]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
emit-rtl.c (copy_rtx_if_shared): Don't allow MEMs with constant addresses to be shared.
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_first_and_last_label_number was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
121
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
125
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
130
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
137
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
152
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
157
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
160
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
164
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
168
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
172
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
178
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_rtl_1 (rtx);
184 static void unshare_all_decls (tree);
185 static void reset_used_decls (tree);
186 static void mark_label_nuses (rtx);
187 static hashval_t const_int_htab_hash (const void *);
188 static int const_int_htab_eq (const void *, const void *);
189 static hashval_t const_double_htab_hash (const void *);
190 static int const_double_htab_eq (const void *, const void *);
191 static rtx lookup_const_double (rtx);
192 static hashval_t mem_attrs_htab_hash (const void *);
193 static int mem_attrs_htab_eq (const void *, const void *);
194 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
195 enum machine_mode);
196 static hashval_t reg_attrs_htab_hash (const void *);
197 static int reg_attrs_htab_eq (const void *, const void *);
198 static reg_attrs *get_reg_attrs (tree, int);
199 static tree component_ref_for_mem_expr (tree);
200 static rtx gen_const_vector_0 (enum machine_mode);
201 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 rtx value = (rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 rtx a = (rtx)x, b = (rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
261
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
264 {
265 mem_attrs *p = (mem_attrs *) x;
266
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
271 }
272
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
276
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
279 {
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
282
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
285 }
286
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
290
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
294 {
295 mem_attrs attrs;
296 void **slot;
297
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
325
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
328 {
329 reg_attrs *p = (reg_attrs *) x;
330
331 return ((p->offset * 1000) ^ (long) p->decl);
332 }
333
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
337
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
340 {
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
343
344 return (p->decl == q->decl && p->offset == q->offset);
345 }
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
349
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
352 {
353 reg_attrs attrs;
354 void **slot;
355
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
359
360 attrs.decl = decl;
361 attrs.offset = offset;
362
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
365 {
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 }
369
370 return *slot;
371 }
372
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
376
377 rtx
378 gen_raw_REG (enum machine_mode mode, int regno)
379 {
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
383 }
384
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
388
389 rtx
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 {
392 void **slot;
393
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
401
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407
408 return (rtx) *slot;
409 }
410
411 rtx
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 {
414 return GEN_INT (trunc_int_for_mode (c, mode));
415 }
416
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
420
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
426 {
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
430
431 return (rtx) *slot;
432 }
433
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
436 rtx
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 {
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
441
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443
444 return lookup_const_double (real);
445 }
446
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451
452 rtx
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 {
455 rtx value;
456 unsigned int i;
457
458 if (mode != VOIDmode)
459 {
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
467
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
482
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
486
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
491
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
495
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
498
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
504
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
510
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
513
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 }
517
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
521
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
525
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
528
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
531
532 return lookup_const_double (value);
533 }
534
535 rtx
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 {
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
543
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
548
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
551
552 if (mode == Pmode && !reload_in_progress)
553 {
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
575 }
576
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
580
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
585
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
588
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
596
597 return gen_raw_REG (mode, regno);
598 }
599
600 rtx
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 {
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
604
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
608
609 return rt;
610 }
611
612 rtx
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 {
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
619
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
629 }
630
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
633
634 rtx
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 {
637 enum machine_mode inmode;
638
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
644 }
645 \f
646 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
647 **
648 ** This routine generates an RTX of the size specified by
649 ** <code>, which is an RTX code. The RTX structure is initialized
650 ** from the arguments <element1> through <elementn>, which are
651 ** interpreted according to the specific RTX type's format. The
652 ** special machine mode associated with the rtx (if any) is specified
653 ** in <mode>.
654 **
655 ** gen_rtx can be invoked in a way which resembles the lisp-like
656 ** rtx it will generate. For example, the following rtx structure:
657 **
658 ** (plus:QI (mem:QI (reg:SI 1))
659 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
660 **
661 ** ...would be generated by the following C code:
662 **
663 ** gen_rtx (PLUS, QImode,
664 ** gen_rtx (MEM, QImode,
665 ** gen_rtx (REG, SImode, 1)),
666 ** gen_rtx (MEM, QImode,
667 ** gen_rtx (PLUS, SImode,
668 ** gen_rtx (REG, SImode, 2),
669 ** gen_rtx (REG, SImode, 3)))),
670 */
671
672 /*VARARGS2*/
673 rtx
674 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
675 {
676 int i; /* Array indices... */
677 const char *fmt; /* Current rtx's format... */
678 rtx rt_val; /* RTX to return to caller... */
679 va_list p;
680
681 va_start (p, mode);
682
683 switch (code)
684 {
685 case CONST_INT:
686 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
687 break;
688
689 case CONST_DOUBLE:
690 {
691 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
692 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
693
694 rt_val = immed_double_const (arg0, arg1, mode);
695 }
696 break;
697
698 case REG:
699 rt_val = gen_rtx_REG (mode, va_arg (p, int));
700 break;
701
702 case MEM:
703 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
704 break;
705
706 default:
707 rt_val = rtx_alloc (code); /* Allocate the storage space. */
708 rt_val->mode = mode; /* Store the machine mode... */
709
710 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
711 for (i = 0; i < GET_RTX_LENGTH (code); i++)
712 {
713 switch (*fmt++)
714 {
715 case '0': /* Field with unknown use. Zero it. */
716 X0EXP (rt_val, i) = NULL_RTX;
717 break;
718
719 case 'i': /* An integer? */
720 XINT (rt_val, i) = va_arg (p, int);
721 break;
722
723 case 'w': /* A wide integer? */
724 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
725 break;
726
727 case 's': /* A string? */
728 XSTR (rt_val, i) = va_arg (p, char *);
729 break;
730
731 case 'e': /* An expression? */
732 case 'u': /* An insn? Same except when printing. */
733 XEXP (rt_val, i) = va_arg (p, rtx);
734 break;
735
736 case 'E': /* An RTX vector? */
737 XVEC (rt_val, i) = va_arg (p, rtvec);
738 break;
739
740 case 'b': /* A bitmap? */
741 XBITMAP (rt_val, i) = va_arg (p, bitmap);
742 break;
743
744 case 't': /* A tree? */
745 XTREE (rt_val, i) = va_arg (p, tree);
746 break;
747
748 default:
749 abort ();
750 }
751 }
752 break;
753 }
754
755 va_end (p);
756 return rt_val;
757 }
758
759 /* gen_rtvec (n, [rt1, ..., rtn])
760 **
761 ** This routine creates an rtvec and stores within it the
762 ** pointers to rtx's which are its arguments.
763 */
764
765 /*VARARGS1*/
766 rtvec
767 gen_rtvec (int n, ...)
768 {
769 int i, save_n;
770 rtx *vector;
771 va_list p;
772
773 va_start (p, n);
774
775 if (n == 0)
776 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
777
778 vector = alloca (n * sizeof (rtx));
779
780 for (i = 0; i < n; i++)
781 vector[i] = va_arg (p, rtx);
782
783 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
784 save_n = n;
785 va_end (p);
786
787 return gen_rtvec_v (save_n, vector);
788 }
789
790 rtvec
791 gen_rtvec_v (int n, rtx *argp)
792 {
793 int i;
794 rtvec rt_val;
795
796 if (n == 0)
797 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
798
799 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
800
801 for (i = 0; i < n; i++)
802 rt_val->elem[i] = *argp++;
803
804 return rt_val;
805 }
806 \f
807 /* Generate a REG rtx for a new pseudo register of mode MODE.
808 This pseudo is assigned the next sequential register number. */
809
810 rtx
811 gen_reg_rtx (enum machine_mode mode)
812 {
813 struct function *f = cfun;
814 rtx val;
815
816 /* Don't let anything called after initial flow analysis create new
817 registers. */
818 if (no_new_pseudos)
819 abort ();
820
821 if (generating_concat_p
822 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
823 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
824 {
825 /* For complex modes, don't make a single pseudo.
826 Instead, make a CONCAT of two pseudos.
827 This allows noncontiguous allocation of the real and imaginary parts,
828 which makes much better code. Besides, allocating DCmode
829 pseudos overstrains reload on some machines like the 386. */
830 rtx realpart, imagpart;
831 enum machine_mode partmode = GET_MODE_INNER (mode);
832
833 realpart = gen_reg_rtx (partmode);
834 imagpart = gen_reg_rtx (partmode);
835 return gen_rtx_CONCAT (mode, realpart, imagpart);
836 }
837
838 /* Make sure regno_pointer_align, and regno_reg_rtx are large
839 enough to have an element for this pseudo reg number. */
840
841 if (reg_rtx_no == f->emit->regno_pointer_align_length)
842 {
843 int old_size = f->emit->regno_pointer_align_length;
844 char *new;
845 rtx *new1;
846
847 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
848 memset (new + old_size, 0, old_size);
849 f->emit->regno_pointer_align = (unsigned char *) new;
850
851 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
852 old_size * 2 * sizeof (rtx));
853 memset (new1 + old_size, 0, old_size * sizeof (rtx));
854 regno_reg_rtx = new1;
855
856 f->emit->regno_pointer_align_length = old_size * 2;
857 }
858
859 val = gen_raw_REG (mode, reg_rtx_no);
860 regno_reg_rtx[reg_rtx_no++] = val;
861 return val;
862 }
863
864 /* Generate a register with same attributes as REG,
865 but offsetted by OFFSET. */
866
867 rtx
868 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
869 {
870 rtx new = gen_rtx_REG (mode, regno);
871 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
872 REG_OFFSET (reg) + offset);
873 return new;
874 }
875
876 /* Set the decl for MEM to DECL. */
877
878 void
879 set_reg_attrs_from_mem (rtx reg, rtx mem)
880 {
881 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
882 REG_ATTRS (reg)
883 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
884 }
885
886 /* Set the register attributes for registers contained in PARM_RTX.
887 Use needed values from memory attributes of MEM. */
888
889 void
890 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
891 {
892 if (GET_CODE (parm_rtx) == REG)
893 set_reg_attrs_from_mem (parm_rtx, mem);
894 else if (GET_CODE (parm_rtx) == PARALLEL)
895 {
896 /* Check for a NULL entry in the first slot, used to indicate that the
897 parameter goes both on the stack and in registers. */
898 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
899 for (; i < XVECLEN (parm_rtx, 0); i++)
900 {
901 rtx x = XVECEXP (parm_rtx, 0, i);
902 if (GET_CODE (XEXP (x, 0)) == REG)
903 REG_ATTRS (XEXP (x, 0))
904 = get_reg_attrs (MEM_EXPR (mem),
905 INTVAL (XEXP (x, 1)));
906 }
907 }
908 }
909
910 /* Assign the RTX X to declaration T. */
911 void
912 set_decl_rtl (tree t, rtx x)
913 {
914 DECL_CHECK (t)->decl.rtl = x;
915
916 if (!x)
917 return;
918 /* For register, we maintain the reverse information too. */
919 if (GET_CODE (x) == REG)
920 REG_ATTRS (x) = get_reg_attrs (t, 0);
921 else if (GET_CODE (x) == SUBREG)
922 REG_ATTRS (SUBREG_REG (x))
923 = get_reg_attrs (t, -SUBREG_BYTE (x));
924 if (GET_CODE (x) == CONCAT)
925 {
926 if (REG_P (XEXP (x, 0)))
927 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
928 if (REG_P (XEXP (x, 1)))
929 REG_ATTRS (XEXP (x, 1))
930 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
931 }
932 if (GET_CODE (x) == PARALLEL)
933 {
934 int i;
935 for (i = 0; i < XVECLEN (x, 0); i++)
936 {
937 rtx y = XVECEXP (x, 0, i);
938 if (REG_P (XEXP (y, 0)))
939 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
940 }
941 }
942 }
943
944 /* Identify REG (which may be a CONCAT) as a user register. */
945
946 void
947 mark_user_reg (rtx reg)
948 {
949 if (GET_CODE (reg) == CONCAT)
950 {
951 REG_USERVAR_P (XEXP (reg, 0)) = 1;
952 REG_USERVAR_P (XEXP (reg, 1)) = 1;
953 }
954 else if (GET_CODE (reg) == REG)
955 REG_USERVAR_P (reg) = 1;
956 else
957 abort ();
958 }
959
960 /* Identify REG as a probable pointer register and show its alignment
961 as ALIGN, if nonzero. */
962
963 void
964 mark_reg_pointer (rtx reg, int align)
965 {
966 if (! REG_POINTER (reg))
967 {
968 REG_POINTER (reg) = 1;
969
970 if (align)
971 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
972 }
973 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
974 /* We can no-longer be sure just how aligned this pointer is */
975 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
976 }
977
978 /* Return 1 plus largest pseudo reg number used in the current function. */
979
980 int
981 max_reg_num (void)
982 {
983 return reg_rtx_no;
984 }
985
986 /* Return 1 + the largest label number used so far in the current function. */
987
988 int
989 max_label_num (void)
990 {
991 if (last_label_num && label_num == base_label_num)
992 return last_label_num;
993 return label_num;
994 }
995
996 /* Return first label number used in this function (if any were used). */
997
998 int
999 get_first_label_num (void)
1000 {
1001 return first_label_num;
1002 }
1003 \f
1004 /* Return the final regno of X, which is a SUBREG of a hard
1005 register. */
1006 int
1007 subreg_hard_regno (rtx x, int check_mode)
1008 {
1009 enum machine_mode mode = GET_MODE (x);
1010 unsigned int byte_offset, base_regno, final_regno;
1011 rtx reg = SUBREG_REG (x);
1012
1013 /* This is where we attempt to catch illegal subregs
1014 created by the compiler. */
1015 if (GET_CODE (x) != SUBREG
1016 || GET_CODE (reg) != REG)
1017 abort ();
1018 base_regno = REGNO (reg);
1019 if (base_regno >= FIRST_PSEUDO_REGISTER)
1020 abort ();
1021 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1022 abort ();
1023 #ifdef ENABLE_CHECKING
1024 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1025 SUBREG_BYTE (x), mode))
1026 abort ();
1027 #endif
1028 /* Catch non-congruent offsets too. */
1029 byte_offset = SUBREG_BYTE (x);
1030 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1031 abort ();
1032
1033 final_regno = subreg_regno (x);
1034
1035 return final_regno;
1036 }
1037
1038 /* Return a value representing some low-order bits of X, where the number
1039 of low-order bits is given by MODE. Note that no conversion is done
1040 between floating-point and fixed-point values, rather, the bit
1041 representation is returned.
1042
1043 This function handles the cases in common between gen_lowpart, below,
1044 and two variants in cse.c and combine.c. These are the cases that can
1045 be safely handled at all points in the compilation.
1046
1047 If this is not a case we can handle, return 0. */
1048
1049 rtx
1050 gen_lowpart_common (enum machine_mode mode, rtx x)
1051 {
1052 int msize = GET_MODE_SIZE (mode);
1053 int xsize = GET_MODE_SIZE (GET_MODE (x));
1054 int offset = 0;
1055
1056 if (GET_MODE (x) == mode)
1057 return x;
1058
1059 /* MODE must occupy no more words than the mode of X. */
1060 if (GET_MODE (x) != VOIDmode
1061 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1062 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1063 return 0;
1064
1065 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1066 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1067 && GET_MODE (x) != VOIDmode && msize > xsize)
1068 return 0;
1069
1070 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1071
1072 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1073 && (GET_MODE_CLASS (mode) == MODE_INT
1074 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1075 {
1076 /* If we are getting the low-order part of something that has been
1077 sign- or zero-extended, we can either just use the object being
1078 extended or make a narrower extension. If we want an even smaller
1079 piece than the size of the object being extended, call ourselves
1080 recursively.
