]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/except.c
tree-vrp.c: Use XNEW/XCNEW allocation wrappers.
[thirdparty/gcc.git] / gcc / except.c
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Mike Stump <mrs@cygnus.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* An exception is an event that can be signaled from within a
25 function. This event can then be "caught" or "trapped" by the
26 callers of this function. This potentially allows program flow to
27 be transferred to any arbitrary code associated with a function call
28 several levels up the stack.
29
30 The intended use for this mechanism is for signaling "exceptional
31 events" in an out-of-band fashion, hence its name. The C++ language
32 (and many other OO-styled or functional languages) practically
33 requires such a mechanism, as otherwise it becomes very difficult
34 or even impossible to signal failure conditions in complex
35 situations. The traditional C++ example is when an error occurs in
36 the process of constructing an object; without such a mechanism, it
37 is impossible to signal that the error occurs without adding global
38 state variables and error checks around every object construction.
39
40 The act of causing this event to occur is referred to as "throwing
41 an exception". (Alternate terms include "raising an exception" or
42 "signaling an exception".) The term "throw" is used because control
43 is returned to the callers of the function that is signaling the
44 exception, and thus there is the concept of "throwing" the
45 exception up the call stack.
46
47 [ Add updated documentation on how to use this. ] */
48
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "tree.h"
56 #include "flags.h"
57 #include "function.h"
58 #include "expr.h"
59 #include "libfuncs.h"
60 #include "insn-config.h"
61 #include "except.h"
62 #include "integrate.h"
63 #include "hard-reg-set.h"
64 #include "basic-block.h"
65 #include "output.h"
66 #include "dwarf2asm.h"
67 #include "dwarf2out.h"
68 #include "dwarf2.h"
69 #include "toplev.h"
70 #include "hashtab.h"
71 #include "intl.h"
72 #include "ggc.h"
73 #include "tm_p.h"
74 #include "target.h"
75 #include "langhooks.h"
76 #include "cgraph.h"
77 #include "diagnostic.h"
78 #include "tree-pass.h"
79 #include "timevar.h"
80
81 /* Provide defaults for stuff that may not be defined when using
82 sjlj exceptions. */
83 #ifndef EH_RETURN_DATA_REGNO
84 #define EH_RETURN_DATA_REGNO(N) INVALID_REGNUM
85 #endif
86
87
88 /* Protect cleanup actions with must-not-throw regions, with a call
89 to the given failure handler. */
90 tree (*lang_protect_cleanup_actions) (void);
91
92 /* Return true if type A catches type B. */
93 int (*lang_eh_type_covers) (tree a, tree b);
94
95 /* Map a type to a runtime object to match type. */
96 tree (*lang_eh_runtime_type) (tree);
97
98 /* A hash table of label to region number. */
99
100 struct ehl_map_entry GTY(())
101 {
102 rtx label;
103 struct eh_region *region;
104 };
105
106 static GTY(()) int call_site_base;
107 static GTY ((param_is (union tree_node)))
108 htab_t type_to_runtime_map;
109
110 /* Describe the SjLj_Function_Context structure. */
111 static GTY(()) tree sjlj_fc_type_node;
112 static int sjlj_fc_call_site_ofs;
113 static int sjlj_fc_data_ofs;
114 static int sjlj_fc_personality_ofs;
115 static int sjlj_fc_lsda_ofs;
116 static int sjlj_fc_jbuf_ofs;
117 \f
118 /* Describes one exception region. */
119 struct eh_region GTY(())
120 {
121 /* The immediately surrounding region. */
122 struct eh_region *outer;
123
124 /* The list of immediately contained regions. */
125 struct eh_region *inner;
126 struct eh_region *next_peer;
127
128 /* An identifier for this region. */
129 int region_number;
130
131 /* When a region is deleted, its parents inherit the REG_EH_REGION
132 numbers already assigned. */
133 bitmap aka;
134
135 /* Each region does exactly one thing. */
136 enum eh_region_type
137 {
138 ERT_UNKNOWN = 0,
139 ERT_CLEANUP,
140 ERT_TRY,
141 ERT_CATCH,
142 ERT_ALLOWED_EXCEPTIONS,
143 ERT_MUST_NOT_THROW,
144 ERT_THROW
145 } type;
146
147 /* Holds the action to perform based on the preceding type. */
148 union eh_region_u {
149 /* A list of catch blocks, a surrounding try block,
150 and the label for continuing after a catch. */
151 struct eh_region_u_try {
152 struct eh_region *catch;
153 struct eh_region *last_catch;
154 } GTY ((tag ("ERT_TRY"))) try;
155
156 /* The list through the catch handlers, the list of type objects
157 matched, and the list of associated filters. */
158 struct eh_region_u_catch {
159 struct eh_region *next_catch;
160 struct eh_region *prev_catch;
161 tree type_list;
162 tree filter_list;
163 } GTY ((tag ("ERT_CATCH"))) catch;
164
165 /* A tree_list of allowed types. */
166 struct eh_region_u_allowed {
167 tree type_list;
168 int filter;
169 } GTY ((tag ("ERT_ALLOWED_EXCEPTIONS"))) allowed;
170
171 /* The type given by a call to "throw foo();", or discovered
172 for a throw. */
173 struct eh_region_u_throw {
174 tree type;
175 } GTY ((tag ("ERT_THROW"))) throw;
176
177 /* Retain the cleanup expression even after expansion so that
178 we can match up fixup regions. */
179 struct eh_region_u_cleanup {
180 struct eh_region *prev_try;
181 } GTY ((tag ("ERT_CLEANUP"))) cleanup;
182 } GTY ((desc ("%0.type"))) u;
183
184 /* Entry point for this region's handler before landing pads are built. */
185 rtx label;
186 tree tree_label;
187
188 /* Entry point for this region's handler from the runtime eh library. */
189 rtx landing_pad;
190
191 /* Entry point for this region's handler from an inner region. */
192 rtx post_landing_pad;
193
194 /* The RESX insn for handing off control to the next outermost handler,
195 if appropriate. */
196 rtx resume;
197
198 /* True if something in this region may throw. */
199 unsigned may_contain_throw : 1;
200 };
201
202 typedef struct eh_region *eh_region;
203
204 struct call_site_record GTY(())
205 {
206 rtx landing_pad;
207 int action;
208 };
209
210 DEF_VEC_P(eh_region);
211 DEF_VEC_ALLOC_P(eh_region, gc);
212
213 /* Used to save exception status for each function. */
214 struct eh_status GTY(())
215 {
216 /* The tree of all regions for this function. */
217 struct eh_region *region_tree;
218
219 /* The same information as an indexable array. */
220 VEC(eh_region,gc) *region_array;
221
222 /* The most recently open region. */
223 struct eh_region *cur_region;
224
225 /* This is the region for which we are processing catch blocks. */
226 struct eh_region *try_region;
227
228 rtx filter;
229 rtx exc_ptr;
230
231 int built_landing_pads;
232 int last_region_number;
233
234 VEC(tree,gc) *ttype_data;
235 varray_type ehspec_data;
236 varray_type action_record_data;
237
238 htab_t GTY ((param_is (struct ehl_map_entry))) exception_handler_label_map;
239
240 struct call_site_record * GTY ((length ("%h.call_site_data_used")))
241 call_site_data;
242 int call_site_data_used;
243 int call_site_data_size;
244
245 rtx ehr_stackadj;
246 rtx ehr_handler;
247 rtx ehr_label;
248
249 rtx sjlj_fc;
250 rtx sjlj_exit_after;
251
252 htab_t GTY((param_is (struct throw_stmt_node))) throw_stmt_table;
253 };
254 \f
255 static int t2r_eq (const void *, const void *);
256 static hashval_t t2r_hash (const void *);
257 static void add_type_for_runtime (tree);
258 static tree lookup_type_for_runtime (tree);
259
260 static void remove_unreachable_regions (rtx);
261
262 static int ttypes_filter_eq (const void *, const void *);
263 static hashval_t ttypes_filter_hash (const void *);
264 static int ehspec_filter_eq (const void *, const void *);
265 static hashval_t ehspec_filter_hash (const void *);
266 static int add_ttypes_entry (htab_t, tree);
267 static int add_ehspec_entry (htab_t, htab_t, tree);
268 static void assign_filter_values (void);
269 static void build_post_landing_pads (void);
270 static void connect_post_landing_pads (void);
271 static void dw2_build_landing_pads (void);
272
273 struct sjlj_lp_info;
274 static bool sjlj_find_directly_reachable_regions (struct sjlj_lp_info *);
275 static void sjlj_assign_call_site_values (rtx, struct sjlj_lp_info *);
276 static void sjlj_mark_call_sites (struct sjlj_lp_info *);
277 static void sjlj_emit_function_enter (rtx);
278 static void sjlj_emit_function_exit (void);
279 static void sjlj_emit_dispatch_table (rtx, struct sjlj_lp_info *);
280 static void sjlj_build_landing_pads (void);
281
282 static hashval_t ehl_hash (const void *);
283 static int ehl_eq (const void *, const void *);
284 static void add_ehl_entry (rtx, struct eh_region *);
285 static void remove_exception_handler_label (rtx);
286 static void remove_eh_handler (struct eh_region *);
287 static int for_each_eh_label_1 (void **, void *);
288
289 /* The return value of reachable_next_level. */
290 enum reachable_code
291 {
292 /* The given exception is not processed by the given region. */
293 RNL_NOT_CAUGHT,
294 /* The given exception may need processing by the given region. */
295 RNL_MAYBE_CAUGHT,
296 /* The given exception is completely processed by the given region. */
297 RNL_CAUGHT,
298 /* The given exception is completely processed by the runtime. */
299 RNL_BLOCKED
300 };
301
302 struct reachable_info;
303 static enum reachable_code reachable_next_level (struct eh_region *, tree,
304 struct reachable_info *);
305
306 static int action_record_eq (const void *, const void *);
307 static hashval_t action_record_hash (const void *);
308 static int add_action_record (htab_t, int, int);
309 static int collect_one_action_chain (htab_t, struct eh_region *);
310 static int add_call_site (rtx, int);
311
312 static void push_uleb128 (varray_type *, unsigned int);
313 static void push_sleb128 (varray_type *, int);
314 #ifndef HAVE_AS_LEB128
315 static int dw2_size_of_call_site_table (void);
316 static int sjlj_size_of_call_site_table (void);
317 #endif
318 static void dw2_output_call_site_table (void);
319 static void sjlj_output_call_site_table (void);
320
321 \f
322 /* Routine to see if exception handling is turned on.
323 DO_WARN is nonzero if we want to inform the user that exception
324 handling is turned off.
325
326 This is used to ensure that -fexceptions has been specified if the
327 compiler tries to use any exception-specific functions. */
328
329 int
330 doing_eh (int do_warn)
331 {
332 if (! flag_exceptions)
333 {
334 static int warned = 0;
335 if (! warned && do_warn)
336 {
337 error ("exception handling disabled, use -fexceptions to enable");
338 warned = 1;
339 }
340 return 0;
341 }
342 return 1;
343 }
344
345 \f
346 void
347 init_eh (void)
348 {
349 if (! flag_exceptions)
350 return;
351
352 type_to_runtime_map = htab_create_ggc (31, t2r_hash, t2r_eq, NULL);
353
354 /* Create the SjLj_Function_Context structure. This should match
355 the definition in unwind-sjlj.c. */
356 if (USING_SJLJ_EXCEPTIONS)
357 {
358 tree f_jbuf, f_per, f_lsda, f_prev, f_cs, f_data, tmp;
359
360 sjlj_fc_type_node = lang_hooks.types.make_type (RECORD_TYPE);
361
362 f_prev = build_decl (FIELD_DECL, get_identifier ("__prev"),
363 build_pointer_type (sjlj_fc_type_node));
364 DECL_FIELD_CONTEXT (f_prev) = sjlj_fc_type_node;
365
366 f_cs = build_decl (FIELD_DECL, get_identifier ("__call_site"),
367 integer_type_node);
368 DECL_FIELD_CONTEXT (f_cs) = sjlj_fc_type_node;
369
370 tmp = build_index_type (build_int_cst (NULL_TREE, 4 - 1));
371 tmp = build_array_type (lang_hooks.types.type_for_mode (word_mode, 1),
372 tmp);
373 f_data = build_decl (FIELD_DECL, get_identifier ("__data"), tmp);
374 DECL_FIELD_CONTEXT (f_data) = sjlj_fc_type_node;
375
376 f_per = build_decl (FIELD_DECL, get_identifier ("__personality"),
377 ptr_type_node);
378 DECL_FIELD_CONTEXT (f_per) = sjlj_fc_type_node;
379
380 f_lsda = build_decl (FIELD_DECL, get_identifier ("__lsda"),
381 ptr_type_node);
382 DECL_FIELD_CONTEXT (f_lsda) = sjlj_fc_type_node;
383
384 #ifdef DONT_USE_BUILTIN_SETJMP
385 #ifdef JMP_BUF_SIZE
386 tmp = build_int_cst (NULL_TREE, JMP_BUF_SIZE - 1);
387 #else
388 /* Should be large enough for most systems, if it is not,
389 JMP_BUF_SIZE should be defined with the proper value. It will
390 also tend to be larger than necessary for most systems, a more
391 optimal port will define JMP_BUF_SIZE. */
392 tmp = build_int_cst (NULL_TREE, FIRST_PSEUDO_REGISTER + 2 - 1);
393 #endif
394 #else
395 /* builtin_setjmp takes a pointer to 5 words. */
396 tmp = build_int_cst (NULL_TREE, 5 * BITS_PER_WORD / POINTER_SIZE - 1);
397 #endif
398 tmp = build_index_type (tmp);
399 tmp = build_array_type (ptr_type_node, tmp);
400 f_jbuf = build_decl (FIELD_DECL, get_identifier ("__jbuf"), tmp);
401 #ifdef DONT_USE_BUILTIN_SETJMP
402 /* We don't know what the alignment requirements of the
403 runtime's jmp_buf has. Overestimate. */
404 DECL_ALIGN (f_jbuf) = BIGGEST_ALIGNMENT;
405 DECL_USER_ALIGN (f_jbuf) = 1;
406 #endif
407 DECL_FIELD_CONTEXT (f_jbuf) = sjlj_fc_type_node;
408
409 TYPE_FIELDS (sjlj_fc_type_node) = f_prev;
410 TREE_CHAIN (f_prev) = f_cs;
411 TREE_CHAIN (f_cs) = f_data;
412 TREE_CHAIN (f_data) = f_per;
413 TREE_CHAIN (f_per) = f_lsda;
414 TREE_CHAIN (f_lsda) = f_jbuf;
415
416 layout_type (sjlj_fc_type_node);
417
418 /* Cache the interesting field offsets so that we have
419 easy access from rtl. */
420 sjlj_fc_call_site_ofs
421 = (tree_low_cst (DECL_FIELD_OFFSET (f_cs), 1)
422 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_cs), 1) / BITS_PER_UNIT);
423 sjlj_fc_data_ofs
424 = (tree_low_cst (DECL_FIELD_OFFSET (f_data), 1)
425 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_data), 1) / BITS_PER_UNIT);
426 sjlj_fc_personality_ofs
427 = (tree_low_cst (DECL_FIELD_OFFSET (f_per), 1)
428 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_per), 1) / BITS_PER_UNIT);
429 sjlj_fc_lsda_ofs
430 = (tree_low_cst (DECL_FIELD_OFFSET (f_lsda), 1)
431 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_lsda), 1) / BITS_PER_UNIT);
432 sjlj_fc_jbuf_ofs
433 = (tree_low_cst (DECL_FIELD_OFFSET (f_jbuf), 1)
434 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_jbuf), 1) / BITS_PER_UNIT);
435 }
436 }
437
438 void
439 init_eh_for_function (void)
440 {
441 cfun->eh = ggc_alloc_cleared (sizeof (struct eh_status));
442 }
443 \f
444 /* Routines to generate the exception tree somewhat directly.
