]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
expr.c (enqueue_insn, [...]): Remove.
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
49 {
50 int width = GET_MODE_BITSIZE (mode);
51
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C.
75
76 This function should be used via the `plus_constant' macro. */
77
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
80 {
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
86
87 if (c == 0)
88 return x;
89
90 restart:
91
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
95
96 switch (code)
97 {
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
100
101 case CONST_DOUBLE:
102 {
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
109
110 add_double (l1, h1, l2, h2, &lv, &hv);
111
112 return immed_double_const (lv, hv, VOIDmode);
113 }
114
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 {
122 tem
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
128 }
129 break;
130
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
137
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
142
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
149
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
152
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
155
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 {
158 c += INTVAL (XEXP (x, 1));
159
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
162
163 x = XEXP (x, 0);
164 goto restart;
165 }
166 else if (CONSTANT_P (XEXP (x, 1)))
167 {
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
170 }
171 else if (find_constant_term_loc (&y))
172 {
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
177
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
181 }
182 break;
183
184 default:
185 break;
186 }
187
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
197 }
198 \f
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
203
204 rtx
205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207 rtx x0, x1;
208 rtx tem;
209
210 if (GET_CODE (x) != PLUS)
211 return x;
212
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
218 {
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
221 }
222
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
230 {
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 }
234
235 return x;
236 }
237
238 /* Return an rtx for the size in bytes of the value of EXP. */
239
240 rtx
241 expr_size (tree exp)
242 {
243 tree size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (lang_hooks.expr_size (exp), exp);
244
245 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
246 }
247
248 /* Return a wide integer for the size in bytes of the value of EXP, or -1
249 if the size can vary or is larger than an integer. */
250
251 HOST_WIDE_INT
252 int_expr_size (tree exp)
253 {
254 tree t = lang_hooks.expr_size (exp);
255
256 if (t == 0
257 || TREE_CODE (t) != INTEGER_CST
258 || TREE_OVERFLOW (t)
259 || TREE_INT_CST_HIGH (t) != 0
260 /* If the result would appear negative, it's too big to represent. */
261 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
262 return -1;
263
264 return TREE_INT_CST_LOW (t);
265 }
266 \f
267 /* Return a copy of X in which all memory references
268 and all constants that involve symbol refs
269 have been replaced with new temporary registers.
270 Also emit code to load the memory locations and constants
271 into those registers.
272
273 If X contains no such constants or memory references,
274 X itself (not a copy) is returned.
275
276 If a constant is found in the address that is not a legitimate constant
277 in an insn, it is left alone in the hope that it might be valid in the
278 address.
279
280 X may contain no arithmetic except addition, subtraction and multiplication.
281 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
282
283 static rtx
284 break_out_memory_refs (rtx x)
285 {
286 if (MEM_P (x)
287 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
288 && GET_MODE (x) != VOIDmode))
289 x = force_reg (GET_MODE (x), x);
290 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
291 || GET_CODE (x) == MULT)
292 {
293 rtx op0 = break_out_memory_refs (XEXP (x, 0));
294 rtx op1 = break_out_memory_refs (XEXP (x, 1));
295
296 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
297 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
298 }
299
300 return x;
301 }
302
303 /* Given X, a memory address in ptr_mode, convert it to an address
304 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
305 the fact that pointers are not allowed to overflow by commuting arithmetic
306 operations over conversions so that address arithmetic insns can be
307 used. */
308
309 rtx
310 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
311 rtx x)
312 {
313 #ifndef POINTERS_EXTEND_UNSIGNED
314 return x;
315 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
316 enum machine_mode from_mode;
317 rtx temp;
318 enum rtx_code code;
319
320 /* If X already has the right mode, just return it. */
321 if (GET_MODE (x) == to_mode)
322 return x;
323
324 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
325
326 /* Here we handle some special cases. If none of them apply, fall through
327 to the default case. */
328 switch (GET_CODE (x))
329 {
330 case CONST_INT:
331 case CONST_DOUBLE:
332 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
333 code = TRUNCATE;
334 else if (POINTERS_EXTEND_UNSIGNED < 0)
335 break;
336 else if (POINTERS_EXTEND_UNSIGNED > 0)
337 code = ZERO_EXTEND;
338 else
339 code = SIGN_EXTEND;
340 temp = simplify_unary_operation (code, to_mode, x, from_mode);
341 if (temp)
342 return temp;
343 break;
344
345 case SUBREG:
346 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
347 && GET_MODE (SUBREG_REG (x)) == to_mode)
348 return SUBREG_REG (x);
349 break;
350
351 case LABEL_REF:
352 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
353 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
354 return temp;
355 break;
356
357 case SYMBOL_REF:
358 temp = shallow_copy_rtx (x);
359 PUT_MODE (temp, to_mode);
360 return temp;
361 break;
362
363 case CONST:
364 return gen_rtx_CONST (to_mode,
365 convert_memory_address (to_mode, XEXP (x, 0)));
366 break;
367
368 case PLUS:
369 case MULT:
370 /* For addition we can safely permute the conversion and addition
371 operation if one operand is a constant and converting the constant
372 does not change it. We can always safely permute them if we are
373 making the address narrower. */
374 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
375 || (GET_CODE (x) == PLUS
376 && GET_CODE (XEXP (x, 1)) == CONST_INT
377 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
378 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
379 convert_memory_address (to_mode, XEXP (x, 0)),
380 XEXP (x, 1));
381 break;
382
383 default:
384 break;
385 }
386
387 return convert_modes (to_mode, from_mode,
388 x, POINTERS_EXTEND_UNSIGNED);
389 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
390 }
391
392 /* Given a memory address or facsimile X, construct a new address,
393 currently equivalent, that is stable: future stores won't change it.
