]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
cfgexpand.c (tree_expand_cfg): Fix comment.
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconst3;
112 REAL_VALUE_TYPE dconst10;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116 REAL_VALUE_TYPE dconstthird;
117 REAL_VALUE_TYPE dconstpi;
118 REAL_VALUE_TYPE dconste;
119
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
152
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
158
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
162
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
170
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
176
177 static rtx make_jump_insn_raw (rtx);
178 static rtx make_call_insn_raw (rtx);
179 static rtx find_line_note (rtx);
180 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
181 static void unshare_all_decls (tree);
182 static void reset_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 static hashval_t const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx lookup_const_double (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector_0 (enum machine_mode);
198 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
199 static void copy_rtx_if_shared_1 (rtx *orig);
200
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability = -1;
204 \f
205 /* Returns a hash code for X (which is a really a CONST_INT). */
206
207 static hashval_t
208 const_int_htab_hash (const void *x)
209 {
210 return (hashval_t) INTVAL ((rtx) x);
211 }
212
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
216
217 static int
218 const_int_htab_eq (const void *x, const void *y)
219 {
220 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
221 }
222
223 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
224 static hashval_t
225 const_double_htab_hash (const void *x)
226 {
227 rtx value = (rtx) x;
228 hashval_t h;
229
230 if (GET_MODE (value) == VOIDmode)
231 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
232 else
233 {
234 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
235 /* MODE is used in the comparison, so it should be in the hash. */
236 h ^= GET_MODE (value);
237 }
238 return h;
239 }
240
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...) */
243 static int
244 const_double_htab_eq (const void *x, const void *y)
245 {
246 rtx a = (rtx)x, b = (rtx)y;
247
248 if (GET_MODE (a) != GET_MODE (b))
249 return 0;
250 if (GET_MODE (a) == VOIDmode)
251 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
252 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
253 else
254 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
255 CONST_DOUBLE_REAL_VALUE (b));
256 }
257
258 /* Returns a hash code for X (which is a really a mem_attrs *). */
259
260 static hashval_t
261 mem_attrs_htab_hash (const void *x)
262 {
263 mem_attrs *p = (mem_attrs *) x;
264
265 return (p->alias ^ (p->align * 1000)
266 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
267 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
268 ^ (size_t) p->expr);
269 }
270
271 /* Returns nonzero if the value represented by X (which is really a
272 mem_attrs *) is the same as that given by Y (which is also really a
273 mem_attrs *). */
274
275 static int
276 mem_attrs_htab_eq (const void *x, const void *y)
277 {
278 mem_attrs *p = (mem_attrs *) x;
279 mem_attrs *q = (mem_attrs *) y;
280
281 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
282 && p->size == q->size && p->align == q->align);
283 }
284
285 /* Allocate a new mem_attrs structure and insert it into the hash table if
286 one identical to it is not already in the table. We are doing this for
287 MEM of mode MODE. */
288
289 static mem_attrs *
290 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
291 unsigned int align, enum machine_mode mode)
292 {
293 mem_attrs attrs;
294 void **slot;
295
296 /* If everything is the default, we can just return zero.
297 This must match what the corresponding MEM_* macros return when the
298 field is not present. */
299 if (alias == 0 && expr == 0 && offset == 0
300 && (size == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (STRICT_ALIGNMENT && mode != BLKmode
303 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
304 return 0;
305
306 attrs.alias = alias;
307 attrs.expr = expr;
308 attrs.offset = offset;
309 attrs.size = size;
310 attrs.align = align;
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
315 *slot = ggc_alloc (sizeof (mem_attrs));
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
319 return *slot;
320 }
321
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
323
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328
329 return ((p->offset * 1000) ^ (long) p->decl);
330 }
331
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
338 {
339 reg_attrs *p = (reg_attrs *) x;
340 reg_attrs *q = (reg_attrs *) y;
341
342 return (p->decl == q->decl && p->offset == q->offset);
343 }
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
350 {
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
364 *slot = ggc_alloc (sizeof (reg_attrs));
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
368 return *slot;
369 }
370
371 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
372 don't attempt to share with the various global pieces of rtl (such as
373 frame_pointer_rtx). */
374
375 rtx
376 gen_raw_REG (enum machine_mode mode, int regno)
377 {
378 rtx x = gen_rtx_raw_REG (mode, regno);
379 ORIGINAL_REGNO (x) = regno;
380 return x;
381 }
382
383 /* There are some RTL codes that require special attention; the generation
384 functions do the raw handling. If you add to this list, modify
385 special_rtx in gengenrtl.c as well. */
386
387 rtx
388 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
389 {
390 void **slot;
391
392 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
393 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
394
395 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
396 if (const_true_rtx && arg == STORE_FLAG_VALUE)
397 return const_true_rtx;
398 #endif
399
400 /* Look up the CONST_INT in the hash table. */
401 slot = htab_find_slot_with_hash (const_int_htab, &arg,
402 (hashval_t) arg, INSERT);
403 if (*slot == 0)
404 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
405
406 return (rtx) *slot;
407 }
408
409 rtx
410 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
411 {
412 return GEN_INT (trunc_int_for_mode (c, mode));
413 }
414
415 /* CONST_DOUBLEs might be created from pairs of integers, or from
416 REAL_VALUE_TYPEs. Also, their length is known only at run time,
417 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
418
419 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
420 hash table. If so, return its counterpart; otherwise add it
421 to the hash table and return it. */
422 static rtx
423 lookup_const_double (rtx real)
424 {
425 void **slot = htab_find_slot (const_double_htab, real, INSERT);
426 if (*slot == 0)
427 *slot = real;
428
429 return (rtx) *slot;
430 }
431
432 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
433 VALUE in mode MODE. */
434 rtx
435 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
436 {
437 rtx real = rtx_alloc (CONST_DOUBLE);
438 PUT_MODE (real, mode);
439
440 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
441
442 return lookup_const_double (real);
443 }
444
445 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
446 of ints: I0 is the low-order word and I1 is the high-order word.
447 Do not use this routine for non-integer modes; convert to
448 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
449
450 rtx
451 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
452 {
453 rtx value;
454 unsigned int i;
455
456 if (mode != VOIDmode)
457 {
458 int width;
459 if (GET_MODE_CLASS (mode) != MODE_INT
460 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
463 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
464 abort ();
465
466 /* We clear out all bits that don't belong in MODE, unless they and
467 our sign bit are all one. So we get either a reasonable negative
468 value or a reasonable unsigned value for this mode. */
469 width = GET_MODE_BITSIZE (mode);
470 if (width < HOST_BITS_PER_WIDE_INT
471 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
472 != ((HOST_WIDE_INT) (-1) << (width - 1))))
473 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
474 else if (width == HOST_BITS_PER_WIDE_INT
475 && ! (i1 == ~0 && i0 < 0))
476 i1 = 0;
477 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
478 /* We cannot represent this value as a constant. */
479 abort ();
480
481 /* If this would be an entire word for the target, but is not for
482 the host, then sign-extend on the host so that the number will
483 look the same way on the host that it would on the target.
484
485 For example, when building a 64 bit alpha hosted 32 bit sparc
486 targeted compiler, then we want the 32 bit unsigned value -1 to be
487 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
488 The latter confuses the sparc backend. */
489
490 if (width < HOST_BITS_PER_WIDE_INT
491 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
492 i0 |= ((HOST_WIDE_INT) (-1) << width);
493
494 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
495 CONST_INT.
496
497 ??? Strictly speaking, this is wrong if we create a CONST_INT for
498 a large unsigned constant with the size of MODE being
499 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
500 in a wider mode. In that case we will mis-interpret it as a
501 negative number.
502
503 Unfortunately, the only alternative is to make a CONST_DOUBLE for
504 any constant in any mode if it is an unsigned constant larger
505 than the maximum signed integer in an int on the host. However,
506 doing this will break everyone that always expects to see a
507 CONST_INT for SImode and smaller.
508
509 We have always been making CONST_INTs in this case, so nothing
510 new is being broken. */
511
512 if (width <= HOST_BITS_PER_WIDE_INT)
513 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
514 }
515
516 /* If this integer fits in one word, return a CONST_INT. */
517 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
518 return GEN_INT (i0);
519
520 /* We use VOIDmode for integers. */
521 value = rtx_alloc (CONST_DOUBLE);
522 PUT_MODE (value, VOIDmode);
523
524 CONST_DOUBLE_LOW (value) = i0;
525 CONST_DOUBLE_HIGH (value) = i1;
526
527 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
528 XWINT (value, i) = 0;
529
530 return lookup_const_double (value);
531 }
532
533 rtx
534 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
535 {
536 /* In case the MD file explicitly references the frame pointer, have
537 all such references point to the same frame pointer. This is
538 used during frame pointer elimination to distinguish the explicit
539 references to these registers from pseudos that happened to be
540 assigned to them.
541
542 If we have eliminated the frame pointer or arg pointer, we will
543 be using it as a normal register, for example as a spill
544 register. In such cases, we might be accessing it in a mode that
545 is not Pmode and therefore cannot use the pre-allocated rtx.
546
547 Also don't do this when we are making new REGs in reload, since
548 we don't want to get confused with the real pointers. */
549
550 if (mode == Pmode && !reload_in_progress)
551 {
552 if (regno == FRAME_POINTER_REGNUM
553 && (!reload_completed || frame_pointer_needed))
554 return frame_pointer_rtx;
555 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
556 if (regno == HARD_FRAME_POINTER_REGNUM
557 && (!reload_completed || frame_pointer_needed))
558 return hard_frame_pointer_rtx;
559 #endif
560 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
561 if (regno == ARG_POINTER_REGNUM)
562 return arg_pointer_rtx;
563 #endif
564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
565 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
566 return return_address_pointer_rtx;
567 #endif
568 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
569 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
570 return pic_offset_table_rtx;
571 if (regno == STACK_POINTER_REGNUM)
572 return stack_pointer_rtx;
573 }
574
575 #if 0
576 /* If the per-function register table has been set up, try to re-use
577 an existing entry in that table to avoid useless generation of RTL.
578
579 This code is disabled for now until we can fix the various backends
580 which depend on having non-shared hard registers in some cases. Long
581 term we want to re-enable this code as it can significantly cut down
582 on the amount of useless RTL that gets generated.
583
584 We'll also need to fix some code that runs after reload that wants to
585 set ORIGINAL_REGNO. */
586
587 if (cfun
588 && cfun->emit
589 && regno_reg_rtx
590 && regno < FIRST_PSEUDO_REGISTER
591 && reg_raw_mode[regno] == mode)
592 return regno_reg_rtx[regno];
593 #endif
594
595 return gen_raw_REG (mode, regno);
596 }
597
598 rtx
599 gen_rtx_MEM (enum machine_mode mode, rtx addr)
600 {
601 rtx rt = gen_rtx_raw_MEM (mode, addr);
602
603 /* This field is not cleared by the mere allocation of the rtx, so
604 we clear it here. */
605 MEM_ATTRS (rt) = 0;
606
607 return rt;
608 }
609
610 rtx
611 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
612 {
613 /* This is the most common failure type.
614 Catch it early so we can see who does it. */
615 if ((offset % GET_MODE_SIZE (mode)) != 0)
616 abort ();
617
618 /* This check isn't usable right now because combine will
619 throw arbitrary crap like a CALL into a SUBREG in
620 gen_lowpart_for_combine so we must just eat it. */
621 #if 0
622 /* Check for this too. */
623 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
624 abort ();
625 #endif
626 return gen_rtx_raw_SUBREG (mode, reg, offset);
627 }
628
629 /* Generate a SUBREG representing the least-significant part of REG if MODE
630 is smaller than mode of REG, otherwise paradoxical SUBREG. */
631
632 rtx
633 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
634 {
635 enum machine_mode inmode;
636
637 inmode = GET_MODE (reg);
638 if (inmode == VOIDmode)
639 inmode = mode;
640 return gen_rtx_SUBREG (mode, reg,
641 subreg_lowpart_offset (mode, inmode));
642 }
643 \f
644 /* gen_rtvec (n, [rt1, ..., rtn])
645 **
646 ** This routine creates an rtvec and stores within it the
647 ** pointers to rtx's which are its arguments.
648 */
649
650 /*VARARGS1*/
651 rtvec
652 gen_rtvec (int n, ...)
653 {
654 int i, save_n;
655 rtx *vector;
656 va_list p;
657
658 va_start (p, n);
659
660 if (n == 0)
661 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
662
663 vector = alloca (n * sizeof (rtx));
664
665 for (i = 0; i < n; i++)
666 vector[i] = va_arg (p, rtx);
667
668 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
669 save_n = n;
670 va_end (p);
671
672 return gen_rtvec_v (save_n, vector);
673 }
674
675 rtvec
676 gen_rtvec_v (int n, rtx *argp)
677 {
678 int i;
679 rtvec rt_val;
680
681 if (n == 0)
682 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
683
684 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
685
686 for (i = 0; i < n; i++)
687 rt_val->elem[i] = *argp++;
688
689 return rt_val;
690 }
691 \f
692 /* Generate a REG rtx for a new pseudo register of mode MODE.
693 This pseudo is assigned the next sequential register number. */
694
695 rtx
696 gen_reg_rtx (enum machine_mode mode)
697 {
698 struct function *f = cfun;
699 rtx val;
700
701 /* Don't let anything called after initial flow analysis create new
702 registers. */
703 if (no_new_pseudos)
704 abort ();
705
706 if (generating_concat_p
707 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
708 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
709 {
710 /* For complex modes, don't make a single pseudo.
711 Instead, make a CONCAT of two pseudos.
712 This allows noncontiguous allocation of the real and imaginary parts,
713 which makes much better code. Besides, allocating DCmode
714 pseudos overstrains reload on some machines like the 386. */
715 rtx realpart, imagpart;
716 enum machine_mode partmode = GET_MODE_INNER (mode);
717
718 realpart = gen_reg_rtx (partmode);
719 imagpart = gen_reg_rtx (partmode);
720 return gen_rtx_CONCAT (mode, realpart, imagpart);
721 }
722
723 /* Make sure regno_pointer_align, and regno_reg_rtx are large
724 enough to have an element for this pseudo reg number. */
725
726 if (reg_rtx_no == f->emit->regno_pointer_align_length)
727 {
728 int old_size = f->emit->regno_pointer_align_length;
729 char *new;
730 rtx *new1;
731
732 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
733 memset (new + old_size, 0, old_size);
734 f->emit->regno_pointer_align = (unsigned char *) new;
735
736 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
737 old_size * 2 * sizeof (rtx));
738 memset (new1 + old_size, 0, old_size * sizeof (rtx));
739 regno_reg_rtx = new1;
740
741 f->emit->regno_pointer_align_length = old_size * 2;
742 }
743
744 val = gen_raw_REG (mode, reg_rtx_no);
745 regno_reg_rtx[reg_rtx_no++] = val;
746 return val;
747 }
748
749 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
750 Do the big endian correction if needed. */
751
752 rtx
753 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
754 {
755 rtx new = gen_rtx_REG (mode, regno);
756 tree decl;
757 HOST_WIDE_INT var_size;
758
759 /* PR middle-end/14084
760 The problem appears when a variable is stored in a larger register
761 and later it is used in the original mode or some mode in between
762 or some part of variable is accessed.
763
764 On little endian machines there is no problem because
765 the REG_OFFSET of the start of the variable is the same when
766 accessed in any mode (it is 0).
767
768 However, this is not true on big endian machines.
769 The offset of the start of the variable is different when accessed
770 in different modes.
771 When we are taking a part of the REG we have to change the OFFSET
772 from offset WRT size of mode of REG to offset WRT size of variable.
773
774 If we would not do the big endian correction the resulting REG_OFFSET
775 would be larger than the size of the DECL.
776
777 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
778
779 REG.mode MODE DECL size old offset new offset description
780 DI SI 4 4 0 int32 in SImode
781 DI SI 1 4 0 char in SImode
782 DI QI 1 7 0 char in QImode
783 DI QI 4 5 1 1st element in QImode
784 of char[4]
785 DI HI 4 6 2 1st element in HImode
786 of int16[2]
787
788 If the size of DECL is equal or greater than the size of REG
789 we can't do this correction because the register holds the
790 whole variable or a part of the variable and thus the REG_OFFSET
791 is already correct. */
792
793 decl = REG_EXPR (reg);
794 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
795 && decl != NULL
796 && offset > 0
797 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
798 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
799 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
800 {
801 int offset_le;
802
803 /* Convert machine endian to little endian WRT size of mode of REG. */
804 if (WORDS_BIG_ENDIAN)
805 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
806 / UNITS_PER_WORD) * UNITS_PER_WORD;
807 else
808 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
809
810 if (BYTES_BIG_ENDIAN)
811 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
812 % UNITS_PER_WORD);
813 else
814 offset_le += offset % UNITS_PER_WORD;
815
816 if (offset_le >= var_size)
817 {
818 /* MODE is wider than the variable so the new reg will cover
819 the whole variable so the resulting OFFSET should be 0. */
820 offset = 0;
821 }
822 else
823 {
824 /* Convert little endian to machine endian WRT size of variable. */
825 if (WORDS_BIG_ENDIAN)
826 offset = ((var_size - 1 - offset_le)
827 / UNITS_PER_WORD) * UNITS_PER_WORD;
828 else
829 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
830
831 if (BYTES_BIG_ENDIAN)
832 offset += ((var_size - 1 - offset_le)
833 % UNITS_PER_WORD);
834 else
835 offset += offset_le % UNITS_PER_WORD;
836 }
837 }
838
839 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
840 REG_OFFSET (reg) + offset);
841 return new;
842 }
843
844 /* Set the decl for MEM to DECL. */
845
846 void
847 set_reg_attrs_from_mem (rtx reg, rtx mem)
848 {
849 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
850 REG_ATTRS (reg)
851 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
852 }
853
854 /* Set the register attributes for registers contained in PARM_RTX.
