]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
tree.def (RTL_EXPR): Remove.
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconst3;
112 REAL_VALUE_TYPE dconst10;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116 REAL_VALUE_TYPE dconstthird;
117 REAL_VALUE_TYPE dconstpi;
118 REAL_VALUE_TYPE dconste;
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
176
177 static rtx make_jump_insn_raw (rtx);
178 static rtx make_call_insn_raw (rtx);
179 static rtx find_line_note (rtx);
180 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
181 static void unshare_all_decls (tree);
182 static void reset_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 static hashval_t const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx lookup_const_double (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector_0 (enum machine_mode);
198 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
199 static void copy_rtx_if_shared_1 (rtx *orig);
200
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability = -1;
204 \f
205 /* Returns a hash code for X (which is a really a CONST_INT). */
206
207 static hashval_t
208 const_int_htab_hash (const void *x)
209 {
210 return (hashval_t) INTVAL ((rtx) x);
211 }
212
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
216
217 static int
218 const_int_htab_eq (const void *x, const void *y)
219 {
220 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
221 }
222
223 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
224 static hashval_t
225 const_double_htab_hash (const void *x)
226 {
227 rtx value = (rtx) x;
228 hashval_t h;
229
230 if (GET_MODE (value) == VOIDmode)
231 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
232 else
233 {
234 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
235 /* MODE is used in the comparison, so it should be in the hash. */
236 h ^= GET_MODE (value);
237 }
238 return h;
239 }
240
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...) */
243 static int
244 const_double_htab_eq (const void *x, const void *y)
245 {
246 rtx a = (rtx)x, b = (rtx)y;
247
248 if (GET_MODE (a) != GET_MODE (b))
249 return 0;
250 if (GET_MODE (a) == VOIDmode)
251 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
252 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
253 else
254 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
255 CONST_DOUBLE_REAL_VALUE (b));
256 }
257
258 /* Returns a hash code for X (which is a really a mem_attrs *). */
259
260 static hashval_t
261 mem_attrs_htab_hash (const void *x)
262 {
263 mem_attrs *p = (mem_attrs *) x;
264
265 return (p->alias ^ (p->align * 1000)
266 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
267 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
268 ^ (size_t) p->expr);
269 }
270
271 /* Returns nonzero if the value represented by X (which is really a
272 mem_attrs *) is the same as that given by Y (which is also really a
273 mem_attrs *). */
274
275 static int
276 mem_attrs_htab_eq (const void *x, const void *y)
277 {
278 mem_attrs *p = (mem_attrs *) x;
279 mem_attrs *q = (mem_attrs *) y;
280
281 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
282 && p->size == q->size && p->align == q->align);
283 }
284
285 /* Allocate a new mem_attrs structure and insert it into the hash table if
286 one identical to it is not already in the table. We are doing this for
287 MEM of mode MODE. */
288
289 static mem_attrs *
290 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
291 unsigned int align, enum machine_mode mode)
292 {
293 mem_attrs attrs;
294 void **slot;
295
296 /* If everything is the default, we can just return zero.
297 This must match what the corresponding MEM_* macros return when the
298 field is not present. */
299 if (alias == 0 && expr == 0 && offset == 0
300 && (size == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (STRICT_ALIGNMENT && mode != BLKmode
303 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
304 return 0;
305
306 attrs.alias = alias;
307 attrs.expr = expr;
308 attrs.offset = offset;
309 attrs.size = size;
310 attrs.align = align;
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
315 *slot = ggc_alloc (sizeof (mem_attrs));
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
319 return *slot;
320 }
321
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
323
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328
329 return ((p->offset * 1000) ^ (long) p->decl);
330 }
331
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
338 {
339 reg_attrs *p = (reg_attrs *) x;
340 reg_attrs *q = (reg_attrs *) y;
341
342 return (p->decl == q->decl && p->offset == q->offset);
343 }
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
350 {
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
364 *slot = ggc_alloc (sizeof (reg_attrs));
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
368 return *slot;
369 }
370
371 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
372 don't attempt to share with the various global pieces of rtl (such as
373 frame_pointer_rtx). */
374
375 rtx
376 gen_raw_REG (enum machine_mode mode, int regno)
377 {
378 rtx x = gen_rtx_raw_REG (mode, regno);
379 ORIGINAL_REGNO (x) = regno;
380 return x;
381 }
382
383 /* There are some RTL codes that require special attention; the generation
384 functions do the raw handling. If you add to this list, modify
385 special_rtx in gengenrtl.c as well. */
386
387 rtx
388 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
389 {
390 void **slot;
391
392 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
393 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
394
395 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
396 if (const_true_rtx && arg == STORE_FLAG_VALUE)
397 return const_true_rtx;
398 #endif
399
400 /* Look up the CONST_INT in the hash table. */
401 slot = htab_find_slot_with_hash (const_int_htab, &arg,
402 (hashval_t) arg, INSERT);
403 if (*slot == 0)
404 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
405
406 return (rtx) *slot;
407 }
408
409 rtx
410 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
411 {
412 return GEN_INT (trunc_int_for_mode (c, mode));
413 }
414
415 /* CONST_DOUBLEs might be created from pairs of integers, or from
416 REAL_VALUE_TYPEs. Also, their length is known only at run time,
417 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
418
419 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
420 hash table. If so, return its counterpart; otherwise add it
421 to the hash table and return it. */
422 static rtx
423 lookup_const_double (rtx real)
424 {
425 void **slot = htab_find_slot (const_double_htab, real, INSERT);
426 if (*slot == 0)
427 *slot = real;
428
429 return (rtx) *slot;
430 }
431
432 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
433 VALUE in mode MODE. */
434 rtx
435 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
436 {
437 rtx real = rtx_alloc (CONST_DOUBLE);
438 PUT_MODE (real, mode);
439
440 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
441
442 return lookup_const_double (real);
443 }
444
445 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
446 of ints: I0 is the low-order word and I1 is the high-order word.
447 Do not use this routine for non-integer modes; convert to
448 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
449
450 rtx
451 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
452 {
453 rtx value;
454 unsigned int i;
455
456 if (mode != VOIDmode)
457 {
458 int width;
459 if (GET_MODE_CLASS (mode) != MODE_INT
460 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
463 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
464 abort ();
465
466 /* We clear out all bits that don't belong in MODE, unless they and
467 our sign bit are all one. So we get either a reasonable negative
468 value or a reasonable unsigned value for this mode. */
469 width = GET_MODE_BITSIZE (mode);
470 if (width < HOST_BITS_PER_WIDE_INT
471 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
472 != ((HOST_WIDE_INT) (-1) << (width - 1))))
473 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
474 else if (width == HOST_BITS_PER_WIDE_INT
475 && ! (i1 == ~0 && i0 < 0))
476 i1 = 0;
477 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
478 /* We cannot represent this value as a constant. */
479 abort ();
480
481 /* If this would be an entire word for the target, but is not for
482 the host, then sign-extend on the host so that the number will
483 look the same way on the host that it would on the target.
484
485 For example, when building a 64 bit alpha hosted 32 bit sparc
486 targeted compiler, then we want the 32 bit unsigned value -1 to be
487 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
488 The latter confuses the sparc backend. */
489
490 if (width < HOST_BITS_PER_WIDE_INT
491 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
492 i0 |= ((HOST_WIDE_INT) (-1) << width);
493
494 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
495 CONST_INT.
496
497 ??? Strictly speaking, this is wrong if we create a CONST_INT for
498 a large unsigned constant with the size of MODE being
499 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
500 in a wider mode. In that case we will mis-interpret it as a
501 negative number.
502
503 Unfortunately, the only alternative is to make a CONST_DOUBLE for
504 any constant in any mode if it is an unsigned constant larger
505 than the maximum signed integer in an int on the host. However,
506 doing this will break everyone that always expects to see a
507 CONST_INT for SImode and smaller.
508
509 We have always been making CONST_INTs in this case, so nothing
510 new is being broken. */
511
512 if (width <= HOST_BITS_PER_WIDE_INT)
513 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
514 }
515
516 /* If this integer fits in one word, return a CONST_INT. */
517 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
518 return GEN_INT (i0);
519
520 /* We use VOIDmode for integers. */
521 value = rtx_alloc (CONST_DOUBLE);
522 PUT_MODE (value, VOIDmode);
523
524 CONST_DOUBLE_LOW (value) = i0;
525 CONST_DOUBLE_HIGH (value) = i1;
526
527 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
528 XWINT (value, i) = 0;
529
530 return lookup_const_double (value);
531 }
532
533 rtx
534 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
535 {
536 /* In case the MD file explicitly references the frame pointer, have
537 all such references point to the same frame pointer. This is
538 used during frame pointer elimination to distinguish the explicit
539 references to these registers from pseudos that happened to be
540 assigned to them.
541
542 If we have eliminated the frame pointer or arg pointer, we will
543 be using it as a normal register, for example as a spill
544 register. In such cases, we might be accessing it in a mode that
545 is not Pmode and therefore cannot use the pre-allocated rtx.
546
547 Also don't do this when we are making new REGs in reload, since
548 we don't want to get confused with the real pointers. */
549
550 if (mode == Pmode && !reload_in_progress)
551 {
552 if (regno == FRAME_POINTER_REGNUM
553 && (!reload_completed || frame_pointer_needed))
554 return frame_pointer_rtx;
555 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
556 if (regno == HARD_FRAME_POINTER_REGNUM
557 && (!reload_completed || frame_pointer_needed))
558 return hard_frame_pointer_rtx;
559 #endif
560 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
561 if (regno == ARG_POINTER_REGNUM)
562 return arg_pointer_rtx;
563 #endif
564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
565 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
566 return return_address_pointer_rtx;
567 #endif
568 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
569 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
570 return pic_offset_table_rtx;
571 if (regno == STACK_POINTER_REGNUM)
572 return stack_pointer_rtx;
573 }
574
575 #if 0
576 /* If the per-function register table has been set up, try to re-use
577 an existing entry in that table to avoid useless generation of RTL.
578
579 This code is disabled for now until we can fix the various backends
580 which depend on having non-shared hard registers in some cases. Long
581 term we want to re-enable this code as it can significantly cut down
582 on the amount of useless RTL that gets generated.
583
584 We'll also need to fix some code that runs after reload that wants to
585 set ORIGINAL_REGNO. */
586
587 if (cfun
588 && cfun->emit
589 && regno_reg_rtx
590 && regno < FIRST_PSEUDO_REGISTER
591 && reg_raw_mode[regno] == mode)
592 return regno_reg_rtx[regno];
593 #endif
594
595 return gen_raw_REG (mode, regno);
596 }
597
598 rtx
599 gen_rtx_MEM (enum machine_mode mode, rtx addr)
600 {
601 rtx rt = gen_rtx_raw_MEM (mode, addr);
602
603 /* This field is not cleared by the mere allocation of the rtx, so
604 we clear it here. */
605 MEM_ATTRS (rt) = 0;
606
607 return rt;
608 }
609
610 rtx
611 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
612 {
613 /* This is the most common failure type.
614 Catch it early so we can see who does it. */
615 if ((offset % GET_MODE_SIZE (mode)) != 0)
616 abort ();
617
618 /* This check isn't usable right now because combine will
619 throw arbitrary crap like a CALL into a SUBREG in
620 gen_lowpart_for_combine so we must just eat it. */
621 #if 0
622 /* Check for this too. */
623 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
624 abort ();
625 #endif
626 return gen_rtx_raw_SUBREG (mode, reg, offset);
627 }
628
629 /* Generate a SUBREG representing the least-significant part of REG if MODE
630 is smaller than mode of REG, otherwise paradoxical SUBREG. */
631
632 rtx
633 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
634 {
635 enum machine_mode inmode;
636
637 inmode = GET_MODE (reg);
638 if (inmode == VOIDmode)
639 inmode = mode;
640 return gen_rtx_SUBREG (mode, reg,
641 subreg_lowpart_offset (mode, inmode));
642 }
643 \f
644 /* gen_rtvec (n, [rt1, ..., rtn])
645 **
646 ** This routine creates an rtvec and stores within it the
647 ** pointers to rtx's which are its arguments.
648 */
649
650 /*VARARGS1*/
651 rtvec
652 gen_rtvec (int n, ...)
653 {
654 int i, save_n;
655 rtx *vector;
656 va_list p;
657
658 va_start (p, n);
659
660 if (n == 0)
661 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
662
663 vector = alloca (n * sizeof (rtx));
664
665 for (i = 0; i < n; i++)
666 vector[i] = va_arg (p, rtx);
667
668 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
669 save_n = n;
670 va_end (p);
671
672 return gen_rtvec_v (save_n, vector);
673 }
674
675 rtvec
676 gen_rtvec_v (int n, rtx *argp)
677 {
678 int i;
679 rtvec rt_val;
680
681 if (n == 0)
682 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
683
684 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
685
686 for (i = 0; i < n; i++)
687 rt_val->elem[i] = *argp++;
688
689 return rt_val;
690 }
691 \f
692 /* Generate a REG rtx for a new pseudo register of mode MODE.
693 This pseudo is assigned the next sequential register number. */
694
695 rtx
696 gen_reg_rtx (enum machine_mode mode)
697 {
698 struct function *f = cfun;
699 rtx val;
700
701 /* Don't let anything called after initial flow analysis create new
702 registers. */
703 if (no_new_pseudos)
704 abort ();
705
706 if (generating_concat_p
707 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
708 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
709 {
710 /* For complex modes, don't make a single pseudo.
711 Instead, make a CONCAT of two pseudos.
712 This allows noncontiguous allocation of the real and imaginary parts,
713 which makes much better code. Besides, allocating DCmode
714 pseudos overstrains reload on some machines like the 386. */
715 rtx realpart, imagpart;
716 enum machine_mode partmode = GET_MODE_INNER (mode);
717
718 realpart = gen_reg_rtx (partmode);
719 imagpart = gen_reg_rtx (partmode);
720 return gen_rtx_CONCAT (mode, realpart, imagpart);
721 }
722
723 /* Make sure regno_pointer_align, and regno_reg_rtx are large
724 enough to have an element for this pseudo reg number. */
725
726 if (reg_rtx_no == f->emit->regno_pointer_align_length)
727 {
728 int old_size = f->emit->regno_pointer_align_length;
729 char *new;
730 rtx *new1;
731
732 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
733 memset (new + old_size, 0, old_size);
734 f->emit->regno_pointer_align = (unsigned char *) new;
735
736 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
737 old_size * 2 * sizeof (rtx));
738 memset (new1 + old_size, 0, old_size * sizeof (rtx));
739 regno_reg_rtx = new1;
740
741 f->emit->regno_pointer_align_length = old_size * 2;
742 }
743
744 val = gen_raw_REG (mode, reg_rtx_no);
745 regno_reg_rtx[reg_rtx_no++] = val;
746 return val;
747 }
748
749 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
750 Do the big endian correction if needed. */
751
752 rtx
753 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
754 {
755 rtx new = gen_rtx_REG (mode, regno);
756 tree decl;
757 HOST_WIDE_INT var_size;
758
759 /* PR middle-end/14084
760 The problem appears when a variable is stored in a larger register
761 and later it is used in the original mode or some mode in between
762 or some part of variable is accessed.
763
764 On little endian machines there is no problem because
765 the REG_OFFSET of the start of the variable is the same when
766 accessed in any mode (it is 0).
767
768 However, this is not true on big endian machines.
769 The offset of the start of the variable is different when accessed
770 in different modes.
771 When we are taking a part of the REG we have to change the OFFSET
772 from offset WRT size of mode of REG to offset WRT size of variable.
773
774 If we would not do the big endian correction the resulting REG_OFFSET
775 would be larger than the size of the DECL.
776
777 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
778
779 REG.mode MODE DECL size old offset new offset description
780 DI SI 4 4 0 int32 in SImode
781 DI SI 1 4 0 char in SImode
782 DI QI 1 7 0 char in QImode
783 DI QI 4 5 1 1st element in QImode
784 of char[4]
785 DI HI 4 6 2 1st element in HImode
786 of int16[2]
787
788 If the size of DECL is equal or greater than the size of REG
789 we can't do this correction because the register holds the
790 whole variable or a part of the variable and thus the REG_OFFSET
791 is already correct. */
792
793 decl = REG_EXPR (reg);
794 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
795 && decl != NULL
796 && offset > 0
797 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
798 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
799 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
800 {
801 int offset_le;
802
803 /* Convert machine endian to little endian WRT size of mode of REG. */
804 if (WORDS_BIG_ENDIAN)
805 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
806 / UNITS_PER_WORD) * UNITS_PER_WORD;
807 else
808 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
809
810 if (BYTES_BIG_ENDIAN)
811 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
812 % UNITS_PER_WORD);
813 else
814 offset_le += offset % UNITS_PER_WORD;
815
816 if (offset_le >= var_size)
817 {
818 /* MODE is wider than the variable so the new reg will cover
819 the whole variable so the resulting OFFSET should be 0. */
820 offset = 0;
821 }
822 else
823 {
824 /* Convert little endian to machine endian WRT size of variable. */
825 if (WORDS_BIG_ENDIAN)
826 offset = ((var_size - 1 - offset_le)
827 / UNITS_PER_WORD) * UNITS_PER_WORD;
828 else
829 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
830
831 if (BYTES_BIG_ENDIAN)
832 offset += ((var_size - 1 - offset_le)
833 % UNITS_PER_WORD);
834 else
835 offset += offset_le % UNITS_PER_WORD;
836 }
837 }
838
839 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
840 REG_OFFSET (reg) + offset);
841 return new;
842 }
843
844 /* Set the decl for MEM to DECL. */
845
846 void
847 set_reg_attrs_from_mem (rtx reg, rtx mem)
848 {
849 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
850 REG_ATTRS (reg)
851 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
852 }
853
854 /* Set the register attributes for registers contained in PARM_RTX.
