]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
re PR middle-end/17544 (incorrect -Wunreachable-code warning for mains with a return...
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static GTY(()) int label_num = 1;
71
72 /* Nonzero means do not generate NOTEs for source line numbers. */
73
74 static int no_line_numbers;
75
76 /* Commonly used rtx's, so that we only need space for one copy.
77 These are initialized once for the entire compilation.
78 All of these are unique; no other rtx-object will be equal to any
79 of these. */
80
81 rtx global_rtl[GR_MAX];
82
83 /* Commonly used RTL for hard registers. These objects are not necessarily
84 unique, so we allocate them separately from global_rtl. They are
85 initialized once per compilation unit, then copied into regno_reg_rtx
86 at the beginning of each function. */
87 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
88
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx. */
92
93 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
94
95 rtx const_true_rtx;
96
97 REAL_VALUE_TYPE dconst0;
98 REAL_VALUE_TYPE dconst1;
99 REAL_VALUE_TYPE dconst2;
100 REAL_VALUE_TYPE dconst3;
101 REAL_VALUE_TYPE dconst10;
102 REAL_VALUE_TYPE dconstm1;
103 REAL_VALUE_TYPE dconstm2;
104 REAL_VALUE_TYPE dconsthalf;
105 REAL_VALUE_TYPE dconstthird;
106 REAL_VALUE_TYPE dconstpi;
107 REAL_VALUE_TYPE dconste;
108
109 /* All references to the following fixed hard registers go through
110 these unique rtl objects. On machines where the frame-pointer and
111 arg-pointer are the same register, they use the same unique object.
112
113 After register allocation, other rtl objects which used to be pseudo-regs
114 may be clobbered to refer to the frame-pointer register.
115 But references that were originally to the frame-pointer can be
116 distinguished from the others because they contain frame_pointer_rtx.
117
118 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
119 tricky: until register elimination has taken place hard_frame_pointer_rtx
120 should be used if it is being set, and frame_pointer_rtx otherwise. After
121 register elimination hard_frame_pointer_rtx should always be used.
122 On machines where the two registers are same (most) then these are the
123 same.
124
125 In an inline procedure, the stack and frame pointer rtxs may not be
126 used for anything else. */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
141
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
146 htab_t const_int_htab;
147
148 /* A hash table storing memory attribute structures. */
149 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
150 htab_t mem_attrs_htab;
151
152 /* A hash table storing register attribute structures. */
153 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
154 htab_t reg_attrs_htab;
155
156 /* A hash table storing all CONST_DOUBLEs. */
157 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
158 htab_t const_double_htab;
159
160 #define first_insn (cfun->emit->x_first_insn)
161 #define last_insn (cfun->emit->x_last_insn)
162 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
163 #define last_location (cfun->emit->x_last_location)
164 #define first_label_num (cfun->emit->x_first_label_num)
165
166 static rtx make_jump_insn_raw (rtx);
167 static rtx make_call_insn_raw (rtx);
168 static rtx find_line_note (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
188
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
192 \f
193 /* Returns a hash code for X (which is a really a CONST_INT). */
194
195 static hashval_t
196 const_int_htab_hash (const void *x)
197 {
198 return (hashval_t) INTVAL ((rtx) x);
199 }
200
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
204
205 static int
206 const_int_htab_eq (const void *x, const void *y)
207 {
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
209 }
210
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
214 {
215 rtx value = (rtx) x;
216 hashval_t h;
217
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
221 {
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
225 }
226 return h;
227 }
228
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
233 {
234 rtx a = (rtx)x, b = (rtx)y;
235
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
244 }
245
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
247
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
250 {
251 mem_attrs *p = (mem_attrs *) x;
252
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) p->expr);
257 }
258
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
262
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
265 {
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
268
269 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
270 && p->size == q->size && p->align == q->align);
271 }
272
273 /* Allocate a new mem_attrs structure and insert it into the hash table if
274 one identical to it is not already in the table. We are doing this for
275 MEM of mode MODE. */
276
277 static mem_attrs *
278 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
279 unsigned int align, enum machine_mode mode)
280 {
281 mem_attrs attrs;
282 void **slot;
283
284 /* If everything is the default, we can just return zero.
285 This must match what the corresponding MEM_* macros return when the
286 field is not present. */
287 if (alias == 0 && expr == 0 && offset == 0
288 && (size == 0
289 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
290 && (STRICT_ALIGNMENT && mode != BLKmode
291 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
292 return 0;
293
294 attrs.alias = alias;
295 attrs.expr = expr;
296 attrs.offset = offset;
297 attrs.size = size;
298 attrs.align = align;
299
300 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
301 if (*slot == 0)
302 {
303 *slot = ggc_alloc (sizeof (mem_attrs));
304 memcpy (*slot, &attrs, sizeof (mem_attrs));
305 }
306
307 return *slot;
308 }
309
310 /* Returns a hash code for X (which is a really a reg_attrs *). */
311
312 static hashval_t
313 reg_attrs_htab_hash (const void *x)
314 {
315 reg_attrs *p = (reg_attrs *) x;
316
317 return ((p->offset * 1000) ^ (long) p->decl);
318 }
319
320 /* Returns nonzero if the value represented by X (which is really a
321 reg_attrs *) is the same as that given by Y (which is also really a
322 reg_attrs *). */
323
324 static int
325 reg_attrs_htab_eq (const void *x, const void *y)
326 {
327 reg_attrs *p = (reg_attrs *) x;
328 reg_attrs *q = (reg_attrs *) y;
329
330 return (p->decl == q->decl && p->offset == q->offset);
331 }
332 /* Allocate a new reg_attrs structure and insert it into the hash table if
333 one identical to it is not already in the table. We are doing this for
334 MEM of mode MODE. */
335
336 static reg_attrs *
337 get_reg_attrs (tree decl, int offset)
338 {
339 reg_attrs attrs;
340 void **slot;
341
342 /* If everything is the default, we can just return zero. */
343 if (decl == 0 && offset == 0)
344 return 0;
345
346 attrs.decl = decl;
347 attrs.offset = offset;
348
349 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
350 if (*slot == 0)
351 {
352 *slot = ggc_alloc (sizeof (reg_attrs));
353 memcpy (*slot, &attrs, sizeof (reg_attrs));
354 }
355
356 return *slot;
357 }
358
359 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
360 don't attempt to share with the various global pieces of rtl (such as
361 frame_pointer_rtx). */
362
363 rtx
364 gen_raw_REG (enum machine_mode mode, int regno)
365 {
366 rtx x = gen_rtx_raw_REG (mode, regno);
367 ORIGINAL_REGNO (x) = regno;
368 return x;
369 }
370
371 /* There are some RTL codes that require special attention; the generation
372 functions do the raw handling. If you add to this list, modify
373 special_rtx in gengenrtl.c as well. */
374
375 rtx
376 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
377 {
378 void **slot;
379
380 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
381 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
382
383 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
384 if (const_true_rtx && arg == STORE_FLAG_VALUE)
385 return const_true_rtx;
386 #endif
387
388 /* Look up the CONST_INT in the hash table. */
389 slot = htab_find_slot_with_hash (const_int_htab, &arg,
390 (hashval_t) arg, INSERT);
391 if (*slot == 0)
392 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
393
394 return (rtx) *slot;
395 }
396
397 rtx
398 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
399 {
400 return GEN_INT (trunc_int_for_mode (c, mode));
401 }
402
403 /* CONST_DOUBLEs might be created from pairs of integers, or from
404 REAL_VALUE_TYPEs. Also, their length is known only at run time,
405 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
406
407 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
408 hash table. If so, return its counterpart; otherwise add it
409 to the hash table and return it. */
410 static rtx
411 lookup_const_double (rtx real)
412 {
413 void **slot = htab_find_slot (const_double_htab, real, INSERT);
414 if (*slot == 0)
415 *slot = real;
416
417 return (rtx) *slot;
418 }
419
420 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
421 VALUE in mode MODE. */
422 rtx
423 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
424 {
425 rtx real = rtx_alloc (CONST_DOUBLE);
426 PUT_MODE (real, mode);
427
428 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
429
430 return lookup_const_double (real);
431 }
432
433 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
434 of ints: I0 is the low-order word and I1 is the high-order word.
435 Do not use this routine for non-integer modes; convert to
436 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
437
438 rtx
439 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
440 {
441 rtx value;
442 unsigned int i;
443
444 if (mode != VOIDmode)
445 {
446 int width;
447
448 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
449 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
450 /* We can get a 0 for an error mark. */
451 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
452 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
453
454 /* We clear out all bits that don't belong in MODE, unless they and
455 our sign bit are all one. So we get either a reasonable negative
456 value or a reasonable unsigned value for this mode. */
457 width = GET_MODE_BITSIZE (mode);
458 if (width < HOST_BITS_PER_WIDE_INT
459 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
460 != ((HOST_WIDE_INT) (-1) << (width - 1))))
461 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
462 else if (width == HOST_BITS_PER_WIDE_INT
463 && ! (i1 == ~0 && i0 < 0))
464 i1 = 0;
465 else
466 /* We should be able to represent this value as a constant. */
467 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
468
469 /* If this would be an entire word for the target, but is not for
470 the host, then sign-extend on the host so that the number will
471 look the same way on the host that it would on the target.
472
473 For example, when building a 64 bit alpha hosted 32 bit sparc
474 targeted compiler, then we want the 32 bit unsigned value -1 to be
475 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
476 The latter confuses the sparc backend. */
477
478 if (width < HOST_BITS_PER_WIDE_INT
479 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
480 i0 |= ((HOST_WIDE_INT) (-1) << width);
481
482 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
483 CONST_INT.
484
485 ??? Strictly speaking, this is wrong if we create a CONST_INT for
486 a large unsigned constant with the size of MODE being
487 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
488 in a wider mode. In that case we will mis-interpret it as a
489 negative number.
490
491 Unfortunately, the only alternative is to make a CONST_DOUBLE for
492 any constant in any mode if it is an unsigned constant larger
493 than the maximum signed integer in an int on the host. However,
494 doing this will break everyone that always expects to see a
495 CONST_INT for SImode and smaller.
496
497 We have always been making CONST_INTs in this case, so nothing
498 new is being broken. */
499
500 if (width <= HOST_BITS_PER_WIDE_INT)
501 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
502 }
503
504 /* If this integer fits in one word, return a CONST_INT. */
505 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
506 return GEN_INT (i0);
507
508 /* We use VOIDmode for integers. */
509 value = rtx_alloc (CONST_DOUBLE);
510 PUT_MODE (value, VOIDmode);
511
512 CONST_DOUBLE_LOW (value) = i0;
513 CONST_DOUBLE_HIGH (value) = i1;
514
515 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
516 XWINT (value, i) = 0;
517
518 return lookup_const_double (value);
519 }
520
521 rtx
522 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
523 {
524 /* In case the MD file explicitly references the frame pointer, have
525 all such references point to the same frame pointer. This is
526 used during frame pointer elimination to distinguish the explicit
527 references to these registers from pseudos that happened to be
528 assigned to them.
529
530 If we have eliminated the frame pointer or arg pointer, we will
531 be using it as a normal register, for example as a spill
532 register. In such cases, we might be accessing it in a mode that
533 is not Pmode and therefore cannot use the pre-allocated rtx.
534
535 Also don't do this when we are making new REGs in reload, since
536 we don't want to get confused with the real pointers. */
537
538 if (mode == Pmode && !reload_in_progress)
539 {
540 if (regno == FRAME_POINTER_REGNUM
541 && (!reload_completed || frame_pointer_needed))
542 return frame_pointer_rtx;
543 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
544 if (regno == HARD_FRAME_POINTER_REGNUM
545 && (!reload_completed || frame_pointer_needed))
546 return hard_frame_pointer_rtx;
547 #endif
548 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
549 if (regno == ARG_POINTER_REGNUM)
550 return arg_pointer_rtx;
551 #endif
552 #ifdef RETURN_ADDRESS_POINTER_REGNUM
553 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
554 return return_address_pointer_rtx;
555 #endif
556 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
557 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
558 return pic_offset_table_rtx;
559 if (regno == STACK_POINTER_REGNUM)
560 return stack_pointer_rtx;
561 }
562
563 #if 0
564 /* If the per-function register table has been set up, try to re-use
565 an existing entry in that table to avoid useless generation of RTL.
566
567 This code is disabled for now until we can fix the various backends
568 which depend on having non-shared hard registers in some cases. Long
569 term we want to re-enable this code as it can significantly cut down
570 on the amount of useless RTL that gets generated.
571
572 We'll also need to fix some code that runs after reload that wants to
573 set ORIGINAL_REGNO. */
574
575 if (cfun
576 && cfun->emit
577 && regno_reg_rtx
578 && regno < FIRST_PSEUDO_REGISTER
579 && reg_raw_mode[regno] == mode)
580 return regno_reg_rtx[regno];
581 #endif
582
583 return gen_raw_REG (mode, regno);
584 }
585
586 rtx
587 gen_rtx_MEM (enum machine_mode mode, rtx addr)
588 {
589 rtx rt = gen_rtx_raw_MEM (mode, addr);
590
591 /* This field is not cleared by the mere allocation of the rtx, so
592 we clear it here. */
593 MEM_ATTRS (rt) = 0;
594
595 return rt;
596 }
597
598 /* Generate a memory referring to non-trapping constant memory. */
599
600 rtx
601 gen_const_mem (enum machine_mode mode, rtx addr)
602 {
603 rtx mem = gen_rtx_MEM (mode, addr);
604 MEM_READONLY_P (mem) = 1;
605 MEM_NOTRAP_P (mem) = 1;
606 return mem;
607 }
608
609 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
610 this construct would be valid, and false otherwise. */
611
612 bool
613 validate_subreg (enum machine_mode omode, enum machine_mode imode,
614 rtx reg, unsigned int offset)
615 {
616 unsigned int isize = GET_MODE_SIZE (imode);
617 unsigned int osize = GET_MODE_SIZE (omode);
618
619 /* All subregs must be aligned. */
620 if (offset % osize != 0)
621 return false;
622
623 /* The subreg offset cannot be outside the inner object. */
624 if (offset >= isize)
625 return false;
626
627 /* ??? This should not be here. Temporarily continue to allow word_mode
628 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
629 Generally, backends are doing something sketchy but it'll take time to
630 fix them all. */
631 if (omode == word_mode)
632 ;
633 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
634 is the culprit here, and not the backends. */
635 else if (osize >= UNITS_PER_WORD && isize >= osize)
636 ;
637 /* Allow component subregs of complex and vector. Though given the below
638 extraction rules, it's not always clear what that means. */
639 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
640 && GET_MODE_INNER (imode) == omode)
641 ;
642 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
643 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
644 represent this. It's questionable if this ought to be represented at
645 all -- why can't this all be hidden in post-reload splitters that make
646 arbitrarily mode changes to the registers themselves. */
647 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
648 ;
649 /* Subregs involving floating point modes are not allowed to
650 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
651 (subreg:SI (reg:DF) 0) isn't. */
652 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
653 {
654 if (isize != osize)
655 return false;
656 }
657
658 /* Paradoxical subregs must have offset zero. */
659 if (osize > isize)
660 return offset == 0;
661
662 /* This is a normal subreg. Verify that the offset is representable. */
663
664 /* For hard registers, we already have most of these rules collected in
665 subreg_offset_representable_p. */
666 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
667 {
668 unsigned int regno = REGNO (reg);
669
670 #ifdef CANNOT_CHANGE_MODE_CLASS
671 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
672 && GET_MODE_INNER (imode) == omode)
673 ;
674 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
675 return false;
676 #endif
677
678 return subreg_offset_representable_p (regno, imode, offset, omode);
679 }
680
681 /* For pseudo registers, we want most of the same checks. Namely:
682 If the register no larger than a word, the subreg must be lowpart.
683 If the register is larger than a word, the subreg must be the lowpart
684 of a subword. A subreg does *not* perform arbitrary bit extraction.
685 Given that we've already checked mode/offset alignment, we only have
686 to check subword subregs here. */
687 if (osize < UNITS_PER_WORD)
688 {
689 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
690 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
691 if (offset % UNITS_PER_WORD != low_off)
692 return false;
693 }
694 return true;
695 }
696
697 rtx
698 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
699 {
700 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
701 return gen_rtx_raw_SUBREG (mode, reg, offset);
702 }
703
704 /* Generate a SUBREG representing the least-significant part of REG if MODE
705 is smaller than mode of REG, otherwise paradoxical SUBREG. */
706
707 rtx
708 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
709 {
710 enum machine_mode inmode;
711
712 inmode = GET_MODE (reg);
713 if (inmode == VOIDmode)
714 inmode = mode;
715 return gen_rtx_SUBREG (mode, reg,
716 subreg_lowpart_offset (mode, inmode));
717 }
718 \f
719 /* gen_rtvec (n, [rt1, ..., rtn])
720 **
721 ** This routine creates an rtvec and stores within it the
722 ** pointers to rtx's which are its arguments.
723 */
724
725 /*VARARGS1*/
726 rtvec
727 gen_rtvec (int n, ...)
728 {
729 int i, save_n;
730 rtx *vector;
731 va_list p;
732
733 va_start (p, n);
734
735 if (n == 0)
736 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
737
738 vector = alloca (n * sizeof (rtx));
739
740 for (i = 0; i < n; i++)
741 vector[i] = va_arg (p, rtx);
742
743 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
744 save_n = n;
745 va_end (p);
746
747 return gen_rtvec_v (save_n, vector);
748 }
749
750 rtvec
751 gen_rtvec_v (int n, rtx *argp)
752 {
753 int i;
754 rtvec rt_val;
755
756 if (n == 0)
757 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
758
759 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
760
761 for (i = 0; i < n; i++)
762 rt_val->elem[i] = *argp++;
763
764 return rt_val;
765 }
766 \f
767 /* Generate a REG rtx for a new pseudo register of mode MODE.
768 This pseudo is assigned the next sequential register number. */
769
770 rtx
771 gen_reg_rtx (enum machine_mode mode)
772 {
773 struct function *f = cfun;
774 rtx val;
775
776 /* Don't let anything called after initial flow analysis create new
777 registers. */
778 gcc_assert (!no_new_pseudos);
779
780 if (generating_concat_p
781 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
782 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
783 {
784 /* For complex modes, don't make a single pseudo.
