]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
Merge tree-ssa-20020619-branch into mainline.
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
49 {
50 int width = GET_MODE_BITSIZE (mode);
51
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C.
75
76 This function should be used via the `plus_constant' macro. */
77
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
80 {
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
86
87 if (c == 0)
88 return x;
89
90 restart:
91
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
95
96 switch (code)
97 {
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
100
101 case CONST_DOUBLE:
102 {
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
109
110 add_double (l1, h1, l2, h2, &lv, &hv);
111
112 return immed_double_const (lv, hv, VOIDmode);
113 }
114
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 {
122 tem
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
128 }
129 break;
130
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
137
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
142
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
149
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
152
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
155
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 {
158 c += INTVAL (XEXP (x, 1));
159
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
162
163 x = XEXP (x, 0);
164 goto restart;
165 }
166 else if (CONSTANT_P (XEXP (x, 1)))
167 {
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
170 }
171 else if (find_constant_term_loc (&y))
172 {
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
177
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
181 }
182 break;
183
184 default:
185 break;
186 }
187
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
197 }
198 \f
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
203
204 rtx
205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207 rtx x0, x1;
208 rtx tem;
209
210 if (GET_CODE (x) != PLUS)
211 return x;
212
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
218 {
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
221 }
222
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
230 {
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 }
234
235 return x;
236 }
237
238 /* Return an rtx for the size in bytes of the value of EXP. */
239
240 rtx
241 expr_size (tree exp)
242 {
243 tree size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
244
245 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
246 }
247
248 /* Return a wide integer for the size in bytes of the value of EXP, or -1
249 if the size can vary or is larger than an integer. */
250
251 HOST_WIDE_INT
252 int_expr_size (tree exp)
253 {
254 tree t = lang_hooks.expr_size (exp);
255
256 if (t == 0
257 || TREE_CODE (t) != INTEGER_CST
258 || TREE_OVERFLOW (t)
259 || TREE_INT_CST_HIGH (t) != 0
260 /* If the result would appear negative, it's too big to represent. */
261 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
262 return -1;
263
264 return TREE_INT_CST_LOW (t);
265 }
266 \f
267 /* Return a copy of X in which all memory references
268 and all constants that involve symbol refs
269 have been replaced with new temporary registers.
270 Also emit code to load the memory locations and constants
271 into those registers.
272
273 If X contains no such constants or memory references,
274 X itself (not a copy) is returned.
275
276 If a constant is found in the address that is not a legitimate constant
277 in an insn, it is left alone in the hope that it might be valid in the
278 address.
279
280 X may contain no arithmetic except addition, subtraction and multiplication.
281 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
282
283 static rtx
284 break_out_memory_refs (rtx x)
285 {
286 if (GET_CODE (x) == MEM
287 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
288 && GET_MODE (x) != VOIDmode))
289 x = force_reg (GET_MODE (x), x);
290 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
291 || GET_CODE (x) == MULT)
292 {
293 rtx op0 = break_out_memory_refs (XEXP (x, 0));
294 rtx op1 = break_out_memory_refs (XEXP (x, 1));
295
296 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
297 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
298 }
299
300 return x;
301 }
302
303 /* Given X, a memory address in ptr_mode, convert it to an address
304 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
305 the fact that pointers are not allowed to overflow by commuting arithmetic
306 operations over conversions so that address arithmetic insns can be
307 used. */
308
309 rtx
310 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
311 rtx x)
312 {
313 #ifndef POINTERS_EXTEND_UNSIGNED
314 return x;
315 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
316 enum machine_mode from_mode;
317 rtx temp;
318 enum rtx_code code;
319
320 /* If X already has the right mode, just return it. */
321 if (GET_MODE (x) == to_mode)
322 return x;
323
324 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
325
326 /* Here we handle some special cases. If none of them apply, fall through
327 to the default case. */
328 switch (GET_CODE (x))
329 {
330 case CONST_INT:
331 case CONST_DOUBLE:
332 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
333 code = TRUNCATE;
334 else if (POINTERS_EXTEND_UNSIGNED < 0)
335 break;
336 else if (POINTERS_EXTEND_UNSIGNED > 0)
337 code = ZERO_EXTEND;
338 else
339 code = SIGN_EXTEND;
340 temp = simplify_unary_operation (code, to_mode, x, from_mode);
341 if (temp)
342 return temp;
343 break;
344
345 case SUBREG:
346 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
347 && GET_MODE (SUBREG_REG (x)) == to_mode)
348 return SUBREG_REG (x);
349 break;
350
351 case LABEL_REF:
352 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
353 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
354 return temp;
355 break;
356
357 case SYMBOL_REF:
358 temp = shallow_copy_rtx (x);
359 PUT_MODE (temp, to_mode);
360 return temp;
361 break;
362
363 case CONST:
364 return gen_rtx_CONST (to_mode,
365 convert_memory_address (to_mode, XEXP (x, 0)));
366 break;
367
368 case PLUS:
369 case MULT:
370 /* For addition we can safely permute the conversion and addition
371 operation if one operand is a constant and converting the constant
372 does not change it. We can always safely permute them if we are
373 making the address narrower. */
374 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
375 || (GET_CODE (x) == PLUS
376 && GET_CODE (XEXP (x, 1)) == CONST_INT
377 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
378 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
379 convert_memory_address (to_mode, XEXP (x, 0)),
380 XEXP (x, 1));
381 break;
382
383 default:
384 break;
385 }
386
387 return convert_modes (to_mode, from_mode,
388 x, POINTERS_EXTEND_UNSIGNED);
389 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
390 }
391
392 /* Given a memory address or facsimile X, construct a new address,
393 currently equivalent, that is stable: future stores won't change it.