445 These are used from tree-eh.c when processing exception related
446 nodes during tree optimization. */
447
448 static struct eh_region *
449 gen_eh_region (enum eh_region_type type, struct eh_region *outer)
450 {
451 struct eh_region *new;
452
453 #ifdef ENABLE_CHECKING
454 gcc_assert (doing_eh (0));
455 #endif
456
457 /* Insert a new blank region as a leaf in the tree. */
458 new = ggc_alloc_cleared (sizeof (*new));
459 new->type = type;
460 new->outer = outer;
461 if (outer)
462 {
463 new->next_peer = outer->inner;
464 outer->inner = new;
465 }
466 else
467 {
468 new->next_peer = cfun->eh->region_tree;
469 cfun->eh->region_tree = new;
470 }
471
472 new->region_number = ++cfun->eh->last_region_number;
473
474 return new;
475 }
476
477 struct eh_region *
478 gen_eh_region_cleanup (struct eh_region *outer, struct eh_region *prev_try)
479 {
480 struct eh_region *cleanup = gen_eh_region (ERT_CLEANUP, outer);
481 cleanup->u.cleanup.prev_try = prev_try;
482 return cleanup;
483 }
484
485 struct eh_region *
486 gen_eh_region_try (struct eh_region *outer)
487 {
488 return gen_eh_region (ERT_TRY, outer);
489 }
490
491 struct eh_region *
492 gen_eh_region_catch (struct eh_region *t, tree type_or_list)
493 {
494 struct eh_region *c, *l;
495 tree type_list, type_node;
496
497 /* Ensure to always end up with a type list to normalize further
498 processing, then register each type against the runtime types map. */
499 type_list = type_or_list;
500 if (type_or_list)
501 {
502 if (TREE_CODE (type_or_list) != TREE_LIST)
503 type_list = tree_cons (NULL_TREE, type_or_list, NULL_TREE);
504
505 type_node = type_list;
506 for (; type_node; type_node = TREE_CHAIN (type_node))
507 add_type_for_runtime (TREE_VALUE (type_node));
508 }
509
510 c = gen_eh_region (ERT_CATCH, t->outer);
511 c->u.catch.type_list = type_list;
512 l = t->u.try.last_catch;
513 c->u.catch.prev_catch = l;
514 if (l)
515 l->u.catch.next_catch = c;
516 else
517 t->u.try.catch = c;
518 t->u.try.last_catch = c;
519
520 return c;
521 }
522
523 struct eh_region *
524 gen_eh_region_allowed (struct eh_region *outer, tree allowed)
525 {
526 struct eh_region *region = gen_eh_region (ERT_ALLOWED_EXCEPTIONS, outer);
527 region->u.allowed.type_list = allowed;
528
529 for (; allowed ; allowed = TREE_CHAIN (allowed))
530 add_type_for_runtime (TREE_VALUE (allowed));
531
532 return region;
533 }
534
535 struct eh_region *
536 gen_eh_region_must_not_throw (struct eh_region *outer)
537 {
538 return gen_eh_region (ERT_MUST_NOT_THROW, outer);
539 }
540
541 int
542 get_eh_region_number (struct eh_region *region)
543 {
544 return region->region_number;
545 }
546
547 bool
548 get_eh_region_may_contain_throw (struct eh_region *region)
549 {
550 return region->may_contain_throw;
551 }
552
553 tree
554 get_eh_region_tree_label (struct eh_region *region)
555 {
556 return region->tree_label;
557 }
558
559 void
560 set_eh_region_tree_label (struct eh_region *region, tree lab)
561 {
562 region->tree_label = lab;
563 }
564 \f
565 void
566 expand_resx_expr (tree exp)
567 {
568 int region_nr = TREE_INT_CST_LOW (TREE_OPERAND (exp, 0));
569 struct eh_region *reg = VEC_index (eh_region,
570 cfun->eh->region_array, region_nr);
571
572 gcc_assert (!reg->resume);
573 reg->resume = emit_jump_insn (gen_rtx_RESX (VOIDmode, region_nr));
574 emit_barrier ();
575 }
576
577 /* Note that the current EH region (if any) may contain a throw, or a
578 call to a function which itself may contain a throw. */
579
580 void
581 note_eh_region_may_contain_throw (struct eh_region *region)
582 {
583 while (region && !region->may_contain_throw)
584 {
585 region->may_contain_throw = 1;
586 region = region->outer;
587 }
588 }
589
590 void
591 note_current_region_may_contain_throw (void)
592 {
593 note_eh_region_may_contain_throw (cfun->eh->cur_region);
594 }
595
596
597 /* Return an rtl expression for a pointer to the exception object
598 within a handler. */
599
600 rtx
601 get_exception_pointer (struct function *fun)
602 {
603 rtx exc_ptr = fun->eh->exc_ptr;
604 if (fun == cfun && ! exc_ptr)
605 {
606 exc_ptr = gen_reg_rtx (ptr_mode);
607 fun->eh->exc_ptr = exc_ptr;
608 }
609 return exc_ptr;
610 }
611
612 /* Return an rtl expression for the exception dispatch filter
613 within a handler. */
614
615 rtx
616 get_exception_filter (struct function *fun)
617 {
618 rtx filter = fun->eh->filter;
619 if (fun == cfun && ! filter)
620 {
621 filter = gen_reg_rtx (targetm.eh_return_filter_mode ());
622 fun->eh->filter = filter;
623 }
624 return filter;
625 }
626 \f
627 /* This section is for the exception handling specific optimization pass. */
628
629 /* Random access the exception region tree. */
630
631 void
632 collect_eh_region_array (void)
633 {
634 struct eh_region *i;
635
636 i = cfun->eh->region_tree;
637 if (! i)
638 return;
639
640 VEC_safe_grow (eh_region, gc, cfun->eh->region_array,
641 cfun->eh->last_region_number + 1);
642 VEC_replace (eh_region, cfun->eh->region_array, 0, 0);
643
644 while (1)
645 {
646 VEC_replace (eh_region, cfun->eh->region_array, i->region_number, i);
647
648 /* If there are sub-regions, process them. */
649 if (i->inner)
650 i = i->inner;
651 /* If there are peers, process them. */
652 else if (i->next_peer)
653 i = i->next_peer;
654 /* Otherwise, step back up the tree to the next peer. */
655 else
656 {
657 do {
658 i = i->outer;
659 if (i == NULL)
660 return;
661 } while (i->next_peer == NULL);
662 i = i->next_peer;
663 }
664 }
665 }
666
667 /* Remove all regions whose labels are not reachable from insns. */
668
669 static void
670 remove_unreachable_regions (rtx insns)
671 {
672 int i, *uid_region_num;
673 bool *reachable;
674 struct eh_region *r;
675 rtx insn;
676
677 uid_region_num = xcalloc (get_max_uid (), sizeof(int));
678 reachable = xcalloc (cfun->eh->last_region_number + 1, sizeof(bool));
679
680 for (i = cfun->eh->last_region_number; i > 0; --i)
681 {
682 r = VEC_index (eh_region, cfun->eh->region_array, i);
683 if (!r || r->region_number != i)
684 continue;
685
686 if (r->resume)
687 {
688 gcc_assert (!uid_region_num[INSN_UID (r->resume)]);
689 uid_region_num[INSN_UID (r->resume)] = i;
690 }
691 if (r->label)
692 {
693 gcc_assert (!uid_region_num[INSN_UID (r->label)]);
694 uid_region_num[INSN_UID (r->label)] = i;
695 }
696 }
697
698 for (insn = insns; insn; insn = NEXT_INSN (insn))
699 reachable[uid_region_num[INSN_UID (insn)]] = true;
700
701 for (i = cfun->eh->last_region_number; i > 0; --i)
702 {
703 r = VEC_index (eh_region, cfun->eh->region_array, i);
704 if (r && r->region_number == i && !reachable[i])
705 {
706 bool kill_it = true;
707 switch (r->type)
708 {
709 case ERT_THROW:
710 /* Don't remove ERT_THROW regions if their outer region
711 is reachable. */
712 if (r->outer && reachable[r->outer->region_number])
713 kill_it = false;
714 break;
715
716 case ERT_MUST_NOT_THROW:
717 /* MUST_NOT_THROW regions are implementable solely in the
718 runtime, but their existence continues to affect calls
719 within that region. Never delete them here. */
720 kill_it = false;
721 break;
722
723 case ERT_TRY:
724 {
725 /* TRY regions are reachable if any of its CATCH regions
726 are reachable. */
727 struct eh_region *c;
728 for (c = r->u.try.catch; c ; c = c->u.catch.next_catch)
729 if (reachable[c->region_number])
730 {
731 kill_it = false;
732 break;
733 }
734 break;
735 }
736
737 default:
738 break;
739 }
740
741 if (kill_it)
742 remove_eh_handler (r);
743 }
744 }
745
746 free (reachable);
747 free (uid_region_num);
748 }
749
750 /* Set up EH labels for RTL. */
751
752 void
753 convert_from_eh_region_ranges (void)
754 {
755 rtx insns = get_insns ();
756 int i, n = cfun->eh->last_region_number;
757
758 /* Most of the work is already done at the tree level. All we need to
759 do is collect the rtl labels that correspond to the tree labels that
760 collect the rtl labels that correspond to the tree labels
761 we allocated earlier. */
762 for (i = 1; i <= n; ++i)
763 {
764 struct eh_region *region;
765
766 region = VEC_index (eh_region, cfun->eh->region_array, i);
767 if (region && region->tree_label)
768 region->label = DECL_RTL_IF_SET (region->tree_label);
769 }
770
771 remove_unreachable_regions (insns);
772 }
773
774 static void
775 add_ehl_entry (rtx label, struct eh_region *region)
776 {
777 struct ehl_map_entry **slot, *entry;
778
779 LABEL_PRESERVE_P (label) = 1;
780
781 entry = ggc_alloc (sizeof (*entry));
782 entry->label = label;
783 entry->region = region;
784
785 slot = (struct ehl_map_entry **)
786 htab_find_slot (cfun->eh->exception_handler_label_map, entry, INSERT);
787
788 /* Before landing pad creation, each exception handler has its own
789 label. After landing pad creation, the exception handlers may
790 share landing pads. This is ok, since maybe_remove_eh_handler
791 only requires the 1-1 mapping before landing pad creation. */
792 gcc_assert (!*slot || cfun->eh->built_landing_pads);
793
794 *slot = entry;
795 }
796
797 void
798 find_exception_handler_labels (void)
799 {
800 int i;
801
802 if (cfun->eh->exception_handler_label_map)
803 htab_empty (cfun->eh->exception_handler_label_map);
804 else
805 {
806 /* ??? The expansion factor here (3/2) must be greater than the htab
807 occupancy factor (4/3) to avoid unnecessary resizing. */
808 cfun->eh->exception_handler_label_map
809 = htab_create_ggc (cfun->eh->last_region_number * 3 / 2,
810 ehl_hash, ehl_eq, NULL);
811 }
812
813 if (cfun->eh->region_tree == NULL)
814 return;
815
816 for (i = cfun->eh->last_region_number; i > 0; --i)
817 {
818 struct eh_region *region;
819 rtx lab;
820
821 region = VEC_index (eh_region, cfun->eh->region_array, i);
822 if (! region || region->region_number != i)
823 continue;
824 if (cfun->eh->built_landing_pads)
825 lab = region->landing_pad;
826 else
827 lab = region->label;
828
829 if (lab)
830 add_ehl_entry (lab, region);
831 }
832
833 /* For sjlj exceptions, need the return label to remain live until
834 after landing pad generation. */
835 if (USING_SJLJ_EXCEPTIONS && ! cfun->eh->built_landing_pads)
836 add_ehl_entry (return_label, NULL);
837 }
838
839 /* Returns true if the current function has exception handling regions. */
840
841 bool
842 current_function_has_exception_handlers (void)
843 {
844 int i;
845
846 for (i = cfun->eh->last_region_number; i > 0; --i)
847 {
848 struct eh_region *region;
849
850 region = VEC_index (eh_region, cfun->eh->region_array, i);
851 if (region
852 && region->region_number == i
853 && region->type != ERT_THROW)
854 return true;
855 }
856
857 return false;
858 }
859 \f
860 static struct eh_region *
861 duplicate_eh_region_1 (struct eh_region *o)
862 {
863 struct eh_region *n = ggc_alloc_cleared (sizeof (struct eh_region));
864
865 *n = *o;
866
867 n->region_number = o->region_number + cfun->eh->last_region_number;
868 VEC_replace (eh_region, cfun->eh->region_array, n->region_number, n);
869 gcc_assert (!o->aka);
870
871 return n;
872 }
873
874 static void
875 duplicate_eh_region_2 (struct eh_region *o, struct eh_region **n_array,
876 struct eh_region *prev_try)
877 {
878 struct eh_region *n = n_array[o->region_number];
879
880 switch (n->type)
881 {
882 case ERT_TRY:
883 if (o->u.try.catch)
884 n->u.try.catch = n_array[o->u.try.catch->region_number];
885 if (o->u.try.last_catch)
886 n->u.try.last_catch = n_array[o->u.try.last_catch->region_number];
887 break;
888
889 case ERT_CATCH:
890 if (o->u.catch.next_catch)
891 n->u.catch.next_catch = n_array[o->u.catch.next_catch->region_number];
892 if (o->u.catch.prev_catch)
893 n->u.catch.prev_catch = n_array[o->u.catch.prev_catch->region_number];
894 break;
895
896 case ERT_CLEANUP:
897 if (o->u.cleanup.prev_try)
898 n->u.cleanup.prev_try = n_array[o->u.cleanup.prev_try->region_number];
899 else
900 n->u.cleanup.prev_try = prev_try;
901 break;
902
903 default:
904 break;
905 }
906
907 if (o->outer)
908 n->outer = n_array[o->outer->region_number];
909 if (o->inner)
910 n->inner = n_array[o->inner->region_number];
911 if (o->next_peer)
912 n->next_peer = n_array[o->next_peer->region_number];
913 }
914
915 /* Duplicate the EH regions of IFUN into current function, root the tree in
916 OUTER_REGION and remap labels using MAP callback. */
917 int
918 duplicate_eh_regions (struct function *ifun, duplicate_eh_regions_map map,
919 void *data, int outer_region)
920 {
921 int ifun_last_region_number = ifun->eh->last_region_number;
922 struct eh_region **n_array, *root, *cur, *prev_try;
923 int i;
924
925 if (ifun_last_region_number == 0 || !ifun->eh->region_tree)
926 return 0;
927
928 n_array = xcalloc (ifun_last_region_number + 1, sizeof (*n_array));
929 VEC_safe_grow (eh_region, gc, cfun->eh->region_array,
930 cfun->eh->last_region_number + 1 + ifun_last_region_number);
931
932 /* We might've created new cfun->eh->region_array so zero out nonexisting region 0. */
933 VEC_replace (eh_region, cfun->eh->region_array, 0, 0);
934
935 for (i = cfun->eh->last_region_number + 1;
936 i < cfun->eh->last_region_number + 1 + ifun_last_region_number; i++)
937 VEC_replace (eh_region, cfun->eh->region_array, i, 0);
938
939 /* Search for the containing ERT_TRY region to fix up
940 the prev_try short-cuts for ERT_CLEANUP regions. */
941 prev_try = NULL;
942 if (outer_region > 0)
943 for (prev_try = VEC_index (eh_region, cfun->eh->region_array, outer_region);
944 prev_try && prev_try->type != ERT_TRY;
945 prev_try = prev_try->outer)
946 ;
947
948 for (i = 1; i <= ifun_last_region_number; ++i)
949 {
950 cur = VEC_index (eh_region, ifun->eh->region_array, i);
951 if (!cur || cur->region_number != i)
952 continue;
953 n_array[i] = duplicate_eh_region_1 (cur);
954 if (cur->tree_label)
955 {
956 tree newlabel = map (cur->tree_label, data);
957 n_array[i]->tree_label = newlabel;
958 }
959 else
960 n_array[i]->tree_label = NULL;
961 }
962 for (i = 1; i <= ifun_last_region_number; ++i)
963 {
964 cur = VEC_index (eh_region, ifun->eh->region_array, i);
965 if (!cur || cur->region_number != i)
966 continue;
967 duplicate_eh_region_2 (cur, n_array, prev_try);
968 }
969
970 root = n_array[ifun->eh->region_tree->region_number];
971 gcc_assert (root->outer == NULL);
972 if (outer_region > 0)
973 {
974 struct eh_region *cur
975 = VEC_index (eh_region, cfun->eh->region_array, outer_region);
976 struct eh_region *p = cur->inner;
977
978 if (p)
979 {
980 while (p->next_peer)
981 p = p->next_peer;
982 p->next_peer = root;
983 }
984 else
985 cur->inner = root;
986 for (i = 1; i <= ifun_last_region_number; ++i)
987 if (n_array[i] && n_array[i]->outer == NULL)
988 n_array[i]->outer = cur;
989 }
990 else
991 {
992 struct eh_region *p = cfun->eh->region_tree;
993 if (p)
994 {
995 while (p->next_peer)
996 p = p->next_peer;
997 p->next_peer = root;
998 }
999 else
1000 cfun->eh->region_tree = root;
1001 }
1002
1003 free (n_array);
1004
1005 i = cfun->eh->last_region_number;
1006 cfun->eh->last_region_number = i + ifun_last_region_number;
1007
1008 return i;
1009 }
1010 \f
1011 static int
1012 t2r_eq (const void *pentry, const void *pdata)
1013 {
1014 tree entry = (tree) pentry;
1015 tree data = (tree) pdata;
1016
1017 return TREE_PURPOSE (entry) == data;
1018 }
1019
1020 static hashval_t
1021 t2r_hash (const void *pentry)
1022 {
1023 tree entry = (tree) pentry;
1024 return TREE_HASH (TREE_PURPOSE (entry));
1025 }
1026
1027 static void
1028 add_type_for_runtime (tree type)
1029 {
1030 tree *slot;
1031
1032 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1033 TREE_HASH (type), INSERT);
1034 if (*slot == NULL)
1035 {
1036 tree runtime = (*lang_eh_runtime_type) (type);
1037 *slot = tree_cons (type, runtime, NULL_TREE);
1038 }
1039 }
1040
1041 static tree
1042 lookup_type_for_runtime (tree type)
1043 {
1044 tree *slot;
1045
1046 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1047 TREE_HASH (type), NO_INSERT);
1048
1049 /* We should have always inserted the data earlier. */
1050 return TREE_VALUE (*slot);
1051 }
1052
1053 \f
1054 /* Represent an entry in @TTypes for either catch actions
1055 or exception filter actions. */
1056 struct ttypes_filter GTY(())
1057 {
