]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
explow.c (convert_memory_address): Use shallow_copy_rtx.
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "optabs.h"
33 #include "hard-reg-set.h"
34 #include "insn-config.h"
35 #include "ggc.h"
36 #include "recog.h"
37 #include "langhooks.h"
38
39 static rtx break_out_memory_refs PARAMS ((rtx));
40 static void emit_stack_probe PARAMS ((rtx));
41
42
43 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
44
45 HOST_WIDE_INT
46 trunc_int_for_mode (c, mode)
47 HOST_WIDE_INT c;
48 enum machine_mode mode;
49 {
50 int width = GET_MODE_BITSIZE (mode);
51
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C.
75
76 This function should be used via the `plus_constant' macro. */
77
78 rtx
79 plus_constant_wide (x, c)
80 rtx x;
81 HOST_WIDE_INT c;
82 {
83 RTX_CODE code;
84 rtx y;
85 enum machine_mode mode;
86 rtx tem;
87 int all_constant = 0;
88
89 if (c == 0)
90 return x;
91
92 restart:
93
94 code = GET_CODE (x);
95 mode = GET_MODE (x);
96 y = x;
97
98 switch (code)
99 {
100 case CONST_INT:
101 return GEN_INT (INTVAL (x) + c);
102
103 case CONST_DOUBLE:
104 {
105 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
106 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
107 unsigned HOST_WIDE_INT l2 = c;
108 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
109 unsigned HOST_WIDE_INT lv;
110 HOST_WIDE_INT hv;
111
112 add_double (l1, h1, l2, h2, &lv, &hv);
113
114 return immed_double_const (lv, hv, VOIDmode);
115 }
116
117 case MEM:
118 /* If this is a reference to the constant pool, try replacing it with
119 a reference to a new constant. If the resulting address isn't
120 valid, don't return it because we have no way to validize it. */
121 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
122 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 {
124 tem
125 = force_const_mem (GET_MODE (x),
126 plus_constant (get_pool_constant (XEXP (x, 0)),
127 c));
128 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
129 return tem;
130 }
131 break;
132
133 case CONST:
134 /* If adding to something entirely constant, set a flag
135 so that we can add a CONST around the result. */
136 x = XEXP (x, 0);
137 all_constant = 1;
138 goto restart;
139
140 case SYMBOL_REF:
141 case LABEL_REF:
142 all_constant = 1;
143 break;
144
145 case PLUS:
146 /* The interesting case is adding the integer to a sum.
147 Look for constant term in the sum and combine
148 with C. For an integer constant term, we make a combined
149 integer. For a constant term that is not an explicit integer,
150 we cannot really combine, but group them together anyway.
151
152 Restart or use a recursive call in case the remaining operand is
153 something that we handle specially, such as a SYMBOL_REF.
154
155 We may not immediately return from the recursive call here, lest
156 all_constant gets lost. */
157
158 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
159 {
160 c += INTVAL (XEXP (x, 1));
161
162 if (GET_MODE (x) != VOIDmode)
163 c = trunc_int_for_mode (c, GET_MODE (x));
164
165 x = XEXP (x, 0);
166 goto restart;
167 }
168 else if (CONSTANT_P (XEXP (x, 1)))
169 {
170 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
171 c = 0;
172 }
173 else if (find_constant_term_loc (&y))
174 {
175 /* We need to be careful since X may be shared and we can't
176 modify it in place. */
177 rtx copy = copy_rtx (x);
178 rtx *const_loc = find_constant_term_loc (&copy);
179
180 *const_loc = plus_constant (*const_loc, c);
181 x = copy;
182 c = 0;
183 }
184 break;
185
186 default:
187 break;
188 }
189
190 if (c != 0)
191 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
192
193 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
194 return x;
195 else if (all_constant)
196 return gen_rtx_CONST (mode, x);
197 else
198 return x;
199 }
200 \f
201 /* If X is a sum, return a new sum like X but lacking any constant terms.
