]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
rtl.h (rtl_size): Declare.
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
60
61 /* Commonly used modes. */
62
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67
68
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72 static GTY(()) int label_num = 1;
73
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78 static int last_label_num;
79
80 /* Value label_num had when set_new_first_and_last_label_number was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83 static int base_label_num;
84
85 /* Nonzero means do not generate NOTEs for source line numbers. */
86
87 static int no_line_numbers;
88
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
93
94 rtx global_rtl[GR_MAX];
95
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
108 rtx const_true_rtx;
109
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
121
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
125
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
130
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
137
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
143
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
147
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
152
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
154
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
157
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
160
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
164
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
168
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
172
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
178
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_rtl_1 (rtx);
184 static void unshare_all_decls (tree);
185 static void reset_used_decls (tree);
186 static void mark_label_nuses (rtx);
187 static hashval_t const_int_htab_hash (const void *);
188 static int const_int_htab_eq (const void *, const void *);
189 static hashval_t const_double_htab_hash (const void *);
190 static int const_double_htab_eq (const void *, const void *);
191 static rtx lookup_const_double (rtx);
192 static hashval_t mem_attrs_htab_hash (const void *);
193 static int mem_attrs_htab_eq (const void *, const void *);
194 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
195 enum machine_mode);
196 static hashval_t reg_attrs_htab_hash (const void *);
197 static int reg_attrs_htab_eq (const void *, const void *);
198 static reg_attrs *get_reg_attrs (tree, int);
199 static tree component_ref_for_mem_expr (tree);
200 static rtx gen_const_vector_0 (enum machine_mode);
201 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 rtx value = (rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 rtx a = (rtx)x, b = (rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
261
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
264 {
265 mem_attrs *p = (mem_attrs *) x;
266
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
271 }
272
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
276
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
279 {
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
282
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
285 }
286
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
290
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
294 {
295 mem_attrs attrs;
296 void **slot;
297
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
307
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
322 }
323
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
325
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
328 {
329 reg_attrs *p = (reg_attrs *) x;
330
331 return ((p->offset * 1000) ^ (long) p->decl);
332 }
333
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
337
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
340 {
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
343
344 return (p->decl == q->decl && p->offset == q->offset);
345 }
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
349
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
352 {
353 reg_attrs attrs;
354 void **slot;
355
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
359
360 attrs.decl = decl;
361 attrs.offset = offset;
362
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
365 {
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 }
369
370 return *slot;
371 }
372
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
376
377 rtx
378 gen_raw_REG (enum machine_mode mode, int regno)
379 {
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
383 }
384
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
388
389 rtx
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 {
392 void **slot;
393
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
401
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407
408 return (rtx) *slot;
409 }
410
411 rtx
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 {
414 return GEN_INT (trunc_int_for_mode (c, mode));
415 }
416
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
420
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
426 {
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
430
431 return (rtx) *slot;
432 }
433
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
436 rtx
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 {
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
441
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443
444 return lookup_const_double (real);
445 }
446
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451
452 rtx
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 {
455 rtx value;
456 unsigned int i;
457
458 if (mode != VOIDmode)
459 {
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
467
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
482
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
486
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
491
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
495
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
498
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
504
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
510
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
513
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 }
517
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
521
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
525
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
528
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
531
532 return lookup_const_double (value);
533 }
534
535 rtx
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 {
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
543
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
548
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
551
552 if (mode == Pmode && !reload_in_progress)
553 {
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
575 }
576
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
580
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
585
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
588
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
596
597 return gen_raw_REG (mode, regno);
598 }
599
600 rtx
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 {
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
604
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
608
609 return rt;
610 }
611
612 rtx
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 {
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
619
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
629 }
630
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
633
634 rtx
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 {
637 enum machine_mode inmode;
638
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
644 }
645 \f
646 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
647 **
648 ** This routine generates an RTX of the size specified by
649 ** <code>, which is an RTX code. The RTX structure is initialized
650 ** from the arguments <element1> through <elementn>, which are
651 ** interpreted according to the specific RTX type's format. The
652 ** special machine mode associated with the rtx (if any) is specified
653 ** in <mode>.
654 **
655 ** gen_rtx can be invoked in a way which resembles the lisp-like
656 ** rtx it will generate. For example, the following rtx structure:
657 **
658 ** (plus:QI (mem:QI (reg:SI 1))
659 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
660 **
661 ** ...would be generated by the following C code:
662 **
663 ** gen_rtx (PLUS, QImode,
664 ** gen_rtx (MEM, QImode,
665 ** gen_rtx (REG, SImode, 1)),
666 ** gen_rtx (MEM, QImode,
667 ** gen_rtx (PLUS, SImode,
668 ** gen_rtx (REG, SImode, 2),
669 ** gen_rtx (REG, SImode, 3)))),
670 */
671
672 /*VARARGS2*/
673 rtx
674 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
675 {
676 int i; /* Array indices... */
677 const char *fmt; /* Current rtx's format... */
678 rtx rt_val; /* RTX to return to caller... */
679 va_list p;
680
681 va_start (p, mode);
682
683 switch (code)
684 {
685 case CONST_INT:
686 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
687 break;
688
689 case CONST_DOUBLE:
690 {
691 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
692 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
693
694 rt_val = immed_double_const (arg0, arg1, mode);
695 }
696 break;
697
698 case REG:
699 rt_val = gen_rtx_REG (mode, va_arg (p, int));
700 break;
701
702 case MEM:
703 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
704 break;
705
706 default:
707 rt_val = rtx_alloc (code); /* Allocate the storage space. */
708 rt_val->mode = mode; /* Store the machine mode... */
709
710 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
711 for (i = 0; i < GET_RTX_LENGTH (code); i++)
712 {
713 switch (*fmt++)
714 {
715 case '0': /* Field with unknown use. Zero it. */
716 X0EXP (rt_val, i) = NULL_RTX;
717 break;
718
719 case 'i': /* An integer? */
720 XINT (rt_val, i) = va_arg (p, int);
721 break;
722
723 case 'w': /* A wide integer? */
724 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
725 break;
726
727 case 's': /* A string? */
728 XSTR (rt_val, i) = va_arg (p, char *);
729 break;
730
731 case 'e': /* An expression? */
732 case 'u': /* An insn? Same except when printing. */
733 XEXP (rt_val, i) = va_arg (p, rtx);
734 break;
735
736 case 'E': /* An RTX vector? */
737 XVEC (rt_val, i) = va_arg (p, rtvec);
738 break;
739
740 case 'b': /* A bitmap? */
741 XBITMAP (rt_val, i) = va_arg (p, bitmap);
742 break;
743
744 case 't': /* A tree? */
745 XTREE (rt_val, i) = va_arg (p, tree);
746 break;
747
748 default:
749 abort ();
750 }
751 }
752 break;
753 }
754
755 va_end (p);
756 return rt_val;
757 }
758
759 /* gen_rtvec (n, [rt1, ..., rtn])
760 **
761 ** This routine creates an rtvec and stores within it the
762 ** pointers to rtx's which are its arguments.
763 */
764
765 /*VARARGS1*/
766 rtvec
767 gen_rtvec (int n, ...)
768 {
769 int i, save_n;
770 rtx *vector;
771 va_list p;
772
773 va_start (p, n);
774
775 if (n == 0)
776 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
777
778 vector = alloca (n * sizeof (rtx));
779
780 for (i = 0; i < n; i++)
781 vector[i] = va_arg (p, rtx);
782
783 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
784 save_n = n;
785 va_end (p);
786
787 return gen_rtvec_v (save_n, vector);
788 }
789
790 rtvec
791 gen_rtvec_v (int n, rtx *argp)
792 {
793 int i;
794 rtvec rt_val;
795
796 if (n == 0)
797 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
798
799 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
800
801 for (i = 0; i < n; i++)
802 rt_val->elem[i] = *argp++;
803
804 return rt_val;
805 }
806 \f
807 /* Generate a REG rtx for a new pseudo register of mode MODE.
808 This pseudo is assigned the next sequential register number. */
809
810 rtx
811 gen_reg_rtx (enum machine_mode mode)
812 {
813 struct function *f = cfun;
814 rtx val;
815
816 /* Don't let anything called after initial flow analysis create new
817 registers. */
818 if (no_new_pseudos)
819 abort ();
820
821 if (generating_concat_p
822 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
823 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
824 {
825 /* For complex modes, don't make a single pseudo.
826 Instead, make a CONCAT of two pseudos.
827 This allows noncontiguous allocation of the real and imaginary parts,
828 which makes much better code. Besides, allocating DCmode
829 pseudos overstrains reload on some machines like the 386. */
830 rtx realpart, imagpart;
831 enum machine_mode partmode = GET_MODE_INNER (mode);
832
833 realpart = gen_reg_rtx (partmode);
834 imagpart = gen_reg_rtx (partmode);
835 return gen_rtx_CONCAT (mode, realpart, imagpart);
836 }
837
838 /* Make sure regno_pointer_align, and regno_reg_rtx are large
839 enough to have an element for this pseudo reg number. */
840
841 if (reg_rtx_no == f->emit->regno_pointer_align_length)
842 {
843 int old_size = f->emit->regno_pointer_align_length;
844 char *new;
845 rtx *new1;
846
847 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
848 memset (new + old_size, 0, old_size);
849 f->emit->regno_pointer_align = (unsigned char *) new;
850
851 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
852 old_size * 2 * sizeof (rtx));
853 memset (new1 + old_size, 0, old_size * sizeof (rtx));
854 regno_reg_rtx = new1;
855
856 f->emit->regno_pointer_align_length = old_size * 2;
857 }
858
859 val = gen_raw_REG (mode, reg_rtx_no);
860 regno_reg_rtx[reg_rtx_no++] = val;
861 return val;
862 }
863
864 /* Generate a register with same attributes as REG,
865 but offsetted by OFFSET. */
866
867 rtx
868 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
869 {
870 rtx new = gen_rtx_REG (mode, regno);
871 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
872 REG_OFFSET (reg) + offset);
873 return new;
874 }
875
876 /* Set the decl for MEM to DECL. */
877
878 void
879 set_reg_attrs_from_mem (rtx reg, rtx mem)
880 {
881 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
882 REG_ATTRS (reg)
883 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
884 }
885
886 /* Set the register attributes for registers contained in PARM_RTX.
887 Use needed values from memory attributes of MEM. */
888
889 void
890 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
891 {
892 if (GET_CODE (parm_rtx) == REG)
893 set_reg_attrs_from_mem (parm_rtx, mem);
894 else if (GET_CODE (parm_rtx) == PARALLEL)
895 {
896 /* Check for a NULL entry in the first slot, used to indicate that the
897 parameter goes both on the stack and in registers. */
898 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
899 for (; i < XVECLEN (parm_rtx, 0); i++)
900 {
901 rtx x = XVECEXP (parm_rtx, 0, i);
902 if (GET_CODE (XEXP (x, 0)) == REG)
903 REG_ATTRS (XEXP (x, 0))
904 = get_reg_attrs (MEM_EXPR (mem),
905 INTVAL (XEXP (x, 1)));
906 }
907 }
908 }
909
910 /* Assign the RTX X to declaration T. */
911 void
912 set_decl_rtl (tree t, rtx x)
913 {
914 DECL_CHECK (t)->decl.rtl = x;
915
916 if (!x)
917 return;
918 /* For register, we maintain the reverse information too. */
919 if (GET_CODE (x) == REG)
920 REG_ATTRS (x) = get_reg_attrs (t, 0);
921 else if (GET_CODE (x) == SUBREG)
922 REG_ATTRS (SUBREG_REG (x))
923 = get_reg_attrs (t, -SUBREG_BYTE (x));
924 if (GET_CODE (x) == CONCAT)
925 {
926 if (REG_P (XEXP (x, 0)))
927 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
928 if (REG_P (XEXP (x, 1)))
929 REG_ATTRS (XEXP (x, 1))
930 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
931 }
932 if (GET_CODE (x) == PARALLEL)
933 {
934 int i;
935 for (i = 0; i < XVECLEN (x, 0); i++)
936 {
937 rtx y = XVECEXP (x, 0, i);
938 if (REG_P (XEXP (y, 0)))
939 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
940 }
941 }
942 }
943
944 /* Identify REG (which may be a CONCAT) as a user register. */
945
946 void
947 mark_user_reg (rtx reg)
948 {
949 if (GET_CODE (reg) == CONCAT)
950 {
951 REG_USERVAR_P (XEXP (reg, 0)) = 1;
952 REG_USERVAR_P (XEXP (reg, 1)) = 1;
953 }
954 else if (GET_CODE (reg) == REG)
955 REG_USERVAR_P (reg) = 1;
956 else
957 abort ();
958 }
959
960 /* Identify REG as a probable pointer register and show its alignment
961 as ALIGN, if nonzero. */
962
963 void
964 mark_reg_pointer (rtx reg, int align)
965 {
966 if (! REG_POINTER (reg))
967 {
968 REG_POINTER (reg) = 1;
969
970 if (align)
971 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
972 }
973 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
974 /* We can no-longer be sure just how aligned this pointer is */
975 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
976 }
977
978 /* Return 1 plus largest pseudo reg number used in the current function. */
979
980 int
981 max_reg_num (void)
982 {
983 return reg_rtx_no;
984 }
985
986 /* Return 1 + the largest label number used so far in the current function. */
987
988 int
989 max_label_num (void)
990 {
991 if (last_label_num && label_num == base_label_num)
992 return last_label_num;
993 return label_num;
994 }
995
996 /* Return first label number used in this function (if any were used). */
997
998 int
999 get_first_label_num (void)
1000 {
1001 return first_label_num;
1002 }
1003 \f
1004 /* Return the final regno of X, which is a SUBREG of a hard
1005 register. */
1006 int
1007 subreg_hard_regno (rtx x, int check_mode)
1008 {
1009 enum machine_mode mode = GET_MODE (x);
1010 unsigned int byte_offset, base_regno, final_regno;
1011 rtx reg = SUBREG_REG (x);
1012
1013 /* This is where we attempt to catch illegal subregs
1014 created by the compiler. */
1015 if (GET_CODE (x) != SUBREG
1016 || GET_CODE (reg) != REG)
1017 abort ();
1018 base_regno = REGNO (reg);
1019 if (base_regno >= FIRST_PSEUDO_REGISTER)
1020 abort ();
1021 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1022 abort ();
1023 #ifdef ENABLE_CHECKING
1024 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1025 SUBREG_BYTE (x), mode))
1026 abort ();
1027 #endif
1028 /* Catch non-congruent offsets too. */
1029 byte_offset = SUBREG_BYTE (x);
1030 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1031 abort ();
1032
1033 final_regno = subreg_regno (x);
1034
1035 return final_regno;
1036 }
1037
1038 /* Return a value representing some low-order bits of X, where the number
1039 of low-order bits is given by MODE. Note that no conversion is done
1040 between floating-point and fixed-point values, rather, the bit
1041 representation is returned.
1042
1043 This function handles the cases in common between gen_lowpart, below,
1044 and two variants in cse.c and combine.c. These are the cases that can
1045 be safely handled at all points in the compilation.
1046
1047 If this is not a case we can handle, return 0. */
1048
1049 rtx
1050 gen_lowpart_common (enum machine_mode mode, rtx x)
1051 {
1052 int msize = GET_MODE_SIZE (mode);
1053 int xsize = GET_MODE_SIZE (GET_MODE (x));
1054 int offset = 0;
1055
1056 if (GET_MODE (x) == mode)
1057 return x;
1058
1059 /* MODE must occupy no more words than the mode of X. */
1060 if (GET_MODE (x) != VOIDmode
1061 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1062 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1063 return 0;
1064
1065 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1066 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1067 && GET_MODE (x) != VOIDmode && msize > xsize)
1068 return 0;
1069
1070 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1071
1072 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1073 && (GET_MODE_CLASS (mode) == MODE_INT
1074 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1075 {
1076 /* If we are getting the low-order part of something that has been
1077 sign- or zero-extended, we can either just use the object being
1078 extended or make a narrower extension. If we want an even smaller
1079 piece than the size of the object being extended, call ourselves
1080 recursively.
