]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
re PR middle-end/10060 (ICE (stack overflow) on huge file (300k lines) due to recursi...
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_first_and_last_label_number was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
121
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
125
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
130
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
137
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
152
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
157
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
160
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
164
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
168
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
172
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
178
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 rtx value = (rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 rtx a = (rtx)x, b = (rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
261
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
264 {
265 mem_attrs *p = (mem_attrs *) x;
266
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
271 }
272
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
276
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
279 {
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
282
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
285 }
286
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
290
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
294 {
295 mem_attrs attrs;
296 void **slot;
297
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
325
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
328 {
329 reg_attrs *p = (reg_attrs *) x;
330
331 return ((p->offset * 1000) ^ (long) p->decl);
332 }
333
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
337
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
340 {
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
343
344 return (p->decl == q->decl && p->offset == q->offset);
345 }
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
349
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
352 {
353 reg_attrs attrs;
354 void **slot;
355
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
359
360 attrs.decl = decl;
361 attrs.offset = offset;
362
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
365 {
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 }
369
370 return *slot;
371 }
372
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
376
377 rtx
378 gen_raw_REG (enum machine_mode mode, int regno)
379 {
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
383 }
384
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
388
389 rtx
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 {
392 void **slot;
393
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
401
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407
408 return (rtx) *slot;
409 }
410
411 rtx
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 {
414 return GEN_INT (trunc_int_for_mode (c, mode));
415 }
416
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
420
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
426 {
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
430
431 return (rtx) *slot;
432 }
433
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
436 rtx
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 {
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
441
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443
444 return lookup_const_double (real);
445 }
446
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451
452 rtx
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 {
455 rtx value;
456 unsigned int i;
457
458 if (mode != VOIDmode)
459 {
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
467
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
482
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
486
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
491
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
495
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
498
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
504
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
510
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
513
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 }
517
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
521
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
525
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
528
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
531
532 return lookup_const_double (value);
533 }
534
535 rtx
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 {
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
543
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
548
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
551
552 if (mode == Pmode && !reload_in_progress)
553 {
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
575 }
576
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
580
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
585
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
588
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
596
597 return gen_raw_REG (mode, regno);
598 }
599
600 rtx
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 {
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
604
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
608
609 return rt;
610 }
611
612 rtx
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 {
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
619
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
629 }
630
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
633
634 rtx
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 {
637 enum machine_mode inmode;
638
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
644 }
645 \f
646 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
647 **
648 ** This routine generates an RTX of the size specified by
649 ** <code>, which is an RTX code. The RTX structure is initialized
650 ** from the arguments <element1> through <elementn>, which are
651 ** interpreted according to the specific RTX type's format. The
652 ** special machine mode associated with the rtx (if any) is specified
653 ** in <mode>.
654 **
655 ** gen_rtx can be invoked in a way which resembles the lisp-like
656 ** rtx it will generate. For example, the following rtx structure:
657 **
658 ** (plus:QI (mem:QI (reg:SI 1))
659 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
660 **
661 ** ...would be generated by the following C code:
662 **
663 ** gen_rtx (PLUS, QImode,
664 ** gen_rtx (MEM, QImode,
665 ** gen_rtx (REG, SImode, 1)),
666 ** gen_rtx (MEM, QImode,
667 ** gen_rtx (PLUS, SImode,
668 ** gen_rtx (REG, SImode, 2),
669 ** gen_rtx (REG, SImode, 3)))),
670 */
671
672 /*VARARGS2*/
673 rtx
674 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
675 {
676 int i; /* Array indices... */
677 const char *fmt; /* Current rtx's format... */
678 rtx rt_val; /* RTX to return to caller... */
679 va_list p;
680
681 va_start (p, mode);
682
683 switch (code)
684 {
685 case CONST_INT:
686 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
687 break;
688
689 case CONST_DOUBLE:
690 {
691 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
692 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
693
694 rt_val = immed_double_const (arg0, arg1, mode);
695 }
696 break;
697
698 case REG:
699 rt_val = gen_rtx_REG (mode, va_arg (p, int));
700 break;
701
702 case MEM:
703 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
704 break;
705
706 default:
707 rt_val = rtx_alloc (code); /* Allocate the storage space. */
708 rt_val->mode = mode; /* Store the machine mode... */
709
710 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
711 for (i = 0; i < GET_RTX_LENGTH (code); i++)
712 {
713 switch (*fmt++)
714 {
715 case '0': /* Field with unknown use. Zero it. */
716 X0EXP (rt_val, i) = NULL_RTX;
717 break;
718
719 case 'i': /* An integer? */
720 XINT (rt_val, i) = va_arg (p, int);
721 break;
722
723 case 'w': /* A wide integer? */
724 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
725 break;
726
727 case 's': /* A string? */
728 XSTR (rt_val, i) = va_arg (p, char *);
729 break;
730
731 case 'e': /* An expression? */
732 case 'u': /* An insn? Same except when printing. */
733 XEXP (rt_val, i) = va_arg (p, rtx);
734 break;
735
736 case 'E': /* An RTX vector? */
737 XVEC (rt_val, i) = va_arg (p, rtvec);
738 break;
739
740 case 'b': /* A bitmap? */
741 XBITMAP (rt_val, i) = va_arg (p, bitmap);
742 break;
743
744 case 't': /* A tree? */
745 XTREE (rt_val, i) = va_arg (p, tree);
746 break;
747
748 default:
749 abort ();
750 }
751 }
752 break;
753 }
754
755 va_end (p);
756 return rt_val;
757 }
758
759 /* gen_rtvec (n, [rt1, ..., rtn])
760 **
761 ** This routine creates an rtvec and stores within it the
762 ** pointers to rtx's which are its arguments.
763 */
764
765 /*VARARGS1*/
766 rtvec
767 gen_rtvec (int n, ...)
768 {
769 int i, save_n;
770 rtx *vector;
771 va_list p;
772
773 va_start (p, n);
774
775 if (n == 0)
776 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
777
778 vector = alloca (n * sizeof (rtx));
779
780 for (i = 0; i < n; i++)
781 vector[i] = va_arg (p, rtx);
782
783 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
784 save_n = n;
785 va_end (p);
786
787 return gen_rtvec_v (save_n, vector);
788 }
789
790 rtvec
791 gen_rtvec_v (int n, rtx *argp)
792 {
793 int i;
794 rtvec rt_val;
795
796 if (n == 0)
797 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
798
799 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
800
801 for (i = 0; i < n; i++)
802 rt_val->elem[i] = *argp++;
803
804 return rt_val;
805 }
806 \f
807 /* Generate a REG rtx for a new pseudo register of mode MODE.
808 This pseudo is assigned the next sequential register number. */
809
810 rtx
811 gen_reg_rtx (enum machine_mode mode)
812 {
813 struct function *f = cfun;
814 rtx val;
815
816 /* Don't let anything called after initial flow analysis create new
817 registers. */
818 if (no_new_pseudos)
819 abort ();
820
821 if (generating_concat_p
822 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
823 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
824 {
825 /* For complex modes, don't make a single pseudo.
826 Instead, make a CONCAT of two pseudos.
827 This allows noncontiguous allocation of the real and imaginary parts,
828 which makes much better code. Besides, allocating DCmode
829 pseudos overstrains reload on some machines like the 386. */
830 rtx realpart, imagpart;
831 enum machine_mode partmode = GET_MODE_INNER (mode);
832
833 realpart = gen_reg_rtx (partmode);
834 imagpart = gen_reg_rtx (partmode);
835 return gen_rtx_CONCAT (mode, realpart, imagpart);
836 }
837
838 /* Make sure regno_pointer_align, and regno_reg_rtx are large
839 enough to have an element for this pseudo reg number. */
840
841 if (reg_rtx_no == f->emit->regno_pointer_align_length)
842 {
843 int old_size = f->emit->regno_pointer_align_length;
844 char *new;
845 rtx *new1;
846
847 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
848 memset (new + old_size, 0, old_size);
849 f->emit->regno_pointer_align = (unsigned char *) new;
850
851 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
852 old_size * 2 * sizeof (rtx));
853 memset (new1 + old_size, 0, old_size * sizeof (rtx));
854 regno_reg_rtx = new1;
855
856 f->emit->regno_pointer_align_length = old_size * 2;
857 }
858
859 val = gen_raw_REG (mode, reg_rtx_no);
860 regno_reg_rtx[reg_rtx_no++] = val;
861 return val;
862 }
863
864 /* Generate a register with same attributes as REG,
865 but offsetted by OFFSET. */
866
867 rtx
868 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
869 {
870 rtx new = gen_rtx_REG (mode, regno);
871 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
872 REG_OFFSET (reg) + offset);
873 return new;
874 }
875
876 /* Set the decl for MEM to DECL. */
877
878 void
879 set_reg_attrs_from_mem (rtx reg, rtx mem)
880 {
881 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
882 REG_ATTRS (reg)
883 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
884 }
885
886 /* Set the register attributes for registers contained in PARM_RTX.
887 Use needed values from memory attributes of MEM. */
888
889 void
890 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
891 {
892 if (GET_CODE (parm_rtx) == REG)
893 set_reg_attrs_from_mem (parm_rtx, mem);
894 else if (GET_CODE (parm_rtx) == PARALLEL)
895 {
896 /* Check for a NULL entry in the first slot, used to indicate that the
897 parameter goes both on the stack and in registers. */
898 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
899 for (; i < XVECLEN (parm_rtx, 0); i++)
900 {
901 rtx x = XVECEXP (parm_rtx, 0, i);
902 if (GET_CODE (XEXP (x, 0)) == REG)
903 REG_ATTRS (XEXP (x, 0))
904 = get_reg_attrs (MEM_EXPR (mem),
905 INTVAL (XEXP (x, 1)));
906 }
907 }
908 }
909
910 /* Assign the RTX X to declaration T. */
911 void
912 set_decl_rtl (tree t, rtx x)
913 {
914 DECL_CHECK (t)->decl.rtl = x;
915
916 if (!x)
917 return;
918 /* For register, we maintain the reverse information too. */
919 if (GET_CODE (x) == REG)
920 REG_ATTRS (x) = get_reg_attrs (t, 0);
921 else if (GET_CODE (x) == SUBREG)
922 REG_ATTRS (SUBREG_REG (x))
923 = get_reg_attrs (t, -SUBREG_BYTE (x));
924 if (GET_CODE (x) == CONCAT)
925 {
926 if (REG_P (XEXP (x, 0)))
927 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
928 if (REG_P (XEXP (x, 1)))
929 REG_ATTRS (XEXP (x, 1))
930 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
931 }
932 if (GET_CODE (x) == PARALLEL)
933 {
934 int i;
935 for (i = 0; i < XVECLEN (x, 0); i++)
936 {
937 rtx y = XVECEXP (x, 0, i);
938 if (REG_P (XEXP (y, 0)))
939 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
940 }
941 }
942 }
943
944 /* Identify REG (which may be a CONCAT) as a user register. */
945
946 void
947 mark_user_reg (rtx reg)
948 {
949 if (GET_CODE (reg) == CONCAT)
950 {
951 REG_USERVAR_P (XEXP (reg, 0)) = 1;
952 REG_USERVAR_P (XEXP (reg, 1)) = 1;
953 }
954 else if (GET_CODE (reg) == REG)
955 REG_USERVAR_P (reg) = 1;
956 else
957 abort ();
958 }
959
960 /* Identify REG as a probable pointer register and show its alignment
961 as ALIGN, if nonzero. */
962
963 void
964 mark_reg_pointer (rtx reg, int align)
965 {
966 if (! REG_POINTER (reg))
967 {
968 REG_POINTER (reg) = 1;
969
970 if (align)
971 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
972 }
973 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
974 /* We can no-longer be sure just how aligned this pointer is */
975 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
976 }
977
978 /* Return 1 plus largest pseudo reg number used in the current function. */
979
980 int
981 max_reg_num (void)
982 {
983 return reg_rtx_no;
984 }
985
986 /* Return 1 + the largest label number used so far in the current function. */
987
988 int
989 max_label_num (void)
990 {
991 if (last_label_num && label_num == base_label_num)
992 return last_label_num;
993 return label_num;
994 }
995
996 /* Return first label number used in this function (if any were used). */
997
998 int
999 get_first_label_num (void)
1000 {
1001 return first_label_num;
1002 }
1003 \f
1004 /* Return the final regno of X, which is a SUBREG of a hard
1005 register. */
1006 int
1007 subreg_hard_regno (rtx x, int check_mode)
1008 {
1009 enum machine_mode mode = GET_MODE (x);
1010 unsigned int byte_offset, base_regno, final_regno;
1011 rtx reg = SUBREG_REG (x);
1012
1013 /* This is where we attempt to catch illegal subregs
1014 created by the compiler. */
1015 if (GET_CODE (x) != SUBREG
1016 || GET_CODE (reg) != REG)
1017 abort ();
1018 base_regno = REGNO (reg);
1019 if (base_regno >= FIRST_PSEUDO_REGISTER)
1020 abort ();
1021 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1022 abort ();
1023 #ifdef ENABLE_CHECKING
1024 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1025 SUBREG_BYTE (x), mode))
1026 abort ();
1027 #endif
1028 /* Catch non-congruent offsets too. */
1029 byte_offset = SUBREG_BYTE (x);
1030 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1031 abort ();
1032
1033 final_regno = subreg_regno (x);
1034
1035 return final_regno;
1036 }
1037
1038 /* Return a value representing some low-order bits of X, where the number
1039 of low-order bits is given by MODE. Note that no conversion is done
1040 between floating-point and fixed-point values, rather, the bit
1041 representation is returned.
1042
1043 This function handles the cases in common between gen_lowpart, below,
1044 and two variants in cse.c and combine.c. These are the cases that can
1045 be safely handled at all points in the compilation.
1046
1047 If this is not a case we can handle, return 0. */
1048
1049 rtx
1050 gen_lowpart_common (enum machine_mode mode, rtx x)
1051 {
1052 int msize = GET_MODE_SIZE (mode);
1053 int xsize = GET_MODE_SIZE (GET_MODE (x));
1054 int offset = 0;
1055
1056 if (GET_MODE (x) == mode)
1057 return x;
1058
1059 /* MODE must occupy no more words than the mode of X. */
1060 if (GET_MODE (x) != VOIDmode
1061 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1062 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1063 return 0;
1064
1065 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1066 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1067 && GET_MODE (x) != VOIDmode && msize > xsize)
1068 return 0;
1069
1070 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1071
1072 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1073 && (GET_MODE_CLASS (mode) == MODE_INT
1074 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1075 {
1076 /* If we are getting the low-order part of something that has been
1077 sign- or zero-extended, we can either just use the object being
1078 extended or make a narrower extension. If we want an even smaller
1079 piece than the size of the object being extended, call ourselves
1080 recursively.
1081
1082 This case is used mostly by combine and cse. */
1083
1084 if (GET_MODE (XEXP (x, 0)) == mode)
1085 return XEXP (x, 0);
1086 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1087 return gen_lowpart_common (mode, XEXP (x, 0));
1088 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1089 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1090 }
1091 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1092 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1093 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1094 else if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
1095 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1096 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1097 from the low-order part of the constant. */
1098 else if ((GET_MODE_CLASS (mode) == MODE_INT
1099 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1100 && GET_MODE (x) == VOIDmode
1101 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1102 {
1103 /* If MODE is twice the host word size, X is already the desired
1104 representation. Otherwise, if MODE is wider than a word, we can't
1105 do this. If MODE is exactly a word, return just one CONST_INT. */
1106
1107 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1108 return x;
1109 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1110 return 0;
1111 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1112 return (GET_CODE (x) == CONST_INT ? x
1113 : GEN_INT (CONST_DOUBLE_LOW (x)));
1114 else
1115 {
1116 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1117 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1118 : CONST_DOUBLE_LOW (x));
1119
1120 /* Sign extend to HOST_WIDE_INT. */
1121 val = trunc_int_for_mode (val, mode);
1122
1123 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1124 : GEN_INT (val));
1125 }
1126 }
1127
1128 /* The floating-point emulator can handle all conversions between
1129 FP and integer operands. This simplifies reload because it
1130 doesn't have to deal with constructs like (subreg:DI
1131 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1132 /* Single-precision floats are always 32-bits and double-precision
1133 floats are always 64-bits. */
1134
1135 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1136 && GET_MODE_BITSIZE (mode) == 32
1137 && GET_CODE (x) == CONST_INT)
1138 {
1139 REAL_VALUE_TYPE r;
1140 long i = INTVAL (x);
1141
1142 real_from_target (&r, &i, mode);
1143 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1144 }
1145 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1146 && GET_MODE_BITSIZE (mode) == 64
1147 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1148 && GET_MODE (x) == VOIDmode)
1149 {
1150 REAL_VALUE_TYPE r;
1151 HOST_WIDE_INT low, high;
1152 long i[2];
1153
1154 if (GET_CODE (x) == CONST_INT)
1155 {
1156 low = INTVAL (x);
1157 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1158 }
1159 else
1160 {
1161 low = CONST_DOUBLE_LOW (x);
1162 high = CONST_DOUBLE_HIGH (x);
1163 }
1164
1165 if (HOST_BITS_PER_WIDE_INT > 32)
1166 high = low >> 31 >> 1;
1167
1168 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1169 target machine. */
1170 if (WORDS_BIG_ENDIAN)
1171 i[0] = high, i[1] = low;
1172 else
1173 i[0] = low, i[1] = high;
1174
1175 real_from_target (&r, i, mode);
1176 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1177 }
1178 else if ((GET_MODE_CLASS (mode) == MODE_INT
1179 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1180 && GET_CODE (x) == CONST_DOUBLE
1181 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1182 {
1183 REAL_VALUE_TYPE r;
1184 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1185 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1186
1187 /* Convert 'r' into an array of four 32-bit words in target word
1188 order. */
1189 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1190 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1191 {
1192 case 32:
1193 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1194 i[1] = 0;
1195 i[2] = 0;
1196 i[3 - 3 * endian] = 0;
1197 break;
1198 case 64:
1199 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1200 i[2 - 2 * endian] = 0;
1201 i[3 - 2 * endian] = 0;
1202 break;
1203 case 96:
1204 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1205 i[3 - 3 * endian] = 0;
1206 break;
1207 case 128:
1208 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1209 break;
1210 default:
1211 abort ();
1212 }
1213 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1214 and return it. */
1215 #if HOST_BITS_PER_WIDE_INT == 32
1216 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1217 #else
1218 if (HOST_BITS_PER_WIDE_INT != 64)
1219 abort ();
1220
1221 return immed_double_const ((((unsigned long) i[3 * endian])
1222 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1223 (((unsigned long) i[2 - endian])
1224 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1225 mode);
1226 #endif
1227 }
1228 /* If MODE is a condition code and X is a CONST_INT, the value of X
1229 must already have been "recognized" by the back-end, and we can
1230 assume that it is valid for this mode. */
1231 else if (GET_MODE_CLASS (mode) == MODE_CC
1232 && GET_CODE (x) == CONST_INT)
1233 return x;
1234
1235 /* Otherwise, we can't do this. */
1236 return 0;
1237 }
1238 \f
1239 /* Return the constant real or imaginary part (which has mode MODE)
1240 of a complex value X. The IMAGPART_P argument determines whether
1241 the real or complex component should be returned. This function
1242 returns NULL_RTX if the component isn't a constant. */
1243
1244 static rtx
1245 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1246 {
1247 tree decl, part;
1248
1249 if (GET_CODE (x) == MEM
1250 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1251 {
1252 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1253 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1254 {
1255 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1256 if (TREE_CODE (part) == REAL_CST
1257 || TREE_CODE (part) == INTEGER_CST)
1258 return expand_expr (part, NULL_RTX, mode, 0);
1259 }
1260 }
1261 return NULL_RTX;
1262 }
1263
1264 /* Return the real part (which has mode MODE) of a complex value X.