855 Use needed values from memory attributes of MEM. */
856
857 void
858 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
859 {
860 if (REG_P (parm_rtx))
861 set_reg_attrs_from_mem (parm_rtx, mem);
862 else if (GET_CODE (parm_rtx) == PARALLEL)
863 {
864 /* Check for a NULL entry in the first slot, used to indicate that the
865 parameter goes both on the stack and in registers. */
866 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
867 for (; i < XVECLEN (parm_rtx, 0); i++)
868 {
869 rtx x = XVECEXP (parm_rtx, 0, i);
870 if (REG_P (XEXP (x, 0)))
871 REG_ATTRS (XEXP (x, 0))
872 = get_reg_attrs (MEM_EXPR (mem),
873 INTVAL (XEXP (x, 1)));
874 }
875 }
876 }
877
878 /* Assign the RTX X to declaration T. */
879 void
880 set_decl_rtl (tree t, rtx x)
881 {
882 DECL_CHECK (t)->decl.rtl = x;
883
884 if (!x)
885 return;
886 /* For register, we maintain the reverse information too. */
887 if (REG_P (x))
888 REG_ATTRS (x) = get_reg_attrs (t, 0);
889 else if (GET_CODE (x) == SUBREG)
890 REG_ATTRS (SUBREG_REG (x))
891 = get_reg_attrs (t, -SUBREG_BYTE (x));
892 if (GET_CODE (x) == CONCAT)
893 {
894 if (REG_P (XEXP (x, 0)))
895 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
896 if (REG_P (XEXP (x, 1)))
897 REG_ATTRS (XEXP (x, 1))
898 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
899 }
900 if (GET_CODE (x) == PARALLEL)
901 {
902 int i;
903 for (i = 0; i < XVECLEN (x, 0); i++)
904 {
905 rtx y = XVECEXP (x, 0, i);
906 if (REG_P (XEXP (y, 0)))
907 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
908 }
909 }
910 }
911
912 /* Assign the RTX X to parameter declaration T. */
913 void
914 set_decl_incoming_rtl (tree t, rtx x)
915 {
916 DECL_INCOMING_RTL (t) = x;
917
918 if (!x)
919 return;
920 /* For register, we maintain the reverse information too. */
921 if (REG_P (x))
922 REG_ATTRS (x) = get_reg_attrs (t, 0);
923 else if (GET_CODE (x) == SUBREG)
924 REG_ATTRS (SUBREG_REG (x))
925 = get_reg_attrs (t, -SUBREG_BYTE (x));
926 if (GET_CODE (x) == CONCAT)
927 {
928 if (REG_P (XEXP (x, 0)))
929 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
930 if (REG_P (XEXP (x, 1)))
931 REG_ATTRS (XEXP (x, 1))
932 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
933 }
934 if (GET_CODE (x) == PARALLEL)
935 {
936 int i, start;
937
938 /* Check for a NULL entry, used to indicate that the parameter goes
939 both on the stack and in registers. */
940 if (XEXP (XVECEXP (x, 0, 0), 0))
941 start = 0;
942 else
943 start = 1;
944
945 for (i = start; i < XVECLEN (x, 0); i++)
946 {
947 rtx y = XVECEXP (x, 0, i);
948 if (REG_P (XEXP (y, 0)))
949 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
950 }
951 }
952 }
953
954 /* Identify REG (which may be a CONCAT) as a user register. */
955
956 void
957 mark_user_reg (rtx reg)
958 {
959 if (GET_CODE (reg) == CONCAT)
960 {
961 REG_USERVAR_P (XEXP (reg, 0)) = 1;
962 REG_USERVAR_P (XEXP (reg, 1)) = 1;
963 }
964 else if (REG_P (reg))
965 REG_USERVAR_P (reg) = 1;
966 else
967 abort ();
968 }
969
970 /* Identify REG as a probable pointer register and show its alignment
971 as ALIGN, if nonzero. */
972
973 void
974 mark_reg_pointer (rtx reg, int align)
975 {
976 if (! REG_POINTER (reg))
977 {
978 REG_POINTER (reg) = 1;
979
980 if (align)
981 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
982 }
983 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
984 /* We can no-longer be sure just how aligned this pointer is. */
985 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
986 }
987
988 /* Return 1 plus largest pseudo reg number used in the current function. */
989
990 int
991 max_reg_num (void)
992 {
993 return reg_rtx_no;
994 }
995
996 /* Return 1 + the largest label number used so far in the current function. */
997
998 int
999 max_label_num (void)
1000 {
1001 if (last_label_num && label_num == base_label_num)
1002 return last_label_num;
1003 return label_num;
1004 }
1005
1006 /* Return first label number used in this function (if any were used). */
1007
1008 int
1009 get_first_label_num (void)
1010 {
1011 return first_label_num;
1012 }
1013
1014 /* If the rtx for label was created during the expansion of a nested
1015 function, then first_label_num won't include this label number.
1016 Fix this now so that array indicies work later. */
1017
1018 void
1019 maybe_set_first_label_num (rtx x)
1020 {
1021 if (CODE_LABEL_NUMBER (x) < first_label_num)
1022 first_label_num = CODE_LABEL_NUMBER (x);
1023 }
1024 \f
1025 /* Return the final regno of X, which is a SUBREG of a hard
1026 register. */
1027 int
1028 subreg_hard_regno (rtx x, int check_mode)
1029 {
1030 enum machine_mode mode = GET_MODE (x);
1031 unsigned int byte_offset, base_regno, final_regno;
1032 rtx reg = SUBREG_REG (x);
1033
1034 /* This is where we attempt to catch illegal subregs
1035 created by the compiler. */
1036 if (GET_CODE (x) != SUBREG
1037 || !REG_P (reg))
1038 abort ();
1039 base_regno = REGNO (reg);
1040 if (base_regno >= FIRST_PSEUDO_REGISTER)
1041 abort ();
1042 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1043 abort ();
1044 #ifdef ENABLE_CHECKING
1045 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1046 SUBREG_BYTE (x), mode))
1047 abort ();
1048 #endif
1049 /* Catch non-congruent offsets too. */
1050 byte_offset = SUBREG_BYTE (x);
1051 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1052 abort ();
1053
1054 final_regno = subreg_regno (x);
1055
1056 return final_regno;
1057 }
1058
1059 /* Return a value representing some low-order bits of X, where the number
1060 of low-order bits is given by MODE. Note that no conversion is done
1061 between floating-point and fixed-point values, rather, the bit
1062 representation is returned.
1063
1064 This function handles the cases in common between gen_lowpart, below,
1065 and two variants in cse.c and combine.c. These are the cases that can
1066 be safely handled at all points in the compilation.
1067
1068 If this is not a case we can handle, return 0. */
1069
1070 rtx
1071 gen_lowpart_common (enum machine_mode mode, rtx x)
1072 {
1073 int msize = GET_MODE_SIZE (mode);
1074 int xsize;
1075 int offset = 0;
1076 enum machine_mode innermode;
1077
1078 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1079 so we have to make one up. Yuk. */
1080 innermode = GET_MODE (x);
1081 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1082 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1083 else if (innermode == VOIDmode)
1084 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1085
1086 xsize = GET_MODE_SIZE (innermode);
1087
1088 if (innermode == VOIDmode || innermode == BLKmode)
1089 abort ();
1090
1091 if (innermode == mode)
1092 return x;
1093
1094 /* MODE must occupy no more words than the mode of X. */
1095 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1096 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1097 return 0;
1098
1099 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1100 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1101 return 0;
1102
1103 offset = subreg_lowpart_offset (mode, innermode);
1104
1105 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1106 && (GET_MODE_CLASS (mode) == MODE_INT
1107 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1108 {
1109 /* If we are getting the low-order part of something that has been
1110 sign- or zero-extended, we can either just use the object being
1111 extended or make a narrower extension. If we want an even smaller
1112 piece than the size of the object being extended, call ourselves
1113 recursively.
1114
1115 This case is used mostly by combine and cse. */
1116
1117 if (GET_MODE (XEXP (x, 0)) == mode)
1118 return XEXP (x, 0);
1119 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1120 return gen_lowpart_common (mode, XEXP (x, 0));
1121 else if (msize < xsize)
1122 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1123 }
1124 else if (GET_CODE (x) == SUBREG || REG_P (x)
1125 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1126 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1127 return simplify_gen_subreg (mode, x, innermode, offset);
1128
1129 /* Otherwise, we can't do this. */
1130 return 0;
1131 }
1132 \f
1133 /* Return the constant real or imaginary part (which has mode MODE)
1134 of a complex value X. The IMAGPART_P argument determines whether
1135 the real or complex component should be returned. This function
1136 returns NULL_RTX if the component isn't a constant. */
1137
1138 static rtx
1139 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1140 {
1141 tree decl, part;
1142
1143 if (MEM_P (x)
1144 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1145 {
1146 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1147 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1148 {
1149 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1150 if (TREE_CODE (part) == REAL_CST
1151 || TREE_CODE (part) == INTEGER_CST)
1152 return expand_expr (part, NULL_RTX, mode, 0);
1153 }
1154 }
1155 return NULL_RTX;
1156 }
1157
1158 /* Return the real part (which has mode MODE) of a complex value X.
1159 This always comes at the low address in memory. */
1160
1161 rtx
1162 gen_realpart (enum machine_mode mode, rtx x)
1163 {
1164 rtx part;
1165
1166 /* Handle complex constants. */
1167 part = gen_complex_constant_part (mode, x, 0);
1168 if (part != NULL_RTX)
1169 return part;
1170
1171 if (WORDS_BIG_ENDIAN
1172 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1173 && REG_P (x)
1174 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1175 internal_error
1176 ("can't access real part of complex value in hard register");
1177 else if (WORDS_BIG_ENDIAN)
1178 return gen_highpart (mode, x);
1179 else
1180 return gen_lowpart (mode, x);
1181 }
1182
1183 /* Return the imaginary part (which has mode MODE) of a complex value X.
1184 This always comes at the high address in memory. */
1185
1186 rtx
1187 gen_imagpart (enum machine_mode mode, rtx x)
1188 {
1189 rtx part;
1190
1191 /* Handle complex constants. */
1192 part = gen_complex_constant_part (mode, x, 1);
1193 if (part != NULL_RTX)
1194 return part;
1195
1196 if (WORDS_BIG_ENDIAN)
1197 return gen_lowpart (mode, x);
1198 else if (! WORDS_BIG_ENDIAN
1199 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1200 && REG_P (x)
1201 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1202 internal_error
1203 ("can't access imaginary part of complex value in hard register");
1204 else
1205 return gen_highpart (mode, x);
1206 }
1207 \f
1208 rtx
1209 gen_highpart (enum machine_mode mode, rtx x)
1210 {
1211 unsigned int msize = GET_MODE_SIZE (mode);
1212 rtx result;
1213
1214 /* This case loses if X is a subreg. To catch bugs early,
1215 complain if an invalid MODE is used even in other cases. */
1216 if (msize > UNITS_PER_WORD
1217 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1218 abort ();
1219
1220 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1221 subreg_highpart_offset (mode, GET_MODE (x)));
1222
1223 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1224 the target if we have a MEM. gen_highpart must return a valid operand,
1225 emitting code if necessary to do so. */
1226 if (result != NULL_RTX && MEM_P (result))
1227 result = validize_mem (result);
1228
1229 if (!result)
1230 abort ();
1231 return result;
1232 }
1233
1234 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1235 be VOIDmode constant. */
1236 rtx
1237 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1238 {
1239 if (GET_MODE (exp) != VOIDmode)
1240 {
1241 if (GET_MODE (exp) != innermode)
1242 abort ();
1243 return gen_highpart (outermode, exp);
1244 }
1245 return simplify_gen_subreg (outermode, exp, innermode,
1246 subreg_highpart_offset (outermode, innermode));
1247 }
1248
1249 /* Return offset in bytes to get OUTERMODE low part
1250 of the value in mode INNERMODE stored in memory in target format. */
1251
1252 unsigned int
1253 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1254 {
1255 unsigned int offset = 0;
1256 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1257
1258 if (difference > 0)
1259 {
1260 if (WORDS_BIG_ENDIAN)
1261 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1262 if (BYTES_BIG_ENDIAN)
1263 offset += difference % UNITS_PER_WORD;
1264 }
1265
1266 return offset;
1267 }
1268
1269 /* Return offset in bytes to get OUTERMODE high part
1270 of the value in mode INNERMODE stored in memory in target format. */
1271 unsigned int
1272 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1273 {
1274 unsigned int offset = 0;
1275 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1276
1277 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1278 abort ();
1279
1280 if (difference > 0)
1281 {
1282 if (! WORDS_BIG_ENDIAN)
1283 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1284 if (! BYTES_BIG_ENDIAN)
1285 offset += difference % UNITS_PER_WORD;
1286 }
1287
1288 return offset;
1289 }
1290
1291 /* Return 1 iff X, assumed to be a SUBREG,
1292 refers to the least significant part of its containing reg.
1293 If X is not a SUBREG, always return 1 (it is its own low part!). */
1294
1295 int
1296 subreg_lowpart_p (rtx x)
1297 {
1298 if (GET_CODE (x) != SUBREG)
1299 return 1;
1300 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1301 return 0;
1302
1303 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1304 == SUBREG_BYTE (x));
1305 }
1306 \f
1307 /* Return subword OFFSET of operand OP.
1308 The word number, OFFSET, is interpreted as the word number starting
1309 at the low-order address. OFFSET 0 is the low-order word if not
1310 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1311
1312 If we cannot extract the required word, we return zero. Otherwise,
1313 an rtx corresponding to the requested word will be returned.
1314
1315 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1316 reload has completed, a valid address will always be returned. After
1317 reload, if a valid address cannot be returned, we return zero.
1318
1319 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1320 it is the responsibility of the caller.
1321
1322 MODE is the mode of OP in case it is a CONST_INT.
1323
1324 ??? This is still rather broken for some cases. The problem for the
1325 moment is that all callers of this thing provide no 'goal mode' to
1326 tell us to work with. This exists because all callers were written
1327 in a word based SUBREG world.
1328 Now use of this function can be deprecated by simplify_subreg in most
1329 cases.
1330 */
1331
1332 rtx
1333 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1334 {
1335 if (mode == VOIDmode)
1336 mode = GET_MODE (op);
1337
1338 if (mode == VOIDmode)
1339 abort ();
1340
1341 /* If OP is narrower than a word, fail. */
1342 if (mode != BLKmode
1343 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1344 return 0;
1345
1346 /* If we want a word outside OP, return zero. */
1347 if (mode != BLKmode
1348 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1349 return const0_rtx;
1350
1351 /* Form a new MEM at the requested address. */
1352 if (MEM_P (op))
1353 {
1354 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1355
1356 if (! validate_address)
1357 return new;
1358
1359 else if (reload_completed)
1360 {
1361 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1362 return 0;
1363 }
1364 else
1365 return replace_equiv_address (new, XEXP (new, 0));
1366 }
1367
1368 /* Rest can be handled by simplify_subreg. */
1369 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1370 }
1371
1372 /* Similar to `operand_subword', but never return 0. If we can't extract
1373 the required subword, put OP into a register and try again. If that fails,
1374 abort. We always validate the address in this case.
1375
1376 MODE is the mode of OP, in case it is CONST_INT. */
1377
1378 rtx
1379 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1380 {
1381 rtx result = operand_subword (op, offset, 1, mode);
1382
1383 if (result)
1384 return result;
1385
1386 if (mode != BLKmode && mode != VOIDmode)
1387 {
1388 /* If this is a register which can not be accessed by words, copy it
1389 to a pseudo register. */
1390 if (REG_P (op))
1391 op = copy_to_reg (op);
1392 else
1393 op = force_reg (mode, op);
1394 }
1395
1396 result = operand_subword (op, offset, 1, mode);
1397 if (result == 0)
1398 abort ();
1399
1400 return result;
1401 }
1402 \f
1403 /* Given a compare instruction, swap the operands.