202 Add all the removed constant terms into *CONSTPTR.
203 X itself is not altered. The result != X if and only if
204 it is not isomorphic to X. */
205
206 rtx
207 eliminate_constant_term (x, constptr)
208 rtx x;
209 rtx *constptr;
210 {
211 rtx x0, x1;
212 rtx tem;
213
214 if (GET_CODE (x) != PLUS)
215 return x;
216
217 /* First handle constants appearing at this level explicitly. */
218 if (GET_CODE (XEXP (x, 1)) == CONST_INT
219 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
220 XEXP (x, 1)))
221 && GET_CODE (tem) == CONST_INT)
222 {
223 *constptr = tem;
224 return eliminate_constant_term (XEXP (x, 0), constptr);
225 }
226
227 tem = const0_rtx;
228 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
229 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
230 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
231 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
232 *constptr, tem))
233 && GET_CODE (tem) == CONST_INT)
234 {
235 *constptr = tem;
236 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
237 }
238
239 return x;
240 }
241
242 /* Returns the insn that next references REG after INSN, or 0
243 if REG is clobbered before next referenced or we cannot find
244 an insn that references REG in a straight-line piece of code. */
245
246 rtx
247 find_next_ref (reg, insn)
248 rtx reg;
249 rtx insn;
250 {
251 rtx next;
252
253 for (insn = NEXT_INSN (insn); insn; insn = next)
254 {
255 next = NEXT_INSN (insn);
256 if (GET_CODE (insn) == NOTE)
257 continue;
258 if (GET_CODE (insn) == CODE_LABEL
259 || GET_CODE (insn) == BARRIER)
260 return 0;
261 if (GET_CODE (insn) == INSN
262 || GET_CODE (insn) == JUMP_INSN
263 || GET_CODE (insn) == CALL_INSN)
264 {
265 if (reg_set_p (reg, insn))
266 return 0;
267 if (reg_mentioned_p (reg, PATTERN (insn)))
268 return insn;
269 if (GET_CODE (insn) == JUMP_INSN)
270 {
271 if (any_uncondjump_p (insn))
272 next = JUMP_LABEL (insn);
273 else
274 return 0;
275 }
276 if (GET_CODE (insn) == CALL_INSN
277 && REGNO (reg) < FIRST_PSEUDO_REGISTER
278 && call_used_regs[REGNO (reg)])
279 return 0;
280 }
281 else
282 abort ();
283 }
284 return 0;
285 }
286
287 /* Return an rtx for the size in bytes of the value of EXP. */
288
289 rtx
290 expr_size (exp)
291 tree exp;
292 {
293 tree size = (*lang_hooks.expr_size) (exp);
294
295 if (TREE_CODE (size) != INTEGER_CST
296 && contains_placeholder_p (size))
297 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
298
299 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
300 }
301
302 /* Return a wide integer for the size in bytes of the value of EXP, or -1
303 if the size can vary or is larger than an integer. */
304
305 HOST_WIDE_INT
306 int_expr_size (exp)
307 tree exp;
308 {
309 tree t = (*lang_hooks.expr_size) (exp);
310
311 if (t == 0
312 || TREE_CODE (t) != INTEGER_CST
313 || TREE_OVERFLOW (t)
314 || TREE_INT_CST_HIGH (t) != 0
315 /* If the result would appear negative, it's too big to represent. */
316 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
317 return -1;
318
319 return TREE_INT_CST_LOW (t);
320 }
321 \f
322 /* Return a copy of X in which all memory references
323 and all constants that involve symbol refs
324 have been replaced with new temporary registers.
325 Also emit code to load the memory locations and constants
326 into those registers.
327
328 If X contains no such constants or memory references,
329 X itself (not a copy) is returned.
330
331 If a constant is found in the address that is not a legitimate constant
332 in an insn, it is left alone in the hope that it might be valid in the
333 address.
