 registers. */
785 gcc_assert (!no_new_pseudos);
786
787 if (generating_concat_p
788 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
789 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
790 {
791 /* For complex modes, don't make a single pseudo.
792 Instead, make a CONCAT of two pseudos.
793 This allows noncontiguous allocation of the real and imaginary parts,
794 which makes much better code. Besides, allocating DCmode
795 pseudos overstrains reload on some machines like the 386. */
796 rtx realpart, imagpart;
797 enum machine_mode partmode = GET_MODE_INNER (mode);
798
799 realpart = gen_reg_rtx (partmode);
800 imagpart = gen_reg_rtx (partmode);
801 return gen_rtx_CONCAT (mode, realpart, imagpart);
802 }
803
804 /* Make sure regno_pointer_align, and regno_reg_rtx are large
805 enough to have an element for this pseudo reg number. */
806
807 if (reg_rtx_no == f->emit->regno_pointer_align_length)
808 {
809 int old_size = f->emit->regno_pointer_align_length;
810 char *new;
811 rtx *new1;
812
813 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
814 memset (new + old_size, 0, old_size);
815 f->emit->regno_pointer_align = (unsigned char *) new;
816
817 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
818 old_size * 2 * sizeof (rtx));
819 memset (new1 + old_size, 0, old_size * sizeof (rtx));
820 regno_reg_rtx = new1;
821
822 f->emit->regno_pointer_align_length = old_size * 2;
823 }
824
825 val = gen_raw_REG (mode, reg_rtx_no);
826 regno_reg_rtx[reg_rtx_no++] = val;
827 return val;
828 }
829
830 /* Update NEW with the same attributes as REG, but offsetted by OFFSET.
831 Do the big endian correction if needed. */
832
833 static void
834 update_reg_offset (rtx new, rtx reg, int offset)
835 {
836 tree decl;
837 HOST_WIDE_INT var_size;
838
839 /* PR middle-end/14084
840 The problem appears when a variable is stored in a larger register
841 and later it is used in the original mode or some mode in between
842 or some part of variable is accessed.
843
844 On little endian machines there is no problem because
845 the REG_OFFSET of the start of the variable is the same when
846 accessed in any mode (it is 0).
847
848 However, this is not true on big endian machines.
849 The offset of the start of the variable is different when accessed
850 in different modes.
851 When we are taking a part of the REG we have to change the OFFSET
852 from offset WRT size of mode of REG to offset WRT size of variable.
853
854 If we would not do the big endian correction the resulting REG_OFFSET
855 would be larger than the size of the DECL.
856
857 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
858
859 REG.mode MODE DECL size old offset new offset description
860 DI SI 4 4 0 int32 in SImode
861 DI SI 1 4 0 char in SImode
862 DI QI 1 7 0 char in QImode
863 DI QI 4 5 1 1st element in QImode
864 of char[4]
865 DI HI 4 6 2 1st element in HImode
866 of int16[2]
867
868 If the size of DECL is equal or greater than the size of REG
869 we can't do this correction because the register holds the
870 whole variable or a part of the variable and thus the REG_OFFSET
871 is already correct. */
872
873 decl = REG_EXPR (reg);
874 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
875 && decl != NULL
876 && offset > 0
877 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (GET_MODE (new))
878 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
879 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
880 {
881 int offset_le;
882
883 /* Convert machine endian to little endian WRT size of mode of REG. */
884 if (WORDS_BIG_ENDIAN)
885 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
886 / UNITS_PER_WORD) * UNITS_PER_WORD;
887 else
888 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
889
890 if (BYTES_BIG_ENDIAN)
891 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
892 % UNITS_PER_WORD);
893 else
894 offset_le += offset % UNITS_PER_WORD;
895
896 if (offset_le >= var_size)
897 {
898 /* MODE is wider than the variable so the new reg will cover
899 the whole variable so the resulting OFFSET should be 0. */
900 offset = 0;
901 }
902 else
903 {
904 /* Convert little endian to machine endian WRT size of variable. */
905 if (WORDS_BIG_ENDIAN)
906 offset = ((var_size - 1 - offset_le)
907 / UNITS_PER_WORD) * UNITS_PER_WORD;
908 else
909 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
910
911 if (BYTES_BIG_ENDIAN)
912 offset += ((var_size - 1 - offset_le)
913 % UNITS_PER_WORD);
914 else
915 offset += offset_le % UNITS_PER_WORD;
916 }
917 }
918
919 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
920 REG_OFFSET (reg) + offset);
921 }
922
923 /* Generate a register with same attributes as REG, but offsetted by
924 OFFSET. */
925
926 rtx
927 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
928 int offset)
929 {
930 rtx new = gen_rtx_REG (mode, regno);
931
932 update_reg_offset (new, reg, offset);
933 return new;
934 }
935
936 /* Generate a new pseudo-register with the same attributes as REG, but
937 offsetted by OFFSET. */
938
939 rtx
940 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
941 {
942 rtx new = gen_reg_rtx (mode);
943
944 update_reg_offset (new, reg, offset);
945 return new;
946 }
947
948 /* Set the decl for MEM to DECL. */
949
950 void
951 set_reg_attrs_from_mem (rtx reg, rtx mem)
952 {
953 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
954 REG_ATTRS (reg)
955 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
956 }
957
958 /* Set the register attributes for registers contained in PARM_RTX.
959 Use needed values from memory attributes of MEM. */
960
961 void
962 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
963 {
964 if (REG_P (parm_rtx))
965 set_reg_attrs_from_mem (parm_rtx, mem);
966 else if (GET_CODE (parm_rtx) == PARALLEL)
967 {
968 /* Check for a NULL entry in the first slot, used to indicate that the
969 parameter goes both on the stack and in registers. */
970 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
971 for (; i < XVECLEN (parm_rtx, 0); i++)
972 {
973 rtx x = XVECEXP (parm_rtx, 0, i);
974 if (REG_P (XEXP (x, 0)))
975 REG_ATTRS (XEXP (x, 0))
976 = get_reg_attrs (MEM_EXPR (mem),
977 INTVAL (XEXP (x, 1)));
978 }
979 }
980 }
981
982 /* Assign the RTX X to declaration T. */
983 void
984 set_decl_rtl (tree t, rtx x)
985 {
986 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
987
988 if (!x)
989 return;
990 /* For register, we maintain the reverse information too. */
991 if (REG_P (x))
992 REG_ATTRS (x) = get_reg_attrs (t, 0);
993 else if (GET_CODE (x) == SUBREG)
994 REG_ATTRS (SUBREG_REG (x))
995 = get_reg_attrs (t, -SUBREG_BYTE (x));
996 if (GET_CODE (x) == CONCAT)
997 {
998 if (REG_P (XEXP (x, 0)))
999 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1000 if (REG_P (XEXP (x, 1)))
1001 REG_ATTRS (XEXP (x, 1))
1002 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1003 }
1004 if (GET_CODE (x) == PARALLEL)
1005 {
1006 int i;
1007 for (i = 0; i < XVECLEN (x, 0); i++)
1008 {
1009 rtx y = XVECEXP (x, 0, i);
1010 if (REG_P (XEXP (y, 0)))
1011 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1012 }
1013 }
1014 }
1015
1016 /* Assign the RTX X to parameter declaration T. */
1017 void
1018 set_decl_incoming_rtl (tree t, rtx x)
1019 {
1020 DECL_INCOMING_RTL (t) = x;
1021
1022 if (!x)
1023 return;
1024 /* For register, we maintain the reverse information too. */
1025 if (REG_P (x))
1026 REG_ATTRS (x) = get_reg_attrs (t, 0);
1027 else if (GET_CODE (x) == SUBREG)
1028 REG_ATTRS (SUBREG_REG (x))
1029 = get_reg_attrs (t, -SUBREG_BYTE (x));
1030 if (GET_CODE (x) == CONCAT)
1031 {
1032 if (REG_P (XEXP (x, 0)))
1033 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1034 if (REG_P (XEXP (x, 1)))
1035 REG_ATTRS (XEXP (x, 1))
1036 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1037 }
1038 if (GET_CODE (x) == PARALLEL)
1039 {
1040 int i, start;
1041
1042 /* Check for a NULL entry, used to indicate that the parameter goes
1043 both on the stack and in registers. */
1044 if (XEXP (XVECEXP (x, 0, 0), 0))
1045 start = 0;
1046 else
1047 start = 1;
1048
1049 for (i = start; i < XVECLEN (x, 0); i++)
1050 {
1051 rtx y = XVECEXP (x, 0, i);
1052 if (REG_P (XEXP (y, 0)))
1053 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1054 }
1055 }
1056 }
1057
1058 /* Identify REG (which may be a CONCAT) as a user register. */
1059
1060 void
1061 mark_user_reg (rtx reg)
1062 {
1063 if (GET_CODE (reg) == CONCAT)
1064 {
1065 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1066 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1067 }
1068 else
1069 {
1070 gcc_assert (REG_P (reg));
1071 REG_USERVAR_P (reg) = 1;
1072 }
1073 }
1074
1075 /* Identify REG as a probable pointer register and show its alignment
1076 as ALIGN, if nonzero. */
1077
1078 void
1079 mark_reg_pointer (rtx reg, int align)
1080 {
1081 if (! REG_POINTER (reg))
1082 {
1083 REG_POINTER (reg) = 1;
1084
1085 if (align)
1086 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1087 }
1088 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1089 /* We can no-longer be sure just how aligned this pointer is. */
1090 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1091 }
1092
1093 /* Return 1 plus largest pseudo reg number used in the current function. */
1094
1095 int
1096 max_reg_num (void)
1097 {
1098 return reg_rtx_no;
1099 }
1100
1101 /* Return 1 + the largest label number used so far in the current function. */
1102
1103 int
1104 max_label_num (void)
1105 {
1106 return label_num;
1107 }
1108
1109 /* Return first label number used in this function (if any were used). */
1110
1111 int
1112 get_first_label_num (void)
1113 {
1114 return first_label_num;
1115 }
1116
1117 /* If the rtx for label was created during the expansion of a nested
1118 function, then first_label_num won't include this label number.
1119 Fix this now so that array indicies work later. */
1120
1121 void
1122 maybe_set_first_label_num (rtx x)
1123 {
1124 if (CODE_LABEL_NUMBER (x) < first_label_num)
1125 first_label_num = CODE_LABEL_NUMBER (x);
1126 }
1127 \f
1128 /* Return a value representing some low-order bits of X, where the number
1129 of low-order bits is given by MODE. Note that no conversion is done
1130 between floating-point and fixed-point values, rather, the bit
1131 representation is returned.
1132
1133 This function handles the cases in common between gen_lowpart, below,
1134 and two variants in cse.c and combine.c. These are the cases that can
1135 be safely handled at all points in the compilation.
1136
1137 If this is not a case we can handle, return 0. */
1138
1139 rtx
1140 gen_lowpart_common (enum machine_mode mode, rtx x)
1141 {
1142 int msize = GET_MODE_SIZE (mode);
1143 int xsize;
1144 int offset = 0;
1145 enum machine_mode innermode;
1146
1147 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1148 so we have to make one up. Yuk. */
1149 innermode = GET_MODE (x);
1150 if (GET_CODE (x) == CONST_INT
1151 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1152 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1153 else if (innermode == VOIDmode)
1154 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1155
1156 xsize = GET_MODE_SIZE (innermode);
1157
1158 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1159
1160 if (innermode == mode)
1161 return x;
1162
1163 /* MODE must occupy no more words than the mode of X. */
1164 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1165 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1166 return 0;
1167
1168 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1169 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1170 return 0;
1171
1172 offset = subreg_lowpart_offset (mode, innermode);
1173
1174 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1175 && (GET_MODE_CLASS (mode) == MODE_INT
1176 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1177 {
1178 /* If we are getting the low-order part of something that has been
1179 sign- or zero-extended, we can either just use the object being
1180 extended or make a narrower extension. If we want an even smaller
1181 piece than the size of the object being extended, call ourselves
1182 recursively.
1183
1184 This case is used mostly by combine and cse. */
1185
1186 if (GET_MODE (XEXP (x, 0)) == mode)
1187 return XEXP (x, 0);
1188 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1189 return gen_lowpart_common (mode, XEXP (x, 0));
1190 else if (msize < xsize)
1191 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1192 }
1193 else if (GET_CODE (x) == SUBREG || REG_P (x)
1194 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1195 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1196 return simplify_gen_subreg (mode, x, innermode, offset);
1197
1198 /* Otherwise, we can't do this. */
1199 return 0;
1200 }
1201 \f
1202 rtx
1203 gen_highpart (enum machine_mode mode, rtx x)
1204 {
1205 unsigned int msize = GET_MODE_SIZE (mode);
1206 rtx result;
1207
1208 /* This case loses if X is a subreg. To catch bugs early,
1209 complain if an invalid MODE is used even in other cases. */
1210 gcc_assert (msize <= UNITS_PER_WORD
1211 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1212
1213 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1214 subreg_highpart_offset (mode, GET_MODE (x)));
1215 gcc_assert (result);
1216
1217 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1218 the target if we have a MEM. gen_highpart must return a valid operand,
1219 emitting code if necessary to do so. */
1220 if (MEM_P (result))
1221 {
1222 result = validize_mem (result);
1223 gcc_assert (result);
1224 }
1225
1226 return result;
1227 }
1228
1229 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1230 be VOIDmode constant. */
1231 rtx
1232 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1233 {
1234 if (GET_MODE (exp) != VOIDmode)
1235 {
1236 gcc_assert (GET_MODE (exp) == innermode);
1237 return gen_highpart (outermode, exp);
1238 }
1239 return simplify_gen_subreg (outermode, exp, innermode,
1240 subreg_highpart_offset (outermode, innermode));
1241 }
1242
1243 /* Return offset in bytes to get OUTERMODE low part
1244 of the value in mode INNERMODE stored in memory in target format. */
1245
1246 unsigned int
1247 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1248 {
1249 unsigned int offset = 0;
1250 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1251
1252 if (difference > 0)
1253 {
1254 if (WORDS_BIG_ENDIAN)
1255 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1256 if (BYTES_BIG_ENDIAN)
1257 offset += difference % UNITS_PER_WORD;
1258 }
1259
1260 return offset;
1261 }
1262
1263 /* Return offset in bytes to get OUTERMODE high part
1264 of the value in mode INNERMODE stored in memory in target format. */
1265 unsigned int
1266 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1267 {
1268 unsigned int offset = 0;
1269 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1270
1271 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1272
1273 if (difference > 0)
1274 {
1275 if (! WORDS_BIG_ENDIAN)
1276 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1277 if (! BYTES_BIG_ENDIAN)
1278 offset += difference % UNITS_PER_WORD;
1279 }
1280
1281 return offset;
1282 }
1283
1284 /* Return 1 iff X, assumed to be a SUBREG,
1285 refers to the least significant part of its containing reg.
1286 If X is not a SUBREG, always return 1 (it is its own low part!). */
1287
1288 int
1289 subreg_lowpart_p (rtx x)
1290 {
1291 if (GET_CODE (x) != SUBREG)
1292 return 1;
1293 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1294 return 0;
1295
1296 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1297 == SUBREG_BYTE (x));
1298 }
1299 \f
1300 /* Return subword OFFSET of operand OP.
1301 The word number, OFFSET, is interpreted as the word number starting
1302 at the low-order address. OFFSET 0 is the low-order word if not
1303 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1304
1305 If we cannot extract the required word, we return zero. Otherwise,
1306 an rtx corresponding to the requested word will be returned.
1307
1308 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1309 reload has completed, a valid address will always be returned. After
1310 reload, if a valid address cannot be returned, we return zero.
1311
1312 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1313 it is the responsibility of the caller.