1404 A test instruction is changed into a compare of 0 against the operand. */
1405
1406 void
1407 reverse_comparison (rtx insn)
1408 {
1409 rtx body = PATTERN (insn);
1410 rtx comp;
1411
1412 if (GET_CODE (body) == SET)
1413 comp = SET_SRC (body);
1414 else
1415 comp = SET_SRC (XVECEXP (body, 0, 0));
1416
1417 if (GET_CODE (comp) == COMPARE)
1418 {
1419 rtx op0 = XEXP (comp, 0);
1420 rtx op1 = XEXP (comp, 1);
1421 XEXP (comp, 0) = op1;
1422 XEXP (comp, 1) = op0;
1423 }
1424 else
1425 {
1426 rtx new = gen_rtx_COMPARE (VOIDmode,
1427 CONST0_RTX (GET_MODE (comp)), comp);
1428 if (GET_CODE (body) == SET)
1429 SET_SRC (body) = new;
1430 else
1431 SET_SRC (XVECEXP (body, 0, 0)) = new;
1432 }
1433 }
1434 \f
1435 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1436 or (2) a component ref of something variable. Represent the later with
1437 a NULL expression. */
1438
1439 static tree
1440 component_ref_for_mem_expr (tree ref)
1441 {
1442 tree inner = TREE_OPERAND (ref, 0);
1443
1444 if (TREE_CODE (inner) == COMPONENT_REF)
1445 inner = component_ref_for_mem_expr (inner);
1446 else
1447 {
1448 /* Now remove any conversions: they don't change what the underlying
1449 object is. Likewise for SAVE_EXPR. */
1450 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1451 || TREE_CODE (inner) == NON_LVALUE_EXPR
1452 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1453 || TREE_CODE (inner) == SAVE_EXPR)
1454 inner = TREE_OPERAND (inner, 0);
1455
1456 if (! DECL_P (inner))
1457 inner = NULL_TREE;
1458 }
1459
1460 if (inner == TREE_OPERAND (ref, 0))
1461 return ref;
1462 else
1463 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1464 TREE_OPERAND (ref, 1), NULL_TREE);
1465 }
1466
1467 /* Returns 1 if both MEM_EXPR can be considered equal
1468 and 0 otherwise. */
1469
1470 int
1471 mem_expr_equal_p (tree expr1, tree expr2)
1472 {
1473 if (expr1 == expr2)
1474 return 1;
1475
1476 if (! expr1 || ! expr2)
1477 return 0;
1478
1479 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1480 return 0;
1481
1482 if (TREE_CODE (expr1) == COMPONENT_REF)
1483 return
1484 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1485 TREE_OPERAND (expr2, 0))
1486 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1487 TREE_OPERAND (expr2, 1));
1488
1489 if (TREE_CODE (expr1) == INDIRECT_REF)
1490 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1491 TREE_OPERAND (expr2, 0));
1492
1493 /* Decls with different pointers can't be equal. */
1494 if (DECL_P (expr1))
1495 return 0;
1496
1497 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1498 have been resolved here. */
1499 }
1500
1501 /* Given REF, a MEM, and T, either the type of X or the expression
1502 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1503 if we are making a new object of this type. BITPOS is nonzero if
1504 there is an offset outstanding on T that will be applied later. */
1505
1506 void
1507 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1508 HOST_WIDE_INT bitpos)
1509 {
1510 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1511 tree expr = MEM_EXPR (ref);
1512 rtx offset = MEM_OFFSET (ref);
1513 rtx size = MEM_SIZE (ref);
1514 unsigned int align = MEM_ALIGN (ref);
1515 HOST_WIDE_INT apply_bitpos = 0;
1516 tree type;
1517
1518 /* It can happen that type_for_mode was given a mode for which there
1519 is no language-level type. In which case it returns NULL, which
1520 we can see here. */
1521 if (t == NULL_TREE)
1522 return;
1523
1524 type = TYPE_P (t) ? t : TREE_TYPE (t);
1525 if (type == error_mark_node)
1526 return;
1527
1528 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1529 wrong answer, as it assumes that DECL_RTL already has the right alias
1530 info. Callers should not set DECL_RTL until after the call to
1531 set_mem_attributes. */
1532 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1533 abort ();
1534
1535 /* Get the alias set from the expression or type (perhaps using a
1536 front-end routine) and use it. */
1537 alias = get_alias_set (t);
1538
1539 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1540 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1541 RTX_UNCHANGING_P (ref)
1542 |= ((lang_hooks.honor_readonly
1543 && (TYPE_READONLY (type) || (t != type && TREE_READONLY (t))))
1544 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1545 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1546 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1547
1548 /* If we are making an object of this type, or if this is a DECL, we know
1549 that it is a scalar if the type is not an aggregate. */
1550 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1551 MEM_SCALAR_P (ref) = 1;
1552
1553 /* We can set the alignment from the type if we are making an object,
1554 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1555 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1556 align = MAX (align, TYPE_ALIGN (type));
1557
1558 /* If the size is known, we can set that. */
1559 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1560 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1561
1562 /* If T is not a type, we may be able to deduce some more information about
1563 the expression. */
1564 if (! TYPE_P (t))
1565 {
1566 maybe_set_unchanging (ref, t);
1567 if (TREE_THIS_VOLATILE (t))
1568 MEM_VOLATILE_P (ref) = 1;
1569
1570 /* Now remove any conversions: they don't change what the underlying
1571 object is. Likewise for SAVE_EXPR. */
1572 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1573 || TREE_CODE (t) == NON_LVALUE_EXPR
1574 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1575 || TREE_CODE (t) == SAVE_EXPR)
1576 t = TREE_OPERAND (t, 0);
1577
1578 /* If this expression can't be addressed (e.g., it contains a reference
1579 to a non-addressable field), show we don't change its alias set. */
1580 if (! can_address_p (t))
1581 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1582
1583 /* If this is a decl, set the attributes of the MEM from it. */
1584 if (DECL_P (t))
1585 {
1586 expr = t;
1587 offset = const0_rtx;
1588 apply_bitpos = bitpos;
1589 size = (DECL_SIZE_UNIT (t)
1590 && host_integerp (DECL_SIZE_UNIT (t), 1)
1591 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1592 align = DECL_ALIGN (t);
1593 }
1594
1595 /* If this is a constant, we know the alignment. */
1596 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1597 {
1598 align = TYPE_ALIGN (type);
1599 #ifdef CONSTANT_ALIGNMENT
1600 align = CONSTANT_ALIGNMENT (t, align);
1601 #endif
1602 }
1603
1604 /* If this is a field reference and not a bit-field, record it. */
1605 /* ??? There is some information that can be gleened from bit-fields,
1606 such as the word offset in the structure that might be modified.
1607 But skip it for now. */
1608 else if (TREE_CODE (t) == COMPONENT_REF
1609 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1610 {
1611 expr = component_ref_for_mem_expr (t);
1612 offset = const0_rtx;
1613 apply_bitpos = bitpos;
1614 /* ??? Any reason the field size would be different than
1615 the size we got from the type? */
1616 }
1617
1618 /* If this is an array reference, look for an outer field reference. */
1619 else if (TREE_CODE (t) == ARRAY_REF)
1620 {
1621 tree off_tree = size_zero_node;
1622 /* We can't modify t, because we use it at the end of the
1623 function. */
1624 tree t2 = t;
1625
1626 do
1627 {
1628 tree index = TREE_OPERAND (t2, 1);
1629 tree low_bound = array_ref_low_bound (t2);
1630 tree unit_size = array_ref_element_size (t2);
1631
1632 /* We assume all arrays have sizes that are a multiple of a byte.
1633 First subtract the lower bound, if any, in the type of the
1634 index, then convert to sizetype and multiply by the size of
1635 the array element. */
1636 if (! integer_zerop (low_bound))
1637 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1638 index, low_bound));
1639
1640 off_tree = size_binop (PLUS_EXPR,
1641 size_binop (MULT_EXPR, convert (sizetype,
1642 index),
1643 unit_size),
1644 off_tree);
1645 t2 = TREE_OPERAND (t2, 0);
1646 }
1647 while (TREE_CODE (t2) == ARRAY_REF);
1648
1649 if (DECL_P (t2))
1650 {
1651 expr = t2;
1652 offset = NULL;
1653 if (host_integerp (off_tree, 1))
1654 {
1655 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1656 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1657 align = DECL_ALIGN (t2);
1658 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1659 align = aoff;
1660 offset = GEN_INT (ioff);
1661 apply_bitpos = bitpos;
1662 }
1663 }
1664 else if (TREE_CODE (t2) == COMPONENT_REF)
1665 {
1666 expr = component_ref_for_mem_expr (t2);
1667 if (host_integerp (off_tree, 1))
1668 {
1669 offset = GEN_INT (tree_low_cst (off_tree, 1));
1670 apply_bitpos = bitpos;
1671 }
1672 /* ??? Any reason the field size would be different than
1673 the size we got from the type? */
1674 }
1675 else if (flag_argument_noalias > 1
1676 && TREE_CODE (t2) == INDIRECT_REF
1677 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1678 {
1679 expr = t2;
1680 offset = NULL;
1681 }
1682 }
1683
1684 /* If this is a Fortran indirect argument reference, record the
1685 parameter decl. */
1686 else if (flag_argument_noalias > 1
1687 && TREE_CODE (t) == INDIRECT_REF
1688 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1689 {
1690 expr = t;
1691 offset = NULL;
1692 }
1693 }
1694
1695 /* If we modified OFFSET based on T, then subtract the outstanding
1696 bit position offset. Similarly, increase the size of the accessed
1697 object to contain the negative offset. */
1698 if (apply_bitpos)
1699 {
1700 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1701 if (size)
1702 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1703 }
1704
1705 /* Now set the attributes we computed above. */
1706 MEM_ATTRS (ref)
1707 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1708
1709 /* If this is already known to be a scalar or aggregate, we are done. */
1710 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1711 return;
1712
1713 /* If it is a reference into an aggregate, this is part of an aggregate.
1714 Otherwise we don't know. */
1715 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1716 || TREE_CODE (t) == ARRAY_RANGE_REF
1717 || TREE_CODE (t) == BIT_FIELD_REF)
1718 MEM_IN_STRUCT_P (ref) = 1;
1719 }
1720
1721 void
1722 set_mem_attributes (rtx ref, tree t, int objectp)
1723 {
1724 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1725 }
1726
1727 /* Set the decl for MEM to DECL. */
1728
1729 void
1730 set_mem_attrs_from_reg (rtx mem, rtx reg)
1731 {
1732 MEM_ATTRS (mem)
1733 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1734 GEN_INT (REG_OFFSET (reg)),
1735 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1736 }
1737
1738 /* Set the alias set of MEM to SET. */
1739
1740 void
1741 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1742 {
1743 #ifdef ENABLE_CHECKING
1744 /* If the new and old alias sets don't conflict, something is wrong. */
1745 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1746 abort ();
1747 #endif
1748
1749 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1750 MEM_SIZE (mem), MEM_ALIGN (mem),
1751 GET_MODE (mem));
1752 }
1753
1754 /* Set the alignment of MEM to ALIGN bits. */
1755
1756 void
1757 set_mem_align (rtx mem, unsigned int align)
1758 {
1759 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1760 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1761 GET_MODE (mem));
1762 }
1763
1764 /* Set the expr for MEM to EXPR. */
1765
1766 void
1767 set_mem_expr (rtx mem, tree expr)
1768 {
1769 MEM_ATTRS (mem)
1770 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1771 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1772 }
1773
1774 /* Set the offset of MEM to OFFSET. */
1775
1776 void
1777 set_mem_offset (rtx mem, rtx offset)
1778 {
1779 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1780 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1781 GET_MODE (mem));
1782 }
1783
1784 /* Set the size of MEM to SIZE. */
1785
1786 void
1787 set_mem_size (rtx mem, rtx size)
1788 {
1789 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1790 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1791 GET_MODE (mem));
1792 }
1793 \f
1794 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1795 and its address changed to ADDR. (VOIDmode means don't change the mode.
1796 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1797 returned memory location is required to be valid. The memory
1798 attributes are not changed. */
1799
1800 static rtx
1801 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1802 {
1803 rtx new;
1804
1805 if (!MEM_P (memref))
1806 abort ();
1807 if (mode == VOIDmode)
1808 mode = GET_MODE (memref);
1809 if (addr == 0)
1810 addr = XEXP (memref, 0);
1811 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1812 && (!validate || memory_address_p (mode, addr)))
1813 return memref;
1814
1815 if (validate)
1816 {
1817 if (reload_in_progress || reload_completed)
1818 {
1819 if (! memory_address_p (mode, addr))
1820 abort ();
1821 }
1822 else
1823 addr = memory_address (mode, addr);
1824 }
1825
1826 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1827 return memref;
1828
1829 new = gen_rtx_MEM (mode, addr);
1830 MEM_COPY_ATTRIBUTES (new, memref);
1831 return new;
1832 }
1833
1834 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1835 way we are changing MEMREF, so we only preserve the alias set. */
1836
1837 rtx
1838 change_address (rtx memref, enum machine_mode mode, rtx addr)
1839 {
1840 rtx new = change_address_1 (memref, mode, addr, 1), size;
1841 enum machine_mode mmode = GET_MODE (new);
1842 unsigned int align;
1843
1844 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1845 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1846
1847 /* If there are no changes, just return the original memory reference. */
1848 if (new == memref)
1849 {
1850 if (MEM_ATTRS (memref) == 0
1851 || (MEM_EXPR (memref) == NULL
1852 && MEM_OFFSET (memref) == NULL
1853 && MEM_SIZE (memref) == size
1854 && MEM_ALIGN (memref) == align))
1855 return new;
1856
1857 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1858 MEM_COPY_ATTRIBUTES (new, memref);
1859 }
1860
1861 MEM_ATTRS (new)
1862 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1863
1864 return new;
1865 }
1866
1867 /* Return a memory reference like MEMREF, but with its mode changed
1868 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1869 nonzero, the memory address is forced to be valid.
1870 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1871 and caller is responsible for adjusting MEMREF base register. */
1872
1873 rtx
1874 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1875 int validate, int adjust)
1876 {
1877 rtx addr = XEXP (memref, 0);
1878 rtx new;
1879 rtx memoffset = MEM_OFFSET (memref);
1880 rtx size = 0;
1881 unsigned int memalign = MEM_ALIGN (memref);
1882
1883 /* If there are no changes, just return the original memory reference. */
1884 if (mode == GET_MODE (memref) && !offset
1885 && (!validate || memory_address_p (mode, addr)))
1886 return memref;
1887
1888 /* ??? Prefer to create garbage instead of creating shared rtl.
1889 This may happen even if offset is nonzero -- consider
1890 (plus (plus reg reg) const_int) -- so do this always. */
1891 addr = copy_rtx (addr);
1892
1893 if (adjust)
1894 {
1895 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1896 object, we can merge it into the LO_SUM. */
1897 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1898 && offset >= 0
1899 && (unsigned HOST_WIDE_INT) offset
1900 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1901 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1902 plus_constant (XEXP (addr, 1), offset));
1903 else
1904 addr = plus_constant (addr, offset);
1905 }
1906
1907 new = change_address_1 (memref, mode, addr, validate);
1908
1909 /* Compute the new values of the memory attributes due to this adjustment.
1910 We add the offsets and update the alignment. */
1911 if (memoffset)
1912 memoffset = GEN_INT (offset + INTVAL (memoffset));
1913
1914 /* Compute the new alignment by taking the MIN of the alignment and the
1915 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1916 if zero. */
1917 if (offset != 0)
1918 memalign
1919 = MIN (memalign,
1920 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1921
1922 /* We can compute the size in a number of ways. */
1923 if (GET_MODE (new) != BLKmode)
1924 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1925 else if (MEM_SIZE (memref))
1926 size = plus_constant (MEM_SIZE (memref), -offset);
1927
1928 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1929 memoffset, size, memalign, GET_MODE (new));
1930
1931 /* At some point, we should validate that this offset is within the object,
1932 if all the appropriate values are known. */
1933 return new;
1934 }
1935
1936 /* Return a memory reference like MEMREF, but with its mode changed
1937 to MODE and its address changed to ADDR, which is assumed to be
1938 MEMREF offseted by OFFSET bytes. If VALIDATE is
1939 nonzero, the memory address is forced to be valid. */
1940
1941 rtx
1942 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1943 HOST_WIDE_INT offset, int validate)
1944 {
1945 memref = change_address_1 (memref, VOIDmode, addr, validate);
1946 return adjust_address_1 (memref, mode, offset, validate, 0);
1947 }
1948
1949 /* Return a memory reference like MEMREF, but whose address is changed by
1950 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1951 known to be in OFFSET (possibly 1). */
1952
1953 rtx
1954 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1955 {
1956 rtx new, addr = XEXP (memref, 0);
1957
1958 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1959
1960 /* At this point we don't know _why_ the address is invalid. It
1961 could have secondary memory references, multiplies or anything.
1962
1963 However, if we did go and rearrange things, we can wind up not
1964 being able to recognize the magic around pic_offset_table_rtx.
1965 This stuff is fragile, and is yet another example of why it is
1966 bad to expose PIC machinery too early. */
1967 if (! memory_address_p (GET_MODE (memref), new)
1968 && GET_CODE (addr) == PLUS
1969 && XEXP (addr, 0) == pic_offset_table_rtx)
1970 {
1971 addr = force_reg (GET_MODE (addr), addr);
1972 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1973 }
1974
1975 update_temp_slot_address (XEXP (memref, 0), new);
1976 new = change_address_1 (memref, VOIDmode, new, 1);
1977
1978 /* If there are no changes, just return the original memory reference. */
1979 if (new == memref)
1980 return new;
1981
1982 /* Update the alignment to reflect the offset. Reset the offset, which
1983 we don't know. */
1984 MEM_ATTRS (new)
1985 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1986 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1987 GET_MODE (new));
1988 return new;
1989 }
1990
1991 /* Return a memory reference like MEMREF, but with its address changed to
1992 ADDR. The caller is asserting that the actual piece of memory pointed
1993 to is the same, just the form of the address is being changed, such as
1994 by putting something into a register. */
1995
1996 rtx
1997 replace_equiv_address (rtx memref, rtx addr)
1998 {
1999 /* change_address_1 copies the memory attribute structure without change
2000 and that's exactly what we want here. */
2001 update_temp_slot_address (XEXP (memref, 0), addr);
2002 return change_address_1 (memref, VOIDmode, addr, 1);
2003 }
2004
2005 /* Likewise, but the reference is not required to be valid. */
2006
2007 rtx
2008 replace_equiv_address_nv (rtx memref, rtx addr)
2009 {
2010 return change_address_1 (memref, VOIDmode, addr, 0);
2011 }
2012
2013 /* Return a memory reference like MEMREF, but with its mode widened to
2014 MODE and offset by OFFSET. This would be used by targets that e.g.
2015 cannot issue QImode memory operations and have to use SImode memory
2016 operations plus masking logic. */
2017
2018 rtx
2019 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2020 {
2021 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2022 tree expr = MEM_EXPR (new);
2023 rtx memoffset = MEM_OFFSET (new);
2024 unsigned int size = GET_MODE_SIZE (mode);
2025
2026 /* If there are no changes, just return the original memory reference. */
2027 if (new == memref)
2028 return new;
2029
2030 /* If we don't know what offset we were at within the expression, then
2031 we can't know if we've overstepped the bounds. */
2032 if (! memoffset)
2033 expr = NULL_TREE;
2034
2035 while (expr)
2036 {
2037 if (TREE_CODE (expr) == COMPONENT_REF)
2038 {
2039 tree field = TREE_OPERAND (expr, 1);
2040 tree offset = component_ref_field_offset (expr);
2041
2042 if (! DECL_SIZE_UNIT (field))
2043 {
2044 expr = NULL_TREE;
2045 break;
2046 }
2047
2048 /* Is the field at least as large as the access? If so, ok,
2049 otherwise strip back to the containing structure. */
2050 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2051 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2052 && INTVAL (memoffset) >= 0)
2053 break;
2054
2055 if (! host_integerp (offset, 1))
2056 {
2057 expr = NULL_TREE;
2058 break;
2059 }
2060
2061 expr = TREE_OPERAND (expr, 0);
2062 memoffset
2063 = (GEN_INT (INTVAL (memoffset)
2064 + tree_low_cst (offset, 1)
2065 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2066 / BITS_PER_UNIT)));
2067 }
2068 /* Similarly for the decl. */
2069 else if (DECL_P (expr)
2070 && DECL_SIZE_UNIT (expr)
2071 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2072 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2073 && (! memoffset || INTVAL (memoffset) >= 0))
2074 break;
2075 else
2076 {
2077 /* The widened memory access overflows the expression, which means
2078 that it could alias another expression. Zap it. */
2079 expr = NULL_TREE;
2080 break;
2081 }
2082 }
2083
2084 if (! expr)
2085 memoffset = NULL_RTX;
2086
2087 /* The widened memory may alias other stuff, so zap the alias set. */
2088 /* ??? Maybe use get_alias_set on any remaining expression. */
2089
2090 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2091 MEM_ALIGN (new), mode);
2092
2093 return new;
2094 }
2095 \f
2096 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2097
2098 rtx
2099 gen_label_rtx (void)
2100 {
2101 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2102 NULL, label_num++, NULL);
2103 }
2104 \f
2105 /* For procedure integration. */
2106
2107 /* Install new pointers to the first and last insns in the chain.