1058 tree t;
1059 int filter;
1060 };
1061
1062 /* Compare ENTRY (a ttypes_filter entry in the hash table) with DATA
1063 (a tree) for a @TTypes type node we are thinking about adding. */
1064
1065 static int
1066 ttypes_filter_eq (const void *pentry, const void *pdata)
1067 {
1068 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1069 tree data = (tree) pdata;
1070
1071 return entry->t == data;
1072 }
1073
1074 static hashval_t
1075 ttypes_filter_hash (const void *pentry)
1076 {
1077 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1078 return TREE_HASH (entry->t);
1079 }
1080
1081 /* Compare ENTRY with DATA (both struct ttypes_filter) for a @TTypes
1082 exception specification list we are thinking about adding. */
1083 /* ??? Currently we use the type lists in the order given. Someone
1084 should put these in some canonical order. */
1085
1086 static int
1087 ehspec_filter_eq (const void *pentry, const void *pdata)
1088 {
1089 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1090 const struct ttypes_filter *data = (const struct ttypes_filter *) pdata;
1091
1092 return type_list_equal (entry->t, data->t);
1093 }
1094
1095 /* Hash function for exception specification lists. */
1096
1097 static hashval_t
1098 ehspec_filter_hash (const void *pentry)
1099 {
1100 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1101 hashval_t h = 0;
1102 tree list;
1103
1104 for (list = entry->t; list ; list = TREE_CHAIN (list))
1105 h = (h << 5) + (h >> 27) + TREE_HASH (TREE_VALUE (list));
1106 return h;
1107 }
1108
1109 /* Add TYPE (which may be NULL) to cfun->eh->ttype_data, using TYPES_HASH
1110 to speed up the search. Return the filter value to be used. */
1111
1112 static int
1113 add_ttypes_entry (htab_t ttypes_hash, tree type)
1114 {
1115 struct ttypes_filter **slot, *n;
1116
1117 slot = (struct ttypes_filter **)
1118 htab_find_slot_with_hash (ttypes_hash, type, TREE_HASH (type), INSERT);
1119
1120 if ((n = *slot) == NULL)
1121 {
1122 /* Filter value is a 1 based table index. */
1123
1124 n = XNEW (struct ttypes_filter);
1125 n->t = type;
1126 n->filter = VEC_length (tree, cfun->eh->ttype_data) + 1;
1127 *slot = n;
1128
1129 VEC_safe_push (tree, gc, cfun->eh->ttype_data, type);
1130 }
1131
1132 return n->filter;
1133 }
1134
1135 /* Add LIST to cfun->eh->ehspec_data, using EHSPEC_HASH and TYPES_HASH
1136 to speed up the search. Return the filter value to be used. */
1137
1138 static int
1139 add_ehspec_entry (htab_t ehspec_hash, htab_t ttypes_hash, tree list)
1140 {
1141 struct ttypes_filter **slot, *n;
1142 struct ttypes_filter dummy;
1143
1144 dummy.t = list;
1145 slot = (struct ttypes_filter **)
1146 htab_find_slot (ehspec_hash, &dummy, INSERT);
1147
1148 if ((n = *slot) == NULL)
1149 {
1150 /* Filter value is a -1 based byte index into a uleb128 buffer. */
1151
1152 n = XNEW (struct ttypes_filter);
1153 n->t = list;
1154 n->filter = -(VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) + 1);
1155 *slot = n;
1156
1157 /* Generate a 0 terminated list of filter values. */
1158 for (; list ; list = TREE_CHAIN (list))
1159 {
1160 if (targetm.arm_eabi_unwinder)
1161 VARRAY_PUSH_TREE (cfun->eh->ehspec_data, TREE_VALUE (list));
1162 else
1163 {
1164 /* Look up each type in the list and encode its filter
1165 value as a uleb128. */
1166 push_uleb128 (&cfun->eh->ehspec_data,
1167 add_ttypes_entry (ttypes_hash, TREE_VALUE (list)));
1168 }
1169 }
1170 if (targetm.arm_eabi_unwinder)
1171 VARRAY_PUSH_TREE (cfun->eh->ehspec_data, NULL_TREE);
1172 else
1173 VARRAY_PUSH_UCHAR (cfun->eh->ehspec_data, 0);
1174 }
1175
1176 return n->filter;
1177 }
1178
1179 /* Generate the action filter values to be used for CATCH and
1180 ALLOWED_EXCEPTIONS regions. When using dwarf2 exception regions,
1181 we use lots of landing pads, and so every type or list can share
1182 the same filter value, which saves table space. */
1183
1184 static void
1185 assign_filter_values (void)
1186 {
1187 int i;
1188 htab_t ttypes, ehspec;
1189
1190 cfun->eh->ttype_data = VEC_alloc (tree, gc, 16);
1191 if (targetm.arm_eabi_unwinder)
1192 VARRAY_TREE_INIT (cfun->eh->ehspec_data, 64, "ehspec_data");
1193 else
1194 VARRAY_UCHAR_INIT (cfun->eh->ehspec_data, 64, "ehspec_data");
1195
1196 ttypes = htab_create (31, ttypes_filter_hash, ttypes_filter_eq, free);
1197 ehspec = htab_create (31, ehspec_filter_hash, ehspec_filter_eq, free);
1198
1199 for (i = cfun->eh->last_region_number; i > 0; --i)
1200 {
1201 struct eh_region *r;
1202
1203 r = VEC_index (eh_region, cfun->eh->region_array, i);
1204
1205 /* Mind we don't process a region more than once. */
1206 if (!r || r->region_number != i)
1207 continue;
1208
1209 switch (r->type)
1210 {
1211 case ERT_CATCH:
1212 /* Whatever type_list is (NULL or true list), we build a list
1213 of filters for the region. */
1214 r->u.catch.filter_list = NULL_TREE;
1215
1216 if (r->u.catch.type_list != NULL)
1217 {
1218 /* Get a filter value for each of the types caught and store
1219 them in the region's dedicated list. */
1220 tree tp_node = r->u.catch.type_list;
1221
1222 for (;tp_node; tp_node = TREE_CHAIN (tp_node))
1223 {
1224 int flt = add_ttypes_entry (ttypes, TREE_VALUE (tp_node));
1225 tree flt_node = build_int_cst (NULL_TREE, flt);
1226
1227 r->u.catch.filter_list
1228 = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
1229 }
1230 }
1231 else
1232 {
1233 /* Get a filter value for the NULL list also since it will need
1234 an action record anyway. */
1235 int flt = add_ttypes_entry (ttypes, NULL);
1236 tree flt_node = build_int_cst (NULL_TREE, flt);
1237
1238 r->u.catch.filter_list
1239 = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
1240 }
1241
1242 break;
1243
1244 case ERT_ALLOWED_EXCEPTIONS:
1245 r->u.allowed.filter
1246 = add_ehspec_entry (ehspec, ttypes, r->u.allowed.type_list);
1247 break;
1248
1249 default:
1250 break;
1251 }
1252 }
1253
1254 htab_delete (ttypes);
1255 htab_delete (ehspec);
1256 }
1257
1258 /* Emit SEQ into basic block just before INSN (that is assumed to be
1259 first instruction of some existing BB and return the newly
1260 produced block. */
1261 static basic_block
1262 emit_to_new_bb_before (rtx seq, rtx insn)
1263 {
1264 rtx last;
1265 basic_block bb;
1266 edge e;
1267 edge_iterator ei;
1268
1269 /* If there happens to be a fallthru edge (possibly created by cleanup_cfg
1270 call), we don't want it to go into newly created landing pad or other EH
1271 construct. */
1272 for (ei = ei_start (BLOCK_FOR_INSN (insn)->preds); (e = ei_safe_edge (ei)); )
1273 if (e->flags & EDGE_FALLTHRU)
1274 force_nonfallthru (e);
1275 else
1276 ei_next (&ei);
1277 last = emit_insn_before (seq, insn);
1278 if (BARRIER_P (last))
1279 last = PREV_INSN (last);
1280 bb = create_basic_block (seq, last, BLOCK_FOR_INSN (insn)->prev_bb);
1281 update_bb_for_insn (bb);
1282 bb->flags |= BB_SUPERBLOCK;
1283 return bb;
1284 }
1285
1286 /* Generate the code to actually handle exceptions, which will follow the
1287 landing pads. */
1288
1289 static void
1290 build_post_landing_pads (void)
1291 {
1292 int i;
1293
1294 for (i = cfun->eh->last_region_number; i > 0; --i)
1295 {
1296 struct eh_region *region;
1297 rtx seq;
1298
1299 region = VEC_index (eh_region, cfun->eh->region_array, i);
1300 /* Mind we don't process a region more than once. */
1301 if (!region || region->region_number != i)
1302 continue;
1303
1304 switch (region->type)
1305 {
1306 case ERT_TRY:
1307 /* ??? Collect the set of all non-overlapping catch handlers
1308 all the way up the chain until blocked by a cleanup. */
1309 /* ??? Outer try regions can share landing pads with inner
1310 try regions if the types are completely non-overlapping,
1311 and there are no intervening cleanups. */
1312
1313 region->post_landing_pad = gen_label_rtx ();
1314
1315 start_sequence ();
1316
1317 emit_label (region->post_landing_pad);
1318
1319 /* ??? It is mighty inconvenient to call back into the
1320 switch statement generation code in expand_end_case.
1321 Rapid prototyping sez a sequence of ifs. */
1322 {
1323 struct eh_region *c;
1324 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
1325 {
1326 if (c->u.catch.type_list == NULL)
1327 emit_jump (c->label);
1328 else
1329 {
1330 /* Need for one cmp/jump per type caught. Each type
1331 list entry has a matching entry in the filter list
1332 (see assign_filter_values). */
1333 tree tp_node = c->u.catch.type_list;
1334 tree flt_node = c->u.catch.filter_list;
1335
1336 for (; tp_node; )
1337 {
1338 emit_cmp_and_jump_insns
1339 (cfun->eh->filter,
1340 GEN_INT (tree_low_cst (TREE_VALUE (flt_node), 0)),
1341 EQ, NULL_RTX,
1342 targetm.eh_return_filter_mode (), 0, c->label);
1343
1344 tp_node = TREE_CHAIN (tp_node);
1345 flt_node = TREE_CHAIN (flt_node);
1346 }
1347 }
1348 }
1349 }
1350
1351 /* We delay the generation of the _Unwind_Resume until we generate
1352 landing pads. We emit a marker here so as to get good control
1353 flow data in the meantime. */
1354 region->resume
1355 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1356 emit_barrier ();
1357
1358 seq = get_insns ();
1359 end_sequence ();
1360
1361 emit_to_new_bb_before (seq, region->u.try.catch->label);
1362
1363 break;
1364
1365 case ERT_ALLOWED_EXCEPTIONS:
1366 region->post_landing_pad = gen_label_rtx ();
1367
1368 start_sequence ();
1369
1370 emit_label (region->post_landing_pad);
1371
1372 emit_cmp_and_jump_insns (cfun->eh->filter,
1373 GEN_INT (region->u.allowed.filter),
1374 EQ, NULL_RTX,
1375 targetm.eh_return_filter_mode (), 0, region->label);
1376
1377 /* We delay the generation of the _Unwind_Resume until we generate
1378 landing pads. We emit a marker here so as to get good control
1379 flow data in the meantime. */
1380 region->resume
1381 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1382 emit_barrier ();
1383
1384 seq = get_insns ();
1385 end_sequence ();
1386
1387 emit_to_new_bb_before (seq, region->label);
1388 break;
1389
1390 case ERT_CLEANUP:
1391 case ERT_MUST_NOT_THROW:
1392 region->post_landing_pad = region->label;
1393 break;
1394
1395 case ERT_CATCH:
1396 case ERT_THROW:
1397 /* Nothing to do. */
1398 break;
1399
1400 default:
1401 gcc_unreachable ();
1402 }
1403 }
1404 }
1405
1406 /* Replace RESX patterns with jumps to the next handler if any, or calls to
1407 _Unwind_Resume otherwise. */
1408
1409 static void
1410 connect_post_landing_pads (void)
1411 {
1412 int i;
1413
1414 for (i = cfun->eh->last_region_number; i > 0; --i)
1415 {
1416 struct eh_region *region;
1417 struct eh_region *outer;
1418 rtx seq;
1419 rtx barrier;
1420
1421 region = VEC_index (eh_region, cfun->eh->region_array, i);
1422 /* Mind we don't process a region more than once. */
1423 if (!region || region->region_number != i)
1424 continue;
1425
1426 /* If there is no RESX, or it has been deleted by flow, there's
1427 nothing to fix up. */
1428 if (! region->resume || INSN_DELETED_P (region->resume))
1429 continue;
1430
1431 /* Search for another landing pad in this function. */
1432 for (outer = region->outer; outer ; outer = outer->outer)
1433 if (outer->post_landing_pad)
1434 break;
1435
1436 start_sequence ();
1437
1438 if (outer)
1439 {
1440 edge e;
1441 basic_block src, dest;
1442
1443 emit_jump (outer->post_landing_pad);
1444 src = BLOCK_FOR_INSN (region->resume);
1445 dest = BLOCK_FOR_INSN (outer->post_landing_pad);
1446 while (EDGE_COUNT (src->succs) > 0)
1447 remove_edge (EDGE_SUCC (src, 0));
1448 e = make_edge (src, dest, 0);
1449 e->probability = REG_BR_PROB_BASE;
1450 e->count = src->count;
1451 }
1452 else
1453 {
1454 emit_library_call (unwind_resume_libfunc, LCT_THROW,
1455 VOIDmode, 1, cfun->eh->exc_ptr, ptr_mode);
1456
1457 /* What we just emitted was a throwing libcall, so it got a
1458 barrier automatically added after it. If the last insn in
1459 the libcall sequence isn't the barrier, it's because the
1460 target emits multiple insns for a call, and there are insns
1461 after the actual call insn (which are redundant and would be
1462 optimized away). The barrier is inserted exactly after the
1463 call insn, so let's go get that and delete the insns after
1464 it, because below we need the barrier to be the last insn in
1465 the sequence. */
1466 delete_insns_since (NEXT_INSN (last_call_insn ()));
1467 }
1468
1469 seq = get_insns ();
1470 end_sequence ();
1471 barrier = emit_insn_before (seq, region->resume);
1472 /* Avoid duplicate barrier. */
1473 gcc_assert (BARRIER_P (barrier));
1474 delete_insn (barrier);
1475 delete_insn (region->resume);
1476
1477 /* ??? From tree-ssa we can wind up with catch regions whose
1478 label is not instantiated, but whose resx is present. Now
1479 that we've dealt with the resx, kill the region. */
1480 if (region->label == NULL && region->type == ERT_CLEANUP)
1481 remove_eh_handler (region);
1482 }
1483 }
1484
1485 \f
1486 static void
1487 dw2_build_landing_pads (void)
1488 {
1489 int i;
1490 unsigned int j;
1491
1492 for (i = cfun->eh->last_region_number; i > 0; --i)
1493 {
1494 struct eh_region *region;
1495 rtx seq;
1496 basic_block bb;
1497 bool clobbers_hard_regs = false;
1498 edge e;
1499
1500 region = VEC_index (eh_region, cfun->eh->region_array, i);
1501 /* Mind we don't process a region more than once. */
1502 if (!region || region->region_number != i)
1503 continue;
1504
1505 if (region->type != ERT_CLEANUP
1506 && region->type != ERT_TRY
1507 && region->type != ERT_ALLOWED_EXCEPTIONS)
1508 continue;
1509
1510 start_sequence ();
1511
1512 region->landing_pad = gen_label_rtx ();
1513 emit_label (region->landing_pad);
1514
1515 #ifdef HAVE_exception_receiver
1516 if (HAVE_exception_receiver)
1517 emit_insn (gen_exception_receiver ());
1518 else
1519 #endif
1520 #ifdef HAVE_nonlocal_goto_receiver
1521 if (HAVE_nonlocal_goto_receiver)
1522 emit_insn (gen_nonlocal_goto_receiver ());
1523 else
1524 #endif
1525 { /* Nothing */ }
1526
1527 /* If the eh_return data registers are call-saved, then we
1528 won't have considered them clobbered from the call that
1529 threw. Kill them now. */
1530 for (j = 0; ; ++j)
1531 {
1532 unsigned r = EH_RETURN_DATA_REGNO (j);
1533 if (r == INVALID_REGNUM)
1534 break;
1535 if (! call_used_regs[r])
1536 {
1537 emit_insn (gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, r)));
1538 clobbers_hard_regs = true;
1539 }
1540 }
1541
1542 if (clobbers_hard_regs)
1543 {
1544 /* @@@ This is a kludge. Not all machine descriptions define a
1545 blockage insn, but we must not allow the code we just generated
1546 to be reordered by scheduling. So emit an ASM_INPUT to act as
1547 blockage insn. */
1548 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
1549 }
1550
1551 emit_move_insn (cfun->eh->exc_ptr,
1552 gen_rtx_REG (ptr_mode, EH_RETURN_DATA_REGNO (0)));
1553 emit_move_insn (cfun->eh->filter,
1554 gen_rtx_REG (targetm.eh_return_filter_mode (),
1555 EH_RETURN_DATA_REGNO (1)));
1556
1557 seq = get_insns ();
1558 end_sequence ();
1559
1560 bb = emit_to_new_bb_before (seq, region->post_landing_pad);
1561 e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
1562 e->count = bb->count;
1563 e->probability = REG_BR_PROB_BASE;
1564 }
1565 }
1566
1567 \f
1568 struct sjlj_lp_info
1569 {
1570 int directly_reachable;
1571 int action_index;
1572 int dispatch_index;
1573 int call_site_index;
1574 };
1575
1576 static bool
1577 sjlj_find_directly_reachable_regions (struct sjlj_lp_info *lp_info)
1578 {
1579 rtx insn;
1580 bool found_one = false;
1581
1582 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1583 {
1584 struct eh_region *region;
1585 enum reachable_code rc;
1586 tree type_thrown;
1587 rtx note;
1588
1589 if (! INSN_P (insn))
1590 continue;
1591
1592 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1593 if (!note || INTVAL (XEXP (note, 0)) <= 0)
1594 continue;
1595
1596 region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
1597
1598 type_thrown = NULL_TREE;
1599 if (region->type == ERT_THROW)
1600 {
1601 type_thrown = region->u.throw.type;
1602 region = region->outer;
1603 }
1604
1605 /* Find the first containing region that might handle the exception.