394
395 X must be composed of constants, register and memory references
396 combined with addition, subtraction and multiplication:
397 in other words, just what you can get from expand_expr if sum_ok is 1.
398
399 Works by making copies of all regs and memory locations used
400 by X and combining them the same way X does.
401 You could also stabilize the reference to this address
402 by copying the address to a register with copy_to_reg;
403 but then you wouldn't get indexed addressing in the reference. */
404
405 rtx
406 copy_all_regs (rtx x)
407 {
408 if (GET_CODE (x) == REG)
409 {
410 if (REGNO (x) != FRAME_POINTER_REGNUM
411 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
412 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
413 #endif
414 )
415 x = copy_to_reg (x);
416 }
417 else if (GET_CODE (x) == MEM)
418 x = copy_to_reg (x);
419 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
420 || GET_CODE (x) == MULT)
421 {
422 rtx op0 = copy_all_regs (XEXP (x, 0));
423 rtx op1 = copy_all_regs (XEXP (x, 1));
424 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
425 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
426 }
427 return x;
428 }
429 \f
430 /* Return something equivalent to X but valid as a memory address
431 for something of mode MODE. When X is not itself valid, this
432 works by copying X or subexpressions of it into registers. */
433
434 rtx
435 memory_address (enum machine_mode mode, rtx x)
436 {
437 rtx oldx = x;
438
439 if (GET_CODE (x) == ADDRESSOF)
440 return x;
441
442 x = convert_memory_address (Pmode, x);
443
444 /* By passing constant addresses through registers
445 we get a chance to cse them. */
446 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
447 x = force_reg (Pmode, x);
448
449 /* Accept a QUEUED that refers to a REG
450 even though that isn't a valid address.
451 On attempting to put this in an insn we will call protect_from_queue
452 which will turn it into a REG, which is valid. */
453 else if (GET_CODE (x) == QUEUED
454 && GET_CODE (QUEUED_VAR (x)) == REG)
455 ;
456
457 /* We get better cse by rejecting indirect addressing at this stage.
458 Let the combiner create indirect addresses where appropriate.
459 For now, generate the code so that the subexpressions useful to share
460 are visible. But not if cse won't be done! */
461 else
462 {
463 if (! cse_not_expected && GET_CODE (x) != REG)
464 x = break_out_memory_refs (x);
465
466 /* At this point, any valid address is accepted. */
467 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
468
469 /* If it was valid before but breaking out memory refs invalidated it,
470 use it the old way. */
471 if (memory_address_p (mode, oldx))
472 goto win2;
473
474 /* Perform machine-dependent transformations on X
475 in certain cases. This is not necessary since the code
476 below can handle all possible cases, but machine-dependent
477 transformations can make better code. */
478 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
479
480 /* PLUS and MULT can appear in special ways
481 as the result of attempts to make an address usable for indexing.
482 Usually they are dealt with by calling force_operand, below.
483 But a sum containing constant terms is special
484 if removing them makes the sum a valid address:
485 then we generate that address in a register
486 and index off of it. We do this because it often makes
487 shorter code, and because the addresses thus generated
488 in registers often become common subexpressions. */
489 if (GET_CODE (x) == PLUS)
490 {
491 rtx constant_term = const0_rtx;
492 rtx y = eliminate_constant_term (x, &constant_term);
493 if (constant_term == const0_rtx
494 || ! memory_address_p (mode, y))
495 x = force_operand (x, NULL_RTX);
496 else
497 {
498 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
499 if (! memory_address_p (mode, y))
500 x = force_operand (x, NULL_RTX);
501 else
502 x = y;
503 }
504 }
505
506 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
507 x = force_operand (x, NULL_RTX);
508
509 /* If we have a register that's an invalid address,
510 it must be a hard reg of the wrong class. Copy it to a pseudo. */
511 else if (GET_CODE (x) == REG)
512 x = copy_to_reg (x);
513
514 /* Last resort: copy the value to a register, since
515 the register is a valid address. */
516 else
517 x = force_reg (Pmode, x);
518
519 goto done;
520
521 win2:
522 x = oldx;
523 win:
524 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
525 /* Don't copy an addr via a reg if it is one of our stack slots. */
526 && ! (GET_CODE (x) == PLUS
527 && (XEXP (x, 0) == virtual_stack_vars_rtx
528 || XEXP (x, 0) == virtual_incoming_args_rtx)))
529 {
530 if (general_operand (x, Pmode))
531 x = force_reg (Pmode, x);
532 else
533 x = force_operand (x, NULL_RTX);
534 }
535 }
536
537 done:
538
539 /* If we didn't change the address, we are done. Otherwise, mark
540 a reg as a pointer if we have REG or REG + CONST_INT. */
541 if (oldx == x)
542 return x;
543 else if (GET_CODE (x) == REG)
544 mark_reg_pointer (x, BITS_PER_UNIT);
545 else if (GET_CODE (x) == PLUS
546 && GET_CODE (XEXP (x, 0)) == REG
547 && GET_CODE (XEXP (x, 1)) == CONST_INT)
548 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
549
550 /* OLDX may have been the address on a temporary. Update the address
551 to indicate that X is now used. */
552 update_temp_slot_address (oldx, x);
553
554 return x;
555 }
556
557 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
558
559 rtx
560 memory_address_noforce (enum machine_mode mode, rtx x)
561 {
562 int ambient_force_addr = flag_force_addr;
563 rtx val;
564
565 flag_force_addr = 0;
566 val = memory_address (mode, x);
567 flag_force_addr = ambient_force_addr;
568 return val;
569 }
570
571 /* Convert a mem ref into one with a valid memory address.
