]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/except.c
configure.target (cpu_include_dir): Set to `config/cpu/m68k' for m68k and m680[246]0.
[thirdparty/gcc.git] / gcc / except.c
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Mike Stump <mrs@cygnus.com>.
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* An exception is an event that can be signaled from within a
25 function. This event can then be "caught" or "trapped" by the
26 callers of this function. This potentially allows program flow to
27 be transferred to any arbitrary code associated with a function call
28 several levels up the stack.
29
30 The intended use for this mechanism is for signaling "exceptional
31 events" in an out-of-band fashion, hence its name. The C++ language
32 (and many other OO-styled or functional languages) practically
33 requires such a mechanism, as otherwise it becomes very difficult
34 or even impossible to signal failure conditions in complex
35 situations. The traditional C++ example is when an error occurs in
36 the process of constructing an object; without such a mechanism, it
37 is impossible to signal that the error occurs without adding global
38 state variables and error checks around every object construction.
39
40 The act of causing this event to occur is referred to as "throwing
41 an exception". (Alternate terms include "raising an exception" or
42 "signaling an exception".) The term "throw" is used because control
43 is returned to the callers of the function that is signaling the
44 exception, and thus there is the concept of "throwing" the
45 exception up the call stack.
46
47 [ Add updated documentation on how to use this. ] */
48
49
50 #include "config.h"
51 #include "system.h"
52 #include "rtl.h"
53 #include "tree.h"
54 #include "flags.h"
55 #include "function.h"
56 #include "expr.h"
57 #include "libfuncs.h"
58 #include "insn-config.h"
59 #include "except.h"
60 #include "integrate.h"
61 #include "hard-reg-set.h"
62 #include "basic-block.h"
63 #include "output.h"
64 #include "dwarf2asm.h"
65 #include "dwarf2out.h"
66 #include "dwarf2.h"
67 #include "toplev.h"
68 #include "hashtab.h"
69 #include "intl.h"
70 #include "ggc.h"
71 #include "tm_p.h"
72
73
74 /* Provide defaults for stuff that may not be defined when using
75 sjlj exceptions. */
76 #ifndef EH_RETURN_STACKADJ_RTX
77 #define EH_RETURN_STACKADJ_RTX 0
78 #endif
79 #ifndef EH_RETURN_HANDLER_RTX
80 #define EH_RETURN_HANDLER_RTX 0
81 #endif
82 #ifndef EH_RETURN_DATA_REGNO
83 #define EH_RETURN_DATA_REGNO(N) INVALID_REGNUM
84 #endif
85
86
87 /* Nonzero means enable synchronous exceptions for non-call instructions. */
88 int flag_non_call_exceptions;
89
90 /* Protect cleanup actions with must-not-throw regions, with a call
91 to the given failure handler. */
92 tree (*lang_protect_cleanup_actions) PARAMS ((void));
93
94 /* Return true if type A catches type B. */
95 int (*lang_eh_type_covers) PARAMS ((tree a, tree b));
96
97 /* Map a type to a runtime object to match type. */
98 tree (*lang_eh_runtime_type) PARAMS ((tree));
99
100 /* A list of labels used for exception handlers. */
101 rtx exception_handler_labels;
102
103 static int call_site_base;
104 static unsigned int sjlj_funcdef_number;
105 static htab_t type_to_runtime_map;
106
107 /* Describe the SjLj_Function_Context structure. */
108 static tree sjlj_fc_type_node;
109 static int sjlj_fc_call_site_ofs;
110 static int sjlj_fc_data_ofs;
111 static int sjlj_fc_personality_ofs;
112 static int sjlj_fc_lsda_ofs;
113 static int sjlj_fc_jbuf_ofs;
114 \f
115 /* Describes one exception region. */
116 struct eh_region
117 {
118 /* The immediately surrounding region. */
119 struct eh_region *outer;
120
121 /* The list of immediately contained regions. */
122 struct eh_region *inner;
123 struct eh_region *next_peer;
124
125 /* An identifier for this region. */
126 int region_number;
127
128 /* Each region does exactly one thing. */
129 enum eh_region_type
130 {
131 ERT_CLEANUP = 1,
132 ERT_TRY,
133 ERT_CATCH,
134 ERT_ALLOWED_EXCEPTIONS,
135 ERT_MUST_NOT_THROW,
136 ERT_THROW,
137 ERT_FIXUP
138 } type;
139
140 /* Holds the action to perform based on the preceeding type. */
141 union {
142 /* A list of catch blocks, a surrounding try block,
143 and the label for continuing after a catch. */
144 struct {
145 struct eh_region *catch;
146 struct eh_region *last_catch;
147 struct eh_region *prev_try;
148 rtx continue_label;
149 } try;
150
151 /* The list through the catch handlers, the type object
152 matched, and a pointer to the generated code. */
153 struct {
154 struct eh_region *next_catch;
155 struct eh_region *prev_catch;
156 tree type;
157 int filter;
158 } catch;
159
160 /* A tree_list of allowed types. */
161 struct {
162 tree type_list;
163 int filter;
164 } allowed;
165
166 /* The type given by a call to "throw foo();", or discovered
167 for a throw. */
168 struct {
169 tree type;
170 } throw;
171
172 /* Retain the cleanup expression even after expansion so that
173 we can match up fixup regions. */
174 struct {
175 tree exp;
176 } cleanup;
177
178 /* The real region (by expression and by pointer) that fixup code
179 should live in. */
180 struct {
181 tree cleanup_exp;
182 struct eh_region *real_region;
183 } fixup;
184 } u;
185
186 /* Entry point for this region's handler before landing pads are built. */
187 rtx label;
188
189 /* Entry point for this region's handler from the runtime eh library. */
190 rtx landing_pad;
191
192 /* Entry point for this region's handler from an inner region. */
193 rtx post_landing_pad;
194
195 /* The RESX insn for handing off control to the next outermost handler,
196 if appropriate. */
197 rtx resume;
198 };
199
200 /* Used to save exception status for each function. */
201 struct eh_status
202 {
203 /* The tree of all regions for this function. */
204 struct eh_region *region_tree;
205
206 /* The same information as an indexable array. */
207 struct eh_region **region_array;
208
209 /* The most recently open region. */
210 struct eh_region *cur_region;
211
212 /* This is the region for which we are processing catch blocks. */
213 struct eh_region *try_region;
214
215 /* A stack (TREE_LIST) of lists of handlers. The TREE_VALUE of each
216 node is itself a TREE_CHAINed list of handlers for regions that
217 are not yet closed. The TREE_VALUE of each entry contains the
218 handler for the corresponding entry on the ehstack. */
219 tree protect_list;
220
221 rtx filter;
222 rtx exc_ptr;
223
224 int built_landing_pads;
225 int last_region_number;
226
227 varray_type ttype_data;
228 varray_type ehspec_data;
229 varray_type action_record_data;
230
231 struct call_site_record
232 {
233 rtx landing_pad;
234 int action;
235 } *call_site_data;
236 int call_site_data_used;
237 int call_site_data_size;
238
239 rtx ehr_stackadj;
240 rtx ehr_handler;
241 rtx ehr_label;
242
243 rtx sjlj_fc;
244 rtx sjlj_exit_after;
245 };
246
247 \f
248 static void mark_eh_region PARAMS ((struct eh_region *));
249
250 static int t2r_eq PARAMS ((const PTR,
251 const PTR));
252 static hashval_t t2r_hash PARAMS ((const PTR));
253 static int t2r_mark_1 PARAMS ((PTR *, PTR));
254 static void t2r_mark PARAMS ((PTR));
255 static void add_type_for_runtime PARAMS ((tree));
256 static tree lookup_type_for_runtime PARAMS ((tree));
257
258 static struct eh_region *expand_eh_region_end PARAMS ((void));
259
260 static rtx get_exception_filter PARAMS ((struct function *));
261
262 static void collect_eh_region_array PARAMS ((void));
263 static void resolve_fixup_regions PARAMS ((void));
264 static void remove_fixup_regions PARAMS ((void));
265 static void convert_from_eh_region_ranges_1 PARAMS ((rtx *, int *, int));
266
267 static struct eh_region *duplicate_eh_region_1 PARAMS ((struct eh_region *,
268 struct inline_remap *));
269 static void duplicate_eh_region_2 PARAMS ((struct eh_region *,
270 struct eh_region **));
271 static int ttypes_filter_eq PARAMS ((const PTR,
272 const PTR));
273 static hashval_t ttypes_filter_hash PARAMS ((const PTR));
274 static int ehspec_filter_eq PARAMS ((const PTR,
275 const PTR));
276 static hashval_t ehspec_filter_hash PARAMS ((const PTR));
277 static int add_ttypes_entry PARAMS ((htab_t, tree));
278 static int add_ehspec_entry PARAMS ((htab_t, htab_t,
279 tree));
280 static void assign_filter_values PARAMS ((void));
281 static void build_post_landing_pads PARAMS ((void));
282 static void connect_post_landing_pads PARAMS ((void));
283 static void dw2_build_landing_pads PARAMS ((void));
284
285 struct sjlj_lp_info;
286 static bool sjlj_find_directly_reachable_regions
287 PARAMS ((struct sjlj_lp_info *));
288 static void sjlj_assign_call_site_values
289 PARAMS ((rtx, struct sjlj_lp_info *));
290 static void sjlj_mark_call_sites
291 PARAMS ((struct sjlj_lp_info *));
292 static void sjlj_emit_function_enter PARAMS ((rtx));
293 static void sjlj_emit_function_exit PARAMS ((void));
294 static void sjlj_emit_dispatch_table
295 PARAMS ((rtx, struct sjlj_lp_info *));
296 static void sjlj_build_landing_pads PARAMS ((void));
297
298 static void remove_exception_handler_label PARAMS ((rtx));
299 static void remove_eh_handler PARAMS ((struct eh_region *));
300
301 struct reachable_info;
302
303 /* The return value of reachable_next_level. */
304 enum reachable_code
305 {
306 /* The given exception is not processed by the given region. */
307 RNL_NOT_CAUGHT,
308 /* The given exception may need processing by the given region. */
309 RNL_MAYBE_CAUGHT,
310 /* The given exception is completely processed by the given region. */
311 RNL_CAUGHT,
312 /* The given exception is completely processed by the runtime. */
313 RNL_BLOCKED
314 };
315
316 static int check_handled PARAMS ((tree, tree));
317 static void add_reachable_handler
318 PARAMS ((struct reachable_info *, struct eh_region *,
319 struct eh_region *));
320 static enum reachable_code reachable_next_level
321 PARAMS ((struct eh_region *, tree, struct reachable_info *));
322
323 static int action_record_eq PARAMS ((const PTR,
324 const PTR));
325 static hashval_t action_record_hash PARAMS ((const PTR));
326 static int add_action_record PARAMS ((htab_t, int, int));
327 static int collect_one_action_chain PARAMS ((htab_t,
328 struct eh_region *));
329 static int add_call_site PARAMS ((rtx, int));
330
331 static void push_uleb128 PARAMS ((varray_type *,
332 unsigned int));
333 static void push_sleb128 PARAMS ((varray_type *, int));
334 #ifndef HAVE_AS_LEB128
335 static int dw2_size_of_call_site_table PARAMS ((void));
336 static int sjlj_size_of_call_site_table PARAMS ((void));
337 #endif
338 static void dw2_output_call_site_table PARAMS ((void));
339 static void sjlj_output_call_site_table PARAMS ((void));
340
341 \f
342 /* Routine to see if exception handling is turned on.
343 DO_WARN is non-zero if we want to inform the user that exception
344 handling is turned off.
