]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
Makefile.in (OBJS): Add rtlhooks.o.
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconst3;
112 REAL_VALUE_TYPE dconst10;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116 REAL_VALUE_TYPE dconstthird;
117 REAL_VALUE_TYPE dconstpi;
118 REAL_VALUE_TYPE dconste;
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
176
177 static rtx make_jump_insn_raw (rtx);
178 static rtx make_call_insn_raw (rtx);
179 static rtx find_line_note (rtx);
180 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
181 static void unshare_all_decls (tree);
182 static void reset_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 static hashval_t const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx lookup_const_double (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector_0 (enum machine_mode);
198 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
199 static void copy_rtx_if_shared_1 (rtx *orig);
200
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability = -1;
204 \f
205 /* Returns a hash code for X (which is a really a CONST_INT). */
206
207 static hashval_t
208 const_int_htab_hash (const void *x)
209 {
210 return (hashval_t) INTVAL ((rtx) x);
211 }
212
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
216
217 static int
218 const_int_htab_eq (const void *x, const void *y)
219 {
220 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
221 }
222
223 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
224 static hashval_t
225 const_double_htab_hash (const void *x)
226 {
227 rtx value = (rtx) x;
228 hashval_t h;
229
230 if (GET_MODE (value) == VOIDmode)
231 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
232 else
233 {
234 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
235 /* MODE is used in the comparison, so it should be in the hash. */
236 h ^= GET_MODE (value);
237 }
238 return h;
239 }
240
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...) */
243 static int
244 const_double_htab_eq (const void *x, const void *y)
245 {
246 rtx a = (rtx)x, b = (rtx)y;
247
248 if (GET_MODE (a) != GET_MODE (b))
249 return 0;
250 if (GET_MODE (a) == VOIDmode)
251 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
252 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
253 else
254 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
255 CONST_DOUBLE_REAL_VALUE (b));
256 }
257
258 /* Returns a hash code for X (which is a really a mem_attrs *). */
259
260 static hashval_t
261 mem_attrs_htab_hash (const void *x)
262 {
263 mem_attrs *p = (mem_attrs *) x;
264
265 return (p->alias ^ (p->align * 1000)
266 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
267 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
268 ^ (size_t) p->expr);
269 }
270
271 /* Returns nonzero if the value represented by X (which is really a
272 mem_attrs *) is the same as that given by Y (which is also really a
273 mem_attrs *). */
274
275 static int
276 mem_attrs_htab_eq (const void *x, const void *y)
277 {
278 mem_attrs *p = (mem_attrs *) x;
279 mem_attrs *q = (mem_attrs *) y;
280
281 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
282 && p->size == q->size && p->align == q->align);
283 }
284
285 /* Allocate a new mem_attrs structure and insert it into the hash table if
286 one identical to it is not already in the table. We are doing this for
287 MEM of mode MODE. */
288
289 static mem_attrs *
290 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
291 unsigned int align, enum machine_mode mode)
292 {
293 mem_attrs attrs;
294 void **slot;
295
296 /* If everything is the default, we can just return zero.
297 This must match what the corresponding MEM_* macros return when the
298 field is not present. */
299 if (alias == 0 && expr == 0 && offset == 0
300 && (size == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (STRICT_ALIGNMENT && mode != BLKmode
303 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
304 return 0;
305
306 attrs.alias = alias;
307 attrs.expr = expr;
308 attrs.offset = offset;
309 attrs.size = size;
310 attrs.align = align;
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
315 *slot = ggc_alloc (sizeof (mem_attrs));
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
319 return *slot;
320 }
321
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
323
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328
329 return ((p->offset * 1000) ^ (long) p->decl);
330 }
331
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
338 {
339 reg_attrs *p = (reg_attrs *) x;
340 reg_attrs *q = (reg_attrs *) y;
341
342 return (p->decl == q->decl && p->offset == q->offset);
343 }
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
350 {
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
364 *slot = ggc_alloc (sizeof (reg_attrs));
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
368 return *slot;
369 }
370
371 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
372 don't attempt to share with the various global pieces of rtl (such as
373 frame_pointer_rtx). */
374
375 rtx
376 gen_raw_REG (enum machine_mode mode, int regno)
377 {
378 rtx x = gen_rtx_raw_REG (mode, regno);
379 ORIGINAL_REGNO (x) = regno;
380 return x;
381 }
382
383 /* There are some RTL codes that require special attention; the generation
384 functions do the raw handling. If you add to this list, modify
385 special_rtx in gengenrtl.c as well. */
386
387 rtx
388 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
389 {
390 void **slot;
391
392 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
393 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
394
395 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
396 if (const_true_rtx && arg == STORE_FLAG_VALUE)
397 return const_true_rtx;
398 #endif
399
400 /* Look up the CONST_INT in the hash table. */
401 slot = htab_find_slot_with_hash (const_int_htab, &arg,
402 (hashval_t) arg, INSERT);
403 if (*slot == 0)
404 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
405
406 return (rtx) *slot;
407 }
408
409 rtx
410 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
411 {
412 return GEN_INT (trunc_int_for_mode (c, mode));
413 }
414
415 /* CONST_DOUBLEs might be created from pairs of integers, or from
416 REAL_VALUE_TYPEs. Also, their length is known only at run time,
417 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
418
419 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
420 hash table. If so, return its counterpart; otherwise add it
421 to the hash table and return it. */
422 static rtx
423 lookup_const_double (rtx real)
424 {
425 void **slot = htab_find_slot (const_double_htab, real, INSERT);
426 if (*slot == 0)
427 *slot = real;
428
429 return (rtx) *slot;
430 }
431
432 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
433 VALUE in mode MODE. */
434 rtx
435 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
436 {
437 rtx real = rtx_alloc (CONST_DOUBLE);
438 PUT_MODE (real, mode);
439
440 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
441
442 return lookup_const_double (real);
443 }
444
445 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
446 of ints: I0 is the low-order word and I1 is the high-order word.
447 Do not use this routine for non-integer modes; convert to
448 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
449
450 rtx
451 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
452 {
453 rtx value;
454 unsigned int i;
455
456 if (mode != VOIDmode)
457 {
458 int width;
459 if (GET_MODE_CLASS (mode) != MODE_INT
460 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
463 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
464 abort ();
465
466 /* We clear out all bits that don't belong in MODE, unless they and
467 our sign bit are all one. So we get either a reasonable negative
468 value or a reasonable unsigned value for this mode. */
469 width = GET_MODE_BITSIZE (mode);
470 if (width < HOST_BITS_PER_WIDE_INT
471 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
472 != ((HOST_WIDE_INT) (-1) << (width - 1))))
473 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
474 else if (width == HOST_BITS_PER_WIDE_INT
475 && ! (i1 == ~0 && i0 < 0))
476 i1 = 0;
477 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
478 /* We cannot represent this value as a constant. */
479 abort ();
480
481 /* If this would be an entire word for the target, but is not for
482 the host, then sign-extend on the host so that the number will
483 look the same way on the host that it would on the target.
484
485 For example, when building a 64 bit alpha hosted 32 bit sparc
486 targeted compiler, then we want the 32 bit unsigned value -1 to be
487 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
488 The latter confuses the sparc backend. */
489
490 if (width < HOST_BITS_PER_WIDE_INT
491 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
492 i0 |= ((HOST_WIDE_INT) (-1) << width);
493
494 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
495 CONST_INT.
496
497 ??? Strictly speaking, this is wrong if we create a CONST_INT for
498 a large unsigned constant with the size of MODE being
499 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
500 in a wider mode. In that case we will mis-interpret it as a
501 negative number.
502
503 Unfortunately, the only alternative is to make a CONST_DOUBLE for
504 any constant in any mode if it is an unsigned constant larger
505 than the maximum signed integer in an int on the host. However,
506 doing this will break everyone that always expects to see a
507 CONST_INT for SImode and smaller.
508
509 We have always been making CONST_INTs in this case, so nothing
510 new is being broken. */
511
512 if (width <= HOST_BITS_PER_WIDE_INT)
513 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
514 }
515
516 /* If this integer fits in one word, return a CONST_INT. */
517 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
518 return GEN_INT (i0);
519
520 /* We use VOIDmode for integers. */
521 value = rtx_alloc (CONST_DOUBLE);
522 PUT_MODE (value, VOIDmode);
523
524 CONST_DOUBLE_LOW (value) = i0;
525 CONST_DOUBLE_HIGH (value) = i1;
526
527 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
528 XWINT (value, i) = 0;
529
530 return lookup_const_double (value);
531 }
532
533 rtx
534 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
535 {
536 /* In case the MD file explicitly references the frame pointer, have
537 all such references point to the same frame pointer. This is
538 used during frame pointer elimination to distinguish the explicit
539 references to these registers from pseudos that happened to be
540 assigned to them.
541
542 If we have eliminated the frame pointer or arg pointer, we will
543 be using it as a normal register, for example as a spill
544 register. In such cases, we might be accessing it in a mode that
545 is not Pmode and therefore cannot use the pre-allocated rtx.
546
547 Also don't do this when we are making new REGs in reload, since
548 we don't want to get confused with the real pointers. */
549
550 if (mode == Pmode && !reload_in_progress)
551 {
552 if (regno == FRAME_POINTER_REGNUM
553 && (!reload_completed || frame_pointer_needed))
554 return frame_pointer_rtx;
555 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
556 if (regno == HARD_FRAME_POINTER_REGNUM
557 && (!reload_completed || frame_pointer_needed))
558 return hard_frame_pointer_rtx;
559 #endif
560 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
561 if (regno == ARG_POINTER_REGNUM)
562 return arg_pointer_rtx;
563 #endif
564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
565 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
566 return return_address_pointer_rtx;
567 #endif
568 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
569 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
570 return pic_offset_table_rtx;
571 if (regno == STACK_POINTER_REGNUM)
572 return stack_pointer_rtx;
573 }
574
575 #if 0
576 /* If the per-function register table has been set up, try to re-use
577 an existing entry in that table to avoid useless generation of RTL.
578
579 This code is disabled for now until we can fix the various backends
580 which depend on having non-shared hard registers in some cases. Long
581 term we want to re-enable this code as it can significantly cut down
582 on the amount of useless RTL that gets generated.
583
584 We'll also need to fix some code that runs after reload that wants to
585 set ORIGINAL_REGNO. */
586
587 if (cfun
588 && cfun->emit
589 && regno_reg_rtx
590 && regno < FIRST_PSEUDO_REGISTER
591 && reg_raw_mode[regno] == mode)
592 return regno_reg_rtx[regno];
593 #endif
594
595 return gen_raw_REG (mode, regno);
596 }
597
598 rtx
599 gen_rtx_MEM (enum machine_mode mode, rtx addr)
600 {
601 rtx rt = gen_rtx_raw_MEM (mode, addr);
602
603 /* This field is not cleared by the mere allocation of the rtx, so
604 we clear it here. */
605 MEM_ATTRS (rt) = 0;
606
607 return rt;
608 }
609
610 rtx
611 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
612 {
613 /* This is the most common failure type.
614 Catch it early so we can see who does it. */
615 if ((offset % GET_MODE_SIZE (mode)) != 0)
616 abort ();
617
618 /* This check isn't usable right now because combine will
619 throw arbitrary crap like a CALL into a SUBREG in
620 gen_lowpart_for_combine so we must just eat it. */
621 #if 0
622 /* Check for this too. */
623 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
624 abort ();
625 #endif
626 return gen_rtx_raw_SUBREG (mode, reg, offset);
627 }
628
629 /* Generate a SUBREG representing the least-significant part of REG if MODE
630 is smaller than mode of REG, otherwise paradoxical SUBREG. */
631
632 rtx
633 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
634 {
635 enum machine_mode inmode;
636
637 inmode = GET_MODE (reg);
638 if (inmode == VOIDmode)
639 inmode = mode;
640 return gen_rtx_SUBREG (mode, reg,
641 subreg_lowpart_offset (mode, inmode));
642 }
643 \f
644 /* gen_rtvec (n, [rt1, ..., rtn])
645 **
646 ** This routine creates an rtvec and stores within it the
647 ** pointers to rtx's which are its arguments.
648 */
649
650 /*VARARGS1*/
651 rtvec
652 gen_rtvec (int n, ...)
653 {
654 int i, save_n;
655 rtx *vector;
656 va_list p;
657
658 va_start (p, n);
659
660 if (n == 0)
661 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
662
663 vector = alloca (n * sizeof (rtx));
664
665 for (i = 0; i < n; i++)
666 vector[i] = va_arg (p, rtx);
667
668 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
669 save_n = n;
670 va_end (p);
671
672 return gen_rtvec_v (save_n, vector);
673 }
674
675 rtvec
676 gen_rtvec_v (int n, rtx *argp)
677 {
678 int i;
679 rtvec rt_val;
680
681 if (n == 0)
682 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
683
684 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
685
686 for (i = 0; i < n; i++)
687 rt_val->elem[i] = *argp++;
688
689 return rt_val;
690 }
691 \f
692 /* Generate a REG rtx for a new pseudo register of mode MODE.
693 This pseudo is assigned the next sequential register number. */
694
695 rtx
696 gen_reg_rtx (enum machine_mode mode)
697 {
698 struct function *f = cfun;
699 rtx val;
700
701 /* Don't let anything called after initial flow analysis create new
702 registers. */
703 if (no_new_pseudos)
704 abort ();
705
706 if (generating_concat_p
707 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
708 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
709 {
710 /* For complex modes, don't make a single pseudo.
711 Instead, make a CONCAT of two pseudos.
712 This allows noncontiguous allocation of the real and imaginary parts,
713 which makes much better code. Besides, allocating DCmode
714 pseudos overstrains reload on some machines like the 386. */
715 rtx realpart, imagpart;
716 enum machine_mode partmode = GET_MODE_INNER (mode);
717
718 realpart = gen_reg_rtx (partmode);
719 imagpart = gen_reg_rtx (partmode);
720 return gen_rtx_CONCAT (mode, realpart, imagpart);
721 }
722
723 /* Make sure regno_pointer_align, and regno_reg_rtx are large
724 enough to have an element for this pseudo reg number. */
725
726 if (reg_rtx_no == f->emit->regno_pointer_align_length)
727 {
728 int old_size = f->emit->regno_pointer_align_length;
729 char *new;
730 rtx *new1;
731
732 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
733 memset (new + old_size, 0, old_size);
734 f->emit->regno_pointer_align = (unsigned char *) new;
735
736 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
737 old_size * 2 * sizeof (rtx));
738 memset (new1 + old_size, 0, old_size * sizeof (rtx));
739 regno_reg_rtx = new1;
740
741 f->emit->regno_pointer_align_length = old_size * 2;
742 }
743
744 val = gen_raw_REG (mode, reg_rtx_no);
745 regno_reg_rtx[reg_rtx_no++] = val;
746 return val;
747 }
748
749 /* Generate a register with same attributes as REG,
750 but offsetted by OFFSET. */
751
752 rtx
753 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
754 {
755 rtx new = gen_rtx_REG (mode, regno);
756 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
757 REG_OFFSET (reg) + offset);
758 return new;
759 }
760
761 /* Set the decl for MEM to DECL. */
762
763 void
764 set_reg_attrs_from_mem (rtx reg, rtx mem)
765 {
766 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
767 REG_ATTRS (reg)
768 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
769 }
770
771 /* Set the register attributes for registers contained in PARM_RTX.
772 Use needed values from memory attributes of MEM. */
773
774 void
775 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
776 {
777 if (GET_CODE (parm_rtx) == REG)
778 set_reg_attrs_from_mem (parm_rtx, mem);
779 else if (GET_CODE (parm_rtx) == PARALLEL)
780 {
781 /* Check for a NULL entry in the first slot, used to indicate that the
782 parameter goes both on the stack and in registers. */
783 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
784 for (; i < XVECLEN (parm_rtx, 0); i++)
785 {
786 rtx x = XVECEXP (parm_rtx, 0, i);
787 if (GET_CODE (XEXP (x, 0)) == REG)
788 REG_ATTRS (XEXP (x, 0))
789 = get_reg_attrs (MEM_EXPR (mem),
790 INTVAL (XEXP (x, 1)));
791 }
792 }
793 }
794
795 /* Assign the RTX X to declaration T. */
796 void
797 set_decl_rtl (tree t, rtx x)
798 {
799 DECL_CHECK (t)->decl.rtl = x;
800
801 if (!x)
802 return;
803 /* For register, we maintain the reverse information too. */
804 if (GET_CODE (x) == REG)
805 REG_ATTRS (x) = get_reg_attrs (t, 0);
806 else if (GET_CODE (x) == SUBREG)
807 REG_ATTRS (SUBREG_REG (x))
808 = get_reg_attrs (t, -SUBREG_BYTE (x));
809 if (GET_CODE (x) == CONCAT)
810 {
811 if (REG_P (XEXP (x, 0)))
812 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
813 if (REG_P (XEXP (x, 1)))
814 REG_ATTRS (XEXP (x, 1))
815 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
816 }
817 if (GET_CODE (x) == PARALLEL)
818 {
819 int i;
820 for (i = 0; i < XVECLEN (x, 0); i++)
821 {
822 rtx y = XVECEXP (x, 0, i);
823 if (REG_P (XEXP (y, 0)))
824 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
825 }
826 }
827 }
828
829 /* Assign the RTX X to parameter declaration T. */
830 void
831 set_decl_incoming_rtl (tree t, rtx x)
832 {
833 DECL_INCOMING_RTL (t) = x;
834
835 if (!x)
836 return;
837 /* For register, we maintain the reverse information too. */
838 if (GET_CODE (x) == REG)
839 REG_ATTRS (x) = get_reg_attrs (t, 0);
840 else if (GET_CODE (x) == SUBREG)
841 REG_ATTRS (SUBREG_REG (x))
842 = get_reg_attrs (t, -SUBREG_BYTE (x));
843 if (GET_CODE (x) == CONCAT)
844 {
845 if (REG_P (XEXP (x, 0)))
846 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
847 if (REG_P (XEXP (x, 1)))
848 REG_ATTRS (XEXP (x, 1))
849 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
850 }
851 if (GET_CODE (x) == PARALLEL)
852 {
853 int i, start;
854
855 /* Check for a NULL entry, used to indicate that the parameter goes
856 both on the stack and in registers. */
857 if (XEXP (XVECEXP (x, 0, 0), 0))
858 start = 0;
859 else
860 start = 1;
861
862 for (i = start; i < XVECLEN (x, 0); i++)
863 {
864 rtx y = XVECEXP (x, 0, i);
865 if (REG_P (XEXP (y, 0)))
866 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
867 }
868 }
869 }
870
871 /* Identify REG (which may be a CONCAT) as a user register. */
872
873 void
874 mark_user_reg (rtx reg)
875 {
876 if (GET_CODE (reg) == CONCAT)
877 {
878 REG_USERVAR_P (XEXP (reg, 0)) = 1;
879 REG_USERVAR_P (XEXP (reg, 1)) = 1;
880 }
881 else if (GET_CODE (reg) == REG)
882 REG_USERVAR_P (reg) = 1;
883 else
884 abort ();
885 }
886
887 /* Identify REG as a probable pointer register and show its alignment
888 as ALIGN, if nonzero. */
889
890 void
891 mark_reg_pointer (rtx reg, int align)
892 {
893 if (! REG_POINTER (reg))
894 {
895 REG_POINTER (reg) = 1;
896
897 if (align)
898 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
899 }
900 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
901 /* We can no-longer be sure just how aligned this pointer is. */
902 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
903 }
904
905 /* Return 1 plus largest pseudo reg number used in the current function. */
906
907 int
908 max_reg_num (void)
909 {
910 return reg_rtx_no;
911 }
912
913 /* Return 1 + the largest label number used so far in the current function. */
914
915 int
916 max_label_num (void)
917 {
918 if (last_label_num && label_num == base_label_num)
919 return last_label_num;
920 return label_num;
921 }
922
923 /* Return first label number used in this function (if any were used). */
924
925 int
926 get_first_label_num (void)
927 {
928 return first_label_num;
929 }
930
931 /* If the rtx for label was created during the expansion of a nested
932 function, then first_label_num won't include this label number.