1265 This always comes at the low address in memory. */
1266
1267 rtx
1268 gen_realpart (enum machine_mode mode, rtx x)
1269 {
1270 rtx part;
1271
1272 /* Handle complex constants. */
1273 part = gen_complex_constant_part (mode, x, 0);
1274 if (part != NULL_RTX)
1275 return part;
1276
1277 if (WORDS_BIG_ENDIAN
1278 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1279 && REG_P (x)
1280 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1281 internal_error
1282 ("can't access real part of complex value in hard register");
1283 else if (WORDS_BIG_ENDIAN)
1284 return gen_highpart (mode, x);
1285 else
1286 return gen_lowpart (mode, x);
1287 }
1288
1289 /* Return the imaginary part (which has mode MODE) of a complex value X.
1290 This always comes at the high address in memory. */
1291
1292 rtx
1293 gen_imagpart (enum machine_mode mode, rtx x)
1294 {
1295 rtx part;
1296
1297 /* Handle complex constants. */
1298 part = gen_complex_constant_part (mode, x, 1);
1299 if (part != NULL_RTX)
1300 return part;
1301
1302 if (WORDS_BIG_ENDIAN)
1303 return gen_lowpart (mode, x);
1304 else if (! WORDS_BIG_ENDIAN
1305 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1306 && REG_P (x)
1307 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1308 internal_error
1309 ("can't access imaginary part of complex value in hard register");
1310 else
1311 return gen_highpart (mode, x);
1312 }
1313
1314 /* Return 1 iff X, assumed to be a SUBREG,
1315 refers to the real part of the complex value in its containing reg.
1316 Complex values are always stored with the real part in the first word,
1317 regardless of WORDS_BIG_ENDIAN. */
1318
1319 int
1320 subreg_realpart_p (rtx x)
1321 {
1322 if (GET_CODE (x) != SUBREG)
1323 abort ();
1324
1325 return ((unsigned int) SUBREG_BYTE (x)
1326 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1327 }
1328 \f
1329 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1330 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1331 least-significant part of X.
1332 MODE specifies how big a part of X to return;
1333 it usually should not be larger than a word.
1334 If X is a MEM whose address is a QUEUED, the value may be so also. */
1335
1336 rtx
1337 gen_lowpart (enum machine_mode mode, rtx x)
1338 {
1339 rtx result = gen_lowpart_common (mode, x);
1340
1341 if (result)
1342 return result;
1343 else if (GET_CODE (x) == REG)
1344 {
1345 /* Must be a hard reg that's not valid in MODE. */
1346 result = gen_lowpart_common (mode, copy_to_reg (x));
1347 if (result == 0)
1348 abort ();
1349 return result;
1350 }
1351 else if (GET_CODE (x) == MEM)
1352 {
1353 /* The only additional case we can do is MEM. */
1354 int offset = 0;
1355
1356 /* The following exposes the use of "x" to CSE. */
1357 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1358 && SCALAR_INT_MODE_P (GET_MODE (x))
1359 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1360 GET_MODE_BITSIZE (GET_MODE (x)))
1361 && ! no_new_pseudos)
1362 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1363
1364 if (WORDS_BIG_ENDIAN)
1365 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1366 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1367
1368 if (BYTES_BIG_ENDIAN)
1369 /* Adjust the address so that the address-after-the-data
1370 is unchanged. */
1371 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1372 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1373
1374 return adjust_address (x, mode, offset);
1375 }
1376 else if (GET_CODE (x) == ADDRESSOF)
1377 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1378 else
1379 abort ();
1380 }
1381
1382 /* Like `gen_lowpart', but refer to the most significant part.
1383 This is used to access the imaginary part of a complex number. */
1384
1385 rtx
1386 gen_highpart (enum machine_mode mode, rtx x)
1387 {
1388 unsigned int msize = GET_MODE_SIZE (mode);
1389 rtx result;
1390
1391 /* This case loses if X is a subreg. To catch bugs early,
1392 complain if an invalid MODE is used even in other cases. */
1393 if (msize > UNITS_PER_WORD
1394 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1395 abort ();
1396
1397 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1398 subreg_highpart_offset (mode, GET_MODE (x)));
1399
1400 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1401 the target if we have a MEM. gen_highpart must return a valid operand,
1402 emitting code if necessary to do so. */
1403 if (result != NULL_RTX && GET_CODE (result) == MEM)
1404 result = validize_mem (result);
1405
1406 if (!result)
1407 abort ();
1408 return result;
1409 }
1410
1411 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1412 be VOIDmode constant. */
1413 rtx
1414 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1415 {
1416 if (GET_MODE (exp) != VOIDmode)
1417 {
1418 if (GET_MODE (exp) != innermode)
1419 abort ();
1420 return gen_highpart (outermode, exp);
1421 }
1422 return simplify_gen_subreg (outermode, exp, innermode,
1423 subreg_highpart_offset (outermode, innermode));
1424 }
1425
1426 /* Return offset in bytes to get OUTERMODE low part
1427 of the value in mode INNERMODE stored in memory in target format. */
1428
1429 unsigned int
1430 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1431 {
1432 unsigned int offset = 0;
1433 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1434
1435 if (difference > 0)
1436 {
1437 if (WORDS_BIG_ENDIAN)
1438 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1439 if (BYTES_BIG_ENDIAN)
1440 offset += difference % UNITS_PER_WORD;
1441 }
1442
1443 return offset;
1444 }
1445
1446 /* Return offset in bytes to get OUTERMODE high part
1447 of the value in mode INNERMODE stored in memory in target format. */
1448 unsigned int
1449 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1450 {
1451 unsigned int offset = 0;
1452 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1453
1454 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1455 abort ();
1456
1457 if (difference > 0)
1458 {
1459 if (! WORDS_BIG_ENDIAN)
1460 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1461 if (! BYTES_BIG_ENDIAN)
1462 offset += difference % UNITS_PER_WORD;
1463 }
1464
1465 return offset;
1466 }
1467
1468 /* Return 1 iff X, assumed to be a SUBREG,
1469 refers to the least significant part of its containing reg.
1470 If X is not a SUBREG, always return 1 (it is its own low part!). */
1471
1472 int
1473 subreg_lowpart_p (rtx x)
1474 {
1475 if (GET_CODE (x) != SUBREG)
1476 return 1;
1477 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1478 return 0;
1479
1480 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1481 == SUBREG_BYTE (x));
1482 }
1483 \f
1484
1485 /* Helper routine for all the constant cases of operand_subword.
1486 Some places invoke this directly. */
1487
1488 rtx
1489 constant_subword (rtx op, int offset, enum machine_mode mode)
1490 {
1491 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1492 HOST_WIDE_INT val;
1493
1494 /* If OP is already an integer word, return it. */
1495 if (GET_MODE_CLASS (mode) == MODE_INT
1496 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1497 return op;
1498
1499 /* The output is some bits, the width of the target machine's word.
1500 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1501 host can't. */
1502 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1503 && GET_MODE_CLASS (mode) == MODE_FLOAT
1504 && GET_MODE_BITSIZE (mode) == 64
1505 && GET_CODE (op) == CONST_DOUBLE)
1506 {
1507 long k[2];
1508 REAL_VALUE_TYPE rv;
1509
1510 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1511 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1512
1513 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1514 which the words are written depends on the word endianness.
1515 ??? This is a potential portability problem and should
1516 be fixed at some point.
1517
1518 We must exercise caution with the sign bit. By definition there
1519 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1520 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1521 So we explicitly mask and sign-extend as necessary. */
1522 if (BITS_PER_WORD == 32)
1523 {
1524 val = k[offset];
1525 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1526 return GEN_INT (val);
1527 }
1528 #if HOST_BITS_PER_WIDE_INT >= 64
1529 else if (BITS_PER_WORD >= 64 && offset == 0)
1530 {
1531 val = k[! WORDS_BIG_ENDIAN];
1532 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1533 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1534 return GEN_INT (val);
1535 }
1536 #endif
1537 else if (BITS_PER_WORD == 16)
1538 {
1539 val = k[offset >> 1];
1540 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1541 val >>= 16;
1542 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1543 return GEN_INT (val);
1544 }
1545 else
1546 abort ();
1547 }
1548 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1549 && GET_MODE_CLASS (mode) == MODE_FLOAT
1550 && GET_MODE_BITSIZE (mode) > 64
1551 && GET_CODE (op) == CONST_DOUBLE)
1552 {
1553 long k[4];
1554 REAL_VALUE_TYPE rv;
1555
1556 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1557 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1558
1559 if (BITS_PER_WORD == 32)
1560 {
1561 val = k[offset];
1562 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1563 return GEN_INT (val);
1564 }
1565 #if HOST_BITS_PER_WIDE_INT >= 64
1566 else if (BITS_PER_WORD >= 64 && offset <= 1)
1567 {
1568 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1569 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1570 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1571 return GEN_INT (val);
1572 }
1573 #endif
1574 else
1575 abort ();
1576 }
1577
1578 /* Single word float is a little harder, since single- and double-word
1579 values often do not have the same high-order bits. We have already
1580 verified that we want the only defined word of the single-word value. */
1581 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1582 && GET_MODE_BITSIZE (mode) == 32
1583 && GET_CODE (op) == CONST_DOUBLE)
1584 {
1585 long l;
1586 REAL_VALUE_TYPE rv;
1587
1588 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1589 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1590
1591 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1592 val = l;
1593 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1594
1595 if (BITS_PER_WORD == 16)
1596 {
1597 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1598 val >>= 16;
1599 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1600 }
1601
1602 return GEN_INT (val);
1603 }
1604
1605 /* The only remaining cases that we can handle are integers.
1606 Convert to proper endianness now since these cases need it.
1607 At this point, offset == 0 means the low-order word.
1608
1609 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1610 in general. However, if OP is (const_int 0), we can just return
1611 it for any word. */
1612
1613 if (op == const0_rtx)
1614 return op;
1615
1616 if (GET_MODE_CLASS (mode) != MODE_INT
1617 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1618 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1619 return 0;
1620
1621 if (WORDS_BIG_ENDIAN)
1622 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1623
1624 /* Find out which word on the host machine this value is in and get
1625 it from the constant. */
1626 val = (offset / size_ratio == 0
1627 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1628 : (GET_CODE (op) == CONST_INT
1629 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1630
1631 /* Get the value we want into the low bits of val. */
1632 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1633 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1634
1635 val = trunc_int_for_mode (val, word_mode);
1636
1637 return GEN_INT (val);
1638 }
1639
1640 /* Return subword OFFSET of operand OP.
1641 The word number, OFFSET, is interpreted as the word number starting
1642 at the low-order address. OFFSET 0 is the low-order word if not
1643 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1644
1645 If we cannot extract the required word, we return zero. Otherwise,
1646 an rtx corresponding to the requested word will be returned.
1647
1648 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1649 reload has completed, a valid address will always be returned. After
1650 reload, if a valid address cannot be returned, we return zero.
1651
1652 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1653 it is the responsibility of the caller.
1654
1655 MODE is the mode of OP in case it is a CONST_INT.
1656
1657 ??? This is still rather broken for some cases. The problem for the
1658 moment is that all callers of this thing provide no 'goal mode' to
1659 tell us to work with. This exists because all callers were written
1660 in a word based SUBREG world.
1661 Now use of this function can be deprecated by simplify_subreg in most
1662 cases.
1663 */
1664
1665 rtx
1666 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1667 {
1668 if (mode == VOIDmode)
1669 mode = GET_MODE (op);
1670
1671 if (mode == VOIDmode)
1672 abort ();
1673
1674 /* If OP is narrower than a word, fail. */
1675 if (mode != BLKmode
1676 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1677 return 0;
1678
1679 /* If we want a word outside OP, return zero. */
1680 if (mode != BLKmode
1681 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1682 return const0_rtx;
1683
1684 /* Form a new MEM at the requested address. */
1685 if (GET_CODE (op) == MEM)
1686 {
1687 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1688
1689 if (! validate_address)
1690 return new;
1691
1692 else if (reload_completed)
1693 {
1694 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1695 return 0;
1696 }
1697 else
1698 return replace_equiv_address (new, XEXP (new, 0));
1699 }
1700
1701 /* Rest can be handled by simplify_subreg. */
1702 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1703 }
1704
1705 /* Similar to `operand_subword', but never return 0. If we can't extract
1706 the required subword, put OP into a register and try again. If that fails,
1707 abort. We always validate the address in this case.
1708
1709 MODE is the mode of OP, in case it is CONST_INT. */
1710
1711 rtx
1712 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1713 {
1714 rtx result = operand_subword (op, offset, 1, mode);
1715
1716 if (result)
1717 return result;
1718
1719 if (mode != BLKmode && mode != VOIDmode)
1720 {
1721 /* If this is a register which can not be accessed by words, copy it
1722 to a pseudo register. */
1723 if (GET_CODE (op) == REG)
1724 op = copy_to_reg (op);
1725 else
1726 op = force_reg (mode, op);
1727 }
1728
1729 result = operand_subword (op, offset, 1, mode);
1730 if (result == 0)
1731 abort ();
1732
1733 return result;
1734 }
1735 \f
1736 /* Given a compare instruction, swap the operands.
1737 A test instruction is changed into a compare of 0 against the operand. */
1738
1739 void
1740 reverse_comparison (rtx insn)
1741 {
1742 rtx body = PATTERN (insn);
1743 rtx comp;
1744
1745 if (GET_CODE (body) == SET)
1746 comp = SET_SRC (body);
1747 else
1748 comp = SET_SRC (XVECEXP (body, 0, 0));
1749
1750 if (GET_CODE (comp) == COMPARE)
1751 {
1752 rtx op0 = XEXP (comp, 0);
1753 rtx op1 = XEXP (comp, 1);
1754 XEXP (comp, 0) = op1;
1755 XEXP (comp, 1) = op0;
1756 }
1757 else
1758 {
1759 rtx new = gen_rtx_COMPARE (VOIDmode,
1760 CONST0_RTX (GET_MODE (comp)), comp);
1761 if (GET_CODE (body) == SET)
1762 SET_SRC (body) = new;
1763 else
1764 SET_SRC (XVECEXP (body, 0, 0)) = new;
1765 }
1766 }
1767 \f
1768 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1769 or (2) a component ref of something variable. Represent the later with
1770 a NULL expression. */
1771
1772 static tree
1773 component_ref_for_mem_expr (tree ref)
1774 {
1775 tree inner = TREE_OPERAND (ref, 0);
1776
1777 if (TREE_CODE (inner) == COMPONENT_REF)
1778 inner = component_ref_for_mem_expr (inner);
1779 else
1780 {
1781 tree placeholder_ptr = 0;
1782
1783 /* Now remove any conversions: they don't change what the underlying
1784 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1785 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1786 || TREE_CODE (inner) == NON_LVALUE_EXPR
1787 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1788 || TREE_CODE (inner) == SAVE_EXPR
1789 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1790 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1791 inner = find_placeholder (inner, &placeholder_ptr);
1792 else
1793 inner = TREE_OPERAND (inner, 0);
1794
1795 if (! DECL_P (inner))
1796 inner = NULL_TREE;
1797 }
1798
1799 if (inner == TREE_OPERAND (ref, 0))
1800 return ref;
1801 else
1802 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1803 TREE_OPERAND (ref, 1));
1804 }
1805
1806 /* Given REF, a MEM, and T, either the type of X or the expression
1807 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1808 if we are making a new object of this type. BITPOS is nonzero if
1809 there is an offset outstanding on T that will be applied later. */
1810
1811 void
1812 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1813 HOST_WIDE_INT bitpos)
1814 {
1815 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1816 tree expr = MEM_EXPR (ref);
1817 rtx offset = MEM_OFFSET (ref);
1818 rtx size = MEM_SIZE (ref);
1819 unsigned int align = MEM_ALIGN (ref);
1820 HOST_WIDE_INT apply_bitpos = 0;
1821 tree type;
1822
1823 /* It can happen that type_for_mode was given a mode for which there
1824 is no language-level type. In which case it returns NULL, which
1825 we can see here. */
1826 if (t == NULL_TREE)
1827 return;
1828
1829 type = TYPE_P (t) ? t : TREE_TYPE (t);
1830 if (type == error_mark_node)
1831 return;
1832
1833 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1834 wrong answer, as it assumes that DECL_RTL already has the right alias
1835 info. Callers should not set DECL_RTL until after the call to
1836 set_mem_attributes. */
1837 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1838 abort ();
1839
1840 /* Get the alias set from the expression or type (perhaps using a
1841 front-end routine) and use it. */
1842 alias = get_alias_set (t);
1843
1844 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1845 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1846 RTX_UNCHANGING_P (ref)
1847 |= ((lang_hooks.honor_readonly
1848 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1849 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1850
1851 /* If we are making an object of this type, or if this is a DECL, we know
1852 that it is a scalar if the type is not an aggregate. */
1853 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1854 MEM_SCALAR_P (ref) = 1;
1855
1856 /* We can set the alignment from the type if we are making an object,
1857 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1858 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1859 align = MAX (align, TYPE_ALIGN (type));
1860
1861 /* If the size is known, we can set that. */
1862 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1863 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1864
1865 /* If T is not a type, we may be able to deduce some more information about
1866 the expression. */
1867 if (! TYPE_P (t))
1868 {
1869 maybe_set_unchanging (ref, t);
1870 if (TREE_THIS_VOLATILE (t))
1871 MEM_VOLATILE_P (ref) = 1;
1872
1873 /* Now remove any conversions: they don't change what the underlying
1874 object is. Likewise for SAVE_EXPR. */
1875 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1876 || TREE_CODE (t) == NON_LVALUE_EXPR
1877 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1878 || TREE_CODE (t) == SAVE_EXPR)
1879 t = TREE_OPERAND (t, 0);
1880
1881 /* If this expression can't be addressed (e.g., it contains a reference
1882 to a non-addressable field), show we don't change its alias set. */
1883 if (! can_address_p (t))
1884 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1885
1886 /* If this is a decl, set the attributes of the MEM from it. */
1887 if (DECL_P (t))
1888 {
1889 expr = t;
1890 offset = const0_rtx;
1891 apply_bitpos = bitpos;
1892 size = (DECL_SIZE_UNIT (t)
1893 && host_integerp (DECL_SIZE_UNIT (t), 1)
1894 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1895 align = DECL_ALIGN (t);
1896 }
1897
1898 /* If this is a constant, we know the alignment. */
1899 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1900 {
1901 align = TYPE_ALIGN (type);
1902 #ifdef CONSTANT_ALIGNMENT
1903 align = CONSTANT_ALIGNMENT (t, align);
1904 #endif
1905 }
1906
1907 /* If this is a field reference and not a bit-field, record it. */
1908 /* ??? There is some information that can be gleened from bit-fields,
1909 such as the word offset in the structure that might be modified.