785 Instead, make a CONCAT of two pseudos.
786 This allows noncontiguous allocation of the real and imaginary parts,
787 which makes much better code. Besides, allocating DCmode
788 pseudos overstrains reload on some machines like the 386. */
789 rtx realpart, imagpart;
790 enum machine_mode partmode = GET_MODE_INNER (mode);
791
792 realpart = gen_reg_rtx (partmode);
793 imagpart = gen_reg_rtx (partmode);
794 return gen_rtx_CONCAT (mode, realpart, imagpart);
795 }
796
797 /* Make sure regno_pointer_align, and regno_reg_rtx are large
798 enough to have an element for this pseudo reg number. */
799
800 if (reg_rtx_no == f->emit->regno_pointer_align_length)
801 {
802 int old_size = f->emit->regno_pointer_align_length;
803 char *new;
804 rtx *new1;
805
806 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
807 memset (new + old_size, 0, old_size);
808 f->emit->regno_pointer_align = (unsigned char *) new;
809
810 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
811 old_size * 2 * sizeof (rtx));
812 memset (new1 + old_size, 0, old_size * sizeof (rtx));
813 regno_reg_rtx = new1;
814
815 f->emit->regno_pointer_align_length = old_size * 2;
816 }
817
818 val = gen_raw_REG (mode, reg_rtx_no);
819 regno_reg_rtx[reg_rtx_no++] = val;
820 return val;
821 }
822
823 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
824 Do the big endian correction if needed. */
825
826 rtx
827 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
828 {
829 rtx new = gen_rtx_REG (mode, regno);
830 tree decl;
831 HOST_WIDE_INT var_size;
832
833 /* PR middle-end/14084
834 The problem appears when a variable is stored in a larger register
835 and later it is used in the original mode or some mode in between
836 or some part of variable is accessed.
837
838 On little endian machines there is no problem because
839 the REG_OFFSET of the start of the variable is the same when
840 accessed in any mode (it is 0).
841
842 However, this is not true on big endian machines.
843 The offset of the start of the variable is different when accessed
844 in different modes.
845 When we are taking a part of the REG we have to change the OFFSET
846 from offset WRT size of mode of REG to offset WRT size of variable.
847
848 If we would not do the big endian correction the resulting REG_OFFSET
849 would be larger than the size of the DECL.
850
851 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
852
853 REG.mode MODE DECL size old offset new offset description
854 DI SI 4 4 0 int32 in SImode
855 DI SI 1 4 0 char in SImode
856 DI QI 1 7 0 char in QImode
857 DI QI 4 5 1 1st element in QImode
858 of char[4]
859 DI HI 4 6 2 1st element in HImode
860 of int16[2]
861
862 If the size of DECL is equal or greater than the size of REG
863 we can't do this correction because the register holds the
864 whole variable or a part of the variable and thus the REG_OFFSET
865 is already correct. */
866
867 decl = REG_EXPR (reg);
868 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
869 && decl != NULL
870 && offset > 0
871 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
872 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
873 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
874 {
875 int offset_le;
876
877 /* Convert machine endian to little endian WRT size of mode of REG. */
878 if (WORDS_BIG_ENDIAN)
879 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
880 / UNITS_PER_WORD) * UNITS_PER_WORD;
881 else
882 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
883
884 if (BYTES_BIG_ENDIAN)
885 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
886 % UNITS_PER_WORD);
887 else
888 offset_le += offset % UNITS_PER_WORD;
889
890 if (offset_le >= var_size)
891 {
892 /* MODE is wider than the variable so the new reg will cover
893 the whole variable so the resulting OFFSET should be 0. */
894 offset = 0;
895 }
896 else
897 {
898 /* Convert little endian to machine endian WRT size of variable. */
899 if (WORDS_BIG_ENDIAN)
900 offset = ((var_size - 1 - offset_le)
901 / UNITS_PER_WORD) * UNITS_PER_WORD;
902 else
903 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
904
905 if (BYTES_BIG_ENDIAN)
906 offset += ((var_size - 1 - offset_le)
907 % UNITS_PER_WORD);
908 else
909 offset += offset_le % UNITS_PER_WORD;
910 }
911 }
912
913 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
914 REG_OFFSET (reg) + offset);
915 return new;
916 }
917
918 /* Set the decl for MEM to DECL. */
919
920 void
921 set_reg_attrs_from_mem (rtx reg, rtx mem)
922 {
923 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
924 REG_ATTRS (reg)
925 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
926 }
927
928 /* Set the register attributes for registers contained in PARM_RTX.
929 Use needed values from memory attributes of MEM. */
930
931 void
932 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
933 {
934 if (REG_P (parm_rtx))
935 set_reg_attrs_from_mem (parm_rtx, mem);
936 else if (GET_CODE (parm_rtx) == PARALLEL)
937 {
938 /* Check for a NULL entry in the first slot, used to indicate that the
939 parameter goes both on the stack and in registers. */
940 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
941 for (; i < XVECLEN (parm_rtx, 0); i++)
942 {
943 rtx x = XVECEXP (parm_rtx, 0, i);
944 if (REG_P (XEXP (x, 0)))
945 REG_ATTRS (XEXP (x, 0))
946 = get_reg_attrs (MEM_EXPR (mem),
947 INTVAL (XEXP (x, 1)));
948 }
949 }
950 }
951
952 /* Assign the RTX X to declaration T. */
953 void
954 set_decl_rtl (tree t, rtx x)
955 {
956 DECL_CHECK (t)->decl.rtl = x;
957
958 if (!x)
959 return;
960 /* For register, we maintain the reverse information too. */
961 if (REG_P (x))
962 REG_ATTRS (x) = get_reg_attrs (t, 0);
963 else if (GET_CODE (x) == SUBREG)
964 REG_ATTRS (SUBREG_REG (x))
965 = get_reg_attrs (t, -SUBREG_BYTE (x));
966 if (GET_CODE (x) == CONCAT)
967 {
968 if (REG_P (XEXP (x, 0)))
969 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
970 if (REG_P (XEXP (x, 1)))
971 REG_ATTRS (XEXP (x, 1))
972 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
973 }
974 if (GET_CODE (x) == PARALLEL)
975 {
976 int i;
977 for (i = 0; i < XVECLEN (x, 0); i++)
978 {
979 rtx y = XVECEXP (x, 0, i);
980 if (REG_P (XEXP (y, 0)))
981 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
982 }
983 }
984 }
985
986 /* Assign the RTX X to parameter declaration T. */
987 void
988 set_decl_incoming_rtl (tree t, rtx x)
989 {
990 DECL_INCOMING_RTL (t) = x;
991
992 if (!x)
993 return;
994 /* For register, we maintain the reverse information too. */
995 if (REG_P (x))
996 REG_ATTRS (x) = get_reg_attrs (t, 0);
997 else if (GET_CODE (x) == SUBREG)
998 REG_ATTRS (SUBREG_REG (x))
999 = get_reg_attrs (t, -SUBREG_BYTE (x));
1000 if (GET_CODE (x) == CONCAT)
1001 {
1002 if (REG_P (XEXP (x, 0)))
1003 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1004 if (REG_P (XEXP (x, 1)))
1005 REG_ATTRS (XEXP (x, 1))
1006 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1007 }
1008 if (GET_CODE (x) == PARALLEL)
1009 {
1010 int i, start;
1011
1012 /* Check for a NULL entry, used to indicate that the parameter goes
1013 both on the stack and in registers. */
1014 if (XEXP (XVECEXP (x, 0, 0), 0))
1015 start = 0;
1016 else
1017 start = 1;
1018
1019 for (i = start; i < XVECLEN (x, 0); i++)
1020 {
1021 rtx y = XVECEXP (x, 0, i);
1022 if (REG_P (XEXP (y, 0)))
1023 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1024 }
1025 }
1026 }
1027
1028 /* Identify REG (which may be a CONCAT) as a user register. */
1029
1030 void
1031 mark_user_reg (rtx reg)
1032 {
1033 if (GET_CODE (reg) == CONCAT)
1034 {
1035 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1036 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1037 }
1038 else
1039 {
1040 gcc_assert (REG_P (reg));
1041 REG_USERVAR_P (reg) = 1;
1042 }
1043 }
1044
1045 /* Identify REG as a probable pointer register and show its alignment
1046 as ALIGN, if nonzero. */
1047
1048 void
1049 mark_reg_pointer (rtx reg, int align)
1050 {
1051 if (! REG_POINTER (reg))
1052 {
1053 REG_POINTER (reg) = 1;
1054
1055 if (align)
1056 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1057 }
1058 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1059 /* We can no-longer be sure just how aligned this pointer is. */
1060 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1061 }
1062
1063 /* Return 1 plus largest pseudo reg number used in the current function. */
1064
1065 int
1066 max_reg_num (void)
1067 {
1068 return reg_rtx_no;
1069 }
1070
1071 /* Return 1 + the largest label number used so far in the current function. */
1072
1073 int
1074 max_label_num (void)
1075 {
1076 return label_num;
1077 }
1078
1079 /* Return first label number used in this function (if any were used). */
1080
1081 int
1082 get_first_label_num (void)
1083 {
1084 return first_label_num;
1085 }
1086
1087 /* If the rtx for label was created during the expansion of a nested
1088 function, then first_label_num won't include this label number.
1089 Fix this now so that array indicies work later. */
1090
1091 void
1092 maybe_set_first_label_num (rtx x)
1093 {
1094 if (CODE_LABEL_NUMBER (x) < first_label_num)
1095 first_label_num = CODE_LABEL_NUMBER (x);
1096 }
1097 \f
1098 /* Return a value representing some low-order bits of X, where the number
1099 of low-order bits is given by MODE. Note that no conversion is done
1100 between floating-point and fixed-point values, rather, the bit
1101 representation is returned.
1102
1103 This function handles the cases in common between gen_lowpart, below,
1104 and two variants in cse.c and combine.c. These are the cases that can
1105 be safely handled at all points in the compilation.
1106
1107 If this is not a case we can handle, return 0. */
1108
1109 rtx
1110 gen_lowpart_common (enum machine_mode mode, rtx x)
1111 {
1112 int msize = GET_MODE_SIZE (mode);
1113 int xsize;
1114 int offset = 0;
1115 enum machine_mode innermode;
1116
1117 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1118 so we have to make one up. Yuk. */
1119 innermode = GET_MODE (x);
1120 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1121 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1122 else if (innermode == VOIDmode)
1123 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1124
1125 xsize = GET_MODE_SIZE (innermode);
1126
1127 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1128
1129 if (innermode == mode)
1130 return x;
1131
1132 /* MODE must occupy no more words than the mode of X. */
1133 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1134 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1135 return 0;
1136
1137 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1138 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1139 return 0;
1140
1141 offset = subreg_lowpart_offset (mode, innermode);
1142
1143 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1144 && (GET_MODE_CLASS (mode) == MODE_INT
1145 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1146 {
1147 /* If we are getting the low-order part of something that has been
1148 sign- or zero-extended, we can either just use the object being
1149 extended or make a narrower extension. If we want an even smaller
1150 piece than the size of the object being extended, call ourselves
1151 recursively.
1152
1153 This case is used mostly by combine and cse. */
1154
1155 if (GET_MODE (XEXP (x, 0)) == mode)
1156 return XEXP (x, 0);
1157 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1158 return gen_lowpart_common (mode, XEXP (x, 0));
1159 else if (msize < xsize)
1160 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1161 }
1162 else if (GET_CODE (x) == SUBREG || REG_P (x)
1163 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1164 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1165 return simplify_gen_subreg (mode, x, innermode, offset);
1166
1167 /* Otherwise, we can't do this. */
1168 return 0;
1169 }
1170 \f
1171 rtx
1172 gen_highpart (enum machine_mode mode, rtx x)
1173 {
1174 unsigned int msize = GET_MODE_SIZE (mode);
1175 rtx result;
1176
1177 /* This case loses if X is a subreg. To catch bugs early,
1178 complain if an invalid MODE is used even in other cases. */
1179 gcc_assert (msize <= UNITS_PER_WORD
1180 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1181
1182 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1183 subreg_highpart_offset (mode, GET_MODE (x)));
1184 gcc_assert (result);
1185
1186 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1187 the target if we have a MEM. gen_highpart must return a valid operand,
1188 emitting code if necessary to do so. */
1189 if (MEM_P (result))
1190 {
1191 result = validize_mem (result);
1192 gcc_assert (result);
1193 }
1194
1195 return result;
1196 }
1197
1198 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1199 be VOIDmode constant. */
1200 rtx
1201 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1202 {
1203 if (GET_MODE (exp) != VOIDmode)
1204 {
1205 gcc_assert (GET_MODE (exp) == innermode);
1206 return gen_highpart (outermode, exp);
1207 }
1208 return simplify_gen_subreg (outermode, exp, innermode,
1209 subreg_highpart_offset (outermode, innermode));
1210 }
1211
1212 /* Return offset in bytes to get OUTERMODE low part
1213 of the value in mode INNERMODE stored in memory in target format. */
1214
1215 unsigned int
1216 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1217 {
1218 unsigned int offset = 0;
1219 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1220
1221 if (difference > 0)
1222 {
1223 if (WORDS_BIG_ENDIAN)
1224 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1225 if (BYTES_BIG_ENDIAN)
1226 offset += difference % UNITS_PER_WORD;
1227 }
1228
1229 return offset;
1230 }
1231
1232 /* Return offset in bytes to get OUTERMODE high part
1233 of the value in mode INNERMODE stored in memory in target format. */
1234 unsigned int
1235 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1236 {
1237 unsigned int offset = 0;
1238 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1239
1240 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1241
1242 if (difference > 0)
1243 {
1244 if (! WORDS_BIG_ENDIAN)
1245 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1246 if (! BYTES_BIG_ENDIAN)
1247 offset += difference % UNITS_PER_WORD;
1248 }
1249
1250 return offset;
1251 }
1252
1253 /* Return 1 iff X, assumed to be a SUBREG,
1254 refers to the least significant part of its containing reg.
1255 If X is not a SUBREG, always return 1 (it is its own low part!). */
1256
1257 int
1258 subreg_lowpart_p (rtx x)
1259 {
1260 if (GET_CODE (x) != SUBREG)
1261 return 1;
1262 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1263 return 0;
1264
1265 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1266 == SUBREG_BYTE (x));
1267 }
1268 \f
1269 /* Return subword OFFSET of operand OP.
1270 The word number, OFFSET, is interpreted as the word number starting
1271 at the low-order address. OFFSET 0 is the low-order word if not
1272 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1273
1274 If we cannot extract the required word, we return zero. Otherwise,
1275 an rtx corresponding to the requested word will be returned.
1276
1277 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1278 reload has completed, a valid address will always be returned. After
1279 reload, if a valid address cannot be returned, we return zero.
1280
1281 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1282 it is the responsibility of the caller.
1283
1284 MODE is the mode of OP in case it is a CONST_INT.
1285
1286 ??? This is still rather broken for some cases. The problem for the
1287 moment is that all callers of this thing provide no 'goal mode' to
1288 tell us to work with. This exists because all callers were written
1289 in a word based SUBREG world.
1290 Now use of this function can be deprecated by simplify_subreg in most
1291 cases.
1292 */
1293
1294 rtx
1295 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1296 {
1297 if (mode == VOIDmode)
1298 mode = GET_MODE (op);
1299
1300 gcc_assert (mode != VOIDmode);
1301
1302 /* If OP is narrower than a word, fail. */
1303 if (mode != BLKmode
1304 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1305 return 0;
1306
1307 /* If we want a word outside OP, return zero. */
1308 if (mode != BLKmode
1309 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1310 return const0_rtx;
1311
1312 /* Form a new MEM at the requested address. */
1313 if (MEM_P (op))
1314 {
1315 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1316
1317 if (! validate_address)
1318 return new;
1319
1320 else if (reload_completed)
1321 {
1322 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1323 return 0;
1324 }
1325 else
1326 return replace_equiv_address (new, XEXP (new, 0));
1327 }
1328
1329 /* Rest can be handled by simplify_subreg. */
1330 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1331 }
1332
1333 /* Similar to `operand_subword', but never return 0. If we can't extract
1334 the required subword, put OP into a register and try again. If that fails,
1335 abort. We always validate the address in this case.
1336
1337 MODE is the mode of OP, in case it is CONST_INT. */
1338
1339 rtx
1340 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1341 {
1342 rtx result = operand_subword (op, offset, 1, mode);
1343
1344 if (result)
1345 return result;
1346
1347 if (mode != BLKmode && mode != VOIDmode)
1348 {
1349 /* If this is a register which can not be accessed by words, copy it
1350 to a pseudo register. */
1351 if (REG_P (op))
1352 op = copy_to_reg (op);
1353 else
1354 op = force_reg (mode, op);
1355 }
1356
1357 result = operand_subword (op, offset, 1, mode);
1358 gcc_assert (result);
1359
1360 return result;
1361 }
1362 \f
1363 /* Given a compare instruction, swap the operands.
