]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
x86: Remove "%!" before ret
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "builtins.h"
58 #include "rtl-iter.h"
59 #include "stor-layout.h"
60 #include "opts.h"
61 #include "predict.h"
62 #include "rtx-vector-builder.h"
63 #include "gimple.h"
64 #include "gimple-ssa.h"
65 #include "gimplify.h"
66
67 struct target_rtl default_target_rtl;
68 #if SWITCHABLE_TARGET
69 struct target_rtl *this_target_rtl = &default_target_rtl;
70 #endif
71
72 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
73
74 /* Commonly used modes. */
75
76 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
77 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
78 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
79
80 /* Datastructures maintained for currently processed function in RTL form. */
81
82 struct rtl_data x_rtl;
83
84 /* Indexed by pseudo register number, gives the rtx for that pseudo.
85 Allocated in parallel with regno_pointer_align.
86 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
87 with length attribute nested in top level structures. */
88
89 rtx * regno_reg_rtx;
90
91 /* This is *not* reset after each function. It gives each CODE_LABEL
92 in the entire compilation a unique label number. */
93
94 static GTY(()) int label_num = 1;
95
96 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
97 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
98 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
99 is set only for MODE_INT and MODE_VECTOR_INT modes. */
100
101 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
102
103 rtx const_true_rtx;
104
105 REAL_VALUE_TYPE dconst0;
106 REAL_VALUE_TYPE dconst1;
107 REAL_VALUE_TYPE dconst2;
108 REAL_VALUE_TYPE dconstm1;
109 REAL_VALUE_TYPE dconsthalf;
110
111 /* Record fixed-point constant 0 and 1. */
112 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
113 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
114
115 /* We make one copy of (const_int C) where C is in
116 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
117 to save space during the compilation and simplify comparisons of
118 integers. */
119
120 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
121
122 /* Standard pieces of rtx, to be substituted directly into things. */
123 rtx pc_rtx;
124 rtx ret_rtx;
125 rtx simple_return_rtx;
126
127 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
128 this pointer should normally never be dereferenced), but is required to be
129 distinct from NULL_RTX. Currently used by peephole2 pass. */
130 rtx_insn *invalid_insn_rtx;
131
132 /* A hash table storing CONST_INTs whose absolute value is greater
133 than MAX_SAVED_CONST_INT. */
134
135 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
136 {
137 typedef HOST_WIDE_INT compare_type;
138
139 static hashval_t hash (rtx i);
140 static bool equal (rtx i, HOST_WIDE_INT h);
141 };
142
143 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
144
145 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
146 {
147 static hashval_t hash (rtx x);
148 static bool equal (rtx x, rtx y);
149 };
150
151 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
152
153 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
154 {
155 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
156
157 static hashval_t hash (rtx x);
158 static bool equal (rtx x, const compare_type &y);
159 };
160
161 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
162
163 /* A hash table storing register attribute structures. */
164 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
165 {
166 static hashval_t hash (reg_attrs *x);
167 static bool equal (reg_attrs *a, reg_attrs *b);
168 };
169
170 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
171
172 /* A hash table storing all CONST_DOUBLEs. */
173 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
174 {
175 static hashval_t hash (rtx x);
176 static bool equal (rtx x, rtx y);
177 };
178
179 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
180
181 /* A hash table storing all CONST_FIXEDs. */
182 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
183 {
184 static hashval_t hash (rtx x);
185 static bool equal (rtx x, rtx y);
186 };
187
188 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
189
190 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
191 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
192 #define first_label_num (crtl->emit.x_first_label_num)
193
194 static void set_used_decls (tree);
195 static void mark_label_nuses (rtx);
196 #if TARGET_SUPPORTS_WIDE_INT
197 static rtx lookup_const_wide_int (rtx);
198 #endif
199 static rtx lookup_const_double (rtx);
200 static rtx lookup_const_fixed (rtx);
201 static rtx gen_const_vector (machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
203
204 /* Probability of the conditional branch currently proceeded by try_split. */
205 profile_probability split_branch_probability;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 hashval_t
210 const_int_hasher::hash (rtx x)
211 {
212 return (hashval_t) INTVAL (x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 bool
220 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
221 {
222 return (INTVAL (x) == y);
223 }
224
225 #if TARGET_SUPPORTS_WIDE_INT
226 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
227
228 hashval_t
229 const_wide_int_hasher::hash (rtx x)
230 {
231 int i;
232 unsigned HOST_WIDE_INT hash = 0;
233 const_rtx xr = x;
234
235 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
236 hash += CONST_WIDE_INT_ELT (xr, i);
237
238 return (hashval_t) hash;
239 }
240
241 /* Returns nonzero if the value represented by X (which is really a
242 CONST_WIDE_INT) is the same as that given by Y (which is really a
243 CONST_WIDE_INT). */
244
245 bool
246 const_wide_int_hasher::equal (rtx x, rtx y)
247 {
248 int i;
249 const_rtx xr = x;
250 const_rtx yr = y;
251 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
252 return false;
253
254 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
255 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
256 return false;
257
258 return true;
259 }
260 #endif
261
262 /* Returns a hash code for CONST_POLY_INT X. */
263
264 hashval_t
265 const_poly_int_hasher::hash (rtx x)
266 {
267 inchash::hash h;
268 h.add_int (GET_MODE (x));
269 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
270 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
271 return h.end ();
272 }
273
274 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
275
276 bool
277 const_poly_int_hasher::equal (rtx x, const compare_type &y)
278 {
279 if (GET_MODE (x) != y.first)
280 return false;
281 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
282 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
283 return false;
284 return true;
285 }
286
287 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
288 hashval_t
289 const_double_hasher::hash (rtx x)
290 {
291 const_rtx const value = x;
292 hashval_t h;
293
294 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
295 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
296 else
297 {
298 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
299 /* MODE is used in the comparison, so it should be in the hash. */
300 h ^= GET_MODE (value);
301 }
302 return h;
303 }
304
305 /* Returns nonzero if the value represented by X (really a ...)
306 is the same as that represented by Y (really a ...) */
307 bool
308 const_double_hasher::equal (rtx x, rtx y)
309 {
310 const_rtx const a = x, b = y;
311
312 if (GET_MODE (a) != GET_MODE (b))
313 return 0;
314 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
315 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
316 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
317 else
318 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
319 CONST_DOUBLE_REAL_VALUE (b));
320 }
321
322 /* Returns a hash code for X (which is really a CONST_FIXED). */
323
324 hashval_t
325 const_fixed_hasher::hash (rtx x)
326 {
327 const_rtx const value = x;
328 hashval_t h;
329
330 h = fixed_hash (CONST_FIXED_VALUE (value));
331 /* MODE is used in the comparison, so it should be in the hash. */
332 h ^= GET_MODE (value);
333 return h;
334 }
335
336 /* Returns nonzero if the value represented by X is the same as that
337 represented by Y. */
338
339 bool
340 const_fixed_hasher::equal (rtx x, rtx y)
341 {
342 const_rtx const a = x, b = y;
343
344 if (GET_MODE (a) != GET_MODE (b))
345 return 0;
346 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
347 }
348
349 /* Return true if the given memory attributes are equal. */
350
351 bool
352 mem_attrs_eq_p (const class mem_attrs *p, const class mem_attrs *q)
353 {
354 if (p == q)
355 return true;
356 if (!p || !q)
357 return false;
358 return (p->alias == q->alias
359 && p->offset_known_p == q->offset_known_p
360 && (!p->offset_known_p || known_eq (p->offset, q->offset))
361 && p->size_known_p == q->size_known_p
362 && (!p->size_known_p || known_eq (p->size, q->size))
363 && p->align == q->align
364 && p->addrspace == q->addrspace
365 && (p->expr == q->expr
366 || (p->expr != NULL_TREE && q->expr != NULL_TREE
367 && operand_equal_p (p->expr, q->expr, 0))));
368 }
369
370 /* Set MEM's memory attributes so that they are the same as ATTRS. */
371
372 static void
373 set_mem_attrs (rtx mem, mem_attrs *attrs)
374 {
375 /* If everything is the default, we can just clear the attributes. */
376 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
377 {
378 MEM_ATTRS (mem) = 0;
379 return;
380 }
381
382 if (!MEM_ATTRS (mem)
383 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
384 {
385 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
386 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
387 }
388 }
389
390 /* Returns a hash code for X (which is a really a reg_attrs *). */
391
392 hashval_t
393 reg_attr_hasher::hash (reg_attrs *x)
394 {
395 const reg_attrs *const p = x;
396
397 inchash::hash h;
398 h.add_ptr (p->decl);
399 h.add_poly_hwi (p->offset);
400 return h.end ();
401 }
402
403 /* Returns nonzero if the value represented by X is the same as that given by
404 Y. */
405
406 bool
407 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
408 {
409 const reg_attrs *const p = x;
410 const reg_attrs *const q = y;
411
412 return (p->decl == q->decl && known_eq (p->offset, q->offset));
413 }
414 /* Allocate a new reg_attrs structure and insert it into the hash table if
415 one identical to it is not already in the table. We are doing this for
416 MEM of mode MODE. */
417
418 static reg_attrs *
419 get_reg_attrs (tree decl, poly_int64 offset)
420 {
421 reg_attrs attrs;
422
423 /* If everything is the default, we can just return zero. */
424 if (decl == 0 && known_eq (offset, 0))
425 return 0;
426
427 attrs.decl = decl;
428 attrs.offset = offset;
429
430 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
431 if (*slot == 0)
432 {
433 *slot = ggc_alloc<reg_attrs> ();
434 memcpy (*slot, &attrs, sizeof (reg_attrs));
435 }
436
437 return *slot;
438 }
439
440
441 #if !HAVE_blockage
442 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
443 and to block register equivalences to be seen across this insn. */
444
445 rtx
446 gen_blockage (void)
447 {
448 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
449 MEM_VOLATILE_P (x) = true;
450 return x;
451 }
452 #endif
453
454
455 /* Set the mode and register number of X to MODE and REGNO. */
456
457 void
458 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
459 {
460 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
461 ? hard_regno_nregs (regno, mode)
462 : 1);
463 PUT_MODE_RAW (x, mode);
464 set_regno_raw (x, regno, nregs);
465 }
466
467 /* Initialize a fresh REG rtx with mode MODE and register REGNO. */
468
469 rtx
470 init_raw_REG (rtx x, machine_mode mode, unsigned int regno)
471 {
472 set_mode_and_regno (x, mode, regno);
473 REG_ATTRS (x) = NULL;
474 ORIGINAL_REGNO (x) = regno;
475 return x;
476 }
477
478 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
479 don't attempt to share with the various global pieces of rtl (such as
480 frame_pointer_rtx). */
481
482 rtx
483 gen_raw_REG (machine_mode mode, unsigned int regno)
484 {
485 rtx x = rtx_alloc (REG MEM_STAT_INFO);
486 init_raw_REG (x, mode, regno);
487 return x;
488 }
489
490 /* There are some RTL codes that require special attention; the generation
491 functions do the raw handling. If you add to this list, modify
492 special_rtx in gengenrtl.c as well. */
493
494 rtx_expr_list *
495 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
496 {
497 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
498 expr_list));
499 }
500
501 rtx_insn_list *
502 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
503 {
504 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
505 insn_list));
506 }
507
508 rtx_insn *
509 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
510 basic_block bb, rtx pattern, int location, int code,
511 rtx reg_notes)
512 {
513 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
514 prev_insn, next_insn,
515 bb, pattern, location, code,
516 reg_notes));
517 }
518
519 rtx
520 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
521 {
522 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
523 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
524
525 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
526 if (const_true_rtx && arg == STORE_FLAG_VALUE)
527 return const_true_rtx;
528 #endif
529
530 /* Look up the CONST_INT in the hash table. */
531 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
532 INSERT);
533 if (*slot == 0)
534 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
535
536 return *slot;
537 }
538
539 rtx
540 gen_int_mode (poly_int64 c, machine_mode mode)
541 {
542 c = trunc_int_for_mode (c, mode);
543 if (c.is_constant ())
544 return GEN_INT (c.coeffs[0]);
545 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
546 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
547 }
548
549 /* CONST_DOUBLEs might be created from pairs of integers, or from
550 REAL_VALUE_TYPEs. Also, their length is known only at run time,
551 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
552
553 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
554 hash table. If so, return its counterpart; otherwise add it
555 to the hash table and return it. */
556 static rtx
557 lookup_const_double (rtx real)
558 {
559 rtx *slot = const_double_htab->find_slot (real, INSERT);
560 if (*slot == 0)
561 *slot = real;
562
563 return *slot;
564 }
565
566 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
567 VALUE in mode MODE. */
568 rtx
569 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
570 {
571 rtx real = rtx_alloc (CONST_DOUBLE);
572 PUT_MODE (real, mode);
573
574 real->u.rv = value;
575
576 return lookup_const_double (real);
577 }
578
579 /* Determine whether FIXED, a CONST_FIXED, already exists in the
580 hash table. If so, return its counterpart; otherwise add it
581 to the hash table and return it. */
582
583 static rtx
584 lookup_const_fixed (rtx fixed)
585 {
586 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
587 if (*slot == 0)
588 *slot = fixed;
589
590 return *slot;
591 }
592
593 /* Return a CONST_FIXED rtx for a fixed-point value specified by
594 VALUE in mode MODE. */
595
596 rtx
597 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
598 {
599 rtx fixed = rtx_alloc (CONST_FIXED);
600 PUT_MODE (fixed, mode);
601
602 fixed->u.fv = value;
603
604 return lookup_const_fixed (fixed);
605 }
606
607 #if TARGET_SUPPORTS_WIDE_INT == 0
608 /* Constructs double_int from rtx CST. */
609
610 double_int
611 rtx_to_double_int (const_rtx cst)
612 {
613 double_int r;
614
615 if (CONST_INT_P (cst))
616 r = double_int::from_shwi (INTVAL (cst));
617 else if (CONST_DOUBLE_AS_INT_P (cst))
618 {
619 r.low = CONST_DOUBLE_LOW (cst);
620 r.high = CONST_DOUBLE_HIGH (cst);
621 }
622 else
623 gcc_unreachable ();
624
625 return r;
626 }
627 #endif
628
629 #if TARGET_SUPPORTS_WIDE_INT
630 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
631 If so, return its counterpart; otherwise add it to the hash table and
632 return it. */
633
634 static rtx
635 lookup_const_wide_int (rtx wint)
636 {
637 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
638 if (*slot == 0)
639 *slot = wint;
640
641 return *slot;
642 }
643 #endif
644
645 /* Return an rtx constant for V, given that the constant has mode MODE.
646 The returned rtx will be a CONST_INT if V fits, otherwise it will be
647 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
648 (if TARGET_SUPPORTS_WIDE_INT). */
649
650 static rtx
651 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
652 {
653 unsigned int len = v.get_len ();
654 /* Not scalar_int_mode because we also allow pointer bound modes. */
655 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
656
657 /* Allow truncation but not extension since we do not know if the
658 number is signed or unsigned. */
659 gcc_assert (prec <= v.get_precision ());
660
661 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
662 return gen_int_mode (v.elt (0), mode);
663
664 #if TARGET_SUPPORTS_WIDE_INT
665 {
666 unsigned int i;
667 rtx value;
668 unsigned int blocks_needed
669 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
670
671 if (len > blocks_needed)
672 len = blocks_needed;
673
674 value = const_wide_int_alloc (len);
675
676 /* It is so tempting to just put the mode in here. Must control
677 myself ... */
678 PUT_MODE (value, VOIDmode);
679 CWI_PUT_NUM_ELEM (value, len);
680
681 for (i = 0; i < len; i++)
682 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
683
684 return lookup_const_wide_int (value);
685 }
686 #else
687 return immed_double_const (v.elt (0), v.elt (1), mode);
688 #endif
689 }
690
691 #if TARGET_SUPPORTS_WIDE_INT == 0
692 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
693 of ints: I0 is the low-order word and I1 is the high-order word.
694 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
695 implied upper bits are copies of the high bit of i1. The value
696 itself is neither signed nor unsigned. Do not use this routine for
697 non-integer modes; convert to REAL_VALUE_TYPE and use
698 const_double_from_real_value. */
699
700 rtx
701 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
702 {
703 rtx value;
704 unsigned int i;
705
706 /* There are the following cases (note that there are no modes with
707 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
708
709 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
710 gen_int_mode.
711 2) If the value of the integer fits into HOST_WIDE_INT anyway
712 (i.e., i1 consists only from copies of the sign bit, and sign
713 of i0 and i1 are the same), then we return a CONST_INT for i0.
714 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
715 scalar_mode smode;
716 if (is_a <scalar_mode> (mode, &smode)
717 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
718 return gen_int_mode (i0, mode);
719
720 /* If this integer fits in one word, return a CONST_INT. */
721 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
722 return GEN_INT (i0);
723
724 /* We use VOIDmode for integers. */
725 value = rtx_alloc (CONST_DOUBLE);
726 PUT_MODE (value, VOIDmode);
727
728 CONST_DOUBLE_LOW (value) = i0;
729 CONST_DOUBLE_HIGH (value) = i1;
730
731 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
732 XWINT (value, i) = 0;
733
734 return lookup_const_double (value);
735 }
736 #endif
737
738 /* Return an rtx representation of C in mode MODE. */
739
740 rtx
741 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
742 {
743 if (c.is_constant ())
744 return immed_wide_int_const_1 (c.coeffs[0], mode);
745
746 /* Not scalar_int_mode because we also allow pointer bound modes. */
747 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
748
749 /* Allow truncation but not extension since we do not know if the
750 number is signed or unsigned. */
751 gcc_assert (prec <= c.coeffs[0].get_precision ());
752 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
753
754 /* See whether we already have an rtx for this constant. */
755 inchash::hash h;
756 h.add_int (mode);
757 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
758 h.add_wide_int (newc.coeffs[i]);
759 const_poly_int_hasher::compare_type typed_value (mode, newc);
760 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
761 h.end (), INSERT);
762 rtx x = *slot;
763 if (x)
764 return x;
765
766 /* Create a new rtx. There's a choice to be made here between installing
767 the actual mode of the rtx or leaving it as VOIDmode (for consistency
768 with CONST_INT). In practice the handling of the codes is different
769 enough that we get no benefit from using VOIDmode, and various places
770 assume that VOIDmode implies CONST_INT. Using the real mode seems like
771 the right long-term direction anyway. */
772 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
773 size_t extra_size = twi::extra_size (prec);
774 x = rtx_alloc_v (CONST_POLY_INT,
775 sizeof (struct const_poly_int_def) + extra_size);
776 PUT_MODE (x, mode);
777 CONST_POLY_INT_COEFFS (x).set_precision (prec);
778 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
779 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
780
781 *slot = x;
782 return x;
783 }
784
785 rtx
786 gen_rtx_REG (machine_mode mode, unsigned int regno)
787 {
788 /* In case the MD file explicitly references the frame pointer, have
789 all such references point to the same frame pointer. This is
790 used during frame pointer elimination to distinguish the explicit
791 references to these registers from pseudos that happened to be
792 assigned to them.
793
794 If we have eliminated the frame pointer or arg pointer, we will
795 be using it as a normal register, for example as a spill
796 register. In such cases, we might be accessing it in a mode that
797 is not Pmode and therefore cannot use the pre-allocated rtx.
798
799 Also don't do this when we are making new REGs in reload, since
800 we don't want to get confused with the real pointers. */
801
802 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
803 {
804 if (regno == FRAME_POINTER_REGNUM
805 && (!reload_completed || frame_pointer_needed))
806 return frame_pointer_rtx;
807
808 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
809 && regno == HARD_FRAME_POINTER_REGNUM
810 && (!reload_completed || frame_pointer_needed))
811 return hard_frame_pointer_rtx;
812 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
813 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
814 && regno == ARG_POINTER_REGNUM)
815 return arg_pointer_rtx;
816 #endif
817 #ifdef RETURN_ADDRESS_POINTER_REGNUM
818 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
819 return return_address_pointer_rtx;
820 #endif
821 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
822 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
823 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
824 return pic_offset_table_rtx;
825 if (regno == STACK_POINTER_REGNUM)
826 return stack_pointer_rtx;
827 }
828
829 #if 0
830 /* If the per-function register table has been set up, try to re-use
831 an existing entry in that table to avoid useless generation of RTL.
832
833 This code is disabled for now until we can fix the various backends
834 which depend on having non-shared hard registers in some cases. Long
835 term we want to re-enable this code as it can significantly cut down
836 on the amount of useless RTL that gets generated.
837
838 We'll also need to fix some code that runs after reload that wants to
839 set ORIGINAL_REGNO. */
840
841 if (cfun
842 && cfun->emit
843 && regno_reg_rtx
844 && regno < FIRST_PSEUDO_REGISTER
845 && reg_raw_mode[regno] == mode)
846 return regno_reg_rtx[regno];
847 #endif
848
849 return gen_raw_REG (mode, regno);
850 }
851
852 rtx
853 gen_rtx_MEM (machine_mode mode, rtx addr)
854 {
855 rtx rt = gen_rtx_raw_MEM (mode, addr);
856
857 /* This field is not cleared by the mere allocation of the rtx, so
858 we clear it here. */
859 MEM_ATTRS (rt) = 0;
860
861 return rt;
862 }
863
864 /* Generate a memory referring to non-trapping constant memory. */
865
866 rtx
867 gen_const_mem (machine_mode mode, rtx addr)
868 {
869 rtx mem = gen_rtx_MEM (mode, addr);
870 MEM_READONLY_P (mem) = 1;
871 MEM_NOTRAP_P (mem) = 1;
872 return mem;
873 }
874
875 /* Generate a MEM referring to fixed portions of the frame, e.g., register
876 save areas. */
877
878 rtx
879 gen_frame_mem (machine_mode mode, rtx addr)
880 {
881 rtx mem = gen_rtx_MEM (mode, addr);
882 MEM_NOTRAP_P (mem) = 1;
883 set_mem_alias_set (mem, get_frame_alias_set ());
884 return mem;
885 }
886
887 /* Generate a MEM referring to a temporary use of the stack, not part
888 of the fixed stack frame. For example, something which is pushed
889 by a target splitter. */
890 rtx
891 gen_tmp_stack_mem (machine_mode mode, rtx addr)
892 {
893 rtx mem = gen_rtx_MEM (mode, addr);
894 MEM_NOTRAP_P (mem) = 1;
895 if (!cfun->calls_alloca)
896 set_mem_alias_set (mem, get_frame_alias_set ());
897 return mem;
898 }
899
900 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
901 this construct would be valid, and false otherwise. */
902
903 bool
904 validate_subreg (machine_mode omode, machine_mode imode,
905 const_rtx reg, poly_uint64 offset)
906 {
907 poly_uint64 isize = GET_MODE_SIZE (imode);
908 poly_uint64 osize = GET_MODE_SIZE (omode);
909
910 /* The sizes must be ordered, so that we know whether the subreg
911 is partial, paradoxical or complete. */
912 if (!ordered_p (isize, osize))
913 return false;
914
915 /* All subregs must be aligned. */
916 if (!multiple_p (offset, osize))
917 return false;
918
919 /* The subreg offset cannot be outside the inner object. */
920 if (maybe_ge (offset, isize))
921 return false;
922
923 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
924
925 /* ??? This should not be here. Temporarily continue to allow word_mode
926 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
927 Generally, backends are doing something sketchy but it'll take time to
928 fix them all. */
929 if (omode == word_mode)
930 ;
931 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
932 is the culprit here, and not the backends. */
933 else if (known_ge (osize, regsize) && known_ge (isize, osize))
934 ;
935 /* Allow component subregs of complex and vector. Though given the below
936 extraction rules, it's not always clear what that means. */
937 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
938 && GET_MODE_INNER (imode) == omode)
939 ;
940 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
941 i.e. (subreg:V4SF (reg:SF) 0) or (subreg:V4SF (reg:V2SF) 0). This
942 surely isn't the cleanest way to represent this. It's questionable
943 if this ought to be represented at all -- why can't this all be hidden
944 in post-reload splitters that make arbitrarily mode changes to the
945 registers themselves. */
946 else if (VECTOR_MODE_P (omode)
947 && GET_MODE_INNER (omode) == GET_MODE_INNER (imode))
948 ;
949 /* Subregs involving floating point modes are not allowed to
950 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
951 (subreg:SI (reg:DF) 0) isn't. */
952 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
953 {
954 if (! (known_eq (isize, osize)
955 /* LRA can use subreg to store a floating point value in
956 an integer mode. Although the floating point and the
957 integer modes need the same number of hard registers,
958 the size of floating point mode can be less than the
959 integer mode. LRA also uses subregs for a register
960 should be used in different mode in on insn. */
961 || lra_in_progress))
962 return false;
963 }
964
965 /* Paradoxical subregs must have offset zero. */
966 if (maybe_gt (osize, isize))
967 return known_eq (offset, 0U);
968
969 /* This is a normal subreg. Verify that the offset is representable. */
970
971 /* For hard registers, we already have most of these rules collected in
972 subreg_offset_representable_p. */
973 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
974 {
975 unsigned int regno = REGNO (reg);
976
977 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
978 && GET_MODE_INNER (imode) == omode)
979 ;
980 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
981 return false;
982
983 return subreg_offset_representable_p (regno, imode, offset, omode);
984 }
985
986 /* The outer size must be ordered wrt the register size, otherwise
987 we wouldn't know at compile time how many registers the outer
988 mode occupies. */
989 if (!ordered_p (osize, regsize))
990 return false;
991
992 /* For pseudo registers, we want most of the same checks. Namely:
993
994 Assume that the pseudo register will be allocated to hard registers
995 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
996 the remainder must correspond to the lowpart of the containing hard
997 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
998 otherwise it is at the lowest offset.
