]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
alias.c: Fix comment formatting.
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_last_label_num was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
121
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
125
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
130
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
137
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
152
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
157
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
160
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
164
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
168
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
172
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
178
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 rtx value = (rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 rtx a = (rtx)x, b = (rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
261
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
264 {
265 mem_attrs *p = (mem_attrs *) x;
266
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
271 }
272
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
276
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
279 {
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
282
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
285 }
286
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
290
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
294 {
295 mem_attrs attrs;
296 void **slot;
297
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
325
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
328 {
329 reg_attrs *p = (reg_attrs *) x;
330
331 return ((p->offset * 1000) ^ (long) p->decl);
332 }
333
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
337
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
340 {
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
343
344 return (p->decl == q->decl && p->offset == q->offset);
345 }
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
349
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
352 {
353 reg_attrs attrs;
354 void **slot;
355
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
359
360 attrs.decl = decl;
361 attrs.offset = offset;
362
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
365 {
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 }
369
370 return *slot;
371 }
372
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
376
377 rtx
378 gen_raw_REG (enum machine_mode mode, int regno)
379 {
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
383 }
384
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
388
389 rtx
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 {
392 void **slot;
393
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
401
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407
408 return (rtx) *slot;
409 }
410
411 rtx
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 {
414 return GEN_INT (trunc_int_for_mode (c, mode));
415 }
416
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
420
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
426 {
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
430
431 return (rtx) *slot;
432 }
433
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
436 rtx
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 {
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
441
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443
444 return lookup_const_double (real);
445 }
446
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451
452 rtx
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 {
455 rtx value;
456 unsigned int i;
457
458 if (mode != VOIDmode)
459 {
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
467
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
482
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
486
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
491
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
495
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
498
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
504
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
510
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
513
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 }
517
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
521
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
525
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
528
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
531
532 return lookup_const_double (value);
533 }
534
535 rtx
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 {
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
543
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
548
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
551
552 if (mode == Pmode && !reload_in_progress)
553 {
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
575 }
576
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
580
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
585
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
588
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
596
597 return gen_raw_REG (mode, regno);
598 }
599
600 rtx
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 {
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
604
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
608
609 return rt;
610 }
611
612 rtx
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 {
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
619
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
629 }
630
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
633
634 rtx
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 {
637 enum machine_mode inmode;
638
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
644 }
645 \f
646 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
647 **
648 ** This routine generates an RTX of the size specified by
649 ** <code>, which is an RTX code. The RTX structure is initialized
650 ** from the arguments <element1> through <elementn>, which are
651 ** interpreted according to the specific RTX type's format. The
652 ** special machine mode associated with the rtx (if any) is specified
653 ** in <mode>.
654 **
655 ** gen_rtx can be invoked in a way which resembles the lisp-like
656 ** rtx it will generate. For example, the following rtx structure:
657 **
658 ** (plus:QI (mem:QI (reg:SI 1))
659 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
660 **
661 ** ...would be generated by the following C code:
662 **
663 ** gen_rtx (PLUS, QImode,
664 ** gen_rtx (MEM, QImode,
665 ** gen_rtx (REG, SImode, 1)),
666 ** gen_rtx (MEM, QImode,
667 ** gen_rtx (PLUS, SImode,
668 ** gen_rtx (REG, SImode, 2),
669 ** gen_rtx (REG, SImode, 3)))),
670 */
671
672 /*VARARGS2*/
673 rtx
674 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
675 {
676 int i; /* Array indices... */
677 const char *fmt; /* Current rtx's format... */
678 rtx rt_val; /* RTX to return to caller... */
679 va_list p;
680
681 va_start (p, mode);
682
683 switch (code)
684 {
685 case CONST_INT:
686 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
687 break;
688
689 case CONST_DOUBLE:
690 {
691 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
692 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
693
694 rt_val = immed_double_const (arg0, arg1, mode);
695 }
696 break;
697
698 case REG:
699 rt_val = gen_rtx_REG (mode, va_arg (p, int));
700 break;
701
702 case MEM:
703 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
704 break;
705
706 default:
707 rt_val = rtx_alloc (code); /* Allocate the storage space. */
708 rt_val->mode = mode; /* Store the machine mode... */
709
710 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
711 for (i = 0; i < GET_RTX_LENGTH (code); i++)
712 {
713 switch (*fmt++)
714 {
715 case '0': /* Field with unknown use. Zero it. */
716 X0EXP (rt_val, i) = NULL_RTX;
717 break;
718
719 case 'i': /* An integer? */
720 XINT (rt_val, i) = va_arg (p, int);
721 break;
722
723 case 'w': /* A wide integer? */
724 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
725 break;
726
727 case 's': /* A string? */
728 XSTR (rt_val, i) = va_arg (p, char *);
729 break;
730
731 case 'e': /* An expression? */
732 case 'u': /* An insn? Same except when printing. */
733 XEXP (rt_val, i) = va_arg (p, rtx);
734 break;
735
736 case 'E': /* An RTX vector? */
737 XVEC (rt_val, i) = va_arg (p, rtvec);
738 break;
739
740 case 'b': /* A bitmap? */
741 XBITMAP (rt_val, i) = va_arg (p, bitmap);
742 break;
743
744 case 't': /* A tree? */
745 XTREE (rt_val, i) = va_arg (p, tree);
746 break;
747
748 default:
749 abort ();
750 }
751 }
752 break;
753 }
754
755 va_end (p);
756 return rt_val;
757 }
758
759 /* gen_rtvec (n, [rt1, ..., rtn])
760 **
761 ** This routine creates an rtvec and stores within it the
762 ** pointers to rtx's which are its arguments.
763 */
764
765 /*VARARGS1*/
766 rtvec
767 gen_rtvec (int n, ...)
768 {
769 int i, save_n;
770 rtx *vector;
771 va_list p;
772
773 va_start (p, n);
774
775 if (n == 0)
776 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
777
778 vector = alloca (n * sizeof (rtx));
779
780 for (i = 0; i < n; i++)
781 vector[i] = va_arg (p, rtx);
782
783 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
784 save_n = n;
785 va_end (p);
786
787 return gen_rtvec_v (save_n, vector);
788 }
789
790 rtvec
791 gen_rtvec_v (int n, rtx *argp)
792 {
793 int i;
794 rtvec rt_val;
795
796 if (n == 0)
797 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
798
799 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
800
801 for (i = 0; i < n; i++)
802 rt_val->elem[i] = *argp++;
803
804 return rt_val;
805 }
806 \f
807 /* Generate a REG rtx for a new pseudo register of mode MODE.
808 This pseudo is assigned the next sequential register number. */
809
810 rtx
811 gen_reg_rtx (enum machine_mode mode)
812 {
813 struct function *f = cfun;
814 rtx val;
815
816 /* Don't let anything called after initial flow analysis create new
817 registers. */
818 if (no_new_pseudos)
819 abort ();
820
821 if (generating_concat_p
822 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
823 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
824 {
825 /* For complex modes, don't make a single pseudo.
826 Instead, make a CONCAT of two pseudos.
827 This allows noncontiguous allocation of the real and imaginary parts,
828 which makes much better code. Besides, allocating DCmode
829 pseudos overstrains reload on some machines like the 386. */
830 rtx realpart, imagpart;
831 enum machine_mode partmode = GET_MODE_INNER (mode);
832
833 realpart = gen_reg_rtx (partmode);
834 imagpart = gen_reg_rtx (partmode);
835 return gen_rtx_CONCAT (mode, realpart, imagpart);
836 }
837
838 /* Make sure regno_pointer_align, and regno_reg_rtx are large
839 enough to have an element for this pseudo reg number. */
840
841 if (reg_rtx_no == f->emit->regno_pointer_align_length)
842 {
843 int old_size = f->emit->regno_pointer_align_length;
844 char *new;
845 rtx *new1;
846
847 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
848 memset (new + old_size, 0, old_size);
849 f->emit->regno_pointer_align = (unsigned char *) new;
850
851 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
852 old_size * 2 * sizeof (rtx));
853 memset (new1 + old_size, 0, old_size * sizeof (rtx));
854 regno_reg_rtx = new1;
855
856 f->emit->regno_pointer_align_length = old_size * 2;
857 }
858
859 val = gen_raw_REG (mode, reg_rtx_no);
860 regno_reg_rtx[reg_rtx_no++] = val;
861 return val;
862 }
863
864 /* Generate a register with same attributes as REG,
865 but offsetted by OFFSET. */
866
867 rtx
868 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
869 {
870 rtx new = gen_rtx_REG (mode, regno);
871 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
872 REG_OFFSET (reg) + offset);
873 return new;
874 }
875
876 /* Set the decl for MEM to DECL. */
877
878 void
879 set_reg_attrs_from_mem (rtx reg, rtx mem)
880 {
881 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
882 REG_ATTRS (reg)
883 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
884 }
885
886 /* Set the register attributes for registers contained in PARM_RTX.
887 Use needed values from memory attributes of MEM. */
888
889 void
890 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
891 {
892 if (GET_CODE (parm_rtx) == REG)
893 set_reg_attrs_from_mem (parm_rtx, mem);
894 else if (GET_CODE (parm_rtx) == PARALLEL)
895 {
896 /* Check for a NULL entry in the first slot, used to indicate that the
897 parameter goes both on the stack and in registers. */
898 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
899 for (; i < XVECLEN (parm_rtx, 0); i++)
900 {
901 rtx x = XVECEXP (parm_rtx, 0, i);
902 if (GET_CODE (XEXP (x, 0)) == REG)
903 REG_ATTRS (XEXP (x, 0))
904 = get_reg_attrs (MEM_EXPR (mem),
905 INTVAL (XEXP (x, 1)));
906 }
907 }
908 }
909
910 /* Assign the RTX X to declaration T. */
911 void
912 set_decl_rtl (tree t, rtx x)
913 {
914 DECL_CHECK (t)->decl.rtl = x;
915
916 if (!x)
917 return;
918 /* For register, we maintain the reverse information too. */
919 if (GET_CODE (x) == REG)
920 REG_ATTRS (x) = get_reg_attrs (t, 0);
921 else if (GET_CODE (x) == SUBREG)
922 REG_ATTRS (SUBREG_REG (x))
923 = get_reg_attrs (t, -SUBREG_BYTE (x));
924 if (GET_CODE (x) == CONCAT)
925 {
926 if (REG_P (XEXP (x, 0)))
927 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
928 if (REG_P (XEXP (x, 1)))
929 REG_ATTRS (XEXP (x, 1))
930 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
931 }
932 if (GET_CODE (x) == PARALLEL)
933 {
934 int i;
935 for (i = 0; i < XVECLEN (x, 0); i++)
936 {
937 rtx y = XVECEXP (x, 0, i);
938 if (REG_P (XEXP (y, 0)))
939 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
940 }
941 }
942 }
943
944 /* Identify REG (which may be a CONCAT) as a user register. */
945
946 void
947 mark_user_reg (rtx reg)
948 {
949 if (GET_CODE (reg) == CONCAT)
950 {
951 REG_USERVAR_P (XEXP (reg, 0)) = 1;
952 REG_USERVAR_P (XEXP (reg, 1)) = 1;
953 }
954 else if (GET_CODE (reg) == REG)
955 REG_USERVAR_P (reg) = 1;
956 else
957 abort ();
958 }
959
960 /* Identify REG as a probable pointer register and show its alignment
961 as ALIGN, if nonzero. */
962
963 void
964 mark_reg_pointer (rtx reg, int align)
965 {
966 if (! REG_POINTER (reg))
967 {
968 REG_POINTER (reg) = 1;
969
970 if (align)
971 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
972 }
973 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
974 /* We can no-longer be sure just how aligned this pointer is. */
975 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
976 }
977
978 /* Return 1 plus largest pseudo reg number used in the current function. */
979
980 int
981 max_reg_num (void)
982 {
983 return reg_rtx_no;
984 }
985
986 /* Return 1 + the largest label number used so far in the current function. */
987
988 int
989 max_label_num (void)
990 {
991 if (last_label_num && label_num == base_label_num)
992 return last_label_num;
993 return label_num;
994 }
995
996 /* Return first label number used in this function (if any were used). */
997
998 int
999 get_first_label_num (void)
1000 {
1001 return first_label_num;
1002 }
1003 \f
1004 /* Return the final regno of X, which is a SUBREG of a hard
1005 register. */
1006 int
1007 subreg_hard_regno (rtx x, int check_mode)
1008 {
1009 enum machine_mode mode = GET_MODE (x);
1010 unsigned int byte_offset, base_regno, final_regno;
1011 rtx reg = SUBREG_REG (x);
1012
1013 /* This is where we attempt to catch illegal subregs
1014 created by the compiler. */
1015 if (GET_CODE (x) != SUBREG
1016 || GET_CODE (reg) != REG)
1017 abort ();
1018 base_regno = REGNO (reg);
1019 if (base_regno >= FIRST_PSEUDO_REGISTER)
1020 abort ();
1021 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1022 abort ();
1023 #ifdef ENABLE_CHECKING
1024 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1025 SUBREG_BYTE (x), mode))
1026 abort ();
1027 #endif
1028 /* Catch non-congruent offsets too. */
1029 byte_offset = SUBREG_BYTE (x);
1030 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1031 abort ();
1032
1033 final_regno = subreg_regno (x);
1034
1035 return final_regno;
1036 }
1037
1038 /* Return a value representing some low-order bits of X, where the number
1039 of low-order bits is given by MODE. Note that no conversion is done
1040 between floating-point and fixed-point values, rather, the bit
1041 representation is returned.
1042
1043 This function handles the cases in common between gen_lowpart, below,
1044 and two variants in cse.c and combine.c. These are the cases that can
1045 be safely handled at all points in the compilation.
1046
1047 If this is not a case we can handle, return 0. */
1048
1049 rtx
1050 gen_lowpart_common (enum machine_mode mode, rtx x)
1051 {
1052 int msize = GET_MODE_SIZE (mode);
1053 int xsize = GET_MODE_SIZE (GET_MODE (x));
1054 int offset = 0;
1055
1056 if (GET_MODE (x) == mode)
1057 return x;
1058
1059 /* MODE must occupy no more words than the mode of X. */
1060 if (GET_MODE (x) != VOIDmode
1061 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1062 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1063 return 0;
1064
1065 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1066 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1067 && GET_MODE (x) != VOIDmode && msize > xsize)
1068 return 0;
1069
1070 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1071
1072 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1073 && (GET_MODE_CLASS (mode) == MODE_INT
1074 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1075 {
1076 /* If we are getting the low-order part of something that has been
1077 sign- or zero-extended, we can either just use the object being
1078 extended or make a narrower extension. If we want an even smaller
1079 piece than the size of the object being extended, call ourselves
1080 recursively.
1081
1082 This case is used mostly by combine and cse. */
1083
1084 if (GET_MODE (XEXP (x, 0)) == mode)
1085 return XEXP (x, 0);
1086 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1087 return gen_lowpart_common (mode, XEXP (x, 0));
1088 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1089 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1090 }
1091 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1092 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1093 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1094 else if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
1095 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1096 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1097 from the low-order part of the constant. */
1098 else if ((GET_MODE_CLASS (mode) == MODE_INT
1099 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1100 && GET_MODE (x) == VOIDmode
1101 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1102 {
1103 /* If MODE is twice the host word size, X is already the desired
1104 representation. Otherwise, if MODE is wider than a word, we can't
1105 do this. If MODE is exactly a word, return just one CONST_INT. */
1106
1107 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1108 return x;
1109 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1110 return 0;
1111 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1112 return (GET_CODE (x) == CONST_INT ? x
1113 : GEN_INT (CONST_DOUBLE_LOW (x)));
1114 else
1115 {
1116 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1117 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1118 : CONST_DOUBLE_LOW (x));
1119
1120 /* Sign extend to HOST_WIDE_INT. */
1121 val = trunc_int_for_mode (val, mode);
1122
1123 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1124 : GEN_INT (val));
1125 }
1126 }
1127
1128 /* The floating-point emulator can handle all conversions between
1129 FP and integer operands. This simplifies reload because it
1130 doesn't have to deal with constructs like (subreg:DI
1131 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1132 /* Single-precision floats are always 32-bits and double-precision
1133 floats are always 64-bits. */
1134
1135 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1136 && GET_MODE_BITSIZE (mode) == 32
1137 && GET_CODE (x) == CONST_INT)
1138 {
1139 REAL_VALUE_TYPE r;
1140 long i = INTVAL (x);
1141
1142 real_from_target (&r, &i, mode);
1143 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1144 }
1145 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1146 && GET_MODE_BITSIZE (mode) == 64
1147 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1148 && GET_MODE (x) == VOIDmode)
1149 {
1150 REAL_VALUE_TYPE r;
1151 HOST_WIDE_INT low, high;
1152 long i[2];
1153
1154 if (GET_CODE (x) == CONST_INT)
1155 {
1156 low = INTVAL (x);
1157 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1158 }
1159 else
1160 {
1161 low = CONST_DOUBLE_LOW (x);
1162 high = CONST_DOUBLE_HIGH (x);
1163 }
1164
1165 if (HOST_BITS_PER_WIDE_INT > 32)
1166 high = low >> 31 >> 1;
1167
1168 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1169 target machine. */
1170 if (WORDS_BIG_ENDIAN)
1171 i[0] = high, i[1] = low;
1172 else
1173 i[0] = low, i[1] = high;
1174
1175 real_from_target (&r, i, mode);
1176 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1177 }
1178 else if ((GET_MODE_CLASS (mode) == MODE_INT
1179 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1180 && GET_CODE (x) == CONST_DOUBLE
1181 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1182 {
1183 REAL_VALUE_TYPE r;
1184 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1185 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1186
1187 /* Convert 'r' into an array of four 32-bit words in target word
1188 order. */
1189 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1190 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1191 {
1192 case 32:
1193 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1194 i[1] = 0;
1195 i[2] = 0;
1196 i[3 - 3 * endian] = 0;
1197 break;
1198 case 64:
1199 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1200 i[2 - 2 * endian] = 0;
1201 i[3 - 2 * endian] = 0;
1202 break;
1203 case 96:
1204 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1205 i[3 - 3 * endian] = 0;
1206 break;
1207 case 128:
1208 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1209 break;
1210 default:
1211 abort ();
1212 }
1213 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1214 and return it. */
1215 #if HOST_BITS_PER_WIDE_INT == 32
1216 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1217 #else
1218 if (HOST_BITS_PER_WIDE_INT != 64)
1219 abort ();
1220
1221 return immed_double_const ((((unsigned long) i[3 * endian])
1222 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1223 (((unsigned long) i[2 - endian])
1224 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1225 mode);
1226 #endif
1227 }
1228 /* If MODE is a condition code and X is a CONST_INT, the value of X
1229 must already have been "recognized" by the back-end, and we can
1230 assume that it is valid for this mode. */
1231 else if (GET_MODE_CLASS (mode) == MODE_CC
1232 && GET_CODE (x) == CONST_INT)
1233 return x;
1234
1235 /* Otherwise, we can't do this. */
1236 return 0;
1237 }
1238 \f
1239 /* Return the constant real or imaginary part (which has mode MODE)
1240 of a complex value X. The IMAGPART_P argument determines whether
1241 the real or complex component should be returned. This function
1242 returns NULL_RTX if the component isn't a constant. */
1243
1244 static rtx
1245 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1246 {
1247 tree decl, part;
1248
1249 if (GET_CODE (x) == MEM
1250 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1251 {
1252 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1253 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1254 {
1255 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1256 if (TREE_CODE (part) == REAL_CST
1257 || TREE_CODE (part) == INTEGER_CST)
1258 return expand_expr (part, NULL_RTX, mode, 0);
1259 }
1260 }
1261 return NULL_RTX;
1262 }
1263
1264 /* Return the real part (which has mode MODE) of a complex value X.