1606 That's the landing pad to which we will transfer control. */
1607 rc = RNL_NOT_CAUGHT;
1608 for (; region; region = region->outer)
1609 {
1610 rc = reachable_next_level (region, type_thrown, NULL);
1611 if (rc != RNL_NOT_CAUGHT)
1612 break;
1613 }
1614 if (rc == RNL_MAYBE_CAUGHT || rc == RNL_CAUGHT)
1615 {
1616 lp_info[region->region_number].directly_reachable = 1;
1617 found_one = true;
1618 }
1619 }
1620
1621 return found_one;
1622 }
1623
1624 static void
1625 sjlj_assign_call_site_values (rtx dispatch_label, struct sjlj_lp_info *lp_info)
1626 {
1627 htab_t ar_hash;
1628 int i, index;
1629
1630 /* First task: build the action table. */
1631
1632 VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
1633 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
1634
1635 for (i = cfun->eh->last_region_number; i > 0; --i)
1636 if (lp_info[i].directly_reachable)
1637 {
1638 struct eh_region *r = VEC_index (eh_region, cfun->eh->region_array, i);
1639
1640 r->landing_pad = dispatch_label;
1641 lp_info[i].action_index = collect_one_action_chain (ar_hash, r);
1642 if (lp_info[i].action_index != -1)
1643 cfun->uses_eh_lsda = 1;
1644 }
1645
1646 htab_delete (ar_hash);
1647
1648 /* Next: assign dispatch values. In dwarf2 terms, this would be the
1649 landing pad label for the region. For sjlj though, there is one
1650 common landing pad from which we dispatch to the post-landing pads.
1651
1652 A region receives a dispatch index if it is directly reachable
1653 and requires in-function processing. Regions that share post-landing
1654 pads may share dispatch indices. */
1655 /* ??? Post-landing pad sharing doesn't actually happen at the moment
1656 (see build_post_landing_pads) so we don't bother checking for it. */
1657
1658 index = 0;
1659 for (i = cfun->eh->last_region_number; i > 0; --i)
1660 if (lp_info[i].directly_reachable)
1661 lp_info[i].dispatch_index = index++;
1662
1663 /* Finally: assign call-site values. If dwarf2 terms, this would be
1664 the region number assigned by convert_to_eh_region_ranges, but
1665 handles no-action and must-not-throw differently. */
1666
1667 call_site_base = 1;
1668 for (i = cfun->eh->last_region_number; i > 0; --i)
1669 if (lp_info[i].directly_reachable)
1670 {
1671 int action = lp_info[i].action_index;
1672
1673 /* Map must-not-throw to otherwise unused call-site index 0. */
1674 if (action == -2)
1675 index = 0;
1676 /* Map no-action to otherwise unused call-site index -1. */
1677 else if (action == -1)
1678 index = -1;
1679 /* Otherwise, look it up in the table. */
1680 else
1681 index = add_call_site (GEN_INT (lp_info[i].dispatch_index), action);
1682
1683 lp_info[i].call_site_index = index;
1684 }
1685 }
1686
1687 static void
1688 sjlj_mark_call_sites (struct sjlj_lp_info *lp_info)
1689 {
1690 int last_call_site = -2;
1691 rtx insn, mem;
1692
1693 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1694 {
1695 struct eh_region *region;
1696 int this_call_site;
1697 rtx note, before, p;
1698
1699 /* Reset value tracking at extended basic block boundaries. */
1700 if (LABEL_P (insn))
1701 last_call_site = -2;
1702
1703 if (! INSN_P (insn))
1704 continue;
1705
1706 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1707 if (!note)
1708 {
1709 /* Calls (and trapping insns) without notes are outside any
1710 exception handling region in this function. Mark them as
1711 no action. */
1712 if (CALL_P (insn)
1713 || (flag_non_call_exceptions
1714 && may_trap_p (PATTERN (insn))))
1715 this_call_site = -1;
1716 else
1717 continue;
1718 }
1719 else
1720 {
1721 /* Calls that are known to not throw need not be marked. */
1722 if (INTVAL (XEXP (note, 0)) <= 0)
1723 continue;
1724
1725 region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
1726 this_call_site = lp_info[region->region_number].call_site_index;
1727 }
1728
1729 if (this_call_site == last_call_site)
1730 continue;
1731
1732 /* Don't separate a call from it's argument loads. */
1733 before = insn;
1734 if (CALL_P (insn))
1735 before = find_first_parameter_load (insn, NULL_RTX);
1736
1737 start_sequence ();
1738 mem = adjust_address (cfun->eh->sjlj_fc, TYPE_MODE (integer_type_node),
1739 sjlj_fc_call_site_ofs);
1740 emit_move_insn (mem, GEN_INT (this_call_site));
1741 p = get_insns ();
1742 end_sequence ();
1743
1744 emit_insn_before (p, before);
1745 last_call_site = this_call_site;
1746 }
1747 }
1748
1749 /* Construct the SjLj_Function_Context. */
1750
1751 static void
1752 sjlj_emit_function_enter (rtx dispatch_label)
1753 {
1754 rtx fn_begin, fc, mem, seq;
1755 bool fn_begin_outside_block;
1756
1757 fc = cfun->eh->sjlj_fc;
1758
1759 start_sequence ();
1760
1761 /* We're storing this libcall's address into memory instead of
1762 calling it directly. Thus, we must call assemble_external_libcall
1763 here, as we can not depend on emit_library_call to do it for us. */
1764 assemble_external_libcall (eh_personality_libfunc);
1765 mem = adjust_address (fc, Pmode, sjlj_fc_personality_ofs);
1766 emit_move_insn (mem, eh_personality_libfunc);
1767
1768 mem = adjust_address (fc, Pmode, sjlj_fc_lsda_ofs);
1769 if (cfun->uses_eh_lsda)
1770 {
1771 char buf[20];
1772 rtx sym;
1773
1774 ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", current_function_funcdef_no);
1775 sym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
1776 SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_LOCAL;
1777 emit_move_insn (mem, sym);
1778 }
1779 else
1780 emit_move_insn (mem, const0_rtx);
1781
1782 #ifdef DONT_USE_BUILTIN_SETJMP
1783 {
1784 rtx x, note;
1785 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_RETURNS_TWICE,
1786 TYPE_MODE (integer_type_node), 1,
1787 plus_constant (XEXP (fc, 0),
1788 sjlj_fc_jbuf_ofs), Pmode);
1789
1790 note = emit_note (NOTE_INSN_EXPECTED_VALUE);
1791 NOTE_EXPECTED_VALUE (note) = gen_rtx_EQ (VOIDmode, x, const0_rtx);
1792
1793 emit_cmp_and_jump_insns (x, const0_rtx, NE, 0,
1794 TYPE_MODE (integer_type_node), 0, dispatch_label);
1795 }
1796 #else
1797 expand_builtin_setjmp_setup (plus_constant (XEXP (fc, 0), sjlj_fc_jbuf_ofs),
1798 dispatch_label);
1799 #endif
1800
1801 emit_library_call (unwind_sjlj_register_libfunc, LCT_NORMAL, VOIDmode,
1802 1, XEXP (fc, 0), Pmode);
1803
1804 seq = get_insns ();
1805 end_sequence ();
1806
1807 /* ??? Instead of doing this at the beginning of the function,
1808 do this in a block that is at loop level 0 and dominates all
1809 can_throw_internal instructions. */
1810
1811 fn_begin_outside_block = true;
1812 for (fn_begin = get_insns (); ; fn_begin = NEXT_INSN (fn_begin))
1813 if (NOTE_P (fn_begin))
1814 {
1815 if (NOTE_LINE_NUMBER (fn_begin) == NOTE_INSN_FUNCTION_BEG)
1816 break;
1817 else if (NOTE_LINE_NUMBER (fn_begin) == NOTE_INSN_BASIC_BLOCK)
1818 fn_begin_outside_block = false;
1819 }
1820
1821 if (fn_begin_outside_block)
1822 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
1823 else
1824 emit_insn_after (seq, fn_begin);
1825 }
1826
1827 /* Call back from expand_function_end to know where we should put
1828 the call to unwind_sjlj_unregister_libfunc if needed. */
1829
1830 void
1831 sjlj_emit_function_exit_after (rtx after)
1832 {
1833 cfun->eh->sjlj_exit_after = after;
1834 }
1835
1836 static void
1837 sjlj_emit_function_exit (void)
1838 {
1839 rtx seq;
1840 edge e;
1841 edge_iterator ei;
1842
1843 start_sequence ();
1844
1845 emit_library_call (unwind_sjlj_unregister_libfunc, LCT_NORMAL, VOIDmode,
1846 1, XEXP (cfun->eh->sjlj_fc, 0), Pmode);
1847
1848 seq = get_insns ();
1849 end_sequence ();
1850
1851 /* ??? Really this can be done in any block at loop level 0 that
1852 post-dominates all can_throw_internal instructions. This is
1853 the last possible moment. */
1854
1855 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1856 if (e->flags & EDGE_FALLTHRU)
1857 break;
1858 if (e)
1859 {
1860 rtx insn;
1861
1862 /* Figure out whether the place we are supposed to insert libcall
1863 is inside the last basic block or after it. In the other case
1864 we need to emit to edge. */
1865 gcc_assert (e->src->next_bb == EXIT_BLOCK_PTR);
1866 for (insn = BB_HEAD (e->src); ; insn = NEXT_INSN (insn))
1867 {
1868 if (insn == cfun->eh->sjlj_exit_after)
1869 {
1870 if (LABEL_P (insn))
1871 insn = NEXT_INSN (insn);
1872 emit_insn_after (seq, insn);
1873 return;
1874 }
1875 if (insn == BB_END (e->src))
1876 break;
1877 }
1878 insert_insn_on_edge (seq, e);
1879 }
1880 }
1881
1882 static void
1883 sjlj_emit_dispatch_table (rtx dispatch_label, struct sjlj_lp_info *lp_info)
1884 {
1885 int i, first_reachable;
1886 rtx mem, dispatch, seq, fc;
1887 rtx before;
1888 basic_block bb;
1889 edge e;
1890
1891 fc = cfun->eh->sjlj_fc;
1892
1893 start_sequence ();
1894
1895 emit_label (dispatch_label);
1896
1897 #ifndef DONT_USE_BUILTIN_SETJMP
1898 expand_builtin_setjmp_receiver (dispatch_label);
1899 #endif
1900
1901 /* Load up dispatch index, exc_ptr and filter values from the
1902 function context. */
1903 mem = adjust_address (fc, TYPE_MODE (integer_type_node),
1904 sjlj_fc_call_site_ofs);
1905 dispatch = copy_to_reg (mem);
1906
1907 mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs);
1908 if (word_mode != ptr_mode)
1909 {
1910 #ifdef POINTERS_EXTEND_UNSIGNED
1911 mem = convert_memory_address (ptr_mode, mem);
1912 #else
1913 mem = convert_to_mode (ptr_mode, mem, 0);
1914 #endif
1915 }
1916 emit_move_insn (cfun->eh->exc_ptr, mem);
1917
1918 mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs + UNITS_PER_WORD);
1919 emit_move_insn (cfun->eh->filter, mem);
1920
1921 /* Jump to one of the directly reachable regions. */
1922 /* ??? This really ought to be using a switch statement. */
1923
1924 first_reachable = 0;
1925 for (i = cfun->eh->last_region_number; i > 0; --i)
1926 {
1927 if (! lp_info[i].directly_reachable)
1928 continue;
1929
1930 if (! first_reachable)
1931 {
1932 first_reachable = i;
1933 continue;
1934 }
1935
1936 emit_cmp_and_jump_insns (dispatch, GEN_INT (lp_info[i].dispatch_index),
1937 EQ, NULL_RTX, TYPE_MODE (integer_type_node), 0,
1938 ((struct eh_region *)VEC_index (eh_region, cfun->eh->region_array, i))
1939 ->post_landing_pad);
1940 }
1941
1942 seq = get_insns ();
1943 end_sequence ();
1944
1945 before = (((struct eh_region *)VEC_index (eh_region, cfun->eh->region_array, first_reachable))
1946 ->post_landing_pad);
1947
1948 bb = emit_to_new_bb_before (seq, before);
1949 e = make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
1950 e->count = bb->count;
1951 e->probability = REG_BR_PROB_BASE;
1952 }
1953
1954 static void
1955 sjlj_build_landing_pads (void)
1956 {
1957 struct sjlj_lp_info *lp_info;
1958
1959 lp_info = XCNEWVEC (struct sjlj_lp_info, cfun->eh->last_region_number + 1);
1960
1961 if (sjlj_find_directly_reachable_regions (lp_info))
1962 {
1963 rtx dispatch_label = gen_label_rtx ();
1964
1965 cfun->eh->sjlj_fc
1966 = assign_stack_local (TYPE_MODE (sjlj_fc_type_node),
1967 int_size_in_bytes (sjlj_fc_type_node),
1968 TYPE_ALIGN (sjlj_fc_type_node));
1969
1970 sjlj_assign_call_site_values (dispatch_label, lp_info);
1971 sjlj_mark_call_sites (lp_info);
1972
1973 sjlj_emit_function_enter (dispatch_label);
1974 sjlj_emit_dispatch_table (dispatch_label, lp_info);
1975 sjlj_emit_function_exit ();
1976 }
1977
1978 free (lp_info);
1979 }
1980
1981 void
1982 finish_eh_generation (void)
1983 {
1984 basic_block bb;
1985
1986 /* Nothing to do if no regions created. */
1987 if (cfun->eh->region_tree == NULL)
1988 return;
1989
1990 /* The object here is to provide find_basic_blocks with detailed
1991 information (via reachable_handlers) on how exception control
1992 flows within the function. In this first pass, we can include
1993 type information garnered from ERT_THROW and ERT_ALLOWED_EXCEPTIONS
1994 regions, and hope that it will be useful in deleting unreachable
1995 handlers. Subsequently, we will generate landing pads which will
1996 connect many of the handlers, and then type information will not
1997 be effective. Still, this is a win over previous implementations. */
1998
1999 /* These registers are used by the landing pads. Make sure they
2000 have been generated. */
2001 get_exception_pointer (cfun);
2002 get_exception_filter (cfun);
2003
2004 /* Construct the landing pads. */
2005
2006 assign_filter_values ();
2007 build_post_landing_pads ();
2008 connect_post_landing_pads ();
2009 if (USING_SJLJ_EXCEPTIONS)
2010 sjlj_build_landing_pads ();
2011 else
2012 dw2_build_landing_pads ();
2013
2014 cfun->eh->built_landing_pads = 1;
2015
2016 /* We've totally changed the CFG. Start over. */