394
395 X must be composed of constants, register and memory references
396 combined with addition, subtraction and multiplication:
397 in other words, just what you can get from expand_expr if sum_ok is 1.
398
399 Works by making copies of all regs and memory locations used
400 by X and combining them the same way X does.
401 You could also stabilize the reference to this address
402 by copying the address to a register with copy_to_reg;
403 but then you wouldn't get indexed addressing in the reference. */
404
405 rtx
406 copy_all_regs (rtx x)
407 {
408 if (REG_P (x))
409 {
410 if (REGNO (x) != FRAME_POINTER_REGNUM
411 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
412 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
413 #endif
414 )
415 x = copy_to_reg (x);
416 }
417 else if (MEM_P (x))
418 x = copy_to_reg (x);
419 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
420 || GET_CODE (x) == MULT)
421 {
422 rtx op0 = copy_all_regs (XEXP (x, 0));
423 rtx op1 = copy_all_regs (XEXP (x, 1));
424 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
425 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
426 }
427 return x;
428 }
429 \f
430 /* Return something equivalent to X but valid as a memory address
431 for something of mode MODE. When X is not itself valid, this
432 works by copying X or subexpressions of it into registers. */
433
434 rtx
435 memory_address (enum machine_mode mode, rtx x)
436 {
437 rtx oldx = x;
438
439 x = convert_memory_address (Pmode, x);
440
441 /* By passing constant addresses through registers
442 we get a chance to cse them. */
443 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
444 x = force_reg (Pmode, x);
445
446 /* We get better cse by rejecting indirect addressing at this stage.
447 Let the combiner create indirect addresses where appropriate.
448 For now, generate the code so that the subexpressions useful to share
449 are visible. But not if cse won't be done! */
450 else
451 {
452 if (! cse_not_expected && !REG_P (x))
453 x = break_out_memory_refs (x);
454
455 /* At this point, any valid address is accepted. */
456 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
457
458 /* If it was valid before but breaking out memory refs invalidated it,
459 use it the old way. */
460 if (memory_address_p (mode, oldx))
461 goto win2;
462
463 /* Perform machine-dependent transformations on X
464 in certain cases. This is not necessary since the code
465 below can handle all possible cases, but machine-dependent
466 transformations can make better code. */
467 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
468
469 /* PLUS and MULT can appear in special ways
470 as the result of attempts to make an address usable for indexing.
471 Usually they are dealt with by calling force_operand, below.
472 But a sum containing constant terms is special
473 if removing them makes the sum a valid address:
474 then we generate that address in a register
475 and index off of it. We do this because it often makes
476 shorter code, and because the addresses thus generated
477 in registers often become common subexpressions. */
478 if (GET_CODE (x) == PLUS)
479 {
480 rtx constant_term = const0_rtx;
481 rtx y = eliminate_constant_term (x, &constant_term);
482 if (constant_term == const0_rtx
483 || ! memory_address_p (mode, y))
484 x = force_operand (x, NULL_RTX);
485 else
486 {
487 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
488 if (! memory_address_p (mode, y))
489 x = force_operand (x, NULL_RTX);
490 else
491 x = y;
492 }
493 }
494
495 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
496 x = force_operand (x, NULL_RTX);
497
498 /* If we have a register that's an invalid address,
499 it must be a hard reg of the wrong class. Copy it to a pseudo. */
500 else if (REG_P (x))
501 x = copy_to_reg (x);
502
503 /* Last resort: copy the value to a register, since
504 the register is a valid address. */
505 else
506 x = force_reg (Pmode, x);
507
508 goto done;
509
510 win2:
511 x = oldx;
512 win:
513 if (flag_force_addr && ! cse_not_expected && !REG_P (x)
514 /* Don't copy an addr via a reg if it is one of our stack slots. */
515 && ! (GET_CODE (x) == PLUS
516 && (XEXP (x, 0) == virtual_stack_vars_rtx
517 || XEXP (x, 0) == virtual_incoming_args_rtx)))
518 {
519 if (general_operand (x, Pmode))
520 x = force_reg (Pmode, x);
521 else
522 x = force_operand (x, NULL_RTX);
523 }
524 }
525
526 done:
527
528 /* If we didn't change the address, we are done. Otherwise, mark
529 a reg as a pointer if we have REG or REG + CONST_INT. */
530 if (oldx == x)
531 return x;
532 else if (REG_P (x))
533 mark_reg_pointer (x, BITS_PER_UNIT);
534 else if (GET_CODE (x) == PLUS
535 && REG_P (XEXP (x, 0))
536 && GET_CODE (XEXP (x, 1)) == CONST_INT)
537 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
538
539 /* OLDX may have been the address on a temporary. Update the address
540 to indicate that X is now used. */
541 update_temp_slot_address (oldx, x);
542
543 return x;
544 }
545
546 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
547
548 rtx
549 memory_address_noforce (enum machine_mode mode, rtx x)
550 {
551 int ambient_force_addr = flag_force_addr;
552 rtx val;
553
554 flag_force_addr = 0;
555 val = memory_address (mode, x);
556 flag_force_addr = ambient_force_addr;
557 return val;
558 }
559
560 /* Convert a mem ref into one with a valid memory address.