1265 This always comes at the low address in memory. */
1266
1267 rtx
1268 gen_realpart (enum machine_mode mode, rtx x)
1269 {
1270 rtx part;
1271
1272 /* Handle complex constants. */
1273 part = gen_complex_constant_part (mode, x, 0);
1274 if (part != NULL_RTX)
1275 return part;
1276
1277 if (WORDS_BIG_ENDIAN
1278 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1279 && REG_P (x)
1280 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1281 internal_error
1282 ("can't access real part of complex value in hard register");
1283 else if (WORDS_BIG_ENDIAN)
1284 return gen_highpart (mode, x);
1285 else
1286 return gen_lowpart (mode, x);
1287 }
1288
1289 /* Return the imaginary part (which has mode MODE) of a complex value X.
1290 This always comes at the high address in memory. */
1291
1292 rtx
1293 gen_imagpart (enum machine_mode mode, rtx x)
1294 {
1295 rtx part;
1296
1297 /* Handle complex constants. */
1298 part = gen_complex_constant_part (mode, x, 1);
1299 if (part != NULL_RTX)
1300 return part;
1301
1302 if (WORDS_BIG_ENDIAN)
1303 return gen_lowpart (mode, x);
1304 else if (! WORDS_BIG_ENDIAN
1305 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1306 && REG_P (x)
1307 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1308 internal_error
1309 ("can't access imaginary part of complex value in hard register");
1310 else
1311 return gen_highpart (mode, x);
1312 }
1313
1314 /* Return 1 iff X, assumed to be a SUBREG,
1315 refers to the real part of the complex value in its containing reg.
1316 Complex values are always stored with the real part in the first word,
1317 regardless of WORDS_BIG_ENDIAN. */
1318
1319 int
1320 subreg_realpart_p (rtx x)
1321 {
1322 if (GET_CODE (x) != SUBREG)
1323 abort ();
1324
1325 return ((unsigned int) SUBREG_BYTE (x)
1326 < (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1327 }
1328 \f
1329 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1330 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1331 least-significant part of X.
1332 MODE specifies how big a part of X to return;
1333 it usually should not be larger than a word.
1334 If X is a MEM whose address is a QUEUED, the value may be so also. */
1335
1336 rtx
1337 gen_lowpart (enum machine_mode mode, rtx x)
1338 {
1339 rtx result = gen_lowpart_common (mode, x);
1340
1341 if (result)
1342 return result;
1343 else if (GET_CODE (x) == REG)
1344 {
1345 /* Must be a hard reg that's not valid in MODE. */
1346 result = gen_lowpart_common (mode, copy_to_reg (x));
1347 if (result == 0)
1348 abort ();
1349 return result;
1350 }
1351 else if (GET_CODE (x) == MEM)
1352 {
1353 /* The only additional case we can do is MEM. */
1354 int offset = 0;
1355
1356 /* The following exposes the use of "x" to CSE. */
1357 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1358 && SCALAR_INT_MODE_P (GET_MODE (x))
1359 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1360 GET_MODE_BITSIZE (GET_MODE (x)))
1361 && ! no_new_pseudos)
1362 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1363
1364 if (WORDS_BIG_ENDIAN)
1365 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1366 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1367
1368 if (BYTES_BIG_ENDIAN)
1369 /* Adjust the address so that the address-after-the-data
1370 is unchanged. */
1371 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1372 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1373
1374 return adjust_address (x, mode, offset);
1375 }
1376 else if (GET_CODE (x) == ADDRESSOF)
1377 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1378 else
1379 abort ();
1380 }
1381
1382 /* Like `gen_lowpart', but refer to the most significant part.
1383 This is used to access the imaginary part of a complex number. */
1384
1385 rtx
1386 gen_highpart (enum machine_mode mode, rtx x)
1387 {
1388 unsigned int msize = GET_MODE_SIZE (mode);
1389 rtx result;
1390
1391 /* This case loses if X is a subreg. To catch bugs early,
1392 complain if an invalid MODE is used even in other cases. */
1393 if (msize > UNITS_PER_WORD
1394 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1395 abort ();
1396
1397 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1398 subreg_highpart_offset (mode, GET_MODE (x)));
1399
1400 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1401 the target if we have a MEM. gen_highpart must return a valid operand,
1402 emitting code if necessary to do so. */
1403 if (result != NULL_RTX && GET_CODE (result) == MEM)
1404 result = validize_mem (result);
1405
1406 if (!result)
1407 abort ();
1408 return result;
1409 }
1410
1411 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1412 be VOIDmode constant. */
1413 rtx
1414 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1415 {
1416 if (GET_MODE (exp) != VOIDmode)
1417 {
1418 if (GET_MODE (exp) != innermode)
1419 abort ();
1420 return gen_highpart (outermode, exp);
1421 }
1422 return simplify_gen_subreg (outermode, exp, innermode,
1423 subreg_highpart_offset (outermode, innermode));
1424 }
1425
1426 /* Return offset in bytes to get OUTERMODE low part
1427 of the value in mode INNERMODE stored in memory in target format. */
1428
1429 unsigned int
1430 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1431 {
1432 unsigned int offset = 0;
1433 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1434
1435 if (difference > 0)
1436 {
1437 if (WORDS_BIG_ENDIAN)
1438 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1439 if (BYTES_BIG_ENDIAN)
1440 offset += difference % UNITS_PER_WORD;
1441 }
1442
1443 return offset;
1444 }
1445
1446 /* Return offset in bytes to get OUTERMODE high part
1447 of the value in mode INNERMODE stored in memory in target format. */
1448 unsigned int
1449 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1450 {
1451 unsigned int offset = 0;
1452 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1453
1454 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1455 abort ();
1456
1457 if (difference > 0)
1458 {
1459 if (! WORDS_BIG_ENDIAN)
1460 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1461 if (! BYTES_BIG_ENDIAN)
1462 offset += difference % UNITS_PER_WORD;
1463 }
1464
1465 return offset;
1466 }
1467
1468 /* Return 1 iff X, assumed to be a SUBREG,
1469 refers to the least significant part of its containing reg.
1470 If X is not a SUBREG, always return 1 (it is its own low part!). */
1471
1472 int
1473 subreg_lowpart_p (rtx x)
1474 {
1475 if (GET_CODE (x) != SUBREG)
1476 return 1;
1477 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1478 return 0;
1479
1480 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1481 == SUBREG_BYTE (x));
1482 }
1483 \f
1484
1485 /* Helper routine for all the constant cases of operand_subword.
1486 Some places invoke this directly. */
1487
1488 rtx
1489 constant_subword (rtx op, int offset, enum machine_mode mode)
1490 {
1491 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1492 HOST_WIDE_INT val;
1493
1494 /* If OP is already an integer word, return it. */
1495 if (GET_MODE_CLASS (mode) == MODE_INT
1496 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1497 return op;
1498
1499 /* The output is some bits, the width of the target machine's word.
1500 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1501 host can't. */
1502 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1503 && GET_MODE_CLASS (mode) == MODE_FLOAT
1504 && GET_MODE_BITSIZE (mode) == 64
1505 && GET_CODE (op) == CONST_DOUBLE)
1506 {
1507 long k[2];
1508 REAL_VALUE_TYPE rv;
1509
1510 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1511 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1512
1513 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1514 which the words are written depends on the word endianness.
1515 ??? This is a potential portability problem and should
1516 be fixed at some point.
1517
1518 We must exercise caution with the sign bit. By definition there
1519 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1520 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1521 So we explicitly mask and sign-extend as necessary. */
1522 if (BITS_PER_WORD == 32)
1523 {
1524 val = k[offset];
1525 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1526 return GEN_INT (val);
1527 }
1528 #if HOST_BITS_PER_WIDE_INT >= 64
1529 else if (BITS_PER_WORD >= 64 && offset == 0)
1530 {
1531 val = k[! WORDS_BIG_ENDIAN];
1532 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1533 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1534 return GEN_INT (val);
1535 }
1536 #endif
1537 else if (BITS_PER_WORD == 16)
1538 {
1539 val = k[offset >> 1];
1540 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1541 val >>= 16;
1542 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1543 return GEN_INT (val);
1544 }
1545 else
1546 abort ();
1547 }
1548 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1549 && GET_MODE_CLASS (mode) == MODE_FLOAT
1550 && GET_MODE_BITSIZE (mode) > 64
1551 && GET_CODE (op) == CONST_DOUBLE)
1552 {
1553 long k[4];
1554 REAL_VALUE_TYPE rv;
1555
1556 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1557 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1558
1559 if (BITS_PER_WORD == 32)
1560 {
1561 val = k[offset];
1562 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1563 return GEN_INT (val);
1564 }
1565 #if HOST_BITS_PER_WIDE_INT >= 64
1566 else if (BITS_PER_WORD >= 64 && offset <= 1)
1567 {
1568 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1569 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1570 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1571 return GEN_INT (val);
1572 }
1573 #endif
1574 else
1575 abort ();
1576 }
1577
1578 /* Single word float is a little harder, since single- and double-word
1579 values often do not have the same high-order bits. We have already
1580 verified that we want the only defined word of the single-word value. */
1581 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1582 && GET_MODE_BITSIZE (mode) == 32
1583 && GET_CODE (op) == CONST_DOUBLE)
1584 {
1585 long l;
1586 REAL_VALUE_TYPE rv;
1587
1588 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1589 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1590
1591 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1592 val = l;
1593 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1594
1595 if (BITS_PER_WORD == 16)
1596 {
1597 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1598 val >>= 16;
1599 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1600 }
1601
1602 return GEN_INT (val);
1603 }
1604
1605 /* The only remaining cases that we can handle are integers.
1606 Convert to proper endianness now since these cases need it.
1607 At this point, offset == 0 means the low-order word.
1608
1609 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1610 in general. However, if OP is (const_int 0), we can just return
1611 it for any word. */
1612
1613 if (op == const0_rtx)
1614 return op;
1615
1616 if (GET_MODE_CLASS (mode) != MODE_INT
1617 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1618 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1619 return 0;
1620
1621 if (WORDS_BIG_ENDIAN)
1622 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1623
1624 /* Find out which word on the host machine this value is in and get
1625 it from the constant. */
1626 val = (offset / size_ratio == 0
1627 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1628 : (GET_CODE (op) == CONST_INT
1629 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1630
1631 /* Get the value we want into the low bits of val. */
1632 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1633 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1634
1635 val = trunc_int_for_mode (val, word_mode);
1636
1637 return GEN_INT (val);
1638 }
1639
1640 /* Return subword OFFSET of operand OP.
1641 The word number, OFFSET, is interpreted as the word number starting
1642 at the low-order address. OFFSET 0 is the low-order word if not
1643 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1644
1645 If we cannot extract the required word, we return zero. Otherwise,
1646 an rtx corresponding to the requested word will be returned.
1647
1648 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1649 reload has completed, a valid address will always be returned. After
1650 reload, if a valid address cannot be returned, we return zero.
1651
1652 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1653 it is the responsibility of the caller.
1654
1655 MODE is the mode of OP in case it is a CONST_INT.
1656
1657 ??? This is still rather broken for some cases. The problem for the
1658 moment is that all callers of this thing provide no 'goal mode' to
1659 tell us to work with. This exists because all callers were written
1660 in a word based SUBREG world.
1661 Now use of this function can be deprecated by simplify_subreg in most
1662 cases.
1663 */
1664
1665 rtx
1666 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1667 {
1668 if (mode == VOIDmode)
1669 mode = GET_MODE (op);
1670
1671 if (mode == VOIDmode)
1672 abort ();
1673
1674 /* If OP is narrower than a word, fail. */
1675 if (mode != BLKmode
1676 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1677 return 0;
1678
1679 /* If we want a word outside OP, return zero. */
1680 if (mode != BLKmode
1681 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1682 return const0_rtx;
1683
1684 /* Form a new MEM at the requested address. */
1685 if (GET_CODE (op) == MEM)
1686 {
1687 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1688
1689 if (! validate_address)
1690 return new;
1691
1692 else if (reload_completed)
1693 {
1694 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1695 return 0;
1696 }
1697 else
1698 return replace_equiv_address (new, XEXP (new, 0));
1699 }
1700
1701 /* Rest can be handled by simplify_subreg. */
1702 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1703 }
1704
1705 /* Similar to `operand_subword', but never return 0. If we can't extract
1706 the required subword, put OP into a register and try again. If that fails,
1707 abort. We always validate the address in this case.
1708
1709 MODE is the mode of OP, in case it is CONST_INT. */
1710
1711 rtx
1712 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1713 {
1714 rtx result = operand_subword (op, offset, 1, mode);
1715
1716 if (result)
1717 return result;
1718
1719 if (mode != BLKmode && mode != VOIDmode)
1720 {
1721 /* If this is a register which can not be accessed by words, copy it
1722 to a pseudo register. */
1723 if (GET_CODE (op) == REG)
1724 op = copy_to_reg (op);
1725 else
1726 op = force_reg (mode, op);
1727 }
1728
1729 result = operand_subword (op, offset, 1, mode);
1730 if (result == 0)
1731 abort ();
1732
1733 return result;
1734 }
1735 \f
1736 /* Given a compare instruction, swap the operands.
1737 A test instruction is changed into a compare of 0 against the operand. */
1738
1739 void
1740 reverse_comparison (rtx insn)
1741 {
1742 rtx body = PATTERN (insn);
1743 rtx comp;
1744
1745 if (GET_CODE (body) == SET)
1746 comp = SET_SRC (body);
1747 else
1748 comp = SET_SRC (XVECEXP (body, 0, 0));
1749
1750 if (GET_CODE (comp) == COMPARE)
1751 {
1752 rtx op0 = XEXP (comp, 0);
1753 rtx op1 = XEXP (comp, 1);
1754 XEXP (comp, 0) = op1;
1755 XEXP (comp, 1) = op0;
1756 }
1757 else
1758 {
1759 rtx new = gen_rtx_COMPARE (VOIDmode,
1760 CONST0_RTX (GET_MODE (comp)), comp);
1761 if (GET_CODE (body) == SET)
1762 SET_SRC (body) = new;
1763 else
1764 SET_SRC (XVECEXP (body, 0, 0)) = new;
1765 }
1766 }
1767 \f
1768 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1769 or (2) a component ref of something variable. Represent the later with
1770 a NULL expression. */
1771
1772 static tree
1773 component_ref_for_mem_expr (tree ref)
1774 {
1775 tree inner = TREE_OPERAND (ref, 0);
1776
1777 if (TREE_CODE (inner) == COMPONENT_REF)
1778 inner = component_ref_for_mem_expr (inner);
1779 else
1780 {
1781 tree placeholder_ptr = 0;
1782
1783 /* Now remove any conversions: they don't change what the underlying
1784 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1785 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1786 || TREE_CODE (inner) == NON_LVALUE_EXPR
1787 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1788 || TREE_CODE (inner) == SAVE_EXPR
1789 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1790 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1791 inner = find_placeholder (inner, &placeholder_ptr);
1792 else
1793 inner = TREE_OPERAND (inner, 0);
1794
1795 if (! DECL_P (inner))
1796 inner = NULL_TREE;
1797 }
1798
1799 if (inner == TREE_OPERAND (ref, 0))
1800 return ref;
1801 else
1802 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1803 TREE_OPERAND (ref, 1));
1804 }
1805
1806 /* Given REF, a MEM, and T, either the type of X or the expression
1807 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1808 if we are making a new object of this type. BITPOS is nonzero if
1809 there is an offset outstanding on T that will be applied later. */
1810
1811 void
1812 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1813 HOST_WIDE_INT bitpos)
1814 {
1815 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1816 tree expr = MEM_EXPR (ref);
1817 rtx offset = MEM_OFFSET (ref);
1818 rtx size = MEM_SIZE (ref);
1819 unsigned int align = MEM_ALIGN (ref);
1820 HOST_WIDE_INT apply_bitpos = 0;
1821 tree type;
1822
1823 /* It can happen that type_for_mode was given a mode for which there
1824 is no language-level type. In which case it returns NULL, which
1825 we can see here. */
1826 if (t == NULL_TREE)
1827 return;
1828
1829 type = TYPE_P (t) ? t : TREE_TYPE (t);
1830 if (type == error_mark_node)
1831 return;
1832
1833 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1834 wrong answer, as it assumes that DECL_RTL already has the right alias
1835 info. Callers should not set DECL_RTL until after the call to
1836 set_mem_attributes. */
1837 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1838 abort ();
1839
1840 /* Get the alias set from the expression or type (perhaps using a
1841 front-end routine) and use it. */
1842 alias = get_alias_set (t);
1843
1844 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1845 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1846 RTX_UNCHANGING_P (ref)
1847 |= ((lang_hooks.honor_readonly
1848 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1849 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1850
1851 /* If we are making an object of this type, or if this is a DECL, we know
1852 that it is a scalar if the type is not an aggregate. */
1853 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1854 MEM_SCALAR_P (ref) = 1;
1855
1856 /* We can set the alignment from the type if we are making an object,
1857 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1858 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1859 align = MAX (align, TYPE_ALIGN (type));
1860
1861 /* If the size is known, we can set that. */
1862 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1863 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1864
1865 /* If T is not a type, we may be able to deduce some more information about
1866 the expression. */
1867 if (! TYPE_P (t))
1868 {
1869 maybe_set_unchanging (ref, t);
1870 if (TREE_THIS_VOLATILE (t))
1871 MEM_VOLATILE_P (ref) = 1;
1872
1873 /* Now remove any conversions: they don't change what the underlying
1874 object is. Likewise for SAVE_EXPR. */
1875 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1876 || TREE_CODE (t) == NON_LVALUE_EXPR
1877 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1878 || TREE_CODE (t) == SAVE_EXPR)
1879 t = TREE_OPERAND (t, 0);
1880
1881 /* If this expression can't be addressed (e.g., it contains a reference
1882 to a non-addressable field), show we don't change its alias set. */
1883 if (! can_address_p (t))
1884 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1885
1886 /* If this is a decl, set the attributes of the MEM from it. */
1887 if (DECL_P (t))
1888 {
1889 expr = t;
1890 offset = const0_rtx;
1891 apply_bitpos = bitpos;
1892 size = (DECL_SIZE_UNIT (t)
1893 && host_integerp (DECL_SIZE_UNIT (t), 1)
1894 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1895 align = DECL_ALIGN (t);
1896 }
1897
1898 /* If this is a constant, we know the alignment. */
1899 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1900 {
1901 align = TYPE_ALIGN (type);
1902 #ifdef CONSTANT_ALIGNMENT
1903 align = CONSTANT_ALIGNMENT (t, align);
1904 #endif
1905 }
1906
1907 /* If this is a field reference and not a bit-field, record it. */
1908 /* ??? There is some information that can be gleened from bit-fields,
1909 such as the word offset in the structure that might be modified.