345
346 This is used to ensure that -fexceptions has been specified if the
347 compiler tries to use any exception-specific functions. */
348
349 int
350 doing_eh (do_warn)
351 int do_warn;
352 {
353 if (! flag_exceptions)
354 {
355 static int warned = 0;
356 if (! warned && do_warn)
357 {
358 error ("exception handling disabled, use -fexceptions to enable");
359 warned = 1;
360 }
361 return 0;
362 }
363 return 1;
364 }
365
366 \f
367 void
368 init_eh ()
369 {
370 ggc_add_rtx_root (&exception_handler_labels, 1);
371
372 if (! flag_exceptions)
373 return;
374
375 type_to_runtime_map = htab_create (31, t2r_hash, t2r_eq, NULL);
376 ggc_add_root (&type_to_runtime_map, 1, sizeof (htab_t), t2r_mark);
377
378 /* Create the SjLj_Function_Context structure. This should match
379 the definition in unwind-sjlj.c. */
380 if (USING_SJLJ_EXCEPTIONS)
381 {
382 tree f_jbuf, f_per, f_lsda, f_prev, f_cs, f_data, tmp;
383
384 sjlj_fc_type_node = make_lang_type (RECORD_TYPE);
385 ggc_add_tree_root (&sjlj_fc_type_node, 1);
386
387 f_prev = build_decl (FIELD_DECL, get_identifier ("__prev"),
388 build_pointer_type (sjlj_fc_type_node));
389 DECL_FIELD_CONTEXT (f_prev) = sjlj_fc_type_node;
390
391 f_cs = build_decl (FIELD_DECL, get_identifier ("__call_site"),
392 integer_type_node);
393 DECL_FIELD_CONTEXT (f_cs) = sjlj_fc_type_node;
394
395 tmp = build_index_type (build_int_2 (4 - 1, 0));
396 tmp = build_array_type (type_for_mode (word_mode, 1), tmp);
397 f_data = build_decl (FIELD_DECL, get_identifier ("__data"), tmp);
398 DECL_FIELD_CONTEXT (f_data) = sjlj_fc_type_node;
399
400 f_per = build_decl (FIELD_DECL, get_identifier ("__personality"),
401 ptr_type_node);
402 DECL_FIELD_CONTEXT (f_per) = sjlj_fc_type_node;
403
404 f_lsda = build_decl (FIELD_DECL, get_identifier ("__lsda"),
405 ptr_type_node);
406 DECL_FIELD_CONTEXT (f_lsda) = sjlj_fc_type_node;
407
408 #ifdef DONT_USE_BUILTIN_SETJMP
409 #ifdef JMP_BUF_SIZE
410 tmp = build_int_2 (JMP_BUF_SIZE - 1, 0);
411 #else
412 /* Should be large enough for most systems, if it is not,
413 JMP_BUF_SIZE should be defined with the proper value. It will
414 also tend to be larger than necessary for most systems, a more
415 optimal port will define JMP_BUF_SIZE. */
416 tmp = build_int_2 (FIRST_PSEUDO_REGISTER + 2 - 1, 0);
417 #endif
418 #else
419 /* This is 2 for builtin_setjmp, plus whatever the target requires
420 via STACK_SAVEAREA_MODE (SAVE_NONLOCAL). */
421 tmp = build_int_2 ((GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
422 / GET_MODE_SIZE (Pmode)) + 2 - 1, 0);
423 #endif
424 tmp = build_index_type (tmp);
425 tmp = build_array_type (ptr_type_node, tmp);
426 f_jbuf = build_decl (FIELD_DECL, get_identifier ("__jbuf"), tmp);
427 #ifdef DONT_USE_BUILTIN_SETJMP
428 /* We don't know what the alignment requirements of the
429 runtime's jmp_buf has. Overestimate. */
430 DECL_ALIGN (f_jbuf) = BIGGEST_ALIGNMENT;
431 DECL_USER_ALIGN (f_jbuf) = 1;
432 #endif
433 DECL_FIELD_CONTEXT (f_jbuf) = sjlj_fc_type_node;
434
435 TYPE_FIELDS (sjlj_fc_type_node) = f_prev;
436 TREE_CHAIN (f_prev) = f_cs;
437 TREE_CHAIN (f_cs) = f_data;
438 TREE_CHAIN (f_data) = f_per;
439 TREE_CHAIN (f_per) = f_lsda;
440 TREE_CHAIN (f_lsda) = f_jbuf;
441
442 layout_type (sjlj_fc_type_node);
443
444 /* Cache the interesting field offsets so that we have
445 easy access from rtl. */
446 sjlj_fc_call_site_ofs
447 = (tree_low_cst (DECL_FIELD_OFFSET (f_cs), 1)
448 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_cs), 1) / BITS_PER_UNIT);
449 sjlj_fc_data_ofs
450 = (tree_low_cst (DECL_FIELD_OFFSET (f_data), 1)
451 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_data), 1) / BITS_PER_UNIT);
452 sjlj_fc_personality_ofs
453 = (tree_low_cst (DECL_FIELD_OFFSET (f_per), 1)
454 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_per), 1) / BITS_PER_UNIT);
455 sjlj_fc_lsda_ofs
456 = (tree_low_cst (DECL_FIELD_OFFSET (f_lsda), 1)
457 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_lsda), 1) / BITS_PER_UNIT);
458 sjlj_fc_jbuf_ofs
459 = (tree_low_cst (DECL_FIELD_OFFSET (f_jbuf), 1)
460 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_jbuf), 1) / BITS_PER_UNIT);
461 }
462 }
463
464 void
465 init_eh_for_function ()
466 {
467 cfun->eh = (struct eh_status *) xcalloc (1, sizeof (struct eh_status));
468 }
469
470 /* Mark EH for GC. */
471
472 static void
473 mark_eh_region (region)
474 struct eh_region *region;
475 {
476 if (! region)
477 return;
478
479 switch (region->type)
480 {
481 case ERT_CLEANUP:
482 ggc_mark_tree (region->u.cleanup.exp);
483 break;
484 case ERT_TRY:
485 ggc_mark_rtx (region->u.try.continue_label);
486 break;
487 case ERT_CATCH:
488 ggc_mark_tree (region->u.catch.type);
489 break;
490 case ERT_ALLOWED_EXCEPTIONS:
491 ggc_mark_tree (region->u.allowed.type_list);
492 break;
493 case ERT_MUST_NOT_THROW:
494 break;
495 case ERT_THROW:
496 ggc_mark_tree (region->u.throw.type);
497 break;
498 case ERT_FIXUP:
499 ggc_mark_tree (region->u.fixup.cleanup_exp);
500 break;
501 default:
502 abort ();
503 }
504
505 ggc_mark_rtx (region->label);
506 ggc_mark_rtx (region->resume);
507 ggc_mark_rtx (region->landing_pad);
508 ggc_mark_rtx (region->post_landing_pad);
509 }
510
511 void
512 mark_eh_status (eh)
513 struct eh_status *eh;
514 {
515 int i;
516
517 if (eh == 0)
518 return;
519
520 /* If we've called collect_eh_region_array, use it. Otherwise walk
521 the tree non-recursively. */
522 if (eh->region_array)
523 {
524 for (i = eh->last_region_number; i > 0; --i)
525 {
526 struct eh_region *r = eh->region_array[i];
527 if (r && r->region_number == i)
528 mark_eh_region (r);
529 }
530 }
531 else if (eh->region_tree)
532 {
533 struct eh_region *r = eh->region_tree;
534 while (1)
535 {
536 mark_eh_region (r);
537 if (r->inner)
538 r = r->inner;
539 else if (r->next_peer)
540 r = r->next_peer;
541 else
542 {
543 do {
544 r = r->outer;
545 if (r == NULL)
546 goto tree_done;
547 } while (r->next_peer == NULL);
548 r = r->next_peer;
549 }
550 }
551 tree_done:;
552 }
553
554 ggc_mark_tree (eh->protect_list);
555 ggc_mark_rtx (eh->filter);
556 ggc_mark_rtx (eh->exc_ptr);
557 ggc_mark_tree_varray (eh->ttype_data);
558
559 if (eh->call_site_data)
560 {
561 for (i = eh->call_site_data_used - 1; i >= 0; --i)
562 ggc_mark_rtx (eh->call_site_data[i].landing_pad);
563 }
564
565 ggc_mark_rtx (eh->ehr_stackadj);
566 ggc_mark_rtx (eh->ehr_handler);
567 ggc_mark_rtx (eh->ehr_label);
568
569 ggc_mark_rtx (eh->sjlj_fc);
570 ggc_mark_rtx (eh->sjlj_exit_after);
571 }
572
573 void
574 free_eh_status (f)
575 struct function *f;
576 {
577 struct eh_status *eh = f->eh;
578
579 if (eh->region_array)
580 {
581 int i;
582 for (i = eh->last_region_number; i > 0; --i)
583 {
584 struct eh_region *r = eh->region_array[i];
585 /* Mind we don't free a region struct more than once. */
586 if (r && r->region_number == i)
587 free (r);
588 }
589 free (eh->region_array);
590 }
591 else if (eh->region_tree)
592 {
593 struct eh_region *next, *r = eh->region_tree;
594 while (1)
595 {
596 if (r->inner)
597 r = r->inner;
598 else if (r->next_peer)
599 {
600 next = r->next_peer;
601 free (r);
602 r = next;
603 }
604 else
605 {
606 do {
607 next = r->outer;
608 free (r);
609 r = next;
610 if (r == NULL)
611 goto tree_done;
612 } while (r->next_peer == NULL);
613 next = r->next_peer;
614 free (r);
615 r = next;
616 }
617 }
618 tree_done:;
619 }
620
621 VARRAY_FREE (eh->ttype_data);
622 VARRAY_FREE (eh->ehspec_data);
623 VARRAY_FREE (eh->action_record_data);
624 if (eh->call_site_data)
625 free (eh->call_site_data);
626
627 free (eh);
628 f->eh = NULL;
629 }
630
631 \f
632 /* Start an exception handling region. All instructions emitted
633 after this point are considered to be part of the region until
634 expand_eh_region_end is invoked. */
635
636 void
637 expand_eh_region_start ()
638 {
639 struct eh_region *new_region;
640 struct eh_region *cur_region;
641 rtx note;
642
643 if (! doing_eh (0))
644 return;
645
646 /* Insert a new blank region as a leaf in the tree. */
647 new_region = (struct eh_region *) xcalloc (1, sizeof (*new_region));
648 cur_region = cfun->eh->cur_region;
649 new_region->outer = cur_region;
650 if (cur_region)
651 {
652 new_region->next_peer = cur_region->inner;
653 cur_region->inner = new_region;
654 }
655 else
656 {
657 new_region->next_peer = cfun->eh->region_tree;
658 cfun->eh->region_tree = new_region;
659 }
660 cfun->eh->cur_region = new_region;
661
662 /* Create a note marking the start of this region. */
663 new_region->region_number = ++cfun->eh->last_region_number;
664 note = emit_note (NULL, NOTE_INSN_EH_REGION_BEG);
665 NOTE_EH_HANDLER (note) = new_region->region_number;
666 }
667
668 /* Common code to end a region. Returns the region just ended. */
669
670 static struct eh_region *
671 expand_eh_region_end ()
672 {
673 struct eh_region *cur_region = cfun->eh->cur_region;
674 rtx note;
675
676 /* Create a nute marking the end of this region. */
677 note = emit_note (NULL, NOTE_INSN_EH_REGION_END);
678 NOTE_EH_HANDLER (note) = cur_region->region_number;
679
680 /* Pop. */
681 cfun->eh->cur_region = cur_region->outer;
682
683 return cur_region;
684 }
685
686 /* End an exception handling region for a cleanup. HANDLER is an
687 expression to expand for the cleanup. */
688
689 void
690 expand_eh_region_end_cleanup (handler)
691 tree handler;
692 {
693 struct eh_region *region;
694 tree protect_cleanup_actions;
695 rtx around_label;
696 rtx data_save[2];
697
698 if (! doing_eh (0))
699 return;
700
701 region = expand_eh_region_end ();
702 region->type = ERT_CLEANUP;
703 region->label = gen_label_rtx ();
704 region->u.cleanup.exp = handler;
705
706 around_label = gen_label_rtx ();
707 emit_jump (around_label);
708
709 emit_label (region->label);
710
711 /* Give the language a chance to specify an action to be taken if an
712 exception is thrown that would propogate out of the HANDLER. */
713 protect_cleanup_actions
714 = (lang_protect_cleanup_actions
715 ? (*lang_protect_cleanup_actions) ()
716 : NULL_TREE);
717
718 if (protect_cleanup_actions)
719 expand_eh_region_start ();
720
721 /* In case this cleanup involves an inline destructor with a try block in
722 it, we need to save the EH return data registers around it. */
723 data_save[0] = gen_reg_rtx (Pmode);
724 emit_move_insn (data_save[0], get_exception_pointer (cfun));
725 data_save[1] = gen_reg_rtx (word_mode);
726 emit_move_insn (data_save[1], get_exception_filter (cfun));
727
728 expand_expr (handler, const0_rtx, VOIDmode, 0);
729
730 emit_move_insn (cfun->eh->exc_ptr, data_save[0]);
731 emit_move_insn (cfun->eh->filter, data_save[1]);
732
733 if (protect_cleanup_actions)
734 expand_eh_region_end_must_not_throw (protect_cleanup_actions);
735
736 /* We need any stack adjustment complete before the around_label. */
737 do_pending_stack_adjust ();
738
739 /* We delay the generation of the _Unwind_Resume until we generate
740 landing pads. We emit a marker here so as to get good control
741 flow data in the meantime. */
742 region->resume
743 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
744 emit_barrier ();
745
746 emit_label (around_label);
747 }
748
749 /* End an exception handling region for a try block, and prepares
750 for subsequent calls to expand_start_catch. */
751
752 void
753 expand_start_all_catch ()
754 {
755 struct eh_region *region;
756
757 if (! doing_eh (1))
758 return;
759
760 region = expand_eh_region_end ();
761 region->type = ERT_TRY;
762 region->u.try.prev_try = cfun->eh->try_region;
763 region->u.try.continue_label = gen_label_rtx ();
764
765 cfun->eh->try_region = region;
766
767 emit_jump (region->u.try.continue_label);
768 }
769
770 /* Begin a catch clause. TYPE is the type caught, or null if this is
771 a catch-all clause. */
772
773 void
774 expand_start_catch (type)
775 tree type;
776 {
777 struct eh_region *t, *c, *l;
778
779 if (! doing_eh (0))
780 return;
781
782 if (type)
783 add_type_for_runtime (type);
784 expand_eh_region_start ();
785
786 t = cfun->eh->try_region;
787 c = cfun->eh->cur_region;
788 c->type = ERT_CATCH;
789 c->u.catch.type = type;
790 c->label = gen_label_rtx ();
791
792 l = t->u.try.last_catch;
793 c->u.catch.prev_catch = l;
794 if (l)
795 l->u.catch.next_catch = c;
796 else
797 t->u.try.catch = c;
798 t->u.try.last_catch = c;
799
800 emit_label (c->label);
801 }
802
803 /* End a catch clause. Control will resume after the try/catch block. */
804
805 void
806 expand_end_catch ()
807 {
808 struct eh_region *try_region, *catch_region;
809
810 if (! doing_eh (0))
811 return;
812
813 catch_region = expand_eh_region_end ();
814 try_region = cfun->eh->try_region;
815
816 emit_jump (try_region->u.try.continue_label);
817 }
818
819 /* End a sequence of catch handlers for a try block. */
820
821 void
822 expand_end_all_catch ()
823 {
824 struct eh_region *try_region;
825
826 if (! doing_eh (0))
827 return;
828
829 try_region = cfun->eh->try_region;
830 cfun->eh->try_region = try_region->u.try.prev_try;
831
832 emit_label (try_region->u.try.continue_label);
833 }
834
835 /* End an exception region for an exception type filter. ALLOWED is a
836 TREE_LIST of types to be matched by the runtime. FAILURE is an
837 expression to invoke if a mismatch ocurrs.
838
839 ??? We could use these semantics for calls to rethrow, too; if we can
840 see the surrounding catch clause, we know that the exception we're
841 rethrowing satisfies the "filter" of the catch type. */
842
843 void
844 expand_eh_region_end_allowed (allowed, failure)
845 tree allowed, failure;
846 {
847 struct eh_region *region;
848 rtx around_label;
849
850 if (! doing_eh (0))
851 return;
852
853 region = expand_eh_region_end ();
854 region->type = ERT_ALLOWED_EXCEPTIONS;
855 region->u.allowed.type_list = allowed;
856 region->label = gen_label_rtx ();
857
858 for (; allowed ; allowed = TREE_CHAIN (allowed))
859 add_type_for_runtime (TREE_VALUE (allowed));
860
861 /* We must emit the call to FAILURE here, so that if this function
862 throws a different exception, that it will be processed by the
863 correct region. */
864
865 around_label = gen_label_rtx ();
866 emit_jump (around_label);
867
868 emit_label (region->label);
869 expand_expr (failure, const0_rtx, VOIDmode, EXPAND_NORMAL);
870 /* We must adjust the stack before we reach the AROUND_LABEL because
871 the call to FAILURE does not occur on all paths to the
872 AROUND_LABEL. */
873 do_pending_stack_adjust ();
874
875 emit_label (around_label);
876 }
877
878 /* End an exception region for a must-not-throw filter. FAILURE is an
879 expression invoke if an uncaught exception propagates this far.
880
881 This is conceptually identical to expand_eh_region_end_allowed with
882 an empty allowed list (if you passed "std::terminate" instead of
883 "__cxa_call_unexpected"), but they are represented differently in
884 the C++ LSDA. */
885
886 void
887 expand_eh_region_end_must_not_throw (failure)
888 tree failure;
889 {
890 struct eh_region *region;
891 rtx around_label;
892
893 if (! doing_eh (0))
894 return;
895
896 region = expand_eh_region_end ();
897 region->type = ERT_MUST_NOT_THROW;
898 region->label = gen_label_rtx ();
899
900 /* We must emit the call to FAILURE here, so that if this function
901 throws a different exception, that it will be processed by the
902 correct region. */
903
904 around_label = gen_label_rtx ();
905 emit_jump (around_label);
906
907 emit_label (region->label);
908 expand_expr (failure, const0_rtx, VOIDmode, EXPAND_NORMAL);
909
910 emit_label (around_label);
911 }
912
913 /* End an exception region for a throw. No handling goes on here,
914 but it's the easiest way for the front-end to indicate what type
915 is being thrown. */
916
917 void
918 expand_eh_region_end_throw (type)
919 tree type;
920 {
921 struct eh_region *region;
922
923 if (! doing_eh (0))
924 return;
925
926 region = expand_eh_region_end ();
927 region->type = ERT_THROW;
928 region->u.throw.type = type;
929 }
930
931 /* End a fixup region. Within this region the cleanups for the immediately
932 enclosing region are _not_ run. This is used for goto cleanup to avoid
933 destroying an object twice.