1081
1082 This case is used mostly by combine and cse. */
1083
1084 if (GET_MODE (XEXP (x, 0)) == mode)
1085 return XEXP (x, 0);
1086 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1087 return gen_lowpart_common (mode, XEXP (x, 0));
1088 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1089 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1090 }
1091 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1092 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1093 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1094 else if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
1095 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1096 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1097 from the low-order part of the constant. */
1098 else if ((GET_MODE_CLASS (mode) == MODE_INT
1099 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1100 && GET_MODE (x) == VOIDmode
1101 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1102 {
1103 /* If MODE is twice the host word size, X is already the desired
1104 representation. Otherwise, if MODE is wider than a word, we can't
1105 do this. If MODE is exactly a word, return just one CONST_INT. */
1106
1107 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1108 return x;
1109 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1110 return 0;
1111 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1112 return (GET_CODE (x) == CONST_INT ? x
1113 : GEN_INT (CONST_DOUBLE_LOW (x)));
1114 else
1115 {
1116 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1117 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1118 : CONST_DOUBLE_LOW (x));
1119
1120 /* Sign extend to HOST_WIDE_INT. */
1121 val = trunc_int_for_mode (val, mode);
1122
1123 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1124 : GEN_INT (val));
1125 }
1126 }
1127
1128 /* The floating-point emulator can handle all conversions between
1129 FP and integer operands. This simplifies reload because it
1130 doesn't have to deal with constructs like (subreg:DI
1131 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1132 /* Single-precision floats are always 32-bits and double-precision
1133 floats are always 64-bits. */
1134
1135 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1136 && GET_MODE_BITSIZE (mode) == 32
1137 && GET_CODE (x) == CONST_INT)
1138 {
1139 REAL_VALUE_TYPE r;
1140 long i = INTVAL (x);
1141
1142 real_from_target (&r, &i, mode);
1143 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1144 }
1145 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1146 && GET_MODE_BITSIZE (mode) == 64
1147 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1148 && GET_MODE (x) == VOIDmode)
1149 {
1150 REAL_VALUE_TYPE r;
1151 HOST_WIDE_INT low, high;
1152 long i[2];
1153
1154 if (GET_CODE (x) == CONST_INT)
1155 {
1156 low = INTVAL (x);
1157 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1158 }
1159 else
1160 {
1161 low = CONST_DOUBLE_LOW (x);
1162 high = CONST_DOUBLE_HIGH (x);
1163 }
1164
1165 if (HOST_BITS_PER_WIDE_INT > 32)
1166 high = low >> 31 >> 1;
1167
1168 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1169 target machine. */
1170 if (WORDS_BIG_ENDIAN)
1171 i[0] = high, i[1] = low;
1172 else
1173 i[0] = low, i[1] = high;
1174
1175 real_from_target (&r, i, mode);
1176 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1177 }
1178 else if ((GET_MODE_CLASS (mode) == MODE_INT
1179 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1180 && GET_CODE (x) == CONST_DOUBLE
1181 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1182 {
1183 REAL_VALUE_TYPE r;
1184 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1185 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1186
1187 /* Convert 'r' into an array of four 32-bit words in target word
1188 order. */
1189 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1190 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1191 {
1192 case 32:
1193 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1194 i[1] = 0;
1195 i[2] = 0;
1196 i[3 - 3 * endian] = 0;
1197 break;
1198 case 64:
1199 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1200 i[2 - 2 * endian] = 0;
1201 i[3 - 2 * endian] = 0;
1202 break;
1203 case 96:
1204 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1205 i[3 - 3 * endian] = 0;
1206 break;
1207 case 128:
1208 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1209 break;
1210 default:
1211 abort ();
1212 }
1213 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1214 and return it. */
1215 #if HOST_BITS_PER_WIDE_INT == 32
1216 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1217 #else
1218 if (HOST_BITS_PER_WIDE_INT != 64)
1219 abort ();
1220
1221 return immed_double_const ((((unsigned long) i[3 * endian])
1222 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1223 (((unsigned long) i[2 - endian])
1224 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1225 mode);
1226 #endif
1227 }
1228 /* If MODE is a condition code and X is a CONST_INT, the value of X
1229 must already have been "recognized" by the back-end, and we can
1230 assume that it is valid for this mode. */
1231 else if (GET_MODE_CLASS (mode) == MODE_CC
1232 && GET_CODE (x) == CONST_INT)
1233 return x;
1234
1235 /* Otherwise, we can't do this. */
1236 return 0;
1237 }
1238 \f
1239 /* Return the constant real or imaginary part (which has mode MODE)
1240 of a complex value X. The IMAGPART_P argument determines whether
1241 the real or complex component should be returned. This function
1242 returns NULL_RTX if the component isn't a constant. */
1243
1244 static rtx
1245 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1246 {
1247 tree decl, part;
1248
1249 if (GET_CODE (x) == MEM
1250 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1251 {
1252 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1253 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1254 {
1255 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1256 if (TREE_CODE (part) == REAL_CST
1257 || TREE_CODE (part) == INTEGER_CST)
1258 return expand_expr (part, NULL_RTX, mode, 0);
1259 }
1260 }
1261 return NULL_RTX;
1262 }
1263
1264 /* Return the real part (which has mode MODE) of a complex value X.
1265 This always comes at the low address in memory. */
1266
1267 rtx
1268 gen_realpart (enum machine_mode mode, rtx x)
1269 {
1270 rtx part;
1271
1272 /* Handle complex constants. */
1273 part = gen_complex_constant_part (mode, x, 0);
1274 if (part != NULL_RTX)
1275 return part;
1276
1277 if (WORDS_BIG_ENDIAN
1278 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1279 && REG_P (x)
1280 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1281 internal_error
1282 ("can't access real part of complex value in hard register");
1283 else if (WORDS_BIG_ENDIAN)
1284 return gen_highpart (mode, x);
1285 else
1286 return gen_lowpart (mode, x);
1287 }
1288
1289 /* Return the imaginary part (which has mode MODE) of a complex value X.
1290 This always comes at the high address in memory. */
1291
1292 rtx
1293 gen_imagpart (enum machine_mode mode, rtx x)
1294 {
1295 rtx part;
1296
1297 /* Handle complex constants. */
1298 part = gen_complex_constant_part (mode, x, 1);
1299 if (part != NULL_RTX)
1300 return part;
1301
1302 if (WORDS_BIG_ENDIAN)
1303 return gen_lowpart (mode, x);
1304 else if (! WORDS_BIG_ENDIAN
1305 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1306 && REG_P (x)
1307 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1308 internal_error
1309 ("can't access imaginary part of complex value in hard register");
1310 else
1311 return gen_highpart (mode, x);
1312 }
1313
1314 /* Return 1 iff X, assumed to be a SUBREG,
1315 refers to the real part of the complex value in its containing reg.
1316 Complex values are always stored with the real part in the first word,
1317 regardless of WORDS_BIG_ENDIAN. */
1318
1319 int
1320 subreg_realpart_p (rtx x)
1321 {
1322 if (GET_CODE (x) != SUBREG)
1323 abort ();
1324
1325 return ((unsigned int) SUBREG_BYTE (x)
1326 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1327 }
1328 \f
1329 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1330 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1331 least-significant part of X.
1332 MODE specifies how big a part of X to return;
1333 it usually should not be larger than a word.
1334 If X is a MEM whose address is a QUEUED, the value may be so also. */
1335
1336 rtx
1337 gen_lowpart (enum machine_mode mode, rtx x)
1338 {
1339 rtx result = gen_lowpart_common (mode, x);
1340
1341 if (result)
1342 return result;
1343 else if (GET_CODE (x) == REG)
1344 {
1345 /* Must be a hard reg that's not valid in MODE. */
1346 result = gen_lowpart_common (mode, copy_to_reg (x));
1347 if (result == 0)
1348 abort ();
1349 return result;
1350 }
1351 else if (GET_CODE (x) == MEM)
1352 {
1353 /* The only additional case we can do is MEM. */
1354 int offset = 0;
1355
1356 /* The following exposes the use of "x" to CSE. */
1357 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1358 && SCALAR_INT_MODE_P (GET_MODE (x))
1359 && ! no_new_pseudos)
1360 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1361
1362 if (WORDS_BIG_ENDIAN)
1363 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1364 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1365
1366 if (BYTES_BIG_ENDIAN)
1367 /* Adjust the address so that the address-after-the-data
1368 is unchanged. */
1369 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1370 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1371
1372 return adjust_address (x, mode, offset);
1373 }
1374 else if (GET_CODE (x) == ADDRESSOF)
1375 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1376 else
1377 abort ();
1378 }
1379
1380 /* Like `gen_lowpart', but refer to the most significant part.
1381 This is used to access the imaginary part of a complex number. */
1382
1383 rtx
1384 gen_highpart (enum machine_mode mode, rtx x)
1385 {
1386 unsigned int msize = GET_MODE_SIZE (mode);
1387 rtx result;
1388
1389 /* This case loses if X is a subreg. To catch bugs early,
1390 complain if an invalid MODE is used even in other cases. */
1391 if (msize > UNITS_PER_WORD
1392 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1393 abort ();
1394
1395 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1396 subreg_highpart_offset (mode, GET_MODE (x)));
1397
1398 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1399 the target if we have a MEM. gen_highpart must return a valid operand,
1400 emitting code if necessary to do so. */
1401 if (result != NULL_RTX && GET_CODE (result) == MEM)
1402 result = validize_mem (result);
1403
1404 if (!result)
1405 abort ();
1406 return result;
1407 }
1408
1409 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1410 be VOIDmode constant. */
1411 rtx
1412 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1413 {
1414 if (GET_MODE (exp) != VOIDmode)
1415 {
1416 if (GET_MODE (exp) != innermode)
1417 abort ();
1418 return gen_highpart (outermode, exp);
1419 }
1420 return simplify_gen_subreg (outermode, exp, innermode,
1421 subreg_highpart_offset (outermode, innermode));
1422 }
1423
1424 /* Return offset in bytes to get OUTERMODE low part
1425 of the value in mode INNERMODE stored in memory in target format. */
1426
1427 unsigned int
1428 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1429 {
1430 unsigned int offset = 0;
1431 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1432
1433 if (difference > 0)
1434 {
1435 if (WORDS_BIG_ENDIAN)
1436 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1437 if (BYTES_BIG_ENDIAN)
1438 offset += difference % UNITS_PER_WORD;
1439 }
1440
1441 return offset;
1442 }
1443
1444 /* Return offset in bytes to get OUTERMODE high part
1445 of the value in mode INNERMODE stored in memory in target format. */
1446 unsigned int
1447 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1448 {
1449 unsigned int offset = 0;
1450 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1451
1452 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1453 abort ();
1454
1455 if (difference > 0)
1456 {
1457 if (! WORDS_BIG_ENDIAN)
1458 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1459 if (! BYTES_BIG_ENDIAN)
1460 offset += difference % UNITS_PER_WORD;
1461 }
1462
1463 return offset;
1464 }
1465
1466 /* Return 1 iff X, assumed to be a SUBREG,
1467 refers to the least significant part of its containing reg.
1468 If X is not a SUBREG, always return 1 (it is its own low part!). */
1469
1470 int
1471 subreg_lowpart_p (rtx x)
1472 {
1473 if (GET_CODE (x) != SUBREG)
1474 return 1;
1475 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1476 return 0;
1477
1478 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1479 == SUBREG_BYTE (x));
1480 }
1481 \f
1482
1483 /* Helper routine for all the constant cases of operand_subword.
1484 Some places invoke this directly. */
1485
1486 rtx
1487 constant_subword (rtx op, int offset, enum machine_mode mode)
1488 {
1489 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1490 HOST_WIDE_INT val;
1491
1492 /* If OP is already an integer word, return it. */
1493 if (GET_MODE_CLASS (mode) == MODE_INT
1494 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1495 return op;
1496
1497 /* The output is some bits, the width of the target machine's word.
1498 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1499 host can't. */
1500 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1501 && GET_MODE_CLASS (mode) == MODE_FLOAT
1502 && GET_MODE_BITSIZE (mode) == 64
1503 && GET_CODE (op) == CONST_DOUBLE)
1504 {
1505 long k[2];
1506 REAL_VALUE_TYPE rv;
1507
1508 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1509 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1510
1511 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1512 which the words are written depends on the word endianness.
1513 ??? This is a potential portability problem and should
1514 be fixed at some point.
1515
1516 We must exercise caution with the sign bit. By definition there
1517 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1518 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1519 So we explicitly mask and sign-extend as necessary. */
1520 if (BITS_PER_WORD == 32)
1521 {
1522 val = k[offset];
1523 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1524 return GEN_INT (val);
1525 }
1526 #if HOST_BITS_PER_WIDE_INT >= 64
1527 else if (BITS_PER_WORD >= 64 && offset == 0)
1528 {
1529 val = k[! WORDS_BIG_ENDIAN];
1530 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1531 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1532 return GEN_INT (val);
1533 }
1534 #endif
1535 else if (BITS_PER_WORD == 16)
1536 {
1537 val = k[offset >> 1];
1538 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1539 val >>= 16;
1540 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1541 return GEN_INT (val);
1542 }
1543 else
1544 abort ();
1545 }
1546 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1547 && GET_MODE_CLASS (mode) == MODE_FLOAT
1548 && GET_MODE_BITSIZE (mode) > 64
1549 && GET_CODE (op) == CONST_DOUBLE)
1550 {
1551 long k[4];
1552 REAL_VALUE_TYPE rv;
1553
1554 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1555 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1556
1557 if (BITS_PER_WORD == 32)
1558 {
1559 val = k[offset];
1560 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1561 return GEN_INT (val);
1562 }
1563 #if HOST_BITS_PER_WIDE_INT >= 64
1564 else if (BITS_PER_WORD >= 64 && offset <= 1)
1565 {
1566 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1567 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1568 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1569 return GEN_INT (val);
1570 }
1571 #endif
1572 else
1573 abort ();
1574 }
1575
1576 /* Single word float is a little harder, since single- and double-word
1577 values often do not have the same high-order bits. We have already
1578 verified that we want the only defined word of the single-word value. */
1579 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1580 && GET_MODE_BITSIZE (mode) == 32
1581 && GET_CODE (op) == CONST_DOUBLE)
1582 {
1583 long l;
1584 REAL_VALUE_TYPE rv;
1585
1586 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1587 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1588
1589 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1590 val = l;
1591 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1592
1593 if (BITS_PER_WORD == 16)
1594 {
1595 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1596 val >>= 16;
1597 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1598 }
1599
1600 return GEN_INT (val);
1601 }
1602
1603 /* The only remaining cases that we can handle are integers.
1604 Convert to proper endianness now since these cases need it.
1605 At this point, offset == 0 means the low-order word.
1606
1607 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1608 in general. However, if OP is (const_int 0), we can just return
1609 it for any word. */
1610
1611 if (op == const0_rtx)
1612 return op;
1613
1614 if (GET_MODE_CLASS (mode) != MODE_INT
1615 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1616 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1617 return 0;
1618
1619 if (WORDS_BIG_ENDIAN)
1620 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1621
1622 /* Find out which word on the host machine this value is in and get
1623 it from the constant. */
1624 val = (offset / size_ratio == 0
1625 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1626 : (GET_CODE (op) == CONST_INT
1627 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1628
1629 /* Get the value we want into the low bits of val. */
1630 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1631 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1632
1633 val = trunc_int_for_mode (val, word_mode);
1634
1635 return GEN_INT (val);
1636 }
1637
1638 /* Return subword OFFSET of operand OP.
1639 The word number, OFFSET, is interpreted as the word number starting
1640 at the low-order address. OFFSET 0 is the low-order word if not
1641 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1642
1643 If we cannot extract the required word, we return zero. Otherwise,
1644 an rtx corresponding to the requested word will be returned.
1645
1646 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1647 reload has completed, a valid address will always be returned. After
1648 reload, if a valid address cannot be returned, we return zero.
1649
1650 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1651 it is the responsibility of the caller.
1652
1653 MODE is the mode of OP in case it is a CONST_INT.
1654
1655 ??? This is still rather broken for some cases. The problem for the
1656 moment is that all callers of this thing provide no 'goal mode' to
1657 tell us to work with. This exists because all callers were written
1658 in a word based SUBREG world.
1659 Now use of this function can be deprecated by simplify_subreg in most
1660 cases.
1661 */
1662
1663 rtx
1664 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1665 {
1666 if (mode == VOIDmode)
1667 mode = GET_MODE (op);
1668
1669 if (mode == VOIDmode)
1670 abort ();
1671
1672 /* If OP is narrower than a word, fail. */
1673 if (mode != BLKmode
1674 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1675 return 0;
1676
1677 /* If we want a word outside OP, return zero. */
1678 if (mode != BLKmode
1679 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1680 return const0_rtx;
1681
1682 /* Form a new MEM at the requested address. */
1683 if (GET_CODE (op) == MEM)
1684 {
1685 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1686
1687 if (! validate_address)
1688 return new;
1689
1690 else if (reload_completed)
1691 {
1692 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1693 return 0;
1694 }
1695 else
1696 return replace_equiv_address (new, XEXP (new, 0));
1697 }
1698
1699 /* Rest can be handled by simplify_subreg. */
1700 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1701 }
1702
1703 /* Similar to `operand_subword', but never return 0. If we can't extract
1704 the required subword, put OP into a register and try again. If that fails,
1705 abort. We always validate the address in this case.
1706
1707 MODE is the mode of OP, in case it is CONST_INT. */
1708
1709 rtx
1710 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1711 {
1712 rtx result = operand_subword (op, offset, 1, mode);
1713
1714 if (result)
1715 return result;
1716
1717 if (mode != BLKmode && mode != VOIDmode)
1718 {
1719 /* If this is a register which can not be accessed by words, copy it
1720 to a pseudo register. */
1721 if (GET_CODE (op) == REG)
1722 op = copy_to_reg (op);
1723 else
1724 op = force_reg (mode, op);
1725 }
1726
1727 result = operand_subword (op, offset, 1, mode);
1728 if (result == 0)
1729 abort ();
1730
1731 return result;
1732 }
1733 \f
1734 /* Given a compare instruction, swap the operands.
