]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
ggc.h, [...]: Use `rtx' instead of `struct rtx_def *'...
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_first_and_last_label_number was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116
117 /* All references to the following fixed hard registers go through
118 these unique rtl objects. On machines where the frame-pointer and
119 arg-pointer are the same register, they use the same unique object.
120
121 After register allocation, other rtl objects which used to be pseudo-regs
122 may be clobbered to refer to the frame-pointer register.
123 But references that were originally to the frame-pointer can be
124 distinguished from the others because they contain frame_pointer_rtx.
125
126 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
127 tricky: until register elimination has taken place hard_frame_pointer_rtx
128 should be used if it is being set, and frame_pointer_rtx otherwise. After
129 register elimination hard_frame_pointer_rtx should always be used.
130 On machines where the two registers are same (most) then these are the
131 same.
132
133 In an inline procedure, the stack and frame pointer rtxs may not be
134 used for anything else. */
135 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
136 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
137 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
138 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
139 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
140
141 /* This is used to implement __builtin_return_address for some machines.
142 See for instance the MIPS port. */
143 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
144
145 /* We make one copy of (const_int C) where C is in
146 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
147 to save space during the compilation and simplify comparisons of
148 integers. */
149
150 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
151
152 /* A hash table storing CONST_INTs whose absolute value is greater
153 than MAX_SAVED_CONST_INT. */
154
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
156 htab_t const_int_htab;
157
158 /* A hash table storing memory attribute structures. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
160 htab_t mem_attrs_htab;
161
162 /* A hash table storing register attribute structures. */
163 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
164 htab_t reg_attrs_htab;
165
166 /* A hash table storing all CONST_DOUBLEs. */
167 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
168 htab_t const_double_htab;
169
170 #define first_insn (cfun->emit->x_first_insn)
171 #define last_insn (cfun->emit->x_last_insn)
172 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
173 #define last_location (cfun->emit->x_last_location)
174 #define first_label_num (cfun->emit->x_first_label_num)
175
176 static rtx make_jump_insn_raw (rtx);
177 static rtx make_call_insn_raw (rtx);
178 static rtx find_line_note (rtx);
179 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
180 static void unshare_all_rtl_1 (rtx);
181 static void unshare_all_decls (tree);
182 static void reset_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 static hashval_t const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx lookup_const_double (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector_0 (enum machine_mode);
198 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
199
200 /* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202 int split_branch_probability = -1;
203 \f
204 /* Returns a hash code for X (which is a really a CONST_INT). */
205
206 static hashval_t
207 const_int_htab_hash (const void *x)
208 {
209 return (hashval_t) INTVAL ((rtx) x);
210 }
211
212 /* Returns nonzero if the value represented by X (which is really a
213 CONST_INT) is the same as that given by Y (which is really a
214 HOST_WIDE_INT *). */
215
216 static int
217 const_int_htab_eq (const void *x, const void *y)
218 {
219 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
220 }
221
222 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
223 static hashval_t
224 const_double_htab_hash (const void *x)
225 {
226 rtx value = (rtx) x;
227 hashval_t h;
228
229 if (GET_MODE (value) == VOIDmode)
230 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231 else
232 {
233 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 }
237 return h;
238 }
239
240 /* Returns nonzero if the value represented by X (really a ...)
241 is the same as that represented by Y (really a ...) */
242 static int
243 const_double_htab_eq (const void *x, const void *y)
244 {
245 rtx a = (rtx)x, b = (rtx)y;
246
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 if (GET_MODE (a) == VOIDmode)
250 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252 else
253 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254 CONST_DOUBLE_REAL_VALUE (b));
255 }
256
257 /* Returns a hash code for X (which is a really a mem_attrs *). */
258
259 static hashval_t
260 mem_attrs_htab_hash (const void *x)
261 {
262 mem_attrs *p = (mem_attrs *) x;
263
264 return (p->alias ^ (p->align * 1000)
265 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
266 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
267 ^ (size_t) p->expr);
268 }
269
270 /* Returns nonzero if the value represented by X (which is really a
271 mem_attrs *) is the same as that given by Y (which is also really a
272 mem_attrs *). */
273
274 static int
275 mem_attrs_htab_eq (const void *x, const void *y)
276 {
277 mem_attrs *p = (mem_attrs *) x;
278 mem_attrs *q = (mem_attrs *) y;
279
280 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
281 && p->size == q->size && p->align == q->align);
282 }
283
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
287
288 static mem_attrs *
289 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
290 unsigned int align, enum machine_mode mode)
291 {
292 mem_attrs attrs;
293 void **slot;
294
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
298 if (alias == 0 && expr == 0 && offset == 0
299 && (size == 0
300 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
301 && (STRICT_ALIGNMENT && mode != BLKmode
302 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
303 return 0;
304
305 attrs.alias = alias;
306 attrs.expr = expr;
307 attrs.offset = offset;
308 attrs.size = size;
309 attrs.align = align;
310
311 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
312 if (*slot == 0)
313 {
314 *slot = ggc_alloc (sizeof (mem_attrs));
315 memcpy (*slot, &attrs, sizeof (mem_attrs));
316 }
317
318 return *slot;
319 }
320
321 /* Returns a hash code for X (which is a really a reg_attrs *). */
322
323 static hashval_t
324 reg_attrs_htab_hash (const void *x)
325 {
326 reg_attrs *p = (reg_attrs *) x;
327
328 return ((p->offset * 1000) ^ (long) p->decl);
329 }
330
331 /* Returns nonzero if the value represented by X (which is really a
332 reg_attrs *) is the same as that given by Y (which is also really a
333 reg_attrs *). */
334
335 static int
336 reg_attrs_htab_eq (const void *x, const void *y)
337 {
338 reg_attrs *p = (reg_attrs *) x;
339 reg_attrs *q = (reg_attrs *) y;
340
341 return (p->decl == q->decl && p->offset == q->offset);
342 }
343 /* Allocate a new reg_attrs structure and insert it into the hash table if
344 one identical to it is not already in the table. We are doing this for
345 MEM of mode MODE. */
346
347 static reg_attrs *
348 get_reg_attrs (tree decl, int offset)
349 {
350 reg_attrs attrs;
351 void **slot;
352
353 /* If everything is the default, we can just return zero. */
354 if (decl == 0 && offset == 0)
355 return 0;
356
357 attrs.decl = decl;
358 attrs.offset = offset;
359
360 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
361 if (*slot == 0)
362 {
363 *slot = ggc_alloc (sizeof (reg_attrs));
364 memcpy (*slot, &attrs, sizeof (reg_attrs));
365 }
366
367 return *slot;
368 }
369
370 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
371 don't attempt to share with the various global pieces of rtl (such as
372 frame_pointer_rtx). */
373
374 rtx
375 gen_raw_REG (enum machine_mode mode, int regno)
376 {
377 rtx x = gen_rtx_raw_REG (mode, regno);
378 ORIGINAL_REGNO (x) = regno;
379 return x;
380 }
381
382 /* There are some RTL codes that require special attention; the generation
383 functions do the raw handling. If you add to this list, modify
384 special_rtx in gengenrtl.c as well. */
385
386 rtx
387 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
388 {
389 void **slot;
390
391 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
392 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
393
394 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
395 if (const_true_rtx && arg == STORE_FLAG_VALUE)
396 return const_true_rtx;
397 #endif
398
399 /* Look up the CONST_INT in the hash table. */
400 slot = htab_find_slot_with_hash (const_int_htab, &arg,
401 (hashval_t) arg, INSERT);
402 if (*slot == 0)
403 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
404
405 return (rtx) *slot;
406 }
407
408 rtx
409 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
410 {
411 return GEN_INT (trunc_int_for_mode (c, mode));
412 }
413
414 /* CONST_DOUBLEs might be created from pairs of integers, or from
415 REAL_VALUE_TYPEs. Also, their length is known only at run time,
416 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
417
418 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
419 hash table. If so, return its counterpart; otherwise add it
420 to the hash table and return it. */
421 static rtx
422 lookup_const_double (rtx real)
423 {
424 void **slot = htab_find_slot (const_double_htab, real, INSERT);
425 if (*slot == 0)
426 *slot = real;
427
428 return (rtx) *slot;
429 }
430
431 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
432 VALUE in mode MODE. */
433 rtx
434 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
435 {
436 rtx real = rtx_alloc (CONST_DOUBLE);
437 PUT_MODE (real, mode);
438
439 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
440
441 return lookup_const_double (real);
442 }
443
444 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
445 of ints: I0 is the low-order word and I1 is the high-order word.
446 Do not use this routine for non-integer modes; convert to
447 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
448
449 rtx
450 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
451 {
452 rtx value;
453 unsigned int i;
454
455 if (mode != VOIDmode)
456 {
457 int width;
458 if (GET_MODE_CLASS (mode) != MODE_INT
459 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
460 /* We can get a 0 for an error mark. */
461 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
462 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
463 abort ();
464
465 /* We clear out all bits that don't belong in MODE, unless they and
466 our sign bit are all one. So we get either a reasonable negative
467 value or a reasonable unsigned value for this mode. */
468 width = GET_MODE_BITSIZE (mode);
469 if (width < HOST_BITS_PER_WIDE_INT
470 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
471 != ((HOST_WIDE_INT) (-1) << (width - 1))))
472 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
473 else if (width == HOST_BITS_PER_WIDE_INT
474 && ! (i1 == ~0 && i0 < 0))
475 i1 = 0;
476 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
477 /* We cannot represent this value as a constant. */
478 abort ();
479
480 /* If this would be an entire word for the target, but is not for
481 the host, then sign-extend on the host so that the number will
482 look the same way on the host that it would on the target.
483
484 For example, when building a 64 bit alpha hosted 32 bit sparc
485 targeted compiler, then we want the 32 bit unsigned value -1 to be
486 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
487 The latter confuses the sparc backend. */
488
489 if (width < HOST_BITS_PER_WIDE_INT
490 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
491 i0 |= ((HOST_WIDE_INT) (-1) << width);
492
493 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
494 CONST_INT.
495
496 ??? Strictly speaking, this is wrong if we create a CONST_INT for
497 a large unsigned constant with the size of MODE being
498 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
499 in a wider mode. In that case we will mis-interpret it as a
500 negative number.
501
502 Unfortunately, the only alternative is to make a CONST_DOUBLE for
503 any constant in any mode if it is an unsigned constant larger
504 than the maximum signed integer in an int on the host. However,
505 doing this will break everyone that always expects to see a
506 CONST_INT for SImode and smaller.
507
508 We have always been making CONST_INTs in this case, so nothing
509 new is being broken. */
510
511 if (width <= HOST_BITS_PER_WIDE_INT)
512 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
513 }
514
515 /* If this integer fits in one word, return a CONST_INT. */
516 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
517 return GEN_INT (i0);
518
519 /* We use VOIDmode for integers. */
520 value = rtx_alloc (CONST_DOUBLE);
521 PUT_MODE (value, VOIDmode);
522
523 CONST_DOUBLE_LOW (value) = i0;
524 CONST_DOUBLE_HIGH (value) = i1;
525
526 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
527 XWINT (value, i) = 0;
528
529 return lookup_const_double (value);
530 }
531
532 rtx
533 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
534 {
535 /* In case the MD file explicitly references the frame pointer, have
536 all such references point to the same frame pointer. This is
537 used during frame pointer elimination to distinguish the explicit
538 references to these registers from pseudos that happened to be
539 assigned to them.
540
541 If we have eliminated the frame pointer or arg pointer, we will
542 be using it as a normal register, for example as a spill
543 register. In such cases, we might be accessing it in a mode that
544 is not Pmode and therefore cannot use the pre-allocated rtx.
545
546 Also don't do this when we are making new REGs in reload, since
547 we don't want to get confused with the real pointers. */
548
549 if (mode == Pmode && !reload_in_progress)
550 {
551 if (regno == FRAME_POINTER_REGNUM
552 && (!reload_completed || frame_pointer_needed))
553 return frame_pointer_rtx;
554 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
555 if (regno == HARD_FRAME_POINTER_REGNUM
556 && (!reload_completed || frame_pointer_needed))
557 return hard_frame_pointer_rtx;
558 #endif
559 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
560 if (regno == ARG_POINTER_REGNUM)
561 return arg_pointer_rtx;
562 #endif
563 #ifdef RETURN_ADDRESS_POINTER_REGNUM
564 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
565 return return_address_pointer_rtx;
566 #endif
567 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
568 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
569 return pic_offset_table_rtx;
570 if (regno == STACK_POINTER_REGNUM)
571 return stack_pointer_rtx;
572 }
573
574 #if 0
575 /* If the per-function register table has been set up, try to re-use
576 an existing entry in that table to avoid useless generation of RTL.
577
578 This code is disabled for now until we can fix the various backends
579 which depend on having non-shared hard registers in some cases. Long
580 term we want to re-enable this code as it can significantly cut down
581 on the amount of useless RTL that gets generated.
582
583 We'll also need to fix some code that runs after reload that wants to
584 set ORIGINAL_REGNO. */
585
586 if (cfun
587 && cfun->emit
588 && regno_reg_rtx
589 && regno < FIRST_PSEUDO_REGISTER
590 && reg_raw_mode[regno] == mode)
591 return regno_reg_rtx[regno];
592 #endif
593
594 return gen_raw_REG (mode, regno);
595 }
596
597 rtx
598 gen_rtx_MEM (enum machine_mode mode, rtx addr)
599 {
600 rtx rt = gen_rtx_raw_MEM (mode, addr);
601
602 /* This field is not cleared by the mere allocation of the rtx, so
603 we clear it here. */
604 MEM_ATTRS (rt) = 0;
605
606 return rt;
607 }
608
609 rtx
610 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
611 {
612 /* This is the most common failure type.
613 Catch it early so we can see who does it. */
614 if ((offset % GET_MODE_SIZE (mode)) != 0)
615 abort ();
616
617 /* This check isn't usable right now because combine will
618 throw arbitrary crap like a CALL into a SUBREG in
619 gen_lowpart_for_combine so we must just eat it. */
620 #if 0
621 /* Check for this too. */
622 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
623 abort ();
624 #endif
625 return gen_rtx_raw_SUBREG (mode, reg, offset);
626 }
627
628 /* Generate a SUBREG representing the least-significant part of REG if MODE
629 is smaller than mode of REG, otherwise paradoxical SUBREG. */
630
631 rtx
632 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
633 {
634 enum machine_mode inmode;
635
636 inmode = GET_MODE (reg);
637 if (inmode == VOIDmode)
638 inmode = mode;
639 return gen_rtx_SUBREG (mode, reg,
640 subreg_lowpart_offset (mode, inmode));
641 }
642 \f
643 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
644 **
645 ** This routine generates an RTX of the size specified by
646 ** <code>, which is an RTX code. The RTX structure is initialized
647 ** from the arguments <element1> through <elementn>, which are
648 ** interpreted according to the specific RTX type's format. The
649 ** special machine mode associated with the rtx (if any) is specified
650 ** in <mode>.
651 **
652 ** gen_rtx can be invoked in a way which resembles the lisp-like
653 ** rtx it will generate. For example, the following rtx structure:
654 **
655 ** (plus:QI (mem:QI (reg:SI 1))
656 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
657 **
658 ** ...would be generated by the following C code:
659 **
660 ** gen_rtx (PLUS, QImode,
661 ** gen_rtx (MEM, QImode,
662 ** gen_rtx (REG, SImode, 1)),
663 ** gen_rtx (MEM, QImode,
664 ** gen_rtx (PLUS, SImode,
665 ** gen_rtx (REG, SImode, 2),
666 ** gen_rtx (REG, SImode, 3)))),
667 */
668
669 /*VARARGS2*/
670 rtx
671 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
672 {
673 int i; /* Array indices... */
674 const char *fmt; /* Current rtx's format... */
675 rtx rt_val; /* RTX to return to caller... */
676 va_list p;
677
678 va_start (p, mode);
679
680 switch (code)
681 {
682 case CONST_INT:
683 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
684 break;
685
686 case CONST_DOUBLE:
687 {
688 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
689 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
690
691 rt_val = immed_double_const (arg0, arg1, mode);
692 }
693 break;
694
695 case REG:
696 rt_val = gen_rtx_REG (mode, va_arg (p, int));
697 break;
698
699 case MEM:
700 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
701 break;
702
703 default:
704 rt_val = rtx_alloc (code); /* Allocate the storage space. */
705 rt_val->mode = mode; /* Store the machine mode... */
706
707 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
708 for (i = 0; i < GET_RTX_LENGTH (code); i++)
709 {
710 switch (*fmt++)
711 {
712 case '0': /* Field with unknown use. Zero it. */
713 X0EXP (rt_val, i) = NULL_RTX;
714 break;
715
716 case 'i': /* An integer? */
717 XINT (rt_val, i) = va_arg (p, int);
718 break;
719
720 case 'w': /* A wide integer? */
721 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
722 break;
723
724 case 's': /* A string? */
725 XSTR (rt_val, i) = va_arg (p, char *);
726 break;
727
728 case 'e': /* An expression? */
729 case 'u': /* An insn? Same except when printing. */
730 XEXP (rt_val, i) = va_arg (p, rtx);
731 break;
732
733 case 'E': /* An RTX vector? */
734 XVEC (rt_val, i) = va_arg (p, rtvec);
735 break;
736
737 case 'b': /* A bitmap? */
738 XBITMAP (rt_val, i) = va_arg (p, bitmap);
739 break;
740
741 case 't': /* A tree? */
742 XTREE (rt_val, i) = va_arg (p, tree);
743 break;
744
745 default:
746 abort ();
747 }
748 }
749 break;
750 }
751
752 va_end (p);
753 return rt_val;
754 }
755
756 /* gen_rtvec (n, [rt1, ..., rtn])
757 **
758 ** This routine creates an rtvec and stores within it the
759 ** pointers to rtx's which are its arguments.
760 */
761
762 /*VARARGS1*/
763 rtvec
764 gen_rtvec (int n, ...)
765 {
766 int i, save_n;
767 rtx *vector;
768 va_list p;
769
770 va_start (p, n);
771
772 if (n == 0)
773 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
774
775 vector = (rtx *) alloca (n * sizeof (rtx));
776
777 for (i = 0; i < n; i++)
778 vector[i] = va_arg (p, rtx);
779
780 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
781 save_n = n;
782 va_end (p);
783
784 return gen_rtvec_v (save_n, vector);
785 }
786
787 rtvec
788 gen_rtvec_v (int n, rtx *argp)
789 {
790 int i;
791 rtvec rt_val;
792
793 if (n == 0)
794 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
795
796 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
797
798 for (i = 0; i < n; i++)
799 rt_val->elem[i] = *argp++;
800
801 return rt_val;
802 }
803 \f
804 /* Generate a REG rtx for a new pseudo register of mode MODE.