855 Use needed values from memory attributes of MEM. */
856
857 void
858 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
859 {
860 if (REG_P (parm_rtx))
861 set_reg_attrs_from_mem (parm_rtx, mem);
862 else if (GET_CODE (parm_rtx) == PARALLEL)
863 {
864 /* Check for a NULL entry in the first slot, used to indicate that the
865 parameter goes both on the stack and in registers. */
866 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
867 for (; i < XVECLEN (parm_rtx, 0); i++)
868 {
869 rtx x = XVECEXP (parm_rtx, 0, i);
870 if (REG_P (XEXP (x, 0)))
871 REG_ATTRS (XEXP (x, 0))
872 = get_reg_attrs (MEM_EXPR (mem),
873 INTVAL (XEXP (x, 1)));
874 }
875 }
876 }
877
878 /* Assign the RTX X to declaration T. */
879 void
880 set_decl_rtl (tree t, rtx x)
881 {
882 DECL_CHECK (t)->decl.rtl = x;
883
884 if (!x)
885 return;
886 /* For register, we maintain the reverse information too. */
887 if (REG_P (x))
888 REG_ATTRS (x) = get_reg_attrs (t, 0);
889 else if (GET_CODE (x) == SUBREG)
890 REG_ATTRS (SUBREG_REG (x))
891 = get_reg_attrs (t, -SUBREG_BYTE (x));
892 if (GET_CODE (x) == CONCAT)
893 {
894 if (REG_P (XEXP (x, 0)))
895 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
896 if (REG_P (XEXP (x, 1)))
897 REG_ATTRS (XEXP (x, 1))
898 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
899 }
900 if (GET_CODE (x) == PARALLEL)
901 {
902 int i;
903 for (i = 0; i < XVECLEN (x, 0); i++)
904 {
905 rtx y = XVECEXP (x, 0, i);
906 if (REG_P (XEXP (y, 0)))
907 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
908 }
909 }
910 }
911
912 /* Assign the RTX X to parameter declaration T. */
913 void
914 set_decl_incoming_rtl (tree t, rtx x)
915 {
916 DECL_INCOMING_RTL (t) = x;
917
918 if (!x)
919 return;
920 /* For register, we maintain the reverse information too. */
921 if (REG_P (x))
922 REG_ATTRS (x) = get_reg_attrs (t, 0);
923 else if (GET_CODE (x) == SUBREG)
924 REG_ATTRS (SUBREG_REG (x))
925 = get_reg_attrs (t, -SUBREG_BYTE (x));
926 if (GET_CODE (x) == CONCAT)
927 {
928 if (REG_P (XEXP (x, 0)))
929 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
930 if (REG_P (XEXP (x, 1)))
931 REG_ATTRS (XEXP (x, 1))
932 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
933 }
934 if (GET_CODE (x) == PARALLEL)
935 {
936 int i, start;
937
938 /* Check for a NULL entry, used to indicate that the parameter goes
939 both on the stack and in registers. */
940 if (XEXP (XVECEXP (x, 0, 0), 0))
941 start = 0;
942 else
943 start = 1;
944
945 for (i = start; i < XVECLEN (x, 0); i++)
946 {
947 rtx y = XVECEXP (x, 0, i);
948 if (REG_P (XEXP (y, 0)))
949 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
950 }
951 }
952 }
953
954 /* Identify REG (which may be a CONCAT) as a user register. */
955
956 void
957 mark_user_reg (rtx reg)
958 {
959 if (GET_CODE (reg) == CONCAT)
960 {
961 REG_USERVAR_P (XEXP (reg, 0)) = 1;
962 REG_USERVAR_P (XEXP (reg, 1)) = 1;
963 }
964 else if (REG_P (reg))
965 REG_USERVAR_P (reg) = 1;
966 else
967 abort ();
968 }
969
970 /* Identify REG as a probable pointer register and show its alignment
971 as ALIGN, if nonzero. */
972
973 void
974 mark_reg_pointer (rtx reg, int align)
975 {
976 if (! REG_POINTER (reg))
977 {
978 REG_POINTER (reg) = 1;
979
980 if (align)
981 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
982 }
983 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
984 /* We can no-longer be sure just how aligned this pointer is. */
985 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
986 }
987
988 /* Return 1 plus largest pseudo reg number used in the current function. */
989
990 int
991 max_reg_num (void)
992 {
993 return reg_rtx_no;
994 }
995
996 /* Return 1 + the largest label number used so far in the current function. */
997
998 int
999 max_label_num (void)
1000 {
1001 if (last_label_num && label_num == base_label_num)
1002 return last_label_num;
1003 return label_num;
1004 }
1005
1006 /* Return first label number used in this function (if any were used). */
1007
1008 int
1009 get_first_label_num (void)
1010 {
1011 return first_label_num;
1012 }
1013
1014 /* If the rtx for label was created during the expansion of a nested
1015 function, then first_label_num won't include this label number.
1016 Fix this now so that array indicies work later. */
1017
1018 void
1019 maybe_set_first_label_num (rtx x)
1020 {
1021 if (CODE_LABEL_NUMBER (x) < first_label_num)
1022 first_label_num = CODE_LABEL_NUMBER (x);
1023 }
1024 \f
1025 /* Return the final regno of X, which is a SUBREG of a hard
1026 register. */
1027 int
1028 subreg_hard_regno (rtx x, int check_mode)
1029 {
1030 enum machine_mode mode = GET_MODE (x);
1031 unsigned int byte_offset, base_regno, final_regno;
1032 rtx reg = SUBREG_REG (x);
1033
1034 /* This is where we attempt to catch illegal subregs
1035 created by the compiler. */
1036 if (GET_CODE (x) != SUBREG
1037 || !REG_P (reg))
1038 abort ();
1039 base_regno = REGNO (reg);
1040 if (base_regno >= FIRST_PSEUDO_REGISTER)
1041 abort ();
1042 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1043 abort ();
1044 #ifdef ENABLE_CHECKING
1045 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1046 SUBREG_BYTE (x), mode))
1047 abort ();
1048 #endif
1049 /* Catch non-congruent offsets too. */
1050 byte_offset = SUBREG_BYTE (x);
1051 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1052 abort ();
1053
1054 final_regno = subreg_regno (x);
1055
1056 return final_regno;
1057 }
1058
1059 /* Return a value representing some low-order bits of X, where the number
1060 of low-order bits is given by MODE. Note that no conversion is done
1061 between floating-point and fixed-point values, rather, the bit
1062 representation is returned.
1063
1064 This function handles the cases in common between gen_lowpart, below,
1065 and two variants in cse.c and combine.c. These are the cases that can
1066 be safely handled at all points in the compilation.
1067
1068 If this is not a case we can handle, return 0. */
1069
1070 rtx
1071 gen_lowpart_common (enum machine_mode mode, rtx x)
1072 {
1073 int msize = GET_MODE_SIZE (mode);
1074 int xsize;
1075 int offset = 0;
1076 enum machine_mode innermode;
1077
1078 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1079 so we have to make one up. Yuk. */
1080 innermode = GET_MODE (x);
1081 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1082 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1083 else if (innermode == VOIDmode)
1084 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1085
1086 xsize = GET_MODE_SIZE (innermode);
1087
1088 if (innermode == VOIDmode || innermode == BLKmode)
1089 abort ();
1090
1091 if (innermode == mode)
1092 return x;
1093
1094 /* MODE must occupy no more words than the mode of X. */
1095 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1096 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1097 return 0;
1098
1099 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1100 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1101 return 0;
1102
1103 offset = subreg_lowpart_offset (mode, innermode);
1104
1105 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1106 && (GET_MODE_CLASS (mode) == MODE_INT
1107 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1108 {
1109 /* If we are getting the low-order part of something that has been
1110 sign- or zero-extended, we can either just use the object being
1111 extended or make a narrower extension. If we want an even smaller
1112 piece than the size of the object being extended, call ourselves
1113 recursively.
1114
1115 This case is used mostly by combine and cse. */
1116
1117 if (GET_MODE (XEXP (x, 0)) == mode)
1118 return XEXP (x, 0);
1119 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1120 return gen_lowpart_common (mode, XEXP (x, 0));
1121 else if (msize < xsize)
1122 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1123 }
1124 else if (GET_CODE (x) == SUBREG || REG_P (x)
1125 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1126 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1127 return simplify_gen_subreg (mode, x, innermode, offset);
1128
1129 /* Otherwise, we can't do this. */
1130 return 0;
1131 }
1132 \f
1133 /* Return the constant real or imaginary part (which has mode MODE)
1134 of a complex value X. The IMAGPART_P argument determines whether
1135 the real or complex component should be returned. This function
1136 returns NULL_RTX if the component isn't a constant. */
1137
1138 static rtx
1139 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1140 {
1141 tree decl, part;
1142
1143 if (MEM_P (x)
1144 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1145 {
1146 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1147 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1148 {
1149 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1150 if (TREE_CODE (part) == REAL_CST
1151 || TREE_CODE (part) == INTEGER_CST)
1152 return expand_expr (part, NULL_RTX, mode, 0);
1153 }
1154 }
1155 return NULL_RTX;
1156 }
1157
1158 /* Return the real part (which has mode MODE) of a complex value X.
1159 This always comes at the low address in memory. */
1160
1161 rtx
1162 gen_realpart (enum machine_mode mode, rtx x)
1163 {
1164 rtx part;
1165
1166 /* Handle complex constants. */
1167 part = gen_complex_constant_part (mode, x, 0);
1168 if (part != NULL_RTX)
1169 return part;
1170
1171 if (WORDS_BIG_ENDIAN
1172 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1173 && REG_P (x)
1174 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1175 internal_error
1176 ("can't access real part of complex value in hard register");
1177 else if (WORDS_BIG_ENDIAN)
1178 return gen_highpart (mode, x);
1179 else
1180 return gen_lowpart (mode, x);
1181 }
1182
1183 /* Return the imaginary part (which has mode MODE) of a complex value X.
1184 This always comes at the high address in memory. */
1185
1186 rtx
1187 gen_imagpart (enum machine_mode mode, rtx x)
1188 {
1189 rtx part;
1190
1191 /* Handle complex constants. */
1192 part = gen_complex_constant_part (mode, x, 1);
1193 if (part != NULL_RTX)
1194 return part;
1195
1196 if (WORDS_BIG_ENDIAN)
1197 return gen_lowpart (mode, x);
1198 else if (! WORDS_BIG_ENDIAN
1199 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1200 && REG_P (x)
1201 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1202 internal_error
1203 ("can't access imaginary part of complex value in hard register");
1204 else
1205 return gen_highpart (mode, x);
1206 }
1207 \f
1208 rtx
1209 gen_highpart (enum machine_mode mode, rtx x)
1210 {
1211 unsigned int msize = GET_MODE_SIZE (mode);
1212 rtx result;
1213
1214 /* This case loses if X is a subreg. To catch bugs early,
1215 complain if an invalid MODE is used even in other cases. */
1216 if (msize > UNITS_PER_WORD
1217 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1218 abort ();
1219
1220 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1221 subreg_highpart_offset (mode, GET_MODE (x)));
1222
1223 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1224 the target if we have a MEM. gen_highpart must return a valid operand,
1225 emitting code if necessary to do so. */
1226 if (result != NULL_RTX && MEM_P (result))
1227 result = validize_mem (result);
1228
1229 if (!result)
1230 abort ();
1231 return result;
1232 }
1233
1234 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1235 be VOIDmode constant. */
1236 rtx
1237 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1238 {
1239 if (GET_MODE (exp) != VOIDmode)
1240 {
1241 if (GET_MODE (exp) != innermode)
1242 abort ();
1243 return gen_highpart (outermode, exp);
1244 }
1245 return simplify_gen_subreg (outermode, exp, innermode,
1246 subreg_highpart_offset (outermode, innermode));
1247 }
1248
1249 /* Return offset in bytes to get OUTERMODE low part
1250 of the value in mode INNERMODE stored in memory in target format. */
1251
1252 unsigned int
1253 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1254 {
1255 unsigned int offset = 0;
1256 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1257
1258 if (difference > 0)
1259 {
1260 if (WORDS_BIG_ENDIAN)
1261 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1262 if (BYTES_BIG_ENDIAN)
1263 offset += difference % UNITS_PER_WORD;
1264 }
1265
1266 return offset;
1267 }
1268
1269 /* Return offset in bytes to get OUTERMODE high part
1270 of the value in mode INNERMODE stored in memory in target format. */
1271 unsigned int
1272 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1273 {
1274 unsigned int offset = 0;
1275 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1276
1277 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1278 abort ();
1279
1280 if (difference > 0)
1281 {
1282 if (! WORDS_BIG_ENDIAN)
1283 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1284 if (! BYTES_BIG_ENDIAN)
1285 offset += difference % UNITS_PER_WORD;
1286 }
1287
1288 return offset;
1289 }
1290
1291 /* Return 1 iff X, assumed to be a SUBREG,
1292 refers to the least significant part of its containing reg.
1293 If X is not a SUBREG, always return 1 (it is its own low part!). */
1294
1295 int
1296 subreg_lowpart_p (rtx x)
1297 {
1298 if (GET_CODE (x) != SUBREG)
1299 return 1;
1300 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1301 return 0;
1302
1303 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1304 == SUBREG_BYTE (x));
1305 }
1306 \f
1307 /* Return subword OFFSET of operand OP.
1308 The word number, OFFSET, is interpreted as the word number starting
1309 at the low-order address. OFFSET 0 is the low-order word if not
1310 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1311
1312 If we cannot extract the required word, we return zero. Otherwise,
1313 an rtx corresponding to the requested word will be returned.
1314
1315 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1316 reload has completed, a valid address will always be returned. After
1317 reload, if a valid address cannot be returned, we return zero.
1318
1319 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1320 it is the responsibility of the caller.
1321
1322 MODE is the mode of OP in case it is a CONST_INT.
1323
1324 ??? This is still rather broken for some cases. The problem for the
1325 moment is that all callers of this thing provide no 'goal mode' to
1326 tell us to work with. This exists because all callers were written
1327 in a word based SUBREG world.
1328 Now use of this function can be deprecated by simplify_subreg in most
1329 cases.
1330 */
1331
1332 rtx
1333 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1334 {
1335 if (mode == VOIDmode)
1336 mode = GET_MODE (op);
1337
1338 if (mode == VOIDmode)
1339 abort ();
1340
1341 /* If OP is narrower than a word, fail. */
1342 if (mode != BLKmode
1343 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1344 return 0;
1345
1346 /* If we want a word outside OP, return zero. */
1347 if (mode != BLKmode
1348 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1349 return const0_rtx;
1350
1351 /* Form a new MEM at the requested address. */
1352 if (MEM_P (op))
1353 {
1354 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1355
1356 if (! validate_address)
1357 return new;
1358
1359 else if (reload_completed)
1360 {
1361 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1362 return 0;
1363 }
1364 else
1365 return replace_equiv_address (new, XEXP (new, 0));
1366 }
1367
1368 /* Rest can be handled by simplify_subreg. */
1369 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1370 }
1371
1372 /* Similar to `operand_subword', but never return 0. If we can't extract
1373 the required subword, put OP into a register and try again. If that fails,
1374 abort. We always validate the address in this case.
1375
1376 MODE is the mode of OP, in case it is CONST_INT. */
1377
1378 rtx
1379 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1380 {
1381 rtx result = operand_subword (op, offset, 1, mode);
1382
1383 if (result)
1384 return result;
1385
1386 if (mode != BLKmode && mode != VOIDmode)
1387 {
1388 /* If this is a register which can not be accessed by words, copy it
1389 to a pseudo register. */
1390 if (REG_P (op))
1391 op = copy_to_reg (op);
1392 else
1393 op = force_reg (mode, op);
1394 }
1395
1396 result = operand_subword (op, offset, 1, mode);
1397 if (result == 0)
1398 abort ();
1399
1400 return result;
1401 }
1402 \f
1403 /* Given a compare instruction, swap the operands.