1735 A test instruction is changed into a compare of 0 against the operand. */
1736
1737 void
1738 reverse_comparison (rtx insn)
1739 {
1740 rtx body = PATTERN (insn);
1741 rtx comp;
1742
1743 if (GET_CODE (body) == SET)
1744 comp = SET_SRC (body);
1745 else
1746 comp = SET_SRC (XVECEXP (body, 0, 0));
1747
1748 if (GET_CODE (comp) == COMPARE)
1749 {
1750 rtx op0 = XEXP (comp, 0);
1751 rtx op1 = XEXP (comp, 1);
1752 XEXP (comp, 0) = op1;
1753 XEXP (comp, 1) = op0;
1754 }
1755 else
1756 {
1757 rtx new = gen_rtx_COMPARE (VOIDmode,
1758 CONST0_RTX (GET_MODE (comp)), comp);
1759 if (GET_CODE (body) == SET)
1760 SET_SRC (body) = new;
1761 else
1762 SET_SRC (XVECEXP (body, 0, 0)) = new;
1763 }
1764 }
1765 \f
1766 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1767 or (2) a component ref of something variable. Represent the later with
1768 a NULL expression. */
1769
1770 static tree
1771 component_ref_for_mem_expr (tree ref)
1772 {
1773 tree inner = TREE_OPERAND (ref, 0);
1774
1775 if (TREE_CODE (inner) == COMPONENT_REF)
1776 inner = component_ref_for_mem_expr (inner);
1777 else
1778 {
1779 tree placeholder_ptr = 0;
1780
1781 /* Now remove any conversions: they don't change what the underlying
1782 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1783 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1784 || TREE_CODE (inner) == NON_LVALUE_EXPR
1785 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1786 || TREE_CODE (inner) == SAVE_EXPR
1787 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1788 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1789 inner = find_placeholder (inner, &placeholder_ptr);
1790 else
1791 inner = TREE_OPERAND (inner, 0);
1792
1793 if (! DECL_P (inner))
1794 inner = NULL_TREE;
1795 }
1796
1797 if (inner == TREE_OPERAND (ref, 0))
1798 return ref;
1799 else
1800 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1801 TREE_OPERAND (ref, 1));
1802 }
1803
1804 /* Given REF, a MEM, and T, either the type of X or the expression
1805 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1806 if we are making a new object of this type. BITPOS is nonzero if
1807 there is an offset outstanding on T that will be applied later. */
1808
1809 void
1810 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1811 HOST_WIDE_INT bitpos)
1812 {
1813 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1814 tree expr = MEM_EXPR (ref);
1815 rtx offset = MEM_OFFSET (ref);
1816 rtx size = MEM_SIZE (ref);
1817 unsigned int align = MEM_ALIGN (ref);
1818 HOST_WIDE_INT apply_bitpos = 0;
1819 tree type;
1820
1821 /* It can happen that type_for_mode was given a mode for which there
1822 is no language-level type. In which case it returns NULL, which
1823 we can see here. */
1824 if (t == NULL_TREE)
1825 return;
1826
1827 type = TYPE_P (t) ? t : TREE_TYPE (t);
1828
1829 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1830 wrong answer, as it assumes that DECL_RTL already has the right alias
1831 info. Callers should not set DECL_RTL until after the call to
1832 set_mem_attributes. */
1833 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1834 abort ();
1835
1836 /* Get the alias set from the expression or type (perhaps using a
1837 front-end routine) and use it. */
1838 alias = get_alias_set (t);
1839
1840 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1841 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1842 RTX_UNCHANGING_P (ref)
1843 |= ((lang_hooks.honor_readonly
1844 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1845 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1846
1847 /* If we are making an object of this type, or if this is a DECL, we know
1848 that it is a scalar if the type is not an aggregate. */
1849 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1850 MEM_SCALAR_P (ref) = 1;
1851
1852 /* We can set the alignment from the type if we are making an object,
1853 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1854 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1855 align = MAX (align, TYPE_ALIGN (type));
1856
1857 /* If the size is known, we can set that. */
1858 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1859 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1860
1861 /* If T is not a type, we may be able to deduce some more information about
1862 the expression. */
1863 if (! TYPE_P (t))
1864 {
1865 maybe_set_unchanging (ref, t);
1866 if (TREE_THIS_VOLATILE (t))
1867 MEM_VOLATILE_P (ref) = 1;
1868
1869 /* Now remove any conversions: they don't change what the underlying
1870 object is. Likewise for SAVE_EXPR. */
1871 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1872 || TREE_CODE (t) == NON_LVALUE_EXPR
1873 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1874 || TREE_CODE (t) == SAVE_EXPR)
1875 t = TREE_OPERAND (t, 0);
1876
1877 /* If this expression can't be addressed (e.g., it contains a reference
1878 to a non-addressable field), show we don't change its alias set. */
1879 if (! can_address_p (t))
1880 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1881
1882 /* If this is a decl, set the attributes of the MEM from it. */
1883 if (DECL_P (t))
1884 {
1885 expr = t;
1886 offset = const0_rtx;
1887 apply_bitpos = bitpos;
1888 size = (DECL_SIZE_UNIT (t)
1889 && host_integerp (DECL_SIZE_UNIT (t), 1)
1890 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1891 align = DECL_ALIGN (t);
1892 }
1893
1894 /* If this is a constant, we know the alignment. */
1895 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1896 {
1897 align = TYPE_ALIGN (type);
1898 #ifdef CONSTANT_ALIGNMENT
1899 align = CONSTANT_ALIGNMENT (t, align);
1900 #endif
1901 }
1902
1903 /* If this is a field reference and not a bit-field, record it. */
1904 /* ??? There is some information that can be gleened from bit-fields,
1905 such as the word offset in the structure that might be modified.
1906 But skip it for now. */
1907 else if (TREE_CODE (t) == COMPONENT_REF
1908 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1909 {
1910 expr = component_ref_for_mem_expr (t);
1911 offset = const0_rtx;
1912 apply_bitpos = bitpos;
1913 /* ??? Any reason the field size would be different than
1914 the size we got from the type? */
1915 }
1916
1917 /* If this is an array reference, look for an outer field reference. */
1918 else if (TREE_CODE (t) == ARRAY_REF)
1919 {
1920 tree off_tree = size_zero_node;
1921 /* We can't modify t, because we use it at the end of the
1922 function. */
1923 tree t2 = t;
1924
1925 do
1926 {
1927 tree index = TREE_OPERAND (t2, 1);
1928 tree array = TREE_OPERAND (t2, 0);
1929 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1930 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1931 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1932
1933 /* We assume all arrays have sizes that are a multiple of a byte.
1934 First subtract the lower bound, if any, in the type of the
1935 index, then convert to sizetype and multiply by the size of the
1936 array element. */
1937 if (low_bound != 0 && ! integer_zerop (low_bound))
1938 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1939 index, low_bound));
1940
1941 /* If the index has a self-referential type, pass it to a
1942 WITH_RECORD_EXPR; if the component size is, pass our
1943 component to one. */
1944 if (CONTAINS_PLACEHOLDER_P (index))
1945 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1946 if (CONTAINS_PLACEHOLDER_P (unit_size))
1947 unit_size = build (WITH_RECORD_EXPR, sizetype,
1948 unit_size, array);
1949
1950 off_tree
1951 = fold (build (PLUS_EXPR, sizetype,
1952 fold (build (MULT_EXPR, sizetype,
1953 index,
1954 unit_size)),
1955 off_tree));
1956 t2 = TREE_OPERAND (t2, 0);
1957 }
1958 while (TREE_CODE (t2) == ARRAY_REF);
1959
1960 if (DECL_P (t2))
1961 {
1962 expr = t2;
1963 offset = NULL;
1964 if (host_integerp (off_tree, 1))
1965 {
1966 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1967 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1968 align = DECL_ALIGN (t2);
1969 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1970 align = aoff;
1971 offset = GEN_INT (ioff);
1972 apply_bitpos = bitpos;
1973 }
1974 }
1975 else if (TREE_CODE (t2) == COMPONENT_REF)
1976 {
1977 expr = component_ref_for_mem_expr (t2);
1978 if (host_integerp (off_tree, 1))
1979 {
1980 offset = GEN_INT (tree_low_cst (off_tree, 1));
1981 apply_bitpos = bitpos;
1982 }
1983 /* ??? Any reason the field size would be different than
1984 the size we got from the type? */
1985 }
1986 else if (flag_argument_noalias > 1
1987 && TREE_CODE (t2) == INDIRECT_REF
1988 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1989 {
1990 expr = t2;
1991 offset = NULL;
1992 }
1993 }
1994
1995 /* If this is a Fortran indirect argument reference, record the
1996 parameter decl. */
1997 else if (flag_argument_noalias > 1
1998 && TREE_CODE (t) == INDIRECT_REF
1999 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2000 {
2001 expr = t;
2002 offset = NULL;
2003 }
2004 }
2005
2006 /* If we modified OFFSET based on T, then subtract the outstanding
2007 bit position offset. Similarly, increase the size of the accessed
2008 object to contain the negative offset. */
2009 if (apply_bitpos)
2010 {
2011 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2012 if (size)
2013 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2014 }
2015
2016 /* Now set the attributes we computed above. */
2017 MEM_ATTRS (ref)
2018 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2019
2020 /* If this is already known to be a scalar or aggregate, we are done. */
2021 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2022 return;
2023
2024 /* If it is a reference into an aggregate, this is part of an aggregate.
2025 Otherwise we don't know. */
2026 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2027 || TREE_CODE (t) == ARRAY_RANGE_REF
2028 || TREE_CODE (t) == BIT_FIELD_REF)
2029 MEM_IN_STRUCT_P (ref) = 1;
2030 }
2031
2032 void
2033 set_mem_attributes (rtx ref, tree t, int objectp)
2034 {
2035 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2036 }
2037
2038 /* Set the decl for MEM to DECL. */
2039
2040 void
2041 set_mem_attrs_from_reg (rtx mem, rtx reg)
2042 {
2043 MEM_ATTRS (mem)
2044 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2045 GEN_INT (REG_OFFSET (reg)),
2046 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2047 }
2048
2049 /* Set the alias set of MEM to SET. */
2050
2051 void
2052 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
2053 {
2054 #ifdef ENABLE_CHECKING
2055 /* If the new and old alias sets don't conflict, something is wrong. */
2056 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2057 abort ();
2058 #endif
2059
2060 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2061 MEM_SIZE (mem), MEM_ALIGN (mem),
2062 GET_MODE (mem));
2063 }
2064
2065 /* Set the alignment of MEM to ALIGN bits. */
2066
2067 void
2068 set_mem_align (rtx mem, unsigned int align)
2069 {
2070 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2071 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2072 GET_MODE (mem));
2073 }
2074
2075 /* Set the expr for MEM to EXPR. */
2076
2077 void
2078 set_mem_expr (rtx mem, tree expr)
2079 {
2080 MEM_ATTRS (mem)
2081 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2082 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2083 }
2084
2085 /* Set the offset of MEM to OFFSET. */
2086
2087 void
2088 set_mem_offset (rtx mem, rtx offset)
2089 {
2090 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2091 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2092 GET_MODE (mem));
2093 }
2094
2095 /* Set the size of MEM to SIZE. */
2096
2097 void
2098 set_mem_size (rtx mem, rtx size)
2099 {
2100 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2101 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2102 GET_MODE (mem));
2103 }
2104 \f
2105 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2106 and its address changed to ADDR. (VOIDmode means don't change the mode.
2107 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2108 returned memory location is required to be valid. The memory
2109 attributes are not changed. */
2110
2111 static rtx
2112 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
2113 {
2114 rtx new;
2115
2116 if (GET_CODE (memref) != MEM)
2117 abort ();
2118 if (mode == VOIDmode)
2119 mode = GET_MODE (memref);
2120 if (addr == 0)
2121 addr = XEXP (memref, 0);
2122
2123 if (validate)
2124 {
2125 if (reload_in_progress || reload_completed)
2126 {
2127 if (! memory_address_p (mode, addr))
2128 abort ();
2129 }
2130 else
2131 addr = memory_address (mode, addr);
2132 }
2133
2134 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2135 return memref;
2136
2137 new = gen_rtx_MEM (mode, addr);
2138 MEM_COPY_ATTRIBUTES (new, memref);
2139 return new;
2140 }
2141
2142 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2143 way we are changing MEMREF, so we only preserve the alias set. */
2144
2145 rtx
2146 change_address (rtx memref, enum machine_mode mode, rtx addr)
2147 {
2148 rtx new = change_address_1 (memref, mode, addr, 1);
2149 enum machine_mode mmode = GET_MODE (new);
2150
2151 MEM_ATTRS (new)
2152 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2153 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2154 (mmode == BLKmode ? BITS_PER_UNIT
2155 : GET_MODE_ALIGNMENT (mmode)),
2156 mmode);
2157
2158 return new;
2159 }
2160
2161 /* Return a memory reference like MEMREF, but with its mode changed
2162 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2163 nonzero, the memory address is forced to be valid.
2164 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2165 and caller is responsible for adjusting MEMREF base register. */
2166
2167 rtx
2168 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2169 int validate, int adjust)
2170 {
2171 rtx addr = XEXP (memref, 0);
2172 rtx new;
2173 rtx memoffset = MEM_OFFSET (memref);
2174 rtx size = 0;
2175 unsigned int memalign = MEM_ALIGN (memref);
2176
2177 /* ??? Prefer to create garbage instead of creating shared rtl.
2178 This may happen even if offset is nonzero -- consider
2179 (plus (plus reg reg) const_int) -- so do this always. */
2180 addr = copy_rtx (addr);
2181
2182 if (adjust)
2183 {
2184 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2185 object, we can merge it into the LO_SUM. */
2186 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2187 && offset >= 0
2188 && (unsigned HOST_WIDE_INT) offset
2189 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2190 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2191 plus_constant (XEXP (addr, 1), offset));
2192 else
2193 addr = plus_constant (addr, offset);
2194 }
2195
2196 new = change_address_1 (memref, mode, addr, validate);
2197
2198 /* Compute the new values of the memory attributes due to this adjustment.
2199 We add the offsets and update the alignment. */
2200 if (memoffset)
2201 memoffset = GEN_INT (offset + INTVAL (memoffset));
2202
2203 /* Compute the new alignment by taking the MIN of the alignment and the
2204 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2205 if zero. */
2206 if (offset != 0)
2207 memalign
2208 = MIN (memalign,
2209 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2210
2211 /* We can compute the size in a number of ways. */
2212 if (GET_MODE (new) != BLKmode)
2213 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2214 else if (MEM_SIZE (memref))
2215 size = plus_constant (MEM_SIZE (memref), -offset);
2216
2217 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2218 memoffset, size, memalign, GET_MODE (new));
2219
2220 /* At some point, we should validate that this offset is within the object,
2221 if all the appropriate values are known. */
2222 return new;
2223 }
2224
2225 /* Return a memory reference like MEMREF, but with its mode changed
2226 to MODE and its address changed to ADDR, which is assumed to be
2227 MEMREF offseted by OFFSET bytes. If VALIDATE is
2228 nonzero, the memory address is forced to be valid. */
2229
2230 rtx
2231 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2232 HOST_WIDE_INT offset, int validate)
2233 {
2234 memref = change_address_1 (memref, VOIDmode, addr, validate);
2235 return adjust_address_1 (memref, mode, offset, validate, 0);
2236 }
2237
2238 /* Return a memory reference like MEMREF, but whose address is changed by
2239 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2240 known to be in OFFSET (possibly 1). */
2241
2242 rtx
2243 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2244 {
2245 rtx new, addr = XEXP (memref, 0);
2246
2247 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2248
2249 /* At this point we don't know _why_ the address is invalid. It
2250 could have secondary memory references, multiplies or anything.
2251
2252 However, if we did go and rearrange things, we can wind up not
2253 being able to recognize the magic around pic_offset_table_rtx.
2254 This stuff is fragile, and is yet another example of why it is
2255 bad to expose PIC machinery too early. */
2256 if (! memory_address_p (GET_MODE (memref), new)
2257 && GET_CODE (addr) == PLUS
2258 && XEXP (addr, 0) == pic_offset_table_rtx)
2259 {
2260 addr = force_reg (GET_MODE (addr), addr);
2261 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2262 }
2263
2264 update_temp_slot_address (XEXP (memref, 0), new);
2265 new = change_address_1 (memref, VOIDmode, new, 1);
2266
2267 /* Update the alignment to reflect the offset. Reset the offset, which
2268 we don't know. */
2269 MEM_ATTRS (new)
2270 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2271 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2272 GET_MODE (new));
2273 return new;
2274 }
2275
2276 /* Return a memory reference like MEMREF, but with its address changed to
2277 ADDR. The caller is asserting that the actual piece of memory pointed
2278 to is the same, just the form of the address is being changed, such as
2279 by putting something into a register. */
2280
2281 rtx
2282 replace_equiv_address (rtx memref, rtx addr)
2283 {
2284 /* change_address_1 copies the memory attribute structure without change
2285 and that's exactly what we want here. */
2286 update_temp_slot_address (XEXP (memref, 0), addr);
2287 return change_address_1 (memref, VOIDmode, addr, 1);
2288 }
2289
2290 /* Likewise, but the reference is not required to be valid. */
2291
2292 rtx
2293 replace_equiv_address_nv (rtx memref, rtx addr)
2294 {
2295 return change_address_1 (memref, VOIDmode, addr, 0);
2296 }
2297
2298 /* Return a memory reference like MEMREF, but with its mode widened to
2299 MODE and offset by OFFSET. This would be used by targets that e.g.
2300 cannot issue QImode memory operations and have to use SImode memory
2301 operations plus masking logic. */
2302
2303 rtx
2304 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2305 {
2306 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2307 tree expr = MEM_EXPR (new);
2308 rtx memoffset = MEM_OFFSET (new);
2309 unsigned int size = GET_MODE_SIZE (mode);
2310
2311 /* If we don't know what offset we were at within the expression, then
2312 we can't know if we've overstepped the bounds. */
2313 if (! memoffset)
2314 expr = NULL_TREE;
2315
2316 while (expr)
2317 {
2318 if (TREE_CODE (expr) == COMPONENT_REF)
2319 {
2320 tree field = TREE_OPERAND (expr, 1);
2321
2322 if (! DECL_SIZE_UNIT (field))
2323 {
2324 expr = NULL_TREE;
2325 break;
2326 }
2327
2328 /* Is the field at least as large as the access? If so, ok,
2329 otherwise strip back to the containing structure. */
2330 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2331 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2332 && INTVAL (memoffset) >= 0)
2333 break;
2334
2335 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2336 {
2337 expr = NULL_TREE;
2338 break;
2339 }
2340
2341 expr = TREE_OPERAND (expr, 0);
2342 memoffset = (GEN_INT (INTVAL (memoffset)
2343 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2344 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2345 / BITS_PER_UNIT)));
2346 }
2347 /* Similarly for the decl. */
2348 else if (DECL_P (expr)
2349 && DECL_SIZE_UNIT (expr)
2350 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2351 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2352 && (! memoffset || INTVAL (memoffset) >= 0))
2353 break;
2354 else
2355 {
2356 /* The widened memory access overflows the expression, which means
2357 that it could alias another expression. Zap it. */
2358 expr = NULL_TREE;
2359 break;
2360 }
2361 }
2362
2363 if (! expr)
2364 memoffset = NULL_RTX;
2365
2366 /* The widened memory may alias other stuff, so zap the alias set. */
2367 /* ??? Maybe use get_alias_set on any remaining expression. */
2368
2369 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2370 MEM_ALIGN (new), mode);
2371
2372 return new;
2373 }
2374 \f
2375 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2376
2377 rtx
2378 gen_label_rtx (void)
2379 {
2380 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2381 NULL, label_num++, NULL);
2382 }
2383 \f
2384 /* For procedure integration. */
2385
2386 /* Install new pointers to the first and last insns in the chain.