2017 find_exception_handler_labels ();
2018 break_superblocks ();
2019 if (USING_SJLJ_EXCEPTIONS)
2020 commit_edge_insertions ();
2021 FOR_EACH_BB (bb)
2022 {
2023 edge e;
2024 edge_iterator ei;
2025 bool eh = false;
2026 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2027 {
2028 if (e->flags & EDGE_EH)
2029 {
2030 remove_edge (e);
2031 eh = true;
2032 }
2033 else
2034 ei_next (&ei);
2035 }
2036 if (eh)
2037 rtl_make_eh_edge (NULL, bb, BB_END (bb));
2038 }
2039 }
2040 \f
2041 static hashval_t
2042 ehl_hash (const void *pentry)
2043 {
2044 struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
2045
2046 /* 2^32 * ((sqrt(5) - 1) / 2) */
2047 const hashval_t scaled_golden_ratio = 0x9e3779b9;
2048 return CODE_LABEL_NUMBER (entry->label) * scaled_golden_ratio;
2049 }
2050
2051 static int
2052 ehl_eq (const void *pentry, const void *pdata)
2053 {
2054 struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
2055 struct ehl_map_entry *data = (struct ehl_map_entry *) pdata;
2056
2057 return entry->label == data->label;
2058 }
2059
2060 /* This section handles removing dead code for flow. */
2061
2062 /* Remove LABEL from exception_handler_label_map. */
2063
2064 static void
2065 remove_exception_handler_label (rtx label)
2066 {
2067 struct ehl_map_entry **slot, tmp;
2068
2069 /* If exception_handler_label_map was not built yet,
2070 there is nothing to do. */
2071 if (cfun->eh->exception_handler_label_map == NULL)
2072 return;
2073
2074 tmp.label = label;
2075 slot = (struct ehl_map_entry **)
2076 htab_find_slot (cfun->eh->exception_handler_label_map, &tmp, NO_INSERT);
2077 gcc_assert (slot);
2078
2079 htab_clear_slot (cfun->eh->exception_handler_label_map, (void **) slot);
2080 }
2081
2082 /* Splice REGION from the region tree etc. */
2083
2084 static void
2085 remove_eh_handler (struct eh_region *region)
2086 {
2087 struct eh_region **pp, **pp_start, *p, *outer, *inner;
2088 rtx lab;
2089
2090 /* For the benefit of efficiently handling REG_EH_REGION notes,
2091 replace this region in the region array with its containing
2092 region. Note that previous region deletions may result in
2093 multiple copies of this region in the array, so we have a
2094 list of alternate numbers by which we are known. */
2095
2096 outer = region->outer;
2097 VEC_replace (eh_region, cfun->eh->region_array, region->region_number, outer);
2098 if (region->aka)
2099 {
2100 unsigned i;
2101 bitmap_iterator bi;
2102
2103 EXECUTE_IF_SET_IN_BITMAP (region->aka, 0, i, bi)
2104 {
2105 VEC_replace (eh_region, cfun->eh->region_array, i, outer);
2106 }
2107 }
2108
2109 if (outer)
2110 {
2111 if (!outer->aka)
2112 outer->aka = BITMAP_GGC_ALLOC ();
2113 if (region->aka)
2114 bitmap_ior_into (outer->aka, region->aka);
2115 bitmap_set_bit (outer->aka, region->region_number);
2116 }
2117
2118 if (cfun->eh->built_landing_pads)
2119 lab = region->landing_pad;
2120 else
2121 lab = region->label;
2122 if (lab)
2123 remove_exception_handler_label (lab);
2124
2125 if (outer)
2126 pp_start = &outer->inner;
2127 else
2128 pp_start = &cfun->eh->region_tree;
2129 for (pp = pp_start, p = *pp; p != region; pp = &p->next_peer, p = *pp)
2130 continue;
2131 *pp = region->next_peer;
2132
2133 inner = region->inner;
2134 if (inner)
2135 {
2136 for (p = inner; p->next_peer ; p = p->next_peer)
2137 p->outer = outer;
2138 p->outer = outer;
2139
2140 p->next_peer = *pp_start;
2141 *pp_start = inner;
2142 }
2143
2144 if (region->type == ERT_CATCH)
2145 {
2146 struct eh_region *try, *next, *prev;
2147
2148 for (try = region->next_peer;
2149 try->type == ERT_CATCH;
2150 try = try->next_peer)
2151 continue;
2152 gcc_assert (try->type == ERT_TRY);
2153
2154 next = region->u.catch.next_catch;
2155 prev = region->u.catch.prev_catch;
2156
2157 if (next)
2158 next->u.catch.prev_catch = prev;
2159 else
2160 try->u.try.last_catch = prev;
2161 if (prev)
2162 prev->u.catch.next_catch = next;
2163 else
2164 {
2165 try->u.try.catch = next;
2166 if (! next)
2167 remove_eh_handler (try);
2168 }
2169 }
2170 }
2171
2172 /* LABEL heads a basic block that is about to be deleted. If this
2173 label corresponds to an exception region, we may be able to
2174 delete the region. */
2175
2176 void
2177 maybe_remove_eh_handler (rtx label)
2178 {
2179 struct ehl_map_entry **slot, tmp;
2180 struct eh_region *region;
2181
2182 /* ??? After generating landing pads, it's not so simple to determine
2183 if the region data is completely unused. One must examine the
2184 landing pad and the post landing pad, and whether an inner try block
2185 is referencing the catch handlers directly. */
2186 if (cfun->eh->built_landing_pads)
2187 return;
2188
2189 tmp.label = label;
2190 slot = (struct ehl_map_entry **)
2191 htab_find_slot (cfun->eh->exception_handler_label_map, &tmp, NO_INSERT);
2192 if (! slot)
2193 return;
2194 region = (*slot)->region;
2195 if (! region)
2196 return;
2197
2198 /* Flow will want to remove MUST_NOT_THROW regions as unreachable
2199 because there is no path to the fallback call to terminate.
2200 But the region continues to affect call-site data until there
2201 are no more contained calls, which we don't see here. */
2202 if (region->type == ERT_MUST_NOT_THROW)
2203 {
2204 htab_clear_slot (cfun->eh->exception_handler_label_map, (void **) slot);
2205 region->label = NULL_RTX;
2206 }
2207 else
2208 remove_eh_handler (region);
2209 }
2210
2211 /* Invokes CALLBACK for every exception handler label. Only used by old
2212 loop hackery; should not be used by new code. */
2213
2214 void
2215 for_each_eh_label (void (*callback) (rtx))
2216 {
2217 htab_traverse (cfun->eh->exception_handler_label_map, for_each_eh_label_1,
2218 (void *) &callback);
2219 }
2220
2221 static int
2222 for_each_eh_label_1 (void **pentry, void *data)
2223 {
2224 struct ehl_map_entry *entry = *(struct ehl_map_entry **)pentry;
2225 void (*callback) (rtx) = *(void (**) (rtx)) data;
2226
2227 (*callback) (entry->label);
2228 return 1;
2229 }
2230
2231 /* Invoke CALLBACK for every exception region in the current function. */
2232
2233 void
2234 for_each_eh_region (void (*callback) (struct eh_region *))
2235 {
2236 int i, n = cfun->eh->last_region_number;
2237 for (i = 1; i <= n; ++i)
2238 {
2239 struct eh_region *region;
2240
2241 region = VEC_index (eh_region, cfun->eh->region_array, i);
2242 if (region)
2243 (*callback) (region);
2244 }
2245 }
2246 \f
2247 /* This section describes CFG exception edges for flow. */
2248
2249 /* For communicating between calls to reachable_next_level. */
2250 struct reachable_info
2251 {
2252 tree types_caught;
2253 tree types_allowed;
2254 void (*callback) (struct eh_region *, void *);
2255 void *callback_data;
2256 bool saw_any_handlers;
2257 };
2258
2259 /* A subroutine of reachable_next_level. Return true if TYPE, or a
2260 base class of TYPE, is in HANDLED. */
2261
2262 static int
2263 check_handled (tree handled, tree type)
2264 {
2265 tree t;
2266
2267 /* We can check for exact matches without front-end help. */
2268 if (! lang_eh_type_covers)
2269 {
2270 for (t = handled; t ; t = TREE_CHAIN (t))
2271 if (TREE_VALUE (t) == type)
2272 return 1;
2273 }
2274 else
2275 {
2276 for (t = handled; t ; t = TREE_CHAIN (t))
2277 if ((*lang_eh_type_covers) (TREE_VALUE (t), type))
2278 return 1;
2279 }
2280
2281 return 0;
2282 }
2283
2284 /* A subroutine of reachable_next_level. If we are collecting a list
2285 of handlers, add one. After landing pad generation, reference
2286 it instead of the handlers themselves. Further, the handlers are
2287 all wired together, so by referencing one, we've got them all.
2288 Before landing pad generation we reference each handler individually.
2289
2290 LP_REGION contains the landing pad; REGION is the handler. */
2291
2292 static void
2293 add_reachable_handler (struct reachable_info *info,
2294 struct eh_region *lp_region, struct eh_region *region)
2295 {
2296 if (! info)
2297 return;
2298
2299 info->saw_any_handlers = true;
2300
2301 if (cfun->eh->built_landing_pads)
2302 info->callback (lp_region, info->callback_data);
2303 else
2304 info->callback (region, info->callback_data);
2305 }
2306
2307 /* Process one level of exception regions for reachability.
2308 If TYPE_THROWN is non-null, then it is the *exact* type being
2309 propagated. If INFO is non-null, then collect handler labels
2310 and caught/allowed type information between invocations. */
2311
2312 static enum reachable_code
2313 reachable_next_level (struct eh_region *region, tree type_thrown,
2314 struct reachable_info *info)
2315 {
2316 switch (region->type)
2317 {
2318 case ERT_CLEANUP:
2319 /* Before landing-pad generation, we model control flow
2320 directly to the individual handlers. In this way we can
2321 see that catch handler types may shadow one another. */
2322 add_reachable_handler (info, region, region);
2323 return RNL_MAYBE_CAUGHT;
2324
2325 case ERT_TRY:
2326 {
2327 struct eh_region *c;
2328 enum reachable_code ret = RNL_NOT_CAUGHT;
2329
2330 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
2331 {
2332 /* A catch-all handler ends the search. */
2333 if (c->u.catch.type_list == NULL)
2334 {
2335 add_reachable_handler (info, region, c);
2336 return RNL_CAUGHT;
2337 }
2338
2339 if (type_thrown)
2340 {
2341 /* If we have at least one type match, end the search. */
2342 tree tp_node = c->u.catch.type_list;
2343
2344 for (; tp_node; tp_node = TREE_CHAIN (tp_node))
2345 {
2346 tree type = TREE_VALUE (tp_node);
2347
2348 if (type == type_thrown
2349 || (lang_eh_type_covers
2350 && (*lang_eh_type_covers) (type, type_thrown)))
2351 {
2352 add_reachable_handler (info, region, c);
2353 return RNL_CAUGHT;
2354 }
2355 }
2356
2357 /* If we have definitive information of a match failure,
2358 the catch won't trigger. */
2359 if (lang_eh_type_covers)
2360 return RNL_NOT_CAUGHT;
2361 }
2362
2363 /* At this point, we either don't know what type is thrown or
2364 don't have front-end assistance to help deciding if it is
2365 covered by one of the types in the list for this region.
2366
2367 We'd then like to add this region to the list of reachable
2368 handlers since it is indeed potentially reachable based on the
2369 information we have.
2370
2371 Actually, this handler is for sure not reachable if all the
2372 types it matches have already been caught. That is, it is only
2373 potentially reachable if at least one of the types it catches
2374 has not been previously caught. */
2375
2376 if (! info)
2377 ret = RNL_MAYBE_CAUGHT;
2378 else
2379 {
2380 tree tp_node = c->u.catch.type_list;
2381 bool maybe_reachable = false;
2382
2383 /* Compute the potential reachability of this handler and
2384 update the list of types caught at the same time. */
2385 for (; tp_node; tp_node = TREE_CHAIN (tp_node))
2386 {
2387 tree type = TREE_VALUE (tp_node);
2388
2389 if (! check_handled (info->types_caught, type))
2390 {
2391 info->types_caught
2392 = tree_cons (NULL, type, info->types_caught);
2393
2394 maybe_reachable = true;
2395 }
2396 }
2397
2398 if (maybe_reachable)
2399 {
2400 add_reachable_handler (info, region, c);
2401
2402 /* ??? If the catch type is a base class of every allowed
2403 type, then we know we can stop the search. */
2404 ret = RNL_MAYBE_CAUGHT;
2405 }
2406 }
2407 }
2408
2409 return ret;
2410 }
2411
2412 case ERT_ALLOWED_EXCEPTIONS:
2413 /* An empty list of types definitely ends the search. */
2414 if (region->u.allowed.type_list == NULL_TREE)
2415 {
2416 add_reachable_handler (info, region, region);
2417 return RNL_CAUGHT;
2418 }
2419
2420 /* Collect a list of lists of allowed types for use in detecting
2421 when a catch may be transformed into a catch-all. */
2422 if (info)
2423 info->types_allowed = tree_cons (NULL_TREE,
2424 region->u.allowed.type_list,
2425 info->types_allowed);
2426
2427 /* If we have definitive information about the type hierarchy,
2428 then we can tell if the thrown type will pass through the
2429 filter. */
2430 if (type_thrown && lang_eh_type_covers)
2431 {
2432 if (check_handled (region->u.allowed.type_list, type_thrown))
2433 return RNL_NOT_CAUGHT;
2434 else
2435 {
2436 add_reachable_handler (info, region, region);
2437 return RNL_CAUGHT;
2438 }
2439 }
2440
2441 add_reachable_handler (info, region, region);
2442 return RNL_MAYBE_CAUGHT;
2443
2444 case ERT_CATCH:
2445 /* Catch regions are handled by their controlling try region. */
2446 return RNL_NOT_CAUGHT;
2447
2448 case ERT_MUST_NOT_THROW:
2449 /* Here we end our search, since no exceptions may propagate.