999
1000 Given that we've already checked the mode and offset alignment,
1001 we only have to check subblock subregs here. */
1002 if (maybe_lt (osize, regsize)
1003 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
1004 {
1005 /* It is invalid for the target to pick a register size for a mode
1006 that isn't ordered wrt to the size of that mode. */
1007 poly_uint64 block_size = ordered_min (isize, regsize);
1008 unsigned int start_reg;
1009 poly_uint64 offset_within_reg;
1010 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
1011 || (BYTES_BIG_ENDIAN
1012 ? maybe_ne (offset_within_reg, block_size - osize)
1013 : maybe_ne (offset_within_reg, 0U)))
1014 return false;
1015 }
1016 return true;
1017 }
1018
1019 rtx
1020 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
1021 {
1022 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
1023 return gen_rtx_raw_SUBREG (mode, reg, offset);
1024 }
1025
1026 /* Generate a SUBREG representing the least-significant part of REG if MODE
1027 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1028
1029 rtx
1030 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
1031 {
1032 machine_mode inmode;
1033
1034 inmode = GET_MODE (reg);
1035 if (inmode == VOIDmode)
1036 inmode = mode;
1037 return gen_rtx_SUBREG (mode, reg,
1038 subreg_lowpart_offset (mode, inmode));
1039 }
1040
1041 rtx
1042 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
1043 enum var_init_status status)
1044 {
1045 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1046 PAT_VAR_LOCATION_STATUS (x) = status;
1047 return x;
1048 }
1049 \f
1050
1051 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
1052
1053 rtvec
1054 gen_rtvec (int n, ...)
1055 {
1056 int i;
1057 rtvec rt_val;
1058 va_list p;
1059
1060 va_start (p, n);
1061
1062 /* Don't allocate an empty rtvec... */
1063 if (n == 0)
1064 {
1065 va_end (p);
1066 return NULL_RTVEC;
1067 }
1068
1069 rt_val = rtvec_alloc (n);
1070
1071 for (i = 0; i < n; i++)
1072 rt_val->elem[i] = va_arg (p, rtx);
1073
1074 va_end (p);
1075 return rt_val;
1076 }
1077
1078 rtvec
1079 gen_rtvec_v (int n, rtx *argp)
1080 {
1081 int i;
1082 rtvec rt_val;
1083
1084 /* Don't allocate an empty rtvec... */
1085 if (n == 0)
1086 return NULL_RTVEC;
1087
1088 rt_val = rtvec_alloc (n);
1089
1090 for (i = 0; i < n; i++)
1091 rt_val->elem[i] = *argp++;
1092
1093 return rt_val;
1094 }
1095
1096 rtvec
1097 gen_rtvec_v (int n, rtx_insn **argp)
1098 {
1099 int i;
1100 rtvec rt_val;
1101
1102 /* Don't allocate an empty rtvec... */
1103 if (n == 0)
1104 return NULL_RTVEC;
1105
1106 rt_val = rtvec_alloc (n);
1107
1108 for (i = 0; i < n; i++)
1109 rt_val->elem[i] = *argp++;
1110
1111 return rt_val;
1112 }
1113
1114 \f
1115 /* Return the number of bytes between the start of an OUTER_MODE
1116 in-memory value and the start of an INNER_MODE in-memory value,
1117 given that the former is a lowpart of the latter. It may be a
1118 paradoxical lowpart, in which case the offset will be negative
1119 on big-endian targets. */
1120
1121 poly_int64
1122 byte_lowpart_offset (machine_mode outer_mode,
1123 machine_mode inner_mode)
1124 {
1125 if (paradoxical_subreg_p (outer_mode, inner_mode))
1126 return -subreg_lowpart_offset (inner_mode, outer_mode);
1127 else
1128 return subreg_lowpart_offset (outer_mode, inner_mode);
1129 }
1130
1131 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1132 from address X. For paradoxical big-endian subregs this is a
1133 negative value, otherwise it's the same as OFFSET. */
1134
1135 poly_int64
1136 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1137 poly_uint64 offset)
1138 {
1139 if (paradoxical_subreg_p (outer_mode, inner_mode))
1140 {
1141 gcc_assert (known_eq (offset, 0U));
1142 return -subreg_lowpart_offset (inner_mode, outer_mode);
1143 }
1144 return offset;
1145 }
1146
1147 /* As above, but return the offset that existing subreg X would have
1148 if SUBREG_REG (X) were stored in memory. The only significant thing
1149 about the current SUBREG_REG is its mode. */
1150
1151 poly_int64
1152 subreg_memory_offset (const_rtx x)
1153 {
1154 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1155 SUBREG_BYTE (x));
1156 }
1157 \f
1158 /* Generate a REG rtx for a new pseudo register of mode MODE.
1159 This pseudo is assigned the next sequential register number. */
1160
1161 rtx
1162 gen_reg_rtx (machine_mode mode)
1163 {
1164 rtx val;
1165 unsigned int align = GET_MODE_ALIGNMENT (mode);
1166
1167 gcc_assert (can_create_pseudo_p ());
1168
1169 /* If a virtual register with bigger mode alignment is generated,
1170 increase stack alignment estimation because it might be spilled
1171 to stack later. */
1172 if (SUPPORTS_STACK_ALIGNMENT
1173 && crtl->stack_alignment_estimated < align
1174 && !crtl->stack_realign_processed)
1175 {
1176 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1177 if (crtl->stack_alignment_estimated < min_align)
1178 crtl->stack_alignment_estimated = min_align;
1179 }
1180
1181 if (generating_concat_p
1182 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1183 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1184 {
1185 /* For complex modes, don't make a single pseudo.
1186 Instead, make a CONCAT of two pseudos.
1187 This allows noncontiguous allocation of the real and imaginary parts,
1188 which makes much better code. Besides, allocating DCmode
1189 pseudos overstrains reload on some machines like the 386. */
1190 rtx realpart, imagpart;
1191 machine_mode partmode = GET_MODE_INNER (mode);
1192
1193 realpart = gen_reg_rtx (partmode);
1194 imagpart = gen_reg_rtx (partmode);
1195 return gen_rtx_CONCAT (mode, realpart, imagpart);
1196 }
1197
1198 /* Do not call gen_reg_rtx with uninitialized crtl. */
1199 gcc_assert (crtl->emit.regno_pointer_align_length);
1200
1201 crtl->emit.ensure_regno_capacity ();
1202 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1203
1204 val = gen_raw_REG (mode, reg_rtx_no);
1205 regno_reg_rtx[reg_rtx_no++] = val;
1206 return val;
1207 }
1208
1209 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1210 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1211
1212 void
1213 emit_status::ensure_regno_capacity ()
1214 {
1215 int old_size = regno_pointer_align_length;
1216
1217 if (reg_rtx_no < old_size)
1218 return;
1219
1220 int new_size = old_size * 2;
1221 while (reg_rtx_no >= new_size)
1222 new_size *= 2;
1223
1224 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1225 memset (tmp + old_size, 0, new_size - old_size);
1226 regno_pointer_align = (unsigned char *) tmp;
1227
1228 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1229 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1230 regno_reg_rtx = new1;
1231
1232 crtl->emit.regno_pointer_align_length = new_size;
1233 }
1234
1235 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1236
1237 bool
1238 reg_is_parm_p (rtx reg)
1239 {
1240 tree decl;
1241
1242 gcc_assert (REG_P (reg));
1243 decl = REG_EXPR (reg);
1244 return (decl && TREE_CODE (decl) == PARM_DECL);
1245 }
1246
1247 /* Update NEW with the same attributes as REG, but with OFFSET added
1248 to the REG_OFFSET. */
1249
1250 static void
1251 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
1252 {
1253 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1254 REG_OFFSET (reg) + offset);
1255 }
1256
1257 /* Generate a register with same attributes as REG, but with OFFSET
1258 added to the REG_OFFSET. */
1259
1260 rtx
1261 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1262 poly_int64 offset)
1263 {
1264 rtx new_rtx = gen_rtx_REG (mode, regno);
1265
1266 update_reg_offset (new_rtx, reg, offset);
1267 return new_rtx;
1268 }
1269
1270 /* Generate a new pseudo-register with the same attributes as REG, but
1271 with OFFSET added to the REG_OFFSET. */
1272
1273 rtx
1274 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1275 {
1276 rtx new_rtx = gen_reg_rtx (mode);
1277
1278 update_reg_offset (new_rtx, reg, offset);
1279 return new_rtx;
1280 }
1281
1282 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1283 new register is a (possibly paradoxical) lowpart of the old one. */
1284
1285 void
1286 adjust_reg_mode (rtx reg, machine_mode mode)
1287 {
1288 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1289 PUT_MODE (reg, mode);
1290 }
1291
1292 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1293 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1294
1295 void
1296 set_reg_attrs_from_value (rtx reg, rtx x)
1297 {
1298 poly_int64 offset;
1299 bool can_be_reg_pointer = true;
1300
1301 /* Don't call mark_reg_pointer for incompatible pointer sign
1302 extension. */
1303 while (GET_CODE (x) == SIGN_EXTEND
1304 || GET_CODE (x) == ZERO_EXTEND
1305 || GET_CODE (x) == TRUNCATE
1306 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1307 {
1308 #if defined(POINTERS_EXTEND_UNSIGNED)
1309 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1310 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1311 || (paradoxical_subreg_p (x)
1312 && ! (SUBREG_PROMOTED_VAR_P (x)
1313 && SUBREG_CHECK_PROMOTED_SIGN (x,
1314 POINTERS_EXTEND_UNSIGNED))))
1315 && !targetm.have_ptr_extend ())
1316 can_be_reg_pointer = false;
1317 #endif
1318 x = XEXP (x, 0);
1319 }
1320
1321 /* Hard registers can be reused for multiple purposes within the same
1322 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1323 on them is wrong. */
1324 if (HARD_REGISTER_P (reg))
1325 return;
1326
1327 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1328 if (MEM_P (x))
1329 {
1330 if (MEM_OFFSET_KNOWN_P (x))
1331 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1332 MEM_OFFSET (x) + offset);
1333 if (can_be_reg_pointer && MEM_POINTER (x))
1334 mark_reg_pointer (reg, 0);
1335 }
1336 else if (REG_P (x))
1337 {
1338 if (REG_ATTRS (x))
1339 update_reg_offset (reg, x, offset);
1340 if (can_be_reg_pointer && REG_POINTER (x))
1341 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1342 }
1343 }
1344
1345 /* Generate a REG rtx for a new pseudo register, copying the mode
1346 and attributes from X. */
1347
1348 rtx
1349 gen_reg_rtx_and_attrs (rtx x)
1350 {
1351 rtx reg = gen_reg_rtx (GET_MODE (x));
1352 set_reg_attrs_from_value (reg, x);
1353 return reg;
1354 }
1355
1356 /* Set the register attributes for registers contained in PARM_RTX.
1357 Use needed values from memory attributes of MEM. */
1358
1359 void
1360 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1361 {
1362 if (REG_P (parm_rtx))
1363 set_reg_attrs_from_value (parm_rtx, mem);
1364 else if (GET_CODE (parm_rtx) == PARALLEL)
1365 {
1366 /* Check for a NULL entry in the first slot, used to indicate that the
1367 parameter goes both on the stack and in registers. */
1368 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1369 for (; i < XVECLEN (parm_rtx, 0); i++)
1370 {
1371 rtx x = XVECEXP (parm_rtx, 0, i);
1372 if (REG_P (XEXP (x, 0)))
1373 REG_ATTRS (XEXP (x, 0))
1374 = get_reg_attrs (MEM_EXPR (mem),
1375 INTVAL (XEXP (x, 1)));
1376 }
1377 }
1378 }
1379
1380 /* Set the REG_ATTRS for registers in value X, given that X represents
1381 decl T. */
1382
1383 void
1384 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1385 {
1386 if (!t)
1387 return;
1388 tree tdecl = t;
1389 if (GET_CODE (x) == SUBREG)
1390 {
1391 gcc_assert (subreg_lowpart_p (x));
1392 x = SUBREG_REG (x);
1393 }
1394 if (REG_P (x))
1395 REG_ATTRS (x)
1396 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1397 DECL_P (tdecl)
1398 ? DECL_MODE (tdecl)
1399 : TYPE_MODE (TREE_TYPE (tdecl))));
1400 if (GET_CODE (x) == CONCAT)
1401 {
1402 if (REG_P (XEXP (x, 0)))
1403 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1404 if (REG_P (XEXP (x, 1)))
1405 REG_ATTRS (XEXP (x, 1))
1406 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1407 }
1408 if (GET_CODE (x) == PARALLEL)
1409 {
1410 int i, start;
1411
1412 /* Check for a NULL entry, used to indicate that the parameter goes
1413 both on the stack and in registers. */
1414 if (XEXP (XVECEXP (x, 0, 0), 0))
1415 start = 0;
1416 else
1417 start = 1;
1418
1419 for (i = start; i < XVECLEN (x, 0); i++)
1420 {
1421 rtx y = XVECEXP (x, 0, i);
1422 if (REG_P (XEXP (y, 0)))
1423 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1424 }
1425 }
1426 }
1427
1428 /* Assign the RTX X to declaration T. */
1429
1430 void
1431 set_decl_rtl (tree t, rtx x)
1432 {
1433 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1434 if (x)
1435 set_reg_attrs_for_decl_rtl (t, x);
1436 }
1437
1438 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1439 if the ABI requires the parameter to be passed by reference. */
1440
1441 void
1442 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1443 {
1444 DECL_INCOMING_RTL (t) = x;
1445 if (x && !by_reference_p)
1446 set_reg_attrs_for_decl_rtl (t, x);
1447 }
1448
1449 /* Identify REG (which may be a CONCAT) as a user register. */
1450
1451 void
1452 mark_user_reg (rtx reg)
1453 {
1454 if (GET_CODE (reg) == CONCAT)
1455 {
1456 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1457 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1458 }
1459 else
1460 {
1461 gcc_assert (REG_P (reg));
1462 REG_USERVAR_P (reg) = 1;
1463 }
1464 }
1465
1466 /* Identify REG as a probable pointer register and show its alignment
1467 as ALIGN, if nonzero. */
1468
1469 void
1470 mark_reg_pointer (rtx reg, int align)
1471 {
1472 if (! REG_POINTER (reg))
1473 {
1474 REG_POINTER (reg) = 1;
1475
1476 if (align)
1477 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1478 }
1479 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1480 /* We can no-longer be sure just how aligned this pointer is. */
1481 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1482 }
1483
1484 /* Return 1 plus largest pseudo reg number used in the current function. */
1485
1486 int
1487 max_reg_num (void)
1488 {
1489 return reg_rtx_no;
1490 }
1491
1492 /* Return 1 + the largest label number used so far in the current function. */
1493
1494 int
1495 max_label_num (void)
1496 {
1497 return label_num;
1498 }
1499
1500 /* Return first label number used in this function (if any were used). */
1501
1502 int
1503 get_first_label_num (void)
1504 {
1505 return first_label_num;
1506 }
1507
1508 /* If the rtx for label was created during the expansion of a nested
1509 function, then first_label_num won't include this label number.
1510 Fix this now so that array indices work later. */
1511
1512 void
1513 maybe_set_first_label_num (rtx_code_label *x)
1514 {
1515 if (CODE_LABEL_NUMBER (x) < first_label_num)
1516 first_label_num = CODE_LABEL_NUMBER (x);
1517 }
1518
1519 /* For use by the RTL function loader, when mingling with normal
1520 functions.
1521 Ensure that label_num is greater than the label num of X, to avoid
1522 duplicate labels in the generated assembler. */
1523
1524 void
1525 maybe_set_max_label_num (rtx_code_label *x)
1526 {
1527 if (CODE_LABEL_NUMBER (x) >= label_num)
1528 label_num = CODE_LABEL_NUMBER (x) + 1;
1529 }
1530
1531 \f
1532 /* Return a value representing some low-order bits of X, where the number
1533 of low-order bits is given by MODE. Note that no conversion is done
1534 between floating-point and fixed-point values, rather, the bit
1535 representation is returned.
1536
1537 This function handles the cases in common between gen_lowpart, below,
1538 and two variants in cse.c and combine.c. These are the cases that can
1539 be safely handled at all points in the compilation.
1540
1541 If this is not a case we can handle, return 0. */
1542
1543 rtx
1544 gen_lowpart_common (machine_mode mode, rtx x)
1545 {
1546 poly_uint64 msize = GET_MODE_SIZE (mode);
1547 machine_mode innermode;
1548
1549 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1550 so we have to make one up. Yuk. */
1551 innermode = GET_MODE (x);
1552 if (CONST_INT_P (x)
1553 && known_le (msize * BITS_PER_UNIT,
1554 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
1555 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1556 else if (innermode == VOIDmode)
1557 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
1558
1559 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1560
1561 if (innermode == mode)
1562 return x;
1563
1564 /* The size of the outer and inner modes must be ordered. */
1565 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1566 if (!ordered_p (msize, xsize))
1567 return 0;
1568
1569 if (SCALAR_FLOAT_MODE_P (mode))
1570 {
1571 /* Don't allow paradoxical FLOAT_MODE subregs. */
1572 if (maybe_gt (msize, xsize))
1573 return 0;
1574 }
1575 else
1576 {
1577 /* MODE must occupy no more of the underlying registers than X. */
1578 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1579 unsigned int mregs, xregs;
1580 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1581 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1582 || mregs > xregs)
1583 return 0;
1584 }
1585
1586 scalar_int_mode int_mode, int_innermode, from_mode;
1587 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1588 && is_a <scalar_int_mode> (mode, &int_mode)
1589 && is_a <scalar_int_mode> (innermode, &int_innermode)
1590 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1591 {
1592 /* If we are getting the low-order part of something that has been
1593 sign- or zero-extended, we can either just use the object being
1594 extended or make a narrower extension. If we want an even smaller
1595 piece than the size of the object being extended, call ourselves
1596 recursively.
1597
1598 This case is used mostly by combine and cse. */
1599
1600 if (from_mode == int_mode)
1601 return XEXP (x, 0);
1602 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1603 return gen_lowpart_common (int_mode, XEXP (x, 0));
1604 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1605 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1606 }
1607 else if (GET_CODE (x) == SUBREG || REG_P (x)
1608 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1609 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1610 || CONST_POLY_INT_P (x))
1611 return lowpart_subreg (mode, x, innermode);
1612
1613 /* Otherwise, we can't do this. */
1614 return 0;
1615 }
1616 \f
1617 rtx
1618 gen_highpart (machine_mode mode, rtx x)
1619 {
1620 poly_uint64 msize = GET_MODE_SIZE (mode);
1621 rtx result;
1622
1623 /* This case loses if X is a subreg. To catch bugs early,
1624 complain if an invalid MODE is used even in other cases. */
1625 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1626 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
1627
1628 /* gen_lowpart_common handles a lot of special cases due to needing to handle
1629 paradoxical subregs; it only calls simplify_gen_subreg when certain that
1630 it will produce something meaningful. The only case we need to handle
1631 specially here is MEM. */
1632 if (MEM_P (x))
1633 {
1634 poly_int64 offset = subreg_highpart_offset (mode, GET_MODE (x));
1635 return adjust_address (x, mode, offset);
1636 }
1637
1638 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1639 subreg_highpart_offset (mode, GET_MODE (x)));
1640 /* Since we handle MEM directly above, we should never get a MEM back
1641 from simplify_gen_subreg. */
1642 gcc_assert (result && !MEM_P (result));
1643
1644 return result;
1645 }
1646
1647 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1648 be VOIDmode constant. */
1649 rtx
1650 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1651 {
1652 if (GET_MODE (exp) != VOIDmode)
1653 {
1654 gcc_assert (GET_MODE (exp) == innermode);
1655 return gen_highpart (outermode, exp);
1656 }
1657 return simplify_gen_subreg (outermode, exp, innermode,
1658 subreg_highpart_offset (outermode, innermode));
1659 }
1660
1661 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1662 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1663
1664 poly_uint64
1665 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1666 {
1667 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1668 if (maybe_gt (outer_bytes, inner_bytes))
1669 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1670 return 0;
1671
1672 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1673 return inner_bytes - outer_bytes;
1674 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1675 return 0;
1676 else
1677 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1678 }
1679
1680 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1681 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1682
1683 poly_uint64
1684 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1685 {
1686 gcc_assert (known_ge (inner_bytes, outer_bytes));
1687
1688 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1689 return 0;
1690 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1691 return inner_bytes - outer_bytes;
1692 else
1693 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1694 (inner_bytes - outer_bytes)
1695 * BITS_PER_UNIT);
1696 }
1697
1698 /* Return 1 iff X, assumed to be a SUBREG,
1699 refers to the least significant part of its containing reg.