2387 Also, set cur_insn_uid to one higher than the last in use.
2388 Used for an inline-procedure after copying the insn chain. */
2389
2390 void
2391 set_new_first_and_last_insn (rtx first, rtx last)
2392 {
2393 rtx insn;
2394
2395 first_insn = first;
2396 last_insn = last;
2397 cur_insn_uid = 0;
2398
2399 for (insn = first; insn; insn = NEXT_INSN (insn))
2400 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2401
2402 cur_insn_uid++;
2403 }
2404
2405 /* Set the range of label numbers found in the current function.
2406 This is used when belatedly compiling an inline function. */
2407
2408 void
2409 set_new_first_and_last_label_num (int first, int last)
2410 {
2411 base_label_num = label_num;
2412 first_label_num = first;
2413 last_label_num = last;
2414 }
2415
2416 /* Set the last label number found in the current function.
2417 This is used when belatedly compiling an inline function. */
2418
2419 void
2420 set_new_last_label_num (int last)
2421 {
2422 base_label_num = label_num;
2423 last_label_num = last;
2424 }
2425 \f
2426 /* Restore all variables describing the current status from the structure *P.
2427 This is used after a nested function. */
2428
2429 void
2430 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2431 {
2432 last_label_num = 0;
2433 }
2434 \f
2435 /* Go through all the RTL insn bodies and copy any invalid shared
2436 structure. This routine should only be called once. */
2437
2438 void
2439 unshare_all_rtl (tree fndecl, rtx insn)
2440 {
2441 tree decl;
2442
2443 /* Make sure that virtual parameters are not shared. */
2444 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2445 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2446
2447 /* Make sure that virtual stack slots are not shared. */
2448 unshare_all_decls (DECL_INITIAL (fndecl));
2449
2450 /* Unshare just about everything else. */
2451 unshare_all_rtl_1 (insn);
2452
2453 /* Make sure the addresses of stack slots found outside the insn chain
2454 (such as, in DECL_RTL of a variable) are not shared
2455 with the insn chain.
2456
2457 This special care is necessary when the stack slot MEM does not
2458 actually appear in the insn chain. If it does appear, its address
2459 is unshared from all else at that point. */
2460 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2461 }
2462
2463 /* Go through all the RTL insn bodies and copy any invalid shared
2464 structure, again. This is a fairly expensive thing to do so it
2465 should be done sparingly. */
2466
2467 void
2468 unshare_all_rtl_again (rtx insn)
2469 {
2470 rtx p;
2471 tree decl;
2472
2473 for (p = insn; p; p = NEXT_INSN (p))
2474 if (INSN_P (p))
2475 {
2476 reset_used_flags (PATTERN (p));
2477 reset_used_flags (REG_NOTES (p));
2478 reset_used_flags (LOG_LINKS (p));
2479 }
2480
2481 /* Make sure that virtual stack slots are not shared. */
2482 reset_used_decls (DECL_INITIAL (cfun->decl));
2483
2484 /* Make sure that virtual parameters are not shared. */
2485 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2486 reset_used_flags (DECL_RTL (decl));
2487
2488 reset_used_flags (stack_slot_list);
2489
2490 unshare_all_rtl (cfun->decl, insn);
2491 }
2492
2493 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2494 Assumes the mark bits are cleared at entry. */
2495
2496 static void
2497 unshare_all_rtl_1 (rtx insn)
2498 {
2499 for (; insn; insn = NEXT_INSN (insn))
2500 if (INSN_P (insn))
2501 {
2502 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2503 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2504 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2505 }
2506 }
2507
2508 /* Go through all virtual stack slots of a function and copy any
2509 shared structure. */
2510 static void
2511 unshare_all_decls (tree blk)
2512 {
2513 tree t;
2514
2515 /* Copy shared decls. */
2516 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2517 if (DECL_RTL_SET_P (t))
2518 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2519
2520 /* Now process sub-blocks. */
2521 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2522 unshare_all_decls (t);
2523 }
2524
2525 /* Go through all virtual stack slots of a function and mark them as
2526 not shared. */
2527 static void
2528 reset_used_decls (tree blk)
2529 {
2530 tree t;
2531
2532 /* Mark decls. */
2533 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2534 if (DECL_RTL_SET_P (t))
2535 reset_used_flags (DECL_RTL (t));
2536
2537 /* Now process sub-blocks. */
2538 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2539 reset_used_decls (t);
2540 }
2541
2542 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2543 placed in the result directly, rather than being copied. MAY_SHARE is
2544 either a MEM of an EXPR_LIST of MEMs. */
2545
2546 rtx
2547 copy_most_rtx (rtx orig, rtx may_share)
2548 {
2549 rtx copy;
2550 int i, j;
2551 RTX_CODE code;
2552 const char *format_ptr;
2553
2554 if (orig == may_share
2555 || (GET_CODE (may_share) == EXPR_LIST
2556 && in_expr_list_p (may_share, orig)))
2557 return orig;
2558
2559 code = GET_CODE (orig);
2560
2561 switch (code)
2562 {
2563 case REG:
2564 case QUEUED:
2565 case CONST_INT:
2566 case CONST_DOUBLE:
2567 case CONST_VECTOR:
2568 case SYMBOL_REF:
2569 case CODE_LABEL:
2570 case PC:
2571 case CC0:
2572 return orig;
2573 default:
2574 break;
2575 }
2576
2577 copy = rtx_alloc (code);
2578 PUT_MODE (copy, GET_MODE (orig));
2579 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2580 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2581 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2582 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2583 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2584
2585 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2586
2587 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2588 {
2589 switch (*format_ptr++)
2590 {
2591 case 'e':
2592 XEXP (copy, i) = XEXP (orig, i);
2593 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2594 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2595 break;
2596
2597 case 'u':
2598 XEXP (copy, i) = XEXP (orig, i);
2599 break;
2600
2601 case 'E':
2602 case 'V':
2603 XVEC (copy, i) = XVEC (orig, i);
2604 if (XVEC (orig, i) != NULL)
2605 {
2606 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2607 for (j = 0; j < XVECLEN (copy, i); j++)
2608 XVECEXP (copy, i, j)
2609 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2610 }
2611 break;
2612
2613 case 'w':
2614 XWINT (copy, i) = XWINT (orig, i);
2615 break;
2616
2617 case 'n':
2618 case 'i':
2619 XINT (copy, i) = XINT (orig, i);
2620 break;
2621
2622 case 't':
2623 XTREE (copy, i) = XTREE (orig, i);
2624 break;
2625
2626 case 's':
2627 case 'S':
2628 XSTR (copy, i) = XSTR (orig, i);
2629 break;
2630
2631 case '0':
2632 X0ANY (copy, i) = X0ANY (orig, i);
2633 break;
2634
2635 default:
2636 abort ();
2637 }
2638 }
2639 return copy;
2640 }
2641
2642 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2643 Recursively does the same for subexpressions. */
2644
2645 rtx
2646 copy_rtx_if_shared (rtx orig)
2647 {
2648 rtx x = orig;
2649 int i;
2650 enum rtx_code code;
2651 const char *format_ptr;
2652 int copied = 0;
2653
2654 if (x == 0)
2655 return 0;
2656
2657 code = GET_CODE (x);
2658
2659 /* These types may be freely shared. */
2660
2661 switch (code)
2662 {
2663 case REG:
2664 case QUEUED:
2665 case CONST_INT:
2666 case CONST_DOUBLE:
2667 case CONST_VECTOR:
2668 case SYMBOL_REF:
2669 case CODE_LABEL:
2670 case PC:
2671 case CC0:
2672 case SCRATCH:
2673 /* SCRATCH must be shared because they represent distinct values. */
2674 return x;
2675
2676 case CONST:
2677 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2678 a LABEL_REF, it isn't sharable. */
2679 if (GET_CODE (XEXP (x, 0)) == PLUS
2680 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2681 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2682 return x;
2683 break;
2684
2685 case INSN:
2686 case JUMP_INSN:
2687 case CALL_INSN:
2688 case NOTE:
2689 case BARRIER:
2690 /* The chain of insns is not being copied. */
2691 return x;
2692
2693 case MEM:
2694 /* A MEM is allowed to be shared if its address is constant.
2695
2696 We used to allow sharing of MEMs which referenced
2697 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2698 that can lose. instantiate_virtual_regs will not unshare
2699 the MEMs, and combine may change the structure of the address
2700 because it looks safe and profitable in one context, but
2701 in some other context it creates unrecognizable RTL. */
2702 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2703 return x;
2704
2705 break;
2706
2707 default:
2708 break;
2709 }
2710
2711 /* This rtx may not be shared. If it has already been seen,
2712 replace it with a copy of itself. */
2713
2714 if (RTX_FLAG (x, used))
2715 {
2716 rtx copy;
2717
2718 copy = rtx_alloc (code);
2719 memcpy (copy, x, RTX_SIZE (code));
2720 x = copy;
2721 copied = 1;
2722 }
2723 RTX_FLAG (x, used) = 1;
2724
2725 /* Now scan the subexpressions recursively.
2726 We can store any replaced subexpressions directly into X
2727 since we know X is not shared! Any vectors in X
2728 must be copied if X was copied. */
2729
2730 format_ptr = GET_RTX_FORMAT (code);
2731
2732 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2733 {
2734 switch (*format_ptr++)
2735 {
2736 case 'e':
2737 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2738 break;
2739
2740 case 'E':
2741 if (XVEC (x, i) != NULL)
2742 {
2743 int j;
2744 int len = XVECLEN (x, i);
2745
2746 if (copied && len > 0)
2747 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2748 for (j = 0; j < len; j++)
2749 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2750 }
2751 break;
2752 }
2753 }
2754 return x;
2755 }
2756
2757 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2758 to look for shared sub-parts. */
2759
2760 void
2761 reset_used_flags (rtx x)
2762 {
2763 int i, j;
2764 enum rtx_code code;
2765 const char *format_ptr;
2766
2767 if (x == 0)
2768 return;
2769
2770 code = GET_CODE (x);
2771
2772 /* These types may be freely shared so we needn't do any resetting
2773 for them. */
2774
2775 switch (code)
2776 {
2777 case REG:
2778 case QUEUED:
2779 case CONST_INT:
2780 case CONST_DOUBLE:
2781 case CONST_VECTOR:
2782 case SYMBOL_REF:
2783 case CODE_LABEL:
2784 case PC:
2785 case CC0:
2786 return;
2787
2788 case INSN:
2789 case JUMP_INSN:
2790 case CALL_INSN:
2791 case NOTE:
2792 case LABEL_REF:
2793 case BARRIER:
2794 /* The chain of insns is not being copied. */
2795 return;
2796
2797 default:
2798 break;
2799 }
2800
2801 RTX_FLAG (x, used) = 0;
2802
2803 format_ptr = GET_RTX_FORMAT (code);
2804 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2805 {
2806 switch (*format_ptr++)
2807 {
2808 case 'e':
2809 reset_used_flags (XEXP (x, i));
2810 break;
2811
2812 case 'E':
2813 for (j = 0; j < XVECLEN (x, i); j++)
2814 reset_used_flags (XVECEXP (x, i, j));
2815 break;
2816 }
2817 }
2818 }
2819 \f
2820 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2821 Return X or the rtx for the pseudo reg the value of X was copied into.
2822 OTHER must be valid as a SET_DEST. */
2823
2824 rtx
2825 make_safe_from (rtx x, rtx other)
2826 {
2827 while (1)
2828 switch (GET_CODE (other))
2829 {
2830 case SUBREG:
2831 other = SUBREG_REG (other);
2832 break;
2833 case STRICT_LOW_PART:
2834 case SIGN_EXTEND:
2835 case ZERO_EXTEND:
2836 other = XEXP (other, 0);
2837 break;
2838 default:
2839 goto done;
2840 }
2841 done:
2842 if ((GET_CODE (other) == MEM
2843 && ! CONSTANT_P (x)
2844 && GET_CODE (x) != REG
2845 && GET_CODE (x) != SUBREG)
2846 || (GET_CODE (other) == REG
2847 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2848 || reg_mentioned_p (other, x))))
2849 {
2850 rtx temp = gen_reg_rtx (GET_MODE (x));
2851 emit_move_insn (temp, x);
2852 return temp;
2853 }
2854 return x;
2855 }
2856 \f
2857 /* Emission of insns (adding them to the doubly-linked list). */
2858
2859 /* Return the first insn of the current sequence or current function. */
2860
2861 rtx
2862 get_insns (void)
2863 {
2864 return first_insn;
2865 }
2866
2867 /* Specify a new insn as the first in the chain. */
2868
2869 void
2870 set_first_insn (rtx insn)
2871 {
2872 if (PREV_INSN (insn) != 0)
2873 abort ();
2874 first_insn = insn;
2875 }
2876
2877 /* Return the last insn emitted in current sequence or current function. */
2878
2879 rtx
2880 get_last_insn (void)
2881 {
2882 return last_insn;
2883 }
2884
2885 /* Specify a new insn as the last in the chain. */
2886
2887 void
2888 set_last_insn (rtx insn)
2889 {
2890 if (NEXT_INSN (insn) != 0)
2891 abort ();
2892 last_insn = insn;
2893 }
2894
2895 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2896
2897 rtx
2898 get_last_insn_anywhere (void)
2899 {
2900 struct sequence_stack *stack;
2901 if (last_insn)
2902 return last_insn;
2903 for (stack = seq_stack; stack; stack = stack->next)
2904 if (stack->last != 0)
2905 return stack->last;
2906 return 0;
2907 }
2908
2909 /* Return the first nonnote insn emitted in current sequence or current
2910 function. This routine looks inside SEQUENCEs. */
2911
2912 rtx
2913 get_first_nonnote_insn (void)
2914 {
2915 rtx insn = first_insn;
2916
2917 while (insn)
2918 {
2919 insn = next_insn (insn);
2920 if (insn == 0 || GET_CODE (insn) != NOTE)
2921 break;
2922 }
2923
2924 return insn;
2925 }
2926
2927 /* Return the last nonnote insn emitted in current sequence or current
2928 function. This routine looks inside SEQUENCEs. */
2929
2930 rtx
2931 get_last_nonnote_insn (void)
2932 {
2933 rtx insn = last_insn;
2934
2935 while (insn)
2936 {
2937 insn = previous_insn (insn);
2938 if (insn == 0 || GET_CODE (insn) != NOTE)
2939 break;
2940 }
2941
2942 return insn;
2943 }
2944
2945 /* Return a number larger than any instruction's uid in this function. */
2946
2947 int
2948 get_max_uid (void)
2949 {
2950 return cur_insn_uid;
2951 }
2952
2953 /* Renumber instructions so that no instruction UIDs are wasted. */
2954
2955 void
2956 renumber_insns (FILE *stream)
2957 {
2958 rtx insn;
2959
2960 /* If we're not supposed to renumber instructions, don't. */
2961 if (!flag_renumber_insns)
2962 return;
2963
2964 /* If there aren't that many instructions, then it's not really
2965 worth renumbering them. */
2966 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2967 return;
2968
2969 cur_insn_uid = 1;
2970
2971 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2972 {
2973 if (stream)
2974 fprintf (stream, "Renumbering insn %d to %d\n",
2975 INSN_UID (insn), cur_insn_uid);
2976 INSN_UID (insn) = cur_insn_uid++;
2977 }
2978 }
2979 \f
2980 /* Return the next insn. If it is a SEQUENCE, return the first insn
2981 of the sequence. */
2982
2983 rtx
2984 next_insn (rtx insn)
2985 {
2986 if (insn)
2987 {
2988 insn = NEXT_INSN (insn);
2989 if (insn && GET_CODE (insn) == INSN
2990 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2991 insn = XVECEXP (PATTERN (insn), 0, 0);
2992 }
2993
2994 return insn;
2995 }
2996
2997 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2998 of the sequence. */
2999
3000 rtx
3001 previous_insn (rtx insn)
3002 {
3003 if (insn)
3004 {
3005 insn = PREV_INSN (insn);
3006 if (insn && GET_CODE (insn) == INSN
3007 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3008 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3009 }
3010
3011 return insn;
3012 }
3013
3014 /* Return the next insn after INSN that is not a NOTE. This routine does not
3015 look inside SEQUENCEs. */
3016
3017 rtx
3018 next_nonnote_insn (rtx insn)
3019 {
3020 while (insn)
3021 {
3022 insn = NEXT_INSN (insn);
3023 if (insn == 0 || GET_CODE (insn) != NOTE)
3024 break;
3025 }
3026
3027 return insn;
3028 }
3029
3030 /* Return the previous insn before INSN that is not a NOTE. This routine does
3031 not look inside SEQUENCEs. */
3032
3033 rtx
3034 prev_nonnote_insn (rtx insn)
3035 {
3036 while (insn)
3037 {
3038 insn = PREV_INSN (insn);
3039 if (insn == 0 || GET_CODE (insn) != NOTE)
3040 break;
3041 }
3042
3043 return insn;
3044 }
3045
3046 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3047 or 0, if there is none. This routine does not look inside
3048 SEQUENCEs. */
3049
3050 rtx
3051 next_real_insn (rtx insn)
3052 {
3053 while (insn)
3054 {
3055 insn = NEXT_INSN (insn);
3056 if (insn == 0 || GET_CODE (insn) == INSN
3057 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3058 break;
3059 }
3060
3061 return insn;
3062 }
3063
3064 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3065 or 0, if there is none. This routine does not look inside
3066 SEQUENCEs. */
3067
3068 rtx
3069 prev_real_insn (rtx insn)
3070 {
3071 while (insn)
3072 {
3073 insn = PREV_INSN (insn);
3074 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3075 || GET_CODE (insn) == JUMP_INSN)
3076 break;
3077 }
3078
3079 return insn;
3080 }
3081
3082 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3083 This routine does not look inside SEQUENCEs. */
3084
3085 rtx
3086 last_call_insn (void)
3087 {
3088 rtx insn;
3089
3090 for (insn = get_last_insn ();
3091 insn && GET_CODE (insn) != CALL_INSN;
3092 insn = PREV_INSN (insn))
3093 ;
3094
3095 return insn;
3096 }
3097
3098 /* Find the next insn after INSN that really does something. This routine
3099 does not look inside SEQUENCEs. Until reload has completed, this is the
3100 same as next_real_insn. */
3101
3102 int
3103 active_insn_p (rtx insn)
3104 {
3105 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3106 || (GET_CODE (insn) == INSN
3107 && (! reload_completed
3108 || (GET_CODE (PATTERN (insn)) != USE
3109 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3110 }
3111
3112 rtx
3113 next_active_insn (rtx insn)
3114 {
3115 while (insn)
3116 {
3117 insn = NEXT_INSN (insn);
3118 if (insn == 0 || active_insn_p (insn))
3119 break;
3120 }
3121
3122 return insn;
3123 }
3124
3125 /* Find the last insn before INSN that really does something. This routine
3126 does not look inside SEQUENCEs. Until reload has completed, this is the
3127 same as prev_real_insn. */
3128
3129 rtx
3130 prev_active_insn (rtx insn)
3131 {
3132 while (insn)
3133 {
3134 insn = PREV_INSN (insn);
3135 if (insn == 0 || active_insn_p (insn))
3136 break;
3137 }
3138
3139 return insn;
3140 }
3141
3142 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3143
3144 rtx
3145 next_label (rtx insn)
3146 {
3147 while (insn)
3148 {
3149 insn = NEXT_INSN (insn);
3150 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3151 break;
3152 }
3153
3154 return insn;
3155 }
3156
3157 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3158
3159 rtx
3160 prev_label (rtx insn)
3161 {
3162 while (insn)
3163 {
3164 insn = PREV_INSN (insn);
3165 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3166 break;
3167 }
3168
3169 return insn;
3170 }
3171 \f
3172 #ifdef HAVE_cc0
3173 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3174 and REG_CC_USER notes so we can find it. */
3175
3176 void
3177 link_cc0_insns (rtx insn)
3178 {
3179 rtx user = next_nonnote_insn (insn);
3180
3181 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3182 user = XVECEXP (PATTERN (user), 0, 0);
3183
3184 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3185 REG_NOTES (user));
3186 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3187 }
3188
3189 /* Return the next insn that uses CC0 after INSN, which is assumed to
3190 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3191 applied to the result of this function should yield INSN).