1364 A test instruction is changed into a compare of 0 against the operand. */
1365
1366 void
1367 reverse_comparison (rtx insn)
1368 {
1369 rtx body = PATTERN (insn);
1370 rtx comp;
1371
1372 if (GET_CODE (body) == SET)
1373 comp = SET_SRC (body);
1374 else
1375 comp = SET_SRC (XVECEXP (body, 0, 0));
1376
1377 if (GET_CODE (comp) == COMPARE)
1378 {
1379 rtx op0 = XEXP (comp, 0);
1380 rtx op1 = XEXP (comp, 1);
1381 XEXP (comp, 0) = op1;
1382 XEXP (comp, 1) = op0;
1383 }
1384 else
1385 {
1386 rtx new = gen_rtx_COMPARE (VOIDmode,
1387 CONST0_RTX (GET_MODE (comp)), comp);
1388 if (GET_CODE (body) == SET)
1389 SET_SRC (body) = new;
1390 else
1391 SET_SRC (XVECEXP (body, 0, 0)) = new;
1392 }
1393 }
1394 \f
1395 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1396 or (2) a component ref of something variable. Represent the later with
1397 a NULL expression. */
1398
1399 static tree
1400 component_ref_for_mem_expr (tree ref)
1401 {
1402 tree inner = TREE_OPERAND (ref, 0);
1403
1404 if (TREE_CODE (inner) == COMPONENT_REF)
1405 inner = component_ref_for_mem_expr (inner);
1406 else
1407 {
1408 /* Now remove any conversions: they don't change what the underlying
1409 object is. Likewise for SAVE_EXPR. */
1410 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1411 || TREE_CODE (inner) == NON_LVALUE_EXPR
1412 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1413 || TREE_CODE (inner) == SAVE_EXPR)
1414 inner = TREE_OPERAND (inner, 0);
1415
1416 if (! DECL_P (inner))
1417 inner = NULL_TREE;
1418 }
1419
1420 if (inner == TREE_OPERAND (ref, 0))
1421 return ref;
1422 else
1423 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1424 TREE_OPERAND (ref, 1), NULL_TREE);
1425 }
1426
1427 /* Returns 1 if both MEM_EXPR can be considered equal
1428 and 0 otherwise. */
1429
1430 int
1431 mem_expr_equal_p (tree expr1, tree expr2)
1432 {
1433 if (expr1 == expr2)
1434 return 1;
1435
1436 if (! expr1 || ! expr2)
1437 return 0;
1438
1439 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1440 return 0;
1441
1442 if (TREE_CODE (expr1) == COMPONENT_REF)
1443 return
1444 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1445 TREE_OPERAND (expr2, 0))
1446 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1447 TREE_OPERAND (expr2, 1));
1448
1449 if (INDIRECT_REF_P (expr1))
1450 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1451 TREE_OPERAND (expr2, 0));
1452
1453 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1454 have been resolved here. */
1455 gcc_assert (DECL_P (expr1));
1456
1457 /* Decls with different pointers can't be equal. */
1458 return 0;
1459 }
1460
1461 /* Given REF, a MEM, and T, either the type of X or the expression
1462 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1463 if we are making a new object of this type. BITPOS is nonzero if
1464 there is an offset outstanding on T that will be applied later. */
1465
1466 void
1467 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1468 HOST_WIDE_INT bitpos)
1469 {
1470 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1471 tree expr = MEM_EXPR (ref);
1472 rtx offset = MEM_OFFSET (ref);
1473 rtx size = MEM_SIZE (ref);
1474 unsigned int align = MEM_ALIGN (ref);
1475 HOST_WIDE_INT apply_bitpos = 0;
1476 tree type;
1477
1478 /* It can happen that type_for_mode was given a mode for which there
1479 is no language-level type. In which case it returns NULL, which
1480 we can see here. */
1481 if (t == NULL_TREE)
1482 return;
1483
1484 type = TYPE_P (t) ? t : TREE_TYPE (t);
1485 if (type == error_mark_node)
1486 return;
1487
1488 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1489 wrong answer, as it assumes that DECL_RTL already has the right alias
1490 info. Callers should not set DECL_RTL until after the call to
1491 set_mem_attributes. */
1492 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1493
1494 /* Get the alias set from the expression or type (perhaps using a
1495 front-end routine) and use it. */
1496 alias = get_alias_set (t);
1497
1498 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1499 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1500 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1501 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1502
1503 /* If we are making an object of this type, or if this is a DECL, we know
1504 that it is a scalar if the type is not an aggregate. */
1505 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1506 MEM_SCALAR_P (ref) = 1;
1507
1508 /* We can set the alignment from the type if we are making an object,
1509 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1510 if (objectp || TREE_CODE (t) == INDIRECT_REF
1511 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1512 || TYPE_ALIGN_OK (type))
1513 align = MAX (align, TYPE_ALIGN (type));
1514 else
1515 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1516 {
1517 if (integer_zerop (TREE_OPERAND (t, 1)))
1518 /* We don't know anything about the alignment. */
1519 align = BITS_PER_UNIT;
1520 else
1521 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1522 }
1523
1524 /* If the size is known, we can set that. */
1525 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1526 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1527
1528 /* If T is not a type, we may be able to deduce some more information about
1529 the expression. */
1530 if (! TYPE_P (t))
1531 {
1532 tree base = get_base_address (t);
1533 if (base && DECL_P (base)
1534 && TREE_READONLY (base)
1535 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1536 MEM_READONLY_P (ref) = 1;
1537
1538 if (TREE_THIS_VOLATILE (t))
1539 MEM_VOLATILE_P (ref) = 1;
1540
1541 /* Now remove any conversions: they don't change what the underlying
1542 object is. Likewise for SAVE_EXPR. */
1543 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1544 || TREE_CODE (t) == NON_LVALUE_EXPR
1545 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1546 || TREE_CODE (t) == SAVE_EXPR)
1547 t = TREE_OPERAND (t, 0);
1548
1549 /* If this expression uses it's parent's alias set, mark it such
1550 that we won't change it. */
1551 if (component_uses_parent_alias_set (t))
1552 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1553
1554 /* If this is a decl, set the attributes of the MEM from it. */
1555 if (DECL_P (t))
1556 {
1557 expr = t;
1558 offset = const0_rtx;
1559 apply_bitpos = bitpos;
1560 size = (DECL_SIZE_UNIT (t)
1561 && host_integerp (DECL_SIZE_UNIT (t), 1)
1562 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1563 align = DECL_ALIGN (t);
1564 }
1565
1566 /* If this is a constant, we know the alignment. */
1567 else if (CONSTANT_CLASS_P (t))
1568 {
1569 align = TYPE_ALIGN (type);
1570 #ifdef CONSTANT_ALIGNMENT
1571 align = CONSTANT_ALIGNMENT (t, align);
1572 #endif
1573 }
1574
1575 /* If this is a field reference and not a bit-field, record it. */
1576 /* ??? There is some information that can be gleened from bit-fields,
1577 such as the word offset in the structure that might be modified.
1578 But skip it for now. */
1579 else if (TREE_CODE (t) == COMPONENT_REF
1580 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1581 {
1582 expr = component_ref_for_mem_expr (t);
1583 offset = const0_rtx;
1584 apply_bitpos = bitpos;
1585 /* ??? Any reason the field size would be different than
1586 the size we got from the type? */
1587 }
1588
1589 /* If this is an array reference, look for an outer field reference. */
1590 else if (TREE_CODE (t) == ARRAY_REF)
1591 {
1592 tree off_tree = size_zero_node;
1593 /* We can't modify t, because we use it at the end of the
1594 function. */
1595 tree t2 = t;
1596
1597 do
1598 {
1599 tree index = TREE_OPERAND (t2, 1);
1600 tree low_bound = array_ref_low_bound (t2);
1601 tree unit_size = array_ref_element_size (t2);
1602
1603 /* We assume all arrays have sizes that are a multiple of a byte.
1604 First subtract the lower bound, if any, in the type of the
1605 index, then convert to sizetype and multiply by the size of
1606 the array element. */
1607 if (! integer_zerop (low_bound))
1608 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1609 index, low_bound));
1610
1611 off_tree = size_binop (PLUS_EXPR,
1612 size_binop (MULT_EXPR, convert (sizetype,
1613 index),
1614 unit_size),
1615 off_tree);
1616 t2 = TREE_OPERAND (t2, 0);
1617 }
1618 while (TREE_CODE (t2) == ARRAY_REF);
1619
1620 if (DECL_P (t2))
1621 {
1622 expr = t2;
1623 offset = NULL;
1624 if (host_integerp (off_tree, 1))
1625 {
1626 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1627 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1628 align = DECL_ALIGN (t2);
1629 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1630 align = aoff;
1631 offset = GEN_INT (ioff);
1632 apply_bitpos = bitpos;
1633 }
1634 }
1635 else if (TREE_CODE (t2) == COMPONENT_REF)
1636 {
1637 expr = component_ref_for_mem_expr (t2);
1638 if (host_integerp (off_tree, 1))
1639 {
1640 offset = GEN_INT (tree_low_cst (off_tree, 1));
1641 apply_bitpos = bitpos;
1642 }
1643 /* ??? Any reason the field size would be different than
1644 the size we got from the type? */
1645 }
1646 else if (flag_argument_noalias > 1
1647 && (INDIRECT_REF_P (t2))
1648 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1649 {
1650 expr = t2;
1651 offset = NULL;
1652 }
1653 }
1654
1655 /* If this is a Fortran indirect argument reference, record the
1656 parameter decl. */
1657 else if (flag_argument_noalias > 1
1658 && (INDIRECT_REF_P (t))
1659 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1660 {
1661 expr = t;
1662 offset = NULL;
1663 }
1664 }
1665
1666 /* If we modified OFFSET based on T, then subtract the outstanding
1667 bit position offset. Similarly, increase the size of the accessed
1668 object to contain the negative offset. */
1669 if (apply_bitpos)
1670 {
1671 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1672 if (size)
1673 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1674 }
1675
1676 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1677 {
1678 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1679 we're overlapping. */
1680 offset = NULL;
1681 expr = NULL;
1682 }
1683
1684 /* Now set the attributes we computed above. */
1685 MEM_ATTRS (ref)
1686 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1687
1688 /* If this is already known to be a scalar or aggregate, we are done. */
1689 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1690 return;
1691
1692 /* If it is a reference into an aggregate, this is part of an aggregate.
1693 Otherwise we don't know. */
1694 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1695 || TREE_CODE (t) == ARRAY_RANGE_REF
1696 || TREE_CODE (t) == BIT_FIELD_REF)
1697 MEM_IN_STRUCT_P (ref) = 1;
1698 }
1699
1700 void
1701 set_mem_attributes (rtx ref, tree t, int objectp)
1702 {
1703 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1704 }
1705
1706 /* Set the decl for MEM to DECL. */
1707
1708 void
1709 set_mem_attrs_from_reg (rtx mem, rtx reg)
1710 {
1711 MEM_ATTRS (mem)
1712 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1713 GEN_INT (REG_OFFSET (reg)),
1714 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1715 }
1716
1717 /* Set the alias set of MEM to SET. */
1718
1719 void
1720 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1721 {
1722 #ifdef ENABLE_CHECKING
1723 /* If the new and old alias sets don't conflict, something is wrong. */
1724 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1725 #endif
1726
1727 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1728 MEM_SIZE (mem), MEM_ALIGN (mem),
1729 GET_MODE (mem));
1730 }
1731
1732 /* Set the alignment of MEM to ALIGN bits. */
1733
1734 void
1735 set_mem_align (rtx mem, unsigned int align)
1736 {
1737 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1738 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1739 GET_MODE (mem));
1740 }
1741
1742 /* Set the expr for MEM to EXPR. */
1743
1744 void
1745 set_mem_expr (rtx mem, tree expr)
1746 {
1747 MEM_ATTRS (mem)
1748 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1749 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1750 }
1751
1752 /* Set the offset of MEM to OFFSET. */
1753
1754 void
1755 set_mem_offset (rtx mem, rtx offset)
1756 {
1757 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1758 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1759 GET_MODE (mem));
1760 }
1761
1762 /* Set the size of MEM to SIZE. */
1763
1764 void
1765 set_mem_size (rtx mem, rtx size)
1766 {
1767 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1768 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1769 GET_MODE (mem));
1770 }
1771 \f
1772 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1773 and its address changed to ADDR. (VOIDmode means don't change the mode.
1774 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1775 returned memory location is required to be valid. The memory
1776 attributes are not changed. */
1777
1778 static rtx
1779 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1780 {
1781 rtx new;
1782
1783 gcc_assert (MEM_P (memref));
1784 if (mode == VOIDmode)
1785 mode = GET_MODE (memref);
1786 if (addr == 0)
1787 addr = XEXP (memref, 0);
1788 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1789 && (!validate || memory_address_p (mode, addr)))
1790 return memref;
1791
1792 if (validate)
1793 {
1794 if (reload_in_progress || reload_completed)
1795 gcc_assert (memory_address_p (mode, addr));
1796 else
1797 addr = memory_address (mode, addr);
1798 }
1799
1800 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1801 return memref;
1802
1803 new = gen_rtx_MEM (mode, addr);
1804 MEM_COPY_ATTRIBUTES (new, memref);
1805 return new;
1806 }
1807
1808 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1809 way we are changing MEMREF, so we only preserve the alias set. */
1810
1811 rtx
1812 change_address (rtx memref, enum machine_mode mode, rtx addr)
1813 {
1814 rtx new = change_address_1 (memref, mode, addr, 1), size;
1815 enum machine_mode mmode = GET_MODE (new);
1816 unsigned int align;
1817
1818 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1819 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1820
1821 /* If there are no changes, just return the original memory reference. */
1822 if (new == memref)
1823 {
1824 if (MEM_ATTRS (memref) == 0
1825 || (MEM_EXPR (memref) == NULL
1826 && MEM_OFFSET (memref) == NULL
1827 && MEM_SIZE (memref) == size
1828 && MEM_ALIGN (memref) == align))
1829 return new;
1830
1831 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1832 MEM_COPY_ATTRIBUTES (new, memref);
1833 }
1834
1835 MEM_ATTRS (new)
1836 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1837
1838 return new;
1839 }
1840
1841 /* Return a memory reference like MEMREF, but with its mode changed
1842 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1843 nonzero, the memory address is forced to be valid.
1844 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1845 and caller is responsible for adjusting MEMREF base register. */
1846
1847 rtx
1848 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1849 int validate, int adjust)
1850 {
1851 rtx addr = XEXP (memref, 0);
1852 rtx new;
1853 rtx memoffset = MEM_OFFSET (memref);
1854 rtx size = 0;
1855 unsigned int memalign = MEM_ALIGN (memref);
1856
1857 /* If there are no changes, just return the original memory reference. */
1858 if (mode == GET_MODE (memref) && !offset
1859 && (!validate || memory_address_p (mode, addr)))
1860 return memref;
1861
1862 /* ??? Prefer to create garbage instead of creating shared rtl.
1863 This may happen even if offset is nonzero -- consider
1864 (plus (plus reg reg) const_int) -- so do this always. */
1865 addr = copy_rtx (addr);
1866
1867 if (adjust)
1868 {
1869 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1870 object, we can merge it into the LO_SUM. */
1871 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1872 && offset >= 0
1873 && (unsigned HOST_WIDE_INT) offset
1874 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1875 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1876 plus_constant (XEXP (addr, 1), offset));
1877 else
1878 addr = plus_constant (addr, offset);
1879 }
1880
1881 new = change_address_1 (memref, mode, addr, validate);
1882
1883 /* Compute the new values of the memory attributes due to this adjustment.
1884 We add the offsets and update the alignment. */
1885 if (memoffset)
1886 memoffset = GEN_INT (offset + INTVAL (memoffset));
1887
1888 /* Compute the new alignment by taking the MIN of the alignment and the
1889 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1890 if zero. */
1891 if (offset != 0)
1892 memalign
1893 = MIN (memalign,
1894 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1895
1896 /* We can compute the size in a number of ways. */
1897 if (GET_MODE (new) != BLKmode)
1898 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1899 else if (MEM_SIZE (memref))
1900 size = plus_constant (MEM_SIZE (memref), -offset);
1901
1902 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1903 memoffset, size, memalign, GET_MODE (new));
1904
1905 /* At some point, we should validate that this offset is within the object,
1906 if all the appropriate values are known. */
1907 return new;
1908 }
1909
1910 /* Return a memory reference like MEMREF, but with its mode changed
1911 to MODE and its address changed to ADDR, which is assumed to be
1912 MEMREF offseted by OFFSET bytes. If VALIDATE is
1913 nonzero, the memory address is forced to be valid. */
1914
1915 rtx
1916 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1917 HOST_WIDE_INT offset, int validate)
1918 {
1919 memref = change_address_1 (memref, VOIDmode, addr, validate);
1920 return adjust_address_1 (memref, mode, offset, validate, 0);
1921 }
1922
1923 /* Return a memory reference like MEMREF, but whose address is changed by
1924 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1925 known to be in OFFSET (possibly 1). */
1926
1927 rtx
1928 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1929 {
1930 rtx new, addr = XEXP (memref, 0);
1931
1932 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1933
1934 /* At this point we don't know _why_ the address is invalid. It
1935 could have secondary memory references, multiplies or anything.
1936
1937 However, if we did go and rearrange things, we can wind up not
1938 being able to recognize the magic around pic_offset_table_rtx.
1939 This stuff is fragile, and is yet another example of why it is
1940 bad to expose PIC machinery too early. */
1941 if (! memory_address_p (GET_MODE (memref), new)
1942 && GET_CODE (addr) == PLUS
1943 && XEXP (addr, 0) == pic_offset_table_rtx)
1944 {
1945 addr = force_reg (GET_MODE (addr), addr);
1946 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1947 }
1948
1949 update_temp_slot_address (XEXP (memref, 0), new);
1950 new = change_address_1 (memref, VOIDmode, new, 1);
1951
1952 /* If there are no changes, just return the original memory reference. */
1953 if (new == memref)
1954 return new;
1955
1956 /* Update the alignment to reflect the offset. Reset the offset, which
1957 we don't know. */
1958 MEM_ATTRS (new)
1959 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1960 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1961 GET_MODE (new));
1962 return new;
1963 }
1964
1965 /* Return a memory reference like MEMREF, but with its address changed to
1966 ADDR. The caller is asserting that the actual piece of memory pointed
1967 to is the same, just the form of the address is being changed, such as
1968 by putting something into a register. */
1969
1970 rtx
1971 replace_equiv_address (rtx memref, rtx addr)
1972 {
1973 /* change_address_1 copies the memory attribute structure without change
1974 and that's exactly what we want here. */
1975 update_temp_slot_address (XEXP (memref, 0), addr);
1976 return change_address_1 (memref, VOIDmode, addr, 1);
1977 }
1978
1979 /* Likewise, but the reference is not required to be valid. */
1980
1981 rtx
1982 replace_equiv_address_nv (rtx memref, rtx addr)
1983 {
1984 return change_address_1 (memref, VOIDmode, addr, 0);
1985 }
1986
1987 /* Return a memory reference like MEMREF, but with its mode widened to
1988 MODE and offset by OFFSET. This would be used by targets that e.g.
1989 cannot issue QImode memory operations and have to use SImode memory
1990 operations plus masking logic. */
1991
1992 rtx
1993 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1994 {
1995 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1996 tree expr = MEM_EXPR (new);
1997 rtx memoffset = MEM_OFFSET (new);
1998 unsigned int size = GET_MODE_SIZE (mode);
1999
2000 /* If there are no changes, just return the original memory reference. */
2001 if (new == memref)
2002 return new;
2003
2004 /* If we don't know what offset we were at within the expression, then
2005 we can't know if we've overstepped the bounds. */
2006 if (! memoffset)
2007 expr = NULL_TREE;
2008
2009 while (expr)
2010 {
2011 if (TREE_CODE (expr) == COMPONENT_REF)
2012 {
2013 tree field = TREE_OPERAND (expr, 1);
2014 tree offset = component_ref_field_offset (expr);
2015
2016 if (! DECL_SIZE_UNIT (field))
2017 {
2018 expr = NULL_TREE;
2019 break;
2020 }
2021
2022 /* Is the field at least as large as the access? If so, ok,
2023 otherwise strip back to the containing structure. */
2024 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2025 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2026 && INTVAL (memoffset) >= 0)
2027 break;
2028
2029 if (! host_integerp (offset, 1))
2030 {
2031 expr = NULL_TREE;
2032 break;
2033 }
2034
2035 expr = TREE_OPERAND (expr, 0);
2036 memoffset
2037 = (GEN_INT (INTVAL (memoffset)
2038 + tree_low_cst (offset, 1)
2039 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2040 / BITS_PER_UNIT)));
2041 }
2042 /* Similarly for the decl. */
2043 else if (DECL_P (expr)
2044 && DECL_SIZE_UNIT (expr)
2045 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2046 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2047 && (! memoffset || INTVAL (memoffset) >= 0))
2048 break;
2049 else
2050 {
2051 /* The widened memory access overflows the expression, which means
2052 that it could alias another expression. Zap it. */
2053 expr = NULL_TREE;
2054 break;
2055 }
2056 }
2057
2058 if (! expr)
2059 memoffset = NULL_RTX;
2060
2061 /* The widened memory may alias other stuff, so zap the alias set. */
2062 /* ??? Maybe use get_alias_set on any remaining expression. */
2063
2064 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2065 MEM_ALIGN (new), mode);
2066
2067 return new;
2068 }
2069 \f
2070 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2071
2072 rtx
2073 gen_label_rtx (void)
2074 {
2075 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2076 NULL, label_num++, NULL);
2077 }
2078 \f
2079 /* For procedure integration. */
2080
2081 /* Install new pointers to the first and last insns in the chain.