1910 But skip it for now. */
1911 else if (TREE_CODE (t) == COMPONENT_REF
1912 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1913 {
1914 expr = component_ref_for_mem_expr (t);
1915 offset = const0_rtx;
1916 apply_bitpos = bitpos;
1917 /* ??? Any reason the field size would be different than
1918 the size we got from the type? */
1919 }
1920
1921 /* If this is an array reference, look for an outer field reference. */
1922 else if (TREE_CODE (t) == ARRAY_REF)
1923 {
1924 tree off_tree = size_zero_node;
1925 /* We can't modify t, because we use it at the end of the
1926 function. */
1927 tree t2 = t;
1928
1929 do
1930 {
1931 tree index = TREE_OPERAND (t2, 1);
1932 tree array = TREE_OPERAND (t2, 0);
1933 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1934 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1935 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1936
1937 /* We assume all arrays have sizes that are a multiple of a byte.
1938 First subtract the lower bound, if any, in the type of the
1939 index, then convert to sizetype and multiply by the size of the
1940 array element. */
1941 if (low_bound != 0 && ! integer_zerop (low_bound))
1942 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1943 index, low_bound));
1944
1945 /* If the index has a self-referential type, pass it to a
1946 WITH_RECORD_EXPR; if the component size is, pass our
1947 component to one. */
1948 if (CONTAINS_PLACEHOLDER_P (index))
1949 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1950 if (CONTAINS_PLACEHOLDER_P (unit_size))
1951 unit_size = build (WITH_RECORD_EXPR, sizetype,
1952 unit_size, array);
1953
1954 off_tree
1955 = fold (build (PLUS_EXPR, sizetype,
1956 fold (build (MULT_EXPR, sizetype,
1957 index,
1958 unit_size)),
1959 off_tree));
1960 t2 = TREE_OPERAND (t2, 0);
1961 }
1962 while (TREE_CODE (t2) == ARRAY_REF);
1963
1964 if (DECL_P (t2))
1965 {
1966 expr = t2;
1967 offset = NULL;
1968 if (host_integerp (off_tree, 1))
1969 {
1970 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1971 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1972 align = DECL_ALIGN (t2);
1973 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1974 align = aoff;
1975 offset = GEN_INT (ioff);
1976 apply_bitpos = bitpos;
1977 }
1978 }
1979 else if (TREE_CODE (t2) == COMPONENT_REF)
1980 {
1981 expr = component_ref_for_mem_expr (t2);
1982 if (host_integerp (off_tree, 1))
1983 {
1984 offset = GEN_INT (tree_low_cst (off_tree, 1));
1985 apply_bitpos = bitpos;
1986 }
1987 /* ??? Any reason the field size would be different than
1988 the size we got from the type? */
1989 }
1990 else if (flag_argument_noalias > 1
1991 && TREE_CODE (t2) == INDIRECT_REF
1992 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1993 {
1994 expr = t2;
1995 offset = NULL;
1996 }
1997 }
1998
1999 /* If this is a Fortran indirect argument reference, record the
2000 parameter decl. */
2001 else if (flag_argument_noalias > 1
2002 && TREE_CODE (t) == INDIRECT_REF
2003 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2004 {
2005 expr = t;
2006 offset = NULL;
2007 }
2008 }
2009
2010 /* If we modified OFFSET based on T, then subtract the outstanding
2011 bit position offset. Similarly, increase the size of the accessed
2012 object to contain the negative offset. */
2013 if (apply_bitpos)
2014 {
2015 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2016 if (size)
2017 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2018 }
2019
2020 /* Now set the attributes we computed above. */
2021 MEM_ATTRS (ref)
2022 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2023
2024 /* If this is already known to be a scalar or aggregate, we are done. */
2025 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2026 return;
2027
2028 /* If it is a reference into an aggregate, this is part of an aggregate.
2029 Otherwise we don't know. */
2030 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2031 || TREE_CODE (t) == ARRAY_RANGE_REF
2032 || TREE_CODE (t) == BIT_FIELD_REF)
2033 MEM_IN_STRUCT_P (ref) = 1;
2034 }
2035
2036 void
2037 set_mem_attributes (rtx ref, tree t, int objectp)
2038 {
2039 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2040 }
2041
2042 /* Set the decl for MEM to DECL. */
2043
2044 void
2045 set_mem_attrs_from_reg (rtx mem, rtx reg)
2046 {
2047 MEM_ATTRS (mem)
2048 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2049 GEN_INT (REG_OFFSET (reg)),
2050 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2051 }
2052
2053 /* Set the alias set of MEM to SET. */
2054
2055 void
2056 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
2057 {
2058 #ifdef ENABLE_CHECKING
2059 /* If the new and old alias sets don't conflict, something is wrong. */
2060 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2061 abort ();
2062 #endif
2063
2064 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2065 MEM_SIZE (mem), MEM_ALIGN (mem),
2066 GET_MODE (mem));
2067 }
2068
2069 /* Set the alignment of MEM to ALIGN bits. */
2070
2071 void
2072 set_mem_align (rtx mem, unsigned int align)
2073 {
2074 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2075 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2076 GET_MODE (mem));
2077 }
2078
2079 /* Set the expr for MEM to EXPR. */
2080
2081 void
2082 set_mem_expr (rtx mem, tree expr)
2083 {
2084 MEM_ATTRS (mem)
2085 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2086 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2087 }
2088
2089 /* Set the offset of MEM to OFFSET. */
2090
2091 void
2092 set_mem_offset (rtx mem, rtx offset)
2093 {
2094 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2095 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2096 GET_MODE (mem));
2097 }
2098
2099 /* Set the size of MEM to SIZE. */
2100
2101 void
2102 set_mem_size (rtx mem, rtx size)
2103 {
2104 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2105 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2106 GET_MODE (mem));
2107 }
2108 \f
2109 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2110 and its address changed to ADDR. (VOIDmode means don't change the mode.
2111 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2112 returned memory location is required to be valid. The memory
2113 attributes are not changed. */
2114
2115 static rtx
2116 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
2117 {
2118 rtx new;
2119
2120 if (GET_CODE (memref) != MEM)
2121 abort ();
2122 if (mode == VOIDmode)
2123 mode = GET_MODE (memref);
2124 if (addr == 0)
2125 addr = XEXP (memref, 0);
2126
2127 if (validate)
2128 {
2129 if (reload_in_progress || reload_completed)
2130 {
2131 if (! memory_address_p (mode, addr))
2132 abort ();
2133 }
2134 else
2135 addr = memory_address (mode, addr);
2136 }
2137
2138 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2139 return memref;
2140
2141 new = gen_rtx_MEM (mode, addr);
2142 MEM_COPY_ATTRIBUTES (new, memref);
2143 return new;
2144 }
2145
2146 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2147 way we are changing MEMREF, so we only preserve the alias set. */
2148
2149 rtx
2150 change_address (rtx memref, enum machine_mode mode, rtx addr)
2151 {
2152 rtx new = change_address_1 (memref, mode, addr, 1);
2153 enum machine_mode mmode = GET_MODE (new);
2154
2155 MEM_ATTRS (new)
2156 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2157 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2158 (mmode == BLKmode ? BITS_PER_UNIT
2159 : GET_MODE_ALIGNMENT (mmode)),
2160 mmode);
2161
2162 return new;
2163 }
2164
2165 /* Return a memory reference like MEMREF, but with its mode changed
2166 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2167 nonzero, the memory address is forced to be valid.
2168 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2169 and caller is responsible for adjusting MEMREF base register. */
2170
2171 rtx
2172 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2173 int validate, int adjust)
2174 {
2175 rtx addr = XEXP (memref, 0);
2176 rtx new;
2177 rtx memoffset = MEM_OFFSET (memref);
2178 rtx size = 0;
2179 unsigned int memalign = MEM_ALIGN (memref);
2180
2181 /* ??? Prefer to create garbage instead of creating shared rtl.
2182 This may happen even if offset is nonzero -- consider
2183 (plus (plus reg reg) const_int) -- so do this always. */
2184 addr = copy_rtx (addr);
2185
2186 if (adjust)
2187 {
2188 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2189 object, we can merge it into the LO_SUM. */
2190 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2191 && offset >= 0
2192 && (unsigned HOST_WIDE_INT) offset
2193 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2194 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2195 plus_constant (XEXP (addr, 1), offset));
2196 else
2197 addr = plus_constant (addr, offset);
2198 }
2199
2200 new = change_address_1 (memref, mode, addr, validate);
2201
2202 /* Compute the new values of the memory attributes due to this adjustment.
2203 We add the offsets and update the alignment. */
2204 if (memoffset)
2205 memoffset = GEN_INT (offset + INTVAL (memoffset));
2206
2207 /* Compute the new alignment by taking the MIN of the alignment and the
2208 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2209 if zero. */
2210 if (offset != 0)
2211 memalign
2212 = MIN (memalign,
2213 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2214
2215 /* We can compute the size in a number of ways. */
2216 if (GET_MODE (new) != BLKmode)
2217 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2218 else if (MEM_SIZE (memref))
2219 size = plus_constant (MEM_SIZE (memref), -offset);
2220
2221 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2222 memoffset, size, memalign, GET_MODE (new));
2223
2224 /* At some point, we should validate that this offset is within the object,
2225 if all the appropriate values are known. */
2226 return new;
2227 }
2228
2229 /* Return a memory reference like MEMREF, but with its mode changed
2230 to MODE and its address changed to ADDR, which is assumed to be
2231 MEMREF offseted by OFFSET bytes. If VALIDATE is
2232 nonzero, the memory address is forced to be valid. */
2233
2234 rtx
2235 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2236 HOST_WIDE_INT offset, int validate)
2237 {
2238 memref = change_address_1 (memref, VOIDmode, addr, validate);
2239 return adjust_address_1 (memref, mode, offset, validate, 0);
2240 }
2241
2242 /* Return a memory reference like MEMREF, but whose address is changed by
2243 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2244 known to be in OFFSET (possibly 1). */
2245
2246 rtx
2247 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2248 {
2249 rtx new, addr = XEXP (memref, 0);
2250
2251 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2252
2253 /* At this point we don't know _why_ the address is invalid. It
2254 could have secondary memory references, multiplies or anything.
2255
2256 However, if we did go and rearrange things, we can wind up not
2257 being able to recognize the magic around pic_offset_table_rtx.
2258 This stuff is fragile, and is yet another example of why it is
2259 bad to expose PIC machinery too early. */
2260 if (! memory_address_p (GET_MODE (memref), new)
2261 && GET_CODE (addr) == PLUS
2262 && XEXP (addr, 0) == pic_offset_table_rtx)
2263 {
2264 addr = force_reg (GET_MODE (addr), addr);
2265 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2266 }
2267
2268 update_temp_slot_address (XEXP (memref, 0), new);
2269 new = change_address_1 (memref, VOIDmode, new, 1);
2270
2271 /* Update the alignment to reflect the offset. Reset the offset, which
2272 we don't know. */
2273 MEM_ATTRS (new)
2274 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2275 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2276 GET_MODE (new));
2277 return new;
2278 }
2279
2280 /* Return a memory reference like MEMREF, but with its address changed to
2281 ADDR. The caller is asserting that the actual piece of memory pointed
2282 to is the same, just the form of the address is being changed, such as
2283 by putting something into a register. */
2284
2285 rtx
2286 replace_equiv_address (rtx memref, rtx addr)
2287 {
2288 /* change_address_1 copies the memory attribute structure without change
2289 and that's exactly what we want here. */
2290 update_temp_slot_address (XEXP (memref, 0), addr);
2291 return change_address_1 (memref, VOIDmode, addr, 1);
2292 }
2293
2294 /* Likewise, but the reference is not required to be valid. */
2295
2296 rtx
2297 replace_equiv_address_nv (rtx memref, rtx addr)
2298 {
2299 return change_address_1 (memref, VOIDmode, addr, 0);
2300 }
2301
2302 /* Return a memory reference like MEMREF, but with its mode widened to
2303 MODE and offset by OFFSET. This would be used by targets that e.g.
2304 cannot issue QImode memory operations and have to use SImode memory
2305 operations plus masking logic. */
2306
2307 rtx
2308 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2309 {
2310 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2311 tree expr = MEM_EXPR (new);
2312 rtx memoffset = MEM_OFFSET (new);
2313 unsigned int size = GET_MODE_SIZE (mode);
2314
2315 /* If we don't know what offset we were at within the expression, then
2316 we can't know if we've overstepped the bounds. */
2317 if (! memoffset)
2318 expr = NULL_TREE;
2319
2320 while (expr)
2321 {
2322 if (TREE_CODE (expr) == COMPONENT_REF)
2323 {
2324 tree field = TREE_OPERAND (expr, 1);
2325
2326 if (! DECL_SIZE_UNIT (field))
2327 {
2328 expr = NULL_TREE;
2329 break;
2330 }
2331
2332 /* Is the field at least as large as the access? If so, ok,
2333 otherwise strip back to the containing structure. */
2334 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2335 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2336 && INTVAL (memoffset) >= 0)
2337 break;
2338
2339 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2340 {
2341 expr = NULL_TREE;
2342 break;
2343 }
2344
2345 expr = TREE_OPERAND (expr, 0);
2346 memoffset = (GEN_INT (INTVAL (memoffset)
2347 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2348 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2349 / BITS_PER_UNIT)));
2350 }
2351 /* Similarly for the decl. */
2352 else if (DECL_P (expr)
2353 && DECL_SIZE_UNIT (expr)
2354 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2355 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2356 && (! memoffset || INTVAL (memoffset) >= 0))
2357 break;
2358 else
2359 {
2360 /* The widened memory access overflows the expression, which means
2361 that it could alias another expression. Zap it. */
2362 expr = NULL_TREE;
2363 break;
2364 }
2365 }
2366
2367 if (! expr)
2368 memoffset = NULL_RTX;
2369
2370 /* The widened memory may alias other stuff, so zap the alias set. */
2371 /* ??? Maybe use get_alias_set on any remaining expression. */
2372
2373 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2374 MEM_ALIGN (new), mode);
2375
2376 return new;
2377 }
2378 \f
2379 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2380
2381 rtx
2382 gen_label_rtx (void)
2383 {
2384 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2385 NULL, label_num++, NULL);
2386 }
2387 \f
2388 /* For procedure integration. */
2389
2390 /* Install new pointers to the first and last insns in the chain.
2391 Also, set cur_insn_uid to one higher than the last in use.
2392 Used for an inline-procedure after copying the insn chain. */
2393
2394 void
2395 set_new_first_and_last_insn (rtx first, rtx last)
2396 {
2397 rtx insn;
2398
2399 first_insn = first;
2400 last_insn = last;
2401 cur_insn_uid = 0;
2402
2403 for (insn = first; insn; insn = NEXT_INSN (insn))
2404 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2405
2406 cur_insn_uid++;
2407 }
2408
2409 /* Set the last label number found in the current function.
2410 This is used when belatedly compiling an inline function. */
2411
2412 void
2413 set_new_last_label_num (int last)
2414 {
2415 base_label_num = label_num;
2416 last_label_num = last;
2417 }
2418 \f
2419 /* Restore all variables describing the current status from the structure *P.
2420 This is used after a nested function. */
2421
2422 void
2423 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2424 {
2425 last_label_num = 0;
2426 }
2427 \f
2428 /* Go through all the RTL insn bodies and copy any invalid shared
2429 structure. This routine should only be called once. */
2430
2431 void
2432 unshare_all_rtl (tree fndecl, rtx insn)
2433 {
2434 tree decl;
2435
2436 /* Make sure that virtual parameters are not shared. */
2437 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2438 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2439
2440 /* Make sure that virtual stack slots are not shared. */
2441 unshare_all_decls (DECL_INITIAL (fndecl));
2442
2443 /* Unshare just about everything else. */
2444 unshare_all_rtl_in_chain (insn);
2445
2446 /* Make sure the addresses of stack slots found outside the insn chain
2447 (such as, in DECL_RTL of a variable) are not shared
2448 with the insn chain.