934
935 This would be an extraordinarily simple prospect, were it not for the
936 fact that we don't actually know what the immediately enclosing region
937 is. This surprising fact is because expand_cleanups is currently
938 generating a sequence that it will insert somewhere else. We collect
939 the proper notion of "enclosing" in convert_from_eh_region_ranges. */
940
941 void
942 expand_eh_region_end_fixup (handler)
943 tree handler;
944 {
945 struct eh_region *fixup;
946
947 if (! doing_eh (0))
948 return;
949
950 fixup = expand_eh_region_end ();
951 fixup->type = ERT_FIXUP;
952 fixup->u.fixup.cleanup_exp = handler;
953 }
954
955 /* Return an rtl expression for a pointer to the exception object
956 within a handler. */
957
958 rtx
959 get_exception_pointer (fun)
960 struct function *fun;
961 {
962 rtx exc_ptr = fun->eh->exc_ptr;
963 if (fun == cfun && ! exc_ptr)
964 {
965 exc_ptr = gen_reg_rtx (Pmode);
966 fun->eh->exc_ptr = exc_ptr;
967 }
968 return exc_ptr;
969 }
970
971 /* Return an rtl expression for the exception dispatch filter
972 within a handler. */
973
974 static rtx
975 get_exception_filter (fun)
976 struct function *fun;
977 {
978 rtx filter = fun->eh->filter;
979 if (fun == cfun && ! filter)
980 {
981 filter = gen_reg_rtx (word_mode);
982 fun->eh->filter = filter;
983 }
984 return filter;
985 }
986 \f
987 /* Begin a region that will contain entries created with
988 add_partial_entry. */
989
990 void
991 begin_protect_partials ()
992 {
993 /* Push room for a new list. */
994 cfun->eh->protect_list
995 = tree_cons (NULL_TREE, NULL_TREE, cfun->eh->protect_list);
996 }
997
998 /* Start a new exception region for a region of code that has a
999 cleanup action and push the HANDLER for the region onto
1000 protect_list. All of the regions created with add_partial_entry
1001 will be ended when end_protect_partials is invoked. */
1002
1003 void
1004 add_partial_entry (handler)
1005 tree handler;
1006 {
1007 expand_eh_region_start ();
1008
1009 /* ??? This comment was old before the most recent rewrite. We
1010 really ought to fix the callers at some point. */
1011 /* For backwards compatibility, we allow callers to omit calls to
1012 begin_protect_partials for the outermost region. So, we must
1013 explicitly do so here. */
1014 if (!cfun->eh->protect_list)
1015 begin_protect_partials ();
1016
1017 /* Add this entry to the front of the list. */
1018 TREE_VALUE (cfun->eh->protect_list)
1019 = tree_cons (NULL_TREE, handler, TREE_VALUE (cfun->eh->protect_list));
1020 }
1021
1022 /* End all the pending exception regions on protect_list. */
1023
1024 void
1025 end_protect_partials ()
1026 {
1027 tree t;
1028
1029 /* ??? This comment was old before the most recent rewrite. We
1030 really ought to fix the callers at some point. */
1031 /* For backwards compatibility, we allow callers to omit the call to
1032 begin_protect_partials for the outermost region. So,
1033 PROTECT_LIST may be NULL. */
1034 if (!cfun->eh->protect_list)
1035 return;
1036
1037 /* Pop the topmost entry. */
1038 t = TREE_VALUE (cfun->eh->protect_list);
1039 cfun->eh->protect_list = TREE_CHAIN (cfun->eh->protect_list);
1040
1041 /* End all the exception regions. */
1042 for (; t; t = TREE_CHAIN (t))
1043 expand_eh_region_end_cleanup (TREE_VALUE (t));
1044 }
1045
1046 \f
1047 /* This section is for the exception handling specific optimization pass. */
1048
1049 /* Random access the exception region tree. It's just as simple to
1050 collect the regions this way as in expand_eh_region_start, but
1051 without having to realloc memory. */
1052
1053 static void
1054 collect_eh_region_array ()
1055 {
1056 struct eh_region **array, *i;
1057
1058 i = cfun->eh->region_tree;
1059 if (! i)
1060 return;
1061
1062 array = xcalloc (cfun->eh->last_region_number + 1, sizeof (*array));
1063 cfun->eh->region_array = array;
1064
1065 while (1)
1066 {
1067 array[i->region_number] = i;
1068
1069 /* If there are sub-regions, process them. */
1070 if (i->inner)
1071 i = i->inner;
1072 /* If there are peers, process them. */
1073 else if (i->next_peer)
1074 i = i->next_peer;
1075 /* Otherwise, step back up the tree to the next peer. */
1076 else
1077 {
1078 do {
1079 i = i->outer;
1080 if (i == NULL)
1081 return;
1082 } while (i->next_peer == NULL);
1083 i = i->next_peer;
1084 }
1085 }
1086 }
1087
1088 static void
1089 resolve_fixup_regions ()
1090 {
1091 int i, j, n = cfun->eh->last_region_number;
1092
1093 for (i = 1; i <= n; ++i)
1094 {
1095 struct eh_region *fixup = cfun->eh->region_array[i];
1096 struct eh_region *cleanup = 0;
1097
1098 if (! fixup || fixup->type != ERT_FIXUP)
1099 continue;
1100
1101 for (j = 1; j <= n; ++j)
1102 {
1103 cleanup = cfun->eh->region_array[j];
1104 if (cleanup->type == ERT_CLEANUP
1105 && cleanup->u.cleanup.exp == fixup->u.fixup.cleanup_exp)
1106 break;
1107 }
1108 if (j > n)
1109 abort ();
1110
1111 fixup->u.fixup.real_region = cleanup->outer;
1112 }
1113 }
1114
1115 /* Now that we've discovered what region actually encloses a fixup,
1116 we can shuffle pointers and remove them from the tree. */
1117
1118 static void
1119 remove_fixup_regions ()
1120 {
1121 int i;
1122 rtx insn, note;
1123 struct eh_region *fixup;
1124
1125 /* Walk the insn chain and adjust the REG_EH_REGION numbers
1126 for instructions referencing fixup regions. This is only
1127 strictly necessary for fixup regions with no parent, but
1128 doesn't hurt to do it for all regions. */
1129 for (insn = get_insns(); insn ; insn = NEXT_INSN (insn))
1130 if (INSN_P (insn)
1131 && (note = find_reg_note (insn, REG_EH_REGION, NULL))
1132 && INTVAL (XEXP (note, 0)) > 0
1133 && (fixup = cfun->eh->region_array[INTVAL (XEXP (note, 0))])
1134 && fixup->type == ERT_FIXUP)
1135 {
1136 if (fixup->u.fixup.real_region)
1137 XEXP (note, 0) = GEN_INT (fixup->u.fixup.real_region->region_number);
1138 else
1139 remove_note (insn, note);
1140 }
1141
1142 /* Remove the fixup regions from the tree. */
1143 for (i = cfun->eh->last_region_number; i > 0; --i)
1144 {
1145 fixup = cfun->eh->region_array[i];
1146 if (! fixup)
1147 continue;
1148
1149 /* Allow GC to maybe free some memory. */
1150 if (fixup->type == ERT_CLEANUP)
1151 fixup->u.cleanup.exp = NULL_TREE;
1152
1153 if (fixup->type != ERT_FIXUP)
1154 continue;
1155
1156 if (fixup->inner)
1157 {
1158 struct eh_region *parent, *p, **pp;
1159
1160 parent = fixup->u.fixup.real_region;
1161
1162 /* Fix up the children's parent pointers; find the end of
1163 the list. */
1164 for (p = fixup->inner; ; p = p->next_peer)
1165 {
1166 p->outer = parent;
1167 if (! p->next_peer)
1168 break;
1169 }
1170
1171 /* In the tree of cleanups, only outer-inner ordering matters.
1172 So link the children back in anywhere at the correct level. */
1173 if (parent)
1174 pp = &parent->inner;
1175 else
1176 pp = &cfun->eh->region_tree;
1177 p->next_peer = *pp;
1178 *pp = fixup->inner;
1179 fixup->inner = NULL;
1180 }
1181
1182 remove_eh_handler (fixup);
1183 }
1184 }
1185
1186 /* Turn NOTE_INSN_EH_REGION notes into REG_EH_REGION notes for each
1187 can_throw instruction in the region. */
1188
1189 static void
1190 convert_from_eh_region_ranges_1 (pinsns, orig_sp, cur)
1191 rtx *pinsns;
1192 int *orig_sp;
1193 int cur;
1194 {
1195 int *sp = orig_sp;
1196 rtx insn, next;
1197
1198 for (insn = *pinsns; insn ; insn = next)
1199 {
1200 next = NEXT_INSN (insn);
1201 if (GET_CODE (insn) == NOTE)
1202 {
1203 int kind = NOTE_LINE_NUMBER (insn);
1204 if (kind == NOTE_INSN_EH_REGION_BEG
1205 || kind == NOTE_INSN_EH_REGION_END)
1206 {
1207 if (kind == NOTE_INSN_EH_REGION_BEG)
1208 {
1209 struct eh_region *r;
1210
1211 *sp++ = cur;
1212 cur = NOTE_EH_HANDLER (insn);
1213
1214 r = cfun->eh->region_array[cur];
1215 if (r->type == ERT_FIXUP)
1216 {
1217 r = r->u.fixup.real_region;
1218 cur = r ? r->region_number : 0;
1219 }
1220 else if (r->type == ERT_CATCH)
1221 {
1222 r = r->outer;
1223 cur = r ? r->region_number : 0;
1224 }
1225 }
1226 else
1227 cur = *--sp;
1228
1229 /* Removing the first insn of a CALL_PLACEHOLDER sequence
1230 requires extra care to adjust sequence start. */
1231 if (insn == *pinsns)
1232 *pinsns = next;
1233 remove_insn (insn);
1234 continue;
1235 }
1236 }
1237 else if (INSN_P (insn))
1238 {
1239 if (cur > 0
1240 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1241 /* Calls can always potentially throw exceptions, unless
1242 they have a REG_EH_REGION note with a value of 0 or less.