2082 Also, set cur_insn_uid to one higher than the last in use.
2083 Used for an inline-procedure after copying the insn chain. */
2084
2085 void
2086 set_new_first_and_last_insn (rtx first, rtx last)
2087 {
2088 rtx insn;
2089
2090 first_insn = first;
2091 last_insn = last;
2092 cur_insn_uid = 0;
2093
2094 for (insn = first; insn; insn = NEXT_INSN (insn))
2095 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2096
2097 cur_insn_uid++;
2098 }
2099 \f
2100 /* Go through all the RTL insn bodies and copy any invalid shared
2101 structure. This routine should only be called once. */
2102
2103 static void
2104 unshare_all_rtl_1 (tree fndecl, rtx insn)
2105 {
2106 tree decl;
2107
2108 /* Make sure that virtual parameters are not shared. */
2109 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2110 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2111
2112 /* Make sure that virtual stack slots are not shared. */
2113 unshare_all_decls (DECL_INITIAL (fndecl));
2114
2115 /* Unshare just about everything else. */
2116 unshare_all_rtl_in_chain (insn);
2117
2118 /* Make sure the addresses of stack slots found outside the insn chain
2119 (such as, in DECL_RTL of a variable) are not shared
2120 with the insn chain.
2121
2122 This special care is necessary when the stack slot MEM does not
2123 actually appear in the insn chain. If it does appear, its address
2124 is unshared from all else at that point. */
2125 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2126 }
2127
2128 /* Go through all the RTL insn bodies and copy any invalid shared
2129 structure, again. This is a fairly expensive thing to do so it
2130 should be done sparingly. */
2131
2132 void
2133 unshare_all_rtl_again (rtx insn)
2134 {
2135 rtx p;
2136 tree decl;
2137
2138 for (p = insn; p; p = NEXT_INSN (p))
2139 if (INSN_P (p))
2140 {
2141 reset_used_flags (PATTERN (p));
2142 reset_used_flags (REG_NOTES (p));
2143 reset_used_flags (LOG_LINKS (p));
2144 }
2145
2146 /* Make sure that virtual stack slots are not shared. */
2147 reset_used_decls (DECL_INITIAL (cfun->decl));
2148
2149 /* Make sure that virtual parameters are not shared. */
2150 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2151 reset_used_flags (DECL_RTL (decl));
2152
2153 reset_used_flags (stack_slot_list);
2154
2155 unshare_all_rtl_1 (cfun->decl, insn);
2156 }
2157
2158 void
2159 unshare_all_rtl (void)
2160 {
2161 unshare_all_rtl_1 (current_function_decl, get_insns ());
2162 }
2163
2164 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2165 Recursively does the same for subexpressions. */
2166
2167 static void
2168 verify_rtx_sharing (rtx orig, rtx insn)
2169 {
2170 rtx x = orig;
2171 int i;
2172 enum rtx_code code;
2173 const char *format_ptr;
2174
2175 if (x == 0)
2176 return;
2177
2178 code = GET_CODE (x);
2179
2180 /* These types may be freely shared. */
2181
2182 switch (code)
2183 {
2184 case REG:
2185 case CONST_INT:
2186 case CONST_DOUBLE:
2187 case CONST_VECTOR:
2188 case SYMBOL_REF:
2189 case LABEL_REF:
2190 case CODE_LABEL:
2191 case PC:
2192 case CC0:
2193 case SCRATCH:
2194 return;
2195 /* SCRATCH must be shared because they represent distinct values. */
2196 case CLOBBER:
2197 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2198 return;
2199 break;
2200
2201 case CONST:
2202 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2203 a LABEL_REF, it isn't sharable. */
2204 if (GET_CODE (XEXP (x, 0)) == PLUS
2205 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2206 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2207 return;
2208 break;
2209
2210 case MEM:
2211 /* A MEM is allowed to be shared if its address is constant. */
2212 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2213 || reload_completed || reload_in_progress)
2214 return;
2215
2216 break;
2217
2218 default:
2219 break;
2220 }
2221
2222 /* This rtx may not be shared. If it has already been seen,
2223 replace it with a copy of itself. */
2224 #ifdef ENABLE_CHECKING
2225 if (RTX_FLAG (x, used))
2226 {
2227 error ("Invalid rtl sharing found in the insn");
2228 debug_rtx (insn);
2229 error ("Shared rtx");
2230 debug_rtx (x);
2231 internal_error ("Internal consistency failure");
2232 }
2233 #endif
2234 gcc_assert (!RTX_FLAG (x, used));
2235
2236 RTX_FLAG (x, used) = 1;
2237
2238 /* Now scan the subexpressions recursively. */
2239
2240 format_ptr = GET_RTX_FORMAT (code);
2241
2242 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2243 {
2244 switch (*format_ptr++)
2245 {
2246 case 'e':
2247 verify_rtx_sharing (XEXP (x, i), insn);
2248 break;
2249
2250 case 'E':
2251 if (XVEC (x, i) != NULL)
2252 {
2253 int j;
2254 int len = XVECLEN (x, i);
2255
2256 for (j = 0; j < len; j++)
2257 {
2258 /* We allow sharing of ASM_OPERANDS inside single
2259 instruction. */
2260 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2261 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2262 == ASM_OPERANDS))
2263 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2264 else
2265 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2266 }
2267 }
2268 break;
2269 }
2270 }
2271 return;
2272 }
2273
2274 /* Go through all the RTL insn bodies and check that there is no unexpected
2275 sharing in between the subexpressions. */
2276
2277 void
2278 verify_rtl_sharing (void)
2279 {
2280 rtx p;
2281
2282 for (p = get_insns (); p; p = NEXT_INSN (p))
2283 if (INSN_P (p))
2284 {
2285 reset_used_flags (PATTERN (p));
2286 reset_used_flags (REG_NOTES (p));
2287 reset_used_flags (LOG_LINKS (p));
2288 }
2289
2290 for (p = get_insns (); p; p = NEXT_INSN (p))
2291 if (INSN_P (p))
2292 {
2293 verify_rtx_sharing (PATTERN (p), p);
2294 verify_rtx_sharing (REG_NOTES (p), p);
2295 verify_rtx_sharing (LOG_LINKS (p), p);
2296 }
2297 }
2298
2299 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2300 Assumes the mark bits are cleared at entry. */
2301
2302 void
2303 unshare_all_rtl_in_chain (rtx insn)
2304 {
2305 for (; insn; insn = NEXT_INSN (insn))
2306 if (INSN_P (insn))
2307 {
2308 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2309 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2310 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2311 }
2312 }
2313
2314 /* Go through all virtual stack slots of a function and copy any
2315 shared structure. */
2316 static void
2317 unshare_all_decls (tree blk)
2318 {
2319 tree t;
2320
2321 /* Copy shared decls. */
2322 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2323 if (DECL_RTL_SET_P (t))
2324 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2325
2326 /* Now process sub-blocks. */
2327 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2328 unshare_all_decls (t);
2329 }
2330
2331 /* Go through all virtual stack slots of a function and mark them as
2332 not shared. */
2333 static void
2334 reset_used_decls (tree blk)
2335 {
2336 tree t;
2337
2338 /* Mark decls. */
2339 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2340 if (DECL_RTL_SET_P (t))
2341 reset_used_flags (DECL_RTL (t));
2342
2343 /* Now process sub-blocks. */
2344 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2345 reset_used_decls (t);
2346 }
2347
2348 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2349 Recursively does the same for subexpressions. Uses
2350 copy_rtx_if_shared_1 to reduce stack space. */
2351
2352 rtx
2353 copy_rtx_if_shared (rtx orig)
2354 {
2355 copy_rtx_if_shared_1 (&orig);
2356 return orig;
2357 }
2358
2359 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2360 use. Recursively does the same for subexpressions. */
2361
2362 static void
2363 copy_rtx_if_shared_1 (rtx *orig1)
2364 {
2365 rtx x;
2366 int i;
2367 enum rtx_code code;
2368 rtx *last_ptr;
2369 const char *format_ptr;
2370 int copied = 0;
2371 int length;
2372
2373 /* Repeat is used to turn tail-recursion into iteration. */
2374 repeat:
2375 x = *orig1;
2376
2377 if (x == 0)
2378 return;
2379
2380 code = GET_CODE (x);
2381
2382 /* These types may be freely shared. */
2383
2384 switch (code)
2385 {
2386 case REG:
2387 case CONST_INT:
2388 case CONST_DOUBLE:
2389 case CONST_VECTOR:
2390 case SYMBOL_REF:
2391 case LABEL_REF:
2392 case CODE_LABEL:
2393 case PC:
2394 case CC0:
2395 case SCRATCH:
2396 /* SCRATCH must be shared because they represent distinct values. */
2397 return;
2398 case CLOBBER:
2399 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2400 return;
2401 break;
2402
2403 case CONST:
2404 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2405 a LABEL_REF, it isn't sharable. */
2406 if (GET_CODE (XEXP (x, 0)) == PLUS
2407 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2408 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2409 return;
2410 break;
2411
2412 case INSN:
2413 case JUMP_INSN:
2414 case CALL_INSN:
2415 case NOTE:
2416 case BARRIER:
2417 /* The chain of insns is not being copied. */
2418 return;
2419
2420 default:
2421 break;
2422 }
2423
2424 /* This rtx may not be shared. If it has already been seen,
2425 replace it with a copy of itself. */
2426
2427 if (RTX_FLAG (x, used))
2428 {
2429 rtx copy;
2430
2431 copy = rtx_alloc (code);
2432 memcpy (copy, x, RTX_SIZE (code));
2433 x = copy;
2434 copied = 1;
2435 }
2436 RTX_FLAG (x, used) = 1;
2437
2438 /* Now scan the subexpressions recursively.
2439 We can store any replaced subexpressions directly into X
2440 since we know X is not shared! Any vectors in X
2441 must be copied if X was copied. */
2442
2443 format_ptr = GET_RTX_FORMAT (code);
2444 length = GET_RTX_LENGTH (code);
2445 last_ptr = NULL;
2446
2447 for (i = 0; i < length; i++)
2448 {
2449 switch (*format_ptr++)
2450 {
2451 case 'e':
2452 if (last_ptr)
2453 copy_rtx_if_shared_1 (last_ptr);
2454 last_ptr = &XEXP (x, i);
2455 break;
2456
2457 case 'E':
2458 if (XVEC (x, i) != NULL)
2459 {
2460 int j;
2461 int len = XVECLEN (x, i);
2462
2463 /* Copy the vector iff I copied the rtx and the length
2464 is nonzero. */
2465 if (copied && len > 0)
2466 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2467
2468 /* Call recursively on all inside the vector. */
2469 for (j = 0; j < len; j++)
2470 {
2471 if (last_ptr)
2472 copy_rtx_if_shared_1 (last_ptr);
2473 last_ptr = &XVECEXP (x, i, j);
2474 }
2475 }
2476 break;
2477 }
2478 }
2479 *orig1 = x;
2480 if (last_ptr)
2481 {
2482 orig1 = last_ptr;
2483 goto repeat;
2484 }
2485 return;
2486 }
2487
2488 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2489 to look for shared sub-parts. */
2490
2491 void
2492 reset_used_flags (rtx x)
2493 {
2494 int i, j;
2495 enum rtx_code code;
2496 const char *format_ptr;
2497 int length;
2498
2499 /* Repeat is used to turn tail-recursion into iteration. */
2500 repeat:
2501 if (x == 0)
2502 return;
2503
2504 code = GET_CODE (x);
2505
2506 /* These types may be freely shared so we needn't do any resetting
2507 for them. */
2508
2509 switch (code)
2510 {
2511 case REG:
2512 case CONST_INT:
2513 case CONST_DOUBLE:
2514 case CONST_VECTOR:
2515 case SYMBOL_REF:
2516 case CODE_LABEL:
2517 case PC:
2518 case CC0:
2519 return;
2520
2521 case INSN:
2522 case JUMP_INSN:
2523 case CALL_INSN:
2524 case NOTE:
2525 case LABEL_REF:
2526 case BARRIER:
2527 /* The chain of insns is not being copied. */
2528 return;
2529
2530 default:
2531 break;
2532 }
2533
2534 RTX_FLAG (x, used) = 0;
2535
2536 format_ptr = GET_RTX_FORMAT (code);
2537 length = GET_RTX_LENGTH (code);
2538
2539 for (i = 0; i < length; i++)
2540 {
2541 switch (*format_ptr++)
2542 {
2543 case 'e':
2544 if (i == length-1)
2545 {
2546 x = XEXP (x, i);
2547 goto repeat;
2548 }
2549 reset_used_flags (XEXP (x, i));
2550 break;
2551
2552 case 'E':
2553 for (j = 0; j < XVECLEN (x, i); j++)
2554 reset_used_flags (XVECEXP (x, i, j));
2555 break;
2556 }
2557 }
2558 }
2559
2560 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2561 to look for shared sub-parts. */
2562
2563 void
2564 set_used_flags (rtx x)
2565 {
2566 int i, j;
2567 enum rtx_code code;
2568 const char *format_ptr;
2569
2570 if (x == 0)
2571 return;
2572
2573 code = GET_CODE (x);
2574
2575 /* These types may be freely shared so we needn't do any resetting
2576 for them. */
2577
2578 switch (code)
2579 {
2580 case REG:
2581 case CONST_INT:
2582 case CONST_DOUBLE:
2583 case CONST_VECTOR:
2584 case SYMBOL_REF:
2585 case CODE_LABEL:
2586 case PC:
2587 case CC0:
2588 return;
2589
2590 case INSN:
2591 case JUMP_INSN:
2592 case CALL_INSN:
2593 case NOTE:
2594 case LABEL_REF:
2595 case BARRIER:
2596 /* The chain of insns is not being copied. */
2597 return;
2598
2599 default:
2600 break;
2601 }
2602
2603 RTX_FLAG (x, used) = 1;
2604
2605 format_ptr = GET_RTX_FORMAT (code);
2606 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2607 {
2608 switch (*format_ptr++)
2609 {
2610 case 'e':
2611 set_used_flags (XEXP (x, i));
2612 break;
2613
2614 case 'E':
2615 for (j = 0; j < XVECLEN (x, i); j++)
2616 set_used_flags (XVECEXP (x, i, j));
2617 break;
2618 }
2619 }
2620 }
2621 \f
2622 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2623 Return X or the rtx for the pseudo reg the value of X was copied into.