2108 Also, set cur_insn_uid to one higher than the last in use.
2109 Used for an inline-procedure after copying the insn chain. */
2110
2111 void
2112 set_new_first_and_last_insn (rtx first, rtx last)
2113 {
2114 rtx insn;
2115
2116 first_insn = first;
2117 last_insn = last;
2118 cur_insn_uid = 0;
2119
2120 for (insn = first; insn; insn = NEXT_INSN (insn))
2121 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2122
2123 cur_insn_uid++;
2124 }
2125
2126 /* Set the last label number found in the current function.
2127 This is used when belatedly compiling an inline function. */
2128
2129 void
2130 set_new_last_label_num (int last)
2131 {
2132 base_label_num = label_num;
2133 last_label_num = last;
2134 }
2135 \f
2136 /* Restore all variables describing the current status from the structure *P.
2137 This is used after a nested function. */
2138
2139 void
2140 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2141 {
2142 last_label_num = 0;
2143 }
2144 \f
2145 /* Go through all the RTL insn bodies and copy any invalid shared
2146 structure. This routine should only be called once. */
2147
2148 static void
2149 unshare_all_rtl_1 (tree fndecl, rtx insn)
2150 {
2151 tree decl;
2152
2153 /* Make sure that virtual parameters are not shared. */
2154 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2155 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2156
2157 /* Make sure that virtual stack slots are not shared. */
2158 unshare_all_decls (DECL_INITIAL (fndecl));
2159
2160 /* Unshare just about everything else. */
2161 unshare_all_rtl_in_chain (insn);
2162
2163 /* Make sure the addresses of stack slots found outside the insn chain
2164 (such as, in DECL_RTL of a variable) are not shared
2165 with the insn chain.
2166
2167 This special care is necessary when the stack slot MEM does not
2168 actually appear in the insn chain. If it does appear, its address
2169 is unshared from all else at that point. */
2170 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2171 }
2172
2173 /* Go through all the RTL insn bodies and copy any invalid shared
2174 structure, again. This is a fairly expensive thing to do so it
2175 should be done sparingly. */
2176
2177 void
2178 unshare_all_rtl_again (rtx insn)
2179 {
2180 rtx p;
2181 tree decl;
2182
2183 for (p = insn; p; p = NEXT_INSN (p))
2184 if (INSN_P (p))
2185 {
2186 reset_used_flags (PATTERN (p));
2187 reset_used_flags (REG_NOTES (p));
2188 reset_used_flags (LOG_LINKS (p));
2189 }
2190
2191 /* Make sure that virtual stack slots are not shared. */
2192 reset_used_decls (DECL_INITIAL (cfun->decl));
2193
2194 /* Make sure that virtual parameters are not shared. */
2195 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2196 reset_used_flags (DECL_RTL (decl));
2197
2198 reset_used_flags (stack_slot_list);
2199
2200 unshare_all_rtl_1 (cfun->decl, insn);
2201 }
2202
2203 void
2204 unshare_all_rtl (void)
2205 {
2206 unshare_all_rtl_1 (current_function_decl, get_insns ());
2207 }
2208
2209 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2210 Recursively does the same for subexpressions. */
2211
2212 static void
2213 verify_rtx_sharing (rtx orig, rtx insn)
2214 {
2215 rtx x = orig;
2216 int i;
2217 enum rtx_code code;
2218 const char *format_ptr;
2219
2220 if (x == 0)
2221 return;
2222
2223 code = GET_CODE (x);
2224
2225 /* These types may be freely shared. */
2226
2227 switch (code)
2228 {
2229 case REG:
2230 case CONST_INT:
2231 case CONST_DOUBLE:
2232 case CONST_VECTOR:
2233 case SYMBOL_REF:
2234 case LABEL_REF:
2235 case CODE_LABEL:
2236 case PC:
2237 case CC0:
2238 case SCRATCH:
2239 return;
2240 /* SCRATCH must be shared because they represent distinct values. */
2241 case CLOBBER:
2242 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2243 return;
2244 break;
2245
2246 case CONST:
2247 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2248 a LABEL_REF, it isn't sharable. */
2249 if (GET_CODE (XEXP (x, 0)) == PLUS
2250 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2251 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2252 return;
2253 break;
2254
2255 case MEM:
2256 /* A MEM is allowed to be shared if its address is constant. */
2257 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2258 || reload_completed || reload_in_progress)
2259 return;
2260
2261 break;
2262
2263 default:
2264 break;
2265 }
2266
2267 /* This rtx may not be shared. If it has already been seen,
2268 replace it with a copy of itself. */
2269
2270 if (RTX_FLAG (x, used))
2271 {
2272 error ("Invalid rtl sharing found in the insn");
2273 debug_rtx (insn);
2274 error ("Shared rtx");
2275 debug_rtx (x);
2276 abort ();
2277 }
2278 RTX_FLAG (x, used) = 1;
2279
2280 /* Now scan the subexpressions recursively. */
2281
2282 format_ptr = GET_RTX_FORMAT (code);
2283
2284 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2285 {
2286 switch (*format_ptr++)
2287 {
2288 case 'e':
2289 verify_rtx_sharing (XEXP (x, i), insn);
2290 break;
2291
2292 case 'E':
2293 if (XVEC (x, i) != NULL)
2294 {
2295 int j;
2296 int len = XVECLEN (x, i);
2297
2298 for (j = 0; j < len; j++)
2299 {
2300 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2301 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2302 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2303 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2304 else
2305 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2306 }
2307 }
2308 break;
2309 }
2310 }
2311 return;
2312 }
2313
2314 /* Go through all the RTL insn bodies and check that there is no unexpected
2315 sharing in between the subexpressions. */
2316
2317 void
2318 verify_rtl_sharing (void)
2319 {
2320 rtx p;
2321
2322 for (p = get_insns (); p; p = NEXT_INSN (p))
2323 if (INSN_P (p))
2324 {
2325 reset_used_flags (PATTERN (p));
2326 reset_used_flags (REG_NOTES (p));
2327 reset_used_flags (LOG_LINKS (p));
2328 }
2329
2330 for (p = get_insns (); p; p = NEXT_INSN (p))
2331 if (INSN_P (p))
2332 {
2333 verify_rtx_sharing (PATTERN (p), p);
2334 verify_rtx_sharing (REG_NOTES (p), p);
2335 verify_rtx_sharing (LOG_LINKS (p), p);
2336 }
2337 }
2338
2339 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2340 Assumes the mark bits are cleared at entry. */
2341
2342 void
2343 unshare_all_rtl_in_chain (rtx insn)
2344 {
2345 for (; insn; insn = NEXT_INSN (insn))
2346 if (INSN_P (insn))
2347 {
2348 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2349 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2350 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2351 }
2352 }
2353
2354 /* Go through all virtual stack slots of a function and copy any
2355 shared structure. */
2356 static void
2357 unshare_all_decls (tree blk)
2358 {
2359 tree t;
2360
2361 /* Copy shared decls. */
2362 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2363 if (DECL_RTL_SET_P (t))
2364 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2365
2366 /* Now process sub-blocks. */
2367 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2368 unshare_all_decls (t);
2369 }
2370
2371 /* Go through all virtual stack slots of a function and mark them as
2372 not shared. */
2373 static void
2374 reset_used_decls (tree blk)
2375 {
2376 tree t;
2377
2378 /* Mark decls. */
2379 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2380 if (DECL_RTL_SET_P (t))
2381 reset_used_flags (DECL_RTL (t));
2382
2383 /* Now process sub-blocks. */
2384 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2385 reset_used_decls (t);
2386 }
2387
2388 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2389 placed in the result directly, rather than being copied. MAY_SHARE is
2390 either a MEM of an EXPR_LIST of MEMs. */
2391
2392 rtx
2393 copy_most_rtx (rtx orig, rtx may_share)
2394 {
2395 rtx copy;
2396 int i, j;
2397 RTX_CODE code;
2398 const char *format_ptr;
2399
2400 if (orig == may_share
2401 || (GET_CODE (may_share) == EXPR_LIST
2402 && in_expr_list_p (may_share, orig)))
2403 return orig;
2404
2405 code = GET_CODE (orig);
2406
2407 switch (code)
2408 {
2409 case REG:
2410 case CONST_INT:
2411 case CONST_DOUBLE:
2412 case CONST_VECTOR:
2413 case SYMBOL_REF:
2414 case CODE_LABEL:
2415 case PC:
2416 case CC0:
2417 return orig;
2418 default:
2419 break;
2420 }
2421
2422 copy = rtx_alloc (code);
2423 PUT_MODE (copy, GET_MODE (orig));
2424 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2425 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2426 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2427 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2428 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2429
2430 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2431
2432 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2433 {
2434 switch (*format_ptr++)
2435 {
2436 case 'e':
2437 XEXP (copy, i) = XEXP (orig, i);
2438 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2439 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2440 break;
2441
2442 case 'u':
2443 XEXP (copy, i) = XEXP (orig, i);
2444 break;
2445
2446 case 'E':
2447 case 'V':
2448 XVEC (copy, i) = XVEC (orig, i);
2449 if (XVEC (orig, i) != NULL)
2450 {
2451 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2452 for (j = 0; j < XVECLEN (copy, i); j++)
2453 XVECEXP (copy, i, j)
2454 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2455 }
2456 break;
2457
2458 case 'w':
2459 XWINT (copy, i) = XWINT (orig, i);
2460 break;
2461
2462 case 'n':
2463 case 'i':
2464 XINT (copy, i) = XINT (orig, i);
2465 break;
2466
2467 case 't':
2468 XTREE (copy, i) = XTREE (orig, i);
2469 break;
2470
2471 case 's':
2472 case 'S':
2473 XSTR (copy, i) = XSTR (orig, i);
2474 break;
2475
2476 case '0':
2477 X0ANY (copy, i) = X0ANY (orig, i);
2478 break;
2479
2480 default:
2481 abort ();
2482 }
2483 }
2484 return copy;
2485 }
2486
2487 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2488 Recursively does the same for subexpressions. Uses
2489 copy_rtx_if_shared_1 to reduce stack space. */
2490
2491 rtx
2492 copy_rtx_if_shared (rtx orig)
2493 {
2494 copy_rtx_if_shared_1 (&orig);
2495 return orig;
2496 }
2497
2498 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2499 use. Recursively does the same for subexpressions. */
2500
2501 static void
2502 copy_rtx_if_shared_1 (rtx *orig1)
2503 {
2504 rtx x;
2505 int i;
2506 enum rtx_code code;
2507 rtx *last_ptr;
2508 const char *format_ptr;
2509 int copied = 0;
2510 int length;
2511
2512 /* Repeat is used to turn tail-recursion into iteration. */
2513 repeat:
2514 x = *orig1;
2515
2516 if (x == 0)
2517 return;
2518
2519 code = GET_CODE (x);
2520
2521 /* These types may be freely shared. */
2522
2523 switch (code)
2524 {
2525 case REG:
2526 case CONST_INT:
2527 case CONST_DOUBLE:
2528 case CONST_VECTOR:
2529 case SYMBOL_REF:
2530 case LABEL_REF:
2531 case CODE_LABEL:
2532 case PC:
2533 case CC0:
2534 case SCRATCH:
2535 /* SCRATCH must be shared because they represent distinct values. */
2536 return;
2537 case CLOBBER:
2538 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2539 return;
2540 break;
2541
2542 case CONST:
2543 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2544 a LABEL_REF, it isn't sharable. */
2545 if (GET_CODE (XEXP (x, 0)) == PLUS
2546 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2547 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2548 return;
2549 break;
2550
2551 case INSN:
2552 case JUMP_INSN:
2553 case CALL_INSN:
2554 case NOTE:
2555 case BARRIER:
2556 /* The chain of insns is not being copied. */
2557 return;
2558
2559 default:
2560 break;
2561 }
2562
2563 /* This rtx may not be shared. If it has already been seen,
2564 replace it with a copy of itself. */
2565
2566 if (RTX_FLAG (x, used))
2567 {
2568 rtx copy;
2569
2570 copy = rtx_alloc (code);
2571 memcpy (copy, x, RTX_SIZE (code));
2572 x = copy;
2573 copied = 1;
2574 }
2575 RTX_FLAG (x, used) = 1;
2576
2577 /* Now scan the subexpressions recursively.
2578 We can store any replaced subexpressions directly into X
2579 since we know X is not shared! Any vectors in X
2580 must be copied if X was copied. */
2581
2582 format_ptr = GET_RTX_FORMAT (code);
2583 length = GET_RTX_LENGTH (code);
2584 last_ptr = NULL;
2585
2586 for (i = 0; i < length; i++)
2587 {
2588 switch (*format_ptr++)
2589 {
2590 case 'e':
2591 if (last_ptr)
2592 copy_rtx_if_shared_1 (last_ptr);
2593 last_ptr = &XEXP (x, i);
2594 break;
2595
2596 case 'E':
2597 if (XVEC (x, i) != NULL)
2598 {
2599 int j;
2600 int len = XVECLEN (x, i);
2601
2602 /* Copy the vector iff I copied the rtx and the length
2603 is nonzero. */
2604 if (copied && len > 0)
2605 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2606
2607 /* Call recursively on all inside the vector. */
2608 for (j = 0; j < len; j++)
2609 {
2610 if (last_ptr)
2611 copy_rtx_if_shared_1 (last_ptr);
2612 last_ptr = &XVECEXP (x, i, j);
2613 }
2614 }
2615 break;
2616 }
2617 }
2618 *orig1 = x;
2619 if (last_ptr)
2620 {
2621 orig1 = last_ptr;
2622 goto repeat;
2623 }
2624 return;
2625 }
2626
2627 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2628 to look for shared sub-parts. */
2629
2630 void
2631 reset_used_flags (rtx x)
2632 {
2633 int i, j;
2634 enum rtx_code code;
2635 const char *format_ptr;
2636 int length;
2637
2638 /* Repeat is used to turn tail-recursion into iteration. */
2639 repeat:
2640 if (x == 0)
2641 return;
2642
2643 code = GET_CODE (x);
2644
2645 /* These types may be freely shared so we needn't do any resetting
2646 for them. */
2647
2648 switch (code)
2649 {
2650 case REG:
2651 case CONST_INT:
2652 case CONST_DOUBLE:
2653 case CONST_VECTOR:
2654 case SYMBOL_REF:
2655 case CODE_LABEL:
2656 case PC:
2657 case CC0:
2658 return;
2659
2660 case INSN:
2661 case JUMP_INSN:
2662 case CALL_INSN:
2663 case NOTE:
2664 case LABEL_REF:
2665 case BARRIER:
2666 /* The chain of insns is not being copied. */
2667 return;
2668
2669 default:
2670 break;
2671 }
2672
2673 RTX_FLAG (x, used) = 0;
2674
2675 format_ptr = GET_RTX_FORMAT (code);
2676 length = GET_RTX_LENGTH (code);
2677
2678 for (i = 0; i < length; i++)
2679 {
2680 switch (*format_ptr++)
2681 {
2682 case 'e':
2683 if (i == length-1)
2684 {
2685 x = XEXP (x, i);
2686 goto repeat;
2687 }
2688 reset_used_flags (XEXP (x, i));
2689 break;
2690
2691 case 'E':
2692 for (j = 0; j < XVECLEN (x, i); j++)
2693 reset_used_flags (XVECEXP (x, i, j));
2694 break;
2695 }
2696 }
2697 }
2698
2699 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2700 to look for shared sub-parts. */
2701
2702 void
2703 set_used_flags (rtx x)
2704 {
2705 int i, j;
2706 enum rtx_code code;
2707 const char *format_ptr;
2708
2709 if (x == 0)
2710 return;
2711
2712 code = GET_CODE (x);
2713
2714 /* These types may be freely shared so we needn't do any resetting
2715 for them. */
2716
2717 switch (code)
2718 {
2719 case REG:
2720 case CONST_INT:
2721 case CONST_DOUBLE:
2722 case CONST_VECTOR:
2723 case SYMBOL_REF:
2724 case CODE_LABEL:
2725 case PC:
2726 case CC0:
2727 return;
2728
2729 case INSN:
2730 case JUMP_INSN:
2731 case CALL_INSN:
2732 case NOTE:
2733 case LABEL_REF:
2734 case BARRIER:
2735 /* The chain of insns is not being copied. */
2736 return;
2737
2738 default:
2739 break;
2740 }
2741
2742 RTX_FLAG (x, used) = 1;
2743
2744 format_ptr = GET_RTX_FORMAT (code);
2745 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2746 {
2747 switch (*format_ptr++)
2748 {
2749 case 'e':
2750 set_used_flags (XEXP (x, i));
2751 break;
2752
2753 case 'E':
2754 for (j = 0; j < XVECLEN (x, i); j++)
2755 set_used_flags (XVECEXP (x, i, j));
2756 break;
2757 }
2758 }
2759 }
2760 \f
2761 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2762 Return X or the rtx for the pseudo reg the value of X was copied into.
