]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
re PR rtl-optimization/15289 (reload error with non-lowpart subregs)
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Nonzero means do not generate NOTEs for source line numbers. */
73
74 static int no_line_numbers;
75
76 /* Commonly used rtx's, so that we only need space for one copy.
77 These are initialized once for the entire compilation.
78 All of these are unique; no other rtx-object will be equal to any
79 of these. */
80
81 rtx global_rtl[GR_MAX];
82
83 /* Commonly used RTL for hard registers. These objects are not necessarily
84 unique, so we allocate them separately from global_rtl. They are
85 initialized once per compilation unit, then copied into regno_reg_rtx
86 at the beginning of each function. */
87 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
88
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx. */
92
93 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
94
95 rtx const_true_rtx;
96
97 REAL_VALUE_TYPE dconst0;
98 REAL_VALUE_TYPE dconst1;
99 REAL_VALUE_TYPE dconst2;
100 REAL_VALUE_TYPE dconst3;
101 REAL_VALUE_TYPE dconst10;
102 REAL_VALUE_TYPE dconstm1;
103 REAL_VALUE_TYPE dconstm2;
104 REAL_VALUE_TYPE dconsthalf;
105 REAL_VALUE_TYPE dconstthird;
106 REAL_VALUE_TYPE dconstpi;
107 REAL_VALUE_TYPE dconste;
108
109 /* All references to the following fixed hard registers go through
110 these unique rtl objects. On machines where the frame-pointer and
111 arg-pointer are the same register, they use the same unique object.
112
113 After register allocation, other rtl objects which used to be pseudo-regs
114 may be clobbered to refer to the frame-pointer register.
115 But references that were originally to the frame-pointer can be
116 distinguished from the others because they contain frame_pointer_rtx.
117
118 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
119 tricky: until register elimination has taken place hard_frame_pointer_rtx
120 should be used if it is being set, and frame_pointer_rtx otherwise. After
121 register elimination hard_frame_pointer_rtx should always be used.
122 On machines where the two registers are same (most) then these are the
123 same.
124
125 In an inline procedure, the stack and frame pointer rtxs may not be
126 used for anything else. */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
146 htab_t const_int_htab;
147
148 /* A hash table storing memory attribute structures. */
149 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
150 htab_t mem_attrs_htab;
151
152 /* A hash table storing register attribute structures. */
153 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
154 htab_t reg_attrs_htab;
155
156 /* A hash table storing all CONST_DOUBLEs. */
157 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
158 htab_t const_double_htab;
159
160 #define first_insn (cfun->emit->x_first_insn)
161 #define last_insn (cfun->emit->x_last_insn)
162 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
163 #define last_location (cfun->emit->x_last_location)
164 #define first_label_num (cfun->emit->x_first_label_num)
165
166 static rtx make_jump_insn_raw (rtx);
167 static rtx make_call_insn_raw (rtx);
168 static rtx find_line_note (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
188
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
192 \f
193 /* Returns a hash code for X (which is a really a CONST_INT). */
194
195 static hashval_t
196 const_int_htab_hash (const void *x)
197 {
198 return (hashval_t) INTVAL ((rtx) x);
199 }
200
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
204
205 static int
206 const_int_htab_eq (const void *x, const void *y)
207 {
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
209 }
210
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
214 {
215 rtx value = (rtx) x;
216 hashval_t h;
217
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
221 {
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
225 }
226 return h;
227 }
228
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
233 {
234 rtx a = (rtx)x, b = (rtx)y;
235
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
244 }
245
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
247
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
250 {
251 mem_attrs *p = (mem_attrs *) x;
252
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) p->expr);
257 }
258
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
262
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
265 {
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
268
269 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
270 && p->size == q->size && p->align == q->align);
271 }
272
273 /* Allocate a new mem_attrs structure and insert it into the hash table if
274 one identical to it is not already in the table. We are doing this for
275 MEM of mode MODE. */
276
277 static mem_attrs *
278 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
279 unsigned int align, enum machine_mode mode)
280 {
281 mem_attrs attrs;
282 void **slot;
283
284 /* If everything is the default, we can just return zero.
285 This must match what the corresponding MEM_* macros return when the
286 field is not present. */
287 if (alias == 0 && expr == 0 && offset == 0
288 && (size == 0
289 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
290 && (STRICT_ALIGNMENT && mode != BLKmode
291 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
292 return 0;
293
294 attrs.alias = alias;
295 attrs.expr = expr;
296 attrs.offset = offset;
297 attrs.size = size;
298 attrs.align = align;
299
300 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
301 if (*slot == 0)
302 {
303 *slot = ggc_alloc (sizeof (mem_attrs));
304 memcpy (*slot, &attrs, sizeof (mem_attrs));
305 }
306
307 return *slot;
308 }
309
310 /* Returns a hash code for X (which is a really a reg_attrs *). */
311
312 static hashval_t
313 reg_attrs_htab_hash (const void *x)
314 {
315 reg_attrs *p = (reg_attrs *) x;
316
317 return ((p->offset * 1000) ^ (long) p->decl);
318 }
319
320 /* Returns nonzero if the value represented by X (which is really a
321 reg_attrs *) is the same as that given by Y (which is also really a
322 reg_attrs *). */
323
324 static int
325 reg_attrs_htab_eq (const void *x, const void *y)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328 reg_attrs *q = (reg_attrs *) y;
329
330 return (p->decl == q->decl && p->offset == q->offset);
331 }
332 /* Allocate a new reg_attrs structure and insert it into the hash table if
333 one identical to it is not already in the table. We are doing this for
334 MEM of mode MODE. */
335
336 static reg_attrs *
337 get_reg_attrs (tree decl, int offset)
338 {
339 reg_attrs attrs;
340 void **slot;
341
342 /* If everything is the default, we can just return zero. */
343 if (decl == 0 && offset == 0)
344 return 0;
345
346 attrs.decl = decl;
347 attrs.offset = offset;
348
349 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
350 if (*slot == 0)
351 {
352 *slot = ggc_alloc (sizeof (reg_attrs));
353 memcpy (*slot, &attrs, sizeof (reg_attrs));
354 }
355
356 return *slot;
357 }
358
359 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
360 don't attempt to share with the various global pieces of rtl (such as
361 frame_pointer_rtx). */
362
363 rtx
364 gen_raw_REG (enum machine_mode mode, int regno)
365 {
366 rtx x = gen_rtx_raw_REG (mode, regno);
367 ORIGINAL_REGNO (x) = regno;
368 return x;
369 }
370
371 /* There are some RTL codes that require special attention; the generation
372 functions do the raw handling. If you add to this list, modify
373 special_rtx in gengenrtl.c as well. */
374
375 rtx
376 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
377 {
378 void **slot;
379
380 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
381 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
382
383 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
384 if (const_true_rtx && arg == STORE_FLAG_VALUE)
385 return const_true_rtx;
386 #endif
387
388 /* Look up the CONST_INT in the hash table. */
389 slot = htab_find_slot_with_hash (const_int_htab, &arg,
390 (hashval_t) arg, INSERT);
391 if (*slot == 0)
392 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
393
394 return (rtx) *slot;
395 }
396
397 rtx
398 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
399 {
400 return GEN_INT (trunc_int_for_mode (c, mode));
401 }
402
403 /* CONST_DOUBLEs might be created from pairs of integers, or from
404 REAL_VALUE_TYPEs. Also, their length is known only at run time,
405 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
406
407 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
408 hash table. If so, return its counterpart; otherwise add it
409 to the hash table and return it. */
410 static rtx
411 lookup_const_double (rtx real)
412 {
413 void **slot = htab_find_slot (const_double_htab, real, INSERT);
414 if (*slot == 0)
415 *slot = real;
416
417 return (rtx) *slot;
418 }
419
420 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
421 VALUE in mode MODE. */
422 rtx
423 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
424 {
425 rtx real = rtx_alloc (CONST_DOUBLE);
426 PUT_MODE (real, mode);
427
428 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
429
430 return lookup_const_double (real);
431 }
432
433 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
434 of ints: I0 is the low-order word and I1 is the high-order word.
435 Do not use this routine for non-integer modes; convert to
436 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
437
438 rtx
439 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
440 {
441 rtx value;
442 unsigned int i;
443
444 if (mode != VOIDmode)
445 {
446 int width;
447
448 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
449 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
450 /* We can get a 0 for an error mark. */
451 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
452 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
453
454 /* We clear out all bits that don't belong in MODE, unless they and
455 our sign bit are all one. So we get either a reasonable negative
456 value or a reasonable unsigned value for this mode. */
457 width = GET_MODE_BITSIZE (mode);
458 if (width < HOST_BITS_PER_WIDE_INT
459 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
460 != ((HOST_WIDE_INT) (-1) << (width - 1))))
461 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
462 else if (width == HOST_BITS_PER_WIDE_INT
463 && ! (i1 == ~0 && i0 < 0))
464 i1 = 0;
465 else
466 /* We should be able to represent this value as a constant. */
467 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
468
469 /* If this would be an entire word for the target, but is not for
470 the host, then sign-extend on the host so that the number will
471 look the same way on the host that it would on the target.
472
473 For example, when building a 64 bit alpha hosted 32 bit sparc
474 targeted compiler, then we want the 32 bit unsigned value -1 to be
475 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
476 The latter confuses the sparc backend. */
477
478 if (width < HOST_BITS_PER_WIDE_INT
479 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
480 i0 |= ((HOST_WIDE_INT) (-1) << width);
481
482 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
483 CONST_INT.
484
485 ??? Strictly speaking, this is wrong if we create a CONST_INT for
486 a large unsigned constant with the size of MODE being
487 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
488 in a wider mode. In that case we will mis-interpret it as a
489 negative number.
490
491 Unfortunately, the only alternative is to make a CONST_DOUBLE for
492 any constant in any mode if it is an unsigned constant larger
493 than the maximum signed integer in an int on the host. However,
494 doing this will break everyone that always expects to see a
495 CONST_INT for SImode and smaller.
496
497 We have always been making CONST_INTs in this case, so nothing
498 new is being broken. */
499
500 if (width <= HOST_BITS_PER_WIDE_INT)
501 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
502 }
503
504 /* If this integer fits in one word, return a CONST_INT. */
505 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
506 return GEN_INT (i0);
507
508 /* We use VOIDmode for integers. */
509 value = rtx_alloc (CONST_DOUBLE);
510 PUT_MODE (value, VOIDmode);
511
512 CONST_DOUBLE_LOW (value) = i0;
513 CONST_DOUBLE_HIGH (value) = i1;
514
515 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
516 XWINT (value, i) = 0;
517
518 return lookup_const_double (value);
519 }
520
521 rtx
522 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
523 {
524 /* In case the MD file explicitly references the frame pointer, have
525 all such references point to the same frame pointer. This is
526 used during frame pointer elimination to distinguish the explicit
527 references to these registers from pseudos that happened to be
528 assigned to them.
529
530 If we have eliminated the frame pointer or arg pointer, we will
531 be using it as a normal register, for example as a spill
532 register. In such cases, we might be accessing it in a mode that
533 is not Pmode and therefore cannot use the pre-allocated rtx.
534
535 Also don't do this when we are making new REGs in reload, since
536 we don't want to get confused with the real pointers. */
537
538 if (mode == Pmode && !reload_in_progress)
539 {
540 if (regno == FRAME_POINTER_REGNUM
541 && (!reload_completed || frame_pointer_needed))
542 return frame_pointer_rtx;
543 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
544 if (regno == HARD_FRAME_POINTER_REGNUM
545 && (!reload_completed || frame_pointer_needed))
546 return hard_frame_pointer_rtx;
547 #endif
548 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
549 if (regno == ARG_POINTER_REGNUM)
550 return arg_pointer_rtx;
551 #endif
552 #ifdef RETURN_ADDRESS_POINTER_REGNUM
553 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
554 return return_address_pointer_rtx;
555 #endif
556 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
557 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
558 return pic_offset_table_rtx;
559 if (regno == STACK_POINTER_REGNUM)
560 return stack_pointer_rtx;
561 }
562
563 #if 0
564 /* If the per-function register table has been set up, try to re-use
565 an existing entry in that table to avoid useless generation of RTL.
566
567 This code is disabled for now until we can fix the various backends
568 which depend on having non-shared hard registers in some cases. Long
569 term we want to re-enable this code as it can significantly cut down
570 on the amount of useless RTL that gets generated.
571
572 We'll also need to fix some code that runs after reload that wants to
573 set ORIGINAL_REGNO. */
574
575 if (cfun
576 && cfun->emit
577 && regno_reg_rtx
578 && regno < FIRST_PSEUDO_REGISTER
579 && reg_raw_mode[regno] == mode)
580 return regno_reg_rtx[regno];
581 #endif
582
583 return gen_raw_REG (mode, regno);
584 }
585
586 rtx
587 gen_rtx_MEM (enum machine_mode mode, rtx addr)
588 {
589 rtx rt = gen_rtx_raw_MEM (mode, addr);
590
591 /* This field is not cleared by the mere allocation of the rtx, so
592 we clear it here. */
593 MEM_ATTRS (rt) = 0;
594
595 return rt;
596 }
597
598 /* Generate a memory referring to non-trapping constant memory. */
599
600 rtx
601 gen_const_mem (enum machine_mode mode, rtx addr)
602 {
603 rtx mem = gen_rtx_MEM (mode, addr);
604 MEM_READONLY_P (mem) = 1;
605 MEM_NOTRAP_P (mem) = 1;
606 return mem;
607 }
608
609 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
610 this construct would be valid, and false otherwise. */
611
612 bool
613 validate_subreg (enum machine_mode omode, enum machine_mode imode,
614 rtx reg, unsigned int offset)
615 {
616 unsigned int isize = GET_MODE_SIZE (imode);
617 unsigned int osize = GET_MODE_SIZE (omode);
618
619 /* All subregs must be aligned. */
620 if (offset % osize != 0)
621 return false;
622
623 /* The subreg offset cannot be outside the inner object. */
624 if (offset >= isize)
625 return false;
626
627 /* ??? This should not be here. Temporarily continue to allow word_mode
628 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
629 Generally, backends are doing something sketchy but it'll take time to
630 fix them all. */
631 if (omode == word_mode)
632 ;
633 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
634 is the culprit here, and not the backends. */
635 else if (osize >= UNITS_PER_WORD && isize >= osize)
636 ;
637 /* Allow component subregs of complex and vector. Though given the below
638 extraction rules, it's not always clear what that means. */
639 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
640 && GET_MODE_INNER (imode) == omode)
641 ;
642 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
643 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
644 represent this. It's questionable if this ought to be represented at
645 all -- why can't this all be hidden in post-reload splitters that make
646 arbitrarily mode changes to the registers themselves. */
647 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
648 ;
649 /* Subregs involving floating point modes are not allowed to
650 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
651 (subreg:SI (reg:DF) 0) isn't. */
652 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
653 {
654 if (isize != osize)
655 return false;
656 }
657
658 /* Paradoxical subregs must have offset zero. */
659 if (osize > isize)
660 return offset == 0;
661
662 /* This is a normal subreg. Verify that the offset is representable. */
663
664 /* For hard registers, we already have most of these rules collected in
665 subreg_offset_representable_p. */
666 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
667 {
668 unsigned int regno = REGNO (reg);
669
670 #ifdef CANNOT_CHANGE_MODE_CLASS
671 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
672 && GET_MODE_INNER (imode) == omode)
673 ;
674 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
675 return false;
676 #endif
677
678 return subreg_offset_representable_p (regno, imode, offset, omode);
679 }
680
681 /* For pseudo registers, we want most of the same checks. Namely:
682 If the register no larger than a word, the subreg must be lowpart.
683 If the register is larger than a word, the subreg must be the lowpart
684 of a subword. A subreg does *not* perform arbitrary bit extraction.
685 Given that we've already checked mode/offset alignment, we only have
686 to check subword subregs here. */
687 if (osize < UNITS_PER_WORD)
688 {
689 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
690 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
691 if (offset % UNITS_PER_WORD != low_off)
692 return false;
693 }
694 return true;
695 }
696
697 rtx
698 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
699 {
700 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
701 return gen_rtx_raw_SUBREG (mode, reg, offset);
702 }
703
704 /* Generate a SUBREG representing the least-significant part of REG if MODE
705 is smaller than mode of REG, otherwise paradoxical SUBREG. */
706
707 rtx
708 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
709 {
710 enum machine_mode inmode;
711
712 inmode = GET_MODE (reg);
713 if (inmode == VOIDmode)
714 inmode = mode;
715 return gen_rtx_SUBREG (mode, reg,
716 subreg_lowpart_offset (mode, inmode));
717 }
718 \f
719 /* gen_rtvec (n, [rt1, ..., rtn])
720 **
721 ** This routine creates an rtvec and stores within it the
722 ** pointers to rtx's which are its arguments.
723 */
724
725 /*VARARGS1*/
726 rtvec
727 gen_rtvec (int n, ...)
728 {
729 int i, save_n;
730 rtx *vector;
731 va_list p;
732
733 va_start (p, n);
734
735 if (n == 0)
736 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
737
738 vector = alloca (n * sizeof (rtx));
739
740 for (i = 0; i < n; i++)
741 vector[i] = va_arg (p, rtx);
742
743 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
744 save_n = n;
745 va_end (p);
746
747 return gen_rtvec_v (save_n, vector);
748 }
749
750 rtvec
751 gen_rtvec_v (int n, rtx *argp)
752 {
753 int i;
754 rtvec rt_val;
755
756 if (n == 0)
757 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
758
759 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
760
761 for (i = 0; i < n; i++)
762 rt_val->elem[i] = *argp++;
763
764 return rt_val;
765 }
766 \f
767 /* Generate a REG rtx for a new pseudo register of mode MODE.
768 This pseudo is assigned the next sequential register number. */
769
770 rtx
771 gen_reg_rtx (enum machine_mode mode)
772 {
773 struct function *f = cfun;
774 rtx val;
775
776 /* Don't let anything called after initial flow analysis create new
777 registers. */
778 gcc_assert (!no_new_pseudos);
779
780 if (generating_concat_p
781 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
782 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
783 {
784 /* For complex modes, don't make a single pseudo.