2449
2450 This special care is necessary when the stack slot MEM does not
2451 actually appear in the insn chain. If it does appear, its address
2452 is unshared from all else at that point. */
2453 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2454 }
2455
2456 /* Go through all the RTL insn bodies and copy any invalid shared
2457 structure, again. This is a fairly expensive thing to do so it
2458 should be done sparingly. */
2459
2460 void
2461 unshare_all_rtl_again (rtx insn)
2462 {
2463 rtx p;
2464 tree decl;
2465
2466 for (p = insn; p; p = NEXT_INSN (p))
2467 if (INSN_P (p))
2468 {
2469 reset_used_flags (PATTERN (p));
2470 reset_used_flags (REG_NOTES (p));
2471 reset_used_flags (LOG_LINKS (p));
2472 }
2473
2474 /* Make sure that virtual stack slots are not shared. */
2475 reset_used_decls (DECL_INITIAL (cfun->decl));
2476
2477 /* Make sure that virtual parameters are not shared. */
2478 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2479 reset_used_flags (DECL_RTL (decl));
2480
2481 reset_used_flags (stack_slot_list);
2482
2483 unshare_all_rtl (cfun->decl, insn);
2484 }
2485
2486 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2487 Recursively does the same for subexpressions. */
2488
2489 static void
2490 verify_rtx_sharing (rtx orig, rtx insn)
2491 {
2492 rtx x = orig;
2493 int i;
2494 enum rtx_code code;
2495 const char *format_ptr;
2496
2497 if (x == 0)
2498 return;
2499
2500 code = GET_CODE (x);
2501
2502 /* These types may be freely shared. */
2503
2504 switch (code)
2505 {
2506 case REG:
2507 case QUEUED:
2508 case CONST_INT:
2509 case CONST_DOUBLE:
2510 case CONST_VECTOR:
2511 case SYMBOL_REF:
2512 case LABEL_REF:
2513 case CODE_LABEL:
2514 case PC:
2515 case CC0:
2516 case SCRATCH:
2517 /* SCRATCH must be shared because they represent distinct values. */
2518 return;
2519
2520 case CONST:
2521 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2522 a LABEL_REF, it isn't sharable. */
2523 if (GET_CODE (XEXP (x, 0)) == PLUS
2524 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2525 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2526 return;
2527 break;
2528
2529 case MEM:
2530 /* A MEM is allowed to be shared if its address is constant. */
2531 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2532 || reload_completed || reload_in_progress)
2533 return;
2534
2535 break;
2536
2537 default:
2538 break;
2539 }
2540
2541 /* This rtx may not be shared. If it has already been seen,
2542 replace it with a copy of itself. */
2543
2544 if (RTX_FLAG (x, used))
2545 {
2546 error ("Invalid rtl sharing found in the insn");
2547 debug_rtx (insn);
2548 error ("Shared rtx");
2549 debug_rtx (x);
2550 abort ();
2551 }
2552 RTX_FLAG (x, used) = 1;
2553
2554 /* Now scan the subexpressions recursively. */
2555
2556 format_ptr = GET_RTX_FORMAT (code);
2557
2558 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2559 {
2560 switch (*format_ptr++)
2561 {
2562 case 'e':
2563 verify_rtx_sharing (XEXP (x, i), insn);
2564 break;
2565
2566 case 'E':
2567 if (XVEC (x, i) != NULL)
2568 {
2569 int j;
2570 int len = XVECLEN (x, i);
2571
2572 for (j = 0; j < len; j++)
2573 {
2574 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2575 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2576 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2577 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2578 else
2579 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2580 }
2581 }
2582 break;
2583 }
2584 }
2585 return;
2586 }
2587
2588 /* Go through all the RTL insn bodies and check that there is no unexpected
2589 sharing in between the subexpressions. */
2590
2591 void
2592 verify_rtl_sharing (void)
2593 {
2594 rtx p;
2595
2596 for (p = get_insns (); p; p = NEXT_INSN (p))
2597 if (INSN_P (p))
2598 {
2599 reset_used_flags (PATTERN (p));
2600 reset_used_flags (REG_NOTES (p));
2601 reset_used_flags (LOG_LINKS (p));
2602 }
2603
2604 for (p = get_insns (); p; p = NEXT_INSN (p))
2605 if (INSN_P (p))
2606 {
2607 verify_rtx_sharing (PATTERN (p), p);
2608 verify_rtx_sharing (REG_NOTES (p), p);
2609 verify_rtx_sharing (LOG_LINKS (p), p);
2610 }
2611 }
2612
2613 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2614 Assumes the mark bits are cleared at entry. */
2615
2616 void
2617 unshare_all_rtl_in_chain (rtx insn)
2618 {
2619 for (; insn; insn = NEXT_INSN (insn))
2620 if (INSN_P (insn))
2621 {
2622 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2623 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2624 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2625 }
2626 }
2627
2628 /* Go through all virtual stack slots of a function and copy any
2629 shared structure. */
2630 static void
2631 unshare_all_decls (tree blk)
2632 {
2633 tree t;
2634
2635 /* Copy shared decls. */
2636 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2637 if (DECL_RTL_SET_P (t))
2638 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2639
2640 /* Now process sub-blocks. */
2641 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2642 unshare_all_decls (t);
2643 }
2644
2645 /* Go through all virtual stack slots of a function and mark them as
2646 not shared. */
2647 static void
2648 reset_used_decls (tree blk)
2649 {
2650 tree t;
2651
2652 /* Mark decls. */
2653 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2654 if (DECL_RTL_SET_P (t))
2655 reset_used_flags (DECL_RTL (t));
2656
2657 /* Now process sub-blocks. */
2658 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2659 reset_used_decls (t);
2660 }
2661
2662 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2663 placed in the result directly, rather than being copied. MAY_SHARE is
2664 either a MEM of an EXPR_LIST of MEMs. */
2665
2666 rtx
2667 copy_most_rtx (rtx orig, rtx may_share)
2668 {
2669 rtx copy;
2670 int i, j;
2671 RTX_CODE code;
2672 const char *format_ptr;
2673
2674 if (orig == may_share
2675 || (GET_CODE (may_share) == EXPR_LIST
2676 && in_expr_list_p (may_share, orig)))
2677 return orig;
2678
2679 code = GET_CODE (orig);
2680
2681 switch (code)
2682 {
2683 case REG:
2684 case QUEUED:
2685 case CONST_INT:
2686 case CONST_DOUBLE:
2687 case CONST_VECTOR:
2688 case SYMBOL_REF:
2689 case CODE_LABEL:
2690 case PC:
2691 case CC0:
2692 return orig;
2693 default:
2694 break;
2695 }
2696
2697 copy = rtx_alloc (code);
2698 PUT_MODE (copy, GET_MODE (orig));
2699 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2700 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2701 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2702 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2703 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2704
2705 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2706
2707 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2708 {
2709 switch (*format_ptr++)
2710 {
2711 case 'e':
2712 XEXP (copy, i) = XEXP (orig, i);
2713 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2714 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2715 break;
2716
2717 case 'u':
2718 XEXP (copy, i) = XEXP (orig, i);
2719 break;
2720
2721 case 'E':
2722 case 'V':
2723 XVEC (copy, i) = XVEC (orig, i);
2724 if (XVEC (orig, i) != NULL)
2725 {
2726 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2727 for (j = 0; j < XVECLEN (copy, i); j++)
2728 XVECEXP (copy, i, j)
2729 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2730 }
2731 break;
2732
2733 case 'w':
2734 XWINT (copy, i) = XWINT (orig, i);
2735 break;
2736
2737 case 'n':
2738 case 'i':
2739 XINT (copy, i) = XINT (orig, i);
2740 break;
2741
2742 case 't':
2743 XTREE (copy, i) = XTREE (orig, i);
2744 break;
2745
2746 case 's':
2747 case 'S':
2748 XSTR (copy, i) = XSTR (orig, i);
2749 break;
2750
2751 case '0':
2752 X0ANY (copy, i) = X0ANY (orig, i);
2753 break;
2754
2755 default:
2756 abort ();
2757 }
2758 }
2759 return copy;
2760 }
2761
2762 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2763 Recursively does the same for subexpressions. */
2764
2765 rtx
2766 copy_rtx_if_shared (rtx orig)
2767 {
2768 copy_rtx_if_shared_1 (&orig);
2769 return orig;
2770 }
2771
2772 static void
2773 copy_rtx_if_shared_1 (rtx *orig1)
2774 {
2775 rtx x;
2776 int i;
2777 enum rtx_code code;
2778 rtx *last_ptr;
2779 const char *format_ptr;
2780 int copied = 0;
2781 int length;
2782
2783 /* Repeat is used to turn tail-recursion into iteration. */
2784 repeat:
2785 x = *orig1;
2786
2787 if (x == 0)
2788 return;
2789
2790 code = GET_CODE (x);
2791
2792 /* These types may be freely shared. */
2793
2794 switch (code)
2795 {
2796 case REG:
2797 case QUEUED:
2798 case CONST_INT:
2799 case CONST_DOUBLE:
2800 case CONST_VECTOR:
2801 case SYMBOL_REF:
2802 case LABEL_REF:
2803 case CODE_LABEL:
2804 case PC:
2805 case CC0:
2806 case SCRATCH:
2807 /* SCRATCH must be shared because they represent distinct values. */
2808 return;
2809
2810 case CONST:
2811 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2812 a LABEL_REF, it isn't sharable. */
2813 if (GET_CODE (XEXP (x, 0)) == PLUS
2814 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2815 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2816 return;
2817 break;
2818
2819 case INSN:
2820 case JUMP_INSN:
2821 case CALL_INSN:
2822 case NOTE:
2823 case BARRIER:
2824 /* The chain of insns is not being copied. */
2825 return;
2826
2827 default:
2828 break;
2829 }
2830
2831 /* This rtx may not be shared. If it has already been seen,
2832 replace it with a copy of itself. */
2833
2834 if (RTX_FLAG (x, used))
2835 {
2836 rtx copy;
2837
2838 copy = rtx_alloc (code);
2839 memcpy (copy, x, RTX_SIZE (code));
2840 x = copy;
2841 copied = 1;
2842 }
2843 RTX_FLAG (x, used) = 1;
2844
2845 /* Now scan the subexpressions recursively.
2846 We can store any replaced subexpressions directly into X
2847 since we know X is not shared! Any vectors in X
2848 must be copied if X was copied. */
2849
2850 format_ptr = GET_RTX_FORMAT (code);
2851 length = GET_RTX_LENGTH (code);
2852 last_ptr = NULL;
2853
2854 for (i = 0; i < length; i++)
2855 {
2856 switch (*format_ptr++)
2857 {
2858 case 'e':
2859 if (last_ptr)
2860 copy_rtx_if_shared_1 (last_ptr);
2861 last_ptr = &XEXP (x, i);
2862 break;
2863
2864 case 'E':
2865 if (XVEC (x, i) != NULL)
2866 {
2867 int j;
2868 int len = XVECLEN (x, i);
2869
2870 /* Copy the vector iff I copied the rtx and the length
2871 is nonzero. */
2872 if (copied && len > 0)
2873 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2874
2875 /* Call recsusively on all inside the vector. */
2876 for (j = 0; j < len; j++)
2877 {
2878 if (last_ptr)
2879 copy_rtx_if_shared_1 (last_ptr);
2880 last_ptr = &XVECEXP (x, i, j);
2881 }
2882 }
2883 break;
2884 }
2885 }
2886 *orig1 = x;
2887 if (last_ptr)
2888 {
2889 orig1 = last_ptr;
2890 goto repeat;
2891 }
2892 return;
2893 }
2894
2895 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2896 to look for shared sub-parts. */
2897
2898 void
2899 reset_used_flags (rtx x)
2900 {
2901 int i, j;
2902 enum rtx_code code;
2903 const char *format_ptr;
2904 int length;
2905
2906 /* Repeat is used to turn tail-recursion into iteration. */
2907 repeat:
2908 if (x == 0)
2909 return;
2910
2911 code = GET_CODE (x);
2912
2913 /* These types may be freely shared so we needn't do any resetting
2914 for them. */
2915
2916 switch (code)
2917 {
2918 case REG:
2919 case QUEUED:
2920 case CONST_INT:
2921 case CONST_DOUBLE:
2922 case CONST_VECTOR:
2923 case SYMBOL_REF:
2924 case CODE_LABEL:
2925 case PC:
2926 case CC0:
2927 return;
2928
2929 case INSN:
2930 case JUMP_INSN:
2931 case CALL_INSN:
2932 case NOTE:
2933 case LABEL_REF:
2934 case BARRIER:
2935 /* The chain of insns is not being copied. */
2936 return;
2937
2938 default:
2939 break;
2940 }
2941
2942 RTX_FLAG (x, used) = 0;
2943
2944 format_ptr = GET_RTX_FORMAT (code);
2945 length = GET_RTX_LENGTH (code);
2946
2947 for (i = 0; i < length; i++)
2948 {
2949 switch (*format_ptr++)
2950 {
2951 case 'e':
2952 if (i == length-1)
2953 {
2954 x = XEXP (x, i);
2955 goto repeat;
2956 }
2957 reset_used_flags (XEXP (x, i));
2958 break;
2959
2960 case 'E':
2961 for (j = 0; j < XVECLEN (x, i); j++)
2962 reset_used_flags (XVECEXP (x, i, j));
2963 break;
2964 }
2965 }
2966 }
2967
2968 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2969 to look for shared sub-parts. */
2970
2971 void
2972 set_used_flags (rtx x)
2973 {
2974 int i, j;
2975 enum rtx_code code;
2976 const char *format_ptr;
2977
2978 if (x == 0)
2979 return;
2980
2981 code = GET_CODE (x);
2982
2983 /* These types may be freely shared so we needn't do any resetting
2984 for them. */
2985
2986 switch (code)
2987 {
2988 case REG:
2989 case QUEUED:
2990 case CONST_INT:
2991 case CONST_DOUBLE:
2992 case CONST_VECTOR:
2993 case SYMBOL_REF:
2994 case CODE_LABEL:
2995 case PC:
2996 case CC0:
2997 return;
2998
2999 case INSN:
3000 case JUMP_INSN:
3001 case CALL_INSN:
3002 case NOTE:
3003 case LABEL_REF:
3004 case BARRIER:
3005 /* The chain of insns is not being copied. */
3006 return;
3007
3008 default:
3009 break;
3010 }
3011
3012 RTX_FLAG (x, used) = 1;
3013
3014 format_ptr = GET_RTX_FORMAT (code);
3015 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3016 {
3017 switch (*format_ptr++)
3018 {
3019 case 'e':
3020 set_used_flags (XEXP (x, i));
3021 break;
3022
3023 case 'E':
3024 for (j = 0; j < XVECLEN (x, i); j++)
3025 set_used_flags (XVECEXP (x, i, j));
3026 break;
3027 }
3028 }
3029 }
3030 \f
3031 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3032 Return X or the rtx for the pseudo reg the value of X was copied into.
