]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
bt-load.c, [...]: Use JUMP_P, LABEL_P, REG_P, MEM_P, NONJUMP_INSN_P, and INSN_P where...
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Nonzero means do not generate NOTEs for source line numbers. */
73
74 static int no_line_numbers;
75
76 /* Commonly used rtx's, so that we only need space for one copy.
77 These are initialized once for the entire compilation.
78 All of these are unique; no other rtx-object will be equal to any
79 of these. */
80
81 rtx global_rtl[GR_MAX];
82
83 /* Commonly used RTL for hard registers. These objects are not necessarily
84 unique, so we allocate them separately from global_rtl. They are
85 initialized once per compilation unit, then copied into regno_reg_rtx
86 at the beginning of each function. */
87 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
88
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx. */
92
93 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
94
95 rtx const_true_rtx;
96
97 REAL_VALUE_TYPE dconst0;
98 REAL_VALUE_TYPE dconst1;
99 REAL_VALUE_TYPE dconst2;
100 REAL_VALUE_TYPE dconst3;
101 REAL_VALUE_TYPE dconst10;
102 REAL_VALUE_TYPE dconstm1;
103 REAL_VALUE_TYPE dconstm2;
104 REAL_VALUE_TYPE dconsthalf;
105 REAL_VALUE_TYPE dconstthird;
106 REAL_VALUE_TYPE dconstpi;
107 REAL_VALUE_TYPE dconste;
108
109 /* All references to the following fixed hard registers go through
110 these unique rtl objects. On machines where the frame-pointer and
111 arg-pointer are the same register, they use the same unique object.
112
113 After register allocation, other rtl objects which used to be pseudo-regs
114 may be clobbered to refer to the frame-pointer register.
115 But references that were originally to the frame-pointer can be
116 distinguished from the others because they contain frame_pointer_rtx.
117
118 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
119 tricky: until register elimination has taken place hard_frame_pointer_rtx
120 should be used if it is being set, and frame_pointer_rtx otherwise. After
121 register elimination hard_frame_pointer_rtx should always be used.
122 On machines where the two registers are same (most) then these are the
123 same.
124
125 In an inline procedure, the stack and frame pointer rtxs may not be
126 used for anything else. */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
146 htab_t const_int_htab;
147
148 /* A hash table storing memory attribute structures. */
149 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
150 htab_t mem_attrs_htab;
151
152 /* A hash table storing register attribute structures. */
153 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
154 htab_t reg_attrs_htab;
155
156 /* A hash table storing all CONST_DOUBLEs. */
157 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
158 htab_t const_double_htab;
159
160 #define first_insn (cfun->emit->x_first_insn)
161 #define last_insn (cfun->emit->x_last_insn)
162 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
163 #define last_location (cfun->emit->x_last_location)
164 #define first_label_num (cfun->emit->x_first_label_num)
165
166 static rtx make_jump_insn_raw (rtx);
167 static rtx make_call_insn_raw (rtx);
168 static rtx find_line_note (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
188
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
192 \f
193 /* Returns a hash code for X (which is a really a CONST_INT). */
194
195 static hashval_t
196 const_int_htab_hash (const void *x)
197 {
198 return (hashval_t) INTVAL ((rtx) x);
199 }
200
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
204
205 static int
206 const_int_htab_eq (const void *x, const void *y)
207 {
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
209 }
210
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
214 {
215 rtx value = (rtx) x;
216 hashval_t h;
217
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
221 {
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
225 }
226 return h;
227 }
228
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
233 {
234 rtx a = (rtx)x, b = (rtx)y;
235
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
244 }
245
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
247
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
250 {
251 mem_attrs *p = (mem_attrs *) x;
252
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) p->expr);
257 }
258
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
262
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
265 {
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
268
269 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
270 && p->size == q->size && p->align == q->align);
271 }
272
273 /* Allocate a new mem_attrs structure and insert it into the hash table if
274 one identical to it is not already in the table. We are doing this for
275 MEM of mode MODE. */
276
277 static mem_attrs *
278 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
279 unsigned int align, enum machine_mode mode)
280 {
281 mem_attrs attrs;
282 void **slot;
283
284 /* If everything is the default, we can just return zero.
285 This must match what the corresponding MEM_* macros return when the
286 field is not present. */
287 if (alias == 0 && expr == 0 && offset == 0
288 && (size == 0
289 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
290 && (STRICT_ALIGNMENT && mode != BLKmode
291 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
292 return 0;
293
294 attrs.alias = alias;
295 attrs.expr = expr;
296 attrs.offset = offset;
297 attrs.size = size;
298 attrs.align = align;
299
300 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
301 if (*slot == 0)
302 {
303 *slot = ggc_alloc (sizeof (mem_attrs));
304 memcpy (*slot, &attrs, sizeof (mem_attrs));
305 }
306
307 return *slot;
308 }
309
310 /* Returns a hash code for X (which is a really a reg_attrs *). */
311
312 static hashval_t
313 reg_attrs_htab_hash (const void *x)
314 {
315 reg_attrs *p = (reg_attrs *) x;
316
317 return ((p->offset * 1000) ^ (long) p->decl);
318 }
319
320 /* Returns nonzero if the value represented by X (which is really a
321 reg_attrs *) is the same as that given by Y (which is also really a
322 reg_attrs *). */
323
324 static int
325 reg_attrs_htab_eq (const void *x, const void *y)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328 reg_attrs *q = (reg_attrs *) y;
329
330 return (p->decl == q->decl && p->offset == q->offset);
331 }
332 /* Allocate a new reg_attrs structure and insert it into the hash table if
333 one identical to it is not already in the table. We are doing this for
334 MEM of mode MODE. */
335
336 static reg_attrs *
337 get_reg_attrs (tree decl, int offset)
338 {
339 reg_attrs attrs;
340 void **slot;
341
342 /* If everything is the default, we can just return zero. */
343 if (decl == 0 && offset == 0)
344 return 0;
345
346 attrs.decl = decl;
347 attrs.offset = offset;
348
349 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
350 if (*slot == 0)
351 {
352 *slot = ggc_alloc (sizeof (reg_attrs));
353 memcpy (*slot, &attrs, sizeof (reg_attrs));
354 }
355
356 return *slot;
357 }
358
359 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
360 don't attempt to share with the various global pieces of rtl (such as
361 frame_pointer_rtx). */
362
363 rtx
364 gen_raw_REG (enum machine_mode mode, int regno)
365 {
366 rtx x = gen_rtx_raw_REG (mode, regno);
367 ORIGINAL_REGNO (x) = regno;
368 return x;
369 }
370
371 /* There are some RTL codes that require special attention; the generation
372 functions do the raw handling. If you add to this list, modify
373 special_rtx in gengenrtl.c as well. */
374
375 rtx
376 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
377 {
378 void **slot;
379
380 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
381 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
382
383 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
384 if (const_true_rtx && arg == STORE_FLAG_VALUE)
385 return const_true_rtx;
386 #endif
387
388 /* Look up the CONST_INT in the hash table. */
389 slot = htab_find_slot_with_hash (const_int_htab, &arg,
390 (hashval_t) arg, INSERT);
391 if (*slot == 0)
392 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
393
394 return (rtx) *slot;
395 }
396
397 rtx
398 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
399 {
400 return GEN_INT (trunc_int_for_mode (c, mode));
401 }
402
403 /* CONST_DOUBLEs might be created from pairs of integers, or from
404 REAL_VALUE_TYPEs. Also, their length is known only at run time,
405 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
406
407 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
408 hash table. If so, return its counterpart; otherwise add it
409 to the hash table and return it. */
410 static rtx
411 lookup_const_double (rtx real)
412 {
413 void **slot = htab_find_slot (const_double_htab, real, INSERT);
414 if (*slot == 0)
415 *slot = real;
416
417 return (rtx) *slot;
418 }
419
420 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
421 VALUE in mode MODE. */
422 rtx
423 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
424 {
425 rtx real = rtx_alloc (CONST_DOUBLE);
426 PUT_MODE (real, mode);
427
428 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
429
430 return lookup_const_double (real);
431 }
432
433 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
434 of ints: I0 is the low-order word and I1 is the high-order word.
435 Do not use this routine for non-integer modes; convert to
436 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
437
438 rtx
439 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
440 {
441 rtx value;
442 unsigned int i;
443
444 if (mode != VOIDmode)
445 {
446 int width;
447
448 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
449 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
450 /* We can get a 0 for an error mark. */
451 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
452 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
453
454 /* We clear out all bits that don't belong in MODE, unless they and
455 our sign bit are all one. So we get either a reasonable negative
456 value or a reasonable unsigned value for this mode. */
457 width = GET_MODE_BITSIZE (mode);
458 if (width < HOST_BITS_PER_WIDE_INT
459 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
460 != ((HOST_WIDE_INT) (-1) << (width - 1))))
461 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
462 else if (width == HOST_BITS_PER_WIDE_INT
463 && ! (i1 == ~0 && i0 < 0))
464 i1 = 0;
465 else
466 /* We should be able to represent this value as a constant. */
467 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
468
469 /* If this would be an entire word for the target, but is not for
470 the host, then sign-extend on the host so that the number will
471 look the same way on the host that it would on the target.
472
473 For example, when building a 64 bit alpha hosted 32 bit sparc
474 targeted compiler, then we want the 32 bit unsigned value -1 to be
475 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
476 The latter confuses the sparc backend. */
477
478 if (width < HOST_BITS_PER_WIDE_INT
479 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
480 i0 |= ((HOST_WIDE_INT) (-1) << width);
481
482 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
483 CONST_INT.
484
485 ??? Strictly speaking, this is wrong if we create a CONST_INT for
486 a large unsigned constant with the size of MODE being
487 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
488 in a wider mode. In that case we will mis-interpret it as a
489 negative number.
490
491 Unfortunately, the only alternative is to make a CONST_DOUBLE for
492 any constant in any mode if it is an unsigned constant larger
493 than the maximum signed integer in an int on the host. However,
494 doing this will break everyone that always expects to see a
495 CONST_INT for SImode and smaller.
496
497 We have always been making CONST_INTs in this case, so nothing
498 new is being broken. */
499
500 if (width <= HOST_BITS_PER_WIDE_INT)
501 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
502 }
503
504 /* If this integer fits in one word, return a CONST_INT. */
505 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
506 return GEN_INT (i0);
507
508 /* We use VOIDmode for integers. */
509 value = rtx_alloc (CONST_DOUBLE);
510 PUT_MODE (value, VOIDmode);
511
512 CONST_DOUBLE_LOW (value) = i0;
513 CONST_DOUBLE_HIGH (value) = i1;
514
515 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
516 XWINT (value, i) = 0;
517
518 return lookup_const_double (value);
519 }
520
521 rtx
522 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
523 {
524 /* In case the MD file explicitly references the frame pointer, have
525 all such references point to the same frame pointer. This is
526 used during frame pointer elimination to distinguish the explicit
527 references to these registers from pseudos that happened to be
528 assigned to them.
529
530 If we have eliminated the frame pointer or arg pointer, we will
531 be using it as a normal register, for example as a spill
532 register. In such cases, we might be accessing it in a mode that
533 is not Pmode and therefore cannot use the pre-allocated rtx.
534
535 Also don't do this when we are making new REGs in reload, since
536 we don't want to get confused with the real pointers. */
537
538 if (mode == Pmode && !reload_in_progress)
539 {
540 if (regno == FRAME_POINTER_REGNUM
541 && (!reload_completed || frame_pointer_needed))
542 return frame_pointer_rtx;
543 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
544 if (regno == HARD_FRAME_POINTER_REGNUM
545 && (!reload_completed || frame_pointer_needed))
546 return hard_frame_pointer_rtx;
547 #endif
548 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
549 if (regno == ARG_POINTER_REGNUM)
550 return arg_pointer_rtx;
551 #endif
552 #ifdef RETURN_ADDRESS_POINTER_REGNUM
553 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
554 return return_address_pointer_rtx;
555 #endif
556 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
557 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
558 return pic_offset_table_rtx;
559 if (regno == STACK_POINTER_REGNUM)
560 return stack_pointer_rtx;
561 }
562
563 #if 0
564 /* If the per-function register table has been set up, try to re-use
565 an existing entry in that table to avoid useless generation of RTL.
566
567 This code is disabled for now until we can fix the various backends
568 which depend on having non-shared hard registers in some cases. Long
569 term we want to re-enable this code as it can significantly cut down
570 on the amount of useless RTL that gets generated.
571
572 We'll also need to fix some code that runs after reload that wants to
573 set ORIGINAL_REGNO. */
574
575 if (cfun
576 && cfun->emit
577 && regno_reg_rtx
578 && regno < FIRST_PSEUDO_REGISTER
579 && reg_raw_mode[regno] == mode)
580 return regno_reg_rtx[regno];
581 #endif
582
583 return gen_raw_REG (mode, regno);
584 }
585
586 rtx
587 gen_rtx_MEM (enum machine_mode mode, rtx addr)
588 {
589 rtx rt = gen_rtx_raw_MEM (mode, addr);
590
591 /* This field is not cleared by the mere allocation of the rtx, so
592 we clear it here. */
593 MEM_ATTRS (rt) = 0;
594
595 return rt;
596 }
597
598 /* Generate a memory referring to non-trapping constant memory. */
599
600 rtx
601 gen_const_mem (enum machine_mode mode, rtx addr)
602 {
603 rtx mem = gen_rtx_MEM (mode, addr);
604 MEM_READONLY_P (mem) = 1;
605 MEM_NOTRAP_P (mem) = 1;
606 return mem;
607 }
608
609 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
610 this construct would be valid, and false otherwise. */
611
612 bool
613 validate_subreg (enum machine_mode omode, enum machine_mode imode,
614 rtx reg, unsigned int offset)
615 {
616 unsigned int isize = GET_MODE_SIZE (imode);
617 unsigned int osize = GET_MODE_SIZE (omode);
618
619 /* All subregs must be aligned. */
620 if (offset % osize != 0)
621 return false;
622
623 /* The subreg offset cannot be outside the inner object. */
624 if (offset >= isize)
625 return false;
626
627 /* ??? This should not be here. Temporarily continue to allow word_mode
628 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
629 Generally, backends are doing something sketchy but it'll take time to
630 fix them all. */
631 if (omode == word_mode)
632 ;
633 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
634 is the culprit here, and not the backends. */
635 else if (osize >= UNITS_PER_WORD && isize >= osize)
636 ;
637 /* Allow component subregs of complex and vector. Though given the below
638 extraction rules, it's not always clear what that means. */
639 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
640 && GET_MODE_INNER (imode) == omode)
641 ;
642 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
643 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
644 represent this. It's questionable if this ought to be represented at
645 all -- why can't this all be hidden in post-reload splitters that make
646 arbitrarily mode changes to the registers themselves. */
647 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
648 ;
649 /* Subregs involving floating point modes are not allowed to
650 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
651 (subreg:SI (reg:DF) 0) isn't. */
652 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
653 {
654 if (isize != osize)
655 return false;
656 }
657
658 /* Paradoxical subregs must have offset zero. */
659 if (osize > isize)
660 return offset == 0;
661
662 /* This is a normal subreg. Verify that the offset is representable. */
663
664 /* For hard registers, we already have most of these rules collected in
665 subreg_offset_representable_p. */
666 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
667 {
668 unsigned int regno = REGNO (reg);
669
670 #ifdef CANNOT_CHANGE_MODE_CLASS
671 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
672 && GET_MODE_INNER (imode) == omode)
673 ;
674 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
675 return false;
676 #endif
677
678 return subreg_offset_representable_p (regno, imode, offset, omode);
679 }
680
681 /* For pseudo registers, we want most of the same checks. Namely:
682 If the register no larger than a word, the subreg must be lowpart.
683 If the register is larger than a word, the subreg must be the lowpart
684 of a subword. A subreg does *not* perform arbitrary bit extraction.
685 Given that we've already checked mode/offset alignment, we only have
686 to check subword subregs here. */
687 if (osize < UNITS_PER_WORD)
688 {
689 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
690 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
691 if (offset % UNITS_PER_WORD != low_off)
692 return false;
693 }
694 return true;
695 }
696
697 rtx
698 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
699 {
700 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
701 return gen_rtx_raw_SUBREG (mode, reg, offset);
702 }
703
704 /* Generate a SUBREG representing the least-significant part of REG if MODE
705 is smaller than mode of REG, otherwise paradoxical SUBREG. */
706
707 rtx
708 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
709 {
710 enum machine_mode inmode;
711
712 inmode = GET_MODE (reg);
713 if (inmode == VOIDmode)
714 inmode = mode;
715 return gen_rtx_SUBREG (mode, reg,
716 subreg_lowpart_offset (mode, inmode));
717 }
718 \f
719 /* gen_rtvec (n, [rt1, ..., rtn])
720 **
721 ** This routine creates an rtvec and stores within it the
722 ** pointers to rtx's which are its arguments.
723 */
724
725 /*VARARGS1*/
726 rtvec
727 gen_rtvec (int n, ...)
728 {
729 int i, save_n;
730 rtx *vector;
731 va_list p;
732
733 va_start (p, n);
734
735 if (n == 0)
736 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
737
738 vector = alloca (n * sizeof (rtx));
739
740 for (i = 0; i < n; i++)
741 vector[i] = va_arg (p, rtx);
742
743 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
744 save_n = n;
745 va_end (p);
746
747 return gen_rtvec_v (save_n, vector);
748 }
749
750 rtvec
751 gen_rtvec_v (int n, rtx *argp)
752 {
753 int i;
754 rtvec rt_val;
755
756 if (n == 0)
757 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
758
759 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
760
761 for (i = 0; i < n; i++)
762 rt_val->elem[i] = *argp++;
763
764 return rt_val;
765 }
766 \f
767 /* Generate a REG rtx for a new pseudo register of mode MODE.
768 This pseudo is assigned the next sequential register number. */
769
770 rtx
771 gen_reg_rtx (enum machine_mode mode)
772 {
773 struct function *f = cfun;
774 rtx val;
775
776 /* Don't let anything called after initial flow analysis create new
777 registers. */
778 gcc_assert (!no_new_pseudos);
779
780 if (generating_concat_p
781 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
782 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
783 {
784 /* For complex modes, don't make a single pseudo.