1910 But skip it for now. */
1911 else if (TREE_CODE (t) == COMPONENT_REF
1912 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1913 {
1914 expr = component_ref_for_mem_expr (t);
1915 offset = const0_rtx;
1916 apply_bitpos = bitpos;
1917 /* ??? Any reason the field size would be different than
1918 the size we got from the type? */
1919 }
1920
1921 /* If this is an array reference, look for an outer field reference. */
1922 else if (TREE_CODE (t) == ARRAY_REF)
1923 {
1924 tree off_tree = size_zero_node;
1925 /* We can't modify t, because we use it at the end of the
1926 function. */
1927 tree t2 = t;
1928
1929 do
1930 {
1931 tree index = TREE_OPERAND (t2, 1);
1932 tree array = TREE_OPERAND (t2, 0);
1933 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1934 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1935 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1936
1937 /* We assume all arrays have sizes that are a multiple of a byte.
1938 First subtract the lower bound, if any, in the type of the
1939 index, then convert to sizetype and multiply by the size of the
1940 array element. */
1941 if (low_bound != 0 && ! integer_zerop (low_bound))
1942 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1943 index, low_bound));
1944
1945 /* If the index has a self-referential type, pass it to a
1946 WITH_RECORD_EXPR; if the component size is, pass our
1947 component to one. */
1948 if (CONTAINS_PLACEHOLDER_P (index))
1949 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1950 if (CONTAINS_PLACEHOLDER_P (unit_size))
1951 unit_size = build (WITH_RECORD_EXPR, sizetype,
1952 unit_size, array);
1953
1954 off_tree
1955 = fold (build (PLUS_EXPR, sizetype,
1956 fold (build (MULT_EXPR, sizetype,
1957 index,
1958 unit_size)),
1959 off_tree));
1960 t2 = TREE_OPERAND (t2, 0);
1961 }
1962 while (TREE_CODE (t2) == ARRAY_REF);
1963
1964 if (DECL_P (t2))
1965 {
1966 expr = t2;
1967 offset = NULL;
1968 if (host_integerp (off_tree, 1))
1969 {
1970 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1971 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1972 align = DECL_ALIGN (t2);
1973 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1974 align = aoff;
1975 offset = GEN_INT (ioff);
1976 apply_bitpos = bitpos;
1977 }
1978 }
1979 else if (TREE_CODE (t2) == COMPONENT_REF)
1980 {
1981 expr = component_ref_for_mem_expr (t2);
1982 if (host_integerp (off_tree, 1))
1983 {
1984 offset = GEN_INT (tree_low_cst (off_tree, 1));
1985 apply_bitpos = bitpos;
1986 }
1987 /* ??? Any reason the field size would be different than
1988 the size we got from the type? */
1989 }
1990 else if (flag_argument_noalias > 1
1991 && TREE_CODE (t2) == INDIRECT_REF
1992 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1993 {
1994 expr = t2;
1995 offset = NULL;
1996 }
1997 }
1998
1999 /* If this is a Fortran indirect argument reference, record the
2000 parameter decl. */
2001 else if (flag_argument_noalias > 1
2002 && TREE_CODE (t) == INDIRECT_REF
2003 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2004 {
2005 expr = t;
2006 offset = NULL;
2007 }
2008 }
2009
2010 /* If we modified OFFSET based on T, then subtract the outstanding
2011 bit position offset. Similarly, increase the size of the accessed
2012 object to contain the negative offset. */
2013 if (apply_bitpos)
2014 {
2015 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2016 if (size)
2017 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2018 }
2019
2020 /* Now set the attributes we computed above. */
2021 MEM_ATTRS (ref)
2022 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2023
2024 /* If this is already known to be a scalar or aggregate, we are done. */
2025 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2026 return;
2027
2028 /* If it is a reference into an aggregate, this is part of an aggregate.
2029 Otherwise we don't know. */
2030 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2031 || TREE_CODE (t) == ARRAY_RANGE_REF
2032 || TREE_CODE (t) == BIT_FIELD_REF)
2033 MEM_IN_STRUCT_P (ref) = 1;
2034 }
2035
2036 void
2037 set_mem_attributes (rtx ref, tree t, int objectp)
2038 {
2039 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2040 }
2041
2042 /* Set the decl for MEM to DECL. */
2043
2044 void
2045 set_mem_attrs_from_reg (rtx mem, rtx reg)
2046 {
2047 MEM_ATTRS (mem)
2048 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2049 GEN_INT (REG_OFFSET (reg)),
2050 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2051 }
2052
2053 /* Set the alias set of MEM to SET. */
2054
2055 void
2056 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
2057 {
2058 #ifdef ENABLE_CHECKING
2059 /* If the new and old alias sets don't conflict, something is wrong. */
2060 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2061 abort ();
2062 #endif
2063
2064 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2065 MEM_SIZE (mem), MEM_ALIGN (mem),
2066 GET_MODE (mem));
2067 }
2068
2069 /* Set the alignment of MEM to ALIGN bits. */
2070
2071 void
2072 set_mem_align (rtx mem, unsigned int align)
2073 {
2074 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2075 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2076 GET_MODE (mem));
2077 }
2078
2079 /* Set the expr for MEM to EXPR. */
2080
2081 void
2082 set_mem_expr (rtx mem, tree expr)
2083 {
2084 MEM_ATTRS (mem)
2085 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2086 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2087 }
2088
2089 /* Set the offset of MEM to OFFSET. */
2090
2091 void
2092 set_mem_offset (rtx mem, rtx offset)
2093 {
2094 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2095 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2096 GET_MODE (mem));
2097 }
2098
2099 /* Set the size of MEM to SIZE. */
2100
2101 void
2102 set_mem_size (rtx mem, rtx size)
2103 {
2104 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2105 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2106 GET_MODE (mem));
2107 }
2108 \f
2109 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2110 and its address changed to ADDR. (VOIDmode means don't change the mode.
2111 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2112 returned memory location is required to be valid. The memory
2113 attributes are not changed. */
2114
2115 static rtx
2116 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
2117 {
2118 rtx new;
2119
2120 if (GET_CODE (memref) != MEM)
2121 abort ();
2122 if (mode == VOIDmode)
2123 mode = GET_MODE (memref);
2124 if (addr == 0)
2125 addr = XEXP (memref, 0);
2126
2127 if (validate)
2128 {
2129 if (reload_in_progress || reload_completed)
2130 {
2131 if (! memory_address_p (mode, addr))
2132 abort ();
2133 }
2134 else
2135 addr = memory_address (mode, addr);
2136 }
2137
2138 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2139 return memref;
2140
2141 new = gen_rtx_MEM (mode, addr);
2142 MEM_COPY_ATTRIBUTES (new, memref);
2143 return new;
2144 }
2145
2146 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2147 way we are changing MEMREF, so we only preserve the alias set. */
2148
2149 rtx
2150 change_address (rtx memref, enum machine_mode mode, rtx addr)
2151 {
2152 rtx new = change_address_1 (memref, mode, addr, 1);
2153 enum machine_mode mmode = GET_MODE (new);
2154
2155 MEM_ATTRS (new)
2156 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2157 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2158 (mmode == BLKmode ? BITS_PER_UNIT
2159 : GET_MODE_ALIGNMENT (mmode)),
2160 mmode);
2161
2162 return new;
2163 }
2164
2165 /* Return a memory reference like MEMREF, but with its mode changed
2166 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2167 nonzero, the memory address is forced to be valid.
2168 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2169 and caller is responsible for adjusting MEMREF base register. */
2170
2171 rtx
2172 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2173 int validate, int adjust)
2174 {
2175 rtx addr = XEXP (memref, 0);
2176 rtx new;
2177 rtx memoffset = MEM_OFFSET (memref);
2178 rtx size = 0;
2179 unsigned int memalign = MEM_ALIGN (memref);
2180
2181 /* ??? Prefer to create garbage instead of creating shared rtl.
2182 This may happen even if offset is nonzero -- consider
2183 (plus (plus reg reg) const_int) -- so do this always. */
2184 addr = copy_rtx (addr);
2185
2186 if (adjust)
2187 {
2188 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2189 object, we can merge it into the LO_SUM. */
2190 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2191 && offset >= 0
2192 && (unsigned HOST_WIDE_INT) offset
2193 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2194 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2195 plus_constant (XEXP (addr, 1), offset));
2196 else
2197 addr = plus_constant (addr, offset);
2198 }
2199
2200 new = change_address_1 (memref, mode, addr, validate);
2201
2202 /* Compute the new values of the memory attributes due to this adjustment.
2203 We add the offsets and update the alignment. */
2204 if (memoffset)
2205 memoffset = GEN_INT (offset + INTVAL (memoffset));
2206
2207 /* Compute the new alignment by taking the MIN of the alignment and the
2208 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2209 if zero. */
2210 if (offset != 0)
2211 memalign
2212 = MIN (memalign,
2213 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2214
2215 /* We can compute the size in a number of ways. */
2216 if (GET_MODE (new) != BLKmode)
2217 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2218 else if (MEM_SIZE (memref))
2219 size = plus_constant (MEM_SIZE (memref), -offset);
2220
2221 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2222 memoffset, size, memalign, GET_MODE (new));
2223
2224 /* At some point, we should validate that this offset is within the object,
2225 if all the appropriate values are known. */
2226 return new;
2227 }
2228
2229 /* Return a memory reference like MEMREF, but with its mode changed
2230 to MODE and its address changed to ADDR, which is assumed to be
2231 MEMREF offseted by OFFSET bytes. If VALIDATE is
2232 nonzero, the memory address is forced to be valid. */
2233
2234 rtx
2235 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2236 HOST_WIDE_INT offset, int validate)
2237 {
2238 memref = change_address_1 (memref, VOIDmode, addr, validate);
2239 return adjust_address_1 (memref, mode, offset, validate, 0);
2240 }
2241
2242 /* Return a memory reference like MEMREF, but whose address is changed by
2243 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2244 known to be in OFFSET (possibly 1). */
2245
2246 rtx
2247 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2248 {
2249 rtx new, addr = XEXP (memref, 0);
2250
2251 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2252
2253 /* At this point we don't know _why_ the address is invalid. It
2254 could have secondary memory references, multiplies or anything.
2255
2256 However, if we did go and rearrange things, we can wind up not
2257 being able to recognize the magic around pic_offset_table_rtx.
2258 This stuff is fragile, and is yet another example of why it is
2259 bad to expose PIC machinery too early. */
2260 if (! memory_address_p (GET_MODE (memref), new)
2261 && GET_CODE (addr) == PLUS
2262 && XEXP (addr, 0) == pic_offset_table_rtx)
2263 {
2264 addr = force_reg (GET_MODE (addr), addr);
2265 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2266 }
2267
2268 update_temp_slot_address (XEXP (memref, 0), new);
2269 new = change_address_1 (memref, VOIDmode, new, 1);
2270
2271 /* Update the alignment to reflect the offset. Reset the offset, which
2272 we don't know. */
2273 MEM_ATTRS (new)
2274 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2275 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2276 GET_MODE (new));
2277 return new;
2278 }
2279
2280 /* Return a memory reference like MEMREF, but with its address changed to
2281 ADDR. The caller is asserting that the actual piece of memory pointed
2282 to is the same, just the form of the address is being changed, such as
2283 by putting something into a register. */
2284
2285 rtx
2286 replace_equiv_address (rtx memref, rtx addr)
2287 {
2288 /* change_address_1 copies the memory attribute structure without change
2289 and that's exactly what we want here. */
2290 update_temp_slot_address (XEXP (memref, 0), addr);
2291 return change_address_1 (memref, VOIDmode, addr, 1);
2292 }
2293
2294 /* Likewise, but the reference is not required to be valid. */
2295
2296 rtx
2297 replace_equiv_address_nv (rtx memref, rtx addr)
2298 {
2299 return change_address_1 (memref, VOIDmode, addr, 0);
2300 }
2301
2302 /* Return a memory reference like MEMREF, but with its mode widened to
2303 MODE and offset by OFFSET. This would be used by targets that e.g.
2304 cannot issue QImode memory operations and have to use SImode memory
2305 operations plus masking logic. */
2306
2307 rtx
2308 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2309 {
2310 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2311 tree expr = MEM_EXPR (new);
2312 rtx memoffset = MEM_OFFSET (new);
2313 unsigned int size = GET_MODE_SIZE (mode);
2314
2315 /* If we don't know what offset we were at within the expression, then
2316 we can't know if we've overstepped the bounds. */
2317 if (! memoffset)
2318 expr = NULL_TREE;
2319
2320 while (expr)
2321 {
2322 if (TREE_CODE (expr) == COMPONENT_REF)
2323 {
2324 tree field = TREE_OPERAND (expr, 1);
2325
2326 if (! DECL_SIZE_UNIT (field))
2327 {
2328 expr = NULL_TREE;
2329 break;
2330 }
2331
2332 /* Is the field at least as large as the access? If so, ok,
2333 otherwise strip back to the containing structure. */
2334 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2335 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2336 && INTVAL (memoffset) >= 0)
2337 break;
2338
2339 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2340 {
2341 expr = NULL_TREE;
2342 break;
2343 }
2344
2345 expr = TREE_OPERAND (expr, 0);
2346 memoffset = (GEN_INT (INTVAL (memoffset)
2347 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2348 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2349 / BITS_PER_UNIT)));
2350 }
2351 /* Similarly for the decl. */
2352 else if (DECL_P (expr)
2353 && DECL_SIZE_UNIT (expr)
2354 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2355 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2356 && (! memoffset || INTVAL (memoffset) >= 0))
2357 break;
2358 else
2359 {
2360 /* The widened memory access overflows the expression, which means
2361 that it could alias another expression. Zap it. */
2362 expr = NULL_TREE;
2363 break;
2364 }
2365 }
2366
2367 if (! expr)
2368 memoffset = NULL_RTX;
2369
2370 /* The widened memory may alias other stuff, so zap the alias set. */
2371 /* ??? Maybe use get_alias_set on any remaining expression. */
2372
2373 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2374 MEM_ALIGN (new), mode);
2375
2376 return new;
2377 }
2378 \f
2379 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2380
2381 rtx
2382 gen_label_rtx (void)
2383 {
2384 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2385 NULL, label_num++, NULL);
2386 }
2387 \f
2388 /* For procedure integration. */
2389
2390 /* Install new pointers to the first and last insns in the chain.
2391 Also, set cur_insn_uid to one higher than the last in use.
2392 Used for an inline-procedure after copying the insn chain. */
2393
2394 void
2395 set_new_first_and_last_insn (rtx first, rtx last)
2396 {
2397 rtx insn;
2398
2399 first_insn = first;
2400 last_insn = last;
2401 cur_insn_uid = 0;
2402
2403 for (insn = first; insn; insn = NEXT_INSN (insn))
2404 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2405
2406 cur_insn_uid++;
2407 }
2408
2409 /* Set the range of label numbers found in the current function.
2410 This is used when belatedly compiling an inline function. */
2411
2412 void
2413 set_new_first_and_last_label_num (int first, int last)
2414 {
2415 base_label_num = label_num;
2416 first_label_num = first;
2417 last_label_num = last;
2418 }
2419
2420 /* Set the last label number found in the current function.
2421 This is used when belatedly compiling an inline function. */
2422
2423 void
2424 set_new_last_label_num (int last)
2425 {
2426 base_label_num = label_num;
2427 last_label_num = last;
2428 }
2429 \f
2430 /* Restore all variables describing the current status from the structure *P.