561 Pass through anything else unchanged. */
562
563 rtx
564 validize_mem (rtx ref)
565 {
566 if (!MEM_P (ref))
567 return ref;
568 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
569 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
570 return ref;
571
572 /* Don't alter REF itself, since that is probably a stack slot. */
573 return replace_equiv_address (ref, XEXP (ref, 0));
574 }
575 \f
576 /* Given REF, either a MEM or a REG, and T, either the type of X or
577 the expression corresponding to REF, set RTX_UNCHANGING_P if
578 appropriate. */
579
580 void
581 maybe_set_unchanging (rtx ref, tree t)
582 {
583 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
584 initialization is only executed once, or whose initializer always
585 has the same value. Currently we simplify this to PARM_DECLs in the
586 first case, and decls with TREE_CONSTANT initializers in the second.
587
588 We cannot do this for non-static aggregates, because of the double
589 writes that can be generated by store_constructor, depending on the
590 contents of the initializer. Yes, this does eliminate a good fraction
591 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
592 It also eliminates a good quantity of bugs. Let this be incentive to
593 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
594 solution, perhaps based on alias sets. */
595
596 if ((TREE_READONLY (t) && DECL_P (t)
597 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
598 && (TREE_CODE (t) == PARM_DECL
599 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
600 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
601 RTX_UNCHANGING_P (ref) = 1;
602 }
603 \f
604 /* Return a modified copy of X with its memory address copied
605 into a temporary register to protect it from side effects.
606 If X is not a MEM, it is returned unchanged (and not copied).
607 Perhaps even if it is a MEM, if there is no need to change it. */
608
609 rtx
610 stabilize (rtx x)
611 {
612 if (!MEM_P (x)
613 || ! rtx_unstable_p (XEXP (x, 0)))
614 return x;
615
616 return
617 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
618 }
619 \f
620 /* Copy the value or contents of X to a new temp reg and return that reg. */
621
622 rtx
623 copy_to_reg (rtx x)
624 {
625 rtx temp = gen_reg_rtx (GET_MODE (x));
626
627 /* If not an operand, must be an address with PLUS and MULT so
628 do the computation. */
629 if (! general_operand (x, VOIDmode))
630 x = force_operand (x, temp);
631
632 if (x != temp)
633 emit_move_insn (temp, x);
634
635 return temp;
636 }
637
638 /* Like copy_to_reg but always give the new register mode Pmode
639 in case X is a constant. */
640
641 rtx
642 copy_addr_to_reg (rtx x)
643 {
644 return copy_to_mode_reg (Pmode, x);
645 }
646
647 /* Like copy_to_reg but always give the new register mode MODE
648 in case X is a constant. */
649
650 rtx
651 copy_to_mode_reg (enum machine_mode mode, rtx x)
652 {
653 rtx temp = gen_reg_rtx (mode);
654
655 /* If not an operand, must be an address with PLUS and MULT so
656 do the computation. */
657 if (! general_operand (x, VOIDmode))
658 x = force_operand (x, temp);
659
660 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
661 abort ();
662 if (x != temp)
663 emit_move_insn (temp, x);
664 return temp;
665 }
666
667 /* Load X into a register if it is not already one.
668 Use mode MODE for the register.
669 X should be valid for mode MODE, but it may be a constant which
670 is valid for all integer modes; that's why caller must specify MODE.
671
672 The caller must not alter the value in the register we return,
673 since we mark it as a "constant" register. */
674
675 rtx
676 force_reg (enum machine_mode mode, rtx x)
677 {
678 rtx temp, insn, set;
679
680 if (REG_P (x))
681 return x;
682
683 if (general_operand (x, mode))
684 {
685 temp = gen_reg_rtx (mode);
686 insn = emit_move_insn (temp, x);
687 }
688 else
689 {
690 temp = force_operand (x, NULL_RTX);
691 if (REG_P (temp))
692 insn = get_last_insn ();
693 else
694 {
695 rtx temp2 = gen_reg_rtx (mode);
696 insn = emit_move_insn (temp2, temp);
697 temp = temp2;
698 }
699 }
700
701 /* Let optimizers know that TEMP's value never changes
702 and that X can be substituted for it. Don't get confused
703 if INSN set something else (such as a SUBREG of TEMP). */
704 if (CONSTANT_P (x)
705 && (set = single_set (insn)) != 0
706 && SET_DEST (set) == temp
707 && ! rtx_equal_p (x, SET_SRC (set)))
708 set_unique_reg_note (insn, REG_EQUAL, x);
709
710 /* Let optimizers know that TEMP is a pointer, and if so, the
711 known alignment of that pointer. */
712 {
713 unsigned align = 0;
714 if (GET_CODE (x) == SYMBOL_REF)
715 {
716 align = BITS_PER_UNIT;
717 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
718 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
719 }
720 else if (GET_CODE (x) == LABEL_REF)
721 align = BITS_PER_UNIT;
722 else if (GET_CODE (x) == CONST
723 && GET_CODE (XEXP (x, 0)) == PLUS
724 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
725 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
726 {
727 rtx s = XEXP (XEXP (x, 0), 0);
728 rtx c = XEXP (XEXP (x, 0), 1);
729 unsigned sa, ca;
730
731 sa = BITS_PER_UNIT;
732 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
733 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
734
735 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
736
737 align = MIN (sa, ca);
738 }
739
740 if (align)
741 mark_reg_pointer (temp, align);
742 }
743
744 return temp;
745 }
746
747 /* If X is a memory ref, copy its contents to a new temp reg and return
748 that reg. Otherwise, return X. */
749
750 rtx
751 force_not_mem (rtx x)
752 {
753 rtx temp;
754
755 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
756 return x;
757
758 temp = gen_reg_rtx (GET_MODE (x));
759
760 if (MEM_POINTER (x))
761 REG_POINTER (temp) = 1;
762
763 emit_move_insn (temp, x);
764 return temp;
765 }
766
767 /* Copy X to TARGET (if it's nonzero and a reg)
768 or to a new temp reg and return that reg.