785 Instead, make a CONCAT of two pseudos.
786 This allows noncontiguous allocation of the real and imaginary parts,
787 which makes much better code. Besides, allocating DCmode
788 pseudos overstrains reload on some machines like the 386. */
789 rtx realpart, imagpart;
790 enum machine_mode partmode = GET_MODE_INNER (mode);
791
792 realpart = gen_reg_rtx (partmode);
793 imagpart = gen_reg_rtx (partmode);
794 return gen_rtx_CONCAT (mode, realpart, imagpart);
795 }
796
797 /* Make sure regno_pointer_align, and regno_reg_rtx are large
798 enough to have an element for this pseudo reg number. */
799
800 if (reg_rtx_no == f->emit->regno_pointer_align_length)
801 {
802 int old_size = f->emit->regno_pointer_align_length;
803 char *new;
804 rtx *new1;
805
806 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
807 memset (new + old_size, 0, old_size);
808 f->emit->regno_pointer_align = (unsigned char *) new;
809
810 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
811 old_size * 2 * sizeof (rtx));
812 memset (new1 + old_size, 0, old_size * sizeof (rtx));
813 regno_reg_rtx = new1;
814
815 f->emit->regno_pointer_align_length = old_size * 2;
816 }
817
818 val = gen_raw_REG (mode, reg_rtx_no);
819 regno_reg_rtx[reg_rtx_no++] = val;
820 return val;
821 }
822
823 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
824 Do the big endian correction if needed. */
825
826 rtx
827 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
828 {
829 rtx new = gen_rtx_REG (mode, regno);
830 tree decl;
831 HOST_WIDE_INT var_size;
832
833 /* PR middle-end/14084
834 The problem appears when a variable is stored in a larger register
835 and later it is used in the original mode or some mode in between
836 or some part of variable is accessed.
837
838 On little endian machines there is no problem because
839 the REG_OFFSET of the start of the variable is the same when
840 accessed in any mode (it is 0).
841
842 However, this is not true on big endian machines.
843 The offset of the start of the variable is different when accessed
844 in different modes.
845 When we are taking a part of the REG we have to change the OFFSET
846 from offset WRT size of mode of REG to offset WRT size of variable.
847
848 If we would not do the big endian correction the resulting REG_OFFSET
849 would be larger than the size of the DECL.
850
851 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
852
853 REG.mode MODE DECL size old offset new offset description
854 DI SI 4 4 0 int32 in SImode
855 DI SI 1 4 0 char in SImode
856 DI QI 1 7 0 char in QImode
857 DI QI 4 5 1 1st element in QImode
858 of char[4]
859 DI HI 4 6 2 1st element in HImode
860 of int16[2]
861
862 If the size of DECL is equal or greater than the size of REG
863 we can't do this correction because the register holds the
864 whole variable or a part of the variable and thus the REG_OFFSET
865 is already correct. */
866
867 decl = REG_EXPR (reg);
868 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
869 && decl != NULL
870 && offset > 0
871 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
872 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
873 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
874 {
875 int offset_le;
876
877 /* Convert machine endian to little endian WRT size of mode of REG. */
878 if (WORDS_BIG_ENDIAN)
879 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
880 / UNITS_PER_WORD) * UNITS_PER_WORD;
881 else
882 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
883
884 if (BYTES_BIG_ENDIAN)
885 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
886 % UNITS_PER_WORD);
887 else
888 offset_le += offset % UNITS_PER_WORD;
889
890 if (offset_le >= var_size)
891 {
892 /* MODE is wider than the variable so the new reg will cover
893 the whole variable so the resulting OFFSET should be 0. */
894 offset = 0;
895 }
896 else
897 {
898 /* Convert little endian to machine endian WRT size of variable. */
899 if (WORDS_BIG_ENDIAN)
900 offset = ((var_size - 1 - offset_le)
901 / UNITS_PER_WORD) * UNITS_PER_WORD;
902 else
903 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
904
905 if (BYTES_BIG_ENDIAN)
906 offset += ((var_size - 1 - offset_le)
907 % UNITS_PER_WORD);
908 else
909 offset += offset_le % UNITS_PER_WORD;
910 }
911 }
912
913 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
914 REG_OFFSET (reg) + offset);
915 return new;
916 }
917
918 /* Set the decl for MEM to DECL. */
919
920 void
921 set_reg_attrs_from_mem (rtx reg, rtx mem)
922 {
923 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
924 REG_ATTRS (reg)
925 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
926 }
927
928 /* Set the register attributes for registers contained in PARM_RTX.
929 Use needed values from memory attributes of MEM. */
930
931 void
932 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
933 {
934 if (REG_P (parm_rtx))
935 set_reg_attrs_from_mem (parm_rtx, mem);
936 else if (GET_CODE (parm_rtx) == PARALLEL)
937 {
938 /* Check for a NULL entry in the first slot, used to indicate that the
939 parameter goes both on the stack and in registers. */
940 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
941 for (; i < XVECLEN (parm_rtx, 0); i++)
942 {
943 rtx x = XVECEXP (parm_rtx, 0, i);
944 if (REG_P (XEXP (x, 0)))
945 REG_ATTRS (XEXP (x, 0))
946 = get_reg_attrs (MEM_EXPR (mem),
947 INTVAL (XEXP (x, 1)));
948 }
949 }
950 }
951
952 /* Assign the RTX X to declaration T. */
953 void
954 set_decl_rtl (tree t, rtx x)
955 {
956 DECL_CHECK (t)->decl.rtl = x;
957
958 if (!x)
959 return;
960 /* For register, we maintain the reverse information too. */
961 if (REG_P (x))
962 REG_ATTRS (x) = get_reg_attrs (t, 0);
963 else if (GET_CODE (x) == SUBREG)
964 REG_ATTRS (SUBREG_REG (x))
965 = get_reg_attrs (t, -SUBREG_BYTE (x));
966 if (GET_CODE (x) == CONCAT)
967 {
968 if (REG_P (XEXP (x, 0)))
969 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
970 if (REG_P (XEXP (x, 1)))
971 REG_ATTRS (XEXP (x, 1))
972 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
973 }
974 if (GET_CODE (x) == PARALLEL)
975 {
976 int i;
977 for (i = 0; i < XVECLEN (x, 0); i++)
978 {
979 rtx y = XVECEXP (x, 0, i);
980 if (REG_P (XEXP (y, 0)))
981 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
982 }
983 }
984 }
985
986 /* Assign the RTX X to parameter declaration T. */
987 void
988 set_decl_incoming_rtl (tree t, rtx x)
989 {
990 DECL_INCOMING_RTL (t) = x;
991
992 if (!x)
993 return;
994 /* For register, we maintain the reverse information too. */
995 if (REG_P (x))
996 REG_ATTRS (x) = get_reg_attrs (t, 0);
997 else if (GET_CODE (x) == SUBREG)
998 REG_ATTRS (SUBREG_REG (x))
999 = get_reg_attrs (t, -SUBREG_BYTE (x));
1000 if (GET_CODE (x) == CONCAT)
1001 {
1002 if (REG_P (XEXP (x, 0)))
1003 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1004 if (REG_P (XEXP (x, 1)))
1005 REG_ATTRS (XEXP (x, 1))
1006 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1007 }
1008 if (GET_CODE (x) == PARALLEL)
1009 {
1010 int i, start;
1011
1012 /* Check for a NULL entry, used to indicate that the parameter goes
1013 both on the stack and in registers. */
1014 if (XEXP (XVECEXP (x, 0, 0), 0))
1015 start = 0;
1016 else
1017 start = 1;
1018
1019 for (i = start; i < XVECLEN (x, 0); i++)
1020 {
1021 rtx y = XVECEXP (x, 0, i);
1022 if (REG_P (XEXP (y, 0)))
1023 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1024 }
1025 }
1026 }
1027
1028 /* Identify REG (which may be a CONCAT) as a user register. */
1029
1030 void
1031 mark_user_reg (rtx reg)
1032 {
1033 if (GET_CODE (reg) == CONCAT)
1034 {
1035 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1036 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1037 }
1038 else
1039 {
1040 gcc_assert (REG_P (reg));
1041 REG_USERVAR_P (reg) = 1;
1042 }
1043 }
1044
1045 /* Identify REG as a probable pointer register and show its alignment
1046 as ALIGN, if nonzero. */
1047
1048 void
1049 mark_reg_pointer (rtx reg, int align)
1050 {
1051 if (! REG_POINTER (reg))
1052 {
1053 REG_POINTER (reg) = 1;
1054
1055 if (align)
1056 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1057 }
1058 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1059 /* We can no-longer be sure just how aligned this pointer is. */
1060 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1061 }
1062
1063 /* Return 1 plus largest pseudo reg number used in the current function. */
1064
1065 int
1066 max_reg_num (void)
1067 {
1068 return reg_rtx_no;
1069 }
1070
1071 /* Return 1 + the largest label number used so far in the current function. */
1072
1073 int
1074 max_label_num (void)
1075 {
1076 return label_num;
1077 }
1078
1079 /* Return first label number used in this function (if any were used). */
1080
1081 int
1082 get_first_label_num (void)
1083 {
1084 return first_label_num;
1085 }
1086
1087 /* If the rtx for label was created during the expansion of a nested
1088 function, then first_label_num won't include this label number.
1089 Fix this now so that array indicies work later. */
1090
1091 void
1092 maybe_set_first_label_num (rtx x)
1093 {
1094 if (CODE_LABEL_NUMBER (x) < first_label_num)
1095 first_label_num = CODE_LABEL_NUMBER (x);
1096 }
1097 \f
1098 /* Return a value representing some low-order bits of X, where the number
1099 of low-order bits is given by MODE. Note that no conversion is done
1100 between floating-point and fixed-point values, rather, the bit
1101 representation is returned.
1102
1103 This function handles the cases in common between gen_lowpart, below,
1104 and two variants in cse.c and combine.c. These are the cases that can
1105 be safely handled at all points in the compilation.
1106
1107 If this is not a case we can handle, return 0. */
1108
1109 rtx
1110 gen_lowpart_common (enum machine_mode mode, rtx x)
1111 {
1112 int msize = GET_MODE_SIZE (mode);
1113 int xsize;
1114 int offset = 0;
1115 enum machine_mode innermode;
1116
1117 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1118 so we have to make one up. Yuk. */
1119 innermode = GET_MODE (x);
1120 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1121 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1122 else if (innermode == VOIDmode)
1123 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1124
1125 xsize = GET_MODE_SIZE (innermode);
1126
1127 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1128
1129 if (innermode == mode)
1130 return x;
1131
1132 /* MODE must occupy no more words than the mode of X. */
1133 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1134 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1135 return 0;
1136
1137 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1138 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1139 return 0;
1140
1141 offset = subreg_lowpart_offset (mode, innermode);
1142
1143 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1144 && (GET_MODE_CLASS (mode) == MODE_INT
1145 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1146 {
1147 /* If we are getting the low-order part of something that has been
1148 sign- or zero-extended, we can either just use the object being
1149 extended or make a narrower extension. If we want an even smaller
1150 piece than the size of the object being extended, call ourselves
1151 recursively.
1152
1153 This case is used mostly by combine and cse. */
1154
1155 if (GET_MODE (XEXP (x, 0)) == mode)
1156 return XEXP (x, 0);
1157 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1158 return gen_lowpart_common (mode, XEXP (x, 0));
1159 else if (msize < xsize)
1160 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1161 }
1162 else if (GET_CODE (x) == SUBREG || REG_P (x)
1163 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1164 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1165 return simplify_gen_subreg (mode, x, innermode, offset);
1166
1167 /* Otherwise, we can't do this. */
1168 return 0;
1169 }
1170 \f
1171 rtx
1172 gen_highpart (enum machine_mode mode, rtx x)
1173 {
1174 unsigned int msize = GET_MODE_SIZE (mode);
1175 rtx result;
1176
1177 /* This case loses if X is a subreg. To catch bugs early,
1178 complain if an invalid MODE is used even in other cases. */
1179 gcc_assert (msize <= UNITS_PER_WORD
1180 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1181
1182 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1183 subreg_highpart_offset (mode, GET_MODE (x)));
1184 gcc_assert (result);
1185
1186 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1187 the target if we have a MEM. gen_highpart must return a valid operand,
1188 emitting code if necessary to do so. */
1189 if (MEM_P (result))
1190 {
1191 result = validize_mem (result);
1192 gcc_assert (result);
1193 }
1194
1195 return result;
1196 }
1197
1198 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1199 be VOIDmode constant. */
1200 rtx
1201 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1202 {
1203 if (GET_MODE (exp) != VOIDmode)
1204 {
1205 gcc_assert (GET_MODE (exp) == innermode);
1206 return gen_highpart (outermode, exp);
1207 }
1208 return simplify_gen_subreg (outermode, exp, innermode,
1209 subreg_highpart_offset (outermode, innermode));
1210 }
1211
1212 /* Return offset in bytes to get OUTERMODE low part
1213 of the value in mode INNERMODE stored in memory in target format. */
1214
1215 unsigned int
1216 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1217 {
1218 unsigned int offset = 0;
1219 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1220
1221 if (difference > 0)
1222 {
1223 if (WORDS_BIG_ENDIAN)
1224 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1225 if (BYTES_BIG_ENDIAN)
1226 offset += difference % UNITS_PER_WORD;
1227 }
1228
1229 return offset;
1230 }
1231
1232 /* Return offset in bytes to get OUTERMODE high part
1233 of the value in mode INNERMODE stored in memory in target format. */
1234 unsigned int
1235 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1236 {
1237 unsigned int offset = 0;
1238 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1239
1240 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1241
1242 if (difference > 0)
1243 {
1244 if (! WORDS_BIG_ENDIAN)
1245 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1246 if (! BYTES_BIG_ENDIAN)
1247 offset += difference % UNITS_PER_WORD;
1248 }
1249
1250 return offset;
1251 }
1252
1253 /* Return 1 iff X, assumed to be a SUBREG,
1254 refers to the least significant part of its containing reg.
1255 If X is not a SUBREG, always return 1 (it is its own low part!). */
1256
1257 int
1258 subreg_lowpart_p (rtx x)
1259 {
1260 if (GET_CODE (x) != SUBREG)
1261 return 1;
1262 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1263 return 0;
1264
1265 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1266 == SUBREG_BYTE (x));
1267 }
1268 \f
1269 /* Return subword OFFSET of operand OP.
1270 The word number, OFFSET, is interpreted as the word number starting
1271 at the low-order address. OFFSET 0 is the low-order word if not
1272 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1273
1274 If we cannot extract the required word, we return zero. Otherwise,
1275 an rtx corresponding to the requested word will be returned.
1276
1277 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1278 reload has completed, a valid address will always be returned. After
1279 reload, if a valid address cannot be returned, we return zero.
1280
1281 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1282 it is the responsibility of the caller.
1283
1284 MODE is the mode of OP in case it is a CONST_INT.
1285
1286 ??? This is still rather broken for some cases. The problem for the
1287 moment is that all callers of this thing provide no 'goal mode' to
1288 tell us to work with. This exists because all callers were written
1289 in a word based SUBREG world.
1290 Now use of this function can be deprecated by simplify_subreg in most
1291 cases.
1292 */
1293
1294 rtx
1295 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1296 {
1297 if (mode == VOIDmode)
1298 mode = GET_MODE (op);
1299
1300 gcc_assert (mode != VOIDmode);
1301
1302 /* If OP is narrower than a word, fail. */
1303 if (mode != BLKmode
1304 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1305 return 0;
1306
1307 /* If we want a word outside OP, return zero. */
1308 if (mode != BLKmode
1309 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1310 return const0_rtx;
1311
1312 /* Form a new MEM at the requested address. */
1313 if (MEM_P (op))
1314 {
1315 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1316
1317 if (! validate_address)
1318 return new;
1319
1320 else if (reload_completed)
1321 {
1322 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1323 return 0;
1324 }
1325 else
1326 return replace_equiv_address (new, XEXP (new, 0));
1327 }
1328
1329 /* Rest can be handled by simplify_subreg. */
1330 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1331 }
1332
1333 /* Similar to `operand_subword', but never return 0. If we can't
1334 extract the required subword, put OP into a register and try again.
1335 The second attempt must succeed. We always validate the address in
1336 this case.