334
335 X may contain no arithmetic except addition, subtraction and multiplication.
336 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
337
338 static rtx
339 break_out_memory_refs (x)
340 rtx x;
341 {
342 if (GET_CODE (x) == MEM
343 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
344 && GET_MODE (x) != VOIDmode))
345 x = force_reg (GET_MODE (x), x);
346 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
347 || GET_CODE (x) == MULT)
348 {
349 rtx op0 = break_out_memory_refs (XEXP (x, 0));
350 rtx op1 = break_out_memory_refs (XEXP (x, 1));
351
352 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
353 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
354 }
355
356 return x;
357 }
358
359 #ifdef POINTERS_EXTEND_UNSIGNED
360
361 /* Given X, a memory address in ptr_mode, convert it to an address
362 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
363 the fact that pointers are not allowed to overflow by commuting arithmetic
364 operations over conversions so that address arithmetic insns can be
365 used. */
366
367 rtx
368 convert_memory_address (to_mode, x)
369 enum machine_mode to_mode;
370 rtx x;
371 {
372 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
373 rtx temp;
374 enum rtx_code code;
375
376 /* Here we handle some special cases. If none of them apply, fall through
377 to the default case. */
378 switch (GET_CODE (x))
379 {
380 case CONST_INT:
381 case CONST_DOUBLE:
382 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
383 code = TRUNCATE;
384 else if (POINTERS_EXTEND_UNSIGNED < 0)
385 break;
386 else if (POINTERS_EXTEND_UNSIGNED > 0)
387 code = ZERO_EXTEND;
388 else
389 code = SIGN_EXTEND;
390 temp = simplify_unary_operation (code, to_mode, x, from_mode);
391 if (temp)
392 return temp;
393 break;
394
395 case SUBREG:
396 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
397 && GET_MODE (SUBREG_REG (x)) == to_mode)
398 return SUBREG_REG (x);
399 break;
400
401 case LABEL_REF:
402 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
403 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
404 return temp;
405 break;
406
407 case SYMBOL_REF:
408 temp = shallow_copy_rtx (x);
409 PUT_MODE (temp, to_mode);
410 return temp;
411 break;
412
413 case CONST:
414 return gen_rtx_CONST (to_mode,
415 convert_memory_address (to_mode, XEXP (x, 0)));
416 break;
417
418 case PLUS:
419 case MULT:
420 /* For addition we can safely permute the conversion and addition
421 operation if one operand is a constant and converting the constant
422 does not change it. We can always safely permute them if we are
423 making the address narrower. */
424 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
425 || (GET_CODE (x) == PLUS
426 && GET_CODE (XEXP (x, 1)) == CONST_INT
427 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
428 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
429 convert_memory_address (to_mode, XEXP (x, 0)),
430 XEXP (x, 1));
431 break;
432
433 default:
434 break;
435 }
436
437 return convert_modes (to_mode, from_mode,
438 x, POINTERS_EXTEND_UNSIGNED);
439 }
440 #endif
441
442 /* Given a memory address or facsimile X, construct a new address,
443 currently equivalent, that is stable: future stores won't change it.
444
445 X must be composed of constants, register and memory references
446 combined with addition, subtraction and multiplication:
447 in other words, just what you can get from expand_expr if sum_ok is 1.
448
449 Works by making copies of all regs and memory locations used
450 by X and combining them the same way X does.
451 You could also stabilize the reference to this address
452 by copying the address to a register with copy_to_reg;
453 but then you wouldn't get indexed addressing in the reference. */
454
455 rtx
456 copy_all_regs (x)
457 rtx x;
458 {
459 if (GET_CODE (x) == REG)
460 {
461 if (REGNO (x) != FRAME_POINTER_REGNUM
462 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
463 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
464 #endif
465 )
466 x = copy_to_reg (x);
467 }
468 else if (GET_CODE (x) == MEM)
469 x = copy_to_reg (x);
470 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
471 || GET_CODE (x) == MULT)
472 {
473 rtx op0 = copy_all_regs (XEXP (x, 0));
474 rtx op1 = copy_all_regs (XEXP (x, 1));
475 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
476 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
477 }
478 return x;
479 }
480 \f
481 /* Return something equivalent to X but valid as a memory address
482 for something of mode MODE. When X is not itself valid, this
483 works by copying X or subexpressions of it into registers. */
484
485 rtx
486 memory_address (mode, x)
487 enum machine_mode mode;
488 rtx x;
489 {
490 rtx oldx = x;
491
492 if (GET_CODE (x) == ADDRESSOF)
493 return x;
494
495 #ifdef POINTERS_EXTEND_UNSIGNED
496 if (GET_MODE (x) != Pmode)
497 x = convert_memory_address (Pmode, x);
498 #endif
499
500 /* By passing constant addresses thru registers
501 we get a chance to cse them. */
502 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
503 x = force_reg (Pmode, x);
504
505 /* Accept a QUEUED that refers to a REG
506 even though that isn't a valid address.
507 On attempting to put this in an insn we will call protect_from_queue
508 which will turn it into a REG, which is valid. */
509 else if (GET_CODE (x) == QUEUED
510 && GET_CODE (QUEUED_VAR (x)) == REG)
511 ;
512
513 /* We get better cse by rejecting indirect addressing at this stage.