2450 If we've touched down at some landing pad previous, then the
2451 explicit function call we generated may be used. Otherwise
2452 the call is made by the runtime.
2453
2454 Before inlining, do not perform this optimization. We may
2455 inline a subroutine that contains handlers, and that will
2456 change the value of saw_any_handlers. */
2457
2458 if ((info && info->saw_any_handlers) || !cfun->after_inlining)
2459 {
2460 add_reachable_handler (info, region, region);
2461 return RNL_CAUGHT;
2462 }
2463 else
2464 return RNL_BLOCKED;
2465
2466 case ERT_THROW:
2467 case ERT_UNKNOWN:
2468 /* Shouldn't see these here. */
2469 gcc_unreachable ();
2470 break;
2471 default:
2472 gcc_unreachable ();
2473 }
2474 }
2475
2476 /* Invoke CALLBACK on each region reachable from REGION_NUMBER. */
2477
2478 void
2479 foreach_reachable_handler (int region_number, bool is_resx,
2480 void (*callback) (struct eh_region *, void *),
2481 void *callback_data)
2482 {
2483 struct reachable_info info;
2484 struct eh_region *region;
2485 tree type_thrown;
2486
2487 memset (&info, 0, sizeof (info));
2488 info.callback = callback;
2489 info.callback_data = callback_data;
2490
2491 region = VEC_index (eh_region, cfun->eh->region_array, region_number);
2492
2493 type_thrown = NULL_TREE;
2494 if (is_resx)
2495 {
2496 /* A RESX leaves a region instead of entering it. Thus the
2497 region itself may have been deleted out from under us. */
2498 if (region == NULL)
2499 return;
2500 region = region->outer;
2501 }
2502 else if (region->type == ERT_THROW)
2503 {
2504 type_thrown = region->u.throw.type;
2505 region = region->outer;
2506 }
2507
2508 while (region)
2509 {
2510 if (reachable_next_level (region, type_thrown, &info) >= RNL_CAUGHT)
2511 break;
2512 /* If we have processed one cleanup, there is no point in
2513 processing any more of them. Each cleanup will have an edge
2514 to the next outer cleanup region, so the flow graph will be
2515 accurate. */
2516 if (region->type == ERT_CLEANUP)
2517 region = region->u.cleanup.prev_try;
2518 else
2519 region = region->outer;
2520 }
2521 }
2522
2523 /* Retrieve a list of labels of exception handlers which can be
2524 reached by a given insn. */
2525
2526 static void
2527 arh_to_landing_pad (struct eh_region *region, void *data)
2528 {
2529 rtx *p_handlers = data;
2530 if (! *p_handlers)
2531 *p_handlers = alloc_INSN_LIST (region->landing_pad, NULL_RTX);
2532 }
2533
2534 static void
2535 arh_to_label (struct eh_region *region, void *data)
2536 {
2537 rtx *p_handlers = data;
2538 *p_handlers = alloc_INSN_LIST (region->label, *p_handlers);
2539 }
2540
2541 rtx
2542 reachable_handlers (rtx insn)
2543 {
2544 bool is_resx = false;
2545 rtx handlers = NULL;
2546 int region_number;
2547
2548 if (JUMP_P (insn)
2549 && GET_CODE (PATTERN (insn)) == RESX)
2550 {
2551 region_number = XINT (PATTERN (insn), 0);
2552 is_resx = true;
2553 }
2554 else
2555 {
2556 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2557 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2558 return NULL;
2559 region_number = INTVAL (XEXP (note, 0));
2560 }
2561
2562 foreach_reachable_handler (region_number, is_resx,
2563 (cfun->eh->built_landing_pads
2564 ? arh_to_landing_pad
2565 : arh_to_label),
2566 &handlers);
2567
2568 return handlers;
2569 }
2570
2571 /* Determine if the given INSN can throw an exception that is caught
2572 within the function. */
2573
2574 bool
2575 can_throw_internal_1 (int region_number, bool is_resx)
2576 {
2577 struct eh_region *region;
2578 tree type_thrown;
2579
2580 region = VEC_index (eh_region, cfun->eh->region_array, region_number);
2581
2582 type_thrown = NULL_TREE;
2583 if (is_resx)
2584 region = region->outer;
2585 else if (region->type == ERT_THROW)
2586 {
2587 type_thrown = region->u.throw.type;
2588 region = region->outer;
2589 }
2590
2591 /* If this exception is ignored by each and every containing region,
2592 then control passes straight out. The runtime may handle some
2593 regions, which also do not require processing internally. */
2594 for (; region; region = region->outer)
2595 {
2596 enum reachable_code how = reachable_next_level (region, type_thrown, 0);
2597 if (how == RNL_BLOCKED)
2598 return false;
2599 if (how != RNL_NOT_CAUGHT)
2600 return true;
2601 }
2602
2603 return false;
2604 }
2605
2606 bool
2607 can_throw_internal (rtx insn)
2608 {
2609 rtx note;
2610
2611 if (! INSN_P (insn))
2612 return false;
2613
2614 if (JUMP_P (insn)
2615 && GET_CODE (PATTERN (insn)) == RESX
2616 && XINT (PATTERN (insn), 0) > 0)
2617 return can_throw_internal_1 (XINT (PATTERN (insn), 0), true);
2618
2619 if (NONJUMP_INSN_P (insn)
2620 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2621 insn = XVECEXP (PATTERN (insn), 0, 0);
2622
2623 /* Every insn that might throw has an EH_REGION note. */
2624 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2625 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2626 return false;
2627
2628 return can_throw_internal_1 (INTVAL (XEXP (note, 0)), false);
2629 }
2630
2631 /* Determine if the given INSN can throw an exception that is
2632 visible outside the function. */
2633
2634 bool
2635 can_throw_external_1 (int region_number, bool is_resx)
2636 {
2637 struct eh_region *region;
2638 tree type_thrown;
2639
2640 region = VEC_index (eh_region, cfun->eh->region_array, region_number);
2641
2642 type_thrown = NULL_TREE;
2643 if (is_resx)
2644 region = region->outer;
2645 else if (region->type == ERT_THROW)
2646 {
2647 type_thrown = region->u.throw.type;
2648 region = region->outer;
2649 }
2650
2651 /* If the exception is caught or blocked by any containing region,
2652 then it is not seen by any calling function. */
2653 for (; region ; region = region->outer)
2654 if (reachable_next_level (region, type_thrown, NULL) >= RNL_CAUGHT)
2655 return false;
2656
2657 return true;
2658 }
2659
2660 bool
2661 can_throw_external (rtx insn)
2662 {
2663 rtx note;
2664
2665 if (! INSN_P (insn))
2666 return false;
2667
2668 if (JUMP_P (insn)
2669 && GET_CODE (PATTERN (insn)) == RESX
2670 && XINT (PATTERN (insn), 0) > 0)
2671 return can_throw_external_1 (XINT (PATTERN (insn), 0), true);
2672
2673 if (NONJUMP_INSN_P (insn)
2674 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2675 insn = XVECEXP (PATTERN (insn), 0, 0);
2676
2677 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2678 if (!note)
2679 {
2680 /* Calls (and trapping insns) without notes are outside any
2681 exception handling region in this function. We have to
2682 assume it might throw. Given that the front end and middle
2683 ends mark known NOTHROW functions, this isn't so wildly
2684 inaccurate. */
2685 return (CALL_P (insn)
2686 || (flag_non_call_exceptions
2687 && may_trap_p (PATTERN (insn))));
2688 }
2689 if (INTVAL (XEXP (note, 0)) <= 0)
2690 return false;
2691
2692 return can_throw_external_1 (INTVAL (XEXP (note, 0)), false);
2693 }
2694
2695 /* Set TREE_NOTHROW and cfun->all_throwers_are_sibcalls. */
2696
2697 void
2698 set_nothrow_function_flags (void)
2699 {
2700 rtx insn;
2701
2702 TREE_NOTHROW (current_function_decl) = 1;
2703
2704 /* Assume cfun->all_throwers_are_sibcalls until we encounter
2705 something that can throw an exception. We specifically exempt
2706 CALL_INSNs that are SIBLING_CALL_P, as these are really jumps,
2707 and can't throw. Most CALL_INSNs are not SIBLING_CALL_P, so this
2708 is optimistic. */
2709
2710 cfun->all_throwers_are_sibcalls = 1;
2711
2712 if (! flag_exceptions)
2713 return;
2714
2715 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2716 if (can_throw_external (insn))
2717 {
2718 TREE_NOTHROW (current_function_decl) = 0;
2719
2720 if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
2721 {
2722 cfun->all_throwers_are_sibcalls = 0;
2723 return;
2724 }
2725 }
2726
2727 for (insn = current_function_epilogue_delay_list; insn;
2728 insn = XEXP (insn, 1))
2729 if (can_throw_external (insn))
2730 {
2731 TREE_NOTHROW (current_function_decl) = 0;
2732
2733 if (!CALL_P (insn) || !SIBLING_CALL_P (insn))
2734 {
2735 cfun->all_throwers_are_sibcalls = 0;
2736 return;
2737 }
2738 }
2739 }
2740
2741 struct tree_opt_pass pass_set_nothrow_function_flags =
2742 {
2743 NULL, /* name */
2744 NULL, /* gate */
2745 set_nothrow_function_flags, /* execute */
2746 NULL, /* sub */
2747 NULL, /* next */
2748 0, /* static_pass_number */
2749 0, /* tv_id */
2750 0, /* properties_required */
2751 0, /* properties_provided */
2752 0, /* properties_destroyed */
2753 0, /* todo_flags_start */
2754 0, /* todo_flags_finish */
2755 0 /* letter */
2756 };
2757
2758 \f
2759 /* Various hooks for unwind library. */
2760
2761 /* Do any necessary initialization to access arbitrary stack frames.
2762 On the SPARC, this means flushing the register windows. */
2763
2764 void
2765 expand_builtin_unwind_init (void)
2766 {
2767 /* Set this so all the registers get saved in our frame; we need to be
2768 able to copy the saved values for any registers from frames we unwind. */
2769 current_function_has_nonlocal_label = 1;
2770
2771 #ifdef SETUP_FRAME_ADDRESSES
2772 SETUP_FRAME_ADDRESSES ();
2773 #endif
2774 }
2775
2776 rtx
2777 expand_builtin_eh_return_data_regno (tree arglist)
2778 {
2779 tree which = TREE_VALUE (arglist);
2780 unsigned HOST_WIDE_INT iwhich;
2781
2782 if (TREE_CODE (which) != INTEGER_CST)
2783 {
2784 error ("argument of %<__builtin_eh_return_regno%> must be constant");
2785 return constm1_rtx;
2786 }
2787
2788 iwhich = tree_low_cst (which, 1);
2789 iwhich = EH_RETURN_DATA_REGNO (iwhich);
2790 if (iwhich == INVALID_REGNUM)
2791 return constm1_rtx;
2792
2793 #ifdef DWARF_FRAME_REGNUM
2794 iwhich = DWARF_FRAME_REGNUM (iwhich);
2795 #else
2796 iwhich = DBX_REGISTER_NUMBER (iwhich);
2797 #endif
2798
2799 return GEN_INT (iwhich);
2800 }
2801
2802 /* Given a value extracted from the return address register or stack slot,
2803 return the actual address encoded in that value. */
2804
2805 rtx
2806 expand_builtin_extract_return_addr (tree addr_tree)
2807 {
2808 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2809
2810 if (GET_MODE (addr) != Pmode
2811 && GET_MODE (addr) != VOIDmode)
2812 {
2813 #ifdef POINTERS_EXTEND_UNSIGNED
2814 addr = convert_memory_address (Pmode, addr);
2815 #else
2816 addr = convert_to_mode (Pmode, addr, 0);
2817 #endif
2818 }
2819
2820 /* First mask out any unwanted bits. */
2821 #ifdef MASK_RETURN_ADDR
2822 expand_and (Pmode, addr, MASK_RETURN_ADDR, addr);
2823 #endif
2824
2825 /* Then adjust to find the real return address. */
2826 #if defined (RETURN_ADDR_OFFSET)
2827 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
2828 #endif
2829
2830 return addr;
2831 }
2832
2833 /* Given an actual address in addr_tree, do any necessary encoding
2834 and return the value to be stored in the return address register or
2835 stack slot so the epilogue will return to that address. */
2836
2837 rtx
2838 expand_builtin_frob_return_addr (tree addr_tree)
2839 {
2840 rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, 0);
2841
2842 addr = convert_memory_address (Pmode, addr);
2843
2844 #ifdef RETURN_ADDR_OFFSET
2845 addr = force_reg (Pmode, addr);
2846 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2847 #endif
2848
2849 return addr;
2850 }
2851
2852 /* Set up the epilogue with the magic bits we'll need to return to the
2853 exception handler. */
2854
2855 void
2856 expand_builtin_eh_return (tree stackadj_tree ATTRIBUTE_UNUSED,
2857 tree handler_tree)
2858 {
2859 rtx tmp;
2860
2861 #ifdef EH_RETURN_STACKADJ_RTX
2862 tmp = expand_expr (stackadj_tree, cfun->eh->ehr_stackadj, VOIDmode, 0);
2863 tmp = convert_memory_address (Pmode, tmp);
2864 if (!cfun->eh->ehr_stackadj)
2865 cfun->eh->ehr_stackadj = copy_to_reg (tmp);
2866 else if (tmp != cfun->eh->ehr_stackadj)
2867 emit_move_insn (cfun->eh->ehr_stackadj, tmp);
2868 #endif
2869
2870 tmp = expand_expr (handler_tree, cfun->eh->ehr_handler, VOIDmode, 0);
2871 tmp = convert_memory_address (Pmode, tmp);
2872 if (!cfun->eh->ehr_handler)
2873 cfun->eh->ehr_handler = copy_to_reg (tmp);
2874 else if (tmp != cfun->eh->ehr_handler)
2875 emit_move_insn (cfun->eh->ehr_handler, tmp);
2876
2877 if (!cfun->eh->ehr_label)
2878 cfun->eh->ehr_label = gen_label_rtx ();
2879 emit_jump (cfun->eh->ehr_label);
2880 }
2881
2882 void
2883 expand_eh_return (void)
2884 {
2885 rtx around_label;
2886
2887 if (! cfun->eh->ehr_label)
2888 return;
2889
2890 current_function_calls_eh_return = 1;
2891
2892 #ifdef EH_RETURN_STACKADJ_RTX
2893 emit_move_insn (EH_RETURN_STACKADJ_RTX, const0_rtx);
2894 #endif
2895
2896 around_label = gen_label_rtx ();
2897 emit_jump (around_label);
2898
2899 emit_label (cfun->eh->ehr_label);
2900 clobber_return_register ();
2901
2902 #ifdef EH_RETURN_STACKADJ_RTX
2903 emit_move_insn (EH_RETURN_STACKADJ_RTX, cfun->eh->ehr_stackadj);
2904 #endif
2905
2906 #ifdef HAVE_eh_return
2907 if (HAVE_eh_return)
2908 emit_insn (gen_eh_return (cfun->eh->ehr_handler));
2909 else
2910 #endif
2911 {
2912 #ifdef EH_RETURN_HANDLER_RTX
2913 emit_move_insn (EH_RETURN_HANDLER_RTX, cfun->eh->ehr_handler);
2914 #else
2915 error ("__builtin_eh_return not supported on this target");
2916 #endif
2917 }
2918
2919 emit_label (around_label);
2920 }
2921
2922 /* Convert a ptr_mode address ADDR_TREE to a Pmode address controlled by
2923 POINTERS_EXTEND_UNSIGNED and return it. */
2924
2925 rtx
2926 expand_builtin_extend_pointer (tree addr_tree)
2927 {
2928 rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, 0);
2929 int extend;
2930
2931 #ifdef POINTERS_EXTEND_UNSIGNED
2932 extend = POINTERS_EXTEND_UNSIGNED;
2933 #else
2934 /* The previous EH code did an unsigned extend by default, so we do this also
2935 for consistency. */
2936 extend = 1;
2937 #endif
2938
2939 return convert_modes (word_mode, ptr_mode, addr, extend);
2940 }
2941 \f
2942 /* In the following functions, we represent entries in the action table
2943 as 1-based indices. Special cases are:
2944
2945 0: null action record, non-null landing pad; implies cleanups
2946 -1: null action record, null landing pad; implies no action
2947 -2: no call-site entry; implies must_not_throw
2948 -3: we have yet to process outer regions
2949
2950 Further, no special cases apply to the "next" field of the record.
2951 For next, 0 means end of list. */
2952
2953 struct action_record
2954 {
2955 int offset;
2956 int filter;
2957 int next;
2958 };
2959
2960 static int
2961 action_record_eq (const void *pentry, const void *pdata)
2962 {
2963 const struct action_record *entry = (const struct action_record *) pentry;
2964 const struct action_record *data = (const struct action_record *) pdata;
2965 return entry->filter == data->filter && entry->next == data->next;
2966 }
2967
2968 static hashval_t
2969 action_record_hash (const void *pentry)
2970 {
2971 const struct action_record *entry = (const struct action_record *) pentry;
2972 return entry->next * 1009 + entry->filter;
2973 }
2974
2975 static int
2976 add_action_record (htab_t ar_hash, int filter, int next)
2977 {
2978 struct action_record **slot, *new, tmp;
2979
2980 tmp.filter = filter;
2981 tmp.next = next;
2982 slot = (struct action_record **) htab_find_slot (ar_hash, &tmp, INSERT);
2983
2984 if ((new = *slot) == NULL)
2985 {
2986 new = xmalloc (sizeof (*new));
2987 new->offset = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
2988 new->filter = filter;
2989 new->next = next;
2990 *slot = new;
2991
2992 /* The filter value goes in untouched. The link to the next
2993 record is a "self-relative" byte offset, or zero to indicate
2994 that there is no next record. So convert the absolute 1 based
2995 indices we've been carrying around into a displacement. */
2996
2997 push_sleb128 (&cfun->eh->action_record_data, filter);
2998 if (next)
2999 next -= VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
3000 push_sleb128 (&cfun->eh->action_record_data, next);
3001 }
3002
3003 return new->offset;
3004 }
3005
3006 static int
3007 collect_one_action_chain (htab_t ar_hash, struct eh_region *region)
3008 {
3009 struct eh_region *c;
3010 int next;
3011
3012 /* If we've reached the top of the region chain, then we have
3013 no actions, and require no landing pad. */
3014 if (region == NULL)
3015 return -1;
3016
3017 switch (region->type)
3018 {
3019 case ERT_CLEANUP:
3020 /* A cleanup adds a zero filter to the beginning of the chain, but
3021 there are special cases to look out for. If there are *only*
3022 cleanups along a path, then it compresses to a zero action.
3023 Further, if there are multiple cleanups along a path, we only
3024 need to represent one of them, as that is enough to trigger
3025 entry to the landing pad at runtime. */
3026 next = collect_one_action_chain (ar_hash, region->outer);
3027 if (next <= 0)
3028 return 0;
3029 for (c = region->outer; c ; c = c->outer)
3030 if (c->type == ERT_CLEANUP)
3031 return next;
3032 return add_action_record (ar_hash, 0, next);
3033
3034 case ERT_TRY:
3035 /* Process the associated catch regions in reverse order.
3036 If there's a catch-all handler, then we don't need to
3037 search outer regions. Use a magic -3 value to record
3038 that we haven't done the outer search. */
3039 next = -3;
3040 for (c = region->u.try.last_catch; c ; c = c->u.catch.prev_catch)
3041 {
3042 if (c->u.catch.type_list == NULL)
3043 {
3044 /* Retrieve the filter from the head of the filter list
3045 where we have stored it (see assign_filter_values). */
3046 int filter
3047 = TREE_INT_CST_LOW (TREE_VALUE (c->u.catch.filter_list));
3048
3049 next = add_action_record (ar_hash, filter, 0);
3050 }
3051 else
3052 {
3053 /* Once the outer search is done, trigger an action record for
3054 each filter we have. */
3055 tree flt_node;
3056
3057 if (next == -3)
3058 {
3059 next = collect_one_action_chain (ar_hash, region->outer);
3060
3061 /* If there is no next action, terminate the chain. */
3062 if (next == -1)
3063 next = 0;
3064 /* If all outer actions are cleanups or must_not_throw,
3065 we'll have no action record for it, since we had wanted
3066 to encode these states in the call-site record directly.
3067 Add a cleanup action to the chain to catch these. */
3068 else if (next <= 0)
3069 next = add_action_record (ar_hash, 0, 0);
3070 }
3071
3072 flt_node = c->u.catch.filter_list;
3073 for (; flt_node; flt_node = TREE_CHAIN (flt_node))
3074 {
3075 int filter = TREE_INT_CST_LOW (TREE_VALUE (flt_node));
3076 next = add_action_record (ar_hash, filter, next);
3077 }
3078 }
3079 }
3080 return next;
3081
3082 case ERT_ALLOWED_EXCEPTIONS:
3083 /* An exception specification adds its filter to the
3084 beginning of the chain. */
3085 next = collect_one_action_chain (ar_hash, region->outer);
3086
3087 /* If there is no next action, terminate the chain. */
3088 if (next == -1)
3089 next = 0;
3090 /* If all outer actions are cleanups or must_not_throw,
3091 we'll have no action record for it, since we had wanted
3092 to encode these states in the call-site record directly.
3093 Add a cleanup action to the chain to catch these. */
3094 else if (next <= 0)
3095 next = add_action_record (ar_hash, 0, 0);
3096
3097 return add_action_record (ar_hash, region->u.allowed.filter, next);
3098
3099 case ERT_MUST_NOT_THROW:
3100 /* A must-not-throw region with no inner handlers or cleanups
3101 requires no call-site entry. Note that this differs from
3102 the no handler or cleanup case in that we do require an lsda
3103 to be generated. Return a magic -2 value to record this. */
3104 return -2;
3105
3106 case ERT_CATCH:
3107 case ERT_THROW:
3108 /* CATCH regions are handled in TRY above. THROW regions are
3109 for optimization information only and produce no output. */
3110 return collect_one_action_chain (ar_hash, region->outer);
3111
3112 default:
3113 gcc_unreachable ();
3114 }
3115 }
3116
3117 static int
3118 add_call_site (rtx landing_pad, int action)
3119 {
3120 struct call_site_record *data = cfun->eh->call_site_data;
3121 int used = cfun->eh->call_site_data_used;
3122 int size = cfun->eh->call_site_data_size;
3123
3124 if (used >= size)
3125 {
3126 size = (size ? size * 2 : 64);
3127 data = ggc_realloc (data, sizeof (*data) * size);
3128 cfun->eh->call_site_data = data;
3129 cfun->eh->call_site_data_size = size;
3130 }
3131
3132 data[used].landing_pad = landing_pad;
3133 data[used].action = action;
3134
3135 cfun->eh->call_site_data_used = used + 1;
3136
3137 return used + call_site_base;
3138 }
3139
3140 /* Turn REG_EH_REGION notes back into NOTE_INSN_EH_REGION notes.
3141 The new note numbers will not refer to region numbers, but
3142 instead to call site entries. */
3143
3144 void
3145 convert_to_eh_region_ranges (void)
3146 {
3147 rtx insn, iter, note;
3148 htab_t ar_hash;
3149 int last_action = -3;
3150 rtx last_action_insn = NULL_RTX;
3151 rtx last_landing_pad = NULL_RTX;
3152 rtx first_no_action_insn = NULL_RTX;
3153 int call_site = 0;
3154
3155 if (USING_SJLJ_EXCEPTIONS || cfun->eh->region_tree == NULL)
3156 return;
3157
3158 VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
3159
3160 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
3161
3162 for (iter = get_insns (); iter ; iter = NEXT_INSN (iter))
3163 if (INSN_P (iter))
3164 {
3165 struct eh_region *region;
3166 int this_action;
3167 rtx this_landing_pad;
3168
3169 insn = iter;
3170 if (NONJUMP_INSN_P (insn)
3171 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3172 insn = XVECEXP (PATTERN (insn), 0, 0);
3173
3174 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3175 if (!note)
3176 {
3177 if (! (CALL_P (insn)
3178 || (flag_non_call_exceptions
3179 && may_trap_p (PATTERN (insn)))))
3180 continue;
3181 this_action = -1;
3182 region = NULL;
3183 }
3184 else
3185 {
3186 if (INTVAL (XEXP (note, 0)) <= 0)
3187 continue;
3188 region = VEC_index (eh_region, cfun->eh->region_array, INTVAL (XEXP (note, 0)));
3189 this_action = collect_one_action_chain (ar_hash, region);
3190 }
3191
3192 /* Existence of catch handlers, or must-not-throw regions
3193 implies that an lsda is needed (even if empty). */
3194 if (this_action != -1)
3195 cfun->uses_eh_lsda = 1;
3196
3197 /* Delay creation of region notes for no-action regions
3198 until we're sure that an lsda will be required. */
3199 else if (last_action == -3)
3200 {
3201 first_no_action_insn = iter;
3202 last_action = -1;
3203 }
3204
3205 /* Cleanups and handlers may share action chains but not
3206 landing pads. Collect the landing pad for this region. */
3207 if (this_action >= 0)
3208 {
3209 struct eh_region *o;
3210 for (o = region; ! o->landing_pad ; o = o->outer)
3211 continue;
3212 this_landing_pad = o->landing_pad;
3213 }
3214 else
3215 this_landing_pad = NULL_RTX;
3216
3217 /* Differing actions or landing pads implies a change in call-site
3218 info, which implies some EH_REGION note should be emitted. */
3219 if (last_action != this_action
3220 || last_landing_pad != this_landing_pad)
3221 {
3222 /* If we'd not seen a previous action (-3) or the previous
3223 action was must-not-throw (-2), then we do not need an
3224 end note. */
3225 if (last_action >= -1)
3226 {
3227 /* If we delayed the creation of the begin, do it now. */
3228 if (first_no_action_insn)
3229 {
3230 call_site = add_call_site (NULL_RTX, 0);
3231 note = emit_note_before (NOTE_INSN_EH_REGION_BEG,
3232 first_no_action_insn);
3233 NOTE_EH_HANDLER (note) = call_site;
3234 first_no_action_insn = NULL_RTX;
3235 }
3236
3237 note = emit_note_after (NOTE_INSN_EH_REGION_END,
3238 last_action_insn);
3239 NOTE_EH_HANDLER (note) = call_site;
3240 }
3241
3242 /* If the new action is must-not-throw, then no region notes
3243 are created. */
3244 if (this_action >= -1)
3245 {
3246 call_site = add_call_site (this_landing_pad,
3247 this_action < 0 ? 0 : this_action);
3248 note = emit_note_before (NOTE_INSN_EH_REGION_BEG, iter);
3249 NOTE_EH_HANDLER (note) = call_site;
3250 }
3251
3252 last_action = this_action;
3253 last_landing_pad = this_landing_pad;
3254 }
3255 last_action_insn = iter;
3256 }
3257
3258 if (last_action >= -1 && ! first_no_action_insn)
3259 {
3260 note = emit_note_after (NOTE_INSN_EH_REGION_END, last_action_insn);
3261 NOTE_EH_HANDLER (note) = call_site;
3262 }
3263
3264 htab_delete (ar_hash);
3265 }
3266
3267 struct tree_opt_pass pass_convert_to_eh_region_ranges =
3268 {
3269 "eh-ranges", /* name */
3270 NULL, /* gate */
3271 convert_to_eh_region_ranges, /* execute */
3272 NULL, /* sub */
3273 NULL, /* next */
3274 0, /* static_pass_number */
3275 0, /* tv_id */
3276 0, /* properties_required */
3277 0, /* properties_provided */
3278 0, /* properties_destroyed */
3279 0, /* todo_flags_start */
3280 TODO_dump_func, /* todo_flags_finish */
3281 0 /* letter */
3282 };
3283
3284 \f
3285 static void
3286 push_uleb128 (varray_type *data_area, unsigned int value)
3287 {
3288 do
3289 {
3290 unsigned char byte = value & 0x7f;
3291 value >>= 7;
3292 if (value)
3293 byte |= 0x80;
3294 VARRAY_PUSH_UCHAR (*data_area, byte);
3295 }
3296 while (value);
3297 }
3298
3299 static void
3300 push_sleb128 (varray_type *data_area, int value)
3301 {
3302 unsigned char byte;
3303 int more;
3304
3305 do
3306 {
3307 byte = value & 0x7f;
3308 value >>= 7;
3309 more = ! ((value == 0 && (byte & 0x40) == 0)
3310 || (value == -1 && (byte & 0x40) != 0));
3311 if (more)
3312 byte |= 0x80;
3313 VARRAY_PUSH_UCHAR (*data_area, byte);
3314 }
3315 while (more);
3316 }
3317
3318 \f
3319 #ifndef HAVE_AS_LEB128
3320 static int
3321 dw2_size_of_call_site_table (void)
3322 {
3323 int n = cfun->eh->call_site_data_used;
3324 int size = n * (4 + 4 + 4);
3325 int i;
3326
3327 for (i = 0; i < n; ++i)
3328 {
3329 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3330 size += size_of_uleb128 (cs->action);
3331 }
3332
3333 return size;
3334 }
3335
3336 static int
3337 sjlj_size_of_call_site_table (void)
3338 {
3339 int n = cfun->eh->call_site_data_used;
3340 int size = 0;
3341 int i;
3342
3343 for (i = 0; i < n; ++i)
3344 {
3345 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3346 size += size_of_uleb128 (INTVAL (cs->landing_pad));
3347 size += size_of_uleb128 (cs->action);
3348 }
3349
3350 return size;
3351 }
3352 #endif
3353
3354 static void
3355 dw2_output_call_site_table (void)
3356 {
3357 int n = cfun->eh->call_site_data_used;
3358 int i;
3359
3360 for (i = 0; i < n; ++i)
3361 {
3362 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3363 char reg_start_lab[32];
3364 char reg_end_lab[32];
3365 char landing_pad_lab[32];
3366
3367 ASM_GENERATE_INTERNAL_LABEL (reg_start_lab, "LEHB", call_site_base + i);
3368 ASM_GENERATE_INTERNAL_LABEL (reg_end_lab, "LEHE", call_site_base + i);
3369
3370 if (cs->landing_pad)
3371 ASM_GENERATE_INTERNAL_LABEL (landing_pad_lab, "L",
3372 CODE_LABEL_NUMBER (cs->landing_pad));
3373
3374 /* ??? Perhaps use insn length scaling if the assembler supports
3375 generic arithmetic. */
3376 /* ??? Perhaps use attr_length to choose data1 or data2 instead of
3377 data4 if the function is small enough. */
3378 #ifdef HAVE_AS_LEB128
3379 dw2_asm_output_delta_uleb128 (reg_start_lab,
3380 current_function_func_begin_label,
3381 "region %d start", i);
3382 dw2_asm_output_delta_uleb128 (reg_end_lab, reg_start_lab,
3383 "length");
3384 if (cs->landing_pad)
3385 dw2_asm_output_delta_uleb128 (landing_pad_lab,
3386 current_function_func_begin_label,
3387 "landing pad");
3388 else
3389 dw2_asm_output_data_uleb128 (0, "landing pad");
3390 #else
3391 dw2_asm_output_delta (4, reg_start_lab,
3392 current_function_func_begin_label,
3393 "region %d start", i);
3394 dw2_asm_output_delta (4, reg_end_lab, reg_start_lab, "length");
3395 if (cs->landing_pad)
3396 dw2_asm_output_delta (4, landing_pad_lab,
3397 current_function_func_begin_label,
3398 "landing pad");
3399 else
3400 dw2_asm_output_data (4, 0, "landing pad");
3401 #endif
3402 dw2_asm_output_data_uleb128 (cs->action, "action");
3403 }
3404
3405 call_site_base += n;
3406 }
3407
3408 static void
3409 sjlj_output_call_site_table (void)
3410 {
3411 int n = cfun->eh->call_site_data_used;
3412 int i;
3413
3414 for (i = 0; i < n; ++i)
3415 {
3416 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3417
3418 dw2_asm_output_data_uleb128 (INTVAL (cs->landing_pad),
3419 "region %d landing pad", i);
3420 dw2_asm_output_data_uleb128 (cs->action, "action");
3421 }
3422
3423 call_site_base += n;
3424 }
3425
3426 #ifndef TARGET_UNWIND_INFO
3427 /* Switch to the section that should be used for exception tables. */
3428
3429 static void
3430 switch_to_exception_section (void)
3431 {
3432 if (exception_section == 0)
3433 {
3434 if (targetm.have_named_sections)
3435 {
3436 int flags;
3437
3438 if (EH_TABLES_CAN_BE_READ_ONLY)
3439 {
3440 int tt_format =
3441 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
3442 flags = ((! flag_pic
3443 || ((tt_format & 0x70) != DW_EH_PE_absptr
3444 && (tt_format & 0x70) != DW_EH_PE_aligned))
3445 ? 0 : SECTION_WRITE);
3446 }
3447 else
3448 flags = SECTION_WRITE;
3449 exception_section = get_section (".gcc_except_table", flags, NULL);
3450 }
3451 else
3452 exception_section = flag_pic ? data_section : readonly_data_section;
3453 }
3454 switch_to_section (exception_section);
3455 }
3456 #endif
3457
3458
3459 /* Output a reference from an exception table to the type_info object TYPE.