1337
1338 MODE is the mode of OP, in case it is CONST_INT. */
1339
1340 rtx
1341 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1342 {
1343 rtx result = operand_subword (op, offset, 1, mode);
1344
1345 if (result)
1346 return result;
1347
1348 if (mode != BLKmode && mode != VOIDmode)
1349 {
1350 /* If this is a register which can not be accessed by words, copy it
1351 to a pseudo register. */
1352 if (REG_P (op))
1353 op = copy_to_reg (op);
1354 else
1355 op = force_reg (mode, op);
1356 }
1357
1358 result = operand_subword (op, offset, 1, mode);
1359 gcc_assert (result);
1360
1361 return result;
1362 }
1363 \f
1364 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1365 or (2) a component ref of something variable. Represent the later with
1366 a NULL expression. */
1367
1368 static tree
1369 component_ref_for_mem_expr (tree ref)
1370 {
1371 tree inner = TREE_OPERAND (ref, 0);
1372
1373 if (TREE_CODE (inner) == COMPONENT_REF)
1374 inner = component_ref_for_mem_expr (inner);
1375 else
1376 {
1377 /* Now remove any conversions: they don't change what the underlying
1378 object is. Likewise for SAVE_EXPR. */
1379 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1380 || TREE_CODE (inner) == NON_LVALUE_EXPR
1381 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1382 || TREE_CODE (inner) == SAVE_EXPR)
1383 inner = TREE_OPERAND (inner, 0);
1384
1385 if (! DECL_P (inner))
1386 inner = NULL_TREE;
1387 }
1388
1389 if (inner == TREE_OPERAND (ref, 0))
1390 return ref;
1391 else
1392 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1393 TREE_OPERAND (ref, 1), NULL_TREE);
1394 }
1395
1396 /* Returns 1 if both MEM_EXPR can be considered equal
1397 and 0 otherwise. */
1398
1399 int
1400 mem_expr_equal_p (tree expr1, tree expr2)
1401 {
1402 if (expr1 == expr2)
1403 return 1;
1404
1405 if (! expr1 || ! expr2)
1406 return 0;
1407
1408 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1409 return 0;
1410
1411 if (TREE_CODE (expr1) == COMPONENT_REF)
1412 return
1413 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1414 TREE_OPERAND (expr2, 0))
1415 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1416 TREE_OPERAND (expr2, 1));
1417
1418 if (INDIRECT_REF_P (expr1))
1419 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1420 TREE_OPERAND (expr2, 0));
1421
1422 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1423 have been resolved here. */
1424 gcc_assert (DECL_P (expr1));
1425
1426 /* Decls with different pointers can't be equal. */
1427 return 0;
1428 }
1429
1430 /* Given REF, a MEM, and T, either the type of X or the expression
1431 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1432 if we are making a new object of this type. BITPOS is nonzero if
1433 there is an offset outstanding on T that will be applied later. */
1434
1435 void
1436 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1437 HOST_WIDE_INT bitpos)
1438 {
1439 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1440 tree expr = MEM_EXPR (ref);
1441 rtx offset = MEM_OFFSET (ref);
1442 rtx size = MEM_SIZE (ref);
1443 unsigned int align = MEM_ALIGN (ref);
1444 HOST_WIDE_INT apply_bitpos = 0;
1445 tree type;
1446
1447 /* It can happen that type_for_mode was given a mode for which there
1448 is no language-level type. In which case it returns NULL, which
1449 we can see here. */
1450 if (t == NULL_TREE)
1451 return;
1452
1453 type = TYPE_P (t) ? t : TREE_TYPE (t);
1454 if (type == error_mark_node)
1455 return;
1456
1457 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1458 wrong answer, as it assumes that DECL_RTL already has the right alias
1459 info. Callers should not set DECL_RTL until after the call to
1460 set_mem_attributes. */
1461 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1462
1463 /* Get the alias set from the expression or type (perhaps using a
1464 front-end routine) and use it. */
1465 alias = get_alias_set (t);
1466
1467 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1468 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1469 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1470 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1471
1472 /* If we are making an object of this type, or if this is a DECL, we know
1473 that it is a scalar if the type is not an aggregate. */
1474 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1475 MEM_SCALAR_P (ref) = 1;
1476
1477 /* We can set the alignment from the type if we are making an object,
1478 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1479 if (objectp || TREE_CODE (t) == INDIRECT_REF
1480 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1481 || TYPE_ALIGN_OK (type))
1482 align = MAX (align, TYPE_ALIGN (type));
1483 else
1484 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1485 {
1486 if (integer_zerop (TREE_OPERAND (t, 1)))
1487 /* We don't know anything about the alignment. */
1488 align = BITS_PER_UNIT;
1489 else
1490 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1491 }
1492
1493 /* If the size is known, we can set that. */
1494 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1495 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1496
1497 /* If T is not a type, we may be able to deduce some more information about
1498 the expression. */
1499 if (! TYPE_P (t))
1500 {
1501 tree base = get_base_address (t);
1502 if (base && DECL_P (base)
1503 && TREE_READONLY (base)
1504 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1505 {
1506 tree base_type = TREE_TYPE (base);
1507 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1508 || DECL_ARTIFICIAL (base));
1509 MEM_READONLY_P (ref) = 1;
1510 }
1511
1512 if (TREE_THIS_VOLATILE (t))
1513 MEM_VOLATILE_P (ref) = 1;
1514
1515 /* Now remove any conversions: they don't change what the underlying
1516 object is. Likewise for SAVE_EXPR. */
1517 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1518 || TREE_CODE (t) == NON_LVALUE_EXPR
1519 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1520 || TREE_CODE (t) == SAVE_EXPR)
1521 t = TREE_OPERAND (t, 0);
1522
1523 /* If this expression uses it's parent's alias set, mark it such
1524 that we won't change it. */
1525 if (component_uses_parent_alias_set (t))
1526 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1527
1528 /* If this is a decl, set the attributes of the MEM from it. */
1529 if (DECL_P (t))
1530 {
1531 expr = t;
1532 offset = const0_rtx;
1533 apply_bitpos = bitpos;
1534 size = (DECL_SIZE_UNIT (t)
1535 && host_integerp (DECL_SIZE_UNIT (t), 1)
1536 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1537 align = DECL_ALIGN (t);
1538 }
1539
1540 /* If this is a constant, we know the alignment. */
1541 else if (CONSTANT_CLASS_P (t))
1542 {
1543 align = TYPE_ALIGN (type);
1544 #ifdef CONSTANT_ALIGNMENT
1545 align = CONSTANT_ALIGNMENT (t, align);
1546 #endif
1547 }
1548
1549 /* If this is a field reference and not a bit-field, record it. */
1550 /* ??? There is some information that can be gleened from bit-fields,
1551 such as the word offset in the structure that might be modified.
1552 But skip it for now. */
1553 else if (TREE_CODE (t) == COMPONENT_REF
1554 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1555 {
1556 expr = component_ref_for_mem_expr (t);
1557 offset = const0_rtx;
1558 apply_bitpos = bitpos;
1559 /* ??? Any reason the field size would be different than
1560 the size we got from the type? */
1561 }
1562
1563 /* If this is an array reference, look for an outer field reference. */
1564 else if (TREE_CODE (t) == ARRAY_REF)
1565 {
1566 tree off_tree = size_zero_node;
1567 /* We can't modify t, because we use it at the end of the
1568 function. */
1569 tree t2 = t;
1570
1571 do
1572 {
1573 tree index = TREE_OPERAND (t2, 1);
1574 tree low_bound = array_ref_low_bound (t2);
1575 tree unit_size = array_ref_element_size (t2);
1576
1577 /* We assume all arrays have sizes that are a multiple of a byte.
1578 First subtract the lower bound, if any, in the type of the
1579 index, then convert to sizetype and multiply by the size of
1580 the array element. */
1581 if (! integer_zerop (low_bound))
1582 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1583 index, low_bound);
1584
1585 off_tree = size_binop (PLUS_EXPR,
1586 size_binop (MULT_EXPR, convert (sizetype,
1587 index),
1588 unit_size),
1589 off_tree);
1590 t2 = TREE_OPERAND (t2, 0);
1591 }
1592 while (TREE_CODE (t2) == ARRAY_REF);
1593
1594 if (DECL_P (t2))
1595 {
1596 expr = t2;
1597 offset = NULL;
1598 if (host_integerp (off_tree, 1))
1599 {
1600 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1601 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1602 align = DECL_ALIGN (t2);
1603 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1604 align = aoff;
1605 offset = GEN_INT (ioff);
1606 apply_bitpos = bitpos;
1607 }
1608 }
1609 else if (TREE_CODE (t2) == COMPONENT_REF)
1610 {
1611 expr = component_ref_for_mem_expr (t2);
1612 if (host_integerp (off_tree, 1))
1613 {
1614 offset = GEN_INT (tree_low_cst (off_tree, 1));
1615 apply_bitpos = bitpos;
1616 }
1617 /* ??? Any reason the field size would be different than
1618 the size we got from the type? */
1619 }
1620 else if (flag_argument_noalias > 1
1621 && (INDIRECT_REF_P (t2))
1622 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1623 {
1624 expr = t2;
1625 offset = NULL;
1626 }
1627 }
1628
1629 /* If this is a Fortran indirect argument reference, record the
1630 parameter decl. */
1631 else if (flag_argument_noalias > 1
1632 && (INDIRECT_REF_P (t))
1633 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1634 {
1635 expr = t;
1636 offset = NULL;
1637 }
1638 }
1639
1640 /* If we modified OFFSET based on T, then subtract the outstanding
1641 bit position offset. Similarly, increase the size of the accessed
1642 object to contain the negative offset. */
1643 if (apply_bitpos)
1644 {
1645 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1646 if (size)
1647 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1648 }
1649
1650 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1651 {
1652 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1653 we're overlapping. */
1654 offset = NULL;
1655 expr = NULL;
1656 }
1657
1658 /* Now set the attributes we computed above. */
1659 MEM_ATTRS (ref)
1660 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1661
1662 /* If this is already known to be a scalar or aggregate, we are done. */
1663 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1664 return;
1665
1666 /* If it is a reference into an aggregate, this is part of an aggregate.
1667 Otherwise we don't know. */
1668 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1669 || TREE_CODE (t) == ARRAY_RANGE_REF
1670 || TREE_CODE (t) == BIT_FIELD_REF)
1671 MEM_IN_STRUCT_P (ref) = 1;
1672 }
1673
1674 void
1675 set_mem_attributes (rtx ref, tree t, int objectp)
1676 {
1677 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1678 }
1679
1680 /* Set the decl for MEM to DECL. */
1681
1682 void
1683 set_mem_attrs_from_reg (rtx mem, rtx reg)
1684 {
1685 MEM_ATTRS (mem)
1686 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1687 GEN_INT (REG_OFFSET (reg)),
1688 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1689 }
1690
1691 /* Set the alias set of MEM to SET. */
1692
1693 void
1694 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1695 {
1696 #ifdef ENABLE_CHECKING
1697 /* If the new and old alias sets don't conflict, something is wrong. */
1698 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1699 #endif
1700
1701 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1702 MEM_SIZE (mem), MEM_ALIGN (mem),
1703 GET_MODE (mem));
1704 }
1705
1706 /* Set the alignment of MEM to ALIGN bits. */
1707
1708 void
1709 set_mem_align (rtx mem, unsigned int align)
1710 {
1711 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1712 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1713 GET_MODE (mem));
1714 }
1715
1716 /* Set the expr for MEM to EXPR. */
1717
1718 void
1719 set_mem_expr (rtx mem, tree expr)
1720 {
1721 MEM_ATTRS (mem)
1722 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1723 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1724 }
1725
1726 /* Set the offset of MEM to OFFSET. */
1727
1728 void
1729 set_mem_offset (rtx mem, rtx offset)
1730 {
1731 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1732 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1733 GET_MODE (mem));
1734 }
1735
1736 /* Set the size of MEM to SIZE. */
1737
1738 void
1739 set_mem_size (rtx mem, rtx size)
1740 {
1741 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1742 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1743 GET_MODE (mem));
1744 }
1745 \f
1746 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1747 and its address changed to ADDR. (VOIDmode means don't change the mode.
1748 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1749 returned memory location is required to be valid. The memory
1750 attributes are not changed. */
1751
1752 static rtx
1753 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1754 {
1755 rtx new;
1756
1757 gcc_assert (MEM_P (memref));
1758 if (mode == VOIDmode)
1759 mode = GET_MODE (memref);
1760 if (addr == 0)
1761 addr = XEXP (memref, 0);
1762 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1763 && (!validate || memory_address_p (mode, addr)))
1764 return memref;
1765
1766 if (validate)
1767 {
1768 if (reload_in_progress || reload_completed)
1769 gcc_assert (memory_address_p (mode, addr));
1770 else
1771 addr = memory_address (mode, addr);
1772 }
1773
1774 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1775 return memref;
1776
1777 new = gen_rtx_MEM (mode, addr);
1778 MEM_COPY_ATTRIBUTES (new, memref);
1779 return new;
1780 }
1781
1782 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1783 way we are changing MEMREF, so we only preserve the alias set. */
1784
1785 rtx
1786 change_address (rtx memref, enum machine_mode mode, rtx addr)
1787 {
1788 rtx new = change_address_1 (memref, mode, addr, 1), size;
1789 enum machine_mode mmode = GET_MODE (new);
1790 unsigned int align;
1791
1792 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1793 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1794
1795 /* If there are no changes, just return the original memory reference. */
1796 if (new == memref)
1797 {
1798 if (MEM_ATTRS (memref) == 0
1799 || (MEM_EXPR (memref) == NULL
1800 && MEM_OFFSET (memref) == NULL
1801 && MEM_SIZE (memref) == size
1802 && MEM_ALIGN (memref) == align))
1803 return new;
1804
1805 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1806 MEM_COPY_ATTRIBUTES (new, memref);
1807 }
1808
1809 MEM_ATTRS (new)
1810 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1811
1812 return new;
1813 }
1814
1815 /* Return a memory reference like MEMREF, but with its mode changed
1816 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1817 nonzero, the memory address is forced to be valid.
1818 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1819 and caller is responsible for adjusting MEMREF base register. */
1820
1821 rtx
1822 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1823 int validate, int adjust)
1824 {
1825 rtx addr = XEXP (memref, 0);
1826 rtx new;
1827 rtx memoffset = MEM_OFFSET (memref);
1828 rtx size = 0;
1829 unsigned int memalign = MEM_ALIGN (memref);
1830
1831 /* If there are no changes, just return the original memory reference. */
1832 if (mode == GET_MODE (memref) && !offset
1833 && (!validate || memory_address_p (mode, addr)))
1834 return memref;
1835
1836 /* ??? Prefer to create garbage instead of creating shared rtl.
1837 This may happen even if offset is nonzero -- consider
1838 (plus (plus reg reg) const_int) -- so do this always. */
1839 addr = copy_rtx (addr);
1840
1841 if (adjust)
1842 {
1843 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1844 object, we can merge it into the LO_SUM. */
1845 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1846 && offset >= 0
1847 && (unsigned HOST_WIDE_INT) offset
1848 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1849 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1850 plus_constant (XEXP (addr, 1), offset));
1851 else
1852 addr = plus_constant (addr, offset);
1853 }
1854
1855 new = change_address_1 (memref, mode, addr, validate);
1856
1857 /* Compute the new values of the memory attributes due to this adjustment.
1858 We add the offsets and update the alignment. */
1859 if (memoffset)
1860 memoffset = GEN_INT (offset + INTVAL (memoffset));
1861
1862 /* Compute the new alignment by taking the MIN of the alignment and the
1863 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1864 if zero. */
1865 if (offset != 0)
1866 memalign
1867 = MIN (memalign,
1868 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1869
1870 /* We can compute the size in a number of ways. */
1871 if (GET_MODE (new) != BLKmode)
1872 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1873 else if (MEM_SIZE (memref))
1874 size = plus_constant (MEM_SIZE (memref), -offset);
1875
1876 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1877 memoffset, size, memalign, GET_MODE (new));
1878
1879 /* At some point, we should validate that this offset is within the object,
1880 if all the appropriate values are known. */
1881 return new;
1882 }
1883
1884 /* Return a memory reference like MEMREF, but with its mode changed
1885 to MODE and its address changed to ADDR, which is assumed to be
1886 MEMREF offseted by OFFSET bytes. If VALIDATE is
1887 nonzero, the memory address is forced to be valid. */
1888
1889 rtx
1890 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1891 HOST_WIDE_INT offset, int validate)
1892 {
1893 memref = change_address_1 (memref, VOIDmode, addr, validate);
1894 return adjust_address_1 (memref, mode, offset, validate, 0);
1895 }
1896
1897 /* Return a memory reference like MEMREF, but whose address is changed by
1898 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1899 known to be in OFFSET (possibly 1). */
1900
1901 rtx
1902 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1903 {
1904 rtx new, addr = XEXP (memref, 0);
1905
1906 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1907
1908 /* At this point we don't know _why_ the address is invalid. It
1909 could have secondary memory references, multiplies or anything.
1910
1911 However, if we did go and rearrange things, we can wind up not
1912 being able to recognize the magic around pic_offset_table_rtx.
1913 This stuff is fragile, and is yet another example of why it is
1914 bad to expose PIC machinery too early. */
1915 if (! memory_address_p (GET_MODE (memref), new)
1916 && GET_CODE (addr) == PLUS
1917 && XEXP (addr, 0) == pic_offset_table_rtx)
1918 {
1919 addr = force_reg (GET_MODE (addr), addr);
1920 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1921 }
1922
1923 update_temp_slot_address (XEXP (memref, 0), new);
1924 new = change_address_1 (memref, VOIDmode, new, 1);
1925
1926 /* If there are no changes, just return the original memory reference. */
1927 if (new == memref)
1928 return new;
1929
1930 /* Update the alignment to reflect the offset. Reset the offset, which
1931 we don't know. */
1932 MEM_ATTRS (new)
1933 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1934 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1935 GET_MODE (new));
1936 return new;
1937 }
1938
1939 /* Return a memory reference like MEMREF, but with its address changed to
1940 ADDR. The caller is asserting that the actual piece of memory pointed
1941 to is the same, just the form of the address is being changed, such as
1942 by putting something into a register. */
1943
1944 rtx
1945 replace_equiv_address (rtx memref, rtx addr)
1946 {
1947 /* change_address_1 copies the memory attribute structure without change
1948 and that's exactly what we want here. */
1949 update_temp_slot_address (XEXP (memref, 0), addr);
1950 return change_address_1 (memref, VOIDmode, addr, 1);
1951 }
1952
1953 /* Likewise, but the reference is not required to be valid. */
1954
1955 rtx
1956 replace_equiv_address_nv (rtx memref, rtx addr)
1957 {
1958 return change_address_1 (memref, VOIDmode, addr, 0);
1959 }
1960
1961 /* Return a memory reference like MEMREF, but with its mode widened to
1962 MODE and offset by OFFSET. This would be used by targets that e.g.
1963 cannot issue QImode memory operations and have to use SImode memory
1964 operations plus masking logic. */
1965
1966 rtx
1967 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1968 {
1969 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1970 tree expr = MEM_EXPR (new);
1971 rtx memoffset = MEM_OFFSET (new);
1972 unsigned int size = GET_MODE_SIZE (mode);
1973
1974 /* If there are no changes, just return the original memory reference. */
1975 if (new == memref)
1976 return new;
1977
1978 /* If we don't know what offset we were at within the expression, then
1979 we can't know if we've overstepped the bounds. */
1980 if (! memoffset)
1981 expr = NULL_TREE;
1982
1983 while (expr)
1984 {
1985 if (TREE_CODE (expr) == COMPONENT_REF)
1986 {
1987 tree field = TREE_OPERAND (expr, 1);
1988 tree offset = component_ref_field_offset (expr);
1989
1990 if (! DECL_SIZE_UNIT (field))
1991 {
1992 expr = NULL_TREE;
1993 break;
1994 }
1995
1996 /* Is the field at least as large as the access? If so, ok,
1997 otherwise strip back to the containing structure. */
1998 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
1999 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2000 && INTVAL (memoffset) >= 0)
2001 break;
2002
2003 if (! host_integerp (offset, 1))
2004 {
2005 expr = NULL_TREE;
2006 break;
2007 }
2008
2009 expr = TREE_OPERAND (expr, 0);
2010 memoffset
2011 = (GEN_INT (INTVAL (memoffset)
2012 + tree_low_cst (offset, 1)
2013 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2014 / BITS_PER_UNIT)));
2015 }
2016 /* Similarly for the decl. */
2017 else if (DECL_P (expr)
2018 && DECL_SIZE_UNIT (expr)
2019 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2020 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2021 && (! memoffset || INTVAL (memoffset) >= 0))
2022 break;
2023 else
2024 {
2025 /* The widened memory access overflows the expression, which means
2026 that it could alias another expression. Zap it. */
2027 expr = NULL_TREE;
2028 break;
2029 }
2030 }
2031
2032 if (! expr)
2033 memoffset = NULL_RTX;
2034
2035 /* The widened memory may alias other stuff, so zap the alias set. */
2036 /* ??? Maybe use get_alias_set on any remaining expression. */
2037
2038 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2039 MEM_ALIGN (new), mode);
2040
2041 return new;
2042 }
2043 \f
2044 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2045
2046 rtx
2047 gen_label_rtx (void)
2048 {
2049 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2050 NULL, label_num++, NULL);
2051 }
2052 \f
2053 /* For procedure integration. */
2054
2055 /* Install new pointers to the first and last insns in the chain.