1081
1082 This case is used mostly by combine and cse. */
1083
1084 if (GET_MODE (XEXP (x, 0)) == mode)
1085 return XEXP (x, 0);
1086 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1087 return gen_lowpart_common (mode, XEXP (x, 0));
1088 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1089 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1090 }
1091 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1092 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1093 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1094 else if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
1095 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1096 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1097 from the low-order part of the constant. */
1098 else if ((GET_MODE_CLASS (mode) == MODE_INT
1099 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1100 && GET_MODE (x) == VOIDmode
1101 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1102 {
1103 /* If MODE is twice the host word size, X is already the desired
1104 representation. Otherwise, if MODE is wider than a word, we can't
1105 do this. If MODE is exactly a word, return just one CONST_INT. */
1106
1107 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1108 return x;
1109 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1110 return 0;
1111 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1112 return (GET_CODE (x) == CONST_INT ? x
1113 : GEN_INT (CONST_DOUBLE_LOW (x)));
1114 else
1115 {
1116 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1117 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1118 : CONST_DOUBLE_LOW (x));
1119
1120 /* Sign extend to HOST_WIDE_INT. */
1121 val = trunc_int_for_mode (val, mode);
1122
1123 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1124 : GEN_INT (val));
1125 }
1126 }
1127
1128 /* The floating-point emulator can handle all conversions between
1129 FP and integer operands. This simplifies reload because it
1130 doesn't have to deal with constructs like (subreg:DI
1131 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1132 /* Single-precision floats are always 32-bits and double-precision
1133 floats are always 64-bits. */
1134
1135 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1136 && GET_MODE_BITSIZE (mode) == 32
1137 && GET_CODE (x) == CONST_INT)
1138 {
1139 REAL_VALUE_TYPE r;
1140 long i = INTVAL (x);
1141
1142 real_from_target (&r, &i, mode);
1143 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1144 }
1145 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1146 && GET_MODE_BITSIZE (mode) == 64
1147 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1148 && GET_MODE (x) == VOIDmode)
1149 {
1150 REAL_VALUE_TYPE r;
1151 HOST_WIDE_INT low, high;
1152 long i[2];
1153
1154 if (GET_CODE (x) == CONST_INT)
1155 {
1156 low = INTVAL (x);
1157 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1158 }
1159 else
1160 {
1161 low = CONST_DOUBLE_LOW (x);
1162 high = CONST_DOUBLE_HIGH (x);
1163 }
1164
1165 if (HOST_BITS_PER_WIDE_INT > 32)
1166 high = low >> 31 >> 1;
1167
1168 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1169 target machine. */
1170 if (WORDS_BIG_ENDIAN)
1171 i[0] = high, i[1] = low;
1172 else
1173 i[0] = low, i[1] = high;
1174
1175 real_from_target (&r, i, mode);
1176 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1177 }
1178 else if ((GET_MODE_CLASS (mode) == MODE_INT
1179 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1180 && GET_CODE (x) == CONST_DOUBLE
1181 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1182 {
1183 REAL_VALUE_TYPE r;
1184 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1185 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1186
1187 /* Convert 'r' into an array of four 32-bit words in target word
1188 order. */
1189 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1190 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1191 {
1192 case 32:
1193 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1194 i[1] = 0;
1195 i[2] = 0;
1196 i[3 - 3 * endian] = 0;
1197 break;
1198 case 64:
1199 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1200 i[2 - 2 * endian] = 0;
1201 i[3 - 2 * endian] = 0;
1202 break;
1203 case 96:
1204 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1205 i[3 - 3 * endian] = 0;
1206 break;
1207 case 128:
1208 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1209 break;
1210 default:
1211 abort ();
1212 }
1213 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1214 and return it. */
1215 #if HOST_BITS_PER_WIDE_INT == 32
1216 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1217 #else
1218 if (HOST_BITS_PER_WIDE_INT != 64)
1219 abort ();
1220
1221 return immed_double_const ((((unsigned long) i[3 * endian])
1222 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1223 (((unsigned long) i[2 - endian])
1224 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1225 mode);
1226 #endif
1227 }
1228 /* If MODE is a condition code and X is a CONST_INT, the value of X
1229 must already have been "recognized" by the back-end, and we can
1230 assume that it is valid for this mode. */
1231 else if (GET_MODE_CLASS (mode) == MODE_CC
1232 && GET_CODE (x) == CONST_INT)
1233 return x;
1234
1235 /* Otherwise, we can't do this. */
1236 return 0;
1237 }
1238 \f
1239 /* Return the constant real or imaginary part (which has mode MODE)
1240 of a complex value X. The IMAGPART_P argument determines whether
1241 the real or complex component should be returned. This function
1242 returns NULL_RTX if the component isn't a constant. */
1243
1244 static rtx
1245 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1246 {
1247 tree decl, part;
1248
1249 if (GET_CODE (x) == MEM
1250 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1251 {
1252 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1253 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1254 {
1255 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1256 if (TREE_CODE (part) == REAL_CST
1257 || TREE_CODE (part) == INTEGER_CST)
1258 return expand_expr (part, NULL_RTX, mode, 0);
1259 }
1260 }
1261 return NULL_RTX;
1262 }
1263
1264 /* Return the real part (which has mode MODE) of a complex value X.
1265 This always comes at the low address in memory. */
1266
1267 rtx
1268 gen_realpart (enum machine_mode mode, rtx x)
1269 {
1270 rtx part;
1271
1272 /* Handle complex constants. */
1273 part = gen_complex_constant_part (mode, x, 0);
1274 if (part != NULL_RTX)
1275 return part;
1276
1277 if (WORDS_BIG_ENDIAN
1278 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1279 && REG_P (x)
1280 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1281 internal_error
1282 ("can't access real part of complex value in hard register");
1283 else if (WORDS_BIG_ENDIAN)
1284 return gen_highpart (mode, x);
1285 else
1286 return gen_lowpart (mode, x);
1287 }
1288
1289 /* Return the imaginary part (which has mode MODE) of a complex value X.
1290 This always comes at the high address in memory. */
1291
1292 rtx
1293 gen_imagpart (enum machine_mode mode, rtx x)
1294 {
1295 rtx part;
1296
1297 /* Handle complex constants. */
1298 part = gen_complex_constant_part (mode, x, 1);
1299 if (part != NULL_RTX)
1300 return part;
1301
1302 if (WORDS_BIG_ENDIAN)
1303 return gen_lowpart (mode, x);
1304 else if (! WORDS_BIG_ENDIAN
1305 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1306 && REG_P (x)
1307 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1308 internal_error
1309 ("can't access imaginary part of complex value in hard register");
1310 else
1311 return gen_highpart (mode, x);
1312 }
1313
1314 /* Return 1 iff X, assumed to be a SUBREG,
1315 refers to the real part of the complex value in its containing reg.
1316 Complex values are always stored with the real part in the first word,
1317 regardless of WORDS_BIG_ENDIAN. */
1318
1319 int
1320 subreg_realpart_p (rtx x)
1321 {
1322 if (GET_CODE (x) != SUBREG)
1323 abort ();
1324
1325 return ((unsigned int) SUBREG_BYTE (x)
1326 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1327 }
1328 \f
1329 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1330 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1331 least-significant part of X.
1332 MODE specifies how big a part of X to return;
1333 it usually should not be larger than a word.
1334 If X is a MEM whose address is a QUEUED, the value may be so also. */
1335
1336 rtx
1337 gen_lowpart (enum machine_mode mode, rtx x)
1338 {
1339 rtx result = gen_lowpart_common (mode, x);
1340
1341 if (result)
1342 return result;
1343 else if (GET_CODE (x) == REG)
1344 {
1345 /* Must be a hard reg that's not valid in MODE. */
1346 result = gen_lowpart_common (mode, copy_to_reg (x));
1347 if (result == 0)
1348 abort ();
1349 return result;
1350 }
1351 else if (GET_CODE (x) == MEM)
1352 {
1353 /* The only additional case we can do is MEM. */
1354 int offset = 0;
1355
1356 /* The following exposes the use of "x" to CSE. */
1357 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1358 && SCALAR_INT_MODE_P (GET_MODE (x))
1359 && ! no_new_pseudos)
1360 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1361
1362 if (WORDS_BIG_ENDIAN)
1363 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1364 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1365
1366 if (BYTES_BIG_ENDIAN)
1367 /* Adjust the address so that the address-after-the-data
1368 is unchanged. */
1369 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1370 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1371
1372 return adjust_address (x, mode, offset);
1373 }
1374 else if (GET_CODE (x) == ADDRESSOF)
1375 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1376 else
1377 abort ();
1378 }
1379
1380 /* Like `gen_lowpart', but refer to the most significant part.
1381 This is used to access the imaginary part of a complex number. */
1382
1383 rtx
1384 gen_highpart (enum machine_mode mode, rtx x)
1385 {
1386 unsigned int msize = GET_MODE_SIZE (mode);
1387 rtx result;
1388
1389 /* This case loses if X is a subreg. To catch bugs early,
1390 complain if an invalid MODE is used even in other cases. */
1391 if (msize > UNITS_PER_WORD
1392 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1393 abort ();
1394
1395 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1396 subreg_highpart_offset (mode, GET_MODE (x)));
1397
1398 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1399 the target if we have a MEM. gen_highpart must return a valid operand,
1400 emitting code if necessary to do so. */
1401 if (result != NULL_RTX && GET_CODE (result) == MEM)
1402 result = validize_mem (result);
1403
1404 if (!result)
1405 abort ();
1406 return result;
1407 }
1408
1409 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1410 be VOIDmode constant. */
1411 rtx
1412 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1413 {
1414 if (GET_MODE (exp) != VOIDmode)
1415 {
1416 if (GET_MODE (exp) != innermode)
1417 abort ();
1418 return gen_highpart (outermode, exp);
1419 }
1420 return simplify_gen_subreg (outermode, exp, innermode,
1421 subreg_highpart_offset (outermode, innermode));
1422 }
1423
1424 /* Return offset in bytes to get OUTERMODE low part
1425 of the value in mode INNERMODE stored in memory in target format. */
1426
1427 unsigned int
1428 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1429 {
1430 unsigned int offset = 0;
1431 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1432
1433 if (difference > 0)
1434 {
1435 if (WORDS_BIG_ENDIAN)
1436 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1437 if (BYTES_BIG_ENDIAN)
1438 offset += difference % UNITS_PER_WORD;
1439 }
1440
1441 return offset;
1442 }
1443
1444 /* Return offset in bytes to get OUTERMODE high part
1445 of the value in mode INNERMODE stored in memory in target format. */
1446 unsigned int
1447 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1448 {
1449 unsigned int offset = 0;
1450 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1451
1452 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1453 abort ();
1454
1455 if (difference > 0)
1456 {
1457 if (! WORDS_BIG_ENDIAN)
1458 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1459 if (! BYTES_BIG_ENDIAN)
1460 offset += difference % UNITS_PER_WORD;
1461 }
1462
1463 return offset;
1464 }
1465
1466 /* Return 1 iff X, assumed to be a SUBREG,
1467 refers to the least significant part of its containing reg.
1468 If X is not a SUBREG, always return 1 (it is its own low part!). */
1469
1470 int
1471 subreg_lowpart_p (rtx x)
1472 {
1473 if (GET_CODE (x) != SUBREG)
1474 return 1;
1475 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1476 return 0;
1477
1478 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1479 == SUBREG_BYTE (x));
1480 }
1481 \f
1482
1483 /* Helper routine for all the constant cases of operand_subword.
1484 Some places invoke this directly. */
1485
1486 rtx
1487 constant_subword (rtx op, int offset, enum machine_mode mode)
1488 {
1489 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1490 HOST_WIDE_INT val;
1491
1492 /* If OP is already an integer word, return it. */
1493 if (GET_MODE_CLASS (mode) == MODE_INT
1494 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1495 return op;
1496
1497 /* The output is some bits, the width of the target machine's word.
1498 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1499 host can't. */
1500 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1501 && GET_MODE_CLASS (mode) == MODE_FLOAT
1502 && GET_MODE_BITSIZE (mode) == 64
1503 && GET_CODE (op) == CONST_DOUBLE)
1504 {
1505 long k[2];
1506 REAL_VALUE_TYPE rv;
1507
1508 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1509 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1510
1511 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1512 which the words are written depends on the word endianness.
1513 ??? This is a potential portability problem and should
1514 be fixed at some point.
1515
1516 We must exercise caution with the sign bit. By definition there
1517 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1518 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1519 So we explicitly mask and sign-extend as necessary. */
1520 if (BITS_PER_WORD == 32)
1521 {
1522 val = k[offset];
1523 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1524 return GEN_INT (val);
1525 }
1526 #if HOST_BITS_PER_WIDE_INT >= 64
1527 else if (BITS_PER_WORD >= 64 && offset == 0)
1528 {
1529 val = k[! WORDS_BIG_ENDIAN];
1530 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1531 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1532 return GEN_INT (val);
1533 }
1534 #endif
1535 else if (BITS_PER_WORD == 16)
1536 {
1537 val = k[offset >> 1];
1538 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1539 val >>= 16;
1540 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1541 return GEN_INT (val);
1542 }
1543 else
1544 abort ();
1545 }
1546 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1547 && GET_MODE_CLASS (mode) == MODE_FLOAT
1548 && GET_MODE_BITSIZE (mode) > 64
1549 && GET_CODE (op) == CONST_DOUBLE)
1550 {
1551 long k[4];
1552 REAL_VALUE_TYPE rv;
1553
1554 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1555 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1556
1557 if (BITS_PER_WORD == 32)
1558 {
1559 val = k[offset];
1560 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1561 return GEN_INT (val);
1562 }
1563 #if HOST_BITS_PER_WIDE_INT >= 64
1564 else if (BITS_PER_WORD >= 64 && offset <= 1)
1565 {
1566 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1567 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1568 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1569 return GEN_INT (val);
1570 }
1571 #endif
1572 else
1573 abort ();
1574 }
1575
1576 /* Single word float is a little harder, since single- and double-word
1577 values often do not have the same high-order bits. We have already
1578 verified that we want the only defined word of the single-word value. */
1579 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1580 && GET_MODE_BITSIZE (mode) == 32
1581 && GET_CODE (op) == CONST_DOUBLE)
1582 {
1583 long l;
1584 REAL_VALUE_TYPE rv;
1585
1586 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1587 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1588
1589 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1590 val = l;
1591 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1592
1593 if (BITS_PER_WORD == 16)
1594 {
1595 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1596 val >>= 16;
1597 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1598 }
1599
1600 return GEN_INT (val);
1601 }
1602
1603 /* The only remaining cases that we can handle are integers.
1604 Convert to proper endianness now since these cases need it.
1605 At this point, offset == 0 means the low-order word.
1606
1607 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1608 in general. However, if OP is (const_int 0), we can just return
1609 it for any word. */
1610
1611 if (op == const0_rtx)
1612 return op;
1613
1614 if (GET_MODE_CLASS (mode) != MODE_INT
1615 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1616 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1617 return 0;
1618
1619 if (WORDS_BIG_ENDIAN)
1620 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1621
1622 /* Find out which word on the host machine this value is in and get
1623 it from the constant. */
1624 val = (offset / size_ratio == 0
1625 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1626 : (GET_CODE (op) == CONST_INT
1627 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1628
1629 /* Get the value we want into the low bits of val. */
1630 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1631 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1632
1633 val = trunc_int_for_mode (val, word_mode);
1634
1635 return GEN_INT (val);
1636 }
1637
1638 /* Return subword OFFSET of operand OP.
1639 The word number, OFFSET, is interpreted as the word number starting
1640 at the low-order address. OFFSET 0 is the low-order word if not
1641 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1642
1643 If we cannot extract the required word, we return zero. Otherwise,
1644 an rtx corresponding to the requested word will be returned.
1645
1646 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1647 reload has completed, a valid address will always be returned. After
1648 reload, if a valid address cannot be returned, we return zero.
1649
1650 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1651 it is the responsibility of the caller.
1652
1653 MODE is the mode of OP in case it is a CONST_INT.
1654
1655 ??? This is still rather broken for some cases. The problem for the
1656 moment is that all callers of this thing provide no 'goal mode' to
1657 tell us to work with. This exists because all callers were written
1658 in a word based SUBREG world.
1659 Now use of this function can be deprecated by simplify_subreg in most
1660 cases.
1661 */
1662
1663 rtx
1664 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1665 {
1666 if (mode == VOIDmode)
1667 mode = GET_MODE (op);
1668
1669 if (mode == VOIDmode)
1670 abort ();
1671
1672 /* If OP is narrower than a word, fail. */
1673 if (mode != BLKmode
1674 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1675 return 0;
1676
1677 /* If we want a word outside OP, return zero. */
1678 if (mode != BLKmode
1679 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1680 return const0_rtx;
1681
1682 /* Form a new MEM at the requested address. */
1683 if (GET_CODE (op) == MEM)
1684 {
1685 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1686
1687 if (! validate_address)
1688 return new;
1689
1690 else if (reload_completed)
1691 {
1692 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1693 return 0;
1694 }
1695 else
1696 return replace_equiv_address (new, XEXP (new, 0));
1697 }
1698
1699 /* Rest can be handled by simplify_subreg. */
1700 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1701 }
1702
1703 /* Similar to `operand_subword', but never return 0. If we can't extract
1704 the required subword, put OP into a register and try again. If that fails,
1705 abort. We always validate the address in this case.
1706
1707 MODE is the mode of OP, in case it is CONST_INT. */
1708
1709 rtx
1710 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1711 {
1712 rtx result = operand_subword (op, offset, 1, mode);
1713
1714 if (result)
1715 return result;
1716
1717 if (mode != BLKmode && mode != VOIDmode)
1718 {
1719 /* If this is a register which can not be accessed by words, copy it
1720 to a pseudo register. */
1721 if (GET_CODE (op) == REG)
1722 op = copy_to_reg (op);
1723 else
1724 op = force_reg (mode, op);
1725 }
1726
1727 result = operand_subword (op, offset, 1, mode);
1728 if (result == 0)
1729 abort ();
1730
1731 return result;
1732 }
1733 \f
1734 /* Given a compare instruction, swap the operands.