769 MODE is the mode to use for X in case it is a constant. */
770
771 rtx
772 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
773 {
774 rtx temp;
775
776 if (target && REG_P (target))
777 temp = target;
778 else
779 temp = gen_reg_rtx (mode);
780
781 emit_move_insn (temp, x);
782 return temp;
783 }
784 \f
785 /* Return the mode to use to store a scalar of TYPE and MODE.
786 PUNSIGNEDP points to the signedness of the type and may be adjusted
787 to show what signedness to use on extension operations.
788
789 FOR_CALL is nonzero if this call is promoting args for a call. */
790
791 #if defined(PROMOTE_MODE) && !defined(PROMOTE_FUNCTION_MODE)
792 #define PROMOTE_FUNCTION_MODE PROMOTE_MODE
793 #endif
794
795 enum machine_mode
796 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
797 int for_call ATTRIBUTE_UNUSED)
798 {
799 enum tree_code code = TREE_CODE (type);
800 int unsignedp = *punsignedp;
801
802 #ifndef PROMOTE_MODE
803 if (! for_call)
804 return mode;
805 #endif
806
807 switch (code)
808 {
809 #ifdef PROMOTE_FUNCTION_MODE
810 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
811 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
812 #ifdef PROMOTE_MODE
813 if (for_call)
814 {
815 #endif
816 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
817 #ifdef PROMOTE_MODE
818 }
819 else
820 {
821 PROMOTE_MODE (mode, unsignedp, type);
822 }
823 #endif
824 break;
825 #endif
826
827 #ifdef POINTERS_EXTEND_UNSIGNED
828 case REFERENCE_TYPE:
829 case POINTER_TYPE:
830 mode = Pmode;
831 unsignedp = POINTERS_EXTEND_UNSIGNED;
832 break;
833 #endif
834
835 default:
836 break;
837 }
838
839 *punsignedp = unsignedp;
840 return mode;
841 }
842 \f
843 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
844 This pops when ADJUST is positive. ADJUST need not be constant. */
845
846 void
847 adjust_stack (rtx adjust)
848 {
849 rtx temp;
850
851 if (adjust == const0_rtx)
852 return;
853
854 /* We expect all variable sized adjustments to be multiple of
855 PREFERRED_STACK_BOUNDARY. */
856 if (GET_CODE (adjust) == CONST_INT)
857 stack_pointer_delta -= INTVAL (adjust);
858
859 temp = expand_binop (Pmode,
860 #ifdef STACK_GROWS_DOWNWARD
861 add_optab,
862 #else
863 sub_optab,
864 #endif
865 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
866 OPTAB_LIB_WIDEN);
867
868 if (temp != stack_pointer_rtx)
869 emit_move_insn (stack_pointer_rtx, temp);
870 }
871
872 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
873 This pushes when ADJUST is positive. ADJUST need not be constant. */
874
875 void
876 anti_adjust_stack (rtx adjust)
877 {
878 rtx temp;
879
880 if (adjust == const0_rtx)
881 return;
882
883 /* We expect all variable sized adjustments to be multiple of
884 PREFERRED_STACK_BOUNDARY. */
885 if (GET_CODE (adjust) == CONST_INT)
886 stack_pointer_delta += INTVAL (adjust);
887
888 temp = expand_binop (Pmode,
889 #ifdef STACK_GROWS_DOWNWARD
890 sub_optab,
891 #else
892 add_optab,
893 #endif
894 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
895 OPTAB_LIB_WIDEN);
896
897 if (temp != stack_pointer_rtx)
898 emit_move_insn (stack_pointer_rtx, temp);
899 }
900
901 /* Round the size of a block to be pushed up to the boundary required
902 by this machine. SIZE is the desired size, which need not be constant. */
903
904 rtx
905 round_push (rtx size)
906 {
907 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
908
909 if (align == 1)
910 return size;
911
912 if (GET_CODE (size) == CONST_INT)
913 {
914 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
915
916 if (INTVAL (size) != new)
917 size = GEN_INT (new);
918 }
919 else
920 {
921 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
922 but we know it can't. So add ourselves and then do
923 TRUNC_DIV_EXPR. */
924 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
925 NULL_RTX, 1, OPTAB_LIB_WIDEN);
926 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
927 NULL_RTX, 1);
928 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
929 }
930
931 return size;
932 }
933 \f
934 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
935 to a previously-created save area. If no save area has been allocated,
936 this function will allocate one. If a save area is specified, it
937 must be of the proper mode.