1243 Which should be the only possible kind so far. */
1244 && (GET_CODE (insn) == CALL_INSN
1245 /* If we wanted exceptions for non-call insns, then
1246 any may_trap_p instruction could throw. */
1247 || (flag_non_call_exceptions
1248 && GET_CODE (PATTERN (insn)) != CLOBBER
1249 && GET_CODE (PATTERN (insn)) != USE
1250 && may_trap_p (PATTERN (insn)))))
1251 {
1252 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (cur),
1253 REG_NOTES (insn));
1254 }
1255
1256 if (GET_CODE (insn) == CALL_INSN
1257 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1258 {
1259 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 0),
1260 sp, cur);
1261 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 1),
1262 sp, cur);
1263 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 2),
1264 sp, cur);
1265 }
1266 }
1267 }
1268
1269 if (sp != orig_sp)
1270 abort ();
1271 }
1272
1273 void
1274 convert_from_eh_region_ranges ()
1275 {
1276 int *stack;
1277 rtx insns;
1278
1279 collect_eh_region_array ();
1280 resolve_fixup_regions ();
1281
1282 stack = xmalloc (sizeof (int) * (cfun->eh->last_region_number + 1));
1283 insns = get_insns ();
1284 convert_from_eh_region_ranges_1 (&insns, stack, 0);
1285 free (stack);
1286
1287 remove_fixup_regions ();
1288 }
1289
1290 void
1291 find_exception_handler_labels ()
1292 {
1293 rtx list = NULL_RTX;
1294 int i;
1295
1296 free_EXPR_LIST_list (&exception_handler_labels);
1297
1298 if (cfun->eh->region_tree == NULL)
1299 return;
1300
1301 for (i = cfun->eh->last_region_number; i > 0; --i)
1302 {
1303 struct eh_region *region = cfun->eh->region_array[i];
1304 rtx lab;
1305
1306 if (! region)
1307 continue;
1308 if (cfun->eh->built_landing_pads)
1309 lab = region->landing_pad;
1310 else
1311 lab = region->label;
1312
1313 if (lab)
1314 list = alloc_EXPR_LIST (0, lab, list);
1315 }
1316
1317 /* For sjlj exceptions, need the return label to remain live until
1318 after landing pad generation. */
1319 if (USING_SJLJ_EXCEPTIONS && ! cfun->eh->built_landing_pads)
1320 list = alloc_EXPR_LIST (0, return_label, list);
1321
1322 exception_handler_labels = list;
1323 }
1324
1325 \f
1326 static struct eh_region *
1327 duplicate_eh_region_1 (o, map)
1328 struct eh_region *o;
1329 struct inline_remap *map;
1330 {
1331 struct eh_region *n
1332 = (struct eh_region *) xcalloc (1, sizeof (struct eh_region));
1333
1334 n->region_number = o->region_number + cfun->eh->last_region_number;
1335 n->type = o->type;
1336
1337 switch (n->type)
1338 {
1339 case ERT_CLEANUP:
1340 case ERT_MUST_NOT_THROW:
1341 break;
1342
1343 case ERT_TRY:
1344 if (o->u.try.continue_label)
1345 n->u.try.continue_label
1346 = get_label_from_map (map,
1347 CODE_LABEL_NUMBER (o->u.try.continue_label));
1348 break;
1349
1350 case ERT_CATCH:
1351 n->u.catch.type = o->u.catch.type;
1352 break;
1353
1354 case ERT_ALLOWED_EXCEPTIONS:
1355 n->u.allowed.type_list = o->u.allowed.type_list;
1356 break;
1357
1358 case ERT_THROW:
1359 n->u.throw.type = o->u.throw.type;
1360
1361 default:
1362 abort ();
1363 }
1364
1365 if (o->label)
1366 n->label = get_label_from_map (map, CODE_LABEL_NUMBER (o->label));
1367 if (o->resume)
1368 {
1369 n->resume = map->insn_map[INSN_UID (o->resume)];
1370 if (n->resume == NULL)
1371 abort ();
1372 }
1373
1374 return n;
1375 }
1376
1377 static void
1378 duplicate_eh_region_2 (o, n_array)
1379 struct eh_region *o;
1380 struct eh_region **n_array;
1381 {
1382 struct eh_region *n = n_array[o->region_number];
1383
1384 switch (n->type)
1385 {
1386 case ERT_TRY:
1387 n->u.try.catch = n_array[o->u.try.catch->region_number];
1388 n->u.try.last_catch = n_array[o->u.try.last_catch->region_number];
1389 break;
1390
1391 case ERT_CATCH:
1392 if (o->u.catch.next_catch)
1393 n->u.catch.next_catch = n_array[o->u.catch.next_catch->region_number];
1394 if (o->u.catch.prev_catch)
1395 n->u.catch.prev_catch = n_array[o->u.catch.prev_catch->region_number];
1396 break;
1397
1398 default:
1399 break;
1400 }
1401
1402 if (o->outer)
1403 n->outer = n_array[o->outer->region_number];
1404 if (o->inner)
1405 n->inner = n_array[o->inner->region_number];
1406 if (o->next_peer)
1407 n->next_peer = n_array[o->next_peer->region_number];
1408 }
1409
1410 int
1411 duplicate_eh_regions (ifun, map)
1412 struct function *ifun;
1413 struct inline_remap *map;
1414 {
1415 int ifun_last_region_number = ifun->eh->last_region_number;
1416 struct eh_region **n_array, *root, *cur;
1417 int i;
1418
1419 if (ifun_last_region_number == 0)
1420 return 0;
1421
1422 n_array = xcalloc (ifun_last_region_number + 1, sizeof (*n_array));
1423
1424 for (i = 1; i <= ifun_last_region_number; ++i)
1425 {
1426 cur = ifun->eh->region_array[i];
1427 if (!cur || cur->region_number != i)
1428 continue;
1429 n_array[i] = duplicate_eh_region_1 (cur, map);
1430 }
1431 for (i = 1; i <= ifun_last_region_number; ++i)
1432 {
1433 cur = ifun->eh->region_array[i];
1434 if (!cur || cur->region_number != i)
1435 continue;
1436 duplicate_eh_region_2 (cur, n_array);
1437 }
1438
1439 root = n_array[ifun->eh->region_tree->region_number];
1440 cur = cfun->eh->cur_region;
1441 if (cur)
1442 {
1443 struct eh_region *p = cur->inner;
1444 if (p)
1445 {
1446 while (p->next_peer)
1447 p = p->next_peer;
1448 p->next_peer = root;
1449 }
1450 else
1451 cur->inner = root;
1452
1453 for (i = 1; i <= ifun_last_region_number; ++i)
1454 if (n_array[i] && n_array[i]->outer == NULL)
1455 n_array[i]->outer = cur;
1456 }
1457 else
1458 {
1459 struct eh_region *p = cfun->eh->region_tree;
1460 if (p)
1461 {
1462 while (p->next_peer)
1463 p = p->next_peer;
1464 p->next_peer = root;
1465 }
1466 else
1467 cfun->eh->region_tree = root;
1468 }
1469
1470 free (n_array);
1471
1472 i = cfun->eh->last_region_number;
1473 cfun->eh->last_region_number = i + ifun_last_region_number;
1474 return i;
1475 }
1476
1477 \f
1478 static int
1479 t2r_eq (pentry, pdata)
1480 const PTR pentry;
1481 const PTR pdata;
1482 {
1483 tree entry = (tree) pentry;
1484 tree data = (tree) pdata;
1485
1486 return TREE_PURPOSE (entry) == data;
1487 }
1488
1489 static hashval_t
1490 t2r_hash (pentry)
1491 const PTR pentry;
1492 {
1493 tree entry = (tree) pentry;
1494 return TYPE_HASH (TREE_PURPOSE (entry));
1495 }
1496
1497 static int
1498 t2r_mark_1 (slot, data)
1499 PTR *slot;
1500 PTR data ATTRIBUTE_UNUSED;
1501 {
1502 tree contents = (tree) *slot;
1503 ggc_mark_tree (contents);
1504 return 1;
1505 }
1506
1507 static void
1508 t2r_mark (addr)
1509 PTR addr;
1510 {
1511 htab_traverse (*(htab_t *)addr, t2r_mark_1, NULL);
1512 }
1513
1514 static void
1515 add_type_for_runtime (type)
1516 tree type;
1517 {
1518 tree *slot;
1519
1520 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1521 TYPE_HASH (type), INSERT);
1522 if (*slot == NULL)
1523 {
1524 tree runtime = (*lang_eh_runtime_type) (type);
1525 *slot = tree_cons (type, runtime, NULL_TREE);
1526 }
1527 }
1528
1529 static tree
1530 lookup_type_for_runtime (type)
1531 tree type;
1532 {
1533 tree *slot;
1534
1535 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1536 TYPE_HASH (type), NO_INSERT);
1537
1538 /* We should have always inserrted the data earlier. */
1539 return TREE_VALUE (*slot);
1540 }
1541
1542 \f
1543 /* Represent an entry in @TTypes for either catch actions
1544 or exception filter actions. */
1545 struct ttypes_filter
1546 {
1547 tree t;
1548 int filter;
1549 };
1550
1551 /* Compare ENTRY (a ttypes_filter entry in the hash table) with DATA
1552 (a tree) for a @TTypes type node we are thinking about adding. */
1553
1554 static int
1555 ttypes_filter_eq (pentry, pdata)
1556 const PTR pentry;
1557 const PTR pdata;
1558 {
1559 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1560 tree data = (tree) pdata;
1561
1562 return entry->t == data;
1563 }
1564
1565 static hashval_t
1566 ttypes_filter_hash (pentry)
1567 const PTR pentry;
1568 {
1569 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1570 return TYPE_HASH (entry->t);
1571 }
1572
1573 /* Compare ENTRY with DATA (both struct ttypes_filter) for a @TTypes
1574 exception specification list we are thinking about adding. */
1575 /* ??? Currently we use the type lists in the order given. Someone
1576 should put these in some canonical order. */
1577
1578 static int
1579 ehspec_filter_eq (pentry, pdata)
1580 const PTR pentry;
1581 const PTR pdata;
1582 {
1583 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1584 const struct ttypes_filter *data = (const struct ttypes_filter *) pdata;
1585
1586 return type_list_equal (entry->t, data->t);
1587 }
1588
1589 /* Hash function for exception specification lists. */
1590
1591 static hashval_t
1592 ehspec_filter_hash (pentry)
1593 const PTR pentry;
1594 {
1595 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1596 hashval_t h = 0;
1597 tree list;
1598
1599 for (list = entry->t; list ; list = TREE_CHAIN (list))
1600 h = (h << 5) + (h >> 27) + TYPE_HASH (TREE_VALUE (list));
1601 return h;
1602 }
1603
1604 /* Add TYPE to cfun->eh->ttype_data, using TYPES_HASH to speed
1605 up the search. Return the filter value to be used. */
1606
1607 static int
1608 add_ttypes_entry (ttypes_hash, type)
1609 htab_t ttypes_hash;
1610 tree type;
1611 {
1612 struct ttypes_filter **slot, *n;
1613
1614 slot = (struct ttypes_filter **)
1615 htab_find_slot_with_hash (ttypes_hash, type, TYPE_HASH (type), INSERT);
1616
1617 if ((n = *slot) == NULL)
1618 {
1619 /* Filter value is a 1 based table index. */
1620
1621 n = (struct ttypes_filter *) xmalloc (sizeof (*n));
1622 n->t = type;
1623 n->filter = VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data) + 1;
1624 *slot = n;
1625
1626 VARRAY_PUSH_TREE (cfun->eh->ttype_data, type);
1627 }
1628
1629 return n->filter;
1630 }
1631
1632 /* Add LIST to cfun->eh->ehspec_data, using EHSPEC_HASH and TYPES_HASH
1633 to speed up the search. Return the filter value to be used. */
1634
1635 static int
1636 add_ehspec_entry (ehspec_hash, ttypes_hash, list)
1637 htab_t ehspec_hash;
1638 htab_t ttypes_hash;
1639 tree list;
1640 {
1641 struct ttypes_filter **slot, *n;
1642 struct ttypes_filter dummy;
1643
1644 dummy.t = list;
1645 slot = (struct ttypes_filter **)
1646 htab_find_slot (ehspec_hash, &dummy, INSERT);
1647
1648 if ((n = *slot) == NULL)
1649 {
1650 /* Filter value is a -1 based byte index into a uleb128 buffer. */
1651
1652 n = (struct ttypes_filter *) xmalloc (sizeof (*n));
1653 n->t = list;
1654 n->filter = -(VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) + 1);
1655 *slot = n;
1656
1657 /* Look up each type in the list and encode its filter
1658 value as a uleb128. Terminate the list with 0. */
1659 for (; list ; list = TREE_CHAIN (list))
1660 push_uleb128 (&cfun->eh->ehspec_data,
1661 add_ttypes_entry (ttypes_hash, TREE_VALUE (list)));
1662 VARRAY_PUSH_UCHAR (cfun->eh->ehspec_data, 0);
1663 }
1664
1665 return n->filter;
1666 }
1667
1668 /* Generate the action filter values to be used for CATCH and
1669 ALLOWED_EXCEPTIONS regions. When using dwarf2 exception regions,
1670 we use lots of landing pads, and so every type or list can share
1671 the same filter value, which saves table space. */
1672
1673 static void
1674 assign_filter_values ()
1675 {
1676 int i;
1677 htab_t ttypes, ehspec;
1678
1679 VARRAY_TREE_INIT (cfun->eh->ttype_data, 16, "ttype_data");
1680 VARRAY_UCHAR_INIT (cfun->eh->ehspec_data, 64, "ehspec_data");
1681
1682 ttypes = htab_create (31, ttypes_filter_hash, ttypes_filter_eq, free);
1683 ehspec = htab_create (31, ehspec_filter_hash, ehspec_filter_eq, free);
1684
1685 for (i = cfun->eh->last_region_number; i > 0; --i)
1686 {
1687 struct eh_region *r = cfun->eh->region_array[i];
1688
1689 /* Mind we don't process a region more than once. */
1690 if (!r || r->region_number != i)
1691 continue;
1692
1693 switch (r->type)
1694 {
1695 case ERT_CATCH:
1696 r->u.catch.filter = add_ttypes_entry (ttypes, r->u.catch.type);
1697 break;
1698
1699 case ERT_ALLOWED_EXCEPTIONS:
1700 r->u.allowed.filter
1701 = add_ehspec_entry (ehspec, ttypes, r->u.allowed.type_list);
1702 break;
1703
1704 default:
1705 break;
1706 }
1707 }
1708
1709 htab_delete (ttypes);
1710 htab_delete (ehspec);
1711 }
1712
1713 static void
1714 build_post_landing_pads ()
1715 {
1716 int i;
1717
1718 for (i = cfun->eh->last_region_number; i > 0; --i)
1719 {
1720 struct eh_region *region = cfun->eh->region_array[i];
1721 rtx seq;
1722
1723 /* Mind we don't process a region more than once. */
1724 if (!region || region->region_number != i)
1725 continue;
1726
1727 switch (region->type)
1728 {
1729 case ERT_TRY:
1730 /* ??? Collect the set of all non-overlapping catch handlers
1731 all the way up the chain until blocked by a cleanup. */
1732 /* ??? Outer try regions can share landing pads with inner
1733 try regions if the types are completely non-overlapping,
1734 and there are no interveaning cleanups. */
1735
1736 region->post_landing_pad = gen_label_rtx ();
1737
1738 start_sequence ();
1739
1740 emit_label (region->post_landing_pad);
1741
1742 /* ??? It is mighty inconvenient to call back into the
1743 switch statement generation code in expand_end_case.
1744 Rapid prototyping sez a sequence of ifs. */
1745 {
1746 struct eh_region *c;
1747 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
1748 {
1749 /* ??? _Unwind_ForcedUnwind wants no match here. */
1750 if (c->u.catch.type == NULL)
1751 emit_jump (c->label);
1752 else
1753 emit_cmp_and_jump_insns (cfun->eh->filter,
1754 GEN_INT (c->u.catch.filter),
1755 EQ, NULL_RTX, word_mode,
1756 0, 0, c->label);
1757 }
1758 }
1759
1760 /* We delay the generation of the _Unwind_Resume until we generate
1761 landing pads. We emit a marker here so as to get good control
1762 flow data in the meantime. */
1763 region->resume
1764 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1765 emit_barrier ();
1766
1767 seq = get_insns ();
1768 end_sequence ();
1769
1770 emit_insns_before (seq, region->u.try.catch->label);
1771 break;
1772
1773 case ERT_ALLOWED_EXCEPTIONS:
1774 region->post_landing_pad = gen_label_rtx ();
1775
1776 start_sequence ();
1777
1778 emit_label (region->post_landing_pad);
1779
1780 emit_cmp_and_jump_insns (cfun->eh->filter,
1781 GEN_INT (region->u.allowed.filter),
1782 EQ, NULL_RTX, word_mode, 0, 0,
1783 region->label);
1784
1785 /* We delay the generation of the _Unwind_Resume until we generate
1786 landing pads. We emit a marker here so as to get good control
1787 flow data in the meantime. */
1788 region->resume
1789 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1790 emit_barrier ();
1791
1792 seq = get_insns ();
1793 end_sequence ();
1794
1795 emit_insns_before (seq, region->label);
1796 break;
1797
1798 case ERT_CLEANUP:
1799 case ERT_MUST_NOT_THROW:
1800 region->post_landing_pad = region->label;
1801 break;
1802
1803 case ERT_CATCH:
1804 case ERT_THROW:
1805 /* Nothing to do. */
1806 break;
1807
1808 default:
1809 abort ();
1810 }
1811 }
1812 }
1813
1814 /* Replace RESX patterns with jumps to the next handler if any, or calls to
1815 _Unwind_Resume otherwise. */
1816
1817 static void
1818 connect_post_landing_pads ()
1819 {
1820 int i;
1821
1822 for (i = cfun->eh->last_region_number; i > 0; --i)
1823 {
1824 struct eh_region *region = cfun->eh->region_array[i];
1825 struct eh_region *outer;
1826 rtx seq;
1827
1828 /* Mind we don't process a region more than once. */
1829 if (!region || region->region_number != i)
1830 continue;
1831
1832 /* If there is no RESX, or it has been deleted by flow, there's
1833 nothing to fix up. */
1834 if (! region->resume || INSN_DELETED_P (region->resume))
1835 continue;
1836
1837 /* Search for another landing pad in this function. */
1838 for (outer = region->outer; outer ; outer = outer->outer)
1839 if (outer->post_landing_pad)
1840 break;
1841
1842 start_sequence ();
1843
1844 if (outer)
1845 emit_jump (outer->post_landing_pad);
1846 else
1847 emit_library_call (unwind_resume_libfunc, LCT_THROW,
1848 VOIDmode, 1, cfun->eh->exc_ptr, Pmode);
1849
1850 seq = get_insns ();
1851 end_sequence ();
1852 emit_insns_before (seq, region->resume);
1853 flow_delete_insn (region->resume);
1854 }
1855 }
1856
1857 \f
1858 static void
1859 dw2_build_landing_pads ()
1860 {
1861 int i;
1862 unsigned int j;
1863
1864 for (i = cfun->eh->last_region_number; i > 0; --i)
1865 {
1866 struct eh_region *region = cfun->eh->region_array[i];
1867 rtx seq;
1868
1869 /* Mind we don't process a region more than once. */
1870 if (!region || region->region_number != i)
1871 continue;
1872
1873 if (region->type != ERT_CLEANUP
1874 && region->type != ERT_TRY
1875 && region->type != ERT_ALLOWED_EXCEPTIONS)
1876 continue;
1877
1878 start_sequence ();
1879
1880 region->landing_pad = gen_label_rtx ();
1881 emit_label (region->landing_pad);
1882
1883 #ifdef HAVE_exception_receiver
1884 if (HAVE_exception_receiver)
1885 emit_insn (gen_exception_receiver ());
1886 else
1887 #endif
1888 #ifdef HAVE_nonlocal_goto_receiver
1889 if (HAVE_nonlocal_goto_receiver)
1890 emit_insn (gen_nonlocal_goto_receiver ());
1891 else
1892 #endif
1893 { /* Nothing */ }
1894
1895 /* If the eh_return data registers are call-saved, then we
1896 won't have considered them clobbered from the call that
1897 threw. Kill them now. */
1898 for (j = 0; ; ++j)
1899 {
1900 unsigned r = EH_RETURN_DATA_REGNO (j);
1901 if (r == INVALID_REGNUM)
1902 break;
1903 if (! call_used_regs[r])
1904 emit_insn (gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, r)));
1905 }
1906
1907 emit_move_insn (cfun->eh->exc_ptr,
1908 gen_rtx_REG (Pmode, EH_RETURN_DATA_REGNO (0)));
1909 emit_move_insn (cfun->eh->filter,
1910 gen_rtx_REG (word_mode, EH_RETURN_DATA_REGNO (1)));
1911
1912 seq = get_insns ();
1913 end_sequence ();
1914
1915 emit_insns_before (seq, region->post_landing_pad);
1916 }
1917 }
1918
1919 \f
1920 struct sjlj_lp_info
1921 {
1922 int directly_reachable;
1923 int action_index;
1924 int dispatch_index;
1925 int call_site_index;
1926 };
1927
1928 static bool
1929 sjlj_find_directly_reachable_regions (lp_info)
1930 struct sjlj_lp_info *lp_info;
1931 {
1932 rtx insn;
1933 bool found_one = false;
1934
1935 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1936 {
1937 struct eh_region *region;
1938 tree type_thrown;
1939 rtx note;
1940
1941 if (! INSN_P (insn))
1942 continue;
1943
1944 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1945 if (!note || INTVAL (XEXP (note, 0)) <= 0)
1946 continue;
1947
1948 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
1949
1950 type_thrown = NULL_TREE;
1951 if (region->type == ERT_THROW)
1952 {
1953 type_thrown = region->u.throw.type;
1954 region = region->outer;
1955 }
1956
1957 /* Find the first containing region that might handle the exception.
