]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/except.c
Daily bump.
[thirdparty/gcc.git] / gcc / except.c
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Mike Stump <mrs@cygnus.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23
24 /* An exception is an event that can be signaled from within a
25 function. This event can then be "caught" or "trapped" by the
26 callers of this function. This potentially allows program flow to
27 be transferred to any arbitrary code associated with a function call
28 several levels up the stack.
29
30 The intended use for this mechanism is for signaling "exceptional
31 events" in an out-of-band fashion, hence its name. The C++ language
32 (and many other OO-styled or functional languages) practically
33 requires such a mechanism, as otherwise it becomes very difficult
34 or even impossible to signal failure conditions in complex
35 situations. The traditional C++ example is when an error occurs in
36 the process of constructing an object; without such a mechanism, it
37 is impossible to signal that the error occurs without adding global
38 state variables and error checks around every object construction.
39
40 The act of causing this event to occur is referred to as "throwing
41 an exception". (Alternate terms include "raising an exception" or
42 "signaling an exception".) The term "throw" is used because control
43 is returned to the callers of the function that is signaling the
44 exception, and thus there is the concept of "throwing" the
45 exception up the call stack.
46
47 [ Add updated documentation on how to use this. ] */
48
49
50 #include "config.h"
51 #include "system.h"
52 #include "rtl.h"
53 #include "tree.h"
54 #include "flags.h"
55 #include "function.h"
56 #include "expr.h"
57 #include "libfuncs.h"
58 #include "insn-config.h"
59 #include "except.h"
60 #include "integrate.h"
61 #include "hard-reg-set.h"
62 #include "basic-block.h"
63 #include "output.h"
64 #include "dwarf2asm.h"
65 #include "dwarf2out.h"
66 #include "dwarf2.h"
67 #include "toplev.h"
68 #include "hashtab.h"
69 #include "intl.h"
70 #include "ggc.h"
71 #include "tm_p.h"
72 #include "target.h"
73 #include "langhooks.h"
74
75 /* Provide defaults for stuff that may not be defined when using
76 sjlj exceptions. */
77 #ifndef EH_RETURN_STACKADJ_RTX
78 #define EH_RETURN_STACKADJ_RTX 0
79 #endif
80 #ifndef EH_RETURN_HANDLER_RTX
81 #define EH_RETURN_HANDLER_RTX 0
82 #endif
83 #ifndef EH_RETURN_DATA_REGNO
84 #define EH_RETURN_DATA_REGNO(N) INVALID_REGNUM
85 #endif
86
87
88 /* Nonzero means enable synchronous exceptions for non-call instructions. */
89 int flag_non_call_exceptions;
90
91 /* Protect cleanup actions with must-not-throw regions, with a call
92 to the given failure handler. */
93 tree (*lang_protect_cleanup_actions) PARAMS ((void));
94
95 /* Return true if type A catches type B. */
96 int (*lang_eh_type_covers) PARAMS ((tree a, tree b));
97
98 /* Map a type to a runtime object to match type. */
99 tree (*lang_eh_runtime_type) PARAMS ((tree));
100
101 /* A hash table of label to region number. */
102
103 struct ehl_map_entry GTY(())
104 {
105 rtx label;
106 struct eh_region *region;
107 };
108
109 static int call_site_base;
110 static GTY ((param_is (union tree_node)))
111 htab_t type_to_runtime_map;
112
113 /* Describe the SjLj_Function_Context structure. */
114 static GTY(()) tree sjlj_fc_type_node;
115 static int sjlj_fc_call_site_ofs;
116 static int sjlj_fc_data_ofs;
117 static int sjlj_fc_personality_ofs;
118 static int sjlj_fc_lsda_ofs;
119 static int sjlj_fc_jbuf_ofs;
120 \f
121 /* Describes one exception region. */
122 struct eh_region GTY(())
123 {
124 /* The immediately surrounding region. */
125 struct eh_region *outer;
126
127 /* The list of immediately contained regions. */
128 struct eh_region *inner;
129 struct eh_region *next_peer;
130
131 /* An identifier for this region. */
132 int region_number;
133
134 /* When a region is deleted, its parents inherit the REG_EH_REGION
135 numbers already assigned. */
136 bitmap aka;
137
138 /* Each region does exactly one thing. */
139 enum eh_region_type
140 {
141 ERT_UNKNOWN = 0,
142 ERT_CLEANUP,
143 ERT_TRY,
144 ERT_CATCH,
145 ERT_ALLOWED_EXCEPTIONS,
146 ERT_MUST_NOT_THROW,
147 ERT_THROW,
148 ERT_FIXUP
149 } type;
150
151 /* Holds the action to perform based on the preceding type. */
152 union eh_region_u {
153 /* A list of catch blocks, a surrounding try block,
154 and the label for continuing after a catch. */
155 struct eh_region_u_try {
156 struct eh_region *catch;
157 struct eh_region *last_catch;
158 struct eh_region *prev_try;
159 rtx continue_label;
160 } GTY ((tag ("ERT_TRY"))) try;
161
162 /* The list through the catch handlers, the list of type objects
163 matched, and the list of associated filters. */
164 struct eh_region_u_catch {
165 struct eh_region *next_catch;
166 struct eh_region *prev_catch;
167 tree type_list;
168 tree filter_list;
169 } GTY ((tag ("ERT_CATCH"))) catch;
170
171 /* A tree_list of allowed types. */
172 struct eh_region_u_allowed {
173 tree type_list;
174 int filter;
175 } GTY ((tag ("ERT_ALLOWED_EXCEPTIONS"))) allowed;
176
177 /* The type given by a call to "throw foo();", or discovered
178 for a throw. */
179 struct eh_region_u_throw {
180 tree type;
181 } GTY ((tag ("ERT_THROW"))) throw;
182
183 /* Retain the cleanup expression even after expansion so that
184 we can match up fixup regions. */
185 struct eh_region_u_cleanup {
186 tree exp;
187 } GTY ((tag ("ERT_CLEANUP"))) cleanup;
188
189 /* The real region (by expression and by pointer) that fixup code
190 should live in. */
191 struct eh_region_u_fixup {
192 tree cleanup_exp;
193 struct eh_region *real_region;
194 } GTY ((tag ("ERT_FIXUP"))) fixup;
195 } GTY ((desc ("%0.type"))) u;
196
197 /* Entry point for this region's handler before landing pads are built. */
198 rtx label;
199
200 /* Entry point for this region's handler from the runtime eh library. */
201 rtx landing_pad;
202
203 /* Entry point for this region's handler from an inner region. */
204 rtx post_landing_pad;
205
206 /* The RESX insn for handing off control to the next outermost handler,
207 if appropriate. */
208 rtx resume;
209 };
210
211 struct call_site_record GTY(())
212 {
213 rtx landing_pad;
214 int action;
215 };
216
217 /* Used to save exception status for each function. */
218 struct eh_status GTY(())
219 {
220 /* The tree of all regions for this function. */
221 struct eh_region *region_tree;
222
223 /* The same information as an indexable array. */
224 struct eh_region ** GTY ((length ("%h.last_region_number"))) region_array;
225
226 /* The most recently open region. */
227 struct eh_region *cur_region;
228
229 /* This is the region for which we are processing catch blocks. */
230 struct eh_region *try_region;
231
232 rtx filter;
233 rtx exc_ptr;
234
235 int built_landing_pads;
236 int last_region_number;
237
238 varray_type ttype_data;
239 varray_type ehspec_data;
240 varray_type action_record_data;
241
242 htab_t GTY ((param_is (struct ehl_map_entry))) exception_handler_label_map;
243
244 struct call_site_record * GTY ((length ("%h.call_site_data_used")))
245 call_site_data;
246 int call_site_data_used;
247 int call_site_data_size;
248
249 rtx ehr_stackadj;
250 rtx ehr_handler;
251 rtx ehr_label;
252
253 rtx sjlj_fc;
254 rtx sjlj_exit_after;
255 };
256
257 \f
258 static int t2r_eq PARAMS ((const PTR,
259 const PTR));
260 static hashval_t t2r_hash PARAMS ((const PTR));
261 static void add_type_for_runtime PARAMS ((tree));
262 static tree lookup_type_for_runtime PARAMS ((tree));
263
264 static struct eh_region *expand_eh_region_end PARAMS ((void));
265
266 static rtx get_exception_filter PARAMS ((struct function *));
267
268 static void collect_eh_region_array PARAMS ((void));
269 static void resolve_fixup_regions PARAMS ((void));
270 static void remove_fixup_regions PARAMS ((void));
271 static void remove_unreachable_regions PARAMS ((rtx));
272 static void convert_from_eh_region_ranges_1 PARAMS ((rtx *, int *, int));
273
274 static struct eh_region *duplicate_eh_region_1 PARAMS ((struct eh_region *,
275 struct inline_remap *));
276 static void duplicate_eh_region_2 PARAMS ((struct eh_region *,
277 struct eh_region **));
278 static int ttypes_filter_eq PARAMS ((const PTR,
279 const PTR));
280 static hashval_t ttypes_filter_hash PARAMS ((const PTR));
281 static int ehspec_filter_eq PARAMS ((const PTR,
282 const PTR));
283 static hashval_t ehspec_filter_hash PARAMS ((const PTR));
284 static int add_ttypes_entry PARAMS ((htab_t, tree));
285 static int add_ehspec_entry PARAMS ((htab_t, htab_t,
286 tree));
287 static void assign_filter_values PARAMS ((void));
288 static void build_post_landing_pads PARAMS ((void));
289 static void connect_post_landing_pads PARAMS ((void));
290 static void dw2_build_landing_pads PARAMS ((void));
291
292 struct sjlj_lp_info;
293 static bool sjlj_find_directly_reachable_regions
294 PARAMS ((struct sjlj_lp_info *));
295 static void sjlj_assign_call_site_values
296 PARAMS ((rtx, struct sjlj_lp_info *));
297 static void sjlj_mark_call_sites
298 PARAMS ((struct sjlj_lp_info *));
299 static void sjlj_emit_function_enter PARAMS ((rtx));
300 static void sjlj_emit_function_exit PARAMS ((void));
301 static void sjlj_emit_dispatch_table
302 PARAMS ((rtx, struct sjlj_lp_info *));
303 static void sjlj_build_landing_pads PARAMS ((void));
304
305 static hashval_t ehl_hash PARAMS ((const PTR));
306 static int ehl_eq PARAMS ((const PTR,
307 const PTR));
308 static void add_ehl_entry PARAMS ((rtx,
309 struct eh_region *));
310 static void remove_exception_handler_label PARAMS ((rtx));
311 static void remove_eh_handler PARAMS ((struct eh_region *));
312 static int for_each_eh_label_1 PARAMS ((PTR *, PTR));
313
314 struct reachable_info;
315
316 /* The return value of reachable_next_level. */
317 enum reachable_code
318 {
319 /* The given exception is not processed by the given region. */
320 RNL_NOT_CAUGHT,
321 /* The given exception may need processing by the given region. */
322 RNL_MAYBE_CAUGHT,
323 /* The given exception is completely processed by the given region. */
324 RNL_CAUGHT,
325 /* The given exception is completely processed by the runtime. */
326 RNL_BLOCKED
327 };
328
329 static int check_handled PARAMS ((tree, tree));
330 static void add_reachable_handler
331 PARAMS ((struct reachable_info *, struct eh_region *,
332 struct eh_region *));
333 static enum reachable_code reachable_next_level
334 PARAMS ((struct eh_region *, tree, struct reachable_info *));
335
336 static int action_record_eq PARAMS ((const PTR,
337 const PTR));
338 static hashval_t action_record_hash PARAMS ((const PTR));
339 static int add_action_record PARAMS ((htab_t, int, int));
340 static int collect_one_action_chain PARAMS ((htab_t,
341 struct eh_region *));
342 static int add_call_site PARAMS ((rtx, int));
343
344 static void push_uleb128 PARAMS ((varray_type *,
345 unsigned int));
346 static void push_sleb128 PARAMS ((varray_type *, int));
347 #ifndef HAVE_AS_LEB128
348 static int dw2_size_of_call_site_table PARAMS ((void));
349 static int sjlj_size_of_call_site_table PARAMS ((void));
350 #endif
351 static void dw2_output_call_site_table PARAMS ((void));
352 static void sjlj_output_call_site_table PARAMS ((void));
353
354 \f
355 /* Routine to see if exception handling is turned on.
356 DO_WARN is non-zero if we want to inform the user that exception
357 handling is turned off.