2431 This is used after a nested function. */
2432
2433 void
2434 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2435 {
2436 last_label_num = 0;
2437 }
2438 \f
2439 /* Go through all the RTL insn bodies and copy any invalid shared
2440 structure. This routine should only be called once. */
2441
2442 void
2443 unshare_all_rtl (tree fndecl, rtx insn)
2444 {
2445 tree decl;
2446
2447 /* Make sure that virtual parameters are not shared. */
2448 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2449 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2450
2451 /* Make sure that virtual stack slots are not shared. */
2452 unshare_all_decls (DECL_INITIAL (fndecl));
2453
2454 /* Unshare just about everything else. */
2455 unshare_all_rtl_in_chain (insn);
2456
2457 /* Make sure the addresses of stack slots found outside the insn chain
2458 (such as, in DECL_RTL of a variable) are not shared
2459 with the insn chain.
2460
2461 This special care is necessary when the stack slot MEM does not
2462 actually appear in the insn chain. If it does appear, its address
2463 is unshared from all else at that point. */
2464 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2465 }
2466
2467 /* Go through all the RTL insn bodies and copy any invalid shared
2468 structure, again. This is a fairly expensive thing to do so it
2469 should be done sparingly. */
2470
2471 void
2472 unshare_all_rtl_again (rtx insn)
2473 {
2474 rtx p;
2475 tree decl;
2476
2477 for (p = insn; p; p = NEXT_INSN (p))
2478 if (INSN_P (p))
2479 {
2480 reset_used_flags (PATTERN (p));
2481 reset_used_flags (REG_NOTES (p));
2482 reset_used_flags (LOG_LINKS (p));
2483 }
2484
2485 /* Make sure that virtual stack slots are not shared. */
2486 reset_used_decls (DECL_INITIAL (cfun->decl));
2487
2488 /* Make sure that virtual parameters are not shared. */
2489 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2490 reset_used_flags (DECL_RTL (decl));
2491
2492 reset_used_flags (stack_slot_list);
2493
2494 unshare_all_rtl (cfun->decl, insn);
2495 }
2496
2497 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2498 Recursively does the same for subexpressions. */
2499
2500 static void
2501 verify_rtx_sharing (rtx orig, rtx insn)
2502 {
2503 rtx x = orig;
2504 int i;
2505 enum rtx_code code;
2506 const char *format_ptr;
2507
2508 if (x == 0)
2509 return;
2510
2511 code = GET_CODE (x);
2512
2513 /* These types may be freely shared. */
2514
2515 switch (code)
2516 {
2517 case REG:
2518 case QUEUED:
2519 case CONST_INT:
2520 case CONST_DOUBLE:
2521 case CONST_VECTOR:
2522 case SYMBOL_REF:
2523 case LABEL_REF:
2524 case CODE_LABEL:
2525 case PC:
2526 case CC0:
2527 case SCRATCH:
2528 /* SCRATCH must be shared because they represent distinct values. */
2529 return;
2530
2531 case CONST:
2532 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2533 a LABEL_REF, it isn't sharable. */
2534 if (GET_CODE (XEXP (x, 0)) == PLUS
2535 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2536 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2537 return;
2538 break;
2539
2540 case MEM:
2541 /* A MEM is allowed to be shared if its address is constant. */
2542 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2543 || reload_completed || reload_in_progress)
2544 return;
2545
2546 break;
2547
2548 default:
2549 break;
2550 }
2551
2552 /* This rtx may not be shared. If it has already been seen,
2553 replace it with a copy of itself. */
2554
2555 if (RTX_FLAG (x, used))
2556 {
2557 error ("Invalid rtl sharing found in the insn");
2558 debug_rtx (insn);
2559 error ("Shared rtx");
2560 debug_rtx (x);
2561 abort ();
2562 }
2563 RTX_FLAG (x, used) = 1;
2564
2565 /* Now scan the subexpressions recursively. */
2566
2567 format_ptr = GET_RTX_FORMAT (code);
2568
2569 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2570 {
2571 switch (*format_ptr++)
2572 {
2573 case 'e':
2574 verify_rtx_sharing (XEXP (x, i), insn);
2575 break;
2576
2577 case 'E':
2578 if (XVEC (x, i) != NULL)
2579 {
2580 int j;
2581 int len = XVECLEN (x, i);
2582
2583 for (j = 0; j < len; j++)
2584 {
2585 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2586 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2587 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2588 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2589 else
2590 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2591 }
2592 }
2593 break;
2594 }
2595 }
2596 return;
2597 }
2598
2599 /* Go through all the RTL insn bodies and chec that there is no inexpected
2600 sharing in between the subexpressions. */
2601
2602 void
2603 verify_rtl_sharing (void)
2604 {
2605 rtx p;
2606
2607 for (p = get_insns (); p; p = NEXT_INSN (p))
2608 if (INSN_P (p))
2609 {
2610 reset_used_flags (PATTERN (p));
2611 reset_used_flags (REG_NOTES (p));
2612 reset_used_flags (LOG_LINKS (p));
2613 }
2614
2615 for (p = get_insns (); p; p = NEXT_INSN (p))
2616 if (INSN_P (p))
2617 {
2618 verify_rtx_sharing (PATTERN (p), p);
2619 verify_rtx_sharing (REG_NOTES (p), p);
2620 verify_rtx_sharing (LOG_LINKS (p), p);
2621 }
2622 }
2623
2624 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2625 Assumes the mark bits are cleared at entry. */
2626
2627 void
2628 unshare_all_rtl_in_chain (rtx insn)
2629 {
2630 for (; insn; insn = NEXT_INSN (insn))
2631 if (INSN_P (insn))
2632 {
2633 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2634 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2635 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2636 }
2637 }
2638
2639 /* Go through all virtual stack slots of a function and copy any
2640 shared structure. */
2641 static void
2642 unshare_all_decls (tree blk)
2643 {
2644 tree t;
2645
2646 /* Copy shared decls. */
2647 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2648 if (DECL_RTL_SET_P (t))
2649 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2650
2651 /* Now process sub-blocks. */
2652 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2653 unshare_all_decls (t);
2654 }
2655
2656 /* Go through all virtual stack slots of a function and mark them as
2657 not shared. */
2658 static void
2659 reset_used_decls (tree blk)
2660 {
2661 tree t;
2662
2663 /* Mark decls. */
2664 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2665 if (DECL_RTL_SET_P (t))
2666 reset_used_flags (DECL_RTL (t));
2667
2668 /* Now process sub-blocks. */
2669 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2670 reset_used_decls (t);
2671 }
2672
2673 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2674 placed in the result directly, rather than being copied. MAY_SHARE is
2675 either a MEM of an EXPR_LIST of MEMs. */
2676
2677 rtx
2678 copy_most_rtx (rtx orig, rtx may_share)
2679 {
2680 rtx copy;
2681 int i, j;
2682 RTX_CODE code;
2683 const char *format_ptr;
2684
2685 if (orig == may_share
2686 || (GET_CODE (may_share) == EXPR_LIST
2687 && in_expr_list_p (may_share, orig)))
2688 return orig;
2689
2690 code = GET_CODE (orig);
2691
2692 switch (code)
2693 {
2694 case REG:
2695 case QUEUED:
2696 case CONST_INT:
2697 case CONST_DOUBLE:
2698 case CONST_VECTOR:
2699 case SYMBOL_REF:
2700 case CODE_LABEL:
2701 case PC:
2702 case CC0:
2703 return orig;
2704 default:
2705 break;
2706 }
2707
2708 copy = rtx_alloc (code);
2709 PUT_MODE (copy, GET_MODE (orig));
2710 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2711 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2712 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2713 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2714 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2715
2716 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2717
2718 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2719 {
2720 switch (*format_ptr++)
2721 {
2722 case 'e':
2723 XEXP (copy, i) = XEXP (orig, i);
2724 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2725 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2726 break;
2727
2728 case 'u':
2729 XEXP (copy, i) = XEXP (orig, i);
2730 break;
2731
2732 case 'E':
2733 case 'V':
2734 XVEC (copy, i) = XVEC (orig, i);
2735 if (XVEC (orig, i) != NULL)
2736 {
2737 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2738 for (j = 0; j < XVECLEN (copy, i); j++)
2739 XVECEXP (copy, i, j)
2740 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2741 }
2742 break;
2743
2744 case 'w':
2745 XWINT (copy, i) = XWINT (orig, i);
2746 break;
2747
2748 case 'n':
2749 case 'i':
2750 XINT (copy, i) = XINT (orig, i);
2751 break;
2752
2753 case 't':
2754 XTREE (copy, i) = XTREE (orig, i);
2755 break;
2756
2757 case 's':
2758 case 'S':
2759 XSTR (copy, i) = XSTR (orig, i);
2760 break;
2761
2762 case '0':
2763 X0ANY (copy, i) = X0ANY (orig, i);
2764 break;
2765
2766 default:
2767 abort ();
2768 }
2769 }
2770 return copy;
2771 }
2772
2773 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2774 Recursively does the same for subexpressions. */
2775
2776 rtx
2777 copy_rtx_if_shared (rtx orig)
2778 {
2779 copy_rtx_if_shared_1 (&orig);
2780 return orig;
2781 }
2782
2783 static void
2784 copy_rtx_if_shared_1 (rtx *orig1)
2785 {
2786 rtx x;
2787 int i;
2788 enum rtx_code code;
2789 rtx *last_ptr;
2790 const char *format_ptr;
2791 int copied = 0;
2792 int length;
2793
2794 /* Repeat is used to turn tail-recursion into iteration. */
2795 repeat:
2796 x = *orig1;
2797
2798 if (x == 0)
2799 return;
2800
2801 code = GET_CODE (x);
2802
2803 /* These types may be freely shared. */
2804
2805 switch (code)
2806 {
2807 case REG:
2808 case QUEUED:
2809 case CONST_INT:
2810 case CONST_DOUBLE:
2811 case CONST_VECTOR:
2812 case SYMBOL_REF:
2813 case LABEL_REF:
2814 case CODE_LABEL:
2815 case PC:
2816 case CC0:
2817 case SCRATCH:
2818 /* SCRATCH must be shared because they represent distinct values. */
2819 return;
2820
2821 case CONST:
2822 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2823 a LABEL_REF, it isn't sharable. */
2824 if (GET_CODE (XEXP (x, 0)) == PLUS
2825 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2826 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2827 return;
2828 break;
2829
2830 case INSN:
2831 case JUMP_INSN:
2832 case CALL_INSN:
2833 case NOTE:
2834 case BARRIER:
2835 /* The chain of insns is not being copied. */
2836 return;
2837
2838 default:
2839 break;
2840 }
2841
2842 /* This rtx may not be shared. If it has already been seen,
2843 replace it with a copy of itself. */
2844
2845 if (RTX_FLAG (x, used))
2846 {
2847 rtx copy;
2848
2849 copy = rtx_alloc (code);
2850 memcpy (copy, x, RTX_SIZE (code));
2851 x = copy;
2852 copied = 1;
2853 }
2854 RTX_FLAG (x, used) = 1;
2855
2856 /* Now scan the subexpressions recursively.
2857 We can store any replaced subexpressions directly into X
2858 since we know X is not shared! Any vectors in X
2859 must be copied if X was copied. */
2860
2861 format_ptr = GET_RTX_FORMAT (code);
2862 length = GET_RTX_LENGTH (code);
2863 last_ptr = NULL;
2864
2865 for (i = 0; i < length; i++)
2866 {
2867 switch (*format_ptr++)
2868 {
2869 case 'e':
2870 if (last_ptr)
2871 copy_rtx_if_shared_1 (last_ptr);
2872 last_ptr = &XEXP (x, i);
2873 break;
2874
2875 case 'E':
2876 if (XVEC (x, i) != NULL)
2877 {
2878 int j;
2879 int len = XVECLEN (x, i);
2880
2881 /* Copy the vector iff I copied the rtx and the length is nonzero. */
2882 if (copied && len > 0)
2883 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2884
2885 /* Call recsusively on all inside the vector. */
2886 for (j = 0; j < len; j++)
2887 {
2888 if (last_ptr)
2889 copy_rtx_if_shared_1 (last_ptr);
2890 last_ptr = &XVECEXP (x, i, j);
2891 }
2892 }
2893 break;
2894 }
2895 }
2896 *orig1 = x;
2897 if (last_ptr)
2898 {
2899 orig1 = last_ptr;
2900 goto repeat;
2901 }
2902 return;
2903 }
2904
2905 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2906 to look for shared sub-parts. */
2907
2908 void
2909 reset_used_flags (rtx x)
2910 {
2911 int i, j;
2912 enum rtx_code code;
2913 const char *format_ptr;
2914 int length;
2915
2916 /* Repeat is used to turn tail-recursion into iteration. */
2917 repeat:
2918 if (x == 0)
2919 return;
2920
2921 code = GET_CODE (x);
2922
2923 /* These types may be freely shared so we needn't do any resetting
2924 for them. */
2925
2926 switch (code)
2927 {
2928 case REG:
2929 case QUEUED:
2930 case CONST_INT:
2931 case CONST_DOUBLE:
2932 case CONST_VECTOR:
2933 case SYMBOL_REF:
2934 case CODE_LABEL:
2935 case PC:
2936 case CC0:
2937 return;
2938
2939 case INSN:
2940 case JUMP_INSN:
2941 case CALL_INSN:
2942 case NOTE:
2943 case LABEL_REF:
2944 case BARRIER:
2945 /* The chain of insns is not being copied. */
2946 return;
2947
2948 default:
2949 break;
2950 }
2951
2952 RTX_FLAG (x, used) = 0;
2953
2954 format_ptr = GET_RTX_FORMAT (code);
2955 length = GET_RTX_LENGTH (code);
2956
2957 for (i = 0; i < length; i++)
2958 {
2959 switch (*format_ptr++)
2960 {
2961 case 'e':
2962 if (i == length-1)
2963 {
2964 x = XEXP (x, i);
2965 goto repeat;
2966 }
2967 reset_used_flags (XEXP (x, i));
2968 break;
2969
2970 case 'E':
2971 for (j = 0; j < XVECLEN (x, i); j++)
2972 reset_used_flags (XVECEXP (x, i, j));
2973 break;
2974 }
2975 }
2976 }
2977
2978 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2979 to look for shared sub-parts. */
2980
2981 void
2982 set_used_flags (rtx x)
2983 {
2984 int i, j;
2985 enum rtx_code code;
2986 const char *format_ptr;
2987
2988 if (x == 0)
2989 return;
2990
2991 code = GET_CODE (x);
2992
2993 /* These types may be freely shared so we needn't do any resetting
2994 for them. */
2995
2996 switch (code)
2997 {
2998 case REG:
2999 case QUEUED:
3000 case CONST_INT:
3001 case CONST_DOUBLE:
3002 case CONST_VECTOR:
3003 case SYMBOL_REF:
3004 case CODE_LABEL:
3005 case PC:
3006 case CC0:
3007 return;
3008
3009 case INSN:
3010 case JUMP_INSN:
3011 case CALL_INSN:
3012 case NOTE:
3013 case LABEL_REF:
3014 case BARRIER:
3015 /* The chain of insns is not being copied. */
3016 return;
3017
3018 default:
3019 break;
3020 }
3021
3022 RTX_FLAG (x, used) = 1;
3023
3024 format_ptr = GET_RTX_FORMAT (code);
3025 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3026 {
3027 switch (*format_ptr++)
3028 {
3029 case 'e':
3030 set_used_flags (XEXP (x, i));
3031 break;
3032
3033 case 'E':
3034 for (j = 0; j < XVECLEN (x, i); j++)
3035 set_used_flags (XVECEXP (x, i, j));
3036 break;
3037 }
3038 }
3039 }
3040 \f
3041 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3042 Return X or the rtx for the pseudo reg the value of X was copied into.