1314
1315 MODE is the mode of OP in case it is a CONST_INT.
1316
1317 ??? This is still rather broken for some cases. The problem for the
1318 moment is that all callers of this thing provide no 'goal mode' to
1319 tell us to work with. This exists because all callers were written
1320 in a word based SUBREG world.
1321 Now use of this function can be deprecated by simplify_subreg in most
1322 cases.
1323 */
1324
1325 rtx
1326 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1327 {
1328 if (mode == VOIDmode)
1329 mode = GET_MODE (op);
1330
1331 gcc_assert (mode != VOIDmode);
1332
1333 /* If OP is narrower than a word, fail. */
1334 if (mode != BLKmode
1335 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1336 return 0;
1337
1338 /* If we want a word outside OP, return zero. */
1339 if (mode != BLKmode
1340 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1341 return const0_rtx;
1342
1343 /* Form a new MEM at the requested address. */
1344 if (MEM_P (op))
1345 {
1346 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1347
1348 if (! validate_address)
1349 return new;
1350
1351 else if (reload_completed)
1352 {
1353 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1354 return 0;
1355 }
1356 else
1357 return replace_equiv_address (new, XEXP (new, 0));
1358 }
1359
1360 /* Rest can be handled by simplify_subreg. */
1361 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1362 }
1363
1364 /* Similar to `operand_subword', but never return 0. If we can't
1365 extract the required subword, put OP into a register and try again.
1366 The second attempt must succeed. We always validate the address in
1367 this case.
1368
1369 MODE is the mode of OP, in case it is CONST_INT. */
1370
1371 rtx
1372 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1373 {
1374 rtx result = operand_subword (op, offset, 1, mode);
1375
1376 if (result)
1377 return result;
1378
1379 if (mode != BLKmode && mode != VOIDmode)
1380 {
1381 /* If this is a register which can not be accessed by words, copy it
1382 to a pseudo register. */
1383 if (REG_P (op))
1384 op = copy_to_reg (op);
1385 else
1386 op = force_reg (mode, op);
1387 }
1388
1389 result = operand_subword (op, offset, 1, mode);
1390 gcc_assert (result);
1391
1392 return result;
1393 }
1394 \f
1395 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1396 or (2) a component ref of something variable. Represent the later with
1397 a NULL expression. */
1398
1399 static tree
1400 component_ref_for_mem_expr (tree ref)
1401 {
1402 tree inner = TREE_OPERAND (ref, 0);
1403
1404 if (TREE_CODE (inner) == COMPONENT_REF)
1405 inner = component_ref_for_mem_expr (inner);
1406 else
1407 {
1408 /* Now remove any conversions: they don't change what the underlying
1409 object is. Likewise for SAVE_EXPR. */
1410 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1411 || TREE_CODE (inner) == NON_LVALUE_EXPR
1412 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1413 || TREE_CODE (inner) == SAVE_EXPR)
1414 inner = TREE_OPERAND (inner, 0);
1415
1416 if (! DECL_P (inner))
1417 inner = NULL_TREE;
1418 }
1419
1420 if (inner == TREE_OPERAND (ref, 0))
1421 return ref;
1422 else
1423 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1424 TREE_OPERAND (ref, 1), NULL_TREE);
1425 }
1426
1427 /* Returns 1 if both MEM_EXPR can be considered equal
1428 and 0 otherwise. */
1429
1430 int
1431 mem_expr_equal_p (tree expr1, tree expr2)
1432 {
1433 if (expr1 == expr2)
1434 return 1;
1435
1436 if (! expr1 || ! expr2)
1437 return 0;
1438
1439 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1440 return 0;
1441
1442 if (TREE_CODE (expr1) == COMPONENT_REF)
1443 return
1444 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1445 TREE_OPERAND (expr2, 0))
1446 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1447 TREE_OPERAND (expr2, 1));
1448
1449 if (INDIRECT_REF_P (expr1))
1450 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1451 TREE_OPERAND (expr2, 0));
1452
1453 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1454 have been resolved here. */
1455 gcc_assert (DECL_P (expr1));
1456
1457 /* Decls with different pointers can't be equal. */
1458 return 0;
1459 }
1460
1461 /* Given REF, a MEM, and T, either the type of X or the expression
1462 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1463 if we are making a new object of this type. BITPOS is nonzero if
1464 there is an offset outstanding on T that will be applied later. */
1465
1466 void
1467 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1468 HOST_WIDE_INT bitpos)
1469 {
1470 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1471 tree expr = MEM_EXPR (ref);
1472 rtx offset = MEM_OFFSET (ref);
1473 rtx size = MEM_SIZE (ref);
1474 unsigned int align = MEM_ALIGN (ref);
1475 HOST_WIDE_INT apply_bitpos = 0;
1476 tree type;
1477
1478 /* It can happen that type_for_mode was given a mode for which there
1479 is no language-level type. In which case it returns NULL, which
1480 we can see here. */
1481 if (t == NULL_TREE)
1482 return;
1483
1484 type = TYPE_P (t) ? t : TREE_TYPE (t);
1485 if (type == error_mark_node)
1486 return;
1487
1488 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1489 wrong answer, as it assumes that DECL_RTL already has the right alias
1490 info. Callers should not set DECL_RTL until after the call to
1491 set_mem_attributes. */
1492 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1493
1494 /* Get the alias set from the expression or type (perhaps using a
1495 front-end routine) and use it. */
1496 alias = get_alias_set (t);
1497
1498 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1499 MEM_IN_STRUCT_P (ref)
1500 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1501 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1502
1503 /* If we are making an object of this type, or if this is a DECL, we know
1504 that it is a scalar if the type is not an aggregate. */
1505 if ((objectp || DECL_P (t))
1506 && ! AGGREGATE_TYPE_P (type)
1507 && TREE_CODE (type) != COMPLEX_TYPE)
1508 MEM_SCALAR_P (ref) = 1;
1509
1510 /* We can set the alignment from the type if we are making an object,
1511 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1512 if (objectp || TREE_CODE (t) == INDIRECT_REF
1513 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1514 || TYPE_ALIGN_OK (type))
1515 align = MAX (align, TYPE_ALIGN (type));
1516 else
1517 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1518 {
1519 if (integer_zerop (TREE_OPERAND (t, 1)))
1520 /* We don't know anything about the alignment. */
1521 align = BITS_PER_UNIT;
1522 else
1523 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1524 }
1525
1526 /* If the size is known, we can set that. */
1527 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1528 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1529
1530 /* If T is not a type, we may be able to deduce some more information about
1531 the expression. */
1532 if (! TYPE_P (t))
1533 {
1534 tree base;
1535
1536 if (TREE_THIS_VOLATILE (t))
1537 MEM_VOLATILE_P (ref) = 1;
1538
1539 /* Now remove any conversions: they don't change what the underlying
1540 object is. Likewise for SAVE_EXPR. */
1541 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1542 || TREE_CODE (t) == NON_LVALUE_EXPR
1543 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1544 || TREE_CODE (t) == SAVE_EXPR)
1545 t = TREE_OPERAND (t, 0);
1546
1547 /* We may look through structure-like accesses for the purposes of
1548 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1549 base = t;
1550 while (TREE_CODE (base) == COMPONENT_REF
1551 || TREE_CODE (base) == REALPART_EXPR
1552 || TREE_CODE (base) == IMAGPART_EXPR
1553 || TREE_CODE (base) == BIT_FIELD_REF)
1554 base = TREE_OPERAND (base, 0);
1555
1556 if (DECL_P (base))
1557 {
1558 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1559 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1560 else
1561 MEM_NOTRAP_P (ref) = 1;
1562 }
1563 else
1564 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1565
1566 base = get_base_address (base);
1567 if (base && DECL_P (base)
1568 && TREE_READONLY (base)
1569 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1570 {
1571 tree base_type = TREE_TYPE (base);
1572 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1573 || DECL_ARTIFICIAL (base));
1574 MEM_READONLY_P (ref) = 1;
1575 }
1576
1577 /* If this expression uses it's parent's alias set, mark it such
1578 that we won't change it. */
1579 if (component_uses_parent_alias_set (t))
1580 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1581
1582 /* If this is a decl, set the attributes of the MEM from it. */
1583 if (DECL_P (t))
1584 {
1585 expr = t;
1586 offset = const0_rtx;
1587 apply_bitpos = bitpos;
1588 size = (DECL_SIZE_UNIT (t)
1589 && host_integerp (DECL_SIZE_UNIT (t), 1)
1590 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1591 align = DECL_ALIGN (t);
1592 }
1593
1594 /* If this is a constant, we know the alignment. */
1595 else if (CONSTANT_CLASS_P (t))
1596 {
1597 align = TYPE_ALIGN (type);
1598 #ifdef CONSTANT_ALIGNMENT
1599 align = CONSTANT_ALIGNMENT (t, align);
1600 #endif
1601 }
1602
1603 /* If this is a field reference and not a bit-field, record it. */
1604 /* ??? There is some information that can be gleened from bit-fields,
1605 such as the word offset in the structure that might be modified.
1606 But skip it for now. */
1607 else if (TREE_CODE (t) == COMPONENT_REF
1608 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1609 {
1610 expr = component_ref_for_mem_expr (t);
1611 offset = const0_rtx;
1612 apply_bitpos = bitpos;
1613 /* ??? Any reason the field size would be different than
1614 the size we got from the type? */
1615 }
1616
1617 /* If this is an array reference, look for an outer field reference. */
1618 else if (TREE_CODE (t) == ARRAY_REF)
1619 {
1620 tree off_tree = size_zero_node;
1621 /* We can't modify t, because we use it at the end of the
1622 function. */
1623 tree t2 = t;
1624
1625 do
1626 {
1627 tree index = TREE_OPERAND (t2, 1);
1628 tree low_bound = array_ref_low_bound (t2);
1629 tree unit_size = array_ref_element_size (t2);
1630
1631 /* We assume all arrays have sizes that are a multiple of a byte.
1632 First subtract the lower bound, if any, in the type of the
1633 index, then convert to sizetype and multiply by the size of
1634 the array element. */
1635 if (! integer_zerop (low_bound))
1636 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1637 index, low_bound);
1638
1639 off_tree = size_binop (PLUS_EXPR,
1640 size_binop (MULT_EXPR,
1641 fold_convert (sizetype,
1642 index),
1643 unit_size),
1644 off_tree);
1645 t2 = TREE_OPERAND (t2, 0);
1646 }
1647 while (TREE_CODE (t2) == ARRAY_REF);
1648
1649 if (DECL_P (t2))
1650 {
1651 expr = t2;
1652 offset = NULL;
1653 if (host_integerp (off_tree, 1))
1654 {
1655 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1656 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1657 align = DECL_ALIGN (t2);
1658 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1659 align = aoff;
1660 offset = GEN_INT (ioff);
1661 apply_bitpos = bitpos;
1662 }
1663 }
1664 else if (TREE_CODE (t2) == COMPONENT_REF)
1665 {
1666 expr = component_ref_for_mem_expr (t2);
1667 if (host_integerp (off_tree, 1))
1668 {
1669 offset = GEN_INT (tree_low_cst (off_tree, 1));
1670 apply_bitpos = bitpos;
1671 }
1672 /* ??? Any reason the field size would be different than
1673 the size we got from the type? */
1674 }
1675 else if (flag_argument_noalias > 1
1676 && (INDIRECT_REF_P (t2))
1677 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1678 {
1679 expr = t2;
1680 offset = NULL;
1681 }
1682 }
1683
1684 /* If this is a Fortran indirect argument reference, record the
1685 parameter decl. */
1686 else if (flag_argument_noalias > 1
1687 && (INDIRECT_REF_P (t))
1688 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1689 {
1690 expr = t;
1691 offset = NULL;
1692 }
1693 }
1694
1695 /* If we modified OFFSET based on T, then subtract the outstanding
1696 bit position offset. Similarly, increase the size of the accessed
1697 object to contain the negative offset. */
1698 if (apply_bitpos)
1699 {
1700 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1701 if (size)
1702 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1703 }
1704
1705 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1706 {
1707 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1708 we're overlapping. */
1709 offset = NULL;
1710 expr = NULL;
1711 }
1712
1713 /* Now set the attributes we computed above. */
1714 MEM_ATTRS (ref)
1715 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1716
1717 /* If this is already known to be a scalar or aggregate, we are done. */
1718 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1719 return;
1720
1721 /* If it is a reference into an aggregate, this is part of an aggregate.
1722 Otherwise we don't know. */
1723 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1724 || TREE_CODE (t) == ARRAY_RANGE_REF
1725 || TREE_CODE (t) == BIT_FIELD_REF)
1726 MEM_IN_STRUCT_P (ref) = 1;
1727 }
1728
1729 void
1730 set_mem_attributes (rtx ref, tree t, int objectp)
1731 {
1732 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1733 }
1734
1735 /* Set the decl for MEM to DECL. */
1736
1737 void
1738 set_mem_attrs_from_reg (rtx mem, rtx reg)
1739 {
1740 MEM_ATTRS (mem)
1741 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1742 GEN_INT (REG_OFFSET (reg)),
1743 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1744 }
1745
1746 /* Set the alias set of MEM to SET. */
1747
1748 void
1749 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1750 {
1751 #ifdef ENABLE_CHECKING
1752 /* If the new and old alias sets don't conflict, something is wrong. */
1753 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1754 #endif
1755
1756 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1757 MEM_SIZE (mem), MEM_ALIGN (mem),
1758 GET_MODE (mem));
1759 }
1760
1761 /* Set the alignment of MEM to ALIGN bits. */
1762
1763 void
1764 set_mem_align (rtx mem, unsigned int align)
1765 {
1766 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1767 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1768 GET_MODE (mem));
1769 }
1770
1771 /* Set the expr for MEM to EXPR. */
1772
1773 void
1774 set_mem_expr (rtx mem, tree expr)
1775 {
1776 MEM_ATTRS (mem)
1777 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1778 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1779 }
1780
1781 /* Set the offset of MEM to OFFSET. */
1782
1783 void
1784 set_mem_offset (rtx mem, rtx offset)
1785 {
1786 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1787 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1788 GET_MODE (mem));
1789 }
1790
1791 /* Set the size of MEM to SIZE. */
1792
1793 void
1794 set_mem_size (rtx mem, rtx size)
1795 {
1796 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1797 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1798 GET_MODE (mem));
1799 }
1800 \f
1801 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1802 and its address changed to ADDR. (VOIDmode means don't change the mode.
1803 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1804 returned memory location is required to be valid. The memory
1805 attributes are not changed. */
1806
1807 static rtx
1808 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1809 {
1810 rtx new;
1811
1812 gcc_assert (MEM_P (memref));
1813 if (mode == VOIDmode)
1814 mode = GET_MODE (memref);
1815 if (addr == 0)
1816 addr = XEXP (memref, 0);
1817 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1818 && (!validate || memory_address_p (mode, addr)))
1819 return memref;
1820
1821 if (validate)
1822 {
1823 if (reload_in_progress || reload_completed)
1824 gcc_assert (memory_address_p (mode, addr));
1825 else
1826 addr = memory_address (mode, addr);
1827 }
1828
1829 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1830 return memref;
1831
1832 new = gen_rtx_MEM (mode, addr);
1833 MEM_COPY_ATTRIBUTES (new, memref);
1834 return new;
1835 }
1836
1837 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1838 way we are changing MEMREF, so we only preserve the alias set. */
1839
1840 rtx
1841 change_address (rtx memref, enum machine_mode mode, rtx addr)
1842 {
1843 rtx new = change_address_1 (memref, mode, addr, 1), size;
1844 enum machine_mode mmode = GET_MODE (new);
1845 unsigned int align;
1846
1847 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1848 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1849
1850 /* If there are no changes, just return the original memory reference. */
1851 if (new == memref)
1852 {
1853 if (MEM_ATTRS (memref) == 0
1854 || (MEM_EXPR (memref) == NULL
1855 && MEM_OFFSET (memref) == NULL
1856 && MEM_SIZE (memref) == size
1857 && MEM_ALIGN (memref) == align))
1858 return new;
1859
1860 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1861 MEM_COPY_ATTRIBUTES (new, memref);
1862 }
1863
1864 MEM_ATTRS (new)
1865 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1866
1867 return new;
1868 }
1869
1870 /* Return a memory reference like MEMREF, but with its mode changed
1871 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1872 nonzero, the memory address is forced to be valid.