358
359 This is used to ensure that -fexceptions has been specified if the
360 compiler tries to use any exception-specific functions. */
361
362 int
363 doing_eh (do_warn)
364 int do_warn;
365 {
366 if (! flag_exceptions)
367 {
368 static int warned = 0;
369 if (! warned && do_warn)
370 {
371 error ("exception handling disabled, use -fexceptions to enable");
372 warned = 1;
373 }
374 return 0;
375 }
376 return 1;
377 }
378
379 \f
380 void
381 init_eh ()
382 {
383 if (! flag_exceptions)
384 return;
385
386 type_to_runtime_map = htab_create_ggc (31, t2r_hash, t2r_eq, NULL);
387
388 /* Create the SjLj_Function_Context structure. This should match
389 the definition in unwind-sjlj.c. */
390 if (USING_SJLJ_EXCEPTIONS)
391 {
392 tree f_jbuf, f_per, f_lsda, f_prev, f_cs, f_data, tmp;
393
394 sjlj_fc_type_node = (*lang_hooks.types.make_type) (RECORD_TYPE);
395
396 f_prev = build_decl (FIELD_DECL, get_identifier ("__prev"),
397 build_pointer_type (sjlj_fc_type_node));
398 DECL_FIELD_CONTEXT (f_prev) = sjlj_fc_type_node;
399
400 f_cs = build_decl (FIELD_DECL, get_identifier ("__call_site"),
401 integer_type_node);
402 DECL_FIELD_CONTEXT (f_cs) = sjlj_fc_type_node;
403
404 tmp = build_index_type (build_int_2 (4 - 1, 0));
405 tmp = build_array_type ((*lang_hooks.types.type_for_mode) (word_mode, 1),
406 tmp);
407 f_data = build_decl (FIELD_DECL, get_identifier ("__data"), tmp);
408 DECL_FIELD_CONTEXT (f_data) = sjlj_fc_type_node;
409
410 f_per = build_decl (FIELD_DECL, get_identifier ("__personality"),
411 ptr_type_node);
412 DECL_FIELD_CONTEXT (f_per) = sjlj_fc_type_node;
413
414 f_lsda = build_decl (FIELD_DECL, get_identifier ("__lsda"),
415 ptr_type_node);
416 DECL_FIELD_CONTEXT (f_lsda) = sjlj_fc_type_node;
417
418 #ifdef DONT_USE_BUILTIN_SETJMP
419 #ifdef JMP_BUF_SIZE
420 tmp = build_int_2 (JMP_BUF_SIZE - 1, 0);
421 #else
422 /* Should be large enough for most systems, if it is not,
423 JMP_BUF_SIZE should be defined with the proper value. It will
424 also tend to be larger than necessary for most systems, a more
425 optimal port will define JMP_BUF_SIZE. */
426 tmp = build_int_2 (FIRST_PSEUDO_REGISTER + 2 - 1, 0);
427 #endif
428 #else
429 /* This is 2 for builtin_setjmp, plus whatever the target requires
430 via STACK_SAVEAREA_MODE (SAVE_NONLOCAL). */
431 tmp = build_int_2 ((GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
432 / GET_MODE_SIZE (Pmode)) + 2 - 1, 0);
433 #endif
434 tmp = build_index_type (tmp);
435 tmp = build_array_type (ptr_type_node, tmp);
436 f_jbuf = build_decl (FIELD_DECL, get_identifier ("__jbuf"), tmp);
437 #ifdef DONT_USE_BUILTIN_SETJMP
438 /* We don't know what the alignment requirements of the
439 runtime's jmp_buf has. Overestimate. */
440 DECL_ALIGN (f_jbuf) = BIGGEST_ALIGNMENT;
441 DECL_USER_ALIGN (f_jbuf) = 1;
442 #endif
443 DECL_FIELD_CONTEXT (f_jbuf) = sjlj_fc_type_node;
444
445 TYPE_FIELDS (sjlj_fc_type_node) = f_prev;
446 TREE_CHAIN (f_prev) = f_cs;
447 TREE_CHAIN (f_cs) = f_data;
448 TREE_CHAIN (f_data) = f_per;
449 TREE_CHAIN (f_per) = f_lsda;
450 TREE_CHAIN (f_lsda) = f_jbuf;
451
452 layout_type (sjlj_fc_type_node);
453
454 /* Cache the interesting field offsets so that we have
455 easy access from rtl. */
456 sjlj_fc_call_site_ofs
457 = (tree_low_cst (DECL_FIELD_OFFSET (f_cs), 1)
458 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_cs), 1) / BITS_PER_UNIT);
459 sjlj_fc_data_ofs
460 = (tree_low_cst (DECL_FIELD_OFFSET (f_data), 1)
461 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_data), 1) / BITS_PER_UNIT);
462 sjlj_fc_personality_ofs
463 = (tree_low_cst (DECL_FIELD_OFFSET (f_per), 1)
464 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_per), 1) / BITS_PER_UNIT);
465 sjlj_fc_lsda_ofs
466 = (tree_low_cst (DECL_FIELD_OFFSET (f_lsda), 1)
467 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_lsda), 1) / BITS_PER_UNIT);
468 sjlj_fc_jbuf_ofs
469 = (tree_low_cst (DECL_FIELD_OFFSET (f_jbuf), 1)
470 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f_jbuf), 1) / BITS_PER_UNIT);
471 }
472 }
473
474 void
475 init_eh_for_function ()
476 {
477 cfun->eh = (struct eh_status *)
478 ggc_alloc_cleared (sizeof (struct eh_status));
479 }
480 \f
481 /* Start an exception handling region. All instructions emitted
482 after this point are considered to be part of the region until
483 expand_eh_region_end is invoked. */
484
485 void
486 expand_eh_region_start ()
487 {
488 struct eh_region *new_region;
489 struct eh_region *cur_region;
490 rtx note;
491
492 if (! doing_eh (0))
493 return;
494
495 /* Insert a new blank region as a leaf in the tree. */
496 new_region = (struct eh_region *) ggc_alloc_cleared (sizeof (*new_region));
497 cur_region = cfun->eh->cur_region;
498 new_region->outer = cur_region;
499 if (cur_region)
500 {
501 new_region->next_peer = cur_region->inner;
502 cur_region->inner = new_region;
503 }
504 else
505 {
506 new_region->next_peer = cfun->eh->region_tree;
507 cfun->eh->region_tree = new_region;
508 }
509 cfun->eh->cur_region = new_region;
510
511 /* Create a note marking the start of this region. */
512 new_region->region_number = ++cfun->eh->last_region_number;
513 note = emit_note (NULL, NOTE_INSN_EH_REGION_BEG);
514 NOTE_EH_HANDLER (note) = new_region->region_number;
515 }
516
517 /* Common code to end a region. Returns the region just ended. */
518
519 static struct eh_region *
520 expand_eh_region_end ()
521 {
522 struct eh_region *cur_region = cfun->eh->cur_region;
523 rtx note;
524
525 /* Create a note marking the end of this region. */
526 note = emit_note (NULL, NOTE_INSN_EH_REGION_END);
527 NOTE_EH_HANDLER (note) = cur_region->region_number;
528
529 /* Pop. */
530 cfun->eh->cur_region = cur_region->outer;
531
532 return cur_region;
533 }
534
535 /* End an exception handling region for a cleanup. HANDLER is an
536 expression to expand for the cleanup. */
537
538 void
539 expand_eh_region_end_cleanup (handler)
540 tree handler;
541 {
542 struct eh_region *region;
543 tree protect_cleanup_actions;
544 rtx around_label;
545 rtx data_save[2];
546
547 if (! doing_eh (0))
548 return;
549
550 region = expand_eh_region_end ();
551 region->type = ERT_CLEANUP;
552 region->label = gen_label_rtx ();
553 region->u.cleanup.exp = handler;
554
555 around_label = gen_label_rtx ();
556 emit_jump (around_label);
557
558 emit_label (region->label);
559
560 /* Give the language a chance to specify an action to be taken if an
561 exception is thrown that would propagate out of the HANDLER. */
562 protect_cleanup_actions
563 = (lang_protect_cleanup_actions
564 ? (*lang_protect_cleanup_actions) ()
565 : NULL_TREE);
566
567 if (protect_cleanup_actions)
568 expand_eh_region_start ();
569
570 /* In case this cleanup involves an inline destructor with a try block in
571 it, we need to save the EH return data registers around it. */
572 data_save[0] = gen_reg_rtx (ptr_mode);
573 emit_move_insn (data_save[0], get_exception_pointer (cfun));
574 data_save[1] = gen_reg_rtx (word_mode);
575 emit_move_insn (data_save[1], get_exception_filter (cfun));
576
577 expand_expr (handler, const0_rtx, VOIDmode, 0);
578
579 emit_move_insn (cfun->eh->exc_ptr, data_save[0]);
580 emit_move_insn (cfun->eh->filter, data_save[1]);
581
582 if (protect_cleanup_actions)
583 expand_eh_region_end_must_not_throw (protect_cleanup_actions);
584
585 /* We need any stack adjustment complete before the around_label. */
586 do_pending_stack_adjust ();
587
588 /* We delay the generation of the _Unwind_Resume until we generate
589 landing pads. We emit a marker here so as to get good control
590 flow data in the meantime. */
591 region->resume
592 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
593 emit_barrier ();
594
595 emit_label (around_label);
596 }
597
598 /* End an exception handling region for a try block, and prepares
599 for subsequent calls to expand_start_catch. */
600
601 void
602 expand_start_all_catch ()
603 {
604 struct eh_region *region;
605
606 if (! doing_eh (1))
607 return;
608
609 region = expand_eh_region_end ();
610 region->type = ERT_TRY;
611 region->u.try.prev_try = cfun->eh->try_region;
612 region->u.try.continue_label = gen_label_rtx ();
613
614 cfun->eh->try_region = region;
615
616 emit_jump (region->u.try.continue_label);
617 }
618
619 /* Begin a catch clause. TYPE is the type caught, a list of such types, or
620 null if this is a catch-all clause. Providing a type list enables to
621 associate the catch region with potentially several exception types, which
622 is useful e.g. for Ada. */
623
624 void
625 expand_start_catch (type_or_list)
626 tree type_or_list;
627 {
628 struct eh_region *t, *c, *l;
629 tree type_list;
630
631 if (! doing_eh (0))
632 return;
633
634 type_list = type_or_list;
635
636 if (type_or_list)
637 {
638 /* Ensure to always end up with a type list to normalize further
639 processing, then register each type against the runtime types
640 map. */
641 tree type_node;
642
643 if (TREE_CODE (type_or_list) != TREE_LIST)
644 type_list = tree_cons (NULL_TREE, type_or_list, NULL_TREE);
645
646 type_node = type_list;
647 for (; type_node; type_node = TREE_CHAIN (type_node))
648 add_type_for_runtime (TREE_VALUE (type_node));
649 }
650
651 expand_eh_region_start ();
652
653 t = cfun->eh->try_region;
654 c = cfun->eh->cur_region;
655 c->type = ERT_CATCH;
656 c->u.catch.type_list = type_list;
657 c->label = gen_label_rtx ();
658
659 l = t->u.try.last_catch;
660 c->u.catch.prev_catch = l;
661 if (l)
662 l->u.catch.next_catch = c;
663 else
664 t->u.try.catch = c;
665 t->u.try.last_catch = c;
666
667 emit_label (c->label);
668 }
669
670 /* End a catch clause. Control will resume after the try/catch block. */
671
672 void
673 expand_end_catch ()
674 {
675 struct eh_region *try_region, *catch_region;
676
677 if (! doing_eh (0))
678 return;
679
680 catch_region = expand_eh_region_end ();
681 try_region = cfun->eh->try_region;
682
683 emit_jump (try_region->u.try.continue_label);
684 }
685
686 /* End a sequence of catch handlers for a try block. */
687
688 void
689 expand_end_all_catch ()
690 {
691 struct eh_region *try_region;
692
693 if (! doing_eh (0))
694 return;
695
696 try_region = cfun->eh->try_region;
697 cfun->eh->try_region = try_region->u.try.prev_try;
698
699 emit_label (try_region->u.try.continue_label);
700 }
701
702 /* End an exception region for an exception type filter. ALLOWED is a
703 TREE_LIST of types to be matched by the runtime. FAILURE is an
704 expression to invoke if a mismatch occurs.
705
706 ??? We could use these semantics for calls to rethrow, too; if we can
707 see the surrounding catch clause, we know that the exception we're
708 rethrowing satisfies the "filter" of the catch type. */
709
710 void
711 expand_eh_region_end_allowed (allowed, failure)
712 tree allowed, failure;
713 {
714 struct eh_region *region;
715 rtx around_label;
716
717 if (! doing_eh (0))
718 return;
719
720 region = expand_eh_region_end ();
721 region->type = ERT_ALLOWED_EXCEPTIONS;
722 region->u.allowed.type_list = allowed;
723 region->label = gen_label_rtx ();
724
725 for (; allowed ; allowed = TREE_CHAIN (allowed))
726 add_type_for_runtime (TREE_VALUE (allowed));
727
728 /* We must emit the call to FAILURE here, so that if this function
729 throws a different exception, that it will be processed by the
730 correct region. */
731
732 around_label = gen_label_rtx ();
733 emit_jump (around_label);
734
735 emit_label (region->label);
736 expand_expr (failure, const0_rtx, VOIDmode, EXPAND_NORMAL);
737 /* We must adjust the stack before we reach the AROUND_LABEL because
738 the call to FAILURE does not occur on all paths to the
739 AROUND_LABEL. */
740 do_pending_stack_adjust ();
741
742 emit_label (around_label);
743 }
744
745 /* End an exception region for a must-not-throw filter. FAILURE is an
746 expression invoke if an uncaught exception propagates this far.
747
748 This is conceptually identical to expand_eh_region_end_allowed with
749 an empty allowed list (if you passed "std::terminate" instead of
750 "__cxa_call_unexpected"), but they are represented differently in
751 the C++ LSDA. */
752
753 void
754 expand_eh_region_end_must_not_throw (failure)
755 tree failure;
756 {
757 struct eh_region *region;
758 rtx around_label;
759
760 if (! doing_eh (0))
761 return;
762
763 region = expand_eh_region_end ();
764 region->type = ERT_MUST_NOT_THROW;
765 region->label = gen_label_rtx ();
766
767 /* We must emit the call to FAILURE here, so that if this function
768 throws a different exception, that it will be processed by the
769 correct region. */
770
771 around_label = gen_label_rtx ();
772 emit_jump (around_label);
773
774 emit_label (region->label);
775 expand_expr (failure, const0_rtx, VOIDmode, EXPAND_NORMAL);
776
777 emit_label (around_label);
778 }
779
780 /* End an exception region for a throw. No handling goes on here,
781 but it's the easiest way for the front-end to indicate what type
782 is being thrown. */
783
784 void
785 expand_eh_region_end_throw (type)
786 tree type;
787 {
788 struct eh_region *region;
789
790 if (! doing_eh (0))
791 return;
792
793 region = expand_eh_region_end ();
794 region->type = ERT_THROW;
795 region->u.throw.type = type;
796 }
797
798 /* End a fixup region. Within this region the cleanups for the immediately
799 enclosing region are _not_ run. This is used for goto cleanup to avoid
800 destroying an object twice.
801
802 This would be an extraordinarily simple prospect, were it not for the
803 fact that we don't actually know what the immediately enclosing region
804 is. This surprising fact is because expand_cleanups is currently
805 generating a sequence that it will insert somewhere else. We collect
806 the proper notion of "enclosing" in convert_from_eh_region_ranges. */
807
808 void
809 expand_eh_region_end_fixup (handler)
810 tree handler;
811 {
812 struct eh_region *fixup;
813
814 if (! doing_eh (0))
815 return;
816
817 fixup = expand_eh_region_end ();
818 fixup->type = ERT_FIXUP;
819 fixup->u.fixup.cleanup_exp = handler;
820 }
821
822 /* Return an rtl expression for a pointer to the exception object
823 within a handler. */
824
825 rtx
826 get_exception_pointer (fun)
827 struct function *fun;
828 {
829 rtx exc_ptr = fun->eh->exc_ptr;
830 if (fun == cfun && ! exc_ptr)
831 {
832 exc_ptr = gen_reg_rtx (ptr_mode);
833 fun->eh->exc_ptr = exc_ptr;
834 }
835 return exc_ptr;
836 }
837
838 /* Return an rtl expression for the exception dispatch filter
839 within a handler. */
840
841 static rtx
842 get_exception_filter (fun)
843 struct function *fun;
844 {
845 rtx filter = fun->eh->filter;
846 if (fun == cfun && ! filter)
847 {
848 filter = gen_reg_rtx (word_mode);
849 fun->eh->filter = filter;
850 }
851 return filter;
852 }
853 \f
854 /* This section is for the exception handling specific optimization pass. */
855
856 /* Random access the exception region tree. It's just as simple to
857 collect the regions this way as in expand_eh_region_start, but
858 without having to realloc memory. */
859
860 static void
861 collect_eh_region_array ()
862 {
863 struct eh_region **array, *i;
864
865 i = cfun->eh->region_tree;
866 if (! i)
867 return;
868
869 array = ggc_alloc_cleared ((cfun->eh->last_region_number + 1)
870 * sizeof (*array));
871 cfun->eh->region_array = array;
872
873 while (1)
874 {
875 array[i->region_number] = i;
876
877 /* If there are sub-regions, process them. */
878 if (i->inner)
879 i = i->inner;
880 /* If there are peers, process them. */
881 else if (i->next_peer)
882 i = i->next_peer;
883 /* Otherwise, step back up the tree to the next peer. */
884 else
885 {
886 do {
887 i = i->outer;
888 if (i == NULL)
889 return;
890 } while (i->next_peer == NULL);
891 i = i->next_peer;
892 }
893 }
894 }
895
896 static void
897 resolve_fixup_regions ()
898 {
899 int i, j, n = cfun->eh->last_region_number;
900
901 for (i = 1; i <= n; ++i)
902 {
903 struct eh_region *fixup = cfun->eh->region_array[i];
904 struct eh_region *cleanup = 0;
905
906 if (! fixup || fixup->type != ERT_FIXUP)
907 continue;
908
909 for (j = 1; j <= n; ++j)
910 {
911 cleanup = cfun->eh->region_array[j];
912 if (cleanup->type == ERT_CLEANUP
913 && cleanup->u.cleanup.exp == fixup->u.fixup.cleanup_exp)
914 break;
915 }
916 if (j > n)
917 abort ();
918
919 fixup->u.fixup.real_region = cleanup->outer;
920 }
921 }
922
923 /* Now that we've discovered what region actually encloses a fixup,
924 we can shuffle pointers and remove them from the tree. */
925
926 static void
927 remove_fixup_regions ()
928 {
929 int i;
930 rtx insn, note;
931 struct eh_region *fixup;
932
933 /* Walk the insn chain and adjust the REG_EH_REGION numbers
934 for instructions referencing fixup regions. This is only
935 strictly necessary for fixup regions with no parent, but
936 doesn't hurt to do it for all regions. */
937 for (insn = get_insns(); insn ; insn = NEXT_INSN (insn))
938 if (INSN_P (insn)
939 && (note = find_reg_note (insn, REG_EH_REGION, NULL))
940 && INTVAL (XEXP (note, 0)) > 0
941 && (fixup = cfun->eh->region_array[INTVAL (XEXP (note, 0))])
942 && fixup->type == ERT_FIXUP)
943 {
944 if (fixup->u.fixup.real_region)
945 XEXP (note, 0) = GEN_INT (fixup->u.fixup.real_region->region_number);
946 else
947 remove_note (insn, note);
948 }
949
950 /* Remove the fixup regions from the tree. */
951 for (i = cfun->eh->last_region_number; i > 0; --i)
952 {
953 fixup = cfun->eh->region_array[i];
954 if (! fixup)
955 continue;
956
957 /* Allow GC to maybe free some memory. */
958 if (fixup->type == ERT_CLEANUP)
959 fixup->u.cleanup.exp = NULL_TREE;
960
961 if (fixup->type != ERT_FIXUP)
962 continue;
963
964 if (fixup->inner)
965 {
966 struct eh_region *parent, *p, **pp;
967
968 parent = fixup->u.fixup.real_region;
969
970 /* Fix up the children's parent pointers; find the end of
971 the list. */
972 for (p = fixup->inner; ; p = p->next_peer)
973 {
974 p->outer = parent;
975 if (! p->next_peer)
976 break;
977 }
978
979 /* In the tree of cleanups, only outer-inner ordering matters.