785 Instead, make a CONCAT of two pseudos.
786 This allows noncontiguous allocation of the real and imaginary parts,
787 which makes much better code. Besides, allocating DCmode
788 pseudos overstrains reload on some machines like the 386. */
789 rtx realpart, imagpart;
790 enum machine_mode partmode = GET_MODE_INNER (mode);
791
792 realpart = gen_reg_rtx (partmode);
793 imagpart = gen_reg_rtx (partmode);
794 return gen_rtx_CONCAT (mode, realpart, imagpart);
795 }
796
797 /* Make sure regno_pointer_align, and regno_reg_rtx are large
798 enough to have an element for this pseudo reg number. */
799
800 if (reg_rtx_no == f->emit->regno_pointer_align_length)
801 {
802 int old_size = f->emit->regno_pointer_align_length;
803 char *new;
804 rtx *new1;
805
806 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
807 memset (new + old_size, 0, old_size);
808 f->emit->regno_pointer_align = (unsigned char *) new;
809
810 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
811 old_size * 2 * sizeof (rtx));
812 memset (new1 + old_size, 0, old_size * sizeof (rtx));
813 regno_reg_rtx = new1;
814
815 f->emit->regno_pointer_align_length = old_size * 2;
816 }
817
818 val = gen_raw_REG (mode, reg_rtx_no);
819 regno_reg_rtx[reg_rtx_no++] = val;
820 return val;
821 }
822
823 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
824 Do the big endian correction if needed. */
825
826 rtx
827 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
828 {
829 rtx new = gen_rtx_REG (mode, regno);
830 tree decl;
831 HOST_WIDE_INT var_size;
832
833 /* PR middle-end/14084
834 The problem appears when a variable is stored in a larger register
835 and later it is used in the original mode or some mode in between
836 or some part of variable is accessed.
837
838 On little endian machines there is no problem because
839 the REG_OFFSET of the start of the variable is the same when
840 accessed in any mode (it is 0).
841
842 However, this is not true on big endian machines.
843 The offset of the start of the variable is different when accessed
844 in different modes.
845 When we are taking a part of the REG we have to change the OFFSET
846 from offset WRT size of mode of REG to offset WRT size of variable.
847
848 If we would not do the big endian correction the resulting REG_OFFSET
849 would be larger than the size of the DECL.
850
851 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
852
853 REG.mode MODE DECL size old offset new offset description
854 DI SI 4 4 0 int32 in SImode
855 DI SI 1 4 0 char in SImode
856 DI QI 1 7 0 char in QImode
857 DI QI 4 5 1 1st element in QImode
858 of char[4]
859 DI HI 4 6 2 1st element in HImode
860 of int16[2]
861
862 If the size of DECL is equal or greater than the size of REG
863 we can't do this correction because the register holds the
864 whole variable or a part of the variable and thus the REG_OFFSET
865 is already correct. */
866
867 decl = REG_EXPR (reg);
868 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
869 && decl != NULL
870 && offset > 0
871 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
872 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
873 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
874 {
875 int offset_le;
876
877 /* Convert machine endian to little endian WRT size of mode of REG. */
878 if (WORDS_BIG_ENDIAN)
879 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
880 / UNITS_PER_WORD) * UNITS_PER_WORD;
881 else
882 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
883
884 if (BYTES_BIG_ENDIAN)
885 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
886 % UNITS_PER_WORD);
887 else
888 offset_le += offset % UNITS_PER_WORD;
889
890 if (offset_le >= var_size)
891 {
892 /* MODE is wider than the variable so the new reg will cover
893 the whole variable so the resulting OFFSET should be 0. */
894 offset = 0;
895 }
896 else
897 {
898 /* Convert little endian to machine endian WRT size of variable. */
899 if (WORDS_BIG_ENDIAN)
900 offset = ((var_size - 1 - offset_le)
901 / UNITS_PER_WORD) * UNITS_PER_WORD;
902 else
903 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
904
905 if (BYTES_BIG_ENDIAN)
906 offset += ((var_size - 1 - offset_le)
907 % UNITS_PER_WORD);
908 else
909 offset += offset_le % UNITS_PER_WORD;
910 }
911 }
912
913 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
914 REG_OFFSET (reg) + offset);
915 return new;
916 }
917
918 /* Set the decl for MEM to DECL. */
919
920 void
921 set_reg_attrs_from_mem (rtx reg, rtx mem)
922 {
923 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
924 REG_ATTRS (reg)
925 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
926 }
927
928 /* Set the register attributes for registers contained in PARM_RTX.
929 Use needed values from memory attributes of MEM. */
930
931 void
932 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
933 {
934 if (REG_P (parm_rtx))
935 set_reg_attrs_from_mem (parm_rtx, mem);
936 else if (GET_CODE (parm_rtx) == PARALLEL)
937 {
938 /* Check for a NULL entry in the first slot, used to indicate that the
939 parameter goes both on the stack and in registers. */
940 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
941 for (; i < XVECLEN (parm_rtx, 0); i++)
942 {
943 rtx x = XVECEXP (parm_rtx, 0, i);
944 if (REG_P (XEXP (x, 0)))
945 REG_ATTRS (XEXP (x, 0))
946 = get_reg_attrs (MEM_EXPR (mem),
947 INTVAL (XEXP (x, 1)));
948 }
949 }
950 }
951
952 /* Assign the RTX X to declaration T. */
953 void
954 set_decl_rtl (tree t, rtx x)
955 {
956 DECL_CHECK (t)->decl.rtl = x;
957
958 if (!x)
959 return;
960 /* For register, we maintain the reverse information too. */
961 if (REG_P (x))
962 REG_ATTRS (x) = get_reg_attrs (t, 0);
963 else if (GET_CODE (x) == SUBREG)
964 REG_ATTRS (SUBREG_REG (x))
965 = get_reg_attrs (t, -SUBREG_BYTE (x));
966 if (GET_CODE (x) == CONCAT)
967 {
968 if (REG_P (XEXP (x, 0)))
969 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
970 if (REG_P (XEXP (x, 1)))
971 REG_ATTRS (XEXP (x, 1))
972 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
973 }
974 if (GET_CODE (x) == PARALLEL)
975 {
976 int i;
977 for (i = 0; i < XVECLEN (x, 0); i++)
978 {
979 rtx y = XVECEXP (x, 0, i);
980 if (REG_P (XEXP (y, 0)))
981 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
982 }
983 }
984 }
985
986 /* Assign the RTX X to parameter declaration T. */
987 void
988 set_decl_incoming_rtl (tree t, rtx x)
989 {
990 DECL_INCOMING_RTL (t) = x;
991
992 if (!x)
993 return;
994 /* For register, we maintain the reverse information too. */
995 if (REG_P (x))
996 REG_ATTRS (x) = get_reg_attrs (t, 0);
997 else if (GET_CODE (x) == SUBREG)
998 REG_ATTRS (SUBREG_REG (x))
999 = get_reg_attrs (t, -SUBREG_BYTE (x));
1000 if (GET_CODE (x) == CONCAT)
1001 {
1002 if (REG_P (XEXP (x, 0)))
1003 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1004 if (REG_P (XEXP (x, 1)))
1005 REG_ATTRS (XEXP (x, 1))
1006 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1007 }
1008 if (GET_CODE (x) == PARALLEL)
1009 {
1010 int i, start;
1011
1012 /* Check for a NULL entry, used to indicate that the parameter goes
1013 both on the stack and in registers. */
1014 if (XEXP (XVECEXP (x, 0, 0), 0))
1015 start = 0;
1016 else
1017 start = 1;
1018
1019 for (i = start; i < XVECLEN (x, 0); i++)
1020 {
1021 rtx y = XVECEXP (x, 0, i);
1022 if (REG_P (XEXP (y, 0)))
1023 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1024 }
1025 }
1026 }
1027
1028 /* Identify REG (which may be a CONCAT) as a user register. */
1029
1030 void
1031 mark_user_reg (rtx reg)
1032 {
1033 if (GET_CODE (reg) == CONCAT)
1034 {
1035 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1036 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1037 }
1038 else
1039 {
1040 gcc_assert (REG_P (reg));
1041 REG_USERVAR_P (reg) = 1;
1042 }
1043 }
1044
1045 /* Identify REG as a probable pointer register and show its alignment
1046 as ALIGN, if nonzero. */
1047
1048 void
1049 mark_reg_pointer (rtx reg, int align)
1050 {
1051 if (! REG_POINTER (reg))
1052 {
1053 REG_POINTER (reg) = 1;
1054
1055 if (align)
1056 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1057 }
1058 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1059 /* We can no-longer be sure just how aligned this pointer is. */
1060 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1061 }
1062
1063 /* Return 1 plus largest pseudo reg number used in the current function. */
1064
1065 int
1066 max_reg_num (void)
1067 {
1068 return reg_rtx_no;
1069 }
1070
1071 /* Return 1 + the largest label number used so far in the current function. */
1072
1073 int
1074 max_label_num (void)
1075 {
1076 return label_num;
1077 }
1078
1079 /* Return first label number used in this function (if any were used). */
1080
1081 int
1082 get_first_label_num (void)
1083 {
1084 return first_label_num;
1085 }
1086
1087 /* If the rtx for label was created during the expansion of a nested
1088 function, then first_label_num won't include this label number.
1089 Fix this now so that array indicies work later. */
1090
1091 void
1092 maybe_set_first_label_num (rtx x)
1093 {
1094 if (CODE_LABEL_NUMBER (x) < first_label_num)
1095 first_label_num = CODE_LABEL_NUMBER (x);
1096 }
1097 \f
1098 /* Return a value representing some low-order bits of X, where the number
1099 of low-order bits is given by MODE. Note that no conversion is done
1100 between floating-point and fixed-point values, rather, the bit
1101 representation is returned.
1102
1103 This function handles the cases in common between gen_lowpart, below,
1104 and two variants in cse.c and combine.c. These are the cases that can
1105 be safely handled at all points in the compilation.
1106
1107 If this is not a case we can handle, return 0. */
1108
1109 rtx
1110 gen_lowpart_common (enum machine_mode mode, rtx x)
1111 {
1112 int msize = GET_MODE_SIZE (mode);
1113 int xsize;
1114 int offset = 0;
1115 enum machine_mode innermode;
1116
1117 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1118 so we have to make one up. Yuk. */
1119 innermode = GET_MODE (x);
1120 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1121 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1122 else if (innermode == VOIDmode)
1123 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1124
1125 xsize = GET_MODE_SIZE (innermode);
1126
1127 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1128
1129 if (innermode == mode)
1130 return x;
1131
1132 /* MODE must occupy no more words than the mode of X. */
1133 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1134 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1135 return 0;
1136
1137 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1138 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1139 return 0;
1140
1141 offset = subreg_lowpart_offset (mode, innermode);
1142
1143 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1144 && (GET_MODE_CLASS (mode) == MODE_INT
1145 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1146 {
1147 /* If we are getting the low-order part of something that has been
1148 sign- or zero-extended, we can either just use the object being
1149 extended or make a narrower extension. If we want an even smaller
1150 piece than the size of the object being extended, call ourselves
1151 recursively.
1152
1153 This case is used mostly by combine and cse. */
1154
1155 if (GET_MODE (XEXP (x, 0)) == mode)
1156 return XEXP (x, 0);
1157 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1158 return gen_lowpart_common (mode, XEXP (x, 0));
1159 else if (msize < xsize)
1160 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1161 }
1162 else if (GET_CODE (x) == SUBREG || REG_P (x)
1163 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1164 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1165 return simplify_gen_subreg (mode, x, innermode, offset);
1166
1167 /* Otherwise, we can't do this. */
1168 return 0;
1169 }
1170 \f
1171 rtx
1172 gen_highpart (enum machine_mode mode, rtx x)
1173 {
1174 unsigned int msize = GET_MODE_SIZE (mode);
1175 rtx result;
1176
1177 /* This case loses if X is a subreg. To catch bugs early,
1178 complain if an invalid MODE is used even in other cases. */
1179 gcc_assert (msize <= UNITS_PER_WORD
1180 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1181
1182 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1183 subreg_highpart_offset (mode, GET_MODE (x)));
1184 gcc_assert (result);
1185
1186 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1187 the target if we have a MEM. gen_highpart must return a valid operand,
1188 emitting code if necessary to do so. */
1189 if (MEM_P (result))
1190 {
1191 result = validize_mem (result);
1192 gcc_assert (result);
1193 }
1194
1195 return result;
1196 }
1197
1198 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1199 be VOIDmode constant. */
1200 rtx
1201 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1202 {
1203 if (GET_MODE (exp) != VOIDmode)
1204 {
1205 gcc_assert (GET_MODE (exp) == innermode);
1206 return gen_highpart (outermode, exp);
1207 }
1208 return simplify_gen_subreg (outermode, exp, innermode,
1209 subreg_highpart_offset (outermode, innermode));
1210 }
1211
1212 /* Return offset in bytes to get OUTERMODE low part
1213 of the value in mode INNERMODE stored in memory in target format. */
1214
1215 unsigned int
1216 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1217 {
1218 unsigned int offset = 0;
1219 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1220
1221 if (difference > 0)
1222 {
1223 if (WORDS_BIG_ENDIAN)
1224 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1225 if (BYTES_BIG_ENDIAN)
1226 offset += difference % UNITS_PER_WORD;
1227 }
1228
1229 return offset;
1230 }
1231
1232 /* Return offset in bytes to get OUTERMODE high part
1233 of the value in mode INNERMODE stored in memory in target format. */
1234 unsigned int
1235 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1236 {
1237 unsigned int offset = 0;
1238 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1239
1240 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1241
1242 if (difference > 0)
1243 {
1244 if (! WORDS_BIG_ENDIAN)
1245 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1246 if (! BYTES_BIG_ENDIAN)
1247 offset += difference % UNITS_PER_WORD;
1248 }
1249
1250 return offset;
1251 }
1252
1253 /* Return 1 iff X, assumed to be a SUBREG,
1254 refers to the least significant part of its containing reg.
1255 If X is not a SUBREG, always return 1 (it is its own low part!). */
1256
1257 int
1258 subreg_lowpart_p (rtx x)
1259 {
1260 if (GET_CODE (x) != SUBREG)
1261 return 1;
1262 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1263 return 0;
1264
1265 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1266 == SUBREG_BYTE (x));
1267 }
1268 \f
1269 /* Return subword OFFSET of operand OP.
1270 The word number, OFFSET, is interpreted as the word number starting
1271 at the low-order address. OFFSET 0 is the low-order word if not
1272 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1273
1274 If we cannot extract the required word, we return zero. Otherwise,
1275 an rtx corresponding to the requested word will be returned.
1276
1277 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1278 reload has completed, a valid address will always be returned. After
1279 reload, if a valid address cannot be returned, we return zero.
1280
1281 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1282 it is the responsibility of the caller.
1283
1284 MODE is the mode of OP in case it is a CONST_INT.
1285
1286 ??? This is still rather broken for some cases. The problem for the
1287 moment is that all callers of this thing provide no 'goal mode' to
1288 tell us to work with. This exists because all callers were written
1289 in a word based SUBREG world.
1290 Now use of this function can be deprecated by simplify_subreg in most
1291 cases.
1292 */
1293
1294 rtx
1295 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1296 {
1297 if (mode == VOIDmode)
1298 mode = GET_MODE (op);
1299
1300 gcc_assert (mode != VOIDmode);
1301
1302 /* If OP is narrower than a word, fail. */
1303 if (mode != BLKmode
1304 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1305 return 0;
1306
1307 /* If we want a word outside OP, return zero. */
1308 if (mode != BLKmode
1309 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1310 return const0_rtx;
1311
1312 /* Form a new MEM at the requested address. */
1313 if (MEM_P (op))
1314 {
1315 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1316
1317 if (! validate_address)
1318 return new;
1319
1320 else if (reload_completed)
1321 {
1322 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1323 return 0;
1324 }
1325 else
1326 return replace_equiv_address (new, XEXP (new, 0));
1327 }
1328
1329 /* Rest can be handled by simplify_subreg. */
1330 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1331 }
1332
1333 /* Similar to `operand_subword', but never return 0. If we can't extract
1334 the required subword, put OP into a register and try again. If that fails,
1335 abort. We always validate the address in this case.
1336
1337 MODE is the mode of OP, in case it is CONST_INT. */
1338
1339 rtx
1340 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1341 {
1342 rtx result = operand_subword (op, offset, 1, mode);
1343
1344 if (result)
1345 return result;
1346
1347 if (mode != BLKmode && mode != VOIDmode)
1348 {
1349 /* If this is a register which can not be accessed by words, copy it
1350 to a pseudo register. */
1351 if (REG_P (op))
1352 op = copy_to_reg (op);
1353 else
1354 op = force_reg (mode, op);
1355 }
1356
1357 result = operand_subword (op, offset, 1, mode);
1358 gcc_assert (result);
1359
1360 return result;
1361 }
1362 \f
1363 /* Given a compare instruction, swap the operands.
