]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
[66/77] Use scalar_mode for constant integers
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62 #include "predict.h"
63
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
68
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
71 /* Commonly used modes. */
72
73 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn *invalid_insn_rtx;
129
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
132
133 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
134 {
135 typedef HOST_WIDE_INT compare_type;
136
137 static hashval_t hash (rtx i);
138 static bool equal (rtx i, HOST_WIDE_INT h);
139 };
140
141 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142
143 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
144 {
145 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y);
147 };
148
149 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
150
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
153 {
154 static hashval_t hash (reg_attrs *x);
155 static bool equal (reg_attrs *a, reg_attrs *b);
156 };
157
158 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
159
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
162 {
163 static hashval_t hash (rtx x);
164 static bool equal (rtx x, rtx y);
165 };
166
167 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
168
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
171 {
172 static hashval_t hash (rtx x);
173 static bool equal (rtx x, rtx y);
174 };
175
176 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
177
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
181
182 static void set_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx lookup_const_wide_int (rtx);
186 #endif
187 static rtx lookup_const_double (rtx);
188 static rtx lookup_const_fixed (rtx);
189 static reg_attrs *get_reg_attrs (tree, int);
190 static rtx gen_const_vector (machine_mode, int);
191 static void copy_rtx_if_shared_1 (rtx *orig);
192
193 /* Probability of the conditional branch currently proceeded by try_split. */
194 profile_probability split_branch_probability;
195 \f
196 /* Returns a hash code for X (which is a really a CONST_INT). */
197
198 hashval_t
199 const_int_hasher::hash (rtx x)
200 {
201 return (hashval_t) INTVAL (x);
202 }
203
204 /* Returns nonzero if the value represented by X (which is really a
205 CONST_INT) is the same as that given by Y (which is really a
206 HOST_WIDE_INT *). */
207
208 bool
209 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
210 {
211 return (INTVAL (x) == y);
212 }
213
214 #if TARGET_SUPPORTS_WIDE_INT
215 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
216
217 hashval_t
218 const_wide_int_hasher::hash (rtx x)
219 {
220 int i;
221 unsigned HOST_WIDE_INT hash = 0;
222 const_rtx xr = x;
223
224 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
225 hash += CONST_WIDE_INT_ELT (xr, i);
226
227 return (hashval_t) hash;
228 }
229
230 /* Returns nonzero if the value represented by X (which is really a
231 CONST_WIDE_INT) is the same as that given by Y (which is really a
232 CONST_WIDE_INT). */
233
234 bool
235 const_wide_int_hasher::equal (rtx x, rtx y)
236 {
237 int i;
238 const_rtx xr = x;
239 const_rtx yr = y;
240 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
241 return false;
242
243 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
244 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
245 return false;
246
247 return true;
248 }
249 #endif
250
251 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
252 hashval_t
253 const_double_hasher::hash (rtx x)
254 {
255 const_rtx const value = x;
256 hashval_t h;
257
258 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
259 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
260 else
261 {
262 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
263 /* MODE is used in the comparison, so it should be in the hash. */
264 h ^= GET_MODE (value);
265 }
266 return h;
267 }
268
269 /* Returns nonzero if the value represented by X (really a ...)
270 is the same as that represented by Y (really a ...) */
271 bool
272 const_double_hasher::equal (rtx x, rtx y)
273 {
274 const_rtx const a = x, b = y;
275
276 if (GET_MODE (a) != GET_MODE (b))
277 return 0;
278 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
279 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
280 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
281 else
282 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
283 CONST_DOUBLE_REAL_VALUE (b));
284 }
285
286 /* Returns a hash code for X (which is really a CONST_FIXED). */
287
288 hashval_t
289 const_fixed_hasher::hash (rtx x)
290 {
291 const_rtx const value = x;
292 hashval_t h;
293
294 h = fixed_hash (CONST_FIXED_VALUE (value));
295 /* MODE is used in the comparison, so it should be in the hash. */
296 h ^= GET_MODE (value);
297 return h;
298 }
299
300 /* Returns nonzero if the value represented by X is the same as that
301 represented by Y. */
302
303 bool
304 const_fixed_hasher::equal (rtx x, rtx y)
305 {
306 const_rtx const a = x, b = y;
307
308 if (GET_MODE (a) != GET_MODE (b))
309 return 0;
310 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
311 }
312
313 /* Return true if the given memory attributes are equal. */
314
315 bool
316 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
317 {
318 if (p == q)
319 return true;
320 if (!p || !q)
321 return false;
322 return (p->alias == q->alias
323 && p->offset_known_p == q->offset_known_p
324 && (!p->offset_known_p || p->offset == q->offset)
325 && p->size_known_p == q->size_known_p
326 && (!p->size_known_p || p->size == q->size)
327 && p->align == q->align
328 && p->addrspace == q->addrspace
329 && (p->expr == q->expr
330 || (p->expr != NULL_TREE && q->expr != NULL_TREE
331 && operand_equal_p (p->expr, q->expr, 0))));
332 }
333
334 /* Set MEM's memory attributes so that they are the same as ATTRS. */
335
336 static void
337 set_mem_attrs (rtx mem, mem_attrs *attrs)
338 {
339 /* If everything is the default, we can just clear the attributes. */
340 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
341 {
342 MEM_ATTRS (mem) = 0;
343 return;
344 }
345
346 if (!MEM_ATTRS (mem)
347 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
348 {
349 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
350 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
351 }
352 }
353
354 /* Returns a hash code for X (which is a really a reg_attrs *). */
355
356 hashval_t
357 reg_attr_hasher::hash (reg_attrs *x)
358 {
359 const reg_attrs *const p = x;
360
361 return ((p->offset * 1000) ^ (intptr_t) p->decl);
362 }
363
364 /* Returns nonzero if the value represented by X is the same as that given by
365 Y. */
366
367 bool
368 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
369 {
370 const reg_attrs *const p = x;
371 const reg_attrs *const q = y;
372
373 return (p->decl == q->decl && p->offset == q->offset);
374 }
375 /* Allocate a new reg_attrs structure and insert it into the hash table if
376 one identical to it is not already in the table. We are doing this for
377 MEM of mode MODE. */
378
379 static reg_attrs *
380 get_reg_attrs (tree decl, int offset)
381 {
382 reg_attrs attrs;
383
384 /* If everything is the default, we can just return zero. */
385 if (decl == 0 && offset == 0)
386 return 0;
387
388 attrs.decl = decl;
389 attrs.offset = offset;
390
391 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
392 if (*slot == 0)
393 {
394 *slot = ggc_alloc<reg_attrs> ();
395 memcpy (*slot, &attrs, sizeof (reg_attrs));
396 }
397
398 return *slot;
399 }
400
401
402 #if !HAVE_blockage
403 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
404 and to block register equivalences to be seen across this insn. */
405
406 rtx
407 gen_blockage (void)
408 {
409 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
410 MEM_VOLATILE_P (x) = true;
411 return x;
412 }
413 #endif
414
415
416 /* Set the mode and register number of X to MODE and REGNO. */
417
418 void
419 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
420 {
421 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
422 ? hard_regno_nregs[regno][mode]
423 : 1);
424 PUT_MODE_RAW (x, mode);
425 set_regno_raw (x, regno, nregs);
426 }
427
428 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
429 don't attempt to share with the various global pieces of rtl (such as
430 frame_pointer_rtx). */
431
432 rtx
433 gen_raw_REG (machine_mode mode, unsigned int regno)
434 {
435 rtx x = rtx_alloc (REG MEM_STAT_INFO);
436 set_mode_and_regno (x, mode, regno);
437 REG_ATTRS (x) = NULL;
438 ORIGINAL_REGNO (x) = regno;
439 return x;
440 }
441
442 /* There are some RTL codes that require special attention; the generation
443 functions do the raw handling. If you add to this list, modify
444 special_rtx in gengenrtl.c as well. */
445
446 rtx_expr_list *
447 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
448 {
449 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
450 expr_list));
451 }
452
453 rtx_insn_list *
454 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
455 {
456 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
457 insn_list));
458 }
459
460 rtx_insn *
461 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
462 basic_block bb, rtx pattern, int location, int code,
463 rtx reg_notes)
464 {
465 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
466 prev_insn, next_insn,
467 bb, pattern, location, code,
468 reg_notes));
469 }
470
471 rtx
472 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
473 {
474 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
475 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
476
477 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
478 if (const_true_rtx && arg == STORE_FLAG_VALUE)
479 return const_true_rtx;
480 #endif
481
482 /* Look up the CONST_INT in the hash table. */
483 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
484 INSERT);
485 if (*slot == 0)
486 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
487
488 return *slot;
489 }
490
491 rtx
492 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
493 {
494 return GEN_INT (trunc_int_for_mode (c, mode));
495 }
496
497 /* CONST_DOUBLEs might be created from pairs of integers, or from
498 REAL_VALUE_TYPEs. Also, their length is known only at run time,
499 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
500
501 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
502 hash table. If so, return its counterpart; otherwise add it
503 to the hash table and return it. */
504 static rtx
505 lookup_const_double (rtx real)
506 {
507 rtx *slot = const_double_htab->find_slot (real, INSERT);
508 if (*slot == 0)
509 *slot = real;
510
511 return *slot;
512 }
513
514 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
515 VALUE in mode MODE. */
516 rtx
517 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
518 {
519 rtx real = rtx_alloc (CONST_DOUBLE);
520 PUT_MODE (real, mode);
521
522 real->u.rv = value;
523
524 return lookup_const_double (real);
525 }
526
527 /* Determine whether FIXED, a CONST_FIXED, already exists in the
528 hash table. If so, return its counterpart; otherwise add it
529 to the hash table and return it. */
530
531 static rtx
532 lookup_const_fixed (rtx fixed)
533 {
534 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
535 if (*slot == 0)
536 *slot = fixed;
537
538 return *slot;
539 }
540
541 /* Return a CONST_FIXED rtx for a fixed-point value specified by
542 VALUE in mode MODE. */
543
544 rtx
545 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
546 {
547 rtx fixed = rtx_alloc (CONST_FIXED);
548 PUT_MODE (fixed, mode);
549
550 fixed->u.fv = value;
551
552 return lookup_const_fixed (fixed);
553 }
554
555 #if TARGET_SUPPORTS_WIDE_INT == 0
556 /* Constructs double_int from rtx CST. */
557
558 double_int
559 rtx_to_double_int (const_rtx cst)
560 {
561 double_int r;
562
563 if (CONST_INT_P (cst))
564 r = double_int::from_shwi (INTVAL (cst));
565 else if (CONST_DOUBLE_AS_INT_P (cst))
566 {
567 r.low = CONST_DOUBLE_LOW (cst);
568 r.high = CONST_DOUBLE_HIGH (cst);
569 }
570 else
571 gcc_unreachable ();
572
573 return r;
574 }
575 #endif
576
577 #if TARGET_SUPPORTS_WIDE_INT
578 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
579 If so, return its counterpart; otherwise add it to the hash table and
580 return it. */
581
582 static rtx
583 lookup_const_wide_int (rtx wint)
584 {
585 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
586 if (*slot == 0)
587 *slot = wint;
588
589 return *slot;
590 }
591 #endif
592
593 /* Return an rtx constant for V, given that the constant has mode MODE.
594 The returned rtx will be a CONST_INT if V fits, otherwise it will be
595 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
596 (if TARGET_SUPPORTS_WIDE_INT). */
597
598 rtx
599 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
600 {
601 unsigned int len = v.get_len ();
602 /* Not scalar_int_mode because we also allow pointer bound modes. */
603 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
604
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec <= v.get_precision ());
608
609 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
610 return gen_int_mode (v.elt (0), mode);
611
612 #if TARGET_SUPPORTS_WIDE_INT
613 {
614 unsigned int i;
615 rtx value;
616 unsigned int blocks_needed
617 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
618
619 if (len > blocks_needed)
620 len = blocks_needed;
621
622 value = const_wide_int_alloc (len);
623
624 /* It is so tempting to just put the mode in here. Must control
625 myself ... */
626 PUT_MODE (value, VOIDmode);
627 CWI_PUT_NUM_ELEM (value, len);
628
629 for (i = 0; i < len; i++)
630 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
631
632 return lookup_const_wide_int (value);
633 }
634 #else
635 return immed_double_const (v.elt (0), v.elt (1), mode);
636 #endif
637 }
638
639 #if TARGET_SUPPORTS_WIDE_INT == 0
640 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
646 const_double_from_real_value. */
647
648 rtx
649 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
650 {
651 rtx value;
652 unsigned int i;
653
654 /* There are the following cases (note that there are no modes with
655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
656
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
658 gen_int_mode.
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
663 scalar_mode smode;
664 if (is_a <scalar_mode> (mode, &smode)
665 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
666 return gen_int_mode (i0, mode);
667
668 /* If this integer fits in one word, return a CONST_INT. */
669 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
670 return GEN_INT (i0);
671
672 /* We use VOIDmode for integers. */
673 value = rtx_alloc (CONST_DOUBLE);
674 PUT_MODE (value, VOIDmode);
675
676 CONST_DOUBLE_LOW (value) = i0;
677 CONST_DOUBLE_HIGH (value) = i1;
678
679 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
680 XWINT (value, i) = 0;
681
682 return lookup_const_double (value);
683 }
684 #endif
685
686 rtx
687 gen_rtx_REG (machine_mode mode, unsigned int regno)
688 {
689 /* In case the MD file explicitly references the frame pointer, have
690 all such references point to the same frame pointer. This is
691 used during frame pointer elimination to distinguish the explicit
692 references to these registers from pseudos that happened to be
693 assigned to them.
694
695 If we have eliminated the frame pointer or arg pointer, we will
696 be using it as a normal register, for example as a spill
697 register. In such cases, we might be accessing it in a mode that
698 is not Pmode and therefore cannot use the pre-allocated rtx.
699
700 Also don't do this when we are making new REGs in reload, since
701 we don't want to get confused with the real pointers. */
702
703 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
704 {
705 if (regno == FRAME_POINTER_REGNUM
706 && (!reload_completed || frame_pointer_needed))
707 return frame_pointer_rtx;
708
709 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
710 && regno == HARD_FRAME_POINTER_REGNUM
711 && (!reload_completed || frame_pointer_needed))
712 return hard_frame_pointer_rtx;
713 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
714 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
715 && regno == ARG_POINTER_REGNUM)
716 return arg_pointer_rtx;
717 #endif
718 #ifdef RETURN_ADDRESS_POINTER_REGNUM
719 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
720 return return_address_pointer_rtx;
721 #endif
722 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
723 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
724 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
725 return pic_offset_table_rtx;
726 if (regno == STACK_POINTER_REGNUM)
727 return stack_pointer_rtx;
728 }
729
730 #if 0
731 /* If the per-function register table has been set up, try to re-use
732 an existing entry in that table to avoid useless generation of RTL.
733
734 This code is disabled for now until we can fix the various backends
735 which depend on having non-shared hard registers in some cases. Long
736 term we want to re-enable this code as it can significantly cut down
737 on the amount of useless RTL that gets generated.
738
739 We'll also need to fix some code that runs after reload that wants to
740 set ORIGINAL_REGNO. */
741
742 if (cfun
743 && cfun->emit
744 && regno_reg_rtx
745 && regno < FIRST_PSEUDO_REGISTER
746 && reg_raw_mode[regno] == mode)
747 return regno_reg_rtx[regno];
748 #endif
749
750 return gen_raw_REG (mode, regno);
751 }
752
753 rtx
754 gen_rtx_MEM (machine_mode mode, rtx addr)
755 {
756 rtx rt = gen_rtx_raw_MEM (mode, addr);
757
758 /* This field is not cleared by the mere allocation of the rtx, so
759 we clear it here. */
760 MEM_ATTRS (rt) = 0;
761
762 return rt;
763 }
764
765 /* Generate a memory referring to non-trapping constant memory. */
766
767 rtx
768 gen_const_mem (machine_mode mode, rtx addr)
769 {
770 rtx mem = gen_rtx_MEM (mode, addr);
771 MEM_READONLY_P (mem) = 1;
772 MEM_NOTRAP_P (mem) = 1;
773 return mem;
774 }
775
776 /* Generate a MEM referring to fixed portions of the frame, e.g., register
777 save areas. */
778
779 rtx
780 gen_frame_mem (machine_mode mode, rtx addr)
781 {
782 rtx mem = gen_rtx_MEM (mode, addr);
783 MEM_NOTRAP_P (mem) = 1;
784 set_mem_alias_set (mem, get_frame_alias_set ());
785 return mem;
786 }
787
788 /* Generate a MEM referring to a temporary use of the stack, not part
789 of the fixed stack frame. For example, something which is pushed
790 by a target splitter. */
791 rtx
792 gen_tmp_stack_mem (machine_mode mode, rtx addr)
793 {
794 rtx mem = gen_rtx_MEM (mode, addr);
795 MEM_NOTRAP_P (mem) = 1;
796 if (!cfun->calls_alloca)
797 set_mem_alias_set (mem, get_frame_alias_set ());
798 return mem;
799 }
800
801 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
802 this construct would be valid, and false otherwise. */
803
804 bool
805 validate_subreg (machine_mode omode, machine_mode imode,
806 const_rtx reg, unsigned int offset)
807 {
808 unsigned int isize = GET_MODE_SIZE (imode);
809 unsigned int osize = GET_MODE_SIZE (omode);
810
811 /* All subregs must be aligned. */
812 if (offset % osize != 0)
813 return false;
814
815 /* The subreg offset cannot be outside the inner object. */
816 if (offset >= isize)
817 return false;
818
819 /* ??? This should not be here. Temporarily continue to allow word_mode
820 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
821 Generally, backends are doing something sketchy but it'll take time to
822 fix them all. */
823 if (omode == word_mode)
824 ;
825 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
826 is the culprit here, and not the backends. */
827 else if (osize >= UNITS_PER_WORD && isize >= osize)
828 ;
829 /* Allow component subregs of complex and vector. Though given the below
830 extraction rules, it's not always clear what that means. */
831 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
832 && GET_MODE_INNER (imode) == omode)
833 ;
834 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
835 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
836 represent this. It's questionable if this ought to be represented at
837 all -- why can't this all be hidden in post-reload splitters that make
838 arbitrarily mode changes to the registers themselves. */
839 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
840 ;
841 /* Subregs involving floating point modes are not allowed to
842 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
843 (subreg:SI (reg:DF) 0) isn't. */
844 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
845 {
846 if (! (isize == osize
847 /* LRA can use subreg to store a floating point value in
848 an integer mode. Although the floating point and the
849 integer modes need the same number of hard registers,
850 the size of floating point mode can be less than the
851 integer mode. LRA also uses subregs for a register
852 should be used in different mode in on insn. */
853 || lra_in_progress))
854 return false;
855 }
856
857 /* Paradoxical subregs must have offset zero. */
858 if (osize > isize)
859 return offset == 0;
860
861 /* This is a normal subreg. Verify that the offset is representable. */
862
863 /* For hard registers, we already have most of these rules collected in
864 subreg_offset_representable_p. */
865 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
866 {
867 unsigned int regno = REGNO (reg);
868
869 #ifdef CANNOT_CHANGE_MODE_CLASS
870 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
871 && GET_MODE_INNER (imode) == omode)
872 ;
873 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
874 return false;
875 #endif
876
877 return subreg_offset_representable_p (regno, imode, offset, omode);
878 }
879
880 /* For pseudo registers, we want most of the same checks. Namely:
881 If the register no larger than a word, the subreg must be lowpart.
882 If the register is larger than a word, the subreg must be the lowpart
883 of a subword. A subreg does *not* perform arbitrary bit extraction.
884 Given that we've already checked mode/offset alignment, we only have
885 to check subword subregs here. */
886 if (osize < UNITS_PER_WORD
887 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
888 {
889 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
890 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
891 if (offset % UNITS_PER_WORD != low_off)
892 return false;
893 }
894 return true;
895 }
896
897 rtx
898 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
899 {
900 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
901 return gen_rtx_raw_SUBREG (mode, reg, offset);
902 }
903
904 /* Generate a SUBREG representing the least-significant part of REG if MODE
905 is smaller than mode of REG, otherwise paradoxical SUBREG. */
906
907 rtx
908 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
909 {
910 machine_mode inmode;
911
912 inmode = GET_MODE (reg);
913 if (inmode == VOIDmode)
914 inmode = mode;
915 return gen_rtx_SUBREG (mode, reg,
916 subreg_lowpart_offset (mode, inmode));
917 }
918
919 rtx
920 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
921 enum var_init_status status)
922 {
923 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
924 PAT_VAR_LOCATION_STATUS (x) = status;
925 return x;
926 }
927 \f
928
929 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
930
931 rtvec
932 gen_rtvec (int n, ...)