805 This pseudo is assigned the next sequential register number. */
806
807 rtx
808 gen_reg_rtx (enum machine_mode mode)
809 {
810 struct function *f = cfun;
811 rtx val;
812
813 /* Don't let anything called after initial flow analysis create new
814 registers. */
815 if (no_new_pseudos)
816 abort ();
817
818 if (generating_concat_p
819 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
820 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
821 {
822 /* For complex modes, don't make a single pseudo.
823 Instead, make a CONCAT of two pseudos.
824 This allows noncontiguous allocation of the real and imaginary parts,
825 which makes much better code. Besides, allocating DCmode
826 pseudos overstrains reload on some machines like the 386. */
827 rtx realpart, imagpart;
828 enum machine_mode partmode = GET_MODE_INNER (mode);
829
830 realpart = gen_reg_rtx (partmode);
831 imagpart = gen_reg_rtx (partmode);
832 return gen_rtx_CONCAT (mode, realpart, imagpart);
833 }
834
835 /* Make sure regno_pointer_align, and regno_reg_rtx are large
836 enough to have an element for this pseudo reg number. */
837
838 if (reg_rtx_no == f->emit->regno_pointer_align_length)
839 {
840 int old_size = f->emit->regno_pointer_align_length;
841 char *new;
842 rtx *new1;
843
844 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
845 memset (new + old_size, 0, old_size);
846 f->emit->regno_pointer_align = (unsigned char *) new;
847
848 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
849 old_size * 2 * sizeof (rtx));
850 memset (new1 + old_size, 0, old_size * sizeof (rtx));
851 regno_reg_rtx = new1;
852
853 f->emit->regno_pointer_align_length = old_size * 2;
854 }
855
856 val = gen_raw_REG (mode, reg_rtx_no);
857 regno_reg_rtx[reg_rtx_no++] = val;
858 return val;
859 }
860
861 /* Generate an register with same attributes as REG,
862 but offsetted by OFFSET. */
863
864 rtx
865 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
866 {
867 rtx new = gen_rtx_REG (mode, regno);
868 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
869 REG_OFFSET (reg) + offset);
870 return new;
871 }
872
873 /* Set the decl for MEM to DECL. */
874
875 void
876 set_reg_attrs_from_mem (rtx reg, rtx mem)
877 {
878 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
879 REG_ATTRS (reg)
880 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
881 }
882
883 /* Set the register attributes for registers contained in PARM_RTX.
884 Use needed values from memory attributes of MEM. */
885
886 void
887 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
888 {
889 if (GET_CODE (parm_rtx) == REG)
890 set_reg_attrs_from_mem (parm_rtx, mem);
891 else if (GET_CODE (parm_rtx) == PARALLEL)
892 {
893 /* Check for a NULL entry in the first slot, used to indicate that the
894 parameter goes both on the stack and in registers. */
895 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
896 for (; i < XVECLEN (parm_rtx, 0); i++)
897 {
898 rtx x = XVECEXP (parm_rtx, 0, i);
899 if (GET_CODE (XEXP (x, 0)) == REG)
900 REG_ATTRS (XEXP (x, 0))
901 = get_reg_attrs (MEM_EXPR (mem),
902 INTVAL (XEXP (x, 1)));
903 }
904 }
905 }
906
907 /* Assign the RTX X to declaration T. */
908 void
909 set_decl_rtl (tree t, rtx x)
910 {
911 DECL_CHECK (t)->decl.rtl = x;
912
913 if (!x)
914 return;
915 /* For register, we maintain the reverse information too. */
916 if (GET_CODE (x) == REG)
917 REG_ATTRS (x) = get_reg_attrs (t, 0);
918 else if (GET_CODE (x) == SUBREG)
919 REG_ATTRS (SUBREG_REG (x))
920 = get_reg_attrs (t, -SUBREG_BYTE (x));
921 if (GET_CODE (x) == CONCAT)
922 {
923 if (REG_P (XEXP (x, 0)))
924 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
925 if (REG_P (XEXP (x, 1)))
926 REG_ATTRS (XEXP (x, 1))
927 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
928 }
929 if (GET_CODE (x) == PARALLEL)
930 {
931 int i;
932 for (i = 0; i < XVECLEN (x, 0); i++)
933 {
934 rtx y = XVECEXP (x, 0, i);
935 if (REG_P (XEXP (y, 0)))
936 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
937 }
938 }
939 }
940
941 /* Identify REG (which may be a CONCAT) as a user register. */
942
943 void
944 mark_user_reg (rtx reg)
945 {
946 if (GET_CODE (reg) == CONCAT)
947 {
948 REG_USERVAR_P (XEXP (reg, 0)) = 1;
949 REG_USERVAR_P (XEXP (reg, 1)) = 1;
950 }
951 else if (GET_CODE (reg) == REG)
952 REG_USERVAR_P (reg) = 1;
953 else
954 abort ();
955 }
956
957 /* Identify REG as a probable pointer register and show its alignment
958 as ALIGN, if nonzero. */
959
960 void
961 mark_reg_pointer (rtx reg, int align)
962 {
963 if (! REG_POINTER (reg))
964 {
965 REG_POINTER (reg) = 1;
966
967 if (align)
968 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
969 }
970 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
971 /* We can no-longer be sure just how aligned this pointer is */
972 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
973 }
974
975 /* Return 1 plus largest pseudo reg number used in the current function. */
976
977 int
978 max_reg_num (void)
979 {
980 return reg_rtx_no;
981 }
982
983 /* Return 1 + the largest label number used so far in the current function. */
984
985 int
986 max_label_num (void)
987 {
988 if (last_label_num && label_num == base_label_num)
989 return last_label_num;
990 return label_num;
991 }
992
993 /* Return first label number used in this function (if any were used). */
994
995 int
996 get_first_label_num (void)
997 {
998 return first_label_num;
999 }
1000 \f
1001 /* Return the final regno of X, which is a SUBREG of a hard
1002 register. */
1003 int
1004 subreg_hard_regno (rtx x, int check_mode)
1005 {
1006 enum machine_mode mode = GET_MODE (x);
1007 unsigned int byte_offset, base_regno, final_regno;
1008 rtx reg = SUBREG_REG (x);
1009
1010 /* This is where we attempt to catch illegal subregs
1011 created by the compiler. */
1012 if (GET_CODE (x) != SUBREG
1013 || GET_CODE (reg) != REG)
1014 abort ();
1015 base_regno = REGNO (reg);
1016 if (base_regno >= FIRST_PSEUDO_REGISTER)
1017 abort ();
1018 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1019 abort ();
1020 #ifdef ENABLE_CHECKING
1021 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1022 SUBREG_BYTE (x), mode))
1023 abort ();
1024 #endif
1025 /* Catch non-congruent offsets too. */
1026 byte_offset = SUBREG_BYTE (x);
1027 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1028 abort ();
1029
1030 final_regno = subreg_regno (x);
1031
1032 return final_regno;
1033 }
1034
1035 /* Return a value representing some low-order bits of X, where the number
1036 of low-order bits is given by MODE. Note that no conversion is done
1037 between floating-point and fixed-point values, rather, the bit
1038 representation is returned.
1039
1040 This function handles the cases in common between gen_lowpart, below,
1041 and two variants in cse.c and combine.c. These are the cases that can
1042 be safely handled at all points in the compilation.
1043
1044 If this is not a case we can handle, return 0. */
1045
1046 rtx
1047 gen_lowpart_common (enum machine_mode mode, rtx x)
1048 {
1049 int msize = GET_MODE_SIZE (mode);
1050 int xsize = GET_MODE_SIZE (GET_MODE (x));
1051 int offset = 0;
1052
1053 if (GET_MODE (x) == mode)
1054 return x;
1055
1056 /* MODE must occupy no more words than the mode of X. */
1057 if (GET_MODE (x) != VOIDmode
1058 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1059 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1060 return 0;
1061
1062 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1063 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1064 && GET_MODE (x) != VOIDmode && msize > xsize)
1065 return 0;
1066
1067 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1068
1069 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1070 && (GET_MODE_CLASS (mode) == MODE_INT
1071 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1072 {
1073 /* If we are getting the low-order part of something that has been
1074 sign- or zero-extended, we can either just use the object being
1075 extended or make a narrower extension. If we want an even smaller
1076 piece than the size of the object being extended, call ourselves
1077 recursively.
1078
1079 This case is used mostly by combine and cse. */
1080
1081 if (GET_MODE (XEXP (x, 0)) == mode)
1082 return XEXP (x, 0);
1083 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1084 return gen_lowpart_common (mode, XEXP (x, 0));
1085 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1086 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1087 }
1088 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1089 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1090 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1091 else if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
1092 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1093 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1094 from the low-order part of the constant. */
1095 else if ((GET_MODE_CLASS (mode) == MODE_INT
1096 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1097 && GET_MODE (x) == VOIDmode
1098 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1099 {
1100 /* If MODE is twice the host word size, X is already the desired
1101 representation. Otherwise, if MODE is wider than a word, we can't
1102 do this. If MODE is exactly a word, return just one CONST_INT. */
1103
1104 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1105 return x;
1106 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1107 return 0;
1108 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1109 return (GET_CODE (x) == CONST_INT ? x
1110 : GEN_INT (CONST_DOUBLE_LOW (x)));
1111 else
1112 {
1113 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1114 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1115 : CONST_DOUBLE_LOW (x));
1116
1117 /* Sign extend to HOST_WIDE_INT. */
1118 val = trunc_int_for_mode (val, mode);
1119
1120 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1121 : GEN_INT (val));
1122 }
1123 }
1124
1125 /* The floating-point emulator can handle all conversions between
1126 FP and integer operands. This simplifies reload because it
1127 doesn't have to deal with constructs like (subreg:DI
1128 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1129 /* Single-precision floats are always 32-bits and double-precision
1130 floats are always 64-bits. */
1131
1132 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1133 && GET_MODE_BITSIZE (mode) == 32
1134 && GET_CODE (x) == CONST_INT)
1135 {
1136 REAL_VALUE_TYPE r;
1137 long i = INTVAL (x);
1138
1139 real_from_target (&r, &i, mode);
1140 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1141 }
1142 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1143 && GET_MODE_BITSIZE (mode) == 64
1144 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1145 && GET_MODE (x) == VOIDmode)
1146 {
1147 REAL_VALUE_TYPE r;
1148 HOST_WIDE_INT low, high;
1149 long i[2];
1150
1151 if (GET_CODE (x) == CONST_INT)
1152 {
1153 low = INTVAL (x);
1154 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1155 }
1156 else
1157 {
1158 low = CONST_DOUBLE_LOW (x);
1159 high = CONST_DOUBLE_HIGH (x);
1160 }
1161
1162 if (HOST_BITS_PER_WIDE_INT > 32)
1163 high = low >> 31 >> 1;
1164
1165 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1166 target machine. */
1167 if (WORDS_BIG_ENDIAN)
1168 i[0] = high, i[1] = low;
1169 else
1170 i[0] = low, i[1] = high;
1171
1172 real_from_target (&r, i, mode);
1173 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1174 }
1175 else if ((GET_MODE_CLASS (mode) == MODE_INT
1176 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1177 && GET_CODE (x) == CONST_DOUBLE
1178 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1179 {
1180 REAL_VALUE_TYPE r;
1181 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1182 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1183
1184 /* Convert 'r' into an array of four 32-bit words in target word
1185 order. */
1186 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1187 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1188 {
1189 case 32:
1190 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1191 i[1] = 0;
1192 i[2] = 0;
1193 i[3 - 3 * endian] = 0;
1194 break;
1195 case 64:
1196 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1197 i[2 - 2 * endian] = 0;
1198 i[3 - 2 * endian] = 0;
1199 break;
1200 case 96:
1201 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1202 i[3 - 3 * endian] = 0;
1203 break;
1204 case 128:
1205 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1206 break;
1207 default:
1208 abort ();
1209 }
1210 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1211 and return it. */
1212 #if HOST_BITS_PER_WIDE_INT == 32
1213 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1214 #else
1215 if (HOST_BITS_PER_WIDE_INT != 64)
1216 abort ();
1217
1218 return immed_double_const ((((unsigned long) i[3 * endian])
1219 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1220 (((unsigned long) i[2 - endian])
1221 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1222 mode);
1223 #endif
1224 }
1225 /* If MODE is a condition code and X is a CONST_INT, the value of X
1226 must already have been "recognized" by the back-end, and we can
1227 assume that it is valid for this mode. */
1228 else if (GET_MODE_CLASS (mode) == MODE_CC
1229 && GET_CODE (x) == CONST_INT)
1230 return x;
1231
1232 /* Otherwise, we can't do this. */
1233 return 0;
1234 }
1235 \f
1236 /* Return the constant real or imaginary part (which has mode MODE)
1237 of a complex value X. The IMAGPART_P argument determines whether
1238 the real or complex component should be returned. This function
1239 returns NULL_RTX if the component isn't a constant. */
1240
1241 static rtx
1242 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1243 {
1244 tree decl, part;
1245
1246 if (GET_CODE (x) == MEM
1247 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1248 {
1249 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1250 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1251 {
1252 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1253 if (TREE_CODE (part) == REAL_CST
1254 || TREE_CODE (part) == INTEGER_CST)
1255 return expand_expr (part, NULL_RTX, mode, 0);
1256 }
1257 }
1258 return NULL_RTX;
1259 }
1260
1261 /* Return the real part (which has mode MODE) of a complex value X.
1262 This always comes at the low address in memory. */
1263
1264 rtx
1265 gen_realpart (enum machine_mode mode, rtx x)
1266 {
1267 rtx part;
1268
1269 /* Handle complex constants. */
1270 part = gen_complex_constant_part (mode, x, 0);
1271 if (part != NULL_RTX)
1272 return part;
1273
1274 if (WORDS_BIG_ENDIAN
1275 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1276 && REG_P (x)
1277 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1278 internal_error
1279 ("can't access real part of complex value in hard register");
1280 else if (WORDS_BIG_ENDIAN)
1281 return gen_highpart (mode, x);
1282 else
1283 return gen_lowpart (mode, x);
1284 }
1285
1286 /* Return the imaginary part (which has mode MODE) of a complex value X.
1287 This always comes at the high address in memory. */
1288
1289 rtx
1290 gen_imagpart (enum machine_mode mode, rtx x)
1291 {
1292 rtx part;
1293
1294 /* Handle complex constants. */
1295 part = gen_complex_constant_part (mode, x, 1);
1296 if (part != NULL_RTX)
1297 return part;
1298
1299 if (WORDS_BIG_ENDIAN)
1300 return gen_lowpart (mode, x);
1301 else if (! WORDS_BIG_ENDIAN
1302 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1303 && REG_P (x)
1304 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1305 internal_error
1306 ("can't access imaginary part of complex value in hard register");
1307 else
1308 return gen_highpart (mode, x);
1309 }
1310
1311 /* Return 1 iff X, assumed to be a SUBREG,
1312 refers to the real part of the complex value in its containing reg.
1313 Complex values are always stored with the real part in the first word,
1314 regardless of WORDS_BIG_ENDIAN. */
1315
1316 int
1317 subreg_realpart_p (rtx x)
1318 {
1319 if (GET_CODE (x) != SUBREG)
1320 abort ();
1321
1322 return ((unsigned int) SUBREG_BYTE (x)
1323 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1324 }
1325 \f
1326 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1327 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1328 least-significant part of X.
1329 MODE specifies how big a part of X to return;
1330 it usually should not be larger than a word.
1331 If X is a MEM whose address is a QUEUED, the value may be so also. */
1332
1333 rtx
1334 gen_lowpart (enum machine_mode mode, rtx x)
1335 {
1336 rtx result = gen_lowpart_common (mode, x);
1337
1338 if (result)
1339 return result;
1340 else if (GET_CODE (x) == REG)
1341 {
1342 /* Must be a hard reg that's not valid in MODE. */
1343 result = gen_lowpart_common (mode, copy_to_reg (x));
1344 if (result == 0)
1345 abort ();
1346 return result;
1347 }
1348 else if (GET_CODE (x) == MEM)
1349 {
1350 /* The only additional case we can do is MEM. */
1351 int offset = 0;
1352
1353 /* The following exposes the use of "x" to CSE. */
1354 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1355 && SCALAR_INT_MODE_P (GET_MODE (x))
1356 && ! no_new_pseudos)
1357 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1358
1359 if (WORDS_BIG_ENDIAN)
1360 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1361 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1362
1363 if (BYTES_BIG_ENDIAN)
1364 /* Adjust the address so that the address-after-the-data
1365 is unchanged. */
1366 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1367 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1368
1369 return adjust_address (x, mode, offset);
1370 }
1371 else if (GET_CODE (x) == ADDRESSOF)
1372 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1373 else
1374 abort ();
1375 }
1376
1377 /* Like `gen_lowpart', but refer to the most significant part.
1378 This is used to access the imaginary part of a complex number. */
1379
1380 rtx
1381 gen_highpart (enum machine_mode mode, rtx x)
1382 {
1383 unsigned int msize = GET_MODE_SIZE (mode);
1384 rtx result;
1385
1386 /* This case loses if X is a subreg. To catch bugs early,
1387 complain if an invalid MODE is used even in other cases. */
1388 if (msize > UNITS_PER_WORD
1389 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1390 abort ();
1391
1392 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1393 subreg_highpart_offset (mode, GET_MODE (x)));
1394
1395 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1396 the target if we have a MEM. gen_highpart must return a valid operand,
1397 emitting code if necessary to do so. */
1398 if (result != NULL_RTX && GET_CODE (result) == MEM)
1399 result = validize_mem (result);
1400
1401 if (!result)
1402 abort ();
1403 return result;
1404 }
1405
1406 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1407 be VOIDmode constant. */
1408 rtx
1409 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1410 {
1411 if (GET_MODE (exp) != VOIDmode)
1412 {
1413 if (GET_MODE (exp) != innermode)
1414 abort ();
1415 return gen_highpart (outermode, exp);
1416 }
1417 return simplify_gen_subreg (outermode, exp, innermode,
1418 subreg_highpart_offset (outermode, innermode));
1419 }
1420
1421 /* Return offset in bytes to get OUTERMODE low part
1422 of the value in mode INNERMODE stored in memory in target format. */
1423
1424 unsigned int
1425 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1426 {
1427 unsigned int offset = 0;
1428 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1429
1430 if (difference > 0)
1431 {
1432 if (WORDS_BIG_ENDIAN)
1433 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1434 if (BYTES_BIG_ENDIAN)
1435 offset += difference % UNITS_PER_WORD;
1436 }
1437
1438 return offset;
1439 }
1440
1441 /* Return offset in bytes to get OUTERMODE high part
1442 of the value in mode INNERMODE stored in memory in target format. */
1443 unsigned int
1444 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1445 {
1446 unsigned int offset = 0;
1447 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1448
1449 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1450 abort ();
1451
1452 if (difference > 0)
1453 {
1454 if (! WORDS_BIG_ENDIAN)
1455 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1456 if (! BYTES_BIG_ENDIAN)
1457 offset += difference % UNITS_PER_WORD;
1458 }
1459
1460 return offset;
1461 }
1462
1463 /* Return 1 iff X, assumed to be a SUBREG,
1464 refers to the least significant part of its containing reg.