1364 A test instruction is changed into a compare of 0 against the operand. */
1365
1366 void
1367 reverse_comparison (rtx insn)
1368 {
1369 rtx body = PATTERN (insn);
1370 rtx comp;
1371
1372 if (GET_CODE (body) == SET)
1373 comp = SET_SRC (body);
1374 else
1375 comp = SET_SRC (XVECEXP (body, 0, 0));
1376
1377 if (GET_CODE (comp) == COMPARE)
1378 {
1379 rtx op0 = XEXP (comp, 0);
1380 rtx op1 = XEXP (comp, 1);
1381 XEXP (comp, 0) = op1;
1382 XEXP (comp, 1) = op0;
1383 }
1384 else
1385 {
1386 rtx new = gen_rtx_COMPARE (VOIDmode,
1387 CONST0_RTX (GET_MODE (comp)), comp);
1388 if (GET_CODE (body) == SET)
1389 SET_SRC (body) = new;
1390 else
1391 SET_SRC (XVECEXP (body, 0, 0)) = new;
1392 }
1393 }
1394 \f
1395 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1396 or (2) a component ref of something variable. Represent the later with
1397 a NULL expression. */
1398
1399 static tree
1400 component_ref_for_mem_expr (tree ref)
1401 {
1402 tree inner = TREE_OPERAND (ref, 0);
1403
1404 if (TREE_CODE (inner) == COMPONENT_REF)
1405 inner = component_ref_for_mem_expr (inner);
1406 else
1407 {
1408 /* Now remove any conversions: they don't change what the underlying
1409 object is. Likewise for SAVE_EXPR. */
1410 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1411 || TREE_CODE (inner) == NON_LVALUE_EXPR
1412 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1413 || TREE_CODE (inner) == SAVE_EXPR)
1414 inner = TREE_OPERAND (inner, 0);
1415
1416 if (! DECL_P (inner))
1417 inner = NULL_TREE;
1418 }
1419
1420 if (inner == TREE_OPERAND (ref, 0))
1421 return ref;
1422 else
1423 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1424 TREE_OPERAND (ref, 1), NULL_TREE);
1425 }
1426
1427 /* Returns 1 if both MEM_EXPR can be considered equal
1428 and 0 otherwise. */
1429
1430 int
1431 mem_expr_equal_p (tree expr1, tree expr2)
1432 {
1433 if (expr1 == expr2)
1434 return 1;
1435
1436 if (! expr1 || ! expr2)
1437 return 0;
1438
1439 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1440 return 0;
1441
1442 if (TREE_CODE (expr1) == COMPONENT_REF)
1443 return
1444 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1445 TREE_OPERAND (expr2, 0))
1446 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1447 TREE_OPERAND (expr2, 1));
1448
1449 if (INDIRECT_REF_P (expr1))
1450 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1451 TREE_OPERAND (expr2, 0));
1452
1453 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1454 have been resolved here. */
1455 gcc_assert (DECL_P (expr1));
1456
1457 /* Decls with different pointers can't be equal. */
1458 return 0;
1459 }
1460
1461 /* Given REF, a MEM, and T, either the type of X or the expression
1462 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1463 if we are making a new object of this type. BITPOS is nonzero if
1464 there is an offset outstanding on T that will be applied later. */
1465
1466 void
1467 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1468 HOST_WIDE_INT bitpos)
1469 {
1470 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1471 tree expr = MEM_EXPR (ref);
1472 rtx offset = MEM_OFFSET (ref);
1473 rtx size = MEM_SIZE (ref);
1474 unsigned int align = MEM_ALIGN (ref);
1475 HOST_WIDE_INT apply_bitpos = 0;
1476 tree type;
1477
1478 /* It can happen that type_for_mode was given a mode for which there
1479 is no language-level type. In which case it returns NULL, which
1480 we can see here. */
1481 if (t == NULL_TREE)
1482 return;
1483
1484 type = TYPE_P (t) ? t : TREE_TYPE (t);
1485 if (type == error_mark_node)
1486 return;
1487
1488 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1489 wrong answer, as it assumes that DECL_RTL already has the right alias
1490 info. Callers should not set DECL_RTL until after the call to
1491 set_mem_attributes. */
1492 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1493
1494 /* Get the alias set from the expression or type (perhaps using a
1495 front-end routine) and use it. */
1496 alias = get_alias_set (t);
1497
1498 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1499 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1500 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1501 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1502
1503 /* If we are making an object of this type, or if this is a DECL, we know
1504 that it is a scalar if the type is not an aggregate. */
1505 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1506 MEM_SCALAR_P (ref) = 1;
1507
1508 /* We can set the alignment from the type if we are making an object,
1509 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1510 if (objectp || TREE_CODE (t) == INDIRECT_REF
1511 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1512 || TYPE_ALIGN_OK (type))
1513 align = MAX (align, TYPE_ALIGN (type));
1514 else
1515 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1516 {
1517 if (integer_zerop (TREE_OPERAND (t, 1)))
1518 /* We don't know anything about the alignment. */
1519 align = BITS_PER_UNIT;
1520 else
1521 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1522 }
1523
1524 /* If the size is known, we can set that. */
1525 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1526 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1527
1528 /* If T is not a type, we may be able to deduce some more information about
1529 the expression. */
1530 if (! TYPE_P (t))
1531 {
1532 tree base = get_base_address (t);
1533 if (base && DECL_P (base)
1534 && TREE_READONLY (base)
1535 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1536 MEM_READONLY_P (ref) = 1;
1537
1538 if (TREE_THIS_VOLATILE (t))
1539 MEM_VOLATILE_P (ref) = 1;
1540
1541 /* Now remove any conversions: they don't change what the underlying
1542 object is. Likewise for SAVE_EXPR. */
1543 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1544 || TREE_CODE (t) == NON_LVALUE_EXPR
1545 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1546 || TREE_CODE (t) == SAVE_EXPR)
1547 t = TREE_OPERAND (t, 0);
1548
1549 /* If this expression can't be addressed (e.g., it contains a reference
1550 to a non-addressable field), show we don't change its alias set. */
1551 if (! can_address_p (t))
1552 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1553
1554 /* If this is a decl, set the attributes of the MEM from it. */
1555 if (DECL_P (t))
1556 {
1557 expr = t;
1558 offset = const0_rtx;
1559 apply_bitpos = bitpos;
1560 size = (DECL_SIZE_UNIT (t)
1561 && host_integerp (DECL_SIZE_UNIT (t), 1)
1562 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1563 align = DECL_ALIGN (t);
1564 }
1565
1566 /* If this is a constant, we know the alignment. */
1567 else if (CONSTANT_CLASS_P (t))
1568 {
1569 align = TYPE_ALIGN (type);
1570 #ifdef CONSTANT_ALIGNMENT
1571 align = CONSTANT_ALIGNMENT (t, align);
1572 #endif
1573 }
1574
1575 /* If this is a field reference and not a bit-field, record it. */
1576 /* ??? There is some information that can be gleened from bit-fields,
1577 such as the word offset in the structure that might be modified.
1578 But skip it for now. */
1579 else if (TREE_CODE (t) == COMPONENT_REF
1580 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1581 {
1582 expr = component_ref_for_mem_expr (t);
1583 offset = const0_rtx;
1584 apply_bitpos = bitpos;
1585 /* ??? Any reason the field size would be different than
1586 the size we got from the type? */
1587 }
1588
1589 /* If this is an array reference, look for an outer field reference. */
1590 else if (TREE_CODE (t) == ARRAY_REF)
1591 {
1592 tree off_tree = size_zero_node;
1593 /* We can't modify t, because we use it at the end of the
1594 function. */
1595 tree t2 = t;
1596
1597 do
1598 {
1599 tree index = TREE_OPERAND (t2, 1);
1600 tree low_bound = array_ref_low_bound (t2);
1601 tree unit_size = array_ref_element_size (t2);
1602
1603 /* We assume all arrays have sizes that are a multiple of a byte.
1604 First subtract the lower bound, if any, in the type of the
1605 index, then convert to sizetype and multiply by the size of
1606 the array element. */
1607 if (! integer_zerop (low_bound))
1608 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1609 index, low_bound));
1610
1611 off_tree = size_binop (PLUS_EXPR,
1612 size_binop (MULT_EXPR, convert (sizetype,
1613 index),
1614 unit_size),
1615 off_tree);
1616 t2 = TREE_OPERAND (t2, 0);
1617 }
1618 while (TREE_CODE (t2) == ARRAY_REF);
1619
1620 if (DECL_P (t2))
1621 {
1622 expr = t2;
1623 offset = NULL;
1624 if (host_integerp (off_tree, 1))
1625 {
1626 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1627 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1628 align = DECL_ALIGN (t2);
1629 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1630 align = aoff;
1631 offset = GEN_INT (ioff);
1632 apply_bitpos = bitpos;
1633 }
1634 }
1635 else if (TREE_CODE (t2) == COMPONENT_REF)
1636 {
1637 expr = component_ref_for_mem_expr (t2);
1638 if (host_integerp (off_tree, 1))
1639 {
1640 offset = GEN_INT (tree_low_cst (off_tree, 1));
1641 apply_bitpos = bitpos;
1642 }
1643 /* ??? Any reason the field size would be different than
1644 the size we got from the type? */
1645 }
1646 else if (flag_argument_noalias > 1
1647 && (INDIRECT_REF_P (t2))
1648 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1649 {
1650 expr = t2;
1651 offset = NULL;
1652 }
1653 }
1654
1655 /* If this is a Fortran indirect argument reference, record the
1656 parameter decl. */
1657 else if (flag_argument_noalias > 1
1658 && (INDIRECT_REF_P (t))
1659 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1660 {
1661 expr = t;
1662 offset = NULL;
1663 }
1664 }
1665
1666 /* If we modified OFFSET based on T, then subtract the outstanding
1667 bit position offset. Similarly, increase the size of the accessed
1668 object to contain the negative offset. */
1669 if (apply_bitpos)
1670 {
1671 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1672 if (size)
1673 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1674 }
1675
1676 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1677 {
1678 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1679 we're overlapping. */
1680 offset = NULL;
1681 expr = NULL;
1682 }
1683
1684 /* Now set the attributes we computed above. */
1685 MEM_ATTRS (ref)
1686 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1687
1688 /* If this is already known to be a scalar or aggregate, we are done. */
1689 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1690 return;
1691
1692 /* If it is a reference into an aggregate, this is part of an aggregate.
1693 Otherwise we don't know. */
1694 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1695 || TREE_CODE (t) == ARRAY_RANGE_REF
1696 || TREE_CODE (t) == BIT_FIELD_REF)
1697 MEM_IN_STRUCT_P (ref) = 1;
1698 }
1699
1700 void
1701 set_mem_attributes (rtx ref, tree t, int objectp)
1702 {
1703 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1704 }
1705
1706 /* Set the decl for MEM to DECL. */
1707
1708 void
1709 set_mem_attrs_from_reg (rtx mem, rtx reg)
1710 {
1711 MEM_ATTRS (mem)
1712 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1713 GEN_INT (REG_OFFSET (reg)),
1714 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1715 }
1716
1717 /* Set the alias set of MEM to SET. */
1718
1719 void
1720 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1721 {
1722 #ifdef ENABLE_CHECKING
1723 /* If the new and old alias sets don't conflict, something is wrong. */
1724 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1725 #endif
1726
1727 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1728 MEM_SIZE (mem), MEM_ALIGN (mem),
1729 GET_MODE (mem));
1730 }
1731
1732 /* Set the alignment of MEM to ALIGN bits. */
1733
1734 void
1735 set_mem_align (rtx mem, unsigned int align)
1736 {
1737 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1738 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1739 GET_MODE (mem));
1740 }
1741
1742 /* Set the expr for MEM to EXPR. */
1743
1744 void
1745 set_mem_expr (rtx mem, tree expr)
1746 {
1747 MEM_ATTRS (mem)
1748 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1749 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1750 }
1751
1752 /* Set the offset of MEM to OFFSET. */
1753
1754 void
1755 set_mem_offset (rtx mem, rtx offset)
1756 {
1757 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1758 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1759 GET_MODE (mem));
1760 }
1761
1762 /* Set the size of MEM to SIZE. */
1763
1764 void
1765 set_mem_size (rtx mem, rtx size)
1766 {
1767 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1768 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1769 GET_MODE (mem));
1770 }
1771 \f
1772 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1773 and its address changed to ADDR. (VOIDmode means don't change the mode.
1774 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1775 returned memory location is required to be valid. The memory
1776 attributes are not changed. */
1777
1778 static rtx
1779 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1780 {
1781 rtx new;
1782
1783 gcc_assert (MEM_P (memref));
1784 if (mode == VOIDmode)
1785 mode = GET_MODE (memref);
1786 if (addr == 0)
1787 addr = XEXP (memref, 0);
1788 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1789 && (!validate || memory_address_p (mode, addr)))
1790 return memref;
1791
1792 if (validate)
1793 {
1794 if (reload_in_progress || reload_completed)
1795 gcc_assert (memory_address_p (mode, addr));
1796 else
1797 addr = memory_address (mode, addr);
1798 }
1799
1800 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1801 return memref;
1802
1803 new = gen_rtx_MEM (mode, addr);
1804 MEM_COPY_ATTRIBUTES (new, memref);
1805 return new;
1806 }
1807
1808 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1809 way we are changing MEMREF, so we only preserve the alias set. */
1810
1811 rtx
1812 change_address (rtx memref, enum machine_mode mode, rtx addr)
1813 {
1814 rtx new = change_address_1 (memref, mode, addr, 1), size;
1815 enum machine_mode mmode = GET_MODE (new);
1816 unsigned int align;
1817
1818 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1819 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1820
1821 /* If there are no changes, just return the original memory reference. */
1822 if (new == memref)
1823 {
1824 if (MEM_ATTRS (memref) == 0
1825 || (MEM_EXPR (memref) == NULL
1826 && MEM_OFFSET (memref) == NULL
1827 && MEM_SIZE (memref) == size
1828 && MEM_ALIGN (memref) == align))
1829 return new;
1830
1831 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1832 MEM_COPY_ATTRIBUTES (new, memref);
1833 }
1834
1835 MEM_ATTRS (new)
1836 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1837
1838 return new;
1839 }
1840
1841 /* Return a memory reference like MEMREF, but with its mode changed
1842 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1843 nonzero, the memory address is forced to be valid.
1844 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1845 and caller is responsible for adjusting MEMREF base register. */
1846
1847 rtx
1848 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1849 int validate, int adjust)
1850 {
1851 rtx addr = XEXP (memref, 0);
1852 rtx new;
1853 rtx memoffset = MEM_OFFSET (memref);
1854 rtx size = 0;
1855 unsigned int memalign = MEM_ALIGN (memref);
1856
1857 /* If there are no changes, just return the original memory reference. */
1858 if (mode == GET_MODE (memref) && !offset
1859 && (!validate || memory_address_p (mode, addr)))
1860 return memref;
1861
1862 /* ??? Prefer to create garbage instead of creating shared rtl.
1863 This may happen even if offset is nonzero -- consider
1864 (plus (plus reg reg) const_int) -- so do this always. */
1865 addr = copy_rtx (addr);
1866
1867 if (adjust)
1868 {
1869 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1870 object, we can merge it into the LO_SUM. */
1871 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1872 && offset >= 0
1873 && (unsigned HOST_WIDE_INT) offset
1874 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1875 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1876 plus_constant (XEXP (addr, 1), offset));
1877 else
1878 addr = plus_constant (addr, offset);
1879 }
1880
1881 new = change_address_1 (memref, mode, addr, validate);
1882
1883 /* Compute the new values of the memory attributes due to this adjustment.
1884 We add the offsets and update the alignment. */
1885 if (memoffset)
1886 memoffset = GEN_INT (offset + INTVAL (memoffset));
1887
1888 /* Compute the new alignment by taking the MIN of the alignment and the
1889 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1890 if zero. */
1891 if (offset != 0)
1892 memalign
1893 = MIN (memalign,
1894 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1895
1896 /* We can compute the size in a number of ways. */
1897 if (GET_MODE (new) != BLKmode)
1898 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1899 else if (MEM_SIZE (memref))
1900 size = plus_constant (MEM_SIZE (memref), -offset);
1901
1902 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1903 memoffset, size, memalign, GET_MODE (new));
1904
1905 /* At some point, we should validate that this offset is within the object,
1906 if all the appropriate values are known. */
1907 return new;
1908 }
1909
1910 /* Return a memory reference like MEMREF, but with its mode changed
1911 to MODE and its address changed to ADDR, which is assumed to be
1912 MEMREF offseted by OFFSET bytes. If VALIDATE is
1913 nonzero, the memory address is forced to be valid. */
1914
1915 rtx
1916 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1917 HOST_WIDE_INT offset, int validate)
1918 {
1919 memref = change_address_1 (memref, VOIDmode, addr, validate);
1920 return adjust_address_1 (memref, mode, offset, validate, 0);
1921 }
1922
1923 /* Return a memory reference like MEMREF, but whose address is changed by
1924 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1925 known to be in OFFSET (possibly 1). */
1926
1927 rtx
1928 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1929 {
1930 rtx new, addr = XEXP (memref, 0);
1931
1932 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1933
1934 /* At this point we don't know _why_ the address is invalid. It
1935 could have secondary memory references, multiplies or anything.
1936
1937 However, if we did go and rearrange things, we can wind up not
1938 being able to recognize the magic around pic_offset_table_rtx.