933 Fix this now so that array indicies work later. */
934
935 void
936 maybe_set_first_label_num (rtx x)
937 {
938 if (CODE_LABEL_NUMBER (x) < first_label_num)
939 first_label_num = CODE_LABEL_NUMBER (x);
940 }
941 \f
942 /* Return the final regno of X, which is a SUBREG of a hard
943 register. */
944 int
945 subreg_hard_regno (rtx x, int check_mode)
946 {
947 enum machine_mode mode = GET_MODE (x);
948 unsigned int byte_offset, base_regno, final_regno;
949 rtx reg = SUBREG_REG (x);
950
951 /* This is where we attempt to catch illegal subregs
952 created by the compiler. */
953 if (GET_CODE (x) != SUBREG
954 || GET_CODE (reg) != REG)
955 abort ();
956 base_regno = REGNO (reg);
957 if (base_regno >= FIRST_PSEUDO_REGISTER)
958 abort ();
959 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
960 abort ();
961 #ifdef ENABLE_CHECKING
962 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
963 SUBREG_BYTE (x), mode))
964 abort ();
965 #endif
966 /* Catch non-congruent offsets too. */
967 byte_offset = SUBREG_BYTE (x);
968 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
969 abort ();
970
971 final_regno = subreg_regno (x);
972
973 return final_regno;
974 }
975
976 /* Return a value representing some low-order bits of X, where the number
977 of low-order bits is given by MODE. Note that no conversion is done
978 between floating-point and fixed-point values, rather, the bit
979 representation is returned.
980
981 This function handles the cases in common between gen_lowpart, below,
982 and two variants in cse.c and combine.c. These are the cases that can
983 be safely handled at all points in the compilation.
984
985 If this is not a case we can handle, return 0. */
986
987 rtx
988 gen_lowpart_common (enum machine_mode mode, rtx x)
989 {
990 int msize = GET_MODE_SIZE (mode);
991 int xsize;
992 int offset = 0;
993 enum machine_mode innermode;
994
995 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
996 so we have to make one up. Yuk. */
997 innermode = GET_MODE (x);
998 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
999 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1000 else if (innermode == VOIDmode)
1001 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1002
1003 xsize = GET_MODE_SIZE (innermode);
1004
1005 if (innermode == VOIDmode || innermode == BLKmode)
1006 abort ();
1007
1008 if (innermode == mode)
1009 return x;
1010
1011 /* MODE must occupy no more words than the mode of X. */
1012 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1013 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1014 return 0;
1015
1016 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1017 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1018 return 0;
1019
1020 offset = subreg_lowpart_offset (mode, innermode);
1021
1022 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1023 && (GET_MODE_CLASS (mode) == MODE_INT
1024 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1025 {
1026 /* If we are getting the low-order part of something that has been
1027 sign- or zero-extended, we can either just use the object being
1028 extended or make a narrower extension. If we want an even smaller
1029 piece than the size of the object being extended, call ourselves
1030 recursively.
1031
1032 This case is used mostly by combine and cse. */
1033
1034 if (GET_MODE (XEXP (x, 0)) == mode)
1035 return XEXP (x, 0);
1036 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1037 return gen_lowpart_common (mode, XEXP (x, 0));
1038 else if (msize < xsize)
1039 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1040 }
1041 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1042 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1043 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1044 return simplify_gen_subreg (mode, x, innermode, offset);
1045
1046 /* Otherwise, we can't do this. */
1047 return 0;
1048 }
1049 \f
1050 /* Return the constant real or imaginary part (which has mode MODE)
1051 of a complex value X. The IMAGPART_P argument determines whether
1052 the real or complex component should be returned. This function
1053 returns NULL_RTX if the component isn't a constant. */
1054
1055 static rtx
1056 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1057 {
1058 tree decl, part;
1059
1060 if (GET_CODE (x) == MEM
1061 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1062 {
1063 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1064 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1065 {
1066 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1067 if (TREE_CODE (part) == REAL_CST
1068 || TREE_CODE (part) == INTEGER_CST)
1069 return expand_expr (part, NULL_RTX, mode, 0);
1070 }
1071 }
1072 return NULL_RTX;
1073 }
1074
1075 /* Return the real part (which has mode MODE) of a complex value X.
1076 This always comes at the low address in memory. */
1077
1078 rtx
1079 gen_realpart (enum machine_mode mode, rtx x)
1080 {
1081 rtx part;
1082
1083 /* Handle complex constants. */
1084 part = gen_complex_constant_part (mode, x, 0);
1085 if (part != NULL_RTX)
1086 return part;
1087
1088 if (WORDS_BIG_ENDIAN
1089 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1090 && REG_P (x)
1091 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1092 internal_error
1093 ("can't access real part of complex value in hard register");
1094 else if (WORDS_BIG_ENDIAN)
1095 return gen_highpart (mode, x);
1096 else
1097 return gen_lowpart (mode, x);
1098 }
1099
1100 /* Return the imaginary part (which has mode MODE) of a complex value X.
1101 This always comes at the high address in memory. */
1102
1103 rtx
1104 gen_imagpart (enum machine_mode mode, rtx x)
1105 {
1106 rtx part;
1107
1108 /* Handle complex constants. */
1109 part = gen_complex_constant_part (mode, x, 1);
1110 if (part != NULL_RTX)
1111 return part;
1112
1113 if (WORDS_BIG_ENDIAN)
1114 return gen_lowpart (mode, x);
1115 else if (! WORDS_BIG_ENDIAN
1116 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1117 && REG_P (x)
1118 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1119 internal_error
1120 ("can't access imaginary part of complex value in hard register");
1121 else
1122 return gen_highpart (mode, x);
1123 }
1124 \f
1125 rtx
1126 gen_highpart (enum machine_mode mode, rtx x)
1127 {
1128 unsigned int msize = GET_MODE_SIZE (mode);
1129 rtx result;
1130
1131 /* This case loses if X is a subreg. To catch bugs early,
1132 complain if an invalid MODE is used even in other cases. */
1133 if (msize > UNITS_PER_WORD
1134 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1135 abort ();
1136
1137 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1138 subreg_highpart_offset (mode, GET_MODE (x)));
1139
1140 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1141 the target if we have a MEM. gen_highpart must return a valid operand,
1142 emitting code if necessary to do so. */
1143 if (result != NULL_RTX && GET_CODE (result) == MEM)
1144 result = validize_mem (result);
1145
1146 if (!result)
1147 abort ();
1148 return result;
1149 }
1150
1151 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1152 be VOIDmode constant. */
1153 rtx
1154 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1155 {
1156 if (GET_MODE (exp) != VOIDmode)
1157 {
1158 if (GET_MODE (exp) != innermode)
1159 abort ();
1160 return gen_highpart (outermode, exp);
1161 }
1162 return simplify_gen_subreg (outermode, exp, innermode,
1163 subreg_highpart_offset (outermode, innermode));
1164 }
1165
1166 /* Return offset in bytes to get OUTERMODE low part
1167 of the value in mode INNERMODE stored in memory in target format. */
1168
1169 unsigned int
1170 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1171 {
1172 unsigned int offset = 0;
1173 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1174
1175 if (difference > 0)
1176 {
1177 if (WORDS_BIG_ENDIAN)
1178 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1179 if (BYTES_BIG_ENDIAN)
1180 offset += difference % UNITS_PER_WORD;
1181 }
1182
1183 return offset;
1184 }
1185
1186 /* Return offset in bytes to get OUTERMODE high part
1187 of the value in mode INNERMODE stored in memory in target format. */
1188 unsigned int
1189 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1190 {
1191 unsigned int offset = 0;
1192 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1193
1194 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1195 abort ();
1196
1197 if (difference > 0)
1198 {
1199 if (! WORDS_BIG_ENDIAN)
1200 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1201 if (! BYTES_BIG_ENDIAN)
1202 offset += difference % UNITS_PER_WORD;
1203 }
1204
1205 return offset;
1206 }
1207
1208 /* Return 1 iff X, assumed to be a SUBREG,
1209 refers to the least significant part of its containing reg.
1210 If X is not a SUBREG, always return 1 (it is its own low part!). */
1211
1212 int
1213 subreg_lowpart_p (rtx x)
1214 {
1215 if (GET_CODE (x) != SUBREG)
1216 return 1;
1217 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1218 return 0;
1219
1220 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1221 == SUBREG_BYTE (x));
1222 }
1223 \f
1224 /* Return subword OFFSET of operand OP.
1225 The word number, OFFSET, is interpreted as the word number starting
1226 at the low-order address. OFFSET 0 is the low-order word if not
1227 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1228
1229 If we cannot extract the required word, we return zero. Otherwise,
1230 an rtx corresponding to the requested word will be returned.
1231
1232 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1233 reload has completed, a valid address will always be returned. After
1234 reload, if a valid address cannot be returned, we return zero.
1235
1236 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1237 it is the responsibility of the caller.
1238
1239 MODE is the mode of OP in case it is a CONST_INT.
1240
1241 ??? This is still rather broken for some cases. The problem for the
1242 moment is that all callers of this thing provide no 'goal mode' to
1243 tell us to work with. This exists because all callers were written
1244 in a word based SUBREG world.
1245 Now use of this function can be deprecated by simplify_subreg in most
1246 cases.
1247 */
1248
1249 rtx
1250 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1251 {
1252 if (mode == VOIDmode)
1253 mode = GET_MODE (op);
1254
1255 if (mode == VOIDmode)
1256 abort ();
1257
1258 /* If OP is narrower than a word, fail. */
1259 if (mode != BLKmode
1260 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1261 return 0;
1262
1263 /* If we want a word outside OP, return zero. */
1264 if (mode != BLKmode
1265 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1266 return const0_rtx;
1267
1268 /* Form a new MEM at the requested address. */
1269 if (GET_CODE (op) == MEM)
1270 {
1271 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1272
1273 if (! validate_address)
1274 return new;
1275
1276 else if (reload_completed)
1277 {
1278 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1279 return 0;
1280 }
1281 else
1282 return replace_equiv_address (new, XEXP (new, 0));
1283 }
1284
1285 /* Rest can be handled by simplify_subreg. */
1286 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1287 }
1288
1289 /* Similar to `operand_subword', but never return 0. If we can't extract
1290 the required subword, put OP into a register and try again. If that fails,
1291 abort. We always validate the address in this case.
1292
1293 MODE is the mode of OP, in case it is CONST_INT. */
1294
1295 rtx
1296 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1297 {
1298 rtx result = operand_subword (op, offset, 1, mode);
1299
1300 if (result)
1301 return result;
1302
1303 if (mode != BLKmode && mode != VOIDmode)
1304 {
1305 /* If this is a register which can not be accessed by words, copy it
1306 to a pseudo register. */
1307 if (GET_CODE (op) == REG)
1308 op = copy_to_reg (op);
1309 else
1310 op = force_reg (mode, op);
1311 }
1312
1313 result = operand_subword (op, offset, 1, mode);
1314 if (result == 0)
1315 abort ();
1316
1317 return result;
1318 }
1319 \f
1320 /* Given a compare instruction, swap the operands.
1321 A test instruction is changed into a compare of 0 against the operand. */
1322
1323 void
1324 reverse_comparison (rtx insn)
1325 {
1326 rtx body = PATTERN (insn);
1327 rtx comp;
1328
1329 if (GET_CODE (body) == SET)
1330 comp = SET_SRC (body);
1331 else
1332 comp = SET_SRC (XVECEXP (body, 0, 0));
1333
1334 if (GET_CODE (comp) == COMPARE)
1335 {
1336 rtx op0 = XEXP (comp, 0);
1337 rtx op1 = XEXP (comp, 1);
1338 XEXP (comp, 0) = op1;
1339 XEXP (comp, 1) = op0;
1340 }
1341 else
1342 {
1343 rtx new = gen_rtx_COMPARE (VOIDmode,
1344 CONST0_RTX (GET_MODE (comp)), comp);
1345 if (GET_CODE (body) == SET)
1346 SET_SRC (body) = new;
1347 else
1348 SET_SRC (XVECEXP (body, 0, 0)) = new;
1349 }
1350 }
1351 \f
1352 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1353 or (2) a component ref of something variable. Represent the later with
1354 a NULL expression. */
1355
1356 static tree
1357 component_ref_for_mem_expr (tree ref)
1358 {
1359 tree inner = TREE_OPERAND (ref, 0);
1360
1361 if (TREE_CODE (inner) == COMPONENT_REF)
1362 inner = component_ref_for_mem_expr (inner);
1363 else
1364 {
1365 /* Now remove any conversions: they don't change what the underlying
1366 object is. Likewise for SAVE_EXPR. */
1367 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1368 || TREE_CODE (inner) == NON_LVALUE_EXPR
1369 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1370 || TREE_CODE (inner) == SAVE_EXPR)
1371 inner = TREE_OPERAND (inner, 0);
1372
1373 if (! DECL_P (inner))
1374 inner = NULL_TREE;
1375 }
1376
1377 if (inner == TREE_OPERAND (ref, 0))
1378 return ref;
1379 else
1380 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1381 TREE_OPERAND (ref, 1));
1382 }
1383
1384 /* Returns 1 if both MEM_EXPR can be considered equal
1385 and 0 otherwise. */
1386
1387 int
1388 mem_expr_equal_p (tree expr1, tree expr2)
1389 {
1390 if (expr1 == expr2)
1391 return 1;
1392
1393 if (! expr1 || ! expr2)
1394 return 0;
1395
1396 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1397 return 0;
1398
1399 if (TREE_CODE (expr1) == COMPONENT_REF)
1400 return
1401 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1402 TREE_OPERAND (expr2, 0))
1403 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1404 TREE_OPERAND (expr2, 1));
1405
1406 if (TREE_CODE (expr1) == INDIRECT_REF)
1407 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1408 TREE_OPERAND (expr2, 0));
1409
1410 /* Decls with different pointers can't be equal. */
1411 if (DECL_P (expr1))
1412 return 0;
1413
1414 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1415 have been resolved here. */
1416 }
1417
1418 /* Given REF, a MEM, and T, either the type of X or the expression
1419 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1420 if we are making a new object of this type. BITPOS is nonzero if
1421 there is an offset outstanding on T that will be applied later. */
1422
1423 void
1424 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1425 HOST_WIDE_INT bitpos)
1426 {
1427 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1428 tree expr = MEM_EXPR (ref);
1429 rtx offset = MEM_OFFSET (ref);
1430 rtx size = MEM_SIZE (ref);
1431 unsigned int align = MEM_ALIGN (ref);
1432 HOST_WIDE_INT apply_bitpos = 0;
1433 tree type;
1434
1435 /* It can happen that type_for_mode was given a mode for which there
1436 is no language-level type. In which case it returns NULL, which
1437 we can see here. */
1438 if (t == NULL_TREE)
1439 return;
1440
1441 type = TYPE_P (t) ? t : TREE_TYPE (t);
1442 if (type == error_mark_node)
1443 return;
1444
1445 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1446 wrong answer, as it assumes that DECL_RTL already has the right alias
1447 info. Callers should not set DECL_RTL until after the call to
1448 set_mem_attributes. */
1449 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1450 abort ();
1451
1452 /* Get the alias set from the expression or type (perhaps using a
1453 front-end routine) and use it. */
1454 alias = get_alias_set (t);
1455
1456 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1457 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1458 RTX_UNCHANGING_P (ref)
1459 |= ((lang_hooks.honor_readonly
1460 && (TYPE_READONLY (type) || (t != type && TREE_READONLY (t))))
1461 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1462 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1463
1464 /* If we are making an object of this type, or if this is a DECL, we know
1465 that it is a scalar if the type is not an aggregate. */
1466 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1467 MEM_SCALAR_P (ref) = 1;
1468
1469 /* We can set the alignment from the type if we are making an object,
1470 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1471 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1472 align = MAX (align, TYPE_ALIGN (type));
1473
1474 /* If the size is known, we can set that. */
1475 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1476 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1477
1478 /* If T is not a type, we may be able to deduce some more information about
1479 the expression. */
1480 if (! TYPE_P (t))
1481 {
1482 maybe_set_unchanging (ref, t);
1483 if (TREE_THIS_VOLATILE (t))
1484 MEM_VOLATILE_P (ref) = 1;
1485
1486 /* Now remove any conversions: they don't change what the underlying
1487 object is. Likewise for SAVE_EXPR. */
1488 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1489 || TREE_CODE (t) == NON_LVALUE_EXPR
1490 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1491 || TREE_CODE (t) == SAVE_EXPR)
1492 t = TREE_OPERAND (t, 0);
1493
1494 /* If this expression can't be addressed (e.g., it contains a reference
1495 to a non-addressable field), show we don't change its alias set. */
1496 if (! can_address_p (t))
1497 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1498
1499 /* If this is a decl, set the attributes of the MEM from it. */
1500 if (DECL_P (t))
1501 {
1502 expr = t;
1503 offset = const0_rtx;
1504 apply_bitpos = bitpos;
1505 size = (DECL_SIZE_UNIT (t)
1506 && host_integerp (DECL_SIZE_UNIT (t), 1)
1507 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1508 align = DECL_ALIGN (t);
1509 }
1510
1511 /* If this is a constant, we know the alignment. */
1512 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1513 {
1514 align = TYPE_ALIGN (type);
1515 #ifdef CONSTANT_ALIGNMENT
1516 align = CONSTANT_ALIGNMENT (t, align);
1517 #endif
1518 }
1519
1520 /* If this is a field reference and not a bit-field, record it. */
1521 /* ??? There is some information that can be gleened from bit-fields,
1522 such as the word offset in the structure that might be modified.