572 Pass through anything else unchanged. */
573
574 rtx
575 validize_mem (rtx ref)
576 {
577 if (GET_CODE (ref) != MEM)
578 return ref;
579 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
580 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
581 return ref;
582
583 /* Don't alter REF itself, since that is probably a stack slot. */
584 return replace_equiv_address (ref, XEXP (ref, 0));
585 }
586 \f
587 /* Given REF, either a MEM or a REG, and T, either the type of X or
588 the expression corresponding to REF, set RTX_UNCHANGING_P if
589 appropriate. */
590
591 void
592 maybe_set_unchanging (rtx ref, tree t)
593 {
594 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
595 initialization is only executed once, or whose initializer always
596 has the same value. Currently we simplify this to PARM_DECLs in the
597 first case, and decls with TREE_CONSTANT initializers in the second.
598
599 We cannot do this for non-static aggregates, because of the double
600 writes that can be generated by store_constructor, depending on the
601 contents of the initializer. Yes, this does eliminate a good fraction
602 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
603 It also eliminates a good quantity of bugs. Let this be incentive to
604 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
605 solution, perhaps based on alias sets. */
606
607 if ((TREE_READONLY (t) && DECL_P (t)
608 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
609 && (TREE_CODE (t) == PARM_DECL
610 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
611 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
612 RTX_UNCHANGING_P (ref) = 1;
613 }
614 \f
615 /* Return a modified copy of X with its memory address copied
616 into a temporary register to protect it from side effects.
617 If X is not a MEM, it is returned unchanged (and not copied).
618 Perhaps even if it is a MEM, if there is no need to change it. */
619
620 rtx
621 stabilize (rtx x)
622 {
623 if (GET_CODE (x) != MEM
624 || ! rtx_unstable_p (XEXP (x, 0)))
625 return x;
626
627 return
628 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
629 }
630 \f
631 /* Copy the value or contents of X to a new temp reg and return that reg. */
632
633 rtx
634 copy_to_reg (rtx x)
635 {
636 rtx temp = gen_reg_rtx (GET_MODE (x));
637
638 /* If not an operand, must be an address with PLUS and MULT so
639 do the computation. */
640 if (! general_operand (x, VOIDmode))
641 x = force_operand (x, temp);
642
643 if (x != temp)
644 emit_move_insn (temp, x);
645
646 return temp;
647 }
648
649 /* Like copy_to_reg but always give the new register mode Pmode
650 in case X is a constant. */
651
652 rtx
653 copy_addr_to_reg (rtx x)
654 {
655 return copy_to_mode_reg (Pmode, x);
656 }
657
658 /* Like copy_to_reg but always give the new register mode MODE
659 in case X is a constant. */
660
661 rtx
662 copy_to_mode_reg (enum machine_mode mode, rtx x)
663 {
664 rtx temp = gen_reg_rtx (mode);
665
666 /* If not an operand, must be an address with PLUS and MULT so
667 do the computation. */
668 if (! general_operand (x, VOIDmode))
669 x = force_operand (x, temp);
670
671 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
672 abort ();
673 if (x != temp)
674 emit_move_insn (temp, x);
675 return temp;
676 }
677
678 /* Load X into a register if it is not already one.
679 Use mode MODE for the register.
680 X should be valid for mode MODE, but it may be a constant which
681 is valid for all integer modes; that's why caller must specify MODE.
682
683 The caller must not alter the value in the register we return,
684 since we mark it as a "constant" register. */
685
686 rtx
687 force_reg (enum machine_mode mode, rtx x)
688 {
689 rtx temp, insn, set;
690
691 if (GET_CODE (x) == REG)
692 return x;
693
694 if (general_operand (x, mode))
695 {
696 temp = gen_reg_rtx (mode);
697 insn = emit_move_insn (temp, x);
698 }
699 else
700 {
701 temp = force_operand (x, NULL_RTX);
702 if (GET_CODE (temp) == REG)
703 insn = get_last_insn ();
704 else
705 {
706 rtx temp2 = gen_reg_rtx (mode);
707 insn = emit_move_insn (temp2, temp);
708 temp = temp2;
709 }
710 }
711
712 /* Let optimizers know that TEMP's value never changes
713 and that X can be substituted for it. Don't get confused
714 if INSN set something else (such as a SUBREG of TEMP). */
715 if (CONSTANT_P (x)
716 && (set = single_set (insn)) != 0
717 && SET_DEST (set) == temp
718 && ! rtx_equal_p (x, SET_SRC (set)))
719 set_unique_reg_note (insn, REG_EQUAL, x);
720
721 /* Let optimizers know that TEMP is a pointer, and if so, the
722 known alignment of that pointer. */
723 {
724 unsigned align = 0;
725 if (GET_CODE (x) == SYMBOL_REF)
726 {
727 align = BITS_PER_UNIT;
728 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
729 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
730 }
731 else if (GET_CODE (x) == LABEL_REF)
732 align = BITS_PER_UNIT;
733 else if (GET_CODE (x) == CONST
734 && GET_CODE (XEXP (x, 0)) == PLUS
735 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
736 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
737 {
738 rtx s = XEXP (XEXP (x, 0), 0);
739 rtx c = XEXP (XEXP (x, 0), 1);
740 unsigned sa, ca;
741
742 sa = BITS_PER_UNIT;
743 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
744 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
745
746 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
747
748 align = MIN (sa, ca);
749 }
750
751 if (align)
752 mark_reg_pointer (temp, align);
753 }
754
755 return temp;
756 }
757
758 /* If X is a memory ref, copy its contents to a new temp reg and return
759 that reg. Otherwise, return X. */
760
761 rtx
762 force_not_mem (rtx x)
763 {
764 rtx temp;
765
766 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
767 return x;
768
769 temp = gen_reg_rtx (GET_MODE (x));
770
771 if (MEM_POINTER (x))
772 REG_POINTER (temp) = 1;
773
774 emit_move_insn (temp, x);
775 return temp;
776 }
777
778 /* Copy X to TARGET (if it's nonzero and a reg)
779 or to a new temp reg and return that reg.