938
939 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
940 are emitted at the current position. */
941
942 void
943 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
944 {
945 rtx sa = *psave;
946 /* The default is that we use a move insn and save in a Pmode object. */
947 rtx (*fcn) (rtx, rtx) = gen_move_insn;
948 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
949
950 /* See if this machine has anything special to do for this kind of save. */
951 switch (save_level)
952 {
953 #ifdef HAVE_save_stack_block
954 case SAVE_BLOCK:
955 if (HAVE_save_stack_block)
956 fcn = gen_save_stack_block;
957 break;
958 #endif
959 #ifdef HAVE_save_stack_function
960 case SAVE_FUNCTION:
961 if (HAVE_save_stack_function)
962 fcn = gen_save_stack_function;
963 break;
964 #endif
965 #ifdef HAVE_save_stack_nonlocal
966 case SAVE_NONLOCAL:
967 if (HAVE_save_stack_nonlocal)
968 fcn = gen_save_stack_nonlocal;
969 break;
970 #endif
971 default:
972 break;
973 }
974
975 /* If there is no save area and we have to allocate one, do so. Otherwise
976 verify the save area is the proper mode. */
977
978 if (sa == 0)
979 {
980 if (mode != VOIDmode)
981 {
982 if (save_level == SAVE_NONLOCAL)
983 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
984 else
985 *psave = sa = gen_reg_rtx (mode);
986 }
987 }
988
989 if (after)
990 {
991 rtx seq;
992
993 start_sequence ();
994 /* We must validize inside the sequence, to ensure that any instructions
995 created by the validize call also get moved to the right place. */
996 if (sa != 0)
997 sa = validize_mem (sa);
998 emit_insn (fcn (sa, stack_pointer_rtx));
999 seq = get_insns ();
1000 end_sequence ();
1001 emit_insn_after (seq, after);
1002 }
1003 else
1004 {
1005 if (sa != 0)
1006 sa = validize_mem (sa);
1007 emit_insn (fcn (sa, stack_pointer_rtx));
1008 }
1009 }
1010
1011 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1012 area made by emit_stack_save. If it is zero, we have nothing to do.
1013
1014 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1015 current position. */
1016
1017 void
1018 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1019 {
1020 /* The default is that we use a move insn. */
1021 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1022
1023 /* See if this machine has anything special to do for this kind of save. */
1024 switch (save_level)
1025 {
1026 #ifdef HAVE_restore_stack_block
1027 case SAVE_BLOCK:
1028 if (HAVE_restore_stack_block)
1029 fcn = gen_restore_stack_block;
1030 break;
1031 #endif
1032 #ifdef HAVE_restore_stack_function
1033 case SAVE_FUNCTION:
1034 if (HAVE_restore_stack_function)
1035 fcn = gen_restore_stack_function;
1036 break;
1037 #endif
1038 #ifdef HAVE_restore_stack_nonlocal
1039 case SAVE_NONLOCAL:
1040 if (HAVE_restore_stack_nonlocal)
1041 fcn = gen_restore_stack_nonlocal;
1042 break;
1043 #endif
1044 default:
1045 break;
1046 }
1047
1048 if (sa != 0)
1049 {
1050 sa = validize_mem (sa);
1051 /* These clobbers prevent the scheduler from moving
1052 references to variable arrays below the code
1053 that deletes (pops) the arrays. */
1054 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1055 gen_rtx_MEM (BLKmode,
1056 gen_rtx_SCRATCH (VOIDmode))));
1057 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1058 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1059 }
1060
1061 if (after)
1062 {
1063 rtx seq;
1064
1065 start_sequence ();
1066 emit_insn (fcn (stack_pointer_rtx, sa));
1067 seq = get_insns ();
1068 end_sequence ();
1069 emit_insn_after (seq, after);
1070 }
1071 else
1072 emit_insn (fcn (stack_pointer_rtx, sa));
1073 }
1074
1075 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1076 function. This function should be called whenever we allocate or
1077 deallocate dynamic stack space. */
1078
1079 void
1080 update_nonlocal_goto_save_area (void)
1081 {
1082 tree t_save;
1083 rtx r_save;
1084
1085 /* The nonlocal_goto_save_area object is an array of N pointers. The
1086 first one is used for the frame pointer save; the rest are sized by
1087 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1088 of the stack save area slots. */
1089 t_save = build (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1090 integer_one_node, NULL_TREE, NULL_TREE);
1091 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1092
1093 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1094 }
1095 \f
1096 #ifdef SETJMP_VIA_SAVE_AREA
1097 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1098 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1099 platforms, the dynamic stack space used can corrupt the original
1100 frame, thus causing a crash if a longjmp unwinds to it. */
1101
1102 void
1103 optimize_save_area_alloca (void)
1104 {
1105 rtx insn;
1106
1107 for (insn = get_insns (); insn; insn = NEXT_INSN(insn))
1108 {
1109 rtx note;
1110
1111 if (!NONJUMP_INSN_P (insn))
1112 continue;
1113
1114 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1115 {
1116 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1117 continue;
1118
1119 if (!current_function_calls_setjmp)
1120 {
1121 rtx pat = PATTERN (insn);
1122
1123 /* If we do not see the note in a pattern matching
1124 these precise characteristics, we did something
1125 entirely wrong in allocate_dynamic_stack_space.
1126
1127 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1128 was defined on a machine where stacks grow towards higher
1129 addresses.