980 So link the children back in anywhere at the correct level. */
981 if (parent)
982 pp = &parent->inner;
983 else
984 pp = &cfun->eh->region_tree;
985 p->next_peer = *pp;
986 *pp = fixup->inner;
987 fixup->inner = NULL;
988 }
989
990 remove_eh_handler (fixup);
991 }
992 }
993
994 /* Remove all regions whose labels are not reachable from insns. */
995
996 static void
997 remove_unreachable_regions (insns)
998 rtx insns;
999 {
1000 int i, *uid_region_num;
1001 bool *reachable;
1002 struct eh_region *r;
1003 rtx insn;
1004
1005 uid_region_num = xcalloc (get_max_uid (), sizeof(int));
1006 reachable = xcalloc (cfun->eh->last_region_number + 1, sizeof(bool));
1007
1008 for (i = cfun->eh->last_region_number; i > 0; --i)
1009 {
1010 r = cfun->eh->region_array[i];
1011 if (!r || r->region_number != i)
1012 continue;
1013
1014 if (r->resume)
1015 {
1016 if (uid_region_num[INSN_UID (r->resume)])
1017 abort ();
1018 uid_region_num[INSN_UID (r->resume)] = i;
1019 }
1020 if (r->label)
1021 {
1022 if (uid_region_num[INSN_UID (r->label)])
1023 abort ();
1024 uid_region_num[INSN_UID (r->label)] = i;
1025 }
1026 if (r->type == ERT_TRY && r->u.try.continue_label)
1027 {
1028 if (uid_region_num[INSN_UID (r->u.try.continue_label)])
1029 abort ();
1030 uid_region_num[INSN_UID (r->u.try.continue_label)] = i;
1031 }
1032 }
1033
1034 for (insn = insns; insn; insn = NEXT_INSN (insn))
1035 reachable[uid_region_num[INSN_UID (insn)]] = true;
1036
1037 for (i = cfun->eh->last_region_number; i > 0; --i)
1038 {
1039 r = cfun->eh->region_array[i];
1040 if (r && r->region_number == i && !reachable[i])
1041 {
1042 /* Don't remove ERT_THROW regions if their outer region
1043 is reachable. */
1044 if (r->type == ERT_THROW
1045 && r->outer
1046 && reachable[r->outer->region_number])
1047 continue;
1048
1049 remove_eh_handler (r);
1050 }
1051 }
1052
1053 free (reachable);
1054 free (uid_region_num);
1055 }
1056
1057 /* Turn NOTE_INSN_EH_REGION notes into REG_EH_REGION notes for each
1058 can_throw instruction in the region. */
1059
1060 static void
1061 convert_from_eh_region_ranges_1 (pinsns, orig_sp, cur)
1062 rtx *pinsns;
1063 int *orig_sp;
1064 int cur;
1065 {
1066 int *sp = orig_sp;
1067 rtx insn, next;
1068
1069 for (insn = *pinsns; insn ; insn = next)
1070 {
1071 next = NEXT_INSN (insn);
1072 if (GET_CODE (insn) == NOTE)
1073 {
1074 int kind = NOTE_LINE_NUMBER (insn);
1075 if (kind == NOTE_INSN_EH_REGION_BEG
1076 || kind == NOTE_INSN_EH_REGION_END)
1077 {
1078 if (kind == NOTE_INSN_EH_REGION_BEG)
1079 {
1080 struct eh_region *r;
1081
1082 *sp++ = cur;
1083 cur = NOTE_EH_HANDLER (insn);
1084
1085 r = cfun->eh->region_array[cur];
1086 if (r->type == ERT_FIXUP)
1087 {
1088 r = r->u.fixup.real_region;
1089 cur = r ? r->region_number : 0;
1090 }
1091 else if (r->type == ERT_CATCH)
1092 {
1093 r = r->outer;
1094 cur = r ? r->region_number : 0;
1095 }
1096 }
1097 else
1098 cur = *--sp;
1099
1100 /* Removing the first insn of a CALL_PLACEHOLDER sequence
1101 requires extra care to adjust sequence start. */
1102 if (insn == *pinsns)
1103 *pinsns = next;
1104 remove_insn (insn);
1105 continue;
1106 }
1107 }
1108 else if (INSN_P (insn))
1109 {
1110 if (cur > 0
1111 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1112 /* Calls can always potentially throw exceptions, unless
1113 they have a REG_EH_REGION note with a value of 0 or less.
1114 Which should be the only possible kind so far. */
1115 && (GET_CODE (insn) == CALL_INSN
1116 /* If we wanted exceptions for non-call insns, then
1117 any may_trap_p instruction could throw. */
1118 || (flag_non_call_exceptions
1119 && GET_CODE (PATTERN (insn)) != CLOBBER
1120 && GET_CODE (PATTERN (insn)) != USE
1121 && may_trap_p (PATTERN (insn)))))
1122 {
1123 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (cur),
1124 REG_NOTES (insn));
1125 }
1126
1127 if (GET_CODE (insn) == CALL_INSN
1128 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1129 {
1130 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 0),
1131 sp, cur);
1132 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 1),
1133 sp, cur);
1134 convert_from_eh_region_ranges_1 (&XEXP (PATTERN (insn), 2),
1135 sp, cur);
1136 }
1137 }
1138 }
1139
1140 if (sp != orig_sp)
1141 abort ();
1142 }
1143
1144 void
1145 convert_from_eh_region_ranges ()
1146 {
1147 int *stack;
1148 rtx insns;
1149
1150 collect_eh_region_array ();
1151 resolve_fixup_regions ();
1152
1153 stack = xmalloc (sizeof (int) * (cfun->eh->last_region_number + 1));
1154 insns = get_insns ();
1155 convert_from_eh_region_ranges_1 (&insns, stack, 0);
1156 free (stack);
1157
1158 remove_fixup_regions ();
1159 remove_unreachable_regions (insns);
1160 }
1161
1162 static void
1163 add_ehl_entry (label, region)
1164 rtx label;
1165 struct eh_region *region;
1166 {
1167 struct ehl_map_entry **slot, *entry;
1168
1169 LABEL_PRESERVE_P (label) = 1;
1170
1171 entry = (struct ehl_map_entry *) ggc_alloc (sizeof (*entry));
1172 entry->label = label;
1173 entry->region = region;
1174
1175 slot = (struct ehl_map_entry **)
1176 htab_find_slot (cfun->eh->exception_handler_label_map, entry, INSERT);
1177
1178 /* Before landing pad creation, each exception handler has its own
1179 label. After landing pad creation, the exception handlers may
1180 share landing pads. This is ok, since maybe_remove_eh_handler
1181 only requires the 1-1 mapping before landing pad creation. */
1182 if (*slot && !cfun->eh->built_landing_pads)
1183 abort ();
1184
1185 *slot = entry;
1186 }
1187
1188 void
1189 find_exception_handler_labels ()
1190 {
1191 int i;
1192
1193 if (cfun->eh->exception_handler_label_map)
1194 htab_empty (cfun->eh->exception_handler_label_map);
1195 else
1196 {
1197 /* ??? The expansion factor here (3/2) must be greater than the htab
1198 occupancy factor (4/3) to avoid unnecessary resizing. */
1199 cfun->eh->exception_handler_label_map
1200 = htab_create_ggc (cfun->eh->last_region_number * 3 / 2,
1201 ehl_hash, ehl_eq, NULL);
1202 }
1203
1204 if (cfun->eh->region_tree == NULL)
1205 return;
1206
1207 for (i = cfun->eh->last_region_number; i > 0; --i)
1208 {
1209 struct eh_region *region = cfun->eh->region_array[i];
1210 rtx lab;
1211
1212 if (! region || region->region_number != i)
1213 continue;
1214 if (cfun->eh->built_landing_pads)
1215 lab = region->landing_pad;
1216 else
1217 lab = region->label;
1218
1219 if (lab)
1220 add_ehl_entry (lab, region);
1221 }
1222
1223 /* For sjlj exceptions, need the return label to remain live until
1224 after landing pad generation. */
1225 if (USING_SJLJ_EXCEPTIONS && ! cfun->eh->built_landing_pads)
1226 add_ehl_entry (return_label, NULL);
1227 }
1228
1229 bool
1230 current_function_has_exception_handlers ()
1231 {
1232 int i;
1233
1234 for (i = cfun->eh->last_region_number; i > 0; --i)
1235 {
1236 struct eh_region *region = cfun->eh->region_array[i];
1237
1238 if (! region || region->region_number != i)
1239 continue;
1240 if (region->type != ERT_THROW)
1241 return true;
1242 }
1243
1244 return false;
1245 }
1246 \f
1247 static struct eh_region *
1248 duplicate_eh_region_1 (o, map)
1249 struct eh_region *o;
1250 struct inline_remap *map;
1251 {
1252 struct eh_region *n
1253 = (struct eh_region *) ggc_alloc_cleared (sizeof (struct eh_region));
1254
1255 n->region_number = o->region_number + cfun->eh->last_region_number;
1256 n->type = o->type;
1257
1258 switch (n->type)
1259 {
1260 case ERT_CLEANUP:
1261 case ERT_MUST_NOT_THROW:
1262 break;
1263
1264 case ERT_TRY:
1265 if (o->u.try.continue_label)
1266 n->u.try.continue_label
1267 = get_label_from_map (map,
1268 CODE_LABEL_NUMBER (o->u.try.continue_label));
1269 break;
1270
1271 case ERT_CATCH:
1272 n->u.catch.type_list = o->u.catch.type_list;
1273 break;
1274
1275 case ERT_ALLOWED_EXCEPTIONS:
1276 n->u.allowed.type_list = o->u.allowed.type_list;
1277 break;
1278
1279 case ERT_THROW:
1280 n->u.throw.type = o->u.throw.type;
1281
1282 default:
1283 abort ();
1284 }
1285
1286 if (o->label)
1287 n->label = get_label_from_map (map, CODE_LABEL_NUMBER (o->label));
1288 if (o->resume)
1289 {
1290 n->resume = map->insn_map[INSN_UID (o->resume)];
1291 if (n->resume == NULL)
1292 abort ();
1293 }
1294
1295 return n;
1296 }
1297
1298 static void
1299 duplicate_eh_region_2 (o, n_array)
1300 struct eh_region *o;
1301 struct eh_region **n_array;
1302 {
1303 struct eh_region *n = n_array[o->region_number];
1304
1305 switch (n->type)
1306 {
1307 case ERT_TRY:
1308 n->u.try.catch = n_array[o->u.try.catch->region_number];
1309 n->u.try.last_catch = n_array[o->u.try.last_catch->region_number];
1310 break;
1311
1312 case ERT_CATCH:
1313 if (o->u.catch.next_catch)
1314 n->u.catch.next_catch = n_array[o->u.catch.next_catch->region_number];
1315 if (o->u.catch.prev_catch)
1316 n->u.catch.prev_catch = n_array[o->u.catch.prev_catch->region_number];
1317 break;
1318
1319 default:
1320 break;
1321 }
1322
1323 if (o->outer)
1324 n->outer = n_array[o->outer->region_number];
1325 if (o->inner)
1326 n->inner = n_array[o->inner->region_number];
1327 if (o->next_peer)
1328 n->next_peer = n_array[o->next_peer->region_number];
1329 }
1330
1331 int
1332 duplicate_eh_regions (ifun, map)
1333 struct function *ifun;
1334 struct inline_remap *map;
1335 {
1336 int ifun_last_region_number = ifun->eh->last_region_number;
1337 struct eh_region **n_array, *root, *cur;
1338 int i;
1339
1340 if (ifun_last_region_number == 0)
1341 return 0;
1342
1343 n_array = xcalloc (ifun_last_region_number + 1, sizeof (*n_array));
1344
1345 for (i = 1; i <= ifun_last_region_number; ++i)
1346 {
1347 cur = ifun->eh->region_array[i];
1348 if (!cur || cur->region_number != i)
1349 continue;
1350 n_array[i] = duplicate_eh_region_1 (cur, map);
1351 }
1352 for (i = 1; i <= ifun_last_region_number; ++i)
1353 {
1354 cur = ifun->eh->region_array[i];
1355 if (!cur || cur->region_number != i)
1356 continue;
1357 duplicate_eh_region_2 (cur, n_array);
1358 }
1359
1360 root = n_array[ifun->eh->region_tree->region_number];
1361 cur = cfun->eh->cur_region;
1362 if (cur)
1363 {
1364 struct eh_region *p = cur->inner;
1365 if (p)
1366 {
1367 while (p->next_peer)
1368 p = p->next_peer;
1369 p->next_peer = root;
1370 }
1371 else
1372 cur->inner = root;
1373
1374 for (i = 1; i <= ifun_last_region_number; ++i)
1375 if (n_array[i] && n_array[i]->outer == NULL)
1376 n_array[i]->outer = cur;
1377 }
1378 else
1379 {
1380 struct eh_region *p = cfun->eh->region_tree;
1381 if (p)
1382 {
1383 while (p->next_peer)
1384 p = p->next_peer;
1385 p->next_peer = root;
1386 }
1387 else
1388 cfun->eh->region_tree = root;
1389 }
1390
1391 free (n_array);
1392
1393 i = cfun->eh->last_region_number;
1394 cfun->eh->last_region_number = i + ifun_last_region_number;
1395 return i;
1396 }
1397
1398 \f
1399 static int
1400 t2r_eq (pentry, pdata)
1401 const PTR pentry;
1402 const PTR pdata;
1403 {
1404 tree entry = (tree) pentry;
1405 tree data = (tree) pdata;
1406
1407 return TREE_PURPOSE (entry) == data;
1408 }
1409
1410 static hashval_t
1411 t2r_hash (pentry)
1412 const PTR pentry;
1413 {
1414 tree entry = (tree) pentry;
1415 return TYPE_HASH (TREE_PURPOSE (entry));
1416 }
1417
1418 static void
1419 add_type_for_runtime (type)
1420 tree type;
1421 {
1422 tree *slot;
1423
1424 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1425 TYPE_HASH (type), INSERT);
1426 if (*slot == NULL)
1427 {
1428 tree runtime = (*lang_eh_runtime_type) (type);
1429 *slot = tree_cons (type, runtime, NULL_TREE);
1430 }
1431 }
1432
1433 static tree
1434 lookup_type_for_runtime (type)
1435 tree type;
1436 {
1437 tree *slot;
1438
1439 slot = (tree *) htab_find_slot_with_hash (type_to_runtime_map, type,
1440 TYPE_HASH (type), NO_INSERT);
1441
1442 /* We should have always inserted the data earlier. */
1443 return TREE_VALUE (*slot);
1444 }
1445
1446 \f
1447 /* Represent an entry in @TTypes for either catch actions
1448 or exception filter actions. */
1449 struct ttypes_filter GTY(())
1450 {
1451 tree t;
1452 int filter;
1453 };
1454
1455 /* Compare ENTRY (a ttypes_filter entry in the hash table) with DATA
1456 (a tree) for a @TTypes type node we are thinking about adding. */
1457
1458 static int
1459 ttypes_filter_eq (pentry, pdata)
1460 const PTR pentry;
1461 const PTR pdata;
1462 {
1463 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1464 tree data = (tree) pdata;
1465
1466 return entry->t == data;
1467 }
1468
1469 static hashval_t
1470 ttypes_filter_hash (pentry)
1471 const PTR pentry;
1472 {
1473 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1474 return TYPE_HASH (entry->t);