3043 OTHER must be valid as a SET_DEST. */
3044
3045 rtx
3046 make_safe_from (rtx x, rtx other)
3047 {
3048 while (1)
3049 switch (GET_CODE (other))
3050 {
3051 case SUBREG:
3052 other = SUBREG_REG (other);
3053 break;
3054 case STRICT_LOW_PART:
3055 case SIGN_EXTEND:
3056 case ZERO_EXTEND:
3057 other = XEXP (other, 0);
3058 break;
3059 default:
3060 goto done;
3061 }
3062 done:
3063 if ((GET_CODE (other) == MEM
3064 && ! CONSTANT_P (x)
3065 && GET_CODE (x) != REG
3066 && GET_CODE (x) != SUBREG)
3067 || (GET_CODE (other) == REG
3068 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3069 || reg_mentioned_p (other, x))))
3070 {
3071 rtx temp = gen_reg_rtx (GET_MODE (x));
3072 emit_move_insn (temp, x);
3073 return temp;
3074 }
3075 return x;
3076 }
3077 \f
3078 /* Emission of insns (adding them to the doubly-linked list). */
3079
3080 /* Return the first insn of the current sequence or current function. */
3081
3082 rtx
3083 get_insns (void)
3084 {
3085 return first_insn;
3086 }
3087
3088 /* Specify a new insn as the first in the chain. */
3089
3090 void
3091 set_first_insn (rtx insn)
3092 {
3093 if (PREV_INSN (insn) != 0)
3094 abort ();
3095 first_insn = insn;
3096 }
3097
3098 /* Return the last insn emitted in current sequence or current function. */
3099
3100 rtx
3101 get_last_insn (void)
3102 {
3103 return last_insn;
3104 }
3105
3106 /* Specify a new insn as the last in the chain. */
3107
3108 void
3109 set_last_insn (rtx insn)
3110 {
3111 if (NEXT_INSN (insn) != 0)
3112 abort ();
3113 last_insn = insn;
3114 }
3115
3116 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3117
3118 rtx
3119 get_last_insn_anywhere (void)
3120 {
3121 struct sequence_stack *stack;
3122 if (last_insn)
3123 return last_insn;
3124 for (stack = seq_stack; stack; stack = stack->next)
3125 if (stack->last != 0)
3126 return stack->last;
3127 return 0;
3128 }
3129
3130 /* Return the first nonnote insn emitted in current sequence or current
3131 function. This routine looks inside SEQUENCEs. */
3132
3133 rtx
3134 get_first_nonnote_insn (void)
3135 {
3136 rtx insn = first_insn;
3137
3138 while (insn)
3139 {
3140 insn = next_insn (insn);
3141 if (insn == 0 || GET_CODE (insn) != NOTE)
3142 break;
3143 }
3144
3145 return insn;
3146 }
3147
3148 /* Return the last nonnote insn emitted in current sequence or current
3149 function. This routine looks inside SEQUENCEs. */
3150
3151 rtx
3152 get_last_nonnote_insn (void)
3153 {
3154 rtx insn = last_insn;
3155
3156 while (insn)
3157 {
3158 insn = previous_insn (insn);
3159 if (insn == 0 || GET_CODE (insn) != NOTE)
3160 break;
3161 }
3162
3163 return insn;
3164 }
3165
3166 /* Return a number larger than any instruction's uid in this function. */
3167
3168 int
3169 get_max_uid (void)
3170 {
3171 return cur_insn_uid;
3172 }
3173
3174 /* Renumber instructions so that no instruction UIDs are wasted. */
3175
3176 void
3177 renumber_insns (FILE *stream)
3178 {
3179 rtx insn;
3180
3181 /* If we're not supposed to renumber instructions, don't. */
3182 if (!flag_renumber_insns)
3183 return;
3184
3185 /* If there aren't that many instructions, then it's not really
3186 worth renumbering them. */
3187 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
3188 return;
3189
3190 cur_insn_uid = 1;
3191
3192 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3193 {
3194 if (stream)
3195 fprintf (stream, "Renumbering insn %d to %d\n",
3196 INSN_UID (insn), cur_insn_uid);
3197 INSN_UID (insn) = cur_insn_uid++;
3198 }
3199 }
3200 \f
3201 /* Return the next insn. If it is a SEQUENCE, return the first insn
3202 of the sequence. */
3203
3204 rtx
3205 next_insn (rtx insn)
3206 {
3207 if (insn)
3208 {
3209 insn = NEXT_INSN (insn);
3210 if (insn && GET_CODE (insn) == INSN
3211 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3212 insn = XVECEXP (PATTERN (insn), 0, 0);
3213 }
3214
3215 return insn;
3216 }
3217
3218 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3219 of the sequence. */
3220
3221 rtx
3222 previous_insn (rtx insn)
3223 {
3224 if (insn)
3225 {
3226 insn = PREV_INSN (insn);
3227 if (insn && GET_CODE (insn) == INSN
3228 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3229 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3230 }
3231
3232 return insn;
3233 }
3234
3235 /* Return the next insn after INSN that is not a NOTE. This routine does not
3236 look inside SEQUENCEs. */
3237
3238 rtx
3239 next_nonnote_insn (rtx insn)
3240 {
3241 while (insn)
3242 {
3243 insn = NEXT_INSN (insn);
3244 if (insn == 0 || GET_CODE (insn) != NOTE)
3245 break;
3246 }
3247
3248 return insn;
3249 }
3250
3251 /* Return the previous insn before INSN that is not a NOTE. This routine does
3252 not look inside SEQUENCEs. */
3253
3254 rtx
3255 prev_nonnote_insn (rtx insn)
3256 {
3257 while (insn)
3258 {
3259 insn = PREV_INSN (insn);
3260 if (insn == 0 || GET_CODE (insn) != NOTE)
3261 break;
3262 }
3263
3264 return insn;
3265 }
3266
3267 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3268 or 0, if there is none. This routine does not look inside
3269 SEQUENCEs. */
3270
3271 rtx
3272 next_real_insn (rtx insn)
3273 {
3274 while (insn)
3275 {
3276 insn = NEXT_INSN (insn);
3277 if (insn == 0 || GET_CODE (insn) == INSN
3278 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3279 break;
3280 }
3281
3282 return insn;
3283 }
3284
3285 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3286 or 0, if there is none. This routine does not look inside
3287 SEQUENCEs. */
3288
3289 rtx
3290 prev_real_insn (rtx insn)
3291 {
3292 while (insn)
3293 {
3294 insn = PREV_INSN (insn);
3295 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3296 || GET_CODE (insn) == JUMP_INSN)
3297 break;
3298 }
3299
3300 return insn;
3301 }
3302
3303 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3304 This routine does not look inside SEQUENCEs. */
3305
3306 rtx
3307 last_call_insn (void)
3308 {
3309 rtx insn;
3310
3311 for (insn = get_last_insn ();
3312 insn && GET_CODE (insn) != CALL_INSN;
3313 insn = PREV_INSN (insn))
3314 ;
3315
3316 return insn;
3317 }
3318
3319 /* Find the next insn after INSN that really does something. This routine
3320 does not look inside SEQUENCEs. Until reload has completed, this is the
3321 same as next_real_insn. */
3322
3323 int
3324 active_insn_p (rtx insn)
3325 {
3326 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3327 || (GET_CODE (insn) == INSN
3328 && (! reload_completed
3329 || (GET_CODE (PATTERN (insn)) != USE
3330 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3331 }
3332
3333 rtx
3334 next_active_insn (rtx insn)
3335 {
3336 while (insn)
3337 {
3338 insn = NEXT_INSN (insn);
3339 if (insn == 0 || active_insn_p (insn))
3340 break;
3341 }
3342
3343 return insn;
3344 }
3345
3346 /* Find the last insn before INSN that really does something. This routine
3347 does not look inside SEQUENCEs. Until reload has completed, this is the
3348 same as prev_real_insn. */
3349
3350 rtx
3351 prev_active_insn (rtx insn)
3352 {
3353 while (insn)
3354 {
3355 insn = PREV_INSN (insn);
3356 if (insn == 0 || active_insn_p (insn))
3357 break;
3358 }
3359
3360 return insn;
3361 }
3362
3363 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3364
3365 rtx
3366 next_label (rtx insn)
3367 {
3368 while (insn)
3369 {
3370 insn = NEXT_INSN (insn);
3371 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3372 break;
3373 }
3374
3375 return insn;
3376 }
3377
3378 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3379
3380 rtx
3381 prev_label (rtx insn)
3382 {
3383 while (insn)
3384 {
3385 insn = PREV_INSN (insn);
3386 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3387 break;
3388 }
3389
3390 return insn;
3391 }
3392 \f
3393 #ifdef HAVE_cc0
3394 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3395 and REG_CC_USER notes so we can find it. */
3396
3397 void
3398 link_cc0_insns (rtx insn)
3399 {
3400 rtx user = next_nonnote_insn (insn);
3401
3402 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3403 user = XVECEXP (PATTERN (user), 0, 0);
3404
3405 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3406 REG_NOTES (user));
3407 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3408 }
3409
3410 /* Return the next insn that uses CC0 after INSN, which is assumed to
3411 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3412 applied to the result of this function should yield INSN).
3413
3414 Normally, this is simply the next insn. However, if a REG_CC_USER note
3415 is present, it contains the insn that uses CC0.
3416
3417 Return 0 if we can't find the insn. */
3418
3419 rtx
3420 next_cc0_user (rtx insn)
3421 {
3422 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3423
3424 if (note)
3425 return XEXP (note, 0);
3426
3427 insn = next_nonnote_insn (insn);
3428 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3429 insn = XVECEXP (PATTERN (insn), 0, 0);
3430
3431 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3432 return insn;
3433
3434 return 0;
3435 }
3436
3437 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3438 note, it is the previous insn. */
3439
3440 rtx
3441 prev_cc0_setter (rtx insn)
3442 {
3443 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3444
3445 if (note)
3446 return XEXP (note, 0);
3447
3448 insn = prev_nonnote_insn (insn);
3449 if (! sets_cc0_p (PATTERN (insn)))
3450 abort ();
3451
3452 return insn;
3453 }
3454 #endif
3455
3456 /* Increment the label uses for all labels present in rtx. */
3457
3458 static void
3459 mark_label_nuses (rtx x)
3460 {
3461 enum rtx_code code;
3462 int i, j;
3463 const char *fmt;
3464
3465 code = GET_CODE (x);
3466 if (code == LABEL_REF)
3467 LABEL_NUSES (XEXP (x, 0))++;
3468
3469 fmt = GET_RTX_FORMAT (code);
3470 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3471 {
3472 if (fmt[i] == 'e')
3473 mark_label_nuses (XEXP (x, i));
3474 else if (fmt[i] == 'E')
3475 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3476 mark_label_nuses (XVECEXP (x, i, j));
3477 }
3478 }
3479
3480 \f
3481 /* Try splitting insns that can be split for better scheduling.
3482 PAT is the pattern which might split.
3483 TRIAL is the insn providing PAT.
3484 LAST is nonzero if we should return the last insn of the sequence produced.
3485
3486 If this routine succeeds in splitting, it returns the first or last
3487 replacement insn depending on the value of LAST. Otherwise, it
3488 returns TRIAL. If the insn to be returned can be split, it will be. */
3489
3490 rtx
3491 try_split (rtx pat, rtx trial, int last)
3492 {
3493 rtx before = PREV_INSN (trial);
3494 rtx after = NEXT_INSN (trial);
3495 int has_barrier = 0;
3496 rtx tem;
3497 rtx note, seq;
3498 int probability;
3499 rtx insn_last, insn;
3500 int njumps = 0;
3501
3502 if (any_condjump_p (trial)
3503 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3504 split_branch_probability = INTVAL (XEXP (note, 0));
3505 probability = split_branch_probability;
3506
3507 seq = split_insns (pat, trial);
3508
3509 split_branch_probability = -1;
3510
3511 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3512 We may need to handle this specially. */
3513 if (after && GET_CODE (after) == BARRIER)
3514 {
3515 has_barrier = 1;
3516 after = NEXT_INSN (after);
3517 }
3518
3519 if (!seq)
3520 return trial;
3521
3522 /* Avoid infinite loop if any insn of the result matches
3523 the original pattern. */
3524 insn_last = seq;
3525 while (1)
3526 {
3527 if (INSN_P (insn_last)
3528 && rtx_equal_p (PATTERN (insn_last), pat))
3529 return trial;
3530 if (!NEXT_INSN (insn_last))
3531 break;
3532 insn_last = NEXT_INSN (insn_last);
3533 }
3534
3535 /* Mark labels. */
3536 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3537 {
3538 if (GET_CODE (insn) == JUMP_INSN)
3539 {
3540 mark_jump_label (PATTERN (insn), insn, 0);
3541 njumps++;
3542 if (probability != -1
3543 && any_condjump_p (insn)
3544 && !find_reg_note (insn, REG_BR_PROB, 0))
3545 {
3546 /* We can preserve the REG_BR_PROB notes only if exactly
3547 one jump is created, otherwise the machine description
3548 is responsible for this step using
3549 split_branch_probability variable. */
3550 if (njumps != 1)
3551 abort ();
3552 REG_NOTES (insn)
3553 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3554 GEN_INT (probability),
3555 REG_NOTES (insn));
3556 }
3557 }
3558 }
3559
3560 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3561 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3562 if (GET_CODE (trial) == CALL_INSN)
3563 {
3564 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3565 if (GET_CODE (insn) == CALL_INSN)
3566 {
3567 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3568 while (*p)
3569 p = &XEXP (*p, 1);
3570 *p = CALL_INSN_FUNCTION_USAGE (trial);
3571 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3572 }
3573 }
3574
3575 /* Copy notes, particularly those related to the CFG. */
3576 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3577 {
3578 switch (REG_NOTE_KIND (note))
3579 {
3580 case REG_EH_REGION:
3581 insn = insn_last;
3582 while (insn != NULL_RTX)
3583 {
3584 if (GET_CODE (insn) == CALL_INSN
3585 || (flag_non_call_exceptions
3586 && may_trap_p (PATTERN (insn))))
3587 REG_NOTES (insn)
3588 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3589 XEXP (note, 0),
3590 REG_NOTES (insn));
3591 insn = PREV_INSN (insn);
3592 }
3593 break;
3594
3595 case REG_NORETURN:
3596 case REG_SETJMP:
3597 case REG_ALWAYS_RETURN:
3598 insn = insn_last;
3599 while (insn != NULL_RTX)
3600 {
3601 if (GET_CODE (insn) == CALL_INSN)
3602 REG_NOTES (insn)
3603 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3604 XEXP (note, 0),
3605 REG_NOTES (insn));
3606 insn = PREV_INSN (insn);
3607 }
3608 break;
3609
3610 case REG_NON_LOCAL_GOTO:
3611 insn = insn_last;
3612 while (insn != NULL_RTX)
3613 {
3614 if (GET_CODE (insn) == JUMP_INSN)
3615 REG_NOTES (insn)
3616 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3617 XEXP (note, 0),
3618 REG_NOTES (insn));
3619 insn = PREV_INSN (insn);
3620 }
3621 break;
3622
3623 default:
3624 break;
3625 }
3626 }
3627
3628 /* If there are LABELS inside the split insns increment the
3629 usage count so we don't delete the label. */
3630 if (GET_CODE (trial) == INSN)
3631 {
3632 insn = insn_last;
3633 while (insn != NULL_RTX)
3634 {
3635 if (GET_CODE (insn) == INSN)
3636 mark_label_nuses (PATTERN (insn));
3637
3638 insn = PREV_INSN (insn);
3639 }
3640 }
3641
3642 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3643
3644 delete_insn (trial);
3645 if (has_barrier)
3646 emit_barrier_after (tem);
3647
3648 /* Recursively call try_split for each new insn created; by the
3649 time control returns here that insn will be fully split, so
3650 set LAST and continue from the insn after the one returned.
3651 We can't use next_active_insn here since AFTER may be a note.
3652 Ignore deleted insns, which can be occur if not optimizing. */
3653 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3654 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3655 tem = try_split (PATTERN (tem), tem, 1);
3656
3657 /* Return either the first or the last insn, depending on which was
3658 requested. */
3659 return last
3660 ? (after ? PREV_INSN (after) : last_insn)
3661 : NEXT_INSN (before);
3662 }
3663 \f
3664 /* Make and return an INSN rtx, initializing all its slots.
3665 Store PATTERN in the pattern slots. */
3666
3667 rtx
3668 make_insn_raw (rtx pattern)
3669 {
3670 rtx insn;
3671
3672 insn = rtx_alloc (INSN);
3673
3674 INSN_UID (insn) = cur_insn_uid++;
3675 PATTERN (insn) = pattern;
3676 INSN_CODE (insn) = -1;
3677 LOG_LINKS (insn) = NULL;
3678 REG_NOTES (insn) = NULL;
3679 INSN_LOCATOR (insn) = 0;
3680 BLOCK_FOR_INSN (insn) = NULL;
3681
3682 #ifdef ENABLE_RTL_CHECKING
3683 if (insn
3684 && INSN_P (insn)
3685 && (returnjump_p (insn)
3686 || (GET_CODE (insn) == SET
3687 && SET_DEST (insn) == pc_rtx)))
3688 {
3689 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3690 debug_rtx (insn);
3691 }
3692 #endif
3693
3694 return insn;
3695 }
3696
3697 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3698
3699 static rtx
3700 make_jump_insn_raw (rtx pattern)
3701 {
3702 rtx insn;
3703
3704 insn = rtx_alloc (JUMP_INSN);
3705 INSN_UID (insn) = cur_insn_uid++;
3706
3707 PATTERN (insn) = pattern;
3708 INSN_CODE (insn) = -1;
3709 LOG_LINKS (insn) = NULL;
3710 REG_NOTES (insn) = NULL;
3711 JUMP_LABEL (insn) = NULL;
3712 INSN_LOCATOR (insn) = 0;
3713 BLOCK_FOR_INSN (insn) = NULL;
3714
3715 return insn;
3716 }
3717
3718 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3719
3720 static rtx
3721 make_call_insn_raw (rtx pattern)
3722 {
3723 rtx insn;
3724
3725 insn = rtx_alloc (CALL_INSN);
3726 INSN_UID (insn) = cur_insn_uid++;
3727
3728 PATTERN (insn) = pattern;
3729 INSN_CODE (insn) = -1;
3730 LOG_LINKS (insn) = NULL;
3731 REG_NOTES (insn) = NULL;
3732 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3733 INSN_LOCATOR (insn) = 0;
3734 BLOCK_FOR_INSN (insn) = NULL;
3735
3736 return insn;
3737 }
3738 \f
3739 /* Add INSN to the end of the doubly-linked list.