1523 But skip it for now. */
1524 else if (TREE_CODE (t) == COMPONENT_REF
1525 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1526 {
1527 expr = component_ref_for_mem_expr (t);
1528 offset = const0_rtx;
1529 apply_bitpos = bitpos;
1530 /* ??? Any reason the field size would be different than
1531 the size we got from the type? */
1532 }
1533
1534 /* If this is an array reference, look for an outer field reference. */
1535 else if (TREE_CODE (t) == ARRAY_REF)
1536 {
1537 tree off_tree = size_zero_node;
1538 /* We can't modify t, because we use it at the end of the
1539 function. */
1540 tree t2 = t;
1541
1542 do
1543 {
1544 tree index = TREE_OPERAND (t2, 1);
1545 tree array = TREE_OPERAND (t2, 0);
1546 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1547 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1548 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1549
1550 /* We assume all arrays have sizes that are a multiple of a byte.
1551 First subtract the lower bound, if any, in the type of the
1552 index, then convert to sizetype and multiply by the size of the
1553 array element. */
1554 if (low_bound != 0 && ! integer_zerop (low_bound))
1555 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1556 index, low_bound));
1557
1558 /* If the index has a self-referential type, instantiate it;
1559 likewise for the component size. */
1560 index = SUBSTITUTE_PLACEHOLDER_IN_EXPR (index, t2);
1561 unit_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (unit_size, array);
1562 off_tree
1563 = fold (build (PLUS_EXPR, sizetype,
1564 fold (build (MULT_EXPR, sizetype,
1565 index, unit_size)),
1566 off_tree));
1567 t2 = TREE_OPERAND (t2, 0);
1568 }
1569 while (TREE_CODE (t2) == ARRAY_REF);
1570
1571 if (DECL_P (t2))
1572 {
1573 expr = t2;
1574 offset = NULL;
1575 if (host_integerp (off_tree, 1))
1576 {
1577 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1578 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1579 align = DECL_ALIGN (t2);
1580 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1581 align = aoff;
1582 offset = GEN_INT (ioff);
1583 apply_bitpos = bitpos;
1584 }
1585 }
1586 else if (TREE_CODE (t2) == COMPONENT_REF)
1587 {
1588 expr = component_ref_for_mem_expr (t2);
1589 if (host_integerp (off_tree, 1))
1590 {
1591 offset = GEN_INT (tree_low_cst (off_tree, 1));
1592 apply_bitpos = bitpos;
1593 }
1594 /* ??? Any reason the field size would be different than
1595 the size we got from the type? */
1596 }
1597 else if (flag_argument_noalias > 1
1598 && TREE_CODE (t2) == INDIRECT_REF
1599 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1600 {
1601 expr = t2;
1602 offset = NULL;
1603 }
1604 }
1605
1606 /* If this is a Fortran indirect argument reference, record the
1607 parameter decl. */
1608 else if (flag_argument_noalias > 1
1609 && TREE_CODE (t) == INDIRECT_REF
1610 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1611 {
1612 expr = t;
1613 offset = NULL;
1614 }
1615 }
1616
1617 /* If we modified OFFSET based on T, then subtract the outstanding
1618 bit position offset. Similarly, increase the size of the accessed
1619 object to contain the negative offset. */
1620 if (apply_bitpos)
1621 {
1622 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1623 if (size)
1624 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1625 }
1626
1627 /* Now set the attributes we computed above. */
1628 MEM_ATTRS (ref)
1629 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1630
1631 /* If this is already known to be a scalar or aggregate, we are done. */
1632 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1633 return;
1634
1635 /* If it is a reference into an aggregate, this is part of an aggregate.
1636 Otherwise we don't know. */
1637 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1638 || TREE_CODE (t) == ARRAY_RANGE_REF
1639 || TREE_CODE (t) == BIT_FIELD_REF)
1640 MEM_IN_STRUCT_P (ref) = 1;
1641 }
1642
1643 void
1644 set_mem_attributes (rtx ref, tree t, int objectp)
1645 {
1646 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1647 }
1648
1649 /* Set the decl for MEM to DECL. */
1650
1651 void
1652 set_mem_attrs_from_reg (rtx mem, rtx reg)
1653 {
1654 MEM_ATTRS (mem)
1655 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1656 GEN_INT (REG_OFFSET (reg)),
1657 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1658 }
1659
1660 /* Set the alias set of MEM to SET. */
1661
1662 void
1663 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1664 {
1665 #ifdef ENABLE_CHECKING
1666 /* If the new and old alias sets don't conflict, something is wrong. */
1667 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1668 abort ();
1669 #endif
1670
1671 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1672 MEM_SIZE (mem), MEM_ALIGN (mem),
1673 GET_MODE (mem));
1674 }
1675
1676 /* Set the alignment of MEM to ALIGN bits. */
1677
1678 void
1679 set_mem_align (rtx mem, unsigned int align)
1680 {
1681 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1682 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1683 GET_MODE (mem));
1684 }
1685
1686 /* Set the expr for MEM to EXPR. */
1687
1688 void
1689 set_mem_expr (rtx mem, tree expr)
1690 {
1691 MEM_ATTRS (mem)
1692 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1693 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1694 }
1695
1696 /* Set the offset of MEM to OFFSET. */
1697
1698 void
1699 set_mem_offset (rtx mem, rtx offset)
1700 {
1701 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1702 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1703 GET_MODE (mem));
1704 }
1705
1706 /* Set the size of MEM to SIZE. */
1707
1708 void
1709 set_mem_size (rtx mem, rtx size)
1710 {
1711 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1712 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1713 GET_MODE (mem));
1714 }
1715 \f
1716 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1717 and its address changed to ADDR. (VOIDmode means don't change the mode.
1718 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1719 returned memory location is required to be valid. The memory
1720 attributes are not changed. */
1721
1722 static rtx
1723 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1724 {
1725 rtx new;
1726
1727 if (GET_CODE (memref) != MEM)
1728 abort ();
1729 if (mode == VOIDmode)
1730 mode = GET_MODE (memref);
1731 if (addr == 0)
1732 addr = XEXP (memref, 0);
1733 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1734 && (!validate || memory_address_p (mode, addr)))
1735 return memref;
1736
1737 if (validate)
1738 {
1739 if (reload_in_progress || reload_completed)
1740 {
1741 if (! memory_address_p (mode, addr))
1742 abort ();
1743 }
1744 else
1745 addr = memory_address (mode, addr);
1746 }
1747
1748 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1749 return memref;
1750
1751 new = gen_rtx_MEM (mode, addr);
1752 MEM_COPY_ATTRIBUTES (new, memref);
1753 return new;
1754 }
1755
1756 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1757 way we are changing MEMREF, so we only preserve the alias set. */
1758
1759 rtx
1760 change_address (rtx memref, enum machine_mode mode, rtx addr)
1761 {
1762 rtx new = change_address_1 (memref, mode, addr, 1), size;
1763 enum machine_mode mmode = GET_MODE (new);
1764 unsigned int align;
1765
1766 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1767 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1768
1769 /* If there are no changes, just return the original memory reference. */
1770 if (new == memref)
1771 {
1772 if (MEM_ATTRS (memref) == 0
1773 || (MEM_EXPR (memref) == NULL
1774 && MEM_OFFSET (memref) == NULL
1775 && MEM_SIZE (memref) == size
1776 && MEM_ALIGN (memref) == align))
1777 return new;
1778
1779 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1780 MEM_COPY_ATTRIBUTES (new, memref);
1781 }
1782
1783 MEM_ATTRS (new)
1784 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1785
1786 return new;
1787 }
1788
1789 /* Return a memory reference like MEMREF, but with its mode changed
1790 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1791 nonzero, the memory address is forced to be valid.
1792 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1793 and caller is responsible for adjusting MEMREF base register. */
1794
1795 rtx
1796 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1797 int validate, int adjust)
1798 {
1799 rtx addr = XEXP (memref, 0);
1800 rtx new;
1801 rtx memoffset = MEM_OFFSET (memref);
1802 rtx size = 0;
1803 unsigned int memalign = MEM_ALIGN (memref);
1804
1805 /* If there are no changes, just return the original memory reference. */
1806 if (mode == GET_MODE (memref) && !offset
1807 && (!validate || memory_address_p (mode, addr)))
1808 return memref;
1809
1810 /* ??? Prefer to create garbage instead of creating shared rtl.
1811 This may happen even if offset is nonzero -- consider
1812 (plus (plus reg reg) const_int) -- so do this always. */
1813 addr = copy_rtx (addr);
1814
1815 if (adjust)
1816 {
1817 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1818 object, we can merge it into the LO_SUM. */
1819 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1820 && offset >= 0
1821 && (unsigned HOST_WIDE_INT) offset
1822 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1823 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1824 plus_constant (XEXP (addr, 1), offset));
1825 else
1826 addr = plus_constant (addr, offset);
1827 }
1828
1829 new = change_address_1 (memref, mode, addr, validate);
1830
1831 /* Compute the new values of the memory attributes due to this adjustment.
1832 We add the offsets and update the alignment. */
1833 if (memoffset)
1834 memoffset = GEN_INT (offset + INTVAL (memoffset));
1835
1836 /* Compute the new alignment by taking the MIN of the alignment and the
1837 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1838 if zero. */
1839 if (offset != 0)
1840 memalign
1841 = MIN (memalign,
1842 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1843
1844 /* We can compute the size in a number of ways. */
1845 if (GET_MODE (new) != BLKmode)
1846 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1847 else if (MEM_SIZE (memref))
1848 size = plus_constant (MEM_SIZE (memref), -offset);
1849
1850 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1851 memoffset, size, memalign, GET_MODE (new));
1852
1853 /* At some point, we should validate that this offset is within the object,
1854 if all the appropriate values are known. */
1855 return new;
1856 }
1857
1858 /* Return a memory reference like MEMREF, but with its mode changed
1859 to MODE and its address changed to ADDR, which is assumed to be
1860 MEMREF offseted by OFFSET bytes. If VALIDATE is
1861 nonzero, the memory address is forced to be valid. */
1862
1863 rtx
1864 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1865 HOST_WIDE_INT offset, int validate)
1866 {
1867 memref = change_address_1 (memref, VOIDmode, addr, validate);
1868 return adjust_address_1 (memref, mode, offset, validate, 0);
1869 }
1870
1871 /* Return a memory reference like MEMREF, but whose address is changed by
1872 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1873 known to be in OFFSET (possibly 1). */
1874
1875 rtx
1876 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1877 {
1878 rtx new, addr = XEXP (memref, 0);
1879
1880 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1881
1882 /* At this point we don't know _why_ the address is invalid. It
1883 could have secondary memory references, multiplies or anything.
1884
1885 However, if we did go and rearrange things, we can wind up not
1886 being able to recognize the magic around pic_offset_table_rtx.
1887 This stuff is fragile, and is yet another example of why it is
1888 bad to expose PIC machinery too early. */
1889 if (! memory_address_p (GET_MODE (memref), new)
1890 && GET_CODE (addr) == PLUS
1891 && XEXP (addr, 0) == pic_offset_table_rtx)
1892 {
1893 addr = force_reg (GET_MODE (addr), addr);
1894 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1895 }
1896
1897 update_temp_slot_address (XEXP (memref, 0), new);
1898 new = change_address_1 (memref, VOIDmode, new, 1);
1899
1900 /* If there are no changes, just return the original memory reference. */
1901 if (new == memref)
1902 return new;
1903
1904 /* Update the alignment to reflect the offset. Reset the offset, which
1905 we don't know. */
1906 MEM_ATTRS (new)
1907 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1908 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1909 GET_MODE (new));
1910 return new;
1911 }
1912
1913 /* Return a memory reference like MEMREF, but with its address changed to
1914 ADDR. The caller is asserting that the actual piece of memory pointed
1915 to is the same, just the form of the address is being changed, such as
1916 by putting something into a register. */
1917
1918 rtx
1919 replace_equiv_address (rtx memref, rtx addr)
1920 {
1921 /* change_address_1 copies the memory attribute structure without change
1922 and that's exactly what we want here. */
1923 update_temp_slot_address (XEXP (memref, 0), addr);
1924 return change_address_1 (memref, VOIDmode, addr, 1);
1925 }
1926
1927 /* Likewise, but the reference is not required to be valid. */
1928
1929 rtx
1930 replace_equiv_address_nv (rtx memref, rtx addr)
1931 {
1932 return change_address_1 (memref, VOIDmode, addr, 0);
1933 }
1934
1935 /* Return a memory reference like MEMREF, but with its mode widened to
1936 MODE and offset by OFFSET. This would be used by targets that e.g.
1937 cannot issue QImode memory operations and have to use SImode memory
1938 operations plus masking logic. */
1939
1940 rtx
1941 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1942 {
1943 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1944 tree expr = MEM_EXPR (new);
1945 rtx memoffset = MEM_OFFSET (new);
1946 unsigned int size = GET_MODE_SIZE (mode);
1947
1948 /* If there are no changes, just return the original memory reference. */
1949 if (new == memref)
1950 return new;
1951
1952 /* If we don't know what offset we were at within the expression, then
1953 we can't know if we've overstepped the bounds. */
1954 if (! memoffset)
1955 expr = NULL_TREE;
1956
1957 while (expr)
1958 {
1959 if (TREE_CODE (expr) == COMPONENT_REF)
1960 {
1961 tree field = TREE_OPERAND (expr, 1);
1962
1963 if (! DECL_SIZE_UNIT (field))
1964 {
1965 expr = NULL_TREE;
1966 break;
1967 }
1968
1969 /* Is the field at least as large as the access? If so, ok,
1970 otherwise strip back to the containing structure. */
1971 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
1972 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
1973 && INTVAL (memoffset) >= 0)
1974 break;
1975
1976 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1977 {
1978 expr = NULL_TREE;
1979 break;
1980 }
1981
1982 expr = TREE_OPERAND (expr, 0);
1983 memoffset = (GEN_INT (INTVAL (memoffset)
1984 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1985 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1986 / BITS_PER_UNIT)));
1987 }
1988 /* Similarly for the decl. */
1989 else if (DECL_P (expr)
1990 && DECL_SIZE_UNIT (expr)
1991 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
1992 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
1993 && (! memoffset || INTVAL (memoffset) >= 0))
1994 break;
1995 else
1996 {
1997 /* The widened memory access overflows the expression, which means
1998 that it could alias another expression. Zap it. */
1999 expr = NULL_TREE;
2000 break;
2001 }
2002 }
2003
2004 if (! expr)
2005 memoffset = NULL_RTX;
2006
2007 /* The widened memory may alias other stuff, so zap the alias set. */
2008 /* ??? Maybe use get_alias_set on any remaining expression. */
2009
2010 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2011 MEM_ALIGN (new), mode);
2012
2013 return new;
2014 }
2015 \f
2016 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2017
2018 rtx
2019 gen_label_rtx (void)
2020 {
2021 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2022 NULL, label_num++, NULL);
2023 }
2024 \f
2025 /* For procedure integration. */
2026
2027 /* Install new pointers to the first and last insns in the chain.
2028 Also, set cur_insn_uid to one higher than the last in use.
2029 Used for an inline-procedure after copying the insn chain. */
2030
2031 void
2032 set_new_first_and_last_insn (rtx first, rtx last)
2033 {
2034 rtx insn;
2035
2036 first_insn = first;
2037 last_insn = last;
2038 cur_insn_uid = 0;
2039
2040 for (insn = first; insn; insn = NEXT_INSN (insn))
2041 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2042
2043 cur_insn_uid++;
2044 }
2045
2046 /* Set the last label number found in the current function.
2047 This is used when belatedly compiling an inline function. */
2048
2049 void
2050 set_new_last_label_num (int last)
2051 {
2052 base_label_num = label_num;
2053 last_label_num = last;
2054 }
2055 \f
2056 /* Restore all variables describing the current status from the structure *P.
2057 This is used after a nested function. */
2058
2059 void
2060 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2061 {
2062 last_label_num = 0;
2063 }
2064 \f
2065 /* Go through all the RTL insn bodies and copy any invalid shared
2066 structure. This routine should only be called once. */
2067
2068 void
2069 unshare_all_rtl (tree fndecl, rtx insn)
2070 {
2071 tree decl;
2072
2073 /* Make sure that virtual parameters are not shared. */
2074 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2075 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2076
2077 /* Make sure that virtual stack slots are not shared. */
2078 unshare_all_decls (DECL_INITIAL (fndecl));
2079
2080 /* Unshare just about everything else. */
2081 unshare_all_rtl_in_chain (insn);
2082
2083 /* Make sure the addresses of stack slots found outside the insn chain
2084 (such as, in DECL_RTL of a variable) are not shared
2085 with the insn chain.