1130
1131 Right now only supported port with stack that grow upward
1132 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1133 if (GET_CODE (pat) != SET
1134 || SET_DEST (pat) != stack_pointer_rtx
1135 || GET_CODE (SET_SRC (pat)) != MINUS
1136 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1137 abort ();
1138
1139 /* This will now be transformed into a (set REG REG)
1140 so we can just blow away all the other notes. */
1141 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1142 REG_NOTES (insn) = NULL_RTX;
1143 }
1144 else
1145 {
1146 /* setjmp was called, we must remove the REG_SAVE_AREA
1147 note so that later passes do not get confused by its
1148 presence. */
1149 if (note == REG_NOTES (insn))
1150 {
1151 REG_NOTES (insn) = XEXP (note, 1);
1152 }
1153 else
1154 {
1155 rtx srch;
1156
1157 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1158 if (XEXP (srch, 1) == note)
1159 break;
1160
1161 if (srch == NULL_RTX)
1162 abort ();
1163
1164 XEXP (srch, 1) = XEXP (note, 1);
1165 }
1166 }
1167 /* Once we've seen the note of interest, we need not look at
1168 the rest of them. */
1169 break;
1170 }
1171 }
1172 }
1173 #endif /* SETJMP_VIA_SAVE_AREA */
1174
1175 /* Return an rtx representing the address of an area of memory dynamically
1176 pushed on the stack. This region of memory is always aligned to
1177 a multiple of BIGGEST_ALIGNMENT.
1178
1179 Any required stack pointer alignment is preserved.
1180
1181 SIZE is an rtx representing the size of the area.
1182 TARGET is a place in which the address can be placed.
1183
1184 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1185
1186 rtx
1187 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1188 {
1189 #ifdef SETJMP_VIA_SAVE_AREA
1190 rtx setjmpless_size = NULL_RTX;
1191 #endif
1192
1193 /* If we're asking for zero bytes, it doesn't matter what we point
1194 to since we can't dereference it. But return a reasonable
1195 address anyway. */
1196 if (size == const0_rtx)
1197 return virtual_stack_dynamic_rtx;
1198
1199 /* Otherwise, show we're calling alloca or equivalent. */
1200 current_function_calls_alloca = 1;
1201
1202 /* Ensure the size is in the proper mode. */
1203 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1204 size = convert_to_mode (Pmode, size, 1);
1205
1206 /* We can't attempt to minimize alignment necessary, because we don't
1207 know the final value of preferred_stack_boundary yet while executing
1208 this code. */
1209 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1210
1211 /* We will need to ensure that the address we return is aligned to
1212 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1213 always know its final value at this point in the compilation (it
1214 might depend on the size of the outgoing parameter lists, for
1215 example), so we must align the value to be returned in that case.
1216 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1217 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1218 We must also do an alignment operation on the returned value if
1219 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1220
1221 If we have to align, we must leave space in SIZE for the hole
1222 that might result from the alignment operation. */
1223
1224 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1225 #define MUST_ALIGN 1
1226 #else
1227 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1228 #endif
1229
1230 if (MUST_ALIGN)
1231 size
1232 = force_operand (plus_constant (size,
1233 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1234 NULL_RTX);
1235
1236 #ifdef SETJMP_VIA_SAVE_AREA
1237 /* If setjmp restores regs from a save area in the stack frame,
1238 avoid clobbering the reg save area. Note that the offset of
1239 virtual_incoming_args_rtx includes the preallocated stack args space.
1240 It would be no problem to clobber that, but it's on the wrong side
1241 of the old save area. */
1242 {
1243 rtx dynamic_offset
1244 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1245 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1246
1247 if (!current_function_calls_setjmp)
1248 {
1249 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1250
1251 /* See optimize_save_area_alloca to understand what is being
1252 set up here. */
1253
1254 /* ??? Code below assumes that the save area needs maximal
1255 alignment. This constraint may be too strong. */
1256 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1257 abort ();
1258
1259 if (GET_CODE (size) == CONST_INT)
1260 {
1261 HOST_WIDE_INT new = INTVAL (size) / align * align;
1262
1263 if (INTVAL (size) != new)
1264 setjmpless_size = GEN_INT (new);
1265 else
1266 setjmpless_size = size;
1267 }
1268 else
1269 {
1270 /* Since we know overflow is not possible, we avoid using
1271 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1272 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1273 GEN_INT (align), NULL_RTX, 1);
1274 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1275 GEN_INT (align), NULL_RTX, 1);
1276 }
1277 /* Our optimization works based upon being able to perform a simple
1278 transformation of this RTL into a (set REG REG) so make sure things
1279 did in fact end up in a REG. */
1280 if (!register_operand (setjmpless_size, Pmode))
1281 setjmpless_size = force_reg (Pmode, setjmpless_size);
1282 }
1283
1284 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1285 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1286 }
1287 #endif /* SETJMP_VIA_SAVE_AREA */
1288
1289 /* Round the size to a multiple of the required stack alignment.
1290 Since the stack if presumed to be rounded before this allocation,
1291 this will maintain the required alignment.