2763 OTHER must be valid as a SET_DEST. */
2764
2765 rtx
2766 make_safe_from (rtx x, rtx other)
2767 {
2768 while (1)
2769 switch (GET_CODE (other))
2770 {
2771 case SUBREG:
2772 other = SUBREG_REG (other);
2773 break;
2774 case STRICT_LOW_PART:
2775 case SIGN_EXTEND:
2776 case ZERO_EXTEND:
2777 other = XEXP (other, 0);
2778 break;
2779 default:
2780 goto done;
2781 }
2782 done:
2783 if ((MEM_P (other)
2784 && ! CONSTANT_P (x)
2785 && !REG_P (x)
2786 && GET_CODE (x) != SUBREG)
2787 || (REG_P (other)
2788 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2789 || reg_mentioned_p (other, x))))
2790 {
2791 rtx temp = gen_reg_rtx (GET_MODE (x));
2792 emit_move_insn (temp, x);
2793 return temp;
2794 }
2795 return x;
2796 }
2797 \f
2798 /* Emission of insns (adding them to the doubly-linked list). */
2799
2800 /* Return the first insn of the current sequence or current function. */
2801
2802 rtx
2803 get_insns (void)
2804 {
2805 return first_insn;
2806 }
2807
2808 /* Specify a new insn as the first in the chain. */
2809
2810 void
2811 set_first_insn (rtx insn)
2812 {
2813 if (PREV_INSN (insn) != 0)
2814 abort ();
2815 first_insn = insn;
2816 }
2817
2818 /* Return the last insn emitted in current sequence or current function. */
2819
2820 rtx
2821 get_last_insn (void)
2822 {
2823 return last_insn;
2824 }
2825
2826 /* Specify a new insn as the last in the chain. */
2827
2828 void
2829 set_last_insn (rtx insn)
2830 {
2831 if (NEXT_INSN (insn) != 0)
2832 abort ();
2833 last_insn = insn;
2834 }
2835
2836 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2837
2838 rtx
2839 get_last_insn_anywhere (void)
2840 {
2841 struct sequence_stack *stack;
2842 if (last_insn)
2843 return last_insn;
2844 for (stack = seq_stack; stack; stack = stack->next)
2845 if (stack->last != 0)
2846 return stack->last;
2847 return 0;
2848 }
2849
2850 /* Return the first nonnote insn emitted in current sequence or current
2851 function. This routine looks inside SEQUENCEs. */
2852
2853 rtx
2854 get_first_nonnote_insn (void)
2855 {
2856 rtx insn = first_insn;
2857
2858 while (insn)
2859 {
2860 insn = next_insn (insn);
2861 if (insn == 0 || !NOTE_P (insn))
2862 break;
2863 }
2864
2865 return insn;
2866 }
2867
2868 /* Return the last nonnote insn emitted in current sequence or current
2869 function. This routine looks inside SEQUENCEs. */
2870
2871 rtx
2872 get_last_nonnote_insn (void)
2873 {
2874 rtx insn = last_insn;
2875
2876 while (insn)
2877 {
2878 insn = previous_insn (insn);
2879 if (insn == 0 || !NOTE_P (insn))
2880 break;
2881 }
2882
2883 return insn;
2884 }
2885
2886 /* Return a number larger than any instruction's uid in this function. */
2887
2888 int
2889 get_max_uid (void)
2890 {
2891 return cur_insn_uid;
2892 }
2893
2894 /* Renumber instructions so that no instruction UIDs are wasted. */
2895
2896 void
2897 renumber_insns (FILE *stream)
2898 {
2899 rtx insn;
2900
2901 /* If we're not supposed to renumber instructions, don't. */
2902 if (!flag_renumber_insns)
2903 return;
2904
2905 /* If there aren't that many instructions, then it's not really
2906 worth renumbering them. */
2907 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2908 return;
2909
2910 cur_insn_uid = 1;
2911
2912 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2913 {
2914 if (stream)
2915 fprintf (stream, "Renumbering insn %d to %d\n",
2916 INSN_UID (insn), cur_insn_uid);
2917 INSN_UID (insn) = cur_insn_uid++;
2918 }
2919 }
2920 \f
2921 /* Return the next insn. If it is a SEQUENCE, return the first insn
2922 of the sequence. */
2923
2924 rtx
2925 next_insn (rtx insn)
2926 {
2927 if (insn)
2928 {
2929 insn = NEXT_INSN (insn);
2930 if (insn && NONJUMP_INSN_P (insn)
2931 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2932 insn = XVECEXP (PATTERN (insn), 0, 0);
2933 }
2934
2935 return insn;
2936 }
2937
2938 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2939 of the sequence. */
2940
2941 rtx
2942 previous_insn (rtx insn)
2943 {
2944 if (insn)
2945 {
2946 insn = PREV_INSN (insn);
2947 if (insn && NONJUMP_INSN_P (insn)
2948 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2949 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2950 }
2951
2952 return insn;
2953 }
2954
2955 /* Return the next insn after INSN that is not a NOTE. This routine does not
2956 look inside SEQUENCEs. */
2957
2958 rtx
2959 next_nonnote_insn (rtx insn)
2960 {
2961 while (insn)
2962 {
2963 insn = NEXT_INSN (insn);
2964 if (insn == 0 || !NOTE_P (insn))
2965 break;
2966 }
2967
2968 return insn;
2969 }
2970
2971 /* Return the previous insn before INSN that is not a NOTE. This routine does
2972 not look inside SEQUENCEs. */
2973
2974 rtx
2975 prev_nonnote_insn (rtx insn)
2976 {
2977 while (insn)
2978 {
2979 insn = PREV_INSN (insn);
2980 if (insn == 0 || !NOTE_P (insn))
2981 break;
2982 }
2983
2984 return insn;
2985 }
2986
2987 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2988 or 0, if there is none. This routine does not look inside
2989 SEQUENCEs. */
2990
2991 rtx
2992 next_real_insn (rtx insn)
2993 {
2994 while (insn)
2995 {
2996 insn = NEXT_INSN (insn);
2997 if (insn == 0 || INSN_P (insn))
2998 break;
2999 }
3000
3001 return insn;
3002 }
3003
3004 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3005 or 0, if there is none. This routine does not look inside
3006 SEQUENCEs. */
3007
3008 rtx
3009 prev_real_insn (rtx insn)
3010 {
3011 while (insn)
3012 {
3013 insn = PREV_INSN (insn);
3014 if (insn == 0 || INSN_P (insn))
3015 break;
3016 }
3017
3018 return insn;
3019 }
3020
3021 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3022 This routine does not look inside SEQUENCEs. */
3023
3024 rtx
3025 last_call_insn (void)
3026 {
3027 rtx insn;
3028
3029 for (insn = get_last_insn ();
3030 insn && !CALL_P (insn);
3031 insn = PREV_INSN (insn))
3032 ;
3033
3034 return insn;
3035 }
3036
3037 /* Find the next insn after INSN that really does something. This routine
3038 does not look inside SEQUENCEs. Until reload has completed, this is the
3039 same as next_real_insn. */
3040
3041 int
3042 active_insn_p (rtx insn)
3043 {
3044 return (CALL_P (insn) || JUMP_P (insn)
3045 || (NONJUMP_INSN_P (insn)
3046 && (! reload_completed
3047 || (GET_CODE (PATTERN (insn)) != USE
3048 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3049 }
3050
3051 rtx
3052 next_active_insn (rtx insn)
3053 {
3054 while (insn)
3055 {
3056 insn = NEXT_INSN (insn);
3057 if (insn == 0 || active_insn_p (insn))
3058 break;
3059 }
3060
3061 return insn;
3062 }
3063
3064 /* Find the last insn before INSN that really does something. This routine
3065 does not look inside SEQUENCEs. Until reload has completed, this is the
3066 same as prev_real_insn. */
3067
3068 rtx
3069 prev_active_insn (rtx insn)
3070 {
3071 while (insn)
3072 {
3073 insn = PREV_INSN (insn);
3074 if (insn == 0 || active_insn_p (insn))
3075 break;
3076 }
3077
3078 return insn;
3079 }
3080
3081 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3082
3083 rtx
3084 next_label (rtx insn)
3085 {
3086 while (insn)
3087 {
3088 insn = NEXT_INSN (insn);
3089 if (insn == 0 || LABEL_P (insn))
3090 break;
3091 }
3092
3093 return insn;
3094 }
3095
3096 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3097
3098 rtx
3099 prev_label (rtx insn)
3100 {
3101 while (insn)
3102 {
3103 insn = PREV_INSN (insn);
3104 if (insn == 0 || LABEL_P (insn))
3105 break;
3106 }
3107
3108 return insn;
3109 }
3110
3111 /* Return the last label to mark the same position as LABEL. Return null
3112 if LABEL itself is null. */
3113
3114 rtx
3115 skip_consecutive_labels (rtx label)
3116 {
3117 rtx insn;
3118
3119 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3120 if (LABEL_P (insn))
3121 label = insn;
3122
3123 return label;
3124 }
3125 \f
3126 #ifdef HAVE_cc0
3127 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3128 and REG_CC_USER notes so we can find it. */
3129
3130 void
3131 link_cc0_insns (rtx insn)
3132 {
3133 rtx user = next_nonnote_insn (insn);
3134
3135 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3136 user = XVECEXP (PATTERN (user), 0, 0);
3137
3138 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3139 REG_NOTES (user));
3140 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3141 }
3142
3143 /* Return the next insn that uses CC0 after INSN, which is assumed to
3144 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3145 applied to the result of this function should yield INSN).
3146
3147 Normally, this is simply the next insn. However, if a REG_CC_USER note
3148 is present, it contains the insn that uses CC0.
3149
3150 Return 0 if we can't find the insn. */
3151
3152 rtx
3153 next_cc0_user (rtx insn)
3154 {
3155 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3156
3157 if (note)
3158 return XEXP (note, 0);
3159
3160 insn = next_nonnote_insn (insn);
3161 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3162 insn = XVECEXP (PATTERN (insn), 0, 0);
3163
3164 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3165 return insn;
3166
3167 return 0;
3168 }
3169
3170 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3171 note, it is the previous insn. */
3172
3173 rtx
3174 prev_cc0_setter (rtx insn)
3175 {
3176 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3177
3178 if (note)
3179 return XEXP (note, 0);
3180
3181 insn = prev_nonnote_insn (insn);
3182 if (! sets_cc0_p (PATTERN (insn)))
3183 abort ();
3184
3185 return insn;
3186 }
3187 #endif
3188
3189 /* Increment the label uses for all labels present in rtx. */
3190
3191 static void
3192 mark_label_nuses (rtx x)
3193 {
3194 enum rtx_code code;
3195 int i, j;
3196 const char *fmt;
3197
3198 code = GET_CODE (x);
3199 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3200 LABEL_NUSES (XEXP (x, 0))++;
3201
3202 fmt = GET_RTX_FORMAT (code);
3203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3204 {
3205 if (fmt[i] == 'e')
3206 mark_label_nuses (XEXP (x, i));
3207 else if (fmt[i] == 'E')
3208 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3209 mark_label_nuses (XVECEXP (x, i, j));
3210 }
3211 }
3212
3213 \f
3214 /* Try splitting insns that can be split for better scheduling.
3215 PAT is the pattern which might split.
3216 TRIAL is the insn providing PAT.
3217 LAST is nonzero if we should return the last insn of the sequence produced.
3218
3219 If this routine succeeds in splitting, it returns the first or last
3220 replacement insn depending on the value of LAST. Otherwise, it
3221 returns TRIAL. If the insn to be returned can be split, it will be. */
3222
3223 rtx
3224 try_split (rtx pat, rtx trial, int last)
3225 {
3226 rtx before = PREV_INSN (trial);
3227 rtx after = NEXT_INSN (trial);
3228 int has_barrier = 0;
3229 rtx tem;
3230 rtx note, seq;
3231 int probability;
3232 rtx insn_last, insn;
3233 int njumps = 0;
3234
3235 if (any_condjump_p (trial)
3236 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3237 split_branch_probability = INTVAL (XEXP (note, 0));
3238 probability = split_branch_probability;
3239
3240 seq = split_insns (pat, trial);
3241
3242 split_branch_probability = -1;
3243
3244 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3245 We may need to handle this specially. */
3246 if (after && BARRIER_P (after))
3247 {
3248 has_barrier = 1;
3249 after = NEXT_INSN (after);
3250 }
3251
3252 if (!seq)
3253 return trial;
3254
3255 /* Avoid infinite loop if any insn of the result matches
3256 the original pattern. */
3257 insn_last = seq;
3258 while (1)
3259 {
3260 if (INSN_P (insn_last)
3261 && rtx_equal_p (PATTERN (insn_last), pat))
3262 return trial;
3263 if (!NEXT_INSN (insn_last))
3264 break;
3265 insn_last = NEXT_INSN (insn_last);
3266 }
3267
3268 /* Mark labels. */
3269 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3270 {
3271 if (JUMP_P (insn))
3272 {
3273 mark_jump_label (PATTERN (insn), insn, 0);
3274 njumps++;
3275 if (probability != -1
3276 && any_condjump_p (insn)
3277 && !find_reg_note (insn, REG_BR_PROB, 0))
3278 {
3279 /* We can preserve the REG_BR_PROB notes only if exactly
3280 one jump is created, otherwise the machine description
3281 is responsible for this step using
3282 split_branch_probability variable. */
3283 if (njumps != 1)
3284 abort ();
3285 REG_NOTES (insn)
3286 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3287 GEN_INT (probability),
3288 REG_NOTES (insn));
3289 }
3290 }
3291 }
3292
3293 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3294 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3295 if (CALL_P (trial))
3296 {
3297 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3298 if (CALL_P (insn))
3299 {
3300 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3301 while (*p)
3302 p = &XEXP (*p, 1);
3303 *p = CALL_INSN_FUNCTION_USAGE (trial);
3304 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3305 }
3306 }
3307
3308 /* Copy notes, particularly those related to the CFG. */
3309 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3310 {
3311 switch (REG_NOTE_KIND (note))
3312 {
3313 case REG_EH_REGION:
3314 insn = insn_last;
3315 while (insn != NULL_RTX)
3316 {
3317 if (CALL_P (insn)
3318 || (flag_non_call_exceptions
3319 && may_trap_p (PATTERN (insn))))
3320 REG_NOTES (insn)
3321 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3322 XEXP (note, 0),
3323 REG_NOTES (insn));
3324 insn = PREV_INSN (insn);
3325 }
3326 break;
3327
3328 case REG_NORETURN:
3329 case REG_SETJMP:
3330 case REG_ALWAYS_RETURN:
3331 insn = insn_last;
3332 while (insn != NULL_RTX)
3333 {
3334 if (CALL_P (insn))
3335 REG_NOTES (insn)
3336 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3337 XEXP (note, 0),
3338 REG_NOTES (insn));
3339 insn = PREV_INSN (insn);
3340 }
3341 break;
3342
3343 case REG_NON_LOCAL_GOTO:
3344 insn = insn_last;
3345 while (insn != NULL_RTX)
3346 {
3347 if (JUMP_P (insn))
3348 REG_NOTES (insn)
3349 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3350 XEXP (note, 0),
3351 REG_NOTES (insn));
3352 insn = PREV_INSN (insn);
3353 }
3354 break;
3355
3356 default:
3357 break;
3358 }
3359 }
3360
3361 /* If there are LABELS inside the split insns increment the
3362 usage count so we don't delete the label. */
3363 if (NONJUMP_INSN_P (trial))
3364 {
3365 insn = insn_last;
3366 while (insn != NULL_RTX)
3367 {
3368 if (NONJUMP_INSN_P (insn))
3369 mark_label_nuses (PATTERN (insn));
3370
3371 insn = PREV_INSN (insn);
3372 }
3373 }
3374
3375 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3376
3377 delete_insn (trial);
3378 if (has_barrier)
3379 emit_barrier_after (tem);
3380
3381 /* Recursively call try_split for each new insn created; by the
3382 time control returns here that insn will be fully split, so
3383 set LAST and continue from the insn after the one returned.
3384 We can't use next_active_insn here since AFTER may be a note.
3385 Ignore deleted insns, which can be occur if not optimizing. */
3386 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3387 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3388 tem = try_split (PATTERN (tem), tem, 1);
3389
3390 /* Return either the first or the last insn, depending on which was
3391 requested. */
3392 return last
3393 ? (after ? PREV_INSN (after) : last_insn)
3394 : NEXT_INSN (before);
3395 }
3396 \f
3397 /* Make and return an INSN rtx, initializing all its slots.
3398 Store PATTERN in the pattern slots. */
3399
3400 rtx
3401 make_insn_raw (rtx pattern)
3402 {
3403 rtx insn;
3404
3405 insn = rtx_alloc (INSN);
3406
3407 INSN_UID (insn) = cur_insn_uid++;
3408 PATTERN (insn) = pattern;
3409 INSN_CODE (insn) = -1;
3410 LOG_LINKS (insn) = NULL;
3411 REG_NOTES (insn) = NULL;
3412 INSN_LOCATOR (insn) = 0;
3413 BLOCK_FOR_INSN (insn) = NULL;
3414
3415 #ifdef ENABLE_RTL_CHECKING
3416 if (insn
3417 && INSN_P (insn)
3418 && (returnjump_p (insn)
3419 || (GET_CODE (insn) == SET
3420 && SET_DEST (insn) == pc_rtx)))
3421 {
3422 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3423 debug_rtx (insn);
3424 }
3425 #endif
3426
3427 return insn;
3428 }
3429
3430 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3431
3432 static rtx
3433 make_jump_insn_raw (rtx pattern)
3434 {
3435 rtx insn;
3436
3437 insn = rtx_alloc (JUMP_INSN);
3438 INSN_UID (insn) = cur_insn_uid++;
3439
3440 PATTERN (insn) = pattern;
3441 INSN_CODE (insn) = -1;
3442 LOG_LINKS (insn) = NULL;
3443 REG_NOTES (insn) = NULL;
3444 JUMP_LABEL (insn) = NULL;
3445 INSN_LOCATOR (insn) = 0;
3446 BLOCK_FOR_INSN (insn) = NULL;
3447
3448 return insn;
3449 }
3450
3451 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3452
3453 static rtx
3454 make_call_insn_raw (rtx pattern)
3455 {
3456 rtx insn;
3457
3458 insn = rtx_alloc (CALL_INSN);
3459 INSN_UID (insn) = cur_insn_uid++;
3460
3461 PATTERN (insn) = pattern;
3462 INSN_CODE (insn) = -1;
3463 LOG_LINKS (insn) = NULL;
3464 REG_NOTES (insn) = NULL;
3465 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3466 INSN_LOCATOR (insn) = 0;
3467 BLOCK_FOR_INSN (insn) = NULL;
3468
3469 return insn;
3470 }
3471 \f
3472 /* Add INSN to the end of the doubly-linked list.