1939 This stuff is fragile, and is yet another example of why it is
1940 bad to expose PIC machinery too early. */
1941 if (! memory_address_p (GET_MODE (memref), new)
1942 && GET_CODE (addr) == PLUS
1943 && XEXP (addr, 0) == pic_offset_table_rtx)
1944 {
1945 addr = force_reg (GET_MODE (addr), addr);
1946 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1947 }
1948
1949 update_temp_slot_address (XEXP (memref, 0), new);
1950 new = change_address_1 (memref, VOIDmode, new, 1);
1951
1952 /* If there are no changes, just return the original memory reference. */
1953 if (new == memref)
1954 return new;
1955
1956 /* Update the alignment to reflect the offset. Reset the offset, which
1957 we don't know. */
1958 MEM_ATTRS (new)
1959 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1960 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1961 GET_MODE (new));
1962 return new;
1963 }
1964
1965 /* Return a memory reference like MEMREF, but with its address changed to
1966 ADDR. The caller is asserting that the actual piece of memory pointed
1967 to is the same, just the form of the address is being changed, such as
1968 by putting something into a register. */
1969
1970 rtx
1971 replace_equiv_address (rtx memref, rtx addr)
1972 {
1973 /* change_address_1 copies the memory attribute structure without change
1974 and that's exactly what we want here. */
1975 update_temp_slot_address (XEXP (memref, 0), addr);
1976 return change_address_1 (memref, VOIDmode, addr, 1);
1977 }
1978
1979 /* Likewise, but the reference is not required to be valid. */
1980
1981 rtx
1982 replace_equiv_address_nv (rtx memref, rtx addr)
1983 {
1984 return change_address_1 (memref, VOIDmode, addr, 0);
1985 }
1986
1987 /* Return a memory reference like MEMREF, but with its mode widened to
1988 MODE and offset by OFFSET. This would be used by targets that e.g.
1989 cannot issue QImode memory operations and have to use SImode memory
1990 operations plus masking logic. */
1991
1992 rtx
1993 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1994 {
1995 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1996 tree expr = MEM_EXPR (new);
1997 rtx memoffset = MEM_OFFSET (new);
1998 unsigned int size = GET_MODE_SIZE (mode);
1999
2000 /* If there are no changes, just return the original memory reference. */
2001 if (new == memref)
2002 return new;
2003
2004 /* If we don't know what offset we were at within the expression, then
2005 we can't know if we've overstepped the bounds. */
2006 if (! memoffset)
2007 expr = NULL_TREE;
2008
2009 while (expr)
2010 {
2011 if (TREE_CODE (expr) == COMPONENT_REF)
2012 {
2013 tree field = TREE_OPERAND (expr, 1);
2014 tree offset = component_ref_field_offset (expr);
2015
2016 if (! DECL_SIZE_UNIT (field))
2017 {
2018 expr = NULL_TREE;
2019 break;
2020 }
2021
2022 /* Is the field at least as large as the access? If so, ok,
2023 otherwise strip back to the containing structure. */
2024 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2025 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2026 && INTVAL (memoffset) >= 0)
2027 break;
2028
2029 if (! host_integerp (offset, 1))
2030 {
2031 expr = NULL_TREE;
2032 break;
2033 }
2034
2035 expr = TREE_OPERAND (expr, 0);
2036 memoffset
2037 = (GEN_INT (INTVAL (memoffset)
2038 + tree_low_cst (offset, 1)
2039 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2040 / BITS_PER_UNIT)));
2041 }
2042 /* Similarly for the decl. */
2043 else if (DECL_P (expr)
2044 && DECL_SIZE_UNIT (expr)
2045 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2046 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2047 && (! memoffset || INTVAL (memoffset) >= 0))
2048 break;
2049 else
2050 {
2051 /* The widened memory access overflows the expression, which means
2052 that it could alias another expression. Zap it. */
2053 expr = NULL_TREE;
2054 break;
2055 }
2056 }
2057
2058 if (! expr)
2059 memoffset = NULL_RTX;
2060
2061 /* The widened memory may alias other stuff, so zap the alias set. */
2062 /* ??? Maybe use get_alias_set on any remaining expression. */
2063
2064 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2065 MEM_ALIGN (new), mode);
2066
2067 return new;
2068 }
2069 \f
2070 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2071
2072 rtx
2073 gen_label_rtx (void)
2074 {
2075 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2076 NULL, label_num++, NULL);
2077 }
2078 \f
2079 /* For procedure integration. */
2080
2081 /* Install new pointers to the first and last insns in the chain.
2082 Also, set cur_insn_uid to one higher than the last in use.
2083 Used for an inline-procedure after copying the insn chain. */
2084
2085 void
2086 set_new_first_and_last_insn (rtx first, rtx last)
2087 {
2088 rtx insn;
2089
2090 first_insn = first;
2091 last_insn = last;
2092 cur_insn_uid = 0;
2093
2094 for (insn = first; insn; insn = NEXT_INSN (insn))
2095 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2096
2097 cur_insn_uid++;
2098 }
2099 \f
2100 /* Go through all the RTL insn bodies and copy any invalid shared
2101 structure. This routine should only be called once. */
2102
2103 static void
2104 unshare_all_rtl_1 (tree fndecl, rtx insn)
2105 {
2106 tree decl;
2107
2108 /* Make sure that virtual parameters are not shared. */
2109 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2110 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2111
2112 /* Make sure that virtual stack slots are not shared. */
2113 unshare_all_decls (DECL_INITIAL (fndecl));
2114
2115 /* Unshare just about everything else. */
2116 unshare_all_rtl_in_chain (insn);
2117
2118 /* Make sure the addresses of stack slots found outside the insn chain
2119 (such as, in DECL_RTL of a variable) are not shared
2120 with the insn chain.
2121
2122 This special care is necessary when the stack slot MEM does not
2123 actually appear in the insn chain. If it does appear, its address
2124 is unshared from all else at that point. */
2125 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2126 }
2127
2128 /* Go through all the RTL insn bodies and copy any invalid shared
2129 structure, again. This is a fairly expensive thing to do so it
2130 should be done sparingly. */
2131
2132 void
2133 unshare_all_rtl_again (rtx insn)
2134 {
2135 rtx p;
2136 tree decl;
2137
2138 for (p = insn; p; p = NEXT_INSN (p))
2139 if (INSN_P (p))
2140 {
2141 reset_used_flags (PATTERN (p));
2142 reset_used_flags (REG_NOTES (p));
2143 reset_used_flags (LOG_LINKS (p));
2144 }
2145
2146 /* Make sure that virtual stack slots are not shared. */
2147 reset_used_decls (DECL_INITIAL (cfun->decl));
2148
2149 /* Make sure that virtual parameters are not shared. */
2150 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2151 reset_used_flags (DECL_RTL (decl));
2152
2153 reset_used_flags (stack_slot_list);
2154
2155 unshare_all_rtl_1 (cfun->decl, insn);
2156 }
2157
2158 void
2159 unshare_all_rtl (void)
2160 {
2161 unshare_all_rtl_1 (current_function_decl, get_insns ());
2162 }
2163
2164 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2165 Recursively does the same for subexpressions. */
2166
2167 static void
2168 verify_rtx_sharing (rtx orig, rtx insn)
2169 {
2170 rtx x = orig;
2171 int i;
2172 enum rtx_code code;
2173 const char *format_ptr;
2174
2175 if (x == 0)
2176 return;
2177
2178 code = GET_CODE (x);
2179
2180 /* These types may be freely shared. */
2181
2182 switch (code)
2183 {
2184 case REG:
2185 case CONST_INT:
2186 case CONST_DOUBLE:
2187 case CONST_VECTOR:
2188 case SYMBOL_REF:
2189 case LABEL_REF:
2190 case CODE_LABEL:
2191 case PC:
2192 case CC0:
2193 case SCRATCH:
2194 return;
2195 /* SCRATCH must be shared because they represent distinct values. */
2196 case CLOBBER:
2197 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2198 return;
2199 break;
2200
2201 case CONST:
2202 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2203 a LABEL_REF, it isn't sharable. */
2204 if (GET_CODE (XEXP (x, 0)) == PLUS
2205 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2206 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2207 return;
2208 break;
2209
2210 case MEM:
2211 /* A MEM is allowed to be shared if its address is constant. */
2212 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2213 || reload_completed || reload_in_progress)
2214 return;
2215
2216 break;
2217
2218 default:
2219 break;
2220 }
2221
2222 /* This rtx may not be shared. If it has already been seen,
2223 replace it with a copy of itself. */
2224 #ifdef ENABLE_CHECKING
2225 if (RTX_FLAG (x, used))
2226 {
2227 error ("Invalid rtl sharing found in the insn");
2228 debug_rtx (insn);
2229 error ("Shared rtx");
2230 debug_rtx (x);
2231 internal_error ("Internal consistency failure");
2232 }
2233 #endif
2234 gcc_assert (!RTX_FLAG (x, used));
2235
2236 RTX_FLAG (x, used) = 1;
2237
2238 /* Now scan the subexpressions recursively. */
2239
2240 format_ptr = GET_RTX_FORMAT (code);
2241
2242 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2243 {
2244 switch (*format_ptr++)
2245 {
2246 case 'e':
2247 verify_rtx_sharing (XEXP (x, i), insn);
2248 break;
2249
2250 case 'E':
2251 if (XVEC (x, i) != NULL)
2252 {
2253 int j;
2254 int len = XVECLEN (x, i);
2255
2256 for (j = 0; j < len; j++)
2257 {
2258 /* We allow sharing of ASM_OPERANDS inside single
2259 instruction. */
2260 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2261 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2262 == ASM_OPERANDS))
2263 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2264 else
2265 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2266 }
2267 }
2268 break;
2269 }
2270 }
2271 return;
2272 }
2273
2274 /* Go through all the RTL insn bodies and check that there is no unexpected
2275 sharing in between the subexpressions. */
2276
2277 void
2278 verify_rtl_sharing (void)
2279 {
2280 rtx p;
2281
2282 for (p = get_insns (); p; p = NEXT_INSN (p))
2283 if (INSN_P (p))
2284 {
2285 reset_used_flags (PATTERN (p));
2286 reset_used_flags (REG_NOTES (p));
2287 reset_used_flags (LOG_LINKS (p));
2288 }
2289
2290 for (p = get_insns (); p; p = NEXT_INSN (p))
2291 if (INSN_P (p))
2292 {
2293 verify_rtx_sharing (PATTERN (p), p);
2294 verify_rtx_sharing (REG_NOTES (p), p);
2295 verify_rtx_sharing (LOG_LINKS (p), p);
2296 }
2297 }
2298
2299 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2300 Assumes the mark bits are cleared at entry. */
2301
2302 void
2303 unshare_all_rtl_in_chain (rtx insn)
2304 {
2305 for (; insn; insn = NEXT_INSN (insn))
2306 if (INSN_P (insn))
2307 {
2308 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2309 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2310 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2311 }
2312 }
2313
2314 /* Go through all virtual stack slots of a function and copy any
2315 shared structure. */
2316 static void
2317 unshare_all_decls (tree blk)
2318 {
2319 tree t;
2320
2321 /* Copy shared decls. */
2322 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2323 if (DECL_RTL_SET_P (t))
2324 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2325
2326 /* Now process sub-blocks. */
2327 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2328 unshare_all_decls (t);
2329 }
2330
2331 /* Go through all virtual stack slots of a function and mark them as
2332 not shared. */
2333 static void
2334 reset_used_decls (tree blk)
2335 {
2336 tree t;
2337
2338 /* Mark decls. */
2339 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2340 if (DECL_RTL_SET_P (t))
2341 reset_used_flags (DECL_RTL (t));
2342
2343 /* Now process sub-blocks. */
2344 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2345 reset_used_decls (t);
2346 }
2347
2348 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2349 Recursively does the same for subexpressions. Uses
2350 copy_rtx_if_shared_1 to reduce stack space. */
2351
2352 rtx
2353 copy_rtx_if_shared (rtx orig)
2354 {
2355 copy_rtx_if_shared_1 (&orig);
2356 return orig;
2357 }
2358
2359 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2360 use. Recursively does the same for subexpressions. */
2361
2362 static void
2363 copy_rtx_if_shared_1 (rtx *orig1)
2364 {
2365 rtx x;
2366 int i;
2367 enum rtx_code code;
2368 rtx *last_ptr;
2369 const char *format_ptr;
2370 int copied = 0;
2371 int length;
2372
2373 /* Repeat is used to turn tail-recursion into iteration. */
2374 repeat:
2375 x = *orig1;
2376
2377 if (x == 0)
2378 return;
2379
2380 code = GET_CODE (x);
2381
2382 /* These types may be freely shared. */
2383
2384 switch (code)
2385 {
2386 case REG:
2387 case CONST_INT:
2388 case CONST_DOUBLE:
2389 case CONST_VECTOR:
2390 case SYMBOL_REF:
2391 case LABEL_REF:
2392 case CODE_LABEL:
2393 case PC:
2394 case CC0:
2395 case SCRATCH:
2396 /* SCRATCH must be shared because they represent distinct values. */
2397 return;
2398 case CLOBBER:
2399 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2400 return;
2401 break;
2402
2403 case CONST:
2404 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2405 a LABEL_REF, it isn't sharable. */
2406 if (GET_CODE (XEXP (x, 0)) == PLUS
2407 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2408 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2409 return;
2410 break;
2411
2412 case INSN:
2413 case JUMP_INSN:
2414 case CALL_INSN:
2415 case NOTE:
2416 case BARRIER:
2417 /* The chain of insns is not being copied. */
2418 return;
2419
2420 default:
2421 break;
2422 }
2423
2424 /* This rtx may not be shared. If it has already been seen,
2425 replace it with a copy of itself. */
2426
2427 if (RTX_FLAG (x, used))
2428 {
2429 rtx copy;
2430
2431 copy = rtx_alloc (code);
2432 memcpy (copy, x, RTX_SIZE (code));
2433 x = copy;
2434 copied = 1;
2435 }
2436 RTX_FLAG (x, used) = 1;
2437
2438 /* Now scan the subexpressions recursively.
2439 We can store any replaced subexpressions directly into X
2440 since we know X is not shared! Any vectors in X
2441 must be copied if X was copied. */
2442
2443 format_ptr = GET_RTX_FORMAT (code);
2444 length = GET_RTX_LENGTH (code);
2445 last_ptr = NULL;
2446
2447 for (i = 0; i < length; i++)
2448 {
2449 switch (*format_ptr++)
2450 {
2451 case 'e':
2452 if (last_ptr)
2453 copy_rtx_if_shared_1 (last_ptr);
2454 last_ptr = &XEXP (x, i);
2455 break;
2456
2457 case 'E':
2458 if (XVEC (x, i) != NULL)
2459 {
2460 int j;
2461 int len = XVECLEN (x, i);
2462
2463 /* Copy the vector iff I copied the rtx and the length
2464 is nonzero. */
2465 if (copied && len > 0)
2466 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2467
2468 /* Call recursively on all inside the vector. */
2469 for (j = 0; j < len; j++)
2470 {
2471 if (last_ptr)
2472 copy_rtx_if_shared_1 (last_ptr);
2473 last_ptr = &XVECEXP (x, i, j);
2474 }
2475 }
2476 break;
2477 }
2478 }
2479 *orig1 = x;
2480 if (last_ptr)
2481 {
2482 orig1 = last_ptr;
2483 goto repeat;
2484 }
2485 return;
2486 }
2487
2488 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2489 to look for shared sub-parts. */
2490
2491 void
2492 reset_used_flags (rtx x)
2493 {
2494 int i, j;
2495 enum rtx_code code;
2496 const char *format_ptr;
2497 int length;
2498
2499 /* Repeat is used to turn tail-recursion into iteration. */
2500 repeat:
2501 if (x == 0)
2502 return;
2503
2504 code = GET_CODE (x);
2505
2506 /* These types may be freely shared so we needn't do any resetting
2507 for them. */
2508
2509 switch (code)
2510 {
2511 case REG:
2512 case CONST_INT:
2513 case CONST_DOUBLE:
2514 case CONST_VECTOR:
2515 case SYMBOL_REF:
2516 case CODE_LABEL:
2517 case PC:
2518 case CC0:
2519 return;
2520
2521 case INSN:
2522 case JUMP_INSN:
2523 case CALL_INSN:
2524 case NOTE:
2525 case LABEL_REF:
2526 case BARRIER:
2527 /* The chain of insns is not being copied. */
2528 return;
2529
2530 default:
2531 break;
2532 }
2533
2534 RTX_FLAG (x, used) = 0;
2535
2536 format_ptr = GET_RTX_FORMAT (code);
2537 length = GET_RTX_LENGTH (code);
2538
2539 for (i = 0; i < length; i++)
2540 {
2541 switch (*format_ptr++)
2542 {
2543 case 'e':
2544 if (i == length-1)
2545 {
2546 x = XEXP (x, i);
2547 goto repeat;
2548 }
2549 reset_used_flags (XEXP (x, i));
2550 break;
2551
2552 case 'E':
2553 for (j = 0; j < XVECLEN (x, i); j++)
2554 reset_used_flags (XVECEXP (x, i, j));
2555 break;
2556 }
2557 }
2558 }
2559
2560 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2561 to look for shared sub-parts. */
2562
2563 void
2564 set_used_flags (rtx x)
2565 {
2566 int i, j;
2567 enum rtx_code code;
2568 const char *format_ptr;
2569
2570 if (x == 0)
2571 return;
2572
2573 code = GET_CODE (x);
2574
2575 /* These types may be freely shared so we needn't do any resetting
2576 for them. */
2577
2578 switch (code)
2579 {
2580 case REG:
2581 case CONST_INT:
2582 case CONST_DOUBLE:
2583 case CONST_VECTOR:
2584 case SYMBOL_REF:
2585 case CODE_LABEL:
2586 case PC:
2587 case CC0:
2588 return;
2589
2590 case INSN:
2591 case JUMP_INSN:
2592 case CALL_INSN:
2593 case NOTE:
2594 case LABEL_REF:
2595 case BARRIER:
2596 /* The chain of insns is not being copied. */
2597 return;
2598
2599 default:
2600 break;
2601 }
2602
2603 RTX_FLAG (x, used) = 1;
2604
2605 format_ptr = GET_RTX_FORMAT (code);
2606 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2607 {
2608 switch (*format_ptr++)
2609 {
2610 case 'e':
2611 set_used_flags (XEXP (x, i));
2612 break;
2613
2614 case 'E':
2615 for (j = 0; j < XVECLEN (x, i); j++)
2616 set_used_flags (XVECEXP (x, i, j));
2617 break;
2618 }
2619 }
2620 }
2621 \f
2622 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2623 Return X or the rtx for the pseudo reg the value of X was copied into.