2056 Also, set cur_insn_uid to one higher than the last in use.
2057 Used for an inline-procedure after copying the insn chain. */
2058
2059 void
2060 set_new_first_and_last_insn (rtx first, rtx last)
2061 {
2062 rtx insn;
2063
2064 first_insn = first;
2065 last_insn = last;
2066 cur_insn_uid = 0;
2067
2068 for (insn = first; insn; insn = NEXT_INSN (insn))
2069 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2070
2071 cur_insn_uid++;
2072 }
2073 \f
2074 /* Go through all the RTL insn bodies and copy any invalid shared
2075 structure. This routine should only be called once. */
2076
2077 static void
2078 unshare_all_rtl_1 (tree fndecl, rtx insn)
2079 {
2080 tree decl;
2081
2082 /* Make sure that virtual parameters are not shared. */
2083 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2084 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2085
2086 /* Make sure that virtual stack slots are not shared. */
2087 unshare_all_decls (DECL_INITIAL (fndecl));
2088
2089 /* Unshare just about everything else. */
2090 unshare_all_rtl_in_chain (insn);
2091
2092 /* Make sure the addresses of stack slots found outside the insn chain
2093 (such as, in DECL_RTL of a variable) are not shared
2094 with the insn chain.
2095
2096 This special care is necessary when the stack slot MEM does not
2097 actually appear in the insn chain. If it does appear, its address
2098 is unshared from all else at that point. */
2099 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2100 }
2101
2102 /* Go through all the RTL insn bodies and copy any invalid shared
2103 structure, again. This is a fairly expensive thing to do so it
2104 should be done sparingly. */
2105
2106 void
2107 unshare_all_rtl_again (rtx insn)
2108 {
2109 rtx p;
2110 tree decl;
2111
2112 for (p = insn; p; p = NEXT_INSN (p))
2113 if (INSN_P (p))
2114 {
2115 reset_used_flags (PATTERN (p));
2116 reset_used_flags (REG_NOTES (p));
2117 reset_used_flags (LOG_LINKS (p));
2118 }
2119
2120 /* Make sure that virtual stack slots are not shared. */
2121 reset_used_decls (DECL_INITIAL (cfun->decl));
2122
2123 /* Make sure that virtual parameters are not shared. */
2124 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2125 reset_used_flags (DECL_RTL (decl));
2126
2127 reset_used_flags (stack_slot_list);
2128
2129 unshare_all_rtl_1 (cfun->decl, insn);
2130 }
2131
2132 void
2133 unshare_all_rtl (void)
2134 {
2135 unshare_all_rtl_1 (current_function_decl, get_insns ());
2136 }
2137
2138 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2139 Recursively does the same for subexpressions. */
2140
2141 static void
2142 verify_rtx_sharing (rtx orig, rtx insn)
2143 {
2144 rtx x = orig;
2145 int i;
2146 enum rtx_code code;
2147 const char *format_ptr;
2148
2149 if (x == 0)
2150 return;
2151
2152 code = GET_CODE (x);
2153
2154 /* These types may be freely shared. */
2155
2156 switch (code)
2157 {
2158 case REG:
2159 case CONST_INT:
2160 case CONST_DOUBLE:
2161 case CONST_VECTOR:
2162 case SYMBOL_REF:
2163 case LABEL_REF:
2164 case CODE_LABEL:
2165 case PC:
2166 case CC0:
2167 case SCRATCH:
2168 return;
2169 /* SCRATCH must be shared because they represent distinct values. */
2170 case CLOBBER:
2171 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2172 return;
2173 break;
2174
2175 case CONST:
2176 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2177 a LABEL_REF, it isn't sharable. */
2178 if (GET_CODE (XEXP (x, 0)) == PLUS
2179 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2180 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2181 return;
2182 break;
2183
2184 case MEM:
2185 /* A MEM is allowed to be shared if its address is constant. */
2186 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2187 || reload_completed || reload_in_progress)
2188 return;
2189
2190 break;
2191
2192 default:
2193 break;
2194 }
2195
2196 /* This rtx may not be shared. If it has already been seen,
2197 replace it with a copy of itself. */
2198 #ifdef ENABLE_CHECKING
2199 if (RTX_FLAG (x, used))
2200 {
2201 error ("Invalid rtl sharing found in the insn");
2202 debug_rtx (insn);
2203 error ("Shared rtx");
2204 debug_rtx (x);
2205 internal_error ("Internal consistency failure");
2206 }
2207 #endif
2208 gcc_assert (!RTX_FLAG (x, used));
2209
2210 RTX_FLAG (x, used) = 1;
2211
2212 /* Now scan the subexpressions recursively. */
2213
2214 format_ptr = GET_RTX_FORMAT (code);
2215
2216 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2217 {
2218 switch (*format_ptr++)
2219 {
2220 case 'e':
2221 verify_rtx_sharing (XEXP (x, i), insn);
2222 break;
2223
2224 case 'E':
2225 if (XVEC (x, i) != NULL)
2226 {
2227 int j;
2228 int len = XVECLEN (x, i);
2229
2230 for (j = 0; j < len; j++)
2231 {
2232 /* We allow sharing of ASM_OPERANDS inside single
2233 instruction. */
2234 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2235 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2236 == ASM_OPERANDS))
2237 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2238 else
2239 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2240 }
2241 }
2242 break;
2243 }
2244 }
2245 return;
2246 }
2247
2248 /* Go through all the RTL insn bodies and check that there is no unexpected
2249 sharing in between the subexpressions. */
2250
2251 void
2252 verify_rtl_sharing (void)
2253 {
2254 rtx p;
2255
2256 for (p = get_insns (); p; p = NEXT_INSN (p))
2257 if (INSN_P (p))
2258 {
2259 reset_used_flags (PATTERN (p));
2260 reset_used_flags (REG_NOTES (p));
2261 reset_used_flags (LOG_LINKS (p));
2262 }
2263
2264 for (p = get_insns (); p; p = NEXT_INSN (p))
2265 if (INSN_P (p))
2266 {
2267 verify_rtx_sharing (PATTERN (p), p);
2268 verify_rtx_sharing (REG_NOTES (p), p);
2269 verify_rtx_sharing (LOG_LINKS (p), p);
2270 }
2271 }
2272
2273 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2274 Assumes the mark bits are cleared at entry. */
2275
2276 void
2277 unshare_all_rtl_in_chain (rtx insn)
2278 {
2279 for (; insn; insn = NEXT_INSN (insn))
2280 if (INSN_P (insn))
2281 {
2282 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2283 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2284 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2285 }
2286 }
2287
2288 /* Go through all virtual stack slots of a function and copy any
2289 shared structure. */
2290 static void
2291 unshare_all_decls (tree blk)
2292 {
2293 tree t;
2294
2295 /* Copy shared decls. */
2296 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2297 if (DECL_RTL_SET_P (t))
2298 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2299
2300 /* Now process sub-blocks. */
2301 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2302 unshare_all_decls (t);
2303 }
2304
2305 /* Go through all virtual stack slots of a function and mark them as
2306 not shared. */
2307 static void
2308 reset_used_decls (tree blk)
2309 {
2310 tree t;
2311
2312 /* Mark decls. */
2313 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2314 if (DECL_RTL_SET_P (t))
2315 reset_used_flags (DECL_RTL (t));
2316
2317 /* Now process sub-blocks. */
2318 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2319 reset_used_decls (t);
2320 }
2321
2322 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2323 Recursively does the same for subexpressions. Uses
2324 copy_rtx_if_shared_1 to reduce stack space. */
2325
2326 rtx
2327 copy_rtx_if_shared (rtx orig)
2328 {
2329 copy_rtx_if_shared_1 (&orig);
2330 return orig;
2331 }
2332
2333 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2334 use. Recursively does the same for subexpressions. */
2335
2336 static void
2337 copy_rtx_if_shared_1 (rtx *orig1)
2338 {
2339 rtx x;
2340 int i;
2341 enum rtx_code code;
2342 rtx *last_ptr;
2343 const char *format_ptr;
2344 int copied = 0;
2345 int length;
2346
2347 /* Repeat is used to turn tail-recursion into iteration. */
2348 repeat:
2349 x = *orig1;
2350
2351 if (x == 0)
2352 return;
2353
2354 code = GET_CODE (x);
2355
2356 /* These types may be freely shared. */
2357
2358 switch (code)
2359 {
2360 case REG:
2361 case CONST_INT:
2362 case CONST_DOUBLE:
2363 case CONST_VECTOR:
2364 case SYMBOL_REF:
2365 case LABEL_REF:
2366 case CODE_LABEL:
2367 case PC:
2368 case CC0:
2369 case SCRATCH:
2370 /* SCRATCH must be shared because they represent distinct values. */
2371 return;
2372 case CLOBBER:
2373 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2374 return;
2375 break;
2376
2377 case CONST:
2378 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2379 a LABEL_REF, it isn't sharable. */
2380 if (GET_CODE (XEXP (x, 0)) == PLUS
2381 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2382 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2383 return;
2384 break;
2385
2386 case INSN:
2387 case JUMP_INSN:
2388 case CALL_INSN:
2389 case NOTE:
2390 case BARRIER:
2391 /* The chain of insns is not being copied. */
2392 return;
2393
2394 default:
2395 break;
2396 }
2397
2398 /* This rtx may not be shared. If it has already been seen,
2399 replace it with a copy of itself. */
2400
2401 if (RTX_FLAG (x, used))
2402 {
2403 rtx copy;
2404
2405 copy = rtx_alloc (code);
2406 memcpy (copy, x, RTX_SIZE (code));
2407 x = copy;
2408 copied = 1;
2409 }
2410 RTX_FLAG (x, used) = 1;
2411
2412 /* Now scan the subexpressions recursively.
2413 We can store any replaced subexpressions directly into X
2414 since we know X is not shared! Any vectors in X
2415 must be copied if X was copied. */
2416
2417 format_ptr = GET_RTX_FORMAT (code);
2418 length = GET_RTX_LENGTH (code);
2419 last_ptr = NULL;
2420
2421 for (i = 0; i < length; i++)
2422 {
2423 switch (*format_ptr++)
2424 {
2425 case 'e':
2426 if (last_ptr)
2427 copy_rtx_if_shared_1 (last_ptr);
2428 last_ptr = &XEXP (x, i);
2429 break;
2430
2431 case 'E':
2432 if (XVEC (x, i) != NULL)
2433 {
2434 int j;
2435 int len = XVECLEN (x, i);
2436
2437 /* Copy the vector iff I copied the rtx and the length
2438 is nonzero. */
2439 if (copied && len > 0)
2440 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2441
2442 /* Call recursively on all inside the vector. */
2443 for (j = 0; j < len; j++)
2444 {
2445 if (last_ptr)
2446 copy_rtx_if_shared_1 (last_ptr);
2447 last_ptr = &XVECEXP (x, i, j);
2448 }
2449 }
2450 break;
2451 }
2452 }
2453 *orig1 = x;
2454 if (last_ptr)
2455 {
2456 orig1 = last_ptr;
2457 goto repeat;
2458 }
2459 return;
2460 }
2461
2462 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2463 to look for shared sub-parts. */
2464
2465 void
2466 reset_used_flags (rtx x)
2467 {
2468 int i, j;
2469 enum rtx_code code;
2470 const char *format_ptr;
2471 int length;
2472
2473 /* Repeat is used to turn tail-recursion into iteration. */
2474 repeat:
2475 if (x == 0)
2476 return;
2477
2478 code = GET_CODE (x);
2479
2480 /* These types may be freely shared so we needn't do any resetting
2481 for them. */
2482
2483 switch (code)
2484 {
2485 case REG:
2486 case CONST_INT:
2487 case CONST_DOUBLE:
2488 case CONST_VECTOR:
2489 case SYMBOL_REF:
2490 case CODE_LABEL:
2491 case PC:
2492 case CC0:
2493 return;
2494
2495 case INSN:
2496 case JUMP_INSN:
2497 case CALL_INSN:
2498 case NOTE:
2499 case LABEL_REF:
2500 case BARRIER:
2501 /* The chain of insns is not being copied. */
2502 return;
2503
2504 default:
2505 break;
2506 }
2507
2508 RTX_FLAG (x, used) = 0;
2509
2510 format_ptr = GET_RTX_FORMAT (code);
2511 length = GET_RTX_LENGTH (code);
2512
2513 for (i = 0; i < length; i++)
2514 {
2515 switch (*format_ptr++)
2516 {
2517 case 'e':
2518 if (i == length-1)
2519 {
2520 x = XEXP (x, i);
2521 goto repeat;
2522 }
2523 reset_used_flags (XEXP (x, i));
2524 break;
2525
2526 case 'E':
2527 for (j = 0; j < XVECLEN (x, i); j++)
2528 reset_used_flags (XVECEXP (x, i, j));
2529 break;
2530 }
2531 }
2532 }
2533
2534 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2535 to look for shared sub-parts. */
2536
2537 void
2538 set_used_flags (rtx x)
2539 {
2540 int i, j;
2541 enum rtx_code code;
2542 const char *format_ptr;
2543
2544 if (x == 0)
2545 return;
2546
2547 code = GET_CODE (x);
2548
2549 /* These types may be freely shared so we needn't do any resetting
2550 for them. */
2551
2552 switch (code)
2553 {
2554 case REG:
2555 case CONST_INT:
2556 case CONST_DOUBLE:
2557 case CONST_VECTOR:
2558 case SYMBOL_REF:
2559 case CODE_LABEL:
2560 case PC:
2561 case CC0:
2562 return;
2563
2564 case INSN:
2565 case JUMP_INSN:
2566 case CALL_INSN:
2567 case NOTE:
2568 case LABEL_REF:
2569 case BARRIER:
2570 /* The chain of insns is not being copied. */
2571 return;
2572
2573 default:
2574 break;
2575 }
2576
2577 RTX_FLAG (x, used) = 1;
2578
2579 format_ptr = GET_RTX_FORMAT (code);
2580 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2581 {
2582 switch (*format_ptr++)
2583 {
2584 case 'e':
2585 set_used_flags (XEXP (x, i));
2586 break;
2587
2588 case 'E':
2589 for (j = 0; j < XVECLEN (x, i); j++)
2590 set_used_flags (XVECEXP (x, i, j));
2591 break;
2592 }
2593 }
2594 }
2595 \f
2596 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2597 Return X or the rtx for the pseudo reg the value of X was copied into.