2086
2087 This special care is necessary when the stack slot MEM does not
2088 actually appear in the insn chain. If it does appear, its address
2089 is unshared from all else at that point. */
2090 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2091 }
2092
2093 /* Go through all the RTL insn bodies and copy any invalid shared
2094 structure, again. This is a fairly expensive thing to do so it
2095 should be done sparingly. */
2096
2097 void
2098 unshare_all_rtl_again (rtx insn)
2099 {
2100 rtx p;
2101 tree decl;
2102
2103 for (p = insn; p; p = NEXT_INSN (p))
2104 if (INSN_P (p))
2105 {
2106 reset_used_flags (PATTERN (p));
2107 reset_used_flags (REG_NOTES (p));
2108 reset_used_flags (LOG_LINKS (p));
2109 }
2110
2111 /* Make sure that virtual stack slots are not shared. */
2112 reset_used_decls (DECL_INITIAL (cfun->decl));
2113
2114 /* Make sure that virtual parameters are not shared. */
2115 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2116 reset_used_flags (DECL_RTL (decl));
2117
2118 reset_used_flags (stack_slot_list);
2119
2120 unshare_all_rtl (cfun->decl, insn);
2121 }
2122
2123 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2124 Recursively does the same for subexpressions. */
2125
2126 static void
2127 verify_rtx_sharing (rtx orig, rtx insn)
2128 {
2129 rtx x = orig;
2130 int i;
2131 enum rtx_code code;
2132 const char *format_ptr;
2133
2134 if (x == 0)
2135 return;
2136
2137 code = GET_CODE (x);
2138
2139 /* These types may be freely shared. */
2140
2141 switch (code)
2142 {
2143 case REG:
2144 case QUEUED:
2145 case CONST_INT:
2146 case CONST_DOUBLE:
2147 case CONST_VECTOR:
2148 case SYMBOL_REF:
2149 case LABEL_REF:
2150 case CODE_LABEL:
2151 case PC:
2152 case CC0:
2153 case SCRATCH:
2154 return;
2155 /* SCRATCH must be shared because they represent distinct values. */
2156 case CLOBBER:
2157 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2158 return;
2159 break;
2160
2161 case CONST:
2162 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2163 a LABEL_REF, it isn't sharable. */
2164 if (GET_CODE (XEXP (x, 0)) == PLUS
2165 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2166 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2167 return;
2168 break;
2169
2170 case MEM:
2171 /* A MEM is allowed to be shared if its address is constant. */
2172 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2173 || reload_completed || reload_in_progress)
2174 return;
2175
2176 break;
2177
2178 default:
2179 break;
2180 }
2181
2182 /* This rtx may not be shared. If it has already been seen,
2183 replace it with a copy of itself. */
2184
2185 if (RTX_FLAG (x, used))
2186 {
2187 error ("Invalid rtl sharing found in the insn");
2188 debug_rtx (insn);
2189 error ("Shared rtx");
2190 debug_rtx (x);
2191 abort ();
2192 }
2193 RTX_FLAG (x, used) = 1;
2194
2195 /* Now scan the subexpressions recursively. */
2196
2197 format_ptr = GET_RTX_FORMAT (code);
2198
2199 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2200 {
2201 switch (*format_ptr++)
2202 {
2203 case 'e':
2204 verify_rtx_sharing (XEXP (x, i), insn);
2205 break;
2206
2207 case 'E':
2208 if (XVEC (x, i) != NULL)
2209 {
2210 int j;
2211 int len = XVECLEN (x, i);
2212
2213 for (j = 0; j < len; j++)
2214 {
2215 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2216 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2217 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2218 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2219 else
2220 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2221 }
2222 }
2223 break;
2224 }
2225 }
2226 return;
2227 }
2228
2229 /* Go through all the RTL insn bodies and check that there is no unexpected
2230 sharing in between the subexpressions. */
2231
2232 void
2233 verify_rtl_sharing (void)
2234 {
2235 rtx p;
2236
2237 for (p = get_insns (); p; p = NEXT_INSN (p))
2238 if (INSN_P (p))
2239 {
2240 reset_used_flags (PATTERN (p));
2241 reset_used_flags (REG_NOTES (p));
2242 reset_used_flags (LOG_LINKS (p));
2243 }
2244
2245 for (p = get_insns (); p; p = NEXT_INSN (p))
2246 if (INSN_P (p))
2247 {
2248 verify_rtx_sharing (PATTERN (p), p);
2249 verify_rtx_sharing (REG_NOTES (p), p);
2250 verify_rtx_sharing (LOG_LINKS (p), p);
2251 }
2252 }
2253
2254 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2255 Assumes the mark bits are cleared at entry. */
2256
2257 void
2258 unshare_all_rtl_in_chain (rtx insn)
2259 {
2260 for (; insn; insn = NEXT_INSN (insn))
2261 if (INSN_P (insn))
2262 {
2263 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2264 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2265 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2266 }
2267 }
2268
2269 /* Go through all virtual stack slots of a function and copy any
2270 shared structure. */
2271 static void
2272 unshare_all_decls (tree blk)
2273 {
2274 tree t;
2275
2276 /* Copy shared decls. */
2277 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2278 if (DECL_RTL_SET_P (t))
2279 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2280
2281 /* Now process sub-blocks. */
2282 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2283 unshare_all_decls (t);
2284 }
2285
2286 /* Go through all virtual stack slots of a function and mark them as
2287 not shared. */
2288 static void
2289 reset_used_decls (tree blk)
2290 {
2291 tree t;
2292
2293 /* Mark decls. */
2294 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2295 if (DECL_RTL_SET_P (t))
2296 reset_used_flags (DECL_RTL (t));
2297
2298 /* Now process sub-blocks. */
2299 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2300 reset_used_decls (t);
2301 }
2302
2303 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2304 placed in the result directly, rather than being copied. MAY_SHARE is
2305 either a MEM of an EXPR_LIST of MEMs. */
2306
2307 rtx
2308 copy_most_rtx (rtx orig, rtx may_share)
2309 {
2310 rtx copy;
2311 int i, j;
2312 RTX_CODE code;
2313 const char *format_ptr;
2314
2315 if (orig == may_share
2316 || (GET_CODE (may_share) == EXPR_LIST
2317 && in_expr_list_p (may_share, orig)))
2318 return orig;
2319
2320 code = GET_CODE (orig);
2321
2322 switch (code)
2323 {
2324 case REG:
2325 case QUEUED:
2326 case CONST_INT:
2327 case CONST_DOUBLE:
2328 case CONST_VECTOR:
2329 case SYMBOL_REF:
2330 case CODE_LABEL:
2331 case PC:
2332 case CC0:
2333 return orig;
2334 default:
2335 break;
2336 }
2337
2338 copy = rtx_alloc (code);
2339 PUT_MODE (copy, GET_MODE (orig));
2340 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2341 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2342 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2343 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2344 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2345
2346 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2347
2348 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2349 {
2350 switch (*format_ptr++)
2351 {
2352 case 'e':
2353 XEXP (copy, i) = XEXP (orig, i);
2354 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2355 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2356 break;
2357
2358 case 'u':
2359 XEXP (copy, i) = XEXP (orig, i);
2360 break;
2361
2362 case 'E':
2363 case 'V':
2364 XVEC (copy, i) = XVEC (orig, i);
2365 if (XVEC (orig, i) != NULL)
2366 {
2367 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2368 for (j = 0; j < XVECLEN (copy, i); j++)
2369 XVECEXP (copy, i, j)
2370 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2371 }
2372 break;
2373
2374 case 'w':
2375 XWINT (copy, i) = XWINT (orig, i);
2376 break;
2377
2378 case 'n':
2379 case 'i':
2380 XINT (copy, i) = XINT (orig, i);
2381 break;
2382
2383 case 't':
2384 XTREE (copy, i) = XTREE (orig, i);
2385 break;
2386
2387 case 's':
2388 case 'S':
2389 XSTR (copy, i) = XSTR (orig, i);
2390 break;
2391
2392 case '0':
2393 X0ANY (copy, i) = X0ANY (orig, i);
2394 break;
2395
2396 default:
2397 abort ();
2398 }
2399 }
2400 return copy;
2401 }
2402
2403 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2404 Recursively does the same for subexpressions. Uses
2405 copy_rtx_if_shared_1 to reduce stack space. */
2406
2407 rtx
2408 copy_rtx_if_shared (rtx orig)
2409 {
2410 copy_rtx_if_shared_1 (&orig);
2411 return orig;
2412 }
2413
2414 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2415 use. Recursively does the same for subexpressions. */
2416
2417 static void
2418 copy_rtx_if_shared_1 (rtx *orig1)
2419 {
2420 rtx x;
2421 int i;
2422 enum rtx_code code;
2423 rtx *last_ptr;
2424 const char *format_ptr;
2425 int copied = 0;
2426 int length;
2427
2428 /* Repeat is used to turn tail-recursion into iteration. */
2429 repeat:
2430 x = *orig1;
2431
2432 if (x == 0)
2433 return;
2434
2435 code = GET_CODE (x);
2436
2437 /* These types may be freely shared. */
2438
2439 switch (code)
2440 {
2441 case REG:
2442 case QUEUED:
2443 case CONST_INT:
2444 case CONST_DOUBLE:
2445 case CONST_VECTOR:
2446 case SYMBOL_REF:
2447 case LABEL_REF:
2448 case CODE_LABEL:
2449 case PC:
2450 case CC0:
2451 case SCRATCH:
2452 /* SCRATCH must be shared because they represent distinct values. */
2453 return;
2454 case CLOBBER:
2455 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2456 return;
2457 break;
2458
2459 case CONST:
2460 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2461 a LABEL_REF, it isn't sharable. */
2462 if (GET_CODE (XEXP (x, 0)) == PLUS
2463 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2464 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2465 return;
2466 break;
2467
2468 case INSN:
2469 case JUMP_INSN:
2470 case CALL_INSN:
2471 case NOTE:
2472 case BARRIER:
2473 /* The chain of insns is not being copied. */
2474 return;
2475
2476 default:
2477 break;
2478 }
2479
2480 /* This rtx may not be shared. If it has already been seen,
2481 replace it with a copy of itself. */
2482
2483 if (RTX_FLAG (x, used))
2484 {
2485 rtx copy;
2486
2487 copy = rtx_alloc (code);
2488 memcpy (copy, x, RTX_SIZE (code));
2489 x = copy;
2490 copied = 1;
2491 }
2492 RTX_FLAG (x, used) = 1;
2493
2494 /* Now scan the subexpressions recursively.
2495 We can store any replaced subexpressions directly into X
2496 since we know X is not shared! Any vectors in X
2497 must be copied if X was copied. */
2498
2499 format_ptr = GET_RTX_FORMAT (code);
2500 length = GET_RTX_LENGTH (code);
2501 last_ptr = NULL;
2502
2503 for (i = 0; i < length; i++)
2504 {
2505 switch (*format_ptr++)
2506 {
2507 case 'e':
2508 if (last_ptr)
2509 copy_rtx_if_shared_1 (last_ptr);
2510 last_ptr = &XEXP (x, i);
2511 break;
2512
2513 case 'E':
2514 if (XVEC (x, i) != NULL)
2515 {
2516 int j;
2517 int len = XVECLEN (x, i);
2518
2519 /* Copy the vector iff I copied the rtx and the length
2520 is nonzero. */
2521 if (copied && len > 0)
2522 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2523
2524 /* Call recursively on all inside the vector. */
2525 for (j = 0; j < len; j++)
2526 {
2527 if (last_ptr)
2528 copy_rtx_if_shared_1 (last_ptr);
2529 last_ptr = &XVECEXP (x, i, j);
2530 }
2531 }
2532 break;
2533 }
2534 }
2535 *orig1 = x;
2536 if (last_ptr)
2537 {
2538 orig1 = last_ptr;
2539 goto repeat;
2540 }
2541 return;
2542 }
2543
2544 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2545 to look for shared sub-parts. */
2546
2547 void
2548 reset_used_flags (rtx x)
2549 {
2550 int i, j;
2551 enum rtx_code code;
2552 const char *format_ptr;
2553 int length;
2554
2555 /* Repeat is used to turn tail-recursion into iteration. */
2556 repeat:
2557 if (x == 0)
2558 return;
2559
2560 code = GET_CODE (x);
2561
2562 /* These types may be freely shared so we needn't do any resetting
2563 for them. */
2564
2565 switch (code)
2566 {
2567 case REG:
2568 case QUEUED:
2569 case CONST_INT:
2570 case CONST_DOUBLE:
2571 case CONST_VECTOR:
2572 case SYMBOL_REF:
2573 case CODE_LABEL:
2574 case PC:
2575 case CC0:
2576 return;
2577
2578 case INSN:
2579 case JUMP_INSN:
2580 case CALL_INSN:
2581 case NOTE:
2582 case LABEL_REF:
2583 case BARRIER:
2584 /* The chain of insns is not being copied. */
2585 return;
2586
2587 default:
2588 break;
2589 }
2590
2591 RTX_FLAG (x, used) = 0;
2592
2593 format_ptr = GET_RTX_FORMAT (code);
2594 length = GET_RTX_LENGTH (code);
2595
2596 for (i = 0; i < length; i++)
2597 {
2598 switch (*format_ptr++)
2599 {
2600 case 'e':
2601 if (i == length-1)
2602 {
2603 x = XEXP (x, i);
2604 goto repeat;
2605 }
2606 reset_used_flags (XEXP (x, i));
2607 break;
2608
2609 case 'E':
2610 for (j = 0; j < XVECLEN (x, i); j++)
2611 reset_used_flags (XVECEXP (x, i, j));
2612 break;
2613 }
2614 }
2615 }
2616
2617 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2618 to look for shared sub-parts. */
2619
2620 void
2621 set_used_flags (rtx x)
2622 {
2623 int i, j;
2624 enum rtx_code code;
2625 const char *format_ptr;
2626
2627 if (x == 0)
2628 return;
2629
2630 code = GET_CODE (x);
2631
2632 /* These types may be freely shared so we needn't do any resetting
2633 for them. */
2634
2635 switch (code)
2636 {
2637 case REG:
2638 case QUEUED:
2639 case CONST_INT:
2640 case CONST_DOUBLE:
2641 case CONST_VECTOR:
2642 case SYMBOL_REF:
2643 case CODE_LABEL:
2644 case PC:
2645 case CC0:
2646 return;
2647
2648 case INSN:
2649 case JUMP_INSN:
2650 case CALL_INSN:
2651 case NOTE:
2652 case LABEL_REF:
2653 case BARRIER:
2654 /* The chain of insns is not being copied. */
2655 return;
2656
2657 default:
2658 break;
2659 }
2660
2661 RTX_FLAG (x, used) = 1;
2662
2663 format_ptr = GET_RTX_FORMAT (code);
2664 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2665 {
2666 switch (*format_ptr++)
2667 {
2668 case 'e':
2669 set_used_flags (XEXP (x, i));
2670 break;
2671
2672 case 'E':
2673 for (j = 0; j < XVECLEN (x, i); j++)
2674 set_used_flags (XVECEXP (x, i, j));
2675 break;
2676 }
2677 }
2678 }
2679 \f
2680 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2681 Return X or the rtx for the pseudo reg the value of X was copied into.