3740 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3741
3742 void
3743 add_insn (rtx insn)
3744 {
3745 PREV_INSN (insn) = last_insn;
3746 NEXT_INSN (insn) = 0;
3747
3748 if (NULL != last_insn)
3749 NEXT_INSN (last_insn) = insn;
3750
3751 if (NULL == first_insn)
3752 first_insn = insn;
3753
3754 last_insn = insn;
3755 }
3756
3757 /* Add INSN into the doubly-linked list after insn AFTER. This and
3758 the next should be the only functions called to insert an insn once
3759 delay slots have been filled since only they know how to update a
3760 SEQUENCE. */
3761
3762 void
3763 add_insn_after (rtx insn, rtx after)
3764 {
3765 rtx next = NEXT_INSN (after);
3766 basic_block bb;
3767
3768 if (optimize && INSN_DELETED_P (after))
3769 abort ();
3770
3771 NEXT_INSN (insn) = next;
3772 PREV_INSN (insn) = after;
3773
3774 if (next)
3775 {
3776 PREV_INSN (next) = insn;
3777 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3778 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3779 }
3780 else if (last_insn == after)
3781 last_insn = insn;
3782 else
3783 {
3784 struct sequence_stack *stack = seq_stack;
3785 /* Scan all pending sequences too. */
3786 for (; stack; stack = stack->next)
3787 if (after == stack->last)
3788 {
3789 stack->last = insn;
3790 break;
3791 }
3792
3793 if (stack == 0)
3794 abort ();
3795 }
3796
3797 if (GET_CODE (after) != BARRIER
3798 && GET_CODE (insn) != BARRIER
3799 && (bb = BLOCK_FOR_INSN (after)))
3800 {
3801 set_block_for_insn (insn, bb);
3802 if (INSN_P (insn))
3803 bb->flags |= BB_DIRTY;
3804 /* Should not happen as first in the BB is always
3805 either NOTE or LABEL. */
3806 if (bb->end == after
3807 /* Avoid clobbering of structure when creating new BB. */
3808 && GET_CODE (insn) != BARRIER
3809 && (GET_CODE (insn) != NOTE
3810 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3811 bb->end = insn;
3812 }
3813
3814 NEXT_INSN (after) = insn;
3815 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3816 {
3817 rtx sequence = PATTERN (after);
3818 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3819 }
3820 }
3821
3822 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3823 the previous should be the only functions called to insert an insn once
3824 delay slots have been filled since only they know how to update a
3825 SEQUENCE. */
3826
3827 void
3828 add_insn_before (rtx insn, rtx before)
3829 {
3830 rtx prev = PREV_INSN (before);
3831 basic_block bb;
3832
3833 if (optimize && INSN_DELETED_P (before))
3834 abort ();
3835
3836 PREV_INSN (insn) = prev;
3837 NEXT_INSN (insn) = before;
3838
3839 if (prev)
3840 {
3841 NEXT_INSN (prev) = insn;
3842 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3843 {
3844 rtx sequence = PATTERN (prev);
3845 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3846 }
3847 }
3848 else if (first_insn == before)
3849 first_insn = insn;
3850 else
3851 {
3852 struct sequence_stack *stack = seq_stack;
3853 /* Scan all pending sequences too. */
3854 for (; stack; stack = stack->next)
3855 if (before == stack->first)
3856 {
3857 stack->first = insn;
3858 break;
3859 }
3860
3861 if (stack == 0)
3862 abort ();
3863 }
3864
3865 if (GET_CODE (before) != BARRIER
3866 && GET_CODE (insn) != BARRIER
3867 && (bb = BLOCK_FOR_INSN (before)))
3868 {
3869 set_block_for_insn (insn, bb);
3870 if (INSN_P (insn))
3871 bb->flags |= BB_DIRTY;
3872 /* Should not happen as first in the BB is always
3873 either NOTE or LABEl. */
3874 if (bb->head == insn
3875 /* Avoid clobbering of structure when creating new BB. */
3876 && GET_CODE (insn) != BARRIER
3877 && (GET_CODE (insn) != NOTE
3878 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3879 abort ();
3880 }
3881
3882 PREV_INSN (before) = insn;
3883 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3884 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3885 }
3886
3887 /* Remove an insn from its doubly-linked list. This function knows how
3888 to handle sequences. */
3889 void
3890 remove_insn (rtx insn)
3891 {
3892 rtx next = NEXT_INSN (insn);
3893 rtx prev = PREV_INSN (insn);
3894 basic_block bb;
3895
3896 if (prev)
3897 {
3898 NEXT_INSN (prev) = next;
3899 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3900 {
3901 rtx sequence = PATTERN (prev);
3902 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3903 }
3904 }
3905 else if (first_insn == insn)
3906 first_insn = next;
3907 else
3908 {
3909 struct sequence_stack *stack = seq_stack;
3910 /* Scan all pending sequences too. */
3911 for (; stack; stack = stack->next)
3912 if (insn == stack->first)
3913 {
3914 stack->first = next;
3915 break;
3916 }
3917
3918 if (stack == 0)
3919 abort ();
3920 }
3921
3922 if (next)
3923 {
3924 PREV_INSN (next) = prev;
3925 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3926 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3927 }
3928 else if (last_insn == insn)
3929 last_insn = prev;
3930 else
3931 {
3932 struct sequence_stack *stack = seq_stack;
3933 /* Scan all pending sequences too. */
3934 for (; stack; stack = stack->next)
3935 if (insn == stack->last)
3936 {
3937 stack->last = prev;
3938 break;
3939 }
3940
3941 if (stack == 0)
3942 abort ();
3943 }
3944 if (GET_CODE (insn) != BARRIER
3945 && (bb = BLOCK_FOR_INSN (insn)))
3946 {
3947 if (INSN_P (insn))
3948 bb->flags |= BB_DIRTY;
3949 if (bb->head == insn)
3950 {
3951 /* Never ever delete the basic block note without deleting whole
3952 basic block. */
3953 if (GET_CODE (insn) == NOTE)
3954 abort ();
3955 bb->head = next;
3956 }
3957 if (bb->end == insn)
3958 bb->end = prev;
3959 }
3960 }
3961
3962 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3963
3964 void
3965 add_function_usage_to (rtx call_insn, rtx call_fusage)
3966 {
3967 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3968 abort ();
3969
3970 /* Put the register usage information on the CALL. If there is already
3971 some usage information, put ours at the end. */
3972 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3973 {
3974 rtx link;
3975
3976 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3977 link = XEXP (link, 1))
3978 ;
3979
3980 XEXP (link, 1) = call_fusage;
3981 }
3982 else
3983 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3984 }
3985
3986 /* Delete all insns made since FROM.
3987 FROM becomes the new last instruction. */
3988
3989 void
3990 delete_insns_since (rtx from)
3991 {
3992 if (from == 0)
3993 first_insn = 0;
3994 else
3995 NEXT_INSN (from) = 0;
3996 last_insn = from;
3997 }
3998
3999 /* This function is deprecated, please use sequences instead.
4000
4001 Move a consecutive bunch of insns to a different place in the chain.
4002 The insns to be moved are those between FROM and TO.
4003 They are moved to a new position after the insn AFTER.
4004 AFTER must not be FROM or TO or any insn in between.
4005
4006 This function does not know about SEQUENCEs and hence should not be
4007 called after delay-slot filling has been done. */
4008
4009 void
4010 reorder_insns_nobb (rtx from, rtx to, rtx after)
4011 {
4012 /* Splice this bunch out of where it is now. */
4013 if (PREV_INSN (from))
4014 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4015 if (NEXT_INSN (to))
4016 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4017 if (last_insn == to)
4018 last_insn = PREV_INSN (from);
4019 if (first_insn == from)
4020 first_insn = NEXT_INSN (to);
4021
4022 /* Make the new neighbors point to it and it to them. */
4023 if (NEXT_INSN (after))
4024 PREV_INSN (NEXT_INSN (after)) = to;
4025
4026 NEXT_INSN (to) = NEXT_INSN (after);
4027 PREV_INSN (from) = after;
4028 NEXT_INSN (after) = from;
4029 if (after == last_insn)
4030 last_insn = to;
4031 }
4032
4033 /* Same as function above, but take care to update BB boundaries. */
4034 void
4035 reorder_insns (rtx from, rtx to, rtx after)
4036 {
4037 rtx prev = PREV_INSN (from);
4038 basic_block bb, bb2;
4039
4040 reorder_insns_nobb (from, to, after);
4041
4042 if (GET_CODE (after) != BARRIER
4043 && (bb = BLOCK_FOR_INSN (after)))
4044 {
4045 rtx x;
4046 bb->flags |= BB_DIRTY;
4047
4048 if (GET_CODE (from) != BARRIER
4049 && (bb2 = BLOCK_FOR_INSN (from)))
4050 {
4051 if (bb2->end == to)
4052 bb2->end = prev;
4053 bb2->flags |= BB_DIRTY;
4054 }
4055
4056 if (bb->end == after)
4057 bb->end = to;
4058
4059 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4060 set_block_for_insn (x, bb);
4061 }
4062 }
4063
4064 /* Return the line note insn preceding INSN. */
4065
4066 static rtx
4067 find_line_note (rtx insn)
4068 {
4069 if (no_line_numbers)
4070 return 0;
4071
4072 for (; insn; insn = PREV_INSN (insn))
4073 if (GET_CODE (insn) == NOTE
4074 && NOTE_LINE_NUMBER (insn) >= 0)
4075 break;
4076
4077 return insn;
4078 }
4079
4080 /* Like reorder_insns, but inserts line notes to preserve the line numbers
4081 of the moved insns when debugging. This may insert a note between AFTER
4082 and FROM, and another one after TO. */
4083
4084 void
4085 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
4086 {
4087 rtx from_line = find_line_note (from);
4088 rtx after_line = find_line_note (after);
4089
4090 reorder_insns (from, to, after);
4091
4092 if (from_line == after_line)
4093 return;
4094
4095 if (from_line)
4096 emit_note_copy_after (from_line, after);
4097 if (after_line)
4098 emit_note_copy_after (after_line, to);
4099 }
4100
4101 /* Remove unnecessary notes from the instruction stream. */
4102
4103 void
4104 remove_unnecessary_notes (void)
4105 {
4106 rtx block_stack = NULL_RTX;
4107 rtx eh_stack = NULL_RTX;
4108 rtx insn;
4109 rtx next;
4110 rtx tmp;
4111
4112 /* We must not remove the first instruction in the function because
4113 the compiler depends on the first instruction being a note. */
4114 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
4115 {
4116 /* Remember what's next. */
4117 next = NEXT_INSN (insn);
4118
4119 /* We're only interested in notes. */
4120 if (GET_CODE (insn) != NOTE)
4121 continue;
4122
4123 switch (NOTE_LINE_NUMBER (insn))
4124 {
4125 case NOTE_INSN_DELETED:
4126 case NOTE_INSN_LOOP_END_TOP_COND:
4127 remove_insn (insn);
4128 break;
4129
4130 case NOTE_INSN_EH_REGION_BEG:
4131 eh_stack = alloc_INSN_LIST (insn, eh_stack);
4132 break;
4133
4134 case NOTE_INSN_EH_REGION_END:
4135 /* Too many end notes. */
4136 if (eh_stack == NULL_RTX)
4137 abort ();
4138 /* Mismatched nesting. */
4139 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
4140 abort ();
4141 tmp = eh_stack;
4142 eh_stack = XEXP (eh_stack, 1);
4143 free_INSN_LIST_node (tmp);
4144 break;
4145
4146 case NOTE_INSN_BLOCK_BEG:
4147 /* By now, all notes indicating lexical blocks should have
4148 NOTE_BLOCK filled in. */
4149 if (NOTE_BLOCK (insn) == NULL_TREE)
4150 abort ();
4151 block_stack = alloc_INSN_LIST (insn, block_stack);
4152 break;
4153
4154 case NOTE_INSN_BLOCK_END:
4155 /* Too many end notes. */
4156 if (block_stack == NULL_RTX)
4157 abort ();
4158 /* Mismatched nesting. */
4159 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
4160 abort ();
4161 tmp = block_stack;
4162 block_stack = XEXP (block_stack, 1);
4163 free_INSN_LIST_node (tmp);
4164
4165 /* Scan back to see if there are any non-note instructions
4166 between INSN and the beginning of this block. If not,
4167 then there is no PC range in the generated code that will
4168 actually be in this block, so there's no point in
4169 remembering the existence of the block. */
4170 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
4171 {
4172 /* This block contains a real instruction. Note that we
4173 don't include labels; if the only thing in the block
4174 is a label, then there are still no PC values that
4175 lie within the block. */
4176 if (INSN_P (tmp))
4177 break;
4178
4179 /* We're only interested in NOTEs. */
4180 if (GET_CODE (tmp) != NOTE)
4181 continue;
4182
4183 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
4184 {
4185 /* We just verified that this BLOCK matches us with
4186 the block_stack check above. Never delete the
4187 BLOCK for the outermost scope of the function; we
4188 can refer to names from that scope even if the
4189 block notes are messed up. */
4190 if (! is_body_block (NOTE_BLOCK (insn))
4191 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
4192 {
4193 remove_insn (tmp);
4194 remove_insn (insn);
4195 }
4196 break;
4197 }
4198 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
4199 /* There's a nested block. We need to leave the
4200 current block in place since otherwise the debugger
4201 wouldn't be able to show symbols from our block in
4202 the nested block. */
4203 break;
4204 }
4205 }
4206 }
4207
4208 /* Too many begin notes. */
4209 if (block_stack || eh_stack)
4210 abort ();
4211 }
4212
4213 \f
4214 /* Emit insn(s) of given code and pattern
4215 at a specified place within the doubly-linked list.
4216
4217 All of the emit_foo global entry points accept an object
4218 X which is either an insn list or a PATTERN of a single
4219 instruction.
4220
4221 There are thus a few canonical ways to generate code and
4222 emit it at a specific place in the instruction stream. For
4223 example, consider the instruction named SPOT and the fact that
4224 we would like to emit some instructions before SPOT. We might
4225 do it like this:
4226
4227 start_sequence ();
4228 ... emit the new instructions ...
4229 insns_head = get_insns ();
4230 end_sequence ();
4231
4232 emit_insn_before (insns_head, SPOT);
4233
4234 It used to be common to generate SEQUENCE rtl instead, but that
4235 is a relic of the past which no longer occurs. The reason is that
4236 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4237 generated would almost certainly die right after it was created. */
4238
4239 /* Make X be output before the instruction BEFORE. */
4240
4241 rtx
4242 emit_insn_before (rtx x, rtx before)
4243 {
4244 rtx last = before;
4245 rtx insn;
4246
4247 #ifdef ENABLE_RTL_CHECKING
4248 if (before == NULL_RTX)
4249 abort ();
4250 #endif
4251
4252 if (x == NULL_RTX)
4253 return last;
4254
4255 switch (GET_CODE (x))
4256 {
4257 case INSN:
4258 case JUMP_INSN:
4259 case CALL_INSN:
4260 case CODE_LABEL:
4261 case BARRIER:
4262 case NOTE:
4263 insn = x;
4264 while (insn)
4265 {
4266 rtx next = NEXT_INSN (insn);
4267 add_insn_before (insn, before);
4268 last = insn;
4269 insn = next;
4270 }
4271 break;
4272
4273 #ifdef ENABLE_RTL_CHECKING
4274 case SEQUENCE:
4275 abort ();
4276 break;
4277 #endif
4278
4279 default:
4280 last = make_insn_raw (x);
4281 add_insn_before (last, before);
4282 break;
4283 }
4284
4285 return last;
4286 }
4287
4288 /* Make an instruction with body X and code JUMP_INSN
4289 and output it before the instruction BEFORE. */
4290
4291 rtx
4292 emit_jump_insn_before (rtx x, rtx before)
4293 {
4294 rtx insn, last = NULL_RTX;
4295
4296 #ifdef ENABLE_RTL_CHECKING
4297 if (before == NULL_RTX)
4298 abort ();
4299 #endif
4300
4301 switch (GET_CODE (x))
4302 {
4303 case INSN:
4304 case JUMP_INSN:
4305 case CALL_INSN:
4306 case CODE_LABEL:
4307 case BARRIER:
4308 case NOTE:
4309 insn = x;
4310 while (insn)
4311 {
4312 rtx next = NEXT_INSN (insn);
4313 add_insn_before (insn, before);
4314 last = insn;
4315 insn = next;
4316 }
4317 break;
4318
4319 #ifdef ENABLE_RTL_CHECKING
4320 case SEQUENCE:
4321 abort ();
4322 break;
4323 #endif
4324
4325 default:
4326 last = make_jump_insn_raw (x);
4327 add_insn_before (last, before);
4328 break;
4329 }
4330
4331 return last;
4332 }
4333
4334 /* Make an instruction with body X and code CALL_INSN
4335 and output it before the instruction BEFORE. */
4336
4337 rtx
4338 emit_call_insn_before (rtx x, rtx before)
4339 {
4340 rtx last = NULL_RTX, insn;
4341
4342 #ifdef ENABLE_RTL_CHECKING
4343 if (before == NULL_RTX)
4344 abort ();
4345 #endif
4346
4347 switch (GET_CODE (x))
4348 {
4349 case INSN:
4350 case JUMP_INSN:
4351 case CALL_INSN:
4352 case CODE_LABEL:
4353 case BARRIER:
4354 case NOTE:
4355 insn = x;
4356 while (insn)
4357 {
4358 rtx next = NEXT_INSN (insn);
4359 add_insn_before (insn, before);
4360 last = insn;
4361 insn = next;
4362 }
4363 break;
4364
4365 #ifdef ENABLE_RTL_CHECKING
4366 case SEQUENCE:
4367 abort ();
4368 break;
4369 #endif
4370
4371 default:
4372 last = make_call_insn_raw (x);
4373 add_insn_before (last, before);
4374 break;
4375 }
4376
4377 return last;
4378 }
4379
4380 /* Make an insn of code BARRIER
4381 and output it before the insn BEFORE. */
4382
4383 rtx
4384 emit_barrier_before (rtx before)
4385 {
4386 rtx insn = rtx_alloc (BARRIER);
4387
4388 INSN_UID (insn) = cur_insn_uid++;
4389
4390 add_insn_before (insn, before);
4391 return insn;
4392 }
4393
4394 /* Emit the label LABEL before the insn BEFORE. */
4395
4396 rtx
4397 emit_label_before (rtx label, rtx before)
4398 {
4399 /* This can be called twice for the same label as a result of the
4400 confusion that follows a syntax error! So make it harmless. */
4401 if (INSN_UID (label) == 0)
4402 {
4403 INSN_UID (label) = cur_insn_uid++;
4404 add_insn_before (label, before);
4405 }
4406
4407 return label;
4408 }
4409
4410 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4411
4412 rtx
4413 emit_note_before (int subtype, rtx before)
4414 {
4415 rtx note = rtx_alloc (NOTE);
4416 INSN_UID (note) = cur_insn_uid++;
4417 NOTE_SOURCE_FILE (note) = 0;
4418 NOTE_LINE_NUMBER (note) = subtype;
4419 BLOCK_FOR_INSN (note) = NULL;
4420
4421 add_insn_before (note, before);
4422 return note;
4423 }
4424 \f
4425 /* Helper for emit_insn_after, handles lists of instructions
4426 efficiently. */
4427
4428 static rtx emit_insn_after_1 (rtx, rtx);
4429
4430 static rtx
4431 emit_insn_after_1 (rtx first, rtx after)
4432 {
4433 rtx last;
4434 rtx after_after;
4435 basic_block bb;
4436
4437 if (GET_CODE (after) != BARRIER
4438 && (bb = BLOCK_FOR_INSN (after)))
4439 {
4440 bb->flags |= BB_DIRTY;
4441 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4442 if (GET_CODE (last) != BARRIER)
4443 set_block_for_insn (last, bb);
4444 if (GET_CODE (last) != BARRIER)
4445 set_block_for_insn (last, bb);
4446 if (bb->end == after)
4447 bb->end = last;
4448 }
4449 else
4450 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4451 continue;
4452
4453 after_after = NEXT_INSN (after);
4454
4455 NEXT_INSN (after) = first;
4456 PREV_INSN (first) = after;
4457 NEXT_INSN (last) = after_after;
4458 if (after_after)
4459 PREV_INSN (after_after) = last;
4460
4461 if (after == last_insn)
4462 last_insn = last;
4463 return last;
4464 }
4465
4466 /* Make X be output after the insn AFTER. */
4467
4468 rtx
4469 emit_insn_after (rtx x, rtx after)
4470 {
4471 rtx last = after;
4472
4473 #ifdef ENABLE_RTL_CHECKING
4474 if (after == NULL_RTX)
4475 abort ();
4476 #endif
4477
4478 if (x == NULL_RTX)
4479 return last;
4480
4481 switch (GET_CODE (x))
4482 {
4483 case INSN:
4484 case JUMP_INSN:
4485 case CALL_INSN:
4486 case CODE_LABEL:
4487 case BARRIER:
4488 case NOTE:
4489 last = emit_insn_after_1 (x, after);
4490 break;
4491
4492 #ifdef ENABLE_RTL_CHECKING
4493 case SEQUENCE:
4494 abort ();
4495 break;
4496 #endif
4497
4498 default:
4499 last = make_insn_raw (x);
4500 add_insn_after (last, after);
4501 break;
4502 }
4503
4504 return last;
4505 }
4506
4507 /* Similar to emit_insn_after, except that line notes are to be inserted so
4508 as to act as if this insn were at FROM. */
4509
4510 void
4511 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4512 {
4513 rtx from_line = find_line_note (from);
4514 rtx after_line = find_line_note (after);
4515 rtx insn = emit_insn_after (x, after);
4516
4517 if (from_line)
4518 emit_note_copy_after (from_line, after);
4519
4520 if (after_line)
4521 emit_note_copy_after (after_line, insn);
4522 }
4523
4524 /* Make an insn of code JUMP_INSN with body X
4525 and output it after the insn AFTER. */
4526
4527 rtx
4528 emit_jump_insn_after (rtx x, rtx after)
4529 {
4530 rtx last;
4531
4532 #ifdef ENABLE_RTL_CHECKING
4533 if (after == NULL_RTX)
4534 abort ();
4535 #endif
4536
4537 switch (GET_CODE (x))
4538 {
4539 case INSN:
4540 case JUMP_INSN:
4541 case CALL_INSN:
4542 case CODE_LABEL:
4543 case BARRIER:
4544 case NOTE:
4545 last = emit_insn_after_1 (x, after);
4546 break;
4547
4548 #ifdef ENABLE_RTL_CHECKING
4549 case SEQUENCE:
4550 abort ();
4551 break;
4552 #endif
4553
4554 default:
4555 last = make_jump_insn_raw (x);
4556 add_insn_after (last, after);
4557 break;
4558 }
4559
4560 return last;
4561 }
4562
4563 /* Make an instruction with body X and code CALL_INSN
4564 and output it after the instruction AFTER. */
4565
4566 rtx
4567 emit_call_insn_after (rtx x, rtx after)
4568 {
4569 rtx last;
4570
4571 #ifdef ENABLE_RTL_CHECKING
4572 if (after == NULL_RTX)
4573 abort ();
4574 #endif
4575
4576 switch (GET_CODE (x))
4577 {
4578 case INSN:
4579 case JUMP_INSN:
4580 case CALL_INSN:
4581 case CODE_LABEL:
4582 case BARRIER:
4583 case NOTE:
4584 last = emit_insn_after_1 (x, after);
4585 break;
4586
4587 #ifdef ENABLE_RTL_CHECKING
4588 case SEQUENCE:
4589 abort ();
4590 break;
4591 #endif
4592
4593 default:
4594 last = make_call_insn_raw (x);
4595 add_insn_after (last, after);
4596 break;
4597 }
4598
4599 return last;
4600 }
4601
4602 /* Make an insn of code BARRIER
4603 and output it after the insn AFTER. */
4604
4605 rtx
4606 emit_barrier_after (rtx after)
4607 {
4608 rtx insn = rtx_alloc (BARRIER);
4609
4610 INSN_UID (insn) = cur_insn_uid++;
4611
4612 add_insn_after (insn, after);
4613 return insn;
4614 }
4615
4616 /* Emit the label LABEL after the insn AFTER. */
4617
4618 rtx
4619 emit_label_after (rtx label, rtx after)
4620 {
4621 /* This can be called twice for the same label
4622 as a result of the confusion that follows a syntax error!