514 Let the combiner create indirect addresses where appropriate.
515 For now, generate the code so that the subexpressions useful to share
516 are visible. But not if cse won't be done! */
517 else
518 {
519 if (! cse_not_expected && GET_CODE (x) != REG)
520 x = break_out_memory_refs (x);
521
522 /* At this point, any valid address is accepted. */
523 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
524
525 /* If it was valid before but breaking out memory refs invalidated it,
526 use it the old way. */
527 if (memory_address_p (mode, oldx))
528 goto win2;
529
530 /* Perform machine-dependent transformations on X
531 in certain cases. This is not necessary since the code
532 below can handle all possible cases, but machine-dependent
533 transformations can make better code. */
534 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
535
536 /* PLUS and MULT can appear in special ways
537 as the result of attempts to make an address usable for indexing.
538 Usually they are dealt with by calling force_operand, below.
539 But a sum containing constant terms is special
540 if removing them makes the sum a valid address:
541 then we generate that address in a register
542 and index off of it. We do this because it often makes
543 shorter code, and because the addresses thus generated
544 in registers often become common subexpressions. */
545 if (GET_CODE (x) == PLUS)
546 {
547 rtx constant_term = const0_rtx;
548 rtx y = eliminate_constant_term (x, &constant_term);
549 if (constant_term == const0_rtx
550 || ! memory_address_p (mode, y))
551 x = force_operand (x, NULL_RTX);
552 else
553 {
554 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
555 if (! memory_address_p (mode, y))
556 x = force_operand (x, NULL_RTX);
557 else
558 x = y;
559 }
560 }
561
562 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
563 x = force_operand (x, NULL_RTX);
564
565 /* If we have a register that's an invalid address,
566 it must be a hard reg of the wrong class. Copy it to a pseudo. */
567 else if (GET_CODE (x) == REG)
568 x = copy_to_reg (x);
569
570 /* Last resort: copy the value to a register, since
571 the register is a valid address. */
572 else
573 x = force_reg (Pmode, x);
574
575 goto done;
576
577 win2:
578 x = oldx;
579 win:
580 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
581 /* Don't copy an addr via a reg if it is one of our stack slots. */
582 && ! (GET_CODE (x) == PLUS
583 && (XEXP (x, 0) == virtual_stack_vars_rtx
584 || XEXP (x, 0) == virtual_incoming_args_rtx)))
585 {
586 if (general_operand (x, Pmode))
587 x = force_reg (Pmode, x);
588 else
589 x = force_operand (x, NULL_RTX);
590 }
591 }
592
593 done:
594
595 /* If we didn't change the address, we are done. Otherwise, mark
596 a reg as a pointer if we have REG or REG + CONST_INT. */
597 if (oldx == x)
598 return x;
599 else if (GET_CODE (x) == REG)
600 mark_reg_pointer (x, BITS_PER_UNIT);
601 else if (GET_CODE (x) == PLUS
602 && GET_CODE (XEXP (x, 0)) == REG
603 && GET_CODE (XEXP (x, 1)) == CONST_INT)
604 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
605
606 /* OLDX may have been the address on a temporary. Update the address
607 to indicate that X is now used. */
608 update_temp_slot_address (oldx, x);
609
610 return x;
611 }
612
613 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
614
615 rtx
616 memory_address_noforce (mode, x)
617 enum machine_mode mode;
618 rtx x;
619 {
620 int ambient_force_addr = flag_force_addr;
621 rtx val;
622
623 flag_force_addr = 0;
624 val = memory_address (mode, x);
625 flag_force_addr = ambient_force_addr;
626 return val;
627 }
628
629 /* Convert a mem ref into one with a valid memory address.
630 Pass through anything else unchanged. */
631
632 rtx
633 validize_mem (ref)
634 rtx ref;
635 {
636 if (GET_CODE (ref) != MEM)
637 return ref;
638 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
639 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
640 return ref;
641
642 /* Don't alter REF itself, since that is probably a stack slot. */
643 return replace_equiv_address (ref, XEXP (ref, 0));
644 }
645 \f
646 /* Given REF, either a MEM or a REG, and T, either the type of X or
647 the expression corresponding to REF, set RTX_UNCHANGING_P if
648 appropriate. */
649
650 void
651 maybe_set_unchanging (ref, t)
652 rtx ref;
653 tree t;
654 {
655 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
656 initialization is only executed once, or whose initializer always
657 has the same value. Currently we simplify this to PARM_DECLs in the
658 first case, and decls with TREE_CONSTANT initializers in the second. */
659 if ((TREE_READONLY (t) && DECL_P (t)
660 && (TREE_CODE (t) == PARM_DECL
661 || DECL_INITIAL (t) == NULL_TREE
662 || TREE_CONSTANT (DECL_INITIAL (t))))
663 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
664 RTX_UNCHANGING_P (ref) = 1;
665 }
666 \f
667 /* Return a modified copy of X with its memory address copied
668 into a temporary register to protect it from side effects.