2682 OTHER must be valid as a SET_DEST. */
2683
2684 rtx
2685 make_safe_from (rtx x, rtx other)
2686 {
2687 while (1)
2688 switch (GET_CODE (other))
2689 {
2690 case SUBREG:
2691 other = SUBREG_REG (other);
2692 break;
2693 case STRICT_LOW_PART:
2694 case SIGN_EXTEND:
2695 case ZERO_EXTEND:
2696 other = XEXP (other, 0);
2697 break;
2698 default:
2699 goto done;
2700 }
2701 done:
2702 if ((GET_CODE (other) == MEM
2703 && ! CONSTANT_P (x)
2704 && GET_CODE (x) != REG
2705 && GET_CODE (x) != SUBREG)
2706 || (GET_CODE (other) == REG
2707 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2708 || reg_mentioned_p (other, x))))
2709 {
2710 rtx temp = gen_reg_rtx (GET_MODE (x));
2711 emit_move_insn (temp, x);
2712 return temp;
2713 }
2714 return x;
2715 }
2716 \f
2717 /* Emission of insns (adding them to the doubly-linked list). */
2718
2719 /* Return the first insn of the current sequence or current function. */
2720
2721 rtx
2722 get_insns (void)
2723 {
2724 return first_insn;
2725 }
2726
2727 /* Specify a new insn as the first in the chain. */
2728
2729 void
2730 set_first_insn (rtx insn)
2731 {
2732 if (PREV_INSN (insn) != 0)
2733 abort ();
2734 first_insn = insn;
2735 }
2736
2737 /* Return the last insn emitted in current sequence or current function. */
2738
2739 rtx
2740 get_last_insn (void)
2741 {
2742 return last_insn;
2743 }
2744
2745 /* Specify a new insn as the last in the chain. */
2746
2747 void
2748 set_last_insn (rtx insn)
2749 {
2750 if (NEXT_INSN (insn) != 0)
2751 abort ();
2752 last_insn = insn;
2753 }
2754
2755 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2756
2757 rtx
2758 get_last_insn_anywhere (void)
2759 {
2760 struct sequence_stack *stack;
2761 if (last_insn)
2762 return last_insn;
2763 for (stack = seq_stack; stack; stack = stack->next)
2764 if (stack->last != 0)
2765 return stack->last;
2766 return 0;
2767 }
2768
2769 /* Return the first nonnote insn emitted in current sequence or current
2770 function. This routine looks inside SEQUENCEs. */
2771
2772 rtx
2773 get_first_nonnote_insn (void)
2774 {
2775 rtx insn = first_insn;
2776
2777 while (insn)
2778 {
2779 insn = next_insn (insn);
2780 if (insn == 0 || GET_CODE (insn) != NOTE)
2781 break;
2782 }
2783
2784 return insn;
2785 }
2786
2787 /* Return the last nonnote insn emitted in current sequence or current
2788 function. This routine looks inside SEQUENCEs. */
2789
2790 rtx
2791 get_last_nonnote_insn (void)
2792 {
2793 rtx insn = last_insn;
2794
2795 while (insn)
2796 {
2797 insn = previous_insn (insn);
2798 if (insn == 0 || GET_CODE (insn) != NOTE)
2799 break;
2800 }
2801
2802 return insn;
2803 }
2804
2805 /* Return a number larger than any instruction's uid in this function. */
2806
2807 int
2808 get_max_uid (void)
2809 {
2810 return cur_insn_uid;
2811 }
2812
2813 /* Renumber instructions so that no instruction UIDs are wasted. */
2814
2815 void
2816 renumber_insns (FILE *stream)
2817 {
2818 rtx insn;
2819
2820 /* If we're not supposed to renumber instructions, don't. */
2821 if (!flag_renumber_insns)
2822 return;
2823
2824 /* If there aren't that many instructions, then it's not really
2825 worth renumbering them. */
2826 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2827 return;
2828
2829 cur_insn_uid = 1;
2830
2831 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2832 {
2833 if (stream)
2834 fprintf (stream, "Renumbering insn %d to %d\n",
2835 INSN_UID (insn), cur_insn_uid);
2836 INSN_UID (insn) = cur_insn_uid++;
2837 }
2838 }
2839 \f
2840 /* Return the next insn. If it is a SEQUENCE, return the first insn
2841 of the sequence. */
2842
2843 rtx
2844 next_insn (rtx insn)
2845 {
2846 if (insn)
2847 {
2848 insn = NEXT_INSN (insn);
2849 if (insn && GET_CODE (insn) == INSN
2850 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2851 insn = XVECEXP (PATTERN (insn), 0, 0);
2852 }
2853
2854 return insn;
2855 }
2856
2857 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2858 of the sequence. */
2859
2860 rtx
2861 previous_insn (rtx insn)
2862 {
2863 if (insn)
2864 {
2865 insn = PREV_INSN (insn);
2866 if (insn && GET_CODE (insn) == INSN
2867 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2868 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2869 }
2870
2871 return insn;
2872 }
2873
2874 /* Return the next insn after INSN that is not a NOTE. This routine does not
2875 look inside SEQUENCEs. */
2876
2877 rtx
2878 next_nonnote_insn (rtx insn)
2879 {
2880 while (insn)
2881 {
2882 insn = NEXT_INSN (insn);
2883 if (insn == 0 || GET_CODE (insn) != NOTE)
2884 break;
2885 }
2886
2887 return insn;
2888 }
2889
2890 /* Return the previous insn before INSN that is not a NOTE. This routine does
2891 not look inside SEQUENCEs. */
2892
2893 rtx
2894 prev_nonnote_insn (rtx insn)
2895 {
2896 while (insn)
2897 {
2898 insn = PREV_INSN (insn);
2899 if (insn == 0 || GET_CODE (insn) != NOTE)
2900 break;
2901 }
2902
2903 return insn;
2904 }
2905
2906 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2907 or 0, if there is none. This routine does not look inside
2908 SEQUENCEs. */
2909
2910 rtx
2911 next_real_insn (rtx insn)
2912 {
2913 while (insn)
2914 {
2915 insn = NEXT_INSN (insn);
2916 if (insn == 0 || INSN_P (insn))
2917 break;
2918 }
2919
2920 return insn;
2921 }
2922
2923 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2924 or 0, if there is none. This routine does not look inside
2925 SEQUENCEs. */
2926
2927 rtx
2928 prev_real_insn (rtx insn)
2929 {
2930 while (insn)
2931 {
2932 insn = PREV_INSN (insn);
2933 if (insn == 0 || INSN_P (insn))
2934 break;
2935 }
2936
2937 return insn;
2938 }
2939
2940 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2941 This routine does not look inside SEQUENCEs. */
2942
2943 rtx
2944 last_call_insn (void)
2945 {
2946 rtx insn;
2947
2948 for (insn = get_last_insn ();
2949 insn && GET_CODE (insn) != CALL_INSN;
2950 insn = PREV_INSN (insn))
2951 ;
2952
2953 return insn;
2954 }
2955
2956 /* Find the next insn after INSN that really does something. This routine
2957 does not look inside SEQUENCEs. Until reload has completed, this is the
2958 same as next_real_insn. */
2959
2960 int
2961 active_insn_p (rtx insn)
2962 {
2963 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2964 || (GET_CODE (insn) == INSN
2965 && (! reload_completed
2966 || (GET_CODE (PATTERN (insn)) != USE
2967 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2968 }
2969
2970 rtx
2971 next_active_insn (rtx insn)
2972 {
2973 while (insn)
2974 {
2975 insn = NEXT_INSN (insn);
2976 if (insn == 0 || active_insn_p (insn))
2977 break;
2978 }
2979
2980 return insn;
2981 }
2982
2983 /* Find the last insn before INSN that really does something. This routine
2984 does not look inside SEQUENCEs. Until reload has completed, this is the
2985 same as prev_real_insn. */
2986
2987 rtx
2988 prev_active_insn (rtx insn)
2989 {
2990 while (insn)
2991 {
2992 insn = PREV_INSN (insn);
2993 if (insn == 0 || active_insn_p (insn))
2994 break;
2995 }
2996
2997 return insn;
2998 }
2999
3000 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3001
3002 rtx
3003 next_label (rtx insn)
3004 {
3005 while (insn)
3006 {
3007 insn = NEXT_INSN (insn);
3008 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3009 break;
3010 }
3011
3012 return insn;
3013 }
3014
3015 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3016
3017 rtx
3018 prev_label (rtx insn)
3019 {
3020 while (insn)
3021 {
3022 insn = PREV_INSN (insn);
3023 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3024 break;
3025 }
3026
3027 return insn;
3028 }
3029 \f
3030 #ifdef HAVE_cc0
3031 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3032 and REG_CC_USER notes so we can find it. */
3033
3034 void
3035 link_cc0_insns (rtx insn)
3036 {
3037 rtx user = next_nonnote_insn (insn);
3038
3039 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3040 user = XVECEXP (PATTERN (user), 0, 0);
3041
3042 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3043 REG_NOTES (user));
3044 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3045 }
3046
3047 /* Return the next insn that uses CC0 after INSN, which is assumed to
3048 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3049 applied to the result of this function should yield INSN).
3050
3051 Normally, this is simply the next insn. However, if a REG_CC_USER note
3052 is present, it contains the insn that uses CC0.
3053
3054 Return 0 if we can't find the insn. */
3055
3056 rtx
3057 next_cc0_user (rtx insn)
3058 {
3059 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3060
3061 if (note)
3062 return XEXP (note, 0);
3063
3064 insn = next_nonnote_insn (insn);
3065 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3066 insn = XVECEXP (PATTERN (insn), 0, 0);
3067
3068 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3069 return insn;
3070
3071 return 0;
3072 }
3073
3074 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3075 note, it is the previous insn. */
3076
3077 rtx
3078 prev_cc0_setter (rtx insn)
3079 {
3080 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3081
3082 if (note)
3083 return XEXP (note, 0);
3084
3085 insn = prev_nonnote_insn (insn);
3086 if (! sets_cc0_p (PATTERN (insn)))
3087 abort ();
3088
3089 return insn;
3090 }
3091 #endif
3092
3093 /* Increment the label uses for all labels present in rtx. */
3094
3095 static void
3096 mark_label_nuses (rtx x)
3097 {
3098 enum rtx_code code;
3099 int i, j;
3100 const char *fmt;
3101
3102 code = GET_CODE (x);
3103 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3104 LABEL_NUSES (XEXP (x, 0))++;
3105
3106 fmt = GET_RTX_FORMAT (code);
3107 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3108 {
3109 if (fmt[i] == 'e')
3110 mark_label_nuses (XEXP (x, i));
3111 else if (fmt[i] == 'E')
3112 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3113 mark_label_nuses (XVECEXP (x, i, j));
3114 }
3115 }
3116
3117 \f
3118 /* Try splitting insns that can be split for better scheduling.
3119 PAT is the pattern which might split.
3120 TRIAL is the insn providing PAT.
3121 LAST is nonzero if we should return the last insn of the sequence produced.
3122
3123 If this routine succeeds in splitting, it returns the first or last
3124 replacement insn depending on the value of LAST. Otherwise, it
3125 returns TRIAL. If the insn to be returned can be split, it will be. */
3126
3127 rtx
3128 try_split (rtx pat, rtx trial, int last)
3129 {
3130 rtx before = PREV_INSN (trial);
3131 rtx after = NEXT_INSN (trial);
3132 int has_barrier = 0;
3133 rtx tem;
3134 rtx note, seq;
3135 int probability;
3136 rtx insn_last, insn;
3137 int njumps = 0;
3138
3139 if (any_condjump_p (trial)
3140 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3141 split_branch_probability = INTVAL (XEXP (note, 0));
3142 probability = split_branch_probability;
3143
3144 seq = split_insns (pat, trial);
3145
3146 split_branch_probability = -1;
3147
3148 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3149 We may need to handle this specially. */
3150 if (after && GET_CODE (after) == BARRIER)
3151 {
3152 has_barrier = 1;
3153 after = NEXT_INSN (after);
3154 }
3155
3156 if (!seq)
3157 return trial;
3158
3159 /* Avoid infinite loop if any insn of the result matches
3160 the original pattern. */
3161 insn_last = seq;
3162 while (1)
3163 {
3164 if (INSN_P (insn_last)
3165 && rtx_equal_p (PATTERN (insn_last), pat))
3166 return trial;
3167 if (!NEXT_INSN (insn_last))
3168 break;
3169 insn_last = NEXT_INSN (insn_last);
3170 }
3171
3172 /* Mark labels. */
3173 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3174 {
3175 if (GET_CODE (insn) == JUMP_INSN)
3176 {
3177 mark_jump_label (PATTERN (insn), insn, 0);
3178 njumps++;
3179 if (probability != -1
3180 && any_condjump_p (insn)
3181 && !find_reg_note (insn, REG_BR_PROB, 0))
3182 {
3183 /* We can preserve the REG_BR_PROB notes only if exactly
3184 one jump is created, otherwise the machine description
3185 is responsible for this step using
3186 split_branch_probability variable. */
3187 if (njumps != 1)
3188 abort ();
3189 REG_NOTES (insn)
3190 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3191 GEN_INT (probability),
3192 REG_NOTES (insn));
3193 }
3194 }
3195 }
3196
3197 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3198 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3199 if (GET_CODE (trial) == CALL_INSN)
3200 {
3201 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3202 if (GET_CODE (insn) == CALL_INSN)
3203 {
3204 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3205 while (*p)
3206 p = &XEXP (*p, 1);
3207 *p = CALL_INSN_FUNCTION_USAGE (trial);
3208 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3209 }
3210 }
3211
3212 /* Copy notes, particularly those related to the CFG. */
3213 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3214 {
3215 switch (REG_NOTE_KIND (note))
3216 {
3217 case REG_EH_REGION:
3218 insn = insn_last;
3219 while (insn != NULL_RTX)
3220 {
3221 if (GET_CODE (insn) == CALL_INSN
3222 || (flag_non_call_exceptions
3223 && may_trap_p (PATTERN (insn))))
3224 REG_NOTES (insn)
3225 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3226 XEXP (note, 0),
3227 REG_NOTES (insn));
3228 insn = PREV_INSN (insn);
3229 }
3230 break;
3231
3232 case REG_NORETURN:
3233 case REG_SETJMP:
3234 case REG_ALWAYS_RETURN:
3235 insn = insn_last;
3236 while (insn != NULL_RTX)
3237 {
3238 if (GET_CODE (insn) == CALL_INSN)
3239 REG_NOTES (insn)
3240 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3241 XEXP (note, 0),
3242 REG_NOTES (insn));
3243 insn = PREV_INSN (insn);
3244 }
3245 break;
3246
3247 case REG_NON_LOCAL_GOTO:
3248 insn = insn_last;
3249 while (insn != NULL_RTX)
3250 {
3251 if (GET_CODE (insn) == JUMP_INSN)
3252 REG_NOTES (insn)
3253 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3254 XEXP (note, 0),
3255 REG_NOTES (insn));
3256 insn = PREV_INSN (insn);
3257 }
3258 break;
3259
3260 default:
3261 break;
3262 }
3263 }
3264
3265 /* If there are LABELS inside the split insns increment the
3266 usage count so we don't delete the label. */
3267 if (GET_CODE (trial) == INSN)
3268 {
3269 insn = insn_last;
3270 while (insn != NULL_RTX)
3271 {
3272 if (GET_CODE (insn) == INSN)
3273 mark_label_nuses (PATTERN (insn));
3274
3275 insn = PREV_INSN (insn);
3276 }
3277 }
3278
3279 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3280
3281 delete_insn (trial);
3282 if (has_barrier)
3283 emit_barrier_after (tem);
3284
3285 /* Recursively call try_split for each new insn created; by the
3286 time control returns here that insn will be fully split, so
3287 set LAST and continue from the insn after the one returned.
3288 We can't use next_active_insn here since AFTER may be a note.
3289 Ignore deleted insns, which can be occur if not optimizing. */
3290 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3291 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3292 tem = try_split (PATTERN (tem), tem, 1);
3293
3294 /* Return either the first or the last insn, depending on which was
3295 requested. */
3296 return last
3297 ? (after ? PREV_INSN (after) : last_insn)
3298 : NEXT_INSN (before);
3299 }
3300 \f
3301 /* Make and return an INSN rtx, initializing all its slots.
3302 Store PATTERN in the pattern slots. */
3303
3304 rtx
3305 make_insn_raw (rtx pattern)
3306 {
3307 rtx insn;
3308
3309 insn = rtx_alloc (INSN);
3310
3311 INSN_UID (insn) = cur_insn_uid++;
3312 PATTERN (insn) = pattern;
3313 INSN_CODE (insn) = -1;
3314 LOG_LINKS (insn) = NULL;
3315 REG_NOTES (insn) = NULL;
3316 INSN_LOCATOR (insn) = 0;
3317 BLOCK_FOR_INSN (insn) = NULL;
3318
3319 #ifdef ENABLE_RTL_CHECKING
3320 if (insn
3321 && INSN_P (insn)
3322 && (returnjump_p (insn)
3323 || (GET_CODE (insn) == SET
3324 && SET_DEST (insn) == pc_rtx)))
3325 {
3326 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3327 debug_rtx (insn);
3328 }
3329 #endif
3330
3331 return insn;
3332 }
3333
3334 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3335
3336 static rtx
3337 make_jump_insn_raw (rtx pattern)
3338 {
3339 rtx insn;
3340
3341 insn = rtx_alloc (JUMP_INSN);
3342 INSN_UID (insn) = cur_insn_uid++;
3343
3344 PATTERN (insn) = pattern;
3345 INSN_CODE (insn) = -1;
3346 LOG_LINKS (insn) = NULL;
3347 REG_NOTES (insn) = NULL;
3348 JUMP_LABEL (insn) = NULL;
3349 INSN_LOCATOR (insn) = 0;
3350 BLOCK_FOR_INSN (insn) = NULL;
3351
3352 return insn;
3353 }
3354
3355 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3356
3357 static rtx
3358 make_call_insn_raw (rtx pattern)
3359 {
3360 rtx insn;
3361
3362 insn = rtx_alloc (CALL_INSN);
3363 INSN_UID (insn) = cur_insn_uid++;
3364
3365 PATTERN (insn) = pattern;
3366 INSN_CODE (insn) = -1;
3367 LOG_LINKS (insn) = NULL;
3368 REG_NOTES (insn) = NULL;
3369 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3370 INSN_LOCATOR (insn) = 0;
3371 BLOCK_FOR_INSN (insn) = NULL;
3372
3373 return insn;
3374 }
3375 \f
3376 /* Add INSN to the end of the doubly-linked list.