1958 That's the landing pad to which we will transfer control. */
1959 for (; region; region = region->outer)
1960 if (reachable_next_level (region, type_thrown, 0) != RNL_NOT_CAUGHT)
1961 break;
1962
1963 if (region)
1964 {
1965 lp_info[region->region_number].directly_reachable = 1;
1966 found_one = true;
1967 }
1968 }
1969
1970 return found_one;
1971 }
1972
1973 static void
1974 sjlj_assign_call_site_values (dispatch_label, lp_info)
1975 rtx dispatch_label;
1976 struct sjlj_lp_info *lp_info;
1977 {
1978 htab_t ar_hash;
1979 int i, index;
1980
1981 /* First task: build the action table. */
1982
1983 VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
1984 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
1985
1986 for (i = cfun->eh->last_region_number; i > 0; --i)
1987 if (lp_info[i].directly_reachable)
1988 {
1989 struct eh_region *r = cfun->eh->region_array[i];
1990 r->landing_pad = dispatch_label;
1991 lp_info[i].action_index = collect_one_action_chain (ar_hash, r);
1992 if (lp_info[i].action_index != -1)
1993 cfun->uses_eh_lsda = 1;
1994 }
1995
1996 htab_delete (ar_hash);
1997
1998 /* Next: assign dispatch values. In dwarf2 terms, this would be the
1999 landing pad label for the region. For sjlj though, there is one
2000 common landing pad from which we dispatch to the post-landing pads.
2001
2002 A region receives a dispatch index if it is directly reachable
2003 and requires in-function processing. Regions that share post-landing
2004 pads may share dispatch indicies. */
2005 /* ??? Post-landing pad sharing doesn't actually happen at the moment
2006 (see build_post_landing_pads) so we don't bother checking for it. */
2007
2008 index = 0;
2009 for (i = cfun->eh->last_region_number; i > 0; --i)
2010 if (lp_info[i].directly_reachable
2011 && lp_info[i].action_index >= 0)
2012 lp_info[i].dispatch_index = index++;
2013
2014 /* Finally: assign call-site values. If dwarf2 terms, this would be
2015 the region number assigned by convert_to_eh_region_ranges, but
2016 handles no-action and must-not-throw differently. */
2017
2018 call_site_base = 1;
2019 for (i = cfun->eh->last_region_number; i > 0; --i)
2020 if (lp_info[i].directly_reachable)
2021 {
2022 int action = lp_info[i].action_index;
2023
2024 /* Map must-not-throw to otherwise unused call-site index 0. */
2025 if (action == -2)
2026 index = 0;
2027 /* Map no-action to otherwise unused call-site index -1. */
2028 else if (action == -1)
2029 index = -1;
2030 /* Otherwise, look it up in the table. */
2031 else
2032 index = add_call_site (GEN_INT (lp_info[i].dispatch_index), action);
2033
2034 lp_info[i].call_site_index = index;
2035 }
2036 }
2037
2038 static void
2039 sjlj_mark_call_sites (lp_info)
2040 struct sjlj_lp_info *lp_info;
2041 {
2042 int last_call_site = -2;
2043 rtx insn, mem;
2044
2045 mem = adjust_address (cfun->eh->sjlj_fc, TYPE_MODE (integer_type_node),
2046 sjlj_fc_call_site_ofs);
2047
2048 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
2049 {
2050 struct eh_region *region;
2051 int this_call_site;
2052 rtx note, before, p;
2053
2054 /* Reset value tracking at extended basic block boundaries. */
2055 if (GET_CODE (insn) == CODE_LABEL)
2056 last_call_site = -2;
2057
2058 if (! INSN_P (insn))
2059 continue;
2060
2061 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2062 if (!note)
2063 {
2064 /* Calls (and trapping insns) without notes are outside any
2065 exception handling region in this function. Mark them as
2066 no action. */
2067 if (GET_CODE (insn) == CALL_INSN
2068 || (flag_non_call_exceptions
2069 && may_trap_p (PATTERN (insn))))
2070 this_call_site = -1;
2071 else
2072 continue;
2073 }
2074 else
2075 {
2076 /* Calls that are known to not throw need not be marked. */
2077 if (INTVAL (XEXP (note, 0)) <= 0)
2078 continue;
2079
2080 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2081 this_call_site = lp_info[region->region_number].call_site_index;
2082 }
2083
2084 if (this_call_site == last_call_site)
2085 continue;
2086
2087 /* Don't separate a call from it's argument loads. */
2088 before = insn;
2089 if (GET_CODE (insn) == CALL_INSN)
2090 before = find_first_parameter_load (insn, NULL_RTX);
2091
2092 start_sequence ();
2093 emit_move_insn (mem, GEN_INT (this_call_site));
2094 p = get_insns ();
2095 end_sequence ();
2096
2097 emit_insns_before (p, before);
2098 last_call_site = this_call_site;
2099 }
2100 }
2101
2102 /* Construct the SjLj_Function_Context. */
2103
2104 static void
2105 sjlj_emit_function_enter (dispatch_label)
2106 rtx dispatch_label;
2107 {
2108 rtx fn_begin, fc, mem, seq;
2109
2110 fc = cfun->eh->sjlj_fc;
2111
2112 start_sequence ();
2113
2114 /* We're storing this libcall's address into memory instead of
2115 calling it directly. Thus, we must call assemble_external_libcall
2116 here, as we can not depend on emit_library_call to do it for us. */
2117 assemble_external_libcall (eh_personality_libfunc);
2118 mem = adjust_address (fc, Pmode, sjlj_fc_personality_ofs);
2119 emit_move_insn (mem, eh_personality_libfunc);
2120
2121 mem = adjust_address (fc, Pmode, sjlj_fc_lsda_ofs);
2122 if (cfun->uses_eh_lsda)
2123 {
2124 char buf[20];
2125 ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", sjlj_funcdef_number);
2126 emit_move_insn (mem, gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)));
2127 }
2128 else
2129 emit_move_insn (mem, const0_rtx);
2130
2131 #ifdef DONT_USE_BUILTIN_SETJMP
2132 {
2133 rtx x, note;
2134 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_NORMAL,
2135 TYPE_MODE (integer_type_node), 1,
2136 plus_constant (XEXP (fc, 0),
2137 sjlj_fc_jbuf_ofs), Pmode);
2138
2139 note = emit_note (NULL, NOTE_INSN_EXPECTED_VALUE);
2140 NOTE_EXPECTED_VALUE (note) = gen_rtx_EQ (VOIDmode, x, const0_rtx);
2141
2142 emit_cmp_and_jump_insns (x, const0_rtx, NE, 0,
2143 TYPE_MODE (integer_type_node), 0, 0,
2144 dispatch_label);
2145 }
2146 #else
2147 expand_builtin_setjmp_setup (plus_constant (XEXP (fc, 0), sjlj_fc_jbuf_ofs),
2148 dispatch_label);
2149 #endif
2150
2151 emit_library_call (unwind_sjlj_register_libfunc, LCT_NORMAL, VOIDmode,
2152 1, XEXP (fc, 0), Pmode);
2153
2154 seq = get_insns ();
2155 end_sequence ();
2156
2157 /* ??? Instead of doing this at the beginning of the function,
2158 do this in a block that is at loop level 0 and dominates all
2159 can_throw_internal instructions. */
2160
2161 for (fn_begin = get_insns (); ; fn_begin = NEXT_INSN (fn_begin))
2162 if (GET_CODE (fn_begin) == NOTE
2163 && NOTE_LINE_NUMBER (fn_begin) == NOTE_INSN_FUNCTION_BEG)
2164 break;
2165 emit_insns_after (seq, fn_begin);
2166 }
2167
2168 /* Call back from expand_function_end to know where we should put
2169 the call to unwind_sjlj_unregister_libfunc if needed. */
2170
2171 void
2172 sjlj_emit_function_exit_after (after)
2173 rtx after;
2174 {
2175 cfun->eh->sjlj_exit_after = after;
2176 }
2177
2178 static void
2179 sjlj_emit_function_exit ()
2180 {
2181 rtx seq;
2182
2183 start_sequence ();
2184
2185 emit_library_call (unwind_sjlj_unregister_libfunc, LCT_NORMAL, VOIDmode,
2186 1, XEXP (cfun->eh->sjlj_fc, 0), Pmode);
2187
2188 seq = get_insns ();
2189 end_sequence ();
2190
2191 /* ??? Really this can be done in any block at loop level 0 that
2192 post-dominates all can_throw_internal instructions. This is
2193 the last possible moment. */
2194
2195 emit_insns_after (seq, cfun->eh->sjlj_exit_after);
2196 }
2197
2198 static void
2199 sjlj_emit_dispatch_table (dispatch_label, lp_info)
2200 rtx dispatch_label;
2201 struct sjlj_lp_info *lp_info;
2202 {
2203 int i, first_reachable;
2204 rtx mem, dispatch, seq, fc;
2205
2206 fc = cfun->eh->sjlj_fc;
2207
2208 start_sequence ();
2209
2210 emit_label (dispatch_label);
2211
2212 #ifndef DONT_USE_BUILTIN_SETJMP
2213 expand_builtin_setjmp_receiver (dispatch_label);
2214 #endif
2215
2216 /* Load up dispatch index, exc_ptr and filter values from the
2217 function context. */
2218 mem = adjust_address (fc, TYPE_MODE (integer_type_node),
2219 sjlj_fc_call_site_ofs);
2220 dispatch = copy_to_reg (mem);
2221
2222 mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs);
2223 if (word_mode != Pmode)
2224 {
2225 #ifdef POINTERS_EXTEND_UNSIGNED
2226 mem = convert_memory_address (Pmode, mem);
2227 #else
2228 mem = convert_to_mode (Pmode, mem, 0);
2229 #endif
2230 }
2231 emit_move_insn (cfun->eh->exc_ptr, mem);
2232
2233 mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs + UNITS_PER_WORD);
2234 emit_move_insn (cfun->eh->filter, mem);
2235
2236 /* Jump to one of the directly reachable regions. */
2237 /* ??? This really ought to be using a switch statement. */
2238
2239 first_reachable = 0;
2240 for (i = cfun->eh->last_region_number; i > 0; --i)
2241 {
2242 if (! lp_info[i].directly_reachable
2243 || lp_info[i].action_index < 0)
2244 continue;
2245
2246 if (! first_reachable)
2247 {
2248 first_reachable = i;
2249 continue;
2250 }
2251
2252 emit_cmp_and_jump_insns (dispatch,
2253 GEN_INT (lp_info[i].dispatch_index), EQ,
2254 NULL_RTX, TYPE_MODE (integer_type_node), 0, 0,
2255 cfun->eh->region_array[i]->post_landing_pad);
2256 }
2257
2258 seq = get_insns ();
2259 end_sequence ();
2260
2261 emit_insns_before (seq, (cfun->eh->region_array[first_reachable]
2262 ->post_landing_pad));
2263 }
2264
2265 static void
2266 sjlj_build_landing_pads ()
2267 {
2268 struct sjlj_lp_info *lp_info;
2269
2270 lp_info = (struct sjlj_lp_info *) xcalloc (cfun->eh->last_region_number + 1,
2271 sizeof (struct sjlj_lp_info));
2272
2273 if (sjlj_find_directly_reachable_regions (lp_info))
2274 {
2275 rtx dispatch_label = gen_label_rtx ();
2276
2277 cfun->eh->sjlj_fc
2278 = assign_stack_local (TYPE_MODE (sjlj_fc_type_node),
2279 int_size_in_bytes (sjlj_fc_type_node),
2280 TYPE_ALIGN (sjlj_fc_type_node));
2281
2282 sjlj_assign_call_site_values (dispatch_label, lp_info);
2283 sjlj_mark_call_sites (lp_info);
2284
2285 sjlj_emit_function_enter (dispatch_label);
2286 sjlj_emit_dispatch_table (dispatch_label, lp_info);
2287 sjlj_emit_function_exit ();
2288 }
2289
2290 free (lp_info);
2291 }
2292
2293 void
2294 finish_eh_generation ()
2295 {
2296 /* Nothing to do if no regions created. */
2297 if (cfun->eh->region_tree == NULL)
2298 return;
2299
2300 /* The object here is to provide find_basic_blocks with detailed
2301 information (via reachable_handlers) on how exception control
2302 flows within the function. In this first pass, we can include
2303 type information garnered from ERT_THROW and ERT_ALLOWED_EXCEPTIONS
2304 regions, and hope that it will be useful in deleting unreachable
2305 handlers. Subsequently, we will generate landing pads which will
2306 connect many of the handlers, and then type information will not
2307 be effective. Still, this is a win over previous implementations. */
2308
2309 rebuild_jump_labels (get_insns ());
2310 find_basic_blocks (get_insns (), max_reg_num (), 0);
2311 cleanup_cfg (CLEANUP_PRE_LOOP);
2312
2313 /* These registers are used by the landing pads. Make sure they
2314 have been generated. */
2315 get_exception_pointer (cfun);
2316 get_exception_filter (cfun);
2317
2318 /* Construct the landing pads. */
2319
2320 assign_filter_values ();
2321 build_post_landing_pads ();
2322 connect_post_landing_pads ();
2323 if (USING_SJLJ_EXCEPTIONS)
2324 sjlj_build_landing_pads ();
2325 else
2326 dw2_build_landing_pads ();
2327
2328 cfun->eh->built_landing_pads = 1;
2329
2330 /* We've totally changed the CFG. Start over. */
2331 find_exception_handler_labels ();
2332 rebuild_jump_labels (get_insns ());
2333 find_basic_blocks (get_insns (), max_reg_num (), 0);
2334 cleanup_cfg (CLEANUP_PRE_LOOP);
2335 }
2336 \f
2337 /* This section handles removing dead code for flow. */
2338
2339 /* Remove LABEL from the exception_handler_labels list. */
2340
2341 static void
2342 remove_exception_handler_label (label)
2343 rtx label;
2344 {
2345 rtx *pl, l;
2346
2347 for (pl = &exception_handler_labels, l = *pl;
2348 XEXP (l, 0) != label;
2349 pl = &XEXP (l, 1), l = *pl)
2350 continue;
2351
2352 *pl = XEXP (l, 1);
2353 free_EXPR_LIST_node (l);
2354 }
2355
2356 /* Splice REGION from the region tree etc. */
2357
2358 static void
2359 remove_eh_handler (region)
2360 struct eh_region *region;
2361 {
2362 struct eh_region **pp, *p;
2363 rtx lab;
2364 int i;
2365
2366 /* For the benefit of efficiently handling REG_EH_REGION notes,
2367 replace this region in the region array with its containing
2368 region. Note that previous region deletions may result in
2369 multiple copies of this region in the array, so we have to
2370 search the whole thing. */
2371 for (i = cfun->eh->last_region_number; i > 0; --i)
2372 if (cfun->eh->region_array[i] == region)
2373 cfun->eh->region_array[i] = region->outer;
2374
2375 if (cfun->eh->built_landing_pads)
2376 lab = region->landing_pad;
2377 else
2378 lab = region->label;
2379 if (lab)
2380 remove_exception_handler_label (lab);
2381
2382 if (region->outer)
2383 pp = &region->outer->inner;
2384 else
2385 pp = &cfun->eh->region_tree;
2386 for (p = *pp; p != region; pp = &p->next_peer, p = *pp)
2387 continue;
2388
2389 if (region->inner)
2390 {
2391 for (p = region->inner; p->next_peer ; p = p->next_peer)