1465 If X is not a SUBREG, always return 1 (it is its own low part!). */
1466
1467 int
1468 subreg_lowpart_p (rtx x)
1469 {
1470 if (GET_CODE (x) != SUBREG)
1471 return 1;
1472 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1473 return 0;
1474
1475 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1476 == SUBREG_BYTE (x));
1477 }
1478 \f
1479
1480 /* Helper routine for all the constant cases of operand_subword.
1481 Some places invoke this directly. */
1482
1483 rtx
1484 constant_subword (rtx op, int offset, enum machine_mode mode)
1485 {
1486 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1487 HOST_WIDE_INT val;
1488
1489 /* If OP is already an integer word, return it. */
1490 if (GET_MODE_CLASS (mode) == MODE_INT
1491 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1492 return op;
1493
1494 /* The output is some bits, the width of the target machine's word.
1495 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1496 host can't. */
1497 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1498 && GET_MODE_CLASS (mode) == MODE_FLOAT
1499 && GET_MODE_BITSIZE (mode) == 64
1500 && GET_CODE (op) == CONST_DOUBLE)
1501 {
1502 long k[2];
1503 REAL_VALUE_TYPE rv;
1504
1505 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1506 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1507
1508 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1509 which the words are written depends on the word endianness.
1510 ??? This is a potential portability problem and should
1511 be fixed at some point.
1512
1513 We must exercise caution with the sign bit. By definition there
1514 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1515 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1516 So we explicitly mask and sign-extend as necessary. */
1517 if (BITS_PER_WORD == 32)
1518 {
1519 val = k[offset];
1520 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1521 return GEN_INT (val);
1522 }
1523 #if HOST_BITS_PER_WIDE_INT >= 64
1524 else if (BITS_PER_WORD >= 64 && offset == 0)
1525 {
1526 val = k[! WORDS_BIG_ENDIAN];
1527 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1528 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1529 return GEN_INT (val);
1530 }
1531 #endif
1532 else if (BITS_PER_WORD == 16)
1533 {
1534 val = k[offset >> 1];
1535 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1536 val >>= 16;
1537 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1538 return GEN_INT (val);
1539 }
1540 else
1541 abort ();
1542 }
1543 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1544 && GET_MODE_CLASS (mode) == MODE_FLOAT
1545 && GET_MODE_BITSIZE (mode) > 64
1546 && GET_CODE (op) == CONST_DOUBLE)
1547 {
1548 long k[4];
1549 REAL_VALUE_TYPE rv;
1550
1551 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1552 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1553
1554 if (BITS_PER_WORD == 32)
1555 {
1556 val = k[offset];
1557 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1558 return GEN_INT (val);
1559 }
1560 #if HOST_BITS_PER_WIDE_INT >= 64
1561 else if (BITS_PER_WORD >= 64 && offset <= 1)
1562 {
1563 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1564 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1565 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1566 return GEN_INT (val);
1567 }
1568 #endif
1569 else
1570 abort ();
1571 }
1572
1573 /* Single word float is a little harder, since single- and double-word
1574 values often do not have the same high-order bits. We have already
1575 verified that we want the only defined word of the single-word value. */
1576 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1577 && GET_MODE_BITSIZE (mode) == 32
1578 && GET_CODE (op) == CONST_DOUBLE)
1579 {
1580 long l;
1581 REAL_VALUE_TYPE rv;
1582
1583 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1584 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1585
1586 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1587 val = l;
1588 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1589
1590 if (BITS_PER_WORD == 16)
1591 {
1592 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1593 val >>= 16;
1594 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1595 }
1596
1597 return GEN_INT (val);
1598 }
1599
1600 /* The only remaining cases that we can handle are integers.
1601 Convert to proper endianness now since these cases need it.
1602 At this point, offset == 0 means the low-order word.
1603
1604 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1605 in general. However, if OP is (const_int 0), we can just return
1606 it for any word. */
1607
1608 if (op == const0_rtx)
1609 return op;
1610
1611 if (GET_MODE_CLASS (mode) != MODE_INT
1612 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1613 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1614 return 0;
1615
1616 if (WORDS_BIG_ENDIAN)
1617 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1618
1619 /* Find out which word on the host machine this value is in and get
1620 it from the constant. */
1621 val = (offset / size_ratio == 0
1622 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1623 : (GET_CODE (op) == CONST_INT
1624 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1625
1626 /* Get the value we want into the low bits of val. */
1627 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1628 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1629
1630 val = trunc_int_for_mode (val, word_mode);
1631
1632 return GEN_INT (val);
1633 }
1634
1635 /* Return subword OFFSET of operand OP.
1636 The word number, OFFSET, is interpreted as the word number starting
1637 at the low-order address. OFFSET 0 is the low-order word if not
1638 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1639
1640 If we cannot extract the required word, we return zero. Otherwise,
1641 an rtx corresponding to the requested word will be returned.
1642
1643 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1644 reload has completed, a valid address will always be returned. After
1645 reload, if a valid address cannot be returned, we return zero.
1646
1647 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1648 it is the responsibility of the caller.
1649
1650 MODE is the mode of OP in case it is a CONST_INT.
1651
1652 ??? This is still rather broken for some cases. The problem for the
1653 moment is that all callers of this thing provide no 'goal mode' to
1654 tell us to work with. This exists because all callers were written
1655 in a word based SUBREG world.
1656 Now use of this function can be deprecated by simplify_subreg in most
1657 cases.
1658 */
1659
1660 rtx
1661 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1662 {
1663 if (mode == VOIDmode)
1664 mode = GET_MODE (op);
1665
1666 if (mode == VOIDmode)
1667 abort ();
1668
1669 /* If OP is narrower than a word, fail. */
1670 if (mode != BLKmode
1671 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1672 return 0;
1673
1674 /* If we want a word outside OP, return zero. */
1675 if (mode != BLKmode
1676 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1677 return const0_rtx;
1678
1679 /* Form a new MEM at the requested address. */
1680 if (GET_CODE (op) == MEM)
1681 {
1682 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1683
1684 if (! validate_address)
1685 return new;
1686
1687 else if (reload_completed)
1688 {
1689 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1690 return 0;
1691 }
1692 else
1693 return replace_equiv_address (new, XEXP (new, 0));
1694 }
1695
1696 /* Rest can be handled by simplify_subreg. */
1697 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1698 }
1699
1700 /* Similar to `operand_subword', but never return 0. If we can't extract
1701 the required subword, put OP into a register and try again. If that fails,
1702 abort. We always validate the address in this case.
1703
1704 MODE is the mode of OP, in case it is CONST_INT. */
1705
1706 rtx
1707 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1708 {
1709 rtx result = operand_subword (op, offset, 1, mode);
1710
1711 if (result)
1712 return result;
1713
1714 if (mode != BLKmode && mode != VOIDmode)
1715 {
1716 /* If this is a register which can not be accessed by words, copy it
1717 to a pseudo register. */
1718 if (GET_CODE (op) == REG)
1719 op = copy_to_reg (op);
1720 else
1721 op = force_reg (mode, op);
1722 }
1723
1724 result = operand_subword (op, offset, 1, mode);
1725 if (result == 0)
1726 abort ();
1727
1728 return result;
1729 }
1730 \f
1731 /* Given a compare instruction, swap the operands.
1732 A test instruction is changed into a compare of 0 against the operand. */
1733
1734 void
1735 reverse_comparison (rtx insn)
1736 {
1737 rtx body = PATTERN (insn);
1738 rtx comp;
1739
1740 if (GET_CODE (body) == SET)
1741 comp = SET_SRC (body);
1742 else
1743 comp = SET_SRC (XVECEXP (body, 0, 0));
1744
1745 if (GET_CODE (comp) == COMPARE)
1746 {
1747 rtx op0 = XEXP (comp, 0);
1748 rtx op1 = XEXP (comp, 1);
1749 XEXP (comp, 0) = op1;
1750 XEXP (comp, 1) = op0;
1751 }
1752 else
1753 {
1754 rtx new = gen_rtx_COMPARE (VOIDmode,
1755 CONST0_RTX (GET_MODE (comp)), comp);
1756 if (GET_CODE (body) == SET)
1757 SET_SRC (body) = new;
1758 else
1759 SET_SRC (XVECEXP (body, 0, 0)) = new;
1760 }
1761 }
1762 \f
1763 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1764 or (2) a component ref of something variable. Represent the later with
1765 a NULL expression. */
1766
1767 static tree
1768 component_ref_for_mem_expr (tree ref)
1769 {
1770 tree inner = TREE_OPERAND (ref, 0);
1771
1772 if (TREE_CODE (inner) == COMPONENT_REF)
1773 inner = component_ref_for_mem_expr (inner);
1774 else
1775 {
1776 tree placeholder_ptr = 0;
1777
1778 /* Now remove any conversions: they don't change what the underlying
1779 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1780 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1781 || TREE_CODE (inner) == NON_LVALUE_EXPR
1782 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1783 || TREE_CODE (inner) == SAVE_EXPR
1784 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1785 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1786 inner = find_placeholder (inner, &placeholder_ptr);
1787 else
1788 inner = TREE_OPERAND (inner, 0);
1789
1790 if (! DECL_P (inner))
1791 inner = NULL_TREE;
1792 }
1793
1794 if (inner == TREE_OPERAND (ref, 0))
1795 return ref;
1796 else
1797 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1798 TREE_OPERAND (ref, 1));
1799 }
1800
1801 /* Given REF, a MEM, and T, either the type of X or the expression
1802 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1803 if we are making a new object of this type. BITPOS is nonzero if
1804 there is an offset outstanding on T that will be applied later. */
1805
1806 void
1807 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1808 HOST_WIDE_INT bitpos)
1809 {
1810 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1811 tree expr = MEM_EXPR (ref);
1812 rtx offset = MEM_OFFSET (ref);
1813 rtx size = MEM_SIZE (ref);
1814 unsigned int align = MEM_ALIGN (ref);
1815 HOST_WIDE_INT apply_bitpos = 0;
1816 tree type;
1817
1818 /* It can happen that type_for_mode was given a mode for which there
1819 is no language-level type. In which case it returns NULL, which
1820 we can see here. */
1821 if (t == NULL_TREE)
1822 return;
1823
1824 type = TYPE_P (t) ? t : TREE_TYPE (t);
1825
1826 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1827 wrong answer, as it assumes that DECL_RTL already has the right alias
1828 info. Callers should not set DECL_RTL until after the call to
1829 set_mem_attributes. */
1830 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1831 abort ();
1832
1833 /* Get the alias set from the expression or type (perhaps using a
1834 front-end routine) and use it. */
1835 alias = get_alias_set (t);
1836
1837 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1838 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1839 RTX_UNCHANGING_P (ref)
1840 |= ((lang_hooks.honor_readonly
1841 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1842 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1843
1844 /* If we are making an object of this type, or if this is a DECL, we know
1845 that it is a scalar if the type is not an aggregate. */
1846 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1847 MEM_SCALAR_P (ref) = 1;
1848
1849 /* We can set the alignment from the type if we are making an object,
1850 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1851 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1852 align = MAX (align, TYPE_ALIGN (type));
1853
1854 /* If the size is known, we can set that. */
1855 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1856 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1857
1858 /* If T is not a type, we may be able to deduce some more information about
1859 the expression. */
1860 if (! TYPE_P (t))
1861 {
1862 maybe_set_unchanging (ref, t);
1863 if (TREE_THIS_VOLATILE (t))
1864 MEM_VOLATILE_P (ref) = 1;
1865
1866 /* Now remove any conversions: they don't change what the underlying
1867 object is. Likewise for SAVE_EXPR. */
1868 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1869 || TREE_CODE (t) == NON_LVALUE_EXPR
1870 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1871 || TREE_CODE (t) == SAVE_EXPR)
1872 t = TREE_OPERAND (t, 0);
1873
1874 /* If this expression can't be addressed (e.g., it contains a reference
1875 to a non-addressable field), show we don't change its alias set. */
1876 if (! can_address_p (t))
1877 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1878
1879 /* If this is a decl, set the attributes of the MEM from it. */
1880 if (DECL_P (t))
1881 {
1882 expr = t;
1883 offset = const0_rtx;
1884 apply_bitpos = bitpos;
1885 size = (DECL_SIZE_UNIT (t)
1886 && host_integerp (DECL_SIZE_UNIT (t), 1)
1887 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1888 align = DECL_ALIGN (t);
1889 }
1890
1891 /* If this is a constant, we know the alignment. */
1892 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1893 {
1894 align = TYPE_ALIGN (type);
1895 #ifdef CONSTANT_ALIGNMENT
1896 align = CONSTANT_ALIGNMENT (t, align);
1897 #endif
1898 }
1899
1900 /* If this is a field reference and not a bit-field, record it. */
1901 /* ??? There is some information that can be gleened from bit-fields,
1902 such as the word offset in the structure that might be modified.
1903 But skip it for now. */
1904 else if (TREE_CODE (t) == COMPONENT_REF
1905 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1906 {
1907 expr = component_ref_for_mem_expr (t);
1908 offset = const0_rtx;
1909 apply_bitpos = bitpos;
1910 /* ??? Any reason the field size would be different than
1911 the size we got from the type? */
1912 }
1913
1914 /* If this is an array reference, look for an outer field reference. */
1915 else if (TREE_CODE (t) == ARRAY_REF)
1916 {
1917 tree off_tree = size_zero_node;
1918 /* We can't modify t, because we use it at the end of the
1919 function. */
1920 tree t2 = t;
1921
1922 do
1923 {
1924 tree index = TREE_OPERAND (t2, 1);
1925 tree array = TREE_OPERAND (t2, 0);
1926 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1927 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1928 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1929
1930 /* We assume all arrays have sizes that are a multiple of a byte.
1931 First subtract the lower bound, if any, in the type of the
1932 index, then convert to sizetype and multiply by the size of the
1933 array element. */
1934 if (low_bound != 0 && ! integer_zerop (low_bound))
1935 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1936 index, low_bound));
1937
1938 /* If the index has a self-referential type, pass it to a
1939 WITH_RECORD_EXPR; if the component size is, pass our
1940 component to one. */
1941 if (CONTAINS_PLACEHOLDER_P (index))
1942 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1943 if (CONTAINS_PLACEHOLDER_P (unit_size))
1944 unit_size = build (WITH_RECORD_EXPR, sizetype,
1945 unit_size, array);
1946
1947 off_tree
1948 = fold (build (PLUS_EXPR, sizetype,
1949 fold (build (MULT_EXPR, sizetype,
1950 index,
1951 unit_size)),
1952 off_tree));
1953 t2 = TREE_OPERAND (t2, 0);
1954 }
1955 while (TREE_CODE (t2) == ARRAY_REF);
1956
1957 if (DECL_P (t2))
1958 {
1959 expr = t2;
1960 offset = NULL;
1961 if (host_integerp (off_tree, 1))
1962 {
1963 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1964 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1965 align = DECL_ALIGN (t2);
1966 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1967 align = aoff;
1968 offset = GEN_INT (ioff);
1969 apply_bitpos = bitpos;
1970 }
1971 }
1972 else if (TREE_CODE (t2) == COMPONENT_REF)
1973 {
1974 expr = component_ref_for_mem_expr (t2);
1975 if (host_integerp (off_tree, 1))
1976 {
1977 offset = GEN_INT (tree_low_cst (off_tree, 1));
1978 apply_bitpos = bitpos;
1979 }
1980 /* ??? Any reason the field size would be different than
1981 the size we got from the type? */
1982 }
1983 else if (flag_argument_noalias > 1
1984 && TREE_CODE (t2) == INDIRECT_REF
1985 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1986 {
1987 expr = t2;
1988 offset = NULL;
1989 }
1990 }
1991
1992 /* If this is a Fortran indirect argument reference, record the
1993 parameter decl. */
1994 else if (flag_argument_noalias > 1
1995 && TREE_CODE (t) == INDIRECT_REF
1996 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1997 {
1998 expr = t;
1999 offset = NULL;
2000 }
2001 }
2002
2003 /* If we modified OFFSET based on T, then subtract the outstanding
2004 bit position offset. Similarly, increase the size of the accessed
2005 object to contain the negative offset. */
2006 if (apply_bitpos)
2007 {
2008 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2009 if (size)
2010 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2011 }
2012
2013 /* Now set the attributes we computed above. */
2014 MEM_ATTRS (ref)
2015 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2016
2017 /* If this is already known to be a scalar or aggregate, we are done. */
2018 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2019 return;
2020
2021 /* If it is a reference into an aggregate, this is part of an aggregate.
2022 Otherwise we don't know. */
2023 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2024 || TREE_CODE (t) == ARRAY_RANGE_REF
2025 || TREE_CODE (t) == BIT_FIELD_REF)
2026 MEM_IN_STRUCT_P (ref) = 1;
2027 }
2028
2029 void
2030 set_mem_attributes (rtx ref, tree t, int objectp)
2031 {
2032 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2033 }
2034
2035 /* Set the decl for MEM to DECL. */
2036
2037 void
2038 set_mem_attrs_from_reg (rtx mem, rtx reg)
2039 {
2040 MEM_ATTRS (mem)
2041 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2042 GEN_INT (REG_OFFSET (reg)),
2043 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2044 }
2045
2046 /* Set the alias set of MEM to SET. */
2047
2048 void
2049 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
2050 {
2051 #ifdef ENABLE_CHECKING
2052 /* If the new and old alias sets don't conflict, something is wrong. */
2053 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2054 abort ();
2055 #endif
2056
2057 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2058 MEM_SIZE (mem), MEM_ALIGN (mem),
2059 GET_MODE (mem));
2060 }
2061
2062 /* Set the alignment of MEM to ALIGN bits. */
2063
2064 void
2065 set_mem_align (rtx mem, unsigned int align)
2066 {
2067 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2068 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2069 GET_MODE (mem));
2070 }
2071
2072 /* Set the expr for MEM to EXPR. */
2073
2074 void
2075 set_mem_expr (rtx mem, tree expr)
2076 {
2077 MEM_ATTRS (mem)
2078 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2079 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2080 }
2081
2082 /* Set the offset of MEM to OFFSET. */
2083
2084 void
2085 set_mem_offset (rtx mem, rtx offset)
2086 {
2087 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2088 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2089 GET_MODE (mem));
2090 }
2091
2092 /* Set the size of MEM to SIZE. */
2093
2094 void
2095 set_mem_size (rtx mem, rtx size)
2096 {
2097 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2098 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2099 GET_MODE (mem));
2100 }
2101 \f
2102 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2103 and its address changed to ADDR. (VOIDmode means don't change the mode.