1873 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1874 and caller is responsible for adjusting MEMREF base register. */
1875
1876 rtx
1877 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1878 int validate, int adjust)
1879 {
1880 rtx addr = XEXP (memref, 0);
1881 rtx new;
1882 rtx memoffset = MEM_OFFSET (memref);
1883 rtx size = 0;
1884 unsigned int memalign = MEM_ALIGN (memref);
1885
1886 /* If there are no changes, just return the original memory reference. */
1887 if (mode == GET_MODE (memref) && !offset
1888 && (!validate || memory_address_p (mode, addr)))
1889 return memref;
1890
1891 /* ??? Prefer to create garbage instead of creating shared rtl.
1892 This may happen even if offset is nonzero -- consider
1893 (plus (plus reg reg) const_int) -- so do this always. */
1894 addr = copy_rtx (addr);
1895
1896 if (adjust)
1897 {
1898 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1899 object, we can merge it into the LO_SUM. */
1900 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1901 && offset >= 0
1902 && (unsigned HOST_WIDE_INT) offset
1903 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1904 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1905 plus_constant (XEXP (addr, 1), offset));
1906 else
1907 addr = plus_constant (addr, offset);
1908 }
1909
1910 new = change_address_1 (memref, mode, addr, validate);
1911
1912 /* Compute the new values of the memory attributes due to this adjustment.
1913 We add the offsets and update the alignment. */
1914 if (memoffset)
1915 memoffset = GEN_INT (offset + INTVAL (memoffset));
1916
1917 /* Compute the new alignment by taking the MIN of the alignment and the
1918 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1919 if zero. */
1920 if (offset != 0)
1921 memalign
1922 = MIN (memalign,
1923 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1924
1925 /* We can compute the size in a number of ways. */
1926 if (GET_MODE (new) != BLKmode)
1927 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1928 else if (MEM_SIZE (memref))
1929 size = plus_constant (MEM_SIZE (memref), -offset);
1930
1931 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1932 memoffset, size, memalign, GET_MODE (new));
1933
1934 /* At some point, we should validate that this offset is within the object,
1935 if all the appropriate values are known. */
1936 return new;
1937 }
1938
1939 /* Return a memory reference like MEMREF, but with its mode changed
1940 to MODE and its address changed to ADDR, which is assumed to be
1941 MEMREF offseted by OFFSET bytes. If VALIDATE is
1942 nonzero, the memory address is forced to be valid. */
1943
1944 rtx
1945 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1946 HOST_WIDE_INT offset, int validate)
1947 {
1948 memref = change_address_1 (memref, VOIDmode, addr, validate);
1949 return adjust_address_1 (memref, mode, offset, validate, 0);
1950 }
1951
1952 /* Return a memory reference like MEMREF, but whose address is changed by
1953 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1954 known to be in OFFSET (possibly 1). */
1955
1956 rtx
1957 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1958 {
1959 rtx new, addr = XEXP (memref, 0);
1960
1961 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1962
1963 /* At this point we don't know _why_ the address is invalid. It
1964 could have secondary memory references, multiplies or anything.
1965
1966 However, if we did go and rearrange things, we can wind up not
1967 being able to recognize the magic around pic_offset_table_rtx.
1968 This stuff is fragile, and is yet another example of why it is
1969 bad to expose PIC machinery too early. */
1970 if (! memory_address_p (GET_MODE (memref), new)
1971 && GET_CODE (addr) == PLUS
1972 && XEXP (addr, 0) == pic_offset_table_rtx)
1973 {
1974 addr = force_reg (GET_MODE (addr), addr);
1975 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1976 }
1977
1978 update_temp_slot_address (XEXP (memref, 0), new);
1979 new = change_address_1 (memref, VOIDmode, new, 1);
1980
1981 /* If there are no changes, just return the original memory reference. */
1982 if (new == memref)
1983 return new;
1984
1985 /* Update the alignment to reflect the offset. Reset the offset, which
1986 we don't know. */
1987 MEM_ATTRS (new)
1988 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1989 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1990 GET_MODE (new));
1991 return new;
1992 }
1993
1994 /* Return a memory reference like MEMREF, but with its address changed to
1995 ADDR. The caller is asserting that the actual piece of memory pointed
1996 to is the same, just the form of the address is being changed, such as
1997 by putting something into a register. */
1998
1999 rtx
2000 replace_equiv_address (rtx memref, rtx addr)
2001 {
2002 /* change_address_1 copies the memory attribute structure without change
2003 and that's exactly what we want here. */
2004 update_temp_slot_address (XEXP (memref, 0), addr);
2005 return change_address_1 (memref, VOIDmode, addr, 1);
2006 }
2007
2008 /* Likewise, but the reference is not required to be valid. */
2009
2010 rtx
2011 replace_equiv_address_nv (rtx memref, rtx addr)
2012 {
2013 return change_address_1 (memref, VOIDmode, addr, 0);
2014 }
2015
2016 /* Return a memory reference like MEMREF, but with its mode widened to
2017 MODE and offset by OFFSET. This would be used by targets that e.g.
2018 cannot issue QImode memory operations and have to use SImode memory
2019 operations plus masking logic. */
2020
2021 rtx
2022 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2023 {
2024 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2025 tree expr = MEM_EXPR (new);
2026 rtx memoffset = MEM_OFFSET (new);
2027 unsigned int size = GET_MODE_SIZE (mode);
2028
2029 /* If there are no changes, just return the original memory reference. */
2030 if (new == memref)
2031 return new;
2032
2033 /* If we don't know what offset we were at within the expression, then
2034 we can't know if we've overstepped the bounds. */
2035 if (! memoffset)
2036 expr = NULL_TREE;
2037
2038 while (expr)
2039 {
2040 if (TREE_CODE (expr) == COMPONENT_REF)
2041 {
2042 tree field = TREE_OPERAND (expr, 1);
2043 tree offset = component_ref_field_offset (expr);
2044
2045 if (! DECL_SIZE_UNIT (field))
2046 {
2047 expr = NULL_TREE;
2048 break;
2049 }
2050
2051 /* Is the field at least as large as the access? If so, ok,
2052 otherwise strip back to the containing structure. */
2053 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2054 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2055 && INTVAL (memoffset) >= 0)
2056 break;
2057
2058 if (! host_integerp (offset, 1))
2059 {
2060 expr = NULL_TREE;
2061 break;
2062 }
2063
2064 expr = TREE_OPERAND (expr, 0);
2065 memoffset
2066 = (GEN_INT (INTVAL (memoffset)
2067 + tree_low_cst (offset, 1)
2068 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2069 / BITS_PER_UNIT)));
2070 }
2071 /* Similarly for the decl. */
2072 else if (DECL_P (expr)
2073 && DECL_SIZE_UNIT (expr)
2074 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2075 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2076 && (! memoffset || INTVAL (memoffset) >= 0))
2077 break;
2078 else
2079 {
2080 /* The widened memory access overflows the expression, which means
2081 that it could alias another expression. Zap it. */
2082 expr = NULL_TREE;
2083 break;
2084 }
2085 }
2086
2087 if (! expr)
2088 memoffset = NULL_RTX;
2089
2090 /* The widened memory may alias other stuff, so zap the alias set. */
2091 /* ??? Maybe use get_alias_set on any remaining expression. */
2092
2093 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2094 MEM_ALIGN (new), mode);
2095
2096 return new;
2097 }
2098 \f
2099 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2100
2101 rtx
2102 gen_label_rtx (void)
2103 {
2104 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2105 NULL, label_num++, NULL);
2106 }
2107 \f
2108 /* For procedure integration. */
2109
2110 /* Install new pointers to the first and last insns in the chain.
2111 Also, set cur_insn_uid to one higher than the last in use.
2112 Used for an inline-procedure after copying the insn chain. */
2113
2114 void
2115 set_new_first_and_last_insn (rtx first, rtx last)
2116 {
2117 rtx insn;
2118
2119 first_insn = first;
2120 last_insn = last;
2121 cur_insn_uid = 0;
2122
2123 for (insn = first; insn; insn = NEXT_INSN (insn))
2124 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2125
2126 cur_insn_uid++;
2127 }
2128 \f
2129 /* Go through all the RTL insn bodies and copy any invalid shared
2130 structure. This routine should only be called once. */
2131
2132 static void
2133 unshare_all_rtl_1 (rtx insn)
2134 {
2135 /* Unshare just about everything else. */
2136 unshare_all_rtl_in_chain (insn);
2137
2138 /* Make sure the addresses of stack slots found outside the insn chain
2139 (such as, in DECL_RTL of a variable) are not shared
2140 with the insn chain.
2141
2142 This special care is necessary when the stack slot MEM does not
2143 actually appear in the insn chain. If it does appear, its address
2144 is unshared from all else at that point. */
2145 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2146 }
2147
2148 /* Go through all the RTL insn bodies and copy any invalid shared
2149 structure, again. This is a fairly expensive thing to do so it
2150 should be done sparingly. */
2151
2152 void
2153 unshare_all_rtl_again (rtx insn)
2154 {
2155 rtx p;
2156 tree decl;
2157
2158 for (p = insn; p; p = NEXT_INSN (p))
2159 if (INSN_P (p))
2160 {
2161 reset_used_flags (PATTERN (p));
2162 reset_used_flags (REG_NOTES (p));
2163 }
2164
2165 /* Make sure that virtual stack slots are not shared. */
2166 reset_used_decls (DECL_INITIAL (cfun->decl));
2167
2168 /* Make sure that virtual parameters are not shared. */
2169 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2170 reset_used_flags (DECL_RTL (decl));
2171
2172 reset_used_flags (stack_slot_list);
2173
2174 unshare_all_rtl_1 (insn);
2175 }
2176
2177 unsigned int
2178 unshare_all_rtl (void)
2179 {
2180 unshare_all_rtl_1 (get_insns ());
2181 return 0;
2182 }
2183
2184 struct tree_opt_pass pass_unshare_all_rtl =
2185 {
2186 "unshare", /* name */
2187 NULL, /* gate */
2188 unshare_all_rtl, /* execute */
2189 NULL, /* sub */
2190 NULL, /* next */
2191 0, /* static_pass_number */
2192 0, /* tv_id */
2193 0, /* properties_required */
2194 0, /* properties_provided */
2195 0, /* properties_destroyed */
2196 0, /* todo_flags_start */
2197 TODO_dump_func, /* todo_flags_finish */
2198 0 /* letter */
2199 };
2200
2201
2202 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2203 Recursively does the same for subexpressions. */
2204
2205 static void
2206 verify_rtx_sharing (rtx orig, rtx insn)
2207 {
2208 rtx x = orig;
2209 int i;
2210 enum rtx_code code;
2211 const char *format_ptr;
2212
2213 if (x == 0)
2214 return;
2215
2216 code = GET_CODE (x);
2217
2218 /* These types may be freely shared. */
2219
2220 switch (code)
2221 {
2222 case REG:
2223 case CONST_INT:
2224 case CONST_DOUBLE:
2225 case CONST_VECTOR:
2226 case SYMBOL_REF:
2227 case LABEL_REF:
2228 case CODE_LABEL:
2229 case PC:
2230 case CC0:
2231 case SCRATCH:
2232 return;
2233 /* SCRATCH must be shared because they represent distinct values. */
2234 case CLOBBER:
2235 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2236 return;
2237 break;
2238
2239 case CONST:
2240 if (shared_const_p (orig))
2241 return;
2242 break;
2243
2244 case MEM:
2245 /* A MEM is allowed to be shared if its address is constant. */
2246 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2247 || reload_completed || reload_in_progress)
2248 return;
2249
2250 break;
2251
2252 default:
2253 break;
2254 }
2255
2256 /* This rtx may not be shared. If it has already been seen,
2257 replace it with a copy of itself. */
2258 #ifdef ENABLE_CHECKING
2259 if (RTX_FLAG (x, used))
2260 {
2261 error ("invalid rtl sharing found in the insn");
2262 debug_rtx (insn);
2263 error ("shared rtx");
2264 debug_rtx (x);
2265 internal_error ("internal consistency failure");
2266 }
2267 #endif
2268 gcc_assert (!RTX_FLAG (x, used));
2269
2270 RTX_FLAG (x, used) = 1;
2271
2272 /* Now scan the subexpressions recursively. */
2273
2274 format_ptr = GET_RTX_FORMAT (code);
2275
2276 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2277 {
2278 switch (*format_ptr++)
2279 {
2280 case 'e':
2281 verify_rtx_sharing (XEXP (x, i), insn);
2282 break;
2283
2284 case 'E':
2285 if (XVEC (x, i) != NULL)
2286 {
2287 int j;
2288 int len = XVECLEN (x, i);
2289
2290 for (j = 0; j < len; j++)
2291 {
2292 /* We allow sharing of ASM_OPERANDS inside single
2293 instruction. */
2294 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2295 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2296 == ASM_OPERANDS))
2297 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2298 else
2299 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2300 }
2301 }
2302 break;
2303 }
2304 }
2305 return;
2306 }
2307
2308 /* Go through all the RTL insn bodies and check that there is no unexpected
2309 sharing in between the subexpressions. */
2310
2311 void
2312 verify_rtl_sharing (void)
2313 {
2314 rtx p;
2315
2316 for (p = get_insns (); p; p = NEXT_INSN (p))
2317 if (INSN_P (p))
2318 {
2319 reset_used_flags (PATTERN (p));
2320 reset_used_flags (REG_NOTES (p));
2321 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2322 {
2323 int i;
2324 rtx q, sequence = PATTERN (p);
2325
2326 for (i = 0; i < XVECLEN (sequence, 0); i++)
2327 {
2328 q = XVECEXP (sequence, 0, i);
2329 gcc_assert (INSN_P (q));
2330 reset_used_flags (PATTERN (q));
2331 reset_used_flags (REG_NOTES (q));
2332 }
2333 }
2334 }
2335
2336 for (p = get_insns (); p; p = NEXT_INSN (p))
2337 if (INSN_P (p))
2338 {
2339 verify_rtx_sharing (PATTERN (p), p);
2340 verify_rtx_sharing (REG_NOTES (p), p);
2341 }
2342 }
2343
2344 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2345 Assumes the mark bits are cleared at entry. */
2346
2347 void
2348 unshare_all_rtl_in_chain (rtx insn)
2349 {
2350 for (; insn; insn = NEXT_INSN (insn))
2351 if (INSN_P (insn))
2352 {
2353 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2354 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2355 }
2356 }
2357
2358 /* Go through all virtual stack slots of a function and mark them as
2359 not shared. */
2360 static void
2361 reset_used_decls (tree blk)
2362 {
2363 tree t;
2364
2365 /* Mark decls. */
2366 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2367 if (DECL_RTL_SET_P (t))
2368 reset_used_flags (DECL_RTL (t));
2369
2370 /* Now process sub-blocks. */
2371 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2372 reset_used_decls (t);
2373 }
2374
2375 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2376 Recursively does the same for subexpressions. Uses
2377 copy_rtx_if_shared_1 to reduce stack space. */
2378
2379 rtx
2380 copy_rtx_if_shared (rtx orig)
2381 {
2382 copy_rtx_if_shared_1 (&orig);
2383 return orig;
2384 }
2385
2386 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2387 use. Recursively does the same for subexpressions. */
2388
2389 static void
2390 copy_rtx_if_shared_1 (rtx *orig1)
2391 {
2392 rtx x;
2393 int i;
2394 enum rtx_code code;
2395 rtx *last_ptr;
2396 const char *format_ptr;
2397 int copied = 0;
2398 int length;
2399
2400 /* Repeat is used to turn tail-recursion into iteration. */
2401 repeat:
2402 x = *orig1;
2403
2404 if (x == 0)
2405 return;
2406
2407 code = GET_CODE (x);
2408
2409 /* These types may be freely shared. */
2410
2411 switch (code)
2412 {
2413 case REG:
2414 case CONST_INT:
2415 case CONST_DOUBLE:
2416 case CONST_VECTOR:
2417 case SYMBOL_REF:
2418 case LABEL_REF:
2419 case CODE_LABEL:
2420 case PC:
2421 case CC0:
2422 case SCRATCH:
2423 /* SCRATCH must be shared because they represent distinct values. */
2424 return;
2425 case CLOBBER:
2426 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2427 return;
2428 break;
2429
2430 case CONST:
2431 if (shared_const_p (x))
2432 return;
2433 break;
2434
2435 case INSN:
2436 case JUMP_INSN:
2437 case CALL_INSN:
2438 case NOTE:
2439 case BARRIER:
2440 /* The chain of insns is not being copied. */
2441 return;
2442
2443 default:
2444 break;
2445 }
2446
2447 /* This rtx may not be shared. If it has already been seen,
2448 replace it with a copy of itself. */
2449
2450 if (RTX_FLAG (x, used))
2451 {
2452 x = shallow_copy_rtx (x);
2453 copied = 1;
2454 }
2455 RTX_FLAG (x, used) = 1;
2456
2457 /* Now scan the subexpressions recursively.