2392 p->outer = region->outer;
2393 p->next_peer = region->next_peer;
2394 p->outer = region->outer;
2395 *pp = region->inner;
2396 }
2397 else
2398 *pp = region->next_peer;
2399
2400 if (region->type == ERT_CATCH)
2401 {
2402 struct eh_region *try, *next, *prev;
2403
2404 for (try = region->next_peer;
2405 try->type == ERT_CATCH;
2406 try = try->next_peer)
2407 continue;
2408 if (try->type != ERT_TRY)
2409 abort ();
2410
2411 next = region->u.catch.next_catch;
2412 prev = region->u.catch.prev_catch;
2413
2414 if (next)
2415 next->u.catch.prev_catch = prev;
2416 else
2417 try->u.try.last_catch = prev;
2418 if (prev)
2419 prev->u.catch.next_catch = next;
2420 else
2421 {
2422 try->u.try.catch = next;
2423 if (! next)
2424 remove_eh_handler (try);
2425 }
2426 }
2427
2428 free (region);
2429 }
2430
2431 /* LABEL heads a basic block that is about to be deleted. If this
2432 label corresponds to an exception region, we may be able to
2433 delete the region. */
2434
2435 void
2436 maybe_remove_eh_handler (label)
2437 rtx label;
2438 {
2439 int i;
2440
2441 /* ??? After generating landing pads, it's not so simple to determine
2442 if the region data is completely unused. One must examine the
2443 landing pad and the post landing pad, and whether an inner try block
2444 is referencing the catch handlers directly. */
2445 if (cfun->eh->built_landing_pads)
2446 return;
2447
2448 for (i = cfun->eh->last_region_number; i > 0; --i)
2449 {
2450 struct eh_region *region = cfun->eh->region_array[i];
2451 if (region && region->label == label)
2452 {
2453 /* Flow will want to remove MUST_NOT_THROW regions as unreachable
2454 because there is no path to the fallback call to terminate.
2455 But the region continues to affect call-site data until there
2456 are no more contained calls, which we don't see here. */
2457 if (region->type == ERT_MUST_NOT_THROW)
2458 {
2459 remove_exception_handler_label (region->label);
2460 region->label = NULL_RTX;
2461 }
2462 else
2463 remove_eh_handler (region);
2464 break;
2465 }
2466 }
2467 }
2468
2469 \f
2470 /* This section describes CFG exception edges for flow. */
2471
2472 /* For communicating between calls to reachable_next_level. */
2473 struct reachable_info
2474 {
2475 tree types_caught;
2476 tree types_allowed;
2477 rtx handlers;
2478 };
2479
2480 /* A subroutine of reachable_next_level. Return true if TYPE, or a
2481 base class of TYPE, is in HANDLED. */
2482
2483 static int
2484 check_handled (handled, type)
2485 tree handled, type;
2486 {
2487 tree t;
2488
2489 /* We can check for exact matches without front-end help. */
2490 if (! lang_eh_type_covers)
2491 {
2492 for (t = handled; t ; t = TREE_CHAIN (t))
2493 if (TREE_VALUE (t) == type)
2494 return 1;
2495 }
2496 else
2497 {
2498 for (t = handled; t ; t = TREE_CHAIN (t))
2499 if ((*lang_eh_type_covers) (TREE_VALUE (t), type))
2500 return 1;
2501 }
2502
2503 return 0;
2504 }
2505
2506 /* A subroutine of reachable_next_level. If we are collecting a list
2507 of handlers, add one. After landing pad generation, reference
2508 it instead of the handlers themselves. Further, the handlers are
2509 all wired together, so by referencing one, we've got them all.
2510 Before landing pad generation we reference each handler individually.
2511
2512 LP_REGION contains the landing pad; REGION is the handler. */
2513
2514 static void
2515 add_reachable_handler (info, lp_region, region)
2516 struct reachable_info *info;
2517 struct eh_region *lp_region;
2518 struct eh_region *region;
2519 {
2520 if (! info)
2521 return;
2522
2523 if (cfun->eh->built_landing_pads)
2524 {
2525 if (! info->handlers)
2526 info->handlers = alloc_INSN_LIST (lp_region->landing_pad, NULL_RTX);
2527 }
2528 else
2529 info->handlers = alloc_INSN_LIST (region->label, info->handlers);
2530 }
2531
2532 /* Process one level of exception regions for reachability.
2533 If TYPE_THROWN is non-null, then it is the *exact* type being
2534 propagated. If INFO is non-null, then collect handler labels
2535 and caught/allowed type information between invocations. */
2536
2537 static enum reachable_code
2538 reachable_next_level (region, type_thrown, info)
2539 struct eh_region *region;
2540 tree type_thrown;
2541 struct reachable_info *info;
2542 {
2543 switch (region->type)
2544 {
2545 case ERT_CLEANUP:
2546 /* Before landing-pad generation, we model control flow
2547 directly to the individual handlers. In this way we can
2548 see that catch handler types may shadow one another. */
2549 add_reachable_handler (info, region, region);
2550 return RNL_MAYBE_CAUGHT;
2551
2552 case ERT_TRY:
2553 {
2554 struct eh_region *c;
2555 enum reachable_code ret = RNL_NOT_CAUGHT;
2556
2557 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
2558 {
2559 /* A catch-all handler ends the search. */
2560 /* ??? _Unwind_ForcedUnwind will want outer cleanups
2561 to be run as well. */
2562 if (c->u.catch.type == NULL)
2563 {
2564 add_reachable_handler (info, region, c);
2565 return RNL_CAUGHT;
2566 }
2567
2568 if (type_thrown)
2569 {
2570 /* If we have a type match, end the search. */
2571 if (c->u.catch.type == type_thrown
2572 || (lang_eh_type_covers
2573 && (*lang_eh_type_covers) (c->u.catch.type,
2574 type_thrown)))
2575 {
2576 add_reachable_handler (info, region, c);
2577 return RNL_CAUGHT;
2578 }
2579
2580 /* If we have definitive information of a match failure,
2581 the catch won't trigger. */
2582 if (lang_eh_type_covers)
2583 return RNL_NOT_CAUGHT;
2584 }
2585
2586 if (! info)
2587 ret = RNL_MAYBE_CAUGHT;
2588
2589 /* A type must not have been previously caught. */
2590 else if (! check_handled (info->types_caught, c->u.catch.type))
2591 {
2592 add_reachable_handler (info, region, c);
2593 info->types_caught = tree_cons (NULL, c->u.catch.type,
2594 info->types_caught);
2595
2596 /* ??? If the catch type is a base class of every allowed
2597 type, then we know we can stop the search. */
2598 ret = RNL_MAYBE_CAUGHT;
2599 }
2600 }
2601
2602 return ret;
2603 }
2604
2605 case ERT_ALLOWED_EXCEPTIONS:
2606 /* An empty list of types definitely ends the search. */
2607 if (region->u.allowed.type_list == NULL_TREE)
2608 {
2609 add_reachable_handler (info, region, region);
2610 return RNL_CAUGHT;
2611 }
2612
2613 /* Collect a list of lists of allowed types for use in detecting
2614 when a catch may be transformed into a catch-all. */
2615 if (info)
2616 info->types_allowed = tree_cons (NULL_TREE,
2617 region->u.allowed.type_list,
2618 info->types_allowed);
2619
2620 /* If we have definitive information about the type heirarchy,
2621 then we can tell if the thrown type will pass through the
2622 filter. */
2623 if (type_thrown && lang_eh_type_covers)
2624 {
2625 if (check_handled (region->u.allowed.type_list, type_thrown))
2626 return RNL_NOT_CAUGHT;
2627 else
2628 {
2629 add_reachable_handler (info, region, region);
2630 return RNL_CAUGHT;
2631 }
2632 }
2633
2634 add_reachable_handler (info, region, region);
2635 return RNL_MAYBE_CAUGHT;
2636
2637 case ERT_CATCH:
2638 /* Catch regions are handled by their controling try region. */
2639 return RNL_NOT_CAUGHT;
2640
2641 case ERT_MUST_NOT_THROW:
2642 /* Here we end our search, since no exceptions may propagate.
2643 If we've touched down at some landing pad previous, then the
2644 explicit function call we generated may be used. Otherwise
2645 the call is made by the runtime. */
2646 if (info && info->handlers)
2647 {
2648 add_reachable_handler (info, region, region);
2649 return RNL_CAUGHT;
2650 }
2651 else
2652 return RNL_BLOCKED;
2653
2654 case ERT_THROW:
2655 case ERT_FIXUP:
2656 /* Shouldn't see these here. */
2657 break;
2658 }
2659
2660 abort ();
2661 }
2662
2663 /* Retrieve a list of labels of exception handlers which can be
2664 reached by a given insn. */
2665
2666 rtx
2667 reachable_handlers (insn)
2668 rtx insn;
2669 {
2670 struct reachable_info info;
2671 struct eh_region *region;
2672 tree type_thrown;
2673 int region_number;
2674
2675 if (GET_CODE (insn) == JUMP_INSN
2676 && GET_CODE (PATTERN (insn)) == RESX)
2677 region_number = XINT (PATTERN (insn), 0);
2678 else
2679 {
2680 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2681 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2682 return NULL;
2683 region_number = INTVAL (XEXP (note, 0));
2684 }
2685
2686 memset (&info, 0, sizeof (info));
2687
2688 region = cfun->eh->region_array[region_number];
2689
2690 type_thrown = NULL_TREE;
2691 if (GET_CODE (insn) == JUMP_INSN
2692 && GET_CODE (PATTERN (insn)) == RESX)
2693 {
2694 /* A RESX leaves a region instead of entering it. Thus the
2695 region itself may have been deleted out from under us. */
2696 if (region == NULL)
2697 return NULL;
2698 region = region->outer;
2699 }
2700 else if (region->type == ERT_THROW)
2701 {
2702 type_thrown = region->u.throw.type;
2703 region = region->outer;
2704 }
2705
2706 for (; region; region = region->outer)
2707 if (reachable_next_level (region, type_thrown, &info) >= RNL_CAUGHT)
2708 break;
2709
2710 return info.handlers;
2711 }
2712
2713 /* Determine if the given INSN can throw an exception that is caught
2714 within the function. */
2715
2716 bool
2717 can_throw_internal (insn)
2718 rtx insn;
2719 {
2720 struct eh_region *region;
2721 tree type_thrown;
2722 rtx note;
2723
2724 if (! INSN_P (insn))
2725 return false;
2726
2727 if (GET_CODE (insn) == INSN
2728 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2729 insn = XVECEXP (PATTERN (insn), 0, 0);
2730
2731 if (GET_CODE (insn) == CALL_INSN
2732 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
2733 {
2734 int i;
2735 for (i = 0; i < 3; ++i)
2736 {
2737 rtx sub = XEXP (PATTERN (insn), i);
2738 for (; sub ; sub = NEXT_INSN (sub))
2739 if (can_throw_internal (sub))
2740 return true;
2741 }
2742 return false;
2743 }
2744
2745 /* Every insn that might throw has an EH_REGION note. */
2746 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2747 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2748 return false;
2749
2750 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2751
2752 type_thrown = NULL_TREE;
2753 if (region->type == ERT_THROW)
2754 {
2755 type_thrown = region->u.throw.type;
2756 region = region->outer;
2757 }
2758
2759 /* If this exception is ignored by each and every containing region,
2760 then control passes straight out. The runtime may handle some
2761 regions, which also do not require processing internally. */
2762 for (; region; region = region->outer)
2763 {
2764 enum reachable_code how = reachable_next_level (region, type_thrown, 0);
2765 if (how == RNL_BLOCKED)
2766 return false;
2767 if (how != RNL_NOT_CAUGHT)
2768 return true;
2769 }
2770
2771 return false;
2772 }
2773
2774 /* Determine if the given INSN can throw an exception that is
2775 visible outside the function. */
2776
2777 bool
2778 can_throw_external (insn)
2779 rtx insn;
2780 {
2781 struct eh_region *region;
2782 tree type_thrown;
2783 rtx note;
2784
2785 if (! INSN_P (insn))
2786 return false;
2787
2788 if (GET_CODE (insn) == INSN
2789 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2790 insn = XVECEXP (PATTERN (insn), 0, 0);
2791
2792 if (GET_CODE (insn) == CALL_INSN
2793 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
2794 {
2795 int i;
2796 for (i = 0; i < 3; ++i)
2797 {
2798 rtx sub = XEXP (PATTERN (insn), i);
2799 for (; sub ; sub = NEXT_INSN (sub))
2800 if (can_throw_external (sub))
2801 return true;
2802 }
2803 return false;
2804 }
2805
2806 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2807 if (!note)
2808 {
2809 /* Calls (and trapping insns) without notes are outside any
2810 exception handling region in this function. We have to
2811 assume it might throw. Given that the front end and middle
2812 ends mark known NOTHROW functions, this isn't so wildly
2813 inaccurate. */
2814 return (GET_CODE (insn) == CALL_INSN
2815 || (flag_non_call_exceptions
2816 && may_trap_p (PATTERN (insn))));
2817 }
2818 if (INTVAL (XEXP (note, 0)) <= 0)
2819 return false;
2820
2821 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2822
2823 type_thrown = NULL_TREE;
2824 if (region->type == ERT_THROW)
2825 {
2826 type_thrown = region->u.throw.type;
2827 region = region->outer;
2828 }
2829
2830 /* If the exception is caught or blocked by any containing region,
2831 then it is not seen by any calling function. */
2832 for (; region ; region = region->outer)
2833 if (reachable_next_level (region, type_thrown, NULL) >= RNL_CAUGHT)
2834 return false;
2835
2836 return true;
2837 }
2838
2839 /* True if nothing in this function can throw outside this function. */
2840
2841 bool
2842 nothrow_function_p ()
2843 {
2844 rtx insn;
2845
2846 if (! flag_exceptions)
2847 return true;
2848
2849 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2850 if (can_throw_external (insn))
2851 return false;
2852 for (insn = current_function_epilogue_delay_list; insn;
2853 insn = XEXP (insn, 1))
2854 if (can_throw_external (insn))
2855 return false;
2856
2857 return true;
2858 }
2859
2860 \f
2861 /* Various hooks for unwind library. */
2862
2863 /* Do any necessary initialization to access arbitrary stack frames.