3377 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3378
3379 void
3380 add_insn (rtx insn)
3381 {
3382 PREV_INSN (insn) = last_insn;
3383 NEXT_INSN (insn) = 0;
3384
3385 if (NULL != last_insn)
3386 NEXT_INSN (last_insn) = insn;
3387
3388 if (NULL == first_insn)
3389 first_insn = insn;
3390
3391 last_insn = insn;
3392 }
3393
3394 /* Add INSN into the doubly-linked list after insn AFTER. This and
3395 the next should be the only functions called to insert an insn once
3396 delay slots have been filled since only they know how to update a
3397 SEQUENCE. */
3398
3399 void
3400 add_insn_after (rtx insn, rtx after)
3401 {
3402 rtx next = NEXT_INSN (after);
3403 basic_block bb;
3404
3405 if (optimize && INSN_DELETED_P (after))
3406 abort ();
3407
3408 NEXT_INSN (insn) = next;
3409 PREV_INSN (insn) = after;
3410
3411 if (next)
3412 {
3413 PREV_INSN (next) = insn;
3414 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3415 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3416 }
3417 else if (last_insn == after)
3418 last_insn = insn;
3419 else
3420 {
3421 struct sequence_stack *stack = seq_stack;
3422 /* Scan all pending sequences too. */
3423 for (; stack; stack = stack->next)
3424 if (after == stack->last)
3425 {
3426 stack->last = insn;
3427 break;
3428 }
3429
3430 if (stack == 0)
3431 abort ();
3432 }
3433
3434 if (GET_CODE (after) != BARRIER
3435 && GET_CODE (insn) != BARRIER
3436 && (bb = BLOCK_FOR_INSN (after)))
3437 {
3438 set_block_for_insn (insn, bb);
3439 if (INSN_P (insn))
3440 bb->flags |= BB_DIRTY;
3441 /* Should not happen as first in the BB is always
3442 either NOTE or LABEL. */
3443 if (BB_END (bb) == after
3444 /* Avoid clobbering of structure when creating new BB. */
3445 && GET_CODE (insn) != BARRIER
3446 && (GET_CODE (insn) != NOTE
3447 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3448 BB_END (bb) = insn;
3449 }
3450
3451 NEXT_INSN (after) = insn;
3452 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3453 {
3454 rtx sequence = PATTERN (after);
3455 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3456 }
3457 }
3458
3459 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3460 the previous should be the only functions called to insert an insn once
3461 delay slots have been filled since only they know how to update a
3462 SEQUENCE. */
3463
3464 void
3465 add_insn_before (rtx insn, rtx before)
3466 {
3467 rtx prev = PREV_INSN (before);
3468 basic_block bb;
3469
3470 if (optimize && INSN_DELETED_P (before))
3471 abort ();
3472
3473 PREV_INSN (insn) = prev;
3474 NEXT_INSN (insn) = before;
3475
3476 if (prev)
3477 {
3478 NEXT_INSN (prev) = insn;
3479 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3480 {
3481 rtx sequence = PATTERN (prev);
3482 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3483 }
3484 }
3485 else if (first_insn == before)
3486 first_insn = insn;
3487 else
3488 {
3489 struct sequence_stack *stack = seq_stack;
3490 /* Scan all pending sequences too. */
3491 for (; stack; stack = stack->next)
3492 if (before == stack->first)
3493 {
3494 stack->first = insn;
3495 break;
3496 }
3497
3498 if (stack == 0)
3499 abort ();
3500 }
3501
3502 if (GET_CODE (before) != BARRIER
3503 && GET_CODE (insn) != BARRIER
3504 && (bb = BLOCK_FOR_INSN (before)))
3505 {
3506 set_block_for_insn (insn, bb);
3507 if (INSN_P (insn))
3508 bb->flags |= BB_DIRTY;
3509 /* Should not happen as first in the BB is always
3510 either NOTE or LABEl. */
3511 if (BB_HEAD (bb) == insn
3512 /* Avoid clobbering of structure when creating new BB. */
3513 && GET_CODE (insn) != BARRIER
3514 && (GET_CODE (insn) != NOTE
3515 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3516 abort ();
3517 }
3518
3519 PREV_INSN (before) = insn;
3520 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3521 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3522 }
3523
3524 /* Remove an insn from its doubly-linked list. This function knows how
3525 to handle sequences. */
3526 void
3527 remove_insn (rtx insn)
3528 {
3529 rtx next = NEXT_INSN (insn);
3530 rtx prev = PREV_INSN (insn);
3531 basic_block bb;
3532
3533 if (prev)
3534 {
3535 NEXT_INSN (prev) = next;
3536 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3537 {
3538 rtx sequence = PATTERN (prev);
3539 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3540 }
3541 }
3542 else if (first_insn == insn)
3543 first_insn = next;
3544 else
3545 {
3546 struct sequence_stack *stack = seq_stack;
3547 /* Scan all pending sequences too. */
3548 for (; stack; stack = stack->next)
3549 if (insn == stack->first)
3550 {
3551 stack->first = next;
3552 break;
3553 }
3554
3555 if (stack == 0)
3556 abort ();
3557 }
3558
3559 if (next)
3560 {
3561 PREV_INSN (next) = prev;
3562 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3563 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3564 }
3565 else if (last_insn == insn)
3566 last_insn = prev;
3567 else
3568 {
3569 struct sequence_stack *stack = seq_stack;
3570 /* Scan all pending sequences too. */
3571 for (; stack; stack = stack->next)
3572 if (insn == stack->last)
3573 {
3574 stack->last = prev;
3575 break;
3576 }
3577
3578 if (stack == 0)
3579 abort ();
3580 }
3581 if (GET_CODE (insn) != BARRIER
3582 && (bb = BLOCK_FOR_INSN (insn)))
3583 {
3584 if (INSN_P (insn))
3585 bb->flags |= BB_DIRTY;
3586 if (BB_HEAD (bb) == insn)
3587 {
3588 /* Never ever delete the basic block note without deleting whole
3589 basic block. */
3590 if (GET_CODE (insn) == NOTE)
3591 abort ();
3592 BB_HEAD (bb) = next;
3593 }
3594 if (BB_END (bb) == insn)
3595 BB_END (bb) = prev;
3596 }
3597 }
3598
3599 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3600
3601 void
3602 add_function_usage_to (rtx call_insn, rtx call_fusage)
3603 {
3604 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3605 abort ();
3606
3607 /* Put the register usage information on the CALL. If there is already
3608 some usage information, put ours at the end. */
3609 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3610 {
3611 rtx link;
3612
3613 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3614 link = XEXP (link, 1))
3615 ;
3616
3617 XEXP (link, 1) = call_fusage;
3618 }
3619 else
3620 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3621 }
3622
3623 /* Delete all insns made since FROM.
3624 FROM becomes the new last instruction. */
3625
3626 void
3627 delete_insns_since (rtx from)
3628 {
3629 if (from == 0)
3630 first_insn = 0;
3631 else
3632 NEXT_INSN (from) = 0;
3633 last_insn = from;
3634 }
3635
3636 /* This function is deprecated, please use sequences instead.
3637
3638 Move a consecutive bunch of insns to a different place in the chain.
3639 The insns to be moved are those between FROM and TO.
3640 They are moved to a new position after the insn AFTER.
3641 AFTER must not be FROM or TO or any insn in between.
3642
3643 This function does not know about SEQUENCEs and hence should not be
3644 called after delay-slot filling has been done. */
3645
3646 void
3647 reorder_insns_nobb (rtx from, rtx to, rtx after)
3648 {
3649 /* Splice this bunch out of where it is now. */
3650 if (PREV_INSN (from))
3651 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3652 if (NEXT_INSN (to))
3653 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3654 if (last_insn == to)
3655 last_insn = PREV_INSN (from);
3656 if (first_insn == from)
3657 first_insn = NEXT_INSN (to);
3658
3659 /* Make the new neighbors point to it and it to them. */
3660 if (NEXT_INSN (after))
3661 PREV_INSN (NEXT_INSN (after)) = to;
3662
3663 NEXT_INSN (to) = NEXT_INSN (after);
3664 PREV_INSN (from) = after;
3665 NEXT_INSN (after) = from;
3666 if (after == last_insn)
3667 last_insn = to;
3668 }
3669
3670 /* Same as function above, but take care to update BB boundaries. */
3671 void
3672 reorder_insns (rtx from, rtx to, rtx after)
3673 {
3674 rtx prev = PREV_INSN (from);
3675 basic_block bb, bb2;
3676
3677 reorder_insns_nobb (from, to, after);
3678
3679 if (GET_CODE (after) != BARRIER
3680 && (bb = BLOCK_FOR_INSN (after)))
3681 {
3682 rtx x;
3683 bb->flags |= BB_DIRTY;
3684
3685 if (GET_CODE (from) != BARRIER
3686 && (bb2 = BLOCK_FOR_INSN (from)))
3687 {
3688 if (BB_END (bb2) == to)
3689 BB_END (bb2) = prev;
3690 bb2->flags |= BB_DIRTY;
3691 }
3692
3693 if (BB_END (bb) == after)
3694 BB_END (bb) = to;
3695
3696 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3697 set_block_for_insn (x, bb);
3698 }
3699 }
3700
3701 /* Return the line note insn preceding INSN. */
3702
3703 static rtx
3704 find_line_note (rtx insn)
3705 {
3706 if (no_line_numbers)
3707 return 0;
3708
3709 for (; insn; insn = PREV_INSN (insn))
3710 if (GET_CODE (insn) == NOTE
3711 && NOTE_LINE_NUMBER (insn) >= 0)
3712 break;
3713
3714 return insn;
3715 }
3716
3717 /* Remove unnecessary notes from the instruction stream. */
3718
3719 void
3720 remove_unnecessary_notes (void)
3721 {
3722 rtx block_stack = NULL_RTX;
3723 rtx eh_stack = NULL_RTX;
3724 rtx insn;
3725 rtx next;
3726 rtx tmp;
3727
3728 /* We must not remove the first instruction in the function because
3729 the compiler depends on the first instruction being a note. */
3730 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3731 {
3732 /* Remember what's next. */
3733 next = NEXT_INSN (insn);
3734
3735 /* We're only interested in notes. */
3736 if (GET_CODE (insn) != NOTE)
3737 continue;
3738
3739 switch (NOTE_LINE_NUMBER (insn))
3740 {
3741 case NOTE_INSN_DELETED:
3742 case NOTE_INSN_LOOP_END_TOP_COND:
3743 remove_insn (insn);
3744 break;
3745
3746 case NOTE_INSN_EH_REGION_BEG:
3747 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3748 break;
3749
3750 case NOTE_INSN_EH_REGION_END:
3751 /* Too many end notes. */
3752 if (eh_stack == NULL_RTX)
3753 abort ();
3754 /* Mismatched nesting. */
3755 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3756 abort ();
3757 tmp = eh_stack;
3758 eh_stack = XEXP (eh_stack, 1);
3759 free_INSN_LIST_node (tmp);
3760 break;
3761
3762 case NOTE_INSN_BLOCK_BEG:
3763 /* By now, all notes indicating lexical blocks should have
3764 NOTE_BLOCK filled in. */
3765 if (NOTE_BLOCK (insn) == NULL_TREE)
3766 abort ();
3767 block_stack = alloc_INSN_LIST (insn, block_stack);
3768 break;
3769
3770 case NOTE_INSN_BLOCK_END:
3771 /* Too many end notes. */
3772 if (block_stack == NULL_RTX)
3773 abort ();
3774 /* Mismatched nesting. */
3775 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3776 abort ();
3777 tmp = block_stack;
3778 block_stack = XEXP (block_stack, 1);
3779 free_INSN_LIST_node (tmp);
3780
3781 /* Scan back to see if there are any non-note instructions
3782 between INSN and the beginning of this block. If not,
3783 then there is no PC range in the generated code that will
3784 actually be in this block, so there's no point in
3785 remembering the existence of the block. */
3786 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3787 {
3788 /* This block contains a real instruction. Note that we
3789 don't include labels; if the only thing in the block
3790 is a label, then there are still no PC values that
3791 lie within the block. */
3792 if (INSN_P (tmp))
3793 break;
3794
3795 /* We're only interested in NOTEs. */
3796 if (GET_CODE (tmp) != NOTE)
3797 continue;
3798
3799 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3800 {
3801 /* We just verified that this BLOCK matches us with
3802 the block_stack check above. Never delete the
3803 BLOCK for the outermost scope of the function; we
3804 can refer to names from that scope even if the
3805 block notes are messed up. */
3806 if (! is_body_block (NOTE_BLOCK (insn))
3807 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3808 {
3809 remove_insn (tmp);
3810 remove_insn (insn);
3811 }
3812 break;
3813 }
3814 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3815 /* There's a nested block. We need to leave the
3816 current block in place since otherwise the debugger
3817 wouldn't be able to show symbols from our block in
3818 the nested block. */
3819 break;
3820 }
3821 }
3822 }
3823
3824 /* Too many begin notes. */
3825 if (block_stack || eh_stack)
3826 abort ();
3827 }
3828
3829 \f
3830 /* Emit insn(s) of given code and pattern
3831 at a specified place within the doubly-linked list.
3832
3833 All of the emit_foo global entry points accept an object
3834 X which is either an insn list or a PATTERN of a single
3835 instruction.
3836
3837 There are thus a few canonical ways to generate code and
3838 emit it at a specific place in the instruction stream. For
3839 example, consider the instruction named SPOT and the fact that
3840 we would like to emit some instructions before SPOT. We might
3841 do it like this:
3842
3843 start_sequence ();
3844 ... emit the new instructions ...
3845 insns_head = get_insns ();
3846 end_sequence ();
3847
3848 emit_insn_before (insns_head, SPOT);
3849
3850 It used to be common to generate SEQUENCE rtl instead, but that
3851 is a relic of the past which no longer occurs. The reason is that
3852 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3853 generated would almost certainly die right after it was created. */
3854
3855 /* Make X be output before the instruction BEFORE. */
3856
3857 rtx
3858 emit_insn_before (rtx x, rtx before)
3859 {
3860 rtx last = before;
3861 rtx insn;
3862
3863 #ifdef ENABLE_RTL_CHECKING
3864 if (before == NULL_RTX)
3865 abort ();
3866 #endif
3867
3868 if (x == NULL_RTX)
3869 return last;
3870
3871 switch (GET_CODE (x))
3872 {
3873 case INSN:
3874 case JUMP_INSN:
3875 case CALL_INSN:
3876 case CODE_LABEL:
3877 case BARRIER:
3878 case NOTE:
3879 insn = x;
3880 while (insn)
3881 {
3882 rtx next = NEXT_INSN (insn);
3883 add_insn_before (insn, before);
3884 last = insn;
3885 insn = next;
3886 }
3887 break;
3888
3889 #ifdef ENABLE_RTL_CHECKING
3890 case SEQUENCE:
3891 abort ();
3892 break;
3893 #endif
3894
3895 default:
3896 last = make_insn_raw (x);
3897 add_insn_before (last, before);
3898 break;
3899 }
3900
3901 return last;
3902 }
3903
3904 /* Make an instruction with body X and code JUMP_INSN
3905 and output it before the instruction BEFORE. */
3906
3907 rtx
3908 emit_jump_insn_before (rtx x, rtx before)
3909 {
3910 rtx insn, last = NULL_RTX;
3911
3912 #ifdef ENABLE_RTL_CHECKING
3913 if (before == NULL_RTX)
3914 abort ();
3915 #endif
3916
3917 switch (GET_CODE (x))
3918 {
3919 case INSN:
3920 case JUMP_INSN:
3921 case CALL_INSN:
3922 case CODE_LABEL:
3923 case BARRIER:
3924 case NOTE:
3925 insn = x;
3926 while (insn)
3927 {
3928 rtx next = NEXT_INSN (insn);
3929 add_insn_before (insn, before);
3930 last = insn;
3931 insn = next;
3932 }
3933 break;
3934
3935 #ifdef ENABLE_RTL_CHECKING
3936 case SEQUENCE:
3937 abort ();
3938 break;
3939 #endif
3940
3941 default:
3942 last = make_jump_insn_raw (x);
3943 add_insn_before (last, before);
3944 break;
3945 }
3946
3947 return last;
3948 }
3949
3950 /* Make an instruction with body X and code CALL_INSN
3951 and output it before the instruction BEFORE. */
3952
3953 rtx
3954 emit_call_insn_before (rtx x, rtx before)
3955 {
3956 rtx last = NULL_RTX, insn;
3957
3958 #ifdef ENABLE_RTL_CHECKING
3959 if (before == NULL_RTX)
3960 abort ();
3961 #endif
3962
3963 switch (GET_CODE (x))
3964 {
3965 case INSN:
3966 case JUMP_INSN:
3967 case CALL_INSN:
3968 case CODE_LABEL:
3969 case BARRIER:
3970 case NOTE:
3971 insn = x;
3972 while (insn)
3973 {
3974 rtx next = NEXT_INSN (insn);
3975 add_insn_before (insn, before);
3976 last = insn;
3977 insn = next;
3978 }
3979 break;
3980
3981 #ifdef ENABLE_RTL_CHECKING
3982 case SEQUENCE:
3983 abort ();
3984 break;
3985 #endif
3986
3987 default:
3988 last = make_call_insn_raw (x);
3989 add_insn_before (last, before);
3990 break;
3991 }
3992
3993 return last;
3994 }
3995
3996 /* Make an insn of code BARRIER
3997 and output it before the insn BEFORE. */
3998
3999 rtx
4000 emit_barrier_before (rtx before)
4001 {
4002 rtx insn = rtx_alloc (BARRIER);
4003
4004 INSN_UID (insn) = cur_insn_uid++;
4005
4006 add_insn_before (insn, before);
4007 return insn;
4008 }
4009
4010 /* Emit the label LABEL before the insn BEFORE. */
4011
4012 rtx
4013 emit_label_before (rtx label, rtx before)
4014 {
4015 /* This can be called twice for the same label as a result of the
4016 confusion that follows a syntax error! So make it harmless. */
4017 if (INSN_UID (label) == 0)
4018 {
4019 INSN_UID (label) = cur_insn_uid++;
4020 add_insn_before (label, before);
4021 }
4022
4023 return label;
4024 }
4025
4026 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4027
4028 rtx
4029 emit_note_before (int subtype, rtx before)
4030 {
4031 rtx note = rtx_alloc (NOTE);
4032 INSN_UID (note) = cur_insn_uid++;
4033 NOTE_SOURCE_FILE (note) = 0;
4034 NOTE_LINE_NUMBER (note) = subtype;
4035 BLOCK_FOR_INSN (note) = NULL;
4036
4037 add_insn_before (note, before);
4038 return note;
4039 }
4040 \f
4041 /* Helper for emit_insn_after, handles lists of instructions
4042 efficiently. */
4043
4044 static rtx emit_insn_after_1 (rtx, rtx);
4045
4046 static rtx
4047 emit_insn_after_1 (rtx first, rtx after)
4048 {
4049 rtx last;
4050 rtx after_after;
4051 basic_block bb;
4052
4053 if (GET_CODE (after) != BARRIER
4054 && (bb = BLOCK_FOR_INSN (after)))
4055 {
4056 bb->flags |= BB_DIRTY;
4057 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4058 if (GET_CODE (last) != BARRIER)
4059 set_block_for_insn (last, bb);
4060 if (GET_CODE (last) != BARRIER)
4061 set_block_for_insn (last, bb);
4062 if (BB_END (bb) == after)
4063 BB_END (bb) = last;
4064 }
4065 else
4066 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4067 continue;
4068
4069 after_after = NEXT_INSN (after);
4070
4071 NEXT_INSN (after) = first;
4072 PREV_INSN (first) = after;
4073 NEXT_INSN (last) = after_after;
4074 if (after_after)
4075 PREV_INSN (after_after) = last;
4076
4077 if (after == last_insn)
4078 last_insn = last;
4079 return last;
4080 }
4081
4082 /* Make X be output after the insn AFTER. */
4083
4084 rtx
4085 emit_insn_after (rtx x, rtx after)
4086 {
4087 rtx last = after;
4088
4089 #ifdef ENABLE_RTL_CHECKING
4090 if (after == NULL_RTX)
4091 abort ();
4092 #endif
4093
4094 if (x == NULL_RTX)
4095 return last;
4096
4097 switch (GET_CODE (x))
4098 {
4099 case INSN:
4100 case JUMP_INSN:
4101 case CALL_INSN:
4102 case CODE_LABEL:
4103 case BARRIER:
4104 case NOTE:
4105 last = emit_insn_after_1 (x, after);
4106 break;
4107
4108 #ifdef ENABLE_RTL_CHECKING
4109 case SEQUENCE:
4110 abort ();
4111 break;
4112 #endif
4113
4114 default:
4115 last = make_insn_raw (x);
4116 add_insn_after (last, after);
4117 break;
4118 }
4119
4120 return last;
4121 }
4122
4123 /* Similar to emit_insn_after, except that line notes are to be inserted so
4124 as to act as if this insn were at FROM. */
4125
4126 void
4127 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4128 {
4129 rtx from_line = find_line_note (from);
4130 rtx after_line = find_line_note (after);
4131 rtx insn = emit_insn_after (x, after);
4132
4133 if (from_line)
4134 emit_note_copy_after (from_line, after);
4135
4136 if (after_line)
4137 emit_note_copy_after (after_line, insn);
4138 }
4139
4140 /* Make an insn of code JUMP_INSN with body X
4141 and output it after the insn AFTER. */
4142
4143 rtx
4144 emit_jump_insn_after (rtx x, rtx after)
4145 {
4146 rtx last;
4147
4148 #ifdef ENABLE_RTL_CHECKING
4149 if (after == NULL_RTX)
4150 abort ();
4151 #endif
4152
4153 switch (GET_CODE (x))
4154 {
4155 case INSN:
4156 case JUMP_INSN:
4157 case CALL_INSN:
4158 case CODE_LABEL:
4159 case BARRIER:
4160 case NOTE:
4161 last = emit_insn_after_1 (x, after);
4162 break;
4163
4164 #ifdef ENABLE_RTL_CHECKING
4165 case SEQUENCE:
4166 abort ();
4167 break;
4168 #endif
4169
4170 default:
4171 last = make_jump_insn_raw (x);
4172 add_insn_after (last, after);
4173 break;
4174 }
4175
4176 return last;
4177 }
4178
4179 /* Make an instruction with body X and code CALL_INSN
4180 and output it after the instruction AFTER. */
4181
4182 rtx
4183 emit_call_insn_after (rtx x, rtx after)
4184 {
4185 rtx last;
4186
4187 #ifdef ENABLE_RTL_CHECKING
4188 if (after == NULL_RTX)
4189 abort ();
4190 #endif
4191
4192 switch (GET_CODE (x))
4193 {
4194 case INSN:
4195 case JUMP_INSN:
4196 case CALL_INSN:
4197 case CODE_LABEL:
4198 case BARRIER:
4199 case NOTE:
4200 last = emit_insn_after_1 (x, after);
4201 break;
4202
4203 #ifdef ENABLE_RTL_CHECKING
4204 case SEQUENCE:
4205 abort ();
4206 break;
4207 #endif
4208
4209 default:
4210 last = make_call_insn_raw (x);
4211 add_insn_after (last, after);
4212 break;
4213 }
4214
4215 return last;
4216 }
4217
4218 /* Make an insn of code BARRIER
4219 and output it after the insn AFTER. */
4220
4221 rtx
4222 emit_barrier_after (rtx after)
4223 {
4224 rtx insn = rtx_alloc (BARRIER);
4225
4226 INSN_UID (insn) = cur_insn_uid++;
4227
4228 add_insn_after (insn, after);
4229 return insn;
4230 }
4231
4232 /* Emit the label LABEL after the insn AFTER. */
4233
4234 rtx
4235 emit_label_after (rtx label, rtx after)
4236 {
4237 /* This can be called twice for the same label
4238 as a result of the confusion that follows a syntax error!