2624 OTHER must be valid as a SET_DEST. */
2625
2626 rtx
2627 make_safe_from (rtx x, rtx other)
2628 {
2629 while (1)
2630 switch (GET_CODE (other))
2631 {
2632 case SUBREG:
2633 other = SUBREG_REG (other);
2634 break;
2635 case STRICT_LOW_PART:
2636 case SIGN_EXTEND:
2637 case ZERO_EXTEND:
2638 other = XEXP (other, 0);
2639 break;
2640 default:
2641 goto done;
2642 }
2643 done:
2644 if ((MEM_P (other)
2645 && ! CONSTANT_P (x)
2646 && !REG_P (x)
2647 && GET_CODE (x) != SUBREG)
2648 || (REG_P (other)
2649 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2650 || reg_mentioned_p (other, x))))
2651 {
2652 rtx temp = gen_reg_rtx (GET_MODE (x));
2653 emit_move_insn (temp, x);
2654 return temp;
2655 }
2656 return x;
2657 }
2658 \f
2659 /* Emission of insns (adding them to the doubly-linked list). */
2660
2661 /* Return the first insn of the current sequence or current function. */
2662
2663 rtx
2664 get_insns (void)
2665 {
2666 return first_insn;
2667 }
2668
2669 /* Specify a new insn as the first in the chain. */
2670
2671 void
2672 set_first_insn (rtx insn)
2673 {
2674 gcc_assert (!PREV_INSN (insn));
2675 first_insn = insn;
2676 }
2677
2678 /* Return the last insn emitted in current sequence or current function. */
2679
2680 rtx
2681 get_last_insn (void)
2682 {
2683 return last_insn;
2684 }
2685
2686 /* Specify a new insn as the last in the chain. */
2687
2688 void
2689 set_last_insn (rtx insn)
2690 {
2691 gcc_assert (!NEXT_INSN (insn));
2692 last_insn = insn;
2693 }
2694
2695 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2696
2697 rtx
2698 get_last_insn_anywhere (void)
2699 {
2700 struct sequence_stack *stack;
2701 if (last_insn)
2702 return last_insn;
2703 for (stack = seq_stack; stack; stack = stack->next)
2704 if (stack->last != 0)
2705 return stack->last;
2706 return 0;
2707 }
2708
2709 /* Return the first nonnote insn emitted in current sequence or current
2710 function. This routine looks inside SEQUENCEs. */
2711
2712 rtx
2713 get_first_nonnote_insn (void)
2714 {
2715 rtx insn;
2716
2717 for (insn = first_insn; insn && NOTE_P (insn); insn = next_insn (insn));
2718 return insn;
2719 }
2720
2721 /* Return the last nonnote insn emitted in current sequence or current
2722 function. This routine looks inside SEQUENCEs. */
2723
2724 rtx
2725 get_last_nonnote_insn (void)
2726 {
2727 rtx insn;
2728
2729 for (insn = last_insn; insn && NOTE_P (insn); insn = previous_insn (insn));
2730 return insn;
2731 }
2732
2733 /* Return a number larger than any instruction's uid in this function. */
2734
2735 int
2736 get_max_uid (void)
2737 {
2738 return cur_insn_uid;
2739 }
2740
2741 /* Renumber instructions so that no instruction UIDs are wasted. */
2742
2743 void
2744 renumber_insns (FILE *stream)
2745 {
2746 rtx insn;
2747
2748 /* If we're not supposed to renumber instructions, don't. */
2749 if (!flag_renumber_insns)
2750 return;
2751
2752 /* If there aren't that many instructions, then it's not really
2753 worth renumbering them. */
2754 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2755 return;
2756
2757 cur_insn_uid = 1;
2758
2759 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2760 {
2761 if (stream)
2762 fprintf (stream, "Renumbering insn %d to %d\n",
2763 INSN_UID (insn), cur_insn_uid);
2764 INSN_UID (insn) = cur_insn_uid++;
2765 }
2766 }
2767 \f
2768 /* Return the next insn. If it is a SEQUENCE, return the first insn
2769 of the sequence. */
2770
2771 rtx
2772 next_insn (rtx insn)
2773 {
2774 if (insn)
2775 {
2776 insn = NEXT_INSN (insn);
2777 if (insn && NONJUMP_INSN_P (insn)
2778 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2779 insn = XVECEXP (PATTERN (insn), 0, 0);
2780 }
2781
2782 return insn;
2783 }
2784
2785 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2786 of the sequence. */
2787
2788 rtx
2789 previous_insn (rtx insn)
2790 {
2791 if (insn)
2792 {
2793 insn = PREV_INSN (insn);
2794 if (insn && NONJUMP_INSN_P (insn)
2795 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2796 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2797 }
2798
2799 return insn;
2800 }
2801
2802 /* Return the next insn after INSN that is not a NOTE. This routine does not
2803 look inside SEQUENCEs. */
2804
2805 rtx
2806 next_nonnote_insn (rtx insn)
2807 {
2808 while (insn)
2809 {
2810 insn = NEXT_INSN (insn);
2811 if (insn == 0 || !NOTE_P (insn))
2812 break;
2813 }
2814
2815 return insn;
2816 }
2817
2818 /* Return the previous insn before INSN that is not a NOTE. This routine does
2819 not look inside SEQUENCEs. */
2820
2821 rtx
2822 prev_nonnote_insn (rtx insn)
2823 {
2824 while (insn)
2825 {
2826 insn = PREV_INSN (insn);
2827 if (insn == 0 || !NOTE_P (insn))
2828 break;
2829 }
2830
2831 return insn;
2832 }
2833
2834 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2835 or 0, if there is none. This routine does not look inside
2836 SEQUENCEs. */
2837
2838 rtx
2839 next_real_insn (rtx insn)
2840 {
2841 while (insn)
2842 {
2843 insn = NEXT_INSN (insn);
2844 if (insn == 0 || INSN_P (insn))
2845 break;
2846 }
2847
2848 return insn;
2849 }
2850
2851 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2852 or 0, if there is none. This routine does not look inside
2853 SEQUENCEs. */
2854
2855 rtx
2856 prev_real_insn (rtx insn)
2857 {
2858 while (insn)
2859 {
2860 insn = PREV_INSN (insn);
2861 if (insn == 0 || INSN_P (insn))
2862 break;
2863 }
2864
2865 return insn;
2866 }
2867
2868 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2869 This routine does not look inside SEQUENCEs. */
2870
2871 rtx
2872 last_call_insn (void)
2873 {
2874 rtx insn;
2875
2876 for (insn = get_last_insn ();
2877 insn && !CALL_P (insn);
2878 insn = PREV_INSN (insn))
2879 ;
2880
2881 return insn;
2882 }
2883
2884 /* Find the next insn after INSN that really does something. This routine
2885 does not look inside SEQUENCEs. Until reload has completed, this is the
2886 same as next_real_insn. */
2887
2888 int
2889 active_insn_p (rtx insn)
2890 {
2891 return (CALL_P (insn) || JUMP_P (insn)
2892 || (NONJUMP_INSN_P (insn)
2893 && (! reload_completed
2894 || (GET_CODE (PATTERN (insn)) != USE
2895 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2896 }
2897
2898 rtx
2899 next_active_insn (rtx insn)
2900 {
2901 while (insn)
2902 {
2903 insn = NEXT_INSN (insn);
2904 if (insn == 0 || active_insn_p (insn))
2905 break;
2906 }
2907
2908 return insn;
2909 }
2910
2911 /* Find the last insn before INSN that really does something. This routine
2912 does not look inside SEQUENCEs. Until reload has completed, this is the
2913 same as prev_real_insn. */
2914
2915 rtx
2916 prev_active_insn (rtx insn)
2917 {
2918 while (insn)
2919 {
2920 insn = PREV_INSN (insn);
2921 if (insn == 0 || active_insn_p (insn))
2922 break;
2923 }
2924
2925 return insn;
2926 }
2927
2928 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2929
2930 rtx
2931 next_label (rtx insn)
2932 {
2933 while (insn)
2934 {
2935 insn = NEXT_INSN (insn);
2936 if (insn == 0 || LABEL_P (insn))
2937 break;
2938 }
2939
2940 return insn;
2941 }
2942
2943 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2944
2945 rtx
2946 prev_label (rtx insn)
2947 {
2948 while (insn)
2949 {
2950 insn = PREV_INSN (insn);
2951 if (insn == 0 || LABEL_P (insn))
2952 break;
2953 }
2954
2955 return insn;
2956 }
2957
2958 /* Return the last label to mark the same position as LABEL. Return null
2959 if LABEL itself is null. */
2960
2961 rtx
2962 skip_consecutive_labels (rtx label)
2963 {
2964 rtx insn;
2965
2966 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
2967 if (LABEL_P (insn))
2968 label = insn;
2969
2970 return label;
2971 }
2972 \f
2973 #ifdef HAVE_cc0
2974 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2975 and REG_CC_USER notes so we can find it. */
2976
2977 void
2978 link_cc0_insns (rtx insn)
2979 {
2980 rtx user = next_nonnote_insn (insn);
2981
2982 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
2983 user = XVECEXP (PATTERN (user), 0, 0);
2984
2985 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2986 REG_NOTES (user));
2987 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2988 }
2989
2990 /* Return the next insn that uses CC0 after INSN, which is assumed to
2991 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2992 applied to the result of this function should yield INSN).
2993
2994 Normally, this is simply the next insn. However, if a REG_CC_USER note
2995 is present, it contains the insn that uses CC0.
2996
2997 Return 0 if we can't find the insn. */
2998
2999 rtx
3000 next_cc0_user (rtx insn)
3001 {
3002 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3003
3004 if (note)
3005 return XEXP (note, 0);
3006
3007 insn = next_nonnote_insn (insn);
3008 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3009 insn = XVECEXP (PATTERN (insn), 0, 0);
3010
3011 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3012 return insn;
3013
3014 return 0;
3015 }
3016
3017 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3018 note, it is the previous insn. */
3019
3020 rtx
3021 prev_cc0_setter (rtx insn)
3022 {
3023 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3024
3025 if (note)
3026 return XEXP (note, 0);
3027
3028 insn = prev_nonnote_insn (insn);
3029 gcc_assert (sets_cc0_p (PATTERN (insn)));
3030
3031 return insn;
3032 }
3033 #endif
3034
3035 /* Increment the label uses for all labels present in rtx. */
3036
3037 static void
3038 mark_label_nuses (rtx x)
3039 {
3040 enum rtx_code code;
3041 int i, j;
3042 const char *fmt;
3043
3044 code = GET_CODE (x);
3045 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3046 LABEL_NUSES (XEXP (x, 0))++;
3047
3048 fmt = GET_RTX_FORMAT (code);
3049 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3050 {
3051 if (fmt[i] == 'e')
3052 mark_label_nuses (XEXP (x, i));
3053 else if (fmt[i] == 'E')
3054 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3055 mark_label_nuses (XVECEXP (x, i, j));
3056 }
3057 }
3058
3059 \f
3060 /* Try splitting insns that can be split for better scheduling.
3061 PAT is the pattern which might split.
3062 TRIAL is the insn providing PAT.
3063 LAST is nonzero if we should return the last insn of the sequence produced.
3064
3065 If this routine succeeds in splitting, it returns the first or last
3066 replacement insn depending on the value of LAST. Otherwise, it
3067 returns TRIAL. If the insn to be returned can be split, it will be. */
3068
3069 rtx
3070 try_split (rtx pat, rtx trial, int last)
3071 {
3072 rtx before = PREV_INSN (trial);
3073 rtx after = NEXT_INSN (trial);
3074 int has_barrier = 0;
3075 rtx tem;
3076 rtx note, seq;
3077 int probability;
3078 rtx insn_last, insn;
3079 int njumps = 0;
3080
3081 if (any_condjump_p (trial)
3082 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3083 split_branch_probability = INTVAL (XEXP (note, 0));
3084 probability = split_branch_probability;
3085
3086 seq = split_insns (pat, trial);
3087
3088 split_branch_probability = -1;
3089
3090 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3091 We may need to handle this specially. */
3092 if (after && BARRIER_P (after))
3093 {
3094 has_barrier = 1;
3095 after = NEXT_INSN (after);
3096 }
3097
3098 if (!seq)
3099 return trial;
3100
3101 /* Avoid infinite loop if any insn of the result matches
3102 the original pattern. */
3103 insn_last = seq;
3104 while (1)
3105 {
3106 if (INSN_P (insn_last)
3107 && rtx_equal_p (PATTERN (insn_last), pat))
3108 return trial;
3109 if (!NEXT_INSN (insn_last))
3110 break;
3111 insn_last = NEXT_INSN (insn_last);
3112 }
3113
3114 /* Mark labels. */
3115 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3116 {
3117 if (JUMP_P (insn))
3118 {
3119 mark_jump_label (PATTERN (insn), insn, 0);
3120 njumps++;
3121 if (probability != -1
3122 && any_condjump_p (insn)
3123 && !find_reg_note (insn, REG_BR_PROB, 0))
3124 {
3125 /* We can preserve the REG_BR_PROB notes only if exactly
3126 one jump is created, otherwise the machine description
3127 is responsible for this step using
3128 split_branch_probability variable. */
3129 gcc_assert (njumps == 1);
3130 REG_NOTES (insn)
3131 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3132 GEN_INT (probability),
3133 REG_NOTES (insn));
3134 }
3135 }
3136 }
3137
3138 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3139 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3140 if (CALL_P (trial))
3141 {
3142 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3143 if (CALL_P (insn))
3144 {
3145 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3146 while (*p)
3147 p = &XEXP (*p, 1);
3148 *p = CALL_INSN_FUNCTION_USAGE (trial);
3149 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3150 }
3151 }
3152
3153 /* Copy notes, particularly those related to the CFG. */
3154 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3155 {
3156 switch (REG_NOTE_KIND (note))
3157 {
3158 case REG_EH_REGION:
3159 insn = insn_last;
3160 while (insn != NULL_RTX)
3161 {
3162 if (CALL_P (insn)
3163 || (flag_non_call_exceptions && INSN_P (insn)
3164 && may_trap_p (PATTERN (insn))))
3165 REG_NOTES (insn)
3166 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3167 XEXP (note, 0),
3168 REG_NOTES (insn));
3169 insn = PREV_INSN (insn);
3170 }
3171 break;
3172
3173 case REG_NORETURN:
3174 case REG_SETJMP:
3175 case REG_ALWAYS_RETURN:
3176 insn = insn_last;
3177 while (insn != NULL_RTX)
3178 {
3179 if (CALL_P (insn))
3180 REG_NOTES (insn)
3181 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3182 XEXP (note, 0),
3183 REG_NOTES (insn));
3184 insn = PREV_INSN (insn);
3185 }
3186 break;
3187
3188 case REG_NON_LOCAL_GOTO:
3189 insn = insn_last;
3190 while (insn != NULL_RTX)
3191 {
3192 if (JUMP_P (insn))
3193 REG_NOTES (insn)
3194 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3195 XEXP (note, 0),
3196 REG_NOTES (insn));
3197 insn = PREV_INSN (insn);
3198 }
3199 break;
3200
3201 default:
3202 break;
3203 }
3204 }
3205
3206 /* If there are LABELS inside the split insns increment the
3207 usage count so we don't delete the label. */
3208 if (NONJUMP_INSN_P (trial))
3209 {
3210 insn = insn_last;
3211 while (insn != NULL_RTX)
3212 {
3213 if (NONJUMP_INSN_P (insn))
3214 mark_label_nuses (PATTERN (insn));
3215
3216 insn = PREV_INSN (insn);
3217 }
3218 }
3219
3220 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3221
3222 delete_insn (trial);
3223 if (has_barrier)
3224 emit_barrier_after (tem);
3225
3226 /* Recursively call try_split for each new insn created; by the
3227 time control returns here that insn will be fully split, so
3228 set LAST and continue from the insn after the one returned.
3229 We can't use next_active_insn here since AFTER may be a note.
3230 Ignore deleted insns, which can be occur if not optimizing. */
3231 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3232 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3233 tem = try_split (PATTERN (tem), tem, 1);
3234
3235 /* Return either the first or the last insn, depending on which was
3236 requested. */
3237 return last
3238 ? (after ? PREV_INSN (after) : last_insn)
3239 : NEXT_INSN (before);
3240 }
3241 \f
3242 /* Make and return an INSN rtx, initializing all its slots.
3243 Store PATTERN in the pattern slots. */
3244
3245 rtx
3246 make_insn_raw (rtx pattern)
3247 {
3248 rtx insn;
3249
3250 insn = rtx_alloc (INSN);
3251
3252 INSN_UID (insn) = cur_insn_uid++;
3253 PATTERN (insn) = pattern;
3254 INSN_CODE (insn) = -1;
3255 LOG_LINKS (insn) = NULL;
3256 REG_NOTES (insn) = NULL;
3257 INSN_LOCATOR (insn) = 0;
3258 BLOCK_FOR_INSN (insn) = NULL;
3259
3260 #ifdef ENABLE_RTL_CHECKING
3261 if (insn
3262 && INSN_P (insn)
3263 && (returnjump_p (insn)
3264 || (GET_CODE (insn) == SET
3265 && SET_DEST (insn) == pc_rtx)))
3266 {
3267 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3268 debug_rtx (insn);
3269 }
3270 #endif
3271
3272 return insn;
3273 }
3274
3275 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3276
3277 static rtx
3278 make_jump_insn_raw (rtx pattern)
3279 {
3280 rtx insn;
3281
3282 insn = rtx_alloc (JUMP_INSN);
3283 INSN_UID (insn) = cur_insn_uid++;
3284
3285 PATTERN (insn) = pattern;
3286 INSN_CODE (insn) = -1;
3287 LOG_LINKS (insn) = NULL;
3288 REG_NOTES (insn) = NULL;
3289 JUMP_LABEL (insn) = NULL;
3290 INSN_LOCATOR (insn) = 0;
3291 BLOCK_FOR_INSN (insn) = NULL;
3292
3293 return insn;
3294 }
3295
3296 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3297
3298 static rtx
3299 make_call_insn_raw (rtx pattern)
3300 {
3301 rtx insn;
3302
3303 insn = rtx_alloc (CALL_INSN);
3304 INSN_UID (insn) = cur_insn_uid++;
3305
3306 PATTERN (insn) = pattern;
3307 INSN_CODE (insn) = -1;
3308 LOG_LINKS (insn) = NULL;
3309 REG_NOTES (insn) = NULL;
3310 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3311 INSN_LOCATOR (insn) = 0;
3312 BLOCK_FOR_INSN (insn) = NULL;
3313
3314 return insn;
3315 }
3316 \f
3317 /* Add INSN to the end of the doubly-linked list.