2864 On the SPARC, this means flushing the register windows. */
2865
2866 void
2867 expand_builtin_unwind_init ()
2868 {
2869 /* Set this so all the registers get saved in our frame; we need to be
2870 able to copy the saved values for any registers from frames we unwind. */
2871 current_function_has_nonlocal_label = 1;
2872
2873 #ifdef SETUP_FRAME_ADDRESSES
2874 SETUP_FRAME_ADDRESSES ();
2875 #endif
2876 }
2877
2878 rtx
2879 expand_builtin_eh_return_data_regno (arglist)
2880 tree arglist;
2881 {
2882 tree which = TREE_VALUE (arglist);
2883 unsigned HOST_WIDE_INT iwhich;
2884
2885 if (TREE_CODE (which) != INTEGER_CST)
2886 {
2887 error ("argument of `__builtin_eh_return_regno' must be constant");
2888 return constm1_rtx;
2889 }
2890
2891 iwhich = tree_low_cst (which, 1);
2892 iwhich = EH_RETURN_DATA_REGNO (iwhich);
2893 if (iwhich == INVALID_REGNUM)
2894 return constm1_rtx;
2895
2896 #ifdef DWARF_FRAME_REGNUM
2897 iwhich = DWARF_FRAME_REGNUM (iwhich);
2898 #else
2899 iwhich = DBX_REGISTER_NUMBER (iwhich);
2900 #endif
2901
2902 return GEN_INT (iwhich);
2903 }
2904
2905 /* Given a value extracted from the return address register or stack slot,
2906 return the actual address encoded in that value. */
2907
2908 rtx
2909 expand_builtin_extract_return_addr (addr_tree)
2910 tree addr_tree;
2911 {
2912 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2913
2914 /* First mask out any unwanted bits. */
2915 #ifdef MASK_RETURN_ADDR
2916 expand_and (addr, MASK_RETURN_ADDR, addr);
2917 #endif
2918
2919 /* Then adjust to find the real return address. */
2920 #if defined (RETURN_ADDR_OFFSET)
2921 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
2922 #endif
2923
2924 return addr;
2925 }
2926
2927 /* Given an actual address in addr_tree, do any necessary encoding
2928 and return the value to be stored in the return address register or
2929 stack slot so the epilogue will return to that address. */
2930
2931 rtx
2932 expand_builtin_frob_return_addr (addr_tree)
2933 tree addr_tree;
2934 {
2935 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2936
2937 #ifdef POINTERS_EXTEND_UNSIGNED
2938 addr = convert_memory_address (Pmode, addr);
2939 #endif
2940
2941 #ifdef RETURN_ADDR_OFFSET
2942 addr = force_reg (Pmode, addr);
2943 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2944 #endif
2945
2946 return addr;
2947 }
2948
2949 /* Set up the epilogue with the magic bits we'll need to return to the
2950 exception handler. */
2951
2952 void
2953 expand_builtin_eh_return (stackadj_tree, handler_tree)
2954 tree stackadj_tree, handler_tree;
2955 {
2956 rtx stackadj, handler;
2957
2958 stackadj = expand_expr (stackadj_tree, cfun->eh->ehr_stackadj, VOIDmode, 0);
2959 handler = expand_expr (handler_tree, cfun->eh->ehr_handler, VOIDmode, 0);
2960
2961 #ifdef POINTERS_EXTEND_UNSIGNED
2962 stackadj = convert_memory_address (Pmode, stackadj);
2963 handler = convert_memory_address (Pmode, handler);
2964 #endif
2965
2966 if (! cfun->eh->ehr_label)
2967 {
2968 cfun->eh->ehr_stackadj = copy_to_reg (stackadj);
2969 cfun->eh->ehr_handler = copy_to_reg (handler);
2970 cfun->eh->ehr_label = gen_label_rtx ();
2971 }
2972 else
2973 {
2974 if (stackadj != cfun->eh->ehr_stackadj)
2975 emit_move_insn (cfun->eh->ehr_stackadj, stackadj);
2976 if (handler != cfun->eh->ehr_handler)
2977 emit_move_insn (cfun->eh->ehr_handler, handler);
2978 }
2979
2980 emit_jump (cfun->eh->ehr_label);
2981 }
2982
2983 void
2984 expand_eh_return ()
2985 {
2986 rtx sa, ra, around_label;
2987
2988 if (! cfun->eh->ehr_label)
2989 return;
2990
2991 sa = EH_RETURN_STACKADJ_RTX;
2992 if (! sa)
2993 {
2994 error ("__builtin_eh_return not supported on this target");
2995 return;
2996 }
2997
2998 current_function_calls_eh_return = 1;
2999
3000 around_label = gen_label_rtx ();
3001 emit_move_insn (sa, const0_rtx);
3002 emit_jump (around_label);
3003
3004 emit_label (cfun->eh->ehr_label);
3005 clobber_return_register ();
3006
3007 #ifdef HAVE_eh_return
3008 if (HAVE_eh_return)
3009 emit_insn (gen_eh_return (cfun->eh->ehr_stackadj, cfun->eh->ehr_handler));
3010 else
3011 #endif
3012 {
3013 ra = EH_RETURN_HANDLER_RTX;
3014 if (! ra)
3015 {
3016 error ("__builtin_eh_return not supported on this target");
3017 ra = gen_reg_rtx (Pmode);
3018 }
3019
3020 emit_move_insn (sa, cfun->eh->ehr_stackadj);
3021 emit_move_insn (ra, cfun->eh->ehr_handler);
3022 }
3023
3024 emit_label (around_label);
3025 }
3026 \f
3027 /* In the following functions, we represent entries in the action table
3028 as 1-based indicies. Special cases are:
3029
3030 0: null action record, non-null landing pad; implies cleanups
3031 -1: null action record, null landing pad; implies no action
3032 -2: no call-site entry; implies must_not_throw
3033 -3: we have yet to process outer regions
3034
3035 Further, no special cases apply to the "next" field of the record.
3036 For next, 0 means end of list. */
3037
3038 struct action_record
3039 {
3040 int offset;
3041 int filter;
3042 int next;
3043 };
3044
3045 static int
3046 action_record_eq (pentry, pdata)
3047 const PTR pentry;
3048 const PTR pdata;
3049 {
3050 const struct action_record *entry = (const struct action_record *) pentry;
3051 const struct action_record *data = (const struct action_record *) pdata;
3052 return entry->filter == data->filter && entry->next == data->next;
3053 }
3054
3055 static hashval_t
3056 action_record_hash (pentry)
3057 const PTR pentry;
3058 {
3059 const struct action_record *entry = (const struct action_record *) pentry;
3060 return entry->next * 1009 + entry->filter;
3061 }
3062
3063 static int
3064 add_action_record (ar_hash, filter, next)
3065 htab_t ar_hash;
3066 int filter, next;
3067 {
3068 struct action_record **slot, *new, tmp;
3069
3070 tmp.filter = filter;
3071 tmp.next = next;
3072 slot = (struct action_record **) htab_find_slot (ar_hash, &tmp, INSERT);
3073
3074 if ((new = *slot) == NULL)
3075 {
3076 new = (struct action_record *) xmalloc (sizeof (*new));
3077 new->offset = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
3078 new->filter = filter;
3079 new->next = next;
3080 *slot = new;
3081
3082 /* The filter value goes in untouched. The link to the next
3083 record is a "self-relative" byte offset, or zero to indicate
3084 that there is no next record. So convert the absolute 1 based
3085 indicies we've been carrying around into a displacement. */
3086
3087 push_sleb128 (&cfun->eh->action_record_data, filter);
3088 if (next)
3089 next -= VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
3090 push_sleb128 (&cfun->eh->action_record_data, next);
3091 }
3092
3093 return new->offset;
3094 }
3095
3096 static int
3097 collect_one_action_chain (ar_hash, region)
3098 htab_t ar_hash;
3099 struct eh_region *region;
3100 {
3101 struct eh_region *c;
3102 int next;
3103
3104 /* If we've reached the top of the region chain, then we have
3105 no actions, and require no landing pad. */
3106 if (region == NULL)
3107 return -1;
3108
3109 switch (region->type)
3110 {
3111 case ERT_CLEANUP:
3112 /* A cleanup adds a zero filter to the beginning of the chain, but
3113 there are special cases to look out for. If there are *only*
3114 cleanups along a path, then it compresses to a zero action.
3115 Further, if there are multiple cleanups along a path, we only
3116 need to represent one of them, as that is enough to trigger
3117 entry to the landing pad at runtime. */
3118 next = collect_one_action_chain (ar_hash, region->outer);
3119 if (next <= 0)
3120 return 0;
3121 for (c = region->outer; c ; c = c->outer)
3122 if (c->type == ERT_CLEANUP)
3123 return next;
3124 return add_action_record (ar_hash, 0, next);
3125
3126 case ERT_TRY:
3127 /* Process the associated catch regions in reverse order.
3128 If there's a catch-all handler, then we don't need to
3129 search outer regions. Use a magic -3 value to record
3130 that we havn't done the outer search. */
3131 next = -3;
3132 for (c = region->u.try.last_catch; c ; c = c->u.catch.prev_catch)
3133 {
3134 if (c->u.catch.type == NULL)
3135 next = add_action_record (ar_hash, c->u.catch.filter, 0);
3136 else
3137 {
3138 if (next == -3)
3139 {
3140 next = collect_one_action_chain (ar_hash, region->outer);
3141
3142 /* If there is no next action, terminate the chain. */
3143 if (next == -1)
3144 next = 0;
3145 /* If all outer actions are cleanups or must_not_throw,
3146 we'll have no action record for it, since we had wanted
3147 to encode these states in the call-site record directly.
3148 Add a cleanup action to the chain to catch these. */
3149 else if (next <= 0)
3150 next = add_action_record (ar_hash, 0, 0);
3151 }
3152 next = add_action_record (ar_hash, c->u.catch.filter, next);
3153 }
3154 }
3155 return next;
3156
3157 case ERT_ALLOWED_EXCEPTIONS:
3158 /* An exception specification adds its filter to the
3159 beginning of the chain. */
3160 next = collect_one_action_chain (ar_hash, region->outer);
3161 return add_action_record (ar_hash, region->u.allowed.filter,
3162 next < 0 ? 0 : next);
3163
3164 case ERT_MUST_NOT_THROW:
3165 /* A must-not-throw region with no inner handlers or cleanups
3166 requires no call-site entry. Note that this differs from
3167 the no handler or cleanup case in that we do require an lsda
3168 to be generated. Return a magic -2 value to record this. */
3169 return -2;
3170
3171 case ERT_CATCH:
3172 case ERT_THROW:
3173 /* CATCH regions are handled in TRY above. THROW regions are
3174 for optimization information only and produce no output. */
3175 return collect_one_action_chain (ar_hash, region->outer);
3176
3177 default:
3178 abort ();
3179 }
3180 }
3181
3182 static int
3183 add_call_site (landing_pad, action)
3184 rtx landing_pad;
3185 int action;
3186 {
3187 struct call_site_record *data = cfun->eh->call_site_data;
3188 int used = cfun->eh->call_site_data_used;
3189 int size = cfun->eh->call_site_data_size;
3190
3191 if (used >= size)
3192 {
3193 size = (size ? size * 2 : 64);
3194 data = (struct call_site_record *)
3195 xrealloc (data, sizeof (*data) * size);
3196 cfun->eh->call_site_data = data;
3197 cfun->eh->call_site_data_size = size;
3198 }
3199
3200 data[used].landing_pad = landing_pad;
3201 data[used].action = action;
3202
3203 cfun->eh->call_site_data_used = used + 1;
3204
3205 return used + call_site_base;
3206 }
3207
3208 /* Turn REG_EH_REGION notes back into NOTE_INSN_EH_REGION notes.