3033 OTHER must be valid as a SET_DEST. */
3034
3035 rtx
3036 make_safe_from (rtx x, rtx other)
3037 {
3038 while (1)
3039 switch (GET_CODE (other))
3040 {
3041 case SUBREG:
3042 other = SUBREG_REG (other);
3043 break;
3044 case STRICT_LOW_PART:
3045 case SIGN_EXTEND:
3046 case ZERO_EXTEND:
3047 other = XEXP (other, 0);
3048 break;
3049 default:
3050 goto done;
3051 }
3052 done:
3053 if ((GET_CODE (other) == MEM
3054 && ! CONSTANT_P (x)
3055 && GET_CODE (x) != REG
3056 && GET_CODE (x) != SUBREG)
3057 || (GET_CODE (other) == REG
3058 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3059 || reg_mentioned_p (other, x))))
3060 {
3061 rtx temp = gen_reg_rtx (GET_MODE (x));
3062 emit_move_insn (temp, x);
3063 return temp;
3064 }
3065 return x;
3066 }
3067 \f
3068 /* Emission of insns (adding them to the doubly-linked list). */
3069
3070 /* Return the first insn of the current sequence or current function. */
3071
3072 rtx
3073 get_insns (void)
3074 {
3075 return first_insn;
3076 }
3077
3078 /* Specify a new insn as the first in the chain. */
3079
3080 void
3081 set_first_insn (rtx insn)
3082 {
3083 if (PREV_INSN (insn) != 0)
3084 abort ();
3085 first_insn = insn;
3086 }
3087
3088 /* Return the last insn emitted in current sequence or current function. */
3089
3090 rtx
3091 get_last_insn (void)
3092 {
3093 return last_insn;
3094 }
3095
3096 /* Specify a new insn as the last in the chain. */
3097
3098 void
3099 set_last_insn (rtx insn)
3100 {
3101 if (NEXT_INSN (insn) != 0)
3102 abort ();
3103 last_insn = insn;
3104 }
3105
3106 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3107
3108 rtx
3109 get_last_insn_anywhere (void)
3110 {
3111 struct sequence_stack *stack;
3112 if (last_insn)
3113 return last_insn;
3114 for (stack = seq_stack; stack; stack = stack->next)
3115 if (stack->last != 0)
3116 return stack->last;
3117 return 0;
3118 }
3119
3120 /* Return the first nonnote insn emitted in current sequence or current
3121 function. This routine looks inside SEQUENCEs. */
3122
3123 rtx
3124 get_first_nonnote_insn (void)
3125 {
3126 rtx insn = first_insn;
3127
3128 while (insn)
3129 {
3130 insn = next_insn (insn);
3131 if (insn == 0 || GET_CODE (insn) != NOTE)
3132 break;
3133 }
3134
3135 return insn;
3136 }
3137
3138 /* Return the last nonnote insn emitted in current sequence or current
3139 function. This routine looks inside SEQUENCEs. */
3140
3141 rtx
3142 get_last_nonnote_insn (void)
3143 {
3144 rtx insn = last_insn;
3145
3146 while (insn)
3147 {
3148 insn = previous_insn (insn);
3149 if (insn == 0 || GET_CODE (insn) != NOTE)
3150 break;
3151 }
3152
3153 return insn;
3154 }
3155
3156 /* Return a number larger than any instruction's uid in this function. */
3157
3158 int
3159 get_max_uid (void)
3160 {
3161 return cur_insn_uid;
3162 }
3163
3164 /* Renumber instructions so that no instruction UIDs are wasted. */
3165
3166 void
3167 renumber_insns (FILE *stream)
3168 {
3169 rtx insn;
3170
3171 /* If we're not supposed to renumber instructions, don't. */
3172 if (!flag_renumber_insns)
3173 return;
3174
3175 /* If there aren't that many instructions, then it's not really
3176 worth renumbering them. */
3177 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
3178 return;
3179
3180 cur_insn_uid = 1;
3181
3182 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3183 {
3184 if (stream)
3185 fprintf (stream, "Renumbering insn %d to %d\n",
3186 INSN_UID (insn), cur_insn_uid);
3187 INSN_UID (insn) = cur_insn_uid++;
3188 }
3189 }
3190 \f
3191 /* Return the next insn. If it is a SEQUENCE, return the first insn
3192 of the sequence. */
3193
3194 rtx
3195 next_insn (rtx insn)
3196 {
3197 if (insn)
3198 {
3199 insn = NEXT_INSN (insn);
3200 if (insn && GET_CODE (insn) == INSN
3201 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3202 insn = XVECEXP (PATTERN (insn), 0, 0);
3203 }
3204
3205 return insn;
3206 }
3207
3208 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3209 of the sequence. */
3210
3211 rtx
3212 previous_insn (rtx insn)
3213 {
3214 if (insn)
3215 {
3216 insn = PREV_INSN (insn);
3217 if (insn && GET_CODE (insn) == INSN
3218 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3219 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3220 }
3221
3222 return insn;
3223 }
3224
3225 /* Return the next insn after INSN that is not a NOTE. This routine does not
3226 look inside SEQUENCEs. */
3227
3228 rtx
3229 next_nonnote_insn (rtx insn)
3230 {
3231 while (insn)
3232 {
3233 insn = NEXT_INSN (insn);
3234 if (insn == 0 || GET_CODE (insn) != NOTE)
3235 break;
3236 }
3237
3238 return insn;
3239 }
3240
3241 /* Return the previous insn before INSN that is not a NOTE. This routine does
3242 not look inside SEQUENCEs. */
3243
3244 rtx
3245 prev_nonnote_insn (rtx insn)
3246 {
3247 while (insn)
3248 {
3249 insn = PREV_INSN (insn);
3250 if (insn == 0 || GET_CODE (insn) != NOTE)
3251 break;
3252 }
3253
3254 return insn;
3255 }
3256
3257 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3258 or 0, if there is none. This routine does not look inside
3259 SEQUENCEs. */
3260
3261 rtx
3262 next_real_insn (rtx insn)
3263 {
3264 while (insn)
3265 {
3266 insn = NEXT_INSN (insn);
3267 if (insn == 0 || GET_CODE (insn) == INSN
3268 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3269 break;
3270 }
3271
3272 return insn;
3273 }
3274
3275 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3276 or 0, if there is none. This routine does not look inside
3277 SEQUENCEs. */
3278
3279 rtx
3280 prev_real_insn (rtx insn)
3281 {
3282 while (insn)
3283 {
3284 insn = PREV_INSN (insn);
3285 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3286 || GET_CODE (insn) == JUMP_INSN)
3287 break;
3288 }
3289
3290 return insn;
3291 }
3292
3293 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3294 This routine does not look inside SEQUENCEs. */
3295
3296 rtx
3297 last_call_insn (void)
3298 {
3299 rtx insn;
3300
3301 for (insn = get_last_insn ();
3302 insn && GET_CODE (insn) != CALL_INSN;
3303 insn = PREV_INSN (insn))
3304 ;
3305
3306 return insn;
3307 }
3308
3309 /* Find the next insn after INSN that really does something. This routine
3310 does not look inside SEQUENCEs. Until reload has completed, this is the
3311 same as next_real_insn. */
3312
3313 int
3314 active_insn_p (rtx insn)
3315 {
3316 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3317 || (GET_CODE (insn) == INSN
3318 && (! reload_completed
3319 || (GET_CODE (PATTERN (insn)) != USE
3320 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3321 }
3322
3323 rtx
3324 next_active_insn (rtx insn)
3325 {
3326 while (insn)
3327 {
3328 insn = NEXT_INSN (insn);
3329 if (insn == 0 || active_insn_p (insn))
3330 break;
3331 }
3332
3333 return insn;
3334 }
3335
3336 /* Find the last insn before INSN that really does something. This routine
3337 does not look inside SEQUENCEs. Until reload has completed, this is the
3338 same as prev_real_insn. */
3339
3340 rtx
3341 prev_active_insn (rtx insn)
3342 {
3343 while (insn)
3344 {
3345 insn = PREV_INSN (insn);
3346 if (insn == 0 || active_insn_p (insn))
3347 break;
3348 }
3349
3350 return insn;
3351 }
3352
3353 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3354
3355 rtx
3356 next_label (rtx insn)
3357 {
3358 while (insn)
3359 {
3360 insn = NEXT_INSN (insn);
3361 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3362 break;
3363 }
3364
3365 return insn;
3366 }
3367
3368 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3369
3370 rtx
3371 prev_label (rtx insn)
3372 {
3373 while (insn)
3374 {
3375 insn = PREV_INSN (insn);
3376 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3377 break;
3378 }
3379
3380 return insn;
3381 }
3382 \f
3383 #ifdef HAVE_cc0
3384 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3385 and REG_CC_USER notes so we can find it. */
3386
3387 void
3388 link_cc0_insns (rtx insn)
3389 {
3390 rtx user = next_nonnote_insn (insn);
3391
3392 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3393 user = XVECEXP (PATTERN (user), 0, 0);
3394
3395 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3396 REG_NOTES (user));
3397 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3398 }
3399
3400 /* Return the next insn that uses CC0 after INSN, which is assumed to
3401 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3402 applied to the result of this function should yield INSN).
3403
3404 Normally, this is simply the next insn. However, if a REG_CC_USER note
3405 is present, it contains the insn that uses CC0.
3406
3407 Return 0 if we can't find the insn. */
3408
3409 rtx
3410 next_cc0_user (rtx insn)
3411 {
3412 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3413
3414 if (note)
3415 return XEXP (note, 0);
3416
3417 insn = next_nonnote_insn (insn);
3418 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3419 insn = XVECEXP (PATTERN (insn), 0, 0);
3420
3421 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3422 return insn;
3423
3424 return 0;
3425 }
3426
3427 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3428 note, it is the previous insn. */
3429
3430 rtx
3431 prev_cc0_setter (rtx insn)
3432 {
3433 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3434
3435 if (note)
3436 return XEXP (note, 0);
3437
3438 insn = prev_nonnote_insn (insn);
3439 if (! sets_cc0_p (PATTERN (insn)))
3440 abort ();
3441
3442 return insn;
3443 }
3444 #endif
3445
3446 /* Increment the label uses for all labels present in rtx. */
3447
3448 static void
3449 mark_label_nuses (rtx x)
3450 {
3451 enum rtx_code code;
3452 int i, j;
3453 const char *fmt;
3454
3455 code = GET_CODE (x);
3456 if (code == LABEL_REF)
3457 LABEL_NUSES (XEXP (x, 0))++;
3458
3459 fmt = GET_RTX_FORMAT (code);
3460 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3461 {
3462 if (fmt[i] == 'e')
3463 mark_label_nuses (XEXP (x, i));
3464 else if (fmt[i] == 'E')
3465 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3466 mark_label_nuses (XVECEXP (x, i, j));
3467 }
3468 }
3469
3470 \f
3471 /* Try splitting insns that can be split for better scheduling.
3472 PAT is the pattern which might split.
3473 TRIAL is the insn providing PAT.
3474 LAST is nonzero if we should return the last insn of the sequence produced.
3475
3476 If this routine succeeds in splitting, it returns the first or last
3477 replacement insn depending on the value of LAST. Otherwise, it
3478 returns TRIAL. If the insn to be returned can be split, it will be. */
3479
3480 rtx
3481 try_split (rtx pat, rtx trial, int last)
3482 {
3483 rtx before = PREV_INSN (trial);
3484 rtx after = NEXT_INSN (trial);
3485 int has_barrier = 0;
3486 rtx tem;
3487 rtx note, seq;
3488 int probability;
3489 rtx insn_last, insn;
3490 int njumps = 0;
3491
3492 if (any_condjump_p (trial)
3493 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3494 split_branch_probability = INTVAL (XEXP (note, 0));
3495 probability = split_branch_probability;
3496
3497 seq = split_insns (pat, trial);
3498
3499 split_branch_probability = -1;
3500
3501 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3502 We may need to handle this specially. */
3503 if (after && GET_CODE (after) == BARRIER)
3504 {
3505 has_barrier = 1;
3506 after = NEXT_INSN (after);
3507 }
3508
3509 if (!seq)
3510 return trial;
3511
3512 /* Avoid infinite loop if any insn of the result matches
3513 the original pattern. */
3514 insn_last = seq;
3515 while (1)
3516 {
3517 if (INSN_P (insn_last)
3518 && rtx_equal_p (PATTERN (insn_last), pat))
3519 return trial;
3520 if (!NEXT_INSN (insn_last))
3521 break;
3522 insn_last = NEXT_INSN (insn_last);
3523 }
3524
3525 /* Mark labels. */
3526 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3527 {
3528 if (GET_CODE (insn) == JUMP_INSN)
3529 {
3530 mark_jump_label (PATTERN (insn), insn, 0);
3531 njumps++;
3532 if (probability != -1
3533 && any_condjump_p (insn)
3534 && !find_reg_note (insn, REG_BR_PROB, 0))
3535 {
3536 /* We can preserve the REG_BR_PROB notes only if exactly
3537 one jump is created, otherwise the machine description
3538 is responsible for this step using
3539 split_branch_probability variable. */
3540 if (njumps != 1)
3541 abort ();
3542 REG_NOTES (insn)
3543 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3544 GEN_INT (probability),
3545 REG_NOTES (insn));
3546 }
3547 }
3548 }
3549
3550 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3551 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3552 if (GET_CODE (trial) == CALL_INSN)
3553 {
3554 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3555 if (GET_CODE (insn) == CALL_INSN)
3556 {
3557 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3558 while (*p)
3559 p = &XEXP (*p, 1);
3560 *p = CALL_INSN_FUNCTION_USAGE (trial);
3561 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3562 }
3563 }
3564
3565 /* Copy notes, particularly those related to the CFG. */
3566 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3567 {
3568 switch (REG_NOTE_KIND (note))
3569 {
3570 case REG_EH_REGION:
3571 insn = insn_last;
3572 while (insn != NULL_RTX)
3573 {
3574 if (GET_CODE (insn) == CALL_INSN
3575 || (flag_non_call_exceptions
3576 && may_trap_p (PATTERN (insn))))
3577 REG_NOTES (insn)
3578 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3579 XEXP (note, 0),
3580 REG_NOTES (insn));
3581 insn = PREV_INSN (insn);
3582 }
3583 break;
3584
3585 case REG_NORETURN:
3586 case REG_SETJMP:
3587 case REG_ALWAYS_RETURN:
3588 insn = insn_last;
3589 while (insn != NULL_RTX)
3590 {
3591 if (GET_CODE (insn) == CALL_INSN)
3592 REG_NOTES (insn)
3593 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3594 XEXP (note, 0),
3595 REG_NOTES (insn));
3596 insn = PREV_INSN (insn);
3597 }
3598 break;
3599
3600 case REG_NON_LOCAL_GOTO:
3601 insn = insn_last;
3602 while (insn != NULL_RTX)
3603 {
3604 if (GET_CODE (insn) == JUMP_INSN)
3605 REG_NOTES (insn)
3606 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3607 XEXP (note, 0),
3608 REG_NOTES (insn));
3609 insn = PREV_INSN (insn);
3610 }
3611 break;
3612
3613 default:
3614 break;
3615 }
3616 }
3617
3618 /* If there are LABELS inside the split insns increment the
3619 usage count so we don't delete the label. */
3620 if (GET_CODE (trial) == INSN)
3621 {
3622 insn = insn_last;
3623 while (insn != NULL_RTX)
3624 {
3625 if (GET_CODE (insn) == INSN)
3626 mark_label_nuses (PATTERN (insn));
3627
3628 insn = PREV_INSN (insn);
3629 }
3630 }
3631
3632 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3633
3634 delete_insn (trial);
3635 if (has_barrier)
3636 emit_barrier_after (tem);
3637
3638 /* Recursively call try_split for each new insn created; by the
3639 time control returns here that insn will be fully split, so
3640 set LAST and continue from the insn after the one returned.
3641 We can't use next_active_insn here since AFTER may be a note.
3642 Ignore deleted insns, which can be occur if not optimizing. */
3643 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3644 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3645 tem = try_split (PATTERN (tem), tem, 1);
3646
3647 /* Return either the first or the last insn, depending on which was
3648 requested. */
3649 return last
3650 ? (after ? PREV_INSN (after) : last_insn)
3651 : NEXT_INSN (before);
3652 }
3653 \f
3654 /* Make and return an INSN rtx, initializing all its slots.
3655 Store PATTERN in the pattern slots. */
3656
3657 rtx
3658 make_insn_raw (rtx pattern)
3659 {
3660 rtx insn;
3661
3662 insn = rtx_alloc (INSN);
3663
3664 INSN_UID (insn) = cur_insn_uid++;
3665 PATTERN (insn) = pattern;
3666 INSN_CODE (insn) = -1;
3667 LOG_LINKS (insn) = NULL;
3668 REG_NOTES (insn) = NULL;
3669 INSN_LOCATOR (insn) = 0;
3670 BLOCK_FOR_INSN (insn) = NULL;
3671
3672 #ifdef ENABLE_RTL_CHECKING
3673 if (insn
3674 && INSN_P (insn)
3675 && (returnjump_p (insn)
3676 || (GET_CODE (insn) == SET
3677 && SET_DEST (insn) == pc_rtx)))
3678 {
3679 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3680 debug_rtx (insn);
3681 }
3682 #endif
3683
3684 return insn;
3685 }
3686
3687 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3688
3689 static rtx
3690 make_jump_insn_raw (rtx pattern)
3691 {
3692 rtx insn;
3693
3694 insn = rtx_alloc (JUMP_INSN);
3695 INSN_UID (insn) = cur_insn_uid++;
3696
3697 PATTERN (insn) = pattern;
3698 INSN_CODE (insn) = -1;
3699 LOG_LINKS (insn) = NULL;
3700 REG_NOTES (insn) = NULL;
3701 JUMP_LABEL (insn) = NULL;
3702 INSN_LOCATOR (insn) = 0;
3703 BLOCK_FOR_INSN (insn) = NULL;
3704
3705 return insn;
3706 }
3707
3708 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3709
3710 static rtx
3711 make_call_insn_raw (rtx pattern)
3712 {
3713 rtx insn;
3714
3715 insn = rtx_alloc (CALL_INSN);
3716 INSN_UID (insn) = cur_insn_uid++;
3717
3718 PATTERN (insn) = pattern;
3719 INSN_CODE (insn) = -1;
3720 LOG_LINKS (insn) = NULL;
3721 REG_NOTES (insn) = NULL;
3722 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3723 INSN_LOCATOR (insn) = 0;
3724 BLOCK_FOR_INSN (insn) = NULL;
3725
3726 return insn;
3727 }
3728 \f
3729 /* Add INSN to the end of the doubly-linked list.