1700 If X is not a SUBREG, always return 1 (it is its own low part!). */
1701
1702 int
1703 subreg_lowpart_p (const_rtx x)
1704 {
1705 if (GET_CODE (x) != SUBREG)
1706 return 1;
1707 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1708 return 0;
1709
1710 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1711 GET_MODE (SUBREG_REG (x))),
1712 SUBREG_BYTE (x));
1713 }
1714 \f
1715 /* Return subword OFFSET of operand OP.
1716 The word number, OFFSET, is interpreted as the word number starting
1717 at the low-order address. OFFSET 0 is the low-order word if not
1718 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1719
1720 If we cannot extract the required word, we return zero. Otherwise,
1721 an rtx corresponding to the requested word will be returned.
1722
1723 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1724 reload has completed, a valid address will always be returned. After
1725 reload, if a valid address cannot be returned, we return zero.
1726
1727 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1728 it is the responsibility of the caller.
1729
1730 MODE is the mode of OP in case it is a CONST_INT.
1731
1732 ??? This is still rather broken for some cases. The problem for the
1733 moment is that all callers of this thing provide no 'goal mode' to
1734 tell us to work with. This exists because all callers were written
1735 in a word based SUBREG world.
1736 Now use of this function can be deprecated by simplify_subreg in most
1737 cases.
1738 */
1739
1740 rtx
1741 operand_subword (rtx op, poly_uint64 offset, int validate_address,
1742 machine_mode mode)
1743 {
1744 if (mode == VOIDmode)
1745 mode = GET_MODE (op);
1746
1747 gcc_assert (mode != VOIDmode);
1748
1749 /* If OP is narrower than a word, fail. */
1750 if (mode != BLKmode
1751 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1752 return 0;
1753
1754 /* If we want a word outside OP, return zero. */
1755 if (mode != BLKmode
1756 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
1757 return const0_rtx;
1758
1759 /* Form a new MEM at the requested address. */
1760 if (MEM_P (op))
1761 {
1762 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1763
1764 if (! validate_address)
1765 return new_rtx;
1766
1767 else if (reload_completed)
1768 {
1769 if (! strict_memory_address_addr_space_p (word_mode,
1770 XEXP (new_rtx, 0),
1771 MEM_ADDR_SPACE (op)))
1772 return 0;
1773 }
1774 else
1775 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1776 }
1777
1778 /* Rest can be handled by simplify_subreg. */
1779 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1780 }
1781
1782 /* Similar to `operand_subword', but never return 0. If we can't
1783 extract the required subword, put OP into a register and try again.
1784 The second attempt must succeed. We always validate the address in
1785 this case.
1786
1787 MODE is the mode of OP, in case it is CONST_INT. */
1788
1789 rtx
1790 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
1791 {
1792 rtx result = operand_subword (op, offset, 1, mode);
1793
1794 if (result)
1795 return result;
1796
1797 if (mode != BLKmode && mode != VOIDmode)
1798 {
1799 /* If this is a register which cannot be accessed by words, copy it
1800 to a pseudo register. */
1801 if (REG_P (op))
1802 op = copy_to_reg (op);
1803 else
1804 op = force_reg (mode, op);
1805 }
1806
1807 result = operand_subword (op, offset, 1, mode);
1808 gcc_assert (result);
1809
1810 return result;
1811 }
1812 \f
1813 mem_attrs::mem_attrs ()
1814 : expr (NULL_TREE),
1815 offset (0),
1816 size (0),
1817 alias (0),
1818 align (0),
1819 addrspace (ADDR_SPACE_GENERIC),
1820 offset_known_p (false),
1821 size_known_p (false)
1822 {}
1823
1824 /* Returns 1 if both MEM_EXPR can be considered equal
1825 and 0 otherwise. */
1826
1827 int
1828 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1829 {
1830 if (expr1 == expr2)
1831 return 1;
1832
1833 if (! expr1 || ! expr2)
1834 return 0;
1835
1836 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1837 return 0;
1838
1839 return operand_equal_p (expr1, expr2, 0);
1840 }
1841
1842 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1843 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1844 -1 if not known. */
1845
1846 int
1847 get_mem_align_offset (rtx mem, unsigned int align)
1848 {
1849 tree expr;
1850 poly_uint64 offset;
1851
1852 /* This function can't use
1853 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1854 || (MAX (MEM_ALIGN (mem),
1855 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1856 < align))
1857 return -1;
1858 else
1859 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1860 for two reasons:
1861 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1862 for <variable>. get_inner_reference doesn't handle it and
1863 even if it did, the alignment in that case needs to be determined
1864 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1865 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1866 isn't sufficiently aligned, the object it is in might be. */
1867 gcc_assert (MEM_P (mem));
1868 expr = MEM_EXPR (mem);
1869 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1870 return -1;
1871
1872 offset = MEM_OFFSET (mem);
1873 if (DECL_P (expr))
1874 {
1875 if (DECL_ALIGN (expr) < align)
1876 return -1;
1877 }
1878 else if (INDIRECT_REF_P (expr))
1879 {
1880 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1881 return -1;
1882 }
1883 else if (TREE_CODE (expr) == COMPONENT_REF)
1884 {
1885 while (1)
1886 {
1887 tree inner = TREE_OPERAND (expr, 0);
1888 tree field = TREE_OPERAND (expr, 1);
1889 tree byte_offset = component_ref_field_offset (expr);
1890 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1891
1892 poly_uint64 suboffset;
1893 if (!byte_offset
1894 || !poly_int_tree_p (byte_offset, &suboffset)
1895 || !tree_fits_uhwi_p (bit_offset))
1896 return -1;
1897
1898 offset += suboffset;
1899 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1900
1901 if (inner == NULL_TREE)
1902 {
1903 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1904 < (unsigned int) align)
1905 return -1;
1906 break;
1907 }
1908 else if (DECL_P (inner))
1909 {
1910 if (DECL_ALIGN (inner) < align)
1911 return -1;
1912 break;
1913 }
1914 else if (TREE_CODE (inner) != COMPONENT_REF)
1915 return -1;
1916 expr = inner;
1917 }
1918 }
1919 else
1920 return -1;
1921
1922 HOST_WIDE_INT misalign;
1923 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1924 return -1;
1925 return misalign;
1926 }
1927
1928 /* Given REF (a MEM) and T, either the type of X or the expression
1929 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1930 if we are making a new object of this type. BITPOS is nonzero if
1931 there is an offset outstanding on T that will be applied later. */
1932
1933 void
1934 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1935 poly_int64 bitpos)
1936 {
1937 poly_int64 apply_bitpos = 0;
1938 tree type;
1939 class mem_attrs attrs, *defattrs, *refattrs;
1940 addr_space_t as;
1941
1942 /* It can happen that type_for_mode was given a mode for which there
1943 is no language-level type. In which case it returns NULL, which
1944 we can see here. */
1945 if (t == NULL_TREE)
1946 return;
1947
1948 type = TYPE_P (t) ? t : TREE_TYPE (t);
1949 if (type == error_mark_node)
1950 return;
1951
1952 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1953 wrong answer, as it assumes that DECL_RTL already has the right alias
1954 info. Callers should not set DECL_RTL until after the call to
1955 set_mem_attributes. */
1956 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1957
1958 /* Get the alias set from the expression or type (perhaps using a
1959 front-end routine) and use it. */
1960 attrs.alias = get_alias_set (t);
1961
1962 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1963 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1964
1965 /* Default values from pre-existing memory attributes if present. */
1966 refattrs = MEM_ATTRS (ref);
1967 if (refattrs)
1968 {
1969 /* ??? Can this ever happen? Calling this routine on a MEM that
1970 already carries memory attributes should probably be invalid. */
1971 attrs.expr = refattrs->expr;
1972 attrs.offset_known_p = refattrs->offset_known_p;
1973 attrs.offset = refattrs->offset;
1974 attrs.size_known_p = refattrs->size_known_p;
1975 attrs.size = refattrs->size;
1976 attrs.align = refattrs->align;
1977 }
1978
1979 /* Otherwise, default values from the mode of the MEM reference. */
1980 else
1981 {
1982 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1983 gcc_assert (!defattrs->expr);
1984 gcc_assert (!defattrs->offset_known_p);
1985
1986 /* Respect mode size. */
1987 attrs.size_known_p = defattrs->size_known_p;
1988 attrs.size = defattrs->size;
1989 /* ??? Is this really necessary? We probably should always get
1990 the size from the type below. */
1991
1992 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1993 if T is an object, always compute the object alignment below. */
1994 if (TYPE_P (t))
1995 attrs.align = defattrs->align;
1996 else
1997 attrs.align = BITS_PER_UNIT;
1998 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1999 e.g. if the type carries an alignment attribute. Should we be
2000 able to simply always use TYPE_ALIGN? */
2001 }
2002
2003 /* We can set the alignment from the type if we are making an object or if
2004 this is an INDIRECT_REF. */
2005 if (objectp || TREE_CODE (t) == INDIRECT_REF)
2006 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
2007
2008 /* If the size is known, we can set that. */
2009 tree new_size = TYPE_SIZE_UNIT (type);
2010
2011 /* The address-space is that of the type. */
2012 as = TYPE_ADDR_SPACE (type);
2013
2014 /* If T is not a type, we may be able to deduce some more information about
2015 the expression. */
2016 if (! TYPE_P (t))
2017 {
2018 tree base;
2019
2020 if (TREE_THIS_VOLATILE (t))
2021 MEM_VOLATILE_P (ref) = 1;
2022
2023 /* Now remove any conversions: they don't change what the underlying
2024 object is. Likewise for SAVE_EXPR. */
2025 while (CONVERT_EXPR_P (t)
2026 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2027 || TREE_CODE (t) == SAVE_EXPR)
2028 t = TREE_OPERAND (t, 0);
2029
2030 /* Note whether this expression can trap. */
2031 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2032
2033 base = get_base_address (t);
2034 if (base)
2035 {
2036 if (DECL_P (base)
2037 && TREE_READONLY (base)
2038 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2039 && !TREE_THIS_VOLATILE (base))
2040 MEM_READONLY_P (ref) = 1;
2041
2042 /* Mark static const strings readonly as well. */
2043 if (TREE_CODE (base) == STRING_CST
2044 && TREE_READONLY (base)
2045 && TREE_STATIC (base))
2046 MEM_READONLY_P (ref) = 1;
2047
2048 /* Address-space information is on the base object. */
2049 if (TREE_CODE (base) == MEM_REF
2050 || TREE_CODE (base) == TARGET_MEM_REF)
2051 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2052 0))));
2053 else
2054 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2055 }
2056
2057 /* If this expression uses it's parent's alias set, mark it such
2058 that we won't change it. */
2059 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
2060 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2061
2062 /* If this is a decl, set the attributes of the MEM from it. */
2063 if (DECL_P (t))
2064 {
2065 attrs.expr = t;
2066 attrs.offset_known_p = true;
2067 attrs.offset = 0;
2068 apply_bitpos = bitpos;
2069 new_size = DECL_SIZE_UNIT (t);
2070 }
2071
2072 /* ??? If we end up with a constant or a descriptor do not
2073 record a MEM_EXPR. */
2074 else if (CONSTANT_CLASS_P (t)
2075 || TREE_CODE (t) == CONSTRUCTOR)
2076 ;
2077
2078 /* If this is a field reference, record it. */
2079 else if (TREE_CODE (t) == COMPONENT_REF)
2080 {
2081 attrs.expr = t;
2082 attrs.offset_known_p = true;
2083 attrs.offset = 0;
2084 apply_bitpos = bitpos;
2085 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2086 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
2087 }
2088
2089 /* Else record it. */
2090 else
2091 {
2092 gcc_assert (handled_component_p (t)
2093 || TREE_CODE (t) == MEM_REF
2094 || TREE_CODE (t) == TARGET_MEM_REF);
2095 attrs.expr = t;
2096 attrs.offset_known_p = true;
2097 attrs.offset = 0;
2098 apply_bitpos = bitpos;
2099 }
2100
2101 /* If this is a reference based on a partitioned decl replace the
2102 base with a MEM_REF of the pointer representative we created
2103 during stack slot partitioning. */
2104 if (attrs.expr
2105 && VAR_P (base)
2106 && ! is_global_var (base)
2107 && cfun->gimple_df->decls_to_pointers != NULL)
2108 {
2109 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
2110 if (namep)
2111 {
2112 attrs.expr = unshare_expr (attrs.expr);
2113 tree *orig_base = &attrs.expr;
2114 while (handled_component_p (*orig_base))
2115 orig_base = &TREE_OPERAND (*orig_base, 0);
2116 tree aptrt = reference_alias_ptr_type (*orig_base);
2117 *orig_base = build2 (MEM_REF, TREE_TYPE (*orig_base), *namep,
2118 build_int_cst (aptrt, 0));
2119 }
2120 }
2121
2122 /* Compute the alignment. */
2123 unsigned int obj_align;
2124 unsigned HOST_WIDE_INT obj_bitpos;
2125 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
2126 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2127 if (diff_align != 0)
2128 obj_align = MIN (obj_align, diff_align);
2129 attrs.align = MAX (attrs.align, obj_align);
2130 }
2131
2132 poly_uint64 const_size;
2133 if (poly_int_tree_p (new_size, &const_size))
2134 {
2135 attrs.size_known_p = true;
2136 attrs.size = const_size;
2137 }
2138
2139 /* If we modified OFFSET based on T, then subtract the outstanding
2140 bit position offset. Similarly, increase the size of the accessed
2141 object to contain the negative offset. */
2142 if (maybe_ne (apply_bitpos, 0))
2143 {
2144 gcc_assert (attrs.offset_known_p);
2145 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2146 attrs.offset -= bytepos;
2147 if (attrs.size_known_p)
2148 attrs.size += bytepos;
2149 }
2150
2151 /* Now set the attributes we computed above. */
2152 attrs.addrspace = as;
2153 set_mem_attrs (ref, &attrs);
2154 }
2155
2156 void
2157 set_mem_attributes (rtx ref, tree t, int objectp)
2158 {
2159 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2160 }
2161
2162 /* Set the alias set of MEM to SET. */
2163
2164 void
2165 set_mem_alias_set (rtx mem, alias_set_type set)
2166 {
2167 /* If the new and old alias sets don't conflict, something is wrong. */
2168 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2169 mem_attrs attrs (*get_mem_attrs (mem));
2170 attrs.alias = set;
2171 set_mem_attrs (mem, &attrs);
2172 }
2173
2174 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2175
2176 void
2177 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2178 {
2179 mem_attrs attrs (*get_mem_attrs (mem));
2180 attrs.addrspace = addrspace;
2181 set_mem_attrs (mem, &attrs);
2182 }
2183
2184 /* Set the alignment of MEM to ALIGN bits. */
2185
2186 void
2187 set_mem_align (rtx mem, unsigned int align)
2188 {
2189 mem_attrs attrs (*get_mem_attrs (mem));
2190 attrs.align = align;
2191 set_mem_attrs (mem, &attrs);
2192 }
2193
2194 /* Set the expr for MEM to EXPR. */
2195
2196 void
2197 set_mem_expr (rtx mem, tree expr)
2198 {
2199 mem_attrs attrs (*get_mem_attrs (mem));
2200 attrs.expr = expr;
2201 set_mem_attrs (mem, &attrs);
2202 }
2203
2204 /* Set the offset of MEM to OFFSET. */
2205
2206 void
2207 set_mem_offset (rtx mem, poly_int64 offset)
2208 {
2209 mem_attrs attrs (*get_mem_attrs (mem));
2210 attrs.offset_known_p = true;
2211 attrs.offset = offset;
2212 set_mem_attrs (mem, &attrs);
2213 }
2214
2215 /* Clear the offset of MEM. */
2216
2217 void
2218 clear_mem_offset (rtx mem)
2219 {
2220 mem_attrs attrs (*get_mem_attrs (mem));
2221 attrs.offset_known_p = false;
2222 set_mem_attrs (mem, &attrs);
2223 }
2224
2225 /* Set the size of MEM to SIZE. */
2226
2227 void
2228 set_mem_size (rtx mem, poly_int64 size)
2229 {
2230 mem_attrs attrs (*get_mem_attrs (mem));
2231 attrs.size_known_p = true;
2232 attrs.size = size;
2233 set_mem_attrs (mem, &attrs);
2234 }
2235
2236 /* Clear the size of MEM. */
2237
2238 void
2239 clear_mem_size (rtx mem)
2240 {
2241 mem_attrs attrs (*get_mem_attrs (mem));
2242 attrs.size_known_p = false;
2243 set_mem_attrs (mem, &attrs);
2244 }
2245 \f
2246 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2247 and its address changed to ADDR. (VOIDmode means don't change the mode.
2248 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2249 returned memory location is required to be valid. INPLACE is true if any
2250 changes can be made directly to MEMREF or false if MEMREF must be treated
2251 as immutable.
2252
2253 The memory attributes are not changed. */
2254
2255 static rtx
2256 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2257 bool inplace)
2258 {
2259 addr_space_t as;
2260 rtx new_rtx;
2261
2262 gcc_assert (MEM_P (memref));
2263 as = MEM_ADDR_SPACE (memref);
2264 if (mode == VOIDmode)
2265 mode = GET_MODE (memref);
2266 if (addr == 0)
2267 addr = XEXP (memref, 0);
2268 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2269 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2270 return memref;
2271
2272 /* Don't validate address for LRA. LRA can make the address valid
2273 by itself in most efficient way. */
2274 if (validate && !lra_in_progress)
2275 {
2276 if (reload_in_progress || reload_completed)
2277 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2278 else
2279 addr = memory_address_addr_space (mode, addr, as);
2280 }
2281
2282 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2283 return memref;
2284
2285 if (inplace)
2286 {
2287 XEXP (memref, 0) = addr;
2288 return memref;
2289 }
2290
2291 new_rtx = gen_rtx_MEM (mode, addr);
2292 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2293 return new_rtx;
2294 }
2295
2296 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2297 way we are changing MEMREF, so we only preserve the alias set. */
2298
2299 rtx
2300 change_address (rtx memref, machine_mode mode, rtx addr)
2301 {
2302 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2303 machine_mode mmode = GET_MODE (new_rtx);
2304 class mem_attrs *defattrs;
2305
2306 mem_attrs attrs (*get_mem_attrs (memref));
2307 defattrs = mode_mem_attrs[(int) mmode];
2308 attrs.expr = NULL_TREE;
2309 attrs.offset_known_p = false;
2310 attrs.size_known_p = defattrs->size_known_p;
2311 attrs.size = defattrs->size;
2312 attrs.align = defattrs->align;
2313
2314 /* If there are no changes, just return the original memory reference. */
2315 if (new_rtx == memref)
2316 {
2317 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2318 return new_rtx;
2319
2320 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2321 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2322 }
2323
2324 set_mem_attrs (new_rtx, &attrs);
2325 return new_rtx;
2326 }
2327
2328 /* Return a memory reference like MEMREF, but with its mode changed
2329 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2330 nonzero, the memory address is forced to be valid.
2331 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2332 and the caller is responsible for adjusting MEMREF base register.
2333 If ADJUST_OBJECT is zero, the underlying object associated with the
2334 memory reference is left unchanged and the caller is responsible for
2335 dealing with it. Otherwise, if the new memory reference is outside
2336 the underlying object, even partially, then the object is dropped.
2337 SIZE, if nonzero, is the size of an access in cases where MODE
2338 has no inherent size. */
2339
2340 rtx
2341 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
2342 int validate, int adjust_address, int adjust_object,
2343 poly_int64 size)
2344 {
2345 rtx addr = XEXP (memref, 0);
2346 rtx new_rtx;
2347 scalar_int_mode address_mode;
2348 class mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
2349 unsigned HOST_WIDE_INT max_align;
2350 #ifdef POINTERS_EXTEND_UNSIGNED
2351 scalar_int_mode pointer_mode
2352 = targetm.addr_space.pointer_mode (attrs.addrspace);
2353 #endif
2354
2355 /* VOIDmode means no mode change for change_address_1. */
2356 if (mode == VOIDmode)
2357 mode = GET_MODE (memref);
2358
2359 /* Take the size of non-BLKmode accesses from the mode. */
2360 defattrs = mode_mem_attrs[(int) mode];
2361 if (defattrs->size_known_p)
2362 size = defattrs->size;
2363
2364 /* If there are no changes, just return the original memory reference. */
2365 if (mode == GET_MODE (memref)
2366 && known_eq (offset, 0)
2367 && (known_eq (size, 0)
2368 || (attrs.size_known_p && known_eq (attrs.size, size)))
2369 && (!validate || memory_address_addr_space_p (mode, addr,
2370 attrs.addrspace)))
2371 return memref;
2372
2373 /* ??? Prefer to create garbage instead of creating shared rtl.
2374 This may happen even if offset is nonzero -- consider
2375 (plus (plus reg reg) const_int) -- so do this always. */
2376 addr = copy_rtx (addr);
2377
2378 /* Convert a possibly large offset to a signed value within the
2379 range of the target address space. */
2380 address_mode = get_address_mode (memref);
2381 offset = trunc_int_for_mode (offset, address_mode);
2382
2383 if (adjust_address)
2384 {
2385 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2386 object, we can merge it into the LO_SUM. */
2387 if (GET_MODE (memref) != BLKmode
2388 && GET_CODE (addr) == LO_SUM
2389 && known_in_range_p (offset,
2390 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2391 / BITS_PER_UNIT)))
2392 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2393 plus_constant (address_mode,
2394 XEXP (addr, 1), offset));
2395 #ifdef POINTERS_EXTEND_UNSIGNED
2396 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2397 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2398 the fact that pointers are not allowed to overflow. */
2399 else if (POINTERS_EXTEND_UNSIGNED > 0
2400 && GET_CODE (addr) == ZERO_EXTEND
2401 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2402 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
2403 addr = gen_rtx_ZERO_EXTEND (address_mode,
2404 plus_constant (pointer_mode,
2405 XEXP (addr, 0), offset));
2406 #endif
2407 else
2408 addr = plus_constant (address_mode, addr, offset);
2409 }
2410
2411 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2412
2413 /* If the address is a REG, change_address_1 rightfully returns memref,
2414 but this would destroy memref's MEM_ATTRS. */
2415 if (new_rtx == memref && maybe_ne (offset, 0))
2416 new_rtx = copy_rtx (new_rtx);
2417
2418 /* Conservatively drop the object if we don't know where we start from. */
2419 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2420 {
2421 attrs.expr = NULL_TREE;
2422 attrs.alias = 0;
2423 }
2424
2425 /* Compute the new values of the memory attributes due to this adjustment.