1475 }
1476
1477 /* Compare ENTRY with DATA (both struct ttypes_filter) for a @TTypes
1478 exception specification list we are thinking about adding. */
1479 /* ??? Currently we use the type lists in the order given. Someone
1480 should put these in some canonical order. */
1481
1482 static int
1483 ehspec_filter_eq (pentry, pdata)
1484 const PTR pentry;
1485 const PTR pdata;
1486 {
1487 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1488 const struct ttypes_filter *data = (const struct ttypes_filter *) pdata;
1489
1490 return type_list_equal (entry->t, data->t);
1491 }
1492
1493 /* Hash function for exception specification lists. */
1494
1495 static hashval_t
1496 ehspec_filter_hash (pentry)
1497 const PTR pentry;
1498 {
1499 const struct ttypes_filter *entry = (const struct ttypes_filter *) pentry;
1500 hashval_t h = 0;
1501 tree list;
1502
1503 for (list = entry->t; list ; list = TREE_CHAIN (list))
1504 h = (h << 5) + (h >> 27) + TYPE_HASH (TREE_VALUE (list));
1505 return h;
1506 }
1507
1508 /* Add TYPE to cfun->eh->ttype_data, using TYPES_HASH to speed
1509 up the search. Return the filter value to be used. */
1510
1511 static int
1512 add_ttypes_entry (ttypes_hash, type)
1513 htab_t ttypes_hash;
1514 tree type;
1515 {
1516 struct ttypes_filter **slot, *n;
1517
1518 slot = (struct ttypes_filter **)
1519 htab_find_slot_with_hash (ttypes_hash, type, TYPE_HASH (type), INSERT);
1520
1521 if ((n = *slot) == NULL)
1522 {
1523 /* Filter value is a 1 based table index. */
1524
1525 n = (struct ttypes_filter *) xmalloc (sizeof (*n));
1526 n->t = type;
1527 n->filter = VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data) + 1;
1528 *slot = n;
1529
1530 VARRAY_PUSH_TREE (cfun->eh->ttype_data, type);
1531 }
1532
1533 return n->filter;
1534 }
1535
1536 /* Add LIST to cfun->eh->ehspec_data, using EHSPEC_HASH and TYPES_HASH
1537 to speed up the search. Return the filter value to be used. */
1538
1539 static int
1540 add_ehspec_entry (ehspec_hash, ttypes_hash, list)
1541 htab_t ehspec_hash;
1542 htab_t ttypes_hash;
1543 tree list;
1544 {
1545 struct ttypes_filter **slot, *n;
1546 struct ttypes_filter dummy;
1547
1548 dummy.t = list;
1549 slot = (struct ttypes_filter **)
1550 htab_find_slot (ehspec_hash, &dummy, INSERT);
1551
1552 if ((n = *slot) == NULL)
1553 {
1554 /* Filter value is a -1 based byte index into a uleb128 buffer. */
1555
1556 n = (struct ttypes_filter *) xmalloc (sizeof (*n));
1557 n->t = list;
1558 n->filter = -(VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) + 1);
1559 *slot = n;
1560
1561 /* Look up each type in the list and encode its filter
1562 value as a uleb128. Terminate the list with 0. */
1563 for (; list ; list = TREE_CHAIN (list))
1564 push_uleb128 (&cfun->eh->ehspec_data,
1565 add_ttypes_entry (ttypes_hash, TREE_VALUE (list)));
1566 VARRAY_PUSH_UCHAR (cfun->eh->ehspec_data, 0);
1567 }
1568
1569 return n->filter;
1570 }
1571
1572 /* Generate the action filter values to be used for CATCH and
1573 ALLOWED_EXCEPTIONS regions. When using dwarf2 exception regions,
1574 we use lots of landing pads, and so every type or list can share
1575 the same filter value, which saves table space. */
1576
1577 static void
1578 assign_filter_values ()
1579 {
1580 int i;
1581 htab_t ttypes, ehspec;
1582
1583 VARRAY_TREE_INIT (cfun->eh->ttype_data, 16, "ttype_data");
1584 VARRAY_UCHAR_INIT (cfun->eh->ehspec_data, 64, "ehspec_data");
1585
1586 ttypes = htab_create (31, ttypes_filter_hash, ttypes_filter_eq, free);
1587 ehspec = htab_create (31, ehspec_filter_hash, ehspec_filter_eq, free);
1588
1589 for (i = cfun->eh->last_region_number; i > 0; --i)
1590 {
1591 struct eh_region *r = cfun->eh->region_array[i];
1592
1593 /* Mind we don't process a region more than once. */
1594 if (!r || r->region_number != i)
1595 continue;
1596
1597 switch (r->type)
1598 {
1599 case ERT_CATCH:
1600 /* Whatever type_list is (NULL or true list), we build a list
1601 of filters for the region. */
1602 r->u.catch.filter_list = NULL_TREE;
1603
1604 if (r->u.catch.type_list != NULL)
1605 {
1606 /* Get a filter value for each of the types caught and store
1607 them in the region's dedicated list. */
1608 tree tp_node = r->u.catch.type_list;
1609
1610 for (;tp_node; tp_node = TREE_CHAIN (tp_node))
1611 {
1612 int flt = add_ttypes_entry (ttypes, TREE_VALUE (tp_node));
1613 tree flt_node = build_int_2 (flt, 0);
1614
1615 r->u.catch.filter_list
1616 = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
1617 }
1618 }
1619 else
1620 {
1621 /* Get a filter value for the NULL list also since it will need
1622 an action record anyway. */
1623 int flt = add_ttypes_entry (ttypes, NULL);
1624 tree flt_node = build_int_2 (flt, 0);
1625
1626 r->u.catch.filter_list
1627 = tree_cons (NULL_TREE, flt_node, r->u.catch.filter_list);
1628 }
1629
1630 break;
1631
1632 case ERT_ALLOWED_EXCEPTIONS:
1633 r->u.allowed.filter
1634 = add_ehspec_entry (ehspec, ttypes, r->u.allowed.type_list);
1635 break;
1636
1637 default:
1638 break;
1639 }
1640 }
1641
1642 htab_delete (ttypes);
1643 htab_delete (ehspec);
1644 }
1645
1646 static void
1647 build_post_landing_pads ()
1648 {
1649 int i;
1650
1651 for (i = cfun->eh->last_region_number; i > 0; --i)
1652 {
1653 struct eh_region *region = cfun->eh->region_array[i];
1654 rtx seq;
1655
1656 /* Mind we don't process a region more than once. */
1657 if (!region || region->region_number != i)
1658 continue;
1659
1660 switch (region->type)
1661 {
1662 case ERT_TRY:
1663 /* ??? Collect the set of all non-overlapping catch handlers
1664 all the way up the chain until blocked by a cleanup. */
1665 /* ??? Outer try regions can share landing pads with inner
1666 try regions if the types are completely non-overlapping,
1667 and there are no intervening cleanups. */
1668
1669 region->post_landing_pad = gen_label_rtx ();
1670
1671 start_sequence ();
1672
1673 emit_label (region->post_landing_pad);
1674
1675 /* ??? It is mighty inconvenient to call back into the
1676 switch statement generation code in expand_end_case.
1677 Rapid prototyping sez a sequence of ifs. */
1678 {
1679 struct eh_region *c;
1680 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
1681 {
1682 /* ??? _Unwind_ForcedUnwind wants no match here. */
1683 if (c->u.catch.type_list == NULL)
1684 emit_jump (c->label);
1685 else
1686 {
1687 /* Need for one cmp/jump per type caught. Each type
1688 list entry has a matching entry in the filter list
1689 (see assign_filter_values). */
1690 tree tp_node = c->u.catch.type_list;
1691 tree flt_node = c->u.catch.filter_list;
1692
1693 for (; tp_node; )
1694 {
1695 emit_cmp_and_jump_insns
1696 (cfun->eh->filter,
1697 GEN_INT (tree_low_cst (TREE_VALUE (flt_node), 0)),
1698 EQ, NULL_RTX, word_mode, 0, c->label);
1699
1700 tp_node = TREE_CHAIN (tp_node);
1701 flt_node = TREE_CHAIN (flt_node);
1702 }
1703 }
1704 }
1705 }
1706
1707 /* We delay the generation of the _Unwind_Resume until we generate
1708 landing pads. We emit a marker here so as to get good control
1709 flow data in the meantime. */
1710 region->resume
1711 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1712 emit_barrier ();
1713
1714 seq = get_insns ();
1715 end_sequence ();
1716
1717 emit_insn_before (seq, region->u.try.catch->label);
1718 break;
1719
1720 case ERT_ALLOWED_EXCEPTIONS:
1721 region->post_landing_pad = gen_label_rtx ();
1722
1723 start_sequence ();
1724
1725 emit_label (region->post_landing_pad);
1726
1727 emit_cmp_and_jump_insns (cfun->eh->filter,
1728 GEN_INT (region->u.allowed.filter),
1729 EQ, NULL_RTX, word_mode, 0, region->label);
1730
1731 /* We delay the generation of the _Unwind_Resume until we generate
1732 landing pads. We emit a marker here so as to get good control
1733 flow data in the meantime. */
1734 region->resume
1735 = emit_jump_insn (gen_rtx_RESX (VOIDmode, region->region_number));
1736 emit_barrier ();
1737
1738 seq = get_insns ();
1739 end_sequence ();
1740
1741 emit_insn_before (seq, region->label);
1742 break;
1743
1744 case ERT_CLEANUP:
1745 case ERT_MUST_NOT_THROW:
1746 region->post_landing_pad = region->label;
1747 break;
1748
1749 case ERT_CATCH:
1750 case ERT_THROW:
1751 /* Nothing to do. */
1752 break;
1753
1754 default:
1755 abort ();
1756 }
1757 }
1758 }
1759
1760 /* Replace RESX patterns with jumps to the next handler if any, or calls to
1761 _Unwind_Resume otherwise. */
1762
1763 static void
1764 connect_post_landing_pads ()
1765 {
1766 int i;
1767
1768 for (i = cfun->eh->last_region_number; i > 0; --i)
1769 {
1770 struct eh_region *region = cfun->eh->region_array[i];
1771 struct eh_region *outer;
1772 rtx seq;
1773
1774 /* Mind we don't process a region more than once. */
1775 if (!region || region->region_number != i)
1776 continue;
1777
1778 /* If there is no RESX, or it has been deleted by flow, there's
1779 nothing to fix up. */
1780 if (! region->resume || INSN_DELETED_P (region->resume))
1781 continue;
1782
1783 /* Search for another landing pad in this function. */
1784 for (outer = region->outer; outer ; outer = outer->outer)
1785 if (outer->post_landing_pad)
1786 break;
1787
1788 start_sequence ();
1789
1790 if (outer)
1791 emit_jump (outer->post_landing_pad);
1792 else
1793 emit_library_call (unwind_resume_libfunc, LCT_THROW,
1794 VOIDmode, 1, cfun->eh->exc_ptr, ptr_mode);
1795
1796 seq = get_insns ();
1797 end_sequence ();
1798 emit_insn_before (seq, region->resume);
1799 delete_insn (region->resume);
1800 }
1801 }
1802
1803 \f
1804 static void
1805 dw2_build_landing_pads ()
1806 {
1807 int i;
1808 unsigned int j;
1809
1810 for (i = cfun->eh->last_region_number; i > 0; --i)
1811 {
1812 struct eh_region *region = cfun->eh->region_array[i];
1813 rtx seq;
1814 bool clobbers_hard_regs = false;
1815
1816 /* Mind we don't process a region more than once. */
1817 if (!region || region->region_number != i)
1818 continue;
1819
1820 if (region->type != ERT_CLEANUP
1821 && region->type != ERT_TRY
1822 && region->type != ERT_ALLOWED_EXCEPTIONS)
1823 continue;
1824
1825 start_sequence ();
1826
1827 region->landing_pad = gen_label_rtx ();
1828 emit_label (region->landing_pad);
1829
1830 #ifdef HAVE_exception_receiver
1831 if (HAVE_exception_receiver)
1832 emit_insn (gen_exception_receiver ());
1833 else
1834 #endif
1835 #ifdef HAVE_nonlocal_goto_receiver
1836 if (HAVE_nonlocal_goto_receiver)
1837 emit_insn (gen_nonlocal_goto_receiver ());
1838 else
1839 #endif
1840 { /* Nothing */ }
1841
1842 /* If the eh_return data registers are call-saved, then we
1843 won't have considered them clobbered from the call that
1844 threw. Kill them now. */
1845 for (j = 0; ; ++j)
1846 {
1847 unsigned r = EH_RETURN_DATA_REGNO (j);
1848 if (r == INVALID_REGNUM)
1849 break;
1850 if (! call_used_regs[r])
1851 {
1852 emit_insn (gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, r)));
1853 clobbers_hard_regs = true;
1854 }
1855 }
1856
1857 if (clobbers_hard_regs)
1858 {
1859 /* @@@ This is a kludge. Not all machine descriptions define a
1860 blockage insn, but we must not allow the code we just generated
1861 to be reordered by scheduling. So emit an ASM_INPUT to act as
1862 blockage insn. */
1863 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
1864 }
1865
1866 emit_move_insn (cfun->eh->exc_ptr,
1867 gen_rtx_REG (ptr_mode, EH_RETURN_DATA_REGNO (0)));
1868 emit_move_insn (cfun->eh->filter,
1869 gen_rtx_REG (word_mode, EH_RETURN_DATA_REGNO (1)));
1870
1871 seq = get_insns ();
1872 end_sequence ();
1873
1874 emit_insn_before (seq, region->post_landing_pad);
1875 }
1876 }
1877
1878 \f
1879 struct sjlj_lp_info
1880 {
1881 int directly_reachable;
1882 int action_index;
1883 int dispatch_index;
1884 int call_site_index;
1885 };
1886
1887 static bool
1888 sjlj_find_directly_reachable_regions (lp_info)
1889 struct sjlj_lp_info *lp_info;
1890 {
1891 rtx insn;
1892 bool found_one = false;
1893
1894 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1895 {
1896 struct eh_region *region;
1897 enum reachable_code rc;
1898 tree type_thrown;
1899 rtx note;
1900
1901 if (! INSN_P (insn))
1902 continue;
1903
1904 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1905 if (!note || INTVAL (XEXP (note, 0)) <= 0)
1906 continue;
1907
1908 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
1909
1910 type_thrown = NULL_TREE;
1911 if (region->type == ERT_THROW)
1912 {
1913 type_thrown = region->u.throw.type;
1914 region = region->outer;
1915 }
1916
1917 /* Find the first containing region that might handle the exception.