3192
3193 Normally, this is simply the next insn. However, if a REG_CC_USER note
3194 is present, it contains the insn that uses CC0.
3195
3196 Return 0 if we can't find the insn. */
3197
3198 rtx
3199 next_cc0_user (rtx insn)
3200 {
3201 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3202
3203 if (note)
3204 return XEXP (note, 0);
3205
3206 insn = next_nonnote_insn (insn);
3207 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3208 insn = XVECEXP (PATTERN (insn), 0, 0);
3209
3210 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3211 return insn;
3212
3213 return 0;
3214 }
3215
3216 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3217 note, it is the previous insn. */
3218
3219 rtx
3220 prev_cc0_setter (rtx insn)
3221 {
3222 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3223
3224 if (note)
3225 return XEXP (note, 0);
3226
3227 insn = prev_nonnote_insn (insn);
3228 if (! sets_cc0_p (PATTERN (insn)))
3229 abort ();
3230
3231 return insn;
3232 }
3233 #endif
3234
3235 /* Increment the label uses for all labels present in rtx. */
3236
3237 static void
3238 mark_label_nuses (rtx x)
3239 {
3240 enum rtx_code code;
3241 int i, j;
3242 const char *fmt;
3243
3244 code = GET_CODE (x);
3245 if (code == LABEL_REF)
3246 LABEL_NUSES (XEXP (x, 0))++;
3247
3248 fmt = GET_RTX_FORMAT (code);
3249 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3250 {
3251 if (fmt[i] == 'e')
3252 mark_label_nuses (XEXP (x, i));
3253 else if (fmt[i] == 'E')
3254 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3255 mark_label_nuses (XVECEXP (x, i, j));
3256 }
3257 }
3258
3259 \f
3260 /* Try splitting insns that can be split for better scheduling.
3261 PAT is the pattern which might split.
3262 TRIAL is the insn providing PAT.
3263 LAST is nonzero if we should return the last insn of the sequence produced.
3264
3265 If this routine succeeds in splitting, it returns the first or last
3266 replacement insn depending on the value of LAST. Otherwise, it
3267 returns TRIAL. If the insn to be returned can be split, it will be. */
3268
3269 rtx
3270 try_split (rtx pat, rtx trial, int last)
3271 {
3272 rtx before = PREV_INSN (trial);
3273 rtx after = NEXT_INSN (trial);
3274 int has_barrier = 0;
3275 rtx tem;
3276 rtx note, seq;
3277 int probability;
3278 rtx insn_last, insn;
3279 int njumps = 0;
3280
3281 if (any_condjump_p (trial)
3282 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3283 split_branch_probability = INTVAL (XEXP (note, 0));
3284 probability = split_branch_probability;
3285
3286 seq = split_insns (pat, trial);
3287
3288 split_branch_probability = -1;
3289
3290 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3291 We may need to handle this specially. */
3292 if (after && GET_CODE (after) == BARRIER)
3293 {
3294 has_barrier = 1;
3295 after = NEXT_INSN (after);
3296 }
3297
3298 if (!seq)
3299 return trial;
3300
3301 /* Avoid infinite loop if any insn of the result matches
3302 the original pattern. */
3303 insn_last = seq;
3304 while (1)
3305 {
3306 if (INSN_P (insn_last)
3307 && rtx_equal_p (PATTERN (insn_last), pat))
3308 return trial;
3309 if (!NEXT_INSN (insn_last))
3310 break;
3311 insn_last = NEXT_INSN (insn_last);
3312 }
3313
3314 /* Mark labels. */
3315 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3316 {
3317 if (GET_CODE (insn) == JUMP_INSN)
3318 {
3319 mark_jump_label (PATTERN (insn), insn, 0);
3320 njumps++;
3321 if (probability != -1
3322 && any_condjump_p (insn)
3323 && !find_reg_note (insn, REG_BR_PROB, 0))
3324 {
3325 /* We can preserve the REG_BR_PROB notes only if exactly
3326 one jump is created, otherwise the machine description
3327 is responsible for this step using
3328 split_branch_probability variable. */
3329 if (njumps != 1)
3330 abort ();
3331 REG_NOTES (insn)
3332 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3333 GEN_INT (probability),
3334 REG_NOTES (insn));
3335 }
3336 }
3337 }
3338
3339 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3340 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3341 if (GET_CODE (trial) == CALL_INSN)
3342 {
3343 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3344 if (GET_CODE (insn) == CALL_INSN)
3345 {
3346 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3347 while (*p)
3348 p = &XEXP (*p, 1);
3349 *p = CALL_INSN_FUNCTION_USAGE (trial);
3350 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3351 }
3352 }
3353
3354 /* Copy notes, particularly those related to the CFG. */
3355 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3356 {
3357 switch (REG_NOTE_KIND (note))
3358 {
3359 case REG_EH_REGION:
3360 insn = insn_last;
3361 while (insn != NULL_RTX)
3362 {
3363 if (GET_CODE (insn) == CALL_INSN
3364 || (flag_non_call_exceptions
3365 && may_trap_p (PATTERN (insn))))
3366 REG_NOTES (insn)
3367 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3368 XEXP (note, 0),
3369 REG_NOTES (insn));
3370 insn = PREV_INSN (insn);
3371 }
3372 break;
3373
3374 case REG_NORETURN:
3375 case REG_SETJMP:
3376 case REG_ALWAYS_RETURN:
3377 insn = insn_last;
3378 while (insn != NULL_RTX)
3379 {
3380 if (GET_CODE (insn) == CALL_INSN)
3381 REG_NOTES (insn)
3382 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3383 XEXP (note, 0),
3384 REG_NOTES (insn));
3385 insn = PREV_INSN (insn);
3386 }
3387 break;
3388
3389 case REG_NON_LOCAL_GOTO:
3390 insn = insn_last;
3391 while (insn != NULL_RTX)
3392 {
3393 if (GET_CODE (insn) == JUMP_INSN)
3394 REG_NOTES (insn)
3395 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3396 XEXP (note, 0),
3397 REG_NOTES (insn));
3398 insn = PREV_INSN (insn);
3399 }
3400 break;
3401
3402 default:
3403 break;
3404 }
3405 }
3406
3407 /* If there are LABELS inside the split insns increment the
3408 usage count so we don't delete the label. */
3409 if (GET_CODE (trial) == INSN)
3410 {
3411 insn = insn_last;
3412 while (insn != NULL_RTX)
3413 {
3414 if (GET_CODE (insn) == INSN)
3415 mark_label_nuses (PATTERN (insn));
3416
3417 insn = PREV_INSN (insn);
3418 }
3419 }
3420
3421 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3422
3423 delete_insn (trial);
3424 if (has_barrier)
3425 emit_barrier_after (tem);
3426
3427 /* Recursively call try_split for each new insn created; by the
3428 time control returns here that insn will be fully split, so
3429 set LAST and continue from the insn after the one returned.
3430 We can't use next_active_insn here since AFTER may be a note.
3431 Ignore deleted insns, which can be occur if not optimizing. */
3432 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3433 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3434 tem = try_split (PATTERN (tem), tem, 1);
3435
3436 /* Return either the first or the last insn, depending on which was
3437 requested. */
3438 return last
3439 ? (after ? PREV_INSN (after) : last_insn)
3440 : NEXT_INSN (before);
3441 }
3442 \f
3443 /* Make and return an INSN rtx, initializing all its slots.
3444 Store PATTERN in the pattern slots. */
3445
3446 rtx
3447 make_insn_raw (rtx pattern)
3448 {
3449 rtx insn;
3450
3451 insn = rtx_alloc (INSN);
3452
3453 INSN_UID (insn) = cur_insn_uid++;
3454 PATTERN (insn) = pattern;
3455 INSN_CODE (insn) = -1;
3456 LOG_LINKS (insn) = NULL;
3457 REG_NOTES (insn) = NULL;
3458 INSN_LOCATOR (insn) = 0;
3459 BLOCK_FOR_INSN (insn) = NULL;
3460
3461 #ifdef ENABLE_RTL_CHECKING
3462 if (insn
3463 && INSN_P (insn)
3464 && (returnjump_p (insn)
3465 || (GET_CODE (insn) == SET
3466 && SET_DEST (insn) == pc_rtx)))
3467 {
3468 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3469 debug_rtx (insn);
3470 }
3471 #endif
3472
3473 return insn;
3474 }
3475
3476 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3477
3478 static rtx
3479 make_jump_insn_raw (rtx pattern)
3480 {
3481 rtx insn;
3482
3483 insn = rtx_alloc (JUMP_INSN);
3484 INSN_UID (insn) = cur_insn_uid++;
3485
3486 PATTERN (insn) = pattern;
3487 INSN_CODE (insn) = -1;
3488 LOG_LINKS (insn) = NULL;
3489 REG_NOTES (insn) = NULL;
3490 JUMP_LABEL (insn) = NULL;
3491 INSN_LOCATOR (insn) = 0;
3492 BLOCK_FOR_INSN (insn) = NULL;
3493
3494 return insn;
3495 }
3496
3497 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3498
3499 static rtx
3500 make_call_insn_raw (rtx pattern)
3501 {
3502 rtx insn;
3503
3504 insn = rtx_alloc (CALL_INSN);
3505 INSN_UID (insn) = cur_insn_uid++;
3506
3507 PATTERN (insn) = pattern;
3508 INSN_CODE (insn) = -1;
3509 LOG_LINKS (insn) = NULL;
3510 REG_NOTES (insn) = NULL;
3511 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3512 INSN_LOCATOR (insn) = 0;
3513 BLOCK_FOR_INSN (insn) = NULL;
3514
3515 return insn;
3516 }
3517 \f
3518 /* Add INSN to the end of the doubly-linked list.
3519 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3520
3521 void
3522 add_insn (rtx insn)
3523 {
3524 PREV_INSN (insn) = last_insn;
3525 NEXT_INSN (insn) = 0;
3526
3527 if (NULL != last_insn)
3528 NEXT_INSN (last_insn) = insn;
3529
3530 if (NULL == first_insn)
3531 first_insn = insn;
3532
3533 last_insn = insn;
3534 }
3535
3536 /* Add INSN into the doubly-linked list after insn AFTER. This and
3537 the next should be the only functions called to insert an insn once
3538 delay slots have been filled since only they know how to update a
3539 SEQUENCE. */
3540
3541 void
3542 add_insn_after (rtx insn, rtx after)
3543 {
3544 rtx next = NEXT_INSN (after);
3545 basic_block bb;
3546
3547 if (optimize && INSN_DELETED_P (after))
3548 abort ();
3549
3550 NEXT_INSN (insn) = next;
3551 PREV_INSN (insn) = after;
3552
3553 if (next)
3554 {
3555 PREV_INSN (next) = insn;
3556 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3557 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3558 }
3559 else if (last_insn == after)
3560 last_insn = insn;
3561 else
3562 {
3563 struct sequence_stack *stack = seq_stack;
3564 /* Scan all pending sequences too. */
3565 for (; stack; stack = stack->next)
3566 if (after == stack->last)
3567 {
3568 stack->last = insn;
3569 break;
3570 }
3571
3572 if (stack == 0)
3573 abort ();
3574 }
3575
3576 if (GET_CODE (after) != BARRIER
3577 && GET_CODE (insn) != BARRIER
3578 && (bb = BLOCK_FOR_INSN (after)))
3579 {
3580 set_block_for_insn (insn, bb);
3581 if (INSN_P (insn))
3582 bb->flags |= BB_DIRTY;
3583 /* Should not happen as first in the BB is always
3584 either NOTE or LABEL. */
3585 if (bb->end == after
3586 /* Avoid clobbering of structure when creating new BB. */
3587 && GET_CODE (insn) != BARRIER
3588 && (GET_CODE (insn) != NOTE
3589 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3590 bb->end = insn;
3591 }
3592
3593 NEXT_INSN (after) = insn;
3594 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3595 {
3596 rtx sequence = PATTERN (after);
3597 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3598 }
3599 }
3600
3601 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3602 the previous should be the only functions called to insert an insn once
3603 delay slots have been filled since only they know how to update a
3604 SEQUENCE. */
3605
3606 void
3607 add_insn_before (rtx insn, rtx before)
3608 {
3609 rtx prev = PREV_INSN (before);
3610 basic_block bb;
3611
3612 if (optimize && INSN_DELETED_P (before))
3613 abort ();
3614
3615 PREV_INSN (insn) = prev;
3616 NEXT_INSN (insn) = before;
3617
3618 if (prev)
3619 {
3620 NEXT_INSN (prev) = insn;
3621 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3622 {
3623 rtx sequence = PATTERN (prev);
3624 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3625 }
3626 }
3627 else if (first_insn == before)
3628 first_insn = insn;
3629 else
3630 {
3631 struct sequence_stack *stack = seq_stack;
3632 /* Scan all pending sequences too. */
3633 for (; stack; stack = stack->next)
3634 if (before == stack->first)
3635 {
3636 stack->first = insn;
3637 break;
3638 }
3639
3640 if (stack == 0)
3641 abort ();
3642 }
3643
3644 if (GET_CODE (before) != BARRIER
3645 && GET_CODE (insn) != BARRIER
3646 && (bb = BLOCK_FOR_INSN (before)))
3647 {
3648 set_block_for_insn (insn, bb);
3649 if (INSN_P (insn))
3650 bb->flags |= BB_DIRTY;
3651 /* Should not happen as first in the BB is always
3652 either NOTE or LABEl. */
3653 if (bb->head == insn
3654 /* Avoid clobbering of structure when creating new BB. */
3655 && GET_CODE (insn) != BARRIER
3656 && (GET_CODE (insn) != NOTE
3657 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3658 abort ();
3659 }
3660
3661 PREV_INSN (before) = insn;
3662 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3663 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3664 }
3665
3666 /* Remove an insn from its doubly-linked list. This function knows how
3667 to handle sequences. */
3668 void
3669 remove_insn (rtx insn)
3670 {
3671 rtx next = NEXT_INSN (insn);
3672 rtx prev = PREV_INSN (insn);
3673 basic_block bb;
3674
3675 if (prev)
3676 {
3677 NEXT_INSN (prev) = next;
3678 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3679 {
3680 rtx sequence = PATTERN (prev);
3681 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3682 }
3683 }
3684 else if (first_insn == insn)
3685 first_insn = next;
3686 else
3687 {
3688 struct sequence_stack *stack = seq_stack;
3689 /* Scan all pending sequences too. */
3690 for (; stack; stack = stack->next)
3691 if (insn == stack->first)
3692 {
3693 stack->first = next;
3694 break;
3695 }
3696
3697 if (stack == 0)
3698 abort ();
3699 }
3700
3701 if (next)
3702 {
3703 PREV_INSN (next) = prev;
3704 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3705 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3706 }
3707 else if (last_insn == insn)
3708 last_insn = prev;
3709 else
3710 {
3711 struct sequence_stack *stack = seq_stack;
3712 /* Scan all pending sequences too. */
3713 for (; stack; stack = stack->next)
3714 if (insn == stack->last)
3715 {
3716 stack->last = prev;
3717 break;
3718 }
3719
3720 if (stack == 0)
3721 abort ();
3722 }
3723 if (GET_CODE (insn) != BARRIER
3724 && (bb = BLOCK_FOR_INSN (insn)))
3725 {
3726 if (INSN_P (insn))
3727 bb->flags |= BB_DIRTY;
3728 if (bb->head == insn)
3729 {
3730 /* Never ever delete the basic block note without deleting whole
3731 basic block. */
3732 if (GET_CODE (insn) == NOTE)
3733 abort ();
3734 bb->head = next;
3735 }
3736 if (bb->end == insn)
3737 bb->end = prev;
3738 }
3739 }
3740
3741 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3742
3743 void
3744 add_function_usage_to (rtx call_insn, rtx call_fusage)
3745 {
3746 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3747 abort ();
3748
3749 /* Put the register usage information on the CALL. If there is already
3750 some usage information, put ours at the end. */
3751 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3752 {
3753 rtx link;
3754
3755 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3756 link = XEXP (link, 1))
3757 ;
3758
3759 XEXP (link, 1) = call_fusage;
3760 }
3761 else
3762 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3763 }
3764
3765 /* Delete all insns made since FROM.