2458 We can store any replaced subexpressions directly into X
2459 since we know X is not shared! Any vectors in X
2460 must be copied if X was copied. */
2461
2462 format_ptr = GET_RTX_FORMAT (code);
2463 length = GET_RTX_LENGTH (code);
2464 last_ptr = NULL;
2465
2466 for (i = 0; i < length; i++)
2467 {
2468 switch (*format_ptr++)
2469 {
2470 case 'e':
2471 if (last_ptr)
2472 copy_rtx_if_shared_1 (last_ptr);
2473 last_ptr = &XEXP (x, i);
2474 break;
2475
2476 case 'E':
2477 if (XVEC (x, i) != NULL)
2478 {
2479 int j;
2480 int len = XVECLEN (x, i);
2481
2482 /* Copy the vector iff I copied the rtx and the length
2483 is nonzero. */
2484 if (copied && len > 0)
2485 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2486
2487 /* Call recursively on all inside the vector. */
2488 for (j = 0; j < len; j++)
2489 {
2490 if (last_ptr)
2491 copy_rtx_if_shared_1 (last_ptr);
2492 last_ptr = &XVECEXP (x, i, j);
2493 }
2494 }
2495 break;
2496 }
2497 }
2498 *orig1 = x;
2499 if (last_ptr)
2500 {
2501 orig1 = last_ptr;
2502 goto repeat;
2503 }
2504 return;
2505 }
2506
2507 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2508 to look for shared sub-parts. */
2509
2510 void
2511 reset_used_flags (rtx x)
2512 {
2513 int i, j;
2514 enum rtx_code code;
2515 const char *format_ptr;
2516 int length;
2517
2518 /* Repeat is used to turn tail-recursion into iteration. */
2519 repeat:
2520 if (x == 0)
2521 return;
2522
2523 code = GET_CODE (x);
2524
2525 /* These types may be freely shared so we needn't do any resetting
2526 for them. */
2527
2528 switch (code)
2529 {
2530 case REG:
2531 case CONST_INT:
2532 case CONST_DOUBLE:
2533 case CONST_VECTOR:
2534 case SYMBOL_REF:
2535 case CODE_LABEL:
2536 case PC:
2537 case CC0:
2538 return;
2539
2540 case INSN:
2541 case JUMP_INSN:
2542 case CALL_INSN:
2543 case NOTE:
2544 case LABEL_REF:
2545 case BARRIER:
2546 /* The chain of insns is not being copied. */
2547 return;
2548
2549 default:
2550 break;
2551 }
2552
2553 RTX_FLAG (x, used) = 0;
2554
2555 format_ptr = GET_RTX_FORMAT (code);
2556 length = GET_RTX_LENGTH (code);
2557
2558 for (i = 0; i < length; i++)
2559 {
2560 switch (*format_ptr++)
2561 {
2562 case 'e':
2563 if (i == length-1)
2564 {
2565 x = XEXP (x, i);
2566 goto repeat;
2567 }
2568 reset_used_flags (XEXP (x, i));
2569 break;
2570
2571 case 'E':
2572 for (j = 0; j < XVECLEN (x, i); j++)
2573 reset_used_flags (XVECEXP (x, i, j));
2574 break;
2575 }
2576 }
2577 }
2578
2579 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2580 to look for shared sub-parts. */
2581
2582 void
2583 set_used_flags (rtx x)
2584 {
2585 int i, j;
2586 enum rtx_code code;
2587 const char *format_ptr;
2588
2589 if (x == 0)
2590 return;
2591
2592 code = GET_CODE (x);
2593
2594 /* These types may be freely shared so we needn't do any resetting
2595 for them. */
2596
2597 switch (code)
2598 {
2599 case REG:
2600 case CONST_INT:
2601 case CONST_DOUBLE:
2602 case CONST_VECTOR:
2603 case SYMBOL_REF:
2604 case CODE_LABEL:
2605 case PC:
2606 case CC0:
2607 return;
2608
2609 case INSN:
2610 case JUMP_INSN:
2611 case CALL_INSN:
2612 case NOTE:
2613 case LABEL_REF:
2614 case BARRIER:
2615 /* The chain of insns is not being copied. */
2616 return;
2617
2618 default:
2619 break;
2620 }
2621
2622 RTX_FLAG (x, used) = 1;
2623
2624 format_ptr = GET_RTX_FORMAT (code);
2625 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2626 {
2627 switch (*format_ptr++)
2628 {
2629 case 'e':
2630 set_used_flags (XEXP (x, i));
2631 break;
2632
2633 case 'E':
2634 for (j = 0; j < XVECLEN (x, i); j++)
2635 set_used_flags (XVECEXP (x, i, j));
2636 break;
2637 }
2638 }
2639 }
2640 \f
2641 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2642 Return X or the rtx for the pseudo reg the value of X was copied into.
2643 OTHER must be valid as a SET_DEST. */
2644
2645 rtx
2646 make_safe_from (rtx x, rtx other)
2647 {
2648 while (1)
2649 switch (GET_CODE (other))
2650 {
2651 case SUBREG:
2652 other = SUBREG_REG (other);
2653 break;
2654 case STRICT_LOW_PART:
2655 case SIGN_EXTEND:
2656 case ZERO_EXTEND:
2657 other = XEXP (other, 0);
2658 break;
2659 default:
2660 goto done;
2661 }
2662 done:
2663 if ((MEM_P (other)
2664 && ! CONSTANT_P (x)
2665 && !REG_P (x)
2666 && GET_CODE (x) != SUBREG)
2667 || (REG_P (other)
2668 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2669 || reg_mentioned_p (other, x))))
2670 {
2671 rtx temp = gen_reg_rtx (GET_MODE (x));
2672 emit_move_insn (temp, x);
2673 return temp;
2674 }
2675 return x;
2676 }
2677 \f
2678 /* Emission of insns (adding them to the doubly-linked list). */
2679
2680 /* Return the first insn of the current sequence or current function. */
2681
2682 rtx
2683 get_insns (void)
2684 {
2685 return first_insn;
2686 }
2687
2688 /* Specify a new insn as the first in the chain. */
2689
2690 void
2691 set_first_insn (rtx insn)
2692 {
2693 gcc_assert (!PREV_INSN (insn));
2694 first_insn = insn;
2695 }
2696
2697 /* Return the last insn emitted in current sequence or current function. */
2698
2699 rtx
2700 get_last_insn (void)
2701 {
2702 return last_insn;
2703 }
2704
2705 /* Specify a new insn as the last in the chain. */
2706
2707 void
2708 set_last_insn (rtx insn)
2709 {
2710 gcc_assert (!NEXT_INSN (insn));
2711 last_insn = insn;
2712 }
2713
2714 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2715
2716 rtx
2717 get_last_insn_anywhere (void)
2718 {
2719 struct sequence_stack *stack;
2720 if (last_insn)
2721 return last_insn;
2722 for (stack = seq_stack; stack; stack = stack->next)
2723 if (stack->last != 0)
2724 return stack->last;
2725 return 0;
2726 }
2727
2728 /* Return the first nonnote insn emitted in current sequence or current
2729 function. This routine looks inside SEQUENCEs. */
2730
2731 rtx
2732 get_first_nonnote_insn (void)
2733 {
2734 rtx insn = first_insn;
2735
2736 if (insn)
2737 {
2738 if (NOTE_P (insn))
2739 for (insn = next_insn (insn);
2740 insn && NOTE_P (insn);
2741 insn = next_insn (insn))
2742 continue;
2743 else
2744 {
2745 if (NONJUMP_INSN_P (insn)
2746 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2747 insn = XVECEXP (PATTERN (insn), 0, 0);
2748 }
2749 }
2750
2751 return insn;
2752 }
2753
2754 /* Return the last nonnote insn emitted in current sequence or current
2755 function. This routine looks inside SEQUENCEs. */
2756
2757 rtx
2758 get_last_nonnote_insn (void)
2759 {
2760 rtx insn = last_insn;
2761
2762 if (insn)
2763 {
2764 if (NOTE_P (insn))
2765 for (insn = previous_insn (insn);
2766 insn && NOTE_P (insn);
2767 insn = previous_insn (insn))
2768 continue;
2769 else
2770 {
2771 if (NONJUMP_INSN_P (insn)
2772 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2773 insn = XVECEXP (PATTERN (insn), 0,
2774 XVECLEN (PATTERN (insn), 0) - 1);
2775 }
2776 }
2777
2778 return insn;
2779 }
2780
2781 /* Return a number larger than any instruction's uid in this function. */
2782
2783 int
2784 get_max_uid (void)
2785 {
2786 return cur_insn_uid;
2787 }
2788 \f
2789 /* Return the next insn. If it is a SEQUENCE, return the first insn
2790 of the sequence. */
2791
2792 rtx
2793 next_insn (rtx insn)
2794 {
2795 if (insn)
2796 {
2797 insn = NEXT_INSN (insn);
2798 if (insn && NONJUMP_INSN_P (insn)
2799 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2800 insn = XVECEXP (PATTERN (insn), 0, 0);
2801 }
2802
2803 return insn;
2804 }
2805
2806 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2807 of the sequence. */
2808
2809 rtx
2810 previous_insn (rtx insn)
2811 {
2812 if (insn)
2813 {
2814 insn = PREV_INSN (insn);
2815 if (insn && NONJUMP_INSN_P (insn)
2816 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2817 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2818 }
2819
2820 return insn;
2821 }
2822
2823 /* Return the next insn after INSN that is not a NOTE. This routine does not
2824 look inside SEQUENCEs. */
2825
2826 rtx
2827 next_nonnote_insn (rtx insn)
2828 {
2829 while (insn)
2830 {
2831 insn = NEXT_INSN (insn);
2832 if (insn == 0 || !NOTE_P (insn))
2833 break;
2834 }
2835
2836 return insn;
2837 }
2838
2839 /* Return the previous insn before INSN that is not a NOTE. This routine does
2840 not look inside SEQUENCEs. */
2841
2842 rtx
2843 prev_nonnote_insn (rtx insn)
2844 {
2845 while (insn)
2846 {
2847 insn = PREV_INSN (insn);
2848 if (insn == 0 || !NOTE_P (insn))
2849 break;
2850 }
2851
2852 return insn;
2853 }
2854
2855 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2856 or 0, if there is none. This routine does not look inside
2857 SEQUENCEs. */
2858
2859 rtx
2860 next_real_insn (rtx insn)
2861 {
2862 while (insn)
2863 {
2864 insn = NEXT_INSN (insn);
2865 if (insn == 0 || INSN_P (insn))
2866 break;
2867 }
2868
2869 return insn;
2870 }
2871
2872 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2873 or 0, if there is none. This routine does not look inside
2874 SEQUENCEs. */
2875
2876 rtx
2877 prev_real_insn (rtx insn)
2878 {
2879 while (insn)
2880 {
2881 insn = PREV_INSN (insn);
2882 if (insn == 0 || INSN_P (insn))
2883 break;
2884 }
2885
2886 return insn;
2887 }
2888
2889 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2890 This routine does not look inside SEQUENCEs. */
2891
2892 rtx
2893 last_call_insn (void)
2894 {
2895 rtx insn;
2896
2897 for (insn = get_last_insn ();
2898 insn && !CALL_P (insn);
2899 insn = PREV_INSN (insn))
2900 ;
2901
2902 return insn;
2903 }
2904
2905 /* Find the next insn after INSN that really does something. This routine
2906 does not look inside SEQUENCEs. Until reload has completed, this is the
2907 same as next_real_insn. */
2908
2909 int
2910 active_insn_p (rtx insn)
2911 {
2912 return (CALL_P (insn) || JUMP_P (insn)
2913 || (NONJUMP_INSN_P (insn)
2914 && (! reload_completed
2915 || (GET_CODE (PATTERN (insn)) != USE
2916 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2917 }
2918
2919 rtx
2920 next_active_insn (rtx insn)
2921 {
2922 while (insn)
2923 {
2924 insn = NEXT_INSN (insn);
2925 if (insn == 0 || active_insn_p (insn))
2926 break;
2927 }
2928
2929 return insn;
2930 }
2931
2932 /* Find the last insn before INSN that really does something. This routine
2933 does not look inside SEQUENCEs. Until reload has completed, this is the
2934 same as prev_real_insn. */
2935
2936 rtx
2937 prev_active_insn (rtx insn)
2938 {
2939 while (insn)
2940 {
2941 insn = PREV_INSN (insn);
2942 if (insn == 0 || active_insn_p (insn))
2943 break;
2944 }
2945
2946 return insn;
2947 }
2948
2949 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2950
2951 rtx
2952 next_label (rtx insn)
2953 {
2954 while (insn)
2955 {
2956 insn = NEXT_INSN (insn);
2957 if (insn == 0 || LABEL_P (insn))
2958 break;
2959 }
2960
2961 return insn;
2962 }
2963
2964 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2965
2966 rtx
2967 prev_label (rtx insn)
2968 {
2969 while (insn)
2970 {
2971 insn = PREV_INSN (insn);
2972 if (insn == 0 || LABEL_P (insn))
2973 break;
2974 }
2975
2976 return insn;
2977 }
2978
2979 /* Return the last label to mark the same position as LABEL. Return null
2980 if LABEL itself is null. */
2981
2982 rtx
2983 skip_consecutive_labels (rtx label)
2984 {
2985 rtx insn;
2986
2987 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
2988 if (LABEL_P (insn))
2989 label = insn;
2990
2991 return label;
2992 }
2993 \f
2994 #ifdef HAVE_cc0
2995 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2996 and REG_CC_USER notes so we can find it. */
2997
2998 void
2999 link_cc0_insns (rtx insn)
3000 {
3001 rtx user = next_nonnote_insn (insn);
3002
3003 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3004 user = XVECEXP (PATTERN (user), 0, 0);
3005
3006 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3007 REG_NOTES (user));
3008 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3009 }
3010
3011 /* Return the next insn that uses CC0 after INSN, which is assumed to
3012 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3013 applied to the result of this function should yield INSN).
3014
3015 Normally, this is simply the next insn. However, if a REG_CC_USER note
3016 is present, it contains the insn that uses CC0.