1735 A test instruction is changed into a compare of 0 against the operand. */
1736
1737 void
1738 reverse_comparison (rtx insn)
1739 {
1740 rtx body = PATTERN (insn);
1741 rtx comp;
1742
1743 if (GET_CODE (body) == SET)
1744 comp = SET_SRC (body);
1745 else
1746 comp = SET_SRC (XVECEXP (body, 0, 0));
1747
1748 if (GET_CODE (comp) == COMPARE)
1749 {
1750 rtx op0 = XEXP (comp, 0);
1751 rtx op1 = XEXP (comp, 1);
1752 XEXP (comp, 0) = op1;
1753 XEXP (comp, 1) = op0;
1754 }
1755 else
1756 {
1757 rtx new = gen_rtx_COMPARE (VOIDmode,
1758 CONST0_RTX (GET_MODE (comp)), comp);
1759 if (GET_CODE (body) == SET)
1760 SET_SRC (body) = new;
1761 else
1762 SET_SRC (XVECEXP (body, 0, 0)) = new;
1763 }
1764 }
1765 \f
1766 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1767 or (2) a component ref of something variable. Represent the later with
1768 a NULL expression. */
1769
1770 static tree
1771 component_ref_for_mem_expr (tree ref)
1772 {
1773 tree inner = TREE_OPERAND (ref, 0);
1774
1775 if (TREE_CODE (inner) == COMPONENT_REF)
1776 inner = component_ref_for_mem_expr (inner);
1777 else
1778 {
1779 tree placeholder_ptr = 0;
1780
1781 /* Now remove any conversions: they don't change what the underlying
1782 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1783 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1784 || TREE_CODE (inner) == NON_LVALUE_EXPR
1785 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1786 || TREE_CODE (inner) == SAVE_EXPR
1787 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1788 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1789 inner = find_placeholder (inner, &placeholder_ptr);
1790 else
1791 inner = TREE_OPERAND (inner, 0);
1792
1793 if (! DECL_P (inner))
1794 inner = NULL_TREE;
1795 }
1796
1797 if (inner == TREE_OPERAND (ref, 0))
1798 return ref;
1799 else
1800 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1801 TREE_OPERAND (ref, 1));
1802 }
1803
1804 /* Given REF, a MEM, and T, either the type of X or the expression
1805 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1806 if we are making a new object of this type. BITPOS is nonzero if
1807 there is an offset outstanding on T that will be applied later. */
1808
1809 void
1810 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1811 HOST_WIDE_INT bitpos)
1812 {
1813 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1814 tree expr = MEM_EXPR (ref);
1815 rtx offset = MEM_OFFSET (ref);
1816 rtx size = MEM_SIZE (ref);
1817 unsigned int align = MEM_ALIGN (ref);
1818 HOST_WIDE_INT apply_bitpos = 0;
1819 tree type;
1820
1821 /* It can happen that type_for_mode was given a mode for which there
1822 is no language-level type. In which case it returns NULL, which
1823 we can see here. */
1824 if (t == NULL_TREE)
1825 return;
1826
1827 type = TYPE_P (t) ? t : TREE_TYPE (t);
1828
1829 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1830 wrong answer, as it assumes that DECL_RTL already has the right alias
1831 info. Callers should not set DECL_RTL until after the call to
1832 set_mem_attributes. */
1833 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1834 abort ();
1835
1836 /* Get the alias set from the expression or type (perhaps using a
1837 front-end routine) and use it. */
1838 alias = get_alias_set (t);
1839
1840 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1841 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1842 RTX_UNCHANGING_P (ref)
1843 |= ((lang_hooks.honor_readonly
1844 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1845 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1846
1847 /* If we are making an object of this type, or if this is a DECL, we know
1848 that it is a scalar if the type is not an aggregate. */
1849 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1850 MEM_SCALAR_P (ref) = 1;
1851
1852 /* We can set the alignment from the type if we are making an object,
1853 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1854 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1855 align = MAX (align, TYPE_ALIGN (type));
1856
1857 /* If the size is known, we can set that. */
1858 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1859 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1860
1861 /* If T is not a type, we may be able to deduce some more information about
1862 the expression. */
1863 if (! TYPE_P (t))
1864 {
1865 maybe_set_unchanging (ref, t);
1866 if (TREE_THIS_VOLATILE (t))
1867 MEM_VOLATILE_P (ref) = 1;
1868
1869 /* Now remove any conversions: they don't change what the underlying
1870 object is. Likewise for SAVE_EXPR. */
1871 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1872 || TREE_CODE (t) == NON_LVALUE_EXPR
1873 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1874 || TREE_CODE (t) == SAVE_EXPR)
1875 t = TREE_OPERAND (t, 0);
1876
1877 /* If this expression can't be addressed (e.g., it contains a reference
1878 to a non-addressable field), show we don't change its alias set. */
1879 if (! can_address_p (t))
1880 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1881
1882 /* If this is a decl, set the attributes of the MEM from it. */
1883 if (DECL_P (t))
1884 {
1885 expr = t;
1886 offset = const0_rtx;
1887 apply_bitpos = bitpos;
1888 size = (DECL_SIZE_UNIT (t)
1889 && host_integerp (DECL_SIZE_UNIT (t), 1)
1890 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1891 align = DECL_ALIGN (t);
1892 }
1893
1894 /* If this is a constant, we know the alignment. */
1895 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1896 {
1897 align = TYPE_ALIGN (type);
1898 #ifdef CONSTANT_ALIGNMENT
1899 align = CONSTANT_ALIGNMENT (t, align);
1900 #endif
1901 }
1902
1903 /* If this is a field reference and not a bit-field, record it. */
1904 /* ??? There is some information that can be gleened from bit-fields,
1905 such as the word offset in the structure that might be modified.
1906 But skip it for now. */
1907 else if (TREE_CODE (t) == COMPONENT_REF
1908 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1909 {
1910 expr = component_ref_for_mem_expr (t);
1911 offset = const0_rtx;
1912 apply_bitpos = bitpos;
1913 /* ??? Any reason the field size would be different than
1914 the size we got from the type? */
1915 }
1916
1917 /* If this is an array reference, look for an outer field reference. */
1918 else if (TREE_CODE (t) == ARRAY_REF)
1919 {
1920 tree off_tree = size_zero_node;
1921 /* We can't modify t, because we use it at the end of the
1922 function. */
1923 tree t2 = t;
1924
1925 do
1926 {
1927 tree index = TREE_OPERAND (t2, 1);
1928 tree array = TREE_OPERAND (t2, 0);
1929 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1930 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1931 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1932
1933 /* We assume all arrays have sizes that are a multiple of a byte.
1934 First subtract the lower bound, if any, in the type of the
1935 index, then convert to sizetype and multiply by the size of the
1936 array element. */
1937 if (low_bound != 0 && ! integer_zerop (low_bound))
1938 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1939 index, low_bound));
1940
1941 /* If the index has a self-referential type, pass it to a
1942 WITH_RECORD_EXPR; if the component size is, pass our
1943 component to one. */
1944 if (CONTAINS_PLACEHOLDER_P (index))
1945 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1946 if (CONTAINS_PLACEHOLDER_P (unit_size))
1947 unit_size = build (WITH_RECORD_EXPR, sizetype,
1948 unit_size, array);
1949
1950 off_tree
1951 = fold (build (PLUS_EXPR, sizetype,
1952 fold (build (MULT_EXPR, sizetype,
1953 index,
1954 unit_size)),
1955 off_tree));
1956 t2 = TREE_OPERAND (t2, 0);
1957 }
1958 while (TREE_CODE (t2) == ARRAY_REF);
1959
1960 if (DECL_P (t2))
1961 {
1962 expr = t2;
1963 offset = NULL;
1964 if (host_integerp (off_tree, 1))
1965 {
1966 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1967 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1968 align = DECL_ALIGN (t2);
1969 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1970 align = aoff;
1971 offset = GEN_INT (ioff);
1972 apply_bitpos = bitpos;
1973 }
1974 }
1975 else if (TREE_CODE (t2) == COMPONENT_REF)
1976 {
1977 expr = component_ref_for_mem_expr (t2);
1978 if (host_integerp (off_tree, 1))
1979 {
1980 offset = GEN_INT (tree_low_cst (off_tree, 1));
1981 apply_bitpos = bitpos;
1982 }
1983 /* ??? Any reason the field size would be different than
1984 the size we got from the type? */
1985 }
1986 else if (flag_argument_noalias > 1
1987 && TREE_CODE (t2) == INDIRECT_REF
1988 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1989 {
1990 expr = t2;
1991 offset = NULL;
1992 }
1993 }
1994
1995 /* If this is a Fortran indirect argument reference, record the
1996 parameter decl. */
1997 else if (flag_argument_noalias > 1
1998 && TREE_CODE (t) == INDIRECT_REF
1999 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2000 {
2001 expr = t;
2002 offset = NULL;
2003 }
2004 }
2005
2006 /* If we modified OFFSET based on T, then subtract the outstanding
2007 bit position offset. Similarly, increase the size of the accessed
2008 object to contain the negative offset. */
2009 if (apply_bitpos)
2010 {
2011 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2012 if (size)
2013 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2014 }
2015
2016 /* Now set the attributes we computed above. */
2017 MEM_ATTRS (ref)
2018 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2019
2020 /* If this is already known to be a scalar or aggregate, we are done. */
2021 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2022 return;
2023
2024 /* If it is a reference into an aggregate, this is part of an aggregate.
2025 Otherwise we don't know. */
2026 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2027 || TREE_CODE (t) == ARRAY_RANGE_REF
2028 || TREE_CODE (t) == BIT_FIELD_REF)
2029 MEM_IN_STRUCT_P (ref) = 1;
2030 }
2031
2032 void
2033 set_mem_attributes (rtx ref, tree t, int objectp)
2034 {
2035 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2036 }
2037
2038 /* Set the decl for MEM to DECL. */
2039
2040 void
2041 set_mem_attrs_from_reg (rtx mem, rtx reg)
2042 {
2043 MEM_ATTRS (mem)
2044 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2045 GEN_INT (REG_OFFSET (reg)),
2046 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2047 }
2048
2049 /* Set the alias set of MEM to SET. */
2050
2051 void
2052 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
2053 {
2054 #ifdef ENABLE_CHECKING
2055 /* If the new and old alias sets don't conflict, something is wrong. */
2056 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2057 abort ();
2058 #endif
2059
2060 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2061 MEM_SIZE (mem), MEM_ALIGN (mem),
2062 GET_MODE (mem));
2063 }
2064
2065 /* Set the alignment of MEM to ALIGN bits. */
2066
2067 void
2068 set_mem_align (rtx mem, unsigned int align)
2069 {
2070 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2071 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2072 GET_MODE (mem));
2073 }
2074
2075 /* Set the expr for MEM to EXPR. */
2076
2077 void
2078 set_mem_expr (rtx mem, tree expr)
2079 {
2080 MEM_ATTRS (mem)
2081 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2082 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2083 }
2084
2085 /* Set the offset of MEM to OFFSET. */
2086
2087 void
2088 set_mem_offset (rtx mem, rtx offset)
2089 {
2090 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2091 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2092 GET_MODE (mem));
2093 }
2094
2095 /* Set the size of MEM to SIZE. */
2096
2097 void
2098 set_mem_size (rtx mem, rtx size)
2099 {
2100 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2101 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2102 GET_MODE (mem));
2103 }
2104 \f
2105 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2106 and its address changed to ADDR. (VOIDmode means don't change the mode.
2107 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2108 returned memory location is required to be valid. The memory
2109 attributes are not changed. */
2110
2111 static rtx
2112 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
2113 {
2114 rtx new;
2115
2116 if (GET_CODE (memref) != MEM)
2117 abort ();
2118 if (mode == VOIDmode)
2119 mode = GET_MODE (memref);
2120 if (addr == 0)
2121 addr = XEXP (memref, 0);
2122
2123 if (validate)
2124 {
2125 if (reload_in_progress || reload_completed)
2126 {
2127 if (! memory_address_p (mode, addr))
2128 abort ();
2129 }
2130 else
2131 addr = memory_address (mode, addr);
2132 }
2133
2134 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2135 return memref;
2136
2137 new = gen_rtx_MEM (mode, addr);
2138 MEM_COPY_ATTRIBUTES (new, memref);
2139 return new;
2140 }
2141
2142 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2143 way we are changing MEMREF, so we only preserve the alias set. */
2144
2145 rtx
2146 change_address (rtx memref, enum machine_mode mode, rtx addr)
2147 {
2148 rtx new = change_address_1 (memref, mode, addr, 1);
2149 enum machine_mode mmode = GET_MODE (new);
2150
2151 MEM_ATTRS (new)
2152 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2153 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2154 (mmode == BLKmode ? BITS_PER_UNIT
2155 : GET_MODE_ALIGNMENT (mmode)),
2156 mmode);
2157
2158 return new;
2159 }
2160
2161 /* Return a memory reference like MEMREF, but with its mode changed
2162 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2163 nonzero, the memory address is forced to be valid.
2164 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2165 and caller is responsible for adjusting MEMREF base register. */
2166
2167 rtx
2168 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2169 int validate, int adjust)
2170 {
2171 rtx addr = XEXP (memref, 0);
2172 rtx new;
2173 rtx memoffset = MEM_OFFSET (memref);
2174 rtx size = 0;
2175 unsigned int memalign = MEM_ALIGN (memref);
2176
2177 /* ??? Prefer to create garbage instead of creating shared rtl.
2178 This may happen even if offset is nonzero -- consider
2179 (plus (plus reg reg) const_int) -- so do this always. */
2180 addr = copy_rtx (addr);
2181
2182 if (adjust)
2183 {
2184 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2185 object, we can merge it into the LO_SUM. */
2186 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2187 && offset >= 0
2188 && (unsigned HOST_WIDE_INT) offset
2189 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2190 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2191 plus_constant (XEXP (addr, 1), offset));
2192 else
2193 addr = plus_constant (addr, offset);
2194 }
2195
2196 new = change_address_1 (memref, mode, addr, validate);
2197
2198 /* Compute the new values of the memory attributes due to this adjustment.
2199 We add the offsets and update the alignment. */
2200 if (memoffset)
2201 memoffset = GEN_INT (offset + INTVAL (memoffset));
2202
2203 /* Compute the new alignment by taking the MIN of the alignment and the
2204 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2205 if zero. */
2206 if (offset != 0)
2207 memalign
2208 = MIN (memalign,
2209 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2210
2211 /* We can compute the size in a number of ways. */
2212 if (GET_MODE (new) != BLKmode)
2213 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2214 else if (MEM_SIZE (memref))
2215 size = plus_constant (MEM_SIZE (memref), -offset);
2216
2217 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2218 memoffset, size, memalign, GET_MODE (new));
2219
2220 /* At some point, we should validate that this offset is within the object,
2221 if all the appropriate values are known. */
2222 return new;
2223 }
2224
2225 /* Return a memory reference like MEMREF, but with its mode changed
2226 to MODE and its address changed to ADDR, which is assumed to be
2227 MEMREF offseted by OFFSET bytes. If VALIDATE is
2228 nonzero, the memory address is forced to be valid. */
2229
2230 rtx
2231 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2232 HOST_WIDE_INT offset, int validate)
2233 {
2234 memref = change_address_1 (memref, VOIDmode, addr, validate);
2235 return adjust_address_1 (memref, mode, offset, validate, 0);
2236 }
2237
2238 /* Return a memory reference like MEMREF, but whose address is changed by
2239 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2240 known to be in OFFSET (possibly 1). */
2241
2242 rtx
2243 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2244 {
2245 rtx new, addr = XEXP (memref, 0);
2246
2247 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2248
2249 /* At this point we don't know _why_ the address is invalid. It
2250 could have secondary memory references, multiplies or anything.
2251
2252 However, if we did go and rearrange things, we can wind up not
2253 being able to recognize the magic around pic_offset_table_rtx.
2254 This stuff is fragile, and is yet another example of why it is
2255 bad to expose PIC machinery too early. */
2256 if (! memory_address_p (GET_MODE (memref), new)
2257 && GET_CODE (addr) == PLUS
2258 && XEXP (addr, 0) == pic_offset_table_rtx)
2259 {
2260 addr = force_reg (GET_MODE (addr), addr);
2261 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2262 }
2263
2264 update_temp_slot_address (XEXP (memref, 0), new);
2265 new = change_address_1 (memref, VOIDmode, new, 1);
2266
2267 /* Update the alignment to reflect the offset. Reset the offset, which
2268 we don't know. */
2269 MEM_ATTRS (new)
2270 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2271 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2272 GET_MODE (new));
2273 return new;
2274 }
2275
2276 /* Return a memory reference like MEMREF, but with its address changed to
2277 ADDR. The caller is asserting that the actual piece of memory pointed
2278 to is the same, just the form of the address is being changed, such as
2279 by putting something into a register. */
2280
2281 rtx
2282 replace_equiv_address (rtx memref, rtx addr)
2283 {
2284 /* change_address_1 copies the memory attribute structure without change
2285 and that's exactly what we want here. */
2286 update_temp_slot_address (XEXP (memref, 0), addr);
2287 return change_address_1 (memref, VOIDmode, addr, 1);
2288 }
2289
2290 /* Likewise, but the reference is not required to be valid. */
2291
2292 rtx
2293 replace_equiv_address_nv (rtx memref, rtx addr)
2294 {
2295 return change_address_1 (memref, VOIDmode, addr, 0);
2296 }
2297
2298 /* Return a memory reference like MEMREF, but with its mode widened to
2299 MODE and offset by OFFSET. This would be used by targets that e.g.
2300 cannot issue QImode memory operations and have to use SImode memory
2301 operations plus masking logic. */
2302
2303 rtx
2304 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2305 {
2306 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2307 tree expr = MEM_EXPR (new);
2308 rtx memoffset = MEM_OFFSET (new);
2309 unsigned int size = GET_MODE_SIZE (mode);
2310
2311 /* If we don't know what offset we were at within the expression, then
2312 we can't know if we've overstepped the bounds. */
2313 if (! memoffset)
2314 expr = NULL_TREE;
2315
2316 while (expr)
2317 {
2318 if (TREE_CODE (expr) == COMPONENT_REF)
2319 {
2320 tree field = TREE_OPERAND (expr, 1);
2321
2322 if (! DECL_SIZE_UNIT (field))
2323 {
2324 expr = NULL_TREE;
2325 break;
2326 }
2327
2328 /* Is the field at least as large as the access? If so, ok,
2329 otherwise strip back to the containing structure. */
2330 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2331 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2332 && INTVAL (memoffset) >= 0)
2333 break;
2334
2335 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2336 {
2337 expr = NULL_TREE;
2338 break;
2339 }
2340
2341 expr = TREE_OPERAND (expr, 0);
2342 memoffset = (GEN_INT (INTVAL (memoffset)
2343 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2344 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2345 / BITS_PER_UNIT)));
2346 }
2347 /* Similarly for the decl. */
2348 else if (DECL_P (expr)
2349 && DECL_SIZE_UNIT (expr)
2350 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2351 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2352 && (! memoffset || INTVAL (memoffset) >= 0))
2353 break;
2354 else
2355 {
2356 /* The widened memory access overflows the expression, which means
2357 that it could alias another expression. Zap it. */
2358 expr = NULL_TREE;
2359 break;
2360 }
2361 }
2362
2363 if (! expr)
2364 memoffset = NULL_RTX;
2365
2366 /* The widened memory may alias other stuff, so zap the alias set. */
2367 /* ??? Maybe use get_alias_set on any remaining expression. */
2368
2369 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2370 MEM_ALIGN (new), mode);
2371
2372 return new;
2373 }
2374 \f
2375 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2376
2377 rtx
2378 gen_label_rtx (void)
2379 {
2380 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2381 NULL, label_num++, NULL);
2382 }
2383 \f
2384 /* For procedure integration. */
2385
2386 /* Install new pointers to the first and last insns in the chain.