1404 A test instruction is changed into a compare of 0 against the operand. */
1405
1406 void
1407 reverse_comparison (rtx insn)
1408 {
1409 rtx body = PATTERN (insn);
1410 rtx comp;
1411
1412 if (GET_CODE (body) == SET)
1413 comp = SET_SRC (body);
1414 else
1415 comp = SET_SRC (XVECEXP (body, 0, 0));
1416
1417 if (GET_CODE (comp) == COMPARE)
1418 {
1419 rtx op0 = XEXP (comp, 0);
1420 rtx op1 = XEXP (comp, 1);
1421 XEXP (comp, 0) = op1;
1422 XEXP (comp, 1) = op0;
1423 }
1424 else
1425 {
1426 rtx new = gen_rtx_COMPARE (VOIDmode,
1427 CONST0_RTX (GET_MODE (comp)), comp);
1428 if (GET_CODE (body) == SET)
1429 SET_SRC (body) = new;
1430 else
1431 SET_SRC (XVECEXP (body, 0, 0)) = new;
1432 }
1433 }
1434 \f
1435 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1436 or (2) a component ref of something variable. Represent the later with
1437 a NULL expression. */
1438
1439 static tree
1440 component_ref_for_mem_expr (tree ref)
1441 {
1442 tree inner = TREE_OPERAND (ref, 0);
1443
1444 if (TREE_CODE (inner) == COMPONENT_REF)
1445 inner = component_ref_for_mem_expr (inner);
1446 else
1447 {
1448 /* Now remove any conversions: they don't change what the underlying
1449 object is. Likewise for SAVE_EXPR. */
1450 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1451 || TREE_CODE (inner) == NON_LVALUE_EXPR
1452 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1453 || TREE_CODE (inner) == SAVE_EXPR)
1454 inner = TREE_OPERAND (inner, 0);
1455
1456 if (! DECL_P (inner))
1457 inner = NULL_TREE;
1458 }
1459
1460 if (inner == TREE_OPERAND (ref, 0))
1461 return ref;
1462 else
1463 return build (COMPONENT_REF, TREE_TYPE (ref), inner, TREE_OPERAND (ref, 1),
1464 NULL_TREE);
1465 }
1466
1467 /* Returns 1 if both MEM_EXPR can be considered equal
1468 and 0 otherwise. */
1469
1470 int
1471 mem_expr_equal_p (tree expr1, tree expr2)
1472 {
1473 if (expr1 == expr2)
1474 return 1;
1475
1476 if (! expr1 || ! expr2)
1477 return 0;
1478
1479 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1480 return 0;
1481
1482 if (TREE_CODE (expr1) == COMPONENT_REF)
1483 return
1484 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1485 TREE_OPERAND (expr2, 0))
1486 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1487 TREE_OPERAND (expr2, 1));
1488
1489 if (TREE_CODE (expr1) == INDIRECT_REF)
1490 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1491 TREE_OPERAND (expr2, 0));
1492
1493 /* Decls with different pointers can't be equal. */
1494 if (DECL_P (expr1))
1495 return 0;
1496
1497 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1498 have been resolved here. */
1499 }
1500
1501 /* Given REF, a MEM, and T, either the type of X or the expression
1502 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1503 if we are making a new object of this type. BITPOS is nonzero if
1504 there is an offset outstanding on T that will be applied later. */
1505
1506 void
1507 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1508 HOST_WIDE_INT bitpos)
1509 {
1510 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1511 tree expr = MEM_EXPR (ref);
1512 rtx offset = MEM_OFFSET (ref);
1513 rtx size = MEM_SIZE (ref);
1514 unsigned int align = MEM_ALIGN (ref);
1515 HOST_WIDE_INT apply_bitpos = 0;
1516 tree type;
1517
1518 /* It can happen that type_for_mode was given a mode for which there
1519 is no language-level type. In which case it returns NULL, which
1520 we can see here. */
1521 if (t == NULL_TREE)
1522 return;
1523
1524 type = TYPE_P (t) ? t : TREE_TYPE (t);
1525 if (type == error_mark_node)
1526 return;
1527
1528 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1529 wrong answer, as it assumes that DECL_RTL already has the right alias
1530 info. Callers should not set DECL_RTL until after the call to
1531 set_mem_attributes. */
1532 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1533 abort ();
1534
1535 /* Get the alias set from the expression or type (perhaps using a
1536 front-end routine) and use it. */
1537 alias = get_alias_set (t);
1538
1539 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1540 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1541 RTX_UNCHANGING_P (ref)
1542 |= ((lang_hooks.honor_readonly
1543 && (TYPE_READONLY (type) || (t != type && TREE_READONLY (t))))
1544 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1545 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1546 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1547
1548 /* If we are making an object of this type, or if this is a DECL, we know
1549 that it is a scalar if the type is not an aggregate. */
1550 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1551 MEM_SCALAR_P (ref) = 1;
1552
1553 /* We can set the alignment from the type if we are making an object,
1554 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1555 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1556 align = MAX (align, TYPE_ALIGN (type));
1557
1558 /* If the size is known, we can set that. */
1559 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1560 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1561
1562 /* If T is not a type, we may be able to deduce some more information about
1563 the expression. */
1564 if (! TYPE_P (t))
1565 {
1566 maybe_set_unchanging (ref, t);
1567 if (TREE_THIS_VOLATILE (t))
1568 MEM_VOLATILE_P (ref) = 1;
1569
1570 /* Now remove any conversions: they don't change what the underlying
1571 object is. Likewise for SAVE_EXPR. */
1572 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1573 || TREE_CODE (t) == NON_LVALUE_EXPR
1574 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1575 || TREE_CODE (t) == SAVE_EXPR)
1576 t = TREE_OPERAND (t, 0);
1577
1578 /* If this expression can't be addressed (e.g., it contains a reference
1579 to a non-addressable field), show we don't change its alias set. */
1580 if (! can_address_p (t))
1581 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1582
1583 /* If this is a decl, set the attributes of the MEM from it. */
1584 if (DECL_P (t))
1585 {
1586 expr = t;
1587 offset = const0_rtx;
1588 apply_bitpos = bitpos;
1589 size = (DECL_SIZE_UNIT (t)
1590 && host_integerp (DECL_SIZE_UNIT (t), 1)
1591 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1592 align = DECL_ALIGN (t);
1593 }
1594
1595 /* If this is a constant, we know the alignment. */
1596 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1597 {
1598 align = TYPE_ALIGN (type);
1599 #ifdef CONSTANT_ALIGNMENT
1600 align = CONSTANT_ALIGNMENT (t, align);
1601 #endif
1602 }
1603
1604 /* If this is a field reference and not a bit-field, record it. */
1605 /* ??? There is some information that can be gleened from bit-fields,
1606 such as the word offset in the structure that might be modified.
1607 But skip it for now. */
1608 else if (TREE_CODE (t) == COMPONENT_REF
1609 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1610 {
1611 expr = component_ref_for_mem_expr (t);
1612 offset = const0_rtx;
1613 apply_bitpos = bitpos;
1614 /* ??? Any reason the field size would be different than
1615 the size we got from the type? */
1616 }
1617
1618 /* If this is an array reference, look for an outer field reference. */
1619 else if (TREE_CODE (t) == ARRAY_REF)
1620 {
1621 tree off_tree = size_zero_node;
1622 /* We can't modify t, because we use it at the end of the
1623 function. */
1624 tree t2 = t;
1625
1626 do
1627 {
1628 tree index = TREE_OPERAND (t2, 1);
1629 tree low_bound = array_ref_low_bound (t2);
1630 tree unit_size = array_ref_element_size (t2);
1631
1632 /* We assume all arrays have sizes that are a multiple of a byte.
1633 First subtract the lower bound, if any, in the type of the
1634 index, then convert to sizetype and multiply by the size of
1635 the array element. */
1636 if (! integer_zerop (low_bound))
1637 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1638 index, low_bound));
1639
1640 off_tree = size_binop (PLUS_EXPR,
1641 size_binop (MULT_EXPR, convert (sizetype,
1642 index),
1643 unit_size),
1644 off_tree);
1645 t2 = TREE_OPERAND (t2, 0);
1646 }
1647 while (TREE_CODE (t2) == ARRAY_REF);
1648
1649 if (DECL_P (t2))
1650 {
1651 expr = t2;
1652 offset = NULL;
1653 if (host_integerp (off_tree, 1))
1654 {
1655 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1656 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1657 align = DECL_ALIGN (t2);
1658 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1659 align = aoff;
1660 offset = GEN_INT (ioff);
1661 apply_bitpos = bitpos;
1662 }
1663 }
1664 else if (TREE_CODE (t2) == COMPONENT_REF)
1665 {
1666 expr = component_ref_for_mem_expr (t2);
1667 if (host_integerp (off_tree, 1))
1668 {
1669 offset = GEN_INT (tree_low_cst (off_tree, 1));
1670 apply_bitpos = bitpos;
1671 }
1672 /* ??? Any reason the field size would be different than
1673 the size we got from the type? */
1674 }
1675 else if (flag_argument_noalias > 1
1676 && TREE_CODE (t2) == INDIRECT_REF
1677 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1678 {
1679 expr = t2;
1680 offset = NULL;
1681 }
1682 }
1683
1684 /* If this is a Fortran indirect argument reference, record the
1685 parameter decl. */
1686 else if (flag_argument_noalias > 1
1687 && TREE_CODE (t) == INDIRECT_REF
1688 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1689 {
1690 expr = t;
1691 offset = NULL;
1692 }
1693 }
1694
1695 /* If we modified OFFSET based on T, then subtract the outstanding
1696 bit position offset. Similarly, increase the size of the accessed
1697 object to contain the negative offset. */
1698 if (apply_bitpos)
1699 {
1700 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1701 if (size)
1702 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1703 }
1704
1705 /* Now set the attributes we computed above. */
1706 MEM_ATTRS (ref)
1707 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1708
1709 /* If this is already known to be a scalar or aggregate, we are done. */
1710 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1711 return;
1712
1713 /* If it is a reference into an aggregate, this is part of an aggregate.
1714 Otherwise we don't know. */
1715 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1716 || TREE_CODE (t) == ARRAY_RANGE_REF
1717 || TREE_CODE (t) == BIT_FIELD_REF)
1718 MEM_IN_STRUCT_P (ref) = 1;
1719 }
1720
1721 void
1722 set_mem_attributes (rtx ref, tree t, int objectp)
1723 {
1724 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1725 }
1726
1727 /* Set the decl for MEM to DECL. */
1728
1729 void
1730 set_mem_attrs_from_reg (rtx mem, rtx reg)
1731 {
1732 MEM_ATTRS (mem)
1733 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1734 GEN_INT (REG_OFFSET (reg)),
1735 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1736 }
1737
1738 /* Set the alias set of MEM to SET. */
1739
1740 void
1741 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1742 {
1743 #ifdef ENABLE_CHECKING
1744 /* If the new and old alias sets don't conflict, something is wrong. */
1745 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1746 abort ();
1747 #endif
1748
1749 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1750 MEM_SIZE (mem), MEM_ALIGN (mem),
1751 GET_MODE (mem));
1752 }
1753
1754 /* Set the alignment of MEM to ALIGN bits. */
1755
1756 void
1757 set_mem_align (rtx mem, unsigned int align)
1758 {
1759 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1760 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1761 GET_MODE (mem));
1762 }
1763
1764 /* Set the expr for MEM to EXPR. */
1765
1766 void
1767 set_mem_expr (rtx mem, tree expr)
1768 {
1769 MEM_ATTRS (mem)
1770 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1771 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1772 }
1773
1774 /* Set the offset of MEM to OFFSET. */
1775
1776 void
1777 set_mem_offset (rtx mem, rtx offset)
1778 {
1779 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1780 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1781 GET_MODE (mem));
1782 }
1783
1784 /* Set the size of MEM to SIZE. */
1785
1786 void
1787 set_mem_size (rtx mem, rtx size)
1788 {
1789 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1790 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1791 GET_MODE (mem));
1792 }
1793 \f
1794 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1795 and its address changed to ADDR. (VOIDmode means don't change the mode.
1796 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1797 returned memory location is required to be valid. The memory
1798 attributes are not changed. */
1799
1800 static rtx
1801 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1802 {
1803 rtx new;
1804
1805 if (!MEM_P (memref))
1806 abort ();
1807 if (mode == VOIDmode)
1808 mode = GET_MODE (memref);
1809 if (addr == 0)
1810 addr = XEXP (memref, 0);
1811 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1812 && (!validate || memory_address_p (mode, addr)))
1813 return memref;
1814
1815 if (validate)
1816 {
1817 if (reload_in_progress || reload_completed)
1818 {
1819 if (! memory_address_p (mode, addr))
1820 abort ();
1821 }
1822 else
1823 addr = memory_address (mode, addr);
1824 }
1825
1826 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1827 return memref;
1828
1829 new = gen_rtx_MEM (mode, addr);
1830 MEM_COPY_ATTRIBUTES (new, memref);
1831 return new;
1832 }
1833
1834 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1835 way we are changing MEMREF, so we only preserve the alias set. */
1836
1837 rtx
1838 change_address (rtx memref, enum machine_mode mode, rtx addr)
1839 {
1840 rtx new = change_address_1 (memref, mode, addr, 1), size;
1841 enum machine_mode mmode = GET_MODE (new);
1842 unsigned int align;
1843
1844 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1845 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1846
1847 /* If there are no changes, just return the original memory reference. */
1848 if (new == memref)
1849 {
1850 if (MEM_ATTRS (memref) == 0
1851 || (MEM_EXPR (memref) == NULL
1852 && MEM_OFFSET (memref) == NULL
1853 && MEM_SIZE (memref) == size
1854 && MEM_ALIGN (memref) == align))
1855 return new;
1856
1857 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1858 MEM_COPY_ATTRIBUTES (new, memref);
1859 }
1860
1861 MEM_ATTRS (new)
1862 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1863
1864 return new;
1865 }
1866
1867 /* Return a memory reference like MEMREF, but with its mode changed
1868 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1869 nonzero, the memory address is forced to be valid.
1870 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1871 and caller is responsible for adjusting MEMREF base register. */
1872
1873 rtx
1874 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1875 int validate, int adjust)
1876 {
1877 rtx addr = XEXP (memref, 0);
1878 rtx new;
1879 rtx memoffset = MEM_OFFSET (memref);
1880 rtx size = 0;
1881 unsigned int memalign = MEM_ALIGN (memref);
1882
1883 /* If there are no changes, just return the original memory reference. */
1884 if (mode == GET_MODE (memref) && !offset
1885 && (!validate || memory_address_p (mode, addr)))
1886 return memref;
1887
1888 /* ??? Prefer to create garbage instead of creating shared rtl.
1889 This may happen even if offset is nonzero -- consider
1890 (plus (plus reg reg) const_int) -- so do this always. */
1891 addr = copy_rtx (addr);
1892
1893 if (adjust)
1894 {
1895 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1896 object, we can merge it into the LO_SUM. */
1897 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1898 && offset >= 0
1899 && (unsigned HOST_WIDE_INT) offset
1900 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1901 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1902 plus_constant (XEXP (addr, 1), offset));
1903 else
1904 addr = plus_constant (addr, offset);
1905 }
1906
1907 new = change_address_1 (memref, mode, addr, validate);
1908
1909 /* Compute the new values of the memory attributes due to this adjustment.
1910 We add the offsets and update the alignment. */
1911 if (memoffset)
1912 memoffset = GEN_INT (offset + INTVAL (memoffset));
1913
1914 /* Compute the new alignment by taking the MIN of the alignment and the
1915 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1916 if zero. */
1917 if (offset != 0)
1918 memalign
1919 = MIN (memalign,
1920 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1921
1922 /* We can compute the size in a number of ways. */
1923 if (GET_MODE (new) != BLKmode)
1924 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1925 else if (MEM_SIZE (memref))
1926 size = plus_constant (MEM_SIZE (memref), -offset);
1927
1928 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1929 memoffset, size, memalign, GET_MODE (new));
1930
1931 /* At some point, we should validate that this offset is within the object,
1932 if all the appropriate values are known. */
1933 return new;
1934 }
1935
1936 /* Return a memory reference like MEMREF, but with its mode changed
1937 to MODE and its address changed to ADDR, which is assumed to be
1938 MEMREF offseted by OFFSET bytes. If VALIDATE is
1939 nonzero, the memory address is forced to be valid. */
1940
1941 rtx
1942 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1943 HOST_WIDE_INT offset, int validate)
1944 {
1945 memref = change_address_1 (memref, VOIDmode, addr, validate);
1946 return adjust_address_1 (memref, mode, offset, validate, 0);
1947 }
1948
1949 /* Return a memory reference like MEMREF, but whose address is changed by
1950 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1951 known to be in OFFSET (possibly 1). */
1952
1953 rtx
1954 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1955 {
1956 rtx new, addr = XEXP (memref, 0);
1957
1958 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1959
1960 /* At this point we don't know _why_ the address is invalid. It
1961 could have secondary memory references, multiplies or anything.
1962
1963 However, if we did go and rearrange things, we can wind up not
1964 being able to recognize the magic around pic_offset_table_rtx.
1965 This stuff is fragile, and is yet another example of why it is
1966 bad to expose PIC machinery too early. */
1967 if (! memory_address_p (GET_MODE (memref), new)
1968 && GET_CODE (addr) == PLUS
1969 && XEXP (addr, 0) == pic_offset_table_rtx)
1970 {
1971 addr = force_reg (GET_MODE (addr), addr);
1972 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1973 }
1974
1975 update_temp_slot_address (XEXP (memref, 0), new);
1976 new = change_address_1 (memref, VOIDmode, new, 1);
1977
1978 /* If there are no changes, just return the original memory reference. */
1979 if (new == memref)
1980 return new;
1981
1982 /* Update the alignment to reflect the offset. Reset the offset, which
1983 we don't know. */
1984 MEM_ATTRS (new)
1985 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1986 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1987 GET_MODE (new));
1988 return new;
1989 }
1990
1991 /* Return a memory reference like MEMREF, but with its address changed to
1992 ADDR. The caller is asserting that the actual piece of memory pointed
1993 to is the same, just the form of the address is being changed, such as
1994 by putting something into a register. */
1995
1996 rtx
1997 replace_equiv_address (rtx memref, rtx addr)
1998 {
1999 /* change_address_1 copies the memory attribute structure without change
2000 and that's exactly what we want here. */
2001 update_temp_slot_address (XEXP (memref, 0), addr);
2002 return change_address_1 (memref, VOIDmode, addr, 1);
2003 }
2004
2005 /* Likewise, but the reference is not required to be valid. */
2006
2007 rtx
2008 replace_equiv_address_nv (rtx memref, rtx addr)
2009 {
2010 return change_address_1 (memref, VOIDmode, addr, 0);
2011 }
2012
2013 /* Return a memory reference like MEMREF, but with its mode widened to
2014 MODE and offset by OFFSET. This would be used by targets that e.g.
2015 cannot issue QImode memory operations and have to use SImode memory
2016 operations plus masking logic. */
2017
2018 rtx
2019 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2020 {
2021 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2022 tree expr = MEM_EXPR (new);
2023 rtx memoffset = MEM_OFFSET (new);
2024 unsigned int size = GET_MODE_SIZE (mode);
2025
2026 /* If there are no changes, just return the original memory reference. */
2027 if (new == memref)
2028 return new;
2029
2030 /* If we don't know what offset we were at within the expression, then
2031 we can't know if we've overstepped the bounds. */
2032 if (! memoffset)
2033 expr = NULL_TREE;
2034
2035 while (expr)
2036 {
2037 if (TREE_CODE (expr) == COMPONENT_REF)
2038 {
2039 tree field = TREE_OPERAND (expr, 1);
2040 tree offset = component_ref_field_offset (expr);
2041
2042 if (! DECL_SIZE_UNIT (field))
2043 {
2044 expr = NULL_TREE;
2045 break;
2046 }
2047
2048 /* Is the field at least as large as the access? If so, ok,
2049 otherwise strip back to the containing structure. */
2050 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2051 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2052 && INTVAL (memoffset) >= 0)
2053 break;
2054
2055 if (! host_integerp (offset, 1))
2056 {
2057 expr = NULL_TREE;
2058 break;
2059 }
2060
2061 expr = TREE_OPERAND (expr, 0);
2062 memoffset
2063 = (GEN_INT (INTVAL (memoffset)
2064 + tree_low_cst (offset, 1)
2065 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2066 / BITS_PER_UNIT)));
2067 }
2068 /* Similarly for the decl. */
2069 else if (DECL_P (expr)
2070 && DECL_SIZE_UNIT (expr)
2071 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2072 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2073 && (! memoffset || INTVAL (memoffset) >= 0))
2074 break;
2075 else
2076 {
2077 /* The widened memory access overflows the expression, which means
2078 that it could alias another expression. Zap it. */
2079 expr = NULL_TREE;
2080 break;
2081 }
2082 }
2083
2084 if (! expr)
2085 memoffset = NULL_RTX;
2086
2087 /* The widened memory may alias other stuff, so zap the alias set. */
2088 /* ??? Maybe use get_alias_set on any remaining expression. */
2089
2090 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2091 MEM_ALIGN (new), mode);
2092
2093 return new;
2094 }
2095 \f
2096 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2097
2098 rtx
2099 gen_label_rtx (void)
2100 {
2101 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2102 NULL, label_num++, NULL);
2103 }
2104 \f
2105 /* For procedure integration. */
2106
2107 /* Install new pointers to the first and last insns in the chain.