780 MODE is the mode to use for X in case it is a constant. */
781
782 rtx
783 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
784 {
785 rtx temp;
786
787 if (target && GET_CODE (target) == REG)
788 temp = target;
789 else
790 temp = gen_reg_rtx (mode);
791
792 emit_move_insn (temp, x);
793 return temp;
794 }
795 \f
796 /* Return the mode to use to store a scalar of TYPE and MODE.
797 PUNSIGNEDP points to the signedness of the type and may be adjusted
798 to show what signedness to use on extension operations.
799
800 FOR_CALL is nonzero if this call is promoting args for a call. */
801
802 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
803 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
804 #endif
805
806 enum machine_mode
807 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
808 int for_call ATTRIBUTE_UNUSED)
809 {
810 enum tree_code code = TREE_CODE (type);
811 int unsignedp = *punsignedp;
812
813 #ifndef PROMOTE_MODE
814 if (! for_call)
815 return mode;
816 #endif
817
818 switch (code)
819 {
820 #ifdef PROMOTE_FUNCTION_MODE
821 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
822 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
823 #ifdef PROMOTE_MODE
824 if (for_call)
825 {
826 #endif
827 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
828 #ifdef PROMOTE_MODE
829 }
830 else
831 {
832 PROMOTE_MODE (mode, unsignedp, type);
833 }
834 #endif
835 break;
836 #endif
837
838 #ifdef POINTERS_EXTEND_UNSIGNED
839 case REFERENCE_TYPE:
840 case POINTER_TYPE:
841 mode = Pmode;
842 unsignedp = POINTERS_EXTEND_UNSIGNED;
843 break;
844 #endif
845
846 default:
847 break;
848 }
849
850 *punsignedp = unsignedp;
851 return mode;
852 }
853 \f
854 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
855 This pops when ADJUST is positive. ADJUST need not be constant. */
856
857 void
858 adjust_stack (rtx adjust)
859 {
860 rtx temp;
861 adjust = protect_from_queue (adjust, 0);
862
863 if (adjust == const0_rtx)
864 return;
865
866 /* We expect all variable sized adjustments to be multiple of
867 PREFERRED_STACK_BOUNDARY. */
868 if (GET_CODE (adjust) == CONST_INT)
869 stack_pointer_delta -= INTVAL (adjust);
870
871 temp = expand_binop (Pmode,
872 #ifdef STACK_GROWS_DOWNWARD
873 add_optab,
874 #else
875 sub_optab,
876 #endif
877 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
878 OPTAB_LIB_WIDEN);
879
880 if (temp != stack_pointer_rtx)
881 emit_move_insn (stack_pointer_rtx, temp);
882 }
883
884 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
885 This pushes when ADJUST is positive. ADJUST need not be constant. */
886
887 void
888 anti_adjust_stack (rtx adjust)
889 {
890 rtx temp;
891 adjust = protect_from_queue (adjust, 0);
892
893 if (adjust == const0_rtx)
894 return;
895
896 /* We expect all variable sized adjustments to be multiple of
897 PREFERRED_STACK_BOUNDARY. */
898 if (GET_CODE (adjust) == CONST_INT)
899 stack_pointer_delta += INTVAL (adjust);
900
901 temp = expand_binop (Pmode,
902 #ifdef STACK_GROWS_DOWNWARD
903 sub_optab,
904 #else
905 add_optab,
906 #endif
907 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
908 OPTAB_LIB_WIDEN);
909
910 if (temp != stack_pointer_rtx)
911 emit_move_insn (stack_pointer_rtx, temp);
912 }
913
914 /* Round the size of a block to be pushed up to the boundary required
915 by this machine. SIZE is the desired size, which need not be constant. */
916
917 rtx
918 round_push (rtx size)
919 {
920 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
921
922 if (align == 1)
923 return size;
924
925 if (GET_CODE (size) == CONST_INT)
926 {
927 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
928
929 if (INTVAL (size) != new)
930 size = GEN_INT (new);
931 }
932 else
933 {
934 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
935 but we know it can't. So add ourselves and then do
936 TRUNC_DIV_EXPR. */
937 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
938 NULL_RTX, 1, OPTAB_LIB_WIDEN);
939 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
940 NULL_RTX, 1);
941 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
942 }
943
944 return size;
945 }
946 \f
947 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
948 to a previously-created save area. If no save area has been allocated,
949 this function will allocate one. If a save area is specified, it
950 must be of the proper mode.