2624 OTHER must be valid as a SET_DEST. */
2625
2626 rtx
2627 make_safe_from (rtx x, rtx other)
2628 {
2629 while (1)
2630 switch (GET_CODE (other))
2631 {
2632 case SUBREG:
2633 other = SUBREG_REG (other);
2634 break;
2635 case STRICT_LOW_PART:
2636 case SIGN_EXTEND:
2637 case ZERO_EXTEND:
2638 other = XEXP (other, 0);
2639 break;
2640 default:
2641 goto done;
2642 }
2643 done:
2644 if ((MEM_P (other)
2645 && ! CONSTANT_P (x)
2646 && !REG_P (x)
2647 && GET_CODE (x) != SUBREG)
2648 || (REG_P (other)
2649 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2650 || reg_mentioned_p (other, x))))
2651 {
2652 rtx temp = gen_reg_rtx (GET_MODE (x));
2653 emit_move_insn (temp, x);
2654 return temp;
2655 }
2656 return x;
2657 }
2658 \f
2659 /* Emission of insns (adding them to the doubly-linked list). */
2660
2661 /* Return the first insn of the current sequence or current function. */
2662
2663 rtx
2664 get_insns (void)
2665 {
2666 return first_insn;
2667 }
2668
2669 /* Specify a new insn as the first in the chain. */
2670
2671 void
2672 set_first_insn (rtx insn)
2673 {
2674 gcc_assert (!PREV_INSN (insn));
2675 first_insn = insn;
2676 }
2677
2678 /* Return the last insn emitted in current sequence or current function. */
2679
2680 rtx
2681 get_last_insn (void)
2682 {
2683 return last_insn;
2684 }
2685
2686 /* Specify a new insn as the last in the chain. */
2687
2688 void
2689 set_last_insn (rtx insn)
2690 {
2691 gcc_assert (!NEXT_INSN (insn));
2692 last_insn = insn;
2693 }
2694
2695 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2696
2697 rtx
2698 get_last_insn_anywhere (void)
2699 {
2700 struct sequence_stack *stack;
2701 if (last_insn)
2702 return last_insn;
2703 for (stack = seq_stack; stack; stack = stack->next)
2704 if (stack->last != 0)
2705 return stack->last;
2706 return 0;
2707 }
2708
2709 /* Return the first nonnote insn emitted in current sequence or current
2710 function. This routine looks inside SEQUENCEs. */
2711
2712 rtx
2713 get_first_nonnote_insn (void)
2714 {
2715 rtx insn = first_insn;
2716
2717 if (insn)
2718 {
2719 if (NOTE_P (insn))
2720 for (insn = next_insn (insn);
2721 insn && NOTE_P (insn);
2722 insn = next_insn (insn))
2723 continue;
2724 else
2725 {
2726 if (GET_CODE (insn) == INSN
2727 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2728 insn = XVECEXP (PATTERN (insn), 0, 0);
2729 }
2730 }
2731
2732 return insn;
2733 }
2734
2735 /* Return the last nonnote insn emitted in current sequence or current
2736 function. This routine looks inside SEQUENCEs. */
2737
2738 rtx
2739 get_last_nonnote_insn (void)
2740 {
2741 rtx insn = last_insn;
2742
2743 if (insn)
2744 {
2745 if (NOTE_P (insn))
2746 for (insn = previous_insn (insn);
2747 insn && NOTE_P (insn);
2748 insn = previous_insn (insn))
2749 continue;
2750 else
2751 {
2752 if (GET_CODE (insn) == INSN
2753 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2754 insn = XVECEXP (PATTERN (insn), 0,
2755 XVECLEN (PATTERN (insn), 0) - 1);
2756 }
2757 }
2758
2759 return insn;
2760 }
2761
2762 /* Return a number larger than any instruction's uid in this function. */
2763
2764 int
2765 get_max_uid (void)
2766 {
2767 return cur_insn_uid;
2768 }
2769
2770 /* Renumber instructions so that no instruction UIDs are wasted. */
2771
2772 void
2773 renumber_insns (FILE *stream)
2774 {
2775 rtx insn;
2776
2777 /* If we're not supposed to renumber instructions, don't. */
2778 if (!flag_renumber_insns)
2779 return;
2780
2781 /* If there aren't that many instructions, then it's not really
2782 worth renumbering them. */
2783 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2784 return;
2785
2786 cur_insn_uid = 1;
2787
2788 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2789 {
2790 if (stream)
2791 fprintf (stream, "Renumbering insn %d to %d\n",
2792 INSN_UID (insn), cur_insn_uid);
2793 INSN_UID (insn) = cur_insn_uid++;
2794 }
2795 }
2796 \f
2797 /* Return the next insn. If it is a SEQUENCE, return the first insn
2798 of the sequence. */
2799
2800 rtx
2801 next_insn (rtx insn)
2802 {
2803 if (insn)
2804 {
2805 insn = NEXT_INSN (insn);
2806 if (insn && NONJUMP_INSN_P (insn)
2807 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2808 insn = XVECEXP (PATTERN (insn), 0, 0);
2809 }
2810
2811 return insn;
2812 }
2813
2814 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2815 of the sequence. */
2816
2817 rtx
2818 previous_insn (rtx insn)
2819 {
2820 if (insn)
2821 {
2822 insn = PREV_INSN (insn);
2823 if (insn && NONJUMP_INSN_P (insn)
2824 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2825 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2826 }
2827
2828 return insn;
2829 }
2830
2831 /* Return the next insn after INSN that is not a NOTE. This routine does not
2832 look inside SEQUENCEs. */
2833
2834 rtx
2835 next_nonnote_insn (rtx insn)
2836 {
2837 while (insn)
2838 {
2839 insn = NEXT_INSN (insn);
2840 if (insn == 0 || !NOTE_P (insn))
2841 break;
2842 }
2843
2844 return insn;
2845 }
2846
2847 /* Return the previous insn before INSN that is not a NOTE. This routine does
2848 not look inside SEQUENCEs. */
2849
2850 rtx
2851 prev_nonnote_insn (rtx insn)
2852 {
2853 while (insn)
2854 {
2855 insn = PREV_INSN (insn);
2856 if (insn == 0 || !NOTE_P (insn))
2857 break;
2858 }
2859
2860 return insn;
2861 }
2862
2863 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2864 or 0, if there is none. This routine does not look inside
2865 SEQUENCEs. */
2866
2867 rtx
2868 next_real_insn (rtx insn)
2869 {
2870 while (insn)
2871 {
2872 insn = NEXT_INSN (insn);
2873 if (insn == 0 || INSN_P (insn))
2874 break;
2875 }
2876
2877 return insn;
2878 }
2879
2880 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2881 or 0, if there is none. This routine does not look inside
2882 SEQUENCEs. */
2883
2884 rtx
2885 prev_real_insn (rtx insn)
2886 {
2887 while (insn)
2888 {
2889 insn = PREV_INSN (insn);
2890 if (insn == 0 || INSN_P (insn))
2891 break;
2892 }
2893
2894 return insn;
2895 }
2896
2897 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2898 This routine does not look inside SEQUENCEs. */
2899
2900 rtx
2901 last_call_insn (void)
2902 {
2903 rtx insn;
2904
2905 for (insn = get_last_insn ();
2906 insn && !CALL_P (insn);
2907 insn = PREV_INSN (insn))
2908 ;
2909
2910 return insn;
2911 }
2912
2913 /* Find the next insn after INSN that really does something. This routine
2914 does not look inside SEQUENCEs. Until reload has completed, this is the
2915 same as next_real_insn. */
2916
2917 int
2918 active_insn_p (rtx insn)
2919 {
2920 return (CALL_P (insn) || JUMP_P (insn)
2921 || (NONJUMP_INSN_P (insn)
2922 && (! reload_completed
2923 || (GET_CODE (PATTERN (insn)) != USE
2924 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2925 }
2926
2927 rtx
2928 next_active_insn (rtx insn)
2929 {
2930 while (insn)
2931 {
2932 insn = NEXT_INSN (insn);
2933 if (insn == 0 || active_insn_p (insn))
2934 break;
2935 }
2936
2937 return insn;
2938 }
2939
2940 /* Find the last insn before INSN that really does something. This routine
2941 does not look inside SEQUENCEs. Until reload has completed, this is the
2942 same as prev_real_insn. */
2943
2944 rtx
2945 prev_active_insn (rtx insn)
2946 {
2947 while (insn)
2948 {
2949 insn = PREV_INSN (insn);
2950 if (insn == 0 || active_insn_p (insn))
2951 break;
2952 }
2953
2954 return insn;
2955 }
2956
2957 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2958
2959 rtx
2960 next_label (rtx insn)
2961 {
2962 while (insn)
2963 {
2964 insn = NEXT_INSN (insn);
2965 if (insn == 0 || LABEL_P (insn))
2966 break;
2967 }
2968
2969 return insn;
2970 }
2971
2972 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2973
2974 rtx
2975 prev_label (rtx insn)
2976 {
2977 while (insn)
2978 {
2979 insn = PREV_INSN (insn);
2980 if (insn == 0 || LABEL_P (insn))
2981 break;
2982 }
2983
2984 return insn;
2985 }
2986
2987 /* Return the last label to mark the same position as LABEL. Return null
2988 if LABEL itself is null. */
2989
2990 rtx
2991 skip_consecutive_labels (rtx label)
2992 {
2993 rtx insn;
2994
2995 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
2996 if (LABEL_P (insn))
2997 label = insn;
2998
2999 return label;
3000 }
3001 \f
3002 #ifdef HAVE_cc0
3003 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3004 and REG_CC_USER notes so we can find it. */
3005
3006 void
3007 link_cc0_insns (rtx insn)
3008 {
3009 rtx user = next_nonnote_insn (insn);
3010
3011 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3012 user = XVECEXP (PATTERN (user), 0, 0);
3013
3014 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3015 REG_NOTES (user));
3016 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3017 }
3018
3019 /* Return the next insn that uses CC0 after INSN, which is assumed to
3020 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3021 applied to the result of this function should yield INSN).
3022
3023 Normally, this is simply the next insn. However, if a REG_CC_USER note
3024 is present, it contains the insn that uses CC0.
3025
3026 Return 0 if we can't find the insn. */
3027
3028 rtx
3029 next_cc0_user (rtx insn)
3030 {
3031 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3032
3033 if (note)
3034 return XEXP (note, 0);
3035
3036 insn = next_nonnote_insn (insn);
3037 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3038 insn = XVECEXP (PATTERN (insn), 0, 0);
3039
3040 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3041 return insn;
3042
3043 return 0;
3044 }
3045
3046 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3047 note, it is the previous insn. */
3048
3049 rtx
3050 prev_cc0_setter (rtx insn)
3051 {
3052 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3053
3054 if (note)
3055 return XEXP (note, 0);
3056
3057 insn = prev_nonnote_insn (insn);
3058 gcc_assert (sets_cc0_p (PATTERN (insn)));
3059
3060 return insn;
3061 }
3062 #endif
3063
3064 /* Increment the label uses for all labels present in rtx. */
3065
3066 static void
3067 mark_label_nuses (rtx x)
3068 {
3069 enum rtx_code code;
3070 int i, j;
3071 const char *fmt;
3072
3073 code = GET_CODE (x);
3074 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3075 LABEL_NUSES (XEXP (x, 0))++;
3076
3077 fmt = GET_RTX_FORMAT (code);
3078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3079 {
3080 if (fmt[i] == 'e')
3081 mark_label_nuses (XEXP (x, i));
3082 else if (fmt[i] == 'E')
3083 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3084 mark_label_nuses (XVECEXP (x, i, j));
3085 }
3086 }
3087
3088 \f
3089 /* Try splitting insns that can be split for better scheduling.
3090 PAT is the pattern which might split.
3091 TRIAL is the insn providing PAT.
3092 LAST is nonzero if we should return the last insn of the sequence produced.
3093
3094 If this routine succeeds in splitting, it returns the first or last
3095 replacement insn depending on the value of LAST. Otherwise, it
3096 returns TRIAL. If the insn to be returned can be split, it will be. */
3097
3098 rtx
3099 try_split (rtx pat, rtx trial, int last)
3100 {
3101 rtx before = PREV_INSN (trial);
3102 rtx after = NEXT_INSN (trial);
3103 int has_barrier = 0;
3104 rtx tem;
3105 rtx note, seq;
3106 int probability;
3107 rtx insn_last, insn;
3108 int njumps = 0;
3109
3110 if (any_condjump_p (trial)
3111 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3112 split_branch_probability = INTVAL (XEXP (note, 0));
3113 probability = split_branch_probability;
3114
3115 seq = split_insns (pat, trial);
3116
3117 split_branch_probability = -1;
3118
3119 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3120 We may need to handle this specially. */
3121 if (after && BARRIER_P (after))
3122 {
3123 has_barrier = 1;
3124 after = NEXT_INSN (after);
3125 }
3126
3127 if (!seq)
3128 return trial;
3129
3130 /* Avoid infinite loop if any insn of the result matches
3131 the original pattern. */
3132 insn_last = seq;
3133 while (1)
3134 {
3135 if (INSN_P (insn_last)
3136 && rtx_equal_p (PATTERN (insn_last), pat))
3137 return trial;
3138 if (!NEXT_INSN (insn_last))
3139 break;
3140 insn_last = NEXT_INSN (insn_last);
3141 }
3142
3143 /* Mark labels. */
3144 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3145 {
3146 if (JUMP_P (insn))
3147 {
3148 mark_jump_label (PATTERN (insn), insn, 0);
3149 njumps++;
3150 if (probability != -1
3151 && any_condjump_p (insn)
3152 && !find_reg_note (insn, REG_BR_PROB, 0))
3153 {
3154 /* We can preserve the REG_BR_PROB notes only if exactly
3155 one jump is created, otherwise the machine description
3156 is responsible for this step using
3157 split_branch_probability variable. */
3158 gcc_assert (njumps == 1);
3159 REG_NOTES (insn)
3160 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3161 GEN_INT (probability),
3162 REG_NOTES (insn));
3163 }
3164 }
3165 }
3166
3167 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3168 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3169 if (CALL_P (trial))
3170 {
3171 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3172 if (CALL_P (insn))
3173 {
3174 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3175 while (*p)
3176 p = &XEXP (*p, 1);
3177 *p = CALL_INSN_FUNCTION_USAGE (trial);
3178 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3179 }
3180 }
3181
3182 /* Copy notes, particularly those related to the CFG. */
3183 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3184 {
3185 switch (REG_NOTE_KIND (note))
3186 {
3187 case REG_EH_REGION:
3188 insn = insn_last;
3189 while (insn != NULL_RTX)
3190 {
3191 if (CALL_P (insn)
3192 || (flag_non_call_exceptions && INSN_P (insn)
3193 && may_trap_p (PATTERN (insn))))
3194 REG_NOTES (insn)
3195 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3196 XEXP (note, 0),
3197 REG_NOTES (insn));
3198 insn = PREV_INSN (insn);
3199 }
3200 break;
3201
3202 case REG_NORETURN:
3203 case REG_SETJMP:
3204 case REG_ALWAYS_RETURN:
3205 insn = insn_last;
3206 while (insn != NULL_RTX)
3207 {
3208 if (CALL_P (insn))
3209 REG_NOTES (insn)
3210 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3211 XEXP (note, 0),
3212 REG_NOTES (insn));
3213 insn = PREV_INSN (insn);
3214 }
3215 break;
3216
3217 case REG_NON_LOCAL_GOTO:
3218 insn = insn_last;
3219 while (insn != NULL_RTX)
3220 {
3221 if (JUMP_P (insn))
3222 REG_NOTES (insn)
3223 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3224 XEXP (note, 0),
3225 REG_NOTES (insn));
3226 insn = PREV_INSN (insn);
3227 }
3228 break;
3229
3230 default:
3231 break;
3232 }
3233 }
3234
3235 /* If there are LABELS inside the split insns increment the
3236 usage count so we don't delete the label. */
3237 if (NONJUMP_INSN_P (trial))
3238 {
3239 insn = insn_last;
3240 while (insn != NULL_RTX)
3241 {
3242 if (NONJUMP_INSN_P (insn))
3243 mark_label_nuses (PATTERN (insn));
3244
3245 insn = PREV_INSN (insn);
3246 }
3247 }
3248
3249 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3250
3251 delete_insn (trial);
3252 if (has_barrier)
3253 emit_barrier_after (tem);
3254
3255 /* Recursively call try_split for each new insn created; by the
3256 time control returns here that insn will be fully split, so
3257 set LAST and continue from the insn after the one returned.
3258 We can't use next_active_insn here since AFTER may be a note.
3259 Ignore deleted insns, which can be occur if not optimizing. */
3260 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3261 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3262 tem = try_split (PATTERN (tem), tem, 1);
3263
3264 /* Return either the first or the last insn, depending on which was
3265 requested. */
3266 return last
3267 ? (after ? PREV_INSN (after) : last_insn)
3268 : NEXT_INSN (before);
3269 }
3270 \f
3271 /* Make and return an INSN rtx, initializing all its slots.
3272 Store PATTERN in the pattern slots. */
3273
3274 rtx
3275 make_insn_raw (rtx pattern)
3276 {
3277 rtx insn;
3278
3279 insn = rtx_alloc (INSN);
3280
3281 INSN_UID (insn) = cur_insn_uid++;
3282 PATTERN (insn) = pattern;
3283 INSN_CODE (insn) = -1;
3284 LOG_LINKS (insn) = NULL;
3285 REG_NOTES (insn) = NULL;
3286 INSN_LOCATOR (insn) = 0;
3287 BLOCK_FOR_INSN (insn) = NULL;
3288
3289 #ifdef ENABLE_RTL_CHECKING
3290 if (insn
3291 && INSN_P (insn)
3292 && (returnjump_p (insn)
3293 || (GET_CODE (insn) == SET
3294 && SET_DEST (insn) == pc_rtx)))
3295 {
3296 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3297 debug_rtx (insn);
3298 }
3299 #endif
3300
3301 return insn;
3302 }
3303
3304 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3305
3306 static rtx
3307 make_jump_insn_raw (rtx pattern)
3308 {
3309 rtx insn;
3310
3311 insn = rtx_alloc (JUMP_INSN);
3312 INSN_UID (insn) = cur_insn_uid++;
3313
3314 PATTERN (insn) = pattern;
3315 INSN_CODE (insn) = -1;
3316 LOG_LINKS (insn) = NULL;
3317 REG_NOTES (insn) = NULL;
3318 JUMP_LABEL (insn) = NULL;
3319 INSN_LOCATOR (insn) = 0;
3320 BLOCK_FOR_INSN (insn) = NULL;
3321
3322 return insn;
3323 }
3324
3325 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3326
3327 static rtx
3328 make_call_insn_raw (rtx pattern)
3329 {
3330 rtx insn;
3331
3332 insn = rtx_alloc (CALL_INSN);
3333 INSN_UID (insn) = cur_insn_uid++;
3334
3335 PATTERN (insn) = pattern;
3336 INSN_CODE (insn) = -1;
3337 LOG_LINKS (insn) = NULL;
3338 REG_NOTES (insn) = NULL;
3339 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3340 INSN_LOCATOR (insn) = 0;
3341 BLOCK_FOR_INSN (insn) = NULL;
3342
3343 return insn;
3344 }
3345 \f
3346 /* Add INSN to the end of the doubly-linked list.