2104 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2105 returned memory location is required to be valid. The memory
2106 attributes are not changed. */
2107
2108 static rtx
2109 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
2110 {
2111 rtx new;
2112
2113 if (GET_CODE (memref) != MEM)
2114 abort ();
2115 if (mode == VOIDmode)
2116 mode = GET_MODE (memref);
2117 if (addr == 0)
2118 addr = XEXP (memref, 0);
2119
2120 if (validate)
2121 {
2122 if (reload_in_progress || reload_completed)
2123 {
2124 if (! memory_address_p (mode, addr))
2125 abort ();
2126 }
2127 else
2128 addr = memory_address (mode, addr);
2129 }
2130
2131 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2132 return memref;
2133
2134 new = gen_rtx_MEM (mode, addr);
2135 MEM_COPY_ATTRIBUTES (new, memref);
2136 return new;
2137 }
2138
2139 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2140 way we are changing MEMREF, so we only preserve the alias set. */
2141
2142 rtx
2143 change_address (rtx memref, enum machine_mode mode, rtx addr)
2144 {
2145 rtx new = change_address_1 (memref, mode, addr, 1);
2146 enum machine_mode mmode = GET_MODE (new);
2147
2148 MEM_ATTRS (new)
2149 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2150 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2151 (mmode == BLKmode ? BITS_PER_UNIT
2152 : GET_MODE_ALIGNMENT (mmode)),
2153 mmode);
2154
2155 return new;
2156 }
2157
2158 /* Return a memory reference like MEMREF, but with its mode changed
2159 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2160 nonzero, the memory address is forced to be valid.
2161 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2162 and caller is responsible for adjusting MEMREF base register. */
2163
2164 rtx
2165 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2166 int validate, int adjust)
2167 {
2168 rtx addr = XEXP (memref, 0);
2169 rtx new;
2170 rtx memoffset = MEM_OFFSET (memref);
2171 rtx size = 0;
2172 unsigned int memalign = MEM_ALIGN (memref);
2173
2174 /* ??? Prefer to create garbage instead of creating shared rtl.
2175 This may happen even if offset is nonzero -- consider
2176 (plus (plus reg reg) const_int) -- so do this always. */
2177 addr = copy_rtx (addr);
2178
2179 if (adjust)
2180 {
2181 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2182 object, we can merge it into the LO_SUM. */
2183 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2184 && offset >= 0
2185 && (unsigned HOST_WIDE_INT) offset
2186 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2187 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2188 plus_constant (XEXP (addr, 1), offset));
2189 else
2190 addr = plus_constant (addr, offset);
2191 }
2192
2193 new = change_address_1 (memref, mode, addr, validate);
2194
2195 /* Compute the new values of the memory attributes due to this adjustment.
2196 We add the offsets and update the alignment. */
2197 if (memoffset)
2198 memoffset = GEN_INT (offset + INTVAL (memoffset));
2199
2200 /* Compute the new alignment by taking the MIN of the alignment and the
2201 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2202 if zero. */
2203 if (offset != 0)
2204 memalign
2205 = MIN (memalign,
2206 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2207
2208 /* We can compute the size in a number of ways. */
2209 if (GET_MODE (new) != BLKmode)
2210 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2211 else if (MEM_SIZE (memref))
2212 size = plus_constant (MEM_SIZE (memref), -offset);
2213
2214 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2215 memoffset, size, memalign, GET_MODE (new));
2216
2217 /* At some point, we should validate that this offset is within the object,
2218 if all the appropriate values are known. */
2219 return new;
2220 }
2221
2222 /* Return a memory reference like MEMREF, but with its mode changed
2223 to MODE and its address changed to ADDR, which is assumed to be
2224 MEMREF offseted by OFFSET bytes. If VALIDATE is
2225 nonzero, the memory address is forced to be valid. */
2226
2227 rtx
2228 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2229 HOST_WIDE_INT offset, int validate)
2230 {
2231 memref = change_address_1 (memref, VOIDmode, addr, validate);
2232 return adjust_address_1 (memref, mode, offset, validate, 0);
2233 }
2234
2235 /* Return a memory reference like MEMREF, but whose address is changed by
2236 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2237 known to be in OFFSET (possibly 1). */
2238
2239 rtx
2240 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2241 {
2242 rtx new, addr = XEXP (memref, 0);
2243
2244 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2245
2246 /* At this point we don't know _why_ the address is invalid. It
2247 could have secondary memory references, multiplies or anything.
2248
2249 However, if we did go and rearrange things, we can wind up not
2250 being able to recognize the magic around pic_offset_table_rtx.
2251 This stuff is fragile, and is yet another example of why it is
2252 bad to expose PIC machinery too early. */
2253 if (! memory_address_p (GET_MODE (memref), new)
2254 && GET_CODE (addr) == PLUS
2255 && XEXP (addr, 0) == pic_offset_table_rtx)
2256 {
2257 addr = force_reg (GET_MODE (addr), addr);
2258 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2259 }
2260
2261 update_temp_slot_address (XEXP (memref, 0), new);
2262 new = change_address_1 (memref, VOIDmode, new, 1);
2263
2264 /* Update the alignment to reflect the offset. Reset the offset, which
2265 we don't know. */
2266 MEM_ATTRS (new)
2267 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2268 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2269 GET_MODE (new));
2270 return new;
2271 }
2272
2273 /* Return a memory reference like MEMREF, but with its address changed to
2274 ADDR. The caller is asserting that the actual piece of memory pointed
2275 to is the same, just the form of the address is being changed, such as
2276 by putting something into a register. */
2277
2278 rtx
2279 replace_equiv_address (rtx memref, rtx addr)
2280 {
2281 /* change_address_1 copies the memory attribute structure without change
2282 and that's exactly what we want here. */
2283 update_temp_slot_address (XEXP (memref, 0), addr);
2284 return change_address_1 (memref, VOIDmode, addr, 1);
2285 }
2286
2287 /* Likewise, but the reference is not required to be valid. */
2288
2289 rtx
2290 replace_equiv_address_nv (rtx memref, rtx addr)
2291 {
2292 return change_address_1 (memref, VOIDmode, addr, 0);
2293 }
2294
2295 /* Return a memory reference like MEMREF, but with its mode widened to
2296 MODE and offset by OFFSET. This would be used by targets that e.g.
2297 cannot issue QImode memory operations and have to use SImode memory
2298 operations plus masking logic. */
2299
2300 rtx
2301 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2302 {
2303 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2304 tree expr = MEM_EXPR (new);
2305 rtx memoffset = MEM_OFFSET (new);
2306 unsigned int size = GET_MODE_SIZE (mode);
2307
2308 /* If we don't know what offset we were at within the expression, then
2309 we can't know if we've overstepped the bounds. */
2310 if (! memoffset)
2311 expr = NULL_TREE;
2312
2313 while (expr)
2314 {
2315 if (TREE_CODE (expr) == COMPONENT_REF)
2316 {
2317 tree field = TREE_OPERAND (expr, 1);
2318
2319 if (! DECL_SIZE_UNIT (field))
2320 {
2321 expr = NULL_TREE;
2322 break;
2323 }
2324
2325 /* Is the field at least as large as the access? If so, ok,
2326 otherwise strip back to the containing structure. */
2327 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2328 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2329 && INTVAL (memoffset) >= 0)
2330 break;
2331
2332 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2333 {
2334 expr = NULL_TREE;
2335 break;
2336 }
2337
2338 expr = TREE_OPERAND (expr, 0);
2339 memoffset = (GEN_INT (INTVAL (memoffset)
2340 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2341 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2342 / BITS_PER_UNIT)));
2343 }
2344 /* Similarly for the decl. */
2345 else if (DECL_P (expr)
2346 && DECL_SIZE_UNIT (expr)
2347 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2348 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2349 && (! memoffset || INTVAL (memoffset) >= 0))
2350 break;
2351 else
2352 {
2353 /* The widened memory access overflows the expression, which means
2354 that it could alias another expression. Zap it. */
2355 expr = NULL_TREE;
2356 break;
2357 }
2358 }
2359
2360 if (! expr)
2361 memoffset = NULL_RTX;
2362
2363 /* The widened memory may alias other stuff, so zap the alias set. */
2364 /* ??? Maybe use get_alias_set on any remaining expression. */
2365
2366 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2367 MEM_ALIGN (new), mode);
2368
2369 return new;
2370 }
2371 \f
2372 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2373
2374 rtx
2375 gen_label_rtx (void)
2376 {
2377 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2378 NULL, label_num++, NULL);
2379 }
2380 \f
2381 /* For procedure integration. */
2382
2383 /* Install new pointers to the first and last insns in the chain.
2384 Also, set cur_insn_uid to one higher than the last in use.
2385 Used for an inline-procedure after copying the insn chain. */
2386
2387 void
2388 set_new_first_and_last_insn (rtx first, rtx last)
2389 {
2390 rtx insn;
2391
2392 first_insn = first;
2393 last_insn = last;
2394 cur_insn_uid = 0;
2395
2396 for (insn = first; insn; insn = NEXT_INSN (insn))
2397 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2398
2399 cur_insn_uid++;
2400 }
2401
2402 /* Set the range of label numbers found in the current function.
2403 This is used when belatedly compiling an inline function. */
2404
2405 void
2406 set_new_first_and_last_label_num (int first, int last)
2407 {
2408 base_label_num = label_num;
2409 first_label_num = first;
2410 last_label_num = last;
2411 }
2412
2413 /* Set the last label number found in the current function.
2414 This is used when belatedly compiling an inline function. */
2415
2416 void
2417 set_new_last_label_num (int last)
2418 {
2419 base_label_num = label_num;
2420 last_label_num = last;
2421 }
2422 \f
2423 /* Restore all variables describing the current status from the structure *P.
2424 This is used after a nested function. */
2425
2426 void
2427 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2428 {
2429 last_label_num = 0;
2430 }
2431 \f
2432 /* Go through all the RTL insn bodies and copy any invalid shared
2433 structure. This routine should only be called once. */
2434
2435 void
2436 unshare_all_rtl (tree fndecl, rtx insn)
2437 {
2438 tree decl;
2439
2440 /* Make sure that virtual parameters are not shared. */
2441 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2442 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2443
2444 /* Make sure that virtual stack slots are not shared. */
2445 unshare_all_decls (DECL_INITIAL (fndecl));
2446
2447 /* Unshare just about everything else. */
2448 unshare_all_rtl_1 (insn);
2449
2450 /* Make sure the addresses of stack slots found outside the insn chain
2451 (such as, in DECL_RTL of a variable) are not shared
2452 with the insn chain.
2453
2454 This special care is necessary when the stack slot MEM does not
2455 actually appear in the insn chain. If it does appear, its address
2456 is unshared from all else at that point. */
2457 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2458 }
2459
2460 /* Go through all the RTL insn bodies and copy any invalid shared
2461 structure, again. This is a fairly expensive thing to do so it
2462 should be done sparingly. */
2463
2464 void
2465 unshare_all_rtl_again (rtx insn)
2466 {
2467 rtx p;
2468 tree decl;
2469
2470 for (p = insn; p; p = NEXT_INSN (p))
2471 if (INSN_P (p))
2472 {
2473 reset_used_flags (PATTERN (p));
2474 reset_used_flags (REG_NOTES (p));
2475 reset_used_flags (LOG_LINKS (p));
2476 }
2477
2478 /* Make sure that virtual stack slots are not shared. */
2479 reset_used_decls (DECL_INITIAL (cfun->decl));
2480
2481 /* Make sure that virtual parameters are not shared. */
2482 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2483 reset_used_flags (DECL_RTL (decl));
2484
2485 reset_used_flags (stack_slot_list);
2486
2487 unshare_all_rtl (cfun->decl, insn);
2488 }
2489
2490 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2491 Assumes the mark bits are cleared at entry. */
2492
2493 static void
2494 unshare_all_rtl_1 (rtx insn)
2495 {
2496 for (; insn; insn = NEXT_INSN (insn))
2497 if (INSN_P (insn))
2498 {
2499 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2500 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2501 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2502 }
2503 }
2504
2505 /* Go through all virtual stack slots of a function and copy any
2506 shared structure. */
2507 static void
2508 unshare_all_decls (tree blk)
2509 {
2510 tree t;
2511
2512 /* Copy shared decls. */
2513 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2514 if (DECL_RTL_SET_P (t))
2515 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2516
2517 /* Now process sub-blocks. */
2518 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2519 unshare_all_decls (t);
2520 }
2521
2522 /* Go through all virtual stack slots of a function and mark them as
2523 not shared. */
2524 static void
2525 reset_used_decls (tree blk)
2526 {
2527 tree t;
2528
2529 /* Mark decls. */
2530 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2531 if (DECL_RTL_SET_P (t))
2532 reset_used_flags (DECL_RTL (t));
2533
2534 /* Now process sub-blocks. */
2535 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2536 reset_used_decls (t);
2537 }
2538
2539 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2540 placed in the result directly, rather than being copied. MAY_SHARE is
2541 either a MEM of an EXPR_LIST of MEMs. */
2542
2543 rtx
2544 copy_most_rtx (rtx orig, rtx may_share)
2545 {
2546 rtx copy;
2547 int i, j;
2548 RTX_CODE code;
2549 const char *format_ptr;
2550
2551 if (orig == may_share
2552 || (GET_CODE (may_share) == EXPR_LIST
2553 && in_expr_list_p (may_share, orig)))
2554 return orig;
2555
2556 code = GET_CODE (orig);
2557
2558 switch (code)
2559 {
2560 case REG:
2561 case QUEUED:
2562 case CONST_INT:
2563 case CONST_DOUBLE:
2564 case CONST_VECTOR:
2565 case SYMBOL_REF:
2566 case CODE_LABEL:
2567 case PC:
2568 case CC0:
2569 return orig;
2570 default:
2571 break;
2572 }
2573
2574 copy = rtx_alloc (code);
2575 PUT_MODE (copy, GET_MODE (orig));
2576 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2577 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2578 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2579 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2580 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2581
2582 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2583
2584 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2585 {
2586 switch (*format_ptr++)
2587 {
2588 case 'e':
2589 XEXP (copy, i) = XEXP (orig, i);
2590 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2591 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2592 break;
2593
2594 case 'u':
2595 XEXP (copy, i) = XEXP (orig, i);
2596 break;
2597
2598 case 'E':
2599 case 'V':
2600 XVEC (copy, i) = XVEC (orig, i);
2601 if (XVEC (orig, i) != NULL)
2602 {
2603 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2604 for (j = 0; j < XVECLEN (copy, i); j++)
2605 XVECEXP (copy, i, j)
2606 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2607 }
2608 break;
2609
2610 case 'w':
2611 XWINT (copy, i) = XWINT (orig, i);
2612 break;
2613
2614 case 'n':
2615 case 'i':
2616 XINT (copy, i) = XINT (orig, i);
2617 break;
2618
2619 case 't':
2620 XTREE (copy, i) = XTREE (orig, i);
2621 break;
2622
2623 case 's':
2624 case 'S':
2625 XSTR (copy, i) = XSTR (orig, i);
2626 break;
2627
2628 case '0':
2629 /* Copy this through the wide int field; that's safest. */
2630 X0WINT (copy, i) = X0WINT (orig, i);
2631 break;
2632
2633 default:
2634 abort ();
2635 }
2636 }
2637 return copy;
2638 }
2639
2640 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2641 Recursively does the same for subexpressions. */
2642
2643 rtx
2644 copy_rtx_if_shared (rtx orig)
2645 {
2646 rtx x = orig;
2647 int i;
2648 enum rtx_code code;
2649 const char *format_ptr;
2650 int copied = 0;
2651
2652 if (x == 0)
2653 return 0;
2654
2655 code = GET_CODE (x);
2656
2657 /* These types may be freely shared. */
2658
2659 switch (code)
2660 {
2661 case REG:
2662 case QUEUED:
2663 case CONST_INT:
2664 case CONST_DOUBLE:
2665 case CONST_VECTOR:
2666 case SYMBOL_REF:
2667 case CODE_LABEL:
2668 case PC:
2669 case CC0:
2670 case SCRATCH:
2671 /* SCRATCH must be shared because they represent distinct values. */
2672 return x;
2673
2674 case CONST:
2675 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2676 a LABEL_REF, it isn't sharable. */
2677 if (GET_CODE (XEXP (x, 0)) == PLUS
2678 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2679 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2680 return x;
2681 break;
2682
2683 case INSN:
2684 case JUMP_INSN:
2685 case CALL_INSN:
2686 case NOTE:
2687 case BARRIER:
2688 /* The chain of insns is not being copied. */
2689 return x;
2690
2691 case MEM:
2692 /* A MEM is allowed to be shared if its address is constant.
2693
2694 We used to allow sharing of MEMs which referenced
2695 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2696 that can lose. instantiate_virtual_regs will not unshare
2697 the MEMs, and combine may change the structure of the address
2698 because it looks safe and profitable in one context, but
2699 in some other context it creates unrecognizable RTL. */
2700 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2701 return x;
2702
2703 break;
2704
2705 default:
2706 break;
2707 }
2708
2709 /* This rtx may not be shared. If it has already been seen,
2710 replace it with a copy of itself. */
2711
2712 if (RTX_FLAG (x, used))
2713 {
2714 rtx copy;
2715
2716 copy = rtx_alloc (code);
2717 memcpy (copy, x,
2718 (sizeof (*copy) - sizeof (copy->fld)
2719 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2720 x = copy;
2721 copied = 1;
2722 }
2723 RTX_FLAG (x, used) = 1;
2724
2725 /* Now scan the subexpressions recursively.
2726 We can store any replaced subexpressions directly into X
2727 since we know X is not shared! Any vectors in X
2728 must be copied if X was copied. */
2729
2730 format_ptr = GET_RTX_FORMAT (code);
2731
2732 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2733 {
2734 switch (*format_ptr++)
2735 {
2736 case 'e':
2737 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2738 break;
2739
2740 case 'E':
2741 if (XVEC (x, i) != NULL)
2742 {
2743 int j;
2744 int len = XVECLEN (x, i);
2745
2746 if (copied && len > 0)
2747 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2748 for (j = 0; j < len; j++)
2749 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2750 }
2751 break;
2752 }
2753 }
2754 return x;
2755 }
2756
2757 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2758 to look for shared sub-parts. */
2759
2760 void
2761 reset_used_flags (rtx x)
2762 {
2763 int i, j;
2764 enum rtx_code code;
2765 const char *format_ptr;
2766
2767 if (x == 0)
2768 return;
2769
2770 code = GET_CODE (x);
2771
2772 /* These types may be freely shared so we needn't do any resetting
2773 for them. */
2774
2775 switch (code)
2776 {
2777 case REG:
2778 case QUEUED:
2779 case CONST_INT:
2780 case CONST_DOUBLE:
2781 case CONST_VECTOR:
2782 case SYMBOL_REF:
2783 case CODE_LABEL:
2784 case PC:
2785 case CC0:
2786 return;
2787
2788 case INSN:
2789 case JUMP_INSN:
2790 case CALL_INSN:
2791 case NOTE:
2792 case LABEL_REF:
2793 case BARRIER:
2794 /* The chain of insns is not being copied. */
2795 return;
2796
2797 default:
2798 break;
2799 }
2800
2801 RTX_FLAG (x, used) = 0;
2802
2803 format_ptr = GET_RTX_FORMAT (code);
2804 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2805 {
2806 switch (*format_ptr++)
2807 {
2808 case 'e':
2809 reset_used_flags (XEXP (x, i));
2810 break;
2811
2812 case 'E':
2813 for (j = 0; j < XVECLEN (x, i); j++)
2814 reset_used_flags (XVECEXP (x, i, j));
2815 break;
2816 }
2817 }
2818 }
2819 \f
2820 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2821 Return X or the rtx for the pseudo reg the value of X was copied into.