3460 TT_FORMAT and TT_FORMAT_SIZE descibe the DWARF encoding method used for
3461 the value. */
3462
3463 static void
3464 output_ttype (tree type, int tt_format, int tt_format_size)
3465 {
3466 rtx value;
3467 bool public = true;
3468
3469 if (type == NULL_TREE)
3470 value = const0_rtx;
3471 else
3472 {
3473 struct cgraph_varpool_node *node;
3474
3475 type = lookup_type_for_runtime (type);
3476 value = expand_normal (type);
3477
3478 /* Let cgraph know that the rtti decl is used. Not all of the
3479 paths below go through assemble_integer, which would take
3480 care of this for us. */
3481 STRIP_NOPS (type);
3482 if (TREE_CODE (type) == ADDR_EXPR)
3483 {
3484 type = TREE_OPERAND (type, 0);
3485 if (TREE_CODE (type) == VAR_DECL)
3486 {
3487 node = cgraph_varpool_node (type);
3488 if (node)
3489 cgraph_varpool_mark_needed_node (node);
3490 public = TREE_PUBLIC (type);
3491 }
3492 }
3493 else
3494 gcc_assert (TREE_CODE (type) == INTEGER_CST);
3495 }
3496
3497 /* Allow the target to override the type table entry format. */
3498 if (targetm.asm_out.ttype (value))
3499 return;
3500
3501 if (tt_format == DW_EH_PE_absptr || tt_format == DW_EH_PE_aligned)
3502 assemble_integer (value, tt_format_size,
3503 tt_format_size * BITS_PER_UNIT, 1);
3504 else
3505 dw2_asm_output_encoded_addr_rtx (tt_format, value, public, NULL);
3506 }
3507
3508 void
3509 output_function_exception_table (void)
3510 {
3511 int tt_format, cs_format, lp_format, i, n;
3512 #ifdef HAVE_AS_LEB128
3513 char ttype_label[32];
3514 char cs_after_size_label[32];
3515 char cs_end_label[32];
3516 #else
3517 int call_site_len;
3518 #endif
3519 int have_tt_data;
3520 int tt_format_size = 0;
3521
3522 if (eh_personality_libfunc)
3523 assemble_external_libcall (eh_personality_libfunc);
3524
3525 /* Not all functions need anything. */
3526 if (! cfun->uses_eh_lsda)
3527 return;
3528
3529 #ifdef TARGET_UNWIND_INFO
3530 /* TODO: Move this into target file. */
3531 fputs ("\t.personality\t", asm_out_file);
3532 output_addr_const (asm_out_file, eh_personality_libfunc);
3533 fputs ("\n\t.handlerdata\n", asm_out_file);
3534 /* Note that varasm still thinks we're in the function's code section.
3535 The ".endp" directive that will immediately follow will take us back. */
3536 #else
3537 switch_to_exception_section ();
3538 #endif
3539
3540 /* If the target wants a label to begin the table, emit it here. */
3541 targetm.asm_out.except_table_label (asm_out_file);
3542
3543 have_tt_data = (VEC_length (tree, cfun->eh->ttype_data) > 0
3544 || VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) > 0);
3545
3546 /* Indicate the format of the @TType entries. */
3547 if (! have_tt_data)
3548 tt_format = DW_EH_PE_omit;
3549 else
3550 {
3551 tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
3552 #ifdef HAVE_AS_LEB128
3553 ASM_GENERATE_INTERNAL_LABEL (ttype_label, "LLSDATT",
3554 current_function_funcdef_no);
3555 #endif
3556 tt_format_size = size_of_encoded_value (tt_format);
3557
3558 assemble_align (tt_format_size * BITS_PER_UNIT);
3559 }
3560
3561 targetm.asm_out.internal_label (asm_out_file, "LLSDA",
3562 current_function_funcdef_no);
3563
3564 /* The LSDA header. */
3565
3566 /* Indicate the format of the landing pad start pointer. An omitted
3567 field implies @LPStart == @Start. */
3568 /* Currently we always put @LPStart == @Start. This field would
3569 be most useful in moving the landing pads completely out of
3570 line to another section, but it could also be used to minimize
3571 the size of uleb128 landing pad offsets. */
3572 lp_format = DW_EH_PE_omit;
3573 dw2_asm_output_data (1, lp_format, "@LPStart format (%s)",
3574 eh_data_format_name (lp_format));
3575
3576 /* @LPStart pointer would go here. */
3577
3578 dw2_asm_output_data (1, tt_format, "@TType format (%s)",
3579 eh_data_format_name (tt_format));
3580
3581 #ifndef HAVE_AS_LEB128
3582 if (USING_SJLJ_EXCEPTIONS)
3583 call_site_len = sjlj_size_of_call_site_table ();
3584 else
3585 call_site_len = dw2_size_of_call_site_table ();
3586 #endif
3587
3588 /* A pc-relative 4-byte displacement to the @TType data. */
3589 if (have_tt_data)
3590 {
3591 #ifdef HAVE_AS_LEB128
3592 char ttype_after_disp_label[32];
3593 ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label, "LLSDATTD",
3594 current_function_funcdef_no);
3595 dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
3596 "@TType base offset");
3597 ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
3598 #else
3599 /* Ug. Alignment queers things. */
3600 unsigned int before_disp, after_disp, last_disp, disp;
3601
3602 before_disp = 1 + 1;
3603 after_disp = (1 + size_of_uleb128 (call_site_len)
3604 + call_site_len
3605 + VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data)
3606 + (VEC_length (tree, cfun->eh->ttype_data)
3607 * tt_format_size));
3608
3609 disp = after_disp;
3610 do
3611 {
3612 unsigned int disp_size, pad;
3613
3614 last_disp = disp;
3615 disp_size = size_of_uleb128 (disp);
3616 pad = before_disp + disp_size + after_disp;
3617 if (pad % tt_format_size)
3618 pad = tt_format_size - (pad % tt_format_size);
3619 else
3620 pad = 0;
3621 disp = after_disp + pad;
3622 }
3623 while (disp != last_disp);
3624
3625 dw2_asm_output_data_uleb128 (disp, "@TType base offset");
3626 #endif
3627 }
3628
3629 /* Indicate the format of the call-site offsets. */
3630 #ifdef HAVE_AS_LEB128
3631 cs_format = DW_EH_PE_uleb128;
3632 #else
3633 cs_format = DW_EH_PE_udata4;
3634 #endif
3635 dw2_asm_output_data (1, cs_format, "call-site format (%s)",
3636 eh_data_format_name (cs_format));
3637
3638 #ifdef HAVE_AS_LEB128
3639 ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label, "LLSDACSB",
3640 current_function_funcdef_no);
3641 ASM_GENERATE_INTERNAL_LABEL (cs_end_label, "LLSDACSE",
3642 current_function_funcdef_no);
3643 dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
3644 "Call-site table length");
3645 ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
3646 if (USING_SJLJ_EXCEPTIONS)
3647 sjlj_output_call_site_table ();
3648 else
3649 dw2_output_call_site_table ();
3650 ASM_OUTPUT_LABEL (asm_out_file, cs_end_label);
3651 #else
3652 dw2_asm_output_data_uleb128 (call_site_len,"Call-site table length");
3653 if (USING_SJLJ_EXCEPTIONS)
3654 sjlj_output_call_site_table ();
3655 else
3656 dw2_output_call_site_table ();
3657 #endif
3658
3659 /* ??? Decode and interpret the data for flag_debug_asm. */
3660 n = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data);
3661 for (i = 0; i < n; ++i)
3662 dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->action_record_data, i),
3663 (i ? NULL : "Action record table"));
3664
3665 if (have_tt_data)
3666 assemble_align (tt_format_size * BITS_PER_UNIT);
3667
3668 i = VEC_length (tree, cfun->eh->ttype_data);
3669 while (i-- > 0)
3670 {
3671 tree type = VEC_index (tree, cfun->eh->ttype_data, i);
3672 output_ttype (type, tt_format, tt_format_size);
3673 }
3674
3675 #ifdef HAVE_AS_LEB128
3676 if (have_tt_data)
3677 ASM_OUTPUT_LABEL (asm_out_file, ttype_label);
3678 #endif
3679
3680 /* ??? Decode and interpret the data for flag_debug_asm. */
3681 n = VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data);
3682 for (i = 0; i < n; ++i)
3683 {
3684 if (targetm.arm_eabi_unwinder)
3685 {
3686 tree type = VARRAY_TREE (cfun->eh->ehspec_data, i);
3687 output_ttype (type, tt_format, tt_format_size);
3688 }
3689 else
3690 dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->ehspec_data, i),
3691 (i ? NULL : "Exception specification table"));
3692 }
3693
3694 switch_to_section (current_function_section ());
3695 }
3696
3697 void
3698 set_eh_throw_stmt_table (struct function *fun, struct htab *table)
3699 {
3700 fun->eh->throw_stmt_table = table;
3701 }
3702
3703 htab_t
3704 get_eh_throw_stmt_table (struct function *fun)
3705 {
3706 return fun->eh->throw_stmt_table;
3707 }
3708
3709 /* Dump EH information to OUT. */
3710 void
3711 dump_eh_tree (FILE *out, struct function *fun)
3712 {
3713 struct eh_region *i;
3714 int depth = 0;
3715 static const char * const type_name[] = {"unknown", "cleanup", "try", "catch",
3716 "allowed_exceptions", "must_not_throw",
3717 "throw"};
3718
3719 i = fun->eh->region_tree;
3720 if (! i)
3721 return;
3722
3723 fprintf (out, "Eh tree:\n");
3724 while (1)
3725 {
3726 fprintf (out, " %*s %i %s", depth * 2, "",
3727 i->region_number, type_name [(int)i->type]);
3728 if (i->tree_label)
3729 {
3730 fprintf (out, " tree_label:");
3731 print_generic_expr (out, i->tree_label, 0);
3732 }
3733 fprintf (out, "\n");
3734 /* If there are sub-regions, process them. */
3735 if (i->inner)
3736 i = i->inner, depth++;
3737 /* If there are peers, process them. */
3738 else if (i->next_peer)
3739 i = i->next_peer;
3740 /* Otherwise, step back up the tree to the next peer. */
3741 else
3742 {
3743 do {
3744 i = i->outer;
3745 depth--;
3746 if (i == NULL)
3747 return;
3748 } while (i->next_peer == NULL);
3749 i = i->next_peer;
3750 }
3751 }
3752 }
3753
3754 /* Verify some basic invariants on EH datastructures. Could be extended to
3755 catch more. */
3756 void
3757 verify_eh_tree (struct function *fun)
3758 {
3759 struct eh_region *i, *outer = NULL;
3760 bool err = false;
3761 int nvisited = 0;
3762 int count = 0;
3763 int j;
3764 int depth = 0;
3765
3766 i = fun->eh->region_tree;
3767 if (! i)
3768 return;
3769 for (j = fun->eh->last_region_number; j > 0; --j)
3770 if ((i = VEC_index (eh_region, cfun->eh->region_array, j)))
3771 {
3772 count++;
3773 if (i->region_number != j)
3774 {
3775 error ("region_array is corrupted for region %i", i->region_number);
3776 err = true;
3777 }
3778 }
3779
3780 while (1)
3781 {
3782 if (VEC_index (eh_region, cfun->eh->region_array, i->region_number) != i)
3783 {
3784 error ("region_array is corrupted for region %i", i->region_number);
3785 err = true;
3786 }
3787 if (i->outer != outer)
3788 {
3789 error ("outer block of region %i is wrong", i->region_number);
3790 err = true;
3791 }
3792 if (i->may_contain_throw && outer && !outer->may_contain_throw)
3793 {
3794 error ("region %i may contain throw and is contained in region that may not",
3795 i->region_number);
3796 err = true;
3797 }
3798 if (depth < 0)
3799 {
3800 error ("negative nesting depth of region %i", i->region_number);
3801 err = true;
3802 }
3803 nvisited ++;
3804 /* If there are sub-regions, process them. */
3805 if (i->inner)
3806 outer = i, i = i->inner, depth++;
3807 /* If there are peers, process them. */
3808 else if (i->next_peer)
3809 i = i->next_peer;
3810 /* Otherwise, step back up the tree to the next peer. */
3811 else
3812 {
3813 do {
3814 i = i->outer;
3815 depth--;
3816 if (i == NULL)
3817 {
3818 if (depth != -1)
3819 {
3820 error ("tree list ends on depth %i", depth + 1);
3821 err = true;
3822 }
3823 if (count != nvisited)
3824 {
3825 error ("array does not match the region tree");
3826 err = true;
3827 }
3828 if (err)
3829 {
3830 dump_eh_tree (stderr, fun);
3831 internal_error ("verify_eh_tree failed");
3832 }
3833 return;
3834 }
3835 outer = i->outer;
3836 } while (i->next_peer == NULL);
3837 i = i->next_peer;
3838 }
3839 }
3840 }
3841
3842 /* Initialize unwind_resume_libfunc. */
3843
3844 void
3845 default_init_unwind_resume_libfunc (void)
3846 {
3847 /* The default c++ routines aren't actually c++ specific, so use those. */
3848 unwind_resume_libfunc =
3849 init_one_libfunc ( USING_SJLJ_EXCEPTIONS ? "_Unwind_SjLj_Resume"
3850 : "_Unwind_Resume");
3851 }
3852
3853 \f
3854 static bool
3855 gate_handle_eh (void)
3856 {
3857 return doing_eh (0);
3858 }
3859
3860 /* Complete generation of exception handling code. */
3861 static void
3862 rest_of_handle_eh (void)
3863 {
3864 cleanup_cfg (CLEANUP_PRE_LOOP | CLEANUP_NO_INSN_DEL);
3865 finish_eh_generation ();
3866 cleanup_cfg (CLEANUP_PRE_LOOP | CLEANUP_NO_INSN_DEL);
3867 }
3868
3869 struct tree_opt_pass pass_rtl_eh =
3870 {
3871 "eh", /* name */
3872 gate_handle_eh, /* gate */
3873 rest_of_handle_eh, /* execute */
3874 NULL, /* sub */
3875 NULL, /* next */
3876 0, /* static_pass_number */
3877 TV_JUMP, /* tv_id */
3878 0, /* properties_required */
3879 0, /* properties_provided */
3880 0, /* properties_destroyed */
3881 0, /* todo_flags_start */
3882 TODO_dump_func, /* todo_flags_finish */
3883 'h' /* letter */
3884 };
3885
3886 #include "gt-except.h"