2598 OTHER must be valid as a SET_DEST. */
2599
2600 rtx
2601 make_safe_from (rtx x, rtx other)
2602 {
2603 while (1)
2604 switch (GET_CODE (other))
2605 {
2606 case SUBREG:
2607 other = SUBREG_REG (other);
2608 break;
2609 case STRICT_LOW_PART:
2610 case SIGN_EXTEND:
2611 case ZERO_EXTEND:
2612 other = XEXP (other, 0);
2613 break;
2614 default:
2615 goto done;
2616 }
2617 done:
2618 if ((MEM_P (other)
2619 && ! CONSTANT_P (x)
2620 && !REG_P (x)
2621 && GET_CODE (x) != SUBREG)
2622 || (REG_P (other)
2623 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2624 || reg_mentioned_p (other, x))))
2625 {
2626 rtx temp = gen_reg_rtx (GET_MODE (x));
2627 emit_move_insn (temp, x);
2628 return temp;
2629 }
2630 return x;
2631 }
2632 \f
2633 /* Emission of insns (adding them to the doubly-linked list). */
2634
2635 /* Return the first insn of the current sequence or current function. */
2636
2637 rtx
2638 get_insns (void)
2639 {
2640 return first_insn;
2641 }
2642
2643 /* Specify a new insn as the first in the chain. */
2644
2645 void
2646 set_first_insn (rtx insn)
2647 {
2648 gcc_assert (!PREV_INSN (insn));
2649 first_insn = insn;
2650 }
2651
2652 /* Return the last insn emitted in current sequence or current function. */
2653
2654 rtx
2655 get_last_insn (void)
2656 {
2657 return last_insn;
2658 }
2659
2660 /* Specify a new insn as the last in the chain. */
2661
2662 void
2663 set_last_insn (rtx insn)
2664 {
2665 gcc_assert (!NEXT_INSN (insn));
2666 last_insn = insn;
2667 }
2668
2669 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2670
2671 rtx
2672 get_last_insn_anywhere (void)
2673 {
2674 struct sequence_stack *stack;
2675 if (last_insn)
2676 return last_insn;
2677 for (stack = seq_stack; stack; stack = stack->next)
2678 if (stack->last != 0)
2679 return stack->last;
2680 return 0;
2681 }
2682
2683 /* Return the first nonnote insn emitted in current sequence or current
2684 function. This routine looks inside SEQUENCEs. */
2685
2686 rtx
2687 get_first_nonnote_insn (void)
2688 {
2689 rtx insn = first_insn;
2690
2691 if (insn)
2692 {
2693 if (NOTE_P (insn))
2694 for (insn = next_insn (insn);
2695 insn && NOTE_P (insn);
2696 insn = next_insn (insn))
2697 continue;
2698 else
2699 {
2700 if (NONJUMP_INSN_P (insn)
2701 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2702 insn = XVECEXP (PATTERN (insn), 0, 0);
2703 }
2704 }
2705
2706 return insn;
2707 }
2708
2709 /* Return the last nonnote insn emitted in current sequence or current
2710 function. This routine looks inside SEQUENCEs. */
2711
2712 rtx
2713 get_last_nonnote_insn (void)
2714 {
2715 rtx insn = last_insn;
2716
2717 if (insn)
2718 {
2719 if (NOTE_P (insn))
2720 for (insn = previous_insn (insn);
2721 insn && NOTE_P (insn);
2722 insn = previous_insn (insn))
2723 continue;
2724 else
2725 {
2726 if (NONJUMP_INSN_P (insn)
2727 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2728 insn = XVECEXP (PATTERN (insn), 0,
2729 XVECLEN (PATTERN (insn), 0) - 1);
2730 }
2731 }
2732
2733 return insn;
2734 }
2735
2736 /* Return a number larger than any instruction's uid in this function. */
2737
2738 int
2739 get_max_uid (void)
2740 {
2741 return cur_insn_uid;
2742 }
2743
2744 /* Renumber instructions so that no instruction UIDs are wasted. */
2745
2746 void
2747 renumber_insns (FILE *stream)
2748 {
2749 rtx insn;
2750
2751 /* If we're not supposed to renumber instructions, don't. */
2752 if (!flag_renumber_insns)
2753 return;
2754
2755 /* If there aren't that many instructions, then it's not really
2756 worth renumbering them. */
2757 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2758 return;
2759
2760 cur_insn_uid = 1;
2761
2762 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2763 {
2764 if (stream)
2765 fprintf (stream, "Renumbering insn %d to %d\n",
2766 INSN_UID (insn), cur_insn_uid);
2767 INSN_UID (insn) = cur_insn_uid++;
2768 }
2769 }
2770 \f
2771 /* Return the next insn. If it is a SEQUENCE, return the first insn
2772 of the sequence. */
2773
2774 rtx
2775 next_insn (rtx insn)
2776 {
2777 if (insn)
2778 {
2779 insn = NEXT_INSN (insn);
2780 if (insn && NONJUMP_INSN_P (insn)
2781 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2782 insn = XVECEXP (PATTERN (insn), 0, 0);
2783 }
2784
2785 return insn;
2786 }
2787
2788 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2789 of the sequence. */
2790
2791 rtx
2792 previous_insn (rtx insn)
2793 {
2794 if (insn)
2795 {
2796 insn = PREV_INSN (insn);
2797 if (insn && NONJUMP_INSN_P (insn)
2798 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2799 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2800 }
2801
2802 return insn;
2803 }
2804
2805 /* Return the next insn after INSN that is not a NOTE. This routine does not
2806 look inside SEQUENCEs. */
2807
2808 rtx
2809 next_nonnote_insn (rtx insn)
2810 {
2811 while (insn)
2812 {
2813 insn = NEXT_INSN (insn);
2814 if (insn == 0 || !NOTE_P (insn))
2815 break;
2816 }
2817
2818 return insn;
2819 }
2820
2821 /* Return the previous insn before INSN that is not a NOTE. This routine does
2822 not look inside SEQUENCEs. */
2823
2824 rtx
2825 prev_nonnote_insn (rtx insn)
2826 {
2827 while (insn)
2828 {
2829 insn = PREV_INSN (insn);
2830 if (insn == 0 || !NOTE_P (insn))
2831 break;
2832 }
2833
2834 return insn;
2835 }
2836
2837 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2838 or 0, if there is none. This routine does not look inside
2839 SEQUENCEs. */
2840
2841 rtx
2842 next_real_insn (rtx insn)
2843 {
2844 while (insn)
2845 {
2846 insn = NEXT_INSN (insn);
2847 if (insn == 0 || INSN_P (insn))
2848 break;
2849 }
2850
2851 return insn;
2852 }
2853
2854 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2855 or 0, if there is none. This routine does not look inside
2856 SEQUENCEs. */
2857
2858 rtx
2859 prev_real_insn (rtx insn)
2860 {
2861 while (insn)
2862 {
2863 insn = PREV_INSN (insn);
2864 if (insn == 0 || INSN_P (insn))
2865 break;
2866 }
2867
2868 return insn;
2869 }
2870
2871 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2872 This routine does not look inside SEQUENCEs. */
2873
2874 rtx
2875 last_call_insn (void)
2876 {
2877 rtx insn;
2878
2879 for (insn = get_last_insn ();
2880 insn && !CALL_P (insn);
2881 insn = PREV_INSN (insn))
2882 ;
2883
2884 return insn;
2885 }
2886
2887 /* Find the next insn after INSN that really does something. This routine
2888 does not look inside SEQUENCEs. Until reload has completed, this is the
2889 same as next_real_insn. */
2890
2891 int
2892 active_insn_p (rtx insn)
2893 {
2894 return (CALL_P (insn) || JUMP_P (insn)
2895 || (NONJUMP_INSN_P (insn)
2896 && (! reload_completed
2897 || (GET_CODE (PATTERN (insn)) != USE
2898 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2899 }
2900
2901 rtx
2902 next_active_insn (rtx insn)
2903 {
2904 while (insn)
2905 {
2906 insn = NEXT_INSN (insn);
2907 if (insn == 0 || active_insn_p (insn))
2908 break;
2909 }
2910
2911 return insn;
2912 }
2913
2914 /* Find the last insn before INSN that really does something. This routine
2915 does not look inside SEQUENCEs. Until reload has completed, this is the
2916 same as prev_real_insn. */
2917
2918 rtx
2919 prev_active_insn (rtx insn)
2920 {
2921 while (insn)
2922 {
2923 insn = PREV_INSN (insn);
2924 if (insn == 0 || active_insn_p (insn))
2925 break;
2926 }
2927
2928 return insn;
2929 }
2930
2931 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2932
2933 rtx
2934 next_label (rtx insn)
2935 {
2936 while (insn)
2937 {
2938 insn = NEXT_INSN (insn);
2939 if (insn == 0 || LABEL_P (insn))
2940 break;
2941 }
2942
2943 return insn;
2944 }
2945
2946 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2947
2948 rtx
2949 prev_label (rtx insn)
2950 {
2951 while (insn)
2952 {
2953 insn = PREV_INSN (insn);
2954 if (insn == 0 || LABEL_P (insn))
2955 break;
2956 }
2957
2958 return insn;
2959 }
2960
2961 /* Return the last label to mark the same position as LABEL. Return null
2962 if LABEL itself is null. */
2963
2964 rtx
2965 skip_consecutive_labels (rtx label)
2966 {
2967 rtx insn;
2968
2969 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
2970 if (LABEL_P (insn))
2971 label = insn;
2972
2973 return label;
2974 }
2975 \f
2976 #ifdef HAVE_cc0
2977 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2978 and REG_CC_USER notes so we can find it. */
2979
2980 void
2981 link_cc0_insns (rtx insn)
2982 {
2983 rtx user = next_nonnote_insn (insn);
2984
2985 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
2986 user = XVECEXP (PATTERN (user), 0, 0);
2987
2988 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2989 REG_NOTES (user));
2990 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2991 }
2992
2993 /* Return the next insn that uses CC0 after INSN, which is assumed to
2994 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2995 applied to the result of this function should yield INSN).
2996
2997 Normally, this is simply the next insn. However, if a REG_CC_USER note
2998 is present, it contains the insn that uses CC0.
2999
3000 Return 0 if we can't find the insn. */
3001
3002 rtx
3003 next_cc0_user (rtx insn)
3004 {
3005 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3006
3007 if (note)
3008 return XEXP (note, 0);
3009
3010 insn = next_nonnote_insn (insn);
3011 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3012 insn = XVECEXP (PATTERN (insn), 0, 0);
3013
3014 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3015 return insn;
3016
3017 return 0;
3018 }
3019
3020 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3021 note, it is the previous insn. */
3022
3023 rtx
3024 prev_cc0_setter (rtx insn)
3025 {
3026 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3027
3028 if (note)
3029 return XEXP (note, 0);
3030
3031 insn = prev_nonnote_insn (insn);
3032 gcc_assert (sets_cc0_p (PATTERN (insn)));
3033
3034 return insn;
3035 }
3036 #endif
3037
3038 /* Increment the label uses for all labels present in rtx. */
3039
3040 static void
3041 mark_label_nuses (rtx x)
3042 {
3043 enum rtx_code code;
3044 int i, j;
3045 const char *fmt;
3046
3047 code = GET_CODE (x);
3048 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3049 LABEL_NUSES (XEXP (x, 0))++;
3050
3051 fmt = GET_RTX_FORMAT (code);
3052 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3053 {
3054 if (fmt[i] == 'e')
3055 mark_label_nuses (XEXP (x, i));
3056 else if (fmt[i] == 'E')
3057 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3058 mark_label_nuses (XVECEXP (x, i, j));
3059 }
3060 }
3061
3062 \f
3063 /* Try splitting insns that can be split for better scheduling.
3064 PAT is the pattern which might split.
3065 TRIAL is the insn providing PAT.
3066 LAST is nonzero if we should return the last insn of the sequence produced.
3067
3068 If this routine succeeds in splitting, it returns the first or last
3069 replacement insn depending on the value of LAST. Otherwise, it
3070 returns TRIAL. If the insn to be returned can be split, it will be. */
3071
3072 rtx
3073 try_split (rtx pat, rtx trial, int last)
3074 {
3075 rtx before = PREV_INSN (trial);
3076 rtx after = NEXT_INSN (trial);
3077 int has_barrier = 0;
3078 rtx tem;
3079 rtx note, seq;
3080 int probability;
3081 rtx insn_last, insn;
3082 int njumps = 0;
3083
3084 if (any_condjump_p (trial)
3085 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3086 split_branch_probability = INTVAL (XEXP (note, 0));
3087 probability = split_branch_probability;
3088
3089 seq = split_insns (pat, trial);
3090
3091 split_branch_probability = -1;
3092
3093 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3094 We may need to handle this specially. */
3095 if (after && BARRIER_P (after))
3096 {
3097 has_barrier = 1;
3098 after = NEXT_INSN (after);
3099 }
3100
3101 if (!seq)
3102 return trial;
3103
3104 /* Avoid infinite loop if any insn of the result matches
3105 the original pattern. */
3106 insn_last = seq;
3107 while (1)
3108 {
3109 if (INSN_P (insn_last)
3110 && rtx_equal_p (PATTERN (insn_last), pat))
3111 return trial;
3112 if (!NEXT_INSN (insn_last))
3113 break;
3114 insn_last = NEXT_INSN (insn_last);
3115 }
3116
3117 /* Mark labels. */
3118 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3119 {
3120 if (JUMP_P (insn))
3121 {
3122 mark_jump_label (PATTERN (insn), insn, 0);
3123 njumps++;
3124 if (probability != -1
3125 && any_condjump_p (insn)
3126 && !find_reg_note (insn, REG_BR_PROB, 0))
3127 {
3128 /* We can preserve the REG_BR_PROB notes only if exactly
3129 one jump is created, otherwise the machine description
3130 is responsible for this step using
3131 split_branch_probability variable. */
3132 gcc_assert (njumps == 1);
3133 REG_NOTES (insn)
3134 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3135 GEN_INT (probability),
3136 REG_NOTES (insn));
3137 }
3138 }
3139 }
3140
3141 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3142 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3143 if (CALL_P (trial))
3144 {
3145 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3146 if (CALL_P (insn))
3147 {
3148 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3149 while (*p)
3150 p = &XEXP (*p, 1);
3151 *p = CALL_INSN_FUNCTION_USAGE (trial);
3152 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3153 }
3154 }
3155
3156 /* Copy notes, particularly those related to the CFG. */
3157 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3158 {
3159 switch (REG_NOTE_KIND (note))
3160 {
3161 case REG_EH_REGION:
3162 insn = insn_last;
3163 while (insn != NULL_RTX)
3164 {
3165 if (CALL_P (insn)
3166 || (flag_non_call_exceptions && INSN_P (insn)
3167 && may_trap_p (PATTERN (insn))))
3168 REG_NOTES (insn)
3169 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3170 XEXP (note, 0),
3171 REG_NOTES (insn));
3172 insn = PREV_INSN (insn);
3173 }
3174 break;
3175
3176 case REG_NORETURN:
3177 case REG_SETJMP:
3178 insn = insn_last;
3179 while (insn != NULL_RTX)
3180 {
3181 if (CALL_P (insn))
3182 REG_NOTES (insn)
3183 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3184 XEXP (note, 0),
3185 REG_NOTES (insn));
3186 insn = PREV_INSN (insn);
3187 }
3188 break;
3189
3190 case REG_NON_LOCAL_GOTO:
3191 insn = insn_last;
3192 while (insn != NULL_RTX)
3193 {
3194 if (JUMP_P (insn))
3195 REG_NOTES (insn)
3196 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3197 XEXP (note, 0),
3198 REG_NOTES (insn));
3199 insn = PREV_INSN (insn);
3200 }
3201 break;
3202
3203 default:
3204 break;
3205 }
3206 }
3207
3208 /* If there are LABELS inside the split insns increment the
3209 usage count so we don't delete the label. */
3210 if (NONJUMP_INSN_P (trial))
3211 {
3212 insn = insn_last;
3213 while (insn != NULL_RTX)
3214 {
3215 if (NONJUMP_INSN_P (insn))
3216 mark_label_nuses (PATTERN (insn));
3217
3218 insn = PREV_INSN (insn);
3219 }
3220 }
3221
3222 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3223
3224 delete_insn (trial);
3225 if (has_barrier)
3226 emit_barrier_after (tem);
3227
3228 /* Recursively call try_split for each new insn created; by the
3229 time control returns here that insn will be fully split, so
3230 set LAST and continue from the insn after the one returned.
3231 We can't use next_active_insn here since AFTER may be a note.
3232 Ignore deleted insns, which can be occur if not optimizing. */
3233 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3234 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3235 tem = try_split (PATTERN (tem), tem, 1);
3236
3237 /* Return either the first or the last insn, depending on which was
3238 requested. */
3239 return last
3240 ? (after ? PREV_INSN (after) : last_insn)
3241 : NEXT_INSN (before);
3242 }
3243 \f
3244 /* Make and return an INSN rtx, initializing all its slots.
3245 Store PATTERN in the pattern slots. */
3246
3247 rtx
3248 make_insn_raw (rtx pattern)
3249 {
3250 rtx insn;
3251
3252 insn = rtx_alloc (INSN);
3253
3254 INSN_UID (insn) = cur_insn_uid++;
3255 PATTERN (insn) = pattern;
3256 INSN_CODE (insn) = -1;
3257 LOG_LINKS (insn) = NULL;
3258 REG_NOTES (insn) = NULL;
3259 INSN_LOCATOR (insn) = 0;
3260 BLOCK_FOR_INSN (insn) = NULL;
3261
3262 #ifdef ENABLE_RTL_CHECKING
3263 if (insn
3264 && INSN_P (insn)
3265 && (returnjump_p (insn)
3266 || (GET_CODE (insn) == SET
3267 && SET_DEST (insn) == pc_rtx)))
3268 {
3269 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3270 debug_rtx (insn);
3271 }
3272 #endif
3273
3274 return insn;
3275 }
3276
3277 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3278
3279 static rtx
3280 make_jump_insn_raw (rtx pattern)
3281 {
3282 rtx insn;
3283
3284 insn = rtx_alloc (JUMP_INSN);
3285 INSN_UID (insn) = cur_insn_uid++;
3286
3287 PATTERN (insn) = pattern;
3288 INSN_CODE (insn) = -1;
3289 LOG_LINKS (insn) = NULL;
3290 REG_NOTES (insn) = NULL;
3291 JUMP_LABEL (insn) = NULL;
3292 INSN_LOCATOR (insn) = 0;
3293 BLOCK_FOR_INSN (insn) = NULL;
3294
3295 return insn;
3296 }
3297
3298 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3299
3300 static rtx
3301 make_call_insn_raw (rtx pattern)
3302 {
3303 rtx insn;
3304
3305 insn = rtx_alloc (CALL_INSN);
3306 INSN_UID (insn) = cur_insn_uid++;
3307
3308 PATTERN (insn) = pattern;
3309 INSN_CODE (insn) = -1;
3310 LOG_LINKS (insn) = NULL;
3311 REG_NOTES (insn) = NULL;
3312 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3313 INSN_LOCATOR (insn) = 0;
3314 BLOCK_FOR_INSN (insn) = NULL;
3315
3316 return insn;
3317 }
3318 \f
3319 /* Add INSN to the end of the doubly-linked list.