3347 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3348
3349 void
3350 add_insn (rtx insn)
3351 {
3352 PREV_INSN (insn) = last_insn;
3353 NEXT_INSN (insn) = 0;
3354
3355 if (NULL != last_insn)
3356 NEXT_INSN (last_insn) = insn;
3357
3358 if (NULL == first_insn)
3359 first_insn = insn;
3360
3361 last_insn = insn;
3362 }
3363
3364 /* Add INSN into the doubly-linked list after insn AFTER. This and
3365 the next should be the only functions called to insert an insn once
3366 delay slots have been filled since only they know how to update a
3367 SEQUENCE. */
3368
3369 void
3370 add_insn_after (rtx insn, rtx after)
3371 {
3372 rtx next = NEXT_INSN (after);
3373 basic_block bb;
3374
3375 gcc_assert (!optimize || !INSN_DELETED_P (after));
3376
3377 NEXT_INSN (insn) = next;
3378 PREV_INSN (insn) = after;
3379
3380 if (next)
3381 {
3382 PREV_INSN (next) = insn;
3383 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3384 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3385 }
3386 else if (last_insn == after)
3387 last_insn = insn;
3388 else
3389 {
3390 struct sequence_stack *stack = seq_stack;
3391 /* Scan all pending sequences too. */
3392 for (; stack; stack = stack->next)
3393 if (after == stack->last)
3394 {
3395 stack->last = insn;
3396 break;
3397 }
3398
3399 gcc_assert (stack);
3400 }
3401
3402 if (!BARRIER_P (after)
3403 && !BARRIER_P (insn)
3404 && (bb = BLOCK_FOR_INSN (after)))
3405 {
3406 set_block_for_insn (insn, bb);
3407 if (INSN_P (insn))
3408 bb->flags |= BB_DIRTY;
3409 /* Should not happen as first in the BB is always
3410 either NOTE or LABEL. */
3411 if (BB_END (bb) == after
3412 /* Avoid clobbering of structure when creating new BB. */
3413 && !BARRIER_P (insn)
3414 && (!NOTE_P (insn)
3415 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3416 BB_END (bb) = insn;
3417 }
3418
3419 NEXT_INSN (after) = insn;
3420 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3421 {
3422 rtx sequence = PATTERN (after);
3423 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3424 }
3425 }
3426
3427 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3428 the previous should be the only functions called to insert an insn once
3429 delay slots have been filled since only they know how to update a
3430 SEQUENCE. */
3431
3432 void
3433 add_insn_before (rtx insn, rtx before)
3434 {
3435 rtx prev = PREV_INSN (before);
3436 basic_block bb;
3437
3438 gcc_assert (!optimize || !INSN_DELETED_P (before));
3439
3440 PREV_INSN (insn) = prev;
3441 NEXT_INSN (insn) = before;
3442
3443 if (prev)
3444 {
3445 NEXT_INSN (prev) = insn;
3446 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3447 {
3448 rtx sequence = PATTERN (prev);
3449 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3450 }
3451 }
3452 else if (first_insn == before)
3453 first_insn = insn;
3454 else
3455 {
3456 struct sequence_stack *stack = seq_stack;
3457 /* Scan all pending sequences too. */
3458 for (; stack; stack = stack->next)
3459 if (before == stack->first)
3460 {
3461 stack->first = insn;
3462 break;
3463 }
3464
3465 gcc_assert (stack);
3466 }
3467
3468 if (!BARRIER_P (before)
3469 && !BARRIER_P (insn)
3470 && (bb = BLOCK_FOR_INSN (before)))
3471 {
3472 set_block_for_insn (insn, bb);
3473 if (INSN_P (insn))
3474 bb->flags |= BB_DIRTY;
3475 /* Should not happen as first in the BB is always either NOTE or
3476 LABEL. */
3477 gcc_assert (BB_HEAD (bb) != insn
3478 /* Avoid clobbering of structure when creating new BB. */
3479 || BARRIER_P (insn)
3480 || (NOTE_P (insn)
3481 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3482 }
3483
3484 PREV_INSN (before) = insn;
3485 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3486 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3487 }
3488
3489 /* Remove an insn from its doubly-linked list. This function knows how
3490 to handle sequences. */
3491 void
3492 remove_insn (rtx insn)
3493 {
3494 rtx next = NEXT_INSN (insn);
3495 rtx prev = PREV_INSN (insn);
3496 basic_block bb;
3497
3498 if (prev)
3499 {
3500 NEXT_INSN (prev) = next;
3501 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3502 {
3503 rtx sequence = PATTERN (prev);
3504 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3505 }
3506 }
3507 else if (first_insn == insn)
3508 first_insn = next;
3509 else
3510 {
3511 struct sequence_stack *stack = seq_stack;
3512 /* Scan all pending sequences too. */
3513 for (; stack; stack = stack->next)
3514 if (insn == stack->first)
3515 {
3516 stack->first = next;
3517 break;
3518 }
3519
3520 gcc_assert (stack);
3521 }
3522
3523 if (next)
3524 {
3525 PREV_INSN (next) = prev;
3526 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3527 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3528 }
3529 else if (last_insn == insn)
3530 last_insn = prev;
3531 else
3532 {
3533 struct sequence_stack *stack = seq_stack;
3534 /* Scan all pending sequences too. */
3535 for (; stack; stack = stack->next)
3536 if (insn == stack->last)
3537 {
3538 stack->last = prev;
3539 break;
3540 }
3541
3542 gcc_assert (stack);
3543 }
3544 if (!BARRIER_P (insn)
3545 && (bb = BLOCK_FOR_INSN (insn)))
3546 {
3547 if (INSN_P (insn))
3548 bb->flags |= BB_DIRTY;
3549 if (BB_HEAD (bb) == insn)
3550 {
3551 /* Never ever delete the basic block note without deleting whole
3552 basic block. */
3553 gcc_assert (!NOTE_P (insn));
3554 BB_HEAD (bb) = next;
3555 }
3556 if (BB_END (bb) == insn)
3557 BB_END (bb) = prev;
3558 }
3559 }
3560
3561 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3562
3563 void
3564 add_function_usage_to (rtx call_insn, rtx call_fusage)
3565 {
3566 gcc_assert (call_insn && CALL_P (call_insn));
3567
3568 /* Put the register usage information on the CALL. If there is already
3569 some usage information, put ours at the end. */
3570 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3571 {
3572 rtx link;
3573
3574 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3575 link = XEXP (link, 1))
3576 ;
3577
3578 XEXP (link, 1) = call_fusage;
3579 }
3580 else
3581 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3582 }
3583
3584 /* Delete all insns made since FROM.
3585 FROM becomes the new last instruction. */
3586
3587 void
3588 delete_insns_since (rtx from)
3589 {
3590 if (from == 0)
3591 first_insn = 0;
3592 else
3593 NEXT_INSN (from) = 0;
3594 last_insn = from;
3595 }
3596
3597 /* This function is deprecated, please use sequences instead.
3598
3599 Move a consecutive bunch of insns to a different place in the chain.
3600 The insns to be moved are those between FROM and TO.
3601 They are moved to a new position after the insn AFTER.
3602 AFTER must not be FROM or TO or any insn in between.
3603
3604 This function does not know about SEQUENCEs and hence should not be
3605 called after delay-slot filling has been done. */
3606
3607 void
3608 reorder_insns_nobb (rtx from, rtx to, rtx after)
3609 {
3610 /* Splice this bunch out of where it is now. */
3611 if (PREV_INSN (from))
3612 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3613 if (NEXT_INSN (to))
3614 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3615 if (last_insn == to)
3616 last_insn = PREV_INSN (from);
3617 if (first_insn == from)
3618 first_insn = NEXT_INSN (to);
3619
3620 /* Make the new neighbors point to it and it to them. */
3621 if (NEXT_INSN (after))
3622 PREV_INSN (NEXT_INSN (after)) = to;
3623
3624 NEXT_INSN (to) = NEXT_INSN (after);
3625 PREV_INSN (from) = after;
3626 NEXT_INSN (after) = from;
3627 if (after == last_insn)
3628 last_insn = to;
3629 }
3630
3631 /* Same as function above, but take care to update BB boundaries. */
3632 void
3633 reorder_insns (rtx from, rtx to, rtx after)
3634 {
3635 rtx prev = PREV_INSN (from);
3636 basic_block bb, bb2;
3637
3638 reorder_insns_nobb (from, to, after);
3639
3640 if (!BARRIER_P (after)
3641 && (bb = BLOCK_FOR_INSN (after)))
3642 {
3643 rtx x;
3644 bb->flags |= BB_DIRTY;
3645
3646 if (!BARRIER_P (from)
3647 && (bb2 = BLOCK_FOR_INSN (from)))
3648 {
3649 if (BB_END (bb2) == to)
3650 BB_END (bb2) = prev;
3651 bb2->flags |= BB_DIRTY;
3652 }
3653
3654 if (BB_END (bb) == after)
3655 BB_END (bb) = to;
3656
3657 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3658 if (!BARRIER_P (x))
3659 set_block_for_insn (x, bb);
3660 }
3661 }
3662
3663 /* Return the line note insn preceding INSN. */
3664
3665 static rtx
3666 find_line_note (rtx insn)
3667 {
3668 if (no_line_numbers)
3669 return 0;
3670
3671 for (; insn; insn = PREV_INSN (insn))
3672 if (NOTE_P (insn)
3673 && NOTE_LINE_NUMBER (insn) >= 0)
3674 break;
3675
3676 return insn;
3677 }
3678
3679 /* Remove unnecessary notes from the instruction stream. */
3680
3681 void
3682 remove_unnecessary_notes (void)
3683 {
3684 rtx eh_stack = NULL_RTX;
3685 rtx insn;
3686 rtx next;
3687 rtx tmp;
3688
3689 /* We must not remove the first instruction in the function because
3690 the compiler depends on the first instruction being a note. */
3691 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3692 {
3693 /* Remember what's next. */
3694 next = NEXT_INSN (insn);
3695
3696 /* We're only interested in notes. */
3697 if (!NOTE_P (insn))
3698 continue;
3699
3700 switch (NOTE_LINE_NUMBER (insn))
3701 {
3702 case NOTE_INSN_DELETED:
3703 remove_insn (insn);
3704 break;
3705
3706 case NOTE_INSN_EH_REGION_BEG:
3707 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3708 break;
3709
3710 case NOTE_INSN_EH_REGION_END:
3711 /* Too many end notes. */
3712 gcc_assert (eh_stack);
3713 /* Mismatched nesting. */
3714 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3715 == NOTE_EH_HANDLER (insn));
3716 tmp = eh_stack;
3717 eh_stack = XEXP (eh_stack, 1);
3718 free_INSN_LIST_node (tmp);
3719 break;
3720
3721 case NOTE_INSN_BLOCK_BEG:
3722 case NOTE_INSN_BLOCK_END:
3723 /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass. */
3724 gcc_unreachable ();
3725
3726 default:
3727 break;
3728 }
3729 }
3730
3731 /* Too many EH_REGION_BEG notes. */
3732 gcc_assert (!eh_stack);
3733 }
3734
3735 \f
3736 /* Emit insn(s) of given code and pattern
3737 at a specified place within the doubly-linked list.
3738
3739 All of the emit_foo global entry points accept an object
3740 X which is either an insn list or a PATTERN of a single
3741 instruction.
3742
3743 There are thus a few canonical ways to generate code and
3744 emit it at a specific place in the instruction stream. For
3745 example, consider the instruction named SPOT and the fact that
3746 we would like to emit some instructions before SPOT. We might
3747 do it like this:
3748
3749 start_sequence ();
3750 ... emit the new instructions ...
3751 insns_head = get_insns ();
3752 end_sequence ();
3753
3754 emit_insn_before (insns_head, SPOT);
3755
3756 It used to be common to generate SEQUENCE rtl instead, but that
3757 is a relic of the past which no longer occurs. The reason is that
3758 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3759 generated would almost certainly die right after it was created. */
3760
3761 /* Make X be output before the instruction BEFORE. */
3762
3763 rtx
3764 emit_insn_before_noloc (rtx x, rtx before)
3765 {
3766 rtx last = before;
3767 rtx insn;
3768
3769 gcc_assert (before);
3770
3771 if (x == NULL_RTX)
3772 return last;
3773
3774 switch (GET_CODE (x))
3775 {
3776 case INSN:
3777 case JUMP_INSN:
3778 case CALL_INSN:
3779 case CODE_LABEL:
3780 case BARRIER:
3781 case NOTE:
3782 insn = x;
3783 while (insn)
3784 {
3785 rtx next = NEXT_INSN (insn);
3786 add_insn_before (insn, before);
3787 last = insn;
3788 insn = next;
3789 }
3790 break;
3791
3792 #ifdef ENABLE_RTL_CHECKING
3793 case SEQUENCE:
3794 gcc_unreachable ();
3795 break;
3796 #endif
3797
3798 default:
3799 last = make_insn_raw (x);
3800 add_insn_before (last, before);
3801 break;
3802 }
3803
3804 return last;
3805 }
3806
3807 /* Make an instruction with body X and code JUMP_INSN
3808 and output it before the instruction BEFORE. */
3809
3810 rtx
3811 emit_jump_insn_before_noloc (rtx x, rtx before)
3812 {
3813 rtx insn, last = NULL_RTX;
3814
3815 gcc_assert (before);
3816
3817 switch (GET_CODE (x))
3818 {
3819 case INSN:
3820 case JUMP_INSN:
3821 case CALL_INSN:
3822 case CODE_LABEL:
3823 case BARRIER:
3824 case NOTE:
3825 insn = x;
3826 while (insn)
3827 {
3828 rtx next = NEXT_INSN (insn);
3829 add_insn_before (insn, before);
3830 last = insn;
3831 insn = next;
3832 }
3833 break;
3834
3835 #ifdef ENABLE_RTL_CHECKING
3836 case SEQUENCE:
3837 gcc_unreachable ();
3838 break;
3839 #endif
3840
3841 default:
3842 last = make_jump_insn_raw (x);
3843 add_insn_before (last, before);
3844 break;
3845 }
3846
3847 return last;
3848 }
3849
3850 /* Make an instruction with body X and code CALL_INSN
3851 and output it before the instruction BEFORE. */
3852
3853 rtx
3854 emit_call_insn_before_noloc (rtx x, rtx before)
3855 {
3856 rtx last = NULL_RTX, insn;
3857
3858 gcc_assert (before);
3859
3860 switch (GET_CODE (x))
3861 {
3862 case INSN:
3863 case JUMP_INSN:
3864 case CALL_INSN:
3865 case CODE_LABEL:
3866 case BARRIER:
3867 case NOTE:
3868 insn = x;
3869 while (insn)
3870 {
3871 rtx next = NEXT_INSN (insn);
3872 add_insn_before (insn, before);
3873 last = insn;
3874 insn = next;
3875 }
3876 break;
3877
3878 #ifdef ENABLE_RTL_CHECKING
3879 case SEQUENCE:
3880 gcc_unreachable ();
3881 break;
3882 #endif
3883
3884 default:
3885 last = make_call_insn_raw (x);
3886 add_insn_before (last, before);
3887 break;
3888 }
3889
3890 return last;
3891 }
3892
3893 /* Make an insn of code BARRIER
3894 and output it before the insn BEFORE. */
3895
3896 rtx
3897 emit_barrier_before (rtx before)
3898 {
3899 rtx insn = rtx_alloc (BARRIER);
3900
3901 INSN_UID (insn) = cur_insn_uid++;
3902
3903 add_insn_before (insn, before);
3904 return insn;
3905 }
3906
3907 /* Emit the label LABEL before the insn BEFORE. */
3908
3909 rtx
3910 emit_label_before (rtx label, rtx before)
3911 {
3912 /* This can be called twice for the same label as a result of the
3913 confusion that follows a syntax error! So make it harmless. */
3914 if (INSN_UID (label) == 0)
3915 {
3916 INSN_UID (label) = cur_insn_uid++;
3917 add_insn_before (label, before);
3918 }
3919
3920 return label;
3921 }
3922
3923 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3924
3925 rtx
3926 emit_note_before (int subtype, rtx before)
3927 {
3928 rtx note = rtx_alloc (NOTE);
3929 INSN_UID (note) = cur_insn_uid++;
3930 #ifndef USE_MAPPED_LOCATION
3931 NOTE_SOURCE_FILE (note) = 0;
3932 #endif
3933 NOTE_LINE_NUMBER (note) = subtype;
3934 BLOCK_FOR_INSN (note) = NULL;
3935
3936 add_insn_before (note, before);
3937 return note;
3938 }
3939 \f
3940 /* Helper for emit_insn_after, handles lists of instructions
3941 efficiently. */
3942
3943 static rtx emit_insn_after_1 (rtx, rtx);
3944
3945 static rtx
3946 emit_insn_after_1 (rtx first, rtx after)
3947 {
3948 rtx last;
3949 rtx after_after;
3950 basic_block bb;
3951
3952 if (!BARRIER_P (after)
3953 && (bb = BLOCK_FOR_INSN (after)))
3954 {
3955 bb->flags |= BB_DIRTY;
3956 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3957 if (!BARRIER_P (last))
3958 set_block_for_insn (last, bb);
3959 if (!BARRIER_P (last))
3960 set_block_for_insn (last, bb);
3961 if (BB_END (bb) == after)
3962 BB_END (bb) = last;
3963 }
3964 else
3965 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3966 continue;
3967
3968 after_after = NEXT_INSN (after);
3969
3970 NEXT_INSN (after) = first;
3971 PREV_INSN (first) = after;
3972 NEXT_INSN (last) = after_after;
3973 if (after_after)
3974 PREV_INSN (after_after) = last;
3975
3976 if (after == last_insn)
3977 last_insn = last;
3978 return last;
3979 }
3980
3981 /* Make X be output after the insn AFTER. */
3982
3983 rtx
3984 emit_insn_after_noloc (rtx x, rtx after)
3985 {
3986 rtx last = after;
3987
3988 gcc_assert (after);
3989
3990 if (x == NULL_RTX)
3991 return last;
3992
3993 switch (GET_CODE (x))
3994 {
3995 case INSN:
3996 case JUMP_INSN:
3997 case CALL_INSN:
3998 case CODE_LABEL:
3999 case BARRIER:
4000 case NOTE:
4001 last = emit_insn_after_1 (x, after);
4002 break;
4003
4004 #ifdef ENABLE_RTL_CHECKING
4005 case SEQUENCE:
4006 gcc_unreachable ();
4007 break;
4008 #endif
4009
4010 default:
4011 last = make_insn_raw (x);
4012 add_insn_after (last, after);
4013 break;
4014 }
4015
4016 return last;
4017 }
4018
4019 /* Similar to emit_insn_after, except that line notes are to be inserted so
4020 as to act as if this insn were at FROM. */
4021
4022 void
4023 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4024 {
4025 rtx from_line = find_line_note (from);
4026 rtx after_line = find_line_note (after);
4027 rtx insn = emit_insn_after (x, after);
4028
4029 if (from_line)
4030 emit_note_copy_after (from_line, after);
4031
4032 if (after_line)
4033 emit_note_copy_after (after_line, insn);
4034 }
4035
4036 /* Make an insn of code JUMP_INSN with body X
4037 and output it after the insn AFTER. */
4038
4039 rtx
4040 emit_jump_insn_after_noloc (rtx x, rtx after)
4041 {
4042 rtx last;
4043
4044 gcc_assert (after);
4045
4046 switch (GET_CODE (x))
4047 {
4048 case INSN:
4049 case JUMP_INSN:
4050 case CALL_INSN:
4051 case CODE_LABEL:
4052 case BARRIER:
4053 case NOTE:
4054 last = emit_insn_after_1 (x, after);
4055 break;
4056
4057 #ifdef ENABLE_RTL_CHECKING
4058 case SEQUENCE:
4059 gcc_unreachable ();
4060 break;
4061 #endif
4062
4063 default:
4064 last = make_jump_insn_raw (x);
4065 add_insn_after (last, after);
4066 break;
4067 }
4068
4069 return last;
4070 }
4071
4072 /* Make an instruction with body X and code CALL_INSN
4073 and output it after the instruction AFTER. */
4074
4075 rtx
4076 emit_call_insn_after_noloc (rtx x, rtx after)
4077 {
4078 rtx last;
4079
4080 gcc_assert (after);
4081
4082 switch (GET_CODE (x))
4083 {
4084 case INSN:
4085 case JUMP_INSN:
4086 case CALL_INSN:
4087 case CODE_LABEL:
4088 case BARRIER:
4089 case NOTE:
4090 last = emit_insn_after_1 (x, after);
4091 break;
4092
4093 #ifdef ENABLE_RTL_CHECKING
4094 case SEQUENCE:
4095 gcc_unreachable ();
4096 break;
4097 #endif
4098
4099 default:
4100 last = make_call_insn_raw (x);
4101 add_insn_after (last, after);
4102 break;
4103 }
4104
4105 return last;
4106 }
4107
4108 /* Make an insn of code BARRIER
4109 and output it after the insn AFTER. */
4110
4111 rtx
4112 emit_barrier_after (rtx after)
4113 {
4114 rtx insn = rtx_alloc (BARRIER);
4115
4116 INSN_UID (insn) = cur_insn_uid++;
4117
4118 add_insn_after (insn, after);
4119 return insn;
4120 }
4121
4122 /* Emit the label LABEL after the insn AFTER. */
4123
4124 rtx
4125 emit_label_after (rtx label, rtx after)
4126 {
4127 /* This can be called twice for the same label
4128 as a result of the confusion that follows a syntax error!