2822 OTHER must be valid as a SET_DEST. */
2823
2824 rtx
2825 make_safe_from (rtx x, rtx other)
2826 {
2827 while (1)
2828 switch (GET_CODE (other))
2829 {
2830 case SUBREG:
2831 other = SUBREG_REG (other);
2832 break;
2833 case STRICT_LOW_PART:
2834 case SIGN_EXTEND:
2835 case ZERO_EXTEND:
2836 other = XEXP (other, 0);
2837 break;
2838 default:
2839 goto done;
2840 }
2841 done:
2842 if ((GET_CODE (other) == MEM
2843 && ! CONSTANT_P (x)
2844 && GET_CODE (x) != REG
2845 && GET_CODE (x) != SUBREG)
2846 || (GET_CODE (other) == REG
2847 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2848 || reg_mentioned_p (other, x))))
2849 {
2850 rtx temp = gen_reg_rtx (GET_MODE (x));
2851 emit_move_insn (temp, x);
2852 return temp;
2853 }
2854 return x;
2855 }
2856 \f
2857 /* Emission of insns (adding them to the doubly-linked list). */
2858
2859 /* Return the first insn of the current sequence or current function. */
2860
2861 rtx
2862 get_insns (void)
2863 {
2864 return first_insn;
2865 }
2866
2867 /* Specify a new insn as the first in the chain. */
2868
2869 void
2870 set_first_insn (rtx insn)
2871 {
2872 if (PREV_INSN (insn) != 0)
2873 abort ();
2874 first_insn = insn;
2875 }
2876
2877 /* Return the last insn emitted in current sequence or current function. */
2878
2879 rtx
2880 get_last_insn (void)
2881 {
2882 return last_insn;
2883 }
2884
2885 /* Specify a new insn as the last in the chain. */
2886
2887 void
2888 set_last_insn (rtx insn)
2889 {
2890 if (NEXT_INSN (insn) != 0)
2891 abort ();
2892 last_insn = insn;
2893 }
2894
2895 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2896
2897 rtx
2898 get_last_insn_anywhere (void)
2899 {
2900 struct sequence_stack *stack;
2901 if (last_insn)
2902 return last_insn;
2903 for (stack = seq_stack; stack; stack = stack->next)
2904 if (stack->last != 0)
2905 return stack->last;
2906 return 0;
2907 }
2908
2909 /* Return the first nonnote insn emitted in current sequence or current
2910 function. This routine looks inside SEQUENCEs. */
2911
2912 rtx
2913 get_first_nonnote_insn (void)
2914 {
2915 rtx insn = first_insn;
2916
2917 while (insn)
2918 {
2919 insn = next_insn (insn);
2920 if (insn == 0 || GET_CODE (insn) != NOTE)
2921 break;
2922 }
2923
2924 return insn;
2925 }
2926
2927 /* Return the last nonnote insn emitted in current sequence or current
2928 function. This routine looks inside SEQUENCEs. */
2929
2930 rtx
2931 get_last_nonnote_insn (void)
2932 {
2933 rtx insn = last_insn;
2934
2935 while (insn)
2936 {
2937 insn = previous_insn (insn);
2938 if (insn == 0 || GET_CODE (insn) != NOTE)
2939 break;
2940 }
2941
2942 return insn;
2943 }
2944
2945 /* Return a number larger than any instruction's uid in this function. */
2946
2947 int
2948 get_max_uid (void)
2949 {
2950 return cur_insn_uid;
2951 }
2952
2953 /* Renumber instructions so that no instruction UIDs are wasted. */
2954
2955 void
2956 renumber_insns (FILE *stream)
2957 {
2958 rtx insn;
2959
2960 /* If we're not supposed to renumber instructions, don't. */
2961 if (!flag_renumber_insns)
2962 return;
2963
2964 /* If there aren't that many instructions, then it's not really
2965 worth renumbering them. */
2966 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2967 return;
2968
2969 cur_insn_uid = 1;
2970
2971 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2972 {
2973 if (stream)
2974 fprintf (stream, "Renumbering insn %d to %d\n",
2975 INSN_UID (insn), cur_insn_uid);
2976 INSN_UID (insn) = cur_insn_uid++;
2977 }
2978 }
2979 \f
2980 /* Return the next insn. If it is a SEQUENCE, return the first insn
2981 of the sequence. */
2982
2983 rtx
2984 next_insn (rtx insn)
2985 {
2986 if (insn)
2987 {
2988 insn = NEXT_INSN (insn);
2989 if (insn && GET_CODE (insn) == INSN
2990 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2991 insn = XVECEXP (PATTERN (insn), 0, 0);
2992 }
2993
2994 return insn;
2995 }
2996
2997 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2998 of the sequence. */
2999
3000 rtx
3001 previous_insn (rtx insn)
3002 {
3003 if (insn)
3004 {
3005 insn = PREV_INSN (insn);
3006 if (insn && GET_CODE (insn) == INSN
3007 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3008 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3009 }
3010
3011 return insn;
3012 }
3013
3014 /* Return the next insn after INSN that is not a NOTE. This routine does not
3015 look inside SEQUENCEs. */
3016
3017 rtx
3018 next_nonnote_insn (rtx insn)
3019 {
3020 while (insn)
3021 {
3022 insn = NEXT_INSN (insn);
3023 if (insn == 0 || GET_CODE (insn) != NOTE)
3024 break;
3025 }
3026
3027 return insn;
3028 }
3029
3030 /* Return the previous insn before INSN that is not a NOTE. This routine does
3031 not look inside SEQUENCEs. */
3032
3033 rtx
3034 prev_nonnote_insn (rtx insn)
3035 {
3036 while (insn)
3037 {
3038 insn = PREV_INSN (insn);
3039 if (insn == 0 || GET_CODE (insn) != NOTE)
3040 break;
3041 }
3042
3043 return insn;
3044 }
3045
3046 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3047 or 0, if there is none. This routine does not look inside
3048 SEQUENCEs. */
3049
3050 rtx
3051 next_real_insn (rtx insn)
3052 {
3053 while (insn)
3054 {
3055 insn = NEXT_INSN (insn);
3056 if (insn == 0 || GET_CODE (insn) == INSN
3057 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3058 break;
3059 }
3060
3061 return insn;
3062 }
3063
3064 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3065 or 0, if there is none. This routine does not look inside
3066 SEQUENCEs. */
3067
3068 rtx
3069 prev_real_insn (rtx insn)
3070 {
3071 while (insn)
3072 {
3073 insn = PREV_INSN (insn);
3074 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3075 || GET_CODE (insn) == JUMP_INSN)
3076 break;
3077 }
3078
3079 return insn;
3080 }
3081
3082 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3083 This routine does not look inside SEQUENCEs. */
3084
3085 rtx
3086 last_call_insn (void)
3087 {
3088 rtx insn;
3089
3090 for (insn = get_last_insn ();
3091 insn && GET_CODE (insn) != CALL_INSN;
3092 insn = PREV_INSN (insn))
3093 ;
3094
3095 return insn;
3096 }
3097
3098 /* Find the next insn after INSN that really does something. This routine
3099 does not look inside SEQUENCEs. Until reload has completed, this is the
3100 same as next_real_insn. */
3101
3102 int
3103 active_insn_p (rtx insn)
3104 {
3105 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3106 || (GET_CODE (insn) == INSN
3107 && (! reload_completed
3108 || (GET_CODE (PATTERN (insn)) != USE
3109 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3110 }
3111
3112 rtx
3113 next_active_insn (rtx insn)
3114 {
3115 while (insn)
3116 {
3117 insn = NEXT_INSN (insn);
3118 if (insn == 0 || active_insn_p (insn))
3119 break;
3120 }
3121
3122 return insn;
3123 }
3124
3125 /* Find the last insn before INSN that really does something. This routine
3126 does not look inside SEQUENCEs. Until reload has completed, this is the
3127 same as prev_real_insn. */
3128
3129 rtx
3130 prev_active_insn (rtx insn)
3131 {
3132 while (insn)
3133 {
3134 insn = PREV_INSN (insn);
3135 if (insn == 0 || active_insn_p (insn))
3136 break;
3137 }
3138
3139 return insn;
3140 }
3141
3142 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3143
3144 rtx
3145 next_label (rtx insn)
3146 {
3147 while (insn)
3148 {
3149 insn = NEXT_INSN (insn);
3150 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3151 break;
3152 }
3153
3154 return insn;
3155 }
3156
3157 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3158
3159 rtx
3160 prev_label (rtx insn)
3161 {
3162 while (insn)
3163 {
3164 insn = PREV_INSN (insn);
3165 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3166 break;
3167 }
3168
3169 return insn;
3170 }
3171 \f
3172 #ifdef HAVE_cc0
3173 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3174 and REG_CC_USER notes so we can find it. */
3175
3176 void
3177 link_cc0_insns (rtx insn)
3178 {
3179 rtx user = next_nonnote_insn (insn);
3180
3181 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3182 user = XVECEXP (PATTERN (user), 0, 0);
3183
3184 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3185 REG_NOTES (user));
3186 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3187 }
3188
3189 /* Return the next insn that uses CC0 after INSN, which is assumed to
3190 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3191 applied to the result of this function should yield INSN).
3192
3193 Normally, this is simply the next insn. However, if a REG_CC_USER note
3194 is present, it contains the insn that uses CC0.
3195
3196 Return 0 if we can't find the insn. */
3197
3198 rtx
3199 next_cc0_user (rtx insn)
3200 {
3201 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3202
3203 if (note)
3204 return XEXP (note, 0);
3205
3206 insn = next_nonnote_insn (insn);
3207 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3208 insn = XVECEXP (PATTERN (insn), 0, 0);
3209
3210 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3211 return insn;
3212
3213 return 0;
3214 }
3215
3216 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3217 note, it is the previous insn. */
3218
3219 rtx
3220 prev_cc0_setter (rtx insn)
3221 {
3222 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3223
3224 if (note)
3225 return XEXP (note, 0);
3226
3227 insn = prev_nonnote_insn (insn);
3228 if (! sets_cc0_p (PATTERN (insn)))
3229 abort ();
3230
3231 return insn;
3232 }
3233 #endif
3234
3235 /* Increment the label uses for all labels present in rtx. */
3236
3237 static void
3238 mark_label_nuses (rtx x)
3239 {
3240 enum rtx_code code;
3241 int i, j;
3242 const char *fmt;
3243
3244 code = GET_CODE (x);
3245 if (code == LABEL_REF)
3246 LABEL_NUSES (XEXP (x, 0))++;
3247
3248 fmt = GET_RTX_FORMAT (code);
3249 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3250 {
3251 if (fmt[i] == 'e')
3252 mark_label_nuses (XEXP (x, i));
3253 else if (fmt[i] == 'E')
3254 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3255 mark_label_nuses (XVECEXP (x, i, j));
3256 }
3257 }
3258
3259 \f
3260 /* Try splitting insns that can be split for better scheduling.
3261 PAT is the pattern which might split.
3262 TRIAL is the insn providing PAT.
3263 LAST is nonzero if we should return the last insn of the sequence produced.
3264
3265 If this routine succeeds in splitting, it returns the first or last
3266 replacement insn depending on the value of LAST. Otherwise, it
3267 returns TRIAL. If the insn to be returned can be split, it will be. */
3268
3269 rtx
3270 try_split (rtx pat, rtx trial, int last)
3271 {
3272 rtx before = PREV_INSN (trial);
3273 rtx after = NEXT_INSN (trial);
3274 int has_barrier = 0;
3275 rtx tem;
3276 rtx note, seq;
3277 int probability;
3278 rtx insn_last, insn;
3279 int njumps = 0;
3280
3281 if (any_condjump_p (trial)
3282 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3283 split_branch_probability = INTVAL (XEXP (note, 0));
3284 probability = split_branch_probability;
3285
3286 seq = split_insns (pat, trial);
3287
3288 split_branch_probability = -1;
3289
3290 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3291 We may need to handle this specially. */
3292 if (after && GET_CODE (after) == BARRIER)
3293 {
3294 has_barrier = 1;
3295 after = NEXT_INSN (after);
3296 }
3297
3298 if (!seq)
3299 return trial;
3300
3301 /* Avoid infinite loop if any insn of the result matches
3302 the original pattern. */
3303 insn_last = seq;
3304 while (1)
3305 {
3306 if (INSN_P (insn_last)
3307 && rtx_equal_p (PATTERN (insn_last), pat))
3308 return trial;
3309 if (!NEXT_INSN (insn_last))
3310 break;
3311 insn_last = NEXT_INSN (insn_last);
3312 }
3313
3314 /* Mark labels. */
3315 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3316 {
3317 if (GET_CODE (insn) == JUMP_INSN)
3318 {
3319 mark_jump_label (PATTERN (insn), insn, 0);
3320 njumps++;
3321 if (probability != -1
3322 && any_condjump_p (insn)
3323 && !find_reg_note (insn, REG_BR_PROB, 0))
3324 {
3325 /* We can preserve the REG_BR_PROB notes only if exactly
3326 one jump is created, otherwise the machine description
3327 is responsible for this step using
3328 split_branch_probability variable. */
3329 if (njumps != 1)
3330 abort ();
3331 REG_NOTES (insn)
3332 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3333 GEN_INT (probability),
3334 REG_NOTES (insn));
3335 }
3336 }
3337 }
3338
3339 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3340 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3341 if (GET_CODE (trial) == CALL_INSN)
3342 {
3343 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3344 if (GET_CODE (insn) == CALL_INSN)
3345 {
3346 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3347 while (*p)
3348 p = &XEXP (*p, 1);
3349 *p = CALL_INSN_FUNCTION_USAGE (trial);
3350 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3351 }
3352 }
3353
3354 /* Copy notes, particularly those related to the CFG. */
3355 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3356 {
3357 switch (REG_NOTE_KIND (note))
3358 {
3359 case REG_EH_REGION:
3360 insn = insn_last;
3361 while (insn != NULL_RTX)
3362 {
3363 if (GET_CODE (insn) == CALL_INSN
3364 || (flag_non_call_exceptions
3365 && may_trap_p (PATTERN (insn))))
3366 REG_NOTES (insn)
3367 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3368 XEXP (note, 0),
3369 REG_NOTES (insn));
3370 insn = PREV_INSN (insn);
3371 }
3372 break;
3373
3374 case REG_NORETURN:
3375 case REG_SETJMP:
3376 case REG_ALWAYS_RETURN:
3377 insn = insn_last;
3378 while (insn != NULL_RTX)
3379 {
3380 if (GET_CODE (insn) == CALL_INSN)
3381 REG_NOTES (insn)
3382 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3383 XEXP (note, 0),
3384 REG_NOTES (insn));
3385 insn = PREV_INSN (insn);
3386 }
3387 break;
3388
3389 case REG_NON_LOCAL_GOTO:
3390 insn = insn_last;
3391 while (insn != NULL_RTX)
3392 {
3393 if (GET_CODE (insn) == JUMP_INSN)
3394 REG_NOTES (insn)
3395 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3396 XEXP (note, 0),
3397 REG_NOTES (insn));
3398 insn = PREV_INSN (insn);
3399 }
3400 break;
3401
3402 default:
3403 break;
3404 }
3405 }
3406
3407 /* If there are LABELS inside the split insns increment the
3408 usage count so we don't delete the label. */
3409 if (GET_CODE (trial) == INSN)
3410 {
3411 insn = insn_last;
3412 while (insn != NULL_RTX)
3413 {
3414 if (GET_CODE (insn) == INSN)
3415 mark_label_nuses (PATTERN (insn));
3416
3417 insn = PREV_INSN (insn);
3418 }
3419 }
3420
3421 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3422
3423 delete_insn (trial);
3424 if (has_barrier)
3425 emit_barrier_after (tem);
3426
3427 /* Recursively call try_split for each new insn created; by the
3428 time control returns here that insn will be fully split, so
3429 set LAST and continue from the insn after the one returned.
3430 We can't use next_active_insn here since AFTER may be a note.
3431 Ignore deleted insns, which can be occur if not optimizing. */
3432 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3433 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3434 tem = try_split (PATTERN (tem), tem, 1);
3435
3436 /* Return either the first or the last insn, depending on which was
3437 requested. */
3438 return last
3439 ? (after ? PREV_INSN (after) : last_insn)
3440 : NEXT_INSN (before);
3441 }
3442 \f
3443 /* Make and return an INSN rtx, initializing all its slots.
3444 Store PATTERN in the pattern slots. */
3445
3446 rtx
3447 make_insn_raw (rtx pattern)
3448 {
3449 rtx insn;
3450
3451 insn = rtx_alloc (INSN);
3452
3453 INSN_UID (insn) = cur_insn_uid++;
3454 PATTERN (insn) = pattern;
3455 INSN_CODE (insn) = -1;
3456 LOG_LINKS (insn) = NULL;
3457 REG_NOTES (insn) = NULL;
3458 INSN_LOCATOR (insn) = 0;
3459 BLOCK_FOR_INSN (insn) = NULL;
3460
3461 #ifdef ENABLE_RTL_CHECKING
3462 if (insn
3463 && INSN_P (insn)
3464 && (returnjump_p (insn)
3465 || (GET_CODE (insn) == SET
3466 && SET_DEST (insn) == pc_rtx)))
3467 {
3468 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3469 debug_rtx (insn);
3470 }
3471 #endif
3472
3473 return insn;
3474 }
3475
3476 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3477
3478 static rtx
3479 make_jump_insn_raw (rtx pattern)
3480 {
3481 rtx insn;
3482
3483 insn = rtx_alloc (JUMP_INSN);
3484 INSN_UID (insn) = cur_insn_uid++;
3485
3486 PATTERN (insn) = pattern;
3487 INSN_CODE (insn) = -1;
3488 LOG_LINKS (insn) = NULL;
3489 REG_NOTES (insn) = NULL;
3490 JUMP_LABEL (insn) = NULL;
3491 INSN_LOCATOR (insn) = 0;
3492 BLOCK_FOR_INSN (insn) = NULL;
3493
3494 return insn;
3495 }
3496
3497 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3498
3499 static rtx
3500 make_call_insn_raw (rtx pattern)
3501 {
3502 rtx insn;
3503
3504 insn = rtx_alloc (CALL_INSN);
3505 INSN_UID (insn) = cur_insn_uid++;
3506
3507 PATTERN (insn) = pattern;
3508 INSN_CODE (insn) = -1;
3509 LOG_LINKS (insn) = NULL;
3510 REG_NOTES (insn) = NULL;
3511 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3512 INSN_LOCATOR (insn) = 0;
3513 BLOCK_FOR_INSN (insn) = NULL;
3514
3515 return insn;
3516 }
3517 \f
3518 /* Add INSN to the end of the doubly-linked list.