951
952 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
953 are emitted at the current position. */
954
955 void
956 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
957 {
958 rtx sa = *psave;
959 /* The default is that we use a move insn and save in a Pmode object. */
960 rtx (*fcn) (rtx, rtx) = gen_move_insn;
961 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
962
963 /* See if this machine has anything special to do for this kind of save. */
964 switch (save_level)
965 {
966 #ifdef HAVE_save_stack_block
967 case SAVE_BLOCK:
968 if (HAVE_save_stack_block)
969 fcn = gen_save_stack_block;
970 break;
971 #endif
972 #ifdef HAVE_save_stack_function
973 case SAVE_FUNCTION:
974 if (HAVE_save_stack_function)
975 fcn = gen_save_stack_function;
976 break;
977 #endif
978 #ifdef HAVE_save_stack_nonlocal
979 case SAVE_NONLOCAL:
980 if (HAVE_save_stack_nonlocal)
981 fcn = gen_save_stack_nonlocal;
982 break;
983 #endif
984 default:
985 break;
986 }
987
988 /* If there is no save area and we have to allocate one, do so. Otherwise
989 verify the save area is the proper mode. */
990
991 if (sa == 0)
992 {
993 if (mode != VOIDmode)
994 {
995 if (save_level == SAVE_NONLOCAL)
996 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
997 else
998 *psave = sa = gen_reg_rtx (mode);
999 }
1000 }
1001
1002 if (after)
1003 {
1004 rtx seq;
1005
1006 start_sequence ();
1007 /* We must validize inside the sequence, to ensure that any instructions
1008 created by the validize call also get moved to the right place. */
1009 if (sa != 0)
1010 sa = validize_mem (sa);
1011 emit_insn (fcn (sa, stack_pointer_rtx));
1012 seq = get_insns ();
1013 end_sequence ();
1014 emit_insn_after (seq, after);
1015 }
1016 else
1017 {
1018 if (sa != 0)
1019 sa = validize_mem (sa);
1020 emit_insn (fcn (sa, stack_pointer_rtx));
1021 }
1022 }
1023
1024 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1025 area made by emit_stack_save. If it is zero, we have nothing to do.
1026
1027 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1028 current position. */
1029
1030 void
1031 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1032 {
1033 /* The default is that we use a move insn. */
1034 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1035
1036 /* See if this machine has anything special to do for this kind of save. */
1037 switch (save_level)
1038 {
1039 #ifdef HAVE_restore_stack_block
1040 case SAVE_BLOCK:
1041 if (HAVE_restore_stack_block)
1042 fcn = gen_restore_stack_block;
1043 break;
1044 #endif
1045 #ifdef HAVE_restore_stack_function
1046 case SAVE_FUNCTION:
1047 if (HAVE_restore_stack_function)
1048 fcn = gen_restore_stack_function;
1049 break;
1050 #endif
1051 #ifdef HAVE_restore_stack_nonlocal
1052 case SAVE_NONLOCAL:
1053 if (HAVE_restore_stack_nonlocal)
1054 fcn = gen_restore_stack_nonlocal;
1055 break;
1056 #endif
1057 default:
1058 break;
1059 }
1060
1061 if (sa != 0)
1062 {
1063 sa = validize_mem (sa);
1064 /* These clobbers prevent the scheduler from moving
1065 references to variable arrays below the code
1066 that deletes (pops) the arrays. */
1067 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1068 gen_rtx_MEM (BLKmode,
1069 gen_rtx_SCRATCH (VOIDmode))));
1070 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1071 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1072 }
1073
1074 if (after)
1075 {
1076 rtx seq;
1077
1078 start_sequence ();
1079 emit_insn (fcn (stack_pointer_rtx, sa));
1080 seq = get_insns ();
1081 end_sequence ();
1082 emit_insn_after (seq, after);
1083 }
1084 else
1085 emit_insn (fcn (stack_pointer_rtx, sa));
1086 }
1087
1088 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1089 function. This function should be called whenever we allocate or
1090 deallocate dynamic stack space. */
1091
1092 void
1093 update_nonlocal_goto_save_area (void)
1094 {
1095 tree t_save;
1096 rtx r_save;
1097
1098 /* The nonlocal_goto_save_area object is an array of N pointers. The
1099 first one is used for the frame pointer save; the rest are sized by
1100 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1101 of the stack save area slots. */
1102 t_save = build (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1103 integer_one_node);
1104 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1105
1106 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1107 }
1108 \f
1109 #ifdef SETJMP_VIA_SAVE_AREA
1110 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1111 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1112 platforms, the dynamic stack space used can corrupt the original
1113 frame, thus causing a crash if a longjmp unwinds to it. */
1114
1115 void
1116 optimize_save_area_alloca (rtx insns)
1117 {
1118 rtx insn;
1119
1120 for (insn = insns; insn; insn = NEXT_INSN(insn))
1121 {
1122 rtx note;
1123
1124 if (GET_CODE (insn) != INSN)
1125 continue;
1126
1127 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1128 {
1129 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1130 continue;
1131
1132 if (!current_function_calls_setjmp)
1133 {
1134 rtx pat = PATTERN (insn);
1135
1136 /* If we do not see the note in a pattern matching
1137 these precise characteristics, we did something
1138 entirely wrong in allocate_dynamic_stack_space.
1139
1140 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1141 was defined on a machine where stacks grow towards higher
1142 addresses.