3473 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3474
3475 void
3476 add_insn (rtx insn)
3477 {
3478 PREV_INSN (insn) = last_insn;
3479 NEXT_INSN (insn) = 0;
3480
3481 if (NULL != last_insn)
3482 NEXT_INSN (last_insn) = insn;
3483
3484 if (NULL == first_insn)
3485 first_insn = insn;
3486
3487 last_insn = insn;
3488 }
3489
3490 /* Add INSN into the doubly-linked list after insn AFTER. This and
3491 the next should be the only functions called to insert an insn once
3492 delay slots have been filled since only they know how to update a
3493 SEQUENCE. */
3494
3495 void
3496 add_insn_after (rtx insn, rtx after)
3497 {
3498 rtx next = NEXT_INSN (after);
3499 basic_block bb;
3500
3501 if (optimize && INSN_DELETED_P (after))
3502 abort ();
3503
3504 NEXT_INSN (insn) = next;
3505 PREV_INSN (insn) = after;
3506
3507 if (next)
3508 {
3509 PREV_INSN (next) = insn;
3510 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3511 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3512 }
3513 else if (last_insn == after)
3514 last_insn = insn;
3515 else
3516 {
3517 struct sequence_stack *stack = seq_stack;
3518 /* Scan all pending sequences too. */
3519 for (; stack; stack = stack->next)
3520 if (after == stack->last)
3521 {
3522 stack->last = insn;
3523 break;
3524 }
3525
3526 if (stack == 0)
3527 abort ();
3528 }
3529
3530 if (!BARRIER_P (after)
3531 && !BARRIER_P (insn)
3532 && (bb = BLOCK_FOR_INSN (after)))
3533 {
3534 set_block_for_insn (insn, bb);
3535 if (INSN_P (insn))
3536 bb->flags |= BB_DIRTY;
3537 /* Should not happen as first in the BB is always
3538 either NOTE or LABEL. */
3539 if (BB_END (bb) == after
3540 /* Avoid clobbering of structure when creating new BB. */
3541 && !BARRIER_P (insn)
3542 && (!NOTE_P (insn)
3543 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3544 BB_END (bb) = insn;
3545 }
3546
3547 NEXT_INSN (after) = insn;
3548 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3549 {
3550 rtx sequence = PATTERN (after);
3551 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3552 }
3553 }
3554
3555 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3556 the previous should be the only functions called to insert an insn once
3557 delay slots have been filled since only they know how to update a
3558 SEQUENCE. */
3559
3560 void
3561 add_insn_before (rtx insn, rtx before)
3562 {
3563 rtx prev = PREV_INSN (before);
3564 basic_block bb;
3565
3566 if (optimize && INSN_DELETED_P (before))
3567 abort ();
3568
3569 PREV_INSN (insn) = prev;
3570 NEXT_INSN (insn) = before;
3571
3572 if (prev)
3573 {
3574 NEXT_INSN (prev) = insn;
3575 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3576 {
3577 rtx sequence = PATTERN (prev);
3578 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3579 }
3580 }
3581 else if (first_insn == before)
3582 first_insn = insn;
3583 else
3584 {
3585 struct sequence_stack *stack = seq_stack;
3586 /* Scan all pending sequences too. */
3587 for (; stack; stack = stack->next)
3588 if (before == stack->first)
3589 {
3590 stack->first = insn;
3591 break;
3592 }
3593
3594 if (stack == 0)
3595 abort ();
3596 }
3597
3598 if (!BARRIER_P (before)
3599 && !BARRIER_P (insn)
3600 && (bb = BLOCK_FOR_INSN (before)))
3601 {
3602 set_block_for_insn (insn, bb);
3603 if (INSN_P (insn))
3604 bb->flags |= BB_DIRTY;
3605 /* Should not happen as first in the BB is always
3606 either NOTE or LABEl. */
3607 if (BB_HEAD (bb) == insn
3608 /* Avoid clobbering of structure when creating new BB. */
3609 && !BARRIER_P (insn)
3610 && (!NOTE_P (insn)
3611 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3612 abort ();
3613 }
3614
3615 PREV_INSN (before) = insn;
3616 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3617 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3618 }
3619
3620 /* Remove an insn from its doubly-linked list. This function knows how
3621 to handle sequences. */
3622 void
3623 remove_insn (rtx insn)
3624 {
3625 rtx next = NEXT_INSN (insn);
3626 rtx prev = PREV_INSN (insn);
3627 basic_block bb;
3628
3629 if (prev)
3630 {
3631 NEXT_INSN (prev) = next;
3632 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3633 {
3634 rtx sequence = PATTERN (prev);
3635 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3636 }
3637 }
3638 else if (first_insn == insn)
3639 first_insn = next;
3640 else
3641 {
3642 struct sequence_stack *stack = seq_stack;
3643 /* Scan all pending sequences too. */
3644 for (; stack; stack = stack->next)
3645 if (insn == stack->first)
3646 {
3647 stack->first = next;
3648 break;
3649 }
3650
3651 if (stack == 0)
3652 abort ();
3653 }
3654
3655 if (next)
3656 {
3657 PREV_INSN (next) = prev;
3658 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3659 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3660 }
3661 else if (last_insn == insn)
3662 last_insn = prev;
3663 else
3664 {
3665 struct sequence_stack *stack = seq_stack;
3666 /* Scan all pending sequences too. */
3667 for (; stack; stack = stack->next)
3668 if (insn == stack->last)
3669 {
3670 stack->last = prev;
3671 break;
3672 }
3673
3674 if (stack == 0)
3675 abort ();
3676 }
3677 if (!BARRIER_P (insn)
3678 && (bb = BLOCK_FOR_INSN (insn)))
3679 {
3680 if (INSN_P (insn))
3681 bb->flags |= BB_DIRTY;
3682 if (BB_HEAD (bb) == insn)
3683 {
3684 /* Never ever delete the basic block note without deleting whole
3685 basic block. */
3686 if (NOTE_P (insn))
3687 abort ();
3688 BB_HEAD (bb) = next;
3689 }
3690 if (BB_END (bb) == insn)
3691 BB_END (bb) = prev;
3692 }
3693 }
3694
3695 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3696
3697 void
3698 add_function_usage_to (rtx call_insn, rtx call_fusage)
3699 {
3700 if (! call_insn || !CALL_P (call_insn))
3701 abort ();
3702
3703 /* Put the register usage information on the CALL. If there is already
3704 some usage information, put ours at the end. */
3705 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3706 {
3707 rtx link;
3708
3709 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3710 link = XEXP (link, 1))
3711 ;
3712
3713 XEXP (link, 1) = call_fusage;
3714 }
3715 else
3716 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3717 }
3718
3719 /* Delete all insns made since FROM.
3720 FROM becomes the new last instruction. */
3721
3722 void
3723 delete_insns_since (rtx from)
3724 {
3725 if (from == 0)
3726 first_insn = 0;
3727 else
3728 NEXT_INSN (from) = 0;
3729 last_insn = from;
3730 }
3731
3732 /* This function is deprecated, please use sequences instead.
3733
3734 Move a consecutive bunch of insns to a different place in the chain.
3735 The insns to be moved are those between FROM and TO.
3736 They are moved to a new position after the insn AFTER.
3737 AFTER must not be FROM or TO or any insn in between.
3738
3739 This function does not know about SEQUENCEs and hence should not be
3740 called after delay-slot filling has been done. */
3741
3742 void
3743 reorder_insns_nobb (rtx from, rtx to, rtx after)
3744 {
3745 /* Splice this bunch out of where it is now. */
3746 if (PREV_INSN (from))
3747 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3748 if (NEXT_INSN (to))
3749 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3750 if (last_insn == to)
3751 last_insn = PREV_INSN (from);
3752 if (first_insn == from)
3753 first_insn = NEXT_INSN (to);
3754
3755 /* Make the new neighbors point to it and it to them. */
3756 if (NEXT_INSN (after))
3757 PREV_INSN (NEXT_INSN (after)) = to;
3758
3759 NEXT_INSN (to) = NEXT_INSN (after);
3760 PREV_INSN (from) = after;
3761 NEXT_INSN (after) = from;
3762 if (after == last_insn)
3763 last_insn = to;
3764 }
3765
3766 /* Same as function above, but take care to update BB boundaries. */
3767 void
3768 reorder_insns (rtx from, rtx to, rtx after)
3769 {
3770 rtx prev = PREV_INSN (from);
3771 basic_block bb, bb2;
3772
3773 reorder_insns_nobb (from, to, after);
3774
3775 if (!BARRIER_P (after)
3776 && (bb = BLOCK_FOR_INSN (after)))
3777 {
3778 rtx x;
3779 bb->flags |= BB_DIRTY;
3780
3781 if (!BARRIER_P (from)
3782 && (bb2 = BLOCK_FOR_INSN (from)))
3783 {
3784 if (BB_END (bb2) == to)
3785 BB_END (bb2) = prev;
3786 bb2->flags |= BB_DIRTY;
3787 }
3788
3789 if (BB_END (bb) == after)
3790 BB_END (bb) = to;
3791
3792 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3793 if (!BARRIER_P (x))
3794 set_block_for_insn (x, bb);
3795 }
3796 }
3797
3798 /* Return the line note insn preceding INSN. */
3799
3800 static rtx
3801 find_line_note (rtx insn)
3802 {
3803 if (no_line_numbers)
3804 return 0;
3805
3806 for (; insn; insn = PREV_INSN (insn))
3807 if (NOTE_P (insn)
3808 && NOTE_LINE_NUMBER (insn) >= 0)
3809 break;
3810
3811 return insn;
3812 }
3813
3814 /* Remove unnecessary notes from the instruction stream. */
3815
3816 void
3817 remove_unnecessary_notes (void)
3818 {
3819 rtx block_stack = NULL_RTX;
3820 rtx eh_stack = NULL_RTX;
3821 rtx insn;
3822 rtx next;
3823 rtx tmp;
3824
3825 /* We must not remove the first instruction in the function because
3826 the compiler depends on the first instruction being a note. */
3827 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3828 {
3829 /* Remember what's next. */
3830 next = NEXT_INSN (insn);
3831
3832 /* We're only interested in notes. */
3833 if (!NOTE_P (insn))
3834 continue;
3835
3836 switch (NOTE_LINE_NUMBER (insn))
3837 {
3838 case NOTE_INSN_DELETED:
3839 remove_insn (insn);
3840 break;
3841
3842 case NOTE_INSN_EH_REGION_BEG:
3843 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3844 break;
3845
3846 case NOTE_INSN_EH_REGION_END:
3847 /* Too many end notes. */
3848 if (eh_stack == NULL_RTX)
3849 abort ();
3850 /* Mismatched nesting. */
3851 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3852 abort ();
3853 tmp = eh_stack;
3854 eh_stack = XEXP (eh_stack, 1);
3855 free_INSN_LIST_node (tmp);
3856 break;
3857
3858 case NOTE_INSN_BLOCK_BEG:
3859 /* By now, all notes indicating lexical blocks should have
3860 NOTE_BLOCK filled in. */
3861 if (NOTE_BLOCK (insn) == NULL_TREE)
3862 abort ();
3863 block_stack = alloc_INSN_LIST (insn, block_stack);
3864 break;
3865
3866 case NOTE_INSN_BLOCK_END:
3867 /* Too many end notes. */
3868 if (block_stack == NULL_RTX)
3869 abort ();
3870 /* Mismatched nesting. */
3871 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3872 abort ();
3873 tmp = block_stack;
3874 block_stack = XEXP (block_stack, 1);
3875 free_INSN_LIST_node (tmp);
3876
3877 /* Scan back to see if there are any non-note instructions
3878 between INSN and the beginning of this block. If not,
3879 then there is no PC range in the generated code that will
3880 actually be in this block, so there's no point in
3881 remembering the existence of the block. */
3882 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3883 {
3884 /* This block contains a real instruction. Note that we
3885 don't include labels; if the only thing in the block
3886 is a label, then there are still no PC values that
3887 lie within the block. */
3888 if (INSN_P (tmp))
3889 break;
3890
3891 /* We're only interested in NOTEs. */
3892 if (!NOTE_P (tmp))
3893 continue;
3894
3895 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3896 {
3897 /* We just verified that this BLOCK matches us with
3898 the block_stack check above. Never delete the
3899 BLOCK for the outermost scope of the function; we
3900 can refer to names from that scope even if the
3901 block notes are messed up. */
3902 if (! is_body_block (NOTE_BLOCK (insn))
3903 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3904 {
3905 remove_insn (tmp);
3906 remove_insn (insn);
3907 }
3908 break;
3909 }
3910 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3911 /* There's a nested block. We need to leave the
3912 current block in place since otherwise the debugger
3913 wouldn't be able to show symbols from our block in
3914 the nested block. */
3915 break;
3916 }
3917 }
3918 }
3919
3920 /* Too many begin notes. */
3921 if (block_stack || eh_stack)
3922 abort ();
3923 }
3924
3925 \f
3926 /* Emit insn(s) of given code and pattern
3927 at a specified place within the doubly-linked list.
3928
3929 All of the emit_foo global entry points accept an object
3930 X which is either an insn list or a PATTERN of a single
3931 instruction.
3932
3933 There are thus a few canonical ways to generate code and
3934 emit it at a specific place in the instruction stream. For
3935 example, consider the instruction named SPOT and the fact that
3936 we would like to emit some instructions before SPOT. We might
3937 do it like this:
3938
3939 start_sequence ();
3940 ... emit the new instructions ...