669 If X is not a MEM, it is returned unchanged (and not copied).
670 Perhaps even if it is a MEM, if there is no need to change it. */
671
672 rtx
673 stabilize (x)
674 rtx x;
675 {
676
677 if (GET_CODE (x) != MEM
678 || ! rtx_unstable_p (XEXP (x, 0)))
679 return x;
680
681 return
682 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
683 }
684 \f
685 /* Copy the value or contents of X to a new temp reg and return that reg. */
686
687 rtx
688 copy_to_reg (x)
689 rtx x;
690 {
691 rtx temp = gen_reg_rtx (GET_MODE (x));
692
693 /* If not an operand, must be an address with PLUS and MULT so
694 do the computation. */
695 if (! general_operand (x, VOIDmode))
696 x = force_operand (x, temp);
697
698 if (x != temp)
699 emit_move_insn (temp, x);
700
701 return temp;
702 }
703
704 /* Like copy_to_reg but always give the new register mode Pmode
705 in case X is a constant. */
706
707 rtx
708 copy_addr_to_reg (x)
709 rtx x;
710 {
711 return copy_to_mode_reg (Pmode, x);
712 }
713
714 /* Like copy_to_reg but always give the new register mode MODE
715 in case X is a constant. */
716
717 rtx
718 copy_to_mode_reg (mode, x)
719 enum machine_mode mode;
720 rtx x;
721 {
722 rtx temp = gen_reg_rtx (mode);
723
724 /* If not an operand, must be an address with PLUS and MULT so
725 do the computation. */
726 if (! general_operand (x, VOIDmode))
727 x = force_operand (x, temp);
728
729 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
730 abort ();
731 if (x != temp)
732 emit_move_insn (temp, x);
733 return temp;
734 }
735
736 /* Load X into a register if it is not already one.
737 Use mode MODE for the register.
738 X should be valid for mode MODE, but it may be a constant which
739 is valid for all integer modes; that's why caller must specify MODE.
740
741 The caller must not alter the value in the register we return,
742 since we mark it as a "constant" register. */
743
744 rtx
745 force_reg (mode, x)
746 enum machine_mode mode;
747 rtx x;
748 {
749 rtx temp, insn, set;
750
751 if (GET_CODE (x) == REG)
752 return x;
753
754 if (general_operand (x, mode))
755 {
756 temp = gen_reg_rtx (mode);
757 insn = emit_move_insn (temp, x);
758 }
759 else
760 {
761 temp = force_operand (x, NULL_RTX);
762 if (GET_CODE (temp) == REG)
763 insn = get_last_insn ();
764 else
765 {
766 rtx temp2 = gen_reg_rtx (mode);
767 insn = emit_move_insn (temp2, temp);
768 temp = temp2;
769 }
770 }
771
772 /* Let optimizers know that TEMP's value never changes
773 and that X can be substituted for it. Don't get confused
774 if INSN set something else (such as a SUBREG of TEMP). */
775 if (CONSTANT_P (x)
776 && (set = single_set (insn)) != 0
777 && SET_DEST (set) == temp)
778 set_unique_reg_note (insn, REG_EQUAL, x);
779
780 return temp;
781 }
782
783 /* If X is a memory ref, copy its contents to a new temp reg and return
784 that reg. Otherwise, return X. */
785
786 rtx
787 force_not_mem (x)
788 rtx x;
789 {
790 rtx temp;
791
792 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
793 return x;
794
795 temp = gen_reg_rtx (GET_MODE (x));
796 emit_move_insn (temp, x);
797 return temp;
798 }
799
800 /* Copy X to TARGET (if it's nonzero and a reg)
801 or to a new temp reg and return that reg.
802 MODE is the mode to use for X in case it is a constant. */
803
804 rtx
805 copy_to_suggested_reg (x, target, mode)
806 rtx x, target;
807 enum machine_mode mode;
808 {
809 rtx temp;
810
811 if (target && GET_CODE (target) == REG)
812 temp = target;
813 else
814 temp = gen_reg_rtx (mode);
815
816 emit_move_insn (temp, x);
817 return temp;
818 }
819 \f
820 /* Return the mode to use to store a scalar of TYPE and MODE.