3017
3018 Return 0 if we can't find the insn. */
3019
3020 rtx
3021 next_cc0_user (rtx insn)
3022 {
3023 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3024
3025 if (note)
3026 return XEXP (note, 0);
3027
3028 insn = next_nonnote_insn (insn);
3029 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3030 insn = XVECEXP (PATTERN (insn), 0, 0);
3031
3032 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3033 return insn;
3034
3035 return 0;
3036 }
3037
3038 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3039 note, it is the previous insn. */
3040
3041 rtx
3042 prev_cc0_setter (rtx insn)
3043 {
3044 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3045
3046 if (note)
3047 return XEXP (note, 0);
3048
3049 insn = prev_nonnote_insn (insn);
3050 gcc_assert (sets_cc0_p (PATTERN (insn)));
3051
3052 return insn;
3053 }
3054 #endif
3055
3056 #ifdef AUTO_INC_DEC
3057 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3058
3059 static int
3060 find_auto_inc (rtx *xp, void *data)
3061 {
3062 rtx x = *xp;
3063 rtx reg = data;
3064
3065 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3066 return 0;
3067
3068 switch (GET_CODE (x))
3069 {
3070 case PRE_DEC:
3071 case PRE_INC:
3072 case POST_DEC:
3073 case POST_INC:
3074 case PRE_MODIFY:
3075 case POST_MODIFY:
3076 if (rtx_equal_p (reg, XEXP (x, 0)))
3077 return 1;
3078 break;
3079
3080 default:
3081 gcc_unreachable ();
3082 }
3083 return -1;
3084 }
3085 #endif
3086
3087 /* Increment the label uses for all labels present in rtx. */
3088
3089 static void
3090 mark_label_nuses (rtx x)
3091 {
3092 enum rtx_code code;
3093 int i, j;
3094 const char *fmt;
3095
3096 code = GET_CODE (x);
3097 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3098 LABEL_NUSES (XEXP (x, 0))++;
3099
3100 fmt = GET_RTX_FORMAT (code);
3101 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3102 {
3103 if (fmt[i] == 'e')
3104 mark_label_nuses (XEXP (x, i));
3105 else if (fmt[i] == 'E')
3106 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3107 mark_label_nuses (XVECEXP (x, i, j));
3108 }
3109 }
3110
3111 \f
3112 /* Try splitting insns that can be split for better scheduling.
3113 PAT is the pattern which might split.
3114 TRIAL is the insn providing PAT.
3115 LAST is nonzero if we should return the last insn of the sequence produced.
3116
3117 If this routine succeeds in splitting, it returns the first or last
3118 replacement insn depending on the value of LAST. Otherwise, it
3119 returns TRIAL. If the insn to be returned can be split, it will be. */
3120
3121 rtx
3122 try_split (rtx pat, rtx trial, int last)
3123 {
3124 rtx before = PREV_INSN (trial);
3125 rtx after = NEXT_INSN (trial);
3126 int has_barrier = 0;
3127 rtx tem;
3128 rtx note, seq;
3129 int probability;
3130 rtx insn_last, insn;
3131 int njumps = 0;
3132
3133 if (any_condjump_p (trial)
3134 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3135 split_branch_probability = INTVAL (XEXP (note, 0));
3136 probability = split_branch_probability;
3137
3138 seq = split_insns (pat, trial);
3139
3140 split_branch_probability = -1;
3141
3142 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3143 We may need to handle this specially. */
3144 if (after && BARRIER_P (after))
3145 {
3146 has_barrier = 1;
3147 after = NEXT_INSN (after);
3148 }
3149
3150 if (!seq)
3151 return trial;
3152
3153 /* Avoid infinite loop if any insn of the result matches
3154 the original pattern. */
3155 insn_last = seq;
3156 while (1)
3157 {
3158 if (INSN_P (insn_last)
3159 && rtx_equal_p (PATTERN (insn_last), pat))
3160 return trial;
3161 if (!NEXT_INSN (insn_last))
3162 break;
3163 insn_last = NEXT_INSN (insn_last);
3164 }
3165
3166 /* We will be adding the new sequence to the function. The splitters
3167 may have introduced invalid RTL sharing, so unshare the sequence now. */
3168 unshare_all_rtl_in_chain (seq);
3169
3170 /* Mark labels. */
3171 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3172 {
3173 if (JUMP_P (insn))
3174 {
3175 mark_jump_label (PATTERN (insn), insn, 0);
3176 njumps++;
3177 if (probability != -1
3178 && any_condjump_p (insn)
3179 && !find_reg_note (insn, REG_BR_PROB, 0))
3180 {
3181 /* We can preserve the REG_BR_PROB notes only if exactly
3182 one jump is created, otherwise the machine description
3183 is responsible for this step using
3184 split_branch_probability variable. */
3185 gcc_assert (njumps == 1);
3186 REG_NOTES (insn)
3187 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3188 GEN_INT (probability),
3189 REG_NOTES (insn));
3190 }
3191 }
3192 }
3193
3194 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3195 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3196 if (CALL_P (trial))
3197 {
3198 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3199 if (CALL_P (insn))
3200 {
3201 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3202 while (*p)
3203 p = &XEXP (*p, 1);
3204 *p = CALL_INSN_FUNCTION_USAGE (trial);
3205 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3206 }
3207 }
3208
3209 /* Copy notes, particularly those related to the CFG. */
3210 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3211 {
3212 switch (REG_NOTE_KIND (note))
3213 {
3214 case REG_EH_REGION:
3215 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3216 {
3217 if (CALL_P (insn)
3218 || (flag_non_call_exceptions && INSN_P (insn)
3219 && may_trap_p (PATTERN (insn))))
3220 REG_NOTES (insn)
3221 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3222 XEXP (note, 0),
3223 REG_NOTES (insn));
3224 }
3225 break;
3226
3227 case REG_NORETURN:
3228 case REG_SETJMP:
3229 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3230 {
3231 if (CALL_P (insn))
3232 REG_NOTES (insn)
3233 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3234 XEXP (note, 0),
3235 REG_NOTES (insn));
3236 }
3237 break;
3238
3239 case REG_NON_LOCAL_GOTO:
3240 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3241 {
3242 if (JUMP_P (insn))
3243 REG_NOTES (insn)
3244 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3245 XEXP (note, 0),
3246 REG_NOTES (insn));
3247 }
3248 break;
3249
3250 #ifdef AUTO_INC_DEC
3251 case REG_INC:
3252 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3253 {
3254 rtx reg = XEXP (note, 0);
3255 if (!FIND_REG_INC_NOTE (insn, reg)
3256 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3257 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg,
3258 REG_NOTES (insn));
3259 }
3260 break;
3261 #endif
3262
3263 default:
3264 break;
3265 }
3266 }
3267
3268 /* If there are LABELS inside the split insns increment the
3269 usage count so we don't delete the label. */
3270 if (NONJUMP_INSN_P (trial))
3271 {
3272 insn = insn_last;
3273 while (insn != NULL_RTX)
3274 {
3275 if (NONJUMP_INSN_P (insn))
3276 mark_label_nuses (PATTERN (insn));
3277
3278 insn = PREV_INSN (insn);
3279 }
3280 }
3281
3282 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3283
3284 delete_insn (trial);
3285 if (has_barrier)
3286 emit_barrier_after (tem);
3287
3288 /* Recursively call try_split for each new insn created; by the
3289 time control returns here that insn will be fully split, so
3290 set LAST and continue from the insn after the one returned.
3291 We can't use next_active_insn here since AFTER may be a note.
3292 Ignore deleted insns, which can be occur if not optimizing. */
3293 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3294 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3295 tem = try_split (PATTERN (tem), tem, 1);
3296
3297 /* Return either the first or the last insn, depending on which was
3298 requested. */
3299 return last
3300 ? (after ? PREV_INSN (after) : last_insn)
3301 : NEXT_INSN (before);
3302 }
3303 \f
3304 /* Make and return an INSN rtx, initializing all its slots.
3305 Store PATTERN in the pattern slots. */
3306
3307 rtx
3308 make_insn_raw (rtx pattern)
3309 {
3310 rtx insn;
3311
3312 insn = rtx_alloc (INSN);
3313
3314 INSN_UID (insn) = cur_insn_uid++;
3315 PATTERN (insn) = pattern;
3316 INSN_CODE (insn) = -1;
3317 REG_NOTES (insn) = NULL;
3318 INSN_LOCATOR (insn) = curr_insn_locator ();
3319 BLOCK_FOR_INSN (insn) = NULL;
3320
3321 #ifdef ENABLE_RTL_CHECKING
3322 if (insn
3323 && INSN_P (insn)
3324 && (returnjump_p (insn)
3325 || (GET_CODE (insn) == SET
3326 && SET_DEST (insn) == pc_rtx)))
3327 {
3328 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3329 debug_rtx (insn);
3330 }
3331 #endif
3332
3333 return insn;
3334 }
3335
3336 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3337
3338 rtx
3339 make_jump_insn_raw (rtx pattern)
3340 {
3341 rtx insn;
3342
3343 insn = rtx_alloc (JUMP_INSN);
3344 INSN_UID (insn) = cur_insn_uid++;
3345
3346 PATTERN (insn) = pattern;
3347 INSN_CODE (insn) = -1;
3348 REG_NOTES (insn) = NULL;
3349 JUMP_LABEL (insn) = NULL;
3350 INSN_LOCATOR (insn) = curr_insn_locator ();
3351 BLOCK_FOR_INSN (insn) = NULL;
3352
3353 return insn;
3354 }
3355
3356 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3357
3358 static rtx
3359 make_call_insn_raw (rtx pattern)
3360 {
3361 rtx insn;
3362
3363 insn = rtx_alloc (CALL_INSN);
3364 INSN_UID (insn) = cur_insn_uid++;
3365
3366 PATTERN (insn) = pattern;
3367 INSN_CODE (insn) = -1;
3368 REG_NOTES (insn) = NULL;
3369 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3370 INSN_LOCATOR (insn) = curr_insn_locator ();
3371 BLOCK_FOR_INSN (insn) = NULL;
3372
3373 return insn;
3374 }
3375 \f
3376 /* Add INSN to the end of the doubly-linked list.
3377 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3378
3379 void
3380 add_insn (rtx insn)
3381 {
3382 PREV_INSN (insn) = last_insn;
3383 NEXT_INSN (insn) = 0;
3384
3385 if (NULL != last_insn)
3386 NEXT_INSN (last_insn) = insn;
3387
3388 if (NULL == first_insn)
3389 first_insn = insn;
3390
3391 last_insn = insn;
3392 }
3393
3394 /* Add INSN into the doubly-linked list after insn AFTER. This and
3395 the next should be the only functions called to insert an insn once
3396 delay slots have been filled since only they know how to update a
3397 SEQUENCE. */
3398
3399 void
3400 add_insn_after (rtx insn, rtx after, basic_block bb)
3401 {
3402 rtx next = NEXT_INSN (after);
3403
3404 gcc_assert (!optimize || !INSN_DELETED_P (after));
3405
3406 NEXT_INSN (insn) = next;
3407 PREV_INSN (insn) = after;
3408
3409 if (next)
3410 {
3411 PREV_INSN (next) = insn;
3412 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3413 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3414 }
3415 else if (last_insn == after)
3416 last_insn = insn;
3417 else
3418 {
3419 struct sequence_stack *stack = seq_stack;
3420 /* Scan all pending sequences too. */
3421 for (; stack; stack = stack->next)
3422 if (after == stack->last)
3423 {
3424 stack->last = insn;
3425 break;
3426 }
3427
3428 gcc_assert (stack);
3429 }
3430
3431 if (!BARRIER_P (after)
3432 && !BARRIER_P (insn)
3433 && (bb = BLOCK_FOR_INSN (after)))
3434 {
3435 set_block_for_insn (insn, bb);
3436 if (INSN_P (insn))
3437 df_insn_rescan (insn);
3438 /* Should not happen as first in the BB is always
3439 either NOTE or LABEL. */
3440 if (BB_END (bb) == after
3441 /* Avoid clobbering of structure when creating new BB. */
3442 && !BARRIER_P (insn)
3443 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3444 BB_END (bb) = insn;
3445 }
3446
3447 NEXT_INSN (after) = insn;
3448 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3449 {
3450 rtx sequence = PATTERN (after);
3451 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3452 }
3453 }
3454
3455 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3456 the previous should be the only functions called to insert an insn
3457 once delay slots have been filled since only they know how to
3458 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3459 bb from before. */
3460
3461 void
3462 add_insn_before (rtx insn, rtx before, basic_block bb)
3463 {
3464 rtx prev = PREV_INSN (before);
3465
3466 gcc_assert (!optimize || !INSN_DELETED_P (before));
3467
3468 PREV_INSN (insn) = prev;
3469 NEXT_INSN (insn) = before;
3470
3471 if (prev)
3472 {
3473 NEXT_INSN (prev) = insn;
3474 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3475 {
3476 rtx sequence = PATTERN (prev);
3477 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3478 }
3479 }
3480 else if (first_insn == before)
3481 first_insn = insn;
3482 else
3483 {
3484 struct sequence_stack *stack = seq_stack;
3485 /* Scan all pending sequences too. */
3486 for (; stack; stack = stack->next)
3487 if (before == stack->first)
3488 {
3489 stack->first = insn;
3490 break;
3491 }
3492
3493 gcc_assert (stack);
3494 }
3495
3496 if (!bb
3497 && !BARRIER_P (before)
3498 && !BARRIER_P (insn))
3499 bb = BLOCK_FOR_INSN (before);
3500
3501 if (bb)
3502 {
3503 set_block_for_insn (insn, bb);
3504 if (INSN_P (insn))
3505 df_insn_rescan (insn);
3506 /* Should not happen as first in the BB is always either NOTE or
3507 LABEL. */
3508 gcc_assert (BB_HEAD (bb) != insn
3509 /* Avoid clobbering of structure when creating new BB. */
3510 || BARRIER_P (insn)
3511 || NOTE_INSN_BASIC_BLOCK_P (insn));
3512 }
3513
3514 PREV_INSN (before) = insn;
3515 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3516 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3517 }
3518
3519
3520 /* Replace insn with an deleted instruction note. */
3521
3522 void set_insn_deleted (rtx insn)
3523 {
3524 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3525 PUT_CODE (insn, NOTE);
3526 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3527 }
3528
3529
3530 /* Remove an insn from its doubly-linked list. This function knows how
3531 to handle sequences. */
3532 void
3533 remove_insn (rtx insn)
3534 {
3535 rtx next = NEXT_INSN (insn);
3536 rtx prev = PREV_INSN (insn);
3537 basic_block bb;
3538
3539 /* Later in the code, the block will be marked dirty. */
3540 df_insn_delete (NULL, INSN_UID (insn));
3541
3542 if (prev)
3543 {
3544 NEXT_INSN (prev) = next;
3545 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3546 {
3547 rtx sequence = PATTERN (prev);
3548 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3549 }
3550 }
3551 else if (first_insn == insn)
3552 first_insn = next;
3553 else
3554 {
3555 struct sequence_stack *stack = seq_stack;
3556 /* Scan all pending sequences too. */
3557 for (; stack; stack = stack->next)
3558 if (insn == stack->first)
3559 {
3560 stack->first = next;
3561 break;
3562 }
3563
3564 gcc_assert (stack);
3565 }
3566
3567 if (next)
3568 {
3569 PREV_INSN (next) = prev;
3570 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3571 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3572 }
3573 else if (last_insn == insn)
3574 last_insn = prev;
3575 else
3576 {
3577 struct sequence_stack *stack = seq_stack;
3578 /* Scan all pending sequences too. */
3579 for (; stack; stack = stack->next)
3580 if (insn == stack->last)
3581 {
3582 stack->last = prev;
3583 break;
3584 }
3585
3586 gcc_assert (stack);
3587 }
3588 if (!BARRIER_P (insn)
3589 && (bb = BLOCK_FOR_INSN (insn)))
3590 {
3591 if (INSN_P (insn))
3592 df_set_bb_dirty (bb);
3593 if (BB_HEAD (bb) == insn)
3594 {
3595 /* Never ever delete the basic block note without deleting whole
3596 basic block. */
3597 gcc_assert (!NOTE_P (insn));
3598 BB_HEAD (bb) = next;
3599 }
3600 if (BB_END (bb) == insn)
3601 BB_END (bb) = prev;
3602 }
3603 }
3604
3605 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3606
3607 void
3608 add_function_usage_to (rtx call_insn, rtx call_fusage)
3609 {
3610 gcc_assert (call_insn && CALL_P (call_insn));
3611
3612 /* Put the register usage information on the CALL. If there is already
3613 some usage information, put ours at the end. */
3614 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3615 {
3616 rtx link;
3617
3618 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3619 link = XEXP (link, 1))
3620 ;
3621
3622 XEXP (link, 1) = call_fusage;
3623 }
3624 else
3625 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3626 }
3627
3628 /* Delete all insns made since FROM.