3730 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3731
3732 void
3733 add_insn (rtx insn)
3734 {
3735 PREV_INSN (insn) = last_insn;
3736 NEXT_INSN (insn) = 0;
3737
3738 if (NULL != last_insn)
3739 NEXT_INSN (last_insn) = insn;
3740
3741 if (NULL == first_insn)
3742 first_insn = insn;
3743
3744 last_insn = insn;
3745 }
3746
3747 /* Add INSN into the doubly-linked list after insn AFTER. This and
3748 the next should be the only functions called to insert an insn once
3749 delay slots have been filled since only they know how to update a
3750 SEQUENCE. */
3751
3752 void
3753 add_insn_after (rtx insn, rtx after)
3754 {
3755 rtx next = NEXT_INSN (after);
3756 basic_block bb;
3757
3758 if (optimize && INSN_DELETED_P (after))
3759 abort ();
3760
3761 NEXT_INSN (insn) = next;
3762 PREV_INSN (insn) = after;
3763
3764 if (next)
3765 {
3766 PREV_INSN (next) = insn;
3767 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3768 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3769 }
3770 else if (last_insn == after)
3771 last_insn = insn;
3772 else
3773 {
3774 struct sequence_stack *stack = seq_stack;
3775 /* Scan all pending sequences too. */
3776 for (; stack; stack = stack->next)
3777 if (after == stack->last)
3778 {
3779 stack->last = insn;
3780 break;
3781 }
3782
3783 if (stack == 0)
3784 abort ();
3785 }
3786
3787 if (GET_CODE (after) != BARRIER
3788 && GET_CODE (insn) != BARRIER
3789 && (bb = BLOCK_FOR_INSN (after)))
3790 {
3791 set_block_for_insn (insn, bb);
3792 if (INSN_P (insn))
3793 bb->flags |= BB_DIRTY;
3794 /* Should not happen as first in the BB is always
3795 either NOTE or LABEL. */
3796 if (BB_END (bb) == after
3797 /* Avoid clobbering of structure when creating new BB. */
3798 && GET_CODE (insn) != BARRIER
3799 && (GET_CODE (insn) != NOTE
3800 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3801 BB_END (bb) = insn;
3802 }
3803
3804 NEXT_INSN (after) = insn;
3805 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3806 {
3807 rtx sequence = PATTERN (after);
3808 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3809 }
3810 }
3811
3812 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3813 the previous should be the only functions called to insert an insn once
3814 delay slots have been filled since only they know how to update a
3815 SEQUENCE. */
3816
3817 void
3818 add_insn_before (rtx insn, rtx before)
3819 {
3820 rtx prev = PREV_INSN (before);
3821 basic_block bb;
3822
3823 if (optimize && INSN_DELETED_P (before))
3824 abort ();
3825
3826 PREV_INSN (insn) = prev;
3827 NEXT_INSN (insn) = before;
3828
3829 if (prev)
3830 {
3831 NEXT_INSN (prev) = insn;
3832 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3833 {
3834 rtx sequence = PATTERN (prev);
3835 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3836 }
3837 }
3838 else if (first_insn == before)
3839 first_insn = insn;
3840 else
3841 {
3842 struct sequence_stack *stack = seq_stack;
3843 /* Scan all pending sequences too. */
3844 for (; stack; stack = stack->next)
3845 if (before == stack->first)
3846 {
3847 stack->first = insn;
3848 break;
3849 }
3850
3851 if (stack == 0)
3852 abort ();
3853 }
3854
3855 if (GET_CODE (before) != BARRIER
3856 && GET_CODE (insn) != BARRIER
3857 && (bb = BLOCK_FOR_INSN (before)))
3858 {
3859 set_block_for_insn (insn, bb);
3860 if (INSN_P (insn))
3861 bb->flags |= BB_DIRTY;
3862 /* Should not happen as first in the BB is always
3863 either NOTE or LABEl. */
3864 if (BB_HEAD (bb) == insn
3865 /* Avoid clobbering of structure when creating new BB. */
3866 && GET_CODE (insn) != BARRIER
3867 && (GET_CODE (insn) != NOTE
3868 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3869 abort ();
3870 }
3871
3872 PREV_INSN (before) = insn;
3873 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3874 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3875 }
3876
3877 /* Remove an insn from its doubly-linked list. This function knows how
3878 to handle sequences. */
3879 void
3880 remove_insn (rtx insn)
3881 {
3882 rtx next = NEXT_INSN (insn);
3883 rtx prev = PREV_INSN (insn);
3884 basic_block bb;
3885
3886 if (prev)
3887 {
3888 NEXT_INSN (prev) = next;
3889 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3890 {
3891 rtx sequence = PATTERN (prev);
3892 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3893 }
3894 }
3895 else if (first_insn == insn)
3896 first_insn = next;
3897 else
3898 {
3899 struct sequence_stack *stack = seq_stack;
3900 /* Scan all pending sequences too. */
3901 for (; stack; stack = stack->next)
3902 if (insn == stack->first)
3903 {
3904 stack->first = next;
3905 break;
3906 }
3907
3908 if (stack == 0)
3909 abort ();
3910 }
3911
3912 if (next)
3913 {
3914 PREV_INSN (next) = prev;
3915 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3916 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3917 }
3918 else if (last_insn == insn)
3919 last_insn = prev;
3920 else
3921 {
3922 struct sequence_stack *stack = seq_stack;
3923 /* Scan all pending sequences too. */
3924 for (; stack; stack = stack->next)
3925 if (insn == stack->last)
3926 {
3927 stack->last = prev;
3928 break;
3929 }
3930
3931 if (stack == 0)
3932 abort ();
3933 }
3934 if (GET_CODE (insn) != BARRIER
3935 && (bb = BLOCK_FOR_INSN (insn)))
3936 {
3937 if (INSN_P (insn))
3938 bb->flags |= BB_DIRTY;
3939 if (BB_HEAD (bb) == insn)
3940 {
3941 /* Never ever delete the basic block note without deleting whole
3942 basic block. */
3943 if (GET_CODE (insn) == NOTE)
3944 abort ();
3945 BB_HEAD (bb) = next;
3946 }
3947 if (BB_END (bb) == insn)
3948 BB_END (bb) = prev;
3949 }
3950 }
3951
3952 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3953
3954 void
3955 add_function_usage_to (rtx call_insn, rtx call_fusage)
3956 {
3957 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3958 abort ();
3959
3960 /* Put the register usage information on the CALL. If there is already
3961 some usage information, put ours at the end. */
3962 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3963 {
3964 rtx link;
3965
3966 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3967 link = XEXP (link, 1))
3968 ;
3969
3970 XEXP (link, 1) = call_fusage;
3971 }
3972 else
3973 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3974 }
3975
3976 /* Delete all insns made since FROM.
3977 FROM becomes the new last instruction. */
3978
3979 void
3980 delete_insns_since (rtx from)
3981 {
3982 if (from == 0)
3983 first_insn = 0;
3984 else
3985 NEXT_INSN (from) = 0;
3986 last_insn = from;
3987 }
3988
3989 /* This function is deprecated, please use sequences instead.
3990
3991 Move a consecutive bunch of insns to a different place in the chain.
3992 The insns to be moved are those between FROM and TO.
3993 They are moved to a new position after the insn AFTER.
3994 AFTER must not be FROM or TO or any insn in between.
3995
3996 This function does not know about SEQUENCEs and hence should not be
3997 called after delay-slot filling has been done. */
3998
3999 void
4000 reorder_insns_nobb (rtx from, rtx to, rtx after)
4001 {
4002 /* Splice this bunch out of where it is now. */
4003 if (PREV_INSN (from))
4004 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4005 if (NEXT_INSN (to))
4006 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4007 if (last_insn == to)
4008 last_insn = PREV_INSN (from);
4009 if (first_insn == from)
4010 first_insn = NEXT_INSN (to);
4011
4012 /* Make the new neighbors point to it and it to them. */
4013 if (NEXT_INSN (after))
4014 PREV_INSN (NEXT_INSN (after)) = to;
4015
4016 NEXT_INSN (to) = NEXT_INSN (after);
4017 PREV_INSN (from) = after;
4018 NEXT_INSN (after) = from;
4019 if (after == last_insn)
4020 last_insn = to;
4021 }
4022
4023 /* Same as function above, but take care to update BB boundaries. */
4024 void
4025 reorder_insns (rtx from, rtx to, rtx after)
4026 {
4027 rtx prev = PREV_INSN (from);
4028 basic_block bb, bb2;
4029
4030 reorder_insns_nobb (from, to, after);
4031
4032 if (GET_CODE (after) != BARRIER
4033 && (bb = BLOCK_FOR_INSN (after)))
4034 {
4035 rtx x;
4036 bb->flags |= BB_DIRTY;
4037
4038 if (GET_CODE (from) != BARRIER
4039 && (bb2 = BLOCK_FOR_INSN (from)))
4040 {
4041 if (BB_END (bb2) == to)
4042 BB_END (bb2) = prev;
4043 bb2->flags |= BB_DIRTY;
4044 }
4045
4046 if (BB_END (bb) == after)
4047 BB_END (bb) = to;
4048
4049 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4050 set_block_for_insn (x, bb);
4051 }
4052 }
4053
4054 /* Return the line note insn preceding INSN. */
4055
4056 static rtx
4057 find_line_note (rtx insn)
4058 {
4059 if (no_line_numbers)
4060 return 0;
4061
4062 for (; insn; insn = PREV_INSN (insn))
4063 if (GET_CODE (insn) == NOTE
4064 && NOTE_LINE_NUMBER (insn) >= 0)
4065 break;
4066
4067 return insn;
4068 }
4069
4070 /* Like reorder_insns, but inserts line notes to preserve the line numbers
4071 of the moved insns when debugging. This may insert a note between AFTER
4072 and FROM, and another one after TO. */
4073
4074 void
4075 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
4076 {
4077 rtx from_line = find_line_note (from);
4078 rtx after_line = find_line_note (after);
4079
4080 reorder_insns (from, to, after);
4081
4082 if (from_line == after_line)
4083 return;
4084
4085 if (from_line)
4086 emit_note_copy_after (from_line, after);
4087 if (after_line)
4088 emit_note_copy_after (after_line, to);
4089 }
4090
4091 /* Remove unnecessary notes from the instruction stream. */
4092
4093 void
4094 remove_unnecessary_notes (void)
4095 {
4096 rtx block_stack = NULL_RTX;
4097 rtx eh_stack = NULL_RTX;
4098 rtx insn;
4099 rtx next;
4100 rtx tmp;
4101
4102 /* We must not remove the first instruction in the function because
4103 the compiler depends on the first instruction being a note. */
4104 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
4105 {
4106 /* Remember what's next. */
4107 next = NEXT_INSN (insn);
4108
4109 /* We're only interested in notes. */
4110 if (GET_CODE (insn) != NOTE)
4111 continue;
4112
4113 switch (NOTE_LINE_NUMBER (insn))
4114 {
4115 case NOTE_INSN_DELETED:
4116 case NOTE_INSN_LOOP_END_TOP_COND:
4117 remove_insn (insn);
4118 break;
4119
4120 case NOTE_INSN_EH_REGION_BEG:
4121 eh_stack = alloc_INSN_LIST (insn, eh_stack);
4122 break;
4123
4124 case NOTE_INSN_EH_REGION_END:
4125 /* Too many end notes. */
4126 if (eh_stack == NULL_RTX)
4127 abort ();
4128 /* Mismatched nesting. */
4129 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
4130 abort ();
4131 tmp = eh_stack;
4132 eh_stack = XEXP (eh_stack, 1);
4133 free_INSN_LIST_node (tmp);
4134 break;
4135
4136 case NOTE_INSN_BLOCK_BEG:
4137 /* By now, all notes indicating lexical blocks should have
4138 NOTE_BLOCK filled in. */
4139 if (NOTE_BLOCK (insn) == NULL_TREE)
4140 abort ();
4141 block_stack = alloc_INSN_LIST (insn, block_stack);
4142 break;
4143
4144 case NOTE_INSN_BLOCK_END:
4145 /* Too many end notes. */
4146 if (block_stack == NULL_RTX)
4147 abort ();
4148 /* Mismatched nesting. */
4149 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
4150 abort ();
4151 tmp = block_stack;
4152 block_stack = XEXP (block_stack, 1);
4153 free_INSN_LIST_node (tmp);
4154
4155 /* Scan back to see if there are any non-note instructions
4156 between INSN and the beginning of this block. If not,
4157 then there is no PC range in the generated code that will
4158 actually be in this block, so there's no point in
4159 remembering the existence of the block. */
4160 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
4161 {
4162 /* This block contains a real instruction. Note that we
4163 don't include labels; if the only thing in the block
4164 is a label, then there are still no PC values that
4165 lie within the block. */
4166 if (INSN_P (tmp))
4167 break;
4168
4169 /* We're only interested in NOTEs. */
4170 if (GET_CODE (tmp) != NOTE)
4171 continue;
4172
4173 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
4174 {
4175 /* We just verified that this BLOCK matches us with
4176 the block_stack check above. Never delete the
4177 BLOCK for the outermost scope of the function; we
4178 can refer to names from that scope even if the
4179 block notes are messed up. */
4180 if (! is_body_block (NOTE_BLOCK (insn))
4181 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
4182 {
4183 remove_insn (tmp);
4184 remove_insn (insn);
4185 }
4186 break;
4187 }
4188 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
4189 /* There's a nested block. We need to leave the
4190 current block in place since otherwise the debugger
4191 wouldn't be able to show symbols from our block in
4192 the nested block. */
4193 break;
4194 }
4195 }
4196 }
4197
4198 /* Too many begin notes. */
4199 if (block_stack || eh_stack)
4200 abort ();
4201 }
4202
4203 \f
4204 /* Emit insn(s) of given code and pattern
4205 at a specified place within the doubly-linked list.
4206
4207 All of the emit_foo global entry points accept an object
4208 X which is either an insn list or a PATTERN of a single
4209 instruction.
4210
4211 There are thus a few canonical ways to generate code and
4212 emit it at a specific place in the instruction stream. For
4213 example, consider the instruction named SPOT and the fact that
4214 we would like to emit some instructions before SPOT. We might
4215 do it like this:
4216
4217 start_sequence ();
4218 ... emit the new instructions ...
4219 insns_head = get_insns ();
4220 end_sequence ();
4221
4222 emit_insn_before (insns_head, SPOT);
4223
4224 It used to be common to generate SEQUENCE rtl instead, but that
4225 is a relic of the past which no longer occurs. The reason is that
4226 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4227 generated would almost certainly die right after it was created. */
4228
4229 /* Make X be output before the instruction BEFORE. */
4230
4231 rtx
4232 emit_insn_before (rtx x, rtx before)
4233 {
4234 rtx last = before;
4235 rtx insn;
4236
4237 #ifdef ENABLE_RTL_CHECKING
4238 if (before == NULL_RTX)
4239 abort ();
4240 #endif
4241
4242 if (x == NULL_RTX)
4243 return last;
4244
4245 switch (GET_CODE (x))
4246 {
4247 case INSN:
4248 case JUMP_INSN:
4249 case CALL_INSN:
4250 case CODE_LABEL:
4251 case BARRIER:
4252 case NOTE:
4253 insn = x;
4254 while (insn)
4255 {
4256 rtx next = NEXT_INSN (insn);
4257 add_insn_before (insn, before);
4258 last = insn;
4259 insn = next;
4260 }
4261 break;
4262
4263 #ifdef ENABLE_RTL_CHECKING
4264 case SEQUENCE:
4265 abort ();
4266 break;
4267 #endif
4268
4269 default:
4270 last = make_insn_raw (x);
4271 add_insn_before (last, before);
4272 break;
4273 }
4274
4275 return last;
4276 }
4277
4278 /* Make an instruction with body X and code JUMP_INSN
4279 and output it before the instruction BEFORE. */
4280
4281 rtx
4282 emit_jump_insn_before (rtx x, rtx before)
4283 {
4284 rtx insn, last = NULL_RTX;
4285
4286 #ifdef ENABLE_RTL_CHECKING
4287 if (before == NULL_RTX)
4288 abort ();
4289 #endif
4290
4291 switch (GET_CODE (x))
4292 {
4293 case INSN:
4294 case JUMP_INSN:
4295 case CALL_INSN:
4296 case CODE_LABEL:
4297 case BARRIER:
4298 case NOTE:
4299 insn = x;
4300 while (insn)
4301 {
4302 rtx next = NEXT_INSN (insn);
4303 add_insn_before (insn, before);
4304 last = insn;
4305 insn = next;
4306 }
4307 break;
4308
4309 #ifdef ENABLE_RTL_CHECKING
4310 case SEQUENCE:
4311 abort ();
4312 break;
4313 #endif
4314
4315 default:
4316 last = make_jump_insn_raw (x);
4317 add_insn_before (last, before);
4318 break;
4319 }
4320
4321 return last;
4322 }
4323
4324 /* Make an instruction with body X and code CALL_INSN
4325 and output it before the instruction BEFORE. */
4326
4327 rtx
4328 emit_call_insn_before (rtx x, rtx before)
4329 {
4330 rtx last = NULL_RTX, insn;
4331
4332 #ifdef ENABLE_RTL_CHECKING
4333 if (before == NULL_RTX)
4334 abort ();
4335 #endif
4336
4337 switch (GET_CODE (x))
4338 {
4339 case INSN:
4340 case JUMP_INSN:
4341 case CALL_INSN:
4342 case CODE_LABEL:
4343 case BARRIER:
4344 case NOTE:
4345 insn = x;
4346 while (insn)
4347 {
4348 rtx next = NEXT_INSN (insn);
4349 add_insn_before (insn, before);
4350 last = insn;
4351 insn = next;
4352 }
4353 break;
4354
4355 #ifdef ENABLE_RTL_CHECKING
4356 case SEQUENCE:
4357 abort ();
4358 break;
4359 #endif
4360
4361 default:
4362 last = make_call_insn_raw (x);
4363 add_insn_before (last, before);
4364 break;
4365 }
4366
4367 return last;
4368 }
4369
4370 /* Make an insn of code BARRIER
4371 and output it before the insn BEFORE. */
4372
4373 rtx
4374 emit_barrier_before (rtx before)
4375 {
4376 rtx insn = rtx_alloc (BARRIER);
4377
4378 INSN_UID (insn) = cur_insn_uid++;
4379
4380 add_insn_before (insn, before);
4381 return insn;
4382 }
4383
4384 /* Emit the label LABEL before the insn BEFORE. */
4385
4386 rtx
4387 emit_label_before (rtx label, rtx before)
4388 {
4389 /* This can be called twice for the same label as a result of the
4390 confusion that follows a syntax error! So make it harmless. */
4391 if (INSN_UID (label) == 0)
4392 {
4393 INSN_UID (label) = cur_insn_uid++;
4394 add_insn_before (label, before);
4395 }
4396
4397 return label;
4398 }
4399
4400 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4401
4402 rtx
4403 emit_note_before (int subtype, rtx before)
4404 {
4405 rtx note = rtx_alloc (NOTE);
4406 INSN_UID (note) = cur_insn_uid++;
4407 NOTE_SOURCE_FILE (note) = 0;
4408 NOTE_LINE_NUMBER (note) = subtype;
4409 BLOCK_FOR_INSN (note) = NULL;
4410
4411 add_insn_before (note, before);
4412 return note;
4413 }
4414 \f
4415 /* Helper for emit_insn_after, handles lists of instructions
4416 efficiently. */
4417
4418 static rtx emit_insn_after_1 (rtx, rtx);
4419
4420 static rtx
4421 emit_insn_after_1 (rtx first, rtx after)
4422 {
4423 rtx last;
4424 rtx after_after;
4425 basic_block bb;
4426
4427 if (GET_CODE (after) != BARRIER
4428 && (bb = BLOCK_FOR_INSN (after)))
4429 {
4430 bb->flags |= BB_DIRTY;
4431 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4432 if (GET_CODE (last) != BARRIER)
4433 set_block_for_insn (last, bb);
4434 if (GET_CODE (last) != BARRIER)
4435 set_block_for_insn (last, bb);
4436 if (BB_END (bb) == after)
4437 BB_END (bb) = last;
4438 }
4439 else
4440 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4441 continue;
4442
4443 after_after = NEXT_INSN (after);
4444
4445 NEXT_INSN (after) = first;
4446 PREV_INSN (first) = after;
4447 NEXT_INSN (last) = after_after;
4448 if (after_after)
4449 PREV_INSN (after_after) = last;
4450
4451 if (after == last_insn)
4452 last_insn = last;
4453 return last;
4454 }
4455
4456 /* Make X be output after the insn AFTER. */
4457
4458 rtx
4459 emit_insn_after (rtx x, rtx after)
4460 {
4461 rtx last = after;
4462
4463 #ifdef ENABLE_RTL_CHECKING
4464 if (after == NULL_RTX)
4465 abort ();
4466 #endif
4467
4468 if (x == NULL_RTX)
4469 return last;
4470
4471 switch (GET_CODE (x))
4472 {
4473 case INSN:
4474 case JUMP_INSN:
4475 case CALL_INSN:
4476 case CODE_LABEL:
4477 case BARRIER:
4478 case NOTE:
4479 last = emit_insn_after_1 (x, after);
4480 break;
4481
4482 #ifdef ENABLE_RTL_CHECKING
4483 case SEQUENCE:
4484 abort ();
4485 break;
4486 #endif
4487
4488 default:
4489 last = make_insn_raw (x);
4490 add_insn_after (last, after);
4491 break;
4492 }
4493
4494 return last;
4495 }
4496
4497 /* Similar to emit_insn_after, except that line notes are to be inserted so
4498 as to act as if this insn were at FROM. */
4499
4500 void
4501 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4502 {
4503 rtx from_line = find_line_note (from);
4504 rtx after_line = find_line_note (after);
4505 rtx insn = emit_insn_after (x, after);
4506
4507 if (from_line)
4508 emit_note_copy_after (from_line, after);
4509
4510 if (after_line)
4511 emit_note_copy_after (after_line, insn);
4512 }
4513
4514 /* Make an insn of code JUMP_INSN with body X
4515 and output it after the insn AFTER. */
4516
4517 rtx
4518 emit_jump_insn_after (rtx x, rtx after)
4519 {
4520 rtx last;
4521
4522 #ifdef ENABLE_RTL_CHECKING
4523 if (after == NULL_RTX)
4524 abort ();
4525 #endif
4526
4527 switch (GET_CODE (x))
4528 {
4529 case INSN:
4530 case JUMP_INSN:
4531 case CALL_INSN:
4532 case CODE_LABEL:
4533 case BARRIER:
4534 case NOTE:
4535 last = emit_insn_after_1 (x, after);
4536 break;
4537
4538 #ifdef ENABLE_RTL_CHECKING
4539 case SEQUENCE:
4540 abort ();
4541 break;
4542 #endif
4543
4544 default:
4545 last = make_jump_insn_raw (x);
4546 add_insn_after (last, after);
4547 break;
4548 }
4549
4550 return last;
4551 }
4552
4553 /* Make an instruction with body X and code CALL_INSN
4554 and output it after the instruction AFTER. */
4555
4556 rtx
4557 emit_call_insn_after (rtx x, rtx after)
4558 {
4559 rtx last;
4560
4561 #ifdef ENABLE_RTL_CHECKING
4562 if (after == NULL_RTX)
4563 abort ();
4564 #endif
4565
4566 switch (GET_CODE (x))
4567 {
4568 case INSN:
4569 case JUMP_INSN:
4570 case CALL_INSN:
4571 case CODE_LABEL:
4572 case BARRIER:
4573 case NOTE:
4574 last = emit_insn_after_1 (x, after);
4575 break;
4576
4577 #ifdef ENABLE_RTL_CHECKING
4578 case SEQUENCE:
4579 abort ();
4580 break;
4581 #endif
4582
4583 default:
4584 last = make_call_insn_raw (x);
4585 add_insn_after (last, after);
4586 break;
4587 }
4588
4589 return last;
4590 }
4591
4592 /* Make an insn of code BARRIER
4593 and output it after the insn AFTER. */
4594
4595 rtx
4596 emit_barrier_after (rtx after)
4597 {
4598 rtx insn = rtx_alloc (BARRIER);
4599
4600 INSN_UID (insn) = cur_insn_uid++;
4601
4602 add_insn_after (insn, after);
4603 return insn;
4604 }
4605
4606 /* Emit the label LABEL after the insn AFTER. */
4607
4608 rtx
4609 emit_label_after (rtx label, rtx after)
4610 {
4611 /* This can be called twice for the same label
4612 as a result of the confusion that follows a syntax error!