3766 FROM becomes the new last instruction. */
3767
3768 void
3769 delete_insns_since (rtx from)
3770 {
3771 if (from == 0)
3772 first_insn = 0;
3773 else
3774 NEXT_INSN (from) = 0;
3775 last_insn = from;
3776 }
3777
3778 /* This function is deprecated, please use sequences instead.
3779
3780 Move a consecutive bunch of insns to a different place in the chain.
3781 The insns to be moved are those between FROM and TO.
3782 They are moved to a new position after the insn AFTER.
3783 AFTER must not be FROM or TO or any insn in between.
3784
3785 This function does not know about SEQUENCEs and hence should not be
3786 called after delay-slot filling has been done. */
3787
3788 void
3789 reorder_insns_nobb (rtx from, rtx to, rtx after)
3790 {
3791 /* Splice this bunch out of where it is now. */
3792 if (PREV_INSN (from))
3793 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3794 if (NEXT_INSN (to))
3795 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3796 if (last_insn == to)
3797 last_insn = PREV_INSN (from);
3798 if (first_insn == from)
3799 first_insn = NEXT_INSN (to);
3800
3801 /* Make the new neighbors point to it and it to them. */
3802 if (NEXT_INSN (after))
3803 PREV_INSN (NEXT_INSN (after)) = to;
3804
3805 NEXT_INSN (to) = NEXT_INSN (after);
3806 PREV_INSN (from) = after;
3807 NEXT_INSN (after) = from;
3808 if (after == last_insn)
3809 last_insn = to;
3810 }
3811
3812 /* Same as function above, but take care to update BB boundaries. */
3813 void
3814 reorder_insns (rtx from, rtx to, rtx after)
3815 {
3816 rtx prev = PREV_INSN (from);
3817 basic_block bb, bb2;
3818
3819 reorder_insns_nobb (from, to, after);
3820
3821 if (GET_CODE (after) != BARRIER
3822 && (bb = BLOCK_FOR_INSN (after)))
3823 {
3824 rtx x;
3825 bb->flags |= BB_DIRTY;
3826
3827 if (GET_CODE (from) != BARRIER
3828 && (bb2 = BLOCK_FOR_INSN (from)))
3829 {
3830 if (bb2->end == to)
3831 bb2->end = prev;
3832 bb2->flags |= BB_DIRTY;
3833 }
3834
3835 if (bb->end == after)
3836 bb->end = to;
3837
3838 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3839 set_block_for_insn (x, bb);
3840 }
3841 }
3842
3843 /* Return the line note insn preceding INSN. */
3844
3845 static rtx
3846 find_line_note (rtx insn)
3847 {
3848 if (no_line_numbers)
3849 return 0;
3850
3851 for (; insn; insn = PREV_INSN (insn))
3852 if (GET_CODE (insn) == NOTE
3853 && NOTE_LINE_NUMBER (insn) >= 0)
3854 break;
3855
3856 return insn;
3857 }
3858
3859 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3860 of the moved insns when debugging. This may insert a note between AFTER
3861 and FROM, and another one after TO. */
3862
3863 void
3864 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
3865 {
3866 rtx from_line = find_line_note (from);
3867 rtx after_line = find_line_note (after);
3868
3869 reorder_insns (from, to, after);
3870
3871 if (from_line == after_line)
3872 return;
3873
3874 if (from_line)
3875 emit_note_copy_after (from_line, after);
3876 if (after_line)
3877 emit_note_copy_after (after_line, to);
3878 }
3879
3880 /* Remove unnecessary notes from the instruction stream. */
3881
3882 void
3883 remove_unnecessary_notes (void)
3884 {
3885 rtx block_stack = NULL_RTX;
3886 rtx eh_stack = NULL_RTX;
3887 rtx insn;
3888 rtx next;
3889 rtx tmp;
3890
3891 /* We must not remove the first instruction in the function because
3892 the compiler depends on the first instruction being a note. */
3893 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3894 {
3895 /* Remember what's next. */
3896 next = NEXT_INSN (insn);
3897
3898 /* We're only interested in notes. */
3899 if (GET_CODE (insn) != NOTE)
3900 continue;
3901
3902 switch (NOTE_LINE_NUMBER (insn))
3903 {
3904 case NOTE_INSN_DELETED:
3905 case NOTE_INSN_LOOP_END_TOP_COND:
3906 remove_insn (insn);
3907 break;
3908
3909 case NOTE_INSN_EH_REGION_BEG:
3910 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3911 break;
3912
3913 case NOTE_INSN_EH_REGION_END:
3914 /* Too many end notes. */
3915 if (eh_stack == NULL_RTX)
3916 abort ();
3917 /* Mismatched nesting. */
3918 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3919 abort ();
3920 tmp = eh_stack;
3921 eh_stack = XEXP (eh_stack, 1);
3922 free_INSN_LIST_node (tmp);
3923 break;
3924
3925 case NOTE_INSN_BLOCK_BEG:
3926 /* By now, all notes indicating lexical blocks should have
3927 NOTE_BLOCK filled in. */
3928 if (NOTE_BLOCK (insn) == NULL_TREE)
3929 abort ();
3930 block_stack = alloc_INSN_LIST (insn, block_stack);
3931 break;
3932
3933 case NOTE_INSN_BLOCK_END:
3934 /* Too many end notes. */
3935 if (block_stack == NULL_RTX)
3936 abort ();
3937 /* Mismatched nesting. */
3938 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3939 abort ();
3940 tmp = block_stack;
3941 block_stack = XEXP (block_stack, 1);
3942 free_INSN_LIST_node (tmp);
3943
3944 /* Scan back to see if there are any non-note instructions
3945 between INSN and the beginning of this block. If not,
3946 then there is no PC range in the generated code that will
3947 actually be in this block, so there's no point in
3948 remembering the existence of the block. */
3949 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3950 {
3951 /* This block contains a real instruction. Note that we
3952 don't include labels; if the only thing in the block
3953 is a label, then there are still no PC values that
3954 lie within the block. */
3955 if (INSN_P (tmp))
3956 break;
3957
3958 /* We're only interested in NOTEs. */
3959 if (GET_CODE (tmp) != NOTE)
3960 continue;
3961
3962 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3963 {
3964 /* We just verified that this BLOCK matches us with
3965 the block_stack check above. Never delete the
3966 BLOCK for the outermost scope of the function; we
3967 can refer to names from that scope even if the
3968 block notes are messed up. */
3969 if (! is_body_block (NOTE_BLOCK (insn))
3970 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3971 {
3972 remove_insn (tmp);
3973 remove_insn (insn);
3974 }
3975 break;
3976 }
3977 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3978 /* There's a nested block. We need to leave the
3979 current block in place since otherwise the debugger
3980 wouldn't be able to show symbols from our block in
3981 the nested block. */
3982 break;
3983 }
3984 }
3985 }
3986
3987 /* Too many begin notes. */
3988 if (block_stack || eh_stack)
3989 abort ();
3990 }
3991
3992 \f
3993 /* Emit insn(s) of given code and pattern
3994 at a specified place within the doubly-linked list.
3995
3996 All of the emit_foo global entry points accept an object
3997 X which is either an insn list or a PATTERN of a single
3998 instruction.
3999
4000 There are thus a few canonical ways to generate code and
4001 emit it at a specific place in the instruction stream. For
4002 example, consider the instruction named SPOT and the fact that
4003 we would like to emit some instructions before SPOT. We might
4004 do it like this:
4005
4006 start_sequence ();
4007 ... emit the new instructions ...
4008 insns_head = get_insns ();
4009 end_sequence ();
4010
4011 emit_insn_before (insns_head, SPOT);
4012
4013 It used to be common to generate SEQUENCE rtl instead, but that
4014 is a relic of the past which no longer occurs. The reason is that
4015 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4016 generated would almost certainly die right after it was created. */
4017
4018 /* Make X be output before the instruction BEFORE. */
4019
4020 rtx
4021 emit_insn_before (rtx x, rtx before)
4022 {
4023 rtx last = before;
4024 rtx insn;
4025
4026 #ifdef ENABLE_RTL_CHECKING
4027 if (before == NULL_RTX)
4028 abort ();
4029 #endif
4030
4031 if (x == NULL_RTX)
4032 return last;
4033
4034 switch (GET_CODE (x))
4035 {
4036 case INSN:
4037 case JUMP_INSN:
4038 case CALL_INSN:
4039 case CODE_LABEL:
4040 case BARRIER:
4041 case NOTE:
4042 insn = x;
4043 while (insn)
4044 {
4045 rtx next = NEXT_INSN (insn);
4046 add_insn_before (insn, before);
4047 last = insn;
4048 insn = next;
4049 }
4050 break;
4051
4052 #ifdef ENABLE_RTL_CHECKING
4053 case SEQUENCE:
4054 abort ();
4055 break;
4056 #endif
4057
4058 default:
4059 last = make_insn_raw (x);
4060 add_insn_before (last, before);
4061 break;
4062 }
4063
4064 return last;
4065 }
4066
4067 /* Make an instruction with body X and code JUMP_INSN
4068 and output it before the instruction BEFORE. */
4069
4070 rtx
4071 emit_jump_insn_before (rtx x, rtx before)
4072 {
4073 rtx insn, last = NULL_RTX;
4074
4075 #ifdef ENABLE_RTL_CHECKING
4076 if (before == NULL_RTX)
4077 abort ();
4078 #endif
4079
4080 switch (GET_CODE (x))
4081 {
4082 case INSN:
4083 case JUMP_INSN:
4084 case CALL_INSN:
4085 case CODE_LABEL:
4086 case BARRIER:
4087 case NOTE:
4088 insn = x;
4089 while (insn)
4090 {
4091 rtx next = NEXT_INSN (insn);
4092 add_insn_before (insn, before);
4093 last = insn;
4094 insn = next;
4095 }
4096 break;
4097
4098 #ifdef ENABLE_RTL_CHECKING
4099 case SEQUENCE:
4100 abort ();
4101 break;
4102 #endif
4103
4104 default:
4105 last = make_jump_insn_raw (x);
4106 add_insn_before (last, before);
4107 break;
4108 }
4109
4110 return last;
4111 }
4112
4113 /* Make an instruction with body X and code CALL_INSN
4114 and output it before the instruction BEFORE. */
4115
4116 rtx
4117 emit_call_insn_before (rtx x, rtx before)
4118 {
4119 rtx last = NULL_RTX, insn;
4120
4121 #ifdef ENABLE_RTL_CHECKING
4122 if (before == NULL_RTX)
4123 abort ();
4124 #endif
4125
4126 switch (GET_CODE (x))
4127 {
4128 case INSN:
4129 case JUMP_INSN:
4130 case CALL_INSN:
4131 case CODE_LABEL:
4132 case BARRIER:
4133 case NOTE:
4134 insn = x;
4135 while (insn)
4136 {
4137 rtx next = NEXT_INSN (insn);
4138 add_insn_before (insn, before);
4139 last = insn;
4140 insn = next;
4141 }
4142 break;
4143
4144 #ifdef ENABLE_RTL_CHECKING
4145 case SEQUENCE:
4146 abort ();
4147 break;
4148 #endif
4149
4150 default:
4151 last = make_call_insn_raw (x);
4152 add_insn_before (last, before);
4153 break;
4154 }
4155
4156 return last;
4157 }
4158
4159 /* Make an insn of code BARRIER
4160 and output it before the insn BEFORE. */
4161
4162 rtx
4163 emit_barrier_before (rtx before)
4164 {
4165 rtx insn = rtx_alloc (BARRIER);
4166
4167 INSN_UID (insn) = cur_insn_uid++;
4168
4169 add_insn_before (insn, before);
4170 return insn;
4171 }
4172
4173 /* Emit the label LABEL before the insn BEFORE. */
4174
4175 rtx
4176 emit_label_before (rtx label, rtx before)
4177 {
4178 /* This can be called twice for the same label as a result of the
4179 confusion that follows a syntax error! So make it harmless. */
4180 if (INSN_UID (label) == 0)
4181 {
4182 INSN_UID (label) = cur_insn_uid++;
4183 add_insn_before (label, before);
4184 }
4185
4186 return label;
4187 }
4188
4189 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4190
4191 rtx
4192 emit_note_before (int subtype, rtx before)
4193 {
4194 rtx note = rtx_alloc (NOTE);
4195 INSN_UID (note) = cur_insn_uid++;
4196 NOTE_SOURCE_FILE (note) = 0;
4197 NOTE_LINE_NUMBER (note) = subtype;
4198 BLOCK_FOR_INSN (note) = NULL;
4199
4200 add_insn_before (note, before);
4201 return note;
4202 }
4203 \f
4204 /* Helper for emit_insn_after, handles lists of instructions
4205 efficiently. */
4206
4207 static rtx emit_insn_after_1 (rtx, rtx);
4208
4209 static rtx
4210 emit_insn_after_1 (rtx first, rtx after)
4211 {
4212 rtx last;
4213 rtx after_after;
4214 basic_block bb;
4215
4216 if (GET_CODE (after) != BARRIER
4217 && (bb = BLOCK_FOR_INSN (after)))
4218 {
4219 bb->flags |= BB_DIRTY;
4220 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4221 if (GET_CODE (last) != BARRIER)
4222 set_block_for_insn (last, bb);
4223 if (GET_CODE (last) != BARRIER)
4224 set_block_for_insn (last, bb);
4225 if (bb->end == after)
4226 bb->end = last;
4227 }
4228 else
4229 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4230 continue;
4231
4232 after_after = NEXT_INSN (after);
4233
4234 NEXT_INSN (after) = first;
4235 PREV_INSN (first) = after;
4236 NEXT_INSN (last) = after_after;
4237 if (after_after)
4238 PREV_INSN (after_after) = last;
4239
4240 if (after == last_insn)
4241 last_insn = last;
4242 return last;
4243 }
4244
4245 /* Make X be output after the insn AFTER. */
4246
4247 rtx
4248 emit_insn_after (rtx x, rtx after)
4249 {
4250 rtx last = after;
4251
4252 #ifdef ENABLE_RTL_CHECKING
4253 if (after == NULL_RTX)
4254 abort ();
4255 #endif
4256
4257 if (x == NULL_RTX)
4258 return last;
4259
4260 switch (GET_CODE (x))
4261 {
4262 case INSN:
4263 case JUMP_INSN:
4264 case CALL_INSN:
4265 case CODE_LABEL:
4266 case BARRIER:
4267 case NOTE:
4268 last = emit_insn_after_1 (x, after);
4269 break;
4270
4271 #ifdef ENABLE_RTL_CHECKING
4272 case SEQUENCE:
4273 abort ();
4274 break;
4275 #endif
4276
4277 default:
4278 last = make_insn_raw (x);
4279 add_insn_after (last, after);
4280 break;
4281 }
4282
4283 return last;
4284 }
4285
4286 /* Similar to emit_insn_after, except that line notes are to be inserted so
4287 as to act as if this insn were at FROM. */
4288
4289 void
4290 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4291 {
4292 rtx from_line = find_line_note (from);
4293 rtx after_line = find_line_note (after);
4294 rtx insn = emit_insn_after (x, after);
4295
4296 if (from_line)
4297 emit_note_copy_after (from_line, after);
4298
4299 if (after_line)
4300 emit_note_copy_after (after_line, insn);
4301 }
4302
4303 /* Make an insn of code JUMP_INSN with body X
4304 and output it after the insn AFTER. */
4305
4306 rtx
4307 emit_jump_insn_after (rtx x, rtx after)
4308 {
4309 rtx last;
4310
4311 #ifdef ENABLE_RTL_CHECKING
4312 if (after == NULL_RTX)
4313 abort ();
4314 #endif
4315
4316 switch (GET_CODE (x))
4317 {
4318 case INSN:
4319 case JUMP_INSN:
4320 case CALL_INSN:
4321 case CODE_LABEL:
4322 case BARRIER:
4323 case NOTE:
4324 last = emit_insn_after_1 (x, after);
4325 break;
4326
4327 #ifdef ENABLE_RTL_CHECKING
4328 case SEQUENCE:
4329 abort ();
4330 break;
4331 #endif
4332
4333 default:
4334 last = make_jump_insn_raw (x);
4335 add_insn_after (last, after);
4336 break;
4337 }
4338
4339 return last;
4340 }
4341
4342 /* Make an instruction with body X and code CALL_INSN
4343 and output it after the instruction AFTER. */
4344
4345 rtx
4346 emit_call_insn_after (rtx x, rtx after)
4347 {
4348 rtx last;
4349
4350 #ifdef ENABLE_RTL_CHECKING
4351 if (after == NULL_RTX)
4352 abort ();
4353 #endif
4354
4355 switch (GET_CODE (x))
4356 {
4357 case INSN:
4358 case JUMP_INSN:
4359 case CALL_INSN:
4360 case CODE_LABEL:
4361 case BARRIER:
4362 case NOTE:
4363 last = emit_insn_after_1 (x, after);
4364 break;
4365
4366 #ifdef ENABLE_RTL_CHECKING
4367 case SEQUENCE:
4368 abort ();
4369 break;
4370 #endif
4371
4372 default:
4373 last = make_call_insn_raw (x);
4374 add_insn_after (last, after);
4375 break;
4376 }
4377
4378 return last;
4379 }
4380
4381 /* Make an insn of code BARRIER
4382 and output it after the insn AFTER. */
4383
4384 rtx
4385 emit_barrier_after (rtx after)
4386 {
4387 rtx insn = rtx_alloc (BARRIER);
4388
4389 INSN_UID (insn) = cur_insn_uid++;
4390
4391 add_insn_after (insn, after);
4392 return insn;
4393 }
4394
4395 /* Emit the label LABEL after the insn AFTER. */
4396
4397 rtx
4398 emit_label_after (rtx label, rtx after)
4399 {
4400 /* This can be called twice for the same label
4401 as a result of the confusion that follows a syntax error!