3209 The new note numbers will not refer to region numbers, but
3210 instead to call site entries. */
3211
3212 void
3213 convert_to_eh_region_ranges ()
3214 {
3215 rtx insn, iter, note;
3216 htab_t ar_hash;
3217 int last_action = -3;
3218 rtx last_action_insn = NULL_RTX;
3219 rtx last_landing_pad = NULL_RTX;
3220 rtx first_no_action_insn = NULL_RTX;
3221 int call_site = 0;
3222
3223 if (USING_SJLJ_EXCEPTIONS || cfun->eh->region_tree == NULL)
3224 return;
3225
3226 VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
3227
3228 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
3229
3230 for (iter = get_insns (); iter ; iter = NEXT_INSN (iter))
3231 if (INSN_P (iter))
3232 {
3233 struct eh_region *region;
3234 int this_action;
3235 rtx this_landing_pad;
3236
3237 insn = iter;
3238 if (GET_CODE (insn) == INSN
3239 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3240 insn = XVECEXP (PATTERN (insn), 0, 0);
3241
3242 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3243 if (!note)
3244 {
3245 if (! (GET_CODE (insn) == CALL_INSN
3246 || (flag_non_call_exceptions
3247 && may_trap_p (PATTERN (insn)))))
3248 continue;
3249 this_action = -1;
3250 region = NULL;
3251 }
3252 else
3253 {
3254 if (INTVAL (XEXP (note, 0)) <= 0)
3255 continue;
3256 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
3257 this_action = collect_one_action_chain (ar_hash, region);
3258 }
3259
3260 /* Existence of catch handlers, or must-not-throw regions
3261 implies that an lsda is needed (even if empty). */
3262 if (this_action != -1)
3263 cfun->uses_eh_lsda = 1;
3264
3265 /* Delay creation of region notes for no-action regions
3266 until we're sure that an lsda will be required. */
3267 else if (last_action == -3)
3268 {
3269 first_no_action_insn = iter;
3270 last_action = -1;
3271 }
3272
3273 /* Cleanups and handlers may share action chains but not
3274 landing pads. Collect the landing pad for this region. */
3275 if (this_action >= 0)
3276 {
3277 struct eh_region *o;
3278 for (o = region; ! o->landing_pad ; o = o->outer)
3279 continue;
3280 this_landing_pad = o->landing_pad;
3281 }
3282 else
3283 this_landing_pad = NULL_RTX;
3284
3285 /* Differing actions or landing pads implies a change in call-site
3286 info, which implies some EH_REGION note should be emitted. */
3287 if (last_action != this_action
3288 || last_landing_pad != this_landing_pad)
3289 {
3290 /* If we'd not seen a previous action (-3) or the previous
3291 action was must-not-throw (-2), then we do not need an
3292 end note. */
3293 if (last_action >= -1)
3294 {
3295 /* If we delayed the creation of the begin, do it now. */
3296 if (first_no_action_insn)
3297 {
3298 call_site = add_call_site (NULL_RTX, 0);
3299 note = emit_note_before (NOTE_INSN_EH_REGION_BEG,
3300 first_no_action_insn);
3301 NOTE_EH_HANDLER (note) = call_site;
3302 first_no_action_insn = NULL_RTX;
3303 }
3304
3305 note = emit_note_after (NOTE_INSN_EH_REGION_END,
3306 last_action_insn);
3307 NOTE_EH_HANDLER (note) = call_site;
3308 }
3309
3310 /* If the new action is must-not-throw, then no region notes
3311 are created. */
3312 if (this_action >= -1)
3313 {
3314 call_site = add_call_site (this_landing_pad,
3315 this_action < 0 ? 0 : this_action);
3316 note = emit_note_before (NOTE_INSN_EH_REGION_BEG, iter);
3317 NOTE_EH_HANDLER (note) = call_site;
3318 }
3319
3320 last_action = this_action;
3321 last_landing_pad = this_landing_pad;
3322 }
3323 last_action_insn = iter;
3324 }
3325
3326 if (last_action >= -1 && ! first_no_action_insn)
3327 {
3328 note = emit_note_after (NOTE_INSN_EH_REGION_END, last_action_insn);
3329 NOTE_EH_HANDLER (note) = call_site;
3330 }
3331
3332 htab_delete (ar_hash);
3333 }
3334
3335 \f
3336 static void
3337 push_uleb128 (data_area, value)
3338 varray_type *data_area;
3339 unsigned int value;
3340 {
3341 do
3342 {
3343 unsigned char byte = value & 0x7f;
3344 value >>= 7;
3345 if (value)
3346 byte |= 0x80;
3347 VARRAY_PUSH_UCHAR (*data_area, byte);
3348 }
3349 while (value);
3350 }
3351
3352 static void
3353 push_sleb128 (data_area, value)
3354 varray_type *data_area;
3355 int value;
3356 {
3357 unsigned char byte;
3358 int more;
3359
3360 do
3361 {
3362 byte = value & 0x7f;
3363 value >>= 7;
3364 more = ! ((value == 0 && (byte & 0x40) == 0)
3365 || (value == -1 && (byte & 0x40) != 0));
3366 if (more)
3367 byte |= 0x80;
3368 VARRAY_PUSH_UCHAR (*data_area, byte);
3369 }
3370 while (more);
3371 }
3372
3373 \f
3374 #ifndef HAVE_AS_LEB128
3375 static int
3376 dw2_size_of_call_site_table ()
3377 {
3378 int n = cfun->eh->call_site_data_used;
3379 int size = n * (4 + 4 + 4);
3380 int i;
3381
3382 for (i = 0; i < n; ++i)
3383 {
3384 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3385 size += size_of_uleb128 (cs->action);
3386 }
3387
3388 return size;
3389 }
3390
3391 static int
3392 sjlj_size_of_call_site_table ()
3393 {
3394 int n = cfun->eh->call_site_data_used;
3395 int size = 0;
3396 int i;
3397
3398 for (i = 0; i < n; ++i)
3399 {
3400 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3401 size += size_of_uleb128 (INTVAL (cs->landing_pad));
3402 size += size_of_uleb128 (cs->action);
3403 }
3404
3405 return size;
3406 }
3407 #endif
3408
3409 static void
3410 dw2_output_call_site_table ()
3411 {
3412 const char *function_start_lab
3413 = IDENTIFIER_POINTER (current_function_func_begin_label);
3414 int n = cfun->eh->call_site_data_used;
3415 int i;
3416
3417 for (i = 0; i < n; ++i)
3418 {
3419 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3420 char reg_start_lab[32];
3421 char reg_end_lab[32];
3422 char landing_pad_lab[32];
3423
3424 ASM_GENERATE_INTERNAL_LABEL (reg_start_lab, "LEHB", call_site_base + i);
3425 ASM_GENERATE_INTERNAL_LABEL (reg_end_lab, "LEHE", call_site_base + i);
3426
3427 if (cs->landing_pad)
3428 ASM_GENERATE_INTERNAL_LABEL (landing_pad_lab, "L",
3429 CODE_LABEL_NUMBER (cs->landing_pad));
3430
3431 /* ??? Perhaps use insn length scaling if the assembler supports
3432 generic arithmetic. */
3433 /* ??? Perhaps use attr_length to choose data1 or data2 instead of
3434 data4 if the function is small enough. */
3435 #ifdef HAVE_AS_LEB128
3436 dw2_asm_output_delta_uleb128 (reg_start_lab, function_start_lab,
3437 "region %d start", i);
3438 dw2_asm_output_delta_uleb128 (reg_end_lab, reg_start_lab,
3439 "length");
3440 if (cs->landing_pad)
3441 dw2_asm_output_delta_uleb128 (landing_pad_lab, function_start_lab,
3442 "landing pad");
3443 else
3444 dw2_asm_output_data_uleb128 (0, "landing pad");
3445 #else
3446 dw2_asm_output_delta (4, reg_start_lab, function_start_lab,
3447 "region %d start", i);
3448 dw2_asm_output_delta (4, reg_end_lab, reg_start_lab, "length");
3449 if (cs->landing_pad)
3450 dw2_asm_output_delta (4, landing_pad_lab, function_start_lab,
3451 "landing pad");
3452 else
3453 dw2_asm_output_data (4, 0, "landing pad");
3454 #endif
3455 dw2_asm_output_data_uleb128 (cs->action, "action");
3456 }
3457
3458 call_site_base += n;
3459 }
3460
3461 static void
3462 sjlj_output_call_site_table ()
3463 {
3464 int n = cfun->eh->call_site_data_used;
3465 int i;
3466
3467 for (i = 0; i < n; ++i)
3468 {
3469 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3470
3471 dw2_asm_output_data_uleb128 (INTVAL (cs->landing_pad),
3472 "region %d landing pad", i);
3473 dw2_asm_output_data_uleb128 (cs->action, "action");
3474 }
3475
3476 call_site_base += n;
3477 }
3478
3479 void
3480 output_function_exception_table ()
3481 {
3482 int tt_format, cs_format, lp_format, i, n;
3483 #ifdef HAVE_AS_LEB128
3484 char ttype_label[32];
3485 char cs_after_size_label[32];
3486 char cs_end_label[32];
3487 #else
3488 int call_site_len;
3489 #endif
3490 int have_tt_data;
3491 int funcdef_number;
3492 int tt_format_size = 0;
3493
3494 /* Not all functions need anything. */
3495 if (! cfun->uses_eh_lsda)
3496 return;
3497
3498 funcdef_number = (USING_SJLJ_EXCEPTIONS
3499 ? sjlj_funcdef_number
3500 : current_funcdef_number);
3501
3502 #ifdef IA64_UNWIND_INFO
3503 fputs ("\t.personality\t", asm_out_file);
3504 output_addr_const (asm_out_file, eh_personality_libfunc);
3505 fputs ("\n\t.handlerdata\n", asm_out_file);
3506 /* Note that varasm still thinks we're in the function's code section.
3507 The ".endp" directive that will immediately follow will take us back. */
3508 #else
3509 exception_section ();
3510 #endif
3511
3512 have_tt_data = (VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data) > 0
3513 || VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) > 0);
3514
3515 /* Indicate the format of the @TType entries. */
3516 if (! have_tt_data)
3517 tt_format = DW_EH_PE_omit;
3518 else
3519 {
3520 tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
3521 #ifdef HAVE_AS_LEB128
3522 ASM_GENERATE_INTERNAL_LABEL (ttype_label, "LLSDATT", funcdef_number);
3523 #endif
3524 tt_format_size = size_of_encoded_value (tt_format);
3525
3526 assemble_align (tt_format_size * BITS_PER_UNIT);
3527 }
3528
3529 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LLSDA", funcdef_number);
3530
3531 /* The LSDA header. */
3532
3533 /* Indicate the format of the landing pad start pointer. An omitted
3534 field implies @LPStart == @Start. */
3535 /* Currently we always put @LPStart == @Start. This field would
3536 be most useful in moving the landing pads completely out of
3537 line to another section, but it could also be used to minimize
3538 the size of uleb128 landing pad offsets. */
3539 lp_format = DW_EH_PE_omit;
3540 dw2_asm_output_data (1, lp_format, "@LPStart format (%s)",
3541 eh_data_format_name (lp_format));
3542
3543 /* @LPStart pointer would go here. */
3544
3545 dw2_asm_output_data (1, tt_format, "@TType format (%s)",
3546 eh_data_format_name (tt_format));
3547
3548 #ifndef HAVE_AS_LEB128
3549 if (USING_SJLJ_EXCEPTIONS)
3550 call_site_len = sjlj_size_of_call_site_table ();
3551 else
3552 call_site_len = dw2_size_of_call_site_table ();
3553 #endif
3554
3555 /* A pc-relative 4-byte displacement to the @TType data. */
3556 if (have_tt_data)
3557 {
3558 #ifdef HAVE_AS_LEB128
3559 char ttype_after_disp_label[32];
3560 ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label, "LLSDATTD",
3561 funcdef_number);
3562 dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
3563 "@TType base offset");
3564 ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
3565 #else
3566 /* Ug. Alignment queers things. */
3567 unsigned int before_disp, after_disp, last_disp, disp;
3568
3569 before_disp = 1 + 1;
3570 after_disp = (1 + size_of_uleb128 (call_site_len)
3571 + call_site_len
3572 + VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data)
3573 + (VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data)
3574 * tt_format_size));
3575
3576 disp = after_disp;
3577 do
3578 {
3579 unsigned int disp_size, pad;
3580
3581 last_disp = disp;
3582 disp_size = size_of_uleb128 (disp);
3583 pad = before_disp + disp_size + after_disp;
3584 if (pad % tt_format_size)
3585 pad = tt_format_size - (pad % tt_format_size);
3586 else
3587 pad = 0;
3588 disp = after_disp + pad;
3589 }
3590 while (disp != last_disp);
3591
3592 dw2_asm_output_data_uleb128 (disp, "@TType base offset");
3593 #endif
3594 }
3595
3596 /* Indicate the format of the call-site offsets. */
3597 #ifdef HAVE_AS_LEB128
3598 cs_format = DW_EH_PE_uleb128;
3599 #else
3600 cs_format = DW_EH_PE_udata4;
3601 #endif
3602 dw2_asm_output_data (1, cs_format, "call-site format (%s)",
3603 eh_data_format_name (cs_format));
3604
3605 #ifdef HAVE_AS_LEB128
3606 ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label, "LLSDACSB",
3607 funcdef_number);
3608 ASM_GENERATE_INTERNAL_LABEL (cs_end_label, "LLSDACSE",
3609 funcdef_number);
3610 dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
3611 "Call-site table length");
3612 ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
3613 if (USING_SJLJ_EXCEPTIONS)
3614 sjlj_output_call_site_table ();
3615 else
3616 dw2_output_call_site_table ();
3617 ASM_OUTPUT_LABEL (asm_out_file, cs_end_label);
3618 #else
3619 dw2_asm_output_data_uleb128 (call_site_len,"Call-site table length");
3620 if (USING_SJLJ_EXCEPTIONS)
3621 sjlj_output_call_site_table ();
3622 else
3623 dw2_output_call_site_table ();
3624 #endif
3625
3626 /* ??? Decode and interpret the data for flag_debug_asm. */
3627 n = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data);
3628 for (i = 0; i < n; ++i)
3629 dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->action_record_data, i),
3630 (i ? NULL : "Action record table"));
3631
3632 if (have_tt_data)
3633 assemble_align (tt_format_size * BITS_PER_UNIT);
3634
3635 i = VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data);
3636 while (i-- > 0)
3637 {
3638 tree type = VARRAY_TREE (cfun->eh->ttype_data, i);
3639
3640 if (type == NULL_TREE)
3641 type = integer_zero_node;
3642 else
3643 type = lookup_type_for_runtime (type);
3644
3645 dw2_asm_output_encoded_addr_rtx (tt_format,
3646 expand_expr (type, NULL_RTX, VOIDmode,
3647 EXPAND_INITIALIZER),
3648 NULL);
3649 }
3650
3651 #ifdef HAVE_AS_LEB128
3652 if (have_tt_data)
3653 ASM_OUTPUT_LABEL (asm_out_file, ttype_label);
3654 #endif
3655
3656 /* ??? Decode and interpret the data for flag_debug_asm. */
3657 n = VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data);
3658 for (i = 0; i < n; ++i)
3659 dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->ehspec_data, i),
3660 (i ? NULL : "Exception specification table"));
3661
3662 function_section (current_function_decl);
3663
3664 if (USING_SJLJ_EXCEPTIONS)
3665 sjlj_funcdef_number += 1;
3666 }