4613 So make it harmless. */
4614 if (INSN_UID (label) == 0)
4615 {
4616 INSN_UID (label) = cur_insn_uid++;
4617 add_insn_after (label, after);
4618 }
4619
4620 return label;
4621 }
4622
4623 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4624
4625 rtx
4626 emit_note_after (int subtype, rtx after)
4627 {
4628 rtx note = rtx_alloc (NOTE);
4629 INSN_UID (note) = cur_insn_uid++;
4630 NOTE_SOURCE_FILE (note) = 0;
4631 NOTE_LINE_NUMBER (note) = subtype;
4632 BLOCK_FOR_INSN (note) = NULL;
4633 add_insn_after (note, after);
4634 return note;
4635 }
4636
4637 /* Emit a copy of note ORIG after the insn AFTER. */
4638
4639 rtx
4640 emit_note_copy_after (rtx orig, rtx after)
4641 {
4642 rtx note;
4643
4644 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4645 {
4646 cur_insn_uid++;
4647 return 0;
4648 }
4649
4650 note = rtx_alloc (NOTE);
4651 INSN_UID (note) = cur_insn_uid++;
4652 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4653 NOTE_DATA (note) = NOTE_DATA (orig);
4654 BLOCK_FOR_INSN (note) = NULL;
4655 add_insn_after (note, after);
4656 return note;
4657 }
4658 \f
4659 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4660 rtx
4661 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4662 {
4663 rtx last = emit_insn_after (pattern, after);
4664
4665 after = NEXT_INSN (after);
4666 while (1)
4667 {
4668 if (active_insn_p (after))
4669 INSN_LOCATOR (after) = loc;
4670 if (after == last)
4671 break;
4672 after = NEXT_INSN (after);
4673 }
4674 return last;
4675 }
4676
4677 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4678 rtx
4679 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4680 {
4681 rtx last = emit_jump_insn_after (pattern, after);
4682
4683 after = NEXT_INSN (after);
4684 while (1)
4685 {
4686 if (active_insn_p (after))
4687 INSN_LOCATOR (after) = loc;
4688 if (after == last)
4689 break;
4690 after = NEXT_INSN (after);
4691 }
4692 return last;
4693 }
4694
4695 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4696 rtx
4697 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4698 {
4699 rtx last = emit_call_insn_after (pattern, after);
4700
4701 after = NEXT_INSN (after);
4702 while (1)
4703 {
4704 if (active_insn_p (after))
4705 INSN_LOCATOR (after) = loc;
4706 if (after == last)
4707 break;
4708 after = NEXT_INSN (after);
4709 }
4710 return last;
4711 }
4712
4713 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4714 rtx
4715 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4716 {
4717 rtx first = PREV_INSN (before);
4718 rtx last = emit_insn_before (pattern, before);
4719
4720 first = NEXT_INSN (first);
4721 while (1)
4722 {
4723 if (active_insn_p (first))
4724 INSN_LOCATOR (first) = loc;
4725 if (first == last)
4726 break;
4727 first = NEXT_INSN (first);
4728 }
4729 return last;
4730 }
4731 \f
4732 /* Take X and emit it at the end of the doubly-linked
4733 INSN list.
4734
4735 Returns the last insn emitted. */
4736
4737 rtx
4738 emit_insn (rtx x)
4739 {
4740 rtx last = last_insn;
4741 rtx insn;
4742
4743 if (x == NULL_RTX)
4744 return last;
4745
4746 switch (GET_CODE (x))
4747 {
4748 case INSN:
4749 case JUMP_INSN:
4750 case CALL_INSN:
4751 case CODE_LABEL:
4752 case BARRIER:
4753 case NOTE:
4754 insn = x;
4755 while (insn)
4756 {
4757 rtx next = NEXT_INSN (insn);
4758 add_insn (insn);
4759 last = insn;
4760 insn = next;
4761 }
4762 break;
4763
4764 #ifdef ENABLE_RTL_CHECKING
4765 case SEQUENCE:
4766 abort ();
4767 break;
4768 #endif
4769
4770 default:
4771 last = make_insn_raw (x);
4772 add_insn (last);
4773 break;
4774 }
4775
4776 return last;
4777 }
4778
4779 /* Make an insn of code JUMP_INSN with pattern X
4780 and add it to the end of the doubly-linked list. */
4781
4782 rtx
4783 emit_jump_insn (rtx x)
4784 {
4785 rtx last = NULL_RTX, insn;
4786
4787 switch (GET_CODE (x))
4788 {
4789 case INSN:
4790 case JUMP_INSN:
4791 case CALL_INSN:
4792 case CODE_LABEL:
4793 case BARRIER:
4794 case NOTE:
4795 insn = x;
4796 while (insn)
4797 {
4798 rtx next = NEXT_INSN (insn);
4799 add_insn (insn);
4800 last = insn;
4801 insn = next;
4802 }
4803 break;
4804
4805 #ifdef ENABLE_RTL_CHECKING
4806 case SEQUENCE:
4807 abort ();
4808 break;
4809 #endif
4810
4811 default:
4812 last = make_jump_insn_raw (x);
4813 add_insn (last);
4814 break;
4815 }
4816
4817 return last;
4818 }
4819
4820 /* Make an insn of code CALL_INSN with pattern X
4821 and add it to the end of the doubly-linked list. */
4822
4823 rtx
4824 emit_call_insn (rtx x)
4825 {
4826 rtx insn;
4827
4828 switch (GET_CODE (x))
4829 {
4830 case INSN:
4831 case JUMP_INSN:
4832 case CALL_INSN:
4833 case CODE_LABEL:
4834 case BARRIER:
4835 case NOTE:
4836 insn = emit_insn (x);
4837 break;
4838
4839 #ifdef ENABLE_RTL_CHECKING
4840 case SEQUENCE:
4841 abort ();
4842 break;
4843 #endif
4844
4845 default:
4846 insn = make_call_insn_raw (x);
4847 add_insn (insn);
4848 break;
4849 }
4850
4851 return insn;
4852 }
4853
4854 /* Add the label LABEL to the end of the doubly-linked list. */
4855
4856 rtx
4857 emit_label (rtx label)
4858 {
4859 /* This can be called twice for the same label
4860 as a result of the confusion that follows a syntax error!
4861 So make it harmless. */
4862 if (INSN_UID (label) == 0)
4863 {
4864 INSN_UID (label) = cur_insn_uid++;
4865 add_insn (label);
4866 }
4867 return label;
4868 }
4869
4870 /* Make an insn of code BARRIER
4871 and add it to the end of the doubly-linked list. */
4872
4873 rtx
4874 emit_barrier (void)
4875 {
4876 rtx barrier = rtx_alloc (BARRIER);
4877 INSN_UID (barrier) = cur_insn_uid++;
4878 add_insn (barrier);
4879 return barrier;
4880 }
4881
4882 /* Make line numbering NOTE insn for LOCATION add it to the end
4883 of the doubly-linked list, but only if line-numbers are desired for
4884 debugging info and it doesn't match the previous one. */
4885
4886 rtx
4887 emit_line_note (location_t location)
4888 {
4889 rtx note;
4890
4891 set_file_and_line_for_stmt (location);
4892
4893 if (location.file && last_location.file
4894 && !strcmp (location.file, last_location.file)
4895 && location.line == last_location.line)
4896 return NULL_RTX;
4897 last_location = location;
4898
4899 if (no_line_numbers)
4900 {
4901 cur_insn_uid++;
4902 return NULL_RTX;
4903 }
4904
4905 note = emit_note (location.line);
4906 NOTE_SOURCE_FILE (note) = location.file;
4907
4908 return note;
4909 }
4910
4911 /* Emit a copy of note ORIG. */
4912
4913 rtx
4914 emit_note_copy (rtx orig)
4915 {
4916 rtx note;
4917
4918 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4919 {
4920 cur_insn_uid++;
4921 return NULL_RTX;
4922 }
4923
4924 note = rtx_alloc (NOTE);
4925
4926 INSN_UID (note) = cur_insn_uid++;
4927 NOTE_DATA (note) = NOTE_DATA (orig);
4928 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4929 BLOCK_FOR_INSN (note) = NULL;
4930 add_insn (note);
4931
4932 return note;
4933 }
4934
4935 /* Make an insn of code NOTE or type NOTE_NO
4936 and add it to the end of the doubly-linked list. */
4937
4938 rtx
4939 emit_note (int note_no)
4940 {
4941 rtx note;
4942
4943 note = rtx_alloc (NOTE);
4944 INSN_UID (note) = cur_insn_uid++;
4945 NOTE_LINE_NUMBER (note) = note_no;
4946 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4947 BLOCK_FOR_INSN (note) = NULL;
4948 add_insn (note);
4949 return note;
4950 }
4951
4952 /* Cause next statement to emit a line note even if the line number
4953 has not changed. */
4954
4955 void
4956 force_next_line_note (void)
4957 {
4958 last_location.line = -1;
4959 }
4960
4961 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4962 note of this type already exists, remove it first. */
4963
4964 rtx
4965 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4966 {
4967 rtx note = find_reg_note (insn, kind, NULL_RTX);
4968
4969 switch (kind)
4970 {
4971 case REG_EQUAL:
4972 case REG_EQUIV:
4973 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4974 has multiple sets (some callers assume single_set
4975 means the insn only has one set, when in fact it
4976 means the insn only has one * useful * set). */
4977 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4978 {
4979 if (note)
4980 abort ();
4981 return NULL_RTX;
4982 }
4983
4984 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4985 It serves no useful purpose and breaks eliminate_regs. */
4986 if (GET_CODE (datum) == ASM_OPERANDS)
4987 return NULL_RTX;
4988 break;
4989
4990 default:
4991 break;
4992 }
4993
4994 if (note)
4995 {
4996 XEXP (note, 0) = datum;
4997 return note;
4998 }
4999
5000 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
5001 return REG_NOTES (insn);
5002 }
5003 \f
5004 /* Return an indication of which type of insn should have X as a body.
5005 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5006
5007 enum rtx_code
5008 classify_insn (rtx x)
5009 {
5010 if (GET_CODE (x) == CODE_LABEL)
5011 return CODE_LABEL;
5012 if (GET_CODE (x) == CALL)
5013 return CALL_INSN;
5014 if (GET_CODE (x) == RETURN)
5015 return JUMP_INSN;
5016 if (GET_CODE (x) == SET)
5017 {
5018 if (SET_DEST (x) == pc_rtx)
5019 return JUMP_INSN;
5020 else if (GET_CODE (SET_SRC (x)) == CALL)
5021 return CALL_INSN;
5022 else
5023 return INSN;
5024 }
5025 if (GET_CODE (x) == PARALLEL)
5026 {
5027 int j;
5028 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5029 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5030 return CALL_INSN;
5031 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5032 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5033 return JUMP_INSN;
5034 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5035 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5036 return CALL_INSN;
5037 }
5038 return INSN;
5039 }
5040
5041 /* Emit the rtl pattern X as an appropriate kind of insn.
5042 If X is a label, it is simply added into the insn chain. */
5043
5044 rtx
5045 emit (rtx x)
5046 {
5047 enum rtx_code code = classify_insn (x);
5048
5049 if (code == CODE_LABEL)
5050 return emit_label (x);
5051 else if (code == INSN)
5052 return emit_insn (x);
5053 else if (code == JUMP_INSN)
5054 {
5055 rtx insn = emit_jump_insn (x);
5056 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5057 return emit_barrier ();
5058 return insn;
5059 }
5060 else if (code == CALL_INSN)
5061 return emit_call_insn (x);
5062 else
5063 abort ();
5064 }
5065 \f
5066 /* Space for free sequence stack entries. */
5067 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
5068
5069 /* Begin emitting insns to a sequence which can be packaged in an
5070 RTL_EXPR. If this sequence will contain something that might cause
5071 the compiler to pop arguments to function calls (because those
5072 pops have previously been deferred; see INHIBIT_DEFER_POP for more
5073 details), use do_pending_stack_adjust before calling this function.
5074 That will ensure that the deferred pops are not accidentally
5075 emitted in the middle of this sequence. */
5076
5077 void
5078 start_sequence (void)
5079 {
5080 struct sequence_stack *tem;
5081
5082 if (free_sequence_stack != NULL)
5083 {
5084 tem = free_sequence_stack;
5085 free_sequence_stack = tem->next;
5086 }
5087 else
5088 tem = ggc_alloc (sizeof (struct sequence_stack));
5089
5090 tem->next = seq_stack;
5091 tem->first = first_insn;
5092 tem->last = last_insn;
5093 tem->sequence_rtl_expr = seq_rtl_expr;
5094
5095 seq_stack = tem;
5096
5097 first_insn = 0;
5098 last_insn = 0;
5099 }
5100
5101 /* Similarly, but indicate that this sequence will be placed in T, an
5102 RTL_EXPR. See the documentation for start_sequence for more
5103 information about how to use this function. */
5104
5105 void
5106 start_sequence_for_rtl_expr (tree t)
5107 {
5108 start_sequence ();
5109
5110 seq_rtl_expr = t;
5111 }
5112
5113 /* Set up the insn chain starting with FIRST as the current sequence,
5114 saving the previously current one. See the documentation for
5115 start_sequence for more information about how to use this function. */
5116
5117 void
5118 push_to_sequence (rtx first)
5119 {
5120 rtx last;
5121
5122 start_sequence ();
5123
5124 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5125
5126 first_insn = first;
5127 last_insn = last;
5128 }
5129
5130 /* Set up the insn chain from a chain stort in FIRST to LAST. */
5131
5132 void
5133 push_to_full_sequence (rtx first, rtx last)
5134 {
5135 start_sequence ();
5136 first_insn = first;
5137 last_insn = last;
5138 /* We really should have the end of the insn chain here. */
5139 if (last && NEXT_INSN (last))
5140 abort ();
5141 }
5142
5143 /* Set up the outer-level insn chain
5144 as the current sequence, saving the previously current one. */
5145
5146 void
5147 push_topmost_sequence (void)
5148 {
5149 struct sequence_stack *stack, *top = NULL;
5150
5151 start_sequence ();
5152
5153 for (stack = seq_stack; stack; stack = stack->next)
5154 top = stack;
5155
5156 first_insn = top->first;
5157 last_insn = top->last;
5158 seq_rtl_expr = top->sequence_rtl_expr;
5159 }
5160
5161 /* After emitting to the outer-level insn chain, update the outer-level
5162 insn chain, and restore the previous saved state. */
5163
5164 void
5165 pop_topmost_sequence (void)
5166 {
5167 struct sequence_stack *stack, *top = NULL;
5168
5169 for (stack = seq_stack; stack; stack = stack->next)
5170 top = stack;
5171
5172 top->first = first_insn;
5173 top->last = last_insn;
5174 /* ??? Why don't we save seq_rtl_expr here? */
5175
5176 end_sequence ();
5177 }
5178
5179 /* After emitting to a sequence, restore previous saved state.