3519 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3520
3521 void
3522 add_insn (rtx insn)
3523 {
3524 PREV_INSN (insn) = last_insn;
3525 NEXT_INSN (insn) = 0;
3526
3527 if (NULL != last_insn)
3528 NEXT_INSN (last_insn) = insn;
3529
3530 if (NULL == first_insn)
3531 first_insn = insn;
3532
3533 last_insn = insn;
3534 }
3535
3536 /* Add INSN into the doubly-linked list after insn AFTER. This and
3537 the next should be the only functions called to insert an insn once
3538 delay slots have been filled since only they know how to update a
3539 SEQUENCE. */
3540
3541 void
3542 add_insn_after (rtx insn, rtx after)
3543 {
3544 rtx next = NEXT_INSN (after);
3545 basic_block bb;
3546
3547 if (optimize && INSN_DELETED_P (after))
3548 abort ();
3549
3550 NEXT_INSN (insn) = next;
3551 PREV_INSN (insn) = after;
3552
3553 if (next)
3554 {
3555 PREV_INSN (next) = insn;
3556 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3557 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3558 }
3559 else if (last_insn == after)
3560 last_insn = insn;
3561 else
3562 {
3563 struct sequence_stack *stack = seq_stack;
3564 /* Scan all pending sequences too. */
3565 for (; stack; stack = stack->next)
3566 if (after == stack->last)
3567 {
3568 stack->last = insn;
3569 break;
3570 }
3571
3572 if (stack == 0)
3573 abort ();
3574 }
3575
3576 if (GET_CODE (after) != BARRIER
3577 && GET_CODE (insn) != BARRIER
3578 && (bb = BLOCK_FOR_INSN (after)))
3579 {
3580 set_block_for_insn (insn, bb);
3581 if (INSN_P (insn))
3582 bb->flags |= BB_DIRTY;
3583 /* Should not happen as first in the BB is always
3584 either NOTE or LABEL. */
3585 if (bb->end == after
3586 /* Avoid clobbering of structure when creating new BB. */
3587 && GET_CODE (insn) != BARRIER
3588 && (GET_CODE (insn) != NOTE
3589 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3590 bb->end = insn;
3591 }
3592
3593 NEXT_INSN (after) = insn;
3594 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3595 {
3596 rtx sequence = PATTERN (after);
3597 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3598 }
3599 }
3600
3601 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3602 the previous should be the only functions called to insert an insn once
3603 delay slots have been filled since only they know how to update a
3604 SEQUENCE. */
3605
3606 void
3607 add_insn_before (rtx insn, rtx before)
3608 {
3609 rtx prev = PREV_INSN (before);
3610 basic_block bb;
3611
3612 if (optimize && INSN_DELETED_P (before))
3613 abort ();
3614
3615 PREV_INSN (insn) = prev;
3616 NEXT_INSN (insn) = before;
3617
3618 if (prev)
3619 {
3620 NEXT_INSN (prev) = insn;
3621 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3622 {
3623 rtx sequence = PATTERN (prev);
3624 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3625 }
3626 }
3627 else if (first_insn == before)
3628 first_insn = insn;
3629 else
3630 {
3631 struct sequence_stack *stack = seq_stack;
3632 /* Scan all pending sequences too. */
3633 for (; stack; stack = stack->next)
3634 if (before == stack->first)
3635 {
3636 stack->first = insn;
3637 break;
3638 }
3639
3640 if (stack == 0)
3641 abort ();
3642 }
3643
3644 if (GET_CODE (before) != BARRIER
3645 && GET_CODE (insn) != BARRIER
3646 && (bb = BLOCK_FOR_INSN (before)))
3647 {
3648 set_block_for_insn (insn, bb);
3649 if (INSN_P (insn))
3650 bb->flags |= BB_DIRTY;
3651 /* Should not happen as first in the BB is always
3652 either NOTE or LABEl. */
3653 if (bb->head == insn
3654 /* Avoid clobbering of structure when creating new BB. */
3655 && GET_CODE (insn) != BARRIER
3656 && (GET_CODE (insn) != NOTE
3657 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3658 abort ();
3659 }
3660
3661 PREV_INSN (before) = insn;
3662 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3663 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3664 }
3665
3666 /* Remove an insn from its doubly-linked list. This function knows how
3667 to handle sequences. */
3668 void
3669 remove_insn (rtx insn)
3670 {
3671 rtx next = NEXT_INSN (insn);
3672 rtx prev = PREV_INSN (insn);
3673 basic_block bb;
3674
3675 if (prev)
3676 {
3677 NEXT_INSN (prev) = next;
3678 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3679 {
3680 rtx sequence = PATTERN (prev);
3681 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3682 }
3683 }
3684 else if (first_insn == insn)
3685 first_insn = next;
3686 else
3687 {
3688 struct sequence_stack *stack = seq_stack;
3689 /* Scan all pending sequences too. */
3690 for (; stack; stack = stack->next)
3691 if (insn == stack->first)
3692 {
3693 stack->first = next;
3694 break;
3695 }
3696
3697 if (stack == 0)
3698 abort ();
3699 }
3700
3701 if (next)
3702 {
3703 PREV_INSN (next) = prev;
3704 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3705 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3706 }
3707 else if (last_insn == insn)
3708 last_insn = prev;
3709 else
3710 {
3711 struct sequence_stack *stack = seq_stack;
3712 /* Scan all pending sequences too. */
3713 for (; stack; stack = stack->next)
3714 if (insn == stack->last)
3715 {
3716 stack->last = prev;
3717 break;
3718 }
3719
3720 if (stack == 0)
3721 abort ();
3722 }
3723 if (GET_CODE (insn) != BARRIER
3724 && (bb = BLOCK_FOR_INSN (insn)))
3725 {
3726 if (INSN_P (insn))
3727 bb->flags |= BB_DIRTY;
3728 if (bb->head == insn)
3729 {
3730 /* Never ever delete the basic block note without deleting whole
3731 basic block. */
3732 if (GET_CODE (insn) == NOTE)
3733 abort ();
3734 bb->head = next;
3735 }
3736 if (bb->end == insn)
3737 bb->end = prev;
3738 }
3739 }
3740
3741 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3742
3743 void
3744 add_function_usage_to (rtx call_insn, rtx call_fusage)
3745 {
3746 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3747 abort ();
3748
3749 /* Put the register usage information on the CALL. If there is already
3750 some usage information, put ours at the end. */
3751 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3752 {
3753 rtx link;
3754
3755 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3756 link = XEXP (link, 1))
3757 ;
3758
3759 XEXP (link, 1) = call_fusage;
3760 }
3761 else
3762 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3763 }
3764
3765 /* Delete all insns made since FROM.
3766 FROM becomes the new last instruction. */
3767
3768 void
3769 delete_insns_since (rtx from)
3770 {
3771 if (from == 0)
3772 first_insn = 0;
3773 else
3774 NEXT_INSN (from) = 0;
3775 last_insn = from;
3776 }
3777
3778 /* This function is deprecated, please use sequences instead.
3779
3780 Move a consecutive bunch of insns to a different place in the chain.
3781 The insns to be moved are those between FROM and TO.
3782 They are moved to a new position after the insn AFTER.
3783 AFTER must not be FROM or TO or any insn in between.
3784
3785 This function does not know about SEQUENCEs and hence should not be
3786 called after delay-slot filling has been done. */
3787
3788 void
3789 reorder_insns_nobb (rtx from, rtx to, rtx after)
3790 {
3791 /* Splice this bunch out of where it is now. */
3792 if (PREV_INSN (from))
3793 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3794 if (NEXT_INSN (to))
3795 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3796 if (last_insn == to)
3797 last_insn = PREV_INSN (from);
3798 if (first_insn == from)
3799 first_insn = NEXT_INSN (to);
3800
3801 /* Make the new neighbors point to it and it to them. */
3802 if (NEXT_INSN (after))
3803 PREV_INSN (NEXT_INSN (after)) = to;
3804
3805 NEXT_INSN (to) = NEXT_INSN (after);
3806 PREV_INSN (from) = after;
3807 NEXT_INSN (after) = from;
3808 if (after == last_insn)
3809 last_insn = to;
3810 }
3811
3812 /* Same as function above, but take care to update BB boundaries. */
3813 void
3814 reorder_insns (rtx from, rtx to, rtx after)
3815 {
3816 rtx prev = PREV_INSN (from);
3817 basic_block bb, bb2;
3818
3819 reorder_insns_nobb (from, to, after);
3820
3821 if (GET_CODE (after) != BARRIER
3822 && (bb = BLOCK_FOR_INSN (after)))
3823 {
3824 rtx x;
3825 bb->flags |= BB_DIRTY;
3826
3827 if (GET_CODE (from) != BARRIER
3828 && (bb2 = BLOCK_FOR_INSN (from)))
3829 {
3830 if (bb2->end == to)
3831 bb2->end = prev;
3832 bb2->flags |= BB_DIRTY;
3833 }
3834
3835 if (bb->end == after)
3836 bb->end = to;
3837
3838 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3839 set_block_for_insn (x, bb);
3840 }
3841 }
3842
3843 /* Return the line note insn preceding INSN. */
3844
3845 static rtx
3846 find_line_note (rtx insn)
3847 {
3848 if (no_line_numbers)
3849 return 0;
3850
3851 for (; insn; insn = PREV_INSN (insn))
3852 if (GET_CODE (insn) == NOTE
3853 && NOTE_LINE_NUMBER (insn) >= 0)
3854 break;
3855
3856 return insn;
3857 }
3858
3859 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3860 of the moved insns when debugging. This may insert a note between AFTER
3861 and FROM, and another one after TO. */
3862
3863 void
3864 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
3865 {
3866 rtx from_line = find_line_note (from);
3867 rtx after_line = find_line_note (after);
3868
3869 reorder_insns (from, to, after);
3870
3871 if (from_line == after_line)
3872 return;
3873
3874 if (from_line)
3875 emit_note_copy_after (from_line, after);
3876 if (after_line)
3877 emit_note_copy_after (after_line, to);
3878 }
3879
3880 /* Remove unnecessary notes from the instruction stream. */
3881
3882 void
3883 remove_unnecessary_notes (void)
3884 {
3885 rtx block_stack = NULL_RTX;
3886 rtx eh_stack = NULL_RTX;
3887 rtx insn;
3888 rtx next;
3889 rtx tmp;
3890
3891 /* We must not remove the first instruction in the function because
3892 the compiler depends on the first instruction being a note. */
3893 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3894 {
3895 /* Remember what's next. */
3896 next = NEXT_INSN (insn);
3897
3898 /* We're only interested in notes. */
3899 if (GET_CODE (insn) != NOTE)
3900 continue;
3901
3902 switch (NOTE_LINE_NUMBER (insn))
3903 {
3904 case NOTE_INSN_DELETED:
3905 case NOTE_INSN_LOOP_END_TOP_COND:
3906 remove_insn (insn);
3907 break;
3908
3909 case NOTE_INSN_EH_REGION_BEG:
3910 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3911 break;
3912
3913 case NOTE_INSN_EH_REGION_END:
3914 /* Too many end notes. */
3915 if (eh_stack == NULL_RTX)
3916 abort ();
3917 /* Mismatched nesting. */
3918 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3919 abort ();
3920 tmp = eh_stack;
3921 eh_stack = XEXP (eh_stack, 1);
3922 free_INSN_LIST_node (tmp);
3923 break;
3924
3925 case NOTE_INSN_BLOCK_BEG:
3926 /* By now, all notes indicating lexical blocks should have
3927 NOTE_BLOCK filled in. */
3928 if (NOTE_BLOCK (insn) == NULL_TREE)
3929 abort ();
3930 block_stack = alloc_INSN_LIST (insn, block_stack);
3931 break;
3932
3933 case NOTE_INSN_BLOCK_END:
3934 /* Too many end notes. */
3935 if (block_stack == NULL_RTX)
3936 abort ();
3937 /* Mismatched nesting. */
3938 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3939 abort ();
3940 tmp = block_stack;
3941 block_stack = XEXP (block_stack, 1);
3942 free_INSN_LIST_node (tmp);
3943
3944 /* Scan back to see if there are any non-note instructions
3945 between INSN and the beginning of this block. If not,
3946 then there is no PC range in the generated code that will
3947 actually be in this block, so there's no point in
3948 remembering the existence of the block. */
3949 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3950 {
3951 /* This block contains a real instruction. Note that we
3952 don't include labels; if the only thing in the block
3953 is a label, then there are still no PC values that
3954 lie within the block. */
3955 if (INSN_P (tmp))
3956 break;
3957
3958 /* We're only interested in NOTEs. */
3959 if (GET_CODE (tmp) != NOTE)
3960 continue;
3961
3962 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3963 {
3964 /* We just verified that this BLOCK matches us with
3965 the block_stack check above. Never delete the
3966 BLOCK for the outermost scope of the function; we
3967 can refer to names from that scope even if the
3968 block notes are messed up. */
3969 if (! is_body_block (NOTE_BLOCK (insn))
3970 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3971 {
3972 remove_insn (tmp);
3973 remove_insn (insn);
3974 }
3975 break;
3976 }
3977 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3978 /* There's a nested block. We need to leave the
3979 current block in place since otherwise the debugger
3980 wouldn't be able to show symbols from our block in
3981 the nested block. */
3982 break;
3983 }
3984 }
3985 }
3986
3987 /* Too many begin notes. */
3988 if (block_stack || eh_stack)
3989 abort ();
3990 }
3991
3992 \f
3993 /* Emit insn(s) of given code and pattern
3994 at a specified place within the doubly-linked list.
3995
3996 All of the emit_foo global entry points accept an object
3997 X which is either an insn list or a PATTERN of a single
3998 instruction.
3999
4000 There are thus a few canonical ways to generate code and
4001 emit it at a specific place in the instruction stream. For
4002 example, consider the instruction named SPOT and the fact that
4003 we would like to emit some instructions before SPOT. We might
4004 do it like this:
4005
4006 start_sequence ();
4007 ... emit the new instructions ...