3941 insns_head = get_insns ();
3942 end_sequence ();
3943
3944 emit_insn_before (insns_head, SPOT);
3945
3946 It used to be common to generate SEQUENCE rtl instead, but that
3947 is a relic of the past which no longer occurs. The reason is that
3948 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3949 generated would almost certainly die right after it was created. */
3950
3951 /* Make X be output before the instruction BEFORE. */
3952
3953 rtx
3954 emit_insn_before (rtx x, rtx before)
3955 {
3956 rtx last = before;
3957 rtx insn;
3958
3959 #ifdef ENABLE_RTL_CHECKING
3960 if (before == NULL_RTX)
3961 abort ();
3962 #endif
3963
3964 if (x == NULL_RTX)
3965 return last;
3966
3967 switch (GET_CODE (x))
3968 {
3969 case INSN:
3970 case JUMP_INSN:
3971 case CALL_INSN:
3972 case CODE_LABEL:
3973 case BARRIER:
3974 case NOTE:
3975 insn = x;
3976 while (insn)
3977 {
3978 rtx next = NEXT_INSN (insn);
3979 add_insn_before (insn, before);
3980 last = insn;
3981 insn = next;
3982 }
3983 break;
3984
3985 #ifdef ENABLE_RTL_CHECKING
3986 case SEQUENCE:
3987 abort ();
3988 break;
3989 #endif
3990
3991 default:
3992 last = make_insn_raw (x);
3993 add_insn_before (last, before);
3994 break;
3995 }
3996
3997 return last;
3998 }
3999
4000 /* Make an instruction with body X and code JUMP_INSN
4001 and output it before the instruction BEFORE. */
4002
4003 rtx
4004 emit_jump_insn_before (rtx x, rtx before)
4005 {
4006 rtx insn, last = NULL_RTX;
4007
4008 #ifdef ENABLE_RTL_CHECKING
4009 if (before == NULL_RTX)
4010 abort ();
4011 #endif
4012
4013 switch (GET_CODE (x))
4014 {
4015 case INSN:
4016 case JUMP_INSN:
4017 case CALL_INSN:
4018 case CODE_LABEL:
4019 case BARRIER:
4020 case NOTE:
4021 insn = x;
4022 while (insn)
4023 {
4024 rtx next = NEXT_INSN (insn);
4025 add_insn_before (insn, before);
4026 last = insn;
4027 insn = next;
4028 }
4029 break;
4030
4031 #ifdef ENABLE_RTL_CHECKING
4032 case SEQUENCE:
4033 abort ();
4034 break;
4035 #endif
4036
4037 default:
4038 last = make_jump_insn_raw (x);
4039 add_insn_before (last, before);
4040 break;
4041 }
4042
4043 return last;
4044 }
4045
4046 /* Make an instruction with body X and code CALL_INSN
4047 and output it before the instruction BEFORE. */
4048
4049 rtx
4050 emit_call_insn_before (rtx x, rtx before)
4051 {
4052 rtx last = NULL_RTX, insn;
4053
4054 #ifdef ENABLE_RTL_CHECKING
4055 if (before == NULL_RTX)
4056 abort ();
4057 #endif
4058
4059 switch (GET_CODE (x))
4060 {
4061 case INSN:
4062 case JUMP_INSN:
4063 case CALL_INSN:
4064 case CODE_LABEL:
4065 case BARRIER:
4066 case NOTE:
4067 insn = x;
4068 while (insn)
4069 {
4070 rtx next = NEXT_INSN (insn);
4071 add_insn_before (insn, before);
4072 last = insn;
4073 insn = next;
4074 }
4075 break;
4076
4077 #ifdef ENABLE_RTL_CHECKING
4078 case SEQUENCE:
4079 abort ();
4080 break;
4081 #endif
4082
4083 default:
4084 last = make_call_insn_raw (x);
4085 add_insn_before (last, before);
4086 break;
4087 }
4088
4089 return last;
4090 }
4091
4092 /* Make an insn of code BARRIER
4093 and output it before the insn BEFORE. */
4094
4095 rtx
4096 emit_barrier_before (rtx before)
4097 {
4098 rtx insn = rtx_alloc (BARRIER);
4099
4100 INSN_UID (insn) = cur_insn_uid++;
4101
4102 add_insn_before (insn, before);
4103 return insn;
4104 }
4105
4106 /* Emit the label LABEL before the insn BEFORE. */
4107
4108 rtx
4109 emit_label_before (rtx label, rtx before)
4110 {
4111 /* This can be called twice for the same label as a result of the
4112 confusion that follows a syntax error! So make it harmless. */
4113 if (INSN_UID (label) == 0)
4114 {
4115 INSN_UID (label) = cur_insn_uid++;
4116 add_insn_before (label, before);
4117 }
4118
4119 return label;
4120 }
4121
4122 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4123
4124 rtx
4125 emit_note_before (int subtype, rtx before)
4126 {
4127 rtx note = rtx_alloc (NOTE);
4128 INSN_UID (note) = cur_insn_uid++;
4129 #ifndef USE_MAPPED_LOCATION
4130 NOTE_SOURCE_FILE (note) = 0;
4131 #endif
4132 NOTE_LINE_NUMBER (note) = subtype;
4133 BLOCK_FOR_INSN (note) = NULL;
4134
4135 add_insn_before (note, before);
4136 return note;
4137 }
4138 \f
4139 /* Helper for emit_insn_after, handles lists of instructions
4140 efficiently. */
4141
4142 static rtx emit_insn_after_1 (rtx, rtx);
4143
4144 static rtx
4145 emit_insn_after_1 (rtx first, rtx after)
4146 {
4147 rtx last;
4148 rtx after_after;
4149 basic_block bb;
4150
4151 if (!BARRIER_P (after)
4152 && (bb = BLOCK_FOR_INSN (after)))
4153 {
4154 bb->flags |= BB_DIRTY;
4155 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4156 if (!BARRIER_P (last))
4157 set_block_for_insn (last, bb);
4158 if (!BARRIER_P (last))
4159 set_block_for_insn (last, bb);
4160 if (BB_END (bb) == after)
4161 BB_END (bb) = last;
4162 }
4163 else
4164 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4165 continue;
4166
4167 after_after = NEXT_INSN (after);
4168
4169 NEXT_INSN (after) = first;
4170 PREV_INSN (first) = after;
4171 NEXT_INSN (last) = after_after;
4172 if (after_after)
4173 PREV_INSN (after_after) = last;
4174
4175 if (after == last_insn)
4176 last_insn = last;
4177 return last;
4178 }
4179
4180 /* Make X be output after the insn AFTER. */
4181
4182 rtx
4183 emit_insn_after (rtx x, rtx after)
4184 {
4185 rtx last = after;
4186
4187 #ifdef ENABLE_RTL_CHECKING
4188 if (after == NULL_RTX)
4189 abort ();
4190 #endif
4191
4192 if (x == NULL_RTX)
4193 return last;
4194
4195 switch (GET_CODE (x))
4196 {
4197 case INSN:
4198 case JUMP_INSN:
4199 case CALL_INSN:
4200 case CODE_LABEL:
4201 case BARRIER:
4202 case NOTE:
4203 last = emit_insn_after_1 (x, after);
4204 break;
4205
4206 #ifdef ENABLE_RTL_CHECKING
4207 case SEQUENCE:
4208 abort ();
4209 break;
4210 #endif
4211
4212 default:
4213 last = make_insn_raw (x);
4214 add_insn_after (last, after);
4215 break;
4216 }
4217
4218 return last;
4219 }
4220
4221 /* Similar to emit_insn_after, except that line notes are to be inserted so
4222 as to act as if this insn were at FROM. */
4223
4224 void
4225 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4226 {
4227 rtx from_line = find_line_note (from);
4228 rtx after_line = find_line_note (after);
4229 rtx insn = emit_insn_after (x, after);
4230
4231 if (from_line)
4232 emit_note_copy_after (from_line, after);
4233
4234 if (after_line)
4235 emit_note_copy_after (after_line, insn);
4236 }
4237
4238 /* Make an insn of code JUMP_INSN with body X
4239 and output it after the insn AFTER. */
4240
4241 rtx
4242 emit_jump_insn_after (rtx x, rtx after)
4243 {
4244 rtx last;
4245
4246 #ifdef ENABLE_RTL_CHECKING
4247 if (after == NULL_RTX)
4248 abort ();
4249 #endif
4250
4251 switch (GET_CODE (x))
4252 {
4253 case INSN:
4254 case JUMP_INSN:
4255 case CALL_INSN:
4256 case CODE_LABEL:
4257 case BARRIER:
4258 case NOTE:
4259 last = emit_insn_after_1 (x, after);
4260 break;
4261
4262 #ifdef ENABLE_RTL_CHECKING
4263 case SEQUENCE:
4264 abort ();
4265 break;
4266 #endif
4267
4268 default:
4269 last = make_jump_insn_raw (x);
4270 add_insn_after (last, after);
4271 break;
4272 }
4273
4274 return last;
4275 }
4276
4277 /* Make an instruction with body X and code CALL_INSN
4278 and output it after the instruction AFTER. */
4279
4280 rtx
4281 emit_call_insn_after (rtx x, rtx after)
4282 {
4283 rtx last;
4284
4285 #ifdef ENABLE_RTL_CHECKING
4286 if (after == NULL_RTX)
4287 abort ();
4288 #endif
4289
4290 switch (GET_CODE (x))
4291 {
4292 case INSN:
4293 case JUMP_INSN:
4294 case CALL_INSN:
4295 case CODE_LABEL:
4296 case BARRIER:
4297 case NOTE:
4298 last = emit_insn_after_1 (x, after);
4299 break;
4300
4301 #ifdef ENABLE_RTL_CHECKING
4302 case SEQUENCE:
4303 abort ();
4304 break;
4305 #endif
4306
4307 default:
4308 last = make_call_insn_raw (x);
4309 add_insn_after (last, after);
4310 break;
4311 }
4312
4313 return last;
4314 }
4315
4316 /* Make an insn of code BARRIER
4317 and output it after the insn AFTER. */
4318
4319 rtx
4320 emit_barrier_after (rtx after)
4321 {
4322 rtx insn = rtx_alloc (BARRIER);
4323
4324 INSN_UID (insn) = cur_insn_uid++;
4325
4326 add_insn_after (insn, after);
4327 return insn;
4328 }
4329
4330 /* Emit the label LABEL after the insn AFTER. */
4331
4332 rtx
4333 emit_label_after (rtx label, rtx after)
4334 {
4335 /* This can be called twice for the same label
4336 as a result of the confusion that follows a syntax error!
4337 So make it harmless. */
4338 if (INSN_UID (label) == 0)
4339 {
4340 INSN_UID (label) = cur_insn_uid++;
4341 add_insn_after (label, after);
4342 }
4343
4344 return label;
4345 }
4346
4347 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4348
4349 rtx
4350 emit_note_after (int subtype, rtx after)
4351 {
4352 rtx note = rtx_alloc (NOTE);
4353 INSN_UID (note) = cur_insn_uid++;
4354 #ifndef USE_MAPPED_LOCATION
4355 NOTE_SOURCE_FILE (note) = 0;
4356 #endif
4357 NOTE_LINE_NUMBER (note) = subtype;
4358 BLOCK_FOR_INSN (note) = NULL;
4359 add_insn_after (note, after);
4360 return note;
4361 }
4362
4363 /* Emit a copy of note ORIG after the insn AFTER. */
4364
4365 rtx
4366 emit_note_copy_after (rtx orig, rtx after)
4367 {
4368 rtx note;
4369
4370 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4371 {
4372 cur_insn_uid++;
4373 return 0;
4374 }
4375
4376 note = rtx_alloc (NOTE);
4377 INSN_UID (note) = cur_insn_uid++;
4378 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4379 NOTE_DATA (note) = NOTE_DATA (orig);
4380 BLOCK_FOR_INSN (note) = NULL;
4381 add_insn_after (note, after);
4382 return note;
4383 }
4384 \f
4385 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4386 rtx
4387 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4388 {
4389 rtx last = emit_insn_after (pattern, after);
4390
4391 if (pattern == NULL_RTX)
4392 return last;
4393
4394 after = NEXT_INSN (after);
4395 while (1)
4396 {
4397 if (active_insn_p (after))
4398 INSN_LOCATOR (after) = loc;
4399 if (after == last)
4400 break;
4401 after = NEXT_INSN (after);
4402 }
4403 return last;
4404 }
4405
4406 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4407 rtx
4408 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4409 {
4410 rtx last = emit_jump_insn_after (pattern, after);
4411
4412 if (pattern == NULL_RTX)
4413 return last;
4414
4415 after = NEXT_INSN (after);
4416 while (1)
4417 {
4418 if (active_insn_p (after))
4419 INSN_LOCATOR (after) = loc;
4420 if (after == last)
4421 break;
4422 after = NEXT_INSN (after);
4423 }
4424 return last;
4425 }
4426
4427 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4428 rtx
4429 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4430 {
4431 rtx last = emit_call_insn_after (pattern, after);
4432
4433 if (pattern == NULL_RTX)
4434 return last;
4435
4436 after = NEXT_INSN (after);
4437 while (1)
4438 {
4439 if (active_insn_p (after))
4440 INSN_LOCATOR (after) = loc;
4441 if (after == last)
4442 break;
4443 after = NEXT_INSN (after);
4444 }
4445 return last;
4446 }
4447
4448 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4449 rtx
4450 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4451 {
4452 rtx first = PREV_INSN (before);
4453 rtx last = emit_insn_before (pattern, before);
4454
4455 if (pattern == NULL_RTX)
4456 return last;
4457
4458 first = NEXT_INSN (first);
4459 while (1)
4460 {
4461 if (active_insn_p (first))
4462 INSN_LOCATOR (first) = loc;
4463 if (first == last)
4464 break;
4465 first = NEXT_INSN (first);
4466 }
4467 return last;
4468 }
4469 \f
4470 /* Take X and emit it at the end of the doubly-linked
4471 INSN list.
4472
4473 Returns the last insn emitted. */
4474
4475 rtx
4476 emit_insn (rtx x)
4477 {
4478 rtx last = last_insn;
4479 rtx insn;
4480
4481 if (x == NULL_RTX)
4482 return last;
4483
4484 switch (GET_CODE (x))
4485 {
4486 case INSN:
4487 case JUMP_INSN:
4488 case CALL_INSN:
4489 case CODE_LABEL:
4490 case BARRIER:
4491 case NOTE:
4492 insn = x;
4493 while (insn)
4494 {
4495 rtx next = NEXT_INSN (insn);
4496 add_insn (insn);
4497 last = insn;
4498 insn = next;
4499 }
4500 break;
4501
4502 #ifdef ENABLE_RTL_CHECKING
4503 case SEQUENCE:
4504 abort ();
4505 break;
4506 #endif
4507
4508 default:
4509 last = make_insn_raw (x);
4510 add_insn (last);
4511 break;
4512 }
4513
4514 return last;
4515 }
4516
4517 /* Make an insn of code JUMP_INSN with pattern X
4518 and add it to the end of the doubly-linked list. */
4519
4520 rtx
4521 emit_jump_insn (rtx x)
4522 {
4523 rtx last = NULL_RTX, insn;
4524
4525 switch (GET_CODE (x))
4526 {
4527 case INSN:
4528 case JUMP_INSN:
4529 case CALL_INSN:
4530 case CODE_LABEL:
4531 case BARRIER:
4532 case NOTE:
4533 insn = x;
4534 while (insn)
4535 {
4536 rtx next = NEXT_INSN (insn);
4537 add_insn (insn);
4538 last = insn;
4539 insn = next;
4540 }
4541 break;
4542
4543 #ifdef ENABLE_RTL_CHECKING
4544 case SEQUENCE:
4545 abort ();
4546 break;
4547 #endif
4548
4549 default:
4550 last = make_jump_insn_raw (x);
4551 add_insn (last);
4552 break;
4553 }
4554
4555 return last;
4556 }
4557
4558 /* Make an insn of code CALL_INSN with pattern X
4559 and add it to the end of the doubly-linked list. */
4560
4561 rtx
4562 emit_call_insn (rtx x)
4563 {
4564 rtx insn;
4565
4566 switch (GET_CODE (x))
4567 {
4568 case INSN:
4569 case JUMP_INSN:
4570 case CALL_INSN:
4571 case CODE_LABEL:
4572 case BARRIER:
4573 case NOTE:
4574 insn = emit_insn (x);
4575 break;
4576
4577 #ifdef ENABLE_RTL_CHECKING
4578 case SEQUENCE:
4579 abort ();
4580 break;
4581 #endif
4582
4583 default:
4584 insn = make_call_insn_raw (x);
4585 add_insn (insn);
4586 break;
4587 }
4588
4589 return insn;
4590 }
4591
4592 /* Add the label LABEL to the end of the doubly-linked list. */
4593
4594 rtx
4595 emit_label (rtx label)
4596 {
4597 /* This can be called twice for the same label
4598 as a result of the confusion that follows a syntax error!
4599 So make it harmless. */
4600 if (INSN_UID (label) == 0)
4601 {
4602 INSN_UID (label) = cur_insn_uid++;
4603 add_insn (label);
4604 }
4605 return label;
4606 }
4607
4608 /* Make an insn of code BARRIER
4609 and add it to the end of the doubly-linked list. */
4610
4611 rtx
4612 emit_barrier (void)
4613 {
4614 rtx barrier = rtx_alloc (BARRIER);
4615 INSN_UID (barrier) = cur_insn_uid++;
4616 add_insn (barrier);
4617 return barrier;
4618 }
4619
4620 /* Make line numbering NOTE insn for LOCATION add it to the end
4621 of the doubly-linked list, but only if line-numbers are desired for
4622 debugging info and it doesn't match the previous one. */
4623
4624 rtx
4625 emit_line_note (location_t location)
4626 {
4627 rtx note;
4628
4629 set_file_and_line_for_stmt (location);
4630
4631 #ifdef USE_MAPPED_LOCATION
4632 if (location == last_location)
4633 return NULL_RTX;
4634 #else
4635 if (location.file && last_location.file
4636 && !strcmp (location.file, last_location.file)
4637 && location.line == last_location.line)
4638 return NULL_RTX;
4639 #endif
4640 last_location = location;
4641
4642 if (no_line_numbers)
4643 {
4644 cur_insn_uid++;
4645 return NULL_RTX;
4646 }
4647
4648 #ifdef USE_MAPPED_LOCATION
4649 note = emit_note ((int) location);
4650 #else
4651 note = emit_note (location.line);
4652 NOTE_SOURCE_FILE (note) = location.file;
4653 #endif
4654
4655 return note;
4656 }
4657
4658 /* Emit a copy of note ORIG. */
4659
4660 rtx
4661 emit_note_copy (rtx orig)
4662 {
4663 rtx note;
4664
4665 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4666 {
4667 cur_insn_uid++;
4668 return NULL_RTX;
4669 }
4670
4671 note = rtx_alloc (NOTE);
4672
4673 INSN_UID (note) = cur_insn_uid++;
4674 NOTE_DATA (note) = NOTE_DATA (orig);
4675 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4676 BLOCK_FOR_INSN (note) = NULL;
4677 add_insn (note);
4678
4679 return note;
4680 }
4681
4682 /* Make an insn of code NOTE or type NOTE_NO
4683 and add it to the end of the doubly-linked list. */
4684
4685 rtx
4686 emit_note (int note_no)
4687 {
4688 rtx note;
4689
4690 note = rtx_alloc (NOTE);
4691 INSN_UID (note) = cur_insn_uid++;
4692 NOTE_LINE_NUMBER (note) = note_no;
4693 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4694 BLOCK_FOR_INSN (note) = NULL;
4695 add_insn (note);
4696 return note;
4697 }
4698
4699 /* Cause next statement to emit a line note even if the line number
4700 has not changed. */
4701
4702 void
4703 force_next_line_note (void)
4704 {
4705 #ifdef USE_MAPPED_LOCATION
4706 last_location = -1;
4707 #else
4708 last_location.line = -1;
4709 #endif
4710 }
4711
4712 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4713 note of this type already exists, remove it first. */
4714
4715 rtx
4716 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4717 {
4718 rtx note = find_reg_note (insn, kind, NULL_RTX);
4719
4720 switch (kind)
4721 {
4722 case REG_EQUAL:
4723 case REG_EQUIV:
4724 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4725 has multiple sets (some callers assume single_set
4726 means the insn only has one set, when in fact it
4727 means the insn only has one * useful * set). */
4728 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4729 {
4730 if (note)
4731 abort ();
4732 return NULL_RTX;
4733 }
4734
4735 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4736 It serves no useful purpose and breaks eliminate_regs. */
4737 if (GET_CODE (datum) == ASM_OPERANDS)
4738 return NULL_RTX;
4739 break;
4740
4741 default:
4742 break;
4743 }
4744
4745 if (note)
4746 {
4747 XEXP (note, 0) = datum;
4748 return note;
4749 }
4750
4751 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4752 return REG_NOTES (insn);
4753 }
4754 \f
4755 /* Return an indication of which type of insn should have X as a body.
4756 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4757
4758 enum rtx_code
4759 classify_insn (rtx x)
4760 {
4761 if (LABEL_P (x))
4762 return CODE_LABEL;
4763 if (GET_CODE (x) == CALL)
4764 return CALL_INSN;
4765 if (GET_CODE (x) == RETURN)
4766 return JUMP_INSN;
4767 if (GET_CODE (x) == SET)
4768 {
4769 if (SET_DEST (x) == pc_rtx)
4770 return JUMP_INSN;
4771 else if (GET_CODE (SET_SRC (x)) == CALL)
4772 return CALL_INSN;
4773 else
4774 return INSN;
4775 }
4776 if (GET_CODE (x) == PARALLEL)
4777 {
4778 int j;
4779 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4780 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4781 return CALL_INSN;
4782 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4783 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4784 return JUMP_INSN;
4785 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4786 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4787 return CALL_INSN;
4788 }
4789 return INSN;
4790 }
4791
4792 /* Emit the rtl pattern X as an appropriate kind of insn.