2426 We add the offsets and update the alignment. */
2427 if (attrs.offset_known_p)
2428 {
2429 attrs.offset += offset;
2430
2431 /* Drop the object if the new left end is not within its bounds. */
2432 if (adjust_object && maybe_lt (attrs.offset, 0))
2433 {
2434 attrs.expr = NULL_TREE;
2435 attrs.alias = 0;
2436 }
2437 }
2438
2439 /* Compute the new alignment by taking the MIN of the alignment and the
2440 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2441 if zero. */
2442 if (maybe_ne (offset, 0))
2443 {
2444 max_align = known_alignment (offset) * BITS_PER_UNIT;
2445 attrs.align = MIN (attrs.align, max_align);
2446 }
2447
2448 if (maybe_ne (size, 0))
2449 {
2450 /* Drop the object if the new right end is not within its bounds. */
2451 if (adjust_object && maybe_gt (offset + size, attrs.size))
2452 {
2453 attrs.expr = NULL_TREE;
2454 attrs.alias = 0;
2455 }
2456 attrs.size_known_p = true;
2457 attrs.size = size;
2458 }
2459 else if (attrs.size_known_p)
2460 {
2461 gcc_assert (!adjust_object);
2462 attrs.size -= offset;
2463 /* ??? The store_by_pieces machinery generates negative sizes,
2464 so don't assert for that here. */
2465 }
2466
2467 set_mem_attrs (new_rtx, &attrs);
2468
2469 return new_rtx;
2470 }
2471
2472 /* Return a memory reference like MEMREF, but with its mode changed
2473 to MODE and its address changed to ADDR, which is assumed to be
2474 MEMREF offset by OFFSET bytes. If VALIDATE is
2475 nonzero, the memory address is forced to be valid. */
2476
2477 rtx
2478 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2479 poly_int64 offset, int validate)
2480 {
2481 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2482 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2483 }
2484
2485 /* Return a memory reference like MEMREF, but whose address is changed by
2486 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2487 known to be in OFFSET (possibly 1). */
2488
2489 rtx
2490 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2491 {
2492 rtx new_rtx, addr = XEXP (memref, 0);
2493 machine_mode address_mode;
2494 class mem_attrs *defattrs;
2495
2496 mem_attrs attrs (*get_mem_attrs (memref));
2497 address_mode = get_address_mode (memref);
2498 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2499
2500 /* At this point we don't know _why_ the address is invalid. It
2501 could have secondary memory references, multiplies or anything.
2502
2503 However, if we did go and rearrange things, we can wind up not
2504 being able to recognize the magic around pic_offset_table_rtx.
2505 This stuff is fragile, and is yet another example of why it is
2506 bad to expose PIC machinery too early. */
2507 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2508 attrs.addrspace)
2509 && GET_CODE (addr) == PLUS
2510 && XEXP (addr, 0) == pic_offset_table_rtx)
2511 {
2512 addr = force_reg (GET_MODE (addr), addr);
2513 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2514 }
2515
2516 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2517 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2518
2519 /* If there are no changes, just return the original memory reference. */
2520 if (new_rtx == memref)
2521 return new_rtx;
2522
2523 /* Update the alignment to reflect the offset. Reset the offset, which
2524 we don't know. */
2525 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2526 attrs.offset_known_p = false;
2527 attrs.size_known_p = defattrs->size_known_p;
2528 attrs.size = defattrs->size;
2529 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2530 set_mem_attrs (new_rtx, &attrs);
2531 return new_rtx;
2532 }
2533
2534 /* Return a memory reference like MEMREF, but with its address changed to
2535 ADDR. The caller is asserting that the actual piece of memory pointed
2536 to is the same, just the form of the address is being changed, such as
2537 by putting something into a register. INPLACE is true if any changes
2538 can be made directly to MEMREF or false if MEMREF must be treated as
2539 immutable. */
2540
2541 rtx
2542 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2543 {
2544 /* change_address_1 copies the memory attribute structure without change
2545 and that's exactly what we want here. */
2546 update_temp_slot_address (XEXP (memref, 0), addr);
2547 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2548 }
2549
2550 /* Likewise, but the reference is not required to be valid. */
2551
2552 rtx
2553 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2554 {
2555 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2556 }
2557
2558 /* Return a memory reference like MEMREF, but with its mode widened to
2559 MODE and offset by OFFSET. This would be used by targets that e.g.
2560 cannot issue QImode memory operations and have to use SImode memory
2561 operations plus masking logic. */
2562
2563 rtx
2564 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
2565 {
2566 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2567 poly_uint64 size = GET_MODE_SIZE (mode);
2568
2569 /* If there are no changes, just return the original memory reference. */
2570 if (new_rtx == memref)
2571 return new_rtx;
2572
2573 mem_attrs attrs (*get_mem_attrs (new_rtx));
2574
2575 /* If we don't know what offset we were at within the expression, then
2576 we can't know if we've overstepped the bounds. */
2577 if (! attrs.offset_known_p)
2578 attrs.expr = NULL_TREE;
2579
2580 while (attrs.expr)
2581 {
2582 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2583 {
2584 tree field = TREE_OPERAND (attrs.expr, 1);
2585 tree offset = component_ref_field_offset (attrs.expr);
2586
2587 if (! DECL_SIZE_UNIT (field))
2588 {
2589 attrs.expr = NULL_TREE;
2590 break;
2591 }
2592
2593 /* Is the field at least as large as the access? If so, ok,
2594 otherwise strip back to the containing structure. */
2595 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2596 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2597 && known_ge (attrs.offset, 0))
2598 break;
2599
2600 poly_uint64 suboffset;
2601 if (!poly_int_tree_p (offset, &suboffset))
2602 {
2603 attrs.expr = NULL_TREE;
2604 break;
2605 }
2606
2607 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2608 attrs.offset += suboffset;
2609 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2610 / BITS_PER_UNIT);
2611 }
2612 /* Similarly for the decl. */
2613 else if (DECL_P (attrs.expr)
2614 && DECL_SIZE_UNIT (attrs.expr)
2615 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2616 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2617 size)
2618 && known_ge (attrs.offset, 0))
2619 break;
2620 else
2621 {
2622 /* The widened memory access overflows the expression, which means
2623 that it could alias another expression. Zap it. */
2624 attrs.expr = NULL_TREE;
2625 break;
2626 }
2627 }
2628
2629 if (! attrs.expr)
2630 attrs.offset_known_p = false;
2631
2632 /* The widened memory may alias other stuff, so zap the alias set. */
2633 /* ??? Maybe use get_alias_set on any remaining expression. */
2634 attrs.alias = 0;
2635 attrs.size_known_p = true;
2636 attrs.size = size;
2637 set_mem_attrs (new_rtx, &attrs);
2638 return new_rtx;
2639 }
2640 \f
2641 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2642 static GTY(()) tree spill_slot_decl;
2643
2644 tree
2645 get_spill_slot_decl (bool force_build_p)
2646 {
2647 tree d = spill_slot_decl;
2648 rtx rd;
2649
2650 if (d || !force_build_p)
2651 return d;
2652
2653 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2654 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2655 DECL_ARTIFICIAL (d) = 1;
2656 DECL_IGNORED_P (d) = 1;
2657 TREE_USED (d) = 1;
2658 spill_slot_decl = d;
2659
2660 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2661 MEM_NOTRAP_P (rd) = 1;
2662 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
2663 attrs.alias = new_alias_set ();
2664 attrs.expr = d;
2665 set_mem_attrs (rd, &attrs);
2666 SET_DECL_RTL (d, rd);
2667
2668 return d;
2669 }
2670
2671 /* Given MEM, a result from assign_stack_local, fill in the memory
2672 attributes as appropriate for a register allocator spill slot.
2673 These slots are not aliasable by other memory. We arrange for
2674 them all to use a single MEM_EXPR, so that the aliasing code can
2675 work properly in the case of shared spill slots. */
2676
2677 void
2678 set_mem_attrs_for_spill (rtx mem)
2679 {
2680 rtx addr;
2681
2682 mem_attrs attrs (*get_mem_attrs (mem));
2683 attrs.expr = get_spill_slot_decl (true);
2684 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2685 attrs.addrspace = ADDR_SPACE_GENERIC;
2686
2687 /* We expect the incoming memory to be of the form:
2688 (mem:MODE (plus (reg sfp) (const_int offset)))
2689 with perhaps the plus missing for offset = 0. */
2690 addr = XEXP (mem, 0);
2691 attrs.offset_known_p = true;
2692 strip_offset (addr, &attrs.offset);
2693
2694 set_mem_attrs (mem, &attrs);
2695 MEM_NOTRAP_P (mem) = 1;
2696 }
2697 \f
2698 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2699
2700 rtx_code_label *
2701 gen_label_rtx (void)
2702 {
2703 return as_a <rtx_code_label *> (
2704 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2705 NULL, label_num++, NULL));
2706 }
2707 \f
2708 /* For procedure integration. */
2709
2710 /* Install new pointers to the first and last insns in the chain.
2711 Also, set cur_insn_uid to one higher than the last in use.
2712 Used for an inline-procedure after copying the insn chain. */
2713
2714 void
2715 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2716 {
2717 rtx_insn *insn;
2718
2719 set_first_insn (first);
2720 set_last_insn (last);
2721 cur_insn_uid = 0;
2722
2723 if (param_min_nondebug_insn_uid || MAY_HAVE_DEBUG_INSNS)
2724 {
2725 int debug_count = 0;
2726
2727 cur_insn_uid = param_min_nondebug_insn_uid - 1;
2728 cur_debug_insn_uid = 0;
2729
2730 for (insn = first; insn; insn = NEXT_INSN (insn))
2731 if (INSN_UID (insn) < param_min_nondebug_insn_uid)
2732 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2733 else
2734 {
2735 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2736 if (DEBUG_INSN_P (insn))
2737 debug_count++;
2738 }
2739
2740 if (debug_count)
2741 cur_debug_insn_uid = param_min_nondebug_insn_uid + debug_count;
2742 else
2743 cur_debug_insn_uid++;
2744 }
2745 else
2746 for (insn = first; insn; insn = NEXT_INSN (insn))
2747 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2748
2749 cur_insn_uid++;
2750 }
2751 \f
2752 /* Go through all the RTL insn bodies and copy any invalid shared
2753 structure. This routine should only be called once. */
2754
2755 static void
2756 unshare_all_rtl_1 (rtx_insn *insn)
2757 {
2758 /* Unshare just about everything else. */
2759 unshare_all_rtl_in_chain (insn);
2760
2761 /* Make sure the addresses of stack slots found outside the insn chain
2762 (such as, in DECL_RTL of a variable) are not shared
2763 with the insn chain.
2764
2765 This special care is necessary when the stack slot MEM does not
2766 actually appear in the insn chain. If it does appear, its address
2767 is unshared from all else at that point. */
2768 unsigned int i;
2769 rtx temp;
2770 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2771 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2772 }
2773
2774 /* Go through all the RTL insn bodies and copy any invalid shared
2775 structure, again. This is a fairly expensive thing to do so it
2776 should be done sparingly. */
2777
2778 void
2779 unshare_all_rtl_again (rtx_insn *insn)
2780 {
2781 rtx_insn *p;
2782 tree decl;
2783
2784 for (p = insn; p; p = NEXT_INSN (p))
2785 if (INSN_P (p))
2786 {
2787 reset_used_flags (PATTERN (p));
2788 reset_used_flags (REG_NOTES (p));
2789 if (CALL_P (p))
2790 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2791 }
2792
2793 /* Make sure that virtual stack slots are not shared. */
2794 set_used_decls (DECL_INITIAL (cfun->decl));
2795
2796 /* Make sure that virtual parameters are not shared. */
2797 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2798 set_used_flags (DECL_RTL (decl));
2799
2800 rtx temp;
2801 unsigned int i;
2802 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2803 reset_used_flags (temp);
2804
2805 unshare_all_rtl_1 (insn);
2806 }
2807
2808 unsigned int
2809 unshare_all_rtl (void)
2810 {
2811 unshare_all_rtl_1 (get_insns ());
2812
2813 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2814 {
2815 if (DECL_RTL_SET_P (decl))
2816 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2817 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2818 }
2819
2820 return 0;
2821 }
2822
2823
2824 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2825 Recursively does the same for subexpressions. */
2826
2827 static void
2828 verify_rtx_sharing (rtx orig, rtx insn)
2829 {
2830 rtx x = orig;
2831 int i;
2832 enum rtx_code code;
2833 const char *format_ptr;
2834
2835 if (x == 0)
2836 return;
2837
2838 code = GET_CODE (x);
2839
2840 /* These types may be freely shared. */
2841
2842 switch (code)
2843 {
2844 case REG:
2845 case DEBUG_EXPR:
2846 case VALUE:
2847 CASE_CONST_ANY:
2848 case SYMBOL_REF:
2849 case LABEL_REF:
2850 case CODE_LABEL:
2851 case PC:
2852 case RETURN:
2853 case SIMPLE_RETURN:
2854 case SCRATCH:
2855 /* SCRATCH must be shared because they represent distinct values. */
2856 return;
2857 case CLOBBER:
2858 /* Share clobbers of hard registers, but do not share pseudo reg
2859 clobbers or clobbers of hard registers that originated as pseudos.
2860 This is needed to allow safe register renaming. */
2861 if (REG_P (XEXP (x, 0))
2862 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2863 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2864 return;
2865 break;
2866
2867 case CONST:
2868 if (shared_const_p (orig))
2869 return;
2870 break;
2871
2872 case MEM:
2873 /* A MEM is allowed to be shared if its address is constant. */
2874 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2875 || reload_completed || reload_in_progress)
2876 return;
2877
2878 break;
2879
2880 default:
2881 break;
2882 }
2883
2884 /* This rtx may not be shared. If it has already been seen,
2885 replace it with a copy of itself. */
2886 if (flag_checking && RTX_FLAG (x, used))
2887 {
2888 error ("invalid rtl sharing found in the insn");
2889 debug_rtx (insn);
2890 error ("shared rtx");
2891 debug_rtx (x);
2892 internal_error ("internal consistency failure");
2893 }
2894 gcc_assert (!RTX_FLAG (x, used));
2895
2896 RTX_FLAG (x, used) = 1;
2897
2898 /* Now scan the subexpressions recursively. */
2899
2900 format_ptr = GET_RTX_FORMAT (code);
2901
2902 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2903 {
2904 switch (*format_ptr++)
2905 {
2906 case 'e':
2907 verify_rtx_sharing (XEXP (x, i), insn);
2908 break;
2909
2910 case 'E':
2911 if (XVEC (x, i) != NULL)
2912 {
2913 int j;
2914 int len = XVECLEN (x, i);
2915
2916 for (j = 0; j < len; j++)
2917 {
2918 /* We allow sharing of ASM_OPERANDS inside single
2919 instruction. */
2920 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2921 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2922 == ASM_OPERANDS))
2923 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2924 else
2925 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2926 }
2927 }
2928 break;
2929 }
2930 }
2931 return;
2932 }
2933
2934 /* Reset used-flags for INSN. */
2935
2936 static void
2937 reset_insn_used_flags (rtx insn)
2938 {
2939 gcc_assert (INSN_P (insn));
2940 reset_used_flags (PATTERN (insn));
2941 reset_used_flags (REG_NOTES (insn));
2942 if (CALL_P (insn))
2943 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2944 }
2945
2946 /* Go through all the RTL insn bodies and clear all the USED bits. */
2947
2948 static void
2949 reset_all_used_flags (void)
2950 {
2951 rtx_insn *p;
2952
2953 for (p = get_insns (); p; p = NEXT_INSN (p))
2954 if (INSN_P (p))
2955 {
2956 rtx pat = PATTERN (p);
2957 if (GET_CODE (pat) != SEQUENCE)
2958 reset_insn_used_flags (p);
2959 else
2960 {
2961 gcc_assert (REG_NOTES (p) == NULL);
2962 for (int i = 0; i < XVECLEN (pat, 0); i++)
2963 {
2964 rtx insn = XVECEXP (pat, 0, i);
2965 if (INSN_P (insn))
2966 reset_insn_used_flags (insn);
2967 }
2968 }
2969 }
2970 }
2971
2972 /* Verify sharing in INSN. */
2973
2974 static void
2975 verify_insn_sharing (rtx insn)
2976 {
2977 gcc_assert (INSN_P (insn));
2978 verify_rtx_sharing (PATTERN (insn), insn);
2979 verify_rtx_sharing (REG_NOTES (insn), insn);
2980 if (CALL_P (insn))
2981 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2982 }
2983
2984 /* Go through all the RTL insn bodies and check that there is no unexpected
2985 sharing in between the subexpressions. */
2986
2987 DEBUG_FUNCTION void
2988 verify_rtl_sharing (void)
2989 {
2990 rtx_insn *p;
2991
2992 timevar_push (TV_VERIFY_RTL_SHARING);
2993
2994 reset_all_used_flags ();
2995
2996 for (p = get_insns (); p; p = NEXT_INSN (p))
2997 if (INSN_P (p))
2998 {
2999 rtx pat = PATTERN (p);
3000 if (GET_CODE (pat) != SEQUENCE)
3001 verify_insn_sharing (p);
3002 else
3003 for (int i = 0; i < XVECLEN (pat, 0); i++)
3004 {
3005 rtx insn = XVECEXP (pat, 0, i);
3006 if (INSN_P (insn))
3007 verify_insn_sharing (insn);
3008 }
3009 }
3010
3011 reset_all_used_flags ();
3012
3013 timevar_pop (TV_VERIFY_RTL_SHARING);
3014 }
3015
3016 /* Go through all the RTL insn bodies and copy any invalid shared structure.
3017 Assumes the mark bits are cleared at entry. */
3018
3019 void
3020 unshare_all_rtl_in_chain (rtx_insn *insn)
3021 {
3022 for (; insn; insn = NEXT_INSN (insn))
3023 if (INSN_P (insn))
3024 {
3025 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3026 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
3027 if (CALL_P (insn))
3028 CALL_INSN_FUNCTION_USAGE (insn)
3029 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
3030 }
3031 }
3032
3033 /* Go through all virtual stack slots of a function and mark them as
3034 shared. We never replace the DECL_RTLs themselves with a copy,
3035 but expressions mentioned into a DECL_RTL cannot be shared with
3036 expressions in the instruction stream.
3037
3038 Note that reload may convert pseudo registers into memories in-place.
3039 Pseudo registers are always shared, but MEMs never are. Thus if we
3040 reset the used flags on MEMs in the instruction stream, we must set
3041 them again on MEMs that appear in DECL_RTLs. */
3042
3043 static void
3044 set_used_decls (tree blk)
3045 {
3046 tree t;
3047
3048 /* Mark decls. */
3049 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
3050 if (DECL_RTL_SET_P (t))
3051 set_used_flags (DECL_RTL (t));
3052
3053 /* Now process sub-blocks. */
3054 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
3055 set_used_decls (t);
3056 }
3057
3058 /* Mark ORIG as in use, and return a copy of it if it was already in use.
3059 Recursively does the same for subexpressions. Uses
3060 copy_rtx_if_shared_1 to reduce stack space. */
3061
3062 rtx
3063 copy_rtx_if_shared (rtx orig)
3064 {
3065 copy_rtx_if_shared_1 (&orig);
3066 return orig;
3067 }
3068
3069 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3070 use. Recursively does the same for subexpressions. */
3071
3072 static void
3073 copy_rtx_if_shared_1 (rtx *orig1)
3074 {
3075 rtx x;
3076 int i;
3077 enum rtx_code code;
3078 rtx *last_ptr;
3079 const char *format_ptr;
3080 int copied = 0;
3081 int length;
3082
3083 /* Repeat is used to turn tail-recursion into iteration. */
3084 repeat:
3085 x = *orig1;
3086
3087 if (x == 0)
3088 return;
3089
3090 code = GET_CODE (x);
3091
3092 /* These types may be freely shared. */
3093
3094 switch (code)
3095 {
3096 case REG:
3097 case DEBUG_EXPR:
3098 case VALUE:
3099 CASE_CONST_ANY:
3100 case SYMBOL_REF:
3101 case LABEL_REF:
3102 case CODE_LABEL:
3103 case PC:
3104 case RETURN:
3105 case SIMPLE_RETURN:
3106 case SCRATCH:
3107 /* SCRATCH must be shared because they represent distinct values. */
3108 return;
3109 case CLOBBER:
3110 /* Share clobbers of hard registers, but do not share pseudo reg
3111 clobbers or clobbers of hard registers that originated as pseudos.
3112 This is needed to allow safe register renaming. */
3113 if (REG_P (XEXP (x, 0))
3114 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3115 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3116 return;
3117 break;
3118
3119 case CONST:
3120 if (shared_const_p (x))
3121 return;
3122 break;
3123
3124 case DEBUG_INSN:
3125 case INSN:
3126 case JUMP_INSN:
3127 case CALL_INSN:
3128 case NOTE:
3129 case BARRIER:
3130 /* The chain of insns is not being copied. */
3131 return;
3132
3133 default:
3134 break;
3135 }
3136
3137 /* This rtx may not be shared. If it has already been seen,
3138 replace it with a copy of itself. */
3139
3140 if (RTX_FLAG (x, used))
3141 {
3142 x = shallow_copy_rtx (x);
3143 copied = 1;
3144 }
3145 RTX_FLAG (x, used) = 1;
3146
3147 /* Now scan the subexpressions recursively.
3148 We can store any replaced subexpressions directly into X
3149 since we know X is not shared! Any vectors in X
3150 must be copied if X was copied. */
3151
3152 format_ptr = GET_RTX_FORMAT (code);
3153 length = GET_RTX_LENGTH (code);
3154 last_ptr = NULL;
3155
3156 for (i = 0; i < length; i++)
3157 {
3158 switch (*format_ptr++)
3159 {
3160 case 'e':
3161 if (last_ptr)
3162 copy_rtx_if_shared_1 (last_ptr);
3163 last_ptr = &XEXP (x, i);
3164 break;
3165
3166 case 'E':
3167 if (XVEC (x, i) != NULL)
3168 {
3169 int j;
3170 int len = XVECLEN (x, i);
3171
3172 /* Copy the vector iff I copied the rtx and the length
3173 is nonzero. */
3174 if (copied && len > 0)
3175 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3176
3177 /* Call recursively on all inside the vector. */
3178 for (j = 0; j < len; j++)
3179 {
3180 if (last_ptr)
3181 copy_rtx_if_shared_1 (last_ptr);
3182 last_ptr = &XVECEXP (x, i, j);
3183 }
3184 }
3185 break;
3186 }
3187 }
3188 *orig1 = x;
3189 if (last_ptr)
3190 {
3191 orig1 = last_ptr;
3192 goto repeat;
3193 }
3194 return;
3195 }
3196
3197 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3198
3199 static void
3200 mark_used_flags (rtx x, int flag)
3201 {
3202 int i, j;
3203 enum rtx_code code;
3204 const char *format_ptr;
3205 int length;
3206
3207 /* Repeat is used to turn tail-recursion into iteration. */
3208 repeat:
3209 if (x == 0)
3210 return;
3211
3212 code = GET_CODE (x);
3213
3214 /* These types may be freely shared so we needn't do any resetting
3215 for them. */
3216
3217 switch (code)
3218 {
3219 case REG:
3220 case DEBUG_EXPR:
3221 case VALUE:
3222 CASE_CONST_ANY:
3223 case SYMBOL_REF:
3224 case CODE_LABEL:
3225 case PC:
3226 case RETURN:
3227 case SIMPLE_RETURN:
3228 return;
3229
3230 case DEBUG_INSN:
3231 case INSN:
3232 case JUMP_INSN:
3233 case CALL_INSN:
3234 case NOTE:
3235 case LABEL_REF:
3236 case BARRIER:
3237 /* The chain of insns is not being copied. */
3238 return;
3239
3240 default:
3241 break;
3242 }
3243
3244 RTX_FLAG (x, used) = flag;
3245
3246 format_ptr = GET_RTX_FORMAT (code);
3247 length = GET_RTX_LENGTH (code);
3248
3249 for (i = 0; i < length; i++)
3250 {
3251 switch (*format_ptr++)
3252 {
3253 case 'e':
3254 if (i == length-1)
3255 {
3256 x = XEXP (x, i);
3257 goto repeat;
3258 }
3259 mark_used_flags (XEXP (x, i), flag);
3260 break;
3261
3262 case 'E':
3263 for (j = 0; j < XVECLEN (x, i); j++)
3264 mark_used_flags (XVECEXP (x, i, j), flag);
3265 break;
3266 }
3267 }
3268 }
3269
3270 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3271 to look for shared sub-parts. */
3272
3273 void
3274 reset_used_flags (rtx x)
3275 {
3276 mark_used_flags (x, 0);
3277 }
3278
3279 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3280 to look for shared sub-parts. */
3281
3282 void
3283 set_used_flags (rtx x)
3284 {
3285 mark_used_flags (x, 1);
3286 }
3287 \f
3288 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3289 Return X or the rtx for the pseudo reg the value of X was copied into.