933 {
934 int i;
935 rtvec rt_val;
936 va_list p;
937
938 va_start (p, n);
939
940 /* Don't allocate an empty rtvec... */
941 if (n == 0)
942 {
943 va_end (p);
944 return NULL_RTVEC;
945 }
946
947 rt_val = rtvec_alloc (n);
948
949 for (i = 0; i < n; i++)
950 rt_val->elem[i] = va_arg (p, rtx);
951
952 va_end (p);
953 return rt_val;
954 }
955
956 rtvec
957 gen_rtvec_v (int n, rtx *argp)
958 {
959 int i;
960 rtvec rt_val;
961
962 /* Don't allocate an empty rtvec... */
963 if (n == 0)
964 return NULL_RTVEC;
965
966 rt_val = rtvec_alloc (n);
967
968 for (i = 0; i < n; i++)
969 rt_val->elem[i] = *argp++;
970
971 return rt_val;
972 }
973
974 rtvec
975 gen_rtvec_v (int n, rtx_insn **argp)
976 {
977 int i;
978 rtvec rt_val;
979
980 /* Don't allocate an empty rtvec... */
981 if (n == 0)
982 return NULL_RTVEC;
983
984 rt_val = rtvec_alloc (n);
985
986 for (i = 0; i < n; i++)
987 rt_val->elem[i] = *argp++;
988
989 return rt_val;
990 }
991
992 \f
993 /* Return the number of bytes between the start of an OUTER_MODE
994 in-memory value and the start of an INNER_MODE in-memory value,
995 given that the former is a lowpart of the latter. It may be a
996 paradoxical lowpart, in which case the offset will be negative
997 on big-endian targets. */
998
999 int
1000 byte_lowpart_offset (machine_mode outer_mode,
1001 machine_mode inner_mode)
1002 {
1003 if (paradoxical_subreg_p (outer_mode, inner_mode))
1004 return -subreg_lowpart_offset (inner_mode, outer_mode);
1005 else
1006 return subreg_lowpart_offset (outer_mode, inner_mode);
1007 }
1008 \f
1009 /* Generate a REG rtx for a new pseudo register of mode MODE.
1010 This pseudo is assigned the next sequential register number. */
1011
1012 rtx
1013 gen_reg_rtx (machine_mode mode)
1014 {
1015 rtx val;
1016 unsigned int align = GET_MODE_ALIGNMENT (mode);
1017
1018 gcc_assert (can_create_pseudo_p ());
1019
1020 /* If a virtual register with bigger mode alignment is generated,
1021 increase stack alignment estimation because it might be spilled
1022 to stack later. */
1023 if (SUPPORTS_STACK_ALIGNMENT
1024 && crtl->stack_alignment_estimated < align
1025 && !crtl->stack_realign_processed)
1026 {
1027 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1028 if (crtl->stack_alignment_estimated < min_align)
1029 crtl->stack_alignment_estimated = min_align;
1030 }
1031
1032 if (generating_concat_p
1033 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1034 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1035 {
1036 /* For complex modes, don't make a single pseudo.
1037 Instead, make a CONCAT of two pseudos.
1038 This allows noncontiguous allocation of the real and imaginary parts,
1039 which makes much better code. Besides, allocating DCmode
1040 pseudos overstrains reload on some machines like the 386. */
1041 rtx realpart, imagpart;
1042 machine_mode partmode = GET_MODE_INNER (mode);
1043
1044 realpart = gen_reg_rtx (partmode);
1045 imagpart = gen_reg_rtx (partmode);
1046 return gen_rtx_CONCAT (mode, realpart, imagpart);
1047 }
1048
1049 /* Do not call gen_reg_rtx with uninitialized crtl. */
1050 gcc_assert (crtl->emit.regno_pointer_align_length);
1051
1052 crtl->emit.ensure_regno_capacity ();
1053 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1054
1055 val = gen_raw_REG (mode, reg_rtx_no);
1056 regno_reg_rtx[reg_rtx_no++] = val;
1057 return val;
1058 }
1059
1060 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1061 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1062
1063 void
1064 emit_status::ensure_regno_capacity ()
1065 {
1066 int old_size = regno_pointer_align_length;
1067
1068 if (reg_rtx_no < old_size)
1069 return;
1070
1071 int new_size = old_size * 2;
1072 while (reg_rtx_no >= new_size)
1073 new_size *= 2;
1074
1075 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1076 memset (tmp + old_size, 0, new_size - old_size);
1077 regno_pointer_align = (unsigned char *) tmp;
1078
1079 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1080 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1081 regno_reg_rtx = new1;
1082
1083 crtl->emit.regno_pointer_align_length = new_size;
1084 }
1085
1086 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1087
1088 bool
1089 reg_is_parm_p (rtx reg)
1090 {
1091 tree decl;
1092
1093 gcc_assert (REG_P (reg));
1094 decl = REG_EXPR (reg);
1095 return (decl && TREE_CODE (decl) == PARM_DECL);
1096 }
1097
1098 /* Update NEW with the same attributes as REG, but with OFFSET added
1099 to the REG_OFFSET. */
1100
1101 static void
1102 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1103 {
1104 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1105 REG_OFFSET (reg) + offset);
1106 }
1107
1108 /* Generate a register with same attributes as REG, but with OFFSET
1109 added to the REG_OFFSET. */
1110
1111 rtx
1112 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1113 int offset)
1114 {
1115 rtx new_rtx = gen_rtx_REG (mode, regno);
1116
1117 update_reg_offset (new_rtx, reg, offset);
1118 return new_rtx;
1119 }
1120
1121 /* Generate a new pseudo-register with the same attributes as REG, but
1122 with OFFSET added to the REG_OFFSET. */
1123
1124 rtx
1125 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1126 {
1127 rtx new_rtx = gen_reg_rtx (mode);
1128
1129 update_reg_offset (new_rtx, reg, offset);
1130 return new_rtx;
1131 }
1132
1133 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1134 new register is a (possibly paradoxical) lowpart of the old one. */
1135
1136 void
1137 adjust_reg_mode (rtx reg, machine_mode mode)
1138 {
1139 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1140 PUT_MODE (reg, mode);
1141 }
1142
1143 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1144 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1145
1146 void
1147 set_reg_attrs_from_value (rtx reg, rtx x)
1148 {
1149 int offset;
1150 bool can_be_reg_pointer = true;
1151
1152 /* Don't call mark_reg_pointer for incompatible pointer sign
1153 extension. */
1154 while (GET_CODE (x) == SIGN_EXTEND
1155 || GET_CODE (x) == ZERO_EXTEND
1156 || GET_CODE (x) == TRUNCATE
1157 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1158 {
1159 #if defined(POINTERS_EXTEND_UNSIGNED)
1160 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1161 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1162 || (paradoxical_subreg_p (x)
1163 && ! (SUBREG_PROMOTED_VAR_P (x)
1164 && SUBREG_CHECK_PROMOTED_SIGN (x,
1165 POINTERS_EXTEND_UNSIGNED))))
1166 && !targetm.have_ptr_extend ())
1167 can_be_reg_pointer = false;
1168 #endif
1169 x = XEXP (x, 0);
1170 }
1171
1172 /* Hard registers can be reused for multiple purposes within the same
1173 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1174 on them is wrong. */
1175 if (HARD_REGISTER_P (reg))
1176 return;
1177
1178 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1179 if (MEM_P (x))
1180 {
1181 if (MEM_OFFSET_KNOWN_P (x))
1182 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1183 MEM_OFFSET (x) + offset);
1184 if (can_be_reg_pointer && MEM_POINTER (x))
1185 mark_reg_pointer (reg, 0);
1186 }
1187 else if (REG_P (x))
1188 {
1189 if (REG_ATTRS (x))
1190 update_reg_offset (reg, x, offset);
1191 if (can_be_reg_pointer && REG_POINTER (x))
1192 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1193 }
1194 }
1195
1196 /* Generate a REG rtx for a new pseudo register, copying the mode
1197 and attributes from X. */
1198
1199 rtx
1200 gen_reg_rtx_and_attrs (rtx x)
1201 {
1202 rtx reg = gen_reg_rtx (GET_MODE (x));
1203 set_reg_attrs_from_value (reg, x);
1204 return reg;
1205 }
1206
1207 /* Set the register attributes for registers contained in PARM_RTX.
1208 Use needed values from memory attributes of MEM. */
1209
1210 void
1211 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1212 {
1213 if (REG_P (parm_rtx))
1214 set_reg_attrs_from_value (parm_rtx, mem);
1215 else if (GET_CODE (parm_rtx) == PARALLEL)
1216 {
1217 /* Check for a NULL entry in the first slot, used to indicate that the
1218 parameter goes both on the stack and in registers. */
1219 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1220 for (; i < XVECLEN (parm_rtx, 0); i++)
1221 {
1222 rtx x = XVECEXP (parm_rtx, 0, i);
1223 if (REG_P (XEXP (x, 0)))
1224 REG_ATTRS (XEXP (x, 0))
1225 = get_reg_attrs (MEM_EXPR (mem),
1226 INTVAL (XEXP (x, 1)));
1227 }
1228 }
1229 }
1230
1231 /* Set the REG_ATTRS for registers in value X, given that X represents
1232 decl T. */
1233
1234 void
1235 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1236 {
1237 if (!t)
1238 return;
1239 tree tdecl = t;
1240 if (GET_CODE (x) == SUBREG)
1241 {
1242 gcc_assert (subreg_lowpart_p (x));
1243 x = SUBREG_REG (x);
1244 }
1245 if (REG_P (x))
1246 REG_ATTRS (x)
1247 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1248 DECL_P (tdecl)
1249 ? DECL_MODE (tdecl)
1250 : TYPE_MODE (TREE_TYPE (tdecl))));
1251 if (GET_CODE (x) == CONCAT)
1252 {
1253 if (REG_P (XEXP (x, 0)))
1254 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1255 if (REG_P (XEXP (x, 1)))
1256 REG_ATTRS (XEXP (x, 1))
1257 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1258 }
1259 if (GET_CODE (x) == PARALLEL)
1260 {
1261 int i, start;
1262
1263 /* Check for a NULL entry, used to indicate that the parameter goes
1264 both on the stack and in registers. */
1265 if (XEXP (XVECEXP (x, 0, 0), 0))
1266 start = 0;
1267 else
1268 start = 1;
1269
1270 for (i = start; i < XVECLEN (x, 0); i++)
1271 {
1272 rtx y = XVECEXP (x, 0, i);
1273 if (REG_P (XEXP (y, 0)))
1274 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1275 }
1276 }
1277 }
1278
1279 /* Assign the RTX X to declaration T. */
1280
1281 void
1282 set_decl_rtl (tree t, rtx x)
1283 {
1284 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1285 if (x)
1286 set_reg_attrs_for_decl_rtl (t, x);
1287 }
1288
1289 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1290 if the ABI requires the parameter to be passed by reference. */
1291
1292 void
1293 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1294 {
1295 DECL_INCOMING_RTL (t) = x;
1296 if (x && !by_reference_p)
1297 set_reg_attrs_for_decl_rtl (t, x);
1298 }
1299
1300 /* Identify REG (which may be a CONCAT) as a user register. */
1301
1302 void
1303 mark_user_reg (rtx reg)
1304 {
1305 if (GET_CODE (reg) == CONCAT)
1306 {
1307 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1308 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1309 }
1310 else
1311 {
1312 gcc_assert (REG_P (reg));
1313 REG_USERVAR_P (reg) = 1;
1314 }
1315 }
1316
1317 /* Identify REG as a probable pointer register and show its alignment
1318 as ALIGN, if nonzero. */
1319
1320 void
1321 mark_reg_pointer (rtx reg, int align)
1322 {
1323 if (! REG_POINTER (reg))
1324 {
1325 REG_POINTER (reg) = 1;
1326
1327 if (align)
1328 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1329 }
1330 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1331 /* We can no-longer be sure just how aligned this pointer is. */
1332 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1333 }
1334
1335 /* Return 1 plus largest pseudo reg number used in the current function. */
1336
1337 int
1338 max_reg_num (void)
1339 {
1340 return reg_rtx_no;
1341 }
1342
1343 /* Return 1 + the largest label number used so far in the current function. */
1344
1345 int
1346 max_label_num (void)
1347 {
1348 return label_num;
1349 }
1350
1351 /* Return first label number used in this function (if any were used). */
1352
1353 int
1354 get_first_label_num (void)
1355 {
1356 return first_label_num;
1357 }
1358
1359 /* If the rtx for label was created during the expansion of a nested
1360 function, then first_label_num won't include this label number.
1361 Fix this now so that array indices work later. */
1362
1363 void
1364 maybe_set_first_label_num (rtx_code_label *x)
1365 {
1366 if (CODE_LABEL_NUMBER (x) < first_label_num)
1367 first_label_num = CODE_LABEL_NUMBER (x);
1368 }
1369
1370 /* For use by the RTL function loader, when mingling with normal
1371 functions.
1372 Ensure that label_num is greater than the label num of X, to avoid
1373 duplicate labels in the generated assembler. */
1374
1375 void
1376 maybe_set_max_label_num (rtx_code_label *x)
1377 {
1378 if (CODE_LABEL_NUMBER (x) >= label_num)
1379 label_num = CODE_LABEL_NUMBER (x) + 1;
1380 }
1381
1382 \f
1383 /* Return a value representing some low-order bits of X, where the number
1384 of low-order bits is given by MODE. Note that no conversion is done
1385 between floating-point and fixed-point values, rather, the bit
1386 representation is returned.
1387
1388 This function handles the cases in common between gen_lowpart, below,
1389 and two variants in cse.c and combine.c. These are the cases that can
1390 be safely handled at all points in the compilation.
1391
1392 If this is not a case we can handle, return 0. */
1393
1394 rtx
1395 gen_lowpart_common (machine_mode mode, rtx x)
1396 {
1397 int msize = GET_MODE_SIZE (mode);
1398 int xsize;
1399 machine_mode innermode;
1400
1401 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1402 so we have to make one up. Yuk. */
1403 innermode = GET_MODE (x);
1404 if (CONST_INT_P (x)
1405 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1406 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1407 else if (innermode == VOIDmode)
1408 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1409
1410 xsize = GET_MODE_SIZE (innermode);
1411
1412 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1413
1414 if (innermode == mode)
1415 return x;
1416
1417 /* MODE must occupy no more words than the mode of X. */
1418 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1419 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1420 return 0;
1421
1422 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1423 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1424 return 0;
1425
1426 scalar_int_mode int_mode, int_innermode, from_mode;
1427 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1428 && is_a <scalar_int_mode> (mode, &int_mode)
1429 && is_a <scalar_int_mode> (innermode, &int_innermode)
1430 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1431 {
1432 /* If we are getting the low-order part of something that has been
1433 sign- or zero-extended, we can either just use the object being
1434 extended or make a narrower extension. If we want an even smaller
1435 piece than the size of the object being extended, call ourselves
1436 recursively.
1437
1438 This case is used mostly by combine and cse. */
1439
1440 if (from_mode == int_mode)
1441 return XEXP (x, 0);
1442 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1443 return gen_lowpart_common (int_mode, XEXP (x, 0));
1444 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1445 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1446 }
1447 else if (GET_CODE (x) == SUBREG || REG_P (x)
1448 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1449 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1450 return lowpart_subreg (mode, x, innermode);
1451
1452 /* Otherwise, we can't do this. */
1453 return 0;
1454 }
1455 \f
1456 rtx
1457 gen_highpart (machine_mode mode, rtx x)
1458 {
1459 unsigned int msize = GET_MODE_SIZE (mode);
1460 rtx result;
1461
1462 /* This case loses if X is a subreg. To catch bugs early,
1463 complain if an invalid MODE is used even in other cases. */
1464 gcc_assert (msize <= UNITS_PER_WORD
1465 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1466
1467 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1468 subreg_highpart_offset (mode, GET_MODE (x)));
1469 gcc_assert (result);
1470
1471 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1472 the target if we have a MEM. gen_highpart must return a valid operand,
1473 emitting code if necessary to do so. */
1474 if (MEM_P (result))
1475 {
1476 result = validize_mem (result);
1477 gcc_assert (result);
1478 }
1479
1480 return result;
1481 }
1482
1483 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1484 be VOIDmode constant. */
1485 rtx
1486 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1487 {
1488 if (GET_MODE (exp) != VOIDmode)
1489 {
1490 gcc_assert (GET_MODE (exp) == innermode);
1491 return gen_highpart (outermode, exp);
1492 }
1493 return simplify_gen_subreg (outermode, exp, innermode,
1494 subreg_highpart_offset (outermode, innermode));
1495 }
1496
1497 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1498 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1499
1500 unsigned int
1501 subreg_size_lowpart_offset (unsigned int outer_bytes, unsigned int inner_bytes)
1502 {
1503 if (outer_bytes > inner_bytes)
1504 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1505 return 0;
1506
1507 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1508 return inner_bytes - outer_bytes;
1509 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1510 return 0;
1511 else
1512 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1513 }
1514
1515 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1516 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1517
1518 unsigned int
1519 subreg_size_highpart_offset (unsigned int outer_bytes,
1520 unsigned int inner_bytes)
1521 {
1522 gcc_assert (inner_bytes >= outer_bytes);
1523
1524 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1525 return 0;
1526 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1527 return inner_bytes - outer_bytes;
1528 else
1529 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1530 (inner_bytes - outer_bytes)
1531 * BITS_PER_UNIT);
1532 }
1533
1534 /* Return 1 iff X, assumed to be a SUBREG,
1535 refers to the least significant part of its containing reg.
1536 If X is not a SUBREG, always return 1 (it is its own low part!). */
1537
1538 int
1539 subreg_lowpart_p (const_rtx x)
1540 {
1541 if (GET_CODE (x) != SUBREG)
1542 return 1;
1543 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1544 return 0;
1545
1546 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1547 == SUBREG_BYTE (x));
1548 }
1549 \f
1550 /* Return subword OFFSET of operand OP.
1551 The word number, OFFSET, is interpreted as the word number starting
1552 at the low-order address. OFFSET 0 is the low-order word if not
1553 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1554
1555 If we cannot extract the required word, we return zero. Otherwise,
1556 an rtx corresponding to the requested word will be returned.
1557
1558 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1559 reload has completed, a valid address will always be returned. After
1560 reload, if a valid address cannot be returned, we return zero.
1561
1562 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1563 it is the responsibility of the caller.
1564
1565 MODE is the mode of OP in case it is a CONST_INT.
1566
1567 ??? This is still rather broken for some cases. The problem for the
1568 moment is that all callers of this thing provide no 'goal mode' to
1569 tell us to work with. This exists because all callers were written
1570 in a word based SUBREG world.
1571 Now use of this function can be deprecated by simplify_subreg in most
1572 cases.
1573 */
1574
1575 rtx
1576 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1577 {
1578 if (mode == VOIDmode)
1579 mode = GET_MODE (op);
1580
1581 gcc_assert (mode != VOIDmode);
1582
1583 /* If OP is narrower than a word, fail. */
1584 if (mode != BLKmode
1585 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1586 return 0;
1587
1588 /* If we want a word outside OP, return zero. */
1589 if (mode != BLKmode
1590 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1591 return const0_rtx;
1592
1593 /* Form a new MEM at the requested address. */
1594 if (MEM_P (op))
1595 {
1596 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1597
1598 if (! validate_address)
1599 return new_rtx;
1600
1601 else if (reload_completed)
1602 {
1603 if (! strict_memory_address_addr_space_p (word_mode,
1604 XEXP (new_rtx, 0),
1605 MEM_ADDR_SPACE (op)))
1606 return 0;
1607 }
1608 else
1609 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1610 }
1611
1612 /* Rest can be handled by simplify_subreg. */
1613 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1614 }
1615
1616 /* Similar to `operand_subword', but never return 0. If we can't
1617 extract the required subword, put OP into a register and try again.
1618 The second attempt must succeed. We always validate the address in
1619 this case.