1918 That's the landing pad to which we will transfer control. */
1919 rc = RNL_NOT_CAUGHT;
1920 for (; region; region = region->outer)
1921 {
1922 rc = reachable_next_level (region, type_thrown, 0);
1923 if (rc != RNL_NOT_CAUGHT)
1924 break;
1925 }
1926 if (rc == RNL_MAYBE_CAUGHT || rc == RNL_CAUGHT)
1927 {
1928 lp_info[region->region_number].directly_reachable = 1;
1929 found_one = true;
1930 }
1931 }
1932
1933 return found_one;
1934 }
1935
1936 static void
1937 sjlj_assign_call_site_values (dispatch_label, lp_info)
1938 rtx dispatch_label;
1939 struct sjlj_lp_info *lp_info;
1940 {
1941 htab_t ar_hash;
1942 int i, index;
1943
1944 /* First task: build the action table. */
1945
1946 VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
1947 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
1948
1949 for (i = cfun->eh->last_region_number; i > 0; --i)
1950 if (lp_info[i].directly_reachable)
1951 {
1952 struct eh_region *r = cfun->eh->region_array[i];
1953 r->landing_pad = dispatch_label;
1954 lp_info[i].action_index = collect_one_action_chain (ar_hash, r);
1955 if (lp_info[i].action_index != -1)
1956 cfun->uses_eh_lsda = 1;
1957 }
1958
1959 htab_delete (ar_hash);
1960
1961 /* Next: assign dispatch values. In dwarf2 terms, this would be the
1962 landing pad label for the region. For sjlj though, there is one
1963 common landing pad from which we dispatch to the post-landing pads.
1964
1965 A region receives a dispatch index if it is directly reachable
1966 and requires in-function processing. Regions that share post-landing
1967 pads may share dispatch indices. */
1968 /* ??? Post-landing pad sharing doesn't actually happen at the moment
1969 (see build_post_landing_pads) so we don't bother checking for it. */
1970
1971 index = 0;
1972 for (i = cfun->eh->last_region_number; i > 0; --i)
1973 if (lp_info[i].directly_reachable)
1974 lp_info[i].dispatch_index = index++;
1975
1976 /* Finally: assign call-site values. If dwarf2 terms, this would be
1977 the region number assigned by convert_to_eh_region_ranges, but
1978 handles no-action and must-not-throw differently. */
1979
1980 call_site_base = 1;
1981 for (i = cfun->eh->last_region_number; i > 0; --i)
1982 if (lp_info[i].directly_reachable)
1983 {
1984 int action = lp_info[i].action_index;
1985
1986 /* Map must-not-throw to otherwise unused call-site index 0. */
1987 if (action == -2)
1988 index = 0;
1989 /* Map no-action to otherwise unused call-site index -1. */
1990 else if (action == -1)
1991 index = -1;
1992 /* Otherwise, look it up in the table. */
1993 else
1994 index = add_call_site (GEN_INT (lp_info[i].dispatch_index), action);
1995
1996 lp_info[i].call_site_index = index;
1997 }
1998 }
1999
2000 static void
2001 sjlj_mark_call_sites (lp_info)
2002 struct sjlj_lp_info *lp_info;
2003 {
2004 int last_call_site = -2;
2005 rtx insn, mem;
2006
2007 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
2008 {
2009 struct eh_region *region;
2010 int this_call_site;
2011 rtx note, before, p;
2012
2013 /* Reset value tracking at extended basic block boundaries. */
2014 if (GET_CODE (insn) == CODE_LABEL)
2015 last_call_site = -2;
2016
2017 if (! INSN_P (insn))
2018 continue;
2019
2020 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2021 if (!note)
2022 {
2023 /* Calls (and trapping insns) without notes are outside any
2024 exception handling region in this function. Mark them as
2025 no action. */
2026 if (GET_CODE (insn) == CALL_INSN
2027 || (flag_non_call_exceptions
2028 && may_trap_p (PATTERN (insn))))
2029 this_call_site = -1;
2030 else
2031 continue;
2032 }
2033 else
2034 {
2035 /* Calls that are known to not throw need not be marked. */
2036 if (INTVAL (XEXP (note, 0)) <= 0)
2037 continue;
2038
2039 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2040 this_call_site = lp_info[region->region_number].call_site_index;
2041 }
2042
2043 if (this_call_site == last_call_site)
2044 continue;
2045
2046 /* Don't separate a call from it's argument loads. */
2047 before = insn;
2048 if (GET_CODE (insn) == CALL_INSN)
2049 before = find_first_parameter_load (insn, NULL_RTX);
2050
2051 start_sequence ();
2052 mem = adjust_address (cfun->eh->sjlj_fc, TYPE_MODE (integer_type_node),
2053 sjlj_fc_call_site_ofs);
2054 emit_move_insn (mem, GEN_INT (this_call_site));
2055 p = get_insns ();
2056 end_sequence ();
2057
2058 emit_insn_before (p, before);
2059 last_call_site = this_call_site;
2060 }
2061 }
2062
2063 /* Construct the SjLj_Function_Context. */
2064
2065 static void
2066 sjlj_emit_function_enter (dispatch_label)
2067 rtx dispatch_label;
2068 {
2069 rtx fn_begin, fc, mem, seq;
2070
2071 fc = cfun->eh->sjlj_fc;
2072
2073 start_sequence ();
2074
2075 /* We're storing this libcall's address into memory instead of
2076 calling it directly. Thus, we must call assemble_external_libcall
2077 here, as we can not depend on emit_library_call to do it for us. */
2078 assemble_external_libcall (eh_personality_libfunc);
2079 mem = adjust_address (fc, Pmode, sjlj_fc_personality_ofs);
2080 emit_move_insn (mem, eh_personality_libfunc);
2081
2082 mem = adjust_address (fc, Pmode, sjlj_fc_lsda_ofs);
2083 if (cfun->uses_eh_lsda)
2084 {
2085 char buf[20];
2086 ASM_GENERATE_INTERNAL_LABEL (buf, "LLSDA", current_function_funcdef_no);
2087 emit_move_insn (mem, gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)));
2088 }
2089 else
2090 emit_move_insn (mem, const0_rtx);
2091
2092 #ifdef DONT_USE_BUILTIN_SETJMP
2093 {
2094 rtx x, note;
2095 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_RETURNS_TWICE,
2096 TYPE_MODE (integer_type_node), 1,
2097 plus_constant (XEXP (fc, 0),
2098 sjlj_fc_jbuf_ofs), Pmode);
2099
2100 note = emit_note (NULL, NOTE_INSN_EXPECTED_VALUE);
2101 NOTE_EXPECTED_VALUE (note) = gen_rtx_EQ (VOIDmode, x, const0_rtx);
2102
2103 emit_cmp_and_jump_insns (x, const0_rtx, NE, 0,
2104 TYPE_MODE (integer_type_node), 0, dispatch_label);
2105 }
2106 #else
2107 expand_builtin_setjmp_setup (plus_constant (XEXP (fc, 0), sjlj_fc_jbuf_ofs),
2108 dispatch_label);
2109 #endif
2110
2111 emit_library_call (unwind_sjlj_register_libfunc, LCT_NORMAL, VOIDmode,
2112 1, XEXP (fc, 0), Pmode);
2113
2114 seq = get_insns ();
2115 end_sequence ();
2116
2117 /* ??? Instead of doing this at the beginning of the function,
2118 do this in a block that is at loop level 0 and dominates all
2119 can_throw_internal instructions. */
2120
2121 for (fn_begin = get_insns (); ; fn_begin = NEXT_INSN (fn_begin))
2122 if (GET_CODE (fn_begin) == NOTE
2123 && NOTE_LINE_NUMBER (fn_begin) == NOTE_INSN_FUNCTION_BEG)
2124 break;
2125 emit_insn_after (seq, fn_begin);
2126 }
2127
2128 /* Call back from expand_function_end to know where we should put
2129 the call to unwind_sjlj_unregister_libfunc if needed. */
2130
2131 void
2132 sjlj_emit_function_exit_after (after)
2133 rtx after;
2134 {
2135 cfun->eh->sjlj_exit_after = after;
2136 }
2137
2138 static void
2139 sjlj_emit_function_exit ()
2140 {
2141 rtx seq;
2142
2143 start_sequence ();
2144
2145 emit_library_call (unwind_sjlj_unregister_libfunc, LCT_NORMAL, VOIDmode,
2146 1, XEXP (cfun->eh->sjlj_fc, 0), Pmode);
2147
2148 seq = get_insns ();
2149 end_sequence ();
2150
2151 /* ??? Really this can be done in any block at loop level 0 that
2152 post-dominates all can_throw_internal instructions. This is
2153 the last possible moment. */
2154
2155 emit_insn_after (seq, cfun->eh->sjlj_exit_after);
2156 }
2157
2158 static void
2159 sjlj_emit_dispatch_table (dispatch_label, lp_info)
2160 rtx dispatch_label;
2161 struct sjlj_lp_info *lp_info;
2162 {
2163 int i, first_reachable;
2164 rtx mem, dispatch, seq, fc;
2165
2166 fc = cfun->eh->sjlj_fc;
2167
2168 start_sequence ();
2169
2170 emit_label (dispatch_label);
2171
2172 #ifndef DONT_USE_BUILTIN_SETJMP
2173 expand_builtin_setjmp_receiver (dispatch_label);
2174 #endif
2175
2176 /* Load up dispatch index, exc_ptr and filter values from the
2177 function context. */
2178 mem = adjust_address (fc, TYPE_MODE (integer_type_node),
2179 sjlj_fc_call_site_ofs);
2180 dispatch = copy_to_reg (mem);
2181
2182 mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs);
2183 if (word_mode != Pmode)
2184 {
2185 #ifdef POINTERS_EXTEND_UNSIGNED
2186 mem = convert_memory_address (Pmode, mem);
2187 #else
2188 mem = convert_to_mode (Pmode, mem, 0);
2189 #endif
2190 }
2191 emit_move_insn (cfun->eh->exc_ptr, mem);
2192
2193 mem = adjust_address (fc, word_mode, sjlj_fc_data_ofs + UNITS_PER_WORD);
2194 emit_move_insn (cfun->eh->filter, mem);
2195
2196 /* Jump to one of the directly reachable regions. */
2197 /* ??? This really ought to be using a switch statement. */
2198
2199 first_reachable = 0;
2200 for (i = cfun->eh->last_region_number; i > 0; --i)
2201 {
2202 if (! lp_info[i].directly_reachable)
2203 continue;
2204
2205 if (! first_reachable)
2206 {
2207 first_reachable = i;
2208 continue;
2209 }
2210
2211 emit_cmp_and_jump_insns (dispatch, GEN_INT (lp_info[i].dispatch_index),
2212 EQ, NULL_RTX, TYPE_MODE (integer_type_node), 0,
2213 cfun->eh->region_array[i]->post_landing_pad);
2214 }
2215
2216 seq = get_insns ();
2217 end_sequence ();
2218
2219 emit_insn_before (seq, (cfun->eh->region_array[first_reachable]
2220 ->post_landing_pad));
2221 }
2222
2223 static void
2224 sjlj_build_landing_pads ()
2225 {
2226 struct sjlj_lp_info *lp_info;
2227
2228 lp_info = (struct sjlj_lp_info *) xcalloc (cfun->eh->last_region_number + 1,
2229 sizeof (struct sjlj_lp_info));
2230
2231 if (sjlj_find_directly_reachable_regions (lp_info))
2232 {
2233 rtx dispatch_label = gen_label_rtx ();
2234
2235 cfun->eh->sjlj_fc
2236 = assign_stack_local (TYPE_MODE (sjlj_fc_type_node),
2237 int_size_in_bytes (sjlj_fc_type_node),
2238 TYPE_ALIGN (sjlj_fc_type_node));
2239
2240 sjlj_assign_call_site_values (dispatch_label, lp_info);
2241 sjlj_mark_call_sites (lp_info);
2242
2243 sjlj_emit_function_enter (dispatch_label);
2244 sjlj_emit_dispatch_table (dispatch_label, lp_info);
2245 sjlj_emit_function_exit ();
2246 }
2247
2248 free (lp_info);
2249 }
2250
2251 void
2252 finish_eh_generation ()
2253 {
2254 /* Nothing to do if no regions created. */
2255 if (cfun->eh->region_tree == NULL)
2256 return;
2257
2258 /* The object here is to provide find_basic_blocks with detailed
2259 information (via reachable_handlers) on how exception control
2260 flows within the function. In this first pass, we can include
2261 type information garnered from ERT_THROW and ERT_ALLOWED_EXCEPTIONS
2262 regions, and hope that it will be useful in deleting unreachable
2263 handlers. Subsequently, we will generate landing pads which will
2264 connect many of the handlers, and then type information will not
2265 be effective. Still, this is a win over previous implementations. */
2266
2267 cleanup_cfg (CLEANUP_PRE_LOOP | CLEANUP_NO_INSN_DEL);
2268
2269 /* These registers are used by the landing pads. Make sure they
2270 have been generated. */
2271 get_exception_pointer (cfun);
2272 get_exception_filter (cfun);
2273
2274 /* Construct the landing pads. */
2275
2276 assign_filter_values ();
2277 build_post_landing_pads ();
2278 connect_post_landing_pads ();
2279 if (USING_SJLJ_EXCEPTIONS)
2280 sjlj_build_landing_pads ();
2281 else
2282 dw2_build_landing_pads ();
2283
2284 cfun->eh->built_landing_pads = 1;
2285
2286 /* We've totally changed the CFG. Start over. */
2287 find_exception_handler_labels ();
2288 rebuild_jump_labels (get_insns ());
2289 find_basic_blocks (get_insns (), max_reg_num (), 0);
2290 cleanup_cfg (CLEANUP_PRE_LOOP | CLEANUP_NO_INSN_DEL);
2291 }
2292 \f
2293 static hashval_t
2294 ehl_hash (pentry)
2295 const PTR pentry;
2296 {
2297 struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
2298
2299 /* 2^32 * ((sqrt(5) - 1) / 2) */
2300 const hashval_t scaled_golden_ratio = 0x9e3779b9;
2301 return CODE_LABEL_NUMBER (entry->label) * scaled_golden_ratio;
2302 }
2303
2304 static int
2305 ehl_eq (pentry, pdata)
2306 const PTR pentry;
2307 const PTR pdata;
2308 {
2309 struct ehl_map_entry *entry = (struct ehl_map_entry *) pentry;
2310 struct ehl_map_entry *data = (struct ehl_map_entry *) pdata;
2311
2312 return entry->label == data->label;
2313 }
2314
2315 /* This section handles removing dead code for flow. */
2316
2317 /* Remove LABEL from exception_handler_label_map. */
2318
2319 static void
2320 remove_exception_handler_label (label)
2321 rtx label;
2322 {
2323 struct ehl_map_entry **slot, tmp;
2324
2325 /* If exception_handler_label_map was not built yet,
2326 there is nothing to do. */
2327 if (cfun->eh->exception_handler_label_map == NULL)
2328 return;
2329
2330 tmp.label = label;
2331 slot = (struct ehl_map_entry **)
2332 htab_find_slot (cfun->eh->exception_handler_label_map, &tmp, NO_INSERT);
2333 if (! slot)
2334 abort ();
2335
2336 htab_clear_slot (cfun->eh->exception_handler_label_map, (void **) slot);
2337 }
2338
2339 /* Splice REGION from the region tree etc. */
2340
2341 static void
2342 remove_eh_handler (region)
2343 struct eh_region *region;
2344 {
2345 struct eh_region **pp, **pp_start, *p, *outer, *inner;
2346 rtx lab;
2347
2348 /* For the benefit of efficiently handling REG_EH_REGION notes,
2349 replace this region in the region array with its containing
2350 region. Note that previous region deletions may result in
2351 multiple copies of this region in the array, so we have a
2352 list of alternate numbers by which we are known. */
2353
2354 outer = region->outer;
2355 cfun->eh->region_array[region->region_number] = outer;
2356 if (region->aka)
2357 {
2358 int i;
2359 EXECUTE_IF_SET_IN_BITMAP (region->aka, 0, i,
2360 { cfun->eh->region_array[i] = outer; });
2361 }
2362
2363 if (outer)
2364 {
2365 if (!outer->aka)
2366 outer->aka = BITMAP_GGC_ALLOC ();
2367 if (region->aka)
2368 bitmap_a_or_b (outer->aka, outer->aka, region->aka);
2369 bitmap_set_bit (outer->aka, region->region_number);
2370 }
2371
2372 if (cfun->eh->built_landing_pads)
2373 lab = region->landing_pad;
2374 else
2375 lab = region->label;
2376 if (lab)
2377 remove_exception_handler_label (lab);
2378
2379 if (outer)
2380 pp_start = &outer->inner;
2381 else
2382 pp_start = &cfun->eh->region_tree;
2383 for (pp = pp_start, p = *pp; p != region; pp = &p->next_peer, p = *pp)
2384 continue;
2385 *pp = region->next_peer;
2386
2387 inner = region->inner;
2388 if (inner)
2389 {
2390 for (p = inner; p->next_peer ; p = p->next_peer)
2391 p->outer = outer;
2392 p->outer = outer;
2393
2394 p->next_peer = *pp_start;
2395 *pp_start = inner;
2396 }
2397
2398 if (region->type == ERT_CATCH)
2399 {
2400 struct eh_region *try, *next, *prev;
2401
2402 for (try = region->next_peer;
2403 try->type == ERT_CATCH;
2404 try = try->next_peer)
2405 continue;
2406 if (try->type != ERT_TRY)
2407 abort ();
2408
2409 next = region->u.catch.next_catch;
2410 prev = region->u.catch.prev_catch;
2411
2412 if (next)
2413 next->u.catch.prev_catch = prev;
2414 else
2415 try->u.try.last_catch = prev;
2416 if (prev)
2417 prev->u.catch.next_catch = next;
2418 else
2419 {
2420 try->u.try.catch = next;
2421 if (! next)
2422 remove_eh_handler (try);
2423 }
2424 }
2425 }
2426
2427 /* LABEL heads a basic block that is about to be deleted. If this
2428 label corresponds to an exception region, we may be able to
2429 delete the region. */
2430
2431 void
2432 maybe_remove_eh_handler (label)
2433 rtx label;
2434 {
2435 struct ehl_map_entry **slot, tmp;
2436 struct eh_region *region;
2437
2438 /* ??? After generating landing pads, it's not so simple to determine
2439 if the region data is completely unused. One must examine the
2440 landing pad and the post landing pad, and whether an inner try block
2441 is referencing the catch handlers directly. */
2442 if (cfun->eh->built_landing_pads)
2443 return;
2444
2445 tmp.label = label;
2446 slot = (struct ehl_map_entry **)
2447 htab_find_slot (cfun->eh->exception_handler_label_map, &tmp, NO_INSERT);
2448 if (! slot)
2449 return;
2450 region = (*slot)->region;
2451 if (! region)
2452 return;
2453
2454 /* Flow will want to remove MUST_NOT_THROW regions as unreachable
2455 because there is no path to the fallback call to terminate.