3290 OTHER must be valid as a SET_DEST. */
3291
3292 rtx
3293 make_safe_from (rtx x, rtx other)
3294 {
3295 while (1)
3296 switch (GET_CODE (other))
3297 {
3298 case SUBREG:
3299 other = SUBREG_REG (other);
3300 break;
3301 case STRICT_LOW_PART:
3302 case SIGN_EXTEND:
3303 case ZERO_EXTEND:
3304 other = XEXP (other, 0);
3305 break;
3306 default:
3307 goto done;
3308 }
3309 done:
3310 if ((MEM_P (other)
3311 && ! CONSTANT_P (x)
3312 && !REG_P (x)
3313 && GET_CODE (x) != SUBREG)
3314 || (REG_P (other)
3315 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3316 || reg_mentioned_p (other, x))))
3317 {
3318 rtx temp = gen_reg_rtx (GET_MODE (x));
3319 emit_move_insn (temp, x);
3320 return temp;
3321 }
3322 return x;
3323 }
3324 \f
3325 /* Emission of insns (adding them to the doubly-linked list). */
3326
3327 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3328
3329 rtx_insn *
3330 get_last_insn_anywhere (void)
3331 {
3332 struct sequence_stack *seq;
3333 for (seq = get_current_sequence (); seq; seq = seq->next)
3334 if (seq->last != 0)
3335 return seq->last;
3336 return 0;
3337 }
3338
3339 /* Return the first nonnote insn emitted in current sequence or current
3340 function. This routine looks inside SEQUENCEs. */
3341
3342 rtx_insn *
3343 get_first_nonnote_insn (void)
3344 {
3345 rtx_insn *insn = get_insns ();
3346
3347 if (insn)
3348 {
3349 if (NOTE_P (insn))
3350 for (insn = next_insn (insn);
3351 insn && NOTE_P (insn);
3352 insn = next_insn (insn))
3353 continue;
3354 else
3355 {
3356 if (NONJUMP_INSN_P (insn)
3357 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3358 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3359 }
3360 }
3361
3362 return insn;
3363 }
3364
3365 /* Return the last nonnote insn emitted in current sequence or current
3366 function. This routine looks inside SEQUENCEs. */
3367
3368 rtx_insn *
3369 get_last_nonnote_insn (void)
3370 {
3371 rtx_insn *insn = get_last_insn ();
3372
3373 if (insn)
3374 {
3375 if (NOTE_P (insn))
3376 for (insn = previous_insn (insn);
3377 insn && NOTE_P (insn);
3378 insn = previous_insn (insn))
3379 continue;
3380 else
3381 {
3382 if (NONJUMP_INSN_P (insn))
3383 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3384 insn = seq->insn (seq->len () - 1);
3385 }
3386 }
3387
3388 return insn;
3389 }
3390
3391 /* Return the number of actual (non-debug) insns emitted in this
3392 function. */
3393
3394 int
3395 get_max_insn_count (void)
3396 {
3397 int n = cur_insn_uid;
3398
3399 /* The table size must be stable across -g, to avoid codegen
3400 differences due to debug insns, and not be affected by
3401 -fmin-insn-uid, to avoid excessive table size and to simplify
3402 debugging of -fcompare-debug failures. */
3403 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
3404 n -= cur_debug_insn_uid;
3405 else
3406 n -= param_min_nondebug_insn_uid;
3407
3408 return n;
3409 }
3410
3411 \f
3412 /* Return the next insn. If it is a SEQUENCE, return the first insn
3413 of the sequence. */
3414
3415 rtx_insn *
3416 next_insn (rtx_insn *insn)
3417 {
3418 if (insn)
3419 {
3420 insn = NEXT_INSN (insn);
3421 if (insn && NONJUMP_INSN_P (insn)
3422 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3423 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3424 }
3425
3426 return insn;
3427 }
3428
3429 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3430 of the sequence. */
3431
3432 rtx_insn *
3433 previous_insn (rtx_insn *insn)
3434 {
3435 if (insn)
3436 {
3437 insn = PREV_INSN (insn);
3438 if (insn && NONJUMP_INSN_P (insn))
3439 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3440 insn = seq->insn (seq->len () - 1);
3441 }
3442
3443 return insn;
3444 }
3445
3446 /* Return the next insn after INSN that is not a NOTE. This routine does not
3447 look inside SEQUENCEs. */
3448
3449 rtx_insn *
3450 next_nonnote_insn (rtx_insn *insn)
3451 {
3452 while (insn)
3453 {
3454 insn = NEXT_INSN (insn);
3455 if (insn == 0 || !NOTE_P (insn))
3456 break;
3457 }
3458
3459 return insn;
3460 }
3461
3462 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3463 routine does not look inside SEQUENCEs. */
3464
3465 rtx_insn *
3466 next_nondebug_insn (rtx_insn *insn)
3467 {
3468 while (insn)
3469 {
3470 insn = NEXT_INSN (insn);
3471 if (insn == 0 || !DEBUG_INSN_P (insn))
3472 break;
3473 }
3474
3475 return insn;
3476 }
3477
3478 /* Return the previous insn before INSN that is not a NOTE. This routine does
3479 not look inside SEQUENCEs. */
3480
3481 rtx_insn *
3482 prev_nonnote_insn (rtx_insn *insn)
3483 {
3484 while (insn)
3485 {
3486 insn = PREV_INSN (insn);
3487 if (insn == 0 || !NOTE_P (insn))
3488 break;
3489 }
3490
3491 return insn;
3492 }
3493
3494 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3495 This routine does not look inside SEQUENCEs. */
3496
3497 rtx_insn *
3498 prev_nondebug_insn (rtx_insn *insn)
3499 {
3500 while (insn)
3501 {
3502 insn = PREV_INSN (insn);
3503 if (insn == 0 || !DEBUG_INSN_P (insn))
3504 break;
3505 }
3506
3507 return insn;
3508 }
3509
3510 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3511 This routine does not look inside SEQUENCEs. */
3512
3513 rtx_insn *
3514 next_nonnote_nondebug_insn (rtx_insn *insn)
3515 {
3516 while (insn)
3517 {
3518 insn = NEXT_INSN (insn);
3519 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3520 break;
3521 }
3522
3523 return insn;
3524 }
3525
3526 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3527 but stop the search before we enter another basic block. This
3528 routine does not look inside SEQUENCEs. */
3529
3530 rtx_insn *
3531 next_nonnote_nondebug_insn_bb (rtx_insn *insn)
3532 {
3533 while (insn)
3534 {
3535 insn = NEXT_INSN (insn);
3536 if (insn == 0)
3537 break;
3538 if (DEBUG_INSN_P (insn))
3539 continue;
3540 if (!NOTE_P (insn))
3541 break;
3542 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3543 return NULL;
3544 }
3545
3546 return insn;
3547 }
3548
3549 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3550 This routine does not look inside SEQUENCEs. */
3551
3552 rtx_insn *
3553 prev_nonnote_nondebug_insn (rtx_insn *insn)
3554 {
3555 while (insn)
3556 {
3557 insn = PREV_INSN (insn);
3558 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3559 break;
3560 }
3561
3562 return insn;
3563 }
3564
3565 /* Return the previous insn before INSN that is not a NOTE nor
3566 DEBUG_INSN, but stop the search before we enter another basic
3567 block. This routine does not look inside SEQUENCEs. */
3568
3569 rtx_insn *
3570 prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
3571 {
3572 while (insn)
3573 {
3574 insn = PREV_INSN (insn);
3575 if (insn == 0)
3576 break;
3577 if (DEBUG_INSN_P (insn))
3578 continue;
3579 if (!NOTE_P (insn))
3580 break;
3581 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3582 return NULL;
3583 }
3584
3585 return insn;
3586 }
3587
3588 /* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
3589 or 0, if there is none. This routine does not look inside
3590 SEQUENCEs. */
3591
3592 rtx_insn *
3593 next_real_insn (rtx_insn *insn)
3594 {
3595 while (insn)
3596 {
3597 insn = NEXT_INSN (insn);
3598 if (insn == 0 || INSN_P (insn))
3599 break;
3600 }
3601
3602 return insn;
3603 }
3604
3605 /* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
3606 or 0, if there is none. This routine does not look inside
3607 SEQUENCEs. */
3608
3609 rtx_insn *
3610 prev_real_insn (rtx_insn *insn)
3611 {
3612 while (insn)
3613 {
3614 insn = PREV_INSN (insn);
3615 if (insn == 0 || INSN_P (insn))
3616 break;
3617 }
3618
3619 return insn;
3620 }
3621
3622 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3623 or 0, if there is none. This routine does not look inside
3624 SEQUENCEs. */
3625
3626 rtx_insn *
3627 next_real_nondebug_insn (rtx uncast_insn)
3628 {
3629 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3630
3631 while (insn)
3632 {
3633 insn = NEXT_INSN (insn);
3634 if (insn == 0 || NONDEBUG_INSN_P (insn))
3635 break;
3636 }
3637
3638 return insn;
3639 }
3640
3641 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3642 or 0, if there is none. This routine does not look inside
3643 SEQUENCEs. */
3644
3645 rtx_insn *
3646 prev_real_nondebug_insn (rtx_insn *insn)
3647 {
3648 while (insn)
3649 {
3650 insn = PREV_INSN (insn);
3651 if (insn == 0 || NONDEBUG_INSN_P (insn))
3652 break;
3653 }
3654
3655 return insn;
3656 }
3657
3658 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3659 This routine does not look inside SEQUENCEs. */
3660
3661 rtx_call_insn *
3662 last_call_insn (void)
3663 {
3664 rtx_insn *insn;
3665
3666 for (insn = get_last_insn ();
3667 insn && !CALL_P (insn);
3668 insn = PREV_INSN (insn))
3669 ;
3670
3671 return safe_as_a <rtx_call_insn *> (insn);
3672 }
3673
3674 /* Find the next insn after INSN that really does something. This routine
3675 does not look inside SEQUENCEs. After reload this also skips over
3676 standalone USE and CLOBBER insn. */
3677
3678 int
3679 active_insn_p (const rtx_insn *insn)
3680 {
3681 return (CALL_P (insn) || JUMP_P (insn)
3682 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3683 || (NONJUMP_INSN_P (insn)
3684 && (! reload_completed
3685 || (GET_CODE (PATTERN (insn)) != USE
3686 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3687 }
3688
3689 rtx_insn *
3690 next_active_insn (rtx_insn *insn)
3691 {
3692 while (insn)
3693 {
3694 insn = NEXT_INSN (insn);
3695 if (insn == 0 || active_insn_p (insn))
3696 break;
3697 }
3698
3699 return insn;
3700 }
3701
3702 /* Find the last insn before INSN that really does something. This routine
3703 does not look inside SEQUENCEs. After reload this also skips over
3704 standalone USE and CLOBBER insn. */
3705
3706 rtx_insn *
3707 prev_active_insn (rtx_insn *insn)
3708 {
3709 while (insn)
3710 {
3711 insn = PREV_INSN (insn);
3712 if (insn == 0 || active_insn_p (insn))
3713 break;
3714 }
3715
3716 return insn;
3717 }
3718 \f
3719 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3720
3721 static int
3722 find_auto_inc (const_rtx x, const_rtx reg)
3723 {
3724 subrtx_iterator::array_type array;
3725 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3726 {
3727 const_rtx x = *iter;
3728 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3729 && rtx_equal_p (reg, XEXP (x, 0)))
3730 return true;
3731 }
3732 return false;
3733 }
3734
3735 /* Increment the label uses for all labels present in rtx. */
3736
3737 static void
3738 mark_label_nuses (rtx x)
3739 {
3740 enum rtx_code code;
3741 int i, j;
3742 const char *fmt;
3743
3744 code = GET_CODE (x);
3745 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3746 LABEL_NUSES (label_ref_label (x))++;
3747
3748 fmt = GET_RTX_FORMAT (code);
3749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3750 {
3751 if (fmt[i] == 'e')
3752 mark_label_nuses (XEXP (x, i));
3753 else if (fmt[i] == 'E')
3754 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3755 mark_label_nuses (XVECEXP (x, i, j));
3756 }
3757 }
3758
3759 \f
3760 /* Try splitting insns that can be split for better scheduling.
3761 PAT is the pattern which might split.
3762 TRIAL is the insn providing PAT.
3763 LAST is nonzero if we should return the last insn of the sequence produced.
3764
3765 If this routine succeeds in splitting, it returns the first or last
3766 replacement insn depending on the value of LAST. Otherwise, it
3767 returns TRIAL. If the insn to be returned can be split, it will be. */
3768
3769 rtx_insn *
3770 try_split (rtx pat, rtx_insn *trial, int last)
3771 {
3772 rtx_insn *before, *after;
3773 rtx note;
3774 rtx_insn *seq, *tem;
3775 profile_probability probability;
3776 rtx_insn *insn_last, *insn;
3777 int njumps = 0;
3778 rtx_insn *call_insn = NULL;
3779
3780 if (any_condjump_p (trial)
3781 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3782 split_branch_probability
3783 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3784 else
3785 split_branch_probability = profile_probability::uninitialized ();
3786
3787 probability = split_branch_probability;
3788
3789 seq = split_insns (pat, trial);
3790
3791 split_branch_probability = profile_probability::uninitialized ();
3792
3793 if (!seq)
3794 return trial;
3795
3796 int split_insn_count = 0;
3797 /* Avoid infinite loop if any insn of the result matches
3798 the original pattern. */
3799 insn_last = seq;
3800 while (1)
3801 {
3802 if (INSN_P (insn_last)
3803 && rtx_equal_p (PATTERN (insn_last), pat))
3804 return trial;
3805 split_insn_count++;
3806 if (!NEXT_INSN (insn_last))
3807 break;
3808 insn_last = NEXT_INSN (insn_last);
3809 }
3810
3811 /* We're not good at redistributing frame information if
3812 the split occurs before reload or if it results in more
3813 than one insn. */
3814 if (RTX_FRAME_RELATED_P (trial))
3815 {
3816 if (!reload_completed || split_insn_count != 1)
3817 return trial;
3818
3819 rtx_insn *new_insn = seq;
3820 rtx_insn *old_insn = trial;
3821 copy_frame_info_to_split_insn (old_insn, new_insn);
3822 }
3823
3824 /* We will be adding the new sequence to the function. The splitters
3825 may have introduced invalid RTL sharing, so unshare the sequence now. */
3826 unshare_all_rtl_in_chain (seq);
3827
3828 /* Mark labels and copy flags. */
3829 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3830 {
3831 if (JUMP_P (insn))
3832 {
3833 if (JUMP_P (trial))
3834 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3835 mark_jump_label (PATTERN (insn), insn, 0);
3836 njumps++;
3837 if (probability.initialized_p ()
3838 && any_condjump_p (insn)
3839 && !find_reg_note (insn, REG_BR_PROB, 0))
3840 {
3841 /* We can preserve the REG_BR_PROB notes only if exactly
3842 one jump is created, otherwise the machine description
3843 is responsible for this step using
3844 split_branch_probability variable. */
3845 gcc_assert (njumps == 1);
3846 add_reg_br_prob_note (insn, probability);
3847 }
3848 }
3849 }
3850
3851 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3852 in SEQ and copy any additional information across. */
3853 if (CALL_P (trial))
3854 {
3855 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3856 if (CALL_P (insn))
3857 {
3858 gcc_assert (call_insn == NULL_RTX);
3859 call_insn = insn;
3860
3861 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3862 target may have explicitly specified. */
3863 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3864 while (*p)
3865 p = &XEXP (*p, 1);
3866 *p = CALL_INSN_FUNCTION_USAGE (trial);
3867
3868 /* If the old call was a sibling call, the new one must
3869 be too. */
3870 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3871 }
3872 }
3873
3874 /* Copy notes, particularly those related to the CFG. */
3875 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3876 {
3877 switch (REG_NOTE_KIND (note))
3878 {
3879 case REG_EH_REGION:
3880 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3881 break;
3882
3883 case REG_NORETURN:
3884 case REG_SETJMP:
3885 case REG_TM:
3886 case REG_CALL_NOCF_CHECK:
3887 case REG_CALL_ARG_LOCATION:
3888 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3889 {
3890 if (CALL_P (insn))
3891 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3892 }
3893 break;
3894
3895 case REG_NON_LOCAL_GOTO:
3896 case REG_LABEL_TARGET:
3897 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3898 {
3899 if (JUMP_P (insn))
3900 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3901 }
3902 break;
3903
3904 case REG_INC:
3905 if (!AUTO_INC_DEC)
3906 break;
3907
3908 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3909 {
3910 rtx reg = XEXP (note, 0);
3911 if (!FIND_REG_INC_NOTE (insn, reg)
3912 && find_auto_inc (PATTERN (insn), reg))
3913 add_reg_note (insn, REG_INC, reg);
3914 }
3915 break;
3916
3917 case REG_ARGS_SIZE:
3918 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
3919 break;
3920
3921 case REG_CALL_DECL:
3922 case REG_UNTYPED_CALL:
3923 gcc_assert (call_insn != NULL_RTX);
3924 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3925 break;
3926
3927 default:
3928 break;
3929 }
3930 }
3931
3932 /* If there are LABELS inside the split insns increment the
3933 usage count so we don't delete the label. */
3934 if (INSN_P (trial))
3935 {
3936 insn = insn_last;
3937 while (insn != NULL_RTX)
3938 {
3939 /* JUMP_P insns have already been "marked" above. */
3940 if (NONJUMP_INSN_P (insn))
3941 mark_label_nuses (PATTERN (insn));
3942
3943 insn = PREV_INSN (insn);
3944 }
3945 }
3946
3947 before = PREV_INSN (trial);
3948 after = NEXT_INSN (trial);
3949
3950 emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3951
3952 delete_insn (trial);
3953
3954 /* Recursively call try_split for each new insn created; by the
3955 time control returns here that insn will be fully split, so
3956 set LAST and continue from the insn after the one returned.
3957 We can't use next_active_insn here since AFTER may be a note.
3958 Ignore deleted insns, which can be occur if not optimizing. */
3959 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3960 if (! tem->deleted () && INSN_P (tem))
3961 tem = try_split (PATTERN (tem), tem, 1);
3962
3963 /* Return either the first or the last insn, depending on which was
3964 requested. */
3965 return last
3966 ? (after ? PREV_INSN (after) : get_last_insn ())
3967 : NEXT_INSN (before);
3968 }
3969 \f
3970 /* Make and return an INSN rtx, initializing all its slots.
3971 Store PATTERN in the pattern slots. */
3972
3973 rtx_insn *
3974 make_insn_raw (rtx pattern)
3975 {
3976 rtx_insn *insn;
3977
3978 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3979
3980 INSN_UID (insn) = cur_insn_uid++;
3981 PATTERN (insn) = pattern;
3982 INSN_CODE (insn) = -1;
3983 REG_NOTES (insn) = NULL;
3984 INSN_LOCATION (insn) = curr_insn_location ();
3985 BLOCK_FOR_INSN (insn) = NULL;
3986
3987 #ifdef ENABLE_RTL_CHECKING
3988 if (insn
3989 && INSN_P (insn)
3990 && (returnjump_p (insn)
3991 || (GET_CODE (insn) == SET
3992 && SET_DEST (insn) == pc_rtx)))
3993 {
3994 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3995 debug_rtx (insn);
3996 }
3997 #endif
3998
3999 return insn;
4000 }
4001
4002 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4003
4004 static rtx_insn *
4005 make_debug_insn_raw (rtx pattern)
4006 {
4007 rtx_debug_insn *insn;
4008
4009 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
4010 INSN_UID (insn) = cur_debug_insn_uid++;
4011 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
4012 INSN_UID (insn) = cur_insn_uid++;
4013
4014 PATTERN (insn) = pattern;
4015 INSN_CODE (insn) = -1;
4016 REG_NOTES (insn) = NULL;
4017 INSN_LOCATION (insn) = curr_insn_location ();
4018 BLOCK_FOR_INSN (insn) = NULL;
4019
4020 return insn;
4021 }
4022
4023 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
4024
4025 static rtx_insn *
4026 make_jump_insn_raw (rtx pattern)
4027 {
4028 rtx_jump_insn *insn;
4029
4030 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
4031 INSN_UID (insn) = cur_insn_uid++;
4032
4033 PATTERN (insn) = pattern;
4034 INSN_CODE (insn) = -1;
4035 REG_NOTES (insn) = NULL;
4036 JUMP_LABEL (insn) = NULL;
4037 INSN_LOCATION (insn) = curr_insn_location ();
4038 BLOCK_FOR_INSN (insn) = NULL;
4039
4040 return insn;
4041 }
4042
4043 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
4044
4045 static rtx_insn *
4046 make_call_insn_raw (rtx pattern)
4047 {
4048 rtx_call_insn *insn;
4049
4050 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
4051 INSN_UID (insn) = cur_insn_uid++;
4052
4053 PATTERN (insn) = pattern;
4054 INSN_CODE (insn) = -1;
4055 REG_NOTES (insn) = NULL;
4056 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
4057 INSN_LOCATION (insn) = curr_insn_location ();
4058 BLOCK_FOR_INSN (insn) = NULL;
4059
4060 return insn;
4061 }
4062
4063 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
4064
4065 static rtx_note *
4066 make_note_raw (enum insn_note subtype)
4067 {
4068 /* Some notes are never created this way at all. These notes are
4069 only created by patching out insns. */
4070 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4071 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4072
4073 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
4074 INSN_UID (note) = cur_insn_uid++;
4075 NOTE_KIND (note) = subtype;
4076 BLOCK_FOR_INSN (note) = NULL;
4077 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4078 return note;
4079 }
4080 \f
4081 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4082 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4083 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4084
4085 static inline void
4086 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4087 {
4088 SET_PREV_INSN (insn) = prev;
4089 SET_NEXT_INSN (insn) = next;
4090 if (prev != NULL)
4091 {
4092 SET_NEXT_INSN (prev) = insn;
4093 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4094 {
4095 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4096 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
4097 }
4098 }
4099 if (next != NULL)
4100 {
4101 SET_PREV_INSN (next) = insn;
4102 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4103 {
4104 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4105 SET_PREV_INSN (sequence->insn (0)) = insn;
4106 }
4107 }
4108
4109 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4110 {
4111 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4112 SET_PREV_INSN (sequence->insn (0)) = prev;
4113 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4114 }
4115 }
4116
4117 /* Add INSN to the end of the doubly-linked list.