3629 FROM becomes the new last instruction. */
3630
3631 void
3632 delete_insns_since (rtx from)
3633 {
3634 if (from == 0)
3635 first_insn = 0;
3636 else
3637 NEXT_INSN (from) = 0;
3638 last_insn = from;
3639 }
3640
3641 /* This function is deprecated, please use sequences instead.
3642
3643 Move a consecutive bunch of insns to a different place in the chain.
3644 The insns to be moved are those between FROM and TO.
3645 They are moved to a new position after the insn AFTER.
3646 AFTER must not be FROM or TO or any insn in between.
3647
3648 This function does not know about SEQUENCEs and hence should not be
3649 called after delay-slot filling has been done. */
3650
3651 void
3652 reorder_insns_nobb (rtx from, rtx to, rtx after)
3653 {
3654 /* Splice this bunch out of where it is now. */
3655 if (PREV_INSN (from))
3656 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3657 if (NEXT_INSN (to))
3658 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3659 if (last_insn == to)
3660 last_insn = PREV_INSN (from);
3661 if (first_insn == from)
3662 first_insn = NEXT_INSN (to);
3663
3664 /* Make the new neighbors point to it and it to them. */
3665 if (NEXT_INSN (after))
3666 PREV_INSN (NEXT_INSN (after)) = to;
3667
3668 NEXT_INSN (to) = NEXT_INSN (after);
3669 PREV_INSN (from) = after;
3670 NEXT_INSN (after) = from;
3671 if (after == last_insn)
3672 last_insn = to;
3673 }
3674
3675 /* Same as function above, but take care to update BB boundaries. */
3676 void
3677 reorder_insns (rtx from, rtx to, rtx after)
3678 {
3679 rtx prev = PREV_INSN (from);
3680 basic_block bb, bb2;
3681
3682 reorder_insns_nobb (from, to, after);
3683
3684 if (!BARRIER_P (after)
3685 && (bb = BLOCK_FOR_INSN (after)))
3686 {
3687 rtx x;
3688 df_set_bb_dirty (bb);
3689
3690 if (!BARRIER_P (from)
3691 && (bb2 = BLOCK_FOR_INSN (from)))
3692 {
3693 if (BB_END (bb2) == to)
3694 BB_END (bb2) = prev;
3695 df_set_bb_dirty (bb2);
3696 }
3697
3698 if (BB_END (bb) == after)
3699 BB_END (bb) = to;
3700
3701 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3702 if (!BARRIER_P (x))
3703 {
3704 set_block_for_insn (x, bb);
3705 df_insn_change_bb (x);
3706 }
3707 }
3708 }
3709
3710 \f
3711 /* Emit insn(s) of given code and pattern
3712 at a specified place within the doubly-linked list.
3713
3714 All of the emit_foo global entry points accept an object
3715 X which is either an insn list or a PATTERN of a single
3716 instruction.
3717
3718 There are thus a few canonical ways to generate code and
3719 emit it at a specific place in the instruction stream. For
3720 example, consider the instruction named SPOT and the fact that
3721 we would like to emit some instructions before SPOT. We might
3722 do it like this:
3723
3724 start_sequence ();
3725 ... emit the new instructions ...
3726 insns_head = get_insns ();
3727 end_sequence ();
3728
3729 emit_insn_before (insns_head, SPOT);
3730
3731 It used to be common to generate SEQUENCE rtl instead, but that
3732 is a relic of the past which no longer occurs. The reason is that
3733 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3734 generated would almost certainly die right after it was created. */
3735
3736 /* Make X be output before the instruction BEFORE. */
3737
3738 rtx
3739 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3740 {
3741 rtx last = before;
3742 rtx insn;
3743
3744 gcc_assert (before);
3745
3746 if (x == NULL_RTX)
3747 return last;
3748
3749 switch (GET_CODE (x))
3750 {
3751 case INSN:
3752 case JUMP_INSN:
3753 case CALL_INSN:
3754 case CODE_LABEL:
3755 case BARRIER:
3756 case NOTE:
3757 insn = x;
3758 while (insn)
3759 {
3760 rtx next = NEXT_INSN (insn);
3761 add_insn_before (insn, before, bb);
3762 last = insn;
3763 insn = next;
3764 }
3765 break;
3766
3767 #ifdef ENABLE_RTL_CHECKING
3768 case SEQUENCE:
3769 gcc_unreachable ();
3770 break;
3771 #endif
3772
3773 default:
3774 last = make_insn_raw (x);
3775 add_insn_before (last, before, bb);
3776 break;
3777 }
3778
3779 return last;
3780 }
3781
3782 /* Make an instruction with body X and code JUMP_INSN
3783 and output it before the instruction BEFORE. */
3784
3785 rtx
3786 emit_jump_insn_before_noloc (rtx x, rtx before)
3787 {
3788 rtx insn, last = NULL_RTX;
3789
3790 gcc_assert (before);
3791
3792 switch (GET_CODE (x))
3793 {
3794 case INSN:
3795 case JUMP_INSN:
3796 case CALL_INSN:
3797 case CODE_LABEL:
3798 case BARRIER:
3799 case NOTE:
3800 insn = x;
3801 while (insn)
3802 {
3803 rtx next = NEXT_INSN (insn);
3804 add_insn_before (insn, before, NULL);
3805 last = insn;
3806 insn = next;
3807 }
3808 break;
3809
3810 #ifdef ENABLE_RTL_CHECKING
3811 case SEQUENCE:
3812 gcc_unreachable ();
3813 break;
3814 #endif
3815
3816 default:
3817 last = make_jump_insn_raw (x);
3818 add_insn_before (last, before, NULL);
3819 break;
3820 }
3821
3822 return last;
3823 }
3824
3825 /* Make an instruction with body X and code CALL_INSN
3826 and output it before the instruction BEFORE. */
3827
3828 rtx
3829 emit_call_insn_before_noloc (rtx x, rtx before)
3830 {
3831 rtx last = NULL_RTX, insn;
3832
3833 gcc_assert (before);
3834
3835 switch (GET_CODE (x))
3836 {
3837 case INSN:
3838 case JUMP_INSN:
3839 case CALL_INSN:
3840 case CODE_LABEL:
3841 case BARRIER:
3842 case NOTE:
3843 insn = x;
3844 while (insn)
3845 {
3846 rtx next = NEXT_INSN (insn);
3847 add_insn_before (insn, before, NULL);
3848 last = insn;
3849 insn = next;
3850 }
3851 break;
3852
3853 #ifdef ENABLE_RTL_CHECKING
3854 case SEQUENCE:
3855 gcc_unreachable ();
3856 break;
3857 #endif
3858
3859 default:
3860 last = make_call_insn_raw (x);
3861 add_insn_before (last, before, NULL);
3862 break;
3863 }
3864
3865 return last;
3866 }
3867
3868 /* Make an insn of code BARRIER
3869 and output it before the insn BEFORE. */
3870
3871 rtx
3872 emit_barrier_before (rtx before)
3873 {
3874 rtx insn = rtx_alloc (BARRIER);
3875
3876 INSN_UID (insn) = cur_insn_uid++;
3877
3878 add_insn_before (insn, before, NULL);
3879 return insn;
3880 }
3881
3882 /* Emit the label LABEL before the insn BEFORE. */
3883
3884 rtx
3885 emit_label_before (rtx label, rtx before)
3886 {
3887 /* This can be called twice for the same label as a result of the
3888 confusion that follows a syntax error! So make it harmless. */
3889 if (INSN_UID (label) == 0)
3890 {
3891 INSN_UID (label) = cur_insn_uid++;
3892 add_insn_before (label, before, NULL);
3893 }
3894
3895 return label;
3896 }
3897
3898 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3899
3900 rtx
3901 emit_note_before (enum insn_note subtype, rtx before)
3902 {
3903 rtx note = rtx_alloc (NOTE);
3904 INSN_UID (note) = cur_insn_uid++;
3905 NOTE_KIND (note) = subtype;
3906 BLOCK_FOR_INSN (note) = NULL;
3907 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3908
3909 add_insn_before (note, before, NULL);
3910 return note;
3911 }
3912 \f
3913 /* Helper for emit_insn_after, handles lists of instructions
3914 efficiently. */
3915
3916 static rtx
3917 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
3918 {
3919 rtx last;
3920 rtx after_after;
3921 if (!bb && !BARRIER_P (after))
3922 bb = BLOCK_FOR_INSN (after);
3923
3924 if (bb)
3925 {
3926 df_set_bb_dirty (bb);
3927 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3928 if (!BARRIER_P (last))
3929 {
3930 set_block_for_insn (last, bb);
3931 df_insn_rescan (last);
3932 }
3933 if (!BARRIER_P (last))
3934 {
3935 set_block_for_insn (last, bb);
3936 df_insn_rescan (last);
3937 }
3938 if (BB_END (bb) == after)
3939 BB_END (bb) = last;
3940 }
3941 else
3942 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3943 continue;
3944
3945 after_after = NEXT_INSN (after);
3946
3947 NEXT_INSN (after) = first;
3948 PREV_INSN (first) = after;
3949 NEXT_INSN (last) = after_after;
3950 if (after_after)
3951 PREV_INSN (after_after) = last;
3952
3953 if (after == last_insn)
3954 last_insn = last;
3955 return last;
3956 }
3957
3958 /* Make X be output after the insn AFTER and set the BB of insn. If
3959 BB is NULL, an attempt is made to infer the BB from AFTER. */
3960
3961 rtx
3962 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
3963 {
3964 rtx last = after;
3965
3966 gcc_assert (after);
3967
3968 if (x == NULL_RTX)
3969 return last;
3970
3971 switch (GET_CODE (x))
3972 {
3973 case INSN:
3974 case JUMP_INSN:
3975 case CALL_INSN:
3976 case CODE_LABEL:
3977 case BARRIER:
3978 case NOTE:
3979 last = emit_insn_after_1 (x, after, bb);
3980 break;
3981
3982 #ifdef ENABLE_RTL_CHECKING
3983 case SEQUENCE:
3984 gcc_unreachable ();
3985 break;
3986 #endif
3987
3988 default:
3989 last = make_insn_raw (x);
3990 add_insn_after (last, after, bb);
3991 break;
3992 }
3993
3994 return last;
3995 }
3996
3997
3998 /* Make an insn of code JUMP_INSN with body X
3999 and output it after the insn AFTER. */
4000
4001 rtx
4002 emit_jump_insn_after_noloc (rtx x, rtx after)
4003 {
4004 rtx last;
4005
4006 gcc_assert (after);
4007
4008 switch (GET_CODE (x))
4009 {
4010 case INSN:
4011 case JUMP_INSN:
4012 case CALL_INSN:
4013 case CODE_LABEL:
4014 case BARRIER:
4015 case NOTE:
4016 last = emit_insn_after_1 (x, after, NULL);
4017 break;
4018
4019 #ifdef ENABLE_RTL_CHECKING
4020 case SEQUENCE:
4021 gcc_unreachable ();
4022 break;
4023 #endif
4024
4025 default:
4026 last = make_jump_insn_raw (x);
4027 add_insn_after (last, after, NULL);
4028 break;
4029 }
4030
4031 return last;
4032 }
4033
4034 /* Make an instruction with body X and code CALL_INSN
4035 and output it after the instruction AFTER. */
4036
4037 rtx
4038 emit_call_insn_after_noloc (rtx x, rtx after)
4039 {
4040 rtx last;
4041
4042 gcc_assert (after);
4043
4044 switch (GET_CODE (x))
4045 {
4046 case INSN:
4047 case JUMP_INSN:
4048 case CALL_INSN:
4049 case CODE_LABEL:
4050 case BARRIER:
4051 case NOTE:
4052 last = emit_insn_after_1 (x, after, NULL);
4053 break;
4054
4055 #ifdef ENABLE_RTL_CHECKING
4056 case SEQUENCE:
4057 gcc_unreachable ();
4058 break;
4059 #endif
4060
4061 default:
4062 last = make_call_insn_raw (x);
4063 add_insn_after (last, after, NULL);
4064 break;
4065 }
4066
4067 return last;
4068 }
4069
4070 /* Make an insn of code BARRIER
4071 and output it after the insn AFTER. */
4072
4073 rtx
4074 emit_barrier_after (rtx after)
4075 {
4076 rtx insn = rtx_alloc (BARRIER);
4077
4078 INSN_UID (insn) = cur_insn_uid++;
4079
4080 add_insn_after (insn, after, NULL);
4081 return insn;
4082 }
4083
4084 /* Emit the label LABEL after the insn AFTER. */
4085
4086 rtx
4087 emit_label_after (rtx label, rtx after)
4088 {
4089 /* This can be called twice for the same label
4090 as a result of the confusion that follows a syntax error!