4129 So make it harmless. */
4130 if (INSN_UID (label) == 0)
4131 {
4132 INSN_UID (label) = cur_insn_uid++;
4133 add_insn_after (label, after);
4134 }
4135
4136 return label;
4137 }
4138
4139 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4140
4141 rtx
4142 emit_note_after (int subtype, rtx after)
4143 {
4144 rtx note = rtx_alloc (NOTE);
4145 INSN_UID (note) = cur_insn_uid++;
4146 #ifndef USE_MAPPED_LOCATION
4147 NOTE_SOURCE_FILE (note) = 0;
4148 #endif
4149 NOTE_LINE_NUMBER (note) = subtype;
4150 BLOCK_FOR_INSN (note) = NULL;
4151 add_insn_after (note, after);
4152 return note;
4153 }
4154
4155 /* Emit a copy of note ORIG after the insn AFTER. */
4156
4157 rtx
4158 emit_note_copy_after (rtx orig, rtx after)
4159 {
4160 rtx note;
4161
4162 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4163 {
4164 cur_insn_uid++;
4165 return 0;
4166 }
4167
4168 note = rtx_alloc (NOTE);
4169 INSN_UID (note) = cur_insn_uid++;
4170 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4171 NOTE_DATA (note) = NOTE_DATA (orig);
4172 BLOCK_FOR_INSN (note) = NULL;
4173 add_insn_after (note, after);
4174 return note;
4175 }
4176 \f
4177 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4178 rtx
4179 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4180 {
4181 rtx last = emit_insn_after_noloc (pattern, after);
4182
4183 if (pattern == NULL_RTX || !loc)
4184 return last;
4185
4186 after = NEXT_INSN (after);
4187 while (1)
4188 {
4189 if (active_insn_p (after) && !INSN_LOCATOR (after))
4190 INSN_LOCATOR (after) = loc;
4191 if (after == last)
4192 break;
4193 after = NEXT_INSN (after);
4194 }
4195 return last;
4196 }
4197
4198 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4199 rtx
4200 emit_insn_after (rtx pattern, rtx after)
4201 {
4202 if (INSN_P (after))
4203 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4204 else
4205 return emit_insn_after_noloc (pattern, after);
4206 }
4207
4208 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4209 rtx
4210 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4211 {
4212 rtx last = emit_jump_insn_after_noloc (pattern, after);
4213
4214 if (pattern == NULL_RTX || !loc)
4215 return last;
4216
4217 after = NEXT_INSN (after);
4218 while (1)
4219 {
4220 if (active_insn_p (after) && !INSN_LOCATOR (after))
4221 INSN_LOCATOR (after) = loc;
4222 if (after == last)
4223 break;
4224 after = NEXT_INSN (after);
4225 }
4226 return last;
4227 }
4228
4229 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4230 rtx
4231 emit_jump_insn_after (rtx pattern, rtx after)
4232 {
4233 if (INSN_P (after))
4234 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4235 else
4236 return emit_jump_insn_after_noloc (pattern, after);
4237 }
4238
4239 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4240 rtx
4241 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4242 {
4243 rtx last = emit_call_insn_after_noloc (pattern, after);
4244
4245 if (pattern == NULL_RTX || !loc)
4246 return last;
4247
4248 after = NEXT_INSN (after);
4249 while (1)
4250 {
4251 if (active_insn_p (after) && !INSN_LOCATOR (after))
4252 INSN_LOCATOR (after) = loc;
4253 if (after == last)
4254 break;
4255 after = NEXT_INSN (after);
4256 }
4257 return last;
4258 }
4259
4260 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4261 rtx
4262 emit_call_insn_after (rtx pattern, rtx after)
4263 {
4264 if (INSN_P (after))
4265 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4266 else
4267 return emit_call_insn_after_noloc (pattern, after);
4268 }
4269
4270 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4271 rtx
4272 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4273 {
4274 rtx first = PREV_INSN (before);
4275 rtx last = emit_insn_before_noloc (pattern, before);
4276
4277 if (pattern == NULL_RTX || !loc)
4278 return last;
4279
4280 first = NEXT_INSN (first);
4281 while (1)
4282 {
4283 if (active_insn_p (first) && !INSN_LOCATOR (first))
4284 INSN_LOCATOR (first) = loc;
4285 if (first == last)
4286 break;
4287 first = NEXT_INSN (first);
4288 }
4289 return last;
4290 }
4291
4292 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4293 rtx
4294 emit_insn_before (rtx pattern, rtx before)
4295 {
4296 if (INSN_P (before))
4297 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4298 else
4299 return emit_insn_before_noloc (pattern, before);
4300 }
4301
4302 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4303 rtx
4304 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4305 {
4306 rtx first = PREV_INSN (before);
4307 rtx last = emit_jump_insn_before_noloc (pattern, before);
4308
4309 if (pattern == NULL_RTX)
4310 return last;
4311
4312 first = NEXT_INSN (first);
4313 while (1)
4314 {
4315 if (active_insn_p (first) && !INSN_LOCATOR (first))
4316 INSN_LOCATOR (first) = loc;
4317 if (first == last)
4318 break;
4319 first = NEXT_INSN (first);
4320 }
4321 return last;
4322 }
4323
4324 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4325 rtx
4326 emit_jump_insn_before (rtx pattern, rtx before)
4327 {
4328 if (INSN_P (before))
4329 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4330 else
4331 return emit_jump_insn_before_noloc (pattern, before);
4332 }
4333
4334 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4335 rtx
4336 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4337 {
4338 rtx first = PREV_INSN (before);
4339 rtx last = emit_call_insn_before_noloc (pattern, before);
4340
4341 if (pattern == NULL_RTX)
4342 return last;
4343
4344 first = NEXT_INSN (first);
4345 while (1)
4346 {
4347 if (active_insn_p (first) && !INSN_LOCATOR (first))
4348 INSN_LOCATOR (first) = loc;
4349 if (first == last)
4350 break;
4351 first = NEXT_INSN (first);
4352 }
4353 return last;
4354 }
4355
4356 /* like emit_call_insn_before_noloc,
4357 but set insn_locator according to before. */
4358 rtx
4359 emit_call_insn_before (rtx pattern, rtx before)
4360 {
4361 if (INSN_P (before))
4362 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4363 else
4364 return emit_call_insn_before_noloc (pattern, before);
4365 }
4366 \f
4367 /* Take X and emit it at the end of the doubly-linked
4368 INSN list.
4369
4370 Returns the last insn emitted. */
4371
4372 rtx
4373 emit_insn (rtx x)
4374 {
4375 rtx last = last_insn;
4376 rtx insn;
4377
4378 if (x == NULL_RTX)
4379 return last;
4380
4381 switch (GET_CODE (x))
4382 {
4383 case INSN:
4384 case JUMP_INSN:
4385 case CALL_INSN:
4386 case CODE_LABEL:
4387 case BARRIER:
4388 case NOTE:
4389 insn = x;
4390 while (insn)
4391 {
4392 rtx next = NEXT_INSN (insn);
4393 add_insn (insn);
4394 last = insn;
4395 insn = next;
4396 }
4397 break;
4398
4399 #ifdef ENABLE_RTL_CHECKING
4400 case SEQUENCE:
4401 gcc_unreachable ();
4402 break;
4403 #endif
4404
4405 default:
4406 last = make_insn_raw (x);
4407 add_insn (last);
4408 break;
4409 }
4410
4411 return last;
4412 }
4413
4414 /* Make an insn of code JUMP_INSN with pattern X
4415 and add it to the end of the doubly-linked list. */
4416
4417 rtx
4418 emit_jump_insn (rtx x)
4419 {
4420 rtx last = NULL_RTX, insn;
4421
4422 switch (GET_CODE (x))
4423 {
4424 case INSN:
4425 case JUMP_INSN:
4426 case CALL_INSN:
4427 case CODE_LABEL:
4428 case BARRIER:
4429 case NOTE:
4430 insn = x;
4431 while (insn)
4432 {
4433 rtx next = NEXT_INSN (insn);
4434 add_insn (insn);
4435 last = insn;
4436 insn = next;
4437 }
4438 break;
4439
4440 #ifdef ENABLE_RTL_CHECKING
4441 case SEQUENCE:
4442 gcc_unreachable ();
4443 break;
4444 #endif
4445
4446 default:
4447 last = make_jump_insn_raw (x);
4448 add_insn (last);
4449 break;
4450 }
4451
4452 return last;
4453 }
4454
4455 /* Make an insn of code CALL_INSN with pattern X
4456 and add it to the end of the doubly-linked list. */
4457
4458 rtx
4459 emit_call_insn (rtx x)
4460 {
4461 rtx insn;
4462
4463 switch (GET_CODE (x))
4464 {
4465 case INSN:
4466 case JUMP_INSN:
4467 case CALL_INSN:
4468 case CODE_LABEL:
4469 case BARRIER:
4470 case NOTE:
4471 insn = emit_insn (x);
4472 break;
4473
4474 #ifdef ENABLE_RTL_CHECKING
4475 case SEQUENCE:
4476 gcc_unreachable ();
4477 break;
4478 #endif
4479
4480 default:
4481 insn = make_call_insn_raw (x);
4482 add_insn (insn);
4483 break;
4484 }
4485
4486 return insn;
4487 }
4488
4489 /* Add the label LABEL to the end of the doubly-linked list. */
4490
4491 rtx
4492 emit_label (rtx label)
4493 {
4494 /* This can be called twice for the same label
4495 as a result of the confusion that follows a syntax error!
4496 So make it harmless. */
4497 if (INSN_UID (label) == 0)
4498 {
4499 INSN_UID (label) = cur_insn_uid++;
4500 add_insn (label);
4501 }
4502 return label;
4503 }
4504
4505 /* Make an insn of code BARRIER
4506 and add it to the end of the doubly-linked list. */
4507
4508 rtx
4509 emit_barrier (void)
4510 {
4511 rtx barrier = rtx_alloc (BARRIER);
4512 INSN_UID (barrier) = cur_insn_uid++;
4513 add_insn (barrier);
4514 return barrier;
4515 }
4516
4517 /* Make line numbering NOTE insn for LOCATION add it to the end
4518 of the doubly-linked list, but only if line-numbers are desired for
4519 debugging info and it doesn't match the previous one. */
4520
4521 rtx
4522 emit_line_note (location_t location)
4523 {
4524 rtx note;
4525
4526 #ifdef USE_MAPPED_LOCATION
4527 if (location == last_location)
4528 return NULL_RTX;
4529 #else
4530 if (location.file && last_location.file
4531 && !strcmp (location.file, last_location.file)
4532 && location.line == last_location.line)
4533 return NULL_RTX;
4534 #endif
4535 last_location = location;
4536
4537 if (no_line_numbers)
4538 {
4539 cur_insn_uid++;
4540 return NULL_RTX;
4541 }
4542
4543 #ifdef USE_MAPPED_LOCATION
4544 note = emit_note ((int) location);
4545 #else
4546 note = emit_note (location.line);
4547 NOTE_SOURCE_FILE (note) = location.file;
4548 #endif
4549
4550 return note;
4551 }
4552
4553 /* Emit a copy of note ORIG. */
4554
4555 rtx
4556 emit_note_copy (rtx orig)
4557 {
4558 rtx note;
4559
4560 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4561 {
4562 cur_insn_uid++;
4563 return NULL_RTX;
4564 }
4565
4566 note = rtx_alloc (NOTE);
4567
4568 INSN_UID (note) = cur_insn_uid++;
4569 NOTE_DATA (note) = NOTE_DATA (orig);
4570 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4571 BLOCK_FOR_INSN (note) = NULL;
4572 add_insn (note);
4573
4574 return note;
4575 }
4576
4577 /* Make an insn of code NOTE or type NOTE_NO
4578 and add it to the end of the doubly-linked list. */
4579
4580 rtx
4581 emit_note (int note_no)
4582 {
4583 rtx note;
4584
4585 note = rtx_alloc (NOTE);
4586 INSN_UID (note) = cur_insn_uid++;
4587 NOTE_LINE_NUMBER (note) = note_no;
4588 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4589 BLOCK_FOR_INSN (note) = NULL;
4590 add_insn (note);
4591 return note;
4592 }
4593
4594 /* Cause next statement to emit a line note even if the line number
4595 has not changed. */
4596
4597 void
4598 force_next_line_note (void)
4599 {
4600 #ifdef USE_MAPPED_LOCATION
4601 last_location = -1;
4602 #else
4603 last_location.line = -1;
4604 #endif
4605 }
4606
4607 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4608 note of this type already exists, remove it first. */
4609
4610 rtx
4611 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4612 {
4613 rtx note = find_reg_note (insn, kind, NULL_RTX);
4614
4615 switch (kind)
4616 {
4617 case REG_EQUAL:
4618 case REG_EQUIV:
4619 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4620 has multiple sets (some callers assume single_set
4621 means the insn only has one set, when in fact it
4622 means the insn only has one * useful * set). */
4623 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4624 {
4625 gcc_assert (!note);
4626 return NULL_RTX;
4627 }
4628
4629 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4630 It serves no useful purpose and breaks eliminate_regs. */
4631 if (GET_CODE (datum) == ASM_OPERANDS)
4632 return NULL_RTX;
4633 break;
4634
4635 default:
4636 break;
4637 }
4638
4639 if (note)
4640 {
4641 XEXP (note, 0) = datum;
4642 return note;
4643 }
4644
4645 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4646 return REG_NOTES (insn);
4647 }
4648 \f
4649 /* Return an indication of which type of insn should have X as a body.
4650 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4651
4652 static enum rtx_code
4653 classify_insn (rtx x)
4654 {
4655 if (LABEL_P (x))
4656 return CODE_LABEL;
4657 if (GET_CODE (x) == CALL)
4658 return CALL_INSN;
4659 if (GET_CODE (x) == RETURN)
4660 return JUMP_INSN;
4661 if (GET_CODE (x) == SET)
4662 {
4663 if (SET_DEST (x) == pc_rtx)
4664 return JUMP_INSN;
4665 else if (GET_CODE (SET_SRC (x)) == CALL)
4666 return CALL_INSN;
4667 else
4668 return INSN;
4669 }
4670 if (GET_CODE (x) == PARALLEL)
4671 {
4672 int j;
4673 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4674 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4675 return CALL_INSN;
4676 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4677 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4678 return JUMP_INSN;
4679 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4680 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4681 return CALL_INSN;
4682 }
4683 return INSN;
4684 }
4685
4686 /* Emit the rtl pattern X as an appropriate kind of insn.
4687 If X is a label, it is simply added into the insn chain. */
4688
4689 rtx
4690 emit (rtx x)
4691 {
4692 enum rtx_code code = classify_insn (x);
4693
4694 switch (code)
4695 {
4696 case CODE_LABEL:
4697 return emit_label (x);
4698 case INSN:
4699 return emit_insn (x);
4700 case JUMP_INSN:
4701 {
4702 rtx insn = emit_jump_insn (x);
4703 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4704 return emit_barrier ();
4705 return insn;
4706 }
4707 case CALL_INSN:
4708 return emit_call_insn (x);
4709 default:
4710 gcc_unreachable ();
4711 }
4712 }
4713 \f
4714 /* Space for free sequence stack entries. */
4715 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4716
4717 /* Begin emitting insns to a sequence. If this sequence will contain
4718 something that might cause the compiler to pop arguments to function
4719 calls (because those pops have previously been deferred; see
4720 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4721 before calling this function. That will ensure that the deferred
4722 pops are not accidentally emitted in the middle of this sequence. */
4723
4724 void
4725 start_sequence (void)
4726 {
4727 struct sequence_stack *tem;
4728
4729 if (free_sequence_stack != NULL)
4730 {
4731 tem = free_sequence_stack;
4732 free_sequence_stack = tem->next;
4733 }
4734 else
4735 tem = ggc_alloc (sizeof (struct sequence_stack));
4736
4737 tem->next = seq_stack;
4738 tem->first = first_insn;
4739 tem->last = last_insn;
4740
4741 seq_stack = tem;
4742
4743 first_insn = 0;
4744 last_insn = 0;
4745 }
4746
4747 /* Set up the insn chain starting with FIRST as the current sequence,
4748 saving the previously current one. See the documentation for
4749 start_sequence for more information about how to use this function. */
4750
4751 void
4752 push_to_sequence (rtx first)
4753 {
4754 rtx last;
4755
4756 start_sequence ();
4757
4758 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4759
4760 first_insn = first;
4761 last_insn = last;
4762 }
4763
4764 /* Set up the outer-level insn chain
4765 as the current sequence, saving the previously current one. */
4766
4767 void
4768 push_topmost_sequence (void)
4769 {
4770 struct sequence_stack *stack, *top = NULL;
4771
4772 start_sequence ();
4773
4774 for (stack = seq_stack; stack; stack = stack->next)
4775 top = stack;
4776
4777 first_insn = top->first;
4778 last_insn = top->last;
4779 }
4780
4781 /* After emitting to the outer-level insn chain, update the outer-level
4782 insn chain, and restore the previous saved state. */
4783
4784 void
4785 pop_topmost_sequence (void)
4786 {
4787 struct sequence_stack *stack, *top = NULL;
4788
4789 for (stack = seq_stack; stack; stack = stack->next)
4790 top = stack;
4791
4792 top->first = first_insn;
4793 top->last = last_insn;
4794
4795 end_sequence ();
4796 }
4797
4798 /* After emitting to a sequence, restore previous saved state.