4239 So make it harmless. */
4240 if (INSN_UID (label) == 0)
4241 {
4242 INSN_UID (label) = cur_insn_uid++;
4243 add_insn_after (label, after);
4244 }
4245
4246 return label;
4247 }
4248
4249 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4250
4251 rtx
4252 emit_note_after (int subtype, rtx after)
4253 {
4254 rtx note = rtx_alloc (NOTE);
4255 INSN_UID (note) = cur_insn_uid++;
4256 NOTE_SOURCE_FILE (note) = 0;
4257 NOTE_LINE_NUMBER (note) = subtype;
4258 BLOCK_FOR_INSN (note) = NULL;
4259 add_insn_after (note, after);
4260 return note;
4261 }
4262
4263 /* Emit a copy of note ORIG after the insn AFTER. */
4264
4265 rtx
4266 emit_note_copy_after (rtx orig, rtx after)
4267 {
4268 rtx note;
4269
4270 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4271 {
4272 cur_insn_uid++;
4273 return 0;
4274 }
4275
4276 note = rtx_alloc (NOTE);
4277 INSN_UID (note) = cur_insn_uid++;
4278 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4279 NOTE_DATA (note) = NOTE_DATA (orig);
4280 BLOCK_FOR_INSN (note) = NULL;
4281 add_insn_after (note, after);
4282 return note;
4283 }
4284 \f
4285 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4286 rtx
4287 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4288 {
4289 rtx last = emit_insn_after (pattern, after);
4290
4291 if (pattern == NULL_RTX)
4292 return last;
4293
4294 after = NEXT_INSN (after);
4295 while (1)
4296 {
4297 if (active_insn_p (after))
4298 INSN_LOCATOR (after) = loc;
4299 if (after == last)
4300 break;
4301 after = NEXT_INSN (after);
4302 }
4303 return last;
4304 }
4305
4306 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4307 rtx
4308 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4309 {
4310 rtx last = emit_jump_insn_after (pattern, after);
4311
4312 if (pattern == NULL_RTX)
4313 return last;
4314
4315 after = NEXT_INSN (after);
4316 while (1)
4317 {
4318 if (active_insn_p (after))
4319 INSN_LOCATOR (after) = loc;
4320 if (after == last)
4321 break;
4322 after = NEXT_INSN (after);
4323 }
4324 return last;
4325 }
4326
4327 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4328 rtx
4329 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4330 {
4331 rtx last = emit_call_insn_after (pattern, after);
4332
4333 if (pattern == NULL_RTX)
4334 return last;
4335
4336 after = NEXT_INSN (after);
4337 while (1)
4338 {
4339 if (active_insn_p (after))
4340 INSN_LOCATOR (after) = loc;
4341 if (after == last)
4342 break;
4343 after = NEXT_INSN (after);
4344 }
4345 return last;
4346 }
4347
4348 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4349 rtx
4350 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4351 {
4352 rtx first = PREV_INSN (before);
4353 rtx last = emit_insn_before (pattern, before);
4354
4355 if (pattern == NULL_RTX)
4356 return last;
4357
4358 first = NEXT_INSN (first);
4359 while (1)
4360 {
4361 if (active_insn_p (first))
4362 INSN_LOCATOR (first) = loc;
4363 if (first == last)
4364 break;
4365 first = NEXT_INSN (first);
4366 }
4367 return last;
4368 }
4369 \f
4370 /* Take X and emit it at the end of the doubly-linked
4371 INSN list.
4372
4373 Returns the last insn emitted. */
4374
4375 rtx
4376 emit_insn (rtx x)
4377 {
4378 rtx last = last_insn;
4379 rtx insn;
4380
4381 if (x == NULL_RTX)
4382 return last;
4383
4384 switch (GET_CODE (x))
4385 {
4386 case INSN:
4387 case JUMP_INSN:
4388 case CALL_INSN:
4389 case CODE_LABEL:
4390 case BARRIER:
4391 case NOTE:
4392 insn = x;
4393 while (insn)
4394 {
4395 rtx next = NEXT_INSN (insn);
4396 add_insn (insn);
4397 last = insn;
4398 insn = next;
4399 }
4400 break;
4401
4402 #ifdef ENABLE_RTL_CHECKING
4403 case SEQUENCE:
4404 abort ();
4405 break;
4406 #endif
4407
4408 default:
4409 last = make_insn_raw (x);
4410 add_insn (last);
4411 break;
4412 }
4413
4414 return last;
4415 }
4416
4417 /* Make an insn of code JUMP_INSN with pattern X
4418 and add it to the end of the doubly-linked list. */
4419
4420 rtx
4421 emit_jump_insn (rtx x)
4422 {
4423 rtx last = NULL_RTX, insn;
4424
4425 switch (GET_CODE (x))
4426 {
4427 case INSN:
4428 case JUMP_INSN:
4429 case CALL_INSN:
4430 case CODE_LABEL:
4431 case BARRIER:
4432 case NOTE:
4433 insn = x;
4434 while (insn)
4435 {
4436 rtx next = NEXT_INSN (insn);
4437 add_insn (insn);
4438 last = insn;
4439 insn = next;
4440 }
4441 break;
4442
4443 #ifdef ENABLE_RTL_CHECKING
4444 case SEQUENCE:
4445 abort ();
4446 break;
4447 #endif
4448
4449 default:
4450 last = make_jump_insn_raw (x);
4451 add_insn (last);
4452 break;
4453 }
4454
4455 return last;
4456 }
4457
4458 /* Make an insn of code CALL_INSN with pattern X
4459 and add it to the end of the doubly-linked list. */
4460
4461 rtx
4462 emit_call_insn (rtx x)
4463 {
4464 rtx insn;
4465
4466 switch (GET_CODE (x))
4467 {
4468 case INSN:
4469 case JUMP_INSN:
4470 case CALL_INSN:
4471 case CODE_LABEL:
4472 case BARRIER:
4473 case NOTE:
4474 insn = emit_insn (x);
4475 break;
4476
4477 #ifdef ENABLE_RTL_CHECKING
4478 case SEQUENCE:
4479 abort ();
4480 break;
4481 #endif
4482
4483 default:
4484 insn = make_call_insn_raw (x);
4485 add_insn (insn);
4486 break;
4487 }
4488
4489 return insn;
4490 }
4491
4492 /* Add the label LABEL to the end of the doubly-linked list. */
4493
4494 rtx
4495 emit_label (rtx label)
4496 {
4497 /* This can be called twice for the same label
4498 as a result of the confusion that follows a syntax error!
4499 So make it harmless. */
4500 if (INSN_UID (label) == 0)
4501 {
4502 INSN_UID (label) = cur_insn_uid++;
4503 add_insn (label);
4504 }
4505 return label;
4506 }
4507
4508 /* Make an insn of code BARRIER
4509 and add it to the end of the doubly-linked list. */
4510
4511 rtx
4512 emit_barrier (void)
4513 {
4514 rtx barrier = rtx_alloc (BARRIER);
4515 INSN_UID (barrier) = cur_insn_uid++;
4516 add_insn (barrier);
4517 return barrier;
4518 }
4519
4520 /* Make line numbering NOTE insn for LOCATION add it to the end
4521 of the doubly-linked list, but only if line-numbers are desired for
4522 debugging info and it doesn't match the previous one. */
4523
4524 rtx
4525 emit_line_note (location_t location)
4526 {
4527 rtx note;
4528
4529 set_file_and_line_for_stmt (location);
4530
4531 if (location.file && last_location.file
4532 && !strcmp (location.file, last_location.file)
4533 && location.line == last_location.line)
4534 return NULL_RTX;
4535 last_location = location;
4536
4537 if (no_line_numbers)
4538 {
4539 cur_insn_uid++;
4540 return NULL_RTX;
4541 }
4542
4543 note = emit_note (location.line);
4544 NOTE_SOURCE_FILE (note) = location.file;
4545
4546 return note;
4547 }
4548
4549 /* Emit a copy of note ORIG. */
4550
4551 rtx
4552 emit_note_copy (rtx orig)
4553 {
4554 rtx note;
4555
4556 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4557 {
4558 cur_insn_uid++;
4559 return NULL_RTX;
4560 }
4561
4562 note = rtx_alloc (NOTE);
4563
4564 INSN_UID (note) = cur_insn_uid++;
4565 NOTE_DATA (note) = NOTE_DATA (orig);
4566 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4567 BLOCK_FOR_INSN (note) = NULL;
4568 add_insn (note);
4569
4570 return note;
4571 }
4572
4573 /* Make an insn of code NOTE or type NOTE_NO
4574 and add it to the end of the doubly-linked list. */
4575
4576 rtx
4577 emit_note (int note_no)
4578 {
4579 rtx note;
4580
4581 note = rtx_alloc (NOTE);
4582 INSN_UID (note) = cur_insn_uid++;
4583 NOTE_LINE_NUMBER (note) = note_no;
4584 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4585 BLOCK_FOR_INSN (note) = NULL;
4586 add_insn (note);
4587 return note;
4588 }
4589
4590 /* Cause next statement to emit a line note even if the line number
4591 has not changed. */
4592
4593 void
4594 force_next_line_note (void)
4595 {
4596 last_location.line = -1;
4597 }
4598
4599 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4600 note of this type already exists, remove it first. */
4601
4602 rtx
4603 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4604 {
4605 rtx note = find_reg_note (insn, kind, NULL_RTX);
4606
4607 switch (kind)
4608 {
4609 case REG_EQUAL:
4610 case REG_EQUIV:
4611 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4612 has multiple sets (some callers assume single_set
4613 means the insn only has one set, when in fact it
4614 means the insn only has one * useful * set). */
4615 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4616 {
4617 if (note)
4618 abort ();
4619 return NULL_RTX;
4620 }
4621
4622 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4623 It serves no useful purpose and breaks eliminate_regs. */
4624 if (GET_CODE (datum) == ASM_OPERANDS)
4625 return NULL_RTX;
4626 break;
4627
4628 default:
4629 break;
4630 }
4631
4632 if (note)
4633 {
4634 XEXP (note, 0) = datum;
4635 return note;
4636 }
4637
4638 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4639 return REG_NOTES (insn);
4640 }
4641 \f
4642 /* Return an indication of which type of insn should have X as a body.
4643 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4644
4645 enum rtx_code
4646 classify_insn (rtx x)
4647 {
4648 if (GET_CODE (x) == CODE_LABEL)
4649 return CODE_LABEL;
4650 if (GET_CODE (x) == CALL)
4651 return CALL_INSN;
4652 if (GET_CODE (x) == RETURN)
4653 return JUMP_INSN;
4654 if (GET_CODE (x) == SET)
4655 {
4656 if (SET_DEST (x) == pc_rtx)
4657 return JUMP_INSN;
4658 else if (GET_CODE (SET_SRC (x)) == CALL)
4659 return CALL_INSN;
4660 else
4661 return INSN;
4662 }
4663 if (GET_CODE (x) == PARALLEL)
4664 {
4665 int j;
4666 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4667 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4668 return CALL_INSN;
4669 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4670 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4671 return JUMP_INSN;
4672 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4673 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4674 return CALL_INSN;
4675 }
4676 return INSN;
4677 }
4678
4679 /* Emit the rtl pattern X as an appropriate kind of insn.
4680 If X is a label, it is simply added into the insn chain. */
4681
4682 rtx
4683 emit (rtx x)
4684 {
4685 enum rtx_code code = classify_insn (x);
4686
4687 if (code == CODE_LABEL)
4688 return emit_label (x);
4689 else if (code == INSN)
4690 return emit_insn (x);
4691 else if (code == JUMP_INSN)
4692 {
4693 rtx insn = emit_jump_insn (x);
4694 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4695 return emit_barrier ();
4696 return insn;
4697 }
4698 else if (code == CALL_INSN)
4699 return emit_call_insn (x);
4700 else
4701 abort ();
4702 }
4703 \f
4704 /* Space for free sequence stack entries. */
4705 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4706
4707 /* Begin emitting insns to a sequence which can be packaged in an
4708 RTL_EXPR. If this sequence will contain something that might cause
4709 the compiler to pop arguments to function calls (because those
4710 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4711 details), use do_pending_stack_adjust before calling this function.
4712 That will ensure that the deferred pops are not accidentally
4713 emitted in the middle of this sequence. */
4714
4715 void
4716 start_sequence (void)
4717 {
4718 struct sequence_stack *tem;
4719
4720 if (free_sequence_stack != NULL)
4721 {
4722 tem = free_sequence_stack;
4723 free_sequence_stack = tem->next;
4724 }
4725 else
4726 tem = ggc_alloc (sizeof (struct sequence_stack));
4727
4728 tem->next = seq_stack;
4729 tem->first = first_insn;
4730 tem->last = last_insn;
4731 tem->sequence_rtl_expr = seq_rtl_expr;
4732
4733 seq_stack = tem;
4734
4735 first_insn = 0;
4736 last_insn = 0;
4737 }
4738
4739 /* Similarly, but indicate that this sequence will be placed in T, an
4740 RTL_EXPR. See the documentation for start_sequence for more
4741 information about how to use this function. */
4742
4743 void
4744 start_sequence_for_rtl_expr (tree t)
4745 {
4746 start_sequence ();
4747
4748 seq_rtl_expr = t;
4749 }
4750
4751 /* Set up the insn chain starting with FIRST as the current sequence,
4752 saving the previously current one. See the documentation for
4753 start_sequence for more information about how to use this function. */
4754
4755 void
4756 push_to_sequence (rtx first)
4757 {
4758 rtx last;
4759
4760 start_sequence ();
4761
4762 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4763
4764 first_insn = first;
4765 last_insn = last;
4766 }
4767
4768 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4769
4770 void
4771 push_to_full_sequence (rtx first, rtx last)
4772 {
4773 start_sequence ();
4774 first_insn = first;
4775 last_insn = last;
4776 /* We really should have the end of the insn chain here. */
4777 if (last && NEXT_INSN (last))
4778 abort ();
4779 }
4780
4781 /* Set up the outer-level insn chain
4782 as the current sequence, saving the previously current one. */
4783
4784 void
4785 push_topmost_sequence (void)
4786 {
4787 struct sequence_stack *stack, *top = NULL;
4788
4789 start_sequence ();
4790
4791 for (stack = seq_stack; stack; stack = stack->next)
4792 top = stack;
4793
4794 first_insn = top->first;
4795 last_insn = top->last;
4796 seq_rtl_expr = top->sequence_rtl_expr;
4797 }
4798
4799 /* After emitting to the outer-level insn chain, update the outer-level
4800 insn chain, and restore the previous saved state. */
4801
4802 void
4803 pop_topmost_sequence (void)
4804 {
4805 struct sequence_stack *stack, *top = NULL;
4806
4807 for (stack = seq_stack; stack; stack = stack->next)
4808 top = stack;
4809
4810 top->first = first_insn;
4811 top->last = last_insn;
4812 /* ??? Why don't we save seq_rtl_expr here? */
4813
4814 end_sequence ();
4815 }
4816
4817 /* After emitting to a sequence, restore previous saved state.