2456 But the region continues to affect call-site data until there
2457 are no more contained calls, which we don't see here. */
2458 if (region->type == ERT_MUST_NOT_THROW)
2459 {
2460 htab_clear_slot (cfun->eh->exception_handler_label_map, (void **) slot);
2461 region->label = NULL_RTX;
2462 }
2463 else
2464 remove_eh_handler (region);
2465 }
2466
2467 /* Invokes CALLBACK for every exception handler label. Only used by old
2468 loop hackery; should not be used by new code. */
2469
2470 void
2471 for_each_eh_label (callback)
2472 void (*callback) PARAMS ((rtx));
2473 {
2474 htab_traverse (cfun->eh->exception_handler_label_map, for_each_eh_label_1,
2475 (void *)callback);
2476 }
2477
2478 static int
2479 for_each_eh_label_1 (pentry, data)
2480 PTR *pentry;
2481 PTR data;
2482 {
2483 struct ehl_map_entry *entry = *(struct ehl_map_entry **)pentry;
2484 void (*callback) PARAMS ((rtx)) = (void (*) PARAMS ((rtx))) data;
2485
2486 (*callback) (entry->label);
2487 return 1;
2488 }
2489 \f
2490 /* This section describes CFG exception edges for flow. */
2491
2492 /* For communicating between calls to reachable_next_level. */
2493 struct reachable_info GTY(())
2494 {
2495 tree types_caught;
2496 tree types_allowed;
2497 rtx handlers;
2498 };
2499
2500 /* A subroutine of reachable_next_level. Return true if TYPE, or a
2501 base class of TYPE, is in HANDLED. */
2502
2503 static int
2504 check_handled (handled, type)
2505 tree handled, type;
2506 {
2507 tree t;
2508
2509 /* We can check for exact matches without front-end help. */
2510 if (! lang_eh_type_covers)
2511 {
2512 for (t = handled; t ; t = TREE_CHAIN (t))
2513 if (TREE_VALUE (t) == type)
2514 return 1;
2515 }
2516 else
2517 {
2518 for (t = handled; t ; t = TREE_CHAIN (t))
2519 if ((*lang_eh_type_covers) (TREE_VALUE (t), type))
2520 return 1;
2521 }
2522
2523 return 0;
2524 }
2525
2526 /* A subroutine of reachable_next_level. If we are collecting a list
2527 of handlers, add one. After landing pad generation, reference
2528 it instead of the handlers themselves. Further, the handlers are
2529 all wired together, so by referencing one, we've got them all.
2530 Before landing pad generation we reference each handler individually.
2531
2532 LP_REGION contains the landing pad; REGION is the handler. */
2533
2534 static void
2535 add_reachable_handler (info, lp_region, region)
2536 struct reachable_info *info;
2537 struct eh_region *lp_region;
2538 struct eh_region *region;
2539 {
2540 if (! info)
2541 return;
2542
2543 if (cfun->eh->built_landing_pads)
2544 {
2545 if (! info->handlers)
2546 info->handlers = alloc_INSN_LIST (lp_region->landing_pad, NULL_RTX);
2547 }
2548 else
2549 info->handlers = alloc_INSN_LIST (region->label, info->handlers);
2550 }
2551
2552 /* Process one level of exception regions for reachability.
2553 If TYPE_THROWN is non-null, then it is the *exact* type being
2554 propagated. If INFO is non-null, then collect handler labels
2555 and caught/allowed type information between invocations. */
2556
2557 static enum reachable_code
2558 reachable_next_level (region, type_thrown, info)
2559 struct eh_region *region;
2560 tree type_thrown;
2561 struct reachable_info *info;
2562 {
2563 switch (region->type)
2564 {
2565 case ERT_CLEANUP:
2566 /* Before landing-pad generation, we model control flow
2567 directly to the individual handlers. In this way we can
2568 see that catch handler types may shadow one another. */
2569 add_reachable_handler (info, region, region);
2570 return RNL_MAYBE_CAUGHT;
2571
2572 case ERT_TRY:
2573 {
2574 struct eh_region *c;
2575 enum reachable_code ret = RNL_NOT_CAUGHT;
2576
2577 for (c = region->u.try.catch; c ; c = c->u.catch.next_catch)
2578 {
2579 /* A catch-all handler ends the search. */
2580 /* ??? _Unwind_ForcedUnwind will want outer cleanups
2581 to be run as well. */
2582 if (c->u.catch.type_list == NULL)
2583 {
2584 add_reachable_handler (info, region, c);
2585 return RNL_CAUGHT;
2586 }
2587
2588 if (type_thrown)
2589 {
2590 /* If we have at least one type match, end the search. */
2591 tree tp_node = c->u.catch.type_list;
2592
2593 for (; tp_node; tp_node = TREE_CHAIN (tp_node))
2594 {
2595 tree type = TREE_VALUE (tp_node);
2596
2597 if (type == type_thrown
2598 || (lang_eh_type_covers
2599 && (*lang_eh_type_covers) (type, type_thrown)))
2600 {
2601 add_reachable_handler (info, region, c);
2602 return RNL_CAUGHT;
2603 }
2604 }
2605
2606 /* If we have definitive information of a match failure,
2607 the catch won't trigger. */
2608 if (lang_eh_type_covers)
2609 return RNL_NOT_CAUGHT;
2610 }
2611
2612 /* At this point, we either don't know what type is thrown or
2613 don't have front-end assistance to help deciding if it is
2614 covered by one of the types in the list for this region.
2615
2616 We'd then like to add this region to the list of reachable
2617 handlers since it is indeed potentially reachable based on the
2618 information we have.
2619
2620 Actually, this handler is for sure not reachable if all the
2621 types it matches have already been caught. That is, it is only
2622 potentially reachable if at least one of the types it catches
2623 has not been previously caught. */
2624
2625 if (! info)
2626 ret = RNL_MAYBE_CAUGHT;
2627 else
2628 {
2629 tree tp_node = c->u.catch.type_list;
2630 bool maybe_reachable = false;
2631
2632 /* Compute the potential reachability of this handler and
2633 update the list of types caught at the same time. */
2634 for (; tp_node; tp_node = TREE_CHAIN (tp_node))
2635 {
2636 tree type = TREE_VALUE (tp_node);
2637
2638 if (! check_handled (info->types_caught, type))
2639 {
2640 info->types_caught
2641 = tree_cons (NULL, type, info->types_caught);
2642
2643 maybe_reachable = true;
2644 }
2645 }
2646
2647 if (maybe_reachable)
2648 {
2649 add_reachable_handler (info, region, c);
2650
2651 /* ??? If the catch type is a base class of every allowed
2652 type, then we know we can stop the search. */
2653 ret = RNL_MAYBE_CAUGHT;
2654 }
2655 }
2656 }
2657
2658 return ret;
2659 }
2660
2661 case ERT_ALLOWED_EXCEPTIONS:
2662 /* An empty list of types definitely ends the search. */
2663 if (region->u.allowed.type_list == NULL_TREE)
2664 {
2665 add_reachable_handler (info, region, region);
2666 return RNL_CAUGHT;
2667 }
2668
2669 /* Collect a list of lists of allowed types for use in detecting
2670 when a catch may be transformed into a catch-all. */
2671 if (info)
2672 info->types_allowed = tree_cons (NULL_TREE,
2673 region->u.allowed.type_list,
2674 info->types_allowed);
2675
2676 /* If we have definitive information about the type hierarchy,
2677 then we can tell if the thrown type will pass through the
2678 filter. */
2679 if (type_thrown && lang_eh_type_covers)
2680 {
2681 if (check_handled (region->u.allowed.type_list, type_thrown))
2682 return RNL_NOT_CAUGHT;
2683 else
2684 {
2685 add_reachable_handler (info, region, region);
2686 return RNL_CAUGHT;
2687 }
2688 }
2689
2690 add_reachable_handler (info, region, region);
2691 return RNL_MAYBE_CAUGHT;
2692
2693 case ERT_CATCH:
2694 /* Catch regions are handled by their controling try region. */
2695 return RNL_NOT_CAUGHT;
2696
2697 case ERT_MUST_NOT_THROW:
2698 /* Here we end our search, since no exceptions may propagate.
2699 If we've touched down at some landing pad previous, then the
2700 explicit function call we generated may be used. Otherwise
2701 the call is made by the runtime. */
2702 if (info && info->handlers)
2703 {
2704 add_reachable_handler (info, region, region);
2705 return RNL_CAUGHT;
2706 }
2707 else
2708 return RNL_BLOCKED;
2709
2710 case ERT_THROW:
2711 case ERT_FIXUP:
2712 case ERT_UNKNOWN:
2713 /* Shouldn't see these here. */
2714 break;
2715 }
2716
2717 abort ();
2718 }
2719
2720 /* Retrieve a list of labels of exception handlers which can be
2721 reached by a given insn. */
2722
2723 rtx
2724 reachable_handlers (insn)
2725 rtx insn;
2726 {
2727 struct reachable_info info;
2728 struct eh_region *region;
2729 tree type_thrown;
2730 int region_number;
2731
2732 if (GET_CODE (insn) == JUMP_INSN
2733 && GET_CODE (PATTERN (insn)) == RESX)
2734 region_number = XINT (PATTERN (insn), 0);
2735 else
2736 {
2737 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2738 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2739 return NULL;
2740 region_number = INTVAL (XEXP (note, 0));
2741 }
2742
2743 memset (&info, 0, sizeof (info));
2744
2745 region = cfun->eh->region_array[region_number];
2746
2747 type_thrown = NULL_TREE;
2748 if (GET_CODE (insn) == JUMP_INSN
2749 && GET_CODE (PATTERN (insn)) == RESX)
2750 {
2751 /* A RESX leaves a region instead of entering it. Thus the
2752 region itself may have been deleted out from under us. */
2753 if (region == NULL)
2754 return NULL;
2755 region = region->outer;
2756 }
2757 else if (region->type == ERT_THROW)
2758 {
2759 type_thrown = region->u.throw.type;
2760 region = region->outer;
2761 }
2762
2763 for (; region; region = region->outer)
2764 if (reachable_next_level (region, type_thrown, &info) >= RNL_CAUGHT)
2765 break;
2766
2767 return info.handlers;
2768 }
2769
2770 /* Determine if the given INSN can throw an exception that is caught
2771 within the function. */
2772
2773 bool
2774 can_throw_internal (insn)
2775 rtx insn;
2776 {
2777 struct eh_region *region;
2778 tree type_thrown;
2779 rtx note;
2780
2781 if (! INSN_P (insn))
2782 return false;
2783
2784 if (GET_CODE (insn) == INSN
2785 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2786 insn = XVECEXP (PATTERN (insn), 0, 0);
2787
2788 if (GET_CODE (insn) == CALL_INSN
2789 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
2790 {
2791 int i;
2792 for (i = 0; i < 3; ++i)
2793 {
2794 rtx sub = XEXP (PATTERN (insn), i);
2795 for (; sub ; sub = NEXT_INSN (sub))
2796 if (can_throw_internal (sub))
2797 return true;
2798 }
2799 return false;
2800 }
2801
2802 /* Every insn that might throw has an EH_REGION note. */
2803 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2804 if (!note || INTVAL (XEXP (note, 0)) <= 0)
2805 return false;
2806
2807 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2808
2809 type_thrown = NULL_TREE;
2810 if (region->type == ERT_THROW)
2811 {
2812 type_thrown = region->u.throw.type;
2813 region = region->outer;
2814 }
2815
2816 /* If this exception is ignored by each and every containing region,
2817 then control passes straight out. The runtime may handle some
2818 regions, which also do not require processing internally. */
2819 for (; region; region = region->outer)
2820 {
2821 enum reachable_code how = reachable_next_level (region, type_thrown, 0);
2822 if (how == RNL_BLOCKED)
2823 return false;
2824 if (how != RNL_NOT_CAUGHT)
2825 return true;
2826 }
2827
2828 return false;
2829 }
2830
2831 /* Determine if the given INSN can throw an exception that is
2832 visible outside the function. */
2833
2834 bool
2835 can_throw_external (insn)
2836 rtx insn;
2837 {
2838 struct eh_region *region;
2839 tree type_thrown;
2840 rtx note;
2841
2842 if (! INSN_P (insn))
2843 return false;
2844
2845 if (GET_CODE (insn) == INSN
2846 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2847 insn = XVECEXP (PATTERN (insn), 0, 0);
2848
2849 if (GET_CODE (insn) == CALL_INSN
2850 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
2851 {
2852 int i;
2853 for (i = 0; i < 3; ++i)
2854 {
2855 rtx sub = XEXP (PATTERN (insn), i);
2856 for (; sub ; sub = NEXT_INSN (sub))
2857 if (can_throw_external (sub))
2858 return true;
2859 }
2860 return false;
2861 }
2862
2863 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2864 if (!note)
2865 {
2866 /* Calls (and trapping insns) without notes are outside any
2867 exception handling region in this function. We have to
2868 assume it might throw. Given that the front end and middle
2869 ends mark known NOTHROW functions, this isn't so wildly
2870 inaccurate. */
2871 return (GET_CODE (insn) == CALL_INSN
2872 || (flag_non_call_exceptions
2873 && may_trap_p (PATTERN (insn))));
2874 }
2875 if (INTVAL (XEXP (note, 0)) <= 0)
2876 return false;
2877
2878 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
2879
2880 type_thrown = NULL_TREE;
2881 if (region->type == ERT_THROW)
2882 {
2883 type_thrown = region->u.throw.type;
2884 region = region->outer;
2885 }
2886
2887 /* If the exception is caught or blocked by any containing region,
2888 then it is not seen by any calling function. */
2889 for (; region ; region = region->outer)
2890 if (reachable_next_level (region, type_thrown, NULL) >= RNL_CAUGHT)
2891 return false;
2892
2893 return true;
2894 }
2895
2896 /* Set current_function_nothrow and cfun->all_throwers_are_sibcalls. */
2897
2898 void
2899 set_nothrow_function_flags ()
2900 {
2901 rtx insn;
2902
2903 current_function_nothrow = 1;
2904
2905 /* Assume cfun->all_throwers_are_sibcalls until we encounter
2906 something that can throw an exception. We specifically exempt
2907 CALL_INSNs that are SIBLING_CALL_P, as these are really jumps,
2908 and can't throw. Most CALL_INSNs are not SIBLING_CALL_P, so this
2909 is optimistic. */
2910
2911 cfun->all_throwers_are_sibcalls = 1;
2912
2913 if (! flag_exceptions)
2914 return;
2915
2916 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2917 if (can_throw_external (insn))
2918 {
2919 current_function_nothrow = 0;
2920
2921 if (GET_CODE (insn) != CALL_INSN || !SIBLING_CALL_P (insn))
2922 {
2923 cfun->all_throwers_are_sibcalls = 0;
2924 return;
2925 }
2926 }
2927
2928 for (insn = current_function_epilogue_delay_list; insn;
2929 insn = XEXP (insn, 1))
2930 if (can_throw_external (insn))
2931 {
2932 current_function_nothrow = 0;
2933
2934 if (GET_CODE (insn) != CALL_INSN || !SIBLING_CALL_P (insn))
2935 {
2936 cfun->all_throwers_are_sibcalls = 0;
2937 return;
2938 }
2939 }
2940 }
2941
2942 \f
2943 /* Various hooks for unwind library. */
2944
2945 /* Do any necessary initialization to access arbitrary stack frames.