2387 Also, set cur_insn_uid to one higher than the last in use.
2388 Used for an inline-procedure after copying the insn chain. */
2389
2390 void
2391 set_new_first_and_last_insn (rtx first, rtx last)
2392 {
2393 rtx insn;
2394
2395 first_insn = first;
2396 last_insn = last;
2397 cur_insn_uid = 0;
2398
2399 for (insn = first; insn; insn = NEXT_INSN (insn))
2400 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2401
2402 cur_insn_uid++;
2403 }
2404
2405 /* Set the range of label numbers found in the current function.
2406 This is used when belatedly compiling an inline function. */
2407
2408 void
2409 set_new_first_and_last_label_num (int first, int last)
2410 {
2411 base_label_num = label_num;
2412 first_label_num = first;
2413 last_label_num = last;
2414 }
2415
2416 /* Set the last label number found in the current function.
2417 This is used when belatedly compiling an inline function. */
2418
2419 void
2420 set_new_last_label_num (int last)
2421 {
2422 base_label_num = label_num;
2423 last_label_num = last;
2424 }
2425 \f
2426 /* Restore all variables describing the current status from the structure *P.
2427 This is used after a nested function. */
2428
2429 void
2430 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2431 {
2432 last_label_num = 0;
2433 }
2434 \f
2435 /* Go through all the RTL insn bodies and copy any invalid shared
2436 structure. This routine should only be called once. */
2437
2438 void
2439 unshare_all_rtl (tree fndecl, rtx insn)
2440 {
2441 tree decl;
2442
2443 /* Make sure that virtual parameters are not shared. */
2444 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2445 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2446
2447 /* Make sure that virtual stack slots are not shared. */
2448 unshare_all_decls (DECL_INITIAL (fndecl));
2449
2450 /* Unshare just about everything else. */
2451 unshare_all_rtl_1 (insn);
2452
2453 /* Make sure the addresses of stack slots found outside the insn chain
2454 (such as, in DECL_RTL of a variable) are not shared
2455 with the insn chain.
2456
2457 This special care is necessary when the stack slot MEM does not
2458 actually appear in the insn chain. If it does appear, its address
2459 is unshared from all else at that point. */
2460 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2461 }
2462
2463 /* Go through all the RTL insn bodies and copy any invalid shared
2464 structure, again. This is a fairly expensive thing to do so it
2465 should be done sparingly. */
2466
2467 void
2468 unshare_all_rtl_again (rtx insn)
2469 {
2470 rtx p;
2471 tree decl;
2472
2473 for (p = insn; p; p = NEXT_INSN (p))
2474 if (INSN_P (p))
2475 {
2476 reset_used_flags (PATTERN (p));
2477 reset_used_flags (REG_NOTES (p));
2478 reset_used_flags (LOG_LINKS (p));
2479 }
2480
2481 /* Make sure that virtual stack slots are not shared. */
2482 reset_used_decls (DECL_INITIAL (cfun->decl));
2483
2484 /* Make sure that virtual parameters are not shared. */
2485 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2486 reset_used_flags (DECL_RTL (decl));
2487
2488 reset_used_flags (stack_slot_list);
2489
2490 unshare_all_rtl (cfun->decl, insn);
2491 }
2492
2493 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2494 Assumes the mark bits are cleared at entry. */
2495
2496 static void
2497 unshare_all_rtl_1 (rtx insn)
2498 {
2499 for (; insn; insn = NEXT_INSN (insn))
2500 if (INSN_P (insn))
2501 {
2502 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2503 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2504 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2505 }
2506 }
2507
2508 /* Go through all virtual stack slots of a function and copy any
2509 shared structure. */
2510 static void
2511 unshare_all_decls (tree blk)
2512 {
2513 tree t;
2514
2515 /* Copy shared decls. */
2516 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2517 if (DECL_RTL_SET_P (t))
2518 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2519
2520 /* Now process sub-blocks. */
2521 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2522 unshare_all_decls (t);
2523 }
2524
2525 /* Go through all virtual stack slots of a function and mark them as
2526 not shared. */
2527 static void
2528 reset_used_decls (tree blk)
2529 {
2530 tree t;
2531
2532 /* Mark decls. */
2533 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2534 if (DECL_RTL_SET_P (t))
2535 reset_used_flags (DECL_RTL (t));
2536
2537 /* Now process sub-blocks. */
2538 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2539 reset_used_decls (t);
2540 }
2541
2542 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2543 placed in the result directly, rather than being copied. MAY_SHARE is
2544 either a MEM of an EXPR_LIST of MEMs. */
2545
2546 rtx
2547 copy_most_rtx (rtx orig, rtx may_share)
2548 {
2549 rtx copy;
2550 int i, j;
2551 RTX_CODE code;
2552 const char *format_ptr;
2553
2554 if (orig == may_share
2555 || (GET_CODE (may_share) == EXPR_LIST
2556 && in_expr_list_p (may_share, orig)))
2557 return orig;
2558
2559 code = GET_CODE (orig);
2560
2561 switch (code)
2562 {
2563 case REG:
2564 case QUEUED:
2565 case CONST_INT:
2566 case CONST_DOUBLE:
2567 case CONST_VECTOR:
2568 case SYMBOL_REF:
2569 case CODE_LABEL:
2570 case PC:
2571 case CC0:
2572 return orig;
2573 default:
2574 break;
2575 }
2576
2577 copy = rtx_alloc (code);
2578 PUT_MODE (copy, GET_MODE (orig));
2579 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2580 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2581 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2582 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2583 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2584
2585 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2586
2587 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2588 {
2589 switch (*format_ptr++)
2590 {
2591 case 'e':
2592 XEXP (copy, i) = XEXP (orig, i);
2593 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2594 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2595 break;
2596
2597 case 'u':
2598 XEXP (copy, i) = XEXP (orig, i);
2599 break;
2600
2601 case 'E':
2602 case 'V':
2603 XVEC (copy, i) = XVEC (orig, i);
2604 if (XVEC (orig, i) != NULL)
2605 {
2606 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2607 for (j = 0; j < XVECLEN (copy, i); j++)
2608 XVECEXP (copy, i, j)
2609 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2610 }
2611 break;
2612
2613 case 'w':
2614 XWINT (copy, i) = XWINT (orig, i);
2615 break;
2616
2617 case 'n':
2618 case 'i':
2619 XINT (copy, i) = XINT (orig, i);
2620 break;
2621
2622 case 't':
2623 XTREE (copy, i) = XTREE (orig, i);
2624 break;
2625
2626 case 's':
2627 case 'S':
2628 XSTR (copy, i) = XSTR (orig, i);
2629 break;
2630
2631 case '0':
2632 X0ANY (copy, i) = X0ANY (orig, i);
2633 break;
2634
2635 default:
2636 abort ();
2637 }
2638 }
2639 return copy;
2640 }
2641
2642 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2643 Recursively does the same for subexpressions. */
2644
2645 rtx
2646 copy_rtx_if_shared (rtx orig)
2647 {
2648 rtx x = orig;
2649 int i;
2650 enum rtx_code code;
2651 const char *format_ptr;
2652 int copied = 0;
2653
2654 if (x == 0)
2655 return 0;
2656
2657 code = GET_CODE (x);
2658
2659 /* These types may be freely shared. */
2660
2661 switch (code)
2662 {
2663 case REG:
2664 case QUEUED:
2665 case CONST_INT:
2666 case CONST_DOUBLE:
2667 case CONST_VECTOR:
2668 case SYMBOL_REF:
2669 case CODE_LABEL:
2670 case PC:
2671 case CC0:
2672 case SCRATCH:
2673 /* SCRATCH must be shared because they represent distinct values. */
2674 return x;
2675
2676 case CONST:
2677 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2678 a LABEL_REF, it isn't sharable. */
2679 if (GET_CODE (XEXP (x, 0)) == PLUS
2680 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2681 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2682 return x;
2683 break;
2684
2685 case INSN:
2686 case JUMP_INSN:
2687 case CALL_INSN:
2688 case NOTE:
2689 case BARRIER:
2690 /* The chain of insns is not being copied. */
2691 return x;
2692
2693 default:
2694 break;
2695 }
2696
2697 /* This rtx may not be shared. If it has already been seen,
2698 replace it with a copy of itself. */
2699
2700 if (RTX_FLAG (x, used))
2701 {
2702 rtx copy;
2703
2704 copy = rtx_alloc (code);
2705 memcpy (copy, x, RTX_SIZE (code));
2706 x = copy;
2707 copied = 1;
2708 }
2709 RTX_FLAG (x, used) = 1;
2710
2711 /* Now scan the subexpressions recursively.
2712 We can store any replaced subexpressions directly into X
2713 since we know X is not shared! Any vectors in X
2714 must be copied if X was copied. */
2715
2716 format_ptr = GET_RTX_FORMAT (code);
2717
2718 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2719 {
2720 switch (*format_ptr++)
2721 {
2722 case 'e':
2723 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2724 break;
2725
2726 case 'E':
2727 if (XVEC (x, i) != NULL)
2728 {
2729 int j;
2730 int len = XVECLEN (x, i);
2731
2732 if (copied && len > 0)
2733 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2734 for (j = 0; j < len; j++)
2735 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2736 }
2737 break;
2738 }
2739 }
2740 return x;
2741 }
2742
2743 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2744 to look for shared sub-parts. */
2745
2746 void
2747 reset_used_flags (rtx x)
2748 {
2749 int i, j;
2750 enum rtx_code code;
2751 const char *format_ptr;
2752
2753 if (x == 0)
2754 return;
2755
2756 code = GET_CODE (x);
2757
2758 /* These types may be freely shared so we needn't do any resetting
2759 for them. */
2760
2761 switch (code)
2762 {
2763 case REG:
2764 case QUEUED:
2765 case CONST_INT:
2766 case CONST_DOUBLE:
2767 case CONST_VECTOR:
2768 case SYMBOL_REF:
2769 case CODE_LABEL:
2770 case PC:
2771 case CC0:
2772 return;
2773
2774 case INSN:
2775 case JUMP_INSN:
2776 case CALL_INSN:
2777 case NOTE:
2778 case LABEL_REF:
2779 case BARRIER:
2780 /* The chain of insns is not being copied. */
2781 return;
2782
2783 default:
2784 break;
2785 }
2786
2787 RTX_FLAG (x, used) = 0;
2788
2789 format_ptr = GET_RTX_FORMAT (code);
2790 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2791 {
2792 switch (*format_ptr++)
2793 {
2794 case 'e':
2795 reset_used_flags (XEXP (x, i));
2796 break;
2797
2798 case 'E':
2799 for (j = 0; j < XVECLEN (x, i); j++)
2800 reset_used_flags (XVECEXP (x, i, j));
2801 break;
2802 }
2803 }
2804 }
2805 \f
2806 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2807 Return X or the rtx for the pseudo reg the value of X was copied into.
2808 OTHER must be valid as a SET_DEST. */
2809
2810 rtx
2811 make_safe_from (rtx x, rtx other)
2812 {
2813 while (1)
2814 switch (GET_CODE (other))
2815 {
2816 case SUBREG:
2817 other = SUBREG_REG (other);
2818 break;
2819 case STRICT_LOW_PART:
2820 case SIGN_EXTEND:
2821 case ZERO_EXTEND:
2822 other = XEXP (other, 0);
2823 break;
2824 default:
2825 goto done;
2826 }
2827 done:
2828 if ((GET_CODE (other) == MEM
2829 && ! CONSTANT_P (x)
2830 && GET_CODE (x) != REG
2831 && GET_CODE (x) != SUBREG)
2832 || (GET_CODE (other) == REG
2833 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2834 || reg_mentioned_p (other, x))))
2835 {
2836 rtx temp = gen_reg_rtx (GET_MODE (x));
2837 emit_move_insn (temp, x);
2838 return temp;
2839 }
2840 return x;
2841 }
2842 \f
2843 /* Emission of insns (adding them to the doubly-linked list). */
2844
2845 /* Return the first insn of the current sequence or current function. */
2846
2847 rtx
2848 get_insns (void)
2849 {
2850 return first_insn;
2851 }
2852
2853 /* Specify a new insn as the first in the chain. */
2854
2855 void
2856 set_first_insn (rtx insn)
2857 {
2858 if (PREV_INSN (insn) != 0)
2859 abort ();
2860 first_insn = insn;
2861 }
2862
2863 /* Return the last insn emitted in current sequence or current function. */
2864
2865 rtx
2866 get_last_insn (void)
2867 {
2868 return last_insn;
2869 }
2870
2871 /* Specify a new insn as the last in the chain. */
2872
2873 void
2874 set_last_insn (rtx insn)
2875 {
2876 if (NEXT_INSN (insn) != 0)
2877 abort ();
2878 last_insn = insn;
2879 }
2880
2881 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2882
2883 rtx
2884 get_last_insn_anywhere (void)
2885 {
2886 struct sequence_stack *stack;
2887 if (last_insn)
2888 return last_insn;
2889 for (stack = seq_stack; stack; stack = stack->next)
2890 if (stack->last != 0)
2891 return stack->last;
2892 return 0;
2893 }
2894
2895 /* Return the first nonnote insn emitted in current sequence or current
2896 function. This routine looks inside SEQUENCEs. */
2897
2898 rtx
2899 get_first_nonnote_insn (void)
2900 {
2901 rtx insn = first_insn;
2902
2903 while (insn)
2904 {
2905 insn = next_insn (insn);
2906 if (insn == 0 || GET_CODE (insn) != NOTE)
2907 break;
2908 }
2909
2910 return insn;
2911 }
2912
2913 /* Return the last nonnote insn emitted in current sequence or current
2914 function. This routine looks inside SEQUENCEs. */
2915
2916 rtx
2917 get_last_nonnote_insn (void)
2918 {
2919 rtx insn = last_insn;
2920
2921 while (insn)
2922 {
2923 insn = previous_insn (insn);
2924 if (insn == 0 || GET_CODE (insn) != NOTE)
2925 break;
2926 }
2927
2928 return insn;
2929 }
2930
2931 /* Return a number larger than any instruction's uid in this function. */
2932
2933 int
2934 get_max_uid (void)
2935 {
2936 return cur_insn_uid;
2937 }
2938
2939 /* Renumber instructions so that no instruction UIDs are wasted. */
2940
2941 void
2942 renumber_insns (FILE *stream)
2943 {
2944 rtx insn;
2945
2946 /* If we're not supposed to renumber instructions, don't. */
2947 if (!flag_renumber_insns)
2948 return;
2949
2950 /* If there aren't that many instructions, then it's not really
2951 worth renumbering them. */
2952 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2953 return;
2954
2955 cur_insn_uid = 1;
2956
2957 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2958 {
2959 if (stream)
2960 fprintf (stream, "Renumbering insn %d to %d\n",
2961 INSN_UID (insn), cur_insn_uid);
2962 INSN_UID (insn) = cur_insn_uid++;
2963 }
2964 }
2965 \f
2966 /* Return the next insn. If it is a SEQUENCE, return the first insn
2967 of the sequence. */
2968
2969 rtx
2970 next_insn (rtx insn)
2971 {
2972 if (insn)
2973 {
2974 insn = NEXT_INSN (insn);
2975 if (insn && GET_CODE (insn) == INSN
2976 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2977 insn = XVECEXP (PATTERN (insn), 0, 0);
2978 }
2979
2980 return insn;
2981 }
2982
2983 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2984 of the sequence. */
2985
2986 rtx
2987 previous_insn (rtx insn)
2988 {
2989 if (insn)
2990 {
2991 insn = PREV_INSN (insn);
2992 if (insn && GET_CODE (insn) == INSN
2993 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2994 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2995 }
2996
2997 return insn;
2998 }
2999
3000 /* Return the next insn after INSN that is not a NOTE. This routine does not
3001 look inside SEQUENCEs. */
3002
3003 rtx
3004 next_nonnote_insn (rtx insn)
3005 {
3006 while (insn)
3007 {
3008 insn = NEXT_INSN (insn);
3009 if (insn == 0 || GET_CODE (insn) != NOTE)
3010 break;
3011 }
3012
3013 return insn;
3014 }
3015
3016 /* Return the previous insn before INSN that is not a NOTE. This routine does
3017 not look inside SEQUENCEs. */
3018
3019 rtx
3020 prev_nonnote_insn (rtx insn)
3021 {
3022 while (insn)
3023 {
3024 insn = PREV_INSN (insn);
3025 if (insn == 0 || GET_CODE (insn) != NOTE)
3026 break;
3027 }
3028
3029 return insn;
3030 }
3031
3032 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3033 or 0, if there is none. This routine does not look inside
3034 SEQUENCEs. */
3035
3036 rtx
3037 next_real_insn (rtx insn)
3038 {
3039 while (insn)
3040 {
3041 insn = NEXT_INSN (insn);
3042 if (insn == 0 || GET_CODE (insn) == INSN
3043 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3044 break;
3045 }
3046
3047 return insn;
3048 }
3049
3050 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3051 or 0, if there is none. This routine does not look inside
3052 SEQUENCEs. */
3053
3054 rtx
3055 prev_real_insn (rtx insn)
3056 {
3057 while (insn)
3058 {
3059 insn = PREV_INSN (insn);
3060 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3061 || GET_CODE (insn) == JUMP_INSN)
3062 break;
3063 }
3064
3065 return insn;
3066 }
3067
3068 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3069 This routine does not look inside SEQUENCEs. */
3070
3071 rtx
3072 last_call_insn (void)
3073 {
3074 rtx insn;
3075
3076 for (insn = get_last_insn ();
3077 insn && GET_CODE (insn) != CALL_INSN;
3078 insn = PREV_INSN (insn))
3079 ;
3080
3081 return insn;
3082 }
3083
3084 /* Find the next insn after INSN that really does something. This routine
3085 does not look inside SEQUENCEs. Until reload has completed, this is the
3086 same as next_real_insn. */
3087
3088 int
3089 active_insn_p (rtx insn)
3090 {
3091 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3092 || (GET_CODE (insn) == INSN
3093 && (! reload_completed
3094 || (GET_CODE (PATTERN (insn)) != USE
3095 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3096 }
3097
3098 rtx
3099 next_active_insn (rtx insn)
3100 {
3101 while (insn)
3102 {
3103 insn = NEXT_INSN (insn);
3104 if (insn == 0 || active_insn_p (insn))
3105 break;
3106 }
3107
3108 return insn;
3109 }
3110
3111 /* Find the last insn before INSN that really does something. This routine
3112 does not look inside SEQUENCEs. Until reload has completed, this is the
3113 same as prev_real_insn. */
3114
3115 rtx
3116 prev_active_insn (rtx insn)
3117 {
3118 while (insn)
3119 {
3120 insn = PREV_INSN (insn);
3121 if (insn == 0 || active_insn_p (insn))
3122 break;
3123 }
3124
3125 return insn;
3126 }
3127
3128 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3129
3130 rtx
3131 next_label (rtx insn)
3132 {
3133 while (insn)
3134 {
3135 insn = NEXT_INSN (insn);
3136 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3137 break;
3138 }
3139
3140 return insn;
3141 }
3142
3143 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3144
3145 rtx
3146 prev_label (rtx insn)
3147 {
3148 while (insn)
3149 {
3150 insn = PREV_INSN (insn);
3151 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3152 break;
3153 }
3154
3155 return insn;
3156 }
3157 \f
3158 #ifdef HAVE_cc0
3159 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3160 and REG_CC_USER notes so we can find it. */
3161
3162 void
3163 link_cc0_insns (rtx insn)
3164 {
3165 rtx user = next_nonnote_insn (insn);
3166
3167 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3168 user = XVECEXP (PATTERN (user), 0, 0);
3169
3170 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3171 REG_NOTES (user));
3172 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3173 }
3174
3175 /* Return the next insn that uses CC0 after INSN, which is assumed to
3176 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3177 applied to the result of this function should yield INSN).