1143
1144 Right now only supported port with stack that grow upward
1145 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1146 if (GET_CODE (pat) != SET
1147 || SET_DEST (pat) != stack_pointer_rtx
1148 || GET_CODE (SET_SRC (pat)) != MINUS
1149 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1150 abort ();
1151
1152 /* This will now be transformed into a (set REG REG)
1153 so we can just blow away all the other notes. */
1154 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1155 REG_NOTES (insn) = NULL_RTX;
1156 }
1157 else
1158 {
1159 /* setjmp was called, we must remove the REG_SAVE_AREA
1160 note so that later passes do not get confused by its
1161 presence. */
1162 if (note == REG_NOTES (insn))
1163 {
1164 REG_NOTES (insn) = XEXP (note, 1);
1165 }
1166 else
1167 {
1168 rtx srch;
1169
1170 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1171 if (XEXP (srch, 1) == note)
1172 break;
1173
1174 if (srch == NULL_RTX)
1175 abort ();
1176
1177 XEXP (srch, 1) = XEXP (note, 1);
1178 }
1179 }
1180 /* Once we've seen the note of interest, we need not look at
1181 the rest of them. */
1182 break;
1183 }
1184 }
1185 }
1186 #endif /* SETJMP_VIA_SAVE_AREA */
1187
1188 /* Return an rtx representing the address of an area of memory dynamically
1189 pushed on the stack. This region of memory is always aligned to
1190 a multiple of BIGGEST_ALIGNMENT.
1191
1192 Any required stack pointer alignment is preserved.
1193
1194 SIZE is an rtx representing the size of the area.
1195 TARGET is a place in which the address can be placed.
1196
1197 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1198
1199 rtx
1200 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1201 {
1202 #ifdef SETJMP_VIA_SAVE_AREA
1203 rtx setjmpless_size = NULL_RTX;
1204 #endif
1205
1206 /* If we're asking for zero bytes, it doesn't matter what we point
1207 to since we can't dereference it. But return a reasonable
1208 address anyway. */
1209 if (size == const0_rtx)
1210 return virtual_stack_dynamic_rtx;
1211
1212 /* Otherwise, show we're calling alloca or equivalent. */
1213 current_function_calls_alloca = 1;
1214
1215 /* Ensure the size is in the proper mode. */
1216 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1217 size = convert_to_mode (Pmode, size, 1);
1218
1219 /* We can't attempt to minimize alignment necessary, because we don't
1220 know the final value of preferred_stack_boundary yet while executing
1221 this code. */
1222 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1223
1224 /* We will need to ensure that the address we return is aligned to
1225 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1226 always know its final value at this point in the compilation (it
1227 might depend on the size of the outgoing parameter lists, for
1228 example), so we must align the value to be returned in that case.
1229 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1230 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1231 We must also do an alignment operation on the returned value if
1232 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1233
1234 If we have to align, we must leave space in SIZE for the hole
1235 that might result from the alignment operation. */
1236
1237 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1238 #define MUST_ALIGN 1
1239 #else
1240 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1241 #endif
1242
1243 if (MUST_ALIGN)
1244 size
1245 = force_operand (plus_constant (size,
1246 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1247 NULL_RTX);
1248
1249 #ifdef SETJMP_VIA_SAVE_AREA
1250 /* If setjmp restores regs from a save area in the stack frame,
1251 avoid clobbering the reg save area. Note that the offset of
1252 virtual_incoming_args_rtx includes the preallocated stack args space.
1253 It would be no problem to clobber that, but it's on the wrong side
1254 of the old save area. */
1255 {
1256 rtx dynamic_offset
1257 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1258 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1259
1260 if (!current_function_calls_setjmp)
1261 {
1262 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1263
1264 /* See optimize_save_area_alloca to understand what is being
1265 set up here. */
1266
1267 /* ??? Code below assumes that the save area needs maximal
1268 alignment. This constraint may be too strong. */
1269 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1270 abort ();
1271
1272 if (GET_CODE (size) == CONST_INT)
1273 {
1274 HOST_WIDE_INT new = INTVAL (size) / align * align;
1275
1276 if (INTVAL (size) != new)
1277 setjmpless_size = GEN_INT (new);
1278 else
1279 setjmpless_size = size;
1280 }
1281 else
1282 {
1283 /* Since we know overflow is not possible, we avoid using
1284 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1285 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1286 GEN_INT (align), NULL_RTX, 1);
1287 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1288 GEN_INT (align), NULL_RTX, 1);
1289 }
1290 /* Our optimization works based upon being able to perform a simple
1291 transformation of this RTL into a (set REG REG) so make sure things
1292 did in fact end up in a REG. */
1293 if (!register_operand (setjmpless_size, Pmode))
1294 setjmpless_size = force_reg (Pmode, setjmpless_size);
1295 }
1296
1297 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1298 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1299 }
1300 #endif /* SETJMP_VIA_SAVE_AREA */
1301
1302 /* Round the size to a multiple of the required stack alignment.
1303 Since the stack if presumed to be rounded before this allocation,
1304 this will maintain the required alignment.