2946 On the SPARC, this means flushing the register windows. */
2947
2948 void
2949 expand_builtin_unwind_init ()
2950 {
2951 /* Set this so all the registers get saved in our frame; we need to be
2952 able to copy the saved values for any registers from frames we unwind. */
2953 current_function_has_nonlocal_label = 1;
2954
2955 #ifdef SETUP_FRAME_ADDRESSES
2956 SETUP_FRAME_ADDRESSES ();
2957 #endif
2958 }
2959
2960 rtx
2961 expand_builtin_eh_return_data_regno (arglist)
2962 tree arglist;
2963 {
2964 tree which = TREE_VALUE (arglist);
2965 unsigned HOST_WIDE_INT iwhich;
2966
2967 if (TREE_CODE (which) != INTEGER_CST)
2968 {
2969 error ("argument of `__builtin_eh_return_regno' must be constant");
2970 return constm1_rtx;
2971 }
2972
2973 iwhich = tree_low_cst (which, 1);
2974 iwhich = EH_RETURN_DATA_REGNO (iwhich);
2975 if (iwhich == INVALID_REGNUM)
2976 return constm1_rtx;
2977
2978 #ifdef DWARF_FRAME_REGNUM
2979 iwhich = DWARF_FRAME_REGNUM (iwhich);
2980 #else
2981 iwhich = DBX_REGISTER_NUMBER (iwhich);
2982 #endif
2983
2984 return GEN_INT (iwhich);
2985 }
2986
2987 /* Given a value extracted from the return address register or stack slot,
2988 return the actual address encoded in that value. */
2989
2990 rtx
2991 expand_builtin_extract_return_addr (addr_tree)
2992 tree addr_tree;
2993 {
2994 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2995
2996 /* First mask out any unwanted bits. */
2997 #ifdef MASK_RETURN_ADDR
2998 expand_and (Pmode, addr, MASK_RETURN_ADDR, addr);
2999 #endif
3000
3001 /* Then adjust to find the real return address. */
3002 #if defined (RETURN_ADDR_OFFSET)
3003 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
3004 #endif
3005
3006 return addr;
3007 }
3008
3009 /* Given an actual address in addr_tree, do any necessary encoding
3010 and return the value to be stored in the return address register or
3011 stack slot so the epilogue will return to that address. */
3012
3013 rtx
3014 expand_builtin_frob_return_addr (addr_tree)
3015 tree addr_tree;
3016 {
3017 rtx addr = expand_expr (addr_tree, NULL_RTX, ptr_mode, 0);
3018
3019 #ifdef POINTERS_EXTEND_UNSIGNED
3020 if (GET_MODE (addr) != Pmode)
3021 addr = convert_memory_address (Pmode, addr);
3022 #endif
3023
3024 #ifdef RETURN_ADDR_OFFSET
3025 addr = force_reg (Pmode, addr);
3026 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
3027 #endif
3028
3029 return addr;
3030 }
3031
3032 /* Set up the epilogue with the magic bits we'll need to return to the
3033 exception handler. */
3034
3035 void
3036 expand_builtin_eh_return (stackadj_tree, handler_tree)
3037 tree stackadj_tree, handler_tree;
3038 {
3039 rtx stackadj, handler;
3040
3041 stackadj = expand_expr (stackadj_tree, cfun->eh->ehr_stackadj, VOIDmode, 0);
3042 handler = expand_expr (handler_tree, cfun->eh->ehr_handler, VOIDmode, 0);
3043
3044 #ifdef POINTERS_EXTEND_UNSIGNED
3045 if (GET_MODE (stackadj) != Pmode)
3046 stackadj = convert_memory_address (Pmode, stackadj);
3047
3048 if (GET_MODE (handler) != Pmode)
3049 handler = convert_memory_address (Pmode, handler);
3050 #endif
3051
3052 if (! cfun->eh->ehr_label)
3053 {
3054 cfun->eh->ehr_stackadj = copy_to_reg (stackadj);
3055 cfun->eh->ehr_handler = copy_to_reg (handler);
3056 cfun->eh->ehr_label = gen_label_rtx ();
3057 }
3058 else
3059 {
3060 if (stackadj != cfun->eh->ehr_stackadj)
3061 emit_move_insn (cfun->eh->ehr_stackadj, stackadj);
3062 if (handler != cfun->eh->ehr_handler)
3063 emit_move_insn (cfun->eh->ehr_handler, handler);
3064 }
3065
3066 emit_jump (cfun->eh->ehr_label);
3067 }
3068
3069 void
3070 expand_eh_return ()
3071 {
3072 rtx sa, ra, around_label;
3073
3074 if (! cfun->eh->ehr_label)
3075 return;
3076
3077 sa = EH_RETURN_STACKADJ_RTX;
3078 if (! sa)
3079 {
3080 error ("__builtin_eh_return not supported on this target");
3081 return;
3082 }
3083
3084 current_function_calls_eh_return = 1;
3085
3086 around_label = gen_label_rtx ();
3087 emit_move_insn (sa, const0_rtx);
3088 emit_jump (around_label);
3089
3090 emit_label (cfun->eh->ehr_label);
3091 clobber_return_register ();
3092
3093 #ifdef HAVE_eh_return
3094 if (HAVE_eh_return)
3095 emit_insn (gen_eh_return (cfun->eh->ehr_stackadj, cfun->eh->ehr_handler));
3096 else
3097 #endif
3098 {
3099 ra = EH_RETURN_HANDLER_RTX;
3100 if (! ra)
3101 {
3102 error ("__builtin_eh_return not supported on this target");
3103 ra = gen_reg_rtx (Pmode);
3104 }
3105
3106 emit_move_insn (sa, cfun->eh->ehr_stackadj);
3107 emit_move_insn (ra, cfun->eh->ehr_handler);
3108 }
3109
3110 emit_label (around_label);
3111 }
3112 \f
3113 /* In the following functions, we represent entries in the action table
3114 as 1-based indices. Special cases are:
3115
3116 0: null action record, non-null landing pad; implies cleanups
3117 -1: null action record, null landing pad; implies no action
3118 -2: no call-site entry; implies must_not_throw
3119 -3: we have yet to process outer regions
3120
3121 Further, no special cases apply to the "next" field of the record.
3122 For next, 0 means end of list. */
3123
3124 struct action_record
3125 {
3126 int offset;
3127 int filter;
3128 int next;
3129 };
3130
3131 static int
3132 action_record_eq (pentry, pdata)
3133 const PTR pentry;
3134 const PTR pdata;
3135 {
3136 const struct action_record *entry = (const struct action_record *) pentry;
3137 const struct action_record *data = (const struct action_record *) pdata;
3138 return entry->filter == data->filter && entry->next == data->next;
3139 }
3140
3141 static hashval_t
3142 action_record_hash (pentry)
3143 const PTR pentry;
3144 {
3145 const struct action_record *entry = (const struct action_record *) pentry;
3146 return entry->next * 1009 + entry->filter;
3147 }
3148
3149 static int
3150 add_action_record (ar_hash, filter, next)
3151 htab_t ar_hash;
3152 int filter, next;
3153 {
3154 struct action_record **slot, *new, tmp;
3155
3156 tmp.filter = filter;
3157 tmp.next = next;
3158 slot = (struct action_record **) htab_find_slot (ar_hash, &tmp, INSERT);
3159
3160 if ((new = *slot) == NULL)
3161 {
3162 new = (struct action_record *) xmalloc (sizeof (*new));
3163 new->offset = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
3164 new->filter = filter;
3165 new->next = next;
3166 *slot = new;
3167
3168 /* The filter value goes in untouched. The link to the next
3169 record is a "self-relative" byte offset, or zero to indicate
3170 that there is no next record. So convert the absolute 1 based
3171 indices we've been carrying around into a displacement. */
3172
3173 push_sleb128 (&cfun->eh->action_record_data, filter);
3174 if (next)
3175 next -= VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data) + 1;
3176 push_sleb128 (&cfun->eh->action_record_data, next);
3177 }
3178
3179 return new->offset;
3180 }
3181
3182 static int
3183 collect_one_action_chain (ar_hash, region)
3184 htab_t ar_hash;
3185 struct eh_region *region;
3186 {
3187 struct eh_region *c;
3188 int next;
3189
3190 /* If we've reached the top of the region chain, then we have
3191 no actions, and require no landing pad. */
3192 if (region == NULL)
3193 return -1;
3194
3195 switch (region->type)
3196 {
3197 case ERT_CLEANUP:
3198 /* A cleanup adds a zero filter to the beginning of the chain, but
3199 there are special cases to look out for. If there are *only*
3200 cleanups along a path, then it compresses to a zero action.
3201 Further, if there are multiple cleanups along a path, we only
3202 need to represent one of them, as that is enough to trigger
3203 entry to the landing pad at runtime. */
3204 next = collect_one_action_chain (ar_hash, region->outer);
3205 if (next <= 0)
3206 return 0;
3207 for (c = region->outer; c ; c = c->outer)
3208 if (c->type == ERT_CLEANUP)
3209 return next;
3210 return add_action_record (ar_hash, 0, next);
3211
3212 case ERT_TRY:
3213 /* Process the associated catch regions in reverse order.
3214 If there's a catch-all handler, then we don't need to
3215 search outer regions. Use a magic -3 value to record
3216 that we haven't done the outer search. */
3217 next = -3;
3218 for (c = region->u.try.last_catch; c ; c = c->u.catch.prev_catch)
3219 {
3220 if (c->u.catch.type_list == NULL)
3221 {
3222 /* Retrieve the filter from the head of the filter list
3223 where we have stored it (see assign_filter_values). */
3224 int filter
3225 = TREE_INT_CST_LOW (TREE_VALUE (c->u.catch.filter_list));
3226
3227 next = add_action_record (ar_hash, filter, 0);
3228 }
3229 else
3230 {
3231 /* Once the outer search is done, trigger an action record for
3232 each filter we have. */
3233 tree flt_node;
3234
3235 if (next == -3)
3236 {
3237 next = collect_one_action_chain (ar_hash, region->outer);
3238
3239 /* If there is no next action, terminate the chain. */
3240 if (next == -1)
3241 next = 0;
3242 /* If all outer actions are cleanups or must_not_throw,
3243 we'll have no action record for it, since we had wanted
3244 to encode these states in the call-site record directly.
3245 Add a cleanup action to the chain to catch these. */
3246 else if (next <= 0)
3247 next = add_action_record (ar_hash, 0, 0);
3248 }
3249
3250 flt_node = c->u.catch.filter_list;
3251 for (; flt_node; flt_node = TREE_CHAIN (flt_node))
3252 {
3253 int filter = TREE_INT_CST_LOW (TREE_VALUE (flt_node));
3254 next = add_action_record (ar_hash, filter, next);
3255 }
3256 }
3257 }
3258 return next;
3259
3260 case ERT_ALLOWED_EXCEPTIONS:
3261 /* An exception specification adds its filter to the
3262 beginning of the chain. */
3263 next = collect_one_action_chain (ar_hash, region->outer);
3264 return add_action_record (ar_hash, region->u.allowed.filter,
3265 next < 0 ? 0 : next);
3266
3267 case ERT_MUST_NOT_THROW:
3268 /* A must-not-throw region with no inner handlers or cleanups
3269 requires no call-site entry. Note that this differs from
3270 the no handler or cleanup case in that we do require an lsda
3271 to be generated. Return a magic -2 value to record this. */
3272 return -2;
3273
3274 case ERT_CATCH:
3275 case ERT_THROW:
3276 /* CATCH regions are handled in TRY above. THROW regions are
3277 for optimization information only and produce no output. */
3278 return collect_one_action_chain (ar_hash, region->outer);
3279
3280 default:
3281 abort ();
3282 }
3283 }
3284
3285 static int
3286 add_call_site (landing_pad, action)
3287 rtx landing_pad;
3288 int action;
3289 {
3290 struct call_site_record *data = cfun->eh->call_site_data;
3291 int used = cfun->eh->call_site_data_used;
3292 int size = cfun->eh->call_site_data_size;
3293
3294 if (used >= size)
3295 {
3296 size = (size ? size * 2 : 64);
3297 data = (struct call_site_record *)
3298 ggc_realloc (data, sizeof (*data) * size);
3299 cfun->eh->call_site_data = data;
3300 cfun->eh->call_site_data_size = size;
3301 }
3302
3303 data[used].landing_pad = landing_pad;
3304 data[used].action = action;
3305
3306 cfun->eh->call_site_data_used = used + 1;
3307
3308 return used + call_site_base;
3309 }
3310
3311 /* Turn REG_EH_REGION notes back into NOTE_INSN_EH_REGION notes.