4008 insns_head = get_insns ();
4009 end_sequence ();
4010
4011 emit_insn_before (insns_head, SPOT);
4012
4013 It used to be common to generate SEQUENCE rtl instead, but that
4014 is a relic of the past which no longer occurs. The reason is that
4015 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4016 generated would almost certainly die right after it was created. */
4017
4018 /* Make X be output before the instruction BEFORE. */
4019
4020 rtx
4021 emit_insn_before (rtx x, rtx before)
4022 {
4023 rtx last = before;
4024 rtx insn;
4025
4026 #ifdef ENABLE_RTL_CHECKING
4027 if (before == NULL_RTX)
4028 abort ();
4029 #endif
4030
4031 if (x == NULL_RTX)
4032 return last;
4033
4034 switch (GET_CODE (x))
4035 {
4036 case INSN:
4037 case JUMP_INSN:
4038 case CALL_INSN:
4039 case CODE_LABEL:
4040 case BARRIER:
4041 case NOTE:
4042 insn = x;
4043 while (insn)
4044 {
4045 rtx next = NEXT_INSN (insn);
4046 add_insn_before (insn, before);
4047 last = insn;
4048 insn = next;
4049 }
4050 break;
4051
4052 #ifdef ENABLE_RTL_CHECKING
4053 case SEQUENCE:
4054 abort ();
4055 break;
4056 #endif
4057
4058 default:
4059 last = make_insn_raw (x);
4060 add_insn_before (last, before);
4061 break;
4062 }
4063
4064 return last;
4065 }
4066
4067 /* Make an instruction with body X and code JUMP_INSN
4068 and output it before the instruction BEFORE. */
4069
4070 rtx
4071 emit_jump_insn_before (rtx x, rtx before)
4072 {
4073 rtx insn, last = NULL_RTX;
4074
4075 #ifdef ENABLE_RTL_CHECKING
4076 if (before == NULL_RTX)
4077 abort ();
4078 #endif
4079
4080 switch (GET_CODE (x))
4081 {
4082 case INSN:
4083 case JUMP_INSN:
4084 case CALL_INSN:
4085 case CODE_LABEL:
4086 case BARRIER:
4087 case NOTE:
4088 insn = x;
4089 while (insn)
4090 {
4091 rtx next = NEXT_INSN (insn);
4092 add_insn_before (insn, before);
4093 last = insn;
4094 insn = next;
4095 }
4096 break;
4097
4098 #ifdef ENABLE_RTL_CHECKING
4099 case SEQUENCE:
4100 abort ();
4101 break;
4102 #endif
4103
4104 default:
4105 last = make_jump_insn_raw (x);
4106 add_insn_before (last, before);
4107 break;
4108 }
4109
4110 return last;
4111 }
4112
4113 /* Make an instruction with body X and code CALL_INSN
4114 and output it before the instruction BEFORE. */
4115
4116 rtx
4117 emit_call_insn_before (rtx x, rtx before)
4118 {
4119 rtx last = NULL_RTX, insn;
4120
4121 #ifdef ENABLE_RTL_CHECKING
4122 if (before == NULL_RTX)
4123 abort ();
4124 #endif
4125
4126 switch (GET_CODE (x))
4127 {
4128 case INSN:
4129 case JUMP_INSN:
4130 case CALL_INSN:
4131 case CODE_LABEL:
4132 case BARRIER:
4133 case NOTE:
4134 insn = x;
4135 while (insn)
4136 {
4137 rtx next = NEXT_INSN (insn);
4138 add_insn_before (insn, before);
4139 last = insn;
4140 insn = next;
4141 }
4142 break;
4143
4144 #ifdef ENABLE_RTL_CHECKING
4145 case SEQUENCE:
4146 abort ();
4147 break;
4148 #endif
4149
4150 default:
4151 last = make_call_insn_raw (x);
4152 add_insn_before (last, before);
4153 break;
4154 }
4155
4156 return last;
4157 }
4158
4159 /* Make an insn of code BARRIER
4160 and output it before the insn BEFORE. */
4161
4162 rtx
4163 emit_barrier_before (rtx before)
4164 {
4165 rtx insn = rtx_alloc (BARRIER);
4166
4167 INSN_UID (insn) = cur_insn_uid++;
4168
4169 add_insn_before (insn, before);
4170 return insn;
4171 }
4172
4173 /* Emit the label LABEL before the insn BEFORE. */
4174
4175 rtx
4176 emit_label_before (rtx label, rtx before)
4177 {
4178 /* This can be called twice for the same label as a result of the
4179 confusion that follows a syntax error! So make it harmless. */
4180 if (INSN_UID (label) == 0)
4181 {
4182 INSN_UID (label) = cur_insn_uid++;
4183 add_insn_before (label, before);
4184 }
4185
4186 return label;
4187 }
4188
4189 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4190
4191 rtx
4192 emit_note_before (int subtype, rtx before)
4193 {
4194 rtx note = rtx_alloc (NOTE);
4195 INSN_UID (note) = cur_insn_uid++;
4196 NOTE_SOURCE_FILE (note) = 0;
4197 NOTE_LINE_NUMBER (note) = subtype;
4198 BLOCK_FOR_INSN (note) = NULL;
4199
4200 add_insn_before (note, before);
4201 return note;
4202 }
4203 \f
4204 /* Helper for emit_insn_after, handles lists of instructions
4205 efficiently. */
4206
4207 static rtx emit_insn_after_1 (rtx, rtx);
4208
4209 static rtx
4210 emit_insn_after_1 (rtx first, rtx after)
4211 {
4212 rtx last;
4213 rtx after_after;
4214 basic_block bb;
4215
4216 if (GET_CODE (after) != BARRIER
4217 && (bb = BLOCK_FOR_INSN (after)))
4218 {
4219 bb->flags |= BB_DIRTY;
4220 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4221 if (GET_CODE (last) != BARRIER)
4222 set_block_for_insn (last, bb);
4223 if (GET_CODE (last) != BARRIER)
4224 set_block_for_insn (last, bb);
4225 if (bb->end == after)
4226 bb->end = last;
4227 }
4228 else
4229 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4230 continue;
4231
4232 after_after = NEXT_INSN (after);
4233
4234 NEXT_INSN (after) = first;
4235 PREV_INSN (first) = after;
4236 NEXT_INSN (last) = after_after;
4237 if (after_after)
4238 PREV_INSN (after_after) = last;
4239
4240 if (after == last_insn)
4241 last_insn = last;
4242 return last;
4243 }
4244
4245 /* Make X be output after the insn AFTER. */
4246
4247 rtx
4248 emit_insn_after (rtx x, rtx after)
4249 {
4250 rtx last = after;
4251
4252 #ifdef ENABLE_RTL_CHECKING
4253 if (after == NULL_RTX)
4254 abort ();
4255 #endif
4256
4257 if (x == NULL_RTX)
4258 return last;
4259
4260 switch (GET_CODE (x))
4261 {
4262 case INSN:
4263 case JUMP_INSN:
4264 case CALL_INSN:
4265 case CODE_LABEL:
4266 case BARRIER:
4267 case NOTE:
4268 last = emit_insn_after_1 (x, after);
4269 break;
4270
4271 #ifdef ENABLE_RTL_CHECKING
4272 case SEQUENCE:
4273 abort ();
4274 break;
4275 #endif
4276
4277 default:
4278 last = make_insn_raw (x);
4279 add_insn_after (last, after);
4280 break;
4281 }
4282
4283 return last;
4284 }
4285
4286 /* Similar to emit_insn_after, except that line notes are to be inserted so
4287 as to act as if this insn were at FROM. */
4288
4289 void
4290 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4291 {
4292 rtx from_line = find_line_note (from);
4293 rtx after_line = find_line_note (after);
4294 rtx insn = emit_insn_after (x, after);
4295
4296 if (from_line)
4297 emit_note_copy_after (from_line, after);
4298
4299 if (after_line)
4300 emit_note_copy_after (after_line, insn);
4301 }
4302
4303 /* Make an insn of code JUMP_INSN with body X
4304 and output it after the insn AFTER. */
4305
4306 rtx
4307 emit_jump_insn_after (rtx x, rtx after)
4308 {
4309 rtx last;
4310
4311 #ifdef ENABLE_RTL_CHECKING
4312 if (after == NULL_RTX)
4313 abort ();
4314 #endif
4315
4316 switch (GET_CODE (x))
4317 {
4318 case INSN:
4319 case JUMP_INSN:
4320 case CALL_INSN:
4321 case CODE_LABEL:
4322 case BARRIER:
4323 case NOTE:
4324 last = emit_insn_after_1 (x, after);
4325 break;
4326
4327 #ifdef ENABLE_RTL_CHECKING
4328 case SEQUENCE:
4329 abort ();
4330 break;
4331 #endif
4332
4333 default:
4334 last = make_jump_insn_raw (x);
4335 add_insn_after (last, after);
4336 break;
4337 }
4338
4339 return last;
4340 }
4341
4342 /* Make an instruction with body X and code CALL_INSN
4343 and output it after the instruction AFTER. */
4344
4345 rtx
4346 emit_call_insn_after (rtx x, rtx after)
4347 {
4348 rtx last;
4349
4350 #ifdef ENABLE_RTL_CHECKING
4351 if (after == NULL_RTX)
4352 abort ();
4353 #endif
4354
4355 switch (GET_CODE (x))
4356 {
4357 case INSN:
4358 case JUMP_INSN:
4359 case CALL_INSN:
4360 case CODE_LABEL:
4361 case BARRIER:
4362 case NOTE:
4363 last = emit_insn_after_1 (x, after);
4364 break;
4365
4366 #ifdef ENABLE_RTL_CHECKING
4367 case SEQUENCE:
4368 abort ();
4369 break;
4370 #endif
4371
4372 default:
4373 last = make_call_insn_raw (x);
4374 add_insn_after (last, after);
4375 break;
4376 }
4377
4378 return last;
4379 }
4380
4381 /* Make an insn of code BARRIER
4382 and output it after the insn AFTER. */
4383
4384 rtx
4385 emit_barrier_after (rtx after)
4386 {
4387 rtx insn = rtx_alloc (BARRIER);
4388
4389 INSN_UID (insn) = cur_insn_uid++;
4390
4391 add_insn_after (insn, after);
4392 return insn;
4393 }
4394
4395 /* Emit the label LABEL after the insn AFTER. */
4396
4397 rtx
4398 emit_label_after (rtx label, rtx after)
4399 {
4400 /* This can be called twice for the same label
4401 as a result of the confusion that follows a syntax error!
4402 So make it harmless. */
4403 if (INSN_UID (label) == 0)
4404 {
4405 INSN_UID (label) = cur_insn_uid++;
4406 add_insn_after (label, after);
4407 }
4408
4409 return label;
4410 }
4411
4412 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4413
4414 rtx
4415 emit_note_after (int subtype, rtx after)
4416 {
4417 rtx note = rtx_alloc (NOTE);
4418 INSN_UID (note) = cur_insn_uid++;
4419 NOTE_SOURCE_FILE (note) = 0;
4420 NOTE_LINE_NUMBER (note) = subtype;
4421 BLOCK_FOR_INSN (note) = NULL;
4422 add_insn_after (note, after);
4423 return note;
4424 }
4425
4426 /* Emit a copy of note ORIG after the insn AFTER. */
4427
4428 rtx
4429 emit_note_copy_after (rtx orig, rtx after)
4430 {
4431 rtx note;
4432
4433 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4434 {
4435 cur_insn_uid++;
4436 return 0;
4437 }
4438
4439 note = rtx_alloc (NOTE);
4440 INSN_UID (note) = cur_insn_uid++;
4441 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4442 NOTE_DATA (note) = NOTE_DATA (orig);
4443 BLOCK_FOR_INSN (note) = NULL;
4444 add_insn_after (note, after);
4445 return note;
4446 }
4447 \f
4448 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4449 rtx
4450 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4451 {
4452 rtx last = emit_insn_after (pattern, after);
4453
4454 after = NEXT_INSN (after);
4455 while (1)
4456 {
4457 if (active_insn_p (after))
4458 INSN_LOCATOR (after) = loc;
4459 if (after == last)
4460 break;
4461 after = NEXT_INSN (after);
4462 }
4463 return last;
4464 }
4465
4466 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4467 rtx
4468 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4469 {
4470 rtx last = emit_jump_insn_after (pattern, after);
4471
4472 after = NEXT_INSN (after);
4473 while (1)
4474 {
4475 if (active_insn_p (after))
4476 INSN_LOCATOR (after) = loc;
4477 if (after == last)
4478 break;
4479 after = NEXT_INSN (after);
4480 }
4481 return last;
4482 }
4483
4484 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4485 rtx
4486 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4487 {
4488 rtx last = emit_call_insn_after (pattern, after);
4489
4490 after = NEXT_INSN (after);
4491 while (1)
4492 {
4493 if (active_insn_p (after))
4494 INSN_LOCATOR (after) = loc;
4495 if (after == last)
4496 break;
4497 after = NEXT_INSN (after);
4498 }
4499 return last;
4500 }
4501
4502 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4503 rtx
4504 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4505 {
4506 rtx first = PREV_INSN (before);
4507 rtx last = emit_insn_before (pattern, before);
4508
4509 first = NEXT_INSN (first);
4510 while (1)
4511 {
4512 if (active_insn_p (first))
4513 INSN_LOCATOR (first) = loc;
4514 if (first == last)
4515 break;
4516 first = NEXT_INSN (first);
4517 }
4518 return last;
4519 }
4520 \f
4521 /* Take X and emit it at the end of the doubly-linked
4522 INSN list.
4523
4524 Returns the last insn emitted. */
4525
4526 rtx
4527 emit_insn (rtx x)
4528 {
4529 rtx last = last_insn;
4530 rtx insn;
4531
4532 if (x == NULL_RTX)
4533 return last;
4534
4535 switch (GET_CODE (x))
4536 {
4537 case INSN:
4538 case JUMP_INSN:
4539 case CALL_INSN:
4540 case CODE_LABEL:
4541 case BARRIER:
4542 case NOTE:
4543 insn = x;
4544 while (insn)
4545 {
4546 rtx next = NEXT_INSN (insn);
4547 add_insn (insn);
4548 last = insn;
4549 insn = next;
4550 }
4551 break;
4552
4553 #ifdef ENABLE_RTL_CHECKING
4554 case SEQUENCE:
4555 abort ();
4556 break;
4557 #endif
4558
4559 default:
4560 last = make_insn_raw (x);
4561 add_insn (last);
4562 break;
4563 }
4564
4565 return last;
4566 }
4567
4568 /* Make an insn of code JUMP_INSN with pattern X
4569 and add it to the end of the doubly-linked list. */
4570
4571 rtx
4572 emit_jump_insn (rtx x)
4573 {
4574 rtx last = NULL_RTX, insn;
4575
4576 switch (GET_CODE (x))
4577 {
4578 case INSN:
4579 case JUMP_INSN:
4580 case CALL_INSN:
4581 case CODE_LABEL:
4582 case BARRIER:
4583 case NOTE:
4584 insn = x;
4585 while (insn)
4586 {
4587 rtx next = NEXT_INSN (insn);
4588 add_insn (insn);
4589 last = insn;
4590 insn = next;
4591 }
4592 break;
4593
4594 #ifdef ENABLE_RTL_CHECKING
4595 case SEQUENCE:
4596 abort ();
4597 break;
4598 #endif
4599
4600 default:
4601 last = make_jump_insn_raw (x);
4602 add_insn (last);
4603 break;
4604 }
4605
4606 return last;
4607 }
4608
4609 /* Make an insn of code CALL_INSN with pattern X
4610 and add it to the end of the doubly-linked list. */
4611
4612 rtx
4613 emit_call_insn (rtx x)
4614 {
4615 rtx insn;
4616
4617 switch (GET_CODE (x))
4618 {
4619 case INSN:
4620 case JUMP_INSN:
4621 case CALL_INSN:
4622 case CODE_LABEL:
4623 case BARRIER:
4624 case NOTE:
4625 insn = emit_insn (x);
4626 break;
4627
4628 #ifdef ENABLE_RTL_CHECKING
4629 case SEQUENCE:
4630 abort ();
4631 break;
4632 #endif
4633
4634 default:
4635 insn = make_call_insn_raw (x);
4636 add_insn (insn);
4637 break;
4638 }
4639
4640 return insn;
4641 }
4642
4643 /* Add the label LABEL to the end of the doubly-linked list. */
4644
4645 rtx
4646 emit_label (rtx label)
4647 {
4648 /* This can be called twice for the same label
4649 as a result of the confusion that follows a syntax error!
4650 So make it harmless. */
4651 if (INSN_UID (label) == 0)
4652 {
4653 INSN_UID (label) = cur_insn_uid++;
4654 add_insn (label);
4655 }
4656 return label;
4657 }
4658
4659 /* Make an insn of code BARRIER
4660 and add it to the end of the doubly-linked list. */
4661
4662 rtx
4663 emit_barrier (void)
4664 {
4665 rtx barrier = rtx_alloc (BARRIER);
4666 INSN_UID (barrier) = cur_insn_uid++;
4667 add_insn (barrier);
4668 return barrier;
4669 }
4670
4671 /* Make line numbering NOTE insn for LOCATION add it to the end
4672 of the doubly-linked list, but only if line-numbers are desired for
4673 debugging info and it doesn't match the previous one. */
4674
4675 rtx
4676 emit_line_note (location_t location)
4677 {
4678 rtx note;
4679
4680 set_file_and_line_for_stmt (location);
4681
4682 if (location.file && last_location.file
4683 && !strcmp (location.file, last_location.file)
4684 && location.line == last_location.line)
4685 return NULL_RTX;
4686 last_location = location;
4687
4688 if (no_line_numbers)
4689 {
4690 cur_insn_uid++;
4691 return NULL_RTX;
4692 }
4693
4694 note = emit_note (location.line);
4695 NOTE_SOURCE_FILE (note) = location.file;
4696
4697 return note;
4698 }
4699
4700 /* Emit a copy of note ORIG. */
4701
4702 rtx
4703 emit_note_copy (rtx orig)
4704 {
4705 rtx note;
4706
4707 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4708 {
4709 cur_insn_uid++;
4710 return NULL_RTX;
4711 }
4712
4713 note = rtx_alloc (NOTE);
4714
4715 INSN_UID (note) = cur_insn_uid++;
4716 NOTE_DATA (note) = NOTE_DATA (orig);
4717 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4718 BLOCK_FOR_INSN (note) = NULL;
4719 add_insn (note);
4720
4721 return note;
4722 }
4723
4724 /* Make an insn of code NOTE or type NOTE_NO
4725 and add it to the end of the doubly-linked list. */
4726
4727 rtx
4728 emit_note (int note_no)
4729 {
4730 rtx note;
4731
4732 note = rtx_alloc (NOTE);
4733 INSN_UID (note) = cur_insn_uid++;
4734 NOTE_LINE_NUMBER (note) = note_no;
4735 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4736 BLOCK_FOR_INSN (note) = NULL;
4737 add_insn (note);
4738 return note;
4739 }
4740
4741 /* Cause next statement to emit a line note even if the line number
4742 has not changed. */
4743
4744 void
4745 force_next_line_note (void)
4746 {
4747 last_location.line = -1;
4748 }
4749
4750 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4751 note of this type already exists, remove it first. */
4752
4753 rtx
4754 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4755 {
4756 rtx note = find_reg_note (insn, kind, NULL_RTX);
4757
4758 switch (kind)
4759 {
4760 case REG_EQUAL:
4761 case REG_EQUIV:
4762 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4763 has multiple sets (some callers assume single_set
4764 means the insn only has one set, when in fact it
4765 means the insn only has one * useful * set). */
4766 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4767 {
4768 if (note)
4769 abort ();
4770 return NULL_RTX;
4771 }
4772
4773 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4774 It serves no useful purpose and breaks eliminate_regs. */
4775 if (GET_CODE (datum) == ASM_OPERANDS)
4776 return NULL_RTX;
4777 break;
4778
4779 default:
4780 break;
4781 }
4782
4783 if (note)
4784 {
4785 XEXP (note, 0) = datum;
4786 return note;
4787 }
4788
4789 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4790 return REG_NOTES (insn);
4791 }
4792 \f
4793 /* Return an indication of which type of insn should have X as a body.
4794 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4795
4796 enum rtx_code
4797 classify_insn (rtx x)
4798 {
4799 if (GET_CODE (x) == CODE_LABEL)
4800 return CODE_LABEL;
4801 if (GET_CODE (x) == CALL)
4802 return CALL_INSN;
4803 if (GET_CODE (x) == RETURN)
4804 return JUMP_INSN;
4805 if (GET_CODE (x) == SET)
4806 {
4807 if (SET_DEST (x) == pc_rtx)
4808 return JUMP_INSN;
4809 else if (GET_CODE (SET_SRC (x)) == CALL)
4810 return CALL_INSN;
4811 else
4812 return INSN;
4813 }
4814 if (GET_CODE (x) == PARALLEL)
4815 {
4816 int j;
4817 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4818 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4819 return CALL_INSN;
4820 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4821 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4822 return JUMP_INSN;
4823 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4824 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4825 return CALL_INSN;
4826 }
4827 return INSN;
4828 }
4829
4830 /* Emit the rtl pattern X as an appropriate kind of insn.
4831 If X is a label, it is simply added into the insn chain. */
4832
4833 rtx
4834 emit (rtx x)
4835 {
4836 enum rtx_code code = classify_insn (x);
4837
4838 if (code == CODE_LABEL)
4839 return emit_label (x);
4840 else if (code == INSN)
4841 return emit_insn (x);
4842 else if (code == JUMP_INSN)
4843 {
4844 rtx insn = emit_jump_insn (x);
4845 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4846 return emit_barrier ();
4847 return insn;
4848 }
4849 else if (code == CALL_INSN)
4850 return emit_call_insn (x);
4851 else
4852 abort ();
4853 }
4854 \f
4855 /* Space for free sequence stack entries. */
4856 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4857
4858 /* Begin emitting insns to a sequence which can be packaged in an
4859 RTL_EXPR. If this sequence will contain something that might cause
4860 the compiler to pop arguments to function calls (because those
4861 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4862 details), use do_pending_stack_adjust before calling this function.