1620
1621 MODE is the mode of OP, in case it is CONST_INT. */
1622
1623 rtx
1624 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1625 {
1626 rtx result = operand_subword (op, offset, 1, mode);
1627
1628 if (result)
1629 return result;
1630
1631 if (mode != BLKmode && mode != VOIDmode)
1632 {
1633 /* If this is a register which can not be accessed by words, copy it
1634 to a pseudo register. */
1635 if (REG_P (op))
1636 op = copy_to_reg (op);
1637 else
1638 op = force_reg (mode, op);
1639 }
1640
1641 result = operand_subword (op, offset, 1, mode);
1642 gcc_assert (result);
1643
1644 return result;
1645 }
1646 \f
1647 /* Returns 1 if both MEM_EXPR can be considered equal
1648 and 0 otherwise. */
1649
1650 int
1651 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1652 {
1653 if (expr1 == expr2)
1654 return 1;
1655
1656 if (! expr1 || ! expr2)
1657 return 0;
1658
1659 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1660 return 0;
1661
1662 return operand_equal_p (expr1, expr2, 0);
1663 }
1664
1665 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1666 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1667 -1 if not known. */
1668
1669 int
1670 get_mem_align_offset (rtx mem, unsigned int align)
1671 {
1672 tree expr;
1673 unsigned HOST_WIDE_INT offset;
1674
1675 /* This function can't use
1676 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1677 || (MAX (MEM_ALIGN (mem),
1678 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1679 < align))
1680 return -1;
1681 else
1682 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1683 for two reasons:
1684 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1685 for <variable>. get_inner_reference doesn't handle it and
1686 even if it did, the alignment in that case needs to be determined
1687 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1688 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1689 isn't sufficiently aligned, the object it is in might be. */
1690 gcc_assert (MEM_P (mem));
1691 expr = MEM_EXPR (mem);
1692 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1693 return -1;
1694
1695 offset = MEM_OFFSET (mem);
1696 if (DECL_P (expr))
1697 {
1698 if (DECL_ALIGN (expr) < align)
1699 return -1;
1700 }
1701 else if (INDIRECT_REF_P (expr))
1702 {
1703 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1704 return -1;
1705 }
1706 else if (TREE_CODE (expr) == COMPONENT_REF)
1707 {
1708 while (1)
1709 {
1710 tree inner = TREE_OPERAND (expr, 0);
1711 tree field = TREE_OPERAND (expr, 1);
1712 tree byte_offset = component_ref_field_offset (expr);
1713 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1714
1715 if (!byte_offset
1716 || !tree_fits_uhwi_p (byte_offset)
1717 || !tree_fits_uhwi_p (bit_offset))
1718 return -1;
1719
1720 offset += tree_to_uhwi (byte_offset);
1721 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1722
1723 if (inner == NULL_TREE)
1724 {
1725 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1726 < (unsigned int) align)
1727 return -1;
1728 break;
1729 }
1730 else if (DECL_P (inner))
1731 {
1732 if (DECL_ALIGN (inner) < align)
1733 return -1;
1734 break;
1735 }
1736 else if (TREE_CODE (inner) != COMPONENT_REF)
1737 return -1;
1738 expr = inner;
1739 }
1740 }
1741 else
1742 return -1;
1743
1744 return offset & ((align / BITS_PER_UNIT) - 1);
1745 }
1746
1747 /* Given REF (a MEM) and T, either the type of X or the expression
1748 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1749 if we are making a new object of this type. BITPOS is nonzero if
1750 there is an offset outstanding on T that will be applied later. */
1751
1752 void
1753 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1754 HOST_WIDE_INT bitpos)
1755 {
1756 HOST_WIDE_INT apply_bitpos = 0;
1757 tree type;
1758 struct mem_attrs attrs, *defattrs, *refattrs;
1759 addr_space_t as;
1760
1761 /* It can happen that type_for_mode was given a mode for which there
1762 is no language-level type. In which case it returns NULL, which
1763 we can see here. */
1764 if (t == NULL_TREE)
1765 return;
1766
1767 type = TYPE_P (t) ? t : TREE_TYPE (t);
1768 if (type == error_mark_node)
1769 return;
1770
1771 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1772 wrong answer, as it assumes that DECL_RTL already has the right alias
1773 info. Callers should not set DECL_RTL until after the call to
1774 set_mem_attributes. */
1775 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1776
1777 memset (&attrs, 0, sizeof (attrs));
1778
1779 /* Get the alias set from the expression or type (perhaps using a
1780 front-end routine) and use it. */
1781 attrs.alias = get_alias_set (t);
1782
1783 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1784 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1785
1786 /* Default values from pre-existing memory attributes if present. */
1787 refattrs = MEM_ATTRS (ref);
1788 if (refattrs)
1789 {
1790 /* ??? Can this ever happen? Calling this routine on a MEM that
1791 already carries memory attributes should probably be invalid. */
1792 attrs.expr = refattrs->expr;
1793 attrs.offset_known_p = refattrs->offset_known_p;
1794 attrs.offset = refattrs->offset;
1795 attrs.size_known_p = refattrs->size_known_p;
1796 attrs.size = refattrs->size;
1797 attrs.align = refattrs->align;
1798 }
1799
1800 /* Otherwise, default values from the mode of the MEM reference. */
1801 else
1802 {
1803 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1804 gcc_assert (!defattrs->expr);
1805 gcc_assert (!defattrs->offset_known_p);
1806
1807 /* Respect mode size. */
1808 attrs.size_known_p = defattrs->size_known_p;
1809 attrs.size = defattrs->size;
1810 /* ??? Is this really necessary? We probably should always get
1811 the size from the type below. */
1812
1813 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1814 if T is an object, always compute the object alignment below. */
1815 if (TYPE_P (t))
1816 attrs.align = defattrs->align;
1817 else
1818 attrs.align = BITS_PER_UNIT;
1819 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1820 e.g. if the type carries an alignment attribute. Should we be
1821 able to simply always use TYPE_ALIGN? */
1822 }
1823
1824 /* We can set the alignment from the type if we are making an object or if
1825 this is an INDIRECT_REF. */
1826 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1827 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1828
1829 /* If the size is known, we can set that. */
1830 tree new_size = TYPE_SIZE_UNIT (type);
1831
1832 /* The address-space is that of the type. */
1833 as = TYPE_ADDR_SPACE (type);
1834
1835 /* If T is not a type, we may be able to deduce some more information about
1836 the expression. */
1837 if (! TYPE_P (t))
1838 {
1839 tree base;
1840
1841 if (TREE_THIS_VOLATILE (t))
1842 MEM_VOLATILE_P (ref) = 1;
1843
1844 /* Now remove any conversions: they don't change what the underlying
1845 object is. Likewise for SAVE_EXPR. */
1846 while (CONVERT_EXPR_P (t)
1847 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1848 || TREE_CODE (t) == SAVE_EXPR)
1849 t = TREE_OPERAND (t, 0);
1850
1851 /* Note whether this expression can trap. */
1852 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1853
1854 base = get_base_address (t);
1855 if (base)
1856 {
1857 if (DECL_P (base)
1858 && TREE_READONLY (base)
1859 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1860 && !TREE_THIS_VOLATILE (base))
1861 MEM_READONLY_P (ref) = 1;
1862
1863 /* Mark static const strings readonly as well. */
1864 if (TREE_CODE (base) == STRING_CST
1865 && TREE_READONLY (base)
1866 && TREE_STATIC (base))
1867 MEM_READONLY_P (ref) = 1;
1868
1869 /* Address-space information is on the base object. */
1870 if (TREE_CODE (base) == MEM_REF
1871 || TREE_CODE (base) == TARGET_MEM_REF)
1872 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1873 0))));
1874 else
1875 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1876 }
1877
1878 /* If this expression uses it's parent's alias set, mark it such
1879 that we won't change it. */
1880 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1881 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1882
1883 /* If this is a decl, set the attributes of the MEM from it. */
1884 if (DECL_P (t))
1885 {
1886 attrs.expr = t;
1887 attrs.offset_known_p = true;
1888 attrs.offset = 0;
1889 apply_bitpos = bitpos;
1890 new_size = DECL_SIZE_UNIT (t);
1891 }
1892
1893 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1894 else if (CONSTANT_CLASS_P (t))
1895 ;
1896
1897 /* If this is a field reference, record it. */
1898 else if (TREE_CODE (t) == COMPONENT_REF)
1899 {
1900 attrs.expr = t;
1901 attrs.offset_known_p = true;
1902 attrs.offset = 0;
1903 apply_bitpos = bitpos;
1904 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1905 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1906 }
1907
1908 /* If this is an array reference, look for an outer field reference. */
1909 else if (TREE_CODE (t) == ARRAY_REF)
1910 {
1911 tree off_tree = size_zero_node;
1912 /* We can't modify t, because we use it at the end of the
1913 function. */
1914 tree t2 = t;
1915
1916 do
1917 {
1918 tree index = TREE_OPERAND (t2, 1);
1919 tree low_bound = array_ref_low_bound (t2);
1920 tree unit_size = array_ref_element_size (t2);
1921
1922 /* We assume all arrays have sizes that are a multiple of a byte.
1923 First subtract the lower bound, if any, in the type of the
1924 index, then convert to sizetype and multiply by the size of
1925 the array element. */
1926 if (! integer_zerop (low_bound))
1927 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1928 index, low_bound);
1929
1930 off_tree = size_binop (PLUS_EXPR,
1931 size_binop (MULT_EXPR,
1932 fold_convert (sizetype,
1933 index),
1934 unit_size),
1935 off_tree);
1936 t2 = TREE_OPERAND (t2, 0);
1937 }
1938 while (TREE_CODE (t2) == ARRAY_REF);
1939
1940 if (DECL_P (t2)
1941 || (TREE_CODE (t2) == COMPONENT_REF
1942 /* For trailing arrays t2 doesn't have a size that
1943 covers all valid accesses. */
1944 && ! array_at_struct_end_p (t)))
1945 {
1946 attrs.expr = t2;
1947 attrs.offset_known_p = false;
1948 if (tree_fits_uhwi_p (off_tree))
1949 {
1950 attrs.offset_known_p = true;
1951 attrs.offset = tree_to_uhwi (off_tree);
1952 apply_bitpos = bitpos;
1953 }
1954 }
1955 /* Else do not record a MEM_EXPR. */
1956 }
1957
1958 /* If this is an indirect reference, record it. */
1959 else if (TREE_CODE (t) == MEM_REF
1960 || TREE_CODE (t) == TARGET_MEM_REF)
1961 {
1962 attrs.expr = t;
1963 attrs.offset_known_p = true;
1964 attrs.offset = 0;
1965 apply_bitpos = bitpos;
1966 }
1967
1968 /* Compute the alignment. */
1969 unsigned int obj_align;
1970 unsigned HOST_WIDE_INT obj_bitpos;
1971 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1972 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1973 if (obj_bitpos != 0)
1974 obj_align = least_bit_hwi (obj_bitpos);
1975 attrs.align = MAX (attrs.align, obj_align);
1976 }
1977
1978 if (tree_fits_uhwi_p (new_size))
1979 {
1980 attrs.size_known_p = true;
1981 attrs.size = tree_to_uhwi (new_size);
1982 }
1983
1984 /* If we modified OFFSET based on T, then subtract the outstanding
1985 bit position offset. Similarly, increase the size of the accessed
1986 object to contain the negative offset. */
1987 if (apply_bitpos)
1988 {
1989 gcc_assert (attrs.offset_known_p);
1990 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1991 if (attrs.size_known_p)
1992 attrs.size += apply_bitpos / BITS_PER_UNIT;
1993 }
1994
1995 /* Now set the attributes we computed above. */
1996 attrs.addrspace = as;
1997 set_mem_attrs (ref, &attrs);
1998 }
1999
2000 void
2001 set_mem_attributes (rtx ref, tree t, int objectp)
2002 {
2003 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2004 }
2005
2006 /* Set the alias set of MEM to SET. */
2007
2008 void
2009 set_mem_alias_set (rtx mem, alias_set_type set)
2010 {
2011 struct mem_attrs attrs;
2012
2013 /* If the new and old alias sets don't conflict, something is wrong. */
2014 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2015 attrs = *get_mem_attrs (mem);
2016 attrs.alias = set;
2017 set_mem_attrs (mem, &attrs);
2018 }
2019
2020 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2021
2022 void
2023 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2024 {
2025 struct mem_attrs attrs;
2026
2027 attrs = *get_mem_attrs (mem);
2028 attrs.addrspace = addrspace;
2029 set_mem_attrs (mem, &attrs);
2030 }
2031
2032 /* Set the alignment of MEM to ALIGN bits. */
2033
2034 void
2035 set_mem_align (rtx mem, unsigned int align)
2036 {
2037 struct mem_attrs attrs;
2038
2039 attrs = *get_mem_attrs (mem);
2040 attrs.align = align;
2041 set_mem_attrs (mem, &attrs);
2042 }
2043
2044 /* Set the expr for MEM to EXPR. */
2045
2046 void
2047 set_mem_expr (rtx mem, tree expr)
2048 {
2049 struct mem_attrs attrs;
2050
2051 attrs = *get_mem_attrs (mem);
2052 attrs.expr = expr;
2053 set_mem_attrs (mem, &attrs);
2054 }
2055
2056 /* Set the offset of MEM to OFFSET. */
2057
2058 void
2059 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2060 {
2061 struct mem_attrs attrs;
2062
2063 attrs = *get_mem_attrs (mem);
2064 attrs.offset_known_p = true;
2065 attrs.offset = offset;
2066 set_mem_attrs (mem, &attrs);
2067 }
2068
2069 /* Clear the offset of MEM. */
2070
2071 void
2072 clear_mem_offset (rtx mem)
2073 {
2074 struct mem_attrs attrs;
2075
2076 attrs = *get_mem_attrs (mem);
2077 attrs.offset_known_p = false;
2078 set_mem_attrs (mem, &attrs);
2079 }
2080
2081 /* Set the size of MEM to SIZE. */
2082
2083 void
2084 set_mem_size (rtx mem, HOST_WIDE_INT size)
2085 {
2086 struct mem_attrs attrs;
2087
2088 attrs = *get_mem_attrs (mem);
2089 attrs.size_known_p = true;
2090 attrs.size = size;
2091 set_mem_attrs (mem, &attrs);
2092 }
2093
2094 /* Clear the size of MEM. */
2095
2096 void
2097 clear_mem_size (rtx mem)
2098 {
2099 struct mem_attrs attrs;
2100
2101 attrs = *get_mem_attrs (mem);
2102 attrs.size_known_p = false;
2103 set_mem_attrs (mem, &attrs);
2104 }
2105 \f
2106 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2107 and its address changed to ADDR. (VOIDmode means don't change the mode.
2108 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2109 returned memory location is required to be valid. INPLACE is true if any
2110 changes can be made directly to MEMREF or false if MEMREF must be treated
2111 as immutable.
2112
2113 The memory attributes are not changed. */
2114
2115 static rtx
2116 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2117 bool inplace)
2118 {
2119 addr_space_t as;
2120 rtx new_rtx;
2121
2122 gcc_assert (MEM_P (memref));
2123 as = MEM_ADDR_SPACE (memref);
2124 if (mode == VOIDmode)
2125 mode = GET_MODE (memref);
2126 if (addr == 0)
2127 addr = XEXP (memref, 0);
2128 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2129 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2130 return memref;
2131
2132 /* Don't validate address for LRA. LRA can make the address valid
2133 by itself in most efficient way. */
2134 if (validate && !lra_in_progress)
2135 {
2136 if (reload_in_progress || reload_completed)
2137 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2138 else
2139 addr = memory_address_addr_space (mode, addr, as);
2140 }
2141
2142 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2143 return memref;
2144
2145 if (inplace)
2146 {
2147 XEXP (memref, 0) = addr;
2148 return memref;
2149 }
2150
2151 new_rtx = gen_rtx_MEM (mode, addr);
2152 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2153 return new_rtx;
2154 }
2155
2156 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2157 way we are changing MEMREF, so we only preserve the alias set. */
2158
2159 rtx
2160 change_address (rtx memref, machine_mode mode, rtx addr)
2161 {
2162 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2163 machine_mode mmode = GET_MODE (new_rtx);
2164 struct mem_attrs attrs, *defattrs;
2165
2166 attrs = *get_mem_attrs (memref);
2167 defattrs = mode_mem_attrs[(int) mmode];
2168 attrs.expr = NULL_TREE;
2169 attrs.offset_known_p = false;
2170 attrs.size_known_p = defattrs->size_known_p;
2171 attrs.size = defattrs->size;
2172 attrs.align = defattrs->align;
2173
2174 /* If there are no changes, just return the original memory reference. */
2175 if (new_rtx == memref)
2176 {
2177 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2178 return new_rtx;
2179
2180 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2181 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2182 }
2183
2184 set_mem_attrs (new_rtx, &attrs);
2185 return new_rtx;
2186 }
2187
2188 /* Return a memory reference like MEMREF, but with its mode changed
2189 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2190 nonzero, the memory address is forced to be valid.
2191 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2192 and the caller is responsible for adjusting MEMREF base register.
2193 If ADJUST_OBJECT is zero, the underlying object associated with the
2194 memory reference is left unchanged and the caller is responsible for
2195 dealing with it. Otherwise, if the new memory reference is outside
2196 the underlying object, even partially, then the object is dropped.
2197 SIZE, if nonzero, is the size of an access in cases where MODE
2198 has no inherent size. */
2199
2200 rtx
2201 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2202 int validate, int adjust_address, int adjust_object,
2203 HOST_WIDE_INT size)
2204 {
2205 rtx addr = XEXP (memref, 0);
2206 rtx new_rtx;
2207 scalar_int_mode address_mode;
2208 int pbits;
2209 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2210 unsigned HOST_WIDE_INT max_align;
2211 #ifdef POINTERS_EXTEND_UNSIGNED
2212 scalar_int_mode pointer_mode
2213 = targetm.addr_space.pointer_mode (attrs.addrspace);
2214 #endif
2215
2216 /* VOIDmode means no mode change for change_address_1. */
2217 if (mode == VOIDmode)
2218 mode = GET_MODE (memref);
2219
2220 /* Take the size of non-BLKmode accesses from the mode. */
2221 defattrs = mode_mem_attrs[(int) mode];
2222 if (defattrs->size_known_p)
2223 size = defattrs->size;
2224
2225 /* If there are no changes, just return the original memory reference. */
2226 if (mode == GET_MODE (memref) && !offset
2227 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2228 && (!validate || memory_address_addr_space_p (mode, addr,
2229 attrs.addrspace)))
2230 return memref;
2231
2232 /* ??? Prefer to create garbage instead of creating shared rtl.
2233 This may happen even if offset is nonzero -- consider
2234 (plus (plus reg reg) const_int) -- so do this always. */
2235 addr = copy_rtx (addr);
2236
2237 /* Convert a possibly large offset to a signed value within the
2238 range of the target address space. */
2239 address_mode = get_address_mode (memref);
2240 pbits = GET_MODE_BITSIZE (address_mode);
2241 if (HOST_BITS_PER_WIDE_INT > pbits)
2242 {
2243 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2244 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2245 >> shift);
2246 }
2247
2248 if (adjust_address)
2249 {
2250 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2251 object, we can merge it into the LO_SUM. */
2252 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2253 && offset >= 0
2254 && (unsigned HOST_WIDE_INT) offset
2255 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2256 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2257 plus_constant (address_mode,
2258 XEXP (addr, 1), offset));
2259 #ifdef POINTERS_EXTEND_UNSIGNED
2260 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2261 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2262 the fact that pointers are not allowed to overflow. */
2263 else if (POINTERS_EXTEND_UNSIGNED > 0
2264 && GET_CODE (addr) == ZERO_EXTEND
2265 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2266 && trunc_int_for_mode (offset, pointer_mode) == offset)
2267 addr = gen_rtx_ZERO_EXTEND (address_mode,
2268 plus_constant (pointer_mode,
2269 XEXP (addr, 0), offset));
2270 #endif
2271 else
2272 addr = plus_constant (address_mode, addr, offset);
2273 }
2274
2275 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2276
2277 /* If the address is a REG, change_address_1 rightfully returns memref,
2278 but this would destroy memref's MEM_ATTRS. */
2279 if (new_rtx == memref && offset != 0)
2280 new_rtx = copy_rtx (new_rtx);
2281
2282 /* Conservatively drop the object if we don't know where we start from. */
2283 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2284 {
2285 attrs.expr = NULL_TREE;
2286 attrs.alias = 0;
2287 }
2288
2289 /* Compute the new values of the memory attributes due to this adjustment.
2290 We add the offsets and update the alignment. */
2291 if (attrs.offset_known_p)
2292 {
2293 attrs.offset += offset;
2294
2295 /* Drop the object if the new left end is not within its bounds. */
2296 if (adjust_object && attrs.offset < 0)
2297 {
2298 attrs.expr = NULL_TREE;
2299 attrs.alias = 0;
2300 }
2301 }
2302
2303 /* Compute the new alignment by taking the MIN of the alignment and the
2304 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2305 if zero. */
2306 if (offset != 0)
2307 {
2308 max_align = least_bit_hwi (offset) * BITS_PER_UNIT;
2309 attrs.align = MIN (attrs.align, max_align);
2310 }
2311
2312 if (size)
2313 {
2314 /* Drop the object if the new right end is not within its bounds. */
2315 if (adjust_object && (offset + size) > attrs.size)
2316 {
2317 attrs.expr = NULL_TREE;
2318 attrs.alias = 0;
2319 }
2320 attrs.size_known_p = true;
2321 attrs.size = size;
2322 }
2323 else if (attrs.size_known_p)
2324 {
2325 gcc_assert (!adjust_object);
2326 attrs.size -= offset;
2327 /* ??? The store_by_pieces machinery generates negative sizes,
2328 so don't assert for that here. */
2329 }
2330
2331 set_mem_attrs (new_rtx, &attrs);
2332
2333 return new_rtx;
2334 }
2335
2336 /* Return a memory reference like MEMREF, but with its mode changed
2337 to MODE and its address changed to ADDR, which is assumed to be
2338 MEMREF offset by OFFSET bytes. If VALIDATE is
2339 nonzero, the memory address is forced to be valid. */
2340
2341 rtx
2342 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2343 HOST_WIDE_INT offset, int validate)
2344 {
2345 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2346 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2347 }
2348
2349 /* Return a memory reference like MEMREF, but whose address is changed by
2350 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2351 known to be in OFFSET (possibly 1). */
2352
2353 rtx
2354 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2355 {
2356 rtx new_rtx, addr = XEXP (memref, 0);
2357 machine_mode address_mode;
2358 struct mem_attrs attrs, *defattrs;
2359
2360 attrs = *get_mem_attrs (memref);
2361 address_mode = get_address_mode (memref);
2362 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2363
2364 /* At this point we don't know _why_ the address is invalid. It
2365 could have secondary memory references, multiplies or anything.
2366
2367 However, if we did go and rearrange things, we can wind up not
2368 being able to recognize the magic around pic_offset_table_rtx.