4818
4819 To get the contents of the sequence just made, you must call
4820 `get_insns' *before* calling here.
4821
4822 If the compiler might have deferred popping arguments while
4823 generating this sequence, and this sequence will not be immediately
4824 inserted into the instruction stream, use do_pending_stack_adjust
4825 before calling get_insns. That will ensure that the deferred
4826 pops are inserted into this sequence, and not into some random
4827 location in the instruction stream. See INHIBIT_DEFER_POP for more
4828 information about deferred popping of arguments. */
4829
4830 void
4831 end_sequence (void)
4832 {
4833 struct sequence_stack *tem = seq_stack;
4834
4835 first_insn = tem->first;
4836 last_insn = tem->last;
4837 seq_rtl_expr = tem->sequence_rtl_expr;
4838 seq_stack = tem->next;
4839
4840 memset (tem, 0, sizeof (*tem));
4841 tem->next = free_sequence_stack;
4842 free_sequence_stack = tem;
4843 }
4844
4845 /* Return 1 if currently emitting into a sequence. */
4846
4847 int
4848 in_sequence_p (void)
4849 {
4850 return seq_stack != 0;
4851 }
4852 \f
4853 /* Put the various virtual registers into REGNO_REG_RTX. */
4854
4855 void
4856 init_virtual_regs (struct emit_status *es)
4857 {
4858 rtx *ptr = es->x_regno_reg_rtx;
4859 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4860 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4861 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4862 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4863 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4864 }
4865
4866 \f
4867 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4868 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4869 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4870 static int copy_insn_n_scratches;
4871
4872 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4873 copied an ASM_OPERANDS.
4874 In that case, it is the original input-operand vector. */
4875 static rtvec orig_asm_operands_vector;
4876
4877 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4878 copied an ASM_OPERANDS.
4879 In that case, it is the copied input-operand vector. */
4880 static rtvec copy_asm_operands_vector;
4881
4882 /* Likewise for the constraints vector. */
4883 static rtvec orig_asm_constraints_vector;
4884 static rtvec copy_asm_constraints_vector;
4885
4886 /* Recursively create a new copy of an rtx for copy_insn.
4887 This function differs from copy_rtx in that it handles SCRATCHes and
4888 ASM_OPERANDs properly.
4889 Normally, this function is not used directly; use copy_insn as front end.
4890 However, you could first copy an insn pattern with copy_insn and then use
4891 this function afterwards to properly copy any REG_NOTEs containing
4892 SCRATCHes. */
4893
4894 rtx
4895 copy_insn_1 (rtx orig)
4896 {
4897 rtx copy;
4898 int i, j;
4899 RTX_CODE code;
4900 const char *format_ptr;
4901
4902 code = GET_CODE (orig);
4903
4904 switch (code)
4905 {
4906 case REG:
4907 case QUEUED:
4908 case CONST_INT:
4909 case CONST_DOUBLE:
4910 case CONST_VECTOR:
4911 case SYMBOL_REF:
4912 case CODE_LABEL:
4913 case PC:
4914 case CC0:
4915 case ADDRESSOF:
4916 return orig;
4917 case CLOBBER:
4918 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4919 return orig;
4920 break;
4921
4922 case SCRATCH:
4923 for (i = 0; i < copy_insn_n_scratches; i++)
4924 if (copy_insn_scratch_in[i] == orig)
4925 return copy_insn_scratch_out[i];
4926 break;
4927
4928 case CONST:
4929 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4930 a LABEL_REF, it isn't sharable. */
4931 if (GET_CODE (XEXP (orig, 0)) == PLUS
4932 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4933 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4934 return orig;
4935 break;
4936
4937 /* A MEM with a constant address is not sharable. The problem is that
4938 the constant address may need to be reloaded. If the mem is shared,
4939 then reloading one copy of this mem will cause all copies to appear
4940 to have been reloaded. */
4941
4942 default:
4943 break;
4944 }
4945
4946 copy = rtx_alloc (code);
4947
4948 /* Copy the various flags, and other information. We assume that
4949 all fields need copying, and then clear the fields that should
4950 not be copied. That is the sensible default behavior, and forces
4951 us to explicitly document why we are *not* copying a flag. */
4952 memcpy (copy, orig, RTX_HDR_SIZE);
4953
4954 /* We do not copy the USED flag, which is used as a mark bit during
4955 walks over the RTL. */
4956 RTX_FLAG (copy, used) = 0;
4957
4958 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4959 if (INSN_P (orig))
4960 {
4961 RTX_FLAG (copy, jump) = 0;
4962 RTX_FLAG (copy, call) = 0;
4963 RTX_FLAG (copy, frame_related) = 0;
4964 }
4965
4966 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4967
4968 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4969 {
4970 copy->u.fld[i] = orig->u.fld[i];
4971 switch (*format_ptr++)
4972 {
4973 case 'e':
4974 if (XEXP (orig, i) != NULL)
4975 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4976 break;
4977
4978 case 'E':
4979 case 'V':
4980 if (XVEC (orig, i) == orig_asm_constraints_vector)
4981 XVEC (copy, i) = copy_asm_constraints_vector;
4982 else if (XVEC (orig, i) == orig_asm_operands_vector)
4983 XVEC (copy, i) = copy_asm_operands_vector;
4984 else if (XVEC (orig, i) != NULL)
4985 {
4986 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4987 for (j = 0; j < XVECLEN (copy, i); j++)
4988 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4989 }
4990 break;
4991
4992 case 't':
4993 case 'w':
4994 case 'i':
4995 case 's':
4996 case 'S':
4997 case 'u':
4998 case '0':
4999 /* These are left unchanged. */
5000 break;
5001
5002 default:
5003 abort ();
5004 }
5005 }
5006
5007 if (code == SCRATCH)
5008 {
5009 i = copy_insn_n_scratches++;
5010 if (i >= MAX_RECOG_OPERANDS)
5011 abort ();
5012 copy_insn_scratch_in[i] = orig;
5013 copy_insn_scratch_out[i] = copy;
5014 }
5015 else if (code == ASM_OPERANDS)
5016 {
5017 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5018 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5019 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5020 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5021 }
5022
5023 return copy;
5024 }
5025
5026 /* Create a new copy of an rtx.
5027 This function differs from copy_rtx in that it handles SCRATCHes and
5028 ASM_OPERANDs properly.
5029 INSN doesn't really have to be a full INSN; it could be just the
5030 pattern. */
5031 rtx
5032 copy_insn (rtx insn)
5033 {
5034 copy_insn_n_scratches = 0;
5035 orig_asm_operands_vector = 0;
5036 orig_asm_constraints_vector = 0;
5037 copy_asm_operands_vector = 0;
5038 copy_asm_constraints_vector = 0;
5039 return copy_insn_1 (insn);
5040 }
5041
5042 /* Initialize data structures and variables in this file
5043 before generating rtl for each function. */
5044
5045 void
5046 init_emit (void)
5047 {
5048 struct function *f = cfun;
5049
5050 f->emit = ggc_alloc (sizeof (struct emit_status));
5051 first_insn = NULL;
5052 last_insn = NULL;
5053 seq_rtl_expr = NULL;
5054 cur_insn_uid = 1;
5055 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5056 last_location.line = 0;
5057 last_location.file = 0;
5058 first_label_num = label_num;
5059 last_label_num = 0;
5060 seq_stack = NULL;
5061
5062 /* Init the tables that describe all the pseudo regs. */
5063
5064 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5065
5066 f->emit->regno_pointer_align
5067 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5068 * sizeof (unsigned char));
5069
5070 regno_reg_rtx
5071 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5072
5073 /* Put copies of all the hard registers into regno_reg_rtx. */
5074 memcpy (regno_reg_rtx,
5075 static_regno_reg_rtx,
5076 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5077
5078 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5079 init_virtual_regs (f->emit);
5080
5081 /* Indicate that the virtual registers and stack locations are
5082 all pointers. */
5083 REG_POINTER (stack_pointer_rtx) = 1;
5084 REG_POINTER (frame_pointer_rtx) = 1;
5085 REG_POINTER (hard_frame_pointer_rtx) = 1;
5086 REG_POINTER (arg_pointer_rtx) = 1;
5087
5088 REG_POINTER (virtual_incoming_args_rtx) = 1;
5089 REG_POINTER (virtual_stack_vars_rtx) = 1;
5090 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5091 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5092 REG_POINTER (virtual_cfa_rtx) = 1;
5093
5094 #ifdef STACK_BOUNDARY
5095 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5096 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5097 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5098 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5099
5100 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5101 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5102 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5103 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5104 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5105 #endif
5106
5107 #ifdef INIT_EXPANDERS
5108 INIT_EXPANDERS;
5109 #endif
5110 }
5111
5112 /* Generate the constant 0. */
5113
5114 static rtx
5115 gen_const_vector_0 (enum machine_mode mode)
5116 {
5117 rtx tem;
5118 rtvec v;
5119 int units, i;
5120 enum machine_mode inner;
5121
5122 units = GET_MODE_NUNITS (mode);
5123 inner = GET_MODE_INNER (mode);
5124
5125 v = rtvec_alloc (units);
5126
5127 /* We need to call this function after we to set CONST0_RTX first. */
5128 if (!CONST0_RTX (inner))
5129 abort ();
5130
5131 for (i = 0; i < units; ++i)
5132 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5133
5134 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5135 return tem;
5136 }
5137
5138 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5139 all elements are zero. */
5140 rtx
5141 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5142 {
5143 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5144 int i;
5145
5146 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5147 if (RTVEC_ELT (v, i) != inner_zero)
5148 return gen_rtx_raw_CONST_VECTOR (mode, v);
5149 return CONST0_RTX (mode);
5150 }
5151
5152 /* Create some permanent unique rtl objects shared between all functions.
5153 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5154
5155 void
5156 init_emit_once (int line_numbers)
5157 {
5158 int i;
5159 enum machine_mode mode;
5160 enum machine_mode double_mode;
5161
5162 /* We need reg_raw_mode, so initialize the modes now. */
5163 init_reg_modes_once ();
5164
5165 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5166 tables. */
5167 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5168 const_int_htab_eq, NULL);
5169
5170 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5171 const_double_htab_eq, NULL);
5172
5173 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5174 mem_attrs_htab_eq, NULL);
5175 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5176 reg_attrs_htab_eq, NULL);
5177
5178 no_line_numbers = ! line_numbers;
5179
5180 /* Compute the word and byte modes. */
5181
5182 byte_mode = VOIDmode;
5183 word_mode = VOIDmode;
5184 double_mode = VOIDmode;
5185
5186 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5187 mode = GET_MODE_WIDER_MODE (mode))
5188 {
5189 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5190 && byte_mode == VOIDmode)
5191 byte_mode = mode;
5192
5193 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5194 && word_mode == VOIDmode)
5195 word_mode = mode;
5196 }
5197
5198 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5199 mode = GET_MODE_WIDER_MODE (mode))
5200 {
5201 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5202 && double_mode == VOIDmode)
5203 double_mode = mode;
5204 }
5205
5206 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5207
5208 /* Assign register numbers to the globally defined register rtx.
5209 This must be done at runtime because the register number field
5210 is in a union and some compilers can't initialize unions. */
5211
5212 pc_rtx = gen_rtx_PC (VOIDmode);
5213 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5214 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5215 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5216 if (hard_frame_pointer_rtx == 0)
5217 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5218 HARD_FRAME_POINTER_REGNUM);
5219 if (arg_pointer_rtx == 0)
5220 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5221 virtual_incoming_args_rtx =
5222 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5223 virtual_stack_vars_rtx =
5224 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5225 virtual_stack_dynamic_rtx =
5226 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5227 virtual_outgoing_args_rtx =
5228 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5229 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5230
5231 /* Initialize RTL for commonly used hard registers. These are
5232 copied into regno_reg_rtx as we begin to compile each function. */
5233 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5234 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5235
5236 #ifdef INIT_EXPANDERS
5237 /* This is to initialize {init|mark|free}_machine_status before the first
5238 call to push_function_context_to. This is needed by the Chill front
5239 end which calls push_function_context_to before the first call to
5240 init_function_start. */
5241 INIT_EXPANDERS;
5242 #endif
5243
5244 /* Create the unique rtx's for certain rtx codes and operand values. */
5245
5246 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5247 tries to use these variables. */
5248 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5249 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5250 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5251
5252 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5253 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5254 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5255 else
5256 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5257
5258 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5259 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5260 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5261 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5262 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5263 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5264 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5265
5266 dconsthalf = dconst1;
5267 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5268
5269 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5270
5271 /* Initialize mathematical constants for constant folding builtins.
5272 These constants need to be given to at least 160 bits precision. */
5273 real_from_string (&dconstpi,
5274 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5275 real_from_string (&dconste,
5276 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5277
5278 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5279 {
5280 REAL_VALUE_TYPE *r =
5281 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5282
5283 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5284 mode = GET_MODE_WIDER_MODE (mode))
5285 const_tiny_rtx[i][(int) mode] =
5286 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5287
5288 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5289
5290 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5291 mode = GET_MODE_WIDER_MODE (mode))
5292 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5293
5294 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5295 mode != VOIDmode;
5296 mode = GET_MODE_WIDER_MODE (mode))
5297 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5298 }
5299
5300 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5301 mode != VOIDmode;
5302 mode = GET_MODE_WIDER_MODE (mode))
5303 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5304
5305 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5306 mode != VOIDmode;
5307 mode = GET_MODE_WIDER_MODE (mode))
5308 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5309
5310 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5311 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5312 const_tiny_rtx[0][i] = const0_rtx;
5313
5314 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5315 if (STORE_FLAG_VALUE == 1)
5316 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5317
5318 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5319 return_address_pointer_rtx
5320 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5321 #endif
5322
5323 #ifdef STATIC_CHAIN_REGNUM
5324 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5325
5326 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5327 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5328 static_chain_incoming_rtx
5329 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5330 else
5331 #endif
5332 static_chain_incoming_rtx = static_chain_rtx;
5333 #endif
5334
5335 #ifdef STATIC_CHAIN
5336 static_chain_rtx = STATIC_CHAIN;
5337
5338 #ifdef STATIC_CHAIN_INCOMING
5339 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5340 #else
5341 static_chain_incoming_rtx = static_chain_rtx;
5342 #endif
5343 #endif
5344
5345 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5346 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5347 }
5348 \f
5349 /* Query and clear/ restore no_line_numbers. This is used by the
5350 switch / case handling in stmt.c to give proper line numbers in
5351 warnings about unreachable code. */
5352
5353 int
5354 force_line_numbers (void)
5355 {
5356 int old = no_line_numbers;
5357
5358 no_line_numbers = 0;
5359 if (old)
5360 force_next_line_note ();
5361 return old;
5362 }
5363
5364 void
5365 restore_line_number_status (int old_value)
5366 {
5367 no_line_numbers = old_value;
5368 }
5369
5370 /* Produce exact duplicate of insn INSN after AFTER.
5371 Care updating of libcall regions if present. */
5372
5373 rtx
5374 emit_copy_of_insn_after (rtx insn, rtx after)
5375 {
5376 rtx new;
5377 rtx note1, note2, link;
5378
5379 switch (GET_CODE (insn))
5380 {
5381 case INSN:
5382 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5383 break;
5384
5385 case JUMP_INSN:
5386 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5387 break;
5388
5389 case CALL_INSN:
5390 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5391 if (CALL_INSN_FUNCTION_USAGE (insn))
5392 CALL_INSN_FUNCTION_USAGE (new)
5393 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5394 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5395 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5396 break;
5397
5398 default:
5399 abort ();
5400 }
5401
5402 /* Update LABEL_NUSES. */
5403 mark_jump_label (PATTERN (new), new, 0);
5404
5405 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5406
5407 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5408 make them. */
5409 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5410 if (REG_NOTE_KIND (link) != REG_LABEL)
5411 {
5412 if (GET_CODE (link) == EXPR_LIST)
5413 REG_NOTES (new)
5414 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5415 XEXP (link, 0),
5416 REG_NOTES (new)));
5417 else
5418 REG_NOTES (new)
5419 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5420 XEXP (link, 0),
5421 REG_NOTES (new)));
5422 }
5423
5424 /* Fix the libcall sequences. */
5425 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5426 {
5427 rtx p = new;
5428 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5429 p = PREV_INSN (p);
5430 XEXP (note1, 0) = p;
5431 XEXP (note2, 0) = new;
5432 }
5433 INSN_CODE (new) = INSN_CODE (insn);
5434 return new;
5435 }
5436
5437 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5438 rtx
5439 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5440 {
5441 if (hard_reg_clobbers[mode][regno])
5442 return hard_reg_clobbers[mode][regno];
5443 else
5444 return (hard_reg_clobbers[mode][regno] =
5445 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5446 }
5447
5448 #include "gt-emit-rtl.h"