3178
3179 Normally, this is simply the next insn. However, if a REG_CC_USER note
3180 is present, it contains the insn that uses CC0.
3181
3182 Return 0 if we can't find the insn. */
3183
3184 rtx
3185 next_cc0_user (rtx insn)
3186 {
3187 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3188
3189 if (note)
3190 return XEXP (note, 0);
3191
3192 insn = next_nonnote_insn (insn);
3193 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3194 insn = XVECEXP (PATTERN (insn), 0, 0);
3195
3196 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3197 return insn;
3198
3199 return 0;
3200 }
3201
3202 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3203 note, it is the previous insn. */
3204
3205 rtx
3206 prev_cc0_setter (rtx insn)
3207 {
3208 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3209
3210 if (note)
3211 return XEXP (note, 0);
3212
3213 insn = prev_nonnote_insn (insn);
3214 if (! sets_cc0_p (PATTERN (insn)))
3215 abort ();
3216
3217 return insn;
3218 }
3219 #endif
3220
3221 /* Increment the label uses for all labels present in rtx. */
3222
3223 static void
3224 mark_label_nuses (rtx x)
3225 {
3226 enum rtx_code code;
3227 int i, j;
3228 const char *fmt;
3229
3230 code = GET_CODE (x);
3231 if (code == LABEL_REF)
3232 LABEL_NUSES (XEXP (x, 0))++;
3233
3234 fmt = GET_RTX_FORMAT (code);
3235 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3236 {
3237 if (fmt[i] == 'e')
3238 mark_label_nuses (XEXP (x, i));
3239 else if (fmt[i] == 'E')
3240 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3241 mark_label_nuses (XVECEXP (x, i, j));
3242 }
3243 }
3244
3245 \f
3246 /* Try splitting insns that can be split for better scheduling.
3247 PAT is the pattern which might split.
3248 TRIAL is the insn providing PAT.
3249 LAST is nonzero if we should return the last insn of the sequence produced.
3250
3251 If this routine succeeds in splitting, it returns the first or last
3252 replacement insn depending on the value of LAST. Otherwise, it
3253 returns TRIAL. If the insn to be returned can be split, it will be. */
3254
3255 rtx
3256 try_split (rtx pat, rtx trial, int last)
3257 {
3258 rtx before = PREV_INSN (trial);
3259 rtx after = NEXT_INSN (trial);
3260 int has_barrier = 0;
3261 rtx tem;
3262 rtx note, seq;
3263 int probability;
3264 rtx insn_last, insn;
3265 int njumps = 0;
3266
3267 if (any_condjump_p (trial)
3268 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3269 split_branch_probability = INTVAL (XEXP (note, 0));
3270 probability = split_branch_probability;
3271
3272 seq = split_insns (pat, trial);
3273
3274 split_branch_probability = -1;
3275
3276 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3277 We may need to handle this specially. */
3278 if (after && GET_CODE (after) == BARRIER)
3279 {
3280 has_barrier = 1;
3281 after = NEXT_INSN (after);
3282 }
3283
3284 if (!seq)
3285 return trial;
3286
3287 /* Avoid infinite loop if any insn of the result matches
3288 the original pattern. */
3289 insn_last = seq;
3290 while (1)
3291 {
3292 if (INSN_P (insn_last)
3293 && rtx_equal_p (PATTERN (insn_last), pat))
3294 return trial;
3295 if (!NEXT_INSN (insn_last))
3296 break;
3297 insn_last = NEXT_INSN (insn_last);
3298 }
3299
3300 /* Mark labels. */
3301 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3302 {
3303 if (GET_CODE (insn) == JUMP_INSN)
3304 {
3305 mark_jump_label (PATTERN (insn), insn, 0);
3306 njumps++;
3307 if (probability != -1
3308 && any_condjump_p (insn)
3309 && !find_reg_note (insn, REG_BR_PROB, 0))
3310 {
3311 /* We can preserve the REG_BR_PROB notes only if exactly
3312 one jump is created, otherwise the machine description
3313 is responsible for this step using
3314 split_branch_probability variable. */
3315 if (njumps != 1)
3316 abort ();
3317 REG_NOTES (insn)
3318 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3319 GEN_INT (probability),
3320 REG_NOTES (insn));
3321 }
3322 }
3323 }
3324
3325 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3326 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3327 if (GET_CODE (trial) == CALL_INSN)
3328 {
3329 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3330 if (GET_CODE (insn) == CALL_INSN)
3331 {
3332 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3333 while (*p)
3334 p = &XEXP (*p, 1);
3335 *p = CALL_INSN_FUNCTION_USAGE (trial);
3336 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3337 }
3338 }
3339
3340 /* Copy notes, particularly those related to the CFG. */
3341 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3342 {
3343 switch (REG_NOTE_KIND (note))
3344 {
3345 case REG_EH_REGION:
3346 insn = insn_last;
3347 while (insn != NULL_RTX)
3348 {
3349 if (GET_CODE (insn) == CALL_INSN
3350 || (flag_non_call_exceptions
3351 && may_trap_p (PATTERN (insn))))
3352 REG_NOTES (insn)
3353 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3354 XEXP (note, 0),
3355 REG_NOTES (insn));
3356 insn = PREV_INSN (insn);
3357 }
3358 break;
3359
3360 case REG_NORETURN:
3361 case REG_SETJMP:
3362 case REG_ALWAYS_RETURN:
3363 insn = insn_last;
3364 while (insn != NULL_RTX)
3365 {
3366 if (GET_CODE (insn) == CALL_INSN)
3367 REG_NOTES (insn)
3368 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3369 XEXP (note, 0),
3370 REG_NOTES (insn));
3371 insn = PREV_INSN (insn);
3372 }
3373 break;
3374
3375 case REG_NON_LOCAL_GOTO:
3376 insn = insn_last;
3377 while (insn != NULL_RTX)
3378 {
3379 if (GET_CODE (insn) == JUMP_INSN)
3380 REG_NOTES (insn)
3381 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3382 XEXP (note, 0),
3383 REG_NOTES (insn));
3384 insn = PREV_INSN (insn);
3385 }
3386 break;
3387
3388 default:
3389 break;
3390 }
3391 }
3392
3393 /* If there are LABELS inside the split insns increment the
3394 usage count so we don't delete the label. */
3395 if (GET_CODE (trial) == INSN)
3396 {
3397 insn = insn_last;
3398 while (insn != NULL_RTX)
3399 {
3400 if (GET_CODE (insn) == INSN)
3401 mark_label_nuses (PATTERN (insn));
3402
3403 insn = PREV_INSN (insn);
3404 }
3405 }
3406
3407 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3408
3409 delete_insn (trial);
3410 if (has_barrier)
3411 emit_barrier_after (tem);
3412
3413 /* Recursively call try_split for each new insn created; by the
3414 time control returns here that insn will be fully split, so
3415 set LAST and continue from the insn after the one returned.
3416 We can't use next_active_insn here since AFTER may be a note.
3417 Ignore deleted insns, which can be occur if not optimizing. */
3418 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3419 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3420 tem = try_split (PATTERN (tem), tem, 1);
3421
3422 /* Return either the first or the last insn, depending on which was
3423 requested. */
3424 return last
3425 ? (after ? PREV_INSN (after) : last_insn)
3426 : NEXT_INSN (before);
3427 }
3428 \f
3429 /* Make and return an INSN rtx, initializing all its slots.
3430 Store PATTERN in the pattern slots. */
3431
3432 rtx
3433 make_insn_raw (rtx pattern)
3434 {
3435 rtx insn;
3436
3437 insn = rtx_alloc (INSN);
3438
3439 INSN_UID (insn) = cur_insn_uid++;
3440 PATTERN (insn) = pattern;
3441 INSN_CODE (insn) = -1;
3442 LOG_LINKS (insn) = NULL;
3443 REG_NOTES (insn) = NULL;
3444 INSN_LOCATOR (insn) = 0;
3445 BLOCK_FOR_INSN (insn) = NULL;
3446
3447 #ifdef ENABLE_RTL_CHECKING
3448 if (insn
3449 && INSN_P (insn)
3450 && (returnjump_p (insn)
3451 || (GET_CODE (insn) == SET
3452 && SET_DEST (insn) == pc_rtx)))
3453 {
3454 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3455 debug_rtx (insn);
3456 }
3457 #endif
3458
3459 return insn;
3460 }
3461
3462 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3463
3464 static rtx
3465 make_jump_insn_raw (rtx pattern)
3466 {
3467 rtx insn;
3468
3469 insn = rtx_alloc (JUMP_INSN);
3470 INSN_UID (insn) = cur_insn_uid++;
3471
3472 PATTERN (insn) = pattern;
3473 INSN_CODE (insn) = -1;
3474 LOG_LINKS (insn) = NULL;
3475 REG_NOTES (insn) = NULL;
3476 JUMP_LABEL (insn) = NULL;
3477 INSN_LOCATOR (insn) = 0;
3478 BLOCK_FOR_INSN (insn) = NULL;
3479
3480 return insn;
3481 }
3482
3483 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3484
3485 static rtx
3486 make_call_insn_raw (rtx pattern)
3487 {
3488 rtx insn;
3489
3490 insn = rtx_alloc (CALL_INSN);
3491 INSN_UID (insn) = cur_insn_uid++;
3492
3493 PATTERN (insn) = pattern;
3494 INSN_CODE (insn) = -1;
3495 LOG_LINKS (insn) = NULL;
3496 REG_NOTES (insn) = NULL;
3497 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3498 INSN_LOCATOR (insn) = 0;
3499 BLOCK_FOR_INSN (insn) = NULL;
3500
3501 return insn;
3502 }
3503 \f
3504 /* Add INSN to the end of the doubly-linked list.
3505 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3506
3507 void
3508 add_insn (rtx insn)
3509 {
3510 PREV_INSN (insn) = last_insn;
3511 NEXT_INSN (insn) = 0;
3512
3513 if (NULL != last_insn)
3514 NEXT_INSN (last_insn) = insn;
3515
3516 if (NULL == first_insn)
3517 first_insn = insn;
3518
3519 last_insn = insn;
3520 }
3521
3522 /* Add INSN into the doubly-linked list after insn AFTER. This and
3523 the next should be the only functions called to insert an insn once
3524 delay slots have been filled since only they know how to update a
3525 SEQUENCE. */
3526
3527 void
3528 add_insn_after (rtx insn, rtx after)
3529 {
3530 rtx next = NEXT_INSN (after);
3531 basic_block bb;
3532
3533 if (optimize && INSN_DELETED_P (after))
3534 abort ();
3535
3536 NEXT_INSN (insn) = next;
3537 PREV_INSN (insn) = after;
3538
3539 if (next)
3540 {
3541 PREV_INSN (next) = insn;
3542 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3543 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3544 }
3545 else if (last_insn == after)
3546 last_insn = insn;
3547 else
3548 {
3549 struct sequence_stack *stack = seq_stack;
3550 /* Scan all pending sequences too. */
3551 for (; stack; stack = stack->next)
3552 if (after == stack->last)
3553 {
3554 stack->last = insn;
3555 break;
3556 }
3557
3558 if (stack == 0)
3559 abort ();
3560 }
3561
3562 if (GET_CODE (after) != BARRIER
3563 && GET_CODE (insn) != BARRIER
3564 && (bb = BLOCK_FOR_INSN (after)))
3565 {
3566 set_block_for_insn (insn, bb);
3567 if (INSN_P (insn))
3568 bb->flags |= BB_DIRTY;
3569 /* Should not happen as first in the BB is always
3570 either NOTE or LABEL. */
3571 if (bb->end == after
3572 /* Avoid clobbering of structure when creating new BB. */
3573 && GET_CODE (insn) != BARRIER
3574 && (GET_CODE (insn) != NOTE
3575 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3576 bb->end = insn;
3577 }
3578
3579 NEXT_INSN (after) = insn;
3580 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3581 {
3582 rtx sequence = PATTERN (after);
3583 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3584 }
3585 }
3586
3587 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3588 the previous should be the only functions called to insert an insn once
3589 delay slots have been filled since only they know how to update a
3590 SEQUENCE. */
3591
3592 void
3593 add_insn_before (rtx insn, rtx before)
3594 {
3595 rtx prev = PREV_INSN (before);
3596 basic_block bb;
3597
3598 if (optimize && INSN_DELETED_P (before))
3599 abort ();
3600
3601 PREV_INSN (insn) = prev;
3602 NEXT_INSN (insn) = before;
3603
3604 if (prev)
3605 {
3606 NEXT_INSN (prev) = insn;
3607 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3608 {
3609 rtx sequence = PATTERN (prev);
3610 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3611 }
3612 }
3613 else if (first_insn == before)
3614 first_insn = insn;
3615 else
3616 {
3617 struct sequence_stack *stack = seq_stack;
3618 /* Scan all pending sequences too. */
3619 for (; stack; stack = stack->next)
3620 if (before == stack->first)
3621 {
3622 stack->first = insn;
3623 break;
3624 }
3625
3626 if (stack == 0)
3627 abort ();
3628 }
3629
3630 if (GET_CODE (before) != BARRIER
3631 && GET_CODE (insn) != BARRIER
3632 && (bb = BLOCK_FOR_INSN (before)))
3633 {
3634 set_block_for_insn (insn, bb);
3635 if (INSN_P (insn))
3636 bb->flags |= BB_DIRTY;
3637 /* Should not happen as first in the BB is always
3638 either NOTE or LABEl. */
3639 if (bb->head == insn
3640 /* Avoid clobbering of structure when creating new BB. */
3641 && GET_CODE (insn) != BARRIER
3642 && (GET_CODE (insn) != NOTE
3643 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3644 abort ();
3645 }
3646
3647 PREV_INSN (before) = insn;
3648 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3649 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3650 }
3651
3652 /* Remove an insn from its doubly-linked list. This function knows how
3653 to handle sequences. */
3654 void
3655 remove_insn (rtx insn)
3656 {
3657 rtx next = NEXT_INSN (insn);
3658 rtx prev = PREV_INSN (insn);
3659 basic_block bb;
3660
3661 if (prev)
3662 {
3663 NEXT_INSN (prev) = next;
3664 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3665 {
3666 rtx sequence = PATTERN (prev);
3667 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3668 }
3669 }
3670 else if (first_insn == insn)
3671 first_insn = next;
3672 else
3673 {
3674 struct sequence_stack *stack = seq_stack;
3675 /* Scan all pending sequences too. */
3676 for (; stack; stack = stack->next)
3677 if (insn == stack->first)
3678 {
3679 stack->first = next;
3680 break;
3681 }
3682
3683 if (stack == 0)
3684 abort ();
3685 }
3686
3687 if (next)
3688 {
3689 PREV_INSN (next) = prev;
3690 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3691 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3692 }
3693 else if (last_insn == insn)
3694 last_insn = prev;
3695 else
3696 {
3697 struct sequence_stack *stack = seq_stack;
3698 /* Scan all pending sequences too. */
3699 for (; stack; stack = stack->next)
3700 if (insn == stack->last)
3701 {
3702 stack->last = prev;
3703 break;
3704 }
3705
3706 if (stack == 0)
3707 abort ();
3708 }
3709 if (GET_CODE (insn) != BARRIER
3710 && (bb = BLOCK_FOR_INSN (insn)))
3711 {
3712 if (INSN_P (insn))
3713 bb->flags |= BB_DIRTY;
3714 if (bb->head == insn)
3715 {
3716 /* Never ever delete the basic block note without deleting whole
3717 basic block. */
3718 if (GET_CODE (insn) == NOTE)
3719 abort ();
3720 bb->head = next;
3721 }
3722 if (bb->end == insn)
3723 bb->end = prev;
3724 }
3725 }
3726
3727 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3728
3729 void
3730 add_function_usage_to (rtx call_insn, rtx call_fusage)
3731 {
3732 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3733 abort ();
3734
3735 /* Put the register usage information on the CALL. If there is already
3736 some usage information, put ours at the end. */
3737 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3738 {
3739 rtx link;
3740
3741 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3742 link = XEXP (link, 1))
3743 ;
3744
3745 XEXP (link, 1) = call_fusage;
3746 }
3747 else
3748 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3749 }
3750
3751 /* Delete all insns made since FROM.