3318 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3319
3320 void
3321 add_insn (rtx insn)
3322 {
3323 PREV_INSN (insn) = last_insn;
3324 NEXT_INSN (insn) = 0;
3325
3326 if (NULL != last_insn)
3327 NEXT_INSN (last_insn) = insn;
3328
3329 if (NULL == first_insn)
3330 first_insn = insn;
3331
3332 last_insn = insn;
3333 }
3334
3335 /* Add INSN into the doubly-linked list after insn AFTER. This and
3336 the next should be the only functions called to insert an insn once
3337 delay slots have been filled since only they know how to update a
3338 SEQUENCE. */
3339
3340 void
3341 add_insn_after (rtx insn, rtx after)
3342 {
3343 rtx next = NEXT_INSN (after);
3344 basic_block bb;
3345
3346 gcc_assert (!optimize || !INSN_DELETED_P (after));
3347
3348 NEXT_INSN (insn) = next;
3349 PREV_INSN (insn) = after;
3350
3351 if (next)
3352 {
3353 PREV_INSN (next) = insn;
3354 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3355 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3356 }
3357 else if (last_insn == after)
3358 last_insn = insn;
3359 else
3360 {
3361 struct sequence_stack *stack = seq_stack;
3362 /* Scan all pending sequences too. */
3363 for (; stack; stack = stack->next)
3364 if (after == stack->last)
3365 {
3366 stack->last = insn;
3367 break;
3368 }
3369
3370 gcc_assert (stack);
3371 }
3372
3373 if (!BARRIER_P (after)
3374 && !BARRIER_P (insn)
3375 && (bb = BLOCK_FOR_INSN (after)))
3376 {
3377 set_block_for_insn (insn, bb);
3378 if (INSN_P (insn))
3379 bb->flags |= BB_DIRTY;
3380 /* Should not happen as first in the BB is always
3381 either NOTE or LABEL. */
3382 if (BB_END (bb) == after
3383 /* Avoid clobbering of structure when creating new BB. */
3384 && !BARRIER_P (insn)
3385 && (!NOTE_P (insn)
3386 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3387 BB_END (bb) = insn;
3388 }
3389
3390 NEXT_INSN (after) = insn;
3391 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3392 {
3393 rtx sequence = PATTERN (after);
3394 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3395 }
3396 }
3397
3398 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3399 the previous should be the only functions called to insert an insn once
3400 delay slots have been filled since only they know how to update a
3401 SEQUENCE. */
3402
3403 void
3404 add_insn_before (rtx insn, rtx before)
3405 {
3406 rtx prev = PREV_INSN (before);
3407 basic_block bb;
3408
3409 gcc_assert (!optimize || !INSN_DELETED_P (before));
3410
3411 PREV_INSN (insn) = prev;
3412 NEXT_INSN (insn) = before;
3413
3414 if (prev)
3415 {
3416 NEXT_INSN (prev) = insn;
3417 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3418 {
3419 rtx sequence = PATTERN (prev);
3420 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3421 }
3422 }
3423 else if (first_insn == before)
3424 first_insn = insn;
3425 else
3426 {
3427 struct sequence_stack *stack = seq_stack;
3428 /* Scan all pending sequences too. */
3429 for (; stack; stack = stack->next)
3430 if (before == stack->first)
3431 {
3432 stack->first = insn;
3433 break;
3434 }
3435
3436 gcc_assert (stack);
3437 }
3438
3439 if (!BARRIER_P (before)
3440 && !BARRIER_P (insn)
3441 && (bb = BLOCK_FOR_INSN (before)))
3442 {
3443 set_block_for_insn (insn, bb);
3444 if (INSN_P (insn))
3445 bb->flags |= BB_DIRTY;
3446 /* Should not happen as first in the BB is always either NOTE or
3447 LABEl. */
3448 gcc_assert (BB_HEAD (bb) != insn
3449 /* Avoid clobbering of structure when creating new BB. */
3450 || BARRIER_P (insn)
3451 || (NOTE_P (insn)
3452 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3453 }
3454
3455 PREV_INSN (before) = insn;
3456 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3457 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3458 }
3459
3460 /* Remove an insn from its doubly-linked list. This function knows how
3461 to handle sequences. */
3462 void
3463 remove_insn (rtx insn)
3464 {
3465 rtx next = NEXT_INSN (insn);
3466 rtx prev = PREV_INSN (insn);
3467 basic_block bb;
3468
3469 if (prev)
3470 {
3471 NEXT_INSN (prev) = next;
3472 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3473 {
3474 rtx sequence = PATTERN (prev);
3475 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3476 }
3477 }
3478 else if (first_insn == insn)
3479 first_insn = next;
3480 else
3481 {
3482 struct sequence_stack *stack = seq_stack;
3483 /* Scan all pending sequences too. */
3484 for (; stack; stack = stack->next)
3485 if (insn == stack->first)
3486 {
3487 stack->first = next;
3488 break;
3489 }
3490
3491 gcc_assert (stack);
3492 }
3493
3494 if (next)
3495 {
3496 PREV_INSN (next) = prev;
3497 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3498 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3499 }
3500 else if (last_insn == insn)
3501 last_insn = prev;
3502 else
3503 {
3504 struct sequence_stack *stack = seq_stack;
3505 /* Scan all pending sequences too. */
3506 for (; stack; stack = stack->next)
3507 if (insn == stack->last)
3508 {
3509 stack->last = prev;
3510 break;
3511 }
3512
3513 gcc_assert (stack);
3514 }
3515 if (!BARRIER_P (insn)
3516 && (bb = BLOCK_FOR_INSN (insn)))
3517 {
3518 if (INSN_P (insn))
3519 bb->flags |= BB_DIRTY;
3520 if (BB_HEAD (bb) == insn)
3521 {
3522 /* Never ever delete the basic block note without deleting whole
3523 basic block. */
3524 gcc_assert (!NOTE_P (insn));
3525 BB_HEAD (bb) = next;
3526 }
3527 if (BB_END (bb) == insn)
3528 BB_END (bb) = prev;
3529 }
3530 }
3531
3532 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3533
3534 void
3535 add_function_usage_to (rtx call_insn, rtx call_fusage)
3536 {
3537 gcc_assert (call_insn && CALL_P (call_insn));
3538
3539 /* Put the register usage information on the CALL. If there is already
3540 some usage information, put ours at the end. */
3541 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3542 {
3543 rtx link;
3544
3545 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3546 link = XEXP (link, 1))
3547 ;
3548
3549 XEXP (link, 1) = call_fusage;
3550 }
3551 else
3552 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3553 }
3554
3555 /* Delete all insns made since FROM.
3556 FROM becomes the new last instruction. */
3557
3558 void
3559 delete_insns_since (rtx from)
3560 {
3561 if (from == 0)
3562 first_insn = 0;
3563 else
3564 NEXT_INSN (from) = 0;
3565 last_insn = from;
3566 }
3567
3568 /* This function is deprecated, please use sequences instead.
3569
3570 Move a consecutive bunch of insns to a different place in the chain.
3571 The insns to be moved are those between FROM and TO.
3572 They are moved to a new position after the insn AFTER.
3573 AFTER must not be FROM or TO or any insn in between.
3574
3575 This function does not know about SEQUENCEs and hence should not be
3576 called after delay-slot filling has been done. */
3577
3578 void
3579 reorder_insns_nobb (rtx from, rtx to, rtx after)
3580 {
3581 /* Splice this bunch out of where it is now. */
3582 if (PREV_INSN (from))
3583 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3584 if (NEXT_INSN (to))
3585 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3586 if (last_insn == to)
3587 last_insn = PREV_INSN (from);
3588 if (first_insn == from)
3589 first_insn = NEXT_INSN (to);
3590
3591 /* Make the new neighbors point to it and it to them. */
3592 if (NEXT_INSN (after))
3593 PREV_INSN (NEXT_INSN (after)) = to;
3594
3595 NEXT_INSN (to) = NEXT_INSN (after);
3596 PREV_INSN (from) = after;
3597 NEXT_INSN (after) = from;
3598 if (after == last_insn)
3599 last_insn = to;
3600 }
3601
3602 /* Same as function above, but take care to update BB boundaries. */
3603 void
3604 reorder_insns (rtx from, rtx to, rtx after)
3605 {
3606 rtx prev = PREV_INSN (from);
3607 basic_block bb, bb2;
3608
3609 reorder_insns_nobb (from, to, after);
3610
3611 if (!BARRIER_P (after)
3612 && (bb = BLOCK_FOR_INSN (after)))
3613 {
3614 rtx x;
3615 bb->flags |= BB_DIRTY;
3616
3617 if (!BARRIER_P (from)
3618 && (bb2 = BLOCK_FOR_INSN (from)))
3619 {
3620 if (BB_END (bb2) == to)
3621 BB_END (bb2) = prev;
3622 bb2->flags |= BB_DIRTY;
3623 }
3624
3625 if (BB_END (bb) == after)
3626 BB_END (bb) = to;
3627
3628 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3629 if (!BARRIER_P (x))
3630 set_block_for_insn (x, bb);
3631 }
3632 }
3633
3634 /* Return the line note insn preceding INSN. */
3635
3636 static rtx
3637 find_line_note (rtx insn)
3638 {
3639 if (no_line_numbers)
3640 return 0;
3641
3642 for (; insn; insn = PREV_INSN (insn))
3643 if (NOTE_P (insn)
3644 && NOTE_LINE_NUMBER (insn) >= 0)
3645 break;
3646
3647 return insn;
3648 }
3649
3650 /* Remove unnecessary notes from the instruction stream. */
3651
3652 void
3653 remove_unnecessary_notes (void)
3654 {
3655 rtx eh_stack = NULL_RTX;
3656 rtx insn;
3657 rtx next;
3658 rtx tmp;
3659
3660 /* We must not remove the first instruction in the function because
3661 the compiler depends on the first instruction being a note. */
3662 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3663 {
3664 /* Remember what's next. */
3665 next = NEXT_INSN (insn);
3666
3667 /* We're only interested in notes. */
3668 if (!NOTE_P (insn))
3669 continue;
3670
3671 switch (NOTE_LINE_NUMBER (insn))
3672 {
3673 case NOTE_INSN_DELETED:
3674 remove_insn (insn);
3675 break;
3676
3677 case NOTE_INSN_EH_REGION_BEG:
3678 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3679 break;
3680
3681 case NOTE_INSN_EH_REGION_END:
3682 /* Too many end notes. */
3683 gcc_assert (eh_stack);
3684 /* Mismatched nesting. */
3685 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3686 == NOTE_EH_HANDLER (insn));
3687 tmp = eh_stack;
3688 eh_stack = XEXP (eh_stack, 1);
3689 free_INSN_LIST_node (tmp);
3690 break;
3691
3692 case NOTE_INSN_BLOCK_BEG:
3693 case NOTE_INSN_BLOCK_END:
3694 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3695 gcc_unreachable ();
3696
3697 default:
3698 break;
3699 }
3700 }
3701
3702 /* Too many EH_REGION_BEG notes. */
3703 gcc_assert (!eh_stack);
3704 }
3705
3706 \f
3707 /* Emit insn(s) of given code and pattern
3708 at a specified place within the doubly-linked list.
3709
3710 All of the emit_foo global entry points accept an object
3711 X which is either an insn list or a PATTERN of a single
3712 instruction.
3713
3714 There are thus a few canonical ways to generate code and
3715 emit it at a specific place in the instruction stream. For
3716 example, consider the instruction named SPOT and the fact that
3717 we would like to emit some instructions before SPOT. We might
3718 do it like this:
3719
3720 start_sequence ();
3721 ... emit the new instructions ...
3722 insns_head = get_insns ();
3723 end_sequence ();
3724
3725 emit_insn_before (insns_head, SPOT);
3726
3727 It used to be common to generate SEQUENCE rtl instead, but that
3728 is a relic of the past which no longer occurs. The reason is that
3729 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3730 generated would almost certainly die right after it was created. */
3731
3732 /* Make X be output before the instruction BEFORE. */
3733
3734 rtx
3735 emit_insn_before_noloc (rtx x, rtx before)
3736 {
3737 rtx last = before;
3738 rtx insn;
3739
3740 gcc_assert (before);
3741
3742 if (x == NULL_RTX)
3743 return last;
3744
3745 switch (GET_CODE (x))
3746 {
3747 case INSN:
3748 case JUMP_INSN:
3749 case CALL_INSN:
3750 case CODE_LABEL:
3751 case BARRIER:
3752 case NOTE:
3753 insn = x;
3754 while (insn)
3755 {
3756 rtx next = NEXT_INSN (insn);
3757 add_insn_before (insn, before);
3758 last = insn;
3759 insn = next;
3760 }
3761 break;
3762
3763 #ifdef ENABLE_RTL_CHECKING
3764 case SEQUENCE:
3765 gcc_unreachable ();
3766 break;
3767 #endif
3768
3769 default:
3770 last = make_insn_raw (x);
3771 add_insn_before (last, before);
3772 break;
3773 }
3774
3775 return last;
3776 }
3777
3778 /* Make an instruction with body X and code JUMP_INSN
3779 and output it before the instruction BEFORE. */
3780
3781 rtx
3782 emit_jump_insn_before_noloc (rtx x, rtx before)
3783 {
3784 rtx insn, last = NULL_RTX;
3785
3786 gcc_assert (before);
3787
3788 switch (GET_CODE (x))
3789 {
3790 case INSN:
3791 case JUMP_INSN:
3792 case CALL_INSN:
3793 case CODE_LABEL:
3794 case BARRIER:
3795 case NOTE:
3796 insn = x;
3797 while (insn)
3798 {
3799 rtx next = NEXT_INSN (insn);
3800 add_insn_before (insn, before);
3801 last = insn;
3802 insn = next;
3803 }
3804 break;
3805
3806 #ifdef ENABLE_RTL_CHECKING
3807 case SEQUENCE:
3808 gcc_unreachable ();
3809 break;
3810 #endif
3811
3812 default:
3813 last = make_jump_insn_raw (x);
3814 add_insn_before (last, before);
3815 break;
3816 }
3817
3818 return last;
3819 }
3820
3821 /* Make an instruction with body X and code CALL_INSN
3822 and output it before the instruction BEFORE. */
3823
3824 rtx
3825 emit_call_insn_before_noloc (rtx x, rtx before)
3826 {
3827 rtx last = NULL_RTX, insn;
3828
3829 gcc_assert (before);
3830
3831 switch (GET_CODE (x))
3832 {
3833 case INSN:
3834 case JUMP_INSN:
3835 case CALL_INSN:
3836 case CODE_LABEL:
3837 case BARRIER:
3838 case NOTE:
3839 insn = x;
3840 while (insn)
3841 {
3842 rtx next = NEXT_INSN (insn);
3843 add_insn_before (insn, before);
3844 last = insn;
3845 insn = next;
3846 }
3847 break;
3848
3849 #ifdef ENABLE_RTL_CHECKING
3850 case SEQUENCE:
3851 gcc_unreachable ();
3852 break;
3853 #endif
3854
3855 default:
3856 last = make_call_insn_raw (x);
3857 add_insn_before (last, before);
3858 break;
3859 }
3860
3861 return last;
3862 }
3863
3864 /* Make an insn of code BARRIER
3865 and output it before the insn BEFORE. */
3866
3867 rtx
3868 emit_barrier_before (rtx before)
3869 {
3870 rtx insn = rtx_alloc (BARRIER);
3871
3872 INSN_UID (insn) = cur_insn_uid++;
3873
3874 add_insn_before (insn, before);
3875 return insn;
3876 }
3877
3878 /* Emit the label LABEL before the insn BEFORE. */
3879
3880 rtx
3881 emit_label_before (rtx label, rtx before)
3882 {
3883 /* This can be called twice for the same label as a result of the
3884 confusion that follows a syntax error! So make it harmless. */
3885 if (INSN_UID (label) == 0)
3886 {
3887 INSN_UID (label) = cur_insn_uid++;
3888 add_insn_before (label, before);
3889 }
3890
3891 return label;
3892 }
3893
3894 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3895
3896 rtx
3897 emit_note_before (int subtype, rtx before)
3898 {
3899 rtx note = rtx_alloc (NOTE);
3900 INSN_UID (note) = cur_insn_uid++;
3901 #ifndef USE_MAPPED_LOCATION
3902 NOTE_SOURCE_FILE (note) = 0;
3903 #endif
3904 NOTE_LINE_NUMBER (note) = subtype;
3905 BLOCK_FOR_INSN (note) = NULL;
3906
3907 add_insn_before (note, before);
3908 return note;
3909 }
3910 \f
3911 /* Helper for emit_insn_after, handles lists of instructions
3912 efficiently. */
3913
3914 static rtx emit_insn_after_1 (rtx, rtx);
3915
3916 static rtx
3917 emit_insn_after_1 (rtx first, rtx after)
3918 {
3919 rtx last;
3920 rtx after_after;
3921 basic_block bb;
3922
3923 if (!BARRIER_P (after)
3924 && (bb = BLOCK_FOR_INSN (after)))
3925 {
3926 bb->flags |= BB_DIRTY;
3927 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3928 if (!BARRIER_P (last))
3929 set_block_for_insn (last, bb);
3930 if (!BARRIER_P (last))
3931 set_block_for_insn (last, bb);
3932 if (BB_END (bb) == after)
3933 BB_END (bb) = last;
3934 }
3935 else
3936 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3937 continue;
3938
3939 after_after = NEXT_INSN (after);
3940
3941 NEXT_INSN (after) = first;
3942 PREV_INSN (first) = after;
3943 NEXT_INSN (last) = after_after;
3944 if (after_after)
3945 PREV_INSN (after_after) = last;
3946
3947 if (after == last_insn)
3948 last_insn = last;
3949 return last;
3950 }
3951
3952 /* Make X be output after the insn AFTER. */
3953
3954 rtx
3955 emit_insn_after_noloc (rtx x, rtx after)
3956 {
3957 rtx last = after;
3958
3959 gcc_assert (after);
3960
3961 if (x == NULL_RTX)
3962 return last;
3963
3964 switch (GET_CODE (x))
3965 {
3966 case INSN:
3967 case JUMP_INSN:
3968 case CALL_INSN:
3969 case CODE_LABEL:
3970 case BARRIER:
3971 case NOTE:
3972 last = emit_insn_after_1 (x, after);
3973 break;
3974
3975 #ifdef ENABLE_RTL_CHECKING
3976 case SEQUENCE:
3977 gcc_unreachable ();
3978 break;
3979 #endif
3980
3981 default:
3982 last = make_insn_raw (x);
3983 add_insn_after (last, after);
3984 break;
3985 }
3986
3987 return last;
3988 }
3989
3990 /* Similar to emit_insn_after, except that line notes are to be inserted so
3991 as to act as if this insn were at FROM. */
3992
3993 void
3994 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
3995 {
3996 rtx from_line = find_line_note (from);
3997 rtx after_line = find_line_note (after);
3998 rtx insn = emit_insn_after (x, after);
3999
4000 if (from_line)
4001 emit_note_copy_after (from_line, after);
4002
4003 if (after_line)
4004 emit_note_copy_after (after_line, insn);
4005 }
4006
4007 /* Make an insn of code JUMP_INSN with body X
4008 and output it after the insn AFTER. */
4009
4010 rtx
4011 emit_jump_insn_after_noloc (rtx x, rtx after)
4012 {
4013 rtx last;
4014
4015 gcc_assert (after);
4016
4017 switch (GET_CODE (x))
4018 {
4019 case INSN:
4020 case JUMP_INSN:
4021 case CALL_INSN:
4022 case CODE_LABEL:
4023 case BARRIER:
4024 case NOTE:
4025 last = emit_insn_after_1 (x, after);
4026 break;
4027
4028 #ifdef ENABLE_RTL_CHECKING
4029 case SEQUENCE:
4030 gcc_unreachable ();
4031 break;
4032 #endif
4033
4034 default:
4035 last = make_jump_insn_raw (x);
4036 add_insn_after (last, after);
4037 break;
4038 }
4039
4040 return last;
4041 }
4042
4043 /* Make an instruction with body X and code CALL_INSN
4044 and output it after the instruction AFTER. */
4045
4046 rtx
4047 emit_call_insn_after_noloc (rtx x, rtx after)
4048 {
4049 rtx last;
4050
4051 gcc_assert (after);
4052
4053 switch (GET_CODE (x))
4054 {
4055 case INSN:
4056 case JUMP_INSN:
4057 case CALL_INSN:
4058 case CODE_LABEL:
4059 case BARRIER:
4060 case NOTE:
4061 last = emit_insn_after_1 (x, after);
4062 break;
4063
4064 #ifdef ENABLE_RTL_CHECKING
4065 case SEQUENCE:
4066 gcc_unreachable ();
4067 break;
4068 #endif
4069
4070 default:
4071 last = make_call_insn_raw (x);
4072 add_insn_after (last, after);
4073 break;
4074 }
4075
4076 return last;
4077 }
4078
4079 /* Make an insn of code BARRIER
4080 and output it after the insn AFTER. */
4081
4082 rtx
4083 emit_barrier_after (rtx after)
4084 {
4085 rtx insn = rtx_alloc (BARRIER);
4086
4087 INSN_UID (insn) = cur_insn_uid++;
4088
4089 add_insn_after (insn, after);
4090 return insn;
4091 }
4092
4093 /* Emit the label LABEL after the insn AFTER. */
4094
4095 rtx
4096 emit_label_after (rtx label, rtx after)
4097 {
4098 /* This can be called twice for the same label
4099 as a result of the confusion that follows a syntax error!