1305
1306 If the stack grows downward, we could save an insn by subtracting
1307 SIZE from the stack pointer and then aligning the stack pointer.
1308 The problem with this is that the stack pointer may be unaligned
1309 between the execution of the subtraction and alignment insns and
1310 some machines do not allow this. Even on those that do, some
1311 signal handlers malfunction if a signal should occur between those
1312 insns. Since this is an extremely rare event, we have no reliable
1313 way of knowing which systems have this problem. So we avoid even
1314 momentarily mis-aligning the stack. */
1315
1316 /* If we added a variable amount to SIZE,
1317 we can no longer assume it is aligned. */
1318 #if !defined (SETJMP_VIA_SAVE_AREA)
1319 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1320 #endif
1321 size = round_push (size);
1322
1323 do_pending_stack_adjust ();
1324
1325 /* We ought to be called always on the toplevel and stack ought to be aligned
1326 properly. */
1327 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1328 abort ();
1329
1330 /* If needed, check that we have the required amount of stack. Take into
1331 account what has already been checked. */
1332 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1333 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1334
1335 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1336 if (target == 0 || GET_CODE (target) != REG
1337 || REGNO (target) < FIRST_PSEUDO_REGISTER
1338 || GET_MODE (target) != Pmode)
1339 target = gen_reg_rtx (Pmode);
1340
1341 mark_reg_pointer (target, known_align);
1342
1343 /* Perform the required allocation from the stack. Some systems do
1344 this differently than simply incrementing/decrementing from the
1345 stack pointer, such as acquiring the space by calling malloc(). */
1346 #ifdef HAVE_allocate_stack
1347 if (HAVE_allocate_stack)
1348 {
1349 enum machine_mode mode = STACK_SIZE_MODE;
1350 insn_operand_predicate_fn pred;
1351
1352 /* We don't have to check against the predicate for operand 0 since
1353 TARGET is known to be a pseudo of the proper mode, which must
1354 be valid for the operand. For operand 1, convert to the
1355 proper mode and validate. */
1356 if (mode == VOIDmode)
1357 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1358
1359 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1360 if (pred && ! ((*pred) (size, mode)))
1361 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1362
1363 emit_insn (gen_allocate_stack (target, size));
1364 }
1365 else
1366 #endif
1367 {
1368 #ifndef STACK_GROWS_DOWNWARD
1369 emit_move_insn (target, virtual_stack_dynamic_rtx);
1370 #endif
1371
1372 /* Check stack bounds if necessary. */
1373 if (current_function_limit_stack)
1374 {
1375 rtx available;
1376 rtx space_available = gen_label_rtx ();
1377 #ifdef STACK_GROWS_DOWNWARD
1378 available = expand_binop (Pmode, sub_optab,
1379 stack_pointer_rtx, stack_limit_rtx,
1380 NULL_RTX, 1, OPTAB_WIDEN);
1381 #else
1382 available = expand_binop (Pmode, sub_optab,
1383 stack_limit_rtx, stack_pointer_rtx,
1384 NULL_RTX, 1, OPTAB_WIDEN);
1385 #endif
1386 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1387 space_available);
1388 #ifdef HAVE_trap
1389 if (HAVE_trap)
1390 emit_insn (gen_trap ());
1391 else
1392 #endif
1393 error ("stack limits not supported on this target");
1394 emit_barrier ();
1395 emit_label (space_available);
1396 }
1397
1398 anti_adjust_stack (size);
1399 #ifdef SETJMP_VIA_SAVE_AREA
1400 if (setjmpless_size != NULL_RTX)
1401 {
1402 rtx note_target = get_last_insn ();
1403
1404 REG_NOTES (note_target)
1405 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1406 REG_NOTES (note_target));
1407 }
1408 #endif /* SETJMP_VIA_SAVE_AREA */
1409
1410 #ifdef STACK_GROWS_DOWNWARD
1411 emit_move_insn (target, virtual_stack_dynamic_rtx);
1412 #endif
1413 }
1414
1415 if (MUST_ALIGN)
1416 {
1417 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1418 but we know it can't. So add ourselves and then do
1419 TRUNC_DIV_EXPR. */
1420 target = expand_binop (Pmode, add_optab, target,
1421 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1422 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1423 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1424 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1425 NULL_RTX, 1);
1426 target = expand_mult (Pmode, target,
1427 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1428 NULL_RTX, 1);
1429 }
1430
1431 /* Record the new stack level for nonlocal gotos. */
1432 if (cfun->nonlocal_goto_save_area != 0)
1433 update_nonlocal_goto_save_area ();
1434
1435 return target;
1436 }
1437 \f
1438 /* A front end may want to override GCC's stack checking by providing a
1439 run-time routine to call to check the stack, so provide a mechanism for
1440 calling that routine. */
1441
1442 static GTY(()) rtx stack_check_libfunc;
1443
1444 void
1445 set_stack_check_libfunc (rtx libfunc)
1446 {
1447 stack_check_libfunc = libfunc;
1448 }
1449 \f
1450 /* Emit one stack probe at ADDRESS, an address within the stack. */
1451
1452 static void
1453 emit_stack_probe (rtx address)
1454 {
1455 rtx memref = gen_rtx_MEM (word_mode, address);
1456
1457 MEM_VOLATILE_P (memref) = 1;
1458
1459 if (STACK_CHECK_PROBE_LOAD)
1460 emit_move_insn (gen_reg_rtx (word_mode), memref);
1461 else
1462 emit_move_insn (memref, const0_rtx);
1463 }
1464
1465 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1466 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1467 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1468 subtract from the stack. If SIZE is constant, this is done
1469 with a fixed number of probes. Otherwise, we must make a loop. */
1470
1471 #ifdef STACK_GROWS_DOWNWARD
1472 #define STACK_GROW_OP MINUS
1473 #else
1474 #define STACK_GROW_OP PLUS
1475 #endif
1476
1477 void
1478 probe_stack_range (HOST_WIDE_INT first, rtx size)
1479 {
1480 /* First ensure SIZE is Pmode. */
1481 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1482 size = convert_to_mode (Pmode, size, 1);