3752 FROM becomes the new last instruction. */
3753
3754 void
3755 delete_insns_since (rtx from)
3756 {
3757 if (from == 0)
3758 first_insn = 0;
3759 else
3760 NEXT_INSN (from) = 0;
3761 last_insn = from;
3762 }
3763
3764 /* This function is deprecated, please use sequences instead.
3765
3766 Move a consecutive bunch of insns to a different place in the chain.
3767 The insns to be moved are those between FROM and TO.
3768 They are moved to a new position after the insn AFTER.
3769 AFTER must not be FROM or TO or any insn in between.
3770
3771 This function does not know about SEQUENCEs and hence should not be
3772 called after delay-slot filling has been done. */
3773
3774 void
3775 reorder_insns_nobb (rtx from, rtx to, rtx after)
3776 {
3777 /* Splice this bunch out of where it is now. */
3778 if (PREV_INSN (from))
3779 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3780 if (NEXT_INSN (to))
3781 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3782 if (last_insn == to)
3783 last_insn = PREV_INSN (from);
3784 if (first_insn == from)
3785 first_insn = NEXT_INSN (to);
3786
3787 /* Make the new neighbors point to it and it to them. */
3788 if (NEXT_INSN (after))
3789 PREV_INSN (NEXT_INSN (after)) = to;
3790
3791 NEXT_INSN (to) = NEXT_INSN (after);
3792 PREV_INSN (from) = after;
3793 NEXT_INSN (after) = from;
3794 if (after == last_insn)
3795 last_insn = to;
3796 }
3797
3798 /* Same as function above, but take care to update BB boundaries. */
3799 void
3800 reorder_insns (rtx from, rtx to, rtx after)
3801 {
3802 rtx prev = PREV_INSN (from);
3803 basic_block bb, bb2;
3804
3805 reorder_insns_nobb (from, to, after);
3806
3807 if (GET_CODE (after) != BARRIER
3808 && (bb = BLOCK_FOR_INSN (after)))
3809 {
3810 rtx x;
3811 bb->flags |= BB_DIRTY;
3812
3813 if (GET_CODE (from) != BARRIER
3814 && (bb2 = BLOCK_FOR_INSN (from)))
3815 {
3816 if (bb2->end == to)
3817 bb2->end = prev;
3818 bb2->flags |= BB_DIRTY;
3819 }
3820
3821 if (bb->end == after)
3822 bb->end = to;
3823
3824 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3825 set_block_for_insn (x, bb);
3826 }
3827 }
3828
3829 /* Return the line note insn preceding INSN. */
3830
3831 static rtx
3832 find_line_note (rtx insn)
3833 {
3834 if (no_line_numbers)
3835 return 0;
3836
3837 for (; insn; insn = PREV_INSN (insn))
3838 if (GET_CODE (insn) == NOTE
3839 && NOTE_LINE_NUMBER (insn) >= 0)
3840 break;
3841
3842 return insn;
3843 }
3844
3845 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3846 of the moved insns when debugging. This may insert a note between AFTER
3847 and FROM, and another one after TO. */
3848
3849 void
3850 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
3851 {
3852 rtx from_line = find_line_note (from);
3853 rtx after_line = find_line_note (after);
3854
3855 reorder_insns (from, to, after);
3856
3857 if (from_line == after_line)
3858 return;
3859
3860 if (from_line)
3861 emit_note_copy_after (from_line, after);
3862 if (after_line)
3863 emit_note_copy_after (after_line, to);
3864 }
3865
3866 /* Remove unnecessary notes from the instruction stream. */
3867
3868 void
3869 remove_unnecessary_notes (void)
3870 {
3871 rtx block_stack = NULL_RTX;
3872 rtx eh_stack = NULL_RTX;
3873 rtx insn;
3874 rtx next;
3875 rtx tmp;
3876
3877 /* We must not remove the first instruction in the function because
3878 the compiler depends on the first instruction being a note. */
3879 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3880 {
3881 /* Remember what's next. */
3882 next = NEXT_INSN (insn);
3883
3884 /* We're only interested in notes. */
3885 if (GET_CODE (insn) != NOTE)
3886 continue;
3887
3888 switch (NOTE_LINE_NUMBER (insn))
3889 {
3890 case NOTE_INSN_DELETED:
3891 case NOTE_INSN_LOOP_END_TOP_COND:
3892 remove_insn (insn);
3893 break;
3894
3895 case NOTE_INSN_EH_REGION_BEG:
3896 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3897 break;
3898
3899 case NOTE_INSN_EH_REGION_END:
3900 /* Too many end notes. */
3901 if (eh_stack == NULL_RTX)
3902 abort ();
3903 /* Mismatched nesting. */
3904 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3905 abort ();
3906 tmp = eh_stack;
3907 eh_stack = XEXP (eh_stack, 1);
3908 free_INSN_LIST_node (tmp);
3909 break;
3910
3911 case NOTE_INSN_BLOCK_BEG:
3912 /* By now, all notes indicating lexical blocks should have
3913 NOTE_BLOCK filled in. */
3914 if (NOTE_BLOCK (insn) == NULL_TREE)
3915 abort ();
3916 block_stack = alloc_INSN_LIST (insn, block_stack);
3917 break;
3918
3919 case NOTE_INSN_BLOCK_END:
3920 /* Too many end notes. */
3921 if (block_stack == NULL_RTX)
3922 abort ();
3923 /* Mismatched nesting. */
3924 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3925 abort ();
3926 tmp = block_stack;
3927 block_stack = XEXP (block_stack, 1);
3928 free_INSN_LIST_node (tmp);
3929
3930 /* Scan back to see if there are any non-note instructions
3931 between INSN and the beginning of this block. If not,
3932 then there is no PC range in the generated code that will
3933 actually be in this block, so there's no point in
3934 remembering the existence of the block. */
3935 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3936 {
3937 /* This block contains a real instruction. Note that we
3938 don't include labels; if the only thing in the block
3939 is a label, then there are still no PC values that
3940 lie within the block. */
3941 if (INSN_P (tmp))
3942 break;
3943
3944 /* We're only interested in NOTEs. */
3945 if (GET_CODE (tmp) != NOTE)
3946 continue;
3947
3948 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3949 {
3950 /* We just verified that this BLOCK matches us with
3951 the block_stack check above. Never delete the
3952 BLOCK for the outermost scope of the function; we
3953 can refer to names from that scope even if the
3954 block notes are messed up. */
3955 if (! is_body_block (NOTE_BLOCK (insn))
3956 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3957 {
3958 remove_insn (tmp);
3959 remove_insn (insn);
3960 }
3961 break;
3962 }
3963 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3964 /* There's a nested block. We need to leave the
3965 current block in place since otherwise the debugger
3966 wouldn't be able to show symbols from our block in
3967 the nested block. */
3968 break;
3969 }
3970 }
3971 }
3972
3973 /* Too many begin notes. */
3974 if (block_stack || eh_stack)
3975 abort ();
3976 }
3977
3978 \f
3979 /* Emit insn(s) of given code and pattern
3980 at a specified place within the doubly-linked list.
3981
3982 All of the emit_foo global entry points accept an object
3983 X which is either an insn list or a PATTERN of a single
3984 instruction.
3985
3986 There are thus a few canonical ways to generate code and
3987 emit it at a specific place in the instruction stream. For
3988 example, consider the instruction named SPOT and the fact that
3989 we would like to emit some instructions before SPOT. We might
3990 do it like this:
3991
3992 start_sequence ();
3993 ... emit the new instructions ...
3994 insns_head = get_insns ();
3995 end_sequence ();
3996
3997 emit_insn_before (insns_head, SPOT);
3998
3999 It used to be common to generate SEQUENCE rtl instead, but that
4000 is a relic of the past which no longer occurs. The reason is that
4001 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4002 generated would almost certainly die right after it was created. */
4003
4004 /* Make X be output before the instruction BEFORE. */
4005
4006 rtx
4007 emit_insn_before (rtx x, rtx before)
4008 {
4009 rtx last = before;
4010 rtx insn;
4011
4012 #ifdef ENABLE_RTL_CHECKING
4013 if (before == NULL_RTX)
4014 abort ();
4015 #endif
4016
4017 if (x == NULL_RTX)
4018 return last;
4019
4020 switch (GET_CODE (x))
4021 {
4022 case INSN:
4023 case JUMP_INSN:
4024 case CALL_INSN:
4025 case CODE_LABEL:
4026 case BARRIER:
4027 case NOTE:
4028 insn = x;
4029 while (insn)
4030 {
4031 rtx next = NEXT_INSN (insn);
4032 add_insn_before (insn, before);
4033 last = insn;
4034 insn = next;
4035 }
4036 break;
4037
4038 #ifdef ENABLE_RTL_CHECKING
4039 case SEQUENCE:
4040 abort ();
4041 break;
4042 #endif
4043
4044 default:
4045 last = make_insn_raw (x);
4046 add_insn_before (last, before);
4047 break;
4048 }
4049
4050 return last;
4051 }
4052
4053 /* Make an instruction with body X and code JUMP_INSN
4054 and output it before the instruction BEFORE. */
4055
4056 rtx
4057 emit_jump_insn_before (rtx x, rtx before)
4058 {
4059 rtx insn, last = NULL_RTX;
4060
4061 #ifdef ENABLE_RTL_CHECKING
4062 if (before == NULL_RTX)
4063 abort ();
4064 #endif
4065
4066 switch (GET_CODE (x))
4067 {
4068 case INSN:
4069 case JUMP_INSN:
4070 case CALL_INSN:
4071 case CODE_LABEL:
4072 case BARRIER:
4073 case NOTE:
4074 insn = x;
4075 while (insn)
4076 {
4077 rtx next = NEXT_INSN (insn);
4078 add_insn_before (insn, before);
4079 last = insn;
4080 insn = next;
4081 }
4082 break;
4083
4084 #ifdef ENABLE_RTL_CHECKING
4085 case SEQUENCE:
4086 abort ();
4087 break;
4088 #endif
4089
4090 default:
4091 last = make_jump_insn_raw (x);
4092 add_insn_before (last, before);
4093 break;
4094 }
4095
4096 return last;
4097 }
4098
4099 /* Make an instruction with body X and code CALL_INSN
4100 and output it before the instruction BEFORE. */
4101
4102 rtx
4103 emit_call_insn_before (rtx x, rtx before)
4104 {
4105 rtx last = NULL_RTX, insn;
4106
4107 #ifdef ENABLE_RTL_CHECKING
4108 if (before == NULL_RTX)
4109 abort ();
4110 #endif
4111
4112 switch (GET_CODE (x))
4113 {
4114 case INSN:
4115 case JUMP_INSN:
4116 case CALL_INSN:
4117 case CODE_LABEL:
4118 case BARRIER:
4119 case NOTE:
4120 insn = x;
4121 while (insn)
4122 {
4123 rtx next = NEXT_INSN (insn);
4124 add_insn_before (insn, before);
4125 last = insn;
4126 insn = next;
4127 }
4128 break;
4129
4130 #ifdef ENABLE_RTL_CHECKING
4131 case SEQUENCE:
4132 abort ();
4133 break;
4134 #endif
4135
4136 default:
4137 last = make_call_insn_raw (x);
4138 add_insn_before (last, before);
4139 break;
4140 }
4141
4142 return last;
4143 }
4144
4145 /* Make an insn of code BARRIER
4146 and output it before the insn BEFORE. */
4147
4148 rtx
4149 emit_barrier_before (rtx before)
4150 {
4151 rtx insn = rtx_alloc (BARRIER);
4152
4153 INSN_UID (insn) = cur_insn_uid++;
4154
4155 add_insn_before (insn, before);
4156 return insn;
4157 }
4158
4159 /* Emit the label LABEL before the insn BEFORE. */
4160
4161 rtx
4162 emit_label_before (rtx label, rtx before)
4163 {
4164 /* This can be called twice for the same label as a result of the
4165 confusion that follows a syntax error! So make it harmless. */
4166 if (INSN_UID (label) == 0)
4167 {
4168 INSN_UID (label) = cur_insn_uid++;
4169 add_insn_before (label, before);
4170 }
4171
4172 return label;
4173 }
4174
4175 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4176
4177 rtx
4178 emit_note_before (int subtype, rtx before)
4179 {
4180 rtx note = rtx_alloc (NOTE);
4181 INSN_UID (note) = cur_insn_uid++;
4182 NOTE_SOURCE_FILE (note) = 0;
4183 NOTE_LINE_NUMBER (note) = subtype;
4184 BLOCK_FOR_INSN (note) = NULL;
4185
4186 add_insn_before (note, before);
4187 return note;
4188 }
4189 \f
4190 /* Helper for emit_insn_after, handles lists of instructions
4191 efficiently. */
4192
4193 static rtx emit_insn_after_1 (rtx, rtx);
4194
4195 static rtx
4196 emit_insn_after_1 (rtx first, rtx after)
4197 {
4198 rtx last;
4199 rtx after_after;
4200 basic_block bb;
4201
4202 if (GET_CODE (after) != BARRIER
4203 && (bb = BLOCK_FOR_INSN (after)))
4204 {
4205 bb->flags |= BB_DIRTY;
4206 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4207 if (GET_CODE (last) != BARRIER)
4208 set_block_for_insn (last, bb);
4209 if (GET_CODE (last) != BARRIER)
4210 set_block_for_insn (last, bb);
4211 if (bb->end == after)
4212 bb->end = last;
4213 }
4214 else
4215 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4216 continue;
4217
4218 after_after = NEXT_INSN (after);
4219
4220 NEXT_INSN (after) = first;
4221 PREV_INSN (first) = after;
4222 NEXT_INSN (last) = after_after;
4223 if (after_after)
4224 PREV_INSN (after_after) = last;
4225
4226 if (after == last_insn)
4227 last_insn = last;
4228 return last;
4229 }
4230
4231 /* Make X be output after the insn AFTER. */
4232
4233 rtx
4234 emit_insn_after (rtx x, rtx after)
4235 {
4236 rtx last = after;
4237
4238 #ifdef ENABLE_RTL_CHECKING
4239 if (after == NULL_RTX)
4240 abort ();
4241 #endif
4242
4243 if (x == NULL_RTX)
4244 return last;
4245
4246 switch (GET_CODE (x))
4247 {
4248 case INSN:
4249 case JUMP_INSN:
4250 case CALL_INSN:
4251 case CODE_LABEL:
4252 case BARRIER:
4253 case NOTE:
4254 last = emit_insn_after_1 (x, after);
4255 break;
4256
4257 #ifdef ENABLE_RTL_CHECKING
4258 case SEQUENCE:
4259 abort ();
4260 break;
4261 #endif
4262
4263 default:
4264 last = make_insn_raw (x);
4265 add_insn_after (last, after);
4266 break;
4267 }
4268
4269 return last;
4270 }
4271
4272 /* Similar to emit_insn_after, except that line notes are to be inserted so
4273 as to act as if this insn were at FROM. */
4274
4275 void
4276 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4277 {
4278 rtx from_line = find_line_note (from);
4279 rtx after_line = find_line_note (after);
4280 rtx insn = emit_insn_after (x, after);
4281
4282 if (from_line)
4283 emit_note_copy_after (from_line, after);
4284
4285 if (after_line)
4286 emit_note_copy_after (after_line, insn);
4287 }
4288
4289 /* Make an insn of code JUMP_INSN with body X
4290 and output it after the insn AFTER. */
4291
4292 rtx
4293 emit_jump_insn_after (rtx x, rtx after)
4294 {
4295 rtx last;
4296
4297 #ifdef ENABLE_RTL_CHECKING
4298 if (after == NULL_RTX)
4299 abort ();
4300 #endif
4301
4302 switch (GET_CODE (x))
4303 {
4304 case INSN:
4305 case JUMP_INSN:
4306 case CALL_INSN:
4307 case CODE_LABEL:
4308 case BARRIER:
4309 case NOTE:
4310 last = emit_insn_after_1 (x, after);
4311 break;
4312
4313 #ifdef ENABLE_RTL_CHECKING
4314 case SEQUENCE:
4315 abort ();
4316 break;
4317 #endif
4318
4319 default:
4320 last = make_jump_insn_raw (x);
4321 add_insn_after (last, after);
4322 break;
4323 }
4324
4325 return last;
4326 }
4327
4328 /* Make an instruction with body X and code CALL_INSN
4329 and output it after the instruction AFTER. */
4330
4331 rtx
4332 emit_call_insn_after (rtx x, rtx after)
4333 {
4334 rtx last;
4335
4336 #ifdef ENABLE_RTL_CHECKING
4337 if (after == NULL_RTX)
4338 abort ();
4339 #endif
4340
4341 switch (GET_CODE (x))
4342 {
4343 case INSN:
4344 case JUMP_INSN:
4345 case CALL_INSN:
4346 case CODE_LABEL:
4347 case BARRIER:
4348 case NOTE:
4349 last = emit_insn_after_1 (x, after);
4350 break;
4351
4352 #ifdef ENABLE_RTL_CHECKING
4353 case SEQUENCE:
4354 abort ();
4355 break;
4356 #endif
4357
4358 default:
4359 last = make_call_insn_raw (x);
4360 add_insn_after (last, after);
4361 break;
4362 }
4363
4364 return last;
4365 }
4366
4367 /* Make an insn of code BARRIER
4368 and output it after the insn AFTER. */
4369
4370 rtx
4371 emit_barrier_after (rtx after)
4372 {
4373 rtx insn = rtx_alloc (BARRIER);
4374
4375 INSN_UID (insn) = cur_insn_uid++;
4376
4377 add_insn_after (insn, after);
4378 return insn;
4379 }
4380
4381 /* Emit the label LABEL after the insn AFTER. */
4382
4383 rtx
4384 emit_label_after (rtx label, rtx after)
4385 {
4386 /* This can be called twice for the same label
4387 as a result of the confusion that follows a syntax error!