4402 So make it harmless. */
4403 if (INSN_UID (label) == 0)
4404 {
4405 INSN_UID (label) = cur_insn_uid++;
4406 add_insn_after (label, after);
4407 }
4408
4409 return label;
4410 }
4411
4412 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4413
4414 rtx
4415 emit_note_after (int subtype, rtx after)
4416 {
4417 rtx note = rtx_alloc (NOTE);
4418 INSN_UID (note) = cur_insn_uid++;
4419 NOTE_SOURCE_FILE (note) = 0;
4420 NOTE_LINE_NUMBER (note) = subtype;
4421 BLOCK_FOR_INSN (note) = NULL;
4422 add_insn_after (note, after);
4423 return note;
4424 }
4425
4426 /* Emit a copy of note ORIG after the insn AFTER. */
4427
4428 rtx
4429 emit_note_copy_after (rtx orig, rtx after)
4430 {
4431 rtx note;
4432
4433 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4434 {
4435 cur_insn_uid++;
4436 return 0;
4437 }
4438
4439 note = rtx_alloc (NOTE);
4440 INSN_UID (note) = cur_insn_uid++;
4441 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4442 NOTE_DATA (note) = NOTE_DATA (orig);
4443 BLOCK_FOR_INSN (note) = NULL;
4444 add_insn_after (note, after);
4445 return note;
4446 }
4447 \f
4448 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4449 rtx
4450 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4451 {
4452 rtx last = emit_insn_after (pattern, after);
4453
4454 after = NEXT_INSN (after);
4455 while (1)
4456 {
4457 if (active_insn_p (after))
4458 INSN_LOCATOR (after) = loc;
4459 if (after == last)
4460 break;
4461 after = NEXT_INSN (after);
4462 }
4463 return last;
4464 }
4465
4466 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4467 rtx
4468 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4469 {
4470 rtx last = emit_jump_insn_after (pattern, after);
4471
4472 after = NEXT_INSN (after);
4473 while (1)
4474 {
4475 if (active_insn_p (after))
4476 INSN_LOCATOR (after) = loc;
4477 if (after == last)
4478 break;
4479 after = NEXT_INSN (after);
4480 }
4481 return last;
4482 }
4483
4484 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4485 rtx
4486 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4487 {
4488 rtx last = emit_call_insn_after (pattern, after);
4489
4490 after = NEXT_INSN (after);
4491 while (1)
4492 {
4493 if (active_insn_p (after))
4494 INSN_LOCATOR (after) = loc;
4495 if (after == last)
4496 break;
4497 after = NEXT_INSN (after);
4498 }
4499 return last;
4500 }
4501
4502 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4503 rtx
4504 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4505 {
4506 rtx first = PREV_INSN (before);
4507 rtx last = emit_insn_before (pattern, before);
4508
4509 first = NEXT_INSN (first);
4510 while (1)
4511 {
4512 if (active_insn_p (first))
4513 INSN_LOCATOR (first) = loc;
4514 if (first == last)
4515 break;
4516 first = NEXT_INSN (first);
4517 }
4518 return last;
4519 }
4520 \f
4521 /* Take X and emit it at the end of the doubly-linked
4522 INSN list.
4523
4524 Returns the last insn emitted. */
4525
4526 rtx
4527 emit_insn (rtx x)
4528 {
4529 rtx last = last_insn;
4530 rtx insn;
4531
4532 if (x == NULL_RTX)
4533 return last;
4534
4535 switch (GET_CODE (x))
4536 {
4537 case INSN:
4538 case JUMP_INSN:
4539 case CALL_INSN:
4540 case CODE_LABEL:
4541 case BARRIER:
4542 case NOTE:
4543 insn = x;
4544 while (insn)
4545 {
4546 rtx next = NEXT_INSN (insn);
4547 add_insn (insn);
4548 last = insn;
4549 insn = next;
4550 }
4551 break;
4552
4553 #ifdef ENABLE_RTL_CHECKING
4554 case SEQUENCE:
4555 abort ();
4556 break;
4557 #endif
4558
4559 default:
4560 last = make_insn_raw (x);
4561 add_insn (last);
4562 break;
4563 }
4564
4565 return last;
4566 }
4567
4568 /* Make an insn of code JUMP_INSN with pattern X
4569 and add it to the end of the doubly-linked list. */
4570
4571 rtx
4572 emit_jump_insn (rtx x)
4573 {
4574 rtx last = NULL_RTX, insn;
4575
4576 switch (GET_CODE (x))
4577 {
4578 case INSN:
4579 case JUMP_INSN:
4580 case CALL_INSN:
4581 case CODE_LABEL:
4582 case BARRIER:
4583 case NOTE:
4584 insn = x;
4585 while (insn)
4586 {
4587 rtx next = NEXT_INSN (insn);
4588 add_insn (insn);
4589 last = insn;
4590 insn = next;
4591 }
4592 break;
4593
4594 #ifdef ENABLE_RTL_CHECKING
4595 case SEQUENCE:
4596 abort ();
4597 break;
4598 #endif
4599
4600 default:
4601 last = make_jump_insn_raw (x);
4602 add_insn (last);
4603 break;
4604 }
4605
4606 return last;
4607 }
4608
4609 /* Make an insn of code CALL_INSN with pattern X
4610 and add it to the end of the doubly-linked list. */
4611
4612 rtx
4613 emit_call_insn (rtx x)
4614 {
4615 rtx insn;
4616
4617 switch (GET_CODE (x))
4618 {
4619 case INSN:
4620 case JUMP_INSN:
4621 case CALL_INSN:
4622 case CODE_LABEL:
4623 case BARRIER:
4624 case NOTE:
4625 insn = emit_insn (x);
4626 break;
4627
4628 #ifdef ENABLE_RTL_CHECKING
4629 case SEQUENCE:
4630 abort ();
4631 break;
4632 #endif
4633
4634 default:
4635 insn = make_call_insn_raw (x);
4636 add_insn (insn);
4637 break;
4638 }
4639
4640 return insn;
4641 }
4642
4643 /* Add the label LABEL to the end of the doubly-linked list. */
4644
4645 rtx
4646 emit_label (rtx label)
4647 {
4648 /* This can be called twice for the same label
4649 as a result of the confusion that follows a syntax error!
4650 So make it harmless. */
4651 if (INSN_UID (label) == 0)
4652 {
4653 INSN_UID (label) = cur_insn_uid++;
4654 add_insn (label);
4655 }
4656 return label;
4657 }
4658
4659 /* Make an insn of code BARRIER
4660 and add it to the end of the doubly-linked list. */
4661
4662 rtx
4663 emit_barrier (void)
4664 {
4665 rtx barrier = rtx_alloc (BARRIER);
4666 INSN_UID (barrier) = cur_insn_uid++;
4667 add_insn (barrier);
4668 return barrier;
4669 }
4670
4671 /* Make line numbering NOTE insn for LOCATION add it to the end
4672 of the doubly-linked list, but only if line-numbers are desired for
4673 debugging info and it doesn't match the previous one. */
4674
4675 rtx
4676 emit_line_note (location_t location)
4677 {
4678 rtx note;
4679
4680 set_file_and_line_for_stmt (location);
4681
4682 if (location.file && last_location.file
4683 && !strcmp (location.file, last_location.file)
4684 && location.line == last_location.line)
4685 return NULL_RTX;
4686 last_location = location;
4687
4688 if (no_line_numbers)
4689 {
4690 cur_insn_uid++;
4691 return NULL_RTX;
4692 }
4693
4694 note = emit_note (location.line);
4695 NOTE_SOURCE_FILE (note) = location.file;
4696
4697 return note;
4698 }
4699
4700 /* Emit a copy of note ORIG. */
4701
4702 rtx
4703 emit_note_copy (rtx orig)
4704 {
4705 rtx note;
4706
4707 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4708 {
4709 cur_insn_uid++;
4710 return NULL_RTX;
4711 }
4712
4713 note = rtx_alloc (NOTE);
4714
4715 INSN_UID (note) = cur_insn_uid++;
4716 NOTE_DATA (note) = NOTE_DATA (orig);
4717 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4718 BLOCK_FOR_INSN (note) = NULL;
4719 add_insn (note);
4720
4721 return note;
4722 }
4723
4724 /* Make an insn of code NOTE or type NOTE_NO
4725 and add it to the end of the doubly-linked list. */
4726
4727 rtx
4728 emit_note (int note_no)
4729 {
4730 rtx note;
4731
4732 note = rtx_alloc (NOTE);
4733 INSN_UID (note) = cur_insn_uid++;
4734 NOTE_LINE_NUMBER (note) = note_no;
4735 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4736 BLOCK_FOR_INSN (note) = NULL;
4737 add_insn (note);
4738 return note;
4739 }
4740
4741 /* Cause next statement to emit a line note even if the line number
4742 has not changed. */
4743
4744 void
4745 force_next_line_note (void)
4746 {
4747 last_location.line = -1;
4748 }
4749
4750 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4751 note of this type already exists, remove it first. */
4752
4753 rtx
4754 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4755 {
4756 rtx note = find_reg_note (insn, kind, NULL_RTX);
4757
4758 switch (kind)
4759 {
4760 case REG_EQUAL:
4761 case REG_EQUIV:
4762 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4763 has multiple sets (some callers assume single_set
4764 means the insn only has one set, when in fact it
4765 means the insn only has one * useful * set). */
4766 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4767 {
4768 if (note)
4769 abort ();
4770 return NULL_RTX;
4771 }
4772
4773 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4774 It serves no useful purpose and breaks eliminate_regs. */
4775 if (GET_CODE (datum) == ASM_OPERANDS)
4776 return NULL_RTX;
4777 break;
4778
4779 default:
4780 break;
4781 }
4782
4783 if (note)
4784 {
4785 XEXP (note, 0) = datum;
4786 return note;
4787 }
4788
4789 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4790 return REG_NOTES (insn);
4791 }
4792 \f
4793 /* Return an indication of which type of insn should have X as a body.
4794 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4795
4796 enum rtx_code
4797 classify_insn (rtx x)
4798 {
4799 if (GET_CODE (x) == CODE_LABEL)
4800 return CODE_LABEL;
4801 if (GET_CODE (x) == CALL)
4802 return CALL_INSN;
4803 if (GET_CODE (x) == RETURN)
4804 return JUMP_INSN;
4805 if (GET_CODE (x) == SET)
4806 {
4807 if (SET_DEST (x) == pc_rtx)
4808 return JUMP_INSN;
4809 else if (GET_CODE (SET_SRC (x)) == CALL)
4810 return CALL_INSN;
4811 else
4812 return INSN;
4813 }
4814 if (GET_CODE (x) == PARALLEL)
4815 {
4816 int j;
4817 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4818 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4819 return CALL_INSN;
4820 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4821 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4822 return JUMP_INSN;
4823 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4824 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4825 return CALL_INSN;
4826 }
4827 return INSN;
4828 }
4829
4830 /* Emit the rtl pattern X as an appropriate kind of insn.
4831 If X is a label, it is simply added into the insn chain. */
4832
4833 rtx
4834 emit (rtx x)
4835 {
4836 enum rtx_code code = classify_insn (x);
4837
4838 if (code == CODE_LABEL)
4839 return emit_label (x);
4840 else if (code == INSN)
4841 return emit_insn (x);
4842 else if (code == JUMP_INSN)
4843 {
4844 rtx insn = emit_jump_insn (x);
4845 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4846 return emit_barrier ();
4847 return insn;
4848 }
4849 else if (code == CALL_INSN)
4850 return emit_call_insn (x);
4851 else
4852 abort ();
4853 }
4854 \f
4855 /* Space for free sequence stack entries. */
4856 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4857
4858 /* Begin emitting insns to a sequence which can be packaged in an
4859 RTL_EXPR. If this sequence will contain something that might cause
4860 the compiler to pop arguments to function calls (because those
4861 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4862 details), use do_pending_stack_adjust before calling this function.
4863 That will ensure that the deferred pops are not accidentally
4864 emitted in the middle of this sequence. */
4865
4866 void
4867 start_sequence (void)
4868 {
4869 struct sequence_stack *tem;
4870
4871 if (free_sequence_stack != NULL)
4872 {
4873 tem = free_sequence_stack;
4874 free_sequence_stack = tem->next;
4875 }
4876 else
4877 tem = ggc_alloc (sizeof (struct sequence_stack));
4878
4879 tem->next = seq_stack;
4880 tem->first = first_insn;
4881 tem->last = last_insn;
4882 tem->sequence_rtl_expr = seq_rtl_expr;
4883
4884 seq_stack = tem;
4885
4886 first_insn = 0;
4887 last_insn = 0;
4888 }
4889
4890 /* Similarly, but indicate that this sequence will be placed in T, an
4891 RTL_EXPR. See the documentation for start_sequence for more
4892 information about how to use this function. */
4893
4894 void
4895 start_sequence_for_rtl_expr (tree t)
4896 {
4897 start_sequence ();
4898
4899 seq_rtl_expr = t;
4900 }
4901
4902 /* Set up the insn chain starting with FIRST as the current sequence,
4903 saving the previously current one. See the documentation for
4904 start_sequence for more information about how to use this function. */
4905
4906 void
4907 push_to_sequence (rtx first)
4908 {
4909 rtx last;
4910
4911 start_sequence ();
4912
4913 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4914
4915 first_insn = first;
4916 last_insn = last;
4917 }
4918
4919 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4920
4921 void
4922 push_to_full_sequence (rtx first, rtx last)
4923 {
4924 start_sequence ();
4925 first_insn = first;
4926 last_insn = last;
4927 /* We really should have the end of the insn chain here. */
4928 if (last && NEXT_INSN (last))
4929 abort ();
4930 }
4931
4932 /* Set up the outer-level insn chain
4933 as the current sequence, saving the previously current one. */
4934
4935 void
4936 push_topmost_sequence (void)
4937 {
4938 struct sequence_stack *stack, *top = NULL;
4939
4940 start_sequence ();
4941
4942 for (stack = seq_stack; stack; stack = stack->next)
4943 top = stack;
4944
4945 first_insn = top->first;
4946 last_insn = top->last;
4947 seq_rtl_expr = top->sequence_rtl_expr;
4948 }
4949
4950 /* After emitting to the outer-level insn chain, update the outer-level
4951 insn chain, and restore the previous saved state. */
4952
4953 void
4954 pop_topmost_sequence (void)
4955 {
4956 struct sequence_stack *stack, *top = NULL;
4957
4958 for (stack = seq_stack; stack; stack = stack->next)
4959 top = stack;
4960
4961 top->first = first_insn;
4962 top->last = last_insn;
4963 /* ??? Why don't we save seq_rtl_expr here? */
4964
4965 end_sequence ();
4966 }
4967
4968 /* After emitting to a sequence, restore previous saved state.