3320 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3321
3322 void
3323 add_insn (rtx insn)
3324 {
3325 PREV_INSN (insn) = last_insn;
3326 NEXT_INSN (insn) = 0;
3327
3328 if (NULL != last_insn)
3329 NEXT_INSN (last_insn) = insn;
3330
3331 if (NULL == first_insn)
3332 first_insn = insn;
3333
3334 last_insn = insn;
3335 }
3336
3337 /* Add INSN into the doubly-linked list after insn AFTER. This and
3338 the next should be the only functions called to insert an insn once
3339 delay slots have been filled since only they know how to update a
3340 SEQUENCE. */
3341
3342 void
3343 add_insn_after (rtx insn, rtx after)
3344 {
3345 rtx next = NEXT_INSN (after);
3346 basic_block bb;
3347
3348 gcc_assert (!optimize || !INSN_DELETED_P (after));
3349
3350 NEXT_INSN (insn) = next;
3351 PREV_INSN (insn) = after;
3352
3353 if (next)
3354 {
3355 PREV_INSN (next) = insn;
3356 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3357 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3358 }
3359 else if (last_insn == after)
3360 last_insn = insn;
3361 else
3362 {
3363 struct sequence_stack *stack = seq_stack;
3364 /* Scan all pending sequences too. */
3365 for (; stack; stack = stack->next)
3366 if (after == stack->last)
3367 {
3368 stack->last = insn;
3369 break;
3370 }
3371
3372 gcc_assert (stack);
3373 }
3374
3375 if (!BARRIER_P (after)
3376 && !BARRIER_P (insn)
3377 && (bb = BLOCK_FOR_INSN (after)))
3378 {
3379 set_block_for_insn (insn, bb);
3380 if (INSN_P (insn))
3381 bb->flags |= BB_DIRTY;
3382 /* Should not happen as first in the BB is always
3383 either NOTE or LABEL. */
3384 if (BB_END (bb) == after
3385 /* Avoid clobbering of structure when creating new BB. */
3386 && !BARRIER_P (insn)
3387 && (!NOTE_P (insn)
3388 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3389 BB_END (bb) = insn;
3390 }
3391
3392 NEXT_INSN (after) = insn;
3393 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3394 {
3395 rtx sequence = PATTERN (after);
3396 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3397 }
3398 }
3399
3400 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3401 the previous should be the only functions called to insert an insn once
3402 delay slots have been filled since only they know how to update a
3403 SEQUENCE. */
3404
3405 void
3406 add_insn_before (rtx insn, rtx before)
3407 {
3408 rtx prev = PREV_INSN (before);
3409 basic_block bb;
3410
3411 gcc_assert (!optimize || !INSN_DELETED_P (before));
3412
3413 PREV_INSN (insn) = prev;
3414 NEXT_INSN (insn) = before;
3415
3416 if (prev)
3417 {
3418 NEXT_INSN (prev) = insn;
3419 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3420 {
3421 rtx sequence = PATTERN (prev);
3422 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3423 }
3424 }
3425 else if (first_insn == before)
3426 first_insn = insn;
3427 else
3428 {
3429 struct sequence_stack *stack = seq_stack;
3430 /* Scan all pending sequences too. */
3431 for (; stack; stack = stack->next)
3432 if (before == stack->first)
3433 {
3434 stack->first = insn;
3435 break;
3436 }
3437
3438 gcc_assert (stack);
3439 }
3440
3441 if (!BARRIER_P (before)
3442 && !BARRIER_P (insn)
3443 && (bb = BLOCK_FOR_INSN (before)))
3444 {
3445 set_block_for_insn (insn, bb);
3446 if (INSN_P (insn))
3447 bb->flags |= BB_DIRTY;
3448 /* Should not happen as first in the BB is always either NOTE or
3449 LABEL. */
3450 gcc_assert (BB_HEAD (bb) != insn
3451 /* Avoid clobbering of structure when creating new BB. */
3452 || BARRIER_P (insn)
3453 || (NOTE_P (insn)
3454 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3455 }
3456
3457 PREV_INSN (before) = insn;
3458 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3459 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3460 }
3461
3462 /* Remove an insn from its doubly-linked list. This function knows how
3463 to handle sequences. */
3464 void
3465 remove_insn (rtx insn)
3466 {
3467 rtx next = NEXT_INSN (insn);
3468 rtx prev = PREV_INSN (insn);
3469 basic_block bb;
3470
3471 if (prev)
3472 {
3473 NEXT_INSN (prev) = next;
3474 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3475 {
3476 rtx sequence = PATTERN (prev);
3477 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3478 }
3479 }
3480 else if (first_insn == insn)
3481 first_insn = next;
3482 else
3483 {
3484 struct sequence_stack *stack = seq_stack;
3485 /* Scan all pending sequences too. */
3486 for (; stack; stack = stack->next)
3487 if (insn == stack->first)
3488 {
3489 stack->first = next;
3490 break;
3491 }
3492
3493 gcc_assert (stack);
3494 }
3495
3496 if (next)
3497 {
3498 PREV_INSN (next) = prev;
3499 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3500 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3501 }
3502 else if (last_insn == insn)
3503 last_insn = prev;
3504 else
3505 {
3506 struct sequence_stack *stack = seq_stack;
3507 /* Scan all pending sequences too. */
3508 for (; stack; stack = stack->next)
3509 if (insn == stack->last)
3510 {
3511 stack->last = prev;
3512 break;
3513 }
3514
3515 gcc_assert (stack);
3516 }
3517 if (!BARRIER_P (insn)
3518 && (bb = BLOCK_FOR_INSN (insn)))
3519 {
3520 if (INSN_P (insn))
3521 bb->flags |= BB_DIRTY;
3522 if (BB_HEAD (bb) == insn)
3523 {
3524 /* Never ever delete the basic block note without deleting whole
3525 basic block. */
3526 gcc_assert (!NOTE_P (insn));
3527 BB_HEAD (bb) = next;
3528 }
3529 if (BB_END (bb) == insn)
3530 BB_END (bb) = prev;
3531 }
3532 }
3533
3534 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3535
3536 void
3537 add_function_usage_to (rtx call_insn, rtx call_fusage)
3538 {
3539 gcc_assert (call_insn && CALL_P (call_insn));
3540
3541 /* Put the register usage information on the CALL. If there is already
3542 some usage information, put ours at the end. */
3543 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3544 {
3545 rtx link;
3546
3547 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3548 link = XEXP (link, 1))
3549 ;
3550
3551 XEXP (link, 1) = call_fusage;
3552 }
3553 else
3554 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3555 }
3556
3557 /* Delete all insns made since FROM.
3558 FROM becomes the new last instruction. */
3559
3560 void
3561 delete_insns_since (rtx from)
3562 {
3563 if (from == 0)
3564 first_insn = 0;
3565 else
3566 NEXT_INSN (from) = 0;
3567 last_insn = from;
3568 }
3569
3570 /* This function is deprecated, please use sequences instead.
3571
3572 Move a consecutive bunch of insns to a different place in the chain.
3573 The insns to be moved are those between FROM and TO.
3574 They are moved to a new position after the insn AFTER.
3575 AFTER must not be FROM or TO or any insn in between.
3576
3577 This function does not know about SEQUENCEs and hence should not be
3578 called after delay-slot filling has been done. */
3579
3580 void
3581 reorder_insns_nobb (rtx from, rtx to, rtx after)
3582 {
3583 /* Splice this bunch out of where it is now. */
3584 if (PREV_INSN (from))
3585 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3586 if (NEXT_INSN (to))
3587 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3588 if (last_insn == to)
3589 last_insn = PREV_INSN (from);
3590 if (first_insn == from)
3591 first_insn = NEXT_INSN (to);
3592
3593 /* Make the new neighbors point to it and it to them. */
3594 if (NEXT_INSN (after))
3595 PREV_INSN (NEXT_INSN (after)) = to;
3596
3597 NEXT_INSN (to) = NEXT_INSN (after);
3598 PREV_INSN (from) = after;
3599 NEXT_INSN (after) = from;
3600 if (after == last_insn)
3601 last_insn = to;
3602 }
3603
3604 /* Same as function above, but take care to update BB boundaries. */
3605 void
3606 reorder_insns (rtx from, rtx to, rtx after)
3607 {
3608 rtx prev = PREV_INSN (from);
3609 basic_block bb, bb2;
3610
3611 reorder_insns_nobb (from, to, after);
3612
3613 if (!BARRIER_P (after)
3614 && (bb = BLOCK_FOR_INSN (after)))
3615 {
3616 rtx x;
3617 bb->flags |= BB_DIRTY;
3618
3619 if (!BARRIER_P (from)
3620 && (bb2 = BLOCK_FOR_INSN (from)))
3621 {
3622 if (BB_END (bb2) == to)
3623 BB_END (bb2) = prev;
3624 bb2->flags |= BB_DIRTY;
3625 }
3626
3627 if (BB_END (bb) == after)
3628 BB_END (bb) = to;
3629
3630 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3631 if (!BARRIER_P (x))
3632 set_block_for_insn (x, bb);
3633 }
3634 }
3635
3636 /* Return the line note insn preceding INSN. */
3637
3638 static rtx
3639 find_line_note (rtx insn)
3640 {
3641 if (no_line_numbers)
3642 return 0;
3643
3644 for (; insn; insn = PREV_INSN (insn))
3645 if (NOTE_P (insn)
3646 && NOTE_LINE_NUMBER (insn) >= 0)
3647 break;
3648
3649 return insn;
3650 }
3651
3652 /* Remove unnecessary notes from the instruction stream. */
3653
3654 void
3655 remove_unnecessary_notes (void)
3656 {
3657 rtx eh_stack = NULL_RTX;
3658 rtx insn;
3659 rtx next;
3660 rtx tmp;
3661
3662 /* We must not remove the first instruction in the function because
3663 the compiler depends on the first instruction being a note. */
3664 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3665 {
3666 /* Remember what's next. */
3667 next = NEXT_INSN (insn);
3668
3669 /* We're only interested in notes. */
3670 if (!NOTE_P (insn))
3671 continue;
3672
3673 switch (NOTE_LINE_NUMBER (insn))
3674 {
3675 case NOTE_INSN_DELETED:
3676 remove_insn (insn);
3677 break;
3678
3679 case NOTE_INSN_EH_REGION_BEG:
3680 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3681 break;
3682
3683 case NOTE_INSN_EH_REGION_END:
3684 /* Too many end notes. */
3685 gcc_assert (eh_stack);
3686 /* Mismatched nesting. */
3687 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3688 == NOTE_EH_HANDLER (insn));
3689 tmp = eh_stack;
3690 eh_stack = XEXP (eh_stack, 1);
3691 free_INSN_LIST_node (tmp);
3692 break;
3693
3694 case NOTE_INSN_BLOCK_BEG:
3695 case NOTE_INSN_BLOCK_END:
3696 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3697 gcc_unreachable ();
3698
3699 default:
3700 break;
3701 }
3702 }
3703
3704 /* Too many EH_REGION_BEG notes. */
3705 gcc_assert (!eh_stack);
3706 }
3707
3708 \f
3709 /* Emit insn(s) of given code and pattern
3710 at a specified place within the doubly-linked list.
3711
3712 All of the emit_foo global entry points accept an object
3713 X which is either an insn list or a PATTERN of a single
3714 instruction.
3715
3716 There are thus a few canonical ways to generate code and
3717 emit it at a specific place in the instruction stream. For
3718 example, consider the instruction named SPOT and the fact that
3719 we would like to emit some instructions before SPOT. We might
3720 do it like this:
3721
3722 start_sequence ();
3723 ... emit the new instructions ...
3724 insns_head = get_insns ();
3725 end_sequence ();
3726
3727 emit_insn_before (insns_head, SPOT);
3728
3729 It used to be common to generate SEQUENCE rtl instead, but that
3730 is a relic of the past which no longer occurs. The reason is that
3731 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3732 generated would almost certainly die right after it was created. */
3733
3734 /* Make X be output before the instruction BEFORE. */
3735
3736 rtx
3737 emit_insn_before_noloc (rtx x, rtx before)
3738 {
3739 rtx last = before;
3740 rtx insn;
3741
3742 gcc_assert (before);
3743
3744 if (x == NULL_RTX)
3745 return last;
3746
3747 switch (GET_CODE (x))
3748 {
3749 case INSN:
3750 case JUMP_INSN:
3751 case CALL_INSN:
3752 case CODE_LABEL:
3753 case BARRIER:
3754 case NOTE:
3755 insn = x;
3756 while (insn)
3757 {
3758 rtx next = NEXT_INSN (insn);
3759 add_insn_before (insn, before);
3760 last = insn;
3761 insn = next;
3762 }
3763 break;
3764
3765 #ifdef ENABLE_RTL_CHECKING
3766 case SEQUENCE:
3767 gcc_unreachable ();
3768 break;
3769 #endif
3770
3771 default:
3772 last = make_insn_raw (x);
3773 add_insn_before (last, before);
3774 break;
3775 }
3776
3777 return last;
3778 }
3779
3780 /* Make an instruction with body X and code JUMP_INSN
3781 and output it before the instruction BEFORE. */
3782
3783 rtx
3784 emit_jump_insn_before_noloc (rtx x, rtx before)
3785 {
3786 rtx insn, last = NULL_RTX;
3787
3788 gcc_assert (before);
3789
3790 switch (GET_CODE (x))
3791 {
3792 case INSN:
3793 case JUMP_INSN:
3794 case CALL_INSN:
3795 case CODE_LABEL:
3796 case BARRIER:
3797 case NOTE:
3798 insn = x;
3799 while (insn)
3800 {
3801 rtx next = NEXT_INSN (insn);
3802 add_insn_before (insn, before);
3803 last = insn;
3804 insn = next;
3805 }
3806 break;
3807
3808 #ifdef ENABLE_RTL_CHECKING
3809 case SEQUENCE:
3810 gcc_unreachable ();
3811 break;
3812 #endif
3813
3814 default:
3815 last = make_jump_insn_raw (x);
3816 add_insn_before (last, before);
3817 break;
3818 }
3819
3820 return last;
3821 }
3822
3823 /* Make an instruction with body X and code CALL_INSN
3824 and output it before the instruction BEFORE. */
3825
3826 rtx
3827 emit_call_insn_before_noloc (rtx x, rtx before)
3828 {
3829 rtx last = NULL_RTX, insn;
3830
3831 gcc_assert (before);
3832
3833 switch (GET_CODE (x))
3834 {
3835 case INSN:
3836 case JUMP_INSN:
3837 case CALL_INSN:
3838 case CODE_LABEL:
3839 case BARRIER:
3840 case NOTE:
3841 insn = x;
3842 while (insn)
3843 {
3844 rtx next = NEXT_INSN (insn);
3845 add_insn_before (insn, before);
3846 last = insn;
3847 insn = next;
3848 }
3849 break;
3850
3851 #ifdef ENABLE_RTL_CHECKING
3852 case SEQUENCE:
3853 gcc_unreachable ();
3854 break;
3855 #endif
3856
3857 default:
3858 last = make_call_insn_raw (x);
3859 add_insn_before (last, before);
3860 break;
3861 }
3862
3863 return last;
3864 }
3865
3866 /* Make an insn of code BARRIER
3867 and output it before the insn BEFORE. */
3868
3869 rtx
3870 emit_barrier_before (rtx before)
3871 {
3872 rtx insn = rtx_alloc (BARRIER);
3873
3874 INSN_UID (insn) = cur_insn_uid++;
3875
3876 add_insn_before (insn, before);
3877 return insn;
3878 }
3879
3880 /* Emit the label LABEL before the insn BEFORE. */
3881
3882 rtx
3883 emit_label_before (rtx label, rtx before)
3884 {
3885 /* This can be called twice for the same label as a result of the
3886 confusion that follows a syntax error! So make it harmless. */
3887 if (INSN_UID (label) == 0)
3888 {
3889 INSN_UID (label) = cur_insn_uid++;
3890 add_insn_before (label, before);
3891 }
3892
3893 return label;
3894 }
3895
3896 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3897
3898 rtx
3899 emit_note_before (int subtype, rtx before)
3900 {
3901 rtx note = rtx_alloc (NOTE);
3902 INSN_UID (note) = cur_insn_uid++;
3903 #ifndef USE_MAPPED_LOCATION
3904 NOTE_SOURCE_FILE (note) = 0;
3905 #endif
3906 NOTE_LINE_NUMBER (note) = subtype;
3907 BLOCK_FOR_INSN (note) = NULL;
3908
3909 add_insn_before (note, before);
3910 return note;
3911 }
3912 \f
3913 /* Helper for emit_insn_after, handles lists of instructions
3914 efficiently. */
3915
3916 static rtx emit_insn_after_1 (rtx, rtx);
3917
3918 static rtx
3919 emit_insn_after_1 (rtx first, rtx after)
3920 {
3921 rtx last;
3922 rtx after_after;
3923 basic_block bb;
3924
3925 if (!BARRIER_P (after)
3926 && (bb = BLOCK_FOR_INSN (after)))
3927 {
3928 bb->flags |= BB_DIRTY;
3929 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3930 if (!BARRIER_P (last))
3931 set_block_for_insn (last, bb);
3932 if (!BARRIER_P (last))
3933 set_block_for_insn (last, bb);
3934 if (BB_END (bb) == after)
3935 BB_END (bb) = last;
3936 }
3937 else
3938 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3939 continue;
3940
3941 after_after = NEXT_INSN (after);
3942
3943 NEXT_INSN (after) = first;
3944 PREV_INSN (first) = after;
3945 NEXT_INSN (last) = after_after;
3946 if (after_after)
3947 PREV_INSN (after_after) = last;
3948
3949 if (after == last_insn)
3950 last_insn = last;
3951 return last;
3952 }
3953
3954 /* Make X be output after the insn AFTER. */
3955
3956 rtx
3957 emit_insn_after_noloc (rtx x, rtx after)
3958 {
3959 rtx last = after;
3960
3961 gcc_assert (after);
3962
3963 if (x == NULL_RTX)
3964 return last;
3965
3966 switch (GET_CODE (x))
3967 {
3968 case INSN:
3969 case JUMP_INSN:
3970 case CALL_INSN:
3971 case CODE_LABEL:
3972 case BARRIER:
3973 case NOTE:
3974 last = emit_insn_after_1 (x, after);
3975 break;
3976
3977 #ifdef ENABLE_RTL_CHECKING
3978 case SEQUENCE:
3979 gcc_unreachable ();
3980 break;
3981 #endif
3982
3983 default:
3984 last = make_insn_raw (x);
3985 add_insn_after (last, after);
3986 break;
3987 }
3988
3989 return last;
3990 }
3991
3992 /* Similar to emit_insn_after, except that line notes are to be inserted so
3993 as to act as if this insn were at FROM. */
3994
3995 void
3996 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
3997 {
3998 rtx from_line = find_line_note (from);
3999 rtx after_line = find_line_note (after);
4000 rtx insn = emit_insn_after (x, after);
4001
4002 if (from_line)
4003 emit_note_copy_after (from_line, after);
4004
4005 if (after_line)
4006 emit_note_copy_after (after_line, insn);
4007 }
4008
4009 /* Make an insn of code JUMP_INSN with body X
4010 and output it after the insn AFTER. */
4011
4012 rtx
4013 emit_jump_insn_after_noloc (rtx x, rtx after)
4014 {
4015 rtx last;
4016
4017 gcc_assert (after);
4018
4019 switch (GET_CODE (x))
4020 {
4021 case INSN:
4022 case JUMP_INSN:
4023 case CALL_INSN:
4024 case CODE_LABEL:
4025 case BARRIER:
4026 case NOTE:
4027 last = emit_insn_after_1 (x, after);
4028 break;
4029
4030 #ifdef ENABLE_RTL_CHECKING
4031 case SEQUENCE:
4032 gcc_unreachable ();
4033 break;
4034 #endif
4035
4036 default:
4037 last = make_jump_insn_raw (x);
4038 add_insn_after (last, after);
4039 break;
4040 }
4041
4042 return last;
4043 }
4044
4045 /* Make an instruction with body X and code CALL_INSN
4046 and output it after the instruction AFTER. */
4047
4048 rtx
4049 emit_call_insn_after_noloc (rtx x, rtx after)
4050 {
4051 rtx last;
4052
4053 gcc_assert (after);
4054
4055 switch (GET_CODE (x))
4056 {
4057 case INSN:
4058 case JUMP_INSN:
4059 case CALL_INSN:
4060 case CODE_LABEL:
4061 case BARRIER:
4062 case NOTE:
4063 last = emit_insn_after_1 (x, after);
4064 break;
4065
4066 #ifdef ENABLE_RTL_CHECKING
4067 case SEQUENCE:
4068 gcc_unreachable ();
4069 break;
4070 #endif
4071
4072 default:
4073 last = make_call_insn_raw (x);
4074 add_insn_after (last, after);
4075 break;
4076 }
4077
4078 return last;
4079 }
4080
4081 /* Make an insn of code BARRIER
4082 and output it after the insn AFTER. */
4083
4084 rtx
4085 emit_barrier_after (rtx after)
4086 {
4087 rtx insn = rtx_alloc (BARRIER);
4088
4089 INSN_UID (insn) = cur_insn_uid++;
4090
4091 add_insn_after (insn, after);
4092 return insn;
4093 }
4094
4095 /* Emit the label LABEL after the insn AFTER. */
4096
4097 rtx
4098 emit_label_after (rtx label, rtx after)
4099 {
4100 /* This can be called twice for the same label
4101 as a result of the confusion that follows a syntax error!