4388 So make it harmless. */
4389 if (INSN_UID (label) == 0)
4390 {
4391 INSN_UID (label) = cur_insn_uid++;
4392 add_insn_after (label, after);
4393 }
4394
4395 return label;
4396 }
4397
4398 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4399
4400 rtx
4401 emit_note_after (int subtype, rtx after)
4402 {
4403 rtx note = rtx_alloc (NOTE);
4404 INSN_UID (note) = cur_insn_uid++;
4405 NOTE_SOURCE_FILE (note) = 0;
4406 NOTE_LINE_NUMBER (note) = subtype;
4407 BLOCK_FOR_INSN (note) = NULL;
4408 add_insn_after (note, after);
4409 return note;
4410 }
4411
4412 /* Emit a copy of note ORIG after the insn AFTER. */
4413
4414 rtx
4415 emit_note_copy_after (rtx orig, rtx after)
4416 {
4417 rtx note;
4418
4419 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4420 {
4421 cur_insn_uid++;
4422 return 0;
4423 }
4424
4425 note = rtx_alloc (NOTE);
4426 INSN_UID (note) = cur_insn_uid++;
4427 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4428 NOTE_DATA (note) = NOTE_DATA (orig);
4429 BLOCK_FOR_INSN (note) = NULL;
4430 add_insn_after (note, after);
4431 return note;
4432 }
4433 \f
4434 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4435 rtx
4436 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4437 {
4438 rtx last = emit_insn_after (pattern, after);
4439
4440 after = NEXT_INSN (after);
4441 while (1)
4442 {
4443 if (active_insn_p (after))
4444 INSN_LOCATOR (after) = loc;
4445 if (after == last)
4446 break;
4447 after = NEXT_INSN (after);
4448 }
4449 return last;
4450 }
4451
4452 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4453 rtx
4454 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4455 {
4456 rtx last = emit_jump_insn_after (pattern, after);
4457
4458 after = NEXT_INSN (after);
4459 while (1)
4460 {
4461 if (active_insn_p (after))
4462 INSN_LOCATOR (after) = loc;
4463 if (after == last)
4464 break;
4465 after = NEXT_INSN (after);
4466 }
4467 return last;
4468 }
4469
4470 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4471 rtx
4472 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4473 {
4474 rtx last = emit_call_insn_after (pattern, after);
4475
4476 after = NEXT_INSN (after);
4477 while (1)
4478 {
4479 if (active_insn_p (after))
4480 INSN_LOCATOR (after) = loc;
4481 if (after == last)
4482 break;
4483 after = NEXT_INSN (after);
4484 }
4485 return last;
4486 }
4487
4488 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4489 rtx
4490 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4491 {
4492 rtx first = PREV_INSN (before);
4493 rtx last = emit_insn_before (pattern, before);
4494
4495 first = NEXT_INSN (first);
4496 while (1)
4497 {
4498 if (active_insn_p (first))
4499 INSN_LOCATOR (first) = loc;
4500 if (first == last)
4501 break;
4502 first = NEXT_INSN (first);
4503 }
4504 return last;
4505 }
4506 \f
4507 /* Take X and emit it at the end of the doubly-linked
4508 INSN list.
4509
4510 Returns the last insn emitted. */
4511
4512 rtx
4513 emit_insn (rtx x)
4514 {
4515 rtx last = last_insn;
4516 rtx insn;
4517
4518 if (x == NULL_RTX)
4519 return last;
4520
4521 switch (GET_CODE (x))
4522 {
4523 case INSN:
4524 case JUMP_INSN:
4525 case CALL_INSN:
4526 case CODE_LABEL:
4527 case BARRIER:
4528 case NOTE:
4529 insn = x;
4530 while (insn)
4531 {
4532 rtx next = NEXT_INSN (insn);
4533 add_insn (insn);
4534 last = insn;
4535 insn = next;
4536 }
4537 break;
4538
4539 #ifdef ENABLE_RTL_CHECKING
4540 case SEQUENCE:
4541 abort ();
4542 break;
4543 #endif
4544
4545 default:
4546 last = make_insn_raw (x);
4547 add_insn (last);
4548 break;
4549 }
4550
4551 return last;
4552 }
4553
4554 /* Make an insn of code JUMP_INSN with pattern X
4555 and add it to the end of the doubly-linked list. */
4556
4557 rtx
4558 emit_jump_insn (rtx x)
4559 {
4560 rtx last = NULL_RTX, insn;
4561
4562 switch (GET_CODE (x))
4563 {
4564 case INSN:
4565 case JUMP_INSN:
4566 case CALL_INSN:
4567 case CODE_LABEL:
4568 case BARRIER:
4569 case NOTE:
4570 insn = x;
4571 while (insn)
4572 {
4573 rtx next = NEXT_INSN (insn);
4574 add_insn (insn);
4575 last = insn;
4576 insn = next;
4577 }
4578 break;
4579
4580 #ifdef ENABLE_RTL_CHECKING
4581 case SEQUENCE:
4582 abort ();
4583 break;
4584 #endif
4585
4586 default:
4587 last = make_jump_insn_raw (x);
4588 add_insn (last);
4589 break;
4590 }
4591
4592 return last;
4593 }
4594
4595 /* Make an insn of code CALL_INSN with pattern X
4596 and add it to the end of the doubly-linked list. */
4597
4598 rtx
4599 emit_call_insn (rtx x)
4600 {
4601 rtx insn;
4602
4603 switch (GET_CODE (x))
4604 {
4605 case INSN:
4606 case JUMP_INSN:
4607 case CALL_INSN:
4608 case CODE_LABEL:
4609 case BARRIER:
4610 case NOTE:
4611 insn = emit_insn (x);
4612 break;
4613
4614 #ifdef ENABLE_RTL_CHECKING
4615 case SEQUENCE:
4616 abort ();
4617 break;
4618 #endif
4619
4620 default:
4621 insn = make_call_insn_raw (x);
4622 add_insn (insn);
4623 break;
4624 }
4625
4626 return insn;
4627 }
4628
4629 /* Add the label LABEL to the end of the doubly-linked list. */
4630
4631 rtx
4632 emit_label (rtx label)
4633 {
4634 /* This can be called twice for the same label
4635 as a result of the confusion that follows a syntax error!
4636 So make it harmless. */
4637 if (INSN_UID (label) == 0)
4638 {
4639 INSN_UID (label) = cur_insn_uid++;
4640 add_insn (label);
4641 }
4642 return label;
4643 }
4644
4645 /* Make an insn of code BARRIER
4646 and add it to the end of the doubly-linked list. */
4647
4648 rtx
4649 emit_barrier (void)
4650 {
4651 rtx barrier = rtx_alloc (BARRIER);
4652 INSN_UID (barrier) = cur_insn_uid++;
4653 add_insn (barrier);
4654 return barrier;
4655 }
4656
4657 /* Make line numbering NOTE insn for LOCATION add it to the end
4658 of the doubly-linked list, but only if line-numbers are desired for
4659 debugging info and it doesn't match the previous one. */
4660
4661 rtx
4662 emit_line_note (location_t location)
4663 {
4664 rtx note;
4665
4666 set_file_and_line_for_stmt (location);
4667
4668 if (location.file && last_location.file
4669 && !strcmp (location.file, last_location.file)
4670 && location.line == last_location.line)
4671 return NULL_RTX;
4672 last_location = location;
4673
4674 if (no_line_numbers)
4675 {
4676 cur_insn_uid++;
4677 return NULL_RTX;
4678 }
4679
4680 note = emit_note (location.line);
4681 NOTE_SOURCE_FILE (note) = location.file;
4682
4683 return note;
4684 }
4685
4686 /* Emit a copy of note ORIG. */
4687
4688 rtx
4689 emit_note_copy (rtx orig)
4690 {
4691 rtx note;
4692
4693 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4694 {
4695 cur_insn_uid++;
4696 return NULL_RTX;
4697 }
4698
4699 note = rtx_alloc (NOTE);
4700
4701 INSN_UID (note) = cur_insn_uid++;
4702 NOTE_DATA (note) = NOTE_DATA (orig);
4703 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4704 BLOCK_FOR_INSN (note) = NULL;
4705 add_insn (note);
4706
4707 return note;
4708 }
4709
4710 /* Make an insn of code NOTE or type NOTE_NO
4711 and add it to the end of the doubly-linked list. */
4712
4713 rtx
4714 emit_note (int note_no)
4715 {
4716 rtx note;
4717
4718 note = rtx_alloc (NOTE);
4719 INSN_UID (note) = cur_insn_uid++;
4720 NOTE_LINE_NUMBER (note) = note_no;
4721 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4722 BLOCK_FOR_INSN (note) = NULL;
4723 add_insn (note);
4724 return note;
4725 }
4726
4727 /* Cause next statement to emit a line note even if the line number
4728 has not changed. */
4729
4730 void
4731 force_next_line_note (void)
4732 {
4733 last_location.line = -1;
4734 }
4735
4736 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4737 note of this type already exists, remove it first. */
4738
4739 rtx
4740 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4741 {
4742 rtx note = find_reg_note (insn, kind, NULL_RTX);
4743
4744 switch (kind)
4745 {
4746 case REG_EQUAL:
4747 case REG_EQUIV:
4748 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4749 has multiple sets (some callers assume single_set
4750 means the insn only has one set, when in fact it
4751 means the insn only has one * useful * set). */
4752 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4753 {
4754 if (note)
4755 abort ();
4756 return NULL_RTX;
4757 }
4758
4759 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4760 It serves no useful purpose and breaks eliminate_regs. */
4761 if (GET_CODE (datum) == ASM_OPERANDS)
4762 return NULL_RTX;
4763 break;
4764
4765 default:
4766 break;
4767 }
4768
4769 if (note)
4770 {
4771 XEXP (note, 0) = datum;
4772 return note;
4773 }
4774
4775 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4776 return REG_NOTES (insn);
4777 }
4778 \f
4779 /* Return an indication of which type of insn should have X as a body.
4780 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4781
4782 enum rtx_code
4783 classify_insn (rtx x)
4784 {
4785 if (GET_CODE (x) == CODE_LABEL)
4786 return CODE_LABEL;
4787 if (GET_CODE (x) == CALL)
4788 return CALL_INSN;
4789 if (GET_CODE (x) == RETURN)
4790 return JUMP_INSN;
4791 if (GET_CODE (x) == SET)
4792 {
4793 if (SET_DEST (x) == pc_rtx)
4794 return JUMP_INSN;
4795 else if (GET_CODE (SET_SRC (x)) == CALL)
4796 return CALL_INSN;
4797 else
4798 return INSN;
4799 }
4800 if (GET_CODE (x) == PARALLEL)
4801 {
4802 int j;
4803 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4804 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4805 return CALL_INSN;
4806 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4807 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4808 return JUMP_INSN;
4809 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4810 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4811 return CALL_INSN;
4812 }
4813 return INSN;
4814 }
4815
4816 /* Emit the rtl pattern X as an appropriate kind of insn.
4817 If X is a label, it is simply added into the insn chain. */
4818
4819 rtx
4820 emit (rtx x)
4821 {
4822 enum rtx_code code = classify_insn (x);
4823
4824 if (code == CODE_LABEL)
4825 return emit_label (x);
4826 else if (code == INSN)
4827 return emit_insn (x);
4828 else if (code == JUMP_INSN)
4829 {
4830 rtx insn = emit_jump_insn (x);
4831 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4832 return emit_barrier ();
4833 return insn;
4834 }
4835 else if (code == CALL_INSN)
4836 return emit_call_insn (x);
4837 else
4838 abort ();
4839 }
4840 \f
4841 /* Space for free sequence stack entries. */
4842 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4843
4844 /* Begin emitting insns to a sequence which can be packaged in an
4845 RTL_EXPR. If this sequence will contain something that might cause
4846 the compiler to pop arguments to function calls (because those
4847 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4848 details), use do_pending_stack_adjust before calling this function.
4849 That will ensure that the deferred pops are not accidentally
4850 emitted in the middle of this sequence. */
4851
4852 void
4853 start_sequence (void)
4854 {
4855 struct sequence_stack *tem;
4856
4857 if (free_sequence_stack != NULL)
4858 {
4859 tem = free_sequence_stack;
4860 free_sequence_stack = tem->next;
4861 }
4862 else
4863 tem = ggc_alloc (sizeof (struct sequence_stack));
4864
4865 tem->next = seq_stack;
4866 tem->first = first_insn;
4867 tem->last = last_insn;
4868 tem->sequence_rtl_expr = seq_rtl_expr;
4869
4870 seq_stack = tem;
4871
4872 first_insn = 0;
4873 last_insn = 0;
4874 }
4875
4876 /* Similarly, but indicate that this sequence will be placed in T, an
4877 RTL_EXPR. See the documentation for start_sequence for more
4878 information about how to use this function. */
4879
4880 void
4881 start_sequence_for_rtl_expr (tree t)
4882 {
4883 start_sequence ();
4884
4885 seq_rtl_expr = t;
4886 }
4887
4888 /* Set up the insn chain starting with FIRST as the current sequence,
4889 saving the previously current one. See the documentation for
4890 start_sequence for more information about how to use this function. */
4891
4892 void
4893 push_to_sequence (rtx first)
4894 {
4895 rtx last;
4896
4897 start_sequence ();
4898
4899 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4900
4901 first_insn = first;
4902 last_insn = last;
4903 }
4904
4905 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4906
4907 void
4908 push_to_full_sequence (rtx first, rtx last)
4909 {
4910 start_sequence ();
4911 first_insn = first;
4912 last_insn = last;
4913 /* We really should have the end of the insn chain here. */
4914 if (last && NEXT_INSN (last))
4915 abort ();
4916 }
4917
4918 /* Set up the outer-level insn chain
4919 as the current sequence, saving the previously current one. */
4920
4921 void
4922 push_topmost_sequence (void)
4923 {
4924 struct sequence_stack *stack, *top = NULL;
4925
4926 start_sequence ();
4927
4928 for (stack = seq_stack; stack; stack = stack->next)
4929 top = stack;
4930
4931 first_insn = top->first;
4932 last_insn = top->last;
4933 seq_rtl_expr = top->sequence_rtl_expr;
4934 }
4935
4936 /* After emitting to the outer-level insn chain, update the outer-level
4937 insn chain, and restore the previous saved state. */
4938
4939 void
4940 pop_topmost_sequence (void)
4941 {
4942 struct sequence_stack *stack, *top = NULL;
4943
4944 for (stack = seq_stack; stack; stack = stack->next)
4945 top = stack;
4946
4947 top->first = first_insn;
4948 top->last = last_insn;
4949 /* ??? Why don't we save seq_rtl_expr here? */
4950
4951 end_sequence ();
4952 }
4953
4954 /* After emitting to a sequence, restore previous saved state.