1483
1484 /* Next see if the front end has set up a function for us to call to
1485 check the stack. */
1486 if (stack_check_libfunc != 0)
1487 {
1488 rtx addr = memory_address (QImode,
1489 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1490 stack_pointer_rtx,
1491 plus_constant (size, first)));
1492
1493 addr = convert_memory_address (ptr_mode, addr);
1494 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1495 ptr_mode);
1496 }
1497
1498 /* Next see if we have an insn to check the stack. Use it if so. */
1499 #ifdef HAVE_check_stack
1500 else if (HAVE_check_stack)
1501 {
1502 insn_operand_predicate_fn pred;
1503 rtx last_addr
1504 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1505 stack_pointer_rtx,
1506 plus_constant (size, first)),
1507 NULL_RTX);
1508
1509 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1510 if (pred && ! ((*pred) (last_addr, Pmode)))
1511 last_addr = copy_to_mode_reg (Pmode, last_addr);
1512
1513 emit_insn (gen_check_stack (last_addr));
1514 }
1515 #endif
1516
1517 /* If we have to generate explicit probes, see if we have a constant
1518 small number of them to generate. If so, that's the easy case. */
1519 else if (GET_CODE (size) == CONST_INT
1520 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1521 {
1522 HOST_WIDE_INT offset;
1523
1524 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1525 for values of N from 1 until it exceeds LAST. If only one
1526 probe is needed, this will not generate any code. Then probe
1527 at LAST. */
1528 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1529 offset < INTVAL (size);
1530 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1531 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1532 stack_pointer_rtx,
1533 GEN_INT (offset)));
1534
1535 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1536 stack_pointer_rtx,
1537 plus_constant (size, first)));
1538 }
1539
1540 /* In the variable case, do the same as above, but in a loop. We emit loop
1541 notes so that loop optimization can be done. */
1542 else
1543 {
1544 rtx test_addr
1545 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1546 stack_pointer_rtx,
1547 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1548 NULL_RTX);
1549 rtx last_addr
1550 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1551 stack_pointer_rtx,
1552 plus_constant (size, first)),
1553 NULL_RTX);
1554 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1555 rtx loop_lab = gen_label_rtx ();
1556 rtx test_lab = gen_label_rtx ();
1557 rtx end_lab = gen_label_rtx ();
1558 rtx temp;
1559
1560 if (GET_CODE (test_addr) != REG
1561 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1562 test_addr = force_reg (Pmode, test_addr);
1563
1564 emit_jump (test_lab);
1565
1566 emit_label (loop_lab);
1567 emit_stack_probe (test_addr);
1568
1569 #ifdef STACK_GROWS_DOWNWARD
1570 #define CMP_OPCODE GTU
1571 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1572 1, OPTAB_WIDEN);
1573 #else
1574 #define CMP_OPCODE LTU
1575 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1576 1, OPTAB_WIDEN);
1577 #endif
1578
1579 if (temp != test_addr)
1580 abort ();
1581
1582 emit_label (test_lab);
1583 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1584 NULL_RTX, Pmode, 1, loop_lab);
1585 emit_jump (end_lab);
1586 emit_label (end_lab);
1587
1588 emit_stack_probe (last_addr);
1589 }
1590 }
1591 \f
1592 /* Return an rtx representing the register or memory location
1593 in which a scalar value of data type VALTYPE
1594 was returned by a function call to function FUNC.
1595 FUNC is a FUNCTION_DECL node if the precise function is known,
1596 otherwise 0.
1597 OUTGOING is 1 if on a machine with register windows this function
1598 should return the register in which the function will put its result
1599 and 0 otherwise. */
1600
1601 rtx
1602 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1603 int outgoing ATTRIBUTE_UNUSED)
1604 {
1605 rtx val;
1606
1607 #ifdef FUNCTION_OUTGOING_VALUE
1608 if (outgoing)
1609 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1610 else
1611 #endif
1612 val = FUNCTION_VALUE (valtype, func);
1613
1614 if (GET_CODE (val) == REG
1615 && GET_MODE (val) == BLKmode)
1616 {
1617 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1618 enum machine_mode tmpmode;
1619
1620 /* int_size_in_bytes can return -1. We don't need a check here
1621 since the value of bytes will be large enough that no mode
1622 will match and we will abort later in this function. */
1623
1624 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1625 tmpmode != VOIDmode;
1626 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1627 {
1628 /* Have we found a large enough mode? */
1629 if (GET_MODE_SIZE (tmpmode) >= bytes)
1630 break;
1631 }
1632
1633 /* No suitable mode found. */
1634 if (tmpmode == VOIDmode)
1635 abort ();
1636
1637 PUT_MODE (val, tmpmode);
1638 }
1639 return val;
1640 }
1641
1642 /* Return an rtx representing the register or memory location
1643 in which a scalar value of mode MODE was returned by a library call. */
1644
1645 rtx
1646 hard_libcall_value (enum machine_mode mode)
1647 {
1648 return LIBCALL_VALUE (mode);
1649 }
1650
1651 /* Look up the tree code for a given rtx code
1652 to provide the arithmetic operation for REAL_ARITHMETIC.
1653 The function returns an int because the caller may not know
1654 what `enum tree_code' means. */
1655
1656 int
1657 rtx_to_tree_code (enum rtx_code code)
1658 {
1659 enum tree_code tcode;
1660
1661 switch (code)
1662 {
1663 case PLUS:
1664 tcode = PLUS_EXPR;
1665 break;
1666 case MINUS:
1667 tcode = MINUS_EXPR;
1668 break;
1669 case MULT:
1670 tcode = MULT_EXPR;
1671 break;
1672 case DIV:
1673 tcode = RDIV_EXPR;
1674 break;
1675 case SMIN:
1676 tcode = MIN_EXPR;
1677 break;
1678 case SMAX:
1679 tcode = MAX_EXPR;
1680 break;
1681 default:
1682 tcode = LAST_AND_UNUSED_TREE_CODE;
1683 break;
1684 }
1685 return ((int) tcode);
1686 }
1687
1688 #include "gt-explow.h"