4623 So make it harmless. */
4624 if (INSN_UID (label) == 0)
4625 {
4626 INSN_UID (label) = cur_insn_uid++;
4627 add_insn_after (label, after);
4628 }
4629
4630 return label;
4631 }
4632
4633 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4634
4635 rtx
4636 emit_note_after (int subtype, rtx after)
4637 {
4638 rtx note = rtx_alloc (NOTE);
4639 INSN_UID (note) = cur_insn_uid++;
4640 NOTE_SOURCE_FILE (note) = 0;
4641 NOTE_LINE_NUMBER (note) = subtype;
4642 BLOCK_FOR_INSN (note) = NULL;
4643 add_insn_after (note, after);
4644 return note;
4645 }
4646
4647 /* Emit a copy of note ORIG after the insn AFTER. */
4648
4649 rtx
4650 emit_note_copy_after (rtx orig, rtx after)
4651 {
4652 rtx note;
4653
4654 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4655 {
4656 cur_insn_uid++;
4657 return 0;
4658 }
4659
4660 note = rtx_alloc (NOTE);
4661 INSN_UID (note) = cur_insn_uid++;
4662 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4663 NOTE_DATA (note) = NOTE_DATA (orig);
4664 BLOCK_FOR_INSN (note) = NULL;
4665 add_insn_after (note, after);
4666 return note;
4667 }
4668 \f
4669 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4670 rtx
4671 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4672 {
4673 rtx last = emit_insn_after (pattern, after);
4674
4675 after = NEXT_INSN (after);
4676 while (1)
4677 {
4678 if (active_insn_p (after))
4679 INSN_LOCATOR (after) = loc;
4680 if (after == last)
4681 break;
4682 after = NEXT_INSN (after);
4683 }
4684 return last;
4685 }
4686
4687 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4688 rtx
4689 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4690 {
4691 rtx last = emit_jump_insn_after (pattern, after);
4692
4693 after = NEXT_INSN (after);
4694 while (1)
4695 {
4696 if (active_insn_p (after))
4697 INSN_LOCATOR (after) = loc;
4698 if (after == last)
4699 break;
4700 after = NEXT_INSN (after);
4701 }
4702 return last;
4703 }
4704
4705 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4706 rtx
4707 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4708 {
4709 rtx last = emit_call_insn_after (pattern, after);
4710
4711 after = NEXT_INSN (after);
4712 while (1)
4713 {
4714 if (active_insn_p (after))
4715 INSN_LOCATOR (after) = loc;
4716 if (after == last)
4717 break;
4718 after = NEXT_INSN (after);
4719 }
4720 return last;
4721 }
4722
4723 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4724 rtx
4725 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4726 {
4727 rtx first = PREV_INSN (before);
4728 rtx last = emit_insn_before (pattern, before);
4729
4730 first = NEXT_INSN (first);
4731 while (1)
4732 {
4733 if (active_insn_p (first))
4734 INSN_LOCATOR (first) = loc;
4735 if (first == last)
4736 break;
4737 first = NEXT_INSN (first);
4738 }
4739 return last;
4740 }
4741 \f
4742 /* Take X and emit it at the end of the doubly-linked
4743 INSN list.
4744
4745 Returns the last insn emitted. */
4746
4747 rtx
4748 emit_insn (rtx x)
4749 {
4750 rtx last = last_insn;
4751 rtx insn;
4752
4753 if (x == NULL_RTX)
4754 return last;
4755
4756 switch (GET_CODE (x))
4757 {
4758 case INSN:
4759 case JUMP_INSN:
4760 case CALL_INSN:
4761 case CODE_LABEL:
4762 case BARRIER:
4763 case NOTE:
4764 insn = x;
4765 while (insn)
4766 {
4767 rtx next = NEXT_INSN (insn);
4768 add_insn (insn);
4769 last = insn;
4770 insn = next;
4771 }
4772 break;
4773
4774 #ifdef ENABLE_RTL_CHECKING
4775 case SEQUENCE:
4776 abort ();
4777 break;
4778 #endif
4779
4780 default:
4781 last = make_insn_raw (x);
4782 add_insn (last);
4783 break;
4784 }
4785
4786 return last;
4787 }
4788
4789 /* Make an insn of code JUMP_INSN with pattern X
4790 and add it to the end of the doubly-linked list. */
4791
4792 rtx
4793 emit_jump_insn (rtx x)
4794 {
4795 rtx last = NULL_RTX, insn;
4796
4797 switch (GET_CODE (x))
4798 {
4799 case INSN:
4800 case JUMP_INSN:
4801 case CALL_INSN:
4802 case CODE_LABEL:
4803 case BARRIER:
4804 case NOTE:
4805 insn = x;
4806 while (insn)
4807 {
4808 rtx next = NEXT_INSN (insn);
4809 add_insn (insn);
4810 last = insn;
4811 insn = next;
4812 }
4813 break;
4814
4815 #ifdef ENABLE_RTL_CHECKING
4816 case SEQUENCE:
4817 abort ();
4818 break;
4819 #endif
4820
4821 default:
4822 last = make_jump_insn_raw (x);
4823 add_insn (last);
4824 break;
4825 }
4826
4827 return last;
4828 }
4829
4830 /* Make an insn of code CALL_INSN with pattern X
4831 and add it to the end of the doubly-linked list. */
4832
4833 rtx
4834 emit_call_insn (rtx x)
4835 {
4836 rtx insn;
4837
4838 switch (GET_CODE (x))
4839 {
4840 case INSN:
4841 case JUMP_INSN:
4842 case CALL_INSN:
4843 case CODE_LABEL:
4844 case BARRIER:
4845 case NOTE:
4846 insn = emit_insn (x);
4847 break;
4848
4849 #ifdef ENABLE_RTL_CHECKING
4850 case SEQUENCE:
4851 abort ();
4852 break;
4853 #endif
4854
4855 default:
4856 insn = make_call_insn_raw (x);
4857 add_insn (insn);
4858 break;
4859 }
4860
4861 return insn;
4862 }
4863
4864 /* Add the label LABEL to the end of the doubly-linked list. */
4865
4866 rtx
4867 emit_label (rtx label)
4868 {
4869 /* This can be called twice for the same label
4870 as a result of the confusion that follows a syntax error!
4871 So make it harmless. */
4872 if (INSN_UID (label) == 0)
4873 {
4874 INSN_UID (label) = cur_insn_uid++;
4875 add_insn (label);
4876 }
4877 return label;
4878 }
4879
4880 /* Make an insn of code BARRIER
4881 and add it to the end of the doubly-linked list. */
4882
4883 rtx
4884 emit_barrier (void)
4885 {
4886 rtx barrier = rtx_alloc (BARRIER);
4887 INSN_UID (barrier) = cur_insn_uid++;
4888 add_insn (barrier);
4889 return barrier;
4890 }
4891
4892 /* Make line numbering NOTE insn for LOCATION add it to the end
4893 of the doubly-linked list, but only if line-numbers are desired for
4894 debugging info and it doesn't match the previous one. */
4895
4896 rtx
4897 emit_line_note (location_t location)
4898 {
4899 rtx note;
4900
4901 set_file_and_line_for_stmt (location);
4902
4903 if (location.file && last_location.file
4904 && !strcmp (location.file, last_location.file)
4905 && location.line == last_location.line)
4906 return NULL_RTX;
4907 last_location = location;
4908
4909 if (no_line_numbers)
4910 {
4911 cur_insn_uid++;
4912 return NULL_RTX;
4913 }
4914
4915 note = emit_note (location.line);
4916 NOTE_SOURCE_FILE (note) = location.file;
4917
4918 return note;
4919 }
4920
4921 /* Emit a copy of note ORIG. */
4922
4923 rtx
4924 emit_note_copy (rtx orig)
4925 {
4926 rtx note;
4927
4928 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4929 {
4930 cur_insn_uid++;
4931 return NULL_RTX;
4932 }
4933
4934 note = rtx_alloc (NOTE);
4935
4936 INSN_UID (note) = cur_insn_uid++;
4937 NOTE_DATA (note) = NOTE_DATA (orig);
4938 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4939 BLOCK_FOR_INSN (note) = NULL;
4940 add_insn (note);
4941
4942 return note;
4943 }
4944
4945 /* Make an insn of code NOTE or type NOTE_NO
4946 and add it to the end of the doubly-linked list. */
4947
4948 rtx
4949 emit_note (int note_no)
4950 {
4951 rtx note;
4952
4953 note = rtx_alloc (NOTE);
4954 INSN_UID (note) = cur_insn_uid++;
4955 NOTE_LINE_NUMBER (note) = note_no;
4956 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4957 BLOCK_FOR_INSN (note) = NULL;
4958 add_insn (note);
4959 return note;
4960 }
4961
4962 /* Cause next statement to emit a line note even if the line number
4963 has not changed. */
4964
4965 void
4966 force_next_line_note (void)
4967 {
4968 last_location.line = -1;
4969 }
4970
4971 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4972 note of this type already exists, remove it first. */
4973
4974 rtx
4975 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4976 {
4977 rtx note = find_reg_note (insn, kind, NULL_RTX);
4978
4979 switch (kind)
4980 {
4981 case REG_EQUAL:
4982 case REG_EQUIV:
4983 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4984 has multiple sets (some callers assume single_set
4985 means the insn only has one set, when in fact it
4986 means the insn only has one * useful * set). */
4987 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4988 {
4989 if (note)
4990 abort ();
4991 return NULL_RTX;
4992 }
4993
4994 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4995 It serves no useful purpose and breaks eliminate_regs. */
4996 if (GET_CODE (datum) == ASM_OPERANDS)
4997 return NULL_RTX;
4998 break;
4999
5000 default:
5001 break;
5002 }
5003
5004 if (note)
5005 {
5006 XEXP (note, 0) = datum;
5007 return note;
5008 }
5009
5010 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
5011 return REG_NOTES (insn);
5012 }
5013 \f
5014 /* Return an indication of which type of insn should have X as a body.
5015 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5016
5017 enum rtx_code
5018 classify_insn (rtx x)
5019 {
5020 if (GET_CODE (x) == CODE_LABEL)
5021 return CODE_LABEL;
5022 if (GET_CODE (x) == CALL)
5023 return CALL_INSN;
5024 if (GET_CODE (x) == RETURN)
5025 return JUMP_INSN;
5026 if (GET_CODE (x) == SET)
5027 {
5028 if (SET_DEST (x) == pc_rtx)
5029 return JUMP_INSN;
5030 else if (GET_CODE (SET_SRC (x)) == CALL)
5031 return CALL_INSN;
5032 else
5033 return INSN;
5034 }
5035 if (GET_CODE (x) == PARALLEL)
5036 {
5037 int j;
5038 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5039 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5040 return CALL_INSN;
5041 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5042 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5043 return JUMP_INSN;
5044 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5045 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5046 return CALL_INSN;
5047 }
5048 return INSN;
5049 }
5050
5051 /* Emit the rtl pattern X as an appropriate kind of insn.
5052 If X is a label, it is simply added into the insn chain. */
5053
5054 rtx
5055 emit (rtx x)
5056 {
5057 enum rtx_code code = classify_insn (x);
5058
5059 if (code == CODE_LABEL)
5060 return emit_label (x);
5061 else if (code == INSN)
5062 return emit_insn (x);
5063 else if (code == JUMP_INSN)
5064 {
5065 rtx insn = emit_jump_insn (x);
5066 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5067 return emit_barrier ();
5068 return insn;
5069 }
5070 else if (code == CALL_INSN)
5071 return emit_call_insn (x);
5072 else
5073 abort ();
5074 }
5075 \f
5076 /* Space for free sequence stack entries. */
5077 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
5078
5079 /* Begin emitting insns to a sequence which can be packaged in an
5080 RTL_EXPR. If this sequence will contain something that might cause
5081 the compiler to pop arguments to function calls (because those
5082 pops have previously been deferred; see INHIBIT_DEFER_POP for more
5083 details), use do_pending_stack_adjust before calling this function.
5084 That will ensure that the deferred pops are not accidentally
5085 emitted in the middle of this sequence. */
5086
5087 void
5088 start_sequence (void)
5089 {
5090 struct sequence_stack *tem;
5091
5092 if (free_sequence_stack != NULL)
5093 {
5094 tem = free_sequence_stack;
5095 free_sequence_stack = tem->next;
5096 }
5097 else
5098 tem = ggc_alloc (sizeof (struct sequence_stack));
5099
5100 tem->next = seq_stack;
5101 tem->first = first_insn;
5102 tem->last = last_insn;
5103 tem->sequence_rtl_expr = seq_rtl_expr;
5104
5105 seq_stack = tem;
5106
5107 first_insn = 0;
5108 last_insn = 0;
5109 }
5110
5111 /* Similarly, but indicate that this sequence will be placed in T, an
5112 RTL_EXPR. See the documentation for start_sequence for more
5113 information about how to use this function. */
5114
5115 void
5116 start_sequence_for_rtl_expr (tree t)
5117 {
5118 start_sequence ();
5119
5120 seq_rtl_expr = t;
5121 }
5122
5123 /* Set up the insn chain starting with FIRST as the current sequence,
5124 saving the previously current one. See the documentation for
5125 start_sequence for more information about how to use this function. */
5126
5127 void
5128 push_to_sequence (rtx first)
5129 {
5130 rtx last;
5131
5132 start_sequence ();
5133
5134 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5135
5136 first_insn = first;
5137 last_insn = last;
5138 }
5139
5140 /* Set up the insn chain from a chain stort in FIRST to LAST. */
5141
5142 void
5143 push_to_full_sequence (rtx first, rtx last)
5144 {
5145 start_sequence ();
5146 first_insn = first;
5147 last_insn = last;
5148 /* We really should have the end of the insn chain here. */
5149 if (last && NEXT_INSN (last))
5150 abort ();
5151 }
5152
5153 /* Set up the outer-level insn chain
5154 as the current sequence, saving the previously current one. */
5155
5156 void
5157 push_topmost_sequence (void)
5158 {
5159 struct sequence_stack *stack, *top = NULL;
5160
5161 start_sequence ();
5162
5163 for (stack = seq_stack; stack; stack = stack->next)
5164 top = stack;
5165
5166 first_insn = top->first;
5167 last_insn = top->last;
5168 seq_rtl_expr = top->sequence_rtl_expr;
5169 }
5170
5171 /* After emitting to the outer-level insn chain, update the outer-level
5172 insn chain, and restore the previous saved state. */
5173
5174 void
5175 pop_topmost_sequence (void)
5176 {
5177 struct sequence_stack *stack, *top = NULL;
5178
5179 for (stack = seq_stack; stack; stack = stack->next)
5180 top = stack;
5181
5182 top->first = first_insn;
5183 top->last = last_insn;
5184 /* ??? Why don't we save seq_rtl_expr here? */
5185
5186 end_sequence ();
5187 }
5188
5189 /* After emitting to a sequence, restore previous saved state.