4102 So make it harmless. */
4103 if (INSN_UID (label) == 0)
4104 {
4105 INSN_UID (label) = cur_insn_uid++;
4106 add_insn_after (label, after);
4107 }
4108
4109 return label;
4110 }
4111
4112 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4113
4114 rtx
4115 emit_note_after (int subtype, rtx after)
4116 {
4117 rtx note = rtx_alloc (NOTE);
4118 INSN_UID (note) = cur_insn_uid++;
4119 #ifndef USE_MAPPED_LOCATION
4120 NOTE_SOURCE_FILE (note) = 0;
4121 #endif
4122 NOTE_LINE_NUMBER (note) = subtype;
4123 BLOCK_FOR_INSN (note) = NULL;
4124 add_insn_after (note, after);
4125 return note;
4126 }
4127
4128 /* Emit a copy of note ORIG after the insn AFTER. */
4129
4130 rtx
4131 emit_note_copy_after (rtx orig, rtx after)
4132 {
4133 rtx note;
4134
4135 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4136 {
4137 cur_insn_uid++;
4138 return 0;
4139 }
4140
4141 note = rtx_alloc (NOTE);
4142 INSN_UID (note) = cur_insn_uid++;
4143 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4144 NOTE_DATA (note) = NOTE_DATA (orig);
4145 BLOCK_FOR_INSN (note) = NULL;
4146 add_insn_after (note, after);
4147 return note;
4148 }
4149 \f
4150 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4151 rtx
4152 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4153 {
4154 rtx last = emit_insn_after_noloc (pattern, after);
4155
4156 if (pattern == NULL_RTX || !loc)
4157 return last;
4158
4159 after = NEXT_INSN (after);
4160 while (1)
4161 {
4162 if (active_insn_p (after) && !INSN_LOCATOR (after))
4163 INSN_LOCATOR (after) = loc;
4164 if (after == last)
4165 break;
4166 after = NEXT_INSN (after);
4167 }
4168 return last;
4169 }
4170
4171 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4172 rtx
4173 emit_insn_after (rtx pattern, rtx after)
4174 {
4175 if (INSN_P (after))
4176 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4177 else
4178 return emit_insn_after_noloc (pattern, after);
4179 }
4180
4181 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4182 rtx
4183 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4184 {
4185 rtx last = emit_jump_insn_after_noloc (pattern, after);
4186
4187 if (pattern == NULL_RTX || !loc)
4188 return last;
4189
4190 after = NEXT_INSN (after);
4191 while (1)
4192 {
4193 if (active_insn_p (after) && !INSN_LOCATOR (after))
4194 INSN_LOCATOR (after) = loc;
4195 if (after == last)
4196 break;
4197 after = NEXT_INSN (after);
4198 }
4199 return last;
4200 }
4201
4202 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4203 rtx
4204 emit_jump_insn_after (rtx pattern, rtx after)
4205 {
4206 if (INSN_P (after))
4207 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4208 else
4209 return emit_jump_insn_after_noloc (pattern, after);
4210 }
4211
4212 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4213 rtx
4214 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4215 {
4216 rtx last = emit_call_insn_after_noloc (pattern, after);
4217
4218 if (pattern == NULL_RTX || !loc)
4219 return last;
4220
4221 after = NEXT_INSN (after);
4222 while (1)
4223 {
4224 if (active_insn_p (after) && !INSN_LOCATOR (after))
4225 INSN_LOCATOR (after) = loc;
4226 if (after == last)
4227 break;
4228 after = NEXT_INSN (after);
4229 }
4230 return last;
4231 }
4232
4233 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4234 rtx
4235 emit_call_insn_after (rtx pattern, rtx after)
4236 {
4237 if (INSN_P (after))
4238 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4239 else
4240 return emit_call_insn_after_noloc (pattern, after);
4241 }
4242
4243 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4244 rtx
4245 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4246 {
4247 rtx first = PREV_INSN (before);
4248 rtx last = emit_insn_before_noloc (pattern, before);
4249
4250 if (pattern == NULL_RTX || !loc)
4251 return last;
4252
4253 first = NEXT_INSN (first);
4254 while (1)
4255 {
4256 if (active_insn_p (first) && !INSN_LOCATOR (first))
4257 INSN_LOCATOR (first) = loc;
4258 if (first == last)
4259 break;
4260 first = NEXT_INSN (first);
4261 }
4262 return last;
4263 }
4264
4265 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4266 rtx
4267 emit_insn_before (rtx pattern, rtx before)
4268 {
4269 if (INSN_P (before))
4270 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4271 else
4272 return emit_insn_before_noloc (pattern, before);
4273 }
4274
4275 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4276 rtx
4277 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4278 {
4279 rtx first = PREV_INSN (before);
4280 rtx last = emit_jump_insn_before_noloc (pattern, before);
4281
4282 if (pattern == NULL_RTX)
4283 return last;
4284
4285 first = NEXT_INSN (first);
4286 while (1)
4287 {
4288 if (active_insn_p (first) && !INSN_LOCATOR (first))
4289 INSN_LOCATOR (first) = loc;
4290 if (first == last)
4291 break;
4292 first = NEXT_INSN (first);
4293 }
4294 return last;
4295 }
4296
4297 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4298 rtx
4299 emit_jump_insn_before (rtx pattern, rtx before)
4300 {
4301 if (INSN_P (before))
4302 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4303 else
4304 return emit_jump_insn_before_noloc (pattern, before);
4305 }
4306
4307 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4308 rtx
4309 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4310 {
4311 rtx first = PREV_INSN (before);
4312 rtx last = emit_call_insn_before_noloc (pattern, before);
4313
4314 if (pattern == NULL_RTX)
4315 return last;
4316
4317 first = NEXT_INSN (first);
4318 while (1)
4319 {
4320 if (active_insn_p (first) && !INSN_LOCATOR (first))
4321 INSN_LOCATOR (first) = loc;
4322 if (first == last)
4323 break;
4324 first = NEXT_INSN (first);
4325 }
4326 return last;
4327 }
4328
4329 /* like emit_call_insn_before_noloc,
4330 but set insn_locator according to before. */
4331 rtx
4332 emit_call_insn_before (rtx pattern, rtx before)
4333 {
4334 if (INSN_P (before))
4335 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4336 else
4337 return emit_call_insn_before_noloc (pattern, before);
4338 }
4339 \f
4340 /* Take X and emit it at the end of the doubly-linked
4341 INSN list.
4342
4343 Returns the last insn emitted. */
4344
4345 rtx
4346 emit_insn (rtx x)
4347 {
4348 rtx last = last_insn;
4349 rtx insn;
4350
4351 if (x == NULL_RTX)
4352 return last;
4353
4354 switch (GET_CODE (x))
4355 {
4356 case INSN:
4357 case JUMP_INSN:
4358 case CALL_INSN:
4359 case CODE_LABEL:
4360 case BARRIER:
4361 case NOTE:
4362 insn = x;
4363 while (insn)
4364 {
4365 rtx next = NEXT_INSN (insn);
4366 add_insn (insn);
4367 last = insn;
4368 insn = next;
4369 }
4370 break;
4371
4372 #ifdef ENABLE_RTL_CHECKING
4373 case SEQUENCE:
4374 gcc_unreachable ();
4375 break;
4376 #endif
4377
4378 default:
4379 last = make_insn_raw (x);
4380 add_insn (last);
4381 break;
4382 }
4383
4384 return last;
4385 }
4386
4387 /* Make an insn of code JUMP_INSN with pattern X
4388 and add it to the end of the doubly-linked list. */
4389
4390 rtx
4391 emit_jump_insn (rtx x)
4392 {
4393 rtx last = NULL_RTX, insn;
4394
4395 switch (GET_CODE (x))
4396 {
4397 case INSN:
4398 case JUMP_INSN:
4399 case CALL_INSN:
4400 case CODE_LABEL:
4401 case BARRIER:
4402 case NOTE:
4403 insn = x;
4404 while (insn)
4405 {
4406 rtx next = NEXT_INSN (insn);
4407 add_insn (insn);
4408 last = insn;
4409 insn = next;
4410 }
4411 break;
4412
4413 #ifdef ENABLE_RTL_CHECKING
4414 case SEQUENCE:
4415 gcc_unreachable ();
4416 break;
4417 #endif
4418
4419 default:
4420 last = make_jump_insn_raw (x);
4421 add_insn (last);
4422 break;
4423 }
4424
4425 return last;
4426 }
4427
4428 /* Make an insn of code CALL_INSN with pattern X
4429 and add it to the end of the doubly-linked list. */
4430
4431 rtx
4432 emit_call_insn (rtx x)
4433 {
4434 rtx insn;
4435
4436 switch (GET_CODE (x))
4437 {
4438 case INSN:
4439 case JUMP_INSN:
4440 case CALL_INSN:
4441 case CODE_LABEL:
4442 case BARRIER:
4443 case NOTE:
4444 insn = emit_insn (x);
4445 break;
4446
4447 #ifdef ENABLE_RTL_CHECKING
4448 case SEQUENCE:
4449 gcc_unreachable ();
4450 break;
4451 #endif
4452
4453 default:
4454 insn = make_call_insn_raw (x);
4455 add_insn (insn);
4456 break;
4457 }
4458
4459 return insn;
4460 }
4461
4462 /* Add the label LABEL to the end of the doubly-linked list. */
4463
4464 rtx
4465 emit_label (rtx label)
4466 {
4467 /* This can be called twice for the same label
4468 as a result of the confusion that follows a syntax error!
4469 So make it harmless. */
4470 if (INSN_UID (label) == 0)
4471 {
4472 INSN_UID (label) = cur_insn_uid++;
4473 add_insn (label);
4474 }
4475 return label;
4476 }
4477
4478 /* Make an insn of code BARRIER
4479 and add it to the end of the doubly-linked list. */
4480
4481 rtx
4482 emit_barrier (void)
4483 {
4484 rtx barrier = rtx_alloc (BARRIER);
4485 INSN_UID (barrier) = cur_insn_uid++;
4486 add_insn (barrier);
4487 return barrier;
4488 }
4489
4490 /* Make line numbering NOTE insn for LOCATION add it to the end
4491 of the doubly-linked list, but only if line-numbers are desired for
4492 debugging info and it doesn't match the previous one. */
4493
4494 rtx
4495 emit_line_note (location_t location)
4496 {
4497 rtx note;
4498
4499 #ifdef USE_MAPPED_LOCATION
4500 if (location == last_location)
4501 return NULL_RTX;
4502 #else
4503 if (location.file && last_location.file
4504 && !strcmp (location.file, last_location.file)
4505 && location.line == last_location.line)
4506 return NULL_RTX;
4507 #endif
4508 last_location = location;
4509
4510 if (no_line_numbers)
4511 {
4512 cur_insn_uid++;
4513 return NULL_RTX;
4514 }
4515
4516 #ifdef USE_MAPPED_LOCATION
4517 note = emit_note ((int) location);
4518 #else
4519 note = emit_note (location.line);
4520 NOTE_SOURCE_FILE (note) = location.file;
4521 #endif
4522
4523 return note;
4524 }
4525
4526 /* Emit a copy of note ORIG. */
4527
4528 rtx
4529 emit_note_copy (rtx orig)
4530 {
4531 rtx note;
4532
4533 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4534 {
4535 cur_insn_uid++;
4536 return NULL_RTX;
4537 }
4538
4539 note = rtx_alloc (NOTE);
4540
4541 INSN_UID (note) = cur_insn_uid++;
4542 NOTE_DATA (note) = NOTE_DATA (orig);
4543 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4544 BLOCK_FOR_INSN (note) = NULL;
4545 add_insn (note);
4546
4547 return note;
4548 }
4549
4550 /* Make an insn of code NOTE or type NOTE_NO
4551 and add it to the end of the doubly-linked list. */
4552
4553 rtx
4554 emit_note (int note_no)
4555 {
4556 rtx note;
4557
4558 note = rtx_alloc (NOTE);
4559 INSN_UID (note) = cur_insn_uid++;
4560 NOTE_LINE_NUMBER (note) = note_no;
4561 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4562 BLOCK_FOR_INSN (note) = NULL;
4563 add_insn (note);
4564 return note;
4565 }
4566
4567 /* Cause next statement to emit a line note even if the line number
4568 has not changed. */
4569
4570 void
4571 force_next_line_note (void)
4572 {
4573 #ifdef USE_MAPPED_LOCATION
4574 last_location = -1;
4575 #else
4576 last_location.line = -1;
4577 #endif
4578 }
4579
4580 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4581 note of this type already exists, remove it first. */
4582
4583 rtx
4584 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4585 {
4586 rtx note = find_reg_note (insn, kind, NULL_RTX);
4587
4588 switch (kind)
4589 {
4590 case REG_EQUAL:
4591 case REG_EQUIV:
4592 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4593 has multiple sets (some callers assume single_set
4594 means the insn only has one set, when in fact it
4595 means the insn only has one * useful * set). */
4596 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4597 {
4598 gcc_assert (!note);
4599 return NULL_RTX;
4600 }
4601
4602 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4603 It serves no useful purpose and breaks eliminate_regs. */
4604 if (GET_CODE (datum) == ASM_OPERANDS)
4605 return NULL_RTX;
4606 break;
4607
4608 default:
4609 break;
4610 }
4611
4612 if (note)
4613 {
4614 XEXP (note, 0) = datum;
4615 return note;
4616 }
4617
4618 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4619 return REG_NOTES (insn);
4620 }
4621 \f
4622 /* Return an indication of which type of insn should have X as a body.
4623 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4624
4625 static enum rtx_code
4626 classify_insn (rtx x)
4627 {
4628 if (LABEL_P (x))
4629 return CODE_LABEL;
4630 if (GET_CODE (x) == CALL)
4631 return CALL_INSN;
4632 if (GET_CODE (x) == RETURN)
4633 return JUMP_INSN;
4634 if (GET_CODE (x) == SET)
4635 {
4636 if (SET_DEST (x) == pc_rtx)
4637 return JUMP_INSN;
4638 else if (GET_CODE (SET_SRC (x)) == CALL)
4639 return CALL_INSN;
4640 else
4641 return INSN;
4642 }
4643 if (GET_CODE (x) == PARALLEL)
4644 {
4645 int j;
4646 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4647 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4648 return CALL_INSN;
4649 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4650 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4651 return JUMP_INSN;
4652 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4653 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4654 return CALL_INSN;
4655 }
4656 return INSN;
4657 }
4658
4659 /* Emit the rtl pattern X as an appropriate kind of insn.
4660 If X is a label, it is simply added into the insn chain. */
4661
4662 rtx
4663 emit (rtx x)
4664 {
4665 enum rtx_code code = classify_insn (x);
4666
4667 switch (code)
4668 {
4669 case CODE_LABEL:
4670 return emit_label (x);
4671 case INSN:
4672 return emit_insn (x);
4673 case JUMP_INSN:
4674 {
4675 rtx insn = emit_jump_insn (x);
4676 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4677 return emit_barrier ();
4678 return insn;
4679 }
4680 case CALL_INSN:
4681 return emit_call_insn (x);
4682 default:
4683 gcc_unreachable ();
4684 }
4685 }
4686 \f
4687 /* Space for free sequence stack entries. */
4688 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4689
4690 /* Begin emitting insns to a sequence. If this sequence will contain
4691 something that might cause the compiler to pop arguments to function
4692 calls (because those pops have previously been deferred; see
4693 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4694 before calling this function. That will ensure that the deferred
4695 pops are not accidentally emitted in the middle of this sequence. */
4696
4697 void
4698 start_sequence (void)
4699 {
4700 struct sequence_stack *tem;
4701
4702 if (free_sequence_stack != NULL)
4703 {
4704 tem = free_sequence_stack;
4705 free_sequence_stack = tem->next;
4706 }
4707 else
4708 tem = ggc_alloc (sizeof (struct sequence_stack));
4709
4710 tem->next = seq_stack;
4711 tem->first = first_insn;
4712 tem->last = last_insn;
4713
4714 seq_stack = tem;
4715
4716 first_insn = 0;
4717 last_insn = 0;
4718 }
4719
4720 /* Set up the insn chain starting with FIRST as the current sequence,
4721 saving the previously current one. See the documentation for
4722 start_sequence for more information about how to use this function. */
4723
4724 void
4725 push_to_sequence (rtx first)
4726 {
4727 rtx last;
4728
4729 start_sequence ();
4730
4731 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4732
4733 first_insn = first;
4734 last_insn = last;
4735 }
4736
4737 /* Set up the outer-level insn chain
4738 as the current sequence, saving the previously current one. */
4739
4740 void
4741 push_topmost_sequence (void)
4742 {
4743 struct sequence_stack *stack, *top = NULL;
4744
4745 start_sequence ();
4746
4747 for (stack = seq_stack; stack; stack = stack->next)
4748 top = stack;
4749
4750 first_insn = top->first;
4751 last_insn = top->last;
4752 }
4753
4754 /* After emitting to the outer-level insn chain, update the outer-level
4755 insn chain, and restore the previous saved state. */
4756
4757 void
4758 pop_topmost_sequence (void)
4759 {
4760 struct sequence_stack *stack, *top = NULL;
4761
4762 for (stack = seq_stack; stack; stack = stack->next)
4763 top = stack;
4764
4765 top->first = first_insn;
4766 top->last = last_insn;
4767
4768 end_sequence ();
4769 }
4770
4771 /* After emitting to a sequence, restore previous saved state.