4091 So make it harmless. */
4092 if (INSN_UID (label) == 0)
4093 {
4094 INSN_UID (label) = cur_insn_uid++;
4095 add_insn_after (label, after, NULL);
4096 }
4097
4098 return label;
4099 }
4100
4101 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4102
4103 rtx
4104 emit_note_after (enum insn_note subtype, rtx after)
4105 {
4106 rtx note = rtx_alloc (NOTE);
4107 INSN_UID (note) = cur_insn_uid++;
4108 NOTE_KIND (note) = subtype;
4109 BLOCK_FOR_INSN (note) = NULL;
4110 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4111 add_insn_after (note, after, NULL);
4112 return note;
4113 }
4114 \f
4115 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4116 rtx
4117 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4118 {
4119 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4120
4121 if (pattern == NULL_RTX || !loc)
4122 return last;
4123
4124 after = NEXT_INSN (after);
4125 while (1)
4126 {
4127 if (active_insn_p (after) && !INSN_LOCATOR (after))
4128 INSN_LOCATOR (after) = loc;
4129 if (after == last)
4130 break;
4131 after = NEXT_INSN (after);
4132 }
4133 return last;
4134 }
4135
4136 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4137 rtx
4138 emit_insn_after (rtx pattern, rtx after)
4139 {
4140 if (INSN_P (after))
4141 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4142 else
4143 return emit_insn_after_noloc (pattern, after, NULL);
4144 }
4145
4146 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4147 rtx
4148 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4149 {
4150 rtx last = emit_jump_insn_after_noloc (pattern, after);
4151
4152 if (pattern == NULL_RTX || !loc)
4153 return last;
4154
4155 after = NEXT_INSN (after);
4156 while (1)
4157 {
4158 if (active_insn_p (after) && !INSN_LOCATOR (after))
4159 INSN_LOCATOR (after) = loc;
4160 if (after == last)
4161 break;
4162 after = NEXT_INSN (after);
4163 }
4164 return last;
4165 }
4166
4167 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4168 rtx
4169 emit_jump_insn_after (rtx pattern, rtx after)
4170 {
4171 if (INSN_P (after))
4172 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4173 else
4174 return emit_jump_insn_after_noloc (pattern, after);
4175 }
4176
4177 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4178 rtx
4179 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4180 {
4181 rtx last = emit_call_insn_after_noloc (pattern, after);
4182
4183 if (pattern == NULL_RTX || !loc)
4184 return last;
4185
4186 after = NEXT_INSN (after);
4187 while (1)
4188 {
4189 if (active_insn_p (after) && !INSN_LOCATOR (after))
4190 INSN_LOCATOR (after) = loc;
4191 if (after == last)
4192 break;
4193 after = NEXT_INSN (after);
4194 }
4195 return last;
4196 }
4197
4198 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4199 rtx
4200 emit_call_insn_after (rtx pattern, rtx after)
4201 {
4202 if (INSN_P (after))
4203 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4204 else
4205 return emit_call_insn_after_noloc (pattern, after);
4206 }
4207
4208 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4209 rtx
4210 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4211 {
4212 rtx first = PREV_INSN (before);
4213 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4214
4215 if (pattern == NULL_RTX || !loc)
4216 return last;
4217
4218 if (!first)
4219 first = get_insns ();
4220 else
4221 first = NEXT_INSN (first);
4222 while (1)
4223 {
4224 if (active_insn_p (first) && !INSN_LOCATOR (first))
4225 INSN_LOCATOR (first) = loc;
4226 if (first == last)
4227 break;
4228 first = NEXT_INSN (first);
4229 }
4230 return last;
4231 }
4232
4233 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4234 rtx
4235 emit_insn_before (rtx pattern, rtx before)
4236 {
4237 if (INSN_P (before))
4238 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4239 else
4240 return emit_insn_before_noloc (pattern, before, NULL);
4241 }
4242
4243 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4244 rtx
4245 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4246 {
4247 rtx first = PREV_INSN (before);
4248 rtx last = emit_jump_insn_before_noloc (pattern, before);
4249
4250 if (pattern == NULL_RTX)
4251 return last;
4252
4253 first = NEXT_INSN (first);
4254 while (1)
4255 {
4256 if (active_insn_p (first) && !INSN_LOCATOR (first))
4257 INSN_LOCATOR (first) = loc;
4258 if (first == last)
4259 break;
4260 first = NEXT_INSN (first);
4261 }
4262 return last;
4263 }
4264
4265 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4266 rtx
4267 emit_jump_insn_before (rtx pattern, rtx before)
4268 {
4269 if (INSN_P (before))
4270 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4271 else
4272 return emit_jump_insn_before_noloc (pattern, before);
4273 }
4274
4275 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4276 rtx
4277 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4278 {
4279 rtx first = PREV_INSN (before);
4280 rtx last = emit_call_insn_before_noloc (pattern, before);
4281
4282 if (pattern == NULL_RTX)
4283 return last;
4284
4285 first = NEXT_INSN (first);
4286 while (1)
4287 {
4288 if (active_insn_p (first) && !INSN_LOCATOR (first))
4289 INSN_LOCATOR (first) = loc;
4290 if (first == last)
4291 break;
4292 first = NEXT_INSN (first);
4293 }
4294 return last;
4295 }
4296
4297 /* like emit_call_insn_before_noloc,
4298 but set insn_locator according to before. */
4299 rtx
4300 emit_call_insn_before (rtx pattern, rtx before)
4301 {
4302 if (INSN_P (before))
4303 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4304 else
4305 return emit_call_insn_before_noloc (pattern, before);
4306 }
4307 \f
4308 /* Take X and emit it at the end of the doubly-linked
4309 INSN list.
4310
4311 Returns the last insn emitted. */
4312
4313 rtx
4314 emit_insn (rtx x)
4315 {
4316 rtx last = last_insn;
4317 rtx insn;
4318
4319 if (x == NULL_RTX)
4320 return last;
4321
4322 switch (GET_CODE (x))
4323 {
4324 case INSN:
4325 case JUMP_INSN:
4326 case CALL_INSN:
4327 case CODE_LABEL:
4328 case BARRIER:
4329 case NOTE:
4330 insn = x;
4331 while (insn)
4332 {
4333 rtx next = NEXT_INSN (insn);
4334 add_insn (insn);
4335 last = insn;
4336 insn = next;
4337 }
4338 break;
4339
4340 #ifdef ENABLE_RTL_CHECKING
4341 case SEQUENCE:
4342 gcc_unreachable ();
4343 break;
4344 #endif
4345
4346 default:
4347 last = make_insn_raw (x);
4348 add_insn (last);
4349 break;
4350 }
4351
4352 return last;
4353 }
4354
4355 /* Make an insn of code JUMP_INSN with pattern X
4356 and add it to the end of the doubly-linked list. */
4357
4358 rtx
4359 emit_jump_insn (rtx x)
4360 {
4361 rtx last = NULL_RTX, insn;
4362
4363 switch (GET_CODE (x))
4364 {
4365 case INSN:
4366 case JUMP_INSN:
4367 case CALL_INSN:
4368 case CODE_LABEL:
4369 case BARRIER:
4370 case NOTE:
4371 insn = x;
4372 while (insn)
4373 {
4374 rtx next = NEXT_INSN (insn);
4375 add_insn (insn);
4376 last = insn;
4377 insn = next;
4378 }
4379 break;
4380
4381 #ifdef ENABLE_RTL_CHECKING
4382 case SEQUENCE:
4383 gcc_unreachable ();
4384 break;
4385 #endif
4386
4387 default:
4388 last = make_jump_insn_raw (x);
4389 add_insn (last);
4390 break;
4391 }
4392
4393 return last;
4394 }
4395
4396 /* Make an insn of code CALL_INSN with pattern X
4397 and add it to the end of the doubly-linked list. */
4398
4399 rtx
4400 emit_call_insn (rtx x)
4401 {
4402 rtx insn;
4403
4404 switch (GET_CODE (x))
4405 {
4406 case INSN:
4407 case JUMP_INSN:
4408 case CALL_INSN:
4409 case CODE_LABEL:
4410 case BARRIER:
4411 case NOTE:
4412 insn = emit_insn (x);
4413 break;
4414
4415 #ifdef ENABLE_RTL_CHECKING
4416 case SEQUENCE:
4417 gcc_unreachable ();
4418 break;
4419 #endif
4420
4421 default:
4422 insn = make_call_insn_raw (x);
4423 add_insn (insn);
4424 break;
4425 }
4426
4427 return insn;
4428 }
4429
4430 /* Add the label LABEL to the end of the doubly-linked list. */
4431
4432 rtx
4433 emit_label (rtx label)
4434 {
4435 /* This can be called twice for the same label
4436 as a result of the confusion that follows a syntax error!
4437 So make it harmless. */
4438 if (INSN_UID (label) == 0)
4439 {
4440 INSN_UID (label) = cur_insn_uid++;
4441 add_insn (label);
4442 }
4443 return label;
4444 }
4445
4446 /* Make an insn of code BARRIER
4447 and add it to the end of the doubly-linked list. */
4448
4449 rtx
4450 emit_barrier (void)
4451 {
4452 rtx barrier = rtx_alloc (BARRIER);
4453 INSN_UID (barrier) = cur_insn_uid++;
4454 add_insn (barrier);
4455 return barrier;
4456 }
4457
4458 /* Emit a copy of note ORIG. */
4459
4460 rtx
4461 emit_note_copy (rtx orig)
4462 {
4463 rtx note;
4464
4465 note = rtx_alloc (NOTE);
4466
4467 INSN_UID (note) = cur_insn_uid++;
4468 NOTE_DATA (note) = NOTE_DATA (orig);
4469 NOTE_KIND (note) = NOTE_KIND (orig);
4470 BLOCK_FOR_INSN (note) = NULL;
4471 add_insn (note);
4472
4473 return note;
4474 }
4475
4476 /* Make an insn of code NOTE or type NOTE_NO
4477 and add it to the end of the doubly-linked list. */
4478
4479 rtx
4480 emit_note (enum insn_note kind)
4481 {
4482 rtx note;
4483
4484 note = rtx_alloc (NOTE);
4485 INSN_UID (note) = cur_insn_uid++;
4486 NOTE_KIND (note) = kind;
4487 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4488 BLOCK_FOR_INSN (note) = NULL;
4489 add_insn (note);
4490 return note;
4491 }
4492
4493 /* Cause next statement to emit a line note even if the line number
4494 has not changed. */
4495
4496 void
4497 force_next_line_note (void)
4498 {
4499 #ifdef USE_MAPPED_LOCATION
4500 last_location = -1;
4501 #else
4502 last_location.line = -1;
4503 #endif
4504 }
4505
4506 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4507 note of this type already exists, remove it first. */
4508
4509 rtx
4510 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4511 {
4512 rtx note = find_reg_note (insn, kind, NULL_RTX);
4513 rtx new_note = NULL;
4514
4515 switch (kind)
4516 {
4517 case REG_EQUAL:
4518 case REG_EQUIV:
4519 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4520 has multiple sets (some callers assume single_set
4521 means the insn only has one set, when in fact it
4522 means the insn only has one * useful * set). */
4523 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4524 {
4525 gcc_assert (!note);
4526 return NULL_RTX;
4527 }
4528
4529 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4530 It serves no useful purpose and breaks eliminate_regs. */
4531 if (GET_CODE (datum) == ASM_OPERANDS)
4532 return NULL_RTX;
4533
4534 if (note)
4535 {
4536 XEXP (note, 0) = datum;
4537 df_notes_rescan (insn);
4538 return note;
4539 }
4540 break;
4541
4542 default:
4543 if (note)
4544 {
4545 XEXP (note, 0) = datum;
4546 return note;
4547 }
4548 break;
4549 }
4550
4551 new_note = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4552 REG_NOTES (insn) = new_note;
4553
4554 switch (kind)
4555 {
4556 case REG_EQUAL:
4557 case REG_EQUIV:
4558 df_notes_rescan (insn);
4559 break;
4560 default:
4561 break;
4562 }
4563
4564 return REG_NOTES (insn);
4565 }
4566 \f
4567 /* Return an indication of which type of insn should have X as a body.
4568 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4569
4570 static enum rtx_code
4571 classify_insn (rtx x)
4572 {
4573 if (LABEL_P (x))
4574 return CODE_LABEL;
4575 if (GET_CODE (x) == CALL)
4576 return CALL_INSN;
4577 if (GET_CODE (x) == RETURN)
4578 return JUMP_INSN;
4579 if (GET_CODE (x) == SET)
4580 {
4581 if (SET_DEST (x) == pc_rtx)
4582 return JUMP_INSN;
4583 else if (GET_CODE (SET_SRC (x)) == CALL)
4584 return CALL_INSN;
4585 else
4586 return INSN;
4587 }
4588 if (GET_CODE (x) == PARALLEL)
4589 {
4590 int j;
4591 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4592 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4593 return CALL_INSN;
4594 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4595 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4596 return JUMP_INSN;
4597 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4598 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4599 return CALL_INSN;
4600 }
4601 return INSN;
4602 }
4603
4604 /* Emit the rtl pattern X as an appropriate kind of insn.
4605 If X is a label, it is simply added into the insn chain. */
4606
4607 rtx
4608 emit (rtx x)
4609 {
4610 enum rtx_code code = classify_insn (x);
4611
4612 switch (code)
4613 {
4614 case CODE_LABEL:
4615 return emit_label (x);
4616 case INSN:
4617 return emit_insn (x);
4618 case JUMP_INSN:
4619 {
4620 rtx insn = emit_jump_insn (x);
4621 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4622 return emit_barrier ();
4623 return insn;
4624 }
4625 case CALL_INSN:
4626 return emit_call_insn (x);
4627 default:
4628 gcc_unreachable ();
4629 }
4630 }
4631 \f
4632 /* Space for free sequence stack entries. */
4633 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4634
4635 /* Begin emitting insns to a sequence. If this sequence will contain
4636 something that might cause the compiler to pop arguments to function
4637 calls (because those pops have previously been deferred; see
4638 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4639 before calling this function. That will ensure that the deferred
4640 pops are not accidentally emitted in the middle of this sequence. */
4641
4642 void
4643 start_sequence (void)
4644 {
4645 struct sequence_stack *tem;
4646
4647 if (free_sequence_stack != NULL)
4648 {
4649 tem = free_sequence_stack;
4650 free_sequence_stack = tem->next;
4651 }
4652 else
4653 tem = ggc_alloc (sizeof (struct sequence_stack));
4654
4655 tem->next = seq_stack;
4656 tem->first = first_insn;
4657 tem->last = last_insn;
4658
4659 seq_stack = tem;
4660
4661 first_insn = 0;
4662 last_insn = 0;
4663 }
4664
4665 /* Set up the insn chain starting with FIRST as the current sequence,
4666 saving the previously current one. See the documentation for
4667 start_sequence for more information about how to use this function. */
4668
4669 void
4670 push_to_sequence (rtx first)
4671 {
4672 rtx last;
4673
4674 start_sequence ();
4675
4676 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4677
4678 first_insn = first;
4679 last_insn = last;
4680 }
4681
4682 /* Like push_to_sequence, but take the last insn as an argument to avoid
4683 looping through the list. */
4684
4685 void
4686 push_to_sequence2 (rtx first, rtx last)
4687 {
4688 start_sequence ();
4689
4690 first_insn = first;
4691 last_insn = last;
4692 }
4693
4694 /* Set up the outer-level insn chain
4695 as the current sequence, saving the previously current one. */
4696
4697 void
4698 push_topmost_sequence (void)
4699 {
4700 struct sequence_stack *stack, *top = NULL;
4701
4702 start_sequence ();
4703
4704 for (stack = seq_stack; stack; stack = stack->next)
4705 top = stack;
4706
4707 first_insn = top->first;
4708 last_insn = top->last;
4709 }
4710
4711 /* After emitting to the outer-level insn chain, update the outer-level
4712 insn chain, and restore the previous saved state. */
4713
4714 void
4715 pop_topmost_sequence (void)
4716 {
4717 struct sequence_stack *stack, *top = NULL;
4718
4719 for (stack = seq_stack; stack; stack = stack->next)
4720 top = stack;
4721
4722 top->first = first_insn;
4723 top->last = last_insn;
4724
4725 end_sequence ();
4726 }
4727
4728 /* After emitting to a sequence, restore previous saved state.
4729
4730 To get the contents of the sequence just made, you must call
4731 `get_insns' *before* calling here.
4732
4733 If the compiler might have deferred popping arguments while
4734 generating this sequence, and this sequence will not be immediately
4735 inserted into the instruction stream, use do_pending_stack_adjust
4736 before calling get_insns. That will ensure that the deferred
4737 pops are inserted into this sequence, and not into some random
4738 location in the instruction stream. See INHIBIT_DEFER_POP for more
4739 information about deferred popping of arguments. */
4740
4741 void
4742 end_sequence (void)
4743 {
4744 struct sequence_stack *tem = seq_stack;
4745
4746 first_insn = tem->first;
4747 last_insn = tem->last;
4748 seq_stack = tem->next;
4749
4750 memset (tem, 0, sizeof (*tem));
4751 tem->next = free_sequence_stack;
4752 free_sequence_stack = tem;
4753 }
4754
4755 /* Return 1 if currently emitting into a sequence. */
4756
4757 int
4758 in_sequence_p (void)
4759 {
4760 return seq_stack != 0;
4761 }
4762 \f
4763 /* Put the various virtual registers into REGNO_REG_RTX. */
4764
4765 static void
4766 init_virtual_regs (struct emit_status *es)
4767 {
4768 rtx *ptr = es->x_regno_reg_rtx;
4769 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4770 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4771 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4772 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4773 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4774 }
4775
4776 \f
4777 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4778 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4779 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4780 static int copy_insn_n_scratches;
4781
4782 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4783 copied an ASM_OPERANDS.