2108 Also, set cur_insn_uid to one higher than the last in use.
2109 Used for an inline-procedure after copying the insn chain. */
2110
2111 void
2112 set_new_first_and_last_insn (rtx first, rtx last)
2113 {
2114 rtx insn;
2115
2116 first_insn = first;
2117 last_insn = last;
2118 cur_insn_uid = 0;
2119
2120 for (insn = first; insn; insn = NEXT_INSN (insn))
2121 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2122
2123 cur_insn_uid++;
2124 }
2125
2126 /* Set the last label number found in the current function.
2127 This is used when belatedly compiling an inline function. */
2128
2129 void
2130 set_new_last_label_num (int last)
2131 {
2132 base_label_num = label_num;
2133 last_label_num = last;
2134 }
2135 \f
2136 /* Restore all variables describing the current status from the structure *P.
2137 This is used after a nested function. */
2138
2139 void
2140 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2141 {
2142 last_label_num = 0;
2143 }
2144 \f
2145 /* Go through all the RTL insn bodies and copy any invalid shared
2146 structure. This routine should only be called once. */
2147
2148 static void
2149 unshare_all_rtl_1 (tree fndecl, rtx insn)
2150 {
2151 tree decl;
2152
2153 /* Make sure that virtual parameters are not shared. */
2154 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2155 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2156
2157 /* Make sure that virtual stack slots are not shared. */
2158 unshare_all_decls (DECL_INITIAL (fndecl));
2159
2160 /* Unshare just about everything else. */
2161 unshare_all_rtl_in_chain (insn);
2162
2163 /* Make sure the addresses of stack slots found outside the insn chain
2164 (such as, in DECL_RTL of a variable) are not shared
2165 with the insn chain.
2166
2167 This special care is necessary when the stack slot MEM does not
2168 actually appear in the insn chain. If it does appear, its address
2169 is unshared from all else at that point. */
2170 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2171 }
2172
2173 /* Go through all the RTL insn bodies and copy any invalid shared
2174 structure, again. This is a fairly expensive thing to do so it
2175 should be done sparingly. */
2176
2177 void
2178 unshare_all_rtl_again (rtx insn)
2179 {
2180 rtx p;
2181 tree decl;
2182
2183 for (p = insn; p; p = NEXT_INSN (p))
2184 if (INSN_P (p))
2185 {
2186 reset_used_flags (PATTERN (p));
2187 reset_used_flags (REG_NOTES (p));
2188 reset_used_flags (LOG_LINKS (p));
2189 }
2190
2191 /* Make sure that virtual stack slots are not shared. */
2192 reset_used_decls (DECL_INITIAL (cfun->decl));
2193
2194 /* Make sure that virtual parameters are not shared. */
2195 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2196 reset_used_flags (DECL_RTL (decl));
2197
2198 reset_used_flags (stack_slot_list);
2199
2200 unshare_all_rtl_1 (cfun->decl, insn);
2201 }
2202
2203 void
2204 unshare_all_rtl (void)
2205 {
2206 unshare_all_rtl_1 (current_function_decl, get_insns ());
2207 }
2208
2209 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2210 Recursively does the same for subexpressions. */
2211
2212 static void
2213 verify_rtx_sharing (rtx orig, rtx insn)
2214 {
2215 rtx x = orig;
2216 int i;
2217 enum rtx_code code;
2218 const char *format_ptr;
2219
2220 if (x == 0)
2221 return;
2222
2223 code = GET_CODE (x);
2224
2225 /* These types may be freely shared. */
2226
2227 switch (code)
2228 {
2229 case REG:
2230 case QUEUED:
2231 case CONST_INT:
2232 case CONST_DOUBLE:
2233 case CONST_VECTOR:
2234 case SYMBOL_REF:
2235 case LABEL_REF:
2236 case CODE_LABEL:
2237 case PC:
2238 case CC0:
2239 case SCRATCH:
2240 return;
2241 /* SCRATCH must be shared because they represent distinct values. */
2242 case CLOBBER:
2243 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2244 return;
2245 break;
2246
2247 case CONST:
2248 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2249 a LABEL_REF, it isn't sharable. */
2250 if (GET_CODE (XEXP (x, 0)) == PLUS
2251 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2252 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2253 return;
2254 break;
2255
2256 case MEM:
2257 /* A MEM is allowed to be shared if its address is constant. */
2258 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2259 || reload_completed || reload_in_progress)
2260 return;
2261
2262 break;
2263
2264 default:
2265 break;
2266 }
2267
2268 /* This rtx may not be shared. If it has already been seen,
2269 replace it with a copy of itself. */
2270
2271 if (RTX_FLAG (x, used))
2272 {
2273 error ("Invalid rtl sharing found in the insn");
2274 debug_rtx (insn);
2275 error ("Shared rtx");
2276 debug_rtx (x);
2277 abort ();
2278 }
2279 RTX_FLAG (x, used) = 1;
2280
2281 /* Now scan the subexpressions recursively. */
2282
2283 format_ptr = GET_RTX_FORMAT (code);
2284
2285 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2286 {
2287 switch (*format_ptr++)
2288 {
2289 case 'e':
2290 verify_rtx_sharing (XEXP (x, i), insn);
2291 break;
2292
2293 case 'E':
2294 if (XVEC (x, i) != NULL)
2295 {
2296 int j;
2297 int len = XVECLEN (x, i);
2298
2299 for (j = 0; j < len; j++)
2300 {
2301 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2302 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2303 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2304 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2305 else
2306 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2307 }
2308 }
2309 break;
2310 }
2311 }
2312 return;
2313 }
2314
2315 /* Go through all the RTL insn bodies and check that there is no unexpected
2316 sharing in between the subexpressions. */
2317
2318 void
2319 verify_rtl_sharing (void)
2320 {
2321 rtx p;
2322
2323 for (p = get_insns (); p; p = NEXT_INSN (p))
2324 if (INSN_P (p))
2325 {
2326 reset_used_flags (PATTERN (p));
2327 reset_used_flags (REG_NOTES (p));
2328 reset_used_flags (LOG_LINKS (p));
2329 }
2330
2331 for (p = get_insns (); p; p = NEXT_INSN (p))
2332 if (INSN_P (p))
2333 {
2334 verify_rtx_sharing (PATTERN (p), p);
2335 verify_rtx_sharing (REG_NOTES (p), p);
2336 verify_rtx_sharing (LOG_LINKS (p), p);
2337 }
2338 }
2339
2340 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2341 Assumes the mark bits are cleared at entry. */
2342
2343 void
2344 unshare_all_rtl_in_chain (rtx insn)
2345 {
2346 for (; insn; insn = NEXT_INSN (insn))
2347 if (INSN_P (insn))
2348 {
2349 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2350 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2351 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2352 }
2353 }
2354
2355 /* Go through all virtual stack slots of a function and copy any
2356 shared structure. */
2357 static void
2358 unshare_all_decls (tree blk)
2359 {
2360 tree t;
2361
2362 /* Copy shared decls. */
2363 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2364 if (DECL_RTL_SET_P (t))
2365 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2366
2367 /* Now process sub-blocks. */
2368 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2369 unshare_all_decls (t);
2370 }
2371
2372 /* Go through all virtual stack slots of a function and mark them as
2373 not shared. */
2374 static void
2375 reset_used_decls (tree blk)
2376 {
2377 tree t;
2378
2379 /* Mark decls. */
2380 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2381 if (DECL_RTL_SET_P (t))
2382 reset_used_flags (DECL_RTL (t));
2383
2384 /* Now process sub-blocks. */
2385 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2386 reset_used_decls (t);
2387 }
2388
2389 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2390 placed in the result directly, rather than being copied. MAY_SHARE is
2391 either a MEM of an EXPR_LIST of MEMs. */
2392
2393 rtx
2394 copy_most_rtx (rtx orig, rtx may_share)
2395 {
2396 rtx copy;
2397 int i, j;
2398 RTX_CODE code;
2399 const char *format_ptr;
2400
2401 if (orig == may_share
2402 || (GET_CODE (may_share) == EXPR_LIST
2403 && in_expr_list_p (may_share, orig)))
2404 return orig;
2405
2406 code = GET_CODE (orig);
2407
2408 switch (code)
2409 {
2410 case REG:
2411 case QUEUED:
2412 case CONST_INT:
2413 case CONST_DOUBLE:
2414 case CONST_VECTOR:
2415 case SYMBOL_REF:
2416 case CODE_LABEL:
2417 case PC:
2418 case CC0:
2419 return orig;
2420 default:
2421 break;
2422 }
2423
2424 copy = rtx_alloc (code);
2425 PUT_MODE (copy, GET_MODE (orig));
2426 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2427 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2428 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2429 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2430 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2431
2432 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2433
2434 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2435 {
2436 switch (*format_ptr++)
2437 {
2438 case 'e':
2439 XEXP (copy, i) = XEXP (orig, i);
2440 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2441 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2442 break;
2443
2444 case 'u':
2445 XEXP (copy, i) = XEXP (orig, i);
2446 break;
2447
2448 case 'E':
2449 case 'V':
2450 XVEC (copy, i) = XVEC (orig, i);
2451 if (XVEC (orig, i) != NULL)
2452 {
2453 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2454 for (j = 0; j < XVECLEN (copy, i); j++)
2455 XVECEXP (copy, i, j)
2456 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2457 }
2458 break;
2459
2460 case 'w':
2461 XWINT (copy, i) = XWINT (orig, i);
2462 break;
2463
2464 case 'n':
2465 case 'i':
2466 XINT (copy, i) = XINT (orig, i);
2467 break;
2468
2469 case 't':
2470 XTREE (copy, i) = XTREE (orig, i);
2471 break;
2472
2473 case 's':
2474 case 'S':
2475 XSTR (copy, i) = XSTR (orig, i);
2476 break;
2477
2478 case '0':
2479 X0ANY (copy, i) = X0ANY (orig, i);
2480 break;
2481
2482 default:
2483 abort ();
2484 }
2485 }
2486 return copy;
2487 }
2488
2489 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2490 Recursively does the same for subexpressions. Uses
2491 copy_rtx_if_shared_1 to reduce stack space. */
2492
2493 rtx
2494 copy_rtx_if_shared (rtx orig)
2495 {
2496 copy_rtx_if_shared_1 (&orig);
2497 return orig;
2498 }
2499
2500 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2501 use. Recursively does the same for subexpressions. */
2502
2503 static void
2504 copy_rtx_if_shared_1 (rtx *orig1)
2505 {
2506 rtx x;
2507 int i;
2508 enum rtx_code code;
2509 rtx *last_ptr;
2510 const char *format_ptr;
2511 int copied = 0;
2512 int length;
2513
2514 /* Repeat is used to turn tail-recursion into iteration. */
2515 repeat:
2516 x = *orig1;
2517
2518 if (x == 0)
2519 return;
2520
2521 code = GET_CODE (x);
2522
2523 /* These types may be freely shared. */
2524
2525 switch (code)
2526 {
2527 case REG:
2528 case QUEUED:
2529 case CONST_INT:
2530 case CONST_DOUBLE:
2531 case CONST_VECTOR:
2532 case SYMBOL_REF:
2533 case LABEL_REF:
2534 case CODE_LABEL:
2535 case PC:
2536 case CC0:
2537 case SCRATCH:
2538 /* SCRATCH must be shared because they represent distinct values. */
2539 return;
2540 case CLOBBER:
2541 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2542 return;
2543 break;
2544
2545 case CONST:
2546 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2547 a LABEL_REF, it isn't sharable. */
2548 if (GET_CODE (XEXP (x, 0)) == PLUS
2549 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2550 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2551 return;
2552 break;
2553
2554 case INSN:
2555 case JUMP_INSN:
2556 case CALL_INSN:
2557 case NOTE:
2558 case BARRIER:
2559 /* The chain of insns is not being copied. */
2560 return;
2561
2562 default:
2563 break;
2564 }
2565
2566 /* This rtx may not be shared. If it has already been seen,
2567 replace it with a copy of itself. */
2568
2569 if (RTX_FLAG (x, used))
2570 {
2571 rtx copy;
2572
2573 copy = rtx_alloc (code);
2574 memcpy (copy, x, RTX_SIZE (code));
2575 x = copy;
2576 copied = 1;
2577 }
2578 RTX_FLAG (x, used) = 1;
2579
2580 /* Now scan the subexpressions recursively.
2581 We can store any replaced subexpressions directly into X
2582 since we know X is not shared! Any vectors in X
2583 must be copied if X was copied. */
2584
2585 format_ptr = GET_RTX_FORMAT (code);
2586 length = GET_RTX_LENGTH (code);
2587 last_ptr = NULL;
2588
2589 for (i = 0; i < length; i++)
2590 {
2591 switch (*format_ptr++)
2592 {
2593 case 'e':
2594 if (last_ptr)
2595 copy_rtx_if_shared_1 (last_ptr);
2596 last_ptr = &XEXP (x, i);
2597 break;
2598
2599 case 'E':
2600 if (XVEC (x, i) != NULL)
2601 {
2602 int j;
2603 int len = XVECLEN (x, i);
2604
2605 /* Copy the vector iff I copied the rtx and the length
2606 is nonzero. */
2607 if (copied && len > 0)
2608 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2609
2610 /* Call recursively on all inside the vector. */
2611 for (j = 0; j < len; j++)
2612 {
2613 if (last_ptr)
2614 copy_rtx_if_shared_1 (last_ptr);
2615 last_ptr = &XVECEXP (x, i, j);
2616 }
2617 }
2618 break;
2619 }
2620 }
2621 *orig1 = x;
2622 if (last_ptr)
2623 {
2624 orig1 = last_ptr;
2625 goto repeat;
2626 }
2627 return;
2628 }
2629
2630 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2631 to look for shared sub-parts. */
2632
2633 void
2634 reset_used_flags (rtx x)
2635 {
2636 int i, j;
2637 enum rtx_code code;
2638 const char *format_ptr;
2639 int length;
2640
2641 /* Repeat is used to turn tail-recursion into iteration. */
2642 repeat:
2643 if (x == 0)
2644 return;
2645
2646 code = GET_CODE (x);
2647
2648 /* These types may be freely shared so we needn't do any resetting
2649 for them. */
2650
2651 switch (code)
2652 {
2653 case REG:
2654 case QUEUED:
2655 case CONST_INT:
2656 case CONST_DOUBLE:
2657 case CONST_VECTOR:
2658 case SYMBOL_REF:
2659 case CODE_LABEL:
2660 case PC:
2661 case CC0:
2662 return;
2663
2664 case INSN:
2665 case JUMP_INSN:
2666 case CALL_INSN:
2667 case NOTE:
2668 case LABEL_REF:
2669 case BARRIER:
2670 /* The chain of insns is not being copied. */
2671 return;
2672
2673 default:
2674 break;
2675 }
2676
2677 RTX_FLAG (x, used) = 0;
2678
2679 format_ptr = GET_RTX_FORMAT (code);
2680 length = GET_RTX_LENGTH (code);
2681
2682 for (i = 0; i < length; i++)
2683 {
2684 switch (*format_ptr++)
2685 {
2686 case 'e':
2687 if (i == length-1)
2688 {
2689 x = XEXP (x, i);
2690 goto repeat;
2691 }
2692 reset_used_flags (XEXP (x, i));
2693 break;
2694
2695 case 'E':
2696 for (j = 0; j < XVECLEN (x, i); j++)
2697 reset_used_flags (XVECEXP (x, i, j));
2698 break;
2699 }
2700 }
2701 }
2702
2703 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2704 to look for shared sub-parts. */
2705
2706 void
2707 set_used_flags (rtx x)
2708 {
2709 int i, j;
2710 enum rtx_code code;
2711 const char *format_ptr;
2712
2713 if (x == 0)
2714 return;
2715
2716 code = GET_CODE (x);
2717
2718 /* These types may be freely shared so we needn't do any resetting
2719 for them. */
2720
2721 switch (code)
2722 {
2723 case REG:
2724 case QUEUED:
2725 case CONST_INT:
2726 case CONST_DOUBLE:
2727 case CONST_VECTOR:
2728 case SYMBOL_REF:
2729 case CODE_LABEL:
2730 case PC:
2731 case CC0:
2732 return;
2733
2734 case INSN:
2735 case JUMP_INSN:
2736 case CALL_INSN:
2737 case NOTE:
2738 case LABEL_REF:
2739 case BARRIER:
2740 /* The chain of insns is not being copied. */
2741 return;
2742
2743 default:
2744 break;
2745 }
2746
2747 RTX_FLAG (x, used) = 1;
2748
2749 format_ptr = GET_RTX_FORMAT (code);
2750 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2751 {
2752 switch (*format_ptr++)
2753 {
2754 case 'e':
2755 set_used_flags (XEXP (x, i));
2756 break;
2757
2758 case 'E':
2759 for (j = 0; j < XVECLEN (x, i); j++)
2760 set_used_flags (XVECEXP (x, i, j));
2761 break;
2762 }
2763 }
2764 }
2765 \f
2766 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2767 Return X or the rtx for the pseudo reg the value of X was copied into.