2369 This stuff is fragile, and is yet another example of why it is
2370 bad to expose PIC machinery too early. */
2371 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2372 attrs.addrspace)
2373 && GET_CODE (addr) == PLUS
2374 && XEXP (addr, 0) == pic_offset_table_rtx)
2375 {
2376 addr = force_reg (GET_MODE (addr), addr);
2377 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2378 }
2379
2380 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2381 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2382
2383 /* If there are no changes, just return the original memory reference. */
2384 if (new_rtx == memref)
2385 return new_rtx;
2386
2387 /* Update the alignment to reflect the offset. Reset the offset, which
2388 we don't know. */
2389 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2390 attrs.offset_known_p = false;
2391 attrs.size_known_p = defattrs->size_known_p;
2392 attrs.size = defattrs->size;
2393 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2394 set_mem_attrs (new_rtx, &attrs);
2395 return new_rtx;
2396 }
2397
2398 /* Return a memory reference like MEMREF, but with its address changed to
2399 ADDR. The caller is asserting that the actual piece of memory pointed
2400 to is the same, just the form of the address is being changed, such as
2401 by putting something into a register. INPLACE is true if any changes
2402 can be made directly to MEMREF or false if MEMREF must be treated as
2403 immutable. */
2404
2405 rtx
2406 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2407 {
2408 /* change_address_1 copies the memory attribute structure without change
2409 and that's exactly what we want here. */
2410 update_temp_slot_address (XEXP (memref, 0), addr);
2411 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2412 }
2413
2414 /* Likewise, but the reference is not required to be valid. */
2415
2416 rtx
2417 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2418 {
2419 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2420 }
2421
2422 /* Return a memory reference like MEMREF, but with its mode widened to
2423 MODE and offset by OFFSET. This would be used by targets that e.g.
2424 cannot issue QImode memory operations and have to use SImode memory
2425 operations plus masking logic. */
2426
2427 rtx
2428 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2429 {
2430 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2431 struct mem_attrs attrs;
2432 unsigned int size = GET_MODE_SIZE (mode);
2433
2434 /* If there are no changes, just return the original memory reference. */
2435 if (new_rtx == memref)
2436 return new_rtx;
2437
2438 attrs = *get_mem_attrs (new_rtx);
2439
2440 /* If we don't know what offset we were at within the expression, then
2441 we can't know if we've overstepped the bounds. */
2442 if (! attrs.offset_known_p)
2443 attrs.expr = NULL_TREE;
2444
2445 while (attrs.expr)
2446 {
2447 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2448 {
2449 tree field = TREE_OPERAND (attrs.expr, 1);
2450 tree offset = component_ref_field_offset (attrs.expr);
2451
2452 if (! DECL_SIZE_UNIT (field))
2453 {
2454 attrs.expr = NULL_TREE;
2455 break;
2456 }
2457
2458 /* Is the field at least as large as the access? If so, ok,
2459 otherwise strip back to the containing structure. */
2460 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2461 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2462 && attrs.offset >= 0)
2463 break;
2464
2465 if (! tree_fits_uhwi_p (offset))
2466 {
2467 attrs.expr = NULL_TREE;
2468 break;
2469 }
2470
2471 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2472 attrs.offset += tree_to_uhwi (offset);
2473 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2474 / BITS_PER_UNIT);
2475 }
2476 /* Similarly for the decl. */
2477 else if (DECL_P (attrs.expr)
2478 && DECL_SIZE_UNIT (attrs.expr)
2479 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2480 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2481 && (! attrs.offset_known_p || attrs.offset >= 0))
2482 break;
2483 else
2484 {
2485 /* The widened memory access overflows the expression, which means
2486 that it could alias another expression. Zap it. */
2487 attrs.expr = NULL_TREE;
2488 break;
2489 }
2490 }
2491
2492 if (! attrs.expr)
2493 attrs.offset_known_p = false;
2494
2495 /* The widened memory may alias other stuff, so zap the alias set. */
2496 /* ??? Maybe use get_alias_set on any remaining expression. */
2497 attrs.alias = 0;
2498 attrs.size_known_p = true;
2499 attrs.size = size;
2500 set_mem_attrs (new_rtx, &attrs);
2501 return new_rtx;
2502 }
2503 \f
2504 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2505 static GTY(()) tree spill_slot_decl;
2506
2507 tree
2508 get_spill_slot_decl (bool force_build_p)
2509 {
2510 tree d = spill_slot_decl;
2511 rtx rd;
2512 struct mem_attrs attrs;
2513
2514 if (d || !force_build_p)
2515 return d;
2516
2517 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2518 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2519 DECL_ARTIFICIAL (d) = 1;
2520 DECL_IGNORED_P (d) = 1;
2521 TREE_USED (d) = 1;
2522 spill_slot_decl = d;
2523
2524 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2525 MEM_NOTRAP_P (rd) = 1;
2526 attrs = *mode_mem_attrs[(int) BLKmode];
2527 attrs.alias = new_alias_set ();
2528 attrs.expr = d;
2529 set_mem_attrs (rd, &attrs);
2530 SET_DECL_RTL (d, rd);
2531
2532 return d;
2533 }
2534
2535 /* Given MEM, a result from assign_stack_local, fill in the memory
2536 attributes as appropriate for a register allocator spill slot.
2537 These slots are not aliasable by other memory. We arrange for
2538 them all to use a single MEM_EXPR, so that the aliasing code can
2539 work properly in the case of shared spill slots. */
2540
2541 void
2542 set_mem_attrs_for_spill (rtx mem)
2543 {
2544 struct mem_attrs attrs;
2545 rtx addr;
2546
2547 attrs = *get_mem_attrs (mem);
2548 attrs.expr = get_spill_slot_decl (true);
2549 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2550 attrs.addrspace = ADDR_SPACE_GENERIC;
2551
2552 /* We expect the incoming memory to be of the form:
2553 (mem:MODE (plus (reg sfp) (const_int offset)))
2554 with perhaps the plus missing for offset = 0. */
2555 addr = XEXP (mem, 0);
2556 attrs.offset_known_p = true;
2557 attrs.offset = 0;
2558 if (GET_CODE (addr) == PLUS
2559 && CONST_INT_P (XEXP (addr, 1)))
2560 attrs.offset = INTVAL (XEXP (addr, 1));
2561
2562 set_mem_attrs (mem, &attrs);
2563 MEM_NOTRAP_P (mem) = 1;
2564 }
2565 \f
2566 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2567
2568 rtx_code_label *
2569 gen_label_rtx (void)
2570 {
2571 return as_a <rtx_code_label *> (
2572 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2573 NULL, label_num++, NULL));
2574 }
2575 \f
2576 /* For procedure integration. */
2577
2578 /* Install new pointers to the first and last insns in the chain.
2579 Also, set cur_insn_uid to one higher than the last in use.
2580 Used for an inline-procedure after copying the insn chain. */
2581
2582 void
2583 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2584 {
2585 rtx_insn *insn;
2586
2587 set_first_insn (first);
2588 set_last_insn (last);
2589 cur_insn_uid = 0;
2590
2591 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2592 {
2593 int debug_count = 0;
2594
2595 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2596 cur_debug_insn_uid = 0;
2597
2598 for (insn = first; insn; insn = NEXT_INSN (insn))
2599 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2600 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2601 else
2602 {
2603 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2604 if (DEBUG_INSN_P (insn))
2605 debug_count++;
2606 }
2607
2608 if (debug_count)
2609 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2610 else
2611 cur_debug_insn_uid++;
2612 }
2613 else
2614 for (insn = first; insn; insn = NEXT_INSN (insn))
2615 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2616
2617 cur_insn_uid++;
2618 }
2619 \f
2620 /* Go through all the RTL insn bodies and copy any invalid shared
2621 structure. This routine should only be called once. */
2622
2623 static void
2624 unshare_all_rtl_1 (rtx_insn *insn)
2625 {
2626 /* Unshare just about everything else. */
2627 unshare_all_rtl_in_chain (insn);
2628
2629 /* Make sure the addresses of stack slots found outside the insn chain
2630 (such as, in DECL_RTL of a variable) are not shared
2631 with the insn chain.
2632
2633 This special care is necessary when the stack slot MEM does not
2634 actually appear in the insn chain. If it does appear, its address
2635 is unshared from all else at that point. */
2636 unsigned int i;
2637 rtx temp;
2638 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2639 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2640 }
2641
2642 /* Go through all the RTL insn bodies and copy any invalid shared
2643 structure, again. This is a fairly expensive thing to do so it
2644 should be done sparingly. */
2645
2646 void
2647 unshare_all_rtl_again (rtx_insn *insn)
2648 {
2649 rtx_insn *p;
2650 tree decl;
2651
2652 for (p = insn; p; p = NEXT_INSN (p))
2653 if (INSN_P (p))
2654 {
2655 reset_used_flags (PATTERN (p));
2656 reset_used_flags (REG_NOTES (p));
2657 if (CALL_P (p))
2658 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2659 }
2660
2661 /* Make sure that virtual stack slots are not shared. */
2662 set_used_decls (DECL_INITIAL (cfun->decl));
2663
2664 /* Make sure that virtual parameters are not shared. */
2665 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2666 set_used_flags (DECL_RTL (decl));
2667
2668 rtx temp;
2669 unsigned int i;
2670 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2671 reset_used_flags (temp);
2672
2673 unshare_all_rtl_1 (insn);
2674 }
2675
2676 unsigned int
2677 unshare_all_rtl (void)
2678 {
2679 unshare_all_rtl_1 (get_insns ());
2680
2681 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2682 {
2683 if (DECL_RTL_SET_P (decl))
2684 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2685 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2686 }
2687
2688 return 0;
2689 }
2690
2691
2692 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2693 Recursively does the same for subexpressions. */
2694
2695 static void
2696 verify_rtx_sharing (rtx orig, rtx insn)
2697 {
2698 rtx x = orig;
2699 int i;
2700 enum rtx_code code;
2701 const char *format_ptr;
2702
2703 if (x == 0)
2704 return;
2705
2706 code = GET_CODE (x);
2707
2708 /* These types may be freely shared. */
2709
2710 switch (code)
2711 {
2712 case REG:
2713 case DEBUG_EXPR:
2714 case VALUE:
2715 CASE_CONST_ANY:
2716 case SYMBOL_REF:
2717 case LABEL_REF:
2718 case CODE_LABEL:
2719 case PC:
2720 case CC0:
2721 case RETURN:
2722 case SIMPLE_RETURN:
2723 case SCRATCH:
2724 /* SCRATCH must be shared because they represent distinct values. */
2725 return;
2726 case CLOBBER:
2727 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2728 clobbers or clobbers of hard registers that originated as pseudos.
2729 This is needed to allow safe register renaming. */
2730 if (REG_P (XEXP (x, 0))
2731 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2732 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2733 return;
2734 break;
2735
2736 case CONST:
2737 if (shared_const_p (orig))
2738 return;
2739 break;
2740
2741 case MEM:
2742 /* A MEM is allowed to be shared if its address is constant. */
2743 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2744 || reload_completed || reload_in_progress)
2745 return;
2746
2747 break;
2748
2749 default:
2750 break;
2751 }
2752
2753 /* This rtx may not be shared. If it has already been seen,
2754 replace it with a copy of itself. */
2755 if (flag_checking && RTX_FLAG (x, used))
2756 {
2757 error ("invalid rtl sharing found in the insn");
2758 debug_rtx (insn);
2759 error ("shared rtx");
2760 debug_rtx (x);
2761 internal_error ("internal consistency failure");
2762 }
2763 gcc_assert (!RTX_FLAG (x, used));
2764
2765 RTX_FLAG (x, used) = 1;
2766
2767 /* Now scan the subexpressions recursively. */
2768
2769 format_ptr = GET_RTX_FORMAT (code);
2770
2771 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2772 {
2773 switch (*format_ptr++)
2774 {
2775 case 'e':
2776 verify_rtx_sharing (XEXP (x, i), insn);
2777 break;
2778
2779 case 'E':
2780 if (XVEC (x, i) != NULL)
2781 {
2782 int j;
2783 int len = XVECLEN (x, i);
2784
2785 for (j = 0; j < len; j++)
2786 {
2787 /* We allow sharing of ASM_OPERANDS inside single
2788 instruction. */
2789 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2790 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2791 == ASM_OPERANDS))
2792 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2793 else
2794 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2795 }
2796 }
2797 break;
2798 }
2799 }
2800 return;
2801 }
2802
2803 /* Reset used-flags for INSN. */
2804
2805 static void
2806 reset_insn_used_flags (rtx insn)
2807 {
2808 gcc_assert (INSN_P (insn));
2809 reset_used_flags (PATTERN (insn));
2810 reset_used_flags (REG_NOTES (insn));
2811 if (CALL_P (insn))
2812 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2813 }
2814
2815 /* Go through all the RTL insn bodies and clear all the USED bits. */
2816
2817 static void
2818 reset_all_used_flags (void)
2819 {
2820 rtx_insn *p;
2821
2822 for (p = get_insns (); p; p = NEXT_INSN (p))
2823 if (INSN_P (p))
2824 {
2825 rtx pat = PATTERN (p);
2826 if (GET_CODE (pat) != SEQUENCE)
2827 reset_insn_used_flags (p);
2828 else
2829 {
2830 gcc_assert (REG_NOTES (p) == NULL);
2831 for (int i = 0; i < XVECLEN (pat, 0); i++)
2832 {
2833 rtx insn = XVECEXP (pat, 0, i);
2834 if (INSN_P (insn))
2835 reset_insn_used_flags (insn);
2836 }
2837 }
2838 }
2839 }
2840
2841 /* Verify sharing in INSN. */
2842
2843 static void
2844 verify_insn_sharing (rtx insn)
2845 {
2846 gcc_assert (INSN_P (insn));
2847 verify_rtx_sharing (PATTERN (insn), insn);
2848 verify_rtx_sharing (REG_NOTES (insn), insn);
2849 if (CALL_P (insn))
2850 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2851 }
2852
2853 /* Go through all the RTL insn bodies and check that there is no unexpected
2854 sharing in between the subexpressions. */
2855
2856 DEBUG_FUNCTION void
2857 verify_rtl_sharing (void)
2858 {
2859 rtx_insn *p;
2860
2861 timevar_push (TV_VERIFY_RTL_SHARING);
2862
2863 reset_all_used_flags ();
2864
2865 for (p = get_insns (); p; p = NEXT_INSN (p))
2866 if (INSN_P (p))
2867 {
2868 rtx pat = PATTERN (p);
2869 if (GET_CODE (pat) != SEQUENCE)
2870 verify_insn_sharing (p);
2871 else
2872 for (int i = 0; i < XVECLEN (pat, 0); i++)
2873 {
2874 rtx insn = XVECEXP (pat, 0, i);
2875 if (INSN_P (insn))
2876 verify_insn_sharing (insn);
2877 }
2878 }
2879
2880 reset_all_used_flags ();
2881
2882 timevar_pop (TV_VERIFY_RTL_SHARING);
2883 }
2884
2885 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2886 Assumes the mark bits are cleared at entry. */
2887
2888 void
2889 unshare_all_rtl_in_chain (rtx_insn *insn)
2890 {
2891 for (; insn; insn = NEXT_INSN (insn))
2892 if (INSN_P (insn))
2893 {
2894 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2895 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2896 if (CALL_P (insn))
2897 CALL_INSN_FUNCTION_USAGE (insn)
2898 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2899 }
2900 }
2901
2902 /* Go through all virtual stack slots of a function and mark them as
2903 shared. We never replace the DECL_RTLs themselves with a copy,
2904 but expressions mentioned into a DECL_RTL cannot be shared with
2905 expressions in the instruction stream.
2906
2907 Note that reload may convert pseudo registers into memories in-place.
2908 Pseudo registers are always shared, but MEMs never are. Thus if we
2909 reset the used flags on MEMs in the instruction stream, we must set
2910 them again on MEMs that appear in DECL_RTLs. */
2911
2912 static void
2913 set_used_decls (tree blk)
2914 {
2915 tree t;
2916
2917 /* Mark decls. */
2918 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2919 if (DECL_RTL_SET_P (t))
2920 set_used_flags (DECL_RTL (t));
2921
2922 /* Now process sub-blocks. */
2923 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2924 set_used_decls (t);
2925 }
2926
2927 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2928 Recursively does the same for subexpressions. Uses
2929 copy_rtx_if_shared_1 to reduce stack space. */
2930
2931 rtx
2932 copy_rtx_if_shared (rtx orig)
2933 {
2934 copy_rtx_if_shared_1 (&orig);
2935 return orig;
2936 }
2937
2938 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2939 use. Recursively does the same for subexpressions. */
2940
2941 static void
2942 copy_rtx_if_shared_1 (rtx *orig1)
2943 {
2944 rtx x;
2945 int i;
2946 enum rtx_code code;
2947 rtx *last_ptr;
2948 const char *format_ptr;
2949 int copied = 0;
2950 int length;
2951
2952 /* Repeat is used to turn tail-recursion into iteration. */
2953 repeat:
2954 x = *orig1;
2955
2956 if (x == 0)
2957 return;
2958
2959 code = GET_CODE (x);
2960
2961 /* These types may be freely shared. */
2962
2963 switch (code)
2964 {
2965 case REG:
2966 case DEBUG_EXPR:
2967 case VALUE:
2968 CASE_CONST_ANY:
2969 case SYMBOL_REF:
2970 case LABEL_REF:
2971 case CODE_LABEL:
2972 case PC:
2973 case CC0:
2974 case RETURN:
2975 case SIMPLE_RETURN:
2976 case SCRATCH:
2977 /* SCRATCH must be shared because they represent distinct values. */
2978 return;
2979 case CLOBBER:
2980 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2981 clobbers or clobbers of hard registers that originated as pseudos.
2982 This is needed to allow safe register renaming. */
2983 if (REG_P (XEXP (x, 0))
2984 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2985 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2986 return;
2987 break;
2988
2989 case CONST:
2990 if (shared_const_p (x))
2991 return;
2992 break;
2993
2994 case DEBUG_INSN:
2995 case INSN:
2996 case JUMP_INSN:
2997 case CALL_INSN:
2998 case NOTE:
2999 case BARRIER:
3000 /* The chain of insns is not being copied. */
3001 return;
3002
3003 default:
3004 break;
3005 }
3006
3007 /* This rtx may not be shared. If it has already been seen,
3008 replace it with a copy of itself. */
3009
3010 if (RTX_FLAG (x, used))
3011 {
3012 x = shallow_copy_rtx (x);
3013 copied = 1;
3014 }
3015 RTX_FLAG (x, used) = 1;
3016
3017 /* Now scan the subexpressions recursively.
3018 We can store any replaced subexpressions directly into X
3019 since we know X is not shared! Any vectors in X
3020 must be copied if X was copied. */
3021
3022 format_ptr = GET_RTX_FORMAT (code);
3023 length = GET_RTX_LENGTH (code);
3024 last_ptr = NULL;
3025
3026 for (i = 0; i < length; i++)
3027 {
3028 switch (*format_ptr++)
3029 {
3030 case 'e':
3031 if (last_ptr)
3032 copy_rtx_if_shared_1 (last_ptr);
3033 last_ptr = &XEXP (x, i);
3034 break;
3035
3036 case 'E':
3037 if (XVEC (x, i) != NULL)
3038 {
3039 int j;
3040 int len = XVECLEN (x, i);
3041
3042 /* Copy the vector iff I copied the rtx and the length
3043 is nonzero. */
3044 if (copied && len > 0)
3045 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3046
3047 /* Call recursively on all inside the vector. */
3048 for (j = 0; j < len; j++)
3049 {
3050 if (last_ptr)
3051 copy_rtx_if_shared_1 (last_ptr);
3052 last_ptr = &XVECEXP (x, i, j);
3053 }
3054 }
3055 break;
3056 }
3057 }
3058 *orig1 = x;
3059 if (last_ptr)
3060 {
3061 orig1 = last_ptr;
3062 goto repeat;
3063 }
3064 return;
3065 }
3066
3067 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3068
3069 static void
3070 mark_used_flags (rtx x, int flag)
3071 {
3072 int i, j;
3073 enum rtx_code code;
3074 const char *format_ptr;
3075 int length;
3076
3077 /* Repeat is used to turn tail-recursion into iteration. */
3078 repeat:
3079 if (x == 0)
3080 return;
3081
3082 code = GET_CODE (x);
3083
3084 /* These types may be freely shared so we needn't do any resetting
3085 for them. */
3086
3087 switch (code)
3088 {
3089 case REG:
3090 case DEBUG_EXPR:
3091 case VALUE:
3092 CASE_CONST_ANY:
3093 case SYMBOL_REF:
3094 case CODE_LABEL:
3095 case PC:
3096 case CC0:
3097 case RETURN:
3098 case SIMPLE_RETURN:
3099 return;
3100
3101 case DEBUG_INSN:
3102 case INSN:
3103 case JUMP_INSN:
3104 case CALL_INSN:
3105 case NOTE:
3106 case LABEL_REF:
3107 case BARRIER:
3108 /* The chain of insns is not being copied. */
3109 return;
3110
3111 default:
3112 break;
3113 }
3114
3115 RTX_FLAG (x, used) = flag;
3116
3117 format_ptr = GET_RTX_FORMAT (code);
3118 length = GET_RTX_LENGTH (code);
3119
3120 for (i = 0; i < length; i++)
3121 {
3122 switch (*format_ptr++)
3123 {
3124 case 'e':
3125 if (i == length-1)
3126 {
3127 x = XEXP (x, i);
3128 goto repeat;
3129 }
3130 mark_used_flags (XEXP (x, i), flag);
3131 break;
3132
3133 case 'E':
3134 for (j = 0; j < XVECLEN (x, i); j++)
3135 mark_used_flags (XVECEXP (x, i, j), flag);
3136 break;
3137 }
3138 }
3139 }
3140
3141 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3142 to look for shared sub-parts. */
3143
3144 void
3145 reset_used_flags (rtx x)
3146 {
3147 mark_used_flags (x, 0);
3148 }
3149
3150 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3151 to look for shared sub-parts. */
3152
3153 void
3154 set_used_flags (rtx x)
3155 {
3156 mark_used_flags (x, 1);
3157 }
3158 \f
3159 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3160 Return X or the rtx for the pseudo reg the value of X was copied into.