4784 In that case, it is the original input-operand vector. */
4785 static rtvec orig_asm_operands_vector;
4786
4787 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4788 copied an ASM_OPERANDS.
4789 In that case, it is the copied input-operand vector. */
4790 static rtvec copy_asm_operands_vector;
4791
4792 /* Likewise for the constraints vector. */
4793 static rtvec orig_asm_constraints_vector;
4794 static rtvec copy_asm_constraints_vector;
4795
4796 /* Recursively create a new copy of an rtx for copy_insn.
4797 This function differs from copy_rtx in that it handles SCRATCHes and
4798 ASM_OPERANDs properly.
4799 Normally, this function is not used directly; use copy_insn as front end.
4800 However, you could first copy an insn pattern with copy_insn and then use
4801 this function afterwards to properly copy any REG_NOTEs containing
4802 SCRATCHes. */
4803
4804 rtx
4805 copy_insn_1 (rtx orig)
4806 {
4807 rtx copy;
4808 int i, j;
4809 RTX_CODE code;
4810 const char *format_ptr;
4811
4812 code = GET_CODE (orig);
4813
4814 switch (code)
4815 {
4816 case REG:
4817 case CONST_INT:
4818 case CONST_DOUBLE:
4819 case CONST_VECTOR:
4820 case SYMBOL_REF:
4821 case CODE_LABEL:
4822 case PC:
4823 case CC0:
4824 return orig;
4825 case CLOBBER:
4826 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4827 return orig;
4828 break;
4829
4830 case SCRATCH:
4831 for (i = 0; i < copy_insn_n_scratches; i++)
4832 if (copy_insn_scratch_in[i] == orig)
4833 return copy_insn_scratch_out[i];
4834 break;
4835
4836 case CONST:
4837 if (shared_const_p (orig))
4838 return orig;
4839 break;
4840
4841 /* A MEM with a constant address is not sharable. The problem is that
4842 the constant address may need to be reloaded. If the mem is shared,
4843 then reloading one copy of this mem will cause all copies to appear
4844 to have been reloaded. */
4845
4846 default:
4847 break;
4848 }
4849
4850 /* Copy the various flags, fields, and other information. We assume
4851 that all fields need copying, and then clear the fields that should
4852 not be copied. That is the sensible default behavior, and forces
4853 us to explicitly document why we are *not* copying a flag. */
4854 copy = shallow_copy_rtx (orig);
4855
4856 /* We do not copy the USED flag, which is used as a mark bit during
4857 walks over the RTL. */
4858 RTX_FLAG (copy, used) = 0;
4859
4860 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4861 if (INSN_P (orig))
4862 {
4863 RTX_FLAG (copy, jump) = 0;
4864 RTX_FLAG (copy, call) = 0;
4865 RTX_FLAG (copy, frame_related) = 0;
4866 }
4867
4868 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4869
4870 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4871 switch (*format_ptr++)
4872 {
4873 case 'e':
4874 if (XEXP (orig, i) != NULL)
4875 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4876 break;
4877
4878 case 'E':
4879 case 'V':
4880 if (XVEC (orig, i) == orig_asm_constraints_vector)
4881 XVEC (copy, i) = copy_asm_constraints_vector;
4882 else if (XVEC (orig, i) == orig_asm_operands_vector)
4883 XVEC (copy, i) = copy_asm_operands_vector;
4884 else if (XVEC (orig, i) != NULL)
4885 {
4886 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4887 for (j = 0; j < XVECLEN (copy, i); j++)
4888 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4889 }
4890 break;
4891
4892 case 't':
4893 case 'w':
4894 case 'i':
4895 case 's':
4896 case 'S':
4897 case 'u':
4898 case '0':
4899 /* These are left unchanged. */
4900 break;
4901
4902 default:
4903 gcc_unreachable ();
4904 }
4905
4906 if (code == SCRATCH)
4907 {
4908 i = copy_insn_n_scratches++;
4909 gcc_assert (i < MAX_RECOG_OPERANDS);
4910 copy_insn_scratch_in[i] = orig;
4911 copy_insn_scratch_out[i] = copy;
4912 }
4913 else if (code == ASM_OPERANDS)
4914 {
4915 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4916 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4917 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4918 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4919 }
4920
4921 return copy;
4922 }
4923
4924 /* Create a new copy of an rtx.
4925 This function differs from copy_rtx in that it handles SCRATCHes and
4926 ASM_OPERANDs properly.
4927 INSN doesn't really have to be a full INSN; it could be just the
4928 pattern. */
4929 rtx
4930 copy_insn (rtx insn)
4931 {
4932 copy_insn_n_scratches = 0;
4933 orig_asm_operands_vector = 0;
4934 orig_asm_constraints_vector = 0;
4935 copy_asm_operands_vector = 0;
4936 copy_asm_constraints_vector = 0;
4937 return copy_insn_1 (insn);
4938 }
4939
4940 /* Initialize data structures and variables in this file
4941 before generating rtl for each function. */
4942
4943 void
4944 init_emit (void)
4945 {
4946 struct function *f = cfun;
4947
4948 f->emit = ggc_alloc (sizeof (struct emit_status));
4949 first_insn = NULL;
4950 last_insn = NULL;
4951 cur_insn_uid = 1;
4952 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4953 last_location = UNKNOWN_LOCATION;
4954 first_label_num = label_num;
4955 seq_stack = NULL;
4956
4957 /* Init the tables that describe all the pseudo regs. */
4958
4959 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4960
4961 f->emit->regno_pointer_align
4962 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
4963 * sizeof (unsigned char));
4964
4965 regno_reg_rtx
4966 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
4967
4968 /* Put copies of all the hard registers into regno_reg_rtx. */
4969 memcpy (regno_reg_rtx,
4970 static_regno_reg_rtx,
4971 FIRST_PSEUDO_REGISTER * sizeof (rtx));
4972
4973 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4974 init_virtual_regs (f->emit);
4975
4976 /* Indicate that the virtual registers and stack locations are
4977 all pointers. */
4978 REG_POINTER (stack_pointer_rtx) = 1;
4979 REG_POINTER (frame_pointer_rtx) = 1;
4980 REG_POINTER (hard_frame_pointer_rtx) = 1;
4981 REG_POINTER (arg_pointer_rtx) = 1;
4982
4983 REG_POINTER (virtual_incoming_args_rtx) = 1;
4984 REG_POINTER (virtual_stack_vars_rtx) = 1;
4985 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4986 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4987 REG_POINTER (virtual_cfa_rtx) = 1;
4988
4989 #ifdef STACK_BOUNDARY
4990 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4991 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4992 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4993 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4994
4995 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4996 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4997 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4998 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4999 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5000 #endif
5001
5002 #ifdef INIT_EXPANDERS
5003 INIT_EXPANDERS;
5004 #endif
5005 }
5006
5007 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5008
5009 static rtx
5010 gen_const_vector (enum machine_mode mode, int constant)
5011 {
5012 rtx tem;
5013 rtvec v;
5014 int units, i;
5015 enum machine_mode inner;
5016
5017 units = GET_MODE_NUNITS (mode);
5018 inner = GET_MODE_INNER (mode);
5019
5020 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5021
5022 v = rtvec_alloc (units);
5023
5024 /* We need to call this function after we set the scalar const_tiny_rtx
5025 entries. */
5026 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5027
5028 for (i = 0; i < units; ++i)
5029 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5030
5031 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5032 return tem;
5033 }
5034
5035 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5036 all elements are zero, and the one vector when all elements are one. */
5037 rtx
5038 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5039 {
5040 enum machine_mode inner = GET_MODE_INNER (mode);
5041 int nunits = GET_MODE_NUNITS (mode);
5042 rtx x;
5043 int i;
5044
5045 /* Check to see if all of the elements have the same value. */
5046 x = RTVEC_ELT (v, nunits - 1);
5047 for (i = nunits - 2; i >= 0; i--)
5048 if (RTVEC_ELT (v, i) != x)
5049 break;
5050
5051 /* If the values are all the same, check to see if we can use one of the
5052 standard constant vectors. */
5053 if (i == -1)
5054 {
5055 if (x == CONST0_RTX (inner))
5056 return CONST0_RTX (mode);
5057 else if (x == CONST1_RTX (inner))
5058 return CONST1_RTX (mode);
5059 }
5060
5061 return gen_rtx_raw_CONST_VECTOR (mode, v);
5062 }
5063
5064 /* Create some permanent unique rtl objects shared between all functions.
5065 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5066
5067 void
5068 init_emit_once (int line_numbers)
5069 {
5070 int i;
5071 enum machine_mode mode;
5072 enum machine_mode double_mode;
5073
5074 /* We need reg_raw_mode, so initialize the modes now. */
5075 init_reg_modes_once ();
5076
5077 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5078 tables. */
5079 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5080 const_int_htab_eq, NULL);
5081
5082 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5083 const_double_htab_eq, NULL);
5084
5085 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5086 mem_attrs_htab_eq, NULL);
5087 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5088 reg_attrs_htab_eq, NULL);
5089
5090 no_line_numbers = ! line_numbers;
5091
5092 /* Compute the word and byte modes. */
5093
5094 byte_mode = VOIDmode;
5095 word_mode = VOIDmode;
5096 double_mode = VOIDmode;
5097
5098 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5099 mode != VOIDmode;
5100 mode = GET_MODE_WIDER_MODE (mode))
5101 {
5102 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5103 && byte_mode == VOIDmode)
5104 byte_mode = mode;
5105
5106 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5107 && word_mode == VOIDmode)
5108 word_mode = mode;
5109 }
5110
5111 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5112 mode != VOIDmode;
5113 mode = GET_MODE_WIDER_MODE (mode))
5114 {
5115 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5116 && double_mode == VOIDmode)
5117 double_mode = mode;
5118 }
5119
5120 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5121
5122 /* Assign register numbers to the globally defined register rtx.
5123 This must be done at runtime because the register number field
5124 is in a union and some compilers can't initialize unions. */
5125
5126 pc_rtx = gen_rtx_PC (VOIDmode);
5127 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5128 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5129 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5130 if (hard_frame_pointer_rtx == 0)
5131 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5132 HARD_FRAME_POINTER_REGNUM);
5133 if (arg_pointer_rtx == 0)
5134 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5135 virtual_incoming_args_rtx =
5136 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5137 virtual_stack_vars_rtx =
5138 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5139 virtual_stack_dynamic_rtx =
5140 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5141 virtual_outgoing_args_rtx =
5142 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5143 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5144
5145 /* Initialize RTL for commonly used hard registers. These are
5146 copied into regno_reg_rtx as we begin to compile each function. */
5147 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5148 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5149
5150 #ifdef INIT_EXPANDERS
5151 /* This is to initialize {init|mark|free}_machine_status before the first
5152 call to push_function_context_to. This is needed by the Chill front
5153 end which calls push_function_context_to before the first call to
5154 init_function_start. */
5155 INIT_EXPANDERS;
5156 #endif
5157
5158 /* Create the unique rtx's for certain rtx codes and operand values. */
5159
5160 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5161 tries to use these variables. */
5162 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5163 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5164 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5165
5166 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5167 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5168 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5169 else
5170 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5171
5172 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5173 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5174 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5175 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5176 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5177 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5178 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5179
5180 dconsthalf = dconst1;
5181 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5182
5183 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5184
5185 /* Initialize mathematical constants for constant folding builtins.
5186 These constants need to be given to at least 160 bits precision. */
5187 real_from_string (&dconstsqrt2,
5188 "1.4142135623730950488016887242096980785696718753769480731766797379907");
5189 real_from_string (&dconste,
5190 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5191
5192 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5193 {
5194 REAL_VALUE_TYPE *r =
5195 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5196
5197 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5198 mode != VOIDmode;
5199 mode = GET_MODE_WIDER_MODE (mode))
5200 const_tiny_rtx[i][(int) mode] =
5201 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5202
5203 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5204 mode != VOIDmode;
5205 mode = GET_MODE_WIDER_MODE (mode))
5206 const_tiny_rtx[i][(int) mode] =
5207 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5208
5209 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5210
5211 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5212 mode != VOIDmode;
5213 mode = GET_MODE_WIDER_MODE (mode))
5214 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5215
5216 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5217 mode != VOIDmode;
5218 mode = GET_MODE_WIDER_MODE (mode))
5219 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5220 }
5221
5222 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5223 mode != VOIDmode;
5224 mode = GET_MODE_WIDER_MODE (mode))
5225 {
5226 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5227 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5228 }
5229
5230 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5231 mode != VOIDmode;
5232 mode = GET_MODE_WIDER_MODE (mode))
5233 {
5234 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5235 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5236 }
5237
5238 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5239 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5240 const_tiny_rtx[0][i] = const0_rtx;
5241
5242 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5243 if (STORE_FLAG_VALUE == 1)
5244 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5245
5246 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5247 return_address_pointer_rtx
5248 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5249 #endif
5250
5251 #ifdef STATIC_CHAIN_REGNUM
5252 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5253
5254 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5255 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5256 static_chain_incoming_rtx
5257 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5258 else
5259 #endif
5260 static_chain_incoming_rtx = static_chain_rtx;
5261 #endif
5262
5263 #ifdef STATIC_CHAIN
5264 static_chain_rtx = STATIC_CHAIN;
5265
5266 #ifdef STATIC_CHAIN_INCOMING
5267 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5268 #else
5269 static_chain_incoming_rtx = static_chain_rtx;
5270 #endif
5271 #endif
5272
5273 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5274 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5275 }
5276 \f
5277 /* Produce exact duplicate of insn INSN after AFTER.
5278 Care updating of libcall regions if present. */
5279
5280 rtx
5281 emit_copy_of_insn_after (rtx insn, rtx after)
5282 {
5283 rtx new;
5284 rtx note1, note2, link;
5285
5286 switch (GET_CODE (insn))
5287 {
5288 case INSN:
5289 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5290 break;
5291
5292 case JUMP_INSN:
5293 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5294 break;
5295
5296 case CALL_INSN:
5297 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5298 if (CALL_INSN_FUNCTION_USAGE (insn))
5299 CALL_INSN_FUNCTION_USAGE (new)
5300 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5301 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5302 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5303 break;
5304
5305 default:
5306 gcc_unreachable ();
5307 }
5308
5309 /* Update LABEL_NUSES. */
5310 mark_jump_label (PATTERN (new), new, 0);
5311
5312 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5313
5314 /* If the old insn is frame related, then so is the new one. This is
5315 primarily needed for IA-64 unwind info which marks epilogue insns,
5316 which may be duplicated by the basic block reordering code. */
5317 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5318
5319 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5320 make them. */
5321 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5322 if (REG_NOTE_KIND (link) != REG_LABEL)
5323 {
5324 if (GET_CODE (link) == EXPR_LIST)
5325 REG_NOTES (new)
5326 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5327 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
5328 else
5329 REG_NOTES (new)
5330 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5331 XEXP (link, 0), REG_NOTES (new));
5332 }
5333
5334 /* Fix the libcall sequences. */
5335 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5336 {
5337 rtx p = new;
5338 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5339 p = PREV_INSN (p);
5340 XEXP (note1, 0) = p;
5341 XEXP (note2, 0) = new;
5342 }
5343 INSN_CODE (new) = INSN_CODE (insn);
5344 return new;
5345 }
5346
5347 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5348 rtx
5349 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5350 {
5351 if (hard_reg_clobbers[mode][regno])
5352 return hard_reg_clobbers[mode][regno];
5353 else
5354 return (hard_reg_clobbers[mode][regno] =
5355 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5356 }
5357
5358 #include "gt-emit-rtl.h"