4969
4970 To get the contents of the sequence just made, you must call
4971 `get_insns' *before* calling here.
4972
4973 If the compiler might have deferred popping arguments while
4974 generating this sequence, and this sequence will not be immediately
4975 inserted into the instruction stream, use do_pending_stack_adjust
4976 before calling get_insns. That will ensure that the deferred
4977 pops are inserted into this sequence, and not into some random
4978 location in the instruction stream. See INHIBIT_DEFER_POP for more
4979 information about deferred popping of arguments. */
4980
4981 void
4982 end_sequence (void)
4983 {
4984 struct sequence_stack *tem = seq_stack;
4985
4986 first_insn = tem->first;
4987 last_insn = tem->last;
4988 seq_rtl_expr = tem->sequence_rtl_expr;
4989 seq_stack = tem->next;
4990
4991 memset (tem, 0, sizeof (*tem));
4992 tem->next = free_sequence_stack;
4993 free_sequence_stack = tem;
4994 }
4995
4996 /* This works like end_sequence, but records the old sequence in FIRST
4997 and LAST. */
4998
4999 void
5000 end_full_sequence (rtx *first, rtx *last)
5001 {
5002 *first = first_insn;
5003 *last = last_insn;
5004 end_sequence ();
5005 }
5006
5007 /* Return 1 if currently emitting into a sequence. */
5008
5009 int
5010 in_sequence_p (void)
5011 {
5012 return seq_stack != 0;
5013 }
5014 \f
5015 /* Put the various virtual registers into REGNO_REG_RTX. */
5016
5017 void
5018 init_virtual_regs (struct emit_status *es)
5019 {
5020 rtx *ptr = es->x_regno_reg_rtx;
5021 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5022 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5023 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5024 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5025 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5026 }
5027
5028 \f
5029 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5030 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5031 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5032 static int copy_insn_n_scratches;
5033
5034 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5035 copied an ASM_OPERANDS.
5036 In that case, it is the original input-operand vector. */
5037 static rtvec orig_asm_operands_vector;
5038
5039 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5040 copied an ASM_OPERANDS.
5041 In that case, it is the copied input-operand vector. */
5042 static rtvec copy_asm_operands_vector;
5043
5044 /* Likewise for the constraints vector. */
5045 static rtvec orig_asm_constraints_vector;
5046 static rtvec copy_asm_constraints_vector;
5047
5048 /* Recursively create a new copy of an rtx for copy_insn.
5049 This function differs from copy_rtx in that it handles SCRATCHes and
5050 ASM_OPERANDs properly.
5051 Normally, this function is not used directly; use copy_insn as front end.
5052 However, you could first copy an insn pattern with copy_insn and then use
5053 this function afterwards to properly copy any REG_NOTEs containing
5054 SCRATCHes. */
5055
5056 rtx
5057 copy_insn_1 (rtx orig)
5058 {
5059 rtx copy;
5060 int i, j;
5061 RTX_CODE code;
5062 const char *format_ptr;
5063
5064 code = GET_CODE (orig);
5065
5066 switch (code)
5067 {
5068 case REG:
5069 case QUEUED:
5070 case CONST_INT:
5071 case CONST_DOUBLE:
5072 case CONST_VECTOR:
5073 case SYMBOL_REF:
5074 case CODE_LABEL:
5075 case PC:
5076 case CC0:
5077 case ADDRESSOF:
5078 return orig;
5079
5080 case SCRATCH:
5081 for (i = 0; i < copy_insn_n_scratches; i++)
5082 if (copy_insn_scratch_in[i] == orig)
5083 return copy_insn_scratch_out[i];
5084 break;
5085
5086 case CONST:
5087 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5088 a LABEL_REF, it isn't sharable. */
5089 if (GET_CODE (XEXP (orig, 0)) == PLUS
5090 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5091 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5092 return orig;
5093 break;
5094
5095 /* A MEM with a constant address is not sharable. The problem is that
5096 the constant address may need to be reloaded. If the mem is shared,
5097 then reloading one copy of this mem will cause all copies to appear
5098 to have been reloaded. */
5099
5100 default:
5101 break;
5102 }
5103
5104 copy = rtx_alloc (code);
5105
5106 /* Copy the various flags, and other information. We assume that
5107 all fields need copying, and then clear the fields that should
5108 not be copied. That is the sensible default behavior, and forces
5109 us to explicitly document why we are *not* copying a flag. */
5110 memcpy (copy, orig, RTX_HDR_SIZE);
5111
5112 /* We do not copy the USED flag, which is used as a mark bit during
5113 walks over the RTL. */
5114 RTX_FLAG (copy, used) = 0;
5115
5116 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5117 if (GET_RTX_CLASS (code) == 'i')
5118 {
5119 RTX_FLAG (copy, jump) = 0;
5120 RTX_FLAG (copy, call) = 0;
5121 RTX_FLAG (copy, frame_related) = 0;
5122 }
5123
5124 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5125
5126 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5127 {
5128 copy->u.fld[i] = orig->u.fld[i];
5129 switch (*format_ptr++)
5130 {
5131 case 'e':
5132 if (XEXP (orig, i) != NULL)
5133 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5134 break;
5135
5136 case 'E':
5137 case 'V':
5138 if (XVEC (orig, i) == orig_asm_constraints_vector)
5139 XVEC (copy, i) = copy_asm_constraints_vector;
5140 else if (XVEC (orig, i) == orig_asm_operands_vector)
5141 XVEC (copy, i) = copy_asm_operands_vector;
5142 else if (XVEC (orig, i) != NULL)
5143 {
5144 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5145 for (j = 0; j < XVECLEN (copy, i); j++)
5146 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5147 }
5148 break;
5149
5150 case 't':
5151 case 'w':
5152 case 'i':
5153 case 's':
5154 case 'S':
5155 case 'u':
5156 case '0':
5157 /* These are left unchanged. */
5158 break;
5159
5160 default:
5161 abort ();
5162 }
5163 }
5164
5165 if (code == SCRATCH)
5166 {
5167 i = copy_insn_n_scratches++;
5168 if (i >= MAX_RECOG_OPERANDS)
5169 abort ();
5170 copy_insn_scratch_in[i] = orig;
5171 copy_insn_scratch_out[i] = copy;
5172 }
5173 else if (code == ASM_OPERANDS)
5174 {
5175 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5176 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5177 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5178 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5179 }
5180
5181 return copy;
5182 }
5183
5184 /* Create a new copy of an rtx.
5185 This function differs from copy_rtx in that it handles SCRATCHes and
5186 ASM_OPERANDs properly.
5187 INSN doesn't really have to be a full INSN; it could be just the
5188 pattern. */
5189 rtx
5190 copy_insn (rtx insn)
5191 {
5192 copy_insn_n_scratches = 0;
5193 orig_asm_operands_vector = 0;
5194 orig_asm_constraints_vector = 0;
5195 copy_asm_operands_vector = 0;
5196 copy_asm_constraints_vector = 0;
5197 return copy_insn_1 (insn);
5198 }
5199
5200 /* Initialize data structures and variables in this file
5201 before generating rtl for each function. */
5202
5203 void
5204 init_emit (void)
5205 {
5206 struct function *f = cfun;
5207
5208 f->emit = ggc_alloc (sizeof (struct emit_status));
5209 first_insn = NULL;
5210 last_insn = NULL;
5211 seq_rtl_expr = NULL;
5212 cur_insn_uid = 1;
5213 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5214 last_location.line = 0;
5215 last_location.file = 0;
5216 first_label_num = label_num;
5217 last_label_num = 0;
5218 seq_stack = NULL;
5219
5220 /* Init the tables that describe all the pseudo regs. */
5221
5222 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5223
5224 f->emit->regno_pointer_align
5225 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5226 * sizeof (unsigned char));
5227
5228 regno_reg_rtx
5229 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5230
5231 /* Put copies of all the hard registers into regno_reg_rtx. */
5232 memcpy (regno_reg_rtx,
5233 static_regno_reg_rtx,
5234 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5235
5236 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5237 init_virtual_regs (f->emit);
5238
5239 /* Indicate that the virtual registers and stack locations are
5240 all pointers. */
5241 REG_POINTER (stack_pointer_rtx) = 1;
5242 REG_POINTER (frame_pointer_rtx) = 1;
5243 REG_POINTER (hard_frame_pointer_rtx) = 1;
5244 REG_POINTER (arg_pointer_rtx) = 1;
5245
5246 REG_POINTER (virtual_incoming_args_rtx) = 1;
5247 REG_POINTER (virtual_stack_vars_rtx) = 1;
5248 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5249 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5250 REG_POINTER (virtual_cfa_rtx) = 1;
5251
5252 #ifdef STACK_BOUNDARY
5253 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5254 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5255 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5256 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5257
5258 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5259 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5260 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5261 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5262 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5263 #endif
5264
5265 #ifdef INIT_EXPANDERS
5266 INIT_EXPANDERS;
5267 #endif
5268 }
5269
5270 /* Generate the constant 0. */
5271
5272 static rtx
5273 gen_const_vector_0 (enum machine_mode mode)
5274 {
5275 rtx tem;
5276 rtvec v;
5277 int units, i;
5278 enum machine_mode inner;
5279
5280 units = GET_MODE_NUNITS (mode);
5281 inner = GET_MODE_INNER (mode);
5282
5283 v = rtvec_alloc (units);
5284
5285 /* We need to call this function after we to set CONST0_RTX first. */
5286 if (!CONST0_RTX (inner))
5287 abort ();
5288
5289 for (i = 0; i < units; ++i)
5290 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5291
5292 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5293 return tem;
5294 }
5295
5296 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5297 all elements are zero. */
5298 rtx
5299 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5300 {
5301 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5302 int i;
5303
5304 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5305 if (RTVEC_ELT (v, i) != inner_zero)
5306 return gen_rtx_raw_CONST_VECTOR (mode, v);
5307 return CONST0_RTX (mode);
5308 }
5309
5310 /* Create some permanent unique rtl objects shared between all functions.
5311 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5312
5313 void
5314 init_emit_once (int line_numbers)
5315 {
5316 int i;
5317 enum machine_mode mode;
5318 enum machine_mode double_mode;
5319
5320 /* We need reg_raw_mode, so initialize the modes now. */
5321 init_reg_modes_once ();
5322
5323 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5324 tables. */
5325 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5326 const_int_htab_eq, NULL);
5327
5328 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5329 const_double_htab_eq, NULL);
5330
5331 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5332 mem_attrs_htab_eq, NULL);
5333 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5334 reg_attrs_htab_eq, NULL);
5335
5336 no_line_numbers = ! line_numbers;
5337
5338 /* Compute the word and byte modes. */
5339
5340 byte_mode = VOIDmode;
5341 word_mode = VOIDmode;
5342 double_mode = VOIDmode;
5343
5344 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5345 mode = GET_MODE_WIDER_MODE (mode))
5346 {
5347 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5348 && byte_mode == VOIDmode)
5349 byte_mode = mode;
5350
5351 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5352 && word_mode == VOIDmode)
5353 word_mode = mode;
5354 }
5355
5356 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5357 mode = GET_MODE_WIDER_MODE (mode))
5358 {
5359 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5360 && double_mode == VOIDmode)
5361 double_mode = mode;
5362 }
5363
5364 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5365
5366 /* Assign register numbers to the globally defined register rtx.
5367 This must be done at runtime because the register number field
5368 is in a union and some compilers can't initialize unions. */
5369
5370 pc_rtx = gen_rtx (PC, VOIDmode);
5371 cc0_rtx = gen_rtx (CC0, VOIDmode);
5372 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5373 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5374 if (hard_frame_pointer_rtx == 0)
5375 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5376 HARD_FRAME_POINTER_REGNUM);
5377 if (arg_pointer_rtx == 0)
5378 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5379 virtual_incoming_args_rtx =
5380 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5381 virtual_stack_vars_rtx =
5382 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5383 virtual_stack_dynamic_rtx =
5384 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5385 virtual_outgoing_args_rtx =
5386 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5387 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5388
5389 /* Initialize RTL for commonly used hard registers. These are
5390 copied into regno_reg_rtx as we begin to compile each function. */
5391 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5392 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5393
5394 #ifdef INIT_EXPANDERS
5395 /* This is to initialize {init|mark|free}_machine_status before the first
5396 call to push_function_context_to. This is needed by the Chill front
5397 end which calls push_function_context_to before the first call to
5398 init_function_start. */
5399 INIT_EXPANDERS;
5400 #endif
5401
5402 /* Create the unique rtx's for certain rtx codes and operand values. */
5403
5404 /* Don't use gen_rtx here since gen_rtx in this case
5405 tries to use these variables. */
5406 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5407 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5408 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5409
5410 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5411 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5412 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5413 else
5414 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5415
5416 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5417 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5418 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5419 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5420 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5421 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5422 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5423
5424 dconsthalf = dconst1;
5425 dconsthalf.exp--;
5426
5427 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5428
5429 /* Initialize mathematical constants for constant folding builtins.
5430 These constants need to be given to at least 160 bits precision. */
5431 real_from_string (&dconstpi,
5432 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5433 real_from_string (&dconste,
5434 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5435
5436 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5437 {
5438 REAL_VALUE_TYPE *r =
5439 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5440
5441 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5442 mode = GET_MODE_WIDER_MODE (mode))
5443 const_tiny_rtx[i][(int) mode] =
5444 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5445
5446 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5447
5448 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5449 mode = GET_MODE_WIDER_MODE (mode))
5450 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5451
5452 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5453 mode != VOIDmode;
5454 mode = GET_MODE_WIDER_MODE (mode))
5455 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5456 }
5457
5458 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5459 mode != VOIDmode;
5460 mode = GET_MODE_WIDER_MODE (mode))
5461 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5462
5463 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5464 mode != VOIDmode;
5465 mode = GET_MODE_WIDER_MODE (mode))
5466 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5467
5468 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5469 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5470 const_tiny_rtx[0][i] = const0_rtx;
5471
5472 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5473 if (STORE_FLAG_VALUE == 1)
5474 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5475
5476 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5477 return_address_pointer_rtx
5478 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5479 #endif
5480
5481 #ifdef STATIC_CHAIN_REGNUM
5482 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5483
5484 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5485 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5486 static_chain_incoming_rtx
5487 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5488 else
5489 #endif
5490 static_chain_incoming_rtx = static_chain_rtx;
5491 #endif
5492
5493 #ifdef STATIC_CHAIN
5494 static_chain_rtx = STATIC_CHAIN;
5495
5496 #ifdef STATIC_CHAIN_INCOMING
5497 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5498 #else
5499 static_chain_incoming_rtx = static_chain_rtx;
5500 #endif
5501 #endif
5502
5503 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5504 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5505 }
5506 \f
5507 /* Query and clear/ restore no_line_numbers. This is used by the
5508 switch / case handling in stmt.c to give proper line numbers in
5509 warnings about unreachable code. */
5510
5511 int
5512 force_line_numbers (void)
5513 {
5514 int old = no_line_numbers;
5515
5516 no_line_numbers = 0;
5517 if (old)
5518 force_next_line_note ();
5519 return old;
5520 }
5521
5522 void
5523 restore_line_number_status (int old_value)
5524 {
5525 no_line_numbers = old_value;
5526 }
5527
5528 /* Produce exact duplicate of insn INSN after AFTER.
5529 Care updating of libcall regions if present. */
5530
5531 rtx
5532 emit_copy_of_insn_after (rtx insn, rtx after)
5533 {
5534 rtx new;
5535 rtx note1, note2, link;
5536
5537 switch (GET_CODE (insn))
5538 {
5539 case INSN:
5540 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5541 break;
5542
5543 case JUMP_INSN:
5544 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5545 break;
5546
5547 case CALL_INSN:
5548 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5549 if (CALL_INSN_FUNCTION_USAGE (insn))
5550 CALL_INSN_FUNCTION_USAGE (new)
5551 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5552 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5553 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5554 break;
5555
5556 default:
5557 abort ();
5558 }
5559
5560 /* Update LABEL_NUSES. */
5561 mark_jump_label (PATTERN (new), new, 0);
5562
5563 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5564
5565 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5566 make them. */
5567 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5568 if (REG_NOTE_KIND (link) != REG_LABEL)
5569 {
5570 if (GET_CODE (link) == EXPR_LIST)
5571 REG_NOTES (new)
5572 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5573 XEXP (link, 0),
5574 REG_NOTES (new)));
5575 else
5576 REG_NOTES (new)
5577 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5578 XEXP (link, 0),
5579 REG_NOTES (new)));
5580 }
5581
5582 /* Fix the libcall sequences. */
5583 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5584 {
5585 rtx p = new;
5586 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5587 p = PREV_INSN (p);
5588 XEXP (note1, 0) = p;
5589 XEXP (note2, 0) = new;
5590 }
5591 INSN_CODE (new) = INSN_CODE (insn);
5592 return new;
5593 }
5594
5595 #include "gt-emit-rtl.h"