4799
4800 To get the contents of the sequence just made, you must call
4801 `get_insns' *before* calling here.
4802
4803 If the compiler might have deferred popping arguments while
4804 generating this sequence, and this sequence will not be immediately
4805 inserted into the instruction stream, use do_pending_stack_adjust
4806 before calling get_insns. That will ensure that the deferred
4807 pops are inserted into this sequence, and not into some random
4808 location in the instruction stream. See INHIBIT_DEFER_POP for more
4809 information about deferred popping of arguments. */
4810
4811 void
4812 end_sequence (void)
4813 {
4814 struct sequence_stack *tem = seq_stack;
4815
4816 first_insn = tem->first;
4817 last_insn = tem->last;
4818 seq_stack = tem->next;
4819
4820 memset (tem, 0, sizeof (*tem));
4821 tem->next = free_sequence_stack;
4822 free_sequence_stack = tem;
4823 }
4824
4825 /* Return 1 if currently emitting into a sequence. */
4826
4827 int
4828 in_sequence_p (void)
4829 {
4830 return seq_stack != 0;
4831 }
4832 \f
4833 /* Put the various virtual registers into REGNO_REG_RTX. */
4834
4835 void
4836 init_virtual_regs (struct emit_status *es)
4837 {
4838 rtx *ptr = es->x_regno_reg_rtx;
4839 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4840 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4841 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4842 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4843 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4844 }
4845
4846 \f
4847 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4848 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4849 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4850 static int copy_insn_n_scratches;
4851
4852 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4853 copied an ASM_OPERANDS.
4854 In that case, it is the original input-operand vector. */
4855 static rtvec orig_asm_operands_vector;
4856
4857 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4858 copied an ASM_OPERANDS.
4859 In that case, it is the copied input-operand vector. */
4860 static rtvec copy_asm_operands_vector;
4861
4862 /* Likewise for the constraints vector. */
4863 static rtvec orig_asm_constraints_vector;
4864 static rtvec copy_asm_constraints_vector;
4865
4866 /* Recursively create a new copy of an rtx for copy_insn.
4867 This function differs from copy_rtx in that it handles SCRATCHes and
4868 ASM_OPERANDs properly.
4869 Normally, this function is not used directly; use copy_insn as front end.
4870 However, you could first copy an insn pattern with copy_insn and then use
4871 this function afterwards to properly copy any REG_NOTEs containing
4872 SCRATCHes. */
4873
4874 rtx
4875 copy_insn_1 (rtx orig)
4876 {
4877 rtx copy;
4878 int i, j;
4879 RTX_CODE code;
4880 const char *format_ptr;
4881
4882 code = GET_CODE (orig);
4883
4884 switch (code)
4885 {
4886 case REG:
4887 case CONST_INT:
4888 case CONST_DOUBLE:
4889 case CONST_VECTOR:
4890 case SYMBOL_REF:
4891 case CODE_LABEL:
4892 case PC:
4893 case CC0:
4894 return orig;
4895 case CLOBBER:
4896 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4897 return orig;
4898 break;
4899
4900 case SCRATCH:
4901 for (i = 0; i < copy_insn_n_scratches; i++)
4902 if (copy_insn_scratch_in[i] == orig)
4903 return copy_insn_scratch_out[i];
4904 break;
4905
4906 case CONST:
4907 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4908 a LABEL_REF, it isn't sharable. */
4909 if (GET_CODE (XEXP (orig, 0)) == PLUS
4910 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4911 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4912 return orig;
4913 break;
4914
4915 /* A MEM with a constant address is not sharable. The problem is that
4916 the constant address may need to be reloaded. If the mem is shared,
4917 then reloading one copy of this mem will cause all copies to appear
4918 to have been reloaded. */
4919
4920 default:
4921 break;
4922 }
4923
4924 copy = rtx_alloc (code);
4925
4926 /* Copy the various flags, and other information. We assume that
4927 all fields need copying, and then clear the fields that should
4928 not be copied. That is the sensible default behavior, and forces
4929 us to explicitly document why we are *not* copying a flag. */
4930 memcpy (copy, orig, RTX_HDR_SIZE);
4931
4932 /* We do not copy the USED flag, which is used as a mark bit during
4933 walks over the RTL. */
4934 RTX_FLAG (copy, used) = 0;
4935
4936 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4937 if (INSN_P (orig))
4938 {
4939 RTX_FLAG (copy, jump) = 0;
4940 RTX_FLAG (copy, call) = 0;
4941 RTX_FLAG (copy, frame_related) = 0;
4942 }
4943
4944 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4945
4946 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4947 {
4948 copy->u.fld[i] = orig->u.fld[i];
4949 switch (*format_ptr++)
4950 {
4951 case 'e':
4952 if (XEXP (orig, i) != NULL)
4953 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4954 break;
4955
4956 case 'E':
4957 case 'V':
4958 if (XVEC (orig, i) == orig_asm_constraints_vector)
4959 XVEC (copy, i) = copy_asm_constraints_vector;
4960 else if (XVEC (orig, i) == orig_asm_operands_vector)
4961 XVEC (copy, i) = copy_asm_operands_vector;
4962 else if (XVEC (orig, i) != NULL)
4963 {
4964 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4965 for (j = 0; j < XVECLEN (copy, i); j++)
4966 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4967 }
4968 break;
4969
4970 case 't':
4971 case 'w':
4972 case 'i':
4973 case 's':
4974 case 'S':
4975 case 'u':
4976 case '0':
4977 /* These are left unchanged. */
4978 break;
4979
4980 default:
4981 gcc_unreachable ();
4982 }
4983 }
4984
4985 if (code == SCRATCH)
4986 {
4987 i = copy_insn_n_scratches++;
4988 gcc_assert (i < MAX_RECOG_OPERANDS);
4989 copy_insn_scratch_in[i] = orig;
4990 copy_insn_scratch_out[i] = copy;
4991 }
4992 else if (code == ASM_OPERANDS)
4993 {
4994 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4995 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4996 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4997 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4998 }
4999
5000 return copy;
5001 }
5002
5003 /* Create a new copy of an rtx.
5004 This function differs from copy_rtx in that it handles SCRATCHes and
5005 ASM_OPERANDs properly.
5006 INSN doesn't really have to be a full INSN; it could be just the
5007 pattern. */
5008 rtx
5009 copy_insn (rtx insn)
5010 {
5011 copy_insn_n_scratches = 0;
5012 orig_asm_operands_vector = 0;
5013 orig_asm_constraints_vector = 0;
5014 copy_asm_operands_vector = 0;
5015 copy_asm_constraints_vector = 0;
5016 return copy_insn_1 (insn);
5017 }
5018
5019 /* Initialize data structures and variables in this file
5020 before generating rtl for each function. */
5021
5022 void
5023 init_emit (void)
5024 {
5025 struct function *f = cfun;
5026
5027 f->emit = ggc_alloc (sizeof (struct emit_status));
5028 first_insn = NULL;
5029 last_insn = NULL;
5030 cur_insn_uid = 1;
5031 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5032 last_location = UNKNOWN_LOCATION;
5033 first_label_num = label_num;
5034 seq_stack = NULL;
5035
5036 /* Init the tables that describe all the pseudo regs. */
5037
5038 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5039
5040 f->emit->regno_pointer_align
5041 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5042 * sizeof (unsigned char));
5043
5044 regno_reg_rtx
5045 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5046
5047 /* Put copies of all the hard registers into regno_reg_rtx. */
5048 memcpy (regno_reg_rtx,
5049 static_regno_reg_rtx,
5050 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5051
5052 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5053 init_virtual_regs (f->emit);
5054
5055 /* Indicate that the virtual registers and stack locations are
5056 all pointers. */
5057 REG_POINTER (stack_pointer_rtx) = 1;
5058 REG_POINTER (frame_pointer_rtx) = 1;
5059 REG_POINTER (hard_frame_pointer_rtx) = 1;
5060 REG_POINTER (arg_pointer_rtx) = 1;
5061
5062 REG_POINTER (virtual_incoming_args_rtx) = 1;
5063 REG_POINTER (virtual_stack_vars_rtx) = 1;
5064 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5065 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5066 REG_POINTER (virtual_cfa_rtx) = 1;
5067
5068 #ifdef STACK_BOUNDARY
5069 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5070 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5071 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5072 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5073
5074 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5075 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5076 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5077 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5078 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5079 #endif
5080
5081 #ifdef INIT_EXPANDERS
5082 INIT_EXPANDERS;
5083 #endif
5084 }
5085
5086 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5087
5088 static rtx
5089 gen_const_vector (enum machine_mode mode, int constant)
5090 {
5091 rtx tem;
5092 rtvec v;
5093 int units, i;
5094 enum machine_mode inner;
5095
5096 units = GET_MODE_NUNITS (mode);
5097 inner = GET_MODE_INNER (mode);
5098
5099 v = rtvec_alloc (units);
5100
5101 /* We need to call this function after we set the scalar const_tiny_rtx
5102 entries. */
5103 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5104
5105 for (i = 0; i < units; ++i)
5106 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5107
5108 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5109 return tem;
5110 }
5111
5112 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5113 all elements are zero, and the one vector when all elements are one. */
5114 rtx
5115 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5116 {
5117 enum machine_mode inner = GET_MODE_INNER (mode);
5118 int nunits = GET_MODE_NUNITS (mode);
5119 rtx x;
5120 int i;
5121
5122 /* Check to see if all of the elements have the same value. */
5123 x = RTVEC_ELT (v, nunits - 1);
5124 for (i = nunits - 2; i >= 0; i--)
5125 if (RTVEC_ELT (v, i) != x)
5126 break;
5127
5128 /* If the values are all the same, check to see if we can use one of the
5129 standard constant vectors. */
5130 if (i == -1)
5131 {
5132 if (x == CONST0_RTX (inner))
5133 return CONST0_RTX (mode);
5134 else if (x == CONST1_RTX (inner))
5135 return CONST1_RTX (mode);
5136 }
5137
5138 return gen_rtx_raw_CONST_VECTOR (mode, v);
5139 }
5140
5141 /* Create some permanent unique rtl objects shared between all functions.
5142 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5143
5144 void
5145 init_emit_once (int line_numbers)
5146 {
5147 int i;
5148 enum machine_mode mode;
5149 enum machine_mode double_mode;
5150
5151 /* We need reg_raw_mode, so initialize the modes now. */
5152 init_reg_modes_once ();
5153
5154 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5155 tables. */
5156 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5157 const_int_htab_eq, NULL);
5158
5159 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5160 const_double_htab_eq, NULL);
5161
5162 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5163 mem_attrs_htab_eq, NULL);
5164 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5165 reg_attrs_htab_eq, NULL);
5166
5167 no_line_numbers = ! line_numbers;
5168
5169 /* Compute the word and byte modes. */
5170
5171 byte_mode = VOIDmode;
5172 word_mode = VOIDmode;
5173 double_mode = VOIDmode;
5174
5175 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5176 mode = GET_MODE_WIDER_MODE (mode))
5177 {
5178 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5179 && byte_mode == VOIDmode)
5180 byte_mode = mode;
5181
5182 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5183 && word_mode == VOIDmode)
5184 word_mode = mode;
5185 }
5186
5187 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5188 mode = GET_MODE_WIDER_MODE (mode))
5189 {
5190 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5191 && double_mode == VOIDmode)
5192 double_mode = mode;
5193 }
5194
5195 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5196
5197 /* Assign register numbers to the globally defined register rtx.
5198 This must be done at runtime because the register number field
5199 is in a union and some compilers can't initialize unions. */
5200
5201 pc_rtx = gen_rtx_PC (VOIDmode);
5202 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5203 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5204 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5205 if (hard_frame_pointer_rtx == 0)
5206 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5207 HARD_FRAME_POINTER_REGNUM);
5208 if (arg_pointer_rtx == 0)
5209 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5210 virtual_incoming_args_rtx =
5211 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5212 virtual_stack_vars_rtx =
5213 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5214 virtual_stack_dynamic_rtx =
5215 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5216 virtual_outgoing_args_rtx =
5217 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5218 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5219
5220 /* Initialize RTL for commonly used hard registers. These are
5221 copied into regno_reg_rtx as we begin to compile each function. */
5222 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5223 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5224
5225 #ifdef INIT_EXPANDERS
5226 /* This is to initialize {init|mark|free}_machine_status before the first
5227 call to push_function_context_to. This is needed by the Chill front
5228 end which calls push_function_context_to before the first call to
5229 init_function_start. */
5230 INIT_EXPANDERS;
5231 #endif
5232
5233 /* Create the unique rtx's for certain rtx codes and operand values. */
5234
5235 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5236 tries to use these variables. */
5237 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5238 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5239 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5240
5241 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5242 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5243 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5244 else
5245 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5246
5247 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5248 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5249 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5250 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5251 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5252 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5253 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5254
5255 dconsthalf = dconst1;
5256 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5257
5258 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5259
5260 /* Initialize mathematical constants for constant folding builtins.
5261 These constants need to be given to at least 160 bits precision. */
5262 real_from_string (&dconstpi,
5263 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5264 real_from_string (&dconste,
5265 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5266
5267 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5268 {
5269 REAL_VALUE_TYPE *r =
5270 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5271
5272 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5273 mode = GET_MODE_WIDER_MODE (mode))
5274 const_tiny_rtx[i][(int) mode] =
5275 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5276
5277 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5278
5279 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5280 mode = GET_MODE_WIDER_MODE (mode))
5281 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5282
5283 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5284 mode != VOIDmode;
5285 mode = GET_MODE_WIDER_MODE (mode))
5286 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5287 }
5288
5289 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5290 mode != VOIDmode;
5291 mode = GET_MODE_WIDER_MODE (mode))
5292 {
5293 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5294 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5295 }
5296
5297 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5298 mode != VOIDmode;
5299 mode = GET_MODE_WIDER_MODE (mode))
5300 {
5301 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5302 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5303 }
5304
5305 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5306 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5307 const_tiny_rtx[0][i] = const0_rtx;
5308
5309 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5310 if (STORE_FLAG_VALUE == 1)
5311 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5312
5313 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5314 return_address_pointer_rtx
5315 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5316 #endif
5317
5318 #ifdef STATIC_CHAIN_REGNUM
5319 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5320
5321 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5322 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5323 static_chain_incoming_rtx
5324 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5325 else
5326 #endif
5327 static_chain_incoming_rtx = static_chain_rtx;
5328 #endif
5329
5330 #ifdef STATIC_CHAIN
5331 static_chain_rtx = STATIC_CHAIN;
5332
5333 #ifdef STATIC_CHAIN_INCOMING
5334 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5335 #else
5336 static_chain_incoming_rtx = static_chain_rtx;
5337 #endif
5338 #endif
5339
5340 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5341 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5342 }
5343 \f
5344 /* Produce exact duplicate of insn INSN after AFTER.
5345 Care updating of libcall regions if present. */
5346
5347 rtx
5348 emit_copy_of_insn_after (rtx insn, rtx after)
5349 {
5350 rtx new;
5351 rtx note1, note2, link;
5352
5353 switch (GET_CODE (insn))
5354 {
5355 case INSN:
5356 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5357 break;
5358
5359 case JUMP_INSN:
5360 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5361 break;
5362
5363 case CALL_INSN:
5364 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5365 if (CALL_INSN_FUNCTION_USAGE (insn))
5366 CALL_INSN_FUNCTION_USAGE (new)
5367 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5368 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5369 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5370 break;
5371
5372 default:
5373 gcc_unreachable ();
5374 }
5375
5376 /* Update LABEL_NUSES. */
5377 mark_jump_label (PATTERN (new), new, 0);
5378
5379 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5380
5381 /* If the old insn is frame related, then so is the new one. This is
5382 primarily needed for IA-64 unwind info which marks epilogue insns,
5383 which may be duplicated by the basic block reordering code. */
5384 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5385
5386 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5387 make them. */
5388 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5389 if (REG_NOTE_KIND (link) != REG_LABEL)
5390 {
5391 if (GET_CODE (link) == EXPR_LIST)
5392 REG_NOTES (new)
5393 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5394 XEXP (link, 0),
5395 REG_NOTES (new)));
5396 else
5397 REG_NOTES (new)
5398 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5399 XEXP (link, 0),
5400 REG_NOTES (new)));
5401 }
5402
5403 /* Fix the libcall sequences. */
5404 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5405 {
5406 rtx p = new;
5407 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5408 p = PREV_INSN (p);
5409 XEXP (note1, 0) = p;
5410 XEXP (note2, 0) = new;
5411 }
5412 INSN_CODE (new) = INSN_CODE (insn);
5413 return new;
5414 }
5415
5416 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5417 rtx
5418 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5419 {
5420 if (hard_reg_clobbers[mode][regno])
5421 return hard_reg_clobbers[mode][regno];
5422 else
5423 return (hard_reg_clobbers[mode][regno] =
5424 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5425 }
5426
5427 #include "gt-emit-rtl.h"