3161 OTHER must be valid as a SET_DEST. */
3162
3163 rtx
3164 make_safe_from (rtx x, rtx other)
3165 {
3166 while (1)
3167 switch (GET_CODE (other))
3168 {
3169 case SUBREG:
3170 other = SUBREG_REG (other);
3171 break;
3172 case STRICT_LOW_PART:
3173 case SIGN_EXTEND:
3174 case ZERO_EXTEND:
3175 other = XEXP (other, 0);
3176 break;
3177 default:
3178 goto done;
3179 }
3180 done:
3181 if ((MEM_P (other)
3182 && ! CONSTANT_P (x)
3183 && !REG_P (x)
3184 && GET_CODE (x) != SUBREG)
3185 || (REG_P (other)
3186 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3187 || reg_mentioned_p (other, x))))
3188 {
3189 rtx temp = gen_reg_rtx (GET_MODE (x));
3190 emit_move_insn (temp, x);
3191 return temp;
3192 }
3193 return x;
3194 }
3195 \f
3196 /* Emission of insns (adding them to the doubly-linked list). */
3197
3198 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3199
3200 rtx_insn *
3201 get_last_insn_anywhere (void)
3202 {
3203 struct sequence_stack *seq;
3204 for (seq = get_current_sequence (); seq; seq = seq->next)
3205 if (seq->last != 0)
3206 return seq->last;
3207 return 0;
3208 }
3209
3210 /* Return the first nonnote insn emitted in current sequence or current
3211 function. This routine looks inside SEQUENCEs. */
3212
3213 rtx_insn *
3214 get_first_nonnote_insn (void)
3215 {
3216 rtx_insn *insn = get_insns ();
3217
3218 if (insn)
3219 {
3220 if (NOTE_P (insn))
3221 for (insn = next_insn (insn);
3222 insn && NOTE_P (insn);
3223 insn = next_insn (insn))
3224 continue;
3225 else
3226 {
3227 if (NONJUMP_INSN_P (insn)
3228 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3229 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3230 }
3231 }
3232
3233 return insn;
3234 }
3235
3236 /* Return the last nonnote insn emitted in current sequence or current
3237 function. This routine looks inside SEQUENCEs. */
3238
3239 rtx_insn *
3240 get_last_nonnote_insn (void)
3241 {
3242 rtx_insn *insn = get_last_insn ();
3243
3244 if (insn)
3245 {
3246 if (NOTE_P (insn))
3247 for (insn = previous_insn (insn);
3248 insn && NOTE_P (insn);
3249 insn = previous_insn (insn))
3250 continue;
3251 else
3252 {
3253 if (NONJUMP_INSN_P (insn))
3254 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3255 insn = seq->insn (seq->len () - 1);
3256 }
3257 }
3258
3259 return insn;
3260 }
3261
3262 /* Return the number of actual (non-debug) insns emitted in this
3263 function. */
3264
3265 int
3266 get_max_insn_count (void)
3267 {
3268 int n = cur_insn_uid;
3269
3270 /* The table size must be stable across -g, to avoid codegen
3271 differences due to debug insns, and not be affected by
3272 -fmin-insn-uid, to avoid excessive table size and to simplify
3273 debugging of -fcompare-debug failures. */
3274 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3275 n -= cur_debug_insn_uid;
3276 else
3277 n -= MIN_NONDEBUG_INSN_UID;
3278
3279 return n;
3280 }
3281
3282 \f
3283 /* Return the next insn. If it is a SEQUENCE, return the first insn
3284 of the sequence. */
3285
3286 rtx_insn *
3287 next_insn (rtx_insn *insn)
3288 {
3289 if (insn)
3290 {
3291 insn = NEXT_INSN (insn);
3292 if (insn && NONJUMP_INSN_P (insn)
3293 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3294 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3295 }
3296
3297 return insn;
3298 }
3299
3300 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3301 of the sequence. */
3302
3303 rtx_insn *
3304 previous_insn (rtx_insn *insn)
3305 {
3306 if (insn)
3307 {
3308 insn = PREV_INSN (insn);
3309 if (insn && NONJUMP_INSN_P (insn))
3310 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3311 insn = seq->insn (seq->len () - 1);
3312 }
3313
3314 return insn;
3315 }
3316
3317 /* Return the next insn after INSN that is not a NOTE. This routine does not
3318 look inside SEQUENCEs. */
3319
3320 rtx_insn *
3321 next_nonnote_insn (rtx_insn *insn)
3322 {
3323 while (insn)
3324 {
3325 insn = NEXT_INSN (insn);
3326 if (insn == 0 || !NOTE_P (insn))
3327 break;
3328 }
3329
3330 return insn;
3331 }
3332
3333 /* Return the next insn after INSN that is not a NOTE, but stop the
3334 search before we enter another basic block. This routine does not
3335 look inside SEQUENCEs. */
3336
3337 rtx_insn *
3338 next_nonnote_insn_bb (rtx_insn *insn)
3339 {
3340 while (insn)
3341 {
3342 insn = NEXT_INSN (insn);
3343 if (insn == 0 || !NOTE_P (insn))
3344 break;
3345 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3346 return NULL;
3347 }
3348
3349 return insn;
3350 }
3351
3352 /* Return the previous insn before INSN that is not a NOTE. This routine does
3353 not look inside SEQUENCEs. */
3354
3355 rtx_insn *
3356 prev_nonnote_insn (rtx_insn *insn)
3357 {
3358 while (insn)
3359 {
3360 insn = PREV_INSN (insn);
3361 if (insn == 0 || !NOTE_P (insn))
3362 break;
3363 }
3364
3365 return insn;
3366 }
3367
3368 /* Return the previous insn before INSN that is not a NOTE, but stop
3369 the search before we enter another basic block. This routine does
3370 not look inside SEQUENCEs. */
3371
3372 rtx_insn *
3373 prev_nonnote_insn_bb (rtx_insn *insn)
3374 {
3375
3376 while (insn)
3377 {
3378 insn = PREV_INSN (insn);
3379 if (insn == 0 || !NOTE_P (insn))
3380 break;
3381 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3382 return NULL;
3383 }
3384
3385 return insn;
3386 }
3387
3388 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3389 routine does not look inside SEQUENCEs. */
3390
3391 rtx_insn *
3392 next_nondebug_insn (rtx_insn *insn)
3393 {
3394 while (insn)
3395 {
3396 insn = NEXT_INSN (insn);
3397 if (insn == 0 || !DEBUG_INSN_P (insn))
3398 break;
3399 }
3400
3401 return insn;
3402 }
3403
3404 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3405 This routine does not look inside SEQUENCEs. */
3406
3407 rtx_insn *
3408 prev_nondebug_insn (rtx_insn *insn)
3409 {
3410 while (insn)
3411 {
3412 insn = PREV_INSN (insn);
3413 if (insn == 0 || !DEBUG_INSN_P (insn))
3414 break;
3415 }
3416
3417 return insn;
3418 }
3419
3420 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3421 This routine does not look inside SEQUENCEs. */
3422
3423 rtx_insn *
3424 next_nonnote_nondebug_insn (rtx_insn *insn)
3425 {
3426 while (insn)
3427 {
3428 insn = NEXT_INSN (insn);
3429 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3430 break;
3431 }
3432
3433 return insn;
3434 }
3435
3436 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3437 This routine does not look inside SEQUENCEs. */
3438
3439 rtx_insn *
3440 prev_nonnote_nondebug_insn (rtx_insn *insn)
3441 {
3442 while (insn)
3443 {
3444 insn = PREV_INSN (insn);
3445 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3446 break;
3447 }
3448
3449 return insn;
3450 }
3451
3452 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3453 or 0, if there is none. This routine does not look inside
3454 SEQUENCEs. */
3455
3456 rtx_insn *
3457 next_real_insn (rtx uncast_insn)
3458 {
3459 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3460
3461 while (insn)
3462 {
3463 insn = NEXT_INSN (insn);
3464 if (insn == 0 || INSN_P (insn))
3465 break;
3466 }
3467
3468 return insn;
3469 }
3470
3471 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3472 or 0, if there is none. This routine does not look inside
3473 SEQUENCEs. */
3474
3475 rtx_insn *
3476 prev_real_insn (rtx_insn *insn)
3477 {
3478 while (insn)
3479 {
3480 insn = PREV_INSN (insn);
3481 if (insn == 0 || INSN_P (insn))
3482 break;
3483 }
3484
3485 return insn;
3486 }
3487
3488 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3489 This routine does not look inside SEQUENCEs. */
3490
3491 rtx_call_insn *
3492 last_call_insn (void)
3493 {
3494 rtx_insn *insn;
3495
3496 for (insn = get_last_insn ();
3497 insn && !CALL_P (insn);
3498 insn = PREV_INSN (insn))
3499 ;
3500
3501 return safe_as_a <rtx_call_insn *> (insn);
3502 }
3503
3504 /* Find the next insn after INSN that really does something. This routine
3505 does not look inside SEQUENCEs. After reload this also skips over
3506 standalone USE and CLOBBER insn. */
3507
3508 int
3509 active_insn_p (const rtx_insn *insn)
3510 {
3511 return (CALL_P (insn) || JUMP_P (insn)
3512 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3513 || (NONJUMP_INSN_P (insn)
3514 && (! reload_completed
3515 || (GET_CODE (PATTERN (insn)) != USE
3516 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3517 }
3518
3519 rtx_insn *
3520 next_active_insn (rtx_insn *insn)
3521 {
3522 while (insn)
3523 {
3524 insn = NEXT_INSN (insn);
3525 if (insn == 0 || active_insn_p (insn))
3526 break;
3527 }
3528
3529 return insn;
3530 }
3531
3532 /* Find the last insn before INSN that really does something. This routine
3533 does not look inside SEQUENCEs. After reload this also skips over
3534 standalone USE and CLOBBER insn. */
3535
3536 rtx_insn *
3537 prev_active_insn (rtx_insn *insn)
3538 {
3539 while (insn)
3540 {
3541 insn = PREV_INSN (insn);
3542 if (insn == 0 || active_insn_p (insn))
3543 break;
3544 }
3545
3546 return insn;
3547 }
3548 \f
3549 /* Return the next insn that uses CC0 after INSN, which is assumed to
3550 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3551 applied to the result of this function should yield INSN).
3552
3553 Normally, this is simply the next insn. However, if a REG_CC_USER note
3554 is present, it contains the insn that uses CC0.
3555
3556 Return 0 if we can't find the insn. */
3557
3558 rtx_insn *
3559 next_cc0_user (rtx_insn *insn)
3560 {
3561 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3562
3563 if (note)
3564 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3565
3566 insn = next_nonnote_insn (insn);
3567 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3568 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3569
3570 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3571 return insn;
3572
3573 return 0;
3574 }
3575
3576 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3577 note, it is the previous insn. */
3578
3579 rtx_insn *
3580 prev_cc0_setter (rtx_insn *insn)
3581 {
3582 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3583
3584 if (note)
3585 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3586
3587 insn = prev_nonnote_insn (insn);
3588 gcc_assert (sets_cc0_p (PATTERN (insn)));
3589
3590 return insn;
3591 }
3592
3593 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3594
3595 static int
3596 find_auto_inc (const_rtx x, const_rtx reg)
3597 {
3598 subrtx_iterator::array_type array;
3599 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3600 {
3601 const_rtx x = *iter;
3602 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3603 && rtx_equal_p (reg, XEXP (x, 0)))
3604 return true;
3605 }
3606 return false;
3607 }
3608
3609 /* Increment the label uses for all labels present in rtx. */
3610
3611 static void
3612 mark_label_nuses (rtx x)
3613 {
3614 enum rtx_code code;
3615 int i, j;
3616 const char *fmt;
3617
3618 code = GET_CODE (x);
3619 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3620 LABEL_NUSES (label_ref_label (x))++;
3621
3622 fmt = GET_RTX_FORMAT (code);
3623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3624 {
3625 if (fmt[i] == 'e')
3626 mark_label_nuses (XEXP (x, i));
3627 else if (fmt[i] == 'E')
3628 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3629 mark_label_nuses (XVECEXP (x, i, j));
3630 }
3631 }
3632
3633 \f
3634 /* Try splitting insns that can be split for better scheduling.
3635 PAT is the pattern which might split.
3636 TRIAL is the insn providing PAT.
3637 LAST is nonzero if we should return the last insn of the sequence produced.
3638
3639 If this routine succeeds in splitting, it returns the first or last
3640 replacement insn depending on the value of LAST. Otherwise, it
3641 returns TRIAL. If the insn to be returned can be split, it will be. */
3642
3643 rtx_insn *
3644 try_split (rtx pat, rtx_insn *trial, int last)
3645 {
3646 rtx_insn *before, *after;
3647 rtx note;
3648 rtx_insn *seq, *tem;
3649 profile_probability probability;
3650 rtx_insn *insn_last, *insn;
3651 int njumps = 0;
3652 rtx_insn *call_insn = NULL;
3653
3654 /* We're not good at redistributing frame information. */
3655 if (RTX_FRAME_RELATED_P (trial))
3656 return trial;
3657
3658 if (any_condjump_p (trial)
3659 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3660 split_branch_probability
3661 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3662 else
3663 split_branch_probability = profile_probability::uninitialized ();
3664
3665 probability = split_branch_probability;
3666
3667 seq = split_insns (pat, trial);
3668
3669 split_branch_probability = profile_probability::uninitialized ();
3670
3671 if (!seq)
3672 return trial;
3673
3674 /* Avoid infinite loop if any insn of the result matches
3675 the original pattern. */
3676 insn_last = seq;
3677 while (1)
3678 {
3679 if (INSN_P (insn_last)
3680 && rtx_equal_p (PATTERN (insn_last), pat))
3681 return trial;
3682 if (!NEXT_INSN (insn_last))
3683 break;
3684 insn_last = NEXT_INSN (insn_last);
3685 }
3686
3687 /* We will be adding the new sequence to the function. The splitters
3688 may have introduced invalid RTL sharing, so unshare the sequence now. */
3689 unshare_all_rtl_in_chain (seq);
3690
3691 /* Mark labels and copy flags. */
3692 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3693 {
3694 if (JUMP_P (insn))
3695 {
3696 if (JUMP_P (trial))
3697 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3698 mark_jump_label (PATTERN (insn), insn, 0);
3699 njumps++;
3700 if (probability.initialized_p ()
3701 && any_condjump_p (insn)
3702 && !find_reg_note (insn, REG_BR_PROB, 0))
3703 {
3704 /* We can preserve the REG_BR_PROB notes only if exactly
3705 one jump is created, otherwise the machine description
3706 is responsible for this step using
3707 split_branch_probability variable. */
3708 gcc_assert (njumps == 1);
3709 add_reg_br_prob_note (insn, probability);
3710 }
3711 }
3712 }
3713
3714 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3715 in SEQ and copy any additional information across. */
3716 if (CALL_P (trial))
3717 {
3718 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3719 if (CALL_P (insn))
3720 {
3721 rtx_insn *next;
3722 rtx *p;
3723
3724 gcc_assert (call_insn == NULL_RTX);
3725 call_insn = insn;
3726
3727 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3728 target may have explicitly specified. */
3729 p = &CALL_INSN_FUNCTION_USAGE (insn);
3730 while (*p)
3731 p = &XEXP (*p, 1);
3732 *p = CALL_INSN_FUNCTION_USAGE (trial);
3733
3734 /* If the old call was a sibling call, the new one must
3735 be too. */
3736 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3737
3738 /* If the new call is the last instruction in the sequence,
3739 it will effectively replace the old call in-situ. Otherwise
3740 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3741 so that it comes immediately after the new call. */
3742 if (NEXT_INSN (insn))
3743 for (next = NEXT_INSN (trial);
3744 next && NOTE_P (next);
3745 next = NEXT_INSN (next))
3746 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3747 {
3748 remove_insn (next);
3749 add_insn_after (next, insn, NULL);
3750 break;
3751 }
3752 }
3753 }
3754
3755 /* Copy notes, particularly those related to the CFG. */
3756 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3757 {
3758 switch (REG_NOTE_KIND (note))
3759 {
3760 case REG_EH_REGION:
3761 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3762 break;
3763
3764 case REG_NORETURN:
3765 case REG_SETJMP:
3766 case REG_TM:
3767 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3768 {
3769 if (CALL_P (insn))
3770 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3771 }
3772 break;
3773
3774 case REG_NON_LOCAL_GOTO:
3775 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3776 {
3777 if (JUMP_P (insn))
3778 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3779 }
3780 break;
3781
3782 case REG_INC:
3783 if (!AUTO_INC_DEC)
3784 break;
3785
3786 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3787 {
3788 rtx reg = XEXP (note, 0);
3789 if (!FIND_REG_INC_NOTE (insn, reg)
3790 && find_auto_inc (PATTERN (insn), reg))
3791 add_reg_note (insn, REG_INC, reg);
3792 }
3793 break;
3794
3795 case REG_ARGS_SIZE:
3796 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3797 break;
3798
3799 case REG_CALL_DECL:
3800 gcc_assert (call_insn != NULL_RTX);
3801 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3802 break;
3803
3804 default:
3805 break;
3806 }
3807 }
3808
3809 /* If there are LABELS inside the split insns increment the
3810 usage count so we don't delete the label. */
3811 if (INSN_P (trial))
3812 {
3813 insn = insn_last;
3814 while (insn != NULL_RTX)
3815 {
3816 /* JUMP_P insns have already been "marked" above. */
3817 if (NONJUMP_INSN_P (insn))
3818 mark_label_nuses (PATTERN (insn));
3819
3820 insn = PREV_INSN (insn);
3821 }
3822 }
3823
3824 before = PREV_INSN (trial);
3825 after = NEXT_INSN (trial);
3826
3827 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3828
3829 delete_insn (trial);
3830
3831 /* Recursively call try_split for each new insn created; by the
3832 time control returns here that insn will be fully split, so
3833 set LAST and continue from the insn after the one returned.
3834 We can't use next_active_insn here since AFTER may be a note.
3835 Ignore deleted insns, which can be occur if not optimizing. */
3836 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3837 if (! tem->deleted () && INSN_P (tem))
3838 tem = try_split (PATTERN (tem), tem, 1);
3839
3840 /* Return either the first or the last insn, depending on which was
3841 requested. */
3842 return last
3843 ? (after ? PREV_INSN (after) : get_last_insn ())
3844 : NEXT_INSN (before);
3845 }
3846 \f
3847 /* Make and return an INSN rtx, initializing all its slots.
3848 Store PATTERN in the pattern slots. */
3849
3850 rtx_insn *
3851 make_insn_raw (rtx pattern)
3852 {
3853 rtx_insn *insn;
3854
3855 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3856
3857 INSN_UID (insn) = cur_insn_uid++;
3858 PATTERN (insn) = pattern;
3859 INSN_CODE (insn) = -1;
3860 REG_NOTES (insn) = NULL;
3861 INSN_LOCATION (insn) = curr_insn_location ();
3862 BLOCK_FOR_INSN (insn) = NULL;
3863
3864 #ifdef ENABLE_RTL_CHECKING
3865 if (insn
3866 && INSN_P (insn)
3867 && (returnjump_p (insn)
3868 || (GET_CODE (insn) == SET
3869 && SET_DEST (insn) == pc_rtx)))
3870 {
3871 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3872 debug_rtx (insn);
3873 }
3874 #endif
3875
3876 return insn;
3877 }
3878
3879 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3880
3881 static rtx_insn *
3882 make_debug_insn_raw (rtx pattern)
3883 {
3884 rtx_debug_insn *insn;
3885
3886 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3887 INSN_UID (insn) = cur_debug_insn_uid++;
3888 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3889 INSN_UID (insn) = cur_insn_uid++;
3890
3891 PATTERN (insn) = pattern;
3892 INSN_CODE (insn) = -1;
3893 REG_NOTES (insn) = NULL;
3894 INSN_LOCATION (insn) = curr_insn_location ();
3895 BLOCK_FOR_INSN (insn) = NULL;
3896
3897 return insn;
3898 }
3899
3900 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3901
3902 static rtx_insn *
3903 make_jump_insn_raw (rtx pattern)
3904 {
3905 rtx_jump_insn *insn;
3906
3907 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3908 INSN_UID (insn) = cur_insn_uid++;
3909
3910 PATTERN (insn) = pattern;
3911 INSN_CODE (insn) = -1;
3912 REG_NOTES (insn) = NULL;
3913 JUMP_LABEL (insn) = NULL;
3914 INSN_LOCATION (insn) = curr_insn_location ();
3915 BLOCK_FOR_INSN (insn) = NULL;
3916
3917 return insn;
3918 }
3919
3920 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3921
3922 static rtx_insn *
3923 make_call_insn_raw (rtx pattern)
3924 {
3925 rtx_call_insn *insn;
3926
3927 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3928 INSN_UID (insn) = cur_insn_uid++;
3929
3930 PATTERN (insn) = pattern;
3931 INSN_CODE (insn) = -1;
3932 REG_NOTES (insn) = NULL;
3933 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3934 INSN_LOCATION (insn) = curr_insn_location ();
3935 BLOCK_FOR_INSN (insn) = NULL;
3936
3937 return insn;
3938 }
3939
3940 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3941
3942 static rtx_note *
3943 make_note_raw (enum insn_note subtype)
3944 {
3945 /* Some notes are never created this way at all. These notes are
3946 only created by patching out insns. */
3947 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3948 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3949
3950 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3951 INSN_UID (note) = cur_insn_uid++;
3952 NOTE_KIND (note) = subtype;
3953 BLOCK_FOR_INSN (note) = NULL;
3954 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3955 return note;
3956 }
3957 \f
3958 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3959 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3960 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3961
3962 static inline void
3963 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3964 {
3965 SET_PREV_INSN (insn) = prev;
3966 SET_NEXT_INSN (insn) = next;
3967 if (prev != NULL)
3968 {
3969 SET_NEXT_INSN (prev) = insn;
3970 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3971 {
3972 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3973 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3974 }
3975 }
3976 if (next != NULL)
3977 {
3978 SET_PREV_INSN (next) = insn;
3979 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3980 {
3981 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3982 SET_PREV_INSN (sequence->insn (0)) = insn;
3983 }
3984 }
3985
3986 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3987 {
3988 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3989 SET_PREV_INSN (sequence->insn (0)) = prev;
3990 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3991 }
3992 }
3993
3994 /* Add INSN to the end of the doubly-linked list.