2768 OTHER must be valid as a SET_DEST. */
2769
2770 rtx
2771 make_safe_from (rtx x, rtx other)
2772 {
2773 while (1)
2774 switch (GET_CODE (other))
2775 {
2776 case SUBREG:
2777 other = SUBREG_REG (other);
2778 break;
2779 case STRICT_LOW_PART:
2780 case SIGN_EXTEND:
2781 case ZERO_EXTEND:
2782 other = XEXP (other, 0);
2783 break;
2784 default:
2785 goto done;
2786 }
2787 done:
2788 if ((MEM_P (other)
2789 && ! CONSTANT_P (x)
2790 && !REG_P (x)
2791 && GET_CODE (x) != SUBREG)
2792 || (REG_P (other)
2793 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2794 || reg_mentioned_p (other, x))))
2795 {
2796 rtx temp = gen_reg_rtx (GET_MODE (x));
2797 emit_move_insn (temp, x);
2798 return temp;
2799 }
2800 return x;
2801 }
2802 \f
2803 /* Emission of insns (adding them to the doubly-linked list). */
2804
2805 /* Return the first insn of the current sequence or current function. */
2806
2807 rtx
2808 get_insns (void)
2809 {
2810 return first_insn;
2811 }
2812
2813 /* Specify a new insn as the first in the chain. */
2814
2815 void
2816 set_first_insn (rtx insn)
2817 {
2818 if (PREV_INSN (insn) != 0)
2819 abort ();
2820 first_insn = insn;
2821 }
2822
2823 /* Return the last insn emitted in current sequence or current function. */
2824
2825 rtx
2826 get_last_insn (void)
2827 {
2828 return last_insn;
2829 }
2830
2831 /* Specify a new insn as the last in the chain. */
2832
2833 void
2834 set_last_insn (rtx insn)
2835 {
2836 if (NEXT_INSN (insn) != 0)
2837 abort ();
2838 last_insn = insn;
2839 }
2840
2841 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2842
2843 rtx
2844 get_last_insn_anywhere (void)
2845 {
2846 struct sequence_stack *stack;
2847 if (last_insn)
2848 return last_insn;
2849 for (stack = seq_stack; stack; stack = stack->next)
2850 if (stack->last != 0)
2851 return stack->last;
2852 return 0;
2853 }
2854
2855 /* Return the first nonnote insn emitted in current sequence or current
2856 function. This routine looks inside SEQUENCEs. */
2857
2858 rtx
2859 get_first_nonnote_insn (void)
2860 {
2861 rtx insn = first_insn;
2862
2863 while (insn)
2864 {
2865 insn = next_insn (insn);
2866 if (insn == 0 || GET_CODE (insn) != NOTE)
2867 break;
2868 }
2869
2870 return insn;
2871 }
2872
2873 /* Return the last nonnote insn emitted in current sequence or current
2874 function. This routine looks inside SEQUENCEs. */
2875
2876 rtx
2877 get_last_nonnote_insn (void)
2878 {
2879 rtx insn = last_insn;
2880
2881 while (insn)
2882 {
2883 insn = previous_insn (insn);
2884 if (insn == 0 || GET_CODE (insn) != NOTE)
2885 break;
2886 }
2887
2888 return insn;
2889 }
2890
2891 /* Return a number larger than any instruction's uid in this function. */
2892
2893 int
2894 get_max_uid (void)
2895 {
2896 return cur_insn_uid;
2897 }
2898
2899 /* Renumber instructions so that no instruction UIDs are wasted. */
2900
2901 void
2902 renumber_insns (FILE *stream)
2903 {
2904 rtx insn;
2905
2906 /* If we're not supposed to renumber instructions, don't. */
2907 if (!flag_renumber_insns)
2908 return;
2909
2910 /* If there aren't that many instructions, then it's not really
2911 worth renumbering them. */
2912 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2913 return;
2914
2915 cur_insn_uid = 1;
2916
2917 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2918 {
2919 if (stream)
2920 fprintf (stream, "Renumbering insn %d to %d\n",
2921 INSN_UID (insn), cur_insn_uid);
2922 INSN_UID (insn) = cur_insn_uid++;
2923 }
2924 }
2925 \f
2926 /* Return the next insn. If it is a SEQUENCE, return the first insn
2927 of the sequence. */
2928
2929 rtx
2930 next_insn (rtx insn)
2931 {
2932 if (insn)
2933 {
2934 insn = NEXT_INSN (insn);
2935 if (insn && GET_CODE (insn) == INSN
2936 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2937 insn = XVECEXP (PATTERN (insn), 0, 0);
2938 }
2939
2940 return insn;
2941 }
2942
2943 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2944 of the sequence. */
2945
2946 rtx
2947 previous_insn (rtx insn)
2948 {
2949 if (insn)
2950 {
2951 insn = PREV_INSN (insn);
2952 if (insn && GET_CODE (insn) == INSN
2953 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2954 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2955 }
2956
2957 return insn;
2958 }
2959
2960 /* Return the next insn after INSN that is not a NOTE. This routine does not
2961 look inside SEQUENCEs. */
2962
2963 rtx
2964 next_nonnote_insn (rtx insn)
2965 {
2966 while (insn)
2967 {
2968 insn = NEXT_INSN (insn);
2969 if (insn == 0 || GET_CODE (insn) != NOTE)
2970 break;
2971 }
2972
2973 return insn;
2974 }
2975
2976 /* Return the previous insn before INSN that is not a NOTE. This routine does
2977 not look inside SEQUENCEs. */
2978
2979 rtx
2980 prev_nonnote_insn (rtx insn)
2981 {
2982 while (insn)
2983 {
2984 insn = PREV_INSN (insn);
2985 if (insn == 0 || GET_CODE (insn) != NOTE)
2986 break;
2987 }
2988
2989 return insn;
2990 }
2991
2992 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2993 or 0, if there is none. This routine does not look inside
2994 SEQUENCEs. */
2995
2996 rtx
2997 next_real_insn (rtx insn)
2998 {
2999 while (insn)
3000 {
3001 insn = NEXT_INSN (insn);
3002 if (insn == 0 || INSN_P (insn))
3003 break;
3004 }
3005
3006 return insn;
3007 }
3008
3009 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3010 or 0, if there is none. This routine does not look inside
3011 SEQUENCEs. */
3012
3013 rtx
3014 prev_real_insn (rtx insn)
3015 {
3016 while (insn)
3017 {
3018 insn = PREV_INSN (insn);
3019 if (insn == 0 || INSN_P (insn))
3020 break;
3021 }
3022
3023 return insn;
3024 }
3025
3026 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3027 This routine does not look inside SEQUENCEs. */
3028
3029 rtx
3030 last_call_insn (void)
3031 {
3032 rtx insn;
3033
3034 for (insn = get_last_insn ();
3035 insn && GET_CODE (insn) != CALL_INSN;
3036 insn = PREV_INSN (insn))
3037 ;
3038
3039 return insn;
3040 }
3041
3042 /* Find the next insn after INSN that really does something. This routine
3043 does not look inside SEQUENCEs. Until reload has completed, this is the
3044 same as next_real_insn. */
3045
3046 int
3047 active_insn_p (rtx insn)
3048 {
3049 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3050 || (GET_CODE (insn) == INSN
3051 && (! reload_completed
3052 || (GET_CODE (PATTERN (insn)) != USE
3053 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3054 }
3055
3056 rtx
3057 next_active_insn (rtx insn)
3058 {
3059 while (insn)
3060 {
3061 insn = NEXT_INSN (insn);
3062 if (insn == 0 || active_insn_p (insn))
3063 break;
3064 }
3065
3066 return insn;
3067 }
3068
3069 /* Find the last insn before INSN that really does something. This routine
3070 does not look inside SEQUENCEs. Until reload has completed, this is the
3071 same as prev_real_insn. */
3072
3073 rtx
3074 prev_active_insn (rtx insn)
3075 {
3076 while (insn)
3077 {
3078 insn = PREV_INSN (insn);
3079 if (insn == 0 || active_insn_p (insn))
3080 break;
3081 }
3082
3083 return insn;
3084 }
3085
3086 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3087
3088 rtx
3089 next_label (rtx insn)
3090 {
3091 while (insn)
3092 {
3093 insn = NEXT_INSN (insn);
3094 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3095 break;
3096 }
3097
3098 return insn;
3099 }
3100
3101 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3102
3103 rtx
3104 prev_label (rtx insn)
3105 {
3106 while (insn)
3107 {
3108 insn = PREV_INSN (insn);
3109 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3110 break;
3111 }
3112
3113 return insn;
3114 }
3115
3116 /* Return the last label to mark the same position as LABEL. Return null
3117 if LABEL itself is null. */
3118
3119 rtx
3120 skip_consecutive_labels (rtx label)
3121 {
3122 rtx insn;
3123
3124 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3125 if (LABEL_P (insn))
3126 label = insn;
3127
3128 return label;
3129 }
3130 \f
3131 #ifdef HAVE_cc0
3132 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3133 and REG_CC_USER notes so we can find it. */
3134
3135 void
3136 link_cc0_insns (rtx insn)
3137 {
3138 rtx user = next_nonnote_insn (insn);
3139
3140 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3141 user = XVECEXP (PATTERN (user), 0, 0);
3142
3143 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3144 REG_NOTES (user));
3145 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3146 }
3147
3148 /* Return the next insn that uses CC0 after INSN, which is assumed to
3149 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3150 applied to the result of this function should yield INSN).
3151
3152 Normally, this is simply the next insn. However, if a REG_CC_USER note
3153 is present, it contains the insn that uses CC0.
3154
3155 Return 0 if we can't find the insn. */
3156
3157 rtx
3158 next_cc0_user (rtx insn)
3159 {
3160 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3161
3162 if (note)
3163 return XEXP (note, 0);
3164
3165 insn = next_nonnote_insn (insn);
3166 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3167 insn = XVECEXP (PATTERN (insn), 0, 0);
3168
3169 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3170 return insn;
3171
3172 return 0;
3173 }
3174
3175 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3176 note, it is the previous insn. */
3177
3178 rtx
3179 prev_cc0_setter (rtx insn)
3180 {
3181 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3182
3183 if (note)
3184 return XEXP (note, 0);
3185
3186 insn = prev_nonnote_insn (insn);
3187 if (! sets_cc0_p (PATTERN (insn)))
3188 abort ();
3189
3190 return insn;
3191 }
3192 #endif
3193
3194 /* Increment the label uses for all labels present in rtx. */
3195
3196 static void
3197 mark_label_nuses (rtx x)
3198 {
3199 enum rtx_code code;
3200 int i, j;
3201 const char *fmt;
3202
3203 code = GET_CODE (x);
3204 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3205 LABEL_NUSES (XEXP (x, 0))++;
3206
3207 fmt = GET_RTX_FORMAT (code);
3208 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3209 {
3210 if (fmt[i] == 'e')
3211 mark_label_nuses (XEXP (x, i));
3212 else if (fmt[i] == 'E')
3213 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3214 mark_label_nuses (XVECEXP (x, i, j));
3215 }
3216 }
3217
3218 \f
3219 /* Try splitting insns that can be split for better scheduling.
3220 PAT is the pattern which might split.
3221 TRIAL is the insn providing PAT.
3222 LAST is nonzero if we should return the last insn of the sequence produced.
3223
3224 If this routine succeeds in splitting, it returns the first or last
3225 replacement insn depending on the value of LAST. Otherwise, it
3226 returns TRIAL. If the insn to be returned can be split, it will be. */
3227
3228 rtx
3229 try_split (rtx pat, rtx trial, int last)
3230 {
3231 rtx before = PREV_INSN (trial);
3232 rtx after = NEXT_INSN (trial);
3233 int has_barrier = 0;
3234 rtx tem;
3235 rtx note, seq;
3236 int probability;
3237 rtx insn_last, insn;
3238 int njumps = 0;
3239
3240 if (any_condjump_p (trial)
3241 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3242 split_branch_probability = INTVAL (XEXP (note, 0));
3243 probability = split_branch_probability;
3244
3245 seq = split_insns (pat, trial);
3246
3247 split_branch_probability = -1;
3248
3249 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3250 We may need to handle this specially. */
3251 if (after && GET_CODE (after) == BARRIER)
3252 {
3253 has_barrier = 1;
3254 after = NEXT_INSN (after);
3255 }
3256
3257 if (!seq)
3258 return trial;
3259
3260 /* Avoid infinite loop if any insn of the result matches
3261 the original pattern. */
3262 insn_last = seq;
3263 while (1)
3264 {
3265 if (INSN_P (insn_last)
3266 && rtx_equal_p (PATTERN (insn_last), pat))
3267 return trial;
3268 if (!NEXT_INSN (insn_last))
3269 break;
3270 insn_last = NEXT_INSN (insn_last);
3271 }
3272
3273 /* Mark labels. */
3274 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3275 {
3276 if (GET_CODE (insn) == JUMP_INSN)
3277 {
3278 mark_jump_label (PATTERN (insn), insn, 0);
3279 njumps++;
3280 if (probability != -1
3281 && any_condjump_p (insn)
3282 && !find_reg_note (insn, REG_BR_PROB, 0))
3283 {
3284 /* We can preserve the REG_BR_PROB notes only if exactly
3285 one jump is created, otherwise the machine description
3286 is responsible for this step using
3287 split_branch_probability variable. */
3288 if (njumps != 1)
3289 abort ();
3290 REG_NOTES (insn)
3291 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3292 GEN_INT (probability),
3293 REG_NOTES (insn));
3294 }
3295 }
3296 }
3297
3298 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3299 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3300 if (GET_CODE (trial) == CALL_INSN)
3301 {
3302 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3303 if (GET_CODE (insn) == CALL_INSN)
3304 {
3305 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3306 while (*p)
3307 p = &XEXP (*p, 1);
3308 *p = CALL_INSN_FUNCTION_USAGE (trial);
3309 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3310 }
3311 }
3312
3313 /* Copy notes, particularly those related to the CFG. */
3314 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3315 {
3316 switch (REG_NOTE_KIND (note))
3317 {
3318 case REG_EH_REGION:
3319 insn = insn_last;
3320 while (insn != NULL_RTX)
3321 {
3322 if (GET_CODE (insn) == CALL_INSN
3323 || (flag_non_call_exceptions
3324 && may_trap_p (PATTERN (insn))))
3325 REG_NOTES (insn)
3326 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3327 XEXP (note, 0),
3328 REG_NOTES (insn));
3329 insn = PREV_INSN (insn);
3330 }
3331 break;
3332
3333 case REG_NORETURN:
3334 case REG_SETJMP:
3335 case REG_ALWAYS_RETURN:
3336 insn = insn_last;
3337 while (insn != NULL_RTX)
3338 {
3339 if (GET_CODE (insn) == CALL_INSN)
3340 REG_NOTES (insn)
3341 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3342 XEXP (note, 0),
3343 REG_NOTES (insn));
3344 insn = PREV_INSN (insn);
3345 }
3346 break;
3347
3348 case REG_NON_LOCAL_GOTO:
3349 insn = insn_last;
3350 while (insn != NULL_RTX)
3351 {
3352 if (GET_CODE (insn) == JUMP_INSN)
3353 REG_NOTES (insn)
3354 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3355 XEXP (note, 0),
3356 REG_NOTES (insn));
3357 insn = PREV_INSN (insn);
3358 }
3359 break;
3360
3361 default:
3362 break;
3363 }
3364 }
3365
3366 /* If there are LABELS inside the split insns increment the
3367 usage count so we don't delete the label. */
3368 if (GET_CODE (trial) == INSN)
3369 {
3370 insn = insn_last;
3371 while (insn != NULL_RTX)
3372 {
3373 if (GET_CODE (insn) == INSN)
3374 mark_label_nuses (PATTERN (insn));
3375
3376 insn = PREV_INSN (insn);
3377 }
3378 }
3379
3380 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3381
3382 delete_insn (trial);
3383 if (has_barrier)
3384 emit_barrier_after (tem);
3385
3386 /* Recursively call try_split for each new insn created; by the
3387 time control returns here that insn will be fully split, so
3388 set LAST and continue from the insn after the one returned.
3389 We can't use next_active_insn here since AFTER may be a note.
3390 Ignore deleted insns, which can be occur if not optimizing. */
3391 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3392 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3393 tem = try_split (PATTERN (tem), tem, 1);
3394
3395 /* Return either the first or the last insn, depending on which was
3396 requested. */
3397 return last
3398 ? (after ? PREV_INSN (after) : last_insn)
3399 : NEXT_INSN (before);
3400 }
3401 \f
3402 /* Make and return an INSN rtx, initializing all its slots.
3403 Store PATTERN in the pattern slots. */
3404
3405 rtx
3406 make_insn_raw (rtx pattern)
3407 {
3408 rtx insn;
3409
3410 insn = rtx_alloc (INSN);
3411
3412 INSN_UID (insn) = cur_insn_uid++;
3413 PATTERN (insn) = pattern;
3414 INSN_CODE (insn) = -1;
3415 LOG_LINKS (insn) = NULL;
3416 REG_NOTES (insn) = NULL;
3417 INSN_LOCATOR (insn) = 0;
3418 BLOCK_FOR_INSN (insn) = NULL;
3419
3420 #ifdef ENABLE_RTL_CHECKING
3421 if (insn
3422 && INSN_P (insn)
3423 && (returnjump_p (insn)
3424 || (GET_CODE (insn) == SET
3425 && SET_DEST (insn) == pc_rtx)))
3426 {
3427 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3428 debug_rtx (insn);
3429 }
3430 #endif
3431
3432 return insn;
3433 }
3434
3435 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3436
3437 static rtx
3438 make_jump_insn_raw (rtx pattern)
3439 {
3440 rtx insn;
3441
3442 insn = rtx_alloc (JUMP_INSN);
3443 INSN_UID (insn) = cur_insn_uid++;
3444
3445 PATTERN (insn) = pattern;
3446 INSN_CODE (insn) = -1;
3447 LOG_LINKS (insn) = NULL;
3448 REG_NOTES (insn) = NULL;
3449 JUMP_LABEL (insn) = NULL;
3450 INSN_LOCATOR (insn) = 0;
3451 BLOCK_FOR_INSN (insn) = NULL;
3452
3453 return insn;
3454 }
3455
3456 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3457
3458 static rtx
3459 make_call_insn_raw (rtx pattern)
3460 {
3461 rtx insn;
3462
3463 insn = rtx_alloc (CALL_INSN);
3464 INSN_UID (insn) = cur_insn_uid++;
3465
3466 PATTERN (insn) = pattern;
3467 INSN_CODE (insn) = -1;
3468 LOG_LINKS (insn) = NULL;
3469 REG_NOTES (insn) = NULL;
3470 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3471 INSN_LOCATOR (insn) = 0;
3472 BLOCK_FOR_INSN (insn) = NULL;
3473
3474 return insn;
3475 }
3476 \f
3477 /* Add INSN to the end of the doubly-linked list.