1292
1293 If the stack grows downward, we could save an insn by subtracting
1294 SIZE from the stack pointer and then aligning the stack pointer.
1295 The problem with this is that the stack pointer may be unaligned
1296 between the execution of the subtraction and alignment insns and
1297 some machines do not allow this. Even on those that do, some
1298 signal handlers malfunction if a signal should occur between those
1299 insns. Since this is an extremely rare event, we have no reliable
1300 way of knowing which systems have this problem. So we avoid even
1301 momentarily mis-aligning the stack. */
1302
1303 /* If we added a variable amount to SIZE,
1304 we can no longer assume it is aligned. */
1305 #if !defined (SETJMP_VIA_SAVE_AREA)
1306 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1307 #endif
1308 size = round_push (size);
1309
1310 do_pending_stack_adjust ();
1311
1312 /* We ought to be called always on the toplevel and stack ought to be aligned
1313 properly. */
1314 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1315 abort ();
1316
1317 /* If needed, check that we have the required amount of stack. Take into
1318 account what has already been checked. */
1319 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1320 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1321
1322 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1323 if (target == 0 || !REG_P (target)
1324 || REGNO (target) < FIRST_PSEUDO_REGISTER
1325 || GET_MODE (target) != Pmode)
1326 target = gen_reg_rtx (Pmode);
1327
1328 mark_reg_pointer (target, known_align);
1329
1330 /* Perform the required allocation from the stack. Some systems do
1331 this differently than simply incrementing/decrementing from the
1332 stack pointer, such as acquiring the space by calling malloc(). */
1333 #ifdef HAVE_allocate_stack
1334 if (HAVE_allocate_stack)
1335 {
1336 enum machine_mode mode = STACK_SIZE_MODE;
1337 insn_operand_predicate_fn pred;
1338
1339 /* We don't have to check against the predicate for operand 0 since
1340 TARGET is known to be a pseudo of the proper mode, which must
1341 be valid for the operand. For operand 1, convert to the
1342 proper mode and validate. */
1343 if (mode == VOIDmode)
1344 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1345
1346 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1347 if (pred && ! ((*pred) (size, mode)))
1348 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1349
1350 emit_insn (gen_allocate_stack (target, size));
1351 }
1352 else
1353 #endif
1354 {
1355 #ifndef STACK_GROWS_DOWNWARD
1356 emit_move_insn (target, virtual_stack_dynamic_rtx);
1357 #endif
1358
1359 /* Check stack bounds if necessary. */
1360 if (current_function_limit_stack)
1361 {
1362 rtx available;
1363 rtx space_available = gen_label_rtx ();
1364 #ifdef STACK_GROWS_DOWNWARD
1365 available = expand_binop (Pmode, sub_optab,
1366 stack_pointer_rtx, stack_limit_rtx,
1367 NULL_RTX, 1, OPTAB_WIDEN);
1368 #else
1369 available = expand_binop (Pmode, sub_optab,
1370 stack_limit_rtx, stack_pointer_rtx,
1371 NULL_RTX, 1, OPTAB_WIDEN);
1372 #endif
1373 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1374 space_available);
1375 #ifdef HAVE_trap
1376 if (HAVE_trap)
1377 emit_insn (gen_trap ());
1378 else
1379 #endif
1380 error ("stack limits not supported on this target");
1381 emit_barrier ();
1382 emit_label (space_available);
1383 }
1384
1385 anti_adjust_stack (size);
1386 #ifdef SETJMP_VIA_SAVE_AREA
1387 if (setjmpless_size != NULL_RTX)
1388 {
1389 rtx note_target = get_last_insn ();
1390
1391 REG_NOTES (note_target)
1392 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1393 REG_NOTES (note_target));
1394 }
1395 #endif /* SETJMP_VIA_SAVE_AREA */
1396
1397 #ifdef STACK_GROWS_DOWNWARD
1398 emit_move_insn (target, virtual_stack_dynamic_rtx);
1399 #endif
1400 }
1401
1402 if (MUST_ALIGN)
1403 {
1404 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1405 but we know it can't. So add ourselves and then do
1406 TRUNC_DIV_EXPR. */
1407 target = expand_binop (Pmode, add_optab, target,
1408 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1409 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1410 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1411 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1412 NULL_RTX, 1);
1413 target = expand_mult (Pmode, target,
1414 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1415 NULL_RTX, 1);
1416 }
1417
1418 /* Record the new stack level for nonlocal gotos. */
1419 if (cfun->nonlocal_goto_save_area != 0)
1420 update_nonlocal_goto_save_area ();
1421
1422 return target;
1423 }
1424 \f
1425 /* A front end may want to override GCC's stack checking by providing a
1426 run-time routine to call to check the stack, so provide a mechanism for
1427 calling that routine. */
1428
1429 static GTY(()) rtx stack_check_libfunc;
1430
1431 void
1432 set_stack_check_libfunc (rtx libfunc)
1433 {
1434 stack_check_libfunc = libfunc;
1435 }
1436 \f
1437 /* Emit one stack probe at ADDRESS, an address within the stack. */
1438
1439 static void
1440 emit_stack_probe (rtx address)
1441 {
1442 rtx memref = gen_rtx_MEM (word_mode, address);
1443
1444 MEM_VOLATILE_P (memref) = 1;
1445
1446 if (STACK_CHECK_PROBE_LOAD)
1447 emit_move_insn (gen_reg_rtx (word_mode), memref);
1448 else
1449 emit_move_insn (memref, const0_rtx);
1450 }
1451
1452 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1453 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1454 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1455 subtract from the stack. If SIZE is constant, this is done
1456 with a fixed number of probes. Otherwise, we must make a loop. */
1457
1458 #ifdef STACK_GROWS_DOWNWARD
1459 #define STACK_GROW_OP MINUS
1460 #else
1461 #define STACK_GROW_OP PLUS
1462 #endif
1463
1464 void
1465 probe_stack_range (HOST_WIDE_INT first, rtx size)
1466 {
1467 /* First ensure SIZE is Pmode. */
1468 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1469 size = convert_to_mode (Pmode, size, 1);