4118 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4119
4120 void
4121 add_insn (rtx_insn *insn)
4122 {
4123 rtx_insn *prev = get_last_insn ();
4124 link_insn_into_chain (insn, prev, NULL);
4125 if (get_insns () == NULL)
4126 set_first_insn (insn);
4127 set_last_insn (insn);
4128 }
4129
4130 /* Add INSN into the doubly-linked list after insn AFTER. */
4131
4132 static void
4133 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4134 {
4135 rtx_insn *next = NEXT_INSN (after);
4136
4137 gcc_assert (!optimize || !after->deleted ());
4138
4139 link_insn_into_chain (insn, after, next);
4140
4141 if (next == NULL)
4142 {
4143 struct sequence_stack *seq;
4144
4145 for (seq = get_current_sequence (); seq; seq = seq->next)
4146 if (after == seq->last)
4147 {
4148 seq->last = insn;
4149 break;
4150 }
4151 }
4152 }
4153
4154 /* Add INSN into the doubly-linked list before insn BEFORE. */
4155
4156 static void
4157 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4158 {
4159 rtx_insn *prev = PREV_INSN (before);
4160
4161 gcc_assert (!optimize || !before->deleted ());
4162
4163 link_insn_into_chain (insn, prev, before);
4164
4165 if (prev == NULL)
4166 {
4167 struct sequence_stack *seq;
4168
4169 for (seq = get_current_sequence (); seq; seq = seq->next)
4170 if (before == seq->first)
4171 {
4172 seq->first = insn;
4173 break;
4174 }
4175
4176 gcc_assert (seq);
4177 }
4178 }
4179
4180 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4181 If BB is NULL, an attempt is made to infer the bb from before.
4182
4183 This and the next function should be the only functions called
4184 to insert an insn once delay slots have been filled since only
4185 they know how to update a SEQUENCE. */
4186
4187 void
4188 add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
4189 {
4190 add_insn_after_nobb (insn, after);
4191 if (!BARRIER_P (after)
4192 && !BARRIER_P (insn)
4193 && (bb = BLOCK_FOR_INSN (after)))
4194 {
4195 set_block_for_insn (insn, bb);
4196 if (INSN_P (insn))
4197 df_insn_rescan (insn);
4198 /* Should not happen as first in the BB is always
4199 either NOTE or LABEL. */
4200 if (BB_END (bb) == after
4201 /* Avoid clobbering of structure when creating new BB. */
4202 && !BARRIER_P (insn)
4203 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4204 BB_END (bb) = insn;
4205 }
4206 }
4207
4208 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4209 If BB is NULL, an attempt is made to infer the bb from before.
4210
4211 This and the previous function should be the only functions called
4212 to insert an insn once delay slots have been filled since only
4213 they know how to update a SEQUENCE. */
4214
4215 void
4216 add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
4217 {
4218 add_insn_before_nobb (insn, before);
4219
4220 if (!bb
4221 && !BARRIER_P (before)
4222 && !BARRIER_P (insn))
4223 bb = BLOCK_FOR_INSN (before);
4224
4225 if (bb)
4226 {
4227 set_block_for_insn (insn, bb);
4228 if (INSN_P (insn))
4229 df_insn_rescan (insn);
4230 /* Should not happen as first in the BB is always either NOTE or
4231 LABEL. */
4232 gcc_assert (BB_HEAD (bb) != insn
4233 /* Avoid clobbering of structure when creating new BB. */
4234 || BARRIER_P (insn)
4235 || NOTE_INSN_BASIC_BLOCK_P (insn));
4236 }
4237 }
4238
4239 /* Replace insn with an deleted instruction note. */
4240
4241 void
4242 set_insn_deleted (rtx_insn *insn)
4243 {
4244 if (INSN_P (insn))
4245 df_insn_delete (insn);
4246 PUT_CODE (insn, NOTE);
4247 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4248 }
4249
4250
4251 /* Unlink INSN from the insn chain.
4252
4253 This function knows how to handle sequences.
4254
4255 This function does not invalidate data flow information associated with
4256 INSN (i.e. does not call df_insn_delete). That makes this function
4257 usable for only disconnecting an insn from the chain, and re-emit it
4258 elsewhere later.
4259
4260 To later insert INSN elsewhere in the insn chain via add_insn and
4261 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4262 the caller. Nullifying them here breaks many insn chain walks.
4263
4264 To really delete an insn and related DF information, use delete_insn. */
4265
4266 void
4267 remove_insn (rtx_insn *insn)
4268 {
4269 rtx_insn *next = NEXT_INSN (insn);
4270 rtx_insn *prev = PREV_INSN (insn);
4271 basic_block bb;
4272
4273 if (prev)
4274 {
4275 SET_NEXT_INSN (prev) = next;
4276 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4277 {
4278 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4279 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4280 }
4281 }
4282 else
4283 {
4284 struct sequence_stack *seq;
4285
4286 for (seq = get_current_sequence (); seq; seq = seq->next)
4287 if (insn == seq->first)
4288 {
4289 seq->first = next;
4290 break;
4291 }
4292
4293 gcc_assert (seq);
4294 }
4295
4296 if (next)
4297 {
4298 SET_PREV_INSN (next) = prev;
4299 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4300 {
4301 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4302 SET_PREV_INSN (sequence->insn (0)) = prev;
4303 }
4304 }
4305 else
4306 {
4307 struct sequence_stack *seq;
4308
4309 for (seq = get_current_sequence (); seq; seq = seq->next)
4310 if (insn == seq->last)
4311 {
4312 seq->last = prev;
4313 break;
4314 }
4315
4316 gcc_assert (seq);
4317 }
4318
4319 /* Fix up basic block boundaries, if necessary. */
4320 if (!BARRIER_P (insn)
4321 && (bb = BLOCK_FOR_INSN (insn)))
4322 {
4323 if (BB_HEAD (bb) == insn)
4324 {
4325 /* Never ever delete the basic block note without deleting whole
4326 basic block. */
4327 gcc_assert (!NOTE_P (insn));
4328 BB_HEAD (bb) = next;
4329 }
4330 if (BB_END (bb) == insn)
4331 BB_END (bb) = prev;
4332 }
4333 }
4334
4335 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4336
4337 void
4338 add_function_usage_to (rtx call_insn, rtx call_fusage)
4339 {
4340 gcc_assert (call_insn && CALL_P (call_insn));
4341
4342 /* Put the register usage information on the CALL. If there is already
4343 some usage information, put ours at the end. */
4344 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4345 {
4346 rtx link;
4347
4348 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4349 link = XEXP (link, 1))
4350 ;
4351
4352 XEXP (link, 1) = call_fusage;
4353 }
4354 else
4355 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4356 }
4357
4358 /* Delete all insns made since FROM.
4359 FROM becomes the new last instruction. */
4360
4361 void
4362 delete_insns_since (rtx_insn *from)
4363 {
4364 if (from == 0)
4365 set_first_insn (0);
4366 else
4367 SET_NEXT_INSN (from) = 0;
4368 set_last_insn (from);
4369 }
4370
4371 /* This function is deprecated, please use sequences instead.
4372
4373 Move a consecutive bunch of insns to a different place in the chain.
4374 The insns to be moved are those between FROM and TO.
4375 They are moved to a new position after the insn AFTER.
4376 AFTER must not be FROM or TO or any insn in between.
4377
4378 This function does not know about SEQUENCEs and hence should not be
4379 called after delay-slot filling has been done. */
4380
4381 void
4382 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4383 {
4384 if (flag_checking)
4385 {
4386 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4387 gcc_assert (after != x);
4388 gcc_assert (after != to);
4389 }
4390
4391 /* Splice this bunch out of where it is now. */
4392 if (PREV_INSN (from))
4393 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4394 if (NEXT_INSN (to))
4395 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4396 if (get_last_insn () == to)
4397 set_last_insn (PREV_INSN (from));
4398 if (get_insns () == from)
4399 set_first_insn (NEXT_INSN (to));
4400
4401 /* Make the new neighbors point to it and it to them. */
4402 if (NEXT_INSN (after))
4403 SET_PREV_INSN (NEXT_INSN (after)) = to;
4404
4405 SET_NEXT_INSN (to) = NEXT_INSN (after);
4406 SET_PREV_INSN (from) = after;
4407 SET_NEXT_INSN (after) = from;
4408 if (after == get_last_insn ())
4409 set_last_insn (to);
4410 }
4411
4412 /* Same as function above, but take care to update BB boundaries. */
4413 void
4414 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4415 {
4416 rtx_insn *prev = PREV_INSN (from);
4417 basic_block bb, bb2;
4418
4419 reorder_insns_nobb (from, to, after);
4420
4421 if (!BARRIER_P (after)
4422 && (bb = BLOCK_FOR_INSN (after)))
4423 {
4424 rtx_insn *x;
4425 df_set_bb_dirty (bb);
4426
4427 if (!BARRIER_P (from)
4428 && (bb2 = BLOCK_FOR_INSN (from)))
4429 {
4430 if (BB_END (bb2) == to)
4431 BB_END (bb2) = prev;
4432 df_set_bb_dirty (bb2);
4433 }
4434
4435 if (BB_END (bb) == after)
4436 BB_END (bb) = to;
4437
4438 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4439 if (!BARRIER_P (x))
4440 df_insn_change_bb (x, bb);
4441 }
4442 }
4443
4444 \f
4445 /* Emit insn(s) of given code and pattern
4446 at a specified place within the doubly-linked list.
4447
4448 All of the emit_foo global entry points accept an object
4449 X which is either an insn list or a PATTERN of a single
4450 instruction.
4451
4452 There are thus a few canonical ways to generate code and
4453 emit it at a specific place in the instruction stream. For
4454 example, consider the instruction named SPOT and the fact that
4455 we would like to emit some instructions before SPOT. We might
4456 do it like this:
4457
4458 start_sequence ();
4459 ... emit the new instructions ...
4460 insns_head = get_insns ();
4461 end_sequence ();
4462
4463 emit_insn_before (insns_head, SPOT);
4464
4465 It used to be common to generate SEQUENCE rtl instead, but that
4466 is a relic of the past which no longer occurs. The reason is that
4467 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4468 generated would almost certainly die right after it was created. */
4469
4470 static rtx_insn *
4471 emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4472 basic_block bb,
4473 rtx_insn *(*make_raw) (rtx))
4474 {
4475 rtx_insn *insn;
4476
4477 gcc_assert (before);
4478
4479 if (x == NULL_RTX)
4480 return last;
4481
4482 switch (GET_CODE (x))
4483 {
4484 case DEBUG_INSN:
4485 case INSN:
4486 case JUMP_INSN:
4487 case CALL_INSN:
4488 case CODE_LABEL:
4489 case BARRIER:
4490 case NOTE:
4491 insn = as_a <rtx_insn *> (x);
4492 while (insn)
4493 {
4494 rtx_insn *next = NEXT_INSN (insn);
4495 add_insn_before (insn, before, bb);
4496 last = insn;
4497 insn = next;
4498 }
4499 break;
4500
4501 #ifdef ENABLE_RTL_CHECKING
4502 case SEQUENCE:
4503 gcc_unreachable ();
4504 break;
4505 #endif
4506
4507 default:
4508 last = (*make_raw) (x);
4509 add_insn_before (last, before, bb);
4510 break;
4511 }
4512
4513 return last;
4514 }
4515
4516 /* Make X be output before the instruction BEFORE. */
4517
4518 rtx_insn *
4519 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4520 {
4521 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4522 }
4523
4524 /* Make an instruction with body X and code JUMP_INSN
4525 and output it before the instruction BEFORE. */
4526
4527 rtx_jump_insn *
4528 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4529 {
4530 return as_a <rtx_jump_insn *> (
4531 emit_pattern_before_noloc (x, before, NULL, NULL,
4532 make_jump_insn_raw));
4533 }
4534
4535 /* Make an instruction with body X and code CALL_INSN
4536 and output it before the instruction BEFORE. */
4537
4538 rtx_insn *
4539 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4540 {
4541 return emit_pattern_before_noloc (x, before, NULL, NULL,
4542 make_call_insn_raw);
4543 }
4544
4545 /* Make an instruction with body X and code DEBUG_INSN
4546 and output it before the instruction BEFORE. */
4547
4548 rtx_insn *
4549 emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
4550 {
4551 return emit_pattern_before_noloc (x, before, NULL, NULL,
4552 make_debug_insn_raw);
4553 }
4554
4555 /* Make an insn of code BARRIER
4556 and output it before the insn BEFORE. */
4557
4558 rtx_barrier *
4559 emit_barrier_before (rtx_insn *before)
4560 {
4561 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4562
4563 INSN_UID (insn) = cur_insn_uid++;
4564
4565 add_insn_before (insn, before, NULL);
4566 return insn;
4567 }
4568
4569 /* Emit the label LABEL before the insn BEFORE. */
4570
4571 rtx_code_label *
4572 emit_label_before (rtx_code_label *label, rtx_insn *before)
4573 {
4574 gcc_checking_assert (INSN_UID (label) == 0);
4575 INSN_UID (label) = cur_insn_uid++;
4576 add_insn_before (label, before, NULL);
4577 return label;
4578 }
4579 \f
4580 /* Helper for emit_insn_after, handles lists of instructions
4581 efficiently. */
4582
4583 static rtx_insn *
4584 emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
4585 {
4586 rtx_insn *last;
4587 rtx_insn *after_after;
4588 if (!bb && !BARRIER_P (after))
4589 bb = BLOCK_FOR_INSN (after);
4590
4591 if (bb)
4592 {
4593 df_set_bb_dirty (bb);
4594 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4595 if (!BARRIER_P (last))
4596 {
4597 set_block_for_insn (last, bb);
4598 df_insn_rescan (last);
4599 }
4600 if (!BARRIER_P (last))
4601 {
4602 set_block_for_insn (last, bb);
4603 df_insn_rescan (last);
4604 }
4605 if (BB_END (bb) == after)
4606 BB_END (bb) = last;
4607 }
4608 else
4609 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4610 continue;
4611
4612 after_after = NEXT_INSN (after);
4613
4614 SET_NEXT_INSN (after) = first;
4615 SET_PREV_INSN (first) = after;
4616 SET_NEXT_INSN (last) = after_after;
4617 if (after_after)
4618 SET_PREV_INSN (after_after) = last;
4619
4620 if (after == get_last_insn ())
4621 set_last_insn (last);
4622
4623 return last;
4624 }
4625
4626 static rtx_insn *
4627 emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
4628 rtx_insn *(*make_raw)(rtx))
4629 {
4630 rtx_insn *last = after;
4631
4632 gcc_assert (after);
4633
4634 if (x == NULL_RTX)
4635 return last;
4636
4637 switch (GET_CODE (x))
4638 {
4639 case DEBUG_INSN:
4640 case INSN:
4641 case JUMP_INSN:
4642 case CALL_INSN:
4643 case CODE_LABEL:
4644 case BARRIER:
4645 case NOTE:
4646 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4647 break;
4648
4649 #ifdef ENABLE_RTL_CHECKING
4650 case SEQUENCE:
4651 gcc_unreachable ();
4652 break;
4653 #endif
4654
4655 default:
4656 last = (*make_raw) (x);
4657 add_insn_after (last, after, bb);
4658 break;
4659 }
4660
4661 return last;
4662 }
4663
4664 /* Make X be output after the insn AFTER and set the BB of insn. If
4665 BB is NULL, an attempt is made to infer the BB from AFTER. */
4666
4667 rtx_insn *
4668 emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
4669 {
4670 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4671 }
4672
4673
4674 /* Make an insn of code JUMP_INSN with body X
4675 and output it after the insn AFTER. */
4676
4677 rtx_jump_insn *
4678 emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
4679 {
4680 return as_a <rtx_jump_insn *> (
4681 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4682 }
4683
4684 /* Make an instruction with body X and code CALL_INSN
4685 and output it after the instruction AFTER. */
4686
4687 rtx_insn *
4688 emit_call_insn_after_noloc (rtx x, rtx_insn *after)
4689 {
4690 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4691 }
4692
4693 /* Make an instruction with body X and code CALL_INSN
4694 and output it after the instruction AFTER. */
4695
4696 rtx_insn *
4697 emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
4698 {
4699 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4700 }
4701
4702 /* Make an insn of code BARRIER
4703 and output it after the insn AFTER. */
4704
4705 rtx_barrier *
4706 emit_barrier_after (rtx_insn *after)
4707 {
4708 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4709
4710 INSN_UID (insn) = cur_insn_uid++;
4711
4712 add_insn_after (insn, after, NULL);
4713 return insn;
4714 }
4715
4716 /* Emit the label LABEL after the insn AFTER. */
4717
4718 rtx_insn *
4719 emit_label_after (rtx_insn *label, rtx_insn *after)
4720 {
4721 gcc_checking_assert (INSN_UID (label) == 0);
4722 INSN_UID (label) = cur_insn_uid++;
4723 add_insn_after (label, after, NULL);
4724 return label;
4725 }
4726 \f
4727 /* Notes require a bit of special handling: Some notes need to have their
4728 BLOCK_FOR_INSN set, others should never have it set, and some should
4729 have it set or clear depending on the context. */
4730
4731 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4732 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4733 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4734
4735 static bool
4736 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4737 {
4738 switch (subtype)
4739 {
4740 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4741 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4742 return true;
4743
4744 /* Notes for var tracking and EH region markers can appear between or
4745 inside basic blocks. If the caller is emitting on the basic block
4746 boundary, do not set BLOCK_FOR_INSN on the new note. */
4747 case NOTE_INSN_VAR_LOCATION:
4748 case NOTE_INSN_EH_REGION_BEG:
4749 case NOTE_INSN_EH_REGION_END:
4750 return on_bb_boundary_p;
4751
4752 /* Otherwise, BLOCK_FOR_INSN must be set. */
4753 default:
4754 return false;
4755 }
4756 }
4757
4758 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4759
4760 rtx_note *
4761 emit_note_after (enum insn_note subtype, rtx_insn *after)
4762 {
4763 rtx_note *note = make_note_raw (subtype);
4764 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4765 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4766
4767 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4768 add_insn_after_nobb (note, after);
4769 else
4770 add_insn_after (note, after, bb);
4771 return note;
4772 }
4773
4774 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4775
4776 rtx_note *
4777 emit_note_before (enum insn_note subtype, rtx_insn *before)
4778 {
4779 rtx_note *note = make_note_raw (subtype);
4780 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4781 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4782
4783 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4784 add_insn_before_nobb (note, before);
4785 else
4786 add_insn_before (note, before, bb);
4787 return note;
4788 }
4789 \f
4790 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4791 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4792
4793 static rtx_insn *
4794 emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
4795 rtx_insn *(*make_raw) (rtx))
4796 {
4797 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4798
4799 if (pattern == NULL_RTX || !loc)
4800 return last;
4801
4802 after = NEXT_INSN (after);
4803 while (1)
4804 {
4805 if (active_insn_p (after)
4806 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4807 && !INSN_LOCATION (after))
4808 INSN_LOCATION (after) = loc;
4809 if (after == last)
4810 break;
4811 after = NEXT_INSN (after);
4812 }
4813 return last;
4814 }
4815
4816 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4817 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4818 any DEBUG_INSNs. */
4819
4820 static rtx_insn *
4821 emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
4822 rtx_insn *(*make_raw) (rtx))
4823 {
4824 rtx_insn *prev = after;
4825
4826 if (skip_debug_insns)
4827 while (DEBUG_INSN_P (prev))
4828 prev = PREV_INSN (prev);
4829
4830 if (INSN_P (prev))
4831 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4832 make_raw);
4833 else
4834 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4835 }
4836
4837 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4838 rtx_insn *
4839 emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4840 {
4841 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4842 }
4843
4844 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4845 rtx_insn *
4846 emit_insn_after (rtx pattern, rtx_insn *after)
4847 {
4848 return emit_pattern_after (pattern, after, true, make_insn_raw);
4849 }
4850
4851 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4852 rtx_jump_insn *
4853 emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4854 {
4855 return as_a <rtx_jump_insn *> (
4856 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4857 }
4858
4859 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4860 rtx_jump_insn *
4861 emit_jump_insn_after (rtx pattern, rtx_insn *after)
4862 {
4863 return as_a <rtx_jump_insn *> (
4864 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4865 }
4866
4867 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4868 rtx_insn *
4869 emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4870 {
4871 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4872 }
4873
4874 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4875 rtx_insn *
4876 emit_call_insn_after (rtx pattern, rtx_insn *after)
4877 {
4878 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4879 }
4880
4881 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4882 rtx_insn *
4883 emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4884 {
4885 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4886 }
4887
4888 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4889 rtx_insn *
4890 emit_debug_insn_after (rtx pattern, rtx_insn *after)
4891 {
4892 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4893 }
4894
4895 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4896 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4897 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4898 CALL_INSN, etc. */
4899
4900 static rtx_insn *
4901 emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
4902 bool insnp, rtx_insn *(*make_raw) (rtx))
4903 {
4904 rtx_insn *first = PREV_INSN (before);
4905 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4906 insnp ? before : NULL,
4907 NULL, make_raw);
4908
4909 if (pattern == NULL_RTX || !loc)
4910 return last;
4911
4912 if (!first)
4913 first = get_insns ();
4914 else
4915 first = NEXT_INSN (first);
4916 while (1)
4917 {
4918 if (active_insn_p (first)
4919 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4920 && !INSN_LOCATION (first))
4921 INSN_LOCATION (first) = loc;
4922 if (first == last)
4923 break;
4924 first = NEXT_INSN (first);
4925 }
4926 return last;
4927 }
4928
4929 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4930 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4931 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4932 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4933
4934 static rtx_insn *
4935 emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
4936 bool insnp, rtx_insn *(*make_raw) (rtx))
4937 {
4938 rtx_insn *next = before;
4939
4940 if (skip_debug_insns)
4941 while (DEBUG_INSN_P (next))
4942 next = PREV_INSN (next);
4943
4944 if (INSN_P (next))
4945 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4946 insnp, make_raw);
4947 else
4948 return emit_pattern_before_noloc (pattern, before,
4949 insnp ? before : NULL,
4950 NULL, make_raw);
4951 }
4952
4953 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4954 rtx_insn *
4955 emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4956 {
4957 return emit_pattern_before_setloc (pattern, before, loc, true,
4958 make_insn_raw);
4959 }
4960
4961 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4962 rtx_insn *
4963 emit_insn_before (rtx pattern, rtx_insn *before)
4964 {
4965 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4966 }
4967
4968 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4969 rtx_jump_insn *
4970 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4971 {
4972 return as_a <rtx_jump_insn *> (
4973 emit_pattern_before_setloc (pattern, before, loc, false,
4974 make_jump_insn_raw));
4975 }
4976
4977 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4978 rtx_jump_insn *
4979 emit_jump_insn_before (rtx pattern, rtx_insn *before)
4980 {
4981 return as_a <rtx_jump_insn *> (
4982 emit_pattern_before (pattern, before, true, false,
4983 make_jump_insn_raw));
4984 }
4985
4986 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4987 rtx_insn *
4988 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4989 {
4990 return emit_pattern_before_setloc (pattern, before, loc, false,
4991 make_call_insn_raw);
4992 }
4993
4994 /* Like emit_call_insn_before_noloc,
4995 but set insn_location according to BEFORE. */
4996 rtx_insn *
4997 emit_call_insn_before (rtx pattern, rtx_insn *before)
4998 {
4999 return emit_pattern_before (pattern, before, true, false,
5000 make_call_insn_raw);
5001 }
5002
5003 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5004 rtx_insn *
5005 emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5006 {
5007 return emit_pattern_before_setloc (pattern, before, loc, false,
5008 make_debug_insn_raw);
5009 }
5010
5011 /* Like emit_debug_insn_before_noloc,
5012 but set insn_location according to BEFORE. */
5013 rtx_insn *
5014 emit_debug_insn_before (rtx pattern, rtx_insn *before)
5015 {
5016 return emit_pattern_before (pattern, before, false, false,
5017 make_debug_insn_raw);