3478 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3479
3480 void
3481 add_insn (rtx insn)
3482 {
3483 PREV_INSN (insn) = last_insn;
3484 NEXT_INSN (insn) = 0;
3485
3486 if (NULL != last_insn)
3487 NEXT_INSN (last_insn) = insn;
3488
3489 if (NULL == first_insn)
3490 first_insn = insn;
3491
3492 last_insn = insn;
3493 }
3494
3495 /* Add INSN into the doubly-linked list after insn AFTER. This and
3496 the next should be the only functions called to insert an insn once
3497 delay slots have been filled since only they know how to update a
3498 SEQUENCE. */
3499
3500 void
3501 add_insn_after (rtx insn, rtx after)
3502 {
3503 rtx next = NEXT_INSN (after);
3504 basic_block bb;
3505
3506 if (optimize && INSN_DELETED_P (after))
3507 abort ();
3508
3509 NEXT_INSN (insn) = next;
3510 PREV_INSN (insn) = after;
3511
3512 if (next)
3513 {
3514 PREV_INSN (next) = insn;
3515 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3516 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3517 }
3518 else if (last_insn == after)
3519 last_insn = insn;
3520 else
3521 {
3522 struct sequence_stack *stack = seq_stack;
3523 /* Scan all pending sequences too. */
3524 for (; stack; stack = stack->next)
3525 if (after == stack->last)
3526 {
3527 stack->last = insn;
3528 break;
3529 }
3530
3531 if (stack == 0)
3532 abort ();
3533 }
3534
3535 if (GET_CODE (after) != BARRIER
3536 && GET_CODE (insn) != BARRIER
3537 && (bb = BLOCK_FOR_INSN (after)))
3538 {
3539 set_block_for_insn (insn, bb);
3540 if (INSN_P (insn))
3541 bb->flags |= BB_DIRTY;
3542 /* Should not happen as first in the BB is always
3543 either NOTE or LABEL. */
3544 if (BB_END (bb) == after
3545 /* Avoid clobbering of structure when creating new BB. */
3546 && GET_CODE (insn) != BARRIER
3547 && (GET_CODE (insn) != NOTE
3548 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3549 BB_END (bb) = insn;
3550 }
3551
3552 NEXT_INSN (after) = insn;
3553 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3554 {
3555 rtx sequence = PATTERN (after);
3556 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3557 }
3558 }
3559
3560 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3561 the previous should be the only functions called to insert an insn once
3562 delay slots have been filled since only they know how to update a
3563 SEQUENCE. */
3564
3565 void
3566 add_insn_before (rtx insn, rtx before)
3567 {
3568 rtx prev = PREV_INSN (before);
3569 basic_block bb;
3570
3571 if (optimize && INSN_DELETED_P (before))
3572 abort ();
3573
3574 PREV_INSN (insn) = prev;
3575 NEXT_INSN (insn) = before;
3576
3577 if (prev)
3578 {
3579 NEXT_INSN (prev) = insn;
3580 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3581 {
3582 rtx sequence = PATTERN (prev);
3583 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3584 }
3585 }
3586 else if (first_insn == before)
3587 first_insn = insn;
3588 else
3589 {
3590 struct sequence_stack *stack = seq_stack;
3591 /* Scan all pending sequences too. */
3592 for (; stack; stack = stack->next)
3593 if (before == stack->first)
3594 {
3595 stack->first = insn;
3596 break;
3597 }
3598
3599 if (stack == 0)
3600 abort ();
3601 }
3602
3603 if (GET_CODE (before) != BARRIER
3604 && GET_CODE (insn) != BARRIER
3605 && (bb = BLOCK_FOR_INSN (before)))
3606 {
3607 set_block_for_insn (insn, bb);
3608 if (INSN_P (insn))
3609 bb->flags |= BB_DIRTY;
3610 /* Should not happen as first in the BB is always
3611 either NOTE or LABEl. */
3612 if (BB_HEAD (bb) == insn
3613 /* Avoid clobbering of structure when creating new BB. */
3614 && GET_CODE (insn) != BARRIER
3615 && (GET_CODE (insn) != NOTE
3616 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3617 abort ();
3618 }
3619
3620 PREV_INSN (before) = insn;
3621 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3622 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3623 }
3624
3625 /* Remove an insn from its doubly-linked list. This function knows how
3626 to handle sequences. */
3627 void
3628 remove_insn (rtx insn)
3629 {
3630 rtx next = NEXT_INSN (insn);
3631 rtx prev = PREV_INSN (insn);
3632 basic_block bb;
3633
3634 if (prev)
3635 {
3636 NEXT_INSN (prev) = next;
3637 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3638 {
3639 rtx sequence = PATTERN (prev);
3640 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3641 }
3642 }
3643 else if (first_insn == insn)
3644 first_insn = next;
3645 else
3646 {
3647 struct sequence_stack *stack = seq_stack;
3648 /* Scan all pending sequences too. */
3649 for (; stack; stack = stack->next)
3650 if (insn == stack->first)
3651 {
3652 stack->first = next;
3653 break;
3654 }
3655
3656 if (stack == 0)
3657 abort ();
3658 }
3659
3660 if (next)
3661 {
3662 PREV_INSN (next) = prev;
3663 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3664 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3665 }
3666 else if (last_insn == insn)
3667 last_insn = prev;
3668 else
3669 {
3670 struct sequence_stack *stack = seq_stack;
3671 /* Scan all pending sequences too. */
3672 for (; stack; stack = stack->next)
3673 if (insn == stack->last)
3674 {
3675 stack->last = prev;
3676 break;
3677 }
3678
3679 if (stack == 0)
3680 abort ();
3681 }
3682 if (GET_CODE (insn) != BARRIER
3683 && (bb = BLOCK_FOR_INSN (insn)))
3684 {
3685 if (INSN_P (insn))
3686 bb->flags |= BB_DIRTY;
3687 if (BB_HEAD (bb) == insn)
3688 {
3689 /* Never ever delete the basic block note without deleting whole
3690 basic block. */
3691 if (GET_CODE (insn) == NOTE)
3692 abort ();
3693 BB_HEAD (bb) = next;
3694 }
3695 if (BB_END (bb) == insn)
3696 BB_END (bb) = prev;
3697 }
3698 }
3699
3700 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3701
3702 void
3703 add_function_usage_to (rtx call_insn, rtx call_fusage)
3704 {
3705 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3706 abort ();
3707
3708 /* Put the register usage information on the CALL. If there is already
3709 some usage information, put ours at the end. */
3710 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3711 {
3712 rtx link;
3713
3714 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3715 link = XEXP (link, 1))
3716 ;
3717
3718 XEXP (link, 1) = call_fusage;
3719 }
3720 else
3721 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3722 }
3723
3724 /* Delete all insns made since FROM.
3725 FROM becomes the new last instruction. */
3726
3727 void
3728 delete_insns_since (rtx from)
3729 {
3730 if (from == 0)
3731 first_insn = 0;
3732 else
3733 NEXT_INSN (from) = 0;
3734 last_insn = from;
3735 }
3736
3737 /* This function is deprecated, please use sequences instead.
3738
3739 Move a consecutive bunch of insns to a different place in the chain.
3740 The insns to be moved are those between FROM and TO.
3741 They are moved to a new position after the insn AFTER.
3742 AFTER must not be FROM or TO or any insn in between.
3743
3744 This function does not know about SEQUENCEs and hence should not be
3745 called after delay-slot filling has been done. */
3746
3747 void
3748 reorder_insns_nobb (rtx from, rtx to, rtx after)
3749 {
3750 /* Splice this bunch out of where it is now. */
3751 if (PREV_INSN (from))
3752 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3753 if (NEXT_INSN (to))
3754 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3755 if (last_insn == to)
3756 last_insn = PREV_INSN (from);
3757 if (first_insn == from)
3758 first_insn = NEXT_INSN (to);
3759
3760 /* Make the new neighbors point to it and it to them. */
3761 if (NEXT_INSN (after))
3762 PREV_INSN (NEXT_INSN (after)) = to;
3763
3764 NEXT_INSN (to) = NEXT_INSN (after);
3765 PREV_INSN (from) = after;
3766 NEXT_INSN (after) = from;
3767 if (after == last_insn)
3768 last_insn = to;
3769 }
3770
3771 /* Same as function above, but take care to update BB boundaries. */
3772 void
3773 reorder_insns (rtx from, rtx to, rtx after)
3774 {
3775 rtx prev = PREV_INSN (from);
3776 basic_block bb, bb2;
3777
3778 reorder_insns_nobb (from, to, after);
3779
3780 if (GET_CODE (after) != BARRIER
3781 && (bb = BLOCK_FOR_INSN (after)))
3782 {
3783 rtx x;
3784 bb->flags |= BB_DIRTY;
3785
3786 if (GET_CODE (from) != BARRIER
3787 && (bb2 = BLOCK_FOR_INSN (from)))
3788 {
3789 if (BB_END (bb2) == to)
3790 BB_END (bb2) = prev;
3791 bb2->flags |= BB_DIRTY;
3792 }
3793
3794 if (BB_END (bb) == after)
3795 BB_END (bb) = to;
3796
3797 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3798 set_block_for_insn (x, bb);
3799 }
3800 }
3801
3802 /* Return the line note insn preceding INSN. */
3803
3804 static rtx
3805 find_line_note (rtx insn)
3806 {
3807 if (no_line_numbers)
3808 return 0;
3809
3810 for (; insn; insn = PREV_INSN (insn))
3811 if (GET_CODE (insn) == NOTE
3812 && NOTE_LINE_NUMBER (insn) >= 0)
3813 break;
3814
3815 return insn;
3816 }
3817
3818 /* Remove unnecessary notes from the instruction stream. */
3819
3820 void
3821 remove_unnecessary_notes (void)
3822 {
3823 rtx block_stack = NULL_RTX;
3824 rtx eh_stack = NULL_RTX;
3825 rtx insn;
3826 rtx next;
3827 rtx tmp;
3828
3829 /* We must not remove the first instruction in the function because
3830 the compiler depends on the first instruction being a note. */
3831 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3832 {
3833 /* Remember what's next. */
3834 next = NEXT_INSN (insn);
3835
3836 /* We're only interested in notes. */
3837 if (GET_CODE (insn) != NOTE)
3838 continue;
3839
3840 switch (NOTE_LINE_NUMBER (insn))
3841 {
3842 case NOTE_INSN_DELETED:
3843 case NOTE_INSN_LOOP_END_TOP_COND:
3844 remove_insn (insn);
3845 break;
3846
3847 case NOTE_INSN_EH_REGION_BEG:
3848 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3849 break;
3850
3851 case NOTE_INSN_EH_REGION_END:
3852 /* Too many end notes. */
3853 if (eh_stack == NULL_RTX)
3854 abort ();
3855 /* Mismatched nesting. */
3856 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3857 abort ();
3858 tmp = eh_stack;
3859 eh_stack = XEXP (eh_stack, 1);
3860 free_INSN_LIST_node (tmp);
3861 break;
3862
3863 case NOTE_INSN_BLOCK_BEG:
3864 /* By now, all notes indicating lexical blocks should have
3865 NOTE_BLOCK filled in. */
3866 if (NOTE_BLOCK (insn) == NULL_TREE)
3867 abort ();
3868 block_stack = alloc_INSN_LIST (insn, block_stack);
3869 break;
3870
3871 case NOTE_INSN_BLOCK_END:
3872 /* Too many end notes. */
3873 if (block_stack == NULL_RTX)
3874 abort ();
3875 /* Mismatched nesting. */
3876 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3877 abort ();
3878 tmp = block_stack;
3879 block_stack = XEXP (block_stack, 1);
3880 free_INSN_LIST_node (tmp);
3881
3882 /* Scan back to see if there are any non-note instructions
3883 between INSN and the beginning of this block. If not,
3884 then there is no PC range in the generated code that will
3885 actually be in this block, so there's no point in
3886 remembering the existence of the block. */
3887 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3888 {
3889 /* This block contains a real instruction. Note that we
3890 don't include labels; if the only thing in the block
3891 is a label, then there are still no PC values that
3892 lie within the block. */
3893 if (INSN_P (tmp))
3894 break;
3895
3896 /* We're only interested in NOTEs. */
3897 if (GET_CODE (tmp) != NOTE)
3898 continue;
3899
3900 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3901 {
3902 /* We just verified that this BLOCK matches us with
3903 the block_stack check above. Never delete the
3904 BLOCK for the outermost scope of the function; we
3905 can refer to names from that scope even if the
3906 block notes are messed up. */
3907 if (! is_body_block (NOTE_BLOCK (insn))
3908 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3909 {
3910 remove_insn (tmp);
3911 remove_insn (insn);
3912 }
3913 break;
3914 }
3915 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3916 /* There's a nested block. We need to leave the
3917 current block in place since otherwise the debugger
3918 wouldn't be able to show symbols from our block in
3919 the nested block. */
3920 break;
3921 }
3922 }
3923 }
3924
3925 /* Too many begin notes. */
3926 if (block_stack || eh_stack)
3927 abort ();
3928 }
3929
3930 \f
3931 /* Emit insn(s) of given code and pattern
3932 at a specified place within the doubly-linked list.
3933
3934 All of the emit_foo global entry points accept an object
3935 X which is either an insn list or a PATTERN of a single
3936 instruction.
3937
3938 There are thus a few canonical ways to generate code and
3939 emit it at a specific place in the instruction stream. For
3940 example, consider the instruction named SPOT and the fact that
3941 we would like to emit some instructions before SPOT. We might
3942 do it like this:
3943
3944 start_sequence ();
3945 ... emit the new instructions ...
3946 insns_head = get_insns ();
3947 end_sequence ();
3948
3949 emit_insn_before (insns_head, SPOT);
3950
3951 It used to be common to generate SEQUENCE rtl instead, but that
3952 is a relic of the past which no longer occurs. The reason is that
3953 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3954 generated would almost certainly die right after it was created. */
3955
3956 /* Make X be output before the instruction BEFORE. */
3957
3958 rtx
3959 emit_insn_before (rtx x, rtx before)
3960 {
3961 rtx last = before;
3962 rtx insn;
3963
3964 #ifdef ENABLE_RTL_CHECKING
3965 if (before == NULL_RTX)
3966 abort ();
3967 #endif
3968
3969 if (x == NULL_RTX)
3970 return last;
3971
3972 switch (GET_CODE (x))
3973 {
3974 case INSN:
3975 case JUMP_INSN:
3976 case CALL_INSN:
3977 case CODE_LABEL:
3978 case BARRIER:
3979 case NOTE:
3980 insn = x;
3981 while (insn)
3982 {
3983 rtx next = NEXT_INSN (insn);
3984 add_insn_before (insn, before);
3985 last = insn;
3986 insn = next;
3987 }
3988 break;
3989
3990 #ifdef ENABLE_RTL_CHECKING
3991 case SEQUENCE:
3992 abort ();
3993 break;
3994 #endif
3995
3996 default:
3997 last = make_insn_raw (x);
3998 add_insn_before (last, before);
3999 break;
4000 }
4001
4002 return last;
4003 }
4004
4005 /* Make an instruction with body X and code JUMP_INSN
4006 and output it before the instruction BEFORE. */
4007
4008 rtx
4009 emit_jump_insn_before (rtx x, rtx before)
4010 {
4011 rtx insn, last = NULL_RTX;
4012
4013 #ifdef ENABLE_RTL_CHECKING
4014 if (before == NULL_RTX)
4015 abort ();
4016 #endif
4017
4018 switch (GET_CODE (x))
4019 {
4020 case INSN:
4021 case JUMP_INSN:
4022 case CALL_INSN:
4023 case CODE_LABEL:
4024 case BARRIER:
4025 case NOTE:
4026 insn = x;
4027 while (insn)
4028 {
4029 rtx next = NEXT_INSN (insn);
4030 add_insn_before (insn, before);
4031 last = insn;
4032 insn = next;
4033 }
4034 break;
4035
4036 #ifdef ENABLE_RTL_CHECKING
4037 case SEQUENCE:
4038 abort ();
4039 break;
4040 #endif
4041
4042 default:
4043 last = make_jump_insn_raw (x);
4044 add_insn_before (last, before);
4045 break;
4046 }
4047
4048 return last;
4049 }
4050
4051 /* Make an instruction with body X and code CALL_INSN
4052 and output it before the instruction BEFORE. */
4053
4054 rtx
4055 emit_call_insn_before (rtx x, rtx before)
4056 {
4057 rtx last = NULL_RTX, insn;
4058
4059 #ifdef ENABLE_RTL_CHECKING
4060 if (before == NULL_RTX)
4061 abort ();
4062 #endif
4063
4064 switch (GET_CODE (x))
4065 {
4066 case INSN:
4067 case JUMP_INSN:
4068 case CALL_INSN:
4069 case CODE_LABEL:
4070 case BARRIER:
4071 case NOTE:
4072 insn = x;
4073 while (insn)
4074 {
4075 rtx next = NEXT_INSN (insn);
4076 add_insn_before (insn, before);
4077 last = insn;
4078 insn = next;
4079 }
4080 break;
4081
4082 #ifdef ENABLE_RTL_CHECKING
4083 case SEQUENCE:
4084 abort ();
4085 break;
4086 #endif
4087
4088 default:
4089 last = make_call_insn_raw (x);
4090 add_insn_before (last, before);
4091 break;
4092 }
4093
4094 return last;
4095 }
4096
4097 /* Make an insn of code BARRIER
4098 and output it before the insn BEFORE. */
4099
4100 rtx
4101 emit_barrier_before (rtx before)
4102 {
4103 rtx insn = rtx_alloc (BARRIER);
4104
4105 INSN_UID (insn) = cur_insn_uid++;
4106
4107 add_insn_before (insn, before);
4108 return insn;
4109 }
4110
4111 /* Emit the label LABEL before the insn BEFORE. */
4112
4113 rtx
4114 emit_label_before (rtx label, rtx before)
4115 {
4116 /* This can be called twice for the same label as a result of the
4117 confusion that follows a syntax error! So make it harmless. */
4118 if (INSN_UID (label) == 0)
4119 {
4120 INSN_UID (label) = cur_insn_uid++;
4121 add_insn_before (label, before);
4122 }
4123
4124 return label;
4125 }
4126
4127 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4128
4129 rtx
4130 emit_note_before (int subtype, rtx before)
4131 {
4132 rtx note = rtx_alloc (NOTE);
4133 INSN_UID (note) = cur_insn_uid++;
4134 #ifndef USE_MAPPED_LOCATION
4135 NOTE_SOURCE_FILE (note) = 0;
4136 #endif
4137 NOTE_LINE_NUMBER (note) = subtype;
4138 BLOCK_FOR_INSN (note) = NULL;
4139
4140 add_insn_before (note, before);
4141 return note;
4142 }
4143 \f
4144 /* Helper for emit_insn_after, handles lists of instructions
4145 efficiently. */
4146
4147 static rtx emit_insn_after_1 (rtx, rtx);
4148
4149 static rtx
4150 emit_insn_after_1 (rtx first, rtx after)
4151 {
4152 rtx last;
4153 rtx after_after;
4154 basic_block bb;
4155
4156 if (GET_CODE (after) != BARRIER
4157 && (bb = BLOCK_FOR_INSN (after)))
4158 {
4159 bb->flags |= BB_DIRTY;
4160 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4161 if (GET_CODE (last) != BARRIER)
4162 set_block_for_insn (last, bb);
4163 if (GET_CODE (last) != BARRIER)
4164 set_block_for_insn (last, bb);
4165 if (BB_END (bb) == after)
4166 BB_END (bb) = last;
4167 }
4168 else
4169 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4170 continue;
4171
4172 after_after = NEXT_INSN (after);
4173
4174 NEXT_INSN (after) = first;
4175 PREV_INSN (first) = after;
4176 NEXT_INSN (last) = after_after;
4177 if (after_after)
4178 PREV_INSN (after_after) = last;
4179
4180 if (after == last_insn)
4181 last_insn = last;
4182 return last;
4183 }
4184
4185 /* Make X be output after the insn AFTER. */
4186
4187 rtx
4188 emit_insn_after (rtx x, rtx after)
4189 {
4190 rtx last = after;
4191
4192 #ifdef ENABLE_RTL_CHECKING
4193 if (after == NULL_RTX)
4194 abort ();
4195 #endif
4196
4197 if (x == NULL_RTX)
4198 return last;
4199
4200 switch (GET_CODE (x))
4201 {
4202 case INSN:
4203 case JUMP_INSN:
4204 case CALL_INSN:
4205 case CODE_LABEL:
4206 case BARRIER:
4207 case NOTE:
4208 last = emit_insn_after_1 (x, after);
4209 break;
4210
4211 #ifdef ENABLE_RTL_CHECKING
4212 case SEQUENCE:
4213 abort ();
4214 break;
4215 #endif
4216
4217 default:
4218 last = make_insn_raw (x);
4219 add_insn_after (last, after);
4220 break;
4221 }
4222
4223 return last;
4224 }
4225
4226 /* Similar to emit_insn_after, except that line notes are to be inserted so
4227 as to act as if this insn were at FROM. */
4228
4229 void
4230 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4231 {
4232 rtx from_line = find_line_note (from);
4233 rtx after_line = find_line_note (after);
4234 rtx insn = emit_insn_after (x, after);
4235
4236 if (from_line)
4237 emit_note_copy_after (from_line, after);
4238
4239 if (after_line)
4240 emit_note_copy_after (after_line, insn);
4241 }
4242
4243 /* Make an insn of code JUMP_INSN with body X
4244 and output it after the insn AFTER. */
4245
4246 rtx
4247 emit_jump_insn_after (rtx x, rtx after)
4248 {
4249 rtx last;
4250
4251 #ifdef ENABLE_RTL_CHECKING
4252 if (after == NULL_RTX)
4253 abort ();
4254 #endif
4255
4256 switch (GET_CODE (x))
4257 {
4258 case INSN:
4259 case JUMP_INSN:
4260 case CALL_INSN:
4261 case CODE_LABEL:
4262 case BARRIER:
4263 case NOTE:
4264 last = emit_insn_after_1 (x, after);
4265 break;
4266
4267 #ifdef ENABLE_RTL_CHECKING
4268 case SEQUENCE:
4269 abort ();
4270 break;
4271 #endif
4272
4273 default:
4274 last = make_jump_insn_raw (x);
4275 add_insn_after (last, after);
4276 break;
4277 }
4278
4279 return last;
4280 }
4281
4282 /* Make an instruction with body X and code CALL_INSN
4283 and output it after the instruction AFTER. */
4284
4285 rtx
4286 emit_call_insn_after (rtx x, rtx after)
4287 {
4288 rtx last;
4289
4290 #ifdef ENABLE_RTL_CHECKING
4291 if (after == NULL_RTX)
4292 abort ();
4293 #endif
4294
4295 switch (GET_CODE (x))
4296 {
4297 case INSN:
4298 case JUMP_INSN:
4299 case CALL_INSN:
4300 case CODE_LABEL:
4301 case BARRIER:
4302 case NOTE:
4303 last = emit_insn_after_1 (x, after);
4304 break;
4305
4306 #ifdef ENABLE_RTL_CHECKING
4307 case SEQUENCE:
4308 abort ();
4309 break;
4310 #endif
4311
4312 default:
4313 last = make_call_insn_raw (x);
4314 add_insn_after (last, after);
4315 break;
4316 }
4317
4318 return last;
4319 }
4320
4321 /* Make an insn of code BARRIER
4322 and output it after the insn AFTER. */
4323
4324 rtx
4325 emit_barrier_after (rtx after)
4326 {
4327 rtx insn = rtx_alloc (BARRIER);
4328
4329 INSN_UID (insn) = cur_insn_uid++;
4330
4331 add_insn_after (insn, after);
4332 return insn;
4333 }
4334
4335 /* Emit the label LABEL after the insn AFTER. */
4336
4337 rtx
4338 emit_label_after (rtx label, rtx after)
4339 {
4340 /* This can be called twice for the same label
4341 as a result of the confusion that follows a syntax error!