4955
4956 To get the contents of the sequence just made, you must call
4957 `get_insns' *before* calling here.
4958
4959 If the compiler might have deferred popping arguments while
4960 generating this sequence, and this sequence will not be immediately
4961 inserted into the instruction stream, use do_pending_stack_adjust
4962 before calling get_insns. That will ensure that the deferred
4963 pops are inserted into this sequence, and not into some random
4964 location in the instruction stream. See INHIBIT_DEFER_POP for more
4965 information about deferred popping of arguments. */
4966
4967 void
4968 end_sequence (void)
4969 {
4970 struct sequence_stack *tem = seq_stack;
4971
4972 first_insn = tem->first;
4973 last_insn = tem->last;
4974 seq_rtl_expr = tem->sequence_rtl_expr;
4975 seq_stack = tem->next;
4976
4977 memset (tem, 0, sizeof (*tem));
4978 tem->next = free_sequence_stack;
4979 free_sequence_stack = tem;
4980 }
4981
4982 /* This works like end_sequence, but records the old sequence in FIRST
4983 and LAST. */
4984
4985 void
4986 end_full_sequence (rtx *first, rtx *last)
4987 {
4988 *first = first_insn;
4989 *last = last_insn;
4990 end_sequence ();
4991 }
4992
4993 /* Return 1 if currently emitting into a sequence. */
4994
4995 int
4996 in_sequence_p (void)
4997 {
4998 return seq_stack != 0;
4999 }
5000 \f
5001 /* Put the various virtual registers into REGNO_REG_RTX. */
5002
5003 void
5004 init_virtual_regs (struct emit_status *es)
5005 {
5006 rtx *ptr = es->x_regno_reg_rtx;
5007 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5008 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5009 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5010 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5011 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5012 }
5013
5014 \f
5015 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5016 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5017 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5018 static int copy_insn_n_scratches;
5019
5020 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5021 copied an ASM_OPERANDS.
5022 In that case, it is the original input-operand vector. */
5023 static rtvec orig_asm_operands_vector;
5024
5025 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5026 copied an ASM_OPERANDS.
5027 In that case, it is the copied input-operand vector. */
5028 static rtvec copy_asm_operands_vector;
5029
5030 /* Likewise for the constraints vector. */
5031 static rtvec orig_asm_constraints_vector;
5032 static rtvec copy_asm_constraints_vector;
5033
5034 /* Recursively create a new copy of an rtx for copy_insn.
5035 This function differs from copy_rtx in that it handles SCRATCHes and
5036 ASM_OPERANDs properly.
5037 Normally, this function is not used directly; use copy_insn as front end.
5038 However, you could first copy an insn pattern with copy_insn and then use
5039 this function afterwards to properly copy any REG_NOTEs containing
5040 SCRATCHes. */
5041
5042 rtx
5043 copy_insn_1 (rtx orig)
5044 {
5045 rtx copy;
5046 int i, j;
5047 RTX_CODE code;
5048 const char *format_ptr;
5049
5050 code = GET_CODE (orig);
5051
5052 switch (code)
5053 {
5054 case REG:
5055 case QUEUED:
5056 case CONST_INT:
5057 case CONST_DOUBLE:
5058 case CONST_VECTOR:
5059 case SYMBOL_REF:
5060 case CODE_LABEL:
5061 case PC:
5062 case CC0:
5063 case ADDRESSOF:
5064 return orig;
5065
5066 case SCRATCH:
5067 for (i = 0; i < copy_insn_n_scratches; i++)
5068 if (copy_insn_scratch_in[i] == orig)
5069 return copy_insn_scratch_out[i];
5070 break;
5071
5072 case CONST:
5073 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5074 a LABEL_REF, it isn't sharable. */
5075 if (GET_CODE (XEXP (orig, 0)) == PLUS
5076 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5077 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5078 return orig;
5079 break;
5080
5081 /* A MEM with a constant address is not sharable. The problem is that
5082 the constant address may need to be reloaded. If the mem is shared,
5083 then reloading one copy of this mem will cause all copies to appear
5084 to have been reloaded. */
5085
5086 default:
5087 break;
5088 }
5089
5090 copy = rtx_alloc (code);
5091
5092 /* Copy the various flags, and other information. We assume that
5093 all fields need copying, and then clear the fields that should
5094 not be copied. That is the sensible default behavior, and forces
5095 us to explicitly document why we are *not* copying a flag. */
5096 memcpy (copy, orig, RTX_HDR_SIZE);
5097
5098 /* We do not copy the USED flag, which is used as a mark bit during
5099 walks over the RTL. */
5100 RTX_FLAG (copy, used) = 0;
5101
5102 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5103 if (GET_RTX_CLASS (code) == 'i')
5104 {
5105 RTX_FLAG (copy, jump) = 0;
5106 RTX_FLAG (copy, call) = 0;
5107 RTX_FLAG (copy, frame_related) = 0;
5108 }
5109
5110 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5111
5112 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5113 {
5114 copy->u.fld[i] = orig->u.fld[i];
5115 switch (*format_ptr++)
5116 {
5117 case 'e':
5118 if (XEXP (orig, i) != NULL)
5119 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5120 break;
5121
5122 case 'E':
5123 case 'V':
5124 if (XVEC (orig, i) == orig_asm_constraints_vector)
5125 XVEC (copy, i) = copy_asm_constraints_vector;
5126 else if (XVEC (orig, i) == orig_asm_operands_vector)
5127 XVEC (copy, i) = copy_asm_operands_vector;
5128 else if (XVEC (orig, i) != NULL)
5129 {
5130 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5131 for (j = 0; j < XVECLEN (copy, i); j++)
5132 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5133 }
5134 break;
5135
5136 case 't':
5137 case 'w':
5138 case 'i':
5139 case 's':
5140 case 'S':
5141 case 'u':
5142 case '0':
5143 /* These are left unchanged. */
5144 break;
5145
5146 default:
5147 abort ();
5148 }
5149 }
5150
5151 if (code == SCRATCH)
5152 {
5153 i = copy_insn_n_scratches++;
5154 if (i >= MAX_RECOG_OPERANDS)
5155 abort ();
5156 copy_insn_scratch_in[i] = orig;
5157 copy_insn_scratch_out[i] = copy;
5158 }
5159 else if (code == ASM_OPERANDS)
5160 {
5161 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5162 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5163 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5164 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5165 }
5166
5167 return copy;
5168 }
5169
5170 /* Create a new copy of an rtx.
5171 This function differs from copy_rtx in that it handles SCRATCHes and
5172 ASM_OPERANDs properly.
5173 INSN doesn't really have to be a full INSN; it could be just the
5174 pattern. */
5175 rtx
5176 copy_insn (rtx insn)
5177 {
5178 copy_insn_n_scratches = 0;
5179 orig_asm_operands_vector = 0;
5180 orig_asm_constraints_vector = 0;
5181 copy_asm_operands_vector = 0;
5182 copy_asm_constraints_vector = 0;
5183 return copy_insn_1 (insn);
5184 }
5185
5186 /* Initialize data structures and variables in this file
5187 before generating rtl for each function. */
5188
5189 void
5190 init_emit (void)
5191 {
5192 struct function *f = cfun;
5193
5194 f->emit = ggc_alloc (sizeof (struct emit_status));
5195 first_insn = NULL;
5196 last_insn = NULL;
5197 seq_rtl_expr = NULL;
5198 cur_insn_uid = 1;
5199 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5200 last_location.line = 0;
5201 last_location.file = 0;
5202 first_label_num = label_num;
5203 last_label_num = 0;
5204 seq_stack = NULL;
5205
5206 /* Init the tables that describe all the pseudo regs. */
5207
5208 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5209
5210 f->emit->regno_pointer_align
5211 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5212 * sizeof (unsigned char));
5213
5214 regno_reg_rtx
5215 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5216
5217 /* Put copies of all the hard registers into regno_reg_rtx. */
5218 memcpy (regno_reg_rtx,
5219 static_regno_reg_rtx,
5220 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5221
5222 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5223 init_virtual_regs (f->emit);
5224
5225 /* Indicate that the virtual registers and stack locations are
5226 all pointers. */
5227 REG_POINTER (stack_pointer_rtx) = 1;
5228 REG_POINTER (frame_pointer_rtx) = 1;
5229 REG_POINTER (hard_frame_pointer_rtx) = 1;
5230 REG_POINTER (arg_pointer_rtx) = 1;
5231
5232 REG_POINTER (virtual_incoming_args_rtx) = 1;
5233 REG_POINTER (virtual_stack_vars_rtx) = 1;
5234 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5235 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5236 REG_POINTER (virtual_cfa_rtx) = 1;
5237
5238 #ifdef STACK_BOUNDARY
5239 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5240 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5241 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5242 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5243
5244 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5245 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5246 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5247 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5248 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5249 #endif
5250
5251 #ifdef INIT_EXPANDERS
5252 INIT_EXPANDERS;
5253 #endif
5254 }
5255
5256 /* Generate the constant 0. */
5257
5258 static rtx
5259 gen_const_vector_0 (enum machine_mode mode)
5260 {
5261 rtx tem;
5262 rtvec v;
5263 int units, i;
5264 enum machine_mode inner;
5265
5266 units = GET_MODE_NUNITS (mode);
5267 inner = GET_MODE_INNER (mode);
5268
5269 v = rtvec_alloc (units);
5270
5271 /* We need to call this function after we to set CONST0_RTX first. */
5272 if (!CONST0_RTX (inner))
5273 abort ();
5274
5275 for (i = 0; i < units; ++i)
5276 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5277
5278 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5279 return tem;
5280 }
5281
5282 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5283 all elements are zero. */
5284 rtx
5285 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5286 {
5287 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5288 int i;
5289
5290 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5291 if (RTVEC_ELT (v, i) != inner_zero)
5292 return gen_rtx_raw_CONST_VECTOR (mode, v);
5293 return CONST0_RTX (mode);
5294 }
5295
5296 /* Create some permanent unique rtl objects shared between all functions.
5297 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5298
5299 void
5300 init_emit_once (int line_numbers)
5301 {
5302 int i;
5303 enum machine_mode mode;
5304 enum machine_mode double_mode;
5305
5306 /* We need reg_raw_mode, so initialize the modes now. */
5307 init_reg_modes_once ();
5308
5309 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5310 tables. */
5311 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5312 const_int_htab_eq, NULL);
5313
5314 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5315 const_double_htab_eq, NULL);
5316
5317 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5318 mem_attrs_htab_eq, NULL);
5319 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5320 reg_attrs_htab_eq, NULL);
5321
5322 no_line_numbers = ! line_numbers;
5323
5324 /* Compute the word and byte modes. */
5325
5326 byte_mode = VOIDmode;
5327 word_mode = VOIDmode;
5328 double_mode = VOIDmode;
5329
5330 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5331 mode = GET_MODE_WIDER_MODE (mode))
5332 {
5333 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5334 && byte_mode == VOIDmode)
5335 byte_mode = mode;
5336
5337 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5338 && word_mode == VOIDmode)
5339 word_mode = mode;
5340 }
5341
5342 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5343 mode = GET_MODE_WIDER_MODE (mode))
5344 {
5345 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5346 && double_mode == VOIDmode)
5347 double_mode = mode;
5348 }
5349
5350 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5351
5352 /* Assign register numbers to the globally defined register rtx.
5353 This must be done at runtime because the register number field
5354 is in a union and some compilers can't initialize unions. */
5355
5356 pc_rtx = gen_rtx (PC, VOIDmode);
5357 cc0_rtx = gen_rtx (CC0, VOIDmode);
5358 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5359 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5360 if (hard_frame_pointer_rtx == 0)
5361 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5362 HARD_FRAME_POINTER_REGNUM);
5363 if (arg_pointer_rtx == 0)
5364 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5365 virtual_incoming_args_rtx =
5366 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5367 virtual_stack_vars_rtx =
5368 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5369 virtual_stack_dynamic_rtx =
5370 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5371 virtual_outgoing_args_rtx =
5372 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5373 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5374
5375 /* Initialize RTL for commonly used hard registers. These are
5376 copied into regno_reg_rtx as we begin to compile each function. */
5377 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5378 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5379
5380 #ifdef INIT_EXPANDERS
5381 /* This is to initialize {init|mark|free}_machine_status before the first
5382 call to push_function_context_to. This is needed by the Chill front
5383 end which calls push_function_context_to before the first call to
5384 init_function_start. */
5385 INIT_EXPANDERS;
5386 #endif
5387
5388 /* Create the unique rtx's for certain rtx codes and operand values. */
5389
5390 /* Don't use gen_rtx here since gen_rtx in this case
5391 tries to use these variables. */
5392 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5393 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5394 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5395
5396 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5397 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5398 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5399 else
5400 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5401
5402 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5403 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5404 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5405 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5406 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5407 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5408 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5409
5410 dconsthalf = dconst1;
5411 dconsthalf.exp--;
5412
5413 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5414
5415 /* Initialize mathematical constants for constant folding builtins.
5416 These constants need to be given to at least 160 bits precision. */
5417 real_from_string (&dconstpi,
5418 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5419 real_from_string (&dconste,
5420 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5421
5422 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5423 {
5424 REAL_VALUE_TYPE *r =
5425 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5426
5427 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5428 mode = GET_MODE_WIDER_MODE (mode))
5429 const_tiny_rtx[i][(int) mode] =
5430 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5431
5432 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5433
5434 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5435 mode = GET_MODE_WIDER_MODE (mode))
5436 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5437
5438 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5439 mode != VOIDmode;
5440 mode = GET_MODE_WIDER_MODE (mode))
5441 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5442 }
5443
5444 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5445 mode != VOIDmode;
5446 mode = GET_MODE_WIDER_MODE (mode))
5447 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5448
5449 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5450 mode != VOIDmode;
5451 mode = GET_MODE_WIDER_MODE (mode))
5452 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5453
5454 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5455 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5456 const_tiny_rtx[0][i] = const0_rtx;
5457
5458 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5459 if (STORE_FLAG_VALUE == 1)
5460 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5461
5462 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5463 return_address_pointer_rtx
5464 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5465 #endif
5466
5467 #ifdef STATIC_CHAIN_REGNUM
5468 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5469
5470 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5471 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5472 static_chain_incoming_rtx
5473 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5474 else
5475 #endif
5476 static_chain_incoming_rtx = static_chain_rtx;
5477 #endif
5478
5479 #ifdef STATIC_CHAIN
5480 static_chain_rtx = STATIC_CHAIN;
5481
5482 #ifdef STATIC_CHAIN_INCOMING
5483 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5484 #else
5485 static_chain_incoming_rtx = static_chain_rtx;
5486 #endif
5487 #endif
5488
5489 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5490 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5491 }
5492 \f
5493 /* Query and clear/ restore no_line_numbers. This is used by the
5494 switch / case handling in stmt.c to give proper line numbers in
5495 warnings about unreachable code. */
5496
5497 int
5498 force_line_numbers (void)
5499 {
5500 int old = no_line_numbers;
5501
5502 no_line_numbers = 0;
5503 if (old)
5504 force_next_line_note ();
5505 return old;
5506 }
5507
5508 void
5509 restore_line_number_status (int old_value)
5510 {
5511 no_line_numbers = old_value;
5512 }
5513
5514 /* Produce exact duplicate of insn INSN after AFTER.
5515 Care updating of libcall regions if present. */
5516
5517 rtx
5518 emit_copy_of_insn_after (rtx insn, rtx after)
5519 {
5520 rtx new;
5521 rtx note1, note2, link;
5522
5523 switch (GET_CODE (insn))
5524 {
5525 case INSN:
5526 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5527 break;
5528
5529 case JUMP_INSN:
5530 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5531 break;
5532
5533 case CALL_INSN:
5534 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5535 if (CALL_INSN_FUNCTION_USAGE (insn))
5536 CALL_INSN_FUNCTION_USAGE (new)
5537 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5538 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5539 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5540 break;
5541
5542 default:
5543 abort ();
5544 }
5545
5546 /* Update LABEL_NUSES. */
5547 mark_jump_label (PATTERN (new), new, 0);
5548
5549 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5550
5551 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5552 make them. */
5553 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5554 if (REG_NOTE_KIND (link) != REG_LABEL)
5555 {
5556 if (GET_CODE (link) == EXPR_LIST)
5557 REG_NOTES (new)
5558 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5559 XEXP (link, 0),
5560 REG_NOTES (new)));
5561 else
5562 REG_NOTES (new)
5563 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5564 XEXP (link, 0),
5565 REG_NOTES (new)));
5566 }
5567
5568 /* Fix the libcall sequences. */
5569 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5570 {
5571 rtx p = new;
5572 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5573 p = PREV_INSN (p);
5574 XEXP (note1, 0) = p;
5575 XEXP (note2, 0) = new;
5576 }
5577 INSN_CODE (new) = INSN_CODE (insn);
5578 return new;
5579 }
5580
5581 #include "gt-emit-rtl.h"