5180
5181 To get the contents of the sequence just made, you must call
5182 `get_insns' *before* calling here.
5183
5184 If the compiler might have deferred popping arguments while
5185 generating this sequence, and this sequence will not be immediately
5186 inserted into the instruction stream, use do_pending_stack_adjust
5187 before calling get_insns. That will ensure that the deferred
5188 pops are inserted into this sequence, and not into some random
5189 location in the instruction stream. See INHIBIT_DEFER_POP for more
5190 information about deferred popping of arguments. */
5191
5192 void
5193 end_sequence (void)
5194 {
5195 struct sequence_stack *tem = seq_stack;
5196
5197 first_insn = tem->first;
5198 last_insn = tem->last;
5199 seq_rtl_expr = tem->sequence_rtl_expr;
5200 seq_stack = tem->next;
5201
5202 memset (tem, 0, sizeof (*tem));
5203 tem->next = free_sequence_stack;
5204 free_sequence_stack = tem;
5205 }
5206
5207 /* This works like end_sequence, but records the old sequence in FIRST
5208 and LAST. */
5209
5210 void
5211 end_full_sequence (rtx *first, rtx *last)
5212 {
5213 *first = first_insn;
5214 *last = last_insn;
5215 end_sequence ();
5216 }
5217
5218 /* Return 1 if currently emitting into a sequence. */
5219
5220 int
5221 in_sequence_p (void)
5222 {
5223 return seq_stack != 0;
5224 }
5225 \f
5226 /* Put the various virtual registers into REGNO_REG_RTX. */
5227
5228 void
5229 init_virtual_regs (struct emit_status *es)
5230 {
5231 rtx *ptr = es->x_regno_reg_rtx;
5232 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5233 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5234 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5235 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5236 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5237 }
5238
5239 \f
5240 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5241 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5242 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5243 static int copy_insn_n_scratches;
5244
5245 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5246 copied an ASM_OPERANDS.
5247 In that case, it is the original input-operand vector. */
5248 static rtvec orig_asm_operands_vector;
5249
5250 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5251 copied an ASM_OPERANDS.
5252 In that case, it is the copied input-operand vector. */
5253 static rtvec copy_asm_operands_vector;
5254
5255 /* Likewise for the constraints vector. */
5256 static rtvec orig_asm_constraints_vector;
5257 static rtvec copy_asm_constraints_vector;
5258
5259 /* Recursively create a new copy of an rtx for copy_insn.
5260 This function differs from copy_rtx in that it handles SCRATCHes and
5261 ASM_OPERANDs properly.
5262 Normally, this function is not used directly; use copy_insn as front end.
5263 However, you could first copy an insn pattern with copy_insn and then use
5264 this function afterwards to properly copy any REG_NOTEs containing
5265 SCRATCHes. */
5266
5267 rtx
5268 copy_insn_1 (rtx orig)
5269 {
5270 rtx copy;
5271 int i, j;
5272 RTX_CODE code;
5273 const char *format_ptr;
5274
5275 code = GET_CODE (orig);
5276
5277 switch (code)
5278 {
5279 case REG:
5280 case QUEUED:
5281 case CONST_INT:
5282 case CONST_DOUBLE:
5283 case CONST_VECTOR:
5284 case SYMBOL_REF:
5285 case CODE_LABEL:
5286 case PC:
5287 case CC0:
5288 case ADDRESSOF:
5289 return orig;
5290
5291 case SCRATCH:
5292 for (i = 0; i < copy_insn_n_scratches; i++)
5293 if (copy_insn_scratch_in[i] == orig)
5294 return copy_insn_scratch_out[i];
5295 break;
5296
5297 case CONST:
5298 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5299 a LABEL_REF, it isn't sharable. */
5300 if (GET_CODE (XEXP (orig, 0)) == PLUS
5301 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5302 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5303 return orig;
5304 break;
5305
5306 /* A MEM with a constant address is not sharable. The problem is that
5307 the constant address may need to be reloaded. If the mem is shared,
5308 then reloading one copy of this mem will cause all copies to appear
5309 to have been reloaded. */
5310
5311 default:
5312 break;
5313 }
5314
5315 copy = rtx_alloc (code);
5316
5317 /* Copy the various flags, and other information. We assume that
5318 all fields need copying, and then clear the fields that should
5319 not be copied. That is the sensible default behavior, and forces
5320 us to explicitly document why we are *not* copying a flag. */
5321 memcpy (copy, orig, RTX_HDR_SIZE);
5322
5323 /* We do not copy the USED flag, which is used as a mark bit during
5324 walks over the RTL. */
5325 RTX_FLAG (copy, used) = 0;
5326
5327 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5328 if (GET_RTX_CLASS (code) == 'i')
5329 {
5330 RTX_FLAG (copy, jump) = 0;
5331 RTX_FLAG (copy, call) = 0;
5332 RTX_FLAG (copy, frame_related) = 0;
5333 }
5334
5335 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5336
5337 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5338 {
5339 copy->u.fld[i] = orig->u.fld[i];
5340 switch (*format_ptr++)
5341 {
5342 case 'e':
5343 if (XEXP (orig, i) != NULL)
5344 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5345 break;
5346
5347 case 'E':
5348 case 'V':
5349 if (XVEC (orig, i) == orig_asm_constraints_vector)
5350 XVEC (copy, i) = copy_asm_constraints_vector;
5351 else if (XVEC (orig, i) == orig_asm_operands_vector)
5352 XVEC (copy, i) = copy_asm_operands_vector;
5353 else if (XVEC (orig, i) != NULL)
5354 {
5355 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5356 for (j = 0; j < XVECLEN (copy, i); j++)
5357 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5358 }
5359 break;
5360
5361 case 't':
5362 case 'w':
5363 case 'i':
5364 case 's':
5365 case 'S':
5366 case 'u':
5367 case '0':
5368 /* These are left unchanged. */
5369 break;
5370
5371 default:
5372 abort ();
5373 }
5374 }
5375
5376 if (code == SCRATCH)
5377 {
5378 i = copy_insn_n_scratches++;
5379 if (i >= MAX_RECOG_OPERANDS)
5380 abort ();
5381 copy_insn_scratch_in[i] = orig;
5382 copy_insn_scratch_out[i] = copy;
5383 }
5384 else if (code == ASM_OPERANDS)
5385 {
5386 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5387 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5388 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5389 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5390 }
5391
5392 return copy;
5393 }
5394
5395 /* Create a new copy of an rtx.
5396 This function differs from copy_rtx in that it handles SCRATCHes and
5397 ASM_OPERANDs properly.
5398 INSN doesn't really have to be a full INSN; it could be just the
5399 pattern. */
5400 rtx
5401 copy_insn (rtx insn)
5402 {
5403 copy_insn_n_scratches = 0;
5404 orig_asm_operands_vector = 0;
5405 orig_asm_constraints_vector = 0;
5406 copy_asm_operands_vector = 0;
5407 copy_asm_constraints_vector = 0;
5408 return copy_insn_1 (insn);
5409 }
5410
5411 /* Initialize data structures and variables in this file
5412 before generating rtl for each function. */
5413
5414 void
5415 init_emit (void)
5416 {
5417 struct function *f = cfun;
5418
5419 f->emit = ggc_alloc (sizeof (struct emit_status));
5420 first_insn = NULL;
5421 last_insn = NULL;
5422 seq_rtl_expr = NULL;
5423 cur_insn_uid = 1;
5424 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5425 last_location.line = 0;
5426 last_location.file = 0;
5427 first_label_num = label_num;
5428 last_label_num = 0;
5429 seq_stack = NULL;
5430
5431 /* Init the tables that describe all the pseudo regs. */
5432
5433 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5434
5435 f->emit->regno_pointer_align
5436 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5437 * sizeof (unsigned char));
5438
5439 regno_reg_rtx
5440 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5441
5442 /* Put copies of all the hard registers into regno_reg_rtx. */
5443 memcpy (regno_reg_rtx,
5444 static_regno_reg_rtx,
5445 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5446
5447 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5448 init_virtual_regs (f->emit);
5449
5450 /* Indicate that the virtual registers and stack locations are
5451 all pointers. */
5452 REG_POINTER (stack_pointer_rtx) = 1;
5453 REG_POINTER (frame_pointer_rtx) = 1;
5454 REG_POINTER (hard_frame_pointer_rtx) = 1;
5455 REG_POINTER (arg_pointer_rtx) = 1;
5456
5457 REG_POINTER (virtual_incoming_args_rtx) = 1;
5458 REG_POINTER (virtual_stack_vars_rtx) = 1;
5459 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5460 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5461 REG_POINTER (virtual_cfa_rtx) = 1;
5462
5463 #ifdef STACK_BOUNDARY
5464 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5465 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5466 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5467 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5468
5469 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5470 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5471 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5472 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5473 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5474 #endif
5475
5476 #ifdef INIT_EXPANDERS
5477 INIT_EXPANDERS;
5478 #endif
5479 }
5480
5481 /* Generate the constant 0. */
5482
5483 static rtx
5484 gen_const_vector_0 (enum machine_mode mode)
5485 {
5486 rtx tem;
5487 rtvec v;
5488 int units, i;
5489 enum machine_mode inner;
5490
5491 units = GET_MODE_NUNITS (mode);
5492 inner = GET_MODE_INNER (mode);
5493
5494 v = rtvec_alloc (units);
5495
5496 /* We need to call this function after we to set CONST0_RTX first. */
5497 if (!CONST0_RTX (inner))
5498 abort ();
5499
5500 for (i = 0; i < units; ++i)
5501 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5502
5503 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5504 return tem;
5505 }
5506
5507 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5508 all elements are zero. */
5509 rtx
5510 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5511 {
5512 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5513 int i;
5514
5515 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5516 if (RTVEC_ELT (v, i) != inner_zero)
5517 return gen_rtx_raw_CONST_VECTOR (mode, v);
5518 return CONST0_RTX (mode);
5519 }
5520
5521 /* Create some permanent unique rtl objects shared between all functions.
5522 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5523
5524 void
5525 init_emit_once (int line_numbers)
5526 {
5527 int i;
5528 enum machine_mode mode;
5529 enum machine_mode double_mode;
5530
5531 /* We need reg_raw_mode, so initialize the modes now. */
5532 init_reg_modes_once ();
5533
5534 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5535 tables. */
5536 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5537 const_int_htab_eq, NULL);
5538
5539 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5540 const_double_htab_eq, NULL);
5541
5542 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5543 mem_attrs_htab_eq, NULL);
5544 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5545 reg_attrs_htab_eq, NULL);
5546
5547 no_line_numbers = ! line_numbers;
5548
5549 /* Compute the word and byte modes. */
5550
5551 byte_mode = VOIDmode;
5552 word_mode = VOIDmode;
5553 double_mode = VOIDmode;
5554
5555 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5556 mode = GET_MODE_WIDER_MODE (mode))
5557 {
5558 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5559 && byte_mode == VOIDmode)
5560 byte_mode = mode;
5561
5562 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5563 && word_mode == VOIDmode)
5564 word_mode = mode;
5565 }
5566
5567 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5568 mode = GET_MODE_WIDER_MODE (mode))
5569 {
5570 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5571 && double_mode == VOIDmode)
5572 double_mode = mode;
5573 }
5574
5575 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5576
5577 /* Assign register numbers to the globally defined register rtx.
5578 This must be done at runtime because the register number field
5579 is in a union and some compilers can't initialize unions. */
5580
5581 pc_rtx = gen_rtx (PC, VOIDmode);
5582 cc0_rtx = gen_rtx (CC0, VOIDmode);
5583 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5584 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5585 if (hard_frame_pointer_rtx == 0)
5586 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5587 HARD_FRAME_POINTER_REGNUM);
5588 if (arg_pointer_rtx == 0)
5589 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5590 virtual_incoming_args_rtx =
5591 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5592 virtual_stack_vars_rtx =
5593 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5594 virtual_stack_dynamic_rtx =
5595 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5596 virtual_outgoing_args_rtx =
5597 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5598 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5599
5600 /* Initialize RTL for commonly used hard registers. These are
5601 copied into regno_reg_rtx as we begin to compile each function. */
5602 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5603 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5604
5605 #ifdef INIT_EXPANDERS
5606 /* This is to initialize {init|mark|free}_machine_status before the first
5607 call to push_function_context_to. This is needed by the Chill front
5608 end which calls push_function_context_to before the first call to
5609 init_function_start. */
5610 INIT_EXPANDERS;
5611 #endif
5612
5613 /* Create the unique rtx's for certain rtx codes and operand values. */
5614
5615 /* Don't use gen_rtx here since gen_rtx in this case
5616 tries to use these variables. */
5617 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5618 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5619 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5620
5621 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5622 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5623 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5624 else
5625 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5626
5627 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5628 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5629 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5630 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5631 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5632 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5633 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5634
5635 dconsthalf = dconst1;
5636 dconsthalf.exp--;
5637
5638 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5639
5640 /* Initialize mathematical constants for constant folding builtins.
5641 These constants need to be given to at least 160 bits precision. */
5642 real_from_string (&dconstpi,
5643 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5644 real_from_string (&dconste,
5645 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5646
5647 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5648 {
5649 REAL_VALUE_TYPE *r =
5650 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5651
5652 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5653 mode = GET_MODE_WIDER_MODE (mode))
5654 const_tiny_rtx[i][(int) mode] =
5655 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5656
5657 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5658
5659 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5660 mode = GET_MODE_WIDER_MODE (mode))
5661 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5662
5663 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5664 mode != VOIDmode;
5665 mode = GET_MODE_WIDER_MODE (mode))
5666 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5667 }
5668
5669 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5670 mode != VOIDmode;
5671 mode = GET_MODE_WIDER_MODE (mode))
5672 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5673
5674 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5675 mode != VOIDmode;
5676 mode = GET_MODE_WIDER_MODE (mode))
5677 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5678
5679 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5680 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5681 const_tiny_rtx[0][i] = const0_rtx;
5682
5683 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5684 if (STORE_FLAG_VALUE == 1)
5685 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5686
5687 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5688 return_address_pointer_rtx
5689 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5690 #endif
5691
5692 #ifdef STATIC_CHAIN_REGNUM
5693 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5694
5695 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5696 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5697 static_chain_incoming_rtx
5698 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5699 else
5700 #endif
5701 static_chain_incoming_rtx = static_chain_rtx;
5702 #endif
5703
5704 #ifdef STATIC_CHAIN
5705 static_chain_rtx = STATIC_CHAIN;
5706
5707 #ifdef STATIC_CHAIN_INCOMING
5708 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5709 #else
5710 static_chain_incoming_rtx = static_chain_rtx;
5711 #endif
5712 #endif
5713
5714 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5715 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5716 }
5717 \f
5718 /* Query and clear/ restore no_line_numbers. This is used by the
5719 switch / case handling in stmt.c to give proper line numbers in
5720 warnings about unreachable code. */
5721
5722 int
5723 force_line_numbers (void)
5724 {
5725 int old = no_line_numbers;
5726
5727 no_line_numbers = 0;
5728 if (old)
5729 force_next_line_note ();
5730 return old;
5731 }
5732
5733 void
5734 restore_line_number_status (int old_value)
5735 {
5736 no_line_numbers = old_value;
5737 }
5738
5739 /* Produce exact duplicate of insn INSN after AFTER.
5740 Care updating of libcall regions if present. */
5741
5742 rtx
5743 emit_copy_of_insn_after (rtx insn, rtx after)
5744 {
5745 rtx new;
5746 rtx note1, note2, link;
5747
5748 switch (GET_CODE (insn))
5749 {
5750 case INSN:
5751 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5752 break;
5753
5754 case JUMP_INSN:
5755 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5756 break;
5757
5758 case CALL_INSN:
5759 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5760 if (CALL_INSN_FUNCTION_USAGE (insn))
5761 CALL_INSN_FUNCTION_USAGE (new)
5762 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5763 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5764 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5765 break;
5766
5767 default:
5768 abort ();
5769 }
5770
5771 /* Update LABEL_NUSES. */
5772 mark_jump_label (PATTERN (new), new, 0);
5773
5774 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5775
5776 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5777 make them. */
5778 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5779 if (REG_NOTE_KIND (link) != REG_LABEL)
5780 {
5781 if (GET_CODE (link) == EXPR_LIST)
5782 REG_NOTES (new)
5783 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5784 XEXP (link, 0),
5785 REG_NOTES (new)));
5786 else
5787 REG_NOTES (new)
5788 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5789 XEXP (link, 0),
5790 REG_NOTES (new)));
5791 }
5792
5793 /* Fix the libcall sequences. */
5794 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5795 {
5796 rtx p = new;
5797 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5798 p = PREV_INSN (p);
5799 XEXP (note1, 0) = p;
5800 XEXP (note2, 0) = new;
5801 }
5802 INSN_CODE (new) = INSN_CODE (insn);
5803 return new;
5804 }
5805
5806 #include "gt-emit-rtl.h"