4342 So make it harmless. */
4343 if (INSN_UID (label) == 0)
4344 {
4345 INSN_UID (label) = cur_insn_uid++;
4346 add_insn_after (label, after);
4347 }
4348
4349 return label;
4350 }
4351
4352 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4353
4354 rtx
4355 emit_note_after (int subtype, rtx after)
4356 {
4357 rtx note = rtx_alloc (NOTE);
4358 INSN_UID (note) = cur_insn_uid++;
4359 #ifndef USE_MAPPED_LOCATION
4360 NOTE_SOURCE_FILE (note) = 0;
4361 #endif
4362 NOTE_LINE_NUMBER (note) = subtype;
4363 BLOCK_FOR_INSN (note) = NULL;
4364 add_insn_after (note, after);
4365 return note;
4366 }
4367
4368 /* Emit a copy of note ORIG after the insn AFTER. */
4369
4370 rtx
4371 emit_note_copy_after (rtx orig, rtx after)
4372 {
4373 rtx note;
4374
4375 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4376 {
4377 cur_insn_uid++;
4378 return 0;
4379 }
4380
4381 note = rtx_alloc (NOTE);
4382 INSN_UID (note) = cur_insn_uid++;
4383 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4384 NOTE_DATA (note) = NOTE_DATA (orig);
4385 BLOCK_FOR_INSN (note) = NULL;
4386 add_insn_after (note, after);
4387 return note;
4388 }
4389 \f
4390 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4391 rtx
4392 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4393 {
4394 rtx last = emit_insn_after (pattern, after);
4395
4396 if (pattern == NULL_RTX)
4397 return last;
4398
4399 after = NEXT_INSN (after);
4400 while (1)
4401 {
4402 if (active_insn_p (after))
4403 INSN_LOCATOR (after) = loc;
4404 if (after == last)
4405 break;
4406 after = NEXT_INSN (after);
4407 }
4408 return last;
4409 }
4410
4411 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4412 rtx
4413 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4414 {
4415 rtx last = emit_jump_insn_after (pattern, after);
4416
4417 if (pattern == NULL_RTX)
4418 return last;
4419
4420 after = NEXT_INSN (after);
4421 while (1)
4422 {
4423 if (active_insn_p (after))
4424 INSN_LOCATOR (after) = loc;
4425 if (after == last)
4426 break;
4427 after = NEXT_INSN (after);
4428 }
4429 return last;
4430 }
4431
4432 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4433 rtx
4434 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4435 {
4436 rtx last = emit_call_insn_after (pattern, after);
4437
4438 if (pattern == NULL_RTX)
4439 return last;
4440
4441 after = NEXT_INSN (after);
4442 while (1)
4443 {
4444 if (active_insn_p (after))
4445 INSN_LOCATOR (after) = loc;
4446 if (after == last)
4447 break;
4448 after = NEXT_INSN (after);
4449 }
4450 return last;
4451 }
4452
4453 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4454 rtx
4455 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4456 {
4457 rtx first = PREV_INSN (before);
4458 rtx last = emit_insn_before (pattern, before);
4459
4460 if (pattern == NULL_RTX)
4461 return last;
4462
4463 first = NEXT_INSN (first);
4464 while (1)
4465 {
4466 if (active_insn_p (first))
4467 INSN_LOCATOR (first) = loc;
4468 if (first == last)
4469 break;
4470 first = NEXT_INSN (first);
4471 }
4472 return last;
4473 }
4474 \f
4475 /* Take X and emit it at the end of the doubly-linked
4476 INSN list.
4477
4478 Returns the last insn emitted. */
4479
4480 rtx
4481 emit_insn (rtx x)
4482 {
4483 rtx last = last_insn;
4484 rtx insn;
4485
4486 if (x == NULL_RTX)
4487 return last;
4488
4489 switch (GET_CODE (x))
4490 {
4491 case INSN:
4492 case JUMP_INSN:
4493 case CALL_INSN:
4494 case CODE_LABEL:
4495 case BARRIER:
4496 case NOTE:
4497 insn = x;
4498 while (insn)
4499 {
4500 rtx next = NEXT_INSN (insn);
4501 add_insn (insn);
4502 last = insn;
4503 insn = next;
4504 }
4505 break;
4506
4507 #ifdef ENABLE_RTL_CHECKING
4508 case SEQUENCE:
4509 abort ();
4510 break;
4511 #endif
4512
4513 default:
4514 last = make_insn_raw (x);
4515 add_insn (last);
4516 break;
4517 }
4518
4519 return last;
4520 }
4521
4522 /* Make an insn of code JUMP_INSN with pattern X
4523 and add it to the end of the doubly-linked list. */
4524
4525 rtx
4526 emit_jump_insn (rtx x)
4527 {
4528 rtx last = NULL_RTX, insn;
4529
4530 switch (GET_CODE (x))
4531 {
4532 case INSN:
4533 case JUMP_INSN:
4534 case CALL_INSN:
4535 case CODE_LABEL:
4536 case BARRIER:
4537 case NOTE:
4538 insn = x;
4539 while (insn)
4540 {
4541 rtx next = NEXT_INSN (insn);
4542 add_insn (insn);
4543 last = insn;
4544 insn = next;
4545 }
4546 break;
4547
4548 #ifdef ENABLE_RTL_CHECKING
4549 case SEQUENCE:
4550 abort ();
4551 break;
4552 #endif
4553
4554 default:
4555 last = make_jump_insn_raw (x);
4556 add_insn (last);
4557 break;
4558 }
4559
4560 return last;
4561 }
4562
4563 /* Make an insn of code CALL_INSN with pattern X
4564 and add it to the end of the doubly-linked list. */
4565
4566 rtx
4567 emit_call_insn (rtx x)
4568 {
4569 rtx insn;
4570
4571 switch (GET_CODE (x))
4572 {
4573 case INSN:
4574 case JUMP_INSN:
4575 case CALL_INSN:
4576 case CODE_LABEL:
4577 case BARRIER:
4578 case NOTE:
4579 insn = emit_insn (x);
4580 break;
4581
4582 #ifdef ENABLE_RTL_CHECKING
4583 case SEQUENCE:
4584 abort ();
4585 break;
4586 #endif
4587
4588 default:
4589 insn = make_call_insn_raw (x);
4590 add_insn (insn);
4591 break;
4592 }
4593
4594 return insn;
4595 }
4596
4597 /* Add the label LABEL to the end of the doubly-linked list. */
4598
4599 rtx
4600 emit_label (rtx label)
4601 {
4602 /* This can be called twice for the same label
4603 as a result of the confusion that follows a syntax error!
4604 So make it harmless. */
4605 if (INSN_UID (label) == 0)
4606 {
4607 INSN_UID (label) = cur_insn_uid++;
4608 add_insn (label);
4609 }
4610 return label;
4611 }
4612
4613 /* Make an insn of code BARRIER
4614 and add it to the end of the doubly-linked list. */
4615
4616 rtx
4617 emit_barrier (void)
4618 {
4619 rtx barrier = rtx_alloc (BARRIER);
4620 INSN_UID (barrier) = cur_insn_uid++;
4621 add_insn (barrier);
4622 return barrier;
4623 }
4624
4625 /* Make line numbering NOTE insn for LOCATION add it to the end
4626 of the doubly-linked list, but only if line-numbers are desired for
4627 debugging info and it doesn't match the previous one. */
4628
4629 rtx
4630 emit_line_note (location_t location)
4631 {
4632 rtx note;
4633
4634 set_file_and_line_for_stmt (location);
4635
4636 #ifdef USE_MAPPED_LOCATION
4637 if (location == last_location)
4638 return NULL_RTX;
4639 #else
4640 if (location.file && last_location.file
4641 && !strcmp (location.file, last_location.file)
4642 && location.line == last_location.line)
4643 return NULL_RTX;
4644 #endif
4645 last_location = location;
4646
4647 if (no_line_numbers)
4648 {
4649 cur_insn_uid++;
4650 return NULL_RTX;
4651 }
4652
4653 #ifdef USE_MAPPED_LOCATION
4654 note = emit_note ((int) location);
4655 #else
4656 note = emit_note (location.line);
4657 NOTE_SOURCE_FILE (note) = location.file;
4658 #endif
4659
4660 return note;
4661 }
4662
4663 /* Emit a copy of note ORIG. */
4664
4665 rtx
4666 emit_note_copy (rtx orig)
4667 {
4668 rtx note;
4669
4670 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4671 {
4672 cur_insn_uid++;
4673 return NULL_RTX;
4674 }
4675
4676 note = rtx_alloc (NOTE);
4677
4678 INSN_UID (note) = cur_insn_uid++;
4679 NOTE_DATA (note) = NOTE_DATA (orig);
4680 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4681 BLOCK_FOR_INSN (note) = NULL;
4682 add_insn (note);
4683
4684 return note;
4685 }
4686
4687 /* Make an insn of code NOTE or type NOTE_NO
4688 and add it to the end of the doubly-linked list. */
4689
4690 rtx
4691 emit_note (int note_no)
4692 {
4693 rtx note;
4694
4695 note = rtx_alloc (NOTE);
4696 INSN_UID (note) = cur_insn_uid++;
4697 NOTE_LINE_NUMBER (note) = note_no;
4698 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4699 BLOCK_FOR_INSN (note) = NULL;
4700 add_insn (note);
4701 return note;
4702 }
4703
4704 /* Cause next statement to emit a line note even if the line number
4705 has not changed. */
4706
4707 void
4708 force_next_line_note (void)
4709 {
4710 #ifdef USE_MAPPED_LOCATION
4711 last_location = -1;
4712 #else
4713 last_location.line = -1;
4714 #endif
4715 }
4716
4717 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4718 note of this type already exists, remove it first. */
4719
4720 rtx
4721 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4722 {
4723 rtx note = find_reg_note (insn, kind, NULL_RTX);
4724
4725 switch (kind)
4726 {
4727 case REG_EQUAL:
4728 case REG_EQUIV:
4729 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4730 has multiple sets (some callers assume single_set
4731 means the insn only has one set, when in fact it
4732 means the insn only has one * useful * set). */
4733 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4734 {
4735 if (note)
4736 abort ();
4737 return NULL_RTX;
4738 }
4739
4740 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4741 It serves no useful purpose and breaks eliminate_regs. */
4742 if (GET_CODE (datum) == ASM_OPERANDS)
4743 return NULL_RTX;
4744 break;
4745
4746 default:
4747 break;
4748 }
4749
4750 if (note)
4751 {
4752 XEXP (note, 0) = datum;
4753 return note;
4754 }
4755
4756 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4757 return REG_NOTES (insn);
4758 }
4759 \f
4760 /* Return an indication of which type of insn should have X as a body.
4761 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4762
4763 enum rtx_code
4764 classify_insn (rtx x)
4765 {
4766 if (GET_CODE (x) == CODE_LABEL)
4767 return CODE_LABEL;
4768 if (GET_CODE (x) == CALL)
4769 return CALL_INSN;
4770 if (GET_CODE (x) == RETURN)
4771 return JUMP_INSN;
4772 if (GET_CODE (x) == SET)
4773 {
4774 if (SET_DEST (x) == pc_rtx)
4775 return JUMP_INSN;
4776 else if (GET_CODE (SET_SRC (x)) == CALL)
4777 return CALL_INSN;
4778 else
4779 return INSN;
4780 }
4781 if (GET_CODE (x) == PARALLEL)
4782 {
4783 int j;
4784 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4785 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4786 return CALL_INSN;
4787 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4788 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4789 return JUMP_INSN;
4790 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4791 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4792 return CALL_INSN;
4793 }
4794 return INSN;
4795 }
4796
4797 /* Emit the rtl pattern X as an appropriate kind of insn.