3312 The new note numbers will not refer to region numbers, but
3313 instead to call site entries. */
3314
3315 void
3316 convert_to_eh_region_ranges ()
3317 {
3318 rtx insn, iter, note;
3319 htab_t ar_hash;
3320 int last_action = -3;
3321 rtx last_action_insn = NULL_RTX;
3322 rtx last_landing_pad = NULL_RTX;
3323 rtx first_no_action_insn = NULL_RTX;
3324 int call_site = 0;
3325
3326 if (USING_SJLJ_EXCEPTIONS || cfun->eh->region_tree == NULL)
3327 return;
3328
3329 VARRAY_UCHAR_INIT (cfun->eh->action_record_data, 64, "action_record_data");
3330
3331 ar_hash = htab_create (31, action_record_hash, action_record_eq, free);
3332
3333 for (iter = get_insns (); iter ; iter = NEXT_INSN (iter))
3334 if (INSN_P (iter))
3335 {
3336 struct eh_region *region;
3337 int this_action;
3338 rtx this_landing_pad;
3339
3340 insn = iter;
3341 if (GET_CODE (insn) == INSN
3342 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3343 insn = XVECEXP (PATTERN (insn), 0, 0);
3344
3345 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3346 if (!note)
3347 {
3348 if (! (GET_CODE (insn) == CALL_INSN
3349 || (flag_non_call_exceptions
3350 && may_trap_p (PATTERN (insn)))))
3351 continue;
3352 this_action = -1;
3353 region = NULL;
3354 }
3355 else
3356 {
3357 if (INTVAL (XEXP (note, 0)) <= 0)
3358 continue;
3359 region = cfun->eh->region_array[INTVAL (XEXP (note, 0))];
3360 this_action = collect_one_action_chain (ar_hash, region);
3361 }
3362
3363 /* Existence of catch handlers, or must-not-throw regions
3364 implies that an lsda is needed (even if empty). */
3365 if (this_action != -1)
3366 cfun->uses_eh_lsda = 1;
3367
3368 /* Delay creation of region notes for no-action regions
3369 until we're sure that an lsda will be required. */
3370 else if (last_action == -3)
3371 {
3372 first_no_action_insn = iter;
3373 last_action = -1;
3374 }
3375
3376 /* Cleanups and handlers may share action chains but not
3377 landing pads. Collect the landing pad for this region. */
3378 if (this_action >= 0)
3379 {
3380 struct eh_region *o;
3381 for (o = region; ! o->landing_pad ; o = o->outer)
3382 continue;
3383 this_landing_pad = o->landing_pad;
3384 }
3385 else
3386 this_landing_pad = NULL_RTX;
3387
3388 /* Differing actions or landing pads implies a change in call-site
3389 info, which implies some EH_REGION note should be emitted. */
3390 if (last_action != this_action
3391 || last_landing_pad != this_landing_pad)
3392 {
3393 /* If we'd not seen a previous action (-3) or the previous
3394 action was must-not-throw (-2), then we do not need an
3395 end note. */
3396 if (last_action >= -1)
3397 {
3398 /* If we delayed the creation of the begin, do it now. */
3399 if (first_no_action_insn)
3400 {
3401 call_site = add_call_site (NULL_RTX, 0);
3402 note = emit_note_before (NOTE_INSN_EH_REGION_BEG,
3403 first_no_action_insn);
3404 NOTE_EH_HANDLER (note) = call_site;
3405 first_no_action_insn = NULL_RTX;
3406 }
3407
3408 note = emit_note_after (NOTE_INSN_EH_REGION_END,
3409 last_action_insn);
3410 NOTE_EH_HANDLER (note) = call_site;
3411 }
3412
3413 /* If the new action is must-not-throw, then no region notes
3414 are created. */
3415 if (this_action >= -1)
3416 {
3417 call_site = add_call_site (this_landing_pad,
3418 this_action < 0 ? 0 : this_action);
3419 note = emit_note_before (NOTE_INSN_EH_REGION_BEG, iter);
3420 NOTE_EH_HANDLER (note) = call_site;
3421 }
3422
3423 last_action = this_action;
3424 last_landing_pad = this_landing_pad;
3425 }
3426 last_action_insn = iter;
3427 }
3428
3429 if (last_action >= -1 && ! first_no_action_insn)
3430 {
3431 note = emit_note_after (NOTE_INSN_EH_REGION_END, last_action_insn);
3432 NOTE_EH_HANDLER (note) = call_site;
3433 }
3434
3435 htab_delete (ar_hash);
3436 }
3437
3438 \f
3439 static void
3440 push_uleb128 (data_area, value)
3441 varray_type *data_area;
3442 unsigned int value;
3443 {
3444 do
3445 {
3446 unsigned char byte = value & 0x7f;
3447 value >>= 7;
3448 if (value)
3449 byte |= 0x80;
3450 VARRAY_PUSH_UCHAR (*data_area, byte);
3451 }
3452 while (value);
3453 }
3454
3455 static void
3456 push_sleb128 (data_area, value)
3457 varray_type *data_area;
3458 int value;
3459 {
3460 unsigned char byte;
3461 int more;
3462
3463 do
3464 {
3465 byte = value & 0x7f;
3466 value >>= 7;
3467 more = ! ((value == 0 && (byte & 0x40) == 0)
3468 || (value == -1 && (byte & 0x40) != 0));
3469 if (more)
3470 byte |= 0x80;
3471 VARRAY_PUSH_UCHAR (*data_area, byte);
3472 }
3473 while (more);
3474 }
3475
3476 \f
3477 #ifndef HAVE_AS_LEB128
3478 static int
3479 dw2_size_of_call_site_table ()
3480 {
3481 int n = cfun->eh->call_site_data_used;
3482 int size = n * (4 + 4 + 4);
3483 int i;
3484
3485 for (i = 0; i < n; ++i)
3486 {
3487 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3488 size += size_of_uleb128 (cs->action);
3489 }
3490
3491 return size;
3492 }
3493
3494 static int
3495 sjlj_size_of_call_site_table ()
3496 {
3497 int n = cfun->eh->call_site_data_used;
3498 int size = 0;
3499 int i;
3500
3501 for (i = 0; i < n; ++i)
3502 {
3503 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3504 size += size_of_uleb128 (INTVAL (cs->landing_pad));
3505 size += size_of_uleb128 (cs->action);
3506 }
3507
3508 return size;
3509 }
3510 #endif
3511
3512 static void
3513 dw2_output_call_site_table ()
3514 {
3515 const char *const function_start_lab
3516 = IDENTIFIER_POINTER (current_function_func_begin_label);
3517 int n = cfun->eh->call_site_data_used;
3518 int i;
3519
3520 for (i = 0; i < n; ++i)
3521 {
3522 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3523 char reg_start_lab[32];
3524 char reg_end_lab[32];
3525 char landing_pad_lab[32];
3526
3527 ASM_GENERATE_INTERNAL_LABEL (reg_start_lab, "LEHB", call_site_base + i);
3528 ASM_GENERATE_INTERNAL_LABEL (reg_end_lab, "LEHE", call_site_base + i);
3529
3530 if (cs->landing_pad)
3531 ASM_GENERATE_INTERNAL_LABEL (landing_pad_lab, "L",
3532 CODE_LABEL_NUMBER (cs->landing_pad));
3533
3534 /* ??? Perhaps use insn length scaling if the assembler supports
3535 generic arithmetic. */
3536 /* ??? Perhaps use attr_length to choose data1 or data2 instead of
3537 data4 if the function is small enough. */
3538 #ifdef HAVE_AS_LEB128
3539 dw2_asm_output_delta_uleb128 (reg_start_lab, function_start_lab,
3540 "region %d start", i);
3541 dw2_asm_output_delta_uleb128 (reg_end_lab, reg_start_lab,
3542 "length");
3543 if (cs->landing_pad)
3544 dw2_asm_output_delta_uleb128 (landing_pad_lab, function_start_lab,
3545 "landing pad");
3546 else
3547 dw2_asm_output_data_uleb128 (0, "landing pad");
3548 #else
3549 dw2_asm_output_delta (4, reg_start_lab, function_start_lab,
3550 "region %d start", i);
3551 dw2_asm_output_delta (4, reg_end_lab, reg_start_lab, "length");
3552 if (cs->landing_pad)
3553 dw2_asm_output_delta (4, landing_pad_lab, function_start_lab,
3554 "landing pad");
3555 else
3556 dw2_asm_output_data (4, 0, "landing pad");
3557 #endif
3558 dw2_asm_output_data_uleb128 (cs->action, "action");
3559 }
3560
3561 call_site_base += n;
3562 }
3563
3564 static void
3565 sjlj_output_call_site_table ()
3566 {
3567 int n = cfun->eh->call_site_data_used;
3568 int i;
3569
3570 for (i = 0; i < n; ++i)
3571 {
3572 struct call_site_record *cs = &cfun->eh->call_site_data[i];
3573
3574 dw2_asm_output_data_uleb128 (INTVAL (cs->landing_pad),
3575 "region %d landing pad", i);
3576 dw2_asm_output_data_uleb128 (cs->action, "action");
3577 }
3578
3579 call_site_base += n;
3580 }
3581
3582 void
3583 output_function_exception_table ()
3584 {
3585 int tt_format, cs_format, lp_format, i, n;
3586 #ifdef HAVE_AS_LEB128
3587 char ttype_label[32];
3588 char cs_after_size_label[32];
3589 char cs_end_label[32];
3590 #else
3591 int call_site_len;
3592 #endif
3593 int have_tt_data;
3594 int tt_format_size = 0;
3595
3596 /* Not all functions need anything. */
3597 if (! cfun->uses_eh_lsda)
3598 return;
3599
3600 #ifdef IA64_UNWIND_INFO
3601 fputs ("\t.personality\t", asm_out_file);
3602 output_addr_const (asm_out_file, eh_personality_libfunc);
3603 fputs ("\n\t.handlerdata\n", asm_out_file);
3604 /* Note that varasm still thinks we're in the function's code section.
3605 The ".endp" directive that will immediately follow will take us back. */
3606 #else
3607 (*targetm.asm_out.exception_section) ();
3608 #endif
3609
3610 have_tt_data = (VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data) > 0
3611 || VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data) > 0);
3612
3613 /* Indicate the format of the @TType entries. */
3614 if (! have_tt_data)
3615 tt_format = DW_EH_PE_omit;
3616 else
3617 {
3618 tt_format = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/1);
3619 #ifdef HAVE_AS_LEB128
3620 ASM_GENERATE_INTERNAL_LABEL (ttype_label, "LLSDATT",
3621 current_function_funcdef_no);
3622 #endif
3623 tt_format_size = size_of_encoded_value (tt_format);
3624
3625 assemble_align (tt_format_size * BITS_PER_UNIT);
3626 }
3627
3628 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LLSDA",
3629 current_function_funcdef_no);
3630
3631 /* The LSDA header. */
3632
3633 /* Indicate the format of the landing pad start pointer. An omitted
3634 field implies @LPStart == @Start. */
3635 /* Currently we always put @LPStart == @Start. This field would
3636 be most useful in moving the landing pads completely out of
3637 line to another section, but it could also be used to minimize
3638 the size of uleb128 landing pad offsets. */
3639 lp_format = DW_EH_PE_omit;
3640 dw2_asm_output_data (1, lp_format, "@LPStart format (%s)",
3641 eh_data_format_name (lp_format));
3642
3643 /* @LPStart pointer would go here. */
3644
3645 dw2_asm_output_data (1, tt_format, "@TType format (%s)",
3646 eh_data_format_name (tt_format));
3647
3648 #ifndef HAVE_AS_LEB128
3649 if (USING_SJLJ_EXCEPTIONS)
3650 call_site_len = sjlj_size_of_call_site_table ();
3651 else
3652 call_site_len = dw2_size_of_call_site_table ();
3653 #endif
3654
3655 /* A pc-relative 4-byte displacement to the @TType data. */
3656 if (have_tt_data)
3657 {
3658 #ifdef HAVE_AS_LEB128
3659 char ttype_after_disp_label[32];
3660 ASM_GENERATE_INTERNAL_LABEL (ttype_after_disp_label, "LLSDATTD",
3661 current_function_funcdef_no);
3662 dw2_asm_output_delta_uleb128 (ttype_label, ttype_after_disp_label,
3663 "@TType base offset");
3664 ASM_OUTPUT_LABEL (asm_out_file, ttype_after_disp_label);
3665 #else
3666 /* Ug. Alignment queers things. */
3667 unsigned int before_disp, after_disp, last_disp, disp;
3668
3669 before_disp = 1 + 1;
3670 after_disp = (1 + size_of_uleb128 (call_site_len)
3671 + call_site_len
3672 + VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data)
3673 + (VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data)
3674 * tt_format_size));
3675
3676 disp = after_disp;
3677 do
3678 {
3679 unsigned int disp_size, pad;
3680
3681 last_disp = disp;
3682 disp_size = size_of_uleb128 (disp);
3683 pad = before_disp + disp_size + after_disp;
3684 if (pad % tt_format_size)
3685 pad = tt_format_size - (pad % tt_format_size);
3686 else
3687 pad = 0;
3688 disp = after_disp + pad;
3689 }
3690 while (disp != last_disp);
3691
3692 dw2_asm_output_data_uleb128 (disp, "@TType base offset");
3693 #endif
3694 }
3695
3696 /* Indicate the format of the call-site offsets. */
3697 #ifdef HAVE_AS_LEB128
3698 cs_format = DW_EH_PE_uleb128;
3699 #else
3700 cs_format = DW_EH_PE_udata4;
3701 #endif
3702 dw2_asm_output_data (1, cs_format, "call-site format (%s)",
3703 eh_data_format_name (cs_format));
3704
3705 #ifdef HAVE_AS_LEB128
3706 ASM_GENERATE_INTERNAL_LABEL (cs_after_size_label, "LLSDACSB",
3707 current_function_funcdef_no);
3708 ASM_GENERATE_INTERNAL_LABEL (cs_end_label, "LLSDACSE",
3709 current_function_funcdef_no);
3710 dw2_asm_output_delta_uleb128 (cs_end_label, cs_after_size_label,
3711 "Call-site table length");
3712 ASM_OUTPUT_LABEL (asm_out_file, cs_after_size_label);
3713 if (USING_SJLJ_EXCEPTIONS)
3714 sjlj_output_call_site_table ();
3715 else
3716 dw2_output_call_site_table ();
3717 ASM_OUTPUT_LABEL (asm_out_file, cs_end_label);
3718 #else
3719 dw2_asm_output_data_uleb128 (call_site_len,"Call-site table length");
3720 if (USING_SJLJ_EXCEPTIONS)
3721 sjlj_output_call_site_table ();
3722 else
3723 dw2_output_call_site_table ();
3724 #endif
3725
3726 /* ??? Decode and interpret the data for flag_debug_asm. */
3727 n = VARRAY_ACTIVE_SIZE (cfun->eh->action_record_data);
3728 for (i = 0; i < n; ++i)
3729 dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->action_record_data, i),
3730 (i ? NULL : "Action record table"));
3731
3732 if (have_tt_data)
3733 assemble_align (tt_format_size * BITS_PER_UNIT);
3734
3735 i = VARRAY_ACTIVE_SIZE (cfun->eh->ttype_data);
3736 while (i-- > 0)
3737 {
3738 tree type = VARRAY_TREE (cfun->eh->ttype_data, i);
3739 rtx value;
3740
3741 if (type == NULL_TREE)
3742 type = integer_zero_node;
3743 else
3744 type = lookup_type_for_runtime (type);
3745
3746 value = expand_expr (type, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
3747 if (tt_format == DW_EH_PE_absptr || tt_format == DW_EH_PE_aligned)
3748 assemble_integer (value, tt_format_size,
3749 tt_format_size * BITS_PER_UNIT, 1);
3750 else
3751 dw2_asm_output_encoded_addr_rtx (tt_format, value, NULL);
3752 }
3753
3754 #ifdef HAVE_AS_LEB128
3755 if (have_tt_data)
3756 ASM_OUTPUT_LABEL (asm_out_file, ttype_label);
3757 #endif
3758
3759 /* ??? Decode and interpret the data for flag_debug_asm. */
3760 n = VARRAY_ACTIVE_SIZE (cfun->eh->ehspec_data);
3761 for (i = 0; i < n; ++i)
3762 dw2_asm_output_data (1, VARRAY_UCHAR (cfun->eh->ehspec_data, i),
3763 (i ? NULL : "Exception specification table"));
3764
3765 function_section (current_function_decl);
3766 }
3767
3768 #include "gt-except.h"