3995 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3996
3997 void
3998 add_insn (rtx_insn *insn)
3999 {
4000 rtx_insn *prev = get_last_insn ();
4001 link_insn_into_chain (insn, prev, NULL);
4002 if (NULL == get_insns ())
4003 set_first_insn (insn);
4004 set_last_insn (insn);
4005 }
4006
4007 /* Add INSN into the doubly-linked list after insn AFTER. */
4008
4009 static void
4010 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4011 {
4012 rtx_insn *next = NEXT_INSN (after);
4013
4014 gcc_assert (!optimize || !after->deleted ());
4015
4016 link_insn_into_chain (insn, after, next);
4017
4018 if (next == NULL)
4019 {
4020 struct sequence_stack *seq;
4021
4022 for (seq = get_current_sequence (); seq; seq = seq->next)
4023 if (after == seq->last)
4024 {
4025 seq->last = insn;
4026 break;
4027 }
4028 }
4029 }
4030
4031 /* Add INSN into the doubly-linked list before insn BEFORE. */
4032
4033 static void
4034 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4035 {
4036 rtx_insn *prev = PREV_INSN (before);
4037
4038 gcc_assert (!optimize || !before->deleted ());
4039
4040 link_insn_into_chain (insn, prev, before);
4041
4042 if (prev == NULL)
4043 {
4044 struct sequence_stack *seq;
4045
4046 for (seq = get_current_sequence (); seq; seq = seq->next)
4047 if (before == seq->first)
4048 {
4049 seq->first = insn;
4050 break;
4051 }
4052
4053 gcc_assert (seq);
4054 }
4055 }
4056
4057 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4058 If BB is NULL, an attempt is made to infer the bb from before.
4059
4060 This and the next function should be the only functions called
4061 to insert an insn once delay slots have been filled since only
4062 they know how to update a SEQUENCE. */
4063
4064 void
4065 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4066 {
4067 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4068 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4069 add_insn_after_nobb (insn, after);
4070 if (!BARRIER_P (after)
4071 && !BARRIER_P (insn)
4072 && (bb = BLOCK_FOR_INSN (after)))
4073 {
4074 set_block_for_insn (insn, bb);
4075 if (INSN_P (insn))
4076 df_insn_rescan (insn);
4077 /* Should not happen as first in the BB is always
4078 either NOTE or LABEL. */
4079 if (BB_END (bb) == after
4080 /* Avoid clobbering of structure when creating new BB. */
4081 && !BARRIER_P (insn)
4082 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4083 BB_END (bb) = insn;
4084 }
4085 }
4086
4087 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4088 If BB is NULL, an attempt is made to infer the bb from before.
4089
4090 This and the previous function should be the only functions called
4091 to insert an insn once delay slots have been filled since only
4092 they know how to update a SEQUENCE. */
4093
4094 void
4095 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4096 {
4097 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4098 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4099 add_insn_before_nobb (insn, before);
4100
4101 if (!bb
4102 && !BARRIER_P (before)
4103 && !BARRIER_P (insn))
4104 bb = BLOCK_FOR_INSN (before);
4105
4106 if (bb)
4107 {
4108 set_block_for_insn (insn, bb);
4109 if (INSN_P (insn))
4110 df_insn_rescan (insn);
4111 /* Should not happen as first in the BB is always either NOTE or
4112 LABEL. */
4113 gcc_assert (BB_HEAD (bb) != insn
4114 /* Avoid clobbering of structure when creating new BB. */
4115 || BARRIER_P (insn)
4116 || NOTE_INSN_BASIC_BLOCK_P (insn));
4117 }
4118 }
4119
4120 /* Replace insn with an deleted instruction note. */
4121
4122 void
4123 set_insn_deleted (rtx insn)
4124 {
4125 if (INSN_P (insn))
4126 df_insn_delete (as_a <rtx_insn *> (insn));
4127 PUT_CODE (insn, NOTE);
4128 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4129 }
4130
4131
4132 /* Unlink INSN from the insn chain.
4133
4134 This function knows how to handle sequences.
4135
4136 This function does not invalidate data flow information associated with
4137 INSN (i.e. does not call df_insn_delete). That makes this function
4138 usable for only disconnecting an insn from the chain, and re-emit it
4139 elsewhere later.
4140
4141 To later insert INSN elsewhere in the insn chain via add_insn and
4142 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4143 the caller. Nullifying them here breaks many insn chain walks.
4144
4145 To really delete an insn and related DF information, use delete_insn. */
4146
4147 void
4148 remove_insn (rtx uncast_insn)
4149 {
4150 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4151 rtx_insn *next = NEXT_INSN (insn);
4152 rtx_insn *prev = PREV_INSN (insn);
4153 basic_block bb;
4154
4155 if (prev)
4156 {
4157 SET_NEXT_INSN (prev) = next;
4158 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4159 {
4160 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4161 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4162 }
4163 }
4164 else
4165 {
4166 struct sequence_stack *seq;
4167
4168 for (seq = get_current_sequence (); seq; seq = seq->next)
4169 if (insn == seq->first)
4170 {
4171 seq->first = next;
4172 break;
4173 }
4174
4175 gcc_assert (seq);
4176 }
4177
4178 if (next)
4179 {
4180 SET_PREV_INSN (next) = prev;
4181 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4182 {
4183 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4184 SET_PREV_INSN (sequence->insn (0)) = prev;
4185 }
4186 }
4187 else
4188 {
4189 struct sequence_stack *seq;
4190
4191 for (seq = get_current_sequence (); seq; seq = seq->next)
4192 if (insn == seq->last)
4193 {
4194 seq->last = prev;
4195 break;
4196 }
4197
4198 gcc_assert (seq);
4199 }
4200
4201 /* Fix up basic block boundaries, if necessary. */
4202 if (!BARRIER_P (insn)
4203 && (bb = BLOCK_FOR_INSN (insn)))
4204 {
4205 if (BB_HEAD (bb) == insn)
4206 {
4207 /* Never ever delete the basic block note without deleting whole
4208 basic block. */
4209 gcc_assert (!NOTE_P (insn));
4210 BB_HEAD (bb) = next;
4211 }
4212 if (BB_END (bb) == insn)
4213 BB_END (bb) = prev;
4214 }
4215 }
4216
4217 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4218
4219 void
4220 add_function_usage_to (rtx call_insn, rtx call_fusage)
4221 {
4222 gcc_assert (call_insn && CALL_P (call_insn));
4223
4224 /* Put the register usage information on the CALL. If there is already
4225 some usage information, put ours at the end. */
4226 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4227 {
4228 rtx link;
4229
4230 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4231 link = XEXP (link, 1))
4232 ;
4233
4234 XEXP (link, 1) = call_fusage;
4235 }
4236 else
4237 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4238 }
4239
4240 /* Delete all insns made since FROM.
4241 FROM becomes the new last instruction. */
4242
4243 void
4244 delete_insns_since (rtx_insn *from)
4245 {
4246 if (from == 0)
4247 set_first_insn (0);
4248 else
4249 SET_NEXT_INSN (from) = 0;
4250 set_last_insn (from);
4251 }
4252
4253 /* This function is deprecated, please use sequences instead.
4254
4255 Move a consecutive bunch of insns to a different place in the chain.
4256 The insns to be moved are those between FROM and TO.
4257 They are moved to a new position after the insn AFTER.
4258 AFTER must not be FROM or TO or any insn in between.
4259
4260 This function does not know about SEQUENCEs and hence should not be
4261 called after delay-slot filling has been done. */
4262
4263 void
4264 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4265 {
4266 if (flag_checking)
4267 {
4268 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4269 gcc_assert (after != x);
4270 gcc_assert (after != to);
4271 }
4272
4273 /* Splice this bunch out of where it is now. */
4274 if (PREV_INSN (from))
4275 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4276 if (NEXT_INSN (to))
4277 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4278 if (get_last_insn () == to)
4279 set_last_insn (PREV_INSN (from));
4280 if (get_insns () == from)
4281 set_first_insn (NEXT_INSN (to));
4282
4283 /* Make the new neighbors point to it and it to them. */
4284 if (NEXT_INSN (after))
4285 SET_PREV_INSN (NEXT_INSN (after)) = to;
4286
4287 SET_NEXT_INSN (to) = NEXT_INSN (after);
4288 SET_PREV_INSN (from) = after;
4289 SET_NEXT_INSN (after) = from;
4290 if (after == get_last_insn ())
4291 set_last_insn (to);
4292 }
4293
4294 /* Same as function above, but take care to update BB boundaries. */
4295 void
4296 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4297 {
4298 rtx_insn *prev = PREV_INSN (from);
4299 basic_block bb, bb2;
4300
4301 reorder_insns_nobb (from, to, after);
4302
4303 if (!BARRIER_P (after)
4304 && (bb = BLOCK_FOR_INSN (after)))
4305 {
4306 rtx_insn *x;
4307 df_set_bb_dirty (bb);
4308
4309 if (!BARRIER_P (from)
4310 && (bb2 = BLOCK_FOR_INSN (from)))
4311 {
4312 if (BB_END (bb2) == to)
4313 BB_END (bb2) = prev;
4314 df_set_bb_dirty (bb2);
4315 }
4316
4317 if (BB_END (bb) == after)
4318 BB_END (bb) = to;
4319
4320 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4321 if (!BARRIER_P (x))
4322 df_insn_change_bb (x, bb);
4323 }
4324 }
4325
4326 \f
4327 /* Emit insn(s) of given code and pattern
4328 at a specified place within the doubly-linked list.
4329
4330 All of the emit_foo global entry points accept an object
4331 X which is either an insn list or a PATTERN of a single
4332 instruction.
4333
4334 There are thus a few canonical ways to generate code and
4335 emit it at a specific place in the instruction stream. For
4336 example, consider the instruction named SPOT and the fact that
4337 we would like to emit some instructions before SPOT. We might
4338 do it like this:
4339
4340 start_sequence ();
4341 ... emit the new instructions ...
4342 insns_head = get_insns ();
4343 end_sequence ();
4344
4345 emit_insn_before (insns_head, SPOT);
4346
4347 It used to be common to generate SEQUENCE rtl instead, but that
4348 is a relic of the past which no longer occurs. The reason is that
4349 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4350 generated would almost certainly die right after it was created. */
4351
4352 static rtx_insn *
4353 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4354 rtx_insn *(*make_raw) (rtx))
4355 {
4356 rtx_insn *insn;
4357
4358 gcc_assert (before);
4359
4360 if (x == NULL_RTX)
4361 return safe_as_a <rtx_insn *> (last);
4362
4363 switch (GET_CODE (x))
4364 {
4365 case DEBUG_INSN:
4366 case INSN:
4367 case JUMP_INSN:
4368 case CALL_INSN:
4369 case CODE_LABEL:
4370 case BARRIER:
4371 case NOTE:
4372 insn = as_a <rtx_insn *> (x);
4373 while (insn)
4374 {
4375 rtx_insn *next = NEXT_INSN (insn);
4376 add_insn_before (insn, before, bb);
4377 last = insn;
4378 insn = next;
4379 }
4380 break;
4381
4382 #ifdef ENABLE_RTL_CHECKING
4383 case SEQUENCE:
4384 gcc_unreachable ();
4385 break;
4386 #endif
4387
4388 default:
4389 last = (*make_raw) (x);
4390 add_insn_before (last, before, bb);
4391 break;
4392 }
4393
4394 return safe_as_a <rtx_insn *> (last);
4395 }
4396
4397 /* Make X be output before the instruction BEFORE. */
4398
4399 rtx_insn *
4400 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4401 {
4402 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4403 }
4404
4405 /* Make an instruction with body X and code JUMP_INSN
4406 and output it before the instruction BEFORE. */
4407
4408 rtx_jump_insn *
4409 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4410 {
4411 return as_a <rtx_jump_insn *> (
4412 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4413 make_jump_insn_raw));
4414 }
4415
4416 /* Make an instruction with body X and code CALL_INSN
4417 and output it before the instruction BEFORE. */
4418
4419 rtx_insn *
4420 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4421 {
4422 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4423 make_call_insn_raw);
4424 }
4425
4426 /* Make an instruction with body X and code DEBUG_INSN
4427 and output it before the instruction BEFORE. */
4428
4429 rtx_insn *
4430 emit_debug_insn_before_noloc (rtx x, rtx before)
4431 {
4432 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4433 make_debug_insn_raw);
4434 }
4435
4436 /* Make an insn of code BARRIER
4437 and output it before the insn BEFORE. */
4438
4439 rtx_barrier *
4440 emit_barrier_before (rtx before)
4441 {
4442 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4443
4444 INSN_UID (insn) = cur_insn_uid++;
4445
4446 add_insn_before (insn, before, NULL);
4447 return insn;
4448 }
4449
4450 /* Emit the label LABEL before the insn BEFORE. */
4451
4452 rtx_code_label *
4453 emit_label_before (rtx label, rtx_insn *before)
4454 {
4455 gcc_checking_assert (INSN_UID (label) == 0);
4456 INSN_UID (label) = cur_insn_uid++;
4457 add_insn_before (label, before, NULL);
4458 return as_a <rtx_code_label *> (label);
4459 }
4460 \f
4461 /* Helper for emit_insn_after, handles lists of instructions
4462 efficiently. */
4463
4464 static rtx_insn *
4465 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4466 {
4467 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4468 rtx_insn *last;
4469 rtx_insn *after_after;
4470 if (!bb && !BARRIER_P (after))
4471 bb = BLOCK_FOR_INSN (after);
4472
4473 if (bb)
4474 {
4475 df_set_bb_dirty (bb);
4476 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4477 if (!BARRIER_P (last))
4478 {
4479 set_block_for_insn (last, bb);
4480 df_insn_rescan (last);
4481 }
4482 if (!BARRIER_P (last))
4483 {
4484 set_block_for_insn (last, bb);
4485 df_insn_rescan (last);
4486 }
4487 if (BB_END (bb) == after)
4488 BB_END (bb) = last;
4489 }
4490 else
4491 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4492 continue;
4493
4494 after_after = NEXT_INSN (after);
4495
4496 SET_NEXT_INSN (after) = first;
4497 SET_PREV_INSN (first) = after;
4498 SET_NEXT_INSN (last) = after_after;
4499 if (after_after)
4500 SET_PREV_INSN (after_after) = last;
4501
4502 if (after == get_last_insn ())
4503 set_last_insn (last);
4504
4505 return last;
4506 }
4507
4508 static rtx_insn *
4509 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4510 rtx_insn *(*make_raw)(rtx))
4511 {
4512 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4513 rtx_insn *last = after;
4514
4515 gcc_assert (after);
4516
4517 if (x == NULL_RTX)
4518 return last;
4519
4520 switch (GET_CODE (x))
4521 {
4522 case DEBUG_INSN:
4523 case INSN:
4524 case JUMP_INSN:
4525 case CALL_INSN:
4526 case CODE_LABEL:
4527 case BARRIER:
4528 case NOTE:
4529 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4530 break;
4531
4532 #ifdef ENABLE_RTL_CHECKING
4533 case SEQUENCE:
4534 gcc_unreachable ();
4535 break;
4536 #endif
4537
4538 default:
4539 last = (*make_raw) (x);
4540 add_insn_after (last, after, bb);
4541 break;
4542 }
4543
4544 return last;
4545 }
4546
4547 /* Make X be output after the insn AFTER and set the BB of insn. If
4548 BB is NULL, an attempt is made to infer the BB from AFTER. */
4549
4550 rtx_insn *
4551 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4552 {
4553 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4554 }
4555
4556
4557 /* Make an insn of code JUMP_INSN with body X
4558 and output it after the insn AFTER. */
4559
4560 rtx_jump_insn *
4561 emit_jump_insn_after_noloc (rtx x, rtx after)
4562 {
4563 return as_a <rtx_jump_insn *> (
4564 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4565 }
4566
4567 /* Make an instruction with body X and code CALL_INSN
4568 and output it after the instruction AFTER. */
4569
4570 rtx_insn *
4571 emit_call_insn_after_noloc (rtx x, rtx after)
4572 {
4573 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4574 }
4575
4576 /* Make an instruction with body X and code CALL_INSN
4577 and output it after the instruction AFTER. */
4578
4579 rtx_insn *
4580 emit_debug_insn_after_noloc (rtx x, rtx after)
4581 {
4582 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4583 }
4584
4585 /* Make an insn of code BARRIER
4586 and output it after the insn AFTER. */
4587
4588 rtx_barrier *
4589 emit_barrier_after (rtx after)
4590 {
4591 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4592
4593 INSN_UID (insn) = cur_insn_uid++;
4594
4595 add_insn_after (insn, after, NULL);
4596 return insn;
4597 }
4598
4599 /* Emit the label LABEL after the insn AFTER. */
4600
4601 rtx_insn *
4602 emit_label_after (rtx label, rtx_insn *after)
4603 {
4604 gcc_checking_assert (INSN_UID (label) == 0);
4605 INSN_UID (label) = cur_insn_uid++;
4606 add_insn_after (label, after, NULL);
4607 return as_a <rtx_insn *> (label);
4608 }
4609 \f
4610 /* Notes require a bit of special handling: Some notes need to have their
4611 BLOCK_FOR_INSN set, others should never have it set, and some should
4612 have it set or clear depending on the context. */
4613
4614 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4615 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4616 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4617
4618 static bool
4619 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4620 {
4621 switch (subtype)
4622 {
4623 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4624 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4625 return true;
4626
4627 /* Notes for var tracking and EH region markers can appear between or
4628 inside basic blocks. If the caller is emitting on the basic block
4629 boundary, do not set BLOCK_FOR_INSN on the new note. */
4630 case NOTE_INSN_VAR_LOCATION:
4631 case NOTE_INSN_CALL_ARG_LOCATION:
4632 case NOTE_INSN_EH_REGION_BEG:
4633 case NOTE_INSN_EH_REGION_END:
4634 return on_bb_boundary_p;
4635
4636 /* Otherwise, BLOCK_FOR_INSN must be set. */
4637 default:
4638 return false;
4639 }
4640 }
4641
4642 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4643
4644 rtx_note *
4645 emit_note_after (enum insn_note subtype, rtx_insn *after)
4646 {
4647 rtx_note *note = make_note_raw (subtype);
4648 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4649 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4650
4651 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4652 add_insn_after_nobb (note, after);
4653 else
4654 add_insn_after (note, after, bb);
4655 return note;
4656 }
4657
4658 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4659
4660 rtx_note *
4661 emit_note_before (enum insn_note subtype, rtx_insn *before)
4662 {
4663 rtx_note *note = make_note_raw (subtype);
4664 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4665 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4666
4667 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4668 add_insn_before_nobb (note, before);
4669 else
4670 add_insn_before (note, before, bb);
4671 return note;
4672 }
4673 \f
4674 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4675 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4676
4677 static rtx_insn *
4678 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4679 rtx_insn *(*make_raw) (rtx))
4680 {
4681 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4682 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4683
4684 if (pattern == NULL_RTX || !loc)
4685 return last;
4686
4687 after = NEXT_INSN (after);
4688 while (1)
4689 {
4690 if (active_insn_p (after)
4691 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4692 && !INSN_LOCATION (after))
4693 INSN_LOCATION (after) = loc;
4694 if (after == last)
4695 break;
4696 after = NEXT_INSN (after);
4697 }
4698 return last;
4699 }
4700
4701 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4702 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4703 any DEBUG_INSNs. */
4704
4705 static rtx_insn *
4706 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4707 rtx_insn *(*make_raw) (rtx))
4708 {
4709 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4710 rtx_insn *prev = after;
4711
4712 if (skip_debug_insns)
4713 while (DEBUG_INSN_P (prev))
4714 prev = PREV_INSN (prev);
4715
4716 if (INSN_P (prev))
4717 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4718 make_raw);
4719 else
4720 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4721 }
4722
4723 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4724 rtx_insn *
4725 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4726 {
4727 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4728 }
4729
4730 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4731 rtx_insn *
4732 emit_insn_after (rtx pattern, rtx after)
4733 {
4734 return emit_pattern_after (pattern, after, true, make_insn_raw);
4735 }
4736
4737 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4738 rtx_jump_insn *
4739 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4740 {
4741 return as_a <rtx_jump_insn *> (
4742 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4743 }
4744
4745 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4746 rtx_jump_insn *
4747 emit_jump_insn_after (rtx pattern, rtx after)
4748 {
4749 return as_a <rtx_jump_insn *> (
4750 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4751 }
4752
4753 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4754 rtx_insn *
4755 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4756 {
4757 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4758 }
4759
4760 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4761 rtx_insn *
4762 emit_call_insn_after (rtx pattern, rtx after)
4763 {
4764 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4765 }
4766
4767 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4768 rtx_insn *
4769 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4770 {
4771 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4772 }
4773
4774 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4775 rtx_insn *
4776 emit_debug_insn_after (rtx pattern, rtx after)
4777 {
4778 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4779 }
4780
4781 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4782 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4783 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4784 CALL_INSN, etc. */
4785
4786 static rtx_insn *
4787 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4788 rtx_insn *(*make_raw) (rtx))
4789 {
4790 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4791 rtx_insn *first = PREV_INSN (before);
4792 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4793 insnp ? before : NULL_RTX,
4794 NULL, make_raw);
4795
4796 if (pattern == NULL_RTX || !loc)
4797 return last;
4798
4799 if (!first)
4800 first = get_insns ();
4801 else
4802 first = NEXT_INSN (first);
4803 while (1)
4804 {
4805 if (active_insn_p (first)
4806 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4807 && !INSN_LOCATION (first))
4808 INSN_LOCATION (first) = loc;
4809 if (first == last)
4810 break;
4811 first = NEXT_INSN (first);
4812 }
4813 return last;
4814 }
4815
4816 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4817 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4818 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4819 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4820
4821 static rtx_insn *
4822 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4823 bool insnp, rtx_insn *(*make_raw) (rtx))
4824 {
4825 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4826 rtx_insn *next = before;
4827
4828 if (skip_debug_insns)
4829 while (DEBUG_INSN_P (next))
4830 next = PREV_INSN (next);
4831
4832 if (INSN_P (next))
4833 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4834 insnp, make_raw);
4835 else
4836 return emit_pattern_before_noloc (pattern, before,
4837 insnp ? before : NULL_RTX,
4838 NULL, make_raw);
4839 }
4840
4841 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4842 rtx_insn *
4843 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4844 {
4845 return emit_pattern_before_setloc (pattern, before, loc, true,
4846 make_insn_raw);
4847 }
4848
4849 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4850 rtx_insn *
4851 emit_insn_before (rtx pattern, rtx before)
4852 {
4853 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4854 }
4855
4856 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4857 rtx_jump_insn *
4858 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4859 {
4860 return as_a <rtx_jump_insn *> (
4861 emit_pattern_before_setloc (pattern, before, loc, false,
4862 make_jump_insn_raw));
4863 }
4864
4865 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4866 rtx_jump_insn *
4867 emit_jump_insn_before (rtx pattern, rtx before)
4868 {
4869 return as_a <rtx_jump_insn *> (
4870 emit_pattern_before (pattern, before, true, false,
4871 make_jump_insn_raw));
4872 }
4873
4874 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4875 rtx_insn *
4876 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4877 {
4878 return emit_pattern_before_setloc (pattern, before, loc, false,
4879 make_call_insn_raw);
4880 }
4881
4882 /* Like emit_call_insn_before_noloc,
4883 but set insn_location according to BEFORE. */
4884 rtx_insn *
4885 emit_call_insn_before (rtx pattern, rtx_insn *before)
4886 {
4887 return emit_pattern_before (pattern, before, true, false,
4888 make_call_insn_raw);
4889 }
4890
4891 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4892 rtx_insn *
4893 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4894 {
4895 return emit_pattern_before_setloc (pattern, before, loc, false,
4896 make_debug_insn_raw);
4897 }
4898
4899 /* Like emit_debug_insn_before_noloc,
4900 but set insn_location according to BEFORE. */
4901 rtx_insn *
4902 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4903 {
4904 return emit_pattern_before (pattern, before, false, false,
4905 make_debug_insn_raw);