4100 So make it harmless. */
4101 if (INSN_UID (label) == 0)
4102 {
4103 INSN_UID (label) = cur_insn_uid++;
4104 add_insn_after (label, after);
4105 }
4106
4107 return label;
4108 }
4109
4110 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4111
4112 rtx
4113 emit_note_after (int subtype, rtx after)
4114 {
4115 rtx note = rtx_alloc (NOTE);
4116 INSN_UID (note) = cur_insn_uid++;
4117 #ifndef USE_MAPPED_LOCATION
4118 NOTE_SOURCE_FILE (note) = 0;
4119 #endif
4120 NOTE_LINE_NUMBER (note) = subtype;
4121 BLOCK_FOR_INSN (note) = NULL;
4122 add_insn_after (note, after);
4123 return note;
4124 }
4125
4126 /* Emit a copy of note ORIG after the insn AFTER. */
4127
4128 rtx
4129 emit_note_copy_after (rtx orig, rtx after)
4130 {
4131 rtx note;
4132
4133 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4134 {
4135 cur_insn_uid++;
4136 return 0;
4137 }
4138
4139 note = rtx_alloc (NOTE);
4140 INSN_UID (note) = cur_insn_uid++;
4141 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4142 NOTE_DATA (note) = NOTE_DATA (orig);
4143 BLOCK_FOR_INSN (note) = NULL;
4144 add_insn_after (note, after);
4145 return note;
4146 }
4147 \f
4148 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4149 rtx
4150 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4151 {
4152 rtx last = emit_insn_after_noloc (pattern, after);
4153
4154 if (pattern == NULL_RTX || !loc)
4155 return last;
4156
4157 after = NEXT_INSN (after);
4158 while (1)
4159 {
4160 if (active_insn_p (after) && !INSN_LOCATOR (after))
4161 INSN_LOCATOR (after) = loc;
4162 if (after == last)
4163 break;
4164 after = NEXT_INSN (after);
4165 }
4166 return last;
4167 }
4168
4169 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4170 rtx
4171 emit_insn_after (rtx pattern, rtx after)
4172 {
4173 if (INSN_P (after))
4174 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4175 else
4176 return emit_insn_after_noloc (pattern, after);
4177 }
4178
4179 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4180 rtx
4181 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4182 {
4183 rtx last = emit_jump_insn_after_noloc (pattern, after);
4184
4185 if (pattern == NULL_RTX || !loc)
4186 return last;
4187
4188 after = NEXT_INSN (after);
4189 while (1)
4190 {
4191 if (active_insn_p (after) && !INSN_LOCATOR (after))
4192 INSN_LOCATOR (after) = loc;
4193 if (after == last)
4194 break;
4195 after = NEXT_INSN (after);
4196 }
4197 return last;
4198 }
4199
4200 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4201 rtx
4202 emit_jump_insn_after (rtx pattern, rtx after)
4203 {
4204 if (INSN_P (after))
4205 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4206 else
4207 return emit_jump_insn_after_noloc (pattern, after);
4208 }
4209
4210 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4211 rtx
4212 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4213 {
4214 rtx last = emit_call_insn_after_noloc (pattern, after);
4215
4216 if (pattern == NULL_RTX || !loc)
4217 return last;
4218
4219 after = NEXT_INSN (after);
4220 while (1)
4221 {
4222 if (active_insn_p (after) && !INSN_LOCATOR (after))
4223 INSN_LOCATOR (after) = loc;
4224 if (after == last)
4225 break;
4226 after = NEXT_INSN (after);
4227 }
4228 return last;
4229 }
4230
4231 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4232 rtx
4233 emit_call_insn_after (rtx pattern, rtx after)
4234 {
4235 if (INSN_P (after))
4236 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4237 else
4238 return emit_call_insn_after_noloc (pattern, after);
4239 }
4240
4241 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4242 rtx
4243 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4244 {
4245 rtx first = PREV_INSN (before);
4246 rtx last = emit_insn_before_noloc (pattern, before);
4247
4248 if (pattern == NULL_RTX || !loc)
4249 return last;
4250
4251 first = NEXT_INSN (first);
4252 while (1)
4253 {
4254 if (active_insn_p (first) && !INSN_LOCATOR (first))
4255 INSN_LOCATOR (first) = loc;
4256 if (first == last)
4257 break;
4258 first = NEXT_INSN (first);
4259 }
4260 return last;
4261 }
4262
4263 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4264 rtx
4265 emit_insn_before (rtx pattern, rtx before)
4266 {
4267 if (INSN_P (before))
4268 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4269 else
4270 return emit_insn_before_noloc (pattern, before);
4271 }
4272
4273 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4274 rtx
4275 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4276 {
4277 rtx first = PREV_INSN (before);
4278 rtx last = emit_jump_insn_before_noloc (pattern, before);
4279
4280 if (pattern == NULL_RTX)
4281 return last;
4282
4283 first = NEXT_INSN (first);
4284 while (1)
4285 {
4286 if (active_insn_p (first) && !INSN_LOCATOR (first))
4287 INSN_LOCATOR (first) = loc;
4288 if (first == last)
4289 break;
4290 first = NEXT_INSN (first);
4291 }
4292 return last;
4293 }
4294
4295 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4296 rtx
4297 emit_jump_insn_before (rtx pattern, rtx before)
4298 {
4299 if (INSN_P (before))
4300 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4301 else
4302 return emit_jump_insn_before_noloc (pattern, before);
4303 }
4304
4305 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4306 rtx
4307 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4308 {
4309 rtx first = PREV_INSN (before);
4310 rtx last = emit_call_insn_before_noloc (pattern, before);
4311
4312 if (pattern == NULL_RTX)
4313 return last;
4314
4315 first = NEXT_INSN (first);
4316 while (1)
4317 {
4318 if (active_insn_p (first) && !INSN_LOCATOR (first))
4319 INSN_LOCATOR (first) = loc;
4320 if (first == last)
4321 break;
4322 first = NEXT_INSN (first);
4323 }
4324 return last;
4325 }
4326
4327 /* like emit_call_insn_before_noloc,
4328 but set insn_locator according to before. */
4329 rtx
4330 emit_call_insn_before (rtx pattern, rtx before)
4331 {
4332 if (INSN_P (before))
4333 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4334 else
4335 return emit_call_insn_before_noloc (pattern, before);
4336 }
4337 \f
4338 /* Take X and emit it at the end of the doubly-linked
4339 INSN list.
4340
4341 Returns the last insn emitted. */
4342
4343 rtx
4344 emit_insn (rtx x)
4345 {
4346 rtx last = last_insn;
4347 rtx insn;
4348
4349 if (x == NULL_RTX)
4350 return last;
4351
4352 switch (GET_CODE (x))
4353 {
4354 case INSN:
4355 case JUMP_INSN:
4356 case CALL_INSN:
4357 case CODE_LABEL:
4358 case BARRIER:
4359 case NOTE:
4360 insn = x;
4361 while (insn)
4362 {
4363 rtx next = NEXT_INSN (insn);
4364 add_insn (insn);
4365 last = insn;
4366 insn = next;
4367 }
4368 break;
4369
4370 #ifdef ENABLE_RTL_CHECKING
4371 case SEQUENCE:
4372 gcc_unreachable ();
4373 break;
4374 #endif
4375
4376 default:
4377 last = make_insn_raw (x);
4378 add_insn (last);
4379 break;
4380 }
4381
4382 return last;
4383 }
4384
4385 /* Make an insn of code JUMP_INSN with pattern X
4386 and add it to the end of the doubly-linked list. */
4387
4388 rtx
4389 emit_jump_insn (rtx x)
4390 {
4391 rtx last = NULL_RTX, insn;
4392
4393 switch (GET_CODE (x))
4394 {
4395 case INSN:
4396 case JUMP_INSN:
4397 case CALL_INSN:
4398 case CODE_LABEL:
4399 case BARRIER:
4400 case NOTE:
4401 insn = x;
4402 while (insn)
4403 {
4404 rtx next = NEXT_INSN (insn);
4405 add_insn (insn);
4406 last = insn;
4407 insn = next;
4408 }
4409 break;
4410
4411 #ifdef ENABLE_RTL_CHECKING
4412 case SEQUENCE:
4413 gcc_unreachable ();
4414 break;
4415 #endif
4416
4417 default:
4418 last = make_jump_insn_raw (x);
4419 add_insn (last);
4420 break;
4421 }
4422
4423 return last;
4424 }
4425
4426 /* Make an insn of code CALL_INSN with pattern X
4427 and add it to the end of the doubly-linked list. */
4428
4429 rtx
4430 emit_call_insn (rtx x)
4431 {
4432 rtx insn;
4433
4434 switch (GET_CODE (x))
4435 {
4436 case INSN:
4437 case JUMP_INSN:
4438 case CALL_INSN:
4439 case CODE_LABEL:
4440 case BARRIER:
4441 case NOTE:
4442 insn = emit_insn (x);
4443 break;
4444
4445 #ifdef ENABLE_RTL_CHECKING
4446 case SEQUENCE:
4447 gcc_unreachable ();
4448 break;
4449 #endif
4450
4451 default:
4452 insn = make_call_insn_raw (x);
4453 add_insn (insn);
4454 break;
4455 }
4456
4457 return insn;
4458 }
4459
4460 /* Add the label LABEL to the end of the doubly-linked list. */
4461
4462 rtx
4463 emit_label (rtx label)
4464 {
4465 /* This can be called twice for the same label
4466 as a result of the confusion that follows a syntax error!
4467 So make it harmless. */
4468 if (INSN_UID (label) == 0)
4469 {
4470 INSN_UID (label) = cur_insn_uid++;
4471 add_insn (label);
4472 }
4473 return label;
4474 }
4475
4476 /* Make an insn of code BARRIER
4477 and add it to the end of the doubly-linked list. */
4478
4479 rtx
4480 emit_barrier (void)
4481 {
4482 rtx barrier = rtx_alloc (BARRIER);
4483 INSN_UID (barrier) = cur_insn_uid++;
4484 add_insn (barrier);
4485 return barrier;
4486 }
4487
4488 /* Make line numbering NOTE insn for LOCATION add it to the end
4489 of the doubly-linked list, but only if line-numbers are desired for
4490 debugging info and it doesn't match the previous one. */
4491
4492 rtx
4493 emit_line_note (location_t location)
4494 {
4495 rtx note;
4496
4497 #ifdef USE_MAPPED_LOCATION
4498 if (location == last_location)
4499 return NULL_RTX;
4500 #else
4501 if (location.file && last_location.file
4502 && !strcmp (location.file, last_location.file)
4503 && location.line == last_location.line)
4504 return NULL_RTX;
4505 #endif
4506 last_location = location;
4507
4508 if (no_line_numbers)
4509 {
4510 cur_insn_uid++;
4511 return NULL_RTX;
4512 }
4513
4514 #ifdef USE_MAPPED_LOCATION
4515 note = emit_note ((int) location);
4516 #else
4517 note = emit_note (location.line);
4518 NOTE_SOURCE_FILE (note) = location.file;
4519 #endif
4520
4521 return note;
4522 }
4523
4524 /* Emit a copy of note ORIG. */
4525
4526 rtx
4527 emit_note_copy (rtx orig)
4528 {
4529 rtx note;
4530
4531 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4532 {
4533 cur_insn_uid++;
4534 return NULL_RTX;
4535 }
4536
4537 note = rtx_alloc (NOTE);
4538
4539 INSN_UID (note) = cur_insn_uid++;
4540 NOTE_DATA (note) = NOTE_DATA (orig);
4541 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4542 BLOCK_FOR_INSN (note) = NULL;
4543 add_insn (note);
4544
4545 return note;
4546 }
4547
4548 /* Make an insn of code NOTE or type NOTE_NO
4549 and add it to the end of the doubly-linked list. */
4550
4551 rtx
4552 emit_note (int note_no)
4553 {
4554 rtx note;
4555
4556 note = rtx_alloc (NOTE);
4557 INSN_UID (note) = cur_insn_uid++;
4558 NOTE_LINE_NUMBER (note) = note_no;
4559 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4560 BLOCK_FOR_INSN (note) = NULL;
4561 add_insn (note);
4562 return note;
4563 }
4564
4565 /* Cause next statement to emit a line note even if the line number
4566 has not changed. */
4567
4568 void
4569 force_next_line_note (void)
4570 {
4571 #ifdef USE_MAPPED_LOCATION
4572 last_location = -1;
4573 #else
4574 last_location.line = -1;
4575 #endif
4576 }
4577
4578 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4579 note of this type already exists, remove it first. */
4580
4581 rtx
4582 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4583 {
4584 rtx note = find_reg_note (insn, kind, NULL_RTX);
4585
4586 switch (kind)
4587 {
4588 case REG_EQUAL:
4589 case REG_EQUIV:
4590 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4591 has multiple sets (some callers assume single_set
4592 means the insn only has one set, when in fact it
4593 means the insn only has one * useful * set). */
4594 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4595 {
4596 gcc_assert (!note);
4597 return NULL_RTX;
4598 }
4599
4600 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4601 It serves no useful purpose and breaks eliminate_regs. */
4602 if (GET_CODE (datum) == ASM_OPERANDS)
4603 return NULL_RTX;
4604 break;
4605
4606 default:
4607 break;
4608 }
4609
4610 if (note)
4611 {
4612 XEXP (note, 0) = datum;
4613 return note;
4614 }
4615
4616 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4617 return REG_NOTES (insn);
4618 }
4619 \f
4620 /* Return an indication of which type of insn should have X as a body.
4621 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4622
4623 static enum rtx_code
4624 classify_insn (rtx x)
4625 {
4626 if (LABEL_P (x))
4627 return CODE_LABEL;
4628 if (GET_CODE (x) == CALL)
4629 return CALL_INSN;
4630 if (GET_CODE (x) == RETURN)
4631 return JUMP_INSN;
4632 if (GET_CODE (x) == SET)
4633 {
4634 if (SET_DEST (x) == pc_rtx)
4635 return JUMP_INSN;
4636 else if (GET_CODE (SET_SRC (x)) == CALL)
4637 return CALL_INSN;
4638 else
4639 return INSN;
4640 }
4641 if (GET_CODE (x) == PARALLEL)
4642 {
4643 int j;
4644 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4645 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4646 return CALL_INSN;
4647 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4648 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4649 return JUMP_INSN;
4650 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4651 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4652 return CALL_INSN;
4653 }
4654 return INSN;
4655 }
4656
4657 /* Emit the rtl pattern X as an appropriate kind of insn.
4658 If X is a label, it is simply added into the insn chain. */
4659
4660 rtx
4661 emit (rtx x)
4662 {
4663 enum rtx_code code = classify_insn (x);
4664
4665 switch (code)
4666 {
4667 case CODE_LABEL:
4668 return emit_label (x);
4669 case INSN:
4670 return emit_insn (x);
4671 case JUMP_INSN:
4672 {
4673 rtx insn = emit_jump_insn (x);
4674 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4675 return emit_barrier ();
4676 return insn;
4677 }
4678 case CALL_INSN:
4679 return emit_call_insn (x);
4680 default:
4681 gcc_unreachable ();
4682 }
4683 }
4684 \f
4685 /* Space for free sequence stack entries. */
4686 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4687
4688 /* Begin emitting insns to a sequence. If this sequence will contain
4689 something that might cause the compiler to pop arguments to function
4690 calls (because those pops have previously been deferred; see
4691 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4692 before calling this function. That will ensure that the deferred
4693 pops are not accidentally emitted in the middle of this sequence. */
4694
4695 void
4696 start_sequence (void)
4697 {
4698 struct sequence_stack *tem;
4699
4700 if (free_sequence_stack != NULL)
4701 {
4702 tem = free_sequence_stack;
4703 free_sequence_stack = tem->next;
4704 }
4705 else
4706 tem = ggc_alloc (sizeof (struct sequence_stack));
4707
4708 tem->next = seq_stack;
4709 tem->first = first_insn;
4710 tem->last = last_insn;
4711
4712 seq_stack = tem;
4713
4714 first_insn = 0;
4715 last_insn = 0;
4716 }
4717
4718 /* Set up the insn chain starting with FIRST as the current sequence,
4719 saving the previously current one. See the documentation for
4720 start_sequence for more information about how to use this function. */
4721
4722 void
4723 push_to_sequence (rtx first)
4724 {
4725 rtx last;
4726
4727 start_sequence ();
4728
4729 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4730
4731 first_insn = first;
4732 last_insn = last;
4733 }
4734
4735 /* Set up the outer-level insn chain
4736 as the current sequence, saving the previously current one. */
4737
4738 void
4739 push_topmost_sequence (void)
4740 {
4741 struct sequence_stack *stack, *top = NULL;
4742
4743 start_sequence ();
4744
4745 for (stack = seq_stack; stack; stack = stack->next)
4746 top = stack;
4747
4748 first_insn = top->first;
4749 last_insn = top->last;
4750 }
4751
4752 /* After emitting to the outer-level insn chain, update the outer-level
4753 insn chain, and restore the previous saved state. */
4754
4755 void
4756 pop_topmost_sequence (void)
4757 {
4758 struct sequence_stack *stack, *top = NULL;
4759
4760 for (stack = seq_stack; stack; stack = stack->next)
4761 top = stack;
4762
4763 top->first = first_insn;
4764 top->last = last_insn;
4765
4766 end_sequence ();
4767 }
4768
4769 /* After emitting to a sequence, restore previous saved state.