4798 If X is a label, it is simply added into the insn chain. */
4799
4800 rtx
4801 emit (rtx x)
4802 {
4803 enum rtx_code code = classify_insn (x);
4804
4805 if (code == CODE_LABEL)
4806 return emit_label (x);
4807 else if (code == INSN)
4808 return emit_insn (x);
4809 else if (code == JUMP_INSN)
4810 {
4811 rtx insn = emit_jump_insn (x);
4812 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4813 return emit_barrier ();
4814 return insn;
4815 }
4816 else if (code == CALL_INSN)
4817 return emit_call_insn (x);
4818 else
4819 abort ();
4820 }
4821 \f
4822 /* Space for free sequence stack entries. */
4823 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4824
4825 /* Begin emitting insns to a sequence. If this sequence will contain
4826 something that might cause the compiler to pop arguments to function
4827 calls (because those pops have previously been deferred; see
4828 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4829 before calling this function. That will ensure that the deferred
4830 pops are not accidentally emitted in the middle of this sequence. */
4831
4832 void
4833 start_sequence (void)
4834 {
4835 struct sequence_stack *tem;
4836
4837 if (free_sequence_stack != NULL)
4838 {
4839 tem = free_sequence_stack;
4840 free_sequence_stack = tem->next;
4841 }
4842 else
4843 tem = ggc_alloc (sizeof (struct sequence_stack));
4844
4845 tem->next = seq_stack;
4846 tem->first = first_insn;
4847 tem->last = last_insn;
4848
4849 seq_stack = tem;
4850
4851 first_insn = 0;
4852 last_insn = 0;
4853 }
4854
4855 /* Set up the insn chain starting with FIRST as the current sequence,
4856 saving the previously current one. See the documentation for
4857 start_sequence for more information about how to use this function. */
4858
4859 void
4860 push_to_sequence (rtx first)
4861 {
4862 rtx last;
4863
4864 start_sequence ();
4865
4866 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4867
4868 first_insn = first;
4869 last_insn = last;
4870 }
4871
4872 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4873
4874 void
4875 push_to_full_sequence (rtx first, rtx last)
4876 {
4877 start_sequence ();
4878 first_insn = first;
4879 last_insn = last;
4880 /* We really should have the end of the insn chain here. */
4881 if (last && NEXT_INSN (last))
4882 abort ();
4883 }
4884
4885 /* Set up the outer-level insn chain
4886 as the current sequence, saving the previously current one. */
4887
4888 void
4889 push_topmost_sequence (void)
4890 {
4891 struct sequence_stack *stack, *top = NULL;
4892
4893 start_sequence ();
4894
4895 for (stack = seq_stack; stack; stack = stack->next)
4896 top = stack;
4897
4898 first_insn = top->first;
4899 last_insn = top->last;
4900 }
4901
4902 /* After emitting to the outer-level insn chain, update the outer-level
4903 insn chain, and restore the previous saved state. */
4904
4905 void
4906 pop_topmost_sequence (void)
4907 {
4908 struct sequence_stack *stack, *top = NULL;
4909
4910 for (stack = seq_stack; stack; stack = stack->next)
4911 top = stack;
4912
4913 top->first = first_insn;
4914 top->last = last_insn;
4915
4916 end_sequence ();
4917 }
4918
4919 /* After emitting to a sequence, restore previous saved state.
4920
4921 To get the contents of the sequence just made, you must call
4922 `get_insns' *before* calling here.
4923
4924 If the compiler might have deferred popping arguments while
4925 generating this sequence, and this sequence will not be immediately
4926 inserted into the instruction stream, use do_pending_stack_adjust
4927 before calling get_insns. That will ensure that the deferred
4928 pops are inserted into this sequence, and not into some random
4929 location in the instruction stream. See INHIBIT_DEFER_POP for more
4930 information about deferred popping of arguments. */
4931
4932 void
4933 end_sequence (void)
4934 {
4935 struct sequence_stack *tem = seq_stack;
4936
4937 first_insn = tem->first;
4938 last_insn = tem->last;
4939 seq_stack = tem->next;
4940
4941 memset (tem, 0, sizeof (*tem));
4942 tem->next = free_sequence_stack;
4943 free_sequence_stack = tem;
4944 }
4945
4946 /* Return 1 if currently emitting into a sequence. */
4947
4948 int
4949 in_sequence_p (void)
4950 {
4951 return seq_stack != 0;
4952 }
4953 \f
4954 /* Put the various virtual registers into REGNO_REG_RTX. */
4955
4956 void
4957 init_virtual_regs (struct emit_status *es)
4958 {
4959 rtx *ptr = es->x_regno_reg_rtx;
4960 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4961 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4962 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4963 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4964 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4965 }
4966
4967 \f
4968 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4969 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4970 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4971 static int copy_insn_n_scratches;
4972
4973 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4974 copied an ASM_OPERANDS.
4975 In that case, it is the original input-operand vector. */
4976 static rtvec orig_asm_operands_vector;
4977
4978 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4979 copied an ASM_OPERANDS.
4980 In that case, it is the copied input-operand vector. */
4981 static rtvec copy_asm_operands_vector;
4982
4983 /* Likewise for the constraints vector. */
4984 static rtvec orig_asm_constraints_vector;
4985 static rtvec copy_asm_constraints_vector;
4986
4987 /* Recursively create a new copy of an rtx for copy_insn.
4988 This function differs from copy_rtx in that it handles SCRATCHes and
4989 ASM_OPERANDs properly.
4990 Normally, this function is not used directly; use copy_insn as front end.
4991 However, you could first copy an insn pattern with copy_insn and then use
4992 this function afterwards to properly copy any REG_NOTEs containing
4993 SCRATCHes. */
4994
4995 rtx
4996 copy_insn_1 (rtx orig)
4997 {
4998 rtx copy;
4999 int i, j;
5000 RTX_CODE code;
5001 const char *format_ptr;
5002
5003 code = GET_CODE (orig);
5004
5005 switch (code)
5006 {
5007 case REG:
5008 case QUEUED:
5009 case CONST_INT:
5010 case CONST_DOUBLE:
5011 case CONST_VECTOR:
5012 case SYMBOL_REF:
5013 case CODE_LABEL:
5014 case PC:
5015 case CC0:
5016 case ADDRESSOF:
5017 return orig;
5018 case CLOBBER:
5019 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5020 return orig;
5021 break;
5022
5023 case SCRATCH:
5024 for (i = 0; i < copy_insn_n_scratches; i++)
5025 if (copy_insn_scratch_in[i] == orig)
5026 return copy_insn_scratch_out[i];
5027 break;
5028
5029 case CONST:
5030 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5031 a LABEL_REF, it isn't sharable. */
5032 if (GET_CODE (XEXP (orig, 0)) == PLUS
5033 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5034 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5035 return orig;
5036 break;
5037
5038 /* A MEM with a constant address is not sharable. The problem is that
5039 the constant address may need to be reloaded. If the mem is shared,
5040 then reloading one copy of this mem will cause all copies to appear
5041 to have been reloaded. */
5042
5043 default:
5044 break;
5045 }
5046
5047 copy = rtx_alloc (code);
5048
5049 /* Copy the various flags, and other information. We assume that
5050 all fields need copying, and then clear the fields that should
5051 not be copied. That is the sensible default behavior, and forces
5052 us to explicitly document why we are *not* copying a flag. */
5053 memcpy (copy, orig, RTX_HDR_SIZE);
5054
5055 /* We do not copy the USED flag, which is used as a mark bit during
5056 walks over the RTL. */
5057 RTX_FLAG (copy, used) = 0;
5058
5059 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5060 if (INSN_P (orig))
5061 {
5062 RTX_FLAG (copy, jump) = 0;
5063 RTX_FLAG (copy, call) = 0;
5064 RTX_FLAG (copy, frame_related) = 0;
5065 }
5066
5067 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5068
5069 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5070 {
5071 copy->u.fld[i] = orig->u.fld[i];
5072 switch (*format_ptr++)
5073 {
5074 case 'e':
5075 if (XEXP (orig, i) != NULL)
5076 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5077 break;
5078
5079 case 'E':
5080 case 'V':
5081 if (XVEC (orig, i) == orig_asm_constraints_vector)
5082 XVEC (copy, i) = copy_asm_constraints_vector;
5083 else if (XVEC (orig, i) == orig_asm_operands_vector)
5084 XVEC (copy, i) = copy_asm_operands_vector;
5085 else if (XVEC (orig, i) != NULL)
5086 {
5087 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5088 for (j = 0; j < XVECLEN (copy, i); j++)
5089 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5090 }
5091 break;
5092
5093 case 't':
5094 case 'w':
5095 case 'i':
5096 case 's':
5097 case 'S':
5098 case 'u':
5099 case '0':
5100 /* These are left unchanged. */
5101 break;
5102
5103 default:
5104 abort ();
5105 }
5106 }
5107
5108 if (code == SCRATCH)
5109 {
5110 i = copy_insn_n_scratches++;
5111 if (i >= MAX_RECOG_OPERANDS)
5112 abort ();
5113 copy_insn_scratch_in[i] = orig;
5114 copy_insn_scratch_out[i] = copy;
5115 }
5116 else if (code == ASM_OPERANDS)
5117 {
5118 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5119 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5120 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5121 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5122 }
5123
5124 return copy;
5125 }
5126
5127 /* Create a new copy of an rtx.
5128 This function differs from copy_rtx in that it handles SCRATCHes and
5129 ASM_OPERANDs properly.
5130 INSN doesn't really have to be a full INSN; it could be just the
5131 pattern. */
5132 rtx
5133 copy_insn (rtx insn)
5134 {
5135 copy_insn_n_scratches = 0;
5136 orig_asm_operands_vector = 0;
5137 orig_asm_constraints_vector = 0;
5138 copy_asm_operands_vector = 0;
5139 copy_asm_constraints_vector = 0;
5140 return copy_insn_1 (insn);
5141 }
5142
5143 /* Initialize data structures and variables in this file
5144 before generating rtl for each function. */
5145
5146 void
5147 init_emit (void)
5148 {
5149 struct function *f = cfun;
5150
5151 f->emit = ggc_alloc (sizeof (struct emit_status));
5152 first_insn = NULL;
5153 last_insn = NULL;
5154 cur_insn_uid = 1;
5155 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5156 last_location = UNKNOWN_LOCATION;
5157 first_label_num = label_num;
5158 last_label_num = 0;
5159 seq_stack = NULL;
5160
5161 /* Init the tables that describe all the pseudo regs. */
5162
5163 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5164
5165 f->emit->regno_pointer_align
5166 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5167 * sizeof (unsigned char));
5168
5169 regno_reg_rtx
5170 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5171
5172 /* Put copies of all the hard registers into regno_reg_rtx. */
5173 memcpy (regno_reg_rtx,
5174 static_regno_reg_rtx,
5175 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5176
5177 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5178 init_virtual_regs (f->emit);
5179
5180 /* Indicate that the virtual registers and stack locations are
5181 all pointers. */
5182 REG_POINTER (stack_pointer_rtx) = 1;
5183 REG_POINTER (frame_pointer_rtx) = 1;
5184 REG_POINTER (hard_frame_pointer_rtx) = 1;
5185 REG_POINTER (arg_pointer_rtx) = 1;
5186
5187 REG_POINTER (virtual_incoming_args_rtx) = 1;
5188 REG_POINTER (virtual_stack_vars_rtx) = 1;
5189 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5190 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5191 REG_POINTER (virtual_cfa_rtx) = 1;
5192
5193 #ifdef STACK_BOUNDARY
5194 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5195 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5196 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5197 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5198
5199 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5200 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5201 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5202 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5203 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5204 #endif
5205
5206 #ifdef INIT_EXPANDERS
5207 INIT_EXPANDERS;
5208 #endif
5209 }
5210
5211 /* Generate the constant 0. */
5212
5213 static rtx
5214 gen_const_vector_0 (enum machine_mode mode)
5215 {
5216 rtx tem;
5217 rtvec v;
5218 int units, i;
5219 enum machine_mode inner;
5220
5221 units = GET_MODE_NUNITS (mode);
5222 inner = GET_MODE_INNER (mode);
5223
5224 v = rtvec_alloc (units);
5225
5226 /* We need to call this function after we to set CONST0_RTX first. */
5227 if (!CONST0_RTX (inner))
5228 abort ();
5229
5230 for (i = 0; i < units; ++i)
5231 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5232
5233 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5234 return tem;
5235 }
5236
5237 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5238 all elements are zero. */
5239 rtx
5240 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5241 {
5242 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5243 int i;
5244
5245 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5246 if (RTVEC_ELT (v, i) != inner_zero)
5247 return gen_rtx_raw_CONST_VECTOR (mode, v);
5248 return CONST0_RTX (mode);
5249 }
5250
5251 /* Create some permanent unique rtl objects shared between all functions.
5252 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5253
5254 void
5255 init_emit_once (int line_numbers)
5256 {
5257 int i;
5258 enum machine_mode mode;
5259 enum machine_mode double_mode;
5260
5261 /* We need reg_raw_mode, so initialize the modes now. */
5262 init_reg_modes_once ();
5263
5264 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5265 tables. */
5266 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5267 const_int_htab_eq, NULL);
5268
5269 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5270 const_double_htab_eq, NULL);
5271
5272 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5273 mem_attrs_htab_eq, NULL);
5274 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5275 reg_attrs_htab_eq, NULL);
5276
5277 no_line_numbers = ! line_numbers;
5278
5279 /* Compute the word and byte modes. */
5280
5281 byte_mode = VOIDmode;
5282 word_mode = VOIDmode;
5283 double_mode = VOIDmode;
5284
5285 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5286 mode = GET_MODE_WIDER_MODE (mode))
5287 {
5288 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5289 && byte_mode == VOIDmode)
5290 byte_mode = mode;
5291
5292 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5293 && word_mode == VOIDmode)
5294 word_mode = mode;
5295 }
5296
5297 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5298 mode = GET_MODE_WIDER_MODE (mode))
5299 {
5300 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5301 && double_mode == VOIDmode)
5302 double_mode = mode;
5303 }
5304
5305 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5306
5307 /* Assign register numbers to the globally defined register rtx.
5308 This must be done at runtime because the register number field
5309 is in a union and some compilers can't initialize unions. */
5310
5311 pc_rtx = gen_rtx_PC (VOIDmode);
5312 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5313 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5314 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5315 if (hard_frame_pointer_rtx == 0)
5316 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5317 HARD_FRAME_POINTER_REGNUM);
5318 if (arg_pointer_rtx == 0)
5319 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5320 virtual_incoming_args_rtx =
5321 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5322 virtual_stack_vars_rtx =
5323 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5324 virtual_stack_dynamic_rtx =
5325 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5326 virtual_outgoing_args_rtx =
5327 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5328 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5329
5330 /* Initialize RTL for commonly used hard registers. These are
5331 copied into regno_reg_rtx as we begin to compile each function. */
5332 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5333 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5334
5335 #ifdef INIT_EXPANDERS
5336 /* This is to initialize {init|mark|free}_machine_status before the first
5337 call to push_function_context_to. This is needed by the Chill front
5338 end which calls push_function_context_to before the first call to
5339 init_function_start. */
5340 INIT_EXPANDERS;
5341 #endif
5342
5343 /* Create the unique rtx's for certain rtx codes and operand values. */
5344
5345 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5346 tries to use these variables. */
5347 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5348 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5349 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5350
5351 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5352 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5353 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5354 else
5355 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5356
5357 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5358 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5359 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5360 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5361 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5362 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5363 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5364
5365 dconsthalf = dconst1;
5366 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5367
5368 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5369
5370 /* Initialize mathematical constants for constant folding builtins.
5371 These constants need to be given to at least 160 bits precision. */
5372 real_from_string (&dconstpi,
5373 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5374 real_from_string (&dconste,
5375 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5376
5377 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5378 {
5379 REAL_VALUE_TYPE *r =
5380 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5381
5382 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5383 mode = GET_MODE_WIDER_MODE (mode))
5384 const_tiny_rtx[i][(int) mode] =
5385 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5386
5387 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5388
5389 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5390 mode = GET_MODE_WIDER_MODE (mode))
5391 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5392
5393 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5394 mode != VOIDmode;
5395 mode = GET_MODE_WIDER_MODE (mode))
5396 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5397 }
5398
5399 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5400 mode != VOIDmode;
5401 mode = GET_MODE_WIDER_MODE (mode))
5402 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5403
5404 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5405 mode != VOIDmode;
5406 mode = GET_MODE_WIDER_MODE (mode))
5407 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5408
5409 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5410 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5411 const_tiny_rtx[0][i] = const0_rtx;
5412
5413 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5414 if (STORE_FLAG_VALUE == 1)
5415 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5416
5417 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5418 return_address_pointer_rtx
5419 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5420 #endif
5421
5422 #ifdef STATIC_CHAIN_REGNUM
5423 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5424
5425 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5426 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5427 static_chain_incoming_rtx
5428 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5429 else
5430 #endif
5431 static_chain_incoming_rtx = static_chain_rtx;
5432 #endif
5433
5434 #ifdef STATIC_CHAIN
5435 static_chain_rtx = STATIC_CHAIN;
5436
5437 #ifdef STATIC_CHAIN_INCOMING
5438 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5439 #else
5440 static_chain_incoming_rtx = static_chain_rtx;
5441 #endif
5442 #endif
5443
5444 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5445 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5446 }
5447 \f
5448 /* Query and clear/ restore no_line_numbers. This is used by the
5449 switch / case handling in stmt.c to give proper line numbers in
5450 warnings about unreachable code. */
5451
5452 int
5453 force_line_numbers (void)
5454 {
5455 int old = no_line_numbers;
5456
5457 no_line_numbers = 0;
5458 if (old)
5459 force_next_line_note ();
5460 return old;
5461 }
5462
5463 void
5464 restore_line_number_status (int old_value)
5465 {
5466 no_line_numbers = old_value;
5467 }
5468
5469 /* Produce exact duplicate of insn INSN after AFTER.
5470 Care updating of libcall regions if present. */
5471
5472 rtx
5473 emit_copy_of_insn_after (rtx insn, rtx after)
5474 {
5475 rtx new;
5476 rtx note1, note2, link;
5477
5478 switch (GET_CODE (insn))
5479 {
5480 case INSN:
5481 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5482 break;
5483
5484 case JUMP_INSN:
5485 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5486 break;
5487
5488 case CALL_INSN:
5489 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5490 if (CALL_INSN_FUNCTION_USAGE (insn))
5491 CALL_INSN_FUNCTION_USAGE (new)
5492 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5493 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5494 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5495 break;
5496
5497 default:
5498 abort ();
5499 }
5500
5501 /* Update LABEL_NUSES. */
5502 mark_jump_label (PATTERN (new), new, 0);
5503
5504 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5505
5506 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5507 make them. */
5508 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5509 if (REG_NOTE_KIND (link) != REG_LABEL)
5510 {
5511 if (GET_CODE (link) == EXPR_LIST)
5512 REG_NOTES (new)
5513 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5514 XEXP (link, 0),
5515 REG_NOTES (new)));
5516 else
5517 REG_NOTES (new)
5518 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5519 XEXP (link, 0),
5520 REG_NOTES (new)));
5521 }
5522
5523 /* Fix the libcall sequences. */
5524 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5525 {
5526 rtx p = new;
5527 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5528 p = PREV_INSN (p);
5529 XEXP (note1, 0) = p;
5530 XEXP (note2, 0) = new;
5531 }
5532 INSN_CODE (new) = INSN_CODE (insn);
5533 return new;
5534 }
5535
5536 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5537 rtx
5538 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5539 {
5540 if (hard_reg_clobbers[mode][regno])
5541 return hard_reg_clobbers[mode][regno];
5542 else
5543 return (hard_reg_clobbers[mode][regno] =
5544 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5545 }
5546
5547 #include "gt-emit-rtl.h"