4906 }
4907 \f
4908 /* Take X and emit it at the end of the doubly-linked
4909 INSN list.
4910
4911 Returns the last insn emitted. */
4912
4913 rtx_insn *
4914 emit_insn (rtx x)
4915 {
4916 rtx_insn *last = get_last_insn ();
4917 rtx_insn *insn;
4918
4919 if (x == NULL_RTX)
4920 return last;
4921
4922 switch (GET_CODE (x))
4923 {
4924 case DEBUG_INSN:
4925 case INSN:
4926 case JUMP_INSN:
4927 case CALL_INSN:
4928 case CODE_LABEL:
4929 case BARRIER:
4930 case NOTE:
4931 insn = as_a <rtx_insn *> (x);
4932 while (insn)
4933 {
4934 rtx_insn *next = NEXT_INSN (insn);
4935 add_insn (insn);
4936 last = insn;
4937 insn = next;
4938 }
4939 break;
4940
4941 #ifdef ENABLE_RTL_CHECKING
4942 case JUMP_TABLE_DATA:
4943 case SEQUENCE:
4944 gcc_unreachable ();
4945 break;
4946 #endif
4947
4948 default:
4949 last = make_insn_raw (x);
4950 add_insn (last);
4951 break;
4952 }
4953
4954 return last;
4955 }
4956
4957 /* Make an insn of code DEBUG_INSN with pattern X
4958 and add it to the end of the doubly-linked list. */
4959
4960 rtx_insn *
4961 emit_debug_insn (rtx x)
4962 {
4963 rtx_insn *last = get_last_insn ();
4964 rtx_insn *insn;
4965
4966 if (x == NULL_RTX)
4967 return last;
4968
4969 switch (GET_CODE (x))
4970 {
4971 case DEBUG_INSN:
4972 case INSN:
4973 case JUMP_INSN:
4974 case CALL_INSN:
4975 case CODE_LABEL:
4976 case BARRIER:
4977 case NOTE:
4978 insn = as_a <rtx_insn *> (x);
4979 while (insn)
4980 {
4981 rtx_insn *next = NEXT_INSN (insn);
4982 add_insn (insn);
4983 last = insn;
4984 insn = next;
4985 }
4986 break;
4987
4988 #ifdef ENABLE_RTL_CHECKING
4989 case JUMP_TABLE_DATA:
4990 case SEQUENCE:
4991 gcc_unreachable ();
4992 break;
4993 #endif
4994
4995 default:
4996 last = make_debug_insn_raw (x);
4997 add_insn (last);
4998 break;
4999 }
5000
5001 return last;
5002 }
5003
5004 /* Make an insn of code JUMP_INSN with pattern X
5005 and add it to the end of the doubly-linked list. */
5006
5007 rtx_insn *
5008 emit_jump_insn (rtx x)
5009 {
5010 rtx_insn *last = NULL;
5011 rtx_insn *insn;
5012
5013 switch (GET_CODE (x))
5014 {
5015 case DEBUG_INSN:
5016 case INSN:
5017 case JUMP_INSN:
5018 case CALL_INSN:
5019 case CODE_LABEL:
5020 case BARRIER:
5021 case NOTE:
5022 insn = as_a <rtx_insn *> (x);
5023 while (insn)
5024 {
5025 rtx_insn *next = NEXT_INSN (insn);
5026 add_insn (insn);
5027 last = insn;
5028 insn = next;
5029 }
5030 break;
5031
5032 #ifdef ENABLE_RTL_CHECKING
5033 case JUMP_TABLE_DATA:
5034 case SEQUENCE:
5035 gcc_unreachable ();
5036 break;
5037 #endif
5038
5039 default:
5040 last = make_jump_insn_raw (x);
5041 add_insn (last);
5042 break;
5043 }
5044
5045 return last;
5046 }
5047
5048 /* Make an insn of code CALL_INSN with pattern X
5049 and add it to the end of the doubly-linked list. */
5050
5051 rtx_insn *
5052 emit_call_insn (rtx x)
5053 {
5054 rtx_insn *insn;
5055
5056 switch (GET_CODE (x))
5057 {
5058 case DEBUG_INSN:
5059 case INSN:
5060 case JUMP_INSN:
5061 case CALL_INSN:
5062 case CODE_LABEL:
5063 case BARRIER:
5064 case NOTE:
5065 insn = emit_insn (x);
5066 break;
5067
5068 #ifdef ENABLE_RTL_CHECKING
5069 case SEQUENCE:
5070 case JUMP_TABLE_DATA:
5071 gcc_unreachable ();
5072 break;
5073 #endif
5074
5075 default:
5076 insn = make_call_insn_raw (x);
5077 add_insn (insn);
5078 break;
5079 }
5080
5081 return insn;
5082 }
5083
5084 /* Add the label LABEL to the end of the doubly-linked list. */
5085
5086 rtx_code_label *
5087 emit_label (rtx uncast_label)
5088 {
5089 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5090
5091 gcc_checking_assert (INSN_UID (label) == 0);
5092 INSN_UID (label) = cur_insn_uid++;
5093 add_insn (label);
5094 return label;
5095 }
5096
5097 /* Make an insn of code JUMP_TABLE_DATA
5098 and add it to the end of the doubly-linked list. */
5099
5100 rtx_jump_table_data *
5101 emit_jump_table_data (rtx table)
5102 {
5103 rtx_jump_table_data *jump_table_data =
5104 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5105 INSN_UID (jump_table_data) = cur_insn_uid++;
5106 PATTERN (jump_table_data) = table;
5107 BLOCK_FOR_INSN (jump_table_data) = NULL;
5108 add_insn (jump_table_data);
5109 return jump_table_data;
5110 }
5111
5112 /* Make an insn of code BARRIER
5113 and add it to the end of the doubly-linked list. */
5114
5115 rtx_barrier *
5116 emit_barrier (void)
5117 {
5118 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5119 INSN_UID (barrier) = cur_insn_uid++;
5120 add_insn (barrier);
5121 return barrier;
5122 }
5123
5124 /* Emit a copy of note ORIG. */
5125
5126 rtx_note *
5127 emit_note_copy (rtx_note *orig)
5128 {
5129 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5130 rtx_note *note = make_note_raw (kind);
5131 NOTE_DATA (note) = NOTE_DATA (orig);
5132 add_insn (note);
5133 return note;
5134 }
5135
5136 /* Make an insn of code NOTE or type NOTE_NO
5137 and add it to the end of the doubly-linked list. */
5138
5139 rtx_note *
5140 emit_note (enum insn_note kind)
5141 {
5142 rtx_note *note = make_note_raw (kind);
5143 add_insn (note);
5144 return note;
5145 }
5146
5147 /* Emit a clobber of lvalue X. */
5148
5149 rtx_insn *
5150 emit_clobber (rtx x)
5151 {
5152 /* CONCATs should not appear in the insn stream. */
5153 if (GET_CODE (x) == CONCAT)
5154 {
5155 emit_clobber (XEXP (x, 0));
5156 return emit_clobber (XEXP (x, 1));
5157 }
5158 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5159 }
5160
5161 /* Return a sequence of insns to clobber lvalue X. */
5162
5163 rtx_insn *
5164 gen_clobber (rtx x)
5165 {
5166 rtx_insn *seq;
5167
5168 start_sequence ();
5169 emit_clobber (x);
5170 seq = get_insns ();
5171 end_sequence ();
5172 return seq;
5173 }
5174
5175 /* Emit a use of rvalue X. */
5176
5177 rtx_insn *
5178 emit_use (rtx x)
5179 {
5180 /* CONCATs should not appear in the insn stream. */
5181 if (GET_CODE (x) == CONCAT)
5182 {
5183 emit_use (XEXP (x, 0));
5184 return emit_use (XEXP (x, 1));
5185 }
5186 return emit_insn (gen_rtx_USE (VOIDmode, x));
5187 }
5188
5189 /* Return a sequence of insns to use rvalue X. */
5190
5191 rtx_insn *
5192 gen_use (rtx x)
5193 {
5194 rtx_insn *seq;
5195
5196 start_sequence ();
5197 emit_use (x);
5198 seq = get_insns ();
5199 end_sequence ();
5200 return seq;
5201 }
5202
5203 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5204 Return the set in INSN that such notes describe, or NULL if the notes
5205 have no meaning for INSN. */
5206
5207 rtx
5208 set_for_reg_notes (rtx insn)
5209 {
5210 rtx pat, reg;
5211
5212 if (!INSN_P (insn))
5213 return NULL_RTX;
5214
5215 pat = PATTERN (insn);
5216 if (GET_CODE (pat) == PARALLEL)
5217 {
5218 /* We do not use single_set because that ignores SETs of unused
5219 registers. REG_EQUAL and REG_EQUIV notes really do require the
5220 PARALLEL to have a single SET. */
5221 if (multiple_sets (insn))
5222 return NULL_RTX;
5223 pat = XVECEXP (pat, 0, 0);
5224 }
5225
5226 if (GET_CODE (pat) != SET)
5227 return NULL_RTX;
5228
5229 reg = SET_DEST (pat);
5230
5231 /* Notes apply to the contents of a STRICT_LOW_PART. */
5232 if (GET_CODE (reg) == STRICT_LOW_PART
5233 || GET_CODE (reg) == ZERO_EXTRACT)
5234 reg = XEXP (reg, 0);
5235
5236 /* Check that we have a register. */
5237 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5238 return NULL_RTX;
5239
5240 return pat;
5241 }
5242
5243 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5244 note of this type already exists, remove it first. */
5245
5246 rtx
5247 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5248 {
5249 rtx note = find_reg_note (insn, kind, NULL_RTX);
5250
5251 switch (kind)
5252 {
5253 case REG_EQUAL:
5254 case REG_EQUIV:
5255 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5256 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5257 return NULL_RTX;
5258
5259 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5260 It serves no useful purpose and breaks eliminate_regs. */
5261 if (GET_CODE (datum) == ASM_OPERANDS)
5262 return NULL_RTX;
5263
5264 /* Notes with side effects are dangerous. Even if the side-effect
5265 initially mirrors one in PATTERN (INSN), later optimizations
5266 might alter the way that the final register value is calculated
5267 and so move or alter the side-effect in some way. The note would
5268 then no longer be a valid substitution for SET_SRC. */
5269 if (side_effects_p (datum))
5270 return NULL_RTX;
5271 break;
5272
5273 default:
5274 break;
5275 }
5276
5277 if (note)
5278 XEXP (note, 0) = datum;
5279 else
5280 {
5281 add_reg_note (insn, kind, datum);
5282 note = REG_NOTES (insn);
5283 }
5284
5285 switch (kind)
5286 {
5287 case REG_EQUAL:
5288 case REG_EQUIV:
5289 df_notes_rescan (as_a <rtx_insn *> (insn));
5290 break;
5291 default:
5292 break;
5293 }
5294
5295 return note;
5296 }
5297
5298 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5299 rtx
5300 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5301 {
5302 rtx set = set_for_reg_notes (insn);
5303
5304 if (set && SET_DEST (set) == dst)
5305 return set_unique_reg_note (insn, kind, datum);
5306 return NULL_RTX;
5307 }
5308 \f
5309 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5310 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5311 is true.
5312
5313 If X is a label, it is simply added into the insn chain. */
5314
5315 rtx_insn *
5316 emit (rtx x, bool allow_barrier_p)
5317 {
5318 enum rtx_code code = classify_insn (x);
5319
5320 switch (code)
5321 {
5322 case CODE_LABEL:
5323 return emit_label (x);
5324 case INSN:
5325 return emit_insn (x);
5326 case JUMP_INSN:
5327 {
5328 rtx_insn *insn = emit_jump_insn (x);
5329 if (allow_barrier_p
5330 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5331 return emit_barrier ();
5332 return insn;
5333 }
5334 case CALL_INSN:
5335 return emit_call_insn (x);
5336 case DEBUG_INSN:
5337 return emit_debug_insn (x);
5338 default:
5339 gcc_unreachable ();
5340 }
5341 }
5342 \f
5343 /* Space for free sequence stack entries. */
5344 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5345
5346 /* Begin emitting insns to a sequence. If this sequence will contain
5347 something that might cause the compiler to pop arguments to function
5348 calls (because those pops have previously been deferred; see
5349 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5350 before calling this function. That will ensure that the deferred
5351 pops are not accidentally emitted in the middle of this sequence. */
5352
5353 void
5354 start_sequence (void)
5355 {
5356 struct sequence_stack *tem;
5357
5358 if (free_sequence_stack != NULL)
5359 {
5360 tem = free_sequence_stack;
5361 free_sequence_stack = tem->next;
5362 }
5363 else
5364 tem = ggc_alloc<sequence_stack> ();
5365
5366 tem->next = get_current_sequence ()->next;
5367 tem->first = get_insns ();
5368 tem->last = get_last_insn ();
5369 get_current_sequence ()->next = tem;
5370
5371 set_first_insn (0);
5372 set_last_insn (0);
5373 }
5374
5375 /* Set up the insn chain starting with FIRST as the current sequence,
5376 saving the previously current one. See the documentation for
5377 start_sequence for more information about how to use this function. */
5378
5379 void
5380 push_to_sequence (rtx_insn *first)
5381 {
5382 rtx_insn *last;
5383
5384 start_sequence ();
5385
5386 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5387 ;
5388
5389 set_first_insn (first);
5390 set_last_insn (last);
5391 }
5392
5393 /* Like push_to_sequence, but take the last insn as an argument to avoid
5394 looping through the list. */
5395
5396 void
5397 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5398 {
5399 start_sequence ();
5400
5401 set_first_insn (first);
5402 set_last_insn (last);
5403 }
5404
5405 /* Set up the outer-level insn chain
5406 as the current sequence, saving the previously current one. */
5407
5408 void
5409 push_topmost_sequence (void)
5410 {
5411 struct sequence_stack *top;
5412
5413 start_sequence ();
5414
5415 top = get_topmost_sequence ();
5416 set_first_insn (top->first);
5417 set_last_insn (top->last);
5418 }
5419
5420 /* After emitting to the outer-level insn chain, update the outer-level
5421 insn chain, and restore the previous saved state. */
5422
5423 void
5424 pop_topmost_sequence (void)
5425 {
5426 struct sequence_stack *top;
5427
5428 top = get_topmost_sequence ();
5429 top->first = get_insns ();
5430 top->last = get_last_insn ();
5431
5432 end_sequence ();
5433 }
5434
5435 /* After emitting to a sequence, restore previous saved state.
5436
5437 To get the contents of the sequence just made, you must call
5438 `get_insns' *before* calling here.
5439
5440 If the compiler might have deferred popping arguments while
5441 generating this sequence, and this sequence will not be immediately
5442 inserted into the instruction stream, use do_pending_stack_adjust
5443 before calling get_insns. That will ensure that the deferred
5444 pops are inserted into this sequence, and not into some random
5445 location in the instruction stream. See INHIBIT_DEFER_POP for more
5446 information about deferred popping of arguments. */
5447
5448 void
5449 end_sequence (void)
5450 {
5451 struct sequence_stack *tem = get_current_sequence ()->next;
5452
5453 set_first_insn (tem->first);
5454 set_last_insn (tem->last);
5455 get_current_sequence ()->next = tem->next;
5456
5457 memset (tem, 0, sizeof (*tem));
5458 tem->next = free_sequence_stack;
5459 free_sequence_stack = tem;
5460 }
5461
5462 /* Return 1 if currently emitting into a sequence. */
5463
5464 int
5465 in_sequence_p (void)
5466 {
5467 return get_current_sequence ()->next != 0;
5468 }
5469 \f
5470 /* Put the various virtual registers into REGNO_REG_RTX. */
5471
5472 static void
5473 init_virtual_regs (void)
5474 {
5475 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5476 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5477 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5478 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5479 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5480 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5481 = virtual_preferred_stack_boundary_rtx;
5482 }
5483
5484 \f
5485 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5486 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5487 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5488 static int copy_insn_n_scratches;
5489
5490 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5491 copied an ASM_OPERANDS.
5492 In that case, it is the original input-operand vector. */
5493 static rtvec orig_asm_operands_vector;
5494
5495 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5496 copied an ASM_OPERANDS.
5497 In that case, it is the copied input-operand vector. */
5498 static rtvec copy_asm_operands_vector;
5499
5500 /* Likewise for the constraints vector. */
5501 static rtvec orig_asm_constraints_vector;
5502 static rtvec copy_asm_constraints_vector;
5503
5504 /* Recursively create a new copy of an rtx for copy_insn.