4770
4771 To get the contents of the sequence just made, you must call
4772 `get_insns' *before* calling here.
4773
4774 If the compiler might have deferred popping arguments while
4775 generating this sequence, and this sequence will not be immediately
4776 inserted into the instruction stream, use do_pending_stack_adjust
4777 before calling get_insns. That will ensure that the deferred
4778 pops are inserted into this sequence, and not into some random
4779 location in the instruction stream. See INHIBIT_DEFER_POP for more
4780 information about deferred popping of arguments. */
4781
4782 void
4783 end_sequence (void)
4784 {
4785 struct sequence_stack *tem = seq_stack;
4786
4787 first_insn = tem->first;
4788 last_insn = tem->last;
4789 seq_stack = tem->next;
4790
4791 memset (tem, 0, sizeof (*tem));
4792 tem->next = free_sequence_stack;
4793 free_sequence_stack = tem;
4794 }
4795
4796 /* Return 1 if currently emitting into a sequence. */
4797
4798 int
4799 in_sequence_p (void)
4800 {
4801 return seq_stack != 0;
4802 }
4803 \f
4804 /* Put the various virtual registers into REGNO_REG_RTX. */
4805
4806 void
4807 init_virtual_regs (struct emit_status *es)
4808 {
4809 rtx *ptr = es->x_regno_reg_rtx;
4810 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4811 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4812 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4813 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4814 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4815 }
4816
4817 \f
4818 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4819 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4820 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4821 static int copy_insn_n_scratches;
4822
4823 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4824 copied an ASM_OPERANDS.
4825 In that case, it is the original input-operand vector. */
4826 static rtvec orig_asm_operands_vector;
4827
4828 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4829 copied an ASM_OPERANDS.
4830 In that case, it is the copied input-operand vector. */
4831 static rtvec copy_asm_operands_vector;
4832
4833 /* Likewise for the constraints vector. */
4834 static rtvec orig_asm_constraints_vector;
4835 static rtvec copy_asm_constraints_vector;
4836
4837 /* Recursively create a new copy of an rtx for copy_insn.
4838 This function differs from copy_rtx in that it handles SCRATCHes and
4839 ASM_OPERANDs properly.
4840 Normally, this function is not used directly; use copy_insn as front end.
4841 However, you could first copy an insn pattern with copy_insn and then use
4842 this function afterwards to properly copy any REG_NOTEs containing
4843 SCRATCHes. */
4844
4845 rtx
4846 copy_insn_1 (rtx orig)
4847 {
4848 rtx copy;
4849 int i, j;
4850 RTX_CODE code;
4851 const char *format_ptr;
4852
4853 code = GET_CODE (orig);
4854
4855 switch (code)
4856 {
4857 case REG:
4858 case CONST_INT:
4859 case CONST_DOUBLE:
4860 case CONST_VECTOR:
4861 case SYMBOL_REF:
4862 case CODE_LABEL:
4863 case PC:
4864 case CC0:
4865 return orig;
4866 case CLOBBER:
4867 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4868 return orig;
4869 break;
4870
4871 case SCRATCH:
4872 for (i = 0; i < copy_insn_n_scratches; i++)
4873 if (copy_insn_scratch_in[i] == orig)
4874 return copy_insn_scratch_out[i];
4875 break;
4876
4877 case CONST:
4878 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4879 a LABEL_REF, it isn't sharable. */
4880 if (GET_CODE (XEXP (orig, 0)) == PLUS
4881 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4882 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4883 return orig;
4884 break;
4885
4886 /* A MEM with a constant address is not sharable. The problem is that
4887 the constant address may need to be reloaded. If the mem is shared,
4888 then reloading one copy of this mem will cause all copies to appear
4889 to have been reloaded. */
4890
4891 default:
4892 break;
4893 }
4894
4895 copy = rtx_alloc (code);
4896
4897 /* Copy the various flags, and other information. We assume that
4898 all fields need copying, and then clear the fields that should
4899 not be copied. That is the sensible default behavior, and forces
4900 us to explicitly document why we are *not* copying a flag. */
4901 memcpy (copy, orig, RTX_HDR_SIZE);
4902
4903 /* We do not copy the USED flag, which is used as a mark bit during
4904 walks over the RTL. */
4905 RTX_FLAG (copy, used) = 0;
4906
4907 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4908 if (INSN_P (orig))
4909 {
4910 RTX_FLAG (copy, jump) = 0;
4911 RTX_FLAG (copy, call) = 0;
4912 RTX_FLAG (copy, frame_related) = 0;
4913 }
4914
4915 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4916
4917 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4918 {
4919 copy->u.fld[i] = orig->u.fld[i];
4920 switch (*format_ptr++)
4921 {
4922 case 'e':
4923 if (XEXP (orig, i) != NULL)
4924 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4925 break;
4926
4927 case 'E':
4928 case 'V':
4929 if (XVEC (orig, i) == orig_asm_constraints_vector)
4930 XVEC (copy, i) = copy_asm_constraints_vector;
4931 else if (XVEC (orig, i) == orig_asm_operands_vector)
4932 XVEC (copy, i) = copy_asm_operands_vector;
4933 else if (XVEC (orig, i) != NULL)
4934 {
4935 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4936 for (j = 0; j < XVECLEN (copy, i); j++)
4937 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4938 }
4939 break;
4940
4941 case 't':
4942 case 'w':
4943 case 'i':
4944 case 's':
4945 case 'S':
4946 case 'u':
4947 case '0':
4948 /* These are left unchanged. */
4949 break;
4950
4951 default:
4952 gcc_unreachable ();
4953 }
4954 }
4955
4956 if (code == SCRATCH)
4957 {
4958 i = copy_insn_n_scratches++;
4959 gcc_assert (i < MAX_RECOG_OPERANDS);
4960 copy_insn_scratch_in[i] = orig;
4961 copy_insn_scratch_out[i] = copy;
4962 }
4963 else if (code == ASM_OPERANDS)
4964 {
4965 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4966 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4967 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4968 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4969 }
4970
4971 return copy;
4972 }
4973
4974 /* Create a new copy of an rtx.
4975 This function differs from copy_rtx in that it handles SCRATCHes and
4976 ASM_OPERANDs properly.
4977 INSN doesn't really have to be a full INSN; it could be just the
4978 pattern. */
4979 rtx
4980 copy_insn (rtx insn)
4981 {
4982 copy_insn_n_scratches = 0;
4983 orig_asm_operands_vector = 0;
4984 orig_asm_constraints_vector = 0;
4985 copy_asm_operands_vector = 0;
4986 copy_asm_constraints_vector = 0;
4987 return copy_insn_1 (insn);
4988 }
4989
4990 /* Initialize data structures and variables in this file
4991 before generating rtl for each function. */
4992
4993 void
4994 init_emit (void)
4995 {
4996 struct function *f = cfun;
4997
4998 f->emit = ggc_alloc (sizeof (struct emit_status));
4999 first_insn = NULL;
5000 last_insn = NULL;
5001 cur_insn_uid = 1;
5002 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5003 last_location = UNKNOWN_LOCATION;
5004 first_label_num = label_num;
5005 seq_stack = NULL;
5006
5007 /* Init the tables that describe all the pseudo regs. */
5008
5009 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5010
5011 f->emit->regno_pointer_align
5012 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5013 * sizeof (unsigned char));
5014
5015 regno_reg_rtx
5016 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5017
5018 /* Put copies of all the hard registers into regno_reg_rtx. */
5019 memcpy (regno_reg_rtx,
5020 static_regno_reg_rtx,
5021 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5022
5023 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5024 init_virtual_regs (f->emit);
5025
5026 /* Indicate that the virtual registers and stack locations are
5027 all pointers. */
5028 REG_POINTER (stack_pointer_rtx) = 1;
5029 REG_POINTER (frame_pointer_rtx) = 1;
5030 REG_POINTER (hard_frame_pointer_rtx) = 1;
5031 REG_POINTER (arg_pointer_rtx) = 1;
5032
5033 REG_POINTER (virtual_incoming_args_rtx) = 1;
5034 REG_POINTER (virtual_stack_vars_rtx) = 1;
5035 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5036 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5037 REG_POINTER (virtual_cfa_rtx) = 1;
5038
5039 #ifdef STACK_BOUNDARY
5040 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5041 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5042 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5043 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5044
5045 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5046 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5047 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5048 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5049 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5050 #endif
5051
5052 #ifdef INIT_EXPANDERS
5053 INIT_EXPANDERS;
5054 #endif
5055 }
5056
5057 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5058
5059 static rtx
5060 gen_const_vector (enum machine_mode mode, int constant)
5061 {
5062 rtx tem;
5063 rtvec v;
5064 int units, i;
5065 enum machine_mode inner;
5066
5067 units = GET_MODE_NUNITS (mode);
5068 inner = GET_MODE_INNER (mode);
5069
5070 v = rtvec_alloc (units);
5071
5072 /* We need to call this function after we set the scalar const_tiny_rtx
5073 entries. */
5074 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5075
5076 for (i = 0; i < units; ++i)
5077 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5078
5079 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5080 return tem;
5081 }
5082
5083 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5084 all elements are zero, and the one vector when all elements are one. */
5085 rtx
5086 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5087 {
5088 enum machine_mode inner = GET_MODE_INNER (mode);
5089 int nunits = GET_MODE_NUNITS (mode);
5090 rtx x;
5091 int i;
5092
5093 /* Check to see if all of the elements have the same value. */
5094 x = RTVEC_ELT (v, nunits - 1);
5095 for (i = nunits - 2; i >= 0; i--)
5096 if (RTVEC_ELT (v, i) != x)
5097 break;
5098
5099 /* If the values are all the same, check to see if we can use one of the
5100 standard constant vectors. */
5101 if (i == -1)
5102 {
5103 if (x == CONST0_RTX (inner))
5104 return CONST0_RTX (mode);
5105 else if (x == CONST1_RTX (inner))
5106 return CONST1_RTX (mode);
5107 }
5108
5109 return gen_rtx_raw_CONST_VECTOR (mode, v);
5110 }
5111
5112 /* Create some permanent unique rtl objects shared between all functions.
5113 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5114
5115 void
5116 init_emit_once (int line_numbers)
5117 {
5118 int i;
5119 enum machine_mode mode;
5120 enum machine_mode double_mode;
5121
5122 /* We need reg_raw_mode, so initialize the modes now. */
5123 init_reg_modes_once ();
5124
5125 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5126 tables. */
5127 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5128 const_int_htab_eq, NULL);
5129
5130 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5131 const_double_htab_eq, NULL);
5132
5133 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5134 mem_attrs_htab_eq, NULL);
5135 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5136 reg_attrs_htab_eq, NULL);
5137
5138 no_line_numbers = ! line_numbers;
5139
5140 /* Compute the word and byte modes. */
5141
5142 byte_mode = VOIDmode;
5143 word_mode = VOIDmode;
5144 double_mode = VOIDmode;
5145
5146 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5147 mode = GET_MODE_WIDER_MODE (mode))
5148 {
5149 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5150 && byte_mode == VOIDmode)
5151 byte_mode = mode;
5152
5153 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5154 && word_mode == VOIDmode)
5155 word_mode = mode;
5156 }
5157
5158 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5159 mode = GET_MODE_WIDER_MODE (mode))
5160 {
5161 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5162 && double_mode == VOIDmode)
5163 double_mode = mode;
5164 }
5165
5166 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5167
5168 /* Assign register numbers to the globally defined register rtx.
5169 This must be done at runtime because the register number field
5170 is in a union and some compilers can't initialize unions. */
5171
5172 pc_rtx = gen_rtx_PC (VOIDmode);
5173 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5174 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5175 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5176 if (hard_frame_pointer_rtx == 0)
5177 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5178 HARD_FRAME_POINTER_REGNUM);
5179 if (arg_pointer_rtx == 0)
5180 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5181 virtual_incoming_args_rtx =
5182 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5183 virtual_stack_vars_rtx =
5184 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5185 virtual_stack_dynamic_rtx =
5186 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5187 virtual_outgoing_args_rtx =
5188 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5189 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5190
5191 /* Initialize RTL for commonly used hard registers. These are
5192 copied into regno_reg_rtx as we begin to compile each function. */
5193 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5194 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5195
5196 #ifdef INIT_EXPANDERS
5197 /* This is to initialize {init|mark|free}_machine_status before the first
5198 call to push_function_context_to. This is needed by the Chill front
5199 end which calls push_function_context_to before the first call to
5200 init_function_start. */
5201 INIT_EXPANDERS;
5202 #endif
5203
5204 /* Create the unique rtx's for certain rtx codes and operand values. */
5205
5206 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5207 tries to use these variables. */
5208 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5209 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5210 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5211
5212 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5213 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5214 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5215 else
5216 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5217
5218 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5219 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5220 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5221 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5222 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5223 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5224 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5225
5226 dconsthalf = dconst1;
5227 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5228
5229 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5230
5231 /* Initialize mathematical constants for constant folding builtins.
5232 These constants need to be given to at least 160 bits precision. */
5233 real_from_string (&dconstpi,
5234 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5235 real_from_string (&dconste,
5236 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5237
5238 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5239 {
5240 REAL_VALUE_TYPE *r =
5241 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5242
5243 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5244 mode = GET_MODE_WIDER_MODE (mode))
5245 const_tiny_rtx[i][(int) mode] =
5246 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5247
5248 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5249
5250 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5251 mode = GET_MODE_WIDER_MODE (mode))
5252 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5253
5254 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5255 mode != VOIDmode;
5256 mode = GET_MODE_WIDER_MODE (mode))
5257 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5258 }
5259
5260 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5261 mode != VOIDmode;
5262 mode = GET_MODE_WIDER_MODE (mode))
5263 {
5264 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5265 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5266 }
5267
5268 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5269 mode != VOIDmode;
5270 mode = GET_MODE_WIDER_MODE (mode))
5271 {
5272 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5273 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5274 }
5275
5276 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5277 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5278 const_tiny_rtx[0][i] = const0_rtx;
5279
5280 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5281 if (STORE_FLAG_VALUE == 1)
5282 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5283
5284 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5285 return_address_pointer_rtx
5286 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5287 #endif
5288
5289 #ifdef STATIC_CHAIN_REGNUM
5290 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5291
5292 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5293 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5294 static_chain_incoming_rtx
5295 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5296 else
5297 #endif
5298 static_chain_incoming_rtx = static_chain_rtx;
5299 #endif
5300
5301 #ifdef STATIC_CHAIN
5302 static_chain_rtx = STATIC_CHAIN;
5303
5304 #ifdef STATIC_CHAIN_INCOMING
5305 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5306 #else
5307 static_chain_incoming_rtx = static_chain_rtx;
5308 #endif
5309 #endif
5310
5311 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5312 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5313 }
5314 \f
5315 /* Produce exact duplicate of insn INSN after AFTER.
5316 Care updating of libcall regions if present. */
5317
5318 rtx
5319 emit_copy_of_insn_after (rtx insn, rtx after)
5320 {
5321 rtx new;
5322 rtx note1, note2, link;
5323
5324 switch (GET_CODE (insn))
5325 {
5326 case INSN:
5327 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5328 break;
5329
5330 case JUMP_INSN:
5331 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5332 break;
5333
5334 case CALL_INSN:
5335 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5336 if (CALL_INSN_FUNCTION_USAGE (insn))
5337 CALL_INSN_FUNCTION_USAGE (new)
5338 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5339 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5340 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5341 break;
5342
5343 default:
5344 gcc_unreachable ();
5345 }
5346
5347 /* Update LABEL_NUSES. */
5348 mark_jump_label (PATTERN (new), new, 0);
5349
5350 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5351
5352 /* If the old insn is frame related, then so is the new one. This is
5353 primarily needed for IA-64 unwind info which marks epilogue insns,
5354 which may be duplicated by the basic block reordering code. */
5355 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5356
5357 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5358 make them. */
5359 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5360 if (REG_NOTE_KIND (link) != REG_LABEL)
5361 {
5362 if (GET_CODE (link) == EXPR_LIST)
5363 REG_NOTES (new)
5364 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5365 XEXP (link, 0),
5366 REG_NOTES (new)));
5367 else
5368 REG_NOTES (new)
5369 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5370 XEXP (link, 0),
5371 REG_NOTES (new)));
5372 }
5373
5374 /* Fix the libcall sequences. */
5375 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5376 {
5377 rtx p = new;
5378 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5379 p = PREV_INSN (p);
5380 XEXP (note1, 0) = p;
5381 XEXP (note2, 0) = new;
5382 }
5383 INSN_CODE (new) = INSN_CODE (insn);
5384 return new;
5385 }
5386
5387 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5388 rtx
5389 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5390 {
5391 if (hard_reg_clobbers[mode][regno])
5392 return hard_reg_clobbers[mode][regno];
5393 else
5394 return (hard_reg_clobbers[mode][regno] =
5395 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5396 }
5397
5398 #include "gt-emit-rtl.h"