4772
4773 To get the contents of the sequence just made, you must call
4774 `get_insns' *before* calling here.
4775
4776 If the compiler might have deferred popping arguments while
4777 generating this sequence, and this sequence will not be immediately
4778 inserted into the instruction stream, use do_pending_stack_adjust
4779 before calling get_insns. That will ensure that the deferred
4780 pops are inserted into this sequence, and not into some random
4781 location in the instruction stream. See INHIBIT_DEFER_POP for more
4782 information about deferred popping of arguments. */
4783
4784 void
4785 end_sequence (void)
4786 {
4787 struct sequence_stack *tem = seq_stack;
4788
4789 first_insn = tem->first;
4790 last_insn = tem->last;
4791 seq_stack = tem->next;
4792
4793 memset (tem, 0, sizeof (*tem));
4794 tem->next = free_sequence_stack;
4795 free_sequence_stack = tem;
4796 }
4797
4798 /* Return 1 if currently emitting into a sequence. */
4799
4800 int
4801 in_sequence_p (void)
4802 {
4803 return seq_stack != 0;
4804 }
4805 \f
4806 /* Put the various virtual registers into REGNO_REG_RTX. */
4807
4808 void
4809 init_virtual_regs (struct emit_status *es)
4810 {
4811 rtx *ptr = es->x_regno_reg_rtx;
4812 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4813 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4814 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4815 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4816 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4817 }
4818
4819 \f
4820 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4821 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4822 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4823 static int copy_insn_n_scratches;
4824
4825 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4826 copied an ASM_OPERANDS.
4827 In that case, it is the original input-operand vector. */
4828 static rtvec orig_asm_operands_vector;
4829
4830 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4831 copied an ASM_OPERANDS.
4832 In that case, it is the copied input-operand vector. */
4833 static rtvec copy_asm_operands_vector;
4834
4835 /* Likewise for the constraints vector. */
4836 static rtvec orig_asm_constraints_vector;
4837 static rtvec copy_asm_constraints_vector;
4838
4839 /* Recursively create a new copy of an rtx for copy_insn.
4840 This function differs from copy_rtx in that it handles SCRATCHes and
4841 ASM_OPERANDs properly.
4842 Normally, this function is not used directly; use copy_insn as front end.
4843 However, you could first copy an insn pattern with copy_insn and then use
4844 this function afterwards to properly copy any REG_NOTEs containing
4845 SCRATCHes. */
4846
4847 rtx
4848 copy_insn_1 (rtx orig)
4849 {
4850 rtx copy;
4851 int i, j;
4852 RTX_CODE code;
4853 const char *format_ptr;
4854
4855 code = GET_CODE (orig);
4856
4857 switch (code)
4858 {
4859 case REG:
4860 case CONST_INT:
4861 case CONST_DOUBLE:
4862 case CONST_VECTOR:
4863 case SYMBOL_REF:
4864 case CODE_LABEL:
4865 case PC:
4866 case CC0:
4867 return orig;
4868 case CLOBBER:
4869 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4870 return orig;
4871 break;
4872
4873 case SCRATCH:
4874 for (i = 0; i < copy_insn_n_scratches; i++)
4875 if (copy_insn_scratch_in[i] == orig)
4876 return copy_insn_scratch_out[i];
4877 break;
4878
4879 case CONST:
4880 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4881 a LABEL_REF, it isn't sharable. */
4882 if (GET_CODE (XEXP (orig, 0)) == PLUS
4883 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4884 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4885 return orig;
4886 break;
4887
4888 /* A MEM with a constant address is not sharable. The problem is that
4889 the constant address may need to be reloaded. If the mem is shared,
4890 then reloading one copy of this mem will cause all copies to appear
4891 to have been reloaded. */
4892
4893 default:
4894 break;
4895 }
4896
4897 copy = rtx_alloc (code);
4898
4899 /* Copy the various flags, and other information. We assume that
4900 all fields need copying, and then clear the fields that should
4901 not be copied. That is the sensible default behavior, and forces
4902 us to explicitly document why we are *not* copying a flag. */
4903 memcpy (copy, orig, RTX_HDR_SIZE);
4904
4905 /* We do not copy the USED flag, which is used as a mark bit during
4906 walks over the RTL. */
4907 RTX_FLAG (copy, used) = 0;
4908
4909 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4910 if (INSN_P (orig))
4911 {
4912 RTX_FLAG (copy, jump) = 0;
4913 RTX_FLAG (copy, call) = 0;
4914 RTX_FLAG (copy, frame_related) = 0;
4915 }
4916
4917 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4918
4919 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4920 {
4921 copy->u.fld[i] = orig->u.fld[i];
4922 switch (*format_ptr++)
4923 {
4924 case 'e':
4925 if (XEXP (orig, i) != NULL)
4926 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4927 break;
4928
4929 case 'E':
4930 case 'V':
4931 if (XVEC (orig, i) == orig_asm_constraints_vector)
4932 XVEC (copy, i) = copy_asm_constraints_vector;
4933 else if (XVEC (orig, i) == orig_asm_operands_vector)
4934 XVEC (copy, i) = copy_asm_operands_vector;
4935 else if (XVEC (orig, i) != NULL)
4936 {
4937 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4938 for (j = 0; j < XVECLEN (copy, i); j++)
4939 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4940 }
4941 break;
4942
4943 case 't':
4944 case 'w':
4945 case 'i':
4946 case 's':
4947 case 'S':
4948 case 'u':
4949 case '0':
4950 /* These are left unchanged. */
4951 break;
4952
4953 default:
4954 gcc_unreachable ();
4955 }
4956 }
4957
4958 if (code == SCRATCH)
4959 {
4960 i = copy_insn_n_scratches++;
4961 gcc_assert (i < MAX_RECOG_OPERANDS);
4962 copy_insn_scratch_in[i] = orig;
4963 copy_insn_scratch_out[i] = copy;
4964 }
4965 else if (code == ASM_OPERANDS)
4966 {
4967 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4968 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4969 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4970 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4971 }
4972
4973 return copy;
4974 }
4975
4976 /* Create a new copy of an rtx.
4977 This function differs from copy_rtx in that it handles SCRATCHes and
4978 ASM_OPERANDs properly.
4979 INSN doesn't really have to be a full INSN; it could be just the
4980 pattern. */
4981 rtx
4982 copy_insn (rtx insn)
4983 {
4984 copy_insn_n_scratches = 0;
4985 orig_asm_operands_vector = 0;
4986 orig_asm_constraints_vector = 0;
4987 copy_asm_operands_vector = 0;
4988 copy_asm_constraints_vector = 0;
4989 return copy_insn_1 (insn);
4990 }
4991
4992 /* Initialize data structures and variables in this file
4993 before generating rtl for each function. */
4994
4995 void
4996 init_emit (void)
4997 {
4998 struct function *f = cfun;
4999
5000 f->emit = ggc_alloc (sizeof (struct emit_status));
5001 first_insn = NULL;
5002 last_insn = NULL;
5003 cur_insn_uid = 1;
5004 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5005 last_location = UNKNOWN_LOCATION;
5006 first_label_num = label_num;
5007 seq_stack = NULL;
5008
5009 /* Init the tables that describe all the pseudo regs. */
5010
5011 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5012
5013 f->emit->regno_pointer_align
5014 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5015 * sizeof (unsigned char));
5016
5017 regno_reg_rtx
5018 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5019
5020 /* Put copies of all the hard registers into regno_reg_rtx. */
5021 memcpy (regno_reg_rtx,
5022 static_regno_reg_rtx,
5023 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5024
5025 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5026 init_virtual_regs (f->emit);
5027
5028 /* Indicate that the virtual registers and stack locations are
5029 all pointers. */
5030 REG_POINTER (stack_pointer_rtx) = 1;
5031 REG_POINTER (frame_pointer_rtx) = 1;
5032 REG_POINTER (hard_frame_pointer_rtx) = 1;
5033 REG_POINTER (arg_pointer_rtx) = 1;
5034
5035 REG_POINTER (virtual_incoming_args_rtx) = 1;
5036 REG_POINTER (virtual_stack_vars_rtx) = 1;
5037 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5038 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5039 REG_POINTER (virtual_cfa_rtx) = 1;
5040
5041 #ifdef STACK_BOUNDARY
5042 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5043 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5044 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5045 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5046
5047 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5048 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5049 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5050 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5051 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5052 #endif
5053
5054 #ifdef INIT_EXPANDERS
5055 INIT_EXPANDERS;
5056 #endif
5057 }
5058
5059 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5060
5061 static rtx
5062 gen_const_vector (enum machine_mode mode, int constant)
5063 {
5064 rtx tem;
5065 rtvec v;
5066 int units, i;
5067 enum machine_mode inner;
5068
5069 units = GET_MODE_NUNITS (mode);
5070 inner = GET_MODE_INNER (mode);
5071
5072 v = rtvec_alloc (units);
5073
5074 /* We need to call this function after we set the scalar const_tiny_rtx
5075 entries. */
5076 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5077
5078 for (i = 0; i < units; ++i)
5079 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5080
5081 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5082 return tem;
5083 }
5084
5085 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5086 all elements are zero, and the one vector when all elements are one. */
5087 rtx
5088 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5089 {
5090 enum machine_mode inner = GET_MODE_INNER (mode);
5091 int nunits = GET_MODE_NUNITS (mode);
5092 rtx x;
5093 int i;
5094
5095 /* Check to see if all of the elements have the same value. */
5096 x = RTVEC_ELT (v, nunits - 1);
5097 for (i = nunits - 2; i >= 0; i--)
5098 if (RTVEC_ELT (v, i) != x)
5099 break;
5100
5101 /* If the values are all the same, check to see if we can use one of the
5102 standard constant vectors. */
5103 if (i == -1)
5104 {
5105 if (x == CONST0_RTX (inner))
5106 return CONST0_RTX (mode);
5107 else if (x == CONST1_RTX (inner))
5108 return CONST1_RTX (mode);
5109 }
5110
5111 return gen_rtx_raw_CONST_VECTOR (mode, v);
5112 }
5113
5114 /* Create some permanent unique rtl objects shared between all functions.
5115 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5116
5117 void
5118 init_emit_once (int line_numbers)
5119 {
5120 int i;
5121 enum machine_mode mode;
5122 enum machine_mode double_mode;
5123
5124 /* We need reg_raw_mode, so initialize the modes now. */
5125 init_reg_modes_once ();
5126
5127 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5128 tables. */
5129 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5130 const_int_htab_eq, NULL);
5131
5132 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5133 const_double_htab_eq, NULL);
5134
5135 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5136 mem_attrs_htab_eq, NULL);
5137 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5138 reg_attrs_htab_eq, NULL);
5139
5140 no_line_numbers = ! line_numbers;
5141
5142 /* Compute the word and byte modes. */
5143
5144 byte_mode = VOIDmode;
5145 word_mode = VOIDmode;
5146 double_mode = VOIDmode;
5147
5148 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5149 mode = GET_MODE_WIDER_MODE (mode))
5150 {
5151 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5152 && byte_mode == VOIDmode)
5153 byte_mode = mode;
5154
5155 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5156 && word_mode == VOIDmode)
5157 word_mode = mode;
5158 }
5159
5160 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5161 mode = GET_MODE_WIDER_MODE (mode))
5162 {
5163 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5164 && double_mode == VOIDmode)
5165 double_mode = mode;
5166 }
5167
5168 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5169
5170 /* Assign register numbers to the globally defined register rtx.
5171 This must be done at runtime because the register number field
5172 is in a union and some compilers can't initialize unions. */
5173
5174 pc_rtx = gen_rtx_PC (VOIDmode);
5175 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5176 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5177 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5178 if (hard_frame_pointer_rtx == 0)
5179 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5180 HARD_FRAME_POINTER_REGNUM);
5181 if (arg_pointer_rtx == 0)
5182 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5183 virtual_incoming_args_rtx =
5184 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5185 virtual_stack_vars_rtx =
5186 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5187 virtual_stack_dynamic_rtx =
5188 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5189 virtual_outgoing_args_rtx =
5190 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5191 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5192
5193 /* Initialize RTL for commonly used hard registers. These are
5194 copied into regno_reg_rtx as we begin to compile each function. */
5195 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5196 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5197
5198 #ifdef INIT_EXPANDERS
5199 /* This is to initialize {init|mark|free}_machine_status before the first
5200 call to push_function_context_to. This is needed by the Chill front
5201 end which calls push_function_context_to before the first call to
5202 init_function_start. */
5203 INIT_EXPANDERS;
5204 #endif
5205
5206 /* Create the unique rtx's for certain rtx codes and operand values. */
5207
5208 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5209 tries to use these variables. */
5210 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5211 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5212 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5213
5214 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5215 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5216 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5217 else
5218 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5219
5220 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5221 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5222 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5223 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5224 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5225 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5226 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5227
5228 dconsthalf = dconst1;
5229 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5230
5231 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5232
5233 /* Initialize mathematical constants for constant folding builtins.
5234 These constants need to be given to at least 160 bits precision. */
5235 real_from_string (&dconstpi,
5236 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5237 real_from_string (&dconste,
5238 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5239
5240 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5241 {
5242 REAL_VALUE_TYPE *r =
5243 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5244
5245 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5246 mode = GET_MODE_WIDER_MODE (mode))
5247 const_tiny_rtx[i][(int) mode] =
5248 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5249
5250 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5251
5252 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5253 mode = GET_MODE_WIDER_MODE (mode))
5254 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5255
5256 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5257 mode != VOIDmode;
5258 mode = GET_MODE_WIDER_MODE (mode))
5259 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5260 }
5261
5262 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5263 mode != VOIDmode;
5264 mode = GET_MODE_WIDER_MODE (mode))
5265 {
5266 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5267 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5268 }
5269
5270 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5271 mode != VOIDmode;
5272 mode = GET_MODE_WIDER_MODE (mode))
5273 {
5274 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5275 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5276 }
5277
5278 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5279 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5280 const_tiny_rtx[0][i] = const0_rtx;
5281
5282 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5283 if (STORE_FLAG_VALUE == 1)
5284 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5285
5286 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5287 return_address_pointer_rtx
5288 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5289 #endif
5290
5291 #ifdef STATIC_CHAIN_REGNUM
5292 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5293
5294 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5295 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5296 static_chain_incoming_rtx
5297 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5298 else
5299 #endif
5300 static_chain_incoming_rtx = static_chain_rtx;
5301 #endif
5302
5303 #ifdef STATIC_CHAIN
5304 static_chain_rtx = STATIC_CHAIN;
5305
5306 #ifdef STATIC_CHAIN_INCOMING
5307 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5308 #else
5309 static_chain_incoming_rtx = static_chain_rtx;
5310 #endif
5311 #endif
5312
5313 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5314 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5315 }
5316 \f
5317 /* Produce exact duplicate of insn INSN after AFTER.
5318 Care updating of libcall regions if present. */
5319
5320 rtx
5321 emit_copy_of_insn_after (rtx insn, rtx after)
5322 {
5323 rtx new;
5324 rtx note1, note2, link;
5325
5326 switch (GET_CODE (insn))
5327 {
5328 case INSN:
5329 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5330 break;
5331
5332 case JUMP_INSN:
5333 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5334 break;
5335
5336 case CALL_INSN:
5337 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5338 if (CALL_INSN_FUNCTION_USAGE (insn))
5339 CALL_INSN_FUNCTION_USAGE (new)
5340 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5341 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5342 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5343 break;
5344
5345 default:
5346 gcc_unreachable ();
5347 }
5348
5349 /* Update LABEL_NUSES. */
5350 mark_jump_label (PATTERN (new), new, 0);
5351
5352 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5353
5354 /* If the old insn is frame related, then so is the new one. This is
5355 primarily needed for IA-64 unwind info which marks epilogue insns,
5356 which may be duplicated by the basic block reordering code. */
5357 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5358
5359 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5360 make them. */
5361 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5362 if (REG_NOTE_KIND (link) != REG_LABEL)
5363 {
5364 if (GET_CODE (link) == EXPR_LIST)
5365 REG_NOTES (new)
5366 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5367 XEXP (link, 0),
5368 REG_NOTES (new)));
5369 else
5370 REG_NOTES (new)
5371 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5372 XEXP (link, 0),
5373 REG_NOTES (new)));
5374 }
5375
5376 /* Fix the libcall sequences. */
5377 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5378 {
5379 rtx p = new;
5380 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5381 p = PREV_INSN (p);
5382 XEXP (note1, 0) = p;
5383 XEXP (note2, 0) = new;
5384 }
5385 INSN_CODE (new) = INSN_CODE (insn);
5386 return new;
5387 }
5388
5389 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5390 rtx
5391 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5392 {
5393 if (hard_reg_clobbers[mode][regno])
5394 return hard_reg_clobbers[mode][regno];
5395 else
5396 return (hard_reg_clobbers[mode][regno] =
5397 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5398 }
5399
5400 #include "gt-emit-rtl.h"