5505 This function differs from copy_rtx in that it handles SCRATCHes and
5506 ASM_OPERANDs properly.
5507 Normally, this function is not used directly; use copy_insn as front end.
5508 However, you could first copy an insn pattern with copy_insn and then use
5509 this function afterwards to properly copy any REG_NOTEs containing
5510 SCRATCHes. */
5511
5512 rtx
5513 copy_insn_1 (rtx orig)
5514 {
5515 rtx copy;
5516 int i, j;
5517 RTX_CODE code;
5518 const char *format_ptr;
5519
5520 if (orig == NULL)
5521 return NULL;
5522
5523 code = GET_CODE (orig);
5524
5525 switch (code)
5526 {
5527 case REG:
5528 case DEBUG_EXPR:
5529 CASE_CONST_ANY:
5530 case SYMBOL_REF:
5531 case CODE_LABEL:
5532 case PC:
5533 case CC0:
5534 case RETURN:
5535 case SIMPLE_RETURN:
5536 return orig;
5537 case CLOBBER:
5538 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5539 clobbers or clobbers of hard registers that originated as pseudos.
5540 This is needed to allow safe register renaming. */
5541 if (REG_P (XEXP (orig, 0))
5542 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5543 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5544 return orig;
5545 break;
5546
5547 case SCRATCH:
5548 for (i = 0; i < copy_insn_n_scratches; i++)
5549 if (copy_insn_scratch_in[i] == orig)
5550 return copy_insn_scratch_out[i];
5551 break;
5552
5553 case CONST:
5554 if (shared_const_p (orig))
5555 return orig;
5556 break;
5557
5558 /* A MEM with a constant address is not sharable. The problem is that
5559 the constant address may need to be reloaded. If the mem is shared,
5560 then reloading one copy of this mem will cause all copies to appear
5561 to have been reloaded. */
5562
5563 default:
5564 break;
5565 }
5566
5567 /* Copy the various flags, fields, and other information. We assume
5568 that all fields need copying, and then clear the fields that should
5569 not be copied. That is the sensible default behavior, and forces
5570 us to explicitly document why we are *not* copying a flag. */
5571 copy = shallow_copy_rtx (orig);
5572
5573 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5574 if (INSN_P (orig))
5575 {
5576 RTX_FLAG (copy, jump) = 0;
5577 RTX_FLAG (copy, call) = 0;
5578 RTX_FLAG (copy, frame_related) = 0;
5579 }
5580
5581 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5582
5583 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5584 switch (*format_ptr++)
5585 {
5586 case 'e':
5587 if (XEXP (orig, i) != NULL)
5588 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5589 break;
5590
5591 case 'E':
5592 case 'V':
5593 if (XVEC (orig, i) == orig_asm_constraints_vector)
5594 XVEC (copy, i) = copy_asm_constraints_vector;
5595 else if (XVEC (orig, i) == orig_asm_operands_vector)
5596 XVEC (copy, i) = copy_asm_operands_vector;
5597 else if (XVEC (orig, i) != NULL)
5598 {
5599 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5600 for (j = 0; j < XVECLEN (copy, i); j++)
5601 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5602 }
5603 break;
5604
5605 case 't':
5606 case 'w':
5607 case 'i':
5608 case 's':
5609 case 'S':
5610 case 'u':
5611 case '0':
5612 /* These are left unchanged. */
5613 break;
5614
5615 default:
5616 gcc_unreachable ();
5617 }
5618
5619 if (code == SCRATCH)
5620 {
5621 i = copy_insn_n_scratches++;
5622 gcc_assert (i < MAX_RECOG_OPERANDS);
5623 copy_insn_scratch_in[i] = orig;
5624 copy_insn_scratch_out[i] = copy;
5625 }
5626 else if (code == ASM_OPERANDS)
5627 {
5628 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5629 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5630 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5631 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5632 }
5633
5634 return copy;
5635 }
5636
5637 /* Create a new copy of an rtx.
5638 This function differs from copy_rtx in that it handles SCRATCHes and
5639 ASM_OPERANDs properly.
5640 INSN doesn't really have to be a full INSN; it could be just the
5641 pattern. */
5642 rtx
5643 copy_insn (rtx insn)
5644 {
5645 copy_insn_n_scratches = 0;
5646 orig_asm_operands_vector = 0;
5647 orig_asm_constraints_vector = 0;
5648 copy_asm_operands_vector = 0;
5649 copy_asm_constraints_vector = 0;
5650 return copy_insn_1 (insn);
5651 }
5652
5653 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5654 on that assumption that INSN itself remains in its original place. */
5655
5656 rtx_insn *
5657 copy_delay_slot_insn (rtx_insn *insn)
5658 {
5659 /* Copy INSN with its rtx_code, all its notes, location etc. */
5660 insn = as_a <rtx_insn *> (copy_rtx (insn));
5661 INSN_UID (insn) = cur_insn_uid++;
5662 return insn;
5663 }
5664
5665 /* Initialize data structures and variables in this file
5666 before generating rtl for each function. */
5667
5668 void
5669 init_emit (void)
5670 {
5671 set_first_insn (NULL);
5672 set_last_insn (NULL);
5673 if (MIN_NONDEBUG_INSN_UID)
5674 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5675 else
5676 cur_insn_uid = 1;
5677 cur_debug_insn_uid = 1;
5678 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5679 first_label_num = label_num;
5680 get_current_sequence ()->next = NULL;
5681
5682 /* Init the tables that describe all the pseudo regs. */
5683
5684 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5685
5686 crtl->emit.regno_pointer_align
5687 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5688
5689 regno_reg_rtx
5690 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5691
5692 /* Put copies of all the hard registers into regno_reg_rtx. */
5693 memcpy (regno_reg_rtx,
5694 initial_regno_reg_rtx,
5695 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5696
5697 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5698 init_virtual_regs ();
5699
5700 /* Indicate that the virtual registers and stack locations are
5701 all pointers. */
5702 REG_POINTER (stack_pointer_rtx) = 1;
5703 REG_POINTER (frame_pointer_rtx) = 1;
5704 REG_POINTER (hard_frame_pointer_rtx) = 1;
5705 REG_POINTER (arg_pointer_rtx) = 1;
5706
5707 REG_POINTER (virtual_incoming_args_rtx) = 1;
5708 REG_POINTER (virtual_stack_vars_rtx) = 1;
5709 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5710 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5711 REG_POINTER (virtual_cfa_rtx) = 1;
5712
5713 #ifdef STACK_BOUNDARY
5714 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5715 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5716 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5717 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5718
5719 /* ??? These are problematic (for example, 3 out of 4 are wrong on
5720 32-bit SPARC and cannot be all fixed because of the ABI). */
5721 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5722 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5723 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5724 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5725
5726 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5727 #endif
5728
5729 #ifdef INIT_EXPANDERS
5730 INIT_EXPANDERS;
5731 #endif
5732 }
5733
5734 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5735
5736 static rtx
5737 gen_const_vector (machine_mode mode, int constant)
5738 {
5739 rtx tem;
5740 rtvec v;
5741 int units, i;
5742 machine_mode inner;
5743
5744 units = GET_MODE_NUNITS (mode);
5745 inner = GET_MODE_INNER (mode);
5746
5747 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5748
5749 v = rtvec_alloc (units);
5750
5751 /* We need to call this function after we set the scalar const_tiny_rtx
5752 entries. */
5753 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5754
5755 for (i = 0; i < units; ++i)
5756 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5757
5758 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5759 return tem;
5760 }
5761
5762 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5763 all elements are zero, and the one vector when all elements are one. */
5764 rtx
5765 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5766 {
5767 machine_mode inner = GET_MODE_INNER (mode);
5768 int nunits = GET_MODE_NUNITS (mode);
5769 rtx x;
5770 int i;
5771
5772 /* Check to see if all of the elements have the same value. */
5773 x = RTVEC_ELT (v, nunits - 1);
5774 for (i = nunits - 2; i >= 0; i--)
5775 if (RTVEC_ELT (v, i) != x)
5776 break;
5777
5778 /* If the values are all the same, check to see if we can use one of the
5779 standard constant vectors. */
5780 if (i == -1)
5781 {
5782 if (x == CONST0_RTX (inner))
5783 return CONST0_RTX (mode);
5784 else if (x == CONST1_RTX (inner))
5785 return CONST1_RTX (mode);
5786 else if (x == CONSTM1_RTX (inner))
5787 return CONSTM1_RTX (mode);
5788 }
5789
5790 return gen_rtx_raw_CONST_VECTOR (mode, v);
5791 }
5792
5793 /* Initialise global register information required by all functions. */
5794
5795 void
5796 init_emit_regs (void)
5797 {
5798 int i;
5799 machine_mode mode;
5800 mem_attrs *attrs;
5801
5802 /* Reset register attributes */
5803 reg_attrs_htab->empty ();
5804
5805 /* We need reg_raw_mode, so initialize the modes now. */
5806 init_reg_modes_target ();
5807
5808 /* Assign register numbers to the globally defined register rtx. */
5809 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5810 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5811 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5812 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5813 virtual_incoming_args_rtx =
5814 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5815 virtual_stack_vars_rtx =
5816 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5817 virtual_stack_dynamic_rtx =
5818 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5819 virtual_outgoing_args_rtx =
5820 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5821 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5822 virtual_preferred_stack_boundary_rtx =
5823 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5824
5825 /* Initialize RTL for commonly used hard registers. These are
5826 copied into regno_reg_rtx as we begin to compile each function. */
5827 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5828 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5829
5830 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5831 return_address_pointer_rtx
5832 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5833 #endif
5834
5835 pic_offset_table_rtx = NULL_RTX;
5836 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5837 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5838
5839 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5840 {
5841 mode = (machine_mode) i;
5842 attrs = ggc_cleared_alloc<mem_attrs> ();
5843 attrs->align = BITS_PER_UNIT;
5844 attrs->addrspace = ADDR_SPACE_GENERIC;
5845 if (mode != BLKmode)
5846 {
5847 attrs->size_known_p = true;
5848 attrs->size = GET_MODE_SIZE (mode);
5849 if (STRICT_ALIGNMENT)
5850 attrs->align = GET_MODE_ALIGNMENT (mode);
5851 }
5852 mode_mem_attrs[i] = attrs;
5853 }
5854 }
5855
5856 /* Initialize global machine_mode variables. */
5857
5858 void
5859 init_derived_machine_modes (void)
5860 {
5861 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
5862 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
5863 {
5864 scalar_int_mode mode = mode_iter.require ();
5865
5866 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5867 && !opt_byte_mode.exists ())
5868 opt_byte_mode = mode;
5869
5870 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5871 && !opt_word_mode.exists ())
5872 opt_word_mode = mode;
5873 }
5874
5875 byte_mode = opt_byte_mode.require ();
5876 word_mode = opt_word_mode.require ();
5877 ptr_mode = int_mode_for_size (POINTER_SIZE, 0).require ();
5878 }
5879
5880 /* Create some permanent unique rtl objects shared between all functions. */
5881
5882 void
5883 init_emit_once (void)
5884 {
5885 int i;
5886 machine_mode mode;
5887 scalar_float_mode double_mode;
5888
5889 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5890 CONST_FIXED, and memory attribute hash tables. */
5891 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5892
5893 #if TARGET_SUPPORTS_WIDE_INT
5894 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5895 #endif
5896 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5897
5898 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5899
5900 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5901
5902 #ifdef INIT_EXPANDERS
5903 /* This is to initialize {init|mark|free}_machine_status before the first
5904 call to push_function_context_to. This is needed by the Chill front
5905 end which calls push_function_context_to before the first call to
5906 init_function_start. */
5907 INIT_EXPANDERS;
5908 #endif
5909
5910 /* Create the unique rtx's for certain rtx codes and operand values. */
5911
5912 /* Process stack-limiting command-line options. */
5913 if (opt_fstack_limit_symbol_arg != NULL)
5914 stack_limit_rtx
5915 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
5916 if (opt_fstack_limit_register_no >= 0)
5917 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
5918
5919 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5920 tries to use these variables. */
5921 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5922 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5923 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5924
5925 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5926 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5927 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5928 else
5929 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5930
5931 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
5932
5933 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5934 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5935 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5936
5937 dconstm1 = dconst1;
5938 dconstm1.sign = 1;
5939
5940 dconsthalf = dconst1;
5941 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5942
5943 for (i = 0; i < 3; i++)
5944 {
5945 const REAL_VALUE_TYPE *const r =
5946 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5947
5948 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
5949 const_tiny_rtx[i][(int) mode] =
5950 const_double_from_real_value (*r, mode);
5951
5952 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
5953 const_tiny_rtx[i][(int) mode] =
5954 const_double_from_real_value (*r, mode);
5955
5956 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5957
5958 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
5959 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5960
5961 for (mode = MIN_MODE_PARTIAL_INT;
5962 mode <= MAX_MODE_PARTIAL_INT;
5963 mode = (machine_mode)((int)(mode) + 1))
5964 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5965 }
5966
5967 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5968
5969 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
5970 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5971
5972 for (mode = MIN_MODE_PARTIAL_INT;
5973 mode <= MAX_MODE_PARTIAL_INT;
5974 mode = (machine_mode)((int)(mode) + 1))
5975 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5976
5977 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
5978 {
5979 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5980 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5981 }
5982
5983 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
5984 {
5985 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5986 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5987 }
5988
5989 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
5990 {
5991 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5992 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5993 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5994 }
5995
5996 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
5997 {
5998 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5999 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6000 }
6001
6002 FOR_EACH_MODE_IN_CLASS (mode, MODE_FRACT)
6003 {
6004 FCONST0 (mode).data.high = 0;
6005 FCONST0 (mode).data.low = 0;
6006 FCONST0 (mode).mode = mode;
6007 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6008 FCONST0 (mode), mode);
6009 }
6010
6011 FOR_EACH_MODE_IN_CLASS (mode, MODE_UFRACT)
6012 {
6013 FCONST0 (mode).data.high = 0;
6014 FCONST0 (mode).data.low = 0;
6015 FCONST0 (mode).mode = mode;
6016 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6017 FCONST0 (mode), mode);
6018 }
6019
6020 FOR_EACH_MODE_IN_CLASS (mode, MODE_ACCUM)
6021 {
6022 FCONST0 (mode).data.high = 0;
6023 FCONST0 (mode).data.low = 0;
6024 FCONST0 (mode).mode = mode;
6025 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6026 FCONST0 (mode), mode);
6027
6028 /* We store the value 1. */
6029 FCONST1 (mode).data.high = 0;
6030 FCONST1 (mode).data.low = 0;
6031 FCONST1 (mode).mode = mode;
6032 FCONST1 (mode).data
6033 = double_int_one.lshift (GET_MODE_FBIT (mode),
6034 HOST_BITS_PER_DOUBLE_INT,
6035 SIGNED_FIXED_POINT_MODE_P (mode));
6036 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6037 FCONST1 (mode), mode);
6038 }
6039
6040 FOR_EACH_MODE_IN_CLASS (mode, MODE_UACCUM)
6041 {
6042 FCONST0 (mode).data.high = 0;
6043 FCONST0 (mode).data.low = 0;
6044 FCONST0 (mode).mode = mode;
6045 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6046 FCONST0 (mode), mode);
6047
6048 /* We store the value 1. */
6049 FCONST1 (mode).data.high = 0;
6050 FCONST1 (mode).data.low = 0;
6051 FCONST1 (mode).mode = mode;
6052 FCONST1 (mode).data
6053 = double_int_one.lshift (GET_MODE_FBIT (mode),
6054 HOST_BITS_PER_DOUBLE_INT,
6055 SIGNED_FIXED_POINT_MODE_P (mode));
6056 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6057 FCONST1 (mode), mode);
6058 }
6059
6060 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6061 {
6062 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6063 }
6064
6065 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6066 {
6067 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6068 }
6069
6070 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6071 {
6072 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6073 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6074 }
6075
6076 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6077 {
6078 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6079 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6080 }
6081
6082 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6083 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6084 const_tiny_rtx[0][i] = const0_rtx;
6085
6086 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6087 if (STORE_FLAG_VALUE == 1)
6088 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6089
6090 FOR_EACH_MODE_IN_CLASS (mode, MODE_POINTER_BOUNDS)
6091 {
6092 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6093 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6094 }
6095
6096 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6097 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6098 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6099 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6100 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6101 /*prev_insn=*/NULL,
6102 /*next_insn=*/NULL,
6103 /*bb=*/NULL,
6104 /*pattern=*/NULL_RTX,
6105 /*location=*/-1,
6106 CODE_FOR_nothing,
6107 /*reg_notes=*/NULL_RTX);
6108 }
6109 \f
6110 /* Produce exact duplicate of insn INSN after AFTER.
6111 Care updating of libcall regions if present. */
6112
6113 rtx_insn *
6114 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6115 {
6116 rtx_insn *new_rtx;
6117 rtx link;
6118
6119 switch (GET_CODE (insn))
6120 {
6121 case INSN:
6122 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6123 break;
6124
6125 case JUMP_INSN:
6126 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6127 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6128 break;
6129
6130 case DEBUG_INSN:
6131 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6132 break;
6133
6134 case CALL_INSN:
6135 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6136 if (CALL_INSN_FUNCTION_USAGE (insn))
6137 CALL_INSN_FUNCTION_USAGE (new_rtx)
6138 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6139 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6140 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6141 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6142 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6143 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6144 break;
6145
6146 default:
6147 gcc_unreachable ();
6148 }
6149
6150 /* Update LABEL_NUSES. */
6151 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6152
6153 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6154
6155 /* If the old insn is frame related, then so is the new one. This is
6156 primarily needed for IA-64 unwind info which marks epilogue insns,
6157 which may be duplicated by the basic block reordering code. */
6158 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6159
6160 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6161 rtx *ptail = &REG_NOTES (new_rtx);
6162 while (*ptail != NULL_RTX)
6163 ptail = &XEXP (*ptail, 1);
6164
6165 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6166 will make them. REG_LABEL_TARGETs are created there too, but are
6167 supposed to be sticky, so we copy them. */
6168 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6169 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6170 {
6171 *ptail = duplicate_reg_note (link);
6172 ptail = &XEXP (*ptail, 1);
6173 }
6174
6175 INSN_CODE (new_rtx) = INSN_CODE (insn);
6176 return new_rtx;
6177 }
6178
6179 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6180 rtx
6181 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6182 {
6183 if (hard_reg_clobbers[mode][regno])
6184 return hard_reg_clobbers[mode][regno];
6185 else
6186 return (hard_reg_clobbers[mode][regno] =
6187 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6188 }
6189
6190 location_t prologue_location;
6191 location_t epilogue_location;
6192
6193 /* Hold current location information and last location information, so the
6194 datastructures are built lazily only when some instructions in given
6195 place are needed. */
6196 static location_t curr_location;
6197
6198 /* Allocate insn location datastructure. */
6199 void
6200 insn_locations_init (void)
6201 {
6202 prologue_location = epilogue_location = 0;
6203 curr_location = UNKNOWN_LOCATION;
6204 }
6205
6206 /* At the end of emit stage, clear current location. */
6207 void
6208 insn_locations_finalize (void)
6209 {
6210 epilogue_location = curr_location;
6211 curr_location = UNKNOWN_LOCATION;
6212 }
6213
6214 /* Set current location. */
6215 void
6216 set_curr_insn_location (location_t location)
6217 {
6218 curr_location = location;
6219 }
6220
6221 /* Get current location. */
6222 location_t
6223 curr_insn_location (void)
6224 {
6225 return curr_location;
6226 }
6227
6228 /* Return lexical scope block insn belongs to. */
6229 tree
6230 insn_scope (const rtx_insn *insn)
6231 {
6232 return LOCATION_BLOCK (INSN_LOCATION (insn));
6233 }
6234
6235 /* Return line number of the statement that produced this insn. */
6236 int
6237 insn_line (const rtx_insn *insn)
6238 {
6239 return LOCATION_LINE (INSN_LOCATION (insn));
6240 }
6241
6242 /* Return source file of the statement that produced this insn. */
6243 const char *
6244 insn_file (const rtx_insn *insn)
6245 {
6246 return LOCATION_FILE (INSN_LOCATION (insn));
6247 }
6248
6249 /* Return expanded location of the statement that produced this insn. */
6250 expanded_location
6251 insn_location (const rtx_insn *insn)
6252 {
6253 return expand_location (INSN_LOCATION (insn));
6254 }
6255
6256 /* Return true if memory model MODEL requires a pre-operation (release-style)
6257 barrier or a post-operation (acquire-style) barrier. While not universal,
6258 this function matches behavior of several targets. */
6259
6260 bool
6261 need_atomic_barrier_p (enum memmodel model, bool pre)
6262 {
6263 switch (model & MEMMODEL_BASE_MASK)
6264 {
6265 case MEMMODEL_RELAXED:
6266 case MEMMODEL_CONSUME:
6267 return false;
6268 case MEMMODEL_RELEASE:
6269 return pre;
6270 case MEMMODEL_ACQUIRE:
6271 return !pre;
6272 case MEMMODEL_ACQ_REL:
6273 case MEMMODEL_SEQ_CST:
6274 return true;
6275 default:
6276 gcc_unreachable ();
6277 }
6278 }
6279
6280 /* Initialize fields of rtl_data related to stack alignment. */
6281
6282 void
6283 rtl_data::init_stack_alignment ()
6284 {
6285 stack_alignment_needed = STACK_BOUNDARY;
6286 max_used_stack_slot_alignment = STACK_BOUNDARY;
6287 stack_alignment_estimated = 0;
6288 preferred_stack_boundary = STACK_BOUNDARY;
6289 }
6290
6291 \f
6292 #include "gt-emit-rtl.h"