5018 }
5019 \f
5020 /* Take X and emit it at the end of the doubly-linked
5021 INSN list.
5022
5023 Returns the last insn emitted. */
5024
5025 rtx_insn *
5026 emit_insn (rtx x)
5027 {
5028 rtx_insn *last = get_last_insn ();
5029 rtx_insn *insn;
5030
5031 if (x == NULL_RTX)
5032 return last;
5033
5034 switch (GET_CODE (x))
5035 {
5036 case DEBUG_INSN:
5037 case INSN:
5038 case JUMP_INSN:
5039 case CALL_INSN:
5040 case CODE_LABEL:
5041 case BARRIER:
5042 case NOTE:
5043 insn = as_a <rtx_insn *> (x);
5044 while (insn)
5045 {
5046 rtx_insn *next = NEXT_INSN (insn);
5047 add_insn (insn);
5048 last = insn;
5049 insn = next;
5050 }
5051 break;
5052
5053 #ifdef ENABLE_RTL_CHECKING
5054 case JUMP_TABLE_DATA:
5055 case SEQUENCE:
5056 gcc_unreachable ();
5057 break;
5058 #endif
5059
5060 default:
5061 last = make_insn_raw (x);
5062 add_insn (last);
5063 break;
5064 }
5065
5066 return last;
5067 }
5068
5069 /* Make an insn of code DEBUG_INSN with pattern X
5070 and add it to the end of the doubly-linked list. */
5071
5072 rtx_insn *
5073 emit_debug_insn (rtx x)
5074 {
5075 rtx_insn *last = get_last_insn ();
5076 rtx_insn *insn;
5077
5078 if (x == NULL_RTX)
5079 return last;
5080
5081 switch (GET_CODE (x))
5082 {
5083 case DEBUG_INSN:
5084 case INSN:
5085 case JUMP_INSN:
5086 case CALL_INSN:
5087 case CODE_LABEL:
5088 case BARRIER:
5089 case NOTE:
5090 insn = as_a <rtx_insn *> (x);
5091 while (insn)
5092 {
5093 rtx_insn *next = NEXT_INSN (insn);
5094 add_insn (insn);
5095 last = insn;
5096 insn = next;
5097 }
5098 break;
5099
5100 #ifdef ENABLE_RTL_CHECKING
5101 case JUMP_TABLE_DATA:
5102 case SEQUENCE:
5103 gcc_unreachable ();
5104 break;
5105 #endif
5106
5107 default:
5108 last = make_debug_insn_raw (x);
5109 add_insn (last);
5110 break;
5111 }
5112
5113 return last;
5114 }
5115
5116 /* Make an insn of code JUMP_INSN with pattern X
5117 and add it to the end of the doubly-linked list. */
5118
5119 rtx_insn *
5120 emit_jump_insn (rtx x)
5121 {
5122 rtx_insn *last = NULL;
5123 rtx_insn *insn;
5124
5125 switch (GET_CODE (x))
5126 {
5127 case DEBUG_INSN:
5128 case INSN:
5129 case JUMP_INSN:
5130 case CALL_INSN:
5131 case CODE_LABEL:
5132 case BARRIER:
5133 case NOTE:
5134 insn = as_a <rtx_insn *> (x);
5135 while (insn)
5136 {
5137 rtx_insn *next = NEXT_INSN (insn);
5138 add_insn (insn);
5139 last = insn;
5140 insn = next;
5141 }
5142 break;
5143
5144 #ifdef ENABLE_RTL_CHECKING
5145 case JUMP_TABLE_DATA:
5146 case SEQUENCE:
5147 gcc_unreachable ();
5148 break;
5149 #endif
5150
5151 default:
5152 last = make_jump_insn_raw (x);
5153 add_insn (last);
5154 break;
5155 }
5156
5157 return last;
5158 }
5159
5160 /* Make an insn of code CALL_INSN with pattern X
5161 and add it to the end of the doubly-linked list. */
5162
5163 rtx_insn *
5164 emit_call_insn (rtx x)
5165 {
5166 rtx_insn *insn;
5167
5168 switch (GET_CODE (x))
5169 {
5170 case DEBUG_INSN:
5171 case INSN:
5172 case JUMP_INSN:
5173 case CALL_INSN:
5174 case CODE_LABEL:
5175 case BARRIER:
5176 case NOTE:
5177 insn = emit_insn (x);
5178 break;
5179
5180 #ifdef ENABLE_RTL_CHECKING
5181 case SEQUENCE:
5182 case JUMP_TABLE_DATA:
5183 gcc_unreachable ();
5184 break;
5185 #endif
5186
5187 default:
5188 insn = make_call_insn_raw (x);
5189 add_insn (insn);
5190 break;
5191 }
5192
5193 return insn;
5194 }
5195
5196 /* Add the label LABEL to the end of the doubly-linked list. */
5197
5198 rtx_code_label *
5199 emit_label (rtx uncast_label)
5200 {
5201 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5202
5203 gcc_checking_assert (INSN_UID (label) == 0);
5204 INSN_UID (label) = cur_insn_uid++;
5205 add_insn (label);
5206 return label;
5207 }
5208
5209 /* Make an insn of code JUMP_TABLE_DATA
5210 and add it to the end of the doubly-linked list. */
5211
5212 rtx_jump_table_data *
5213 emit_jump_table_data (rtx table)
5214 {
5215 rtx_jump_table_data *jump_table_data =
5216 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5217 INSN_UID (jump_table_data) = cur_insn_uid++;
5218 PATTERN (jump_table_data) = table;
5219 BLOCK_FOR_INSN (jump_table_data) = NULL;
5220 add_insn (jump_table_data);
5221 return jump_table_data;
5222 }
5223
5224 /* Make an insn of code BARRIER
5225 and add it to the end of the doubly-linked list. */
5226
5227 rtx_barrier *
5228 emit_barrier (void)
5229 {
5230 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5231 INSN_UID (barrier) = cur_insn_uid++;
5232 add_insn (barrier);
5233 return barrier;
5234 }
5235
5236 /* Emit a copy of note ORIG. */
5237
5238 rtx_note *
5239 emit_note_copy (rtx_note *orig)
5240 {
5241 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5242 rtx_note *note = make_note_raw (kind);
5243 NOTE_DATA (note) = NOTE_DATA (orig);
5244 add_insn (note);
5245 return note;
5246 }
5247
5248 /* Make an insn of code NOTE or type NOTE_NO
5249 and add it to the end of the doubly-linked list. */
5250
5251 rtx_note *
5252 emit_note (enum insn_note kind)
5253 {
5254 rtx_note *note = make_note_raw (kind);
5255 add_insn (note);
5256 return note;
5257 }
5258
5259 /* Emit a clobber of lvalue X. */
5260
5261 rtx_insn *
5262 emit_clobber (rtx x)
5263 {
5264 /* CONCATs should not appear in the insn stream. */
5265 if (GET_CODE (x) == CONCAT)
5266 {
5267 emit_clobber (XEXP (x, 0));
5268 return emit_clobber (XEXP (x, 1));
5269 }
5270 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5271 }
5272
5273 /* Return a sequence of insns to clobber lvalue X. */
5274
5275 rtx_insn *
5276 gen_clobber (rtx x)
5277 {
5278 rtx_insn *seq;
5279
5280 start_sequence ();
5281 emit_clobber (x);
5282 seq = get_insns ();
5283 end_sequence ();
5284 return seq;
5285 }
5286
5287 /* Emit a use of rvalue X. */
5288
5289 rtx_insn *
5290 emit_use (rtx x)
5291 {
5292 /* CONCATs should not appear in the insn stream. */
5293 if (GET_CODE (x) == CONCAT)
5294 {
5295 emit_use (XEXP (x, 0));
5296 return emit_use (XEXP (x, 1));
5297 }
5298 return emit_insn (gen_rtx_USE (VOIDmode, x));
5299 }
5300
5301 /* Return a sequence of insns to use rvalue X. */
5302
5303 rtx_insn *
5304 gen_use (rtx x)
5305 {
5306 rtx_insn *seq;
5307
5308 start_sequence ();
5309 emit_use (x);
5310 seq = get_insns ();
5311 end_sequence ();
5312 return seq;
5313 }
5314
5315 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5316 Return the set in INSN that such notes describe, or NULL if the notes
5317 have no meaning for INSN. */
5318
5319 rtx
5320 set_for_reg_notes (rtx insn)
5321 {
5322 rtx pat, reg;
5323
5324 if (!INSN_P (insn))
5325 return NULL_RTX;
5326
5327 pat = PATTERN (insn);
5328 if (GET_CODE (pat) == PARALLEL)
5329 {
5330 /* We do not use single_set because that ignores SETs of unused
5331 registers. REG_EQUAL and REG_EQUIV notes really do require the
5332 PARALLEL to have a single SET. */
5333 if (multiple_sets (insn))
5334 return NULL_RTX;
5335 pat = XVECEXP (pat, 0, 0);
5336 }
5337
5338 if (GET_CODE (pat) != SET)
5339 return NULL_RTX;
5340
5341 reg = SET_DEST (pat);
5342
5343 /* Notes apply to the contents of a STRICT_LOW_PART. */
5344 if (GET_CODE (reg) == STRICT_LOW_PART
5345 || GET_CODE (reg) == ZERO_EXTRACT)
5346 reg = XEXP (reg, 0);
5347
5348 /* Check that we have a register. */
5349 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5350 return NULL_RTX;
5351
5352 return pat;
5353 }
5354
5355 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5356 note of this type already exists, remove it first. */
5357
5358 rtx
5359 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5360 {
5361 rtx note = find_reg_note (insn, kind, NULL_RTX);
5362
5363 switch (kind)
5364 {
5365 case REG_EQUAL:
5366 case REG_EQUIV:
5367 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5368 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5369 return NULL_RTX;
5370
5371 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5372 It serves no useful purpose and breaks eliminate_regs. */
5373 if (GET_CODE (datum) == ASM_OPERANDS)
5374 return NULL_RTX;
5375
5376 /* Notes with side effects are dangerous. Even if the side-effect
5377 initially mirrors one in PATTERN (INSN), later optimizations
5378 might alter the way that the final register value is calculated
5379 and so move or alter the side-effect in some way. The note would
5380 then no longer be a valid substitution for SET_SRC. */
5381 if (side_effects_p (datum))
5382 return NULL_RTX;
5383 break;
5384
5385 default:
5386 break;
5387 }
5388
5389 if (note)
5390 XEXP (note, 0) = datum;
5391 else
5392 {
5393 add_reg_note (insn, kind, datum);
5394 note = REG_NOTES (insn);
5395 }
5396
5397 switch (kind)
5398 {
5399 case REG_EQUAL:
5400 case REG_EQUIV:
5401 df_notes_rescan (as_a <rtx_insn *> (insn));
5402 break;
5403 default:
5404 break;
5405 }
5406
5407 return note;
5408 }
5409
5410 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5411 rtx
5412 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5413 {
5414 rtx set = set_for_reg_notes (insn);
5415
5416 if (set && SET_DEST (set) == dst)
5417 return set_unique_reg_note (insn, kind, datum);
5418 return NULL_RTX;
5419 }
5420 \f
5421 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5422 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5423 is true.
5424
5425 If X is a label, it is simply added into the insn chain. */
5426
5427 rtx_insn *
5428 emit (rtx x, bool allow_barrier_p)
5429 {
5430 enum rtx_code code = classify_insn (x);
5431
5432 switch (code)
5433 {
5434 case CODE_LABEL:
5435 return emit_label (x);
5436 case INSN:
5437 return emit_insn (x);
5438 case JUMP_INSN:
5439 {
5440 rtx_insn *insn = emit_jump_insn (x);
5441 if (allow_barrier_p
5442 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5443 return emit_barrier ();
5444 return insn;
5445 }
5446 case CALL_INSN:
5447 return emit_call_insn (x);
5448 case DEBUG_INSN:
5449 return emit_debug_insn (x);
5450 default:
5451 gcc_unreachable ();
5452 }
5453 }
5454 \f
5455 /* Space for free sequence stack entries. */
5456 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5457
5458 /* Begin emitting insns to a sequence. If this sequence will contain
5459 something that might cause the compiler to pop arguments to function
5460 calls (because those pops have previously been deferred; see
5461 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5462 before calling this function. That will ensure that the deferred
5463 pops are not accidentally emitted in the middle of this sequence. */
5464
5465 void
5466 start_sequence (void)
5467 {
5468 struct sequence_stack *tem;
5469
5470 if (free_sequence_stack != NULL)
5471 {
5472 tem = free_sequence_stack;
5473 free_sequence_stack = tem->next;
5474 }
5475 else
5476 tem = ggc_alloc<sequence_stack> ();
5477
5478 tem->next = get_current_sequence ()->next;
5479 tem->first = get_insns ();
5480 tem->last = get_last_insn ();
5481 get_current_sequence ()->next = tem;
5482
5483 set_first_insn (0);
5484 set_last_insn (0);
5485 }
5486
5487 /* Set up the insn chain starting with FIRST as the current sequence,
5488 saving the previously current one. See the documentation for
5489 start_sequence for more information about how to use this function. */
5490
5491 void
5492 push_to_sequence (rtx_insn *first)
5493 {
5494 rtx_insn *last;
5495
5496 start_sequence ();
5497
5498 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5499 ;
5500
5501 set_first_insn (first);
5502 set_last_insn (last);
5503 }
5504
5505 /* Like push_to_sequence, but take the last insn as an argument to avoid
5506 looping through the list. */
5507
5508 void
5509 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5510 {
5511 start_sequence ();
5512
5513 set_first_insn (first);
5514 set_last_insn (last);
5515 }
5516
5517 /* Set up the outer-level insn chain
5518 as the current sequence, saving the previously current one. */
5519
5520 void
5521 push_topmost_sequence (void)
5522 {
5523 struct sequence_stack *top;
5524
5525 start_sequence ();
5526
5527 top = get_topmost_sequence ();
5528 set_first_insn (top->first);
5529 set_last_insn (top->last);
5530 }
5531
5532 /* After emitting to the outer-level insn chain, update the outer-level
5533 insn chain, and restore the previous saved state. */
5534
5535 void
5536 pop_topmost_sequence (void)
5537 {
5538 struct sequence_stack *top;
5539
5540 top = get_topmost_sequence ();
5541 top->first = get_insns ();
5542 top->last = get_last_insn ();
5543
5544 end_sequence ();
5545 }
5546
5547 /* After emitting to a sequence, restore previous saved state.
5548
5549 To get the contents of the sequence just made, you must call
5550 `get_insns' *before* calling here.
5551
5552 If the compiler might have deferred popping arguments while
5553 generating this sequence, and this sequence will not be immediately
5554 inserted into the instruction stream, use do_pending_stack_adjust
5555 before calling get_insns. That will ensure that the deferred
5556 pops are inserted into this sequence, and not into some random
5557 location in the instruction stream. See INHIBIT_DEFER_POP for more
5558 information about deferred popping of arguments. */
5559
5560 void
5561 end_sequence (void)
5562 {
5563 struct sequence_stack *tem = get_current_sequence ()->next;
5564
5565 set_first_insn (tem->first);
5566 set_last_insn (tem->last);
5567 get_current_sequence ()->next = tem->next;
5568
5569 memset (tem, 0, sizeof (*tem));
5570 tem->next = free_sequence_stack;
5571 free_sequence_stack = tem;
5572 }
5573
5574 /* Return 1 if currently emitting into a sequence. */
5575
5576 int
5577 in_sequence_p (void)
5578 {
5579 return get_current_sequence ()->next != 0;
5580 }
5581 \f
5582 /* Put the various virtual registers into REGNO_REG_RTX. */
5583
5584 static void
5585 init_virtual_regs (void)
5586 {
5587 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5588 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5589 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5590 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5591 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5592 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5593 = virtual_preferred_stack_boundary_rtx;
5594 }
5595
5596 \f
5597 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5598 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5599 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5600 static int copy_insn_n_scratches;
5601
5602 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5603 copied an ASM_OPERANDS.
5604 In that case, it is the original input-operand vector. */
5605 static rtvec orig_asm_operands_vector;
5606
5607 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5608 copied an ASM_OPERANDS.
5609 In that case, it is the copied input-operand vector. */
5610 static rtvec copy_asm_operands_vector;
5611
5612 /* Likewise for the constraints vector. */
5613 static rtvec orig_asm_constraints_vector;
5614 static rtvec copy_asm_constraints_vector;
5615
5616 /* Recursively create a new copy of an rtx for copy_insn.
5617 This function differs from copy_rtx in that it handles SCRATCHes and
5618 ASM_OPERANDs properly.
5619 Normally, this function is not used directly; use copy_insn as front end.
5620 However, you could first copy an insn pattern with copy_insn and then use
5621 this function afterwards to properly copy any REG_NOTEs containing
5622 SCRATCHes. */
5623
5624 rtx
5625 copy_insn_1 (rtx orig)
5626 {
5627 rtx copy;
5628 int i, j;
5629 RTX_CODE code;
5630 const char *format_ptr;
5631
5632 if (orig == NULL)
5633 return NULL;
5634
5635 code = GET_CODE (orig);
5636
5637 switch (code)
5638 {
5639 case REG:
5640 case DEBUG_EXPR:
5641 CASE_CONST_ANY:
5642 case SYMBOL_REF:
5643 case CODE_LABEL:
5644 case PC:
5645 case RETURN:
5646 case SIMPLE_RETURN:
5647 return orig;
5648 case CLOBBER:
5649 /* Share clobbers of hard registers, but do not share pseudo reg
5650 clobbers or clobbers of hard registers that originated as pseudos.
5651 This is needed to allow safe register renaming. */
5652 if (REG_P (XEXP (orig, 0))
5653 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5654 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5655 return orig;
5656 break;
5657
5658 case SCRATCH:
5659 for (i = 0; i < copy_insn_n_scratches; i++)
5660 if (copy_insn_scratch_in[i] == orig)
5661 return copy_insn_scratch_out[i];
5662 break;
5663
5664 case CONST:
5665 if (shared_const_p (orig))
5666 return orig;
5667 break;
5668
5669 /* A MEM with a constant address is not sharable. The problem is that
5670 the constant address may need to be reloaded. If the mem is shared,
5671 then reloading one copy of this mem will cause all copies to appear
5672 to have been reloaded. */
5673
5674 default:
5675 break;
5676 }
5677
5678 /* Copy the various flags, fields, and other information. We assume
5679 that all fields need copying, and then clear the fields that should
5680 not be copied. That is the sensible default behavior, and forces
5681 us to explicitly document why we are *not* copying a flag. */
5682 copy = shallow_copy_rtx (orig);
5683
5684 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5685 if (INSN_P (orig))
5686 {
5687 RTX_FLAG (copy, jump) = 0;
5688 RTX_FLAG (copy, call) = 0;
5689 RTX_FLAG (copy, frame_related) = 0;
5690 }
5691
5692 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5693
5694 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5695 switch (*format_ptr++)
5696 {
5697 case 'e':
5698 if (XEXP (orig, i) != NULL)
5699 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5700 break;
5701
5702 case 'E':
5703 case 'V':
5704 if (XVEC (orig, i) == orig_asm_constraints_vector)
5705 XVEC (copy, i) = copy_asm_constraints_vector;
5706 else if (XVEC (orig, i) == orig_asm_operands_vector)
5707 XVEC (copy, i) = copy_asm_operands_vector;
5708 else if (XVEC (orig, i) != NULL)
5709 {
5710 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5711 for (j = 0; j < XVECLEN (copy, i); j++)
5712 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5713 }
5714 break;
5715
5716 case 't':
5717 case 'w':
5718 case 'i':
5719 case 'p':
5720 case 's':
5721 case 'S':
5722 case 'u':
5723 case '0':
5724 /* These are left unchanged. */
5725 break;
5726
5727 default:
5728 gcc_unreachable ();
5729 }
5730
5731 if (code == SCRATCH)
5732 {
5733 i = copy_insn_n_scratches++;
5734 gcc_assert (i < MAX_RECOG_OPERANDS);
5735 copy_insn_scratch_in[i] = orig;
5736 copy_insn_scratch_out[i] = copy;
5737 }
5738 else if (code == ASM_OPERANDS)
5739 {
5740 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5741 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5742 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5743 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5744 }
5745
5746 return copy;
5747 }
5748
5749 /* Create a new copy of an rtx.