5190
5191 To get the contents of the sequence just made, you must call
5192 `get_insns' *before* calling here.
5193
5194 If the compiler might have deferred popping arguments while
5195 generating this sequence, and this sequence will not be immediately
5196 inserted into the instruction stream, use do_pending_stack_adjust
5197 before calling get_insns. That will ensure that the deferred
5198 pops are inserted into this sequence, and not into some random
5199 location in the instruction stream. See INHIBIT_DEFER_POP for more
5200 information about deferred popping of arguments. */
5201
5202 void
5203 end_sequence (void)
5204 {
5205 struct sequence_stack *tem = seq_stack;
5206
5207 first_insn = tem->first;
5208 last_insn = tem->last;
5209 seq_rtl_expr = tem->sequence_rtl_expr;
5210 seq_stack = tem->next;
5211
5212 memset (tem, 0, sizeof (*tem));
5213 tem->next = free_sequence_stack;
5214 free_sequence_stack = tem;
5215 }
5216
5217 /* This works like end_sequence, but records the old sequence in FIRST
5218 and LAST. */
5219
5220 void
5221 end_full_sequence (rtx *first, rtx *last)
5222 {
5223 *first = first_insn;
5224 *last = last_insn;
5225 end_sequence ();
5226 }
5227
5228 /* Return 1 if currently emitting into a sequence. */
5229
5230 int
5231 in_sequence_p (void)
5232 {
5233 return seq_stack != 0;
5234 }
5235 \f
5236 /* Put the various virtual registers into REGNO_REG_RTX. */
5237
5238 void
5239 init_virtual_regs (struct emit_status *es)
5240 {
5241 rtx *ptr = es->x_regno_reg_rtx;
5242 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5243 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5244 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5245 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5246 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5247 }
5248
5249 \f
5250 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5251 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5252 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5253 static int copy_insn_n_scratches;
5254
5255 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5256 copied an ASM_OPERANDS.
5257 In that case, it is the original input-operand vector. */
5258 static rtvec orig_asm_operands_vector;
5259
5260 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5261 copied an ASM_OPERANDS.
5262 In that case, it is the copied input-operand vector. */
5263 static rtvec copy_asm_operands_vector;
5264
5265 /* Likewise for the constraints vector. */
5266 static rtvec orig_asm_constraints_vector;
5267 static rtvec copy_asm_constraints_vector;
5268
5269 /* Recursively create a new copy of an rtx for copy_insn.
5270 This function differs from copy_rtx in that it handles SCRATCHes and
5271 ASM_OPERANDs properly.
5272 Normally, this function is not used directly; use copy_insn as front end.
5273 However, you could first copy an insn pattern with copy_insn and then use
5274 this function afterwards to properly copy any REG_NOTEs containing
5275 SCRATCHes. */
5276
5277 rtx
5278 copy_insn_1 (rtx orig)
5279 {
5280 rtx copy;
5281 int i, j;
5282 RTX_CODE code;
5283 const char *format_ptr;
5284
5285 code = GET_CODE (orig);
5286
5287 switch (code)
5288 {
5289 case REG:
5290 case QUEUED:
5291 case CONST_INT:
5292 case CONST_DOUBLE:
5293 case CONST_VECTOR:
5294 case SYMBOL_REF:
5295 case CODE_LABEL:
5296 case PC:
5297 case CC0:
5298 case ADDRESSOF:
5299 return orig;
5300
5301 case SCRATCH:
5302 for (i = 0; i < copy_insn_n_scratches; i++)
5303 if (copy_insn_scratch_in[i] == orig)
5304 return copy_insn_scratch_out[i];
5305 break;
5306
5307 case CONST:
5308 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5309 a LABEL_REF, it isn't sharable. */
5310 if (GET_CODE (XEXP (orig, 0)) == PLUS
5311 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5312 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5313 return orig;
5314 break;
5315
5316 /* A MEM with a constant address is not sharable. The problem is that
5317 the constant address may need to be reloaded. If the mem is shared,
5318 then reloading one copy of this mem will cause all copies to appear
5319 to have been reloaded. */
5320
5321 default:
5322 break;
5323 }
5324
5325 copy = rtx_alloc (code);
5326
5327 /* Copy the various flags, and other information. We assume that
5328 all fields need copying, and then clear the fields that should
5329 not be copied. That is the sensible default behavior, and forces
5330 us to explicitly document why we are *not* copying a flag. */
5331 memcpy (copy, orig, RTX_HDR_SIZE);
5332
5333 /* We do not copy the USED flag, which is used as a mark bit during
5334 walks over the RTL. */
5335 RTX_FLAG (copy, used) = 0;
5336
5337 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5338 if (GET_RTX_CLASS (code) == 'i')
5339 {
5340 RTX_FLAG (copy, jump) = 0;
5341 RTX_FLAG (copy, call) = 0;
5342 RTX_FLAG (copy, frame_related) = 0;
5343 }
5344
5345 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5346
5347 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5348 {
5349 copy->u.fld[i] = orig->u.fld[i];
5350 switch (*format_ptr++)
5351 {
5352 case 'e':
5353 if (XEXP (orig, i) != NULL)
5354 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5355 break;
5356
5357 case 'E':
5358 case 'V':
5359 if (XVEC (orig, i) == orig_asm_constraints_vector)
5360 XVEC (copy, i) = copy_asm_constraints_vector;
5361 else if (XVEC (orig, i) == orig_asm_operands_vector)
5362 XVEC (copy, i) = copy_asm_operands_vector;
5363 else if (XVEC (orig, i) != NULL)
5364 {
5365 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5366 for (j = 0; j < XVECLEN (copy, i); j++)
5367 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5368 }
5369 break;
5370
5371 case 't':
5372 case 'w':
5373 case 'i':
5374 case 's':
5375 case 'S':
5376 case 'u':
5377 case '0':
5378 /* These are left unchanged. */
5379 break;
5380
5381 default:
5382 abort ();
5383 }
5384 }
5385
5386 if (code == SCRATCH)
5387 {
5388 i = copy_insn_n_scratches++;
5389 if (i >= MAX_RECOG_OPERANDS)
5390 abort ();
5391 copy_insn_scratch_in[i] = orig;
5392 copy_insn_scratch_out[i] = copy;
5393 }
5394 else if (code == ASM_OPERANDS)
5395 {
5396 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5397 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5398 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5399 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5400 }
5401
5402 return copy;
5403 }
5404
5405 /* Create a new copy of an rtx.
5406 This function differs from copy_rtx in that it handles SCRATCHes and
5407 ASM_OPERANDs properly.
5408 INSN doesn't really have to be a full INSN; it could be just the
5409 pattern. */
5410 rtx
5411 copy_insn (rtx insn)
5412 {
5413 copy_insn_n_scratches = 0;
5414 orig_asm_operands_vector = 0;
5415 orig_asm_constraints_vector = 0;
5416 copy_asm_operands_vector = 0;
5417 copy_asm_constraints_vector = 0;
5418 return copy_insn_1 (insn);
5419 }
5420
5421 /* Initialize data structures and variables in this file
5422 before generating rtl for each function. */
5423
5424 void
5425 init_emit (void)
5426 {
5427 struct function *f = cfun;
5428
5429 f->emit = ggc_alloc (sizeof (struct emit_status));
5430 first_insn = NULL;
5431 last_insn = NULL;
5432 seq_rtl_expr = NULL;
5433 cur_insn_uid = 1;
5434 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5435 last_location.line = 0;
5436 last_location.file = 0;
5437 first_label_num = label_num;
5438 last_label_num = 0;
5439 seq_stack = NULL;
5440
5441 /* Init the tables that describe all the pseudo regs. */
5442
5443 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5444
5445 f->emit->regno_pointer_align
5446 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5447 * sizeof (unsigned char));
5448
5449 regno_reg_rtx
5450 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5451
5452 /* Put copies of all the hard registers into regno_reg_rtx. */
5453 memcpy (regno_reg_rtx,
5454 static_regno_reg_rtx,
5455 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5456
5457 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5458 init_virtual_regs (f->emit);
5459
5460 /* Indicate that the virtual registers and stack locations are
5461 all pointers. */
5462 REG_POINTER (stack_pointer_rtx) = 1;
5463 REG_POINTER (frame_pointer_rtx) = 1;
5464 REG_POINTER (hard_frame_pointer_rtx) = 1;
5465 REG_POINTER (arg_pointer_rtx) = 1;
5466
5467 REG_POINTER (virtual_incoming_args_rtx) = 1;
5468 REG_POINTER (virtual_stack_vars_rtx) = 1;
5469 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5470 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5471 REG_POINTER (virtual_cfa_rtx) = 1;
5472
5473 #ifdef STACK_BOUNDARY
5474 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5475 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5476 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5477 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5478
5479 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5480 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5481 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5482 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5483 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5484 #endif
5485
5486 #ifdef INIT_EXPANDERS
5487 INIT_EXPANDERS;
5488 #endif
5489 }
5490
5491 /* Generate the constant 0. */
5492
5493 static rtx
5494 gen_const_vector_0 (enum machine_mode mode)
5495 {
5496 rtx tem;
5497 rtvec v;
5498 int units, i;
5499 enum machine_mode inner;
5500
5501 units = GET_MODE_NUNITS (mode);
5502 inner = GET_MODE_INNER (mode);
5503
5504 v = rtvec_alloc (units);
5505
5506 /* We need to call this function after we to set CONST0_RTX first. */
5507 if (!CONST0_RTX (inner))
5508 abort ();
5509
5510 for (i = 0; i < units; ++i)
5511 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5512
5513 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5514 return tem;
5515 }
5516
5517 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5518 all elements are zero. */
5519 rtx
5520 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5521 {
5522 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5523 int i;
5524
5525 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5526 if (RTVEC_ELT (v, i) != inner_zero)
5527 return gen_rtx_raw_CONST_VECTOR (mode, v);
5528 return CONST0_RTX (mode);
5529 }
5530
5531 /* Create some permanent unique rtl objects shared between all functions.
5532 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5533
5534 void
5535 init_emit_once (int line_numbers)
5536 {
5537 int i;
5538 enum machine_mode mode;
5539 enum machine_mode double_mode;
5540
5541 /* We need reg_raw_mode, so initialize the modes now. */
5542 init_reg_modes_once ();
5543
5544 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5545 tables. */
5546 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5547 const_int_htab_eq, NULL);
5548
5549 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5550 const_double_htab_eq, NULL);
5551
5552 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5553 mem_attrs_htab_eq, NULL);
5554 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5555 reg_attrs_htab_eq, NULL);
5556
5557 no_line_numbers = ! line_numbers;
5558
5559 /* Compute the word and byte modes. */
5560
5561 byte_mode = VOIDmode;
5562 word_mode = VOIDmode;
5563 double_mode = VOIDmode;
5564
5565 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5566 mode = GET_MODE_WIDER_MODE (mode))
5567 {
5568 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5569 && byte_mode == VOIDmode)
5570 byte_mode = mode;
5571
5572 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5573 && word_mode == VOIDmode)
5574 word_mode = mode;
5575 }
5576
5577 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5578 mode = GET_MODE_WIDER_MODE (mode))
5579 {
5580 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5581 && double_mode == VOIDmode)
5582 double_mode = mode;
5583 }
5584
5585 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5586
5587 /* Assign register numbers to the globally defined register rtx.
5588 This must be done at runtime because the register number field
5589 is in a union and some compilers can't initialize unions. */
5590
5591 pc_rtx = gen_rtx (PC, VOIDmode);
5592 cc0_rtx = gen_rtx (CC0, VOIDmode);
5593 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5594 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5595 if (hard_frame_pointer_rtx == 0)
5596 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5597 HARD_FRAME_POINTER_REGNUM);
5598 if (arg_pointer_rtx == 0)
5599 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5600 virtual_incoming_args_rtx =
5601 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5602 virtual_stack_vars_rtx =
5603 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5604 virtual_stack_dynamic_rtx =
5605 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5606 virtual_outgoing_args_rtx =
5607 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5608 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5609
5610 /* Initialize RTL for commonly used hard registers. These are
5611 copied into regno_reg_rtx as we begin to compile each function. */
5612 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5613 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5614
5615 #ifdef INIT_EXPANDERS
5616 /* This is to initialize {init|mark|free}_machine_status before the first
5617 call to push_function_context_to. This is needed by the Chill front
5618 end which calls push_function_context_to before the first call to
5619 init_function_start. */
5620 INIT_EXPANDERS;
5621 #endif
5622
5623 /* Create the unique rtx's for certain rtx codes and operand values. */
5624
5625 /* Don't use gen_rtx here since gen_rtx in this case
5626 tries to use these variables. */
5627 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5628 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5629 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5630
5631 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5632 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5633 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5634 else
5635 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5636
5637 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5638 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5639 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5640 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5641 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5642 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5643 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5644
5645 dconsthalf = dconst1;
5646 dconsthalf.exp--;
5647
5648 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5649
5650 /* Initialize mathematical constants for constant folding builtins.
5651 These constants need to be given to at least 160 bits precision. */
5652 real_from_string (&dconstpi,
5653 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5654 real_from_string (&dconste,
5655 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5656
5657 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5658 {
5659 REAL_VALUE_TYPE *r =
5660 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5661
5662 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5663 mode = GET_MODE_WIDER_MODE (mode))
5664 const_tiny_rtx[i][(int) mode] =
5665 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5666
5667 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5668
5669 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5670 mode = GET_MODE_WIDER_MODE (mode))
5671 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5672
5673 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5674 mode != VOIDmode;
5675 mode = GET_MODE_WIDER_MODE (mode))
5676 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5677 }
5678
5679 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5680 mode != VOIDmode;
5681 mode = GET_MODE_WIDER_MODE (mode))
5682 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5683
5684 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5685 mode != VOIDmode;
5686 mode = GET_MODE_WIDER_MODE (mode))
5687 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5688
5689 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5690 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5691 const_tiny_rtx[0][i] = const0_rtx;
5692
5693 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5694 if (STORE_FLAG_VALUE == 1)
5695 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5696
5697 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5698 return_address_pointer_rtx
5699 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5700 #endif
5701
5702 #ifdef STATIC_CHAIN_REGNUM
5703 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5704
5705 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5706 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5707 static_chain_incoming_rtx
5708 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5709 else
5710 #endif
5711 static_chain_incoming_rtx = static_chain_rtx;
5712 #endif
5713
5714 #ifdef STATIC_CHAIN
5715 static_chain_rtx = STATIC_CHAIN;
5716
5717 #ifdef STATIC_CHAIN_INCOMING
5718 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5719 #else
5720 static_chain_incoming_rtx = static_chain_rtx;
5721 #endif
5722 #endif
5723
5724 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5725 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5726 }
5727 \f
5728 /* Query and clear/ restore no_line_numbers. This is used by the
5729 switch / case handling in stmt.c to give proper line numbers in
5730 warnings about unreachable code. */
5731
5732 int
5733 force_line_numbers (void)
5734 {
5735 int old = no_line_numbers;
5736
5737 no_line_numbers = 0;
5738 if (old)
5739 force_next_line_note ();
5740 return old;
5741 }
5742
5743 void
5744 restore_line_number_status (int old_value)
5745 {
5746 no_line_numbers = old_value;
5747 }
5748
5749 /* Produce exact duplicate of insn INSN after AFTER.
5750 Care updating of libcall regions if present. */
5751
5752 rtx
5753 emit_copy_of_insn_after (rtx insn, rtx after)
5754 {
5755 rtx new;
5756 rtx note1, note2, link;
5757
5758 switch (GET_CODE (insn))
5759 {
5760 case INSN:
5761 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5762 break;
5763
5764 case JUMP_INSN:
5765 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5766 break;
5767
5768 case CALL_INSN:
5769 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5770 if (CALL_INSN_FUNCTION_USAGE (insn))
5771 CALL_INSN_FUNCTION_USAGE (new)
5772 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5773 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5774 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5775 break;
5776
5777 default:
5778 abort ();
5779 }
5780
5781 /* Update LABEL_NUSES. */
5782 mark_jump_label (PATTERN (new), new, 0);
5783
5784 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5785
5786 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5787 make them. */
5788 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5789 if (REG_NOTE_KIND (link) != REG_LABEL)
5790 {
5791 if (GET_CODE (link) == EXPR_LIST)
5792 REG_NOTES (new)
5793 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5794 XEXP (link, 0),
5795 REG_NOTES (new)));
5796 else
5797 REG_NOTES (new)
5798 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5799 XEXP (link, 0),
5800 REG_NOTES (new)));
5801 }
5802
5803 /* Fix the libcall sequences. */
5804 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5805 {
5806 rtx p = new;
5807 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5808 p = PREV_INSN (p);
5809 XEXP (note1, 0) = p;
5810 XEXP (note2, 0) = new;
5811 }
5812 INSN_CODE (new) = INSN_CODE (insn);
5813 return new;
5814 }
5815
5816 #include "gt-emit-rtl.h"