1470
1471 /* Next see if the front end has set up a function for us to call to
1472 check the stack. */
1473 if (stack_check_libfunc != 0)
1474 {
1475 rtx addr = memory_address (QImode,
1476 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1477 stack_pointer_rtx,
1478 plus_constant (size, first)));
1479
1480 addr = convert_memory_address (ptr_mode, addr);
1481 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1482 ptr_mode);
1483 }
1484
1485 /* Next see if we have an insn to check the stack. Use it if so. */
1486 #ifdef HAVE_check_stack
1487 else if (HAVE_check_stack)
1488 {
1489 insn_operand_predicate_fn pred;
1490 rtx last_addr
1491 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1492 stack_pointer_rtx,
1493 plus_constant (size, first)),
1494 NULL_RTX);
1495
1496 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1497 if (pred && ! ((*pred) (last_addr, Pmode)))
1498 last_addr = copy_to_mode_reg (Pmode, last_addr);
1499
1500 emit_insn (gen_check_stack (last_addr));
1501 }
1502 #endif
1503
1504 /* If we have to generate explicit probes, see if we have a constant
1505 small number of them to generate. If so, that's the easy case. */
1506 else if (GET_CODE (size) == CONST_INT
1507 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1508 {
1509 HOST_WIDE_INT offset;
1510
1511 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1512 for values of N from 1 until it exceeds LAST. If only one
1513 probe is needed, this will not generate any code. Then probe
1514 at LAST. */
1515 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1516 offset < INTVAL (size);
1517 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1518 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1519 stack_pointer_rtx,
1520 GEN_INT (offset)));
1521
1522 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1523 stack_pointer_rtx,
1524 plus_constant (size, first)));
1525 }
1526
1527 /* In the variable case, do the same as above, but in a loop. We emit loop
1528 notes so that loop optimization can be done. */
1529 else
1530 {
1531 rtx test_addr
1532 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1533 stack_pointer_rtx,
1534 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1535 NULL_RTX);
1536 rtx last_addr
1537 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1538 stack_pointer_rtx,
1539 plus_constant (size, first)),
1540 NULL_RTX);
1541 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1542 rtx loop_lab = gen_label_rtx ();
1543 rtx test_lab = gen_label_rtx ();
1544 rtx end_lab = gen_label_rtx ();
1545 rtx temp;
1546
1547 if (!REG_P (test_addr)
1548 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1549 test_addr = force_reg (Pmode, test_addr);
1550
1551 emit_jump (test_lab);
1552
1553 emit_label (loop_lab);
1554 emit_stack_probe (test_addr);
1555
1556 #ifdef STACK_GROWS_DOWNWARD
1557 #define CMP_OPCODE GTU
1558 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1559 1, OPTAB_WIDEN);
1560 #else
1561 #define CMP_OPCODE LTU
1562 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1563 1, OPTAB_WIDEN);
1564 #endif
1565
1566 if (temp != test_addr)
1567 abort ();
1568
1569 emit_label (test_lab);
1570 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1571 NULL_RTX, Pmode, 1, loop_lab);
1572 emit_jump (end_lab);
1573 emit_label (end_lab);
1574
1575 emit_stack_probe (last_addr);
1576 }
1577 }
1578 \f
1579 /* Return an rtx representing the register or memory location
1580 in which a scalar value of data type VALTYPE
1581 was returned by a function call to function FUNC.
1582 FUNC is a FUNCTION_DECL node if the precise function is known,
1583 otherwise 0.
1584 OUTGOING is 1 if on a machine with register windows this function
1585 should return the register in which the function will put its result
1586 and 0 otherwise. */
1587
1588 rtx
1589 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1590 int outgoing ATTRIBUTE_UNUSED)
1591 {
1592 rtx val;
1593
1594 #ifdef FUNCTION_OUTGOING_VALUE
1595 if (outgoing)
1596 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1597 else
1598 #endif
1599 val = FUNCTION_VALUE (valtype, func);
1600
1601 if (REG_P (val)
1602 && GET_MODE (val) == BLKmode)
1603 {
1604 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1605 enum machine_mode tmpmode;
1606
1607 /* int_size_in_bytes can return -1. We don't need a check here
1608 since the value of bytes will be large enough that no mode
1609 will match and we will abort later in this function. */
1610
1611 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1612 tmpmode != VOIDmode;
1613 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1614 {
1615 /* Have we found a large enough mode? */
1616 if (GET_MODE_SIZE (tmpmode) >= bytes)
1617 break;
1618 }
1619
1620 /* No suitable mode found. */
1621 if (tmpmode == VOIDmode)
1622 abort ();
1623
1624 PUT_MODE (val, tmpmode);
1625 }
1626 return val;
1627 }
1628
1629 /* Return an rtx representing the register or memory location
1630 in which a scalar value of mode MODE was returned by a library call. */
1631
1632 rtx
1633 hard_libcall_value (enum machine_mode mode)
1634 {
1635 return LIBCALL_VALUE (mode);
1636 }
1637
1638 /* Look up the tree code for a given rtx code
1639 to provide the arithmetic operation for REAL_ARITHMETIC.
1640 The function returns an int because the caller may not know
1641 what `enum tree_code' means. */
1642
1643 int
1644 rtx_to_tree_code (enum rtx_code code)
1645 {
1646 enum tree_code tcode;
1647
1648 switch (code)
1649 {
1650 case PLUS:
1651 tcode = PLUS_EXPR;
1652 break;
1653 case MINUS:
1654 tcode = MINUS_EXPR;
1655 break;
1656 case MULT:
1657 tcode = MULT_EXPR;
1658 break;
1659 case DIV:
1660 tcode = RDIV_EXPR;
1661 break;
1662 case SMIN:
1663 tcode = MIN_EXPR;
1664 break;
1665 case SMAX:
1666 tcode = MAX_EXPR;
1667 break;
1668 default:
1669 tcode = LAST_AND_UNUSED_TREE_CODE;
1670 break;
1671 }
1672 return ((int) tcode);
1673 }
1674
1675 #include "gt-explow.h"