4863 That will ensure that the deferred pops are not accidentally
4864 emitted in the middle of this sequence. */
4865
4866 void
4867 start_sequence (void)
4868 {
4869 struct sequence_stack *tem;
4870
4871 if (free_sequence_stack != NULL)
4872 {
4873 tem = free_sequence_stack;
4874 free_sequence_stack = tem->next;
4875 }
4876 else
4877 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
4878
4879 tem->next = seq_stack;
4880 tem->first = first_insn;
4881 tem->last = last_insn;
4882 tem->sequence_rtl_expr = seq_rtl_expr;
4883
4884 seq_stack = tem;
4885
4886 first_insn = 0;
4887 last_insn = 0;
4888 }
4889
4890 /* Similarly, but indicate that this sequence will be placed in T, an
4891 RTL_EXPR. See the documentation for start_sequence for more
4892 information about how to use this function. */
4893
4894 void
4895 start_sequence_for_rtl_expr (tree t)
4896 {
4897 start_sequence ();
4898
4899 seq_rtl_expr = t;
4900 }
4901
4902 /* Set up the insn chain starting with FIRST as the current sequence,
4903 saving the previously current one. See the documentation for
4904 start_sequence for more information about how to use this function. */
4905
4906 void
4907 push_to_sequence (rtx first)
4908 {
4909 rtx last;
4910
4911 start_sequence ();
4912
4913 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4914
4915 first_insn = first;
4916 last_insn = last;
4917 }
4918
4919 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4920
4921 void
4922 push_to_full_sequence (rtx first, rtx last)
4923 {
4924 start_sequence ();
4925 first_insn = first;
4926 last_insn = last;
4927 /* We really should have the end of the insn chain here. */
4928 if (last && NEXT_INSN (last))
4929 abort ();
4930 }
4931
4932 /* Set up the outer-level insn chain
4933 as the current sequence, saving the previously current one. */
4934
4935 void
4936 push_topmost_sequence (void)
4937 {
4938 struct sequence_stack *stack, *top = NULL;
4939
4940 start_sequence ();
4941
4942 for (stack = seq_stack; stack; stack = stack->next)
4943 top = stack;
4944
4945 first_insn = top->first;
4946 last_insn = top->last;
4947 seq_rtl_expr = top->sequence_rtl_expr;
4948 }
4949
4950 /* After emitting to the outer-level insn chain, update the outer-level
4951 insn chain, and restore the previous saved state. */
4952
4953 void
4954 pop_topmost_sequence (void)
4955 {
4956 struct sequence_stack *stack, *top = NULL;
4957
4958 for (stack = seq_stack; stack; stack = stack->next)
4959 top = stack;
4960
4961 top->first = first_insn;
4962 top->last = last_insn;
4963 /* ??? Why don't we save seq_rtl_expr here? */
4964
4965 end_sequence ();
4966 }
4967
4968 /* After emitting to a sequence, restore previous saved state.
4969
4970 To get the contents of the sequence just made, you must call
4971 `get_insns' *before* calling here.
4972
4973 If the compiler might have deferred popping arguments while
4974 generating this sequence, and this sequence will not be immediately
4975 inserted into the instruction stream, use do_pending_stack_adjust
4976 before calling get_insns. That will ensure that the deferred
4977 pops are inserted into this sequence, and not into some random
4978 location in the instruction stream. See INHIBIT_DEFER_POP for more
4979 information about deferred popping of arguments. */
4980
4981 void
4982 end_sequence (void)
4983 {
4984 struct sequence_stack *tem = seq_stack;
4985
4986 first_insn = tem->first;
4987 last_insn = tem->last;
4988 seq_rtl_expr = tem->sequence_rtl_expr;
4989 seq_stack = tem->next;
4990
4991 memset (tem, 0, sizeof (*tem));
4992 tem->next = free_sequence_stack;
4993 free_sequence_stack = tem;
4994 }
4995
4996 /* This works like end_sequence, but records the old sequence in FIRST
4997 and LAST. */
4998
4999 void
5000 end_full_sequence (rtx *first, rtx *last)
5001 {
5002 *first = first_insn;
5003 *last = last_insn;
5004 end_sequence ();
5005 }
5006
5007 /* Return 1 if currently emitting into a sequence. */
5008
5009 int
5010 in_sequence_p (void)
5011 {
5012 return seq_stack != 0;
5013 }
5014 \f
5015 /* Put the various virtual registers into REGNO_REG_RTX. */
5016
5017 void
5018 init_virtual_regs (struct emit_status *es)
5019 {
5020 rtx *ptr = es->x_regno_reg_rtx;
5021 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5022 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5023 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5024 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5025 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5026 }
5027
5028 \f
5029 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5030 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5031 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5032 static int copy_insn_n_scratches;
5033
5034 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5035 copied an ASM_OPERANDS.
5036 In that case, it is the original input-operand vector. */
5037 static rtvec orig_asm_operands_vector;
5038
5039 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5040 copied an ASM_OPERANDS.
5041 In that case, it is the copied input-operand vector. */
5042 static rtvec copy_asm_operands_vector;
5043
5044 /* Likewise for the constraints vector. */
5045 static rtvec orig_asm_constraints_vector;
5046 static rtvec copy_asm_constraints_vector;
5047
5048 /* Recursively create a new copy of an rtx for copy_insn.
5049 This function differs from copy_rtx in that it handles SCRATCHes and
5050 ASM_OPERANDs properly.
5051 Normally, this function is not used directly; use copy_insn as front end.
5052 However, you could first copy an insn pattern with copy_insn and then use
5053 this function afterwards to properly copy any REG_NOTEs containing
5054 SCRATCHes. */
5055
5056 rtx
5057 copy_insn_1 (rtx orig)
5058 {
5059 rtx copy;
5060 int i, j;
5061 RTX_CODE code;
5062 const char *format_ptr;
5063
5064 code = GET_CODE (orig);
5065
5066 switch (code)
5067 {
5068 case REG:
5069 case QUEUED:
5070 case CONST_INT:
5071 case CONST_DOUBLE:
5072 case CONST_VECTOR:
5073 case SYMBOL_REF:
5074 case CODE_LABEL:
5075 case PC:
5076 case CC0:
5077 case ADDRESSOF:
5078 return orig;
5079
5080 case SCRATCH:
5081 for (i = 0; i < copy_insn_n_scratches; i++)
5082 if (copy_insn_scratch_in[i] == orig)
5083 return copy_insn_scratch_out[i];
5084 break;
5085
5086 case CONST:
5087 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5088 a LABEL_REF, it isn't sharable. */
5089 if (GET_CODE (XEXP (orig, 0)) == PLUS
5090 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5091 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5092 return orig;
5093 break;
5094
5095 /* A MEM with a constant address is not sharable. The problem is that
5096 the constant address may need to be reloaded. If the mem is shared,
5097 then reloading one copy of this mem will cause all copies to appear
5098 to have been reloaded. */
5099
5100 default:
5101 break;
5102 }
5103
5104 copy = rtx_alloc (code);
5105
5106 /* Copy the various flags, and other information. We assume that
5107 all fields need copying, and then clear the fields that should
5108 not be copied. That is the sensible default behavior, and forces
5109 us to explicitly document why we are *not* copying a flag. */
5110 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5111
5112 /* We do not copy the USED flag, which is used as a mark bit during
5113 walks over the RTL. */
5114 RTX_FLAG (copy, used) = 0;
5115
5116 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5117 if (GET_RTX_CLASS (code) == 'i')
5118 {
5119 RTX_FLAG (copy, jump) = 0;
5120 RTX_FLAG (copy, call) = 0;
5121 RTX_FLAG (copy, frame_related) = 0;
5122 }
5123
5124 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5125
5126 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5127 {
5128 copy->fld[i] = orig->fld[i];
5129 switch (*format_ptr++)
5130 {
5131 case 'e':
5132 if (XEXP (orig, i) != NULL)
5133 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5134 break;
5135
5136 case 'E':
5137 case 'V':
5138 if (XVEC (orig, i) == orig_asm_constraints_vector)
5139 XVEC (copy, i) = copy_asm_constraints_vector;
5140 else if (XVEC (orig, i) == orig_asm_operands_vector)
5141 XVEC (copy, i) = copy_asm_operands_vector;
5142 else if (XVEC (orig, i) != NULL)
5143 {
5144 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5145 for (j = 0; j < XVECLEN (copy, i); j++)
5146 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5147 }
5148 break;
5149
5150 case 't':
5151 case 'w':
5152 case 'i':
5153 case 's':
5154 case 'S':
5155 case 'u':
5156 case '0':
5157 /* These are left unchanged. */
5158 break;
5159
5160 default:
5161 abort ();
5162 }
5163 }
5164
5165 if (code == SCRATCH)
5166 {
5167 i = copy_insn_n_scratches++;
5168 if (i >= MAX_RECOG_OPERANDS)
5169 abort ();
5170 copy_insn_scratch_in[i] = orig;
5171 copy_insn_scratch_out[i] = copy;
5172 }
5173 else if (code == ASM_OPERANDS)
5174 {
5175 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5176 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5177 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5178 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5179 }
5180
5181 return copy;
5182 }
5183
5184 /* Create a new copy of an rtx.
5185 This function differs from copy_rtx in that it handles SCRATCHes and
5186 ASM_OPERANDs properly.
5187 INSN doesn't really have to be a full INSN; it could be just the
5188 pattern. */
5189 rtx
5190 copy_insn (rtx insn)
5191 {
5192 copy_insn_n_scratches = 0;
5193 orig_asm_operands_vector = 0;
5194 orig_asm_constraints_vector = 0;
5195 copy_asm_operands_vector = 0;
5196 copy_asm_constraints_vector = 0;
5197 return copy_insn_1 (insn);
5198 }
5199
5200 /* Initialize data structures and variables in this file
5201 before generating rtl for each function. */
5202
5203 void
5204 init_emit (void)
5205 {
5206 struct function *f = cfun;
5207
5208 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5209 first_insn = NULL;
5210 last_insn = NULL;
5211 seq_rtl_expr = NULL;
5212 cur_insn_uid = 1;
5213 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5214 last_location.line = 0;
5215 last_location.file = 0;
5216 first_label_num = label_num;
5217 last_label_num = 0;
5218 seq_stack = NULL;
5219
5220 /* Init the tables that describe all the pseudo regs. */
5221
5222 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5223
5224 f->emit->regno_pointer_align
5225 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5226 * sizeof (unsigned char));
5227
5228 regno_reg_rtx
5229 = (rtx *) ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5230
5231 /* Put copies of all the hard registers into regno_reg_rtx. */
5232 memcpy (regno_reg_rtx,
5233 static_regno_reg_rtx,
5234 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5235
5236 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5237 init_virtual_regs (f->emit);
5238
5239 /* Indicate that the virtual registers and stack locations are
5240 all pointers. */
5241 REG_POINTER (stack_pointer_rtx) = 1;
5242 REG_POINTER (frame_pointer_rtx) = 1;
5243 REG_POINTER (hard_frame_pointer_rtx) = 1;
5244 REG_POINTER (arg_pointer_rtx) = 1;
5245
5246 REG_POINTER (virtual_incoming_args_rtx) = 1;
5247 REG_POINTER (virtual_stack_vars_rtx) = 1;
5248 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5249 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5250 REG_POINTER (virtual_cfa_rtx) = 1;
5251
5252 #ifdef STACK_BOUNDARY
5253 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5254 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5255 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5256 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5257
5258 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5259 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5260 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5261 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5262 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5263 #endif
5264
5265 #ifdef INIT_EXPANDERS
5266 INIT_EXPANDERS;
5267 #endif
5268 }
5269
5270 /* Generate the constant 0. */
5271
5272 static rtx
5273 gen_const_vector_0 (enum machine_mode mode)
5274 {
5275 rtx tem;
5276 rtvec v;
5277 int units, i;
5278 enum machine_mode inner;
5279
5280 units = GET_MODE_NUNITS (mode);
5281 inner = GET_MODE_INNER (mode);
5282
5283 v = rtvec_alloc (units);
5284
5285 /* We need to call this function after we to set CONST0_RTX first. */
5286 if (!CONST0_RTX (inner))
5287 abort ();
5288
5289 for (i = 0; i < units; ++i)
5290 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5291
5292 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5293 return tem;
5294 }
5295
5296 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5297 all elements are zero. */
5298 rtx
5299 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5300 {
5301 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5302 int i;
5303
5304 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5305 if (RTVEC_ELT (v, i) != inner_zero)
5306 return gen_rtx_raw_CONST_VECTOR (mode, v);
5307 return CONST0_RTX (mode);
5308 }
5309
5310 /* Create some permanent unique rtl objects shared between all functions.
5311 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5312
5313 void
5314 init_emit_once (int line_numbers)
5315 {
5316 int i;
5317 enum machine_mode mode;
5318 enum machine_mode double_mode;
5319
5320 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5321 tables. */
5322 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5323 const_int_htab_eq, NULL);
5324
5325 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5326 const_double_htab_eq, NULL);
5327
5328 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5329 mem_attrs_htab_eq, NULL);
5330 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5331 reg_attrs_htab_eq, NULL);
5332
5333 no_line_numbers = ! line_numbers;
5334
5335 /* Compute the word and byte modes. */
5336
5337 byte_mode = VOIDmode;
5338 word_mode = VOIDmode;
5339 double_mode = VOIDmode;
5340
5341 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5342 mode = GET_MODE_WIDER_MODE (mode))
5343 {
5344 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5345 && byte_mode == VOIDmode)
5346 byte_mode = mode;
5347
5348 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5349 && word_mode == VOIDmode)
5350 word_mode = mode;
5351 }
5352
5353 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5354 mode = GET_MODE_WIDER_MODE (mode))
5355 {
5356 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5357 && double_mode == VOIDmode)
5358 double_mode = mode;
5359 }
5360
5361 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5362
5363 /* Assign register numbers to the globally defined register rtx.
5364 This must be done at runtime because the register number field
5365 is in a union and some compilers can't initialize unions. */
5366
5367 pc_rtx = gen_rtx (PC, VOIDmode);
5368 cc0_rtx = gen_rtx (CC0, VOIDmode);
5369 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5370 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5371 if (hard_frame_pointer_rtx == 0)
5372 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5373 HARD_FRAME_POINTER_REGNUM);
5374 if (arg_pointer_rtx == 0)
5375 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5376 virtual_incoming_args_rtx =
5377 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5378 virtual_stack_vars_rtx =
5379 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5380 virtual_stack_dynamic_rtx =
5381 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5382 virtual_outgoing_args_rtx =
5383 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5384 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5385
5386 /* Initialize RTL for commonly used hard registers. These are
5387 copied into regno_reg_rtx as we begin to compile each function. */
5388 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5389 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5390
5391 #ifdef INIT_EXPANDERS
5392 /* This is to initialize {init|mark|free}_machine_status before the first
5393 call to push_function_context_to. This is needed by the Chill front
5394 end which calls push_function_context_to before the first call to
5395 init_function_start. */
5396 INIT_EXPANDERS;
5397 #endif
5398
5399 /* Create the unique rtx's for certain rtx codes and operand values. */
5400
5401 /* Don't use gen_rtx here since gen_rtx in this case
5402 tries to use these variables. */
5403 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5404 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5405 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5406
5407 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5408 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5409 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5410 else
5411 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5412
5413 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5414 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5415 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5416 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5417 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5418
5419 dconsthalf = dconst1;
5420 dconsthalf.exp--;
5421
5422 for (i = 0; i <= 2; i++)
5423 {
5424 REAL_VALUE_TYPE *r =
5425 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5426
5427 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5428 mode = GET_MODE_WIDER_MODE (mode))
5429 const_tiny_rtx[i][(int) mode] =
5430 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5431
5432 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5433
5434 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5435 mode = GET_MODE_WIDER_MODE (mode))
5436 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5437
5438 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5439 mode != VOIDmode;
5440 mode = GET_MODE_WIDER_MODE (mode))
5441 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5442 }
5443
5444 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5445 mode != VOIDmode;
5446 mode = GET_MODE_WIDER_MODE (mode))
5447 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5448
5449 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5450 mode != VOIDmode;
5451 mode = GET_MODE_WIDER_MODE (mode))
5452 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5453
5454 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5455 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5456 const_tiny_rtx[0][i] = const0_rtx;
5457
5458 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5459 if (STORE_FLAG_VALUE == 1)
5460 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5461
5462 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5463 return_address_pointer_rtx
5464 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5465 #endif
5466
5467 #ifdef STRUCT_VALUE
5468 struct_value_rtx = STRUCT_VALUE;
5469 #else
5470 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5471 #endif
5472
5473 #ifdef STRUCT_VALUE_INCOMING
5474 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5475 #else
5476 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5477 struct_value_incoming_rtx
5478 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5479 #else
5480 struct_value_incoming_rtx = struct_value_rtx;
5481 #endif
5482 #endif
5483
5484 #ifdef STATIC_CHAIN_REGNUM
5485 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5486
5487 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5488 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5489 static_chain_incoming_rtx
5490 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5491 else
5492 #endif
5493 static_chain_incoming_rtx = static_chain_rtx;
5494 #endif
5495
5496 #ifdef STATIC_CHAIN
5497 static_chain_rtx = STATIC_CHAIN;
5498
5499 #ifdef STATIC_CHAIN_INCOMING
5500 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5501 #else
5502 static_chain_incoming_rtx = static_chain_rtx;
5503 #endif
5504 #endif
5505
5506 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5507 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5508 }
5509 \f
5510 /* Query and clear/ restore no_line_numbers. This is used by the
5511 switch / case handling in stmt.c to give proper line numbers in
5512 warnings about unreachable code. */
5513
5514 int
5515 force_line_numbers (void)
5516 {
5517 int old = no_line_numbers;
5518
5519 no_line_numbers = 0;
5520 if (old)
5521 force_next_line_note ();
5522 return old;
5523 }
5524
5525 void
5526 restore_line_number_status (int old_value)
5527 {
5528 no_line_numbers = old_value;
5529 }
5530
5531 /* Produce exact duplicate of insn INSN after AFTER.
5532 Care updating of libcall regions if present. */
5533
5534 rtx
5535 emit_copy_of_insn_after (rtx insn, rtx after)
5536 {
5537 rtx new;
5538 rtx note1, note2, link;
5539
5540 switch (GET_CODE (insn))
5541 {
5542 case INSN:
5543 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5544 break;
5545
5546 case JUMP_INSN:
5547 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5548 break;
5549
5550 case CALL_INSN:
5551 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5552 if (CALL_INSN_FUNCTION_USAGE (insn))
5553 CALL_INSN_FUNCTION_USAGE (new)
5554 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5555 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5556 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5557 break;
5558
5559 default:
5560 abort ();
5561 }
5562
5563 /* Update LABEL_NUSES. */
5564 mark_jump_label (PATTERN (new), new, 0);
5565
5566 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5567
5568 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5569 make them. */
5570 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5571 if (REG_NOTE_KIND (link) != REG_LABEL)
5572 {
5573 if (GET_CODE (link) == EXPR_LIST)
5574 REG_NOTES (new)
5575 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5576 XEXP (link, 0),
5577 REG_NOTES (new)));
5578 else
5579 REG_NOTES (new)
5580 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5581 XEXP (link, 0),
5582 REG_NOTES (new)));
5583 }
5584
5585 /* Fix the libcall sequences. */
5586 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5587 {
5588 rtx p = new;
5589 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5590 p = PREV_INSN (p);
5591 XEXP (note1, 0) = p;
5592 XEXP (note2, 0) = new;
5593 }
5594 INSN_CODE (new) = INSN_CODE (insn);
5595 return new;
5596 }
5597
5598 #include "gt-emit-rtl.h"