4793 If X is a label, it is simply added into the insn chain. */
4794
4795 rtx
4796 emit (rtx x)
4797 {
4798 enum rtx_code code = classify_insn (x);
4799
4800 if (code == CODE_LABEL)
4801 return emit_label (x);
4802 else if (code == INSN)
4803 return emit_insn (x);
4804 else if (code == JUMP_INSN)
4805 {
4806 rtx insn = emit_jump_insn (x);
4807 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4808 return emit_barrier ();
4809 return insn;
4810 }
4811 else if (code == CALL_INSN)
4812 return emit_call_insn (x);
4813 else
4814 abort ();
4815 }
4816 \f
4817 /* Space for free sequence stack entries. */
4818 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4819
4820 /* Begin emitting insns to a sequence. If this sequence will contain
4821 something that might cause the compiler to pop arguments to function
4822 calls (because those pops have previously been deferred; see
4823 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4824 before calling this function. That will ensure that the deferred
4825 pops are not accidentally emitted in the middle of this sequence. */
4826
4827 void
4828 start_sequence (void)
4829 {
4830 struct sequence_stack *tem;
4831
4832 if (free_sequence_stack != NULL)
4833 {
4834 tem = free_sequence_stack;
4835 free_sequence_stack = tem->next;
4836 }
4837 else
4838 tem = ggc_alloc (sizeof (struct sequence_stack));
4839
4840 tem->next = seq_stack;
4841 tem->first = first_insn;
4842 tem->last = last_insn;
4843
4844 seq_stack = tem;
4845
4846 first_insn = 0;
4847 last_insn = 0;
4848 }
4849
4850 /* Set up the insn chain starting with FIRST as the current sequence,
4851 saving the previously current one. See the documentation for
4852 start_sequence for more information about how to use this function. */
4853
4854 void
4855 push_to_sequence (rtx first)
4856 {
4857 rtx last;
4858
4859 start_sequence ();
4860
4861 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4862
4863 first_insn = first;
4864 last_insn = last;
4865 }
4866
4867 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4868
4869 void
4870 push_to_full_sequence (rtx first, rtx last)
4871 {
4872 start_sequence ();
4873 first_insn = first;
4874 last_insn = last;
4875 /* We really should have the end of the insn chain here. */
4876 if (last && NEXT_INSN (last))
4877 abort ();
4878 }
4879
4880 /* Set up the outer-level insn chain
4881 as the current sequence, saving the previously current one. */
4882
4883 void
4884 push_topmost_sequence (void)
4885 {
4886 struct sequence_stack *stack, *top = NULL;
4887
4888 start_sequence ();
4889
4890 for (stack = seq_stack; stack; stack = stack->next)
4891 top = stack;
4892
4893 first_insn = top->first;
4894 last_insn = top->last;
4895 }
4896
4897 /* After emitting to the outer-level insn chain, update the outer-level
4898 insn chain, and restore the previous saved state. */
4899
4900 void
4901 pop_topmost_sequence (void)
4902 {
4903 struct sequence_stack *stack, *top = NULL;
4904
4905 for (stack = seq_stack; stack; stack = stack->next)
4906 top = stack;
4907
4908 top->first = first_insn;
4909 top->last = last_insn;
4910
4911 end_sequence ();
4912 }
4913
4914 /* After emitting to a sequence, restore previous saved state.
4915
4916 To get the contents of the sequence just made, you must call
4917 `get_insns' *before* calling here.
4918
4919 If the compiler might have deferred popping arguments while
4920 generating this sequence, and this sequence will not be immediately
4921 inserted into the instruction stream, use do_pending_stack_adjust
4922 before calling get_insns. That will ensure that the deferred
4923 pops are inserted into this sequence, and not into some random
4924 location in the instruction stream. See INHIBIT_DEFER_POP for more
4925 information about deferred popping of arguments. */
4926
4927 void
4928 end_sequence (void)
4929 {
4930 struct sequence_stack *tem = seq_stack;
4931
4932 first_insn = tem->first;
4933 last_insn = tem->last;
4934 seq_stack = tem->next;
4935
4936 memset (tem, 0, sizeof (*tem));
4937 tem->next = free_sequence_stack;
4938 free_sequence_stack = tem;
4939 }
4940
4941 /* Return 1 if currently emitting into a sequence. */
4942
4943 int
4944 in_sequence_p (void)
4945 {
4946 return seq_stack != 0;
4947 }
4948 \f
4949 /* Put the various virtual registers into REGNO_REG_RTX. */
4950
4951 void
4952 init_virtual_regs (struct emit_status *es)
4953 {
4954 rtx *ptr = es->x_regno_reg_rtx;
4955 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4956 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4957 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4958 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4959 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4960 }
4961
4962 \f
4963 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4964 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4965 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4966 static int copy_insn_n_scratches;
4967
4968 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4969 copied an ASM_OPERANDS.
4970 In that case, it is the original input-operand vector. */
4971 static rtvec orig_asm_operands_vector;
4972
4973 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4974 copied an ASM_OPERANDS.
4975 In that case, it is the copied input-operand vector. */
4976 static rtvec copy_asm_operands_vector;
4977
4978 /* Likewise for the constraints vector. */
4979 static rtvec orig_asm_constraints_vector;
4980 static rtvec copy_asm_constraints_vector;
4981
4982 /* Recursively create a new copy of an rtx for copy_insn.
4983 This function differs from copy_rtx in that it handles SCRATCHes and
4984 ASM_OPERANDs properly.
4985 Normally, this function is not used directly; use copy_insn as front end.
4986 However, you could first copy an insn pattern with copy_insn and then use
4987 this function afterwards to properly copy any REG_NOTEs containing
4988 SCRATCHes. */
4989
4990 rtx
4991 copy_insn_1 (rtx orig)
4992 {
4993 rtx copy;
4994 int i, j;
4995 RTX_CODE code;
4996 const char *format_ptr;
4997
4998 code = GET_CODE (orig);
4999
5000 switch (code)
5001 {
5002 case REG:
5003 case CONST_INT:
5004 case CONST_DOUBLE:
5005 case CONST_VECTOR:
5006 case SYMBOL_REF:
5007 case CODE_LABEL:
5008 case PC:
5009 case CC0:
5010 return orig;
5011 case CLOBBER:
5012 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5013 return orig;
5014 break;
5015
5016 case SCRATCH:
5017 for (i = 0; i < copy_insn_n_scratches; i++)
5018 if (copy_insn_scratch_in[i] == orig)
5019 return copy_insn_scratch_out[i];
5020 break;
5021
5022 case CONST:
5023 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5024 a LABEL_REF, it isn't sharable. */
5025 if (GET_CODE (XEXP (orig, 0)) == PLUS
5026 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5027 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5028 return orig;
5029 break;
5030
5031 /* A MEM with a constant address is not sharable. The problem is that
5032 the constant address may need to be reloaded. If the mem is shared,
5033 then reloading one copy of this mem will cause all copies to appear
5034 to have been reloaded. */
5035
5036 default:
5037 break;
5038 }
5039
5040 copy = rtx_alloc (code);
5041
5042 /* Copy the various flags, and other information. We assume that
5043 all fields need copying, and then clear the fields that should
5044 not be copied. That is the sensible default behavior, and forces
5045 us to explicitly document why we are *not* copying a flag. */
5046 memcpy (copy, orig, RTX_HDR_SIZE);
5047
5048 /* We do not copy the USED flag, which is used as a mark bit during
5049 walks over the RTL. */
5050 RTX_FLAG (copy, used) = 0;
5051
5052 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5053 if (INSN_P (orig))
5054 {
5055 RTX_FLAG (copy, jump) = 0;
5056 RTX_FLAG (copy, call) = 0;
5057 RTX_FLAG (copy, frame_related) = 0;
5058 }
5059
5060 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5061
5062 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5063 {
5064 copy->u.fld[i] = orig->u.fld[i];
5065 switch (*format_ptr++)
5066 {
5067 case 'e':
5068 if (XEXP (orig, i) != NULL)
5069 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5070 break;
5071
5072 case 'E':
5073 case 'V':
5074 if (XVEC (orig, i) == orig_asm_constraints_vector)
5075 XVEC (copy, i) = copy_asm_constraints_vector;
5076 else if (XVEC (orig, i) == orig_asm_operands_vector)
5077 XVEC (copy, i) = copy_asm_operands_vector;
5078 else if (XVEC (orig, i) != NULL)
5079 {
5080 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5081 for (j = 0; j < XVECLEN (copy, i); j++)
5082 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5083 }
5084 break;
5085
5086 case 't':
5087 case 'w':
5088 case 'i':
5089 case 's':
5090 case 'S':
5091 case 'u':
5092 case '0':
5093 /* These are left unchanged. */
5094 break;
5095
5096 default:
5097 abort ();
5098 }
5099 }
5100
5101 if (code == SCRATCH)
5102 {
5103 i = copy_insn_n_scratches++;
5104 if (i >= MAX_RECOG_OPERANDS)
5105 abort ();
5106 copy_insn_scratch_in[i] = orig;
5107 copy_insn_scratch_out[i] = copy;
5108 }
5109 else if (code == ASM_OPERANDS)
5110 {
5111 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5112 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5113 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5114 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5115 }
5116
5117 return copy;
5118 }
5119
5120 /* Create a new copy of an rtx.
5121 This function differs from copy_rtx in that it handles SCRATCHes and
5122 ASM_OPERANDs properly.
5123 INSN doesn't really have to be a full INSN; it could be just the
5124 pattern. */
5125 rtx
5126 copy_insn (rtx insn)
5127 {
5128 copy_insn_n_scratches = 0;
5129 orig_asm_operands_vector = 0;
5130 orig_asm_constraints_vector = 0;
5131 copy_asm_operands_vector = 0;
5132 copy_asm_constraints_vector = 0;
5133 return copy_insn_1 (insn);
5134 }
5135
5136 /* Initialize data structures and variables in this file
5137 before generating rtl for each function. */
5138
5139 void
5140 init_emit (void)
5141 {
5142 struct function *f = cfun;
5143
5144 f->emit = ggc_alloc (sizeof (struct emit_status));
5145 first_insn = NULL;
5146 last_insn = NULL;
5147 cur_insn_uid = 1;
5148 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5149 last_location = UNKNOWN_LOCATION;
5150 first_label_num = label_num;
5151 last_label_num = 0;
5152 seq_stack = NULL;
5153
5154 /* Init the tables that describe all the pseudo regs. */
5155
5156 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5157
5158 f->emit->regno_pointer_align
5159 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5160 * sizeof (unsigned char));
5161
5162 regno_reg_rtx
5163 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5164
5165 /* Put copies of all the hard registers into regno_reg_rtx. */
5166 memcpy (regno_reg_rtx,
5167 static_regno_reg_rtx,
5168 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5169
5170 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5171 init_virtual_regs (f->emit);
5172
5173 /* Indicate that the virtual registers and stack locations are
5174 all pointers. */
5175 REG_POINTER (stack_pointer_rtx) = 1;
5176 REG_POINTER (frame_pointer_rtx) = 1;
5177 REG_POINTER (hard_frame_pointer_rtx) = 1;
5178 REG_POINTER (arg_pointer_rtx) = 1;
5179
5180 REG_POINTER (virtual_incoming_args_rtx) = 1;
5181 REG_POINTER (virtual_stack_vars_rtx) = 1;
5182 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5183 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5184 REG_POINTER (virtual_cfa_rtx) = 1;
5185
5186 #ifdef STACK_BOUNDARY
5187 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5188 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5189 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5190 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5191
5192 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5193 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5194 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5195 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5196 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5197 #endif
5198
5199 #ifdef INIT_EXPANDERS
5200 INIT_EXPANDERS;
5201 #endif
5202 }
5203
5204 /* Generate the constant 0. */
5205
5206 static rtx
5207 gen_const_vector_0 (enum machine_mode mode)
5208 {
5209 rtx tem;
5210 rtvec v;
5211 int units, i;
5212 enum machine_mode inner;
5213
5214 units = GET_MODE_NUNITS (mode);
5215 inner = GET_MODE_INNER (mode);
5216
5217 v = rtvec_alloc (units);
5218
5219 /* We need to call this function after we to set CONST0_RTX first. */
5220 if (!CONST0_RTX (inner))
5221 abort ();
5222
5223 for (i = 0; i < units; ++i)
5224 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5225
5226 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5227 return tem;
5228 }
5229
5230 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5231 all elements are zero. */
5232 rtx
5233 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5234 {
5235 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5236 int i;
5237
5238 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5239 if (RTVEC_ELT (v, i) != inner_zero)
5240 return gen_rtx_raw_CONST_VECTOR (mode, v);
5241 return CONST0_RTX (mode);
5242 }
5243
5244 /* Create some permanent unique rtl objects shared between all functions.
5245 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5246
5247 void
5248 init_emit_once (int line_numbers)
5249 {
5250 int i;
5251 enum machine_mode mode;
5252 enum machine_mode double_mode;
5253
5254 /* We need reg_raw_mode, so initialize the modes now. */
5255 init_reg_modes_once ();
5256
5257 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5258 tables. */
5259 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5260 const_int_htab_eq, NULL);
5261
5262 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5263 const_double_htab_eq, NULL);
5264
5265 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5266 mem_attrs_htab_eq, NULL);
5267 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5268 reg_attrs_htab_eq, NULL);
5269
5270 no_line_numbers = ! line_numbers;
5271
5272 /* Compute the word and byte modes. */
5273
5274 byte_mode = VOIDmode;
5275 word_mode = VOIDmode;
5276 double_mode = VOIDmode;
5277
5278 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5279 mode = GET_MODE_WIDER_MODE (mode))
5280 {
5281 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5282 && byte_mode == VOIDmode)
5283 byte_mode = mode;
5284
5285 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5286 && word_mode == VOIDmode)
5287 word_mode = mode;
5288 }
5289
5290 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5291 mode = GET_MODE_WIDER_MODE (mode))
5292 {
5293 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5294 && double_mode == VOIDmode)
5295 double_mode = mode;
5296 }
5297
5298 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5299
5300 /* Assign register numbers to the globally defined register rtx.
5301 This must be done at runtime because the register number field
5302 is in a union and some compilers can't initialize unions. */
5303
5304 pc_rtx = gen_rtx_PC (VOIDmode);
5305 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5306 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5307 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5308 if (hard_frame_pointer_rtx == 0)
5309 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5310 HARD_FRAME_POINTER_REGNUM);
5311 if (arg_pointer_rtx == 0)
5312 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5313 virtual_incoming_args_rtx =
5314 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5315 virtual_stack_vars_rtx =
5316 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5317 virtual_stack_dynamic_rtx =
5318 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5319 virtual_outgoing_args_rtx =
5320 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5321 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5322
5323 /* Initialize RTL for commonly used hard registers. These are
5324 copied into regno_reg_rtx as we begin to compile each function. */
5325 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5326 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5327
5328 #ifdef INIT_EXPANDERS
5329 /* This is to initialize {init|mark|free}_machine_status before the first
5330 call to push_function_context_to. This is needed by the Chill front
5331 end which calls push_function_context_to before the first call to
5332 init_function_start. */
5333 INIT_EXPANDERS;
5334 #endif
5335
5336 /* Create the unique rtx's for certain rtx codes and operand values. */
5337
5338 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5339 tries to use these variables. */
5340 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5341 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5342 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5343
5344 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5345 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5346 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5347 else
5348 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5349
5350 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5351 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5352 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5353 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5354 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5355 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5356 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5357
5358 dconsthalf = dconst1;
5359 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5360
5361 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5362
5363 /* Initialize mathematical constants for constant folding builtins.
5364 These constants need to be given to at least 160 bits precision. */
5365 real_from_string (&dconstpi,
5366 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5367 real_from_string (&dconste,
5368 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5369
5370 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5371 {
5372 REAL_VALUE_TYPE *r =
5373 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5374
5375 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5376 mode = GET_MODE_WIDER_MODE (mode))
5377 const_tiny_rtx[i][(int) mode] =
5378 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5379
5380 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5381
5382 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5383 mode = GET_MODE_WIDER_MODE (mode))
5384 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5385
5386 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5387 mode != VOIDmode;
5388 mode = GET_MODE_WIDER_MODE (mode))
5389 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5390 }
5391
5392 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5393 mode != VOIDmode;
5394 mode = GET_MODE_WIDER_MODE (mode))
5395 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5396
5397 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5398 mode != VOIDmode;
5399 mode = GET_MODE_WIDER_MODE (mode))
5400 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5401
5402 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5403 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5404 const_tiny_rtx[0][i] = const0_rtx;
5405
5406 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5407 if (STORE_FLAG_VALUE == 1)
5408 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5409
5410 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5411 return_address_pointer_rtx
5412 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5413 #endif
5414
5415 #ifdef STATIC_CHAIN_REGNUM
5416 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5417
5418 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5419 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5420 static_chain_incoming_rtx
5421 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5422 else
5423 #endif
5424 static_chain_incoming_rtx = static_chain_rtx;
5425 #endif
5426
5427 #ifdef STATIC_CHAIN
5428 static_chain_rtx = STATIC_CHAIN;
5429
5430 #ifdef STATIC_CHAIN_INCOMING
5431 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5432 #else
5433 static_chain_incoming_rtx = static_chain_rtx;
5434 #endif
5435 #endif
5436
5437 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5438 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5439 }
5440 \f
5441 /* Produce exact duplicate of insn INSN after AFTER.
5442 Care updating of libcall regions if present. */
5443
5444 rtx
5445 emit_copy_of_insn_after (rtx insn, rtx after)
5446 {
5447 rtx new;
5448 rtx note1, note2, link;
5449
5450 switch (GET_CODE (insn))
5451 {
5452 case INSN:
5453 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5454 break;
5455
5456 case JUMP_INSN:
5457 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5458 break;
5459
5460 case CALL_INSN:
5461 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5462 if (CALL_INSN_FUNCTION_USAGE (insn))
5463 CALL_INSN_FUNCTION_USAGE (new)
5464 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5465 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5466 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5467 break;
5468
5469 default:
5470 abort ();
5471 }
5472
5473 /* Update LABEL_NUSES. */
5474 mark_jump_label (PATTERN (new), new, 0);
5475
5476 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5477
5478 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5479 make them. */
5480 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5481 if (REG_NOTE_KIND (link) != REG_LABEL)
5482 {
5483 if (GET_CODE (link) == EXPR_LIST)
5484 REG_NOTES (new)
5485 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5486 XEXP (link, 0),
5487 REG_NOTES (new)));
5488 else
5489 REG_NOTES (new)
5490 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5491 XEXP (link, 0),
5492 REG_NOTES (new)));
5493 }
5494
5495 /* Fix the libcall sequences. */
5496 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5497 {
5498 rtx p = new;
5499 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5500 p = PREV_INSN (p);
5501 XEXP (note1, 0) = p;
5502 XEXP (note2, 0) = new;
5503 }
5504 INSN_CODE (new) = INSN_CODE (insn);
5505 return new;
5506 }
5507
5508 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5509 rtx
5510 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5511 {
5512 if (hard_reg_clobbers[mode][regno])
5513 return hard_reg_clobbers[mode][regno];
5514 else
5515 return (hard_reg_clobbers[mode][regno] =
5516 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5517 }
5518
5519 #include "gt-emit-rtl.h"