5750 This function differs from copy_rtx in that it handles SCRATCHes and
5751 ASM_OPERANDs properly.
5752 INSN doesn't really have to be a full INSN; it could be just the
5753 pattern. */
5754 rtx
5755 copy_insn (rtx insn)
5756 {
5757 copy_insn_n_scratches = 0;
5758 orig_asm_operands_vector = 0;
5759 orig_asm_constraints_vector = 0;
5760 copy_asm_operands_vector = 0;
5761 copy_asm_constraints_vector = 0;
5762 return copy_insn_1 (insn);
5763 }
5764
5765 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5766 on that assumption that INSN itself remains in its original place. */
5767
5768 rtx_insn *
5769 copy_delay_slot_insn (rtx_insn *insn)
5770 {
5771 /* Copy INSN with its rtx_code, all its notes, location etc. */
5772 insn = as_a <rtx_insn *> (copy_rtx (insn));
5773 INSN_UID (insn) = cur_insn_uid++;
5774 return insn;
5775 }
5776
5777 /* Initialize data structures and variables in this file
5778 before generating rtl for each function. */
5779
5780 void
5781 init_emit (void)
5782 {
5783 set_first_insn (NULL);
5784 set_last_insn (NULL);
5785 if (param_min_nondebug_insn_uid)
5786 cur_insn_uid = param_min_nondebug_insn_uid;
5787 else
5788 cur_insn_uid = 1;
5789 cur_debug_insn_uid = 1;
5790 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5791 first_label_num = label_num;
5792 get_current_sequence ()->next = NULL;
5793
5794 /* Init the tables that describe all the pseudo regs. */
5795
5796 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5797
5798 crtl->emit.regno_pointer_align
5799 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5800
5801 regno_reg_rtx
5802 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5803
5804 /* Put copies of all the hard registers into regno_reg_rtx. */
5805 memcpy (regno_reg_rtx,
5806 initial_regno_reg_rtx,
5807 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5808
5809 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5810 init_virtual_regs ();
5811
5812 /* Indicate that the virtual registers and stack locations are
5813 all pointers. */
5814 REG_POINTER (stack_pointer_rtx) = 1;
5815 REG_POINTER (frame_pointer_rtx) = 1;
5816 REG_POINTER (hard_frame_pointer_rtx) = 1;
5817 REG_POINTER (arg_pointer_rtx) = 1;
5818
5819 REG_POINTER (virtual_incoming_args_rtx) = 1;
5820 REG_POINTER (virtual_stack_vars_rtx) = 1;
5821 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5822 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5823 REG_POINTER (virtual_cfa_rtx) = 1;
5824
5825 #ifdef STACK_BOUNDARY
5826 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5827 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5828 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5829 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5830
5831 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5832 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5833 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5834 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5835
5836 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5837 #endif
5838
5839 #ifdef INIT_EXPANDERS
5840 INIT_EXPANDERS;
5841 #endif
5842 }
5843
5844 /* Return the value of element I of CONST_VECTOR X as a wide_int. */
5845
5846 wide_int
5847 const_vector_int_elt (const_rtx x, unsigned int i)
5848 {
5849 /* First handle elements that are directly encoded. */
5850 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5851 if (i < (unsigned int) XVECLEN (x, 0))
5852 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5853
5854 /* Identify the pattern that contains element I and work out the index of
5855 the last encoded element for that pattern. */
5856 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5857 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5858 unsigned int count = i / npatterns;
5859 unsigned int pattern = i % npatterns;
5860 unsigned int final_i = encoded_nelts - npatterns + pattern;
5861
5862 /* If there are no steps, the final encoded value is the right one. */
5863 if (!CONST_VECTOR_STEPPED_P (x))
5864 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5865
5866 /* Otherwise work out the value from the last two encoded elements. */
5867 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5868 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5869 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5870 rtx_mode_t (v1, elt_mode));
5871 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5872 }
5873
5874 /* Return the value of element I of CONST_VECTOR X. */
5875
5876 rtx
5877 const_vector_elt (const_rtx x, unsigned int i)
5878 {
5879 /* First handle elements that are directly encoded. */
5880 if (i < (unsigned int) XVECLEN (x, 0))
5881 return CONST_VECTOR_ENCODED_ELT (x, i);
5882
5883 /* If there are no steps, the final encoded value is the right one. */
5884 if (!CONST_VECTOR_STEPPED_P (x))
5885 {
5886 /* Identify the pattern that contains element I and work out the index of
5887 the last encoded element for that pattern. */
5888 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5889 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5890 unsigned int pattern = i % npatterns;
5891 unsigned int final_i = encoded_nelts - npatterns + pattern;
5892 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5893 }
5894
5895 /* Otherwise work out the value from the last two encoded elements. */
5896 return immed_wide_int_const (const_vector_int_elt (x, i),
5897 GET_MODE_INNER (GET_MODE (x)));
5898 }
5899
5900 /* Return true if X is a valid element for a CONST_VECTOR of the given
5901 mode. */
5902
5903 bool
5904 valid_for_const_vector_p (machine_mode, rtx x)
5905 {
5906 return (CONST_SCALAR_INT_P (x)
5907 || CONST_POLY_INT_P (x)
5908 || CONST_DOUBLE_AS_FLOAT_P (x)
5909 || CONST_FIXED_P (x));
5910 }
5911
5912 /* Generate a vector constant of mode MODE in which every element has
5913 value ELT. */
5914
5915 rtx
5916 gen_const_vec_duplicate (machine_mode mode, rtx elt)
5917 {
5918 rtx_vector_builder builder (mode, 1, 1);
5919 builder.quick_push (elt);
5920 return builder.build ();
5921 }
5922
5923 /* Return a vector rtx of mode MODE in which every element has value X.
5924 The result will be a constant if X is constant. */
5925
5926 rtx
5927 gen_vec_duplicate (machine_mode mode, rtx x)
5928 {
5929 if (valid_for_const_vector_p (mode, x))
5930 return gen_const_vec_duplicate (mode, x);
5931 return gen_rtx_VEC_DUPLICATE (mode, x);
5932 }
5933
5934 /* A subroutine of const_vec_series_p that handles the case in which:
5935
5936 (GET_CODE (X) == CONST_VECTOR
5937 && CONST_VECTOR_NPATTERNS (X) == 1
5938 && !CONST_VECTOR_DUPLICATE_P (X))
5939
5940 is known to hold. */
5941
5942 bool
5943 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5944 {
5945 /* Stepped sequences are only defined for integers, to avoid specifying
5946 rounding behavior. */
5947 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
5948 return false;
5949
5950 /* A non-duplicated vector with two elements can always be seen as a
5951 series with a nonzero step. Longer vectors must have a stepped
5952 encoding. */
5953 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
5954 && !CONST_VECTOR_STEPPED_P (x))
5955 return false;
5956
5957 /* Calculate the step between the first and second elements. */
5958 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
5959 rtx base = CONST_VECTOR_ELT (x, 0);
5960 rtx step = simplify_binary_operation (MINUS, inner,
5961 CONST_VECTOR_ENCODED_ELT (x, 1), base);
5962 if (rtx_equal_p (step, CONST0_RTX (inner)))
5963 return false;
5964
5965 /* If we have a stepped encoding, check that the step between the
5966 second and third elements is the same as STEP. */
5967 if (CONST_VECTOR_STEPPED_P (x))
5968 {
5969 rtx diff = simplify_binary_operation (MINUS, inner,
5970 CONST_VECTOR_ENCODED_ELT (x, 2),
5971 CONST_VECTOR_ENCODED_ELT (x, 1));
5972 if (!rtx_equal_p (step, diff))
5973 return false;
5974 }
5975
5976 *base_out = base;
5977 *step_out = step;
5978 return true;
5979 }
5980
5981 /* Generate a vector constant of mode MODE in which element I has
5982 the value BASE + I * STEP. */
5983
5984 rtx
5985 gen_const_vec_series (machine_mode mode, rtx base, rtx step)
5986 {
5987 gcc_assert (valid_for_const_vector_p (mode, base)
5988 && valid_for_const_vector_p (mode, step));
5989
5990 rtx_vector_builder builder (mode, 1, 3);
5991 builder.quick_push (base);
5992 for (int i = 1; i < 3; ++i)
5993 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
5994 builder[i - 1], step));
5995 return builder.build ();
5996 }
5997
5998 /* Generate a vector of mode MODE in which element I has the value
5999 BASE + I * STEP. The result will be a constant if BASE and STEP
6000 are both constants. */
6001
6002 rtx
6003 gen_vec_series (machine_mode mode, rtx base, rtx step)
6004 {
6005 if (step == const0_rtx)
6006 return gen_vec_duplicate (mode, base);
6007 if (valid_for_const_vector_p (mode, base)
6008 && valid_for_const_vector_p (mode, step))
6009 return gen_const_vec_series (mode, base, step);
6010 return gen_rtx_VEC_SERIES (mode, base, step);
6011 }
6012
6013 /* Generate a new vector constant for mode MODE and constant value
6014 CONSTANT. */
6015
6016 static rtx
6017 gen_const_vector (machine_mode mode, int constant)
6018 {
6019 machine_mode inner = GET_MODE_INNER (mode);
6020
6021 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6022
6023 rtx el = const_tiny_rtx[constant][(int) inner];
6024 gcc_assert (el);
6025
6026 return gen_const_vec_duplicate (mode, el);
6027 }
6028
6029 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6030 all elements are zero, and the one vector when all elements are one. */
6031 rtx
6032 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
6033 {
6034 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
6035
6036 /* If the values are all the same, check to see if we can use one of the
6037 standard constant vectors. */
6038 if (rtvec_all_equal_p (v))
6039 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
6040
6041 unsigned int nunits = GET_NUM_ELEM (v);
6042 rtx_vector_builder builder (mode, nunits, 1);
6043 for (unsigned int i = 0; i < nunits; ++i)
6044 builder.quick_push (RTVEC_ELT (v, i));
6045 return builder.build (v);
6046 }
6047
6048 /* Initialise global register information required by all functions. */
6049
6050 void
6051 init_emit_regs (void)
6052 {
6053 int i;
6054 machine_mode mode;
6055 mem_attrs *attrs;
6056
6057 /* Reset register attributes */
6058 reg_attrs_htab->empty ();
6059
6060 /* We need reg_raw_mode, so initialize the modes now. */
6061 init_reg_modes_target ();
6062
6063 /* Assign register numbers to the globally defined register rtx. */
6064 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6065 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6066 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6067 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6068 virtual_incoming_args_rtx =
6069 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6070 virtual_stack_vars_rtx =
6071 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6072 virtual_stack_dynamic_rtx =
6073 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6074 virtual_outgoing_args_rtx =
6075 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6076 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
6077 virtual_preferred_stack_boundary_rtx =
6078 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6079
6080 /* Initialize RTL for commonly used hard registers. These are
6081 copied into regno_reg_rtx as we begin to compile each function. */
6082 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6083 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6084
6085 #ifdef RETURN_ADDRESS_POINTER_REGNUM
6086 return_address_pointer_rtx
6087 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6088 #endif
6089
6090 pic_offset_table_rtx = NULL_RTX;
6091 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6092 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
6093
6094 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6095 {
6096 mode = (machine_mode) i;
6097 attrs = ggc_cleared_alloc<mem_attrs> ();
6098 attrs->align = BITS_PER_UNIT;
6099 attrs->addrspace = ADDR_SPACE_GENERIC;
6100 if (mode != BLKmode && mode != VOIDmode)
6101 {
6102 attrs->size_known_p = true;
6103 attrs->size = GET_MODE_SIZE (mode);
6104 if (STRICT_ALIGNMENT)
6105 attrs->align = GET_MODE_ALIGNMENT (mode);
6106 }
6107 mode_mem_attrs[i] = attrs;
6108 }
6109
6110 split_branch_probability = profile_probability::uninitialized ();
6111 }
6112
6113 /* Initialize global machine_mode variables. */
6114
6115 void
6116 init_derived_machine_modes (void)
6117 {
6118 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6119 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
6120 {
6121 scalar_int_mode mode = mode_iter.require ();
6122
6123 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
6124 && !opt_byte_mode.exists ())
6125 opt_byte_mode = mode;
6126
6127 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
6128 && !opt_word_mode.exists ())
6129 opt_word_mode = mode;
6130 }
6131
6132 byte_mode = opt_byte_mode.require ();
6133 word_mode = opt_word_mode.require ();
6134 ptr_mode = as_a <scalar_int_mode>
6135 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
6136 }
6137
6138 /* Create some permanent unique rtl objects shared between all functions. */
6139
6140 void
6141 init_emit_once (void)
6142 {
6143 int i;
6144 machine_mode mode;
6145 scalar_float_mode double_mode;
6146 opt_scalar_mode smode_iter;
6147
6148 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6149 CONST_FIXED, and memory attribute hash tables. */
6150 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
6151
6152 #if TARGET_SUPPORTS_WIDE_INT
6153 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
6154 #endif
6155 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
6156
6157 if (NUM_POLY_INT_COEFFS > 1)
6158 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6159
6160 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
6161
6162 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
6163
6164 #ifdef INIT_EXPANDERS
6165 /* This is to initialize {init|mark|free}_machine_status before the first
6166 call to push_function_context_to. This is needed by the Chill front
6167 end which calls push_function_context_to before the first call to
6168 init_function_start. */
6169 INIT_EXPANDERS;
6170 #endif
6171
6172 /* Create the unique rtx's for certain rtx codes and operand values. */
6173
6174 /* Process stack-limiting command-line options. */
6175 if (opt_fstack_limit_symbol_arg != NULL)
6176 stack_limit_rtx
6177 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6178 if (opt_fstack_limit_register_no >= 0)
6179 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6180
6181 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6182 tries to use these variables. */
6183 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
6184 const_int_rtx[i + MAX_SAVED_CONST_INT] =
6185 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
6186
6187 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6188 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
6189 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
6190 else
6191 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
6192
6193 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
6194
6195 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6196 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6197 real_from_integer (&dconst2, double_mode, 2, SIGNED);
6198
6199 dconstm1 = dconst1;
6200 dconstm1.sign = 1;
6201
6202 dconsthalf = dconst1;
6203 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
6204
6205 for (i = 0; i < 3; i++)
6206 {
6207 const REAL_VALUE_TYPE *const r =
6208 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6209
6210 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
6211 const_tiny_rtx[i][(int) mode] =
6212 const_double_from_real_value (*r, mode);
6213
6214 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
6215 const_tiny_rtx[i][(int) mode] =
6216 const_double_from_real_value (*r, mode);
6217
6218 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
6219
6220 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6221 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6222
6223 for (mode = MIN_MODE_PARTIAL_INT;
6224 mode <= MAX_MODE_PARTIAL_INT;
6225 mode = (machine_mode)((int)(mode) + 1))
6226 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6227 }
6228
6229 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6230
6231 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6232 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6233
6234 /* For BImode, 1 and -1 are unsigned and signed interpretations
6235 of the same value. */
6236 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6237 const_tiny_rtx[1][(int) BImode] = const_true_rtx;
6238 const_tiny_rtx[3][(int) BImode] = const_true_rtx;
6239
6240 for (mode = MIN_MODE_PARTIAL_INT;
6241 mode <= MAX_MODE_PARTIAL_INT;
6242 mode = (machine_mode)((int)(mode) + 1))
6243 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6244
6245 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
6246 {
6247 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6248 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6249 }
6250
6251 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6252 {
6253 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6254 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6255 }
6256
6257 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6258 interpretations of the same value. */
6259 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6260 {
6261 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6262 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6263 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6264 }
6265
6266 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6267 {
6268 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6269 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6270 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6271 }
6272
6273 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6274 {
6275 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6276 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6277 }
6278
6279 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
6280 {
6281 scalar_mode smode = smode_iter.require ();
6282 FCONST0 (smode).data.high = 0;
6283 FCONST0 (smode).data.low = 0;
6284 FCONST0 (smode).mode = smode;
6285 const_tiny_rtx[0][(int) smode]
6286 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6287 }
6288
6289 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
6290 {
6291 scalar_mode smode = smode_iter.require ();
6292 FCONST0 (smode).data.high = 0;
6293 FCONST0 (smode).data.low = 0;
6294 FCONST0 (smode).mode = smode;
6295 const_tiny_rtx[0][(int) smode]
6296 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6297 }
6298
6299 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
6300 {
6301 scalar_mode smode = smode_iter.require ();
6302 FCONST0 (smode).data.high = 0;
6303 FCONST0 (smode).data.low = 0;
6304 FCONST0 (smode).mode = smode;
6305 const_tiny_rtx[0][(int) smode]
6306 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6307
6308 /* We store the value 1. */
6309 FCONST1 (smode).data.high = 0;
6310 FCONST1 (smode).data.low = 0;
6311 FCONST1 (smode).mode = smode;
6312 FCONST1 (smode).data
6313 = double_int_one.lshift (GET_MODE_FBIT (smode),
6314 HOST_BITS_PER_DOUBLE_INT,
6315 SIGNED_FIXED_POINT_MODE_P (smode));
6316 const_tiny_rtx[1][(int) smode]
6317 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6318 }
6319
6320 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
6321 {
6322 scalar_mode smode = smode_iter.require ();
6323 FCONST0 (smode).data.high = 0;
6324 FCONST0 (smode).data.low = 0;
6325 FCONST0 (smode).mode = smode;
6326 const_tiny_rtx[0][(int) smode]
6327 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6328
6329 /* We store the value 1. */
6330 FCONST1 (smode).data.high = 0;
6331 FCONST1 (smode).data.low = 0;
6332 FCONST1 (smode).mode = smode;
6333 FCONST1 (smode).data
6334 = double_int_one.lshift (GET_MODE_FBIT (smode),
6335 HOST_BITS_PER_DOUBLE_INT,
6336 SIGNED_FIXED_POINT_MODE_P (smode));
6337 const_tiny_rtx[1][(int) smode]
6338 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6339 }
6340
6341 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6342 {
6343 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6344 }
6345
6346 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6347 {
6348 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6349 }
6350
6351 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6352 {
6353 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6354 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6355 }
6356
6357 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6358 {
6359 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6360 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6361 }
6362
6363 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6364 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6365 const_tiny_rtx[0][i] = const0_rtx;
6366
6367 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6368 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6369 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6370 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6371 /*prev_insn=*/NULL,
6372 /*next_insn=*/NULL,
6373 /*bb=*/NULL,
6374 /*pattern=*/NULL_RTX,
6375 /*location=*/-1,
6376 CODE_FOR_nothing,
6377 /*reg_notes=*/NULL_RTX);
6378 }
6379 \f
6380 /* Produce exact duplicate of insn INSN after AFTER.
6381 Care updating of libcall regions if present. */
6382
6383 rtx_insn *
6384 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6385 {
6386 rtx_insn *new_rtx;
6387 rtx link;
6388
6389 switch (GET_CODE (insn))
6390 {
6391 case INSN:
6392 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6393 break;
6394
6395 case JUMP_INSN:
6396 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6397 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6398 break;
6399
6400 case DEBUG_INSN:
6401 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6402 break;
6403
6404 case CALL_INSN:
6405 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6406 if (CALL_INSN_FUNCTION_USAGE (insn))
6407 CALL_INSN_FUNCTION_USAGE (new_rtx)
6408 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6409 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6410 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6411 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6412 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6413 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6414 break;
6415
6416 default:
6417 gcc_unreachable ();
6418 }
6419
6420 /* Update LABEL_NUSES. */
6421 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6422
6423 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6424
6425 /* If the old insn is frame related, then so is the new one. This is
6426 primarily needed for IA-64 unwind info which marks epilogue insns,
6427 which may be duplicated by the basic block reordering code. */
6428 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6429
6430 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6431 rtx *ptail = &REG_NOTES (new_rtx);
6432 while (*ptail != NULL_RTX)
6433 ptail = &XEXP (*ptail, 1);
6434
6435 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6436 will make them. REG_LABEL_TARGETs are created there too, but are
6437 supposed to be sticky, so we copy them. */
6438 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6439 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6440 {
6441 *ptail = duplicate_reg_note (link);
6442 ptail = &XEXP (*ptail, 1);
6443 }
6444
6445 INSN_CODE (new_rtx) = INSN_CODE (insn);
6446 return new_rtx;
6447 }
6448
6449 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6450 rtx
6451 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6452 {
6453 if (hard_reg_clobbers[mode][regno])
6454 return hard_reg_clobbers[mode][regno];
6455 else
6456 return (hard_reg_clobbers[mode][regno] =
6457 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6458 }
6459
6460 location_t prologue_location;
6461 location_t epilogue_location;
6462
6463 /* Hold current location information and last location information, so the
6464 datastructures are built lazily only when some instructions in given
6465 place are needed. */
6466 static location_t curr_location;
6467
6468 /* Allocate insn location datastructure. */
6469 void
6470 insn_locations_init (void)
6471 {
6472 prologue_location = epilogue_location = 0;
6473 curr_location = UNKNOWN_LOCATION;
6474 }
6475
6476 /* At the end of emit stage, clear current location. */
6477 void
6478 insn_locations_finalize (void)
6479 {
6480 epilogue_location = curr_location;
6481 curr_location = UNKNOWN_LOCATION;
6482 }
6483
6484 /* Set current location. */
6485 void
6486 set_curr_insn_location (location_t location)
6487 {
6488 curr_location = location;
6489 }
6490
6491 /* Get current location. */
6492 location_t
6493 curr_insn_location (void)
6494 {
6495 return curr_location;
6496 }
6497
6498 /* Set the location of the insn chain starting at INSN to LOC. */
6499 void
6500 set_insn_locations (rtx_insn *insn, location_t loc)
6501 {
6502 while (insn)
6503 {
6504 if (INSN_P (insn))
6505 INSN_LOCATION (insn) = loc;
6506 insn = NEXT_INSN (insn);
6507 }
6508 }
6509
6510 /* Return lexical scope block insn belongs to. */
6511 tree
6512 insn_scope (const rtx_insn *insn)
6513 {
6514 return LOCATION_BLOCK (INSN_LOCATION (insn));
6515 }
6516
6517 /* Return line number of the statement that produced this insn. */
6518 int
6519 insn_line (const rtx_insn *insn)
6520 {
6521 return LOCATION_LINE (INSN_LOCATION (insn));
6522 }
6523
6524 /* Return source file of the statement that produced this insn. */
6525 const char *
6526 insn_file (const rtx_insn *insn)
6527 {
6528 return LOCATION_FILE (INSN_LOCATION (insn));
6529 }
6530
6531 /* Return expanded location of the statement that produced this insn. */
6532 expanded_location
6533 insn_location (const rtx_insn *insn)
6534 {
6535 return expand_location (INSN_LOCATION (insn));
6536 }
6537
6538 /* Return true if memory model MODEL requires a pre-operation (release-style)
6539 barrier or a post-operation (acquire-style) barrier. While not universal,
6540 this function matches behavior of several targets. */
6541
6542 bool
6543 need_atomic_barrier_p (enum memmodel model, bool pre)
6544 {
6545 switch (model & MEMMODEL_BASE_MASK)
6546 {
6547 case MEMMODEL_RELAXED:
6548 case MEMMODEL_CONSUME:
6549 return false;
6550 case MEMMODEL_RELEASE:
6551 return pre;
6552 case MEMMODEL_ACQUIRE:
6553 return !pre;
6554 case MEMMODEL_ACQ_REL:
6555 case MEMMODEL_SEQ_CST:
6556 return true;
6557 default:
6558 gcc_unreachable ();
6559 }
6560 }
6561
6562 /* Return a constant shift amount for shifting a value of mode MODE
6563 by VALUE bits. */
6564
6565 rtx
6566 gen_int_shift_amount (machine_mode, poly_int64 value)
6567 {
6568 /* Use a 64-bit mode, to avoid any truncation.
6569
6570 ??? Perhaps this should be automatically derived from the .md files
6571 instead, or perhaps have a target hook. */
6572 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6573 ? DImode
6574 : int_mode_for_size (64, 0).require ());
6575 return gen_int_mode (value, shift_mode);
6576 }
6577
6578 /* Initialize fields of rtl_data related to stack alignment. */
6579
6580 void
6581 rtl_data::init_stack_alignment ()
6582 {
6583 stack_alignment_needed = STACK_BOUNDARY;
6584 max_used_stack_slot_alignment = STACK_BOUNDARY;
6585 stack_alignment_estimated = 0;
6586 preferred_stack_boundary = STACK_BOUNDARY;
6587 }
6588
6589 \f
6590 #include "gt-emit-rtl.h"