821 PUNSIGNEDP points to the signedness of the type and may be adjusted
822 to show what signedness to use on extension operations.
823
824 FOR_CALL is nonzero if this call is promoting args for a call. */
825
826 enum machine_mode
827 promote_mode (type, mode, punsignedp, for_call)
828 tree type;
829 enum machine_mode mode;
830 int *punsignedp;
831 int for_call ATTRIBUTE_UNUSED;
832 {
833 enum tree_code code = TREE_CODE (type);
834 int unsignedp = *punsignedp;
835
836 #ifdef PROMOTE_FOR_CALL_ONLY
837 if (! for_call)
838 return mode;
839 #endif
840
841 switch (code)
842 {
843 #ifdef PROMOTE_MODE
844 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
845 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
846 PROMOTE_MODE (mode, unsignedp, type);
847 break;
848 #endif
849
850 #ifdef POINTERS_EXTEND_UNSIGNED
851 case REFERENCE_TYPE:
852 case POINTER_TYPE:
853 mode = Pmode;
854 unsignedp = POINTERS_EXTEND_UNSIGNED;
855 break;
856 #endif
857
858 default:
859 break;
860 }
861
862 *punsignedp = unsignedp;
863 return mode;
864 }
865 \f
866 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
867 This pops when ADJUST is positive. ADJUST need not be constant. */
868
869 void
870 adjust_stack (adjust)
871 rtx adjust;
872 {
873 rtx temp;
874 adjust = protect_from_queue (adjust, 0);
875
876 if (adjust == const0_rtx)
877 return;
878
879 /* We expect all variable sized adjustments to be multiple of
880 PREFERRED_STACK_BOUNDARY. */
881 if (GET_CODE (adjust) == CONST_INT)
882 stack_pointer_delta -= INTVAL (adjust);
883
884 temp = expand_binop (Pmode,
885 #ifdef STACK_GROWS_DOWNWARD
886 add_optab,
887 #else
888 sub_optab,
889 #endif
890 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
891 OPTAB_LIB_WIDEN);
892
893 if (temp != stack_pointer_rtx)
894 emit_move_insn (stack_pointer_rtx, temp);
895 }
896
897 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
898 This pushes when ADJUST is positive. ADJUST need not be constant. */
899
900 void
901 anti_adjust_stack (adjust)
902 rtx adjust;
903 {
904 rtx temp;
905 adjust = protect_from_queue (adjust, 0);
906
907 if (adjust == const0_rtx)
908 return;
909
910 /* We expect all variable sized adjustments to be multiple of
911 PREFERRED_STACK_BOUNDARY. */
912 if (GET_CODE (adjust) == CONST_INT)
913 stack_pointer_delta += INTVAL (adjust);
914
915 temp = expand_binop (Pmode,
916 #ifdef STACK_GROWS_DOWNWARD
917 sub_optab,
918 #else
919 add_optab,
920 #endif
921 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
922 OPTAB_LIB_WIDEN);
923
924 if (temp != stack_pointer_rtx)
925 emit_move_insn (stack_pointer_rtx, temp);
926 }
927
928 /* Round the size of a block to be pushed up to the boundary required
929 by this machine. SIZE is the desired size, which need not be constant. */
930
931 rtx
932 round_push (size)
933 rtx size;
934 {
935 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
936 if (align == 1)
937 return size;
938 if (GET_CODE (size) == CONST_INT)
939 {
940 int new = (INTVAL (size) + align - 1) / align * align;
941 if (INTVAL (size) != new)
942 size = GEN_INT (new);
943 }
944 else
945 {
946 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
947 but we know it can't. So add ourselves and then do
948 TRUNC_DIV_EXPR. */
949 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
950 NULL_RTX, 1, OPTAB_LIB_WIDEN);
951 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
952 NULL_RTX, 1);
953 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
954 }
955 return size;
956 }
957 \f
958 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
959 to a previously-created save area. If no save area has been allocated,
960 this function will allocate one. If a save area is specified, it
961 must be of the proper mode.
962
963 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
964 are emitted at the current position. */
965
966 void
967 emit_stack_save (save_level, psave, after)
968 enum save_level save_level;
969 rtx *psave;
970 rtx after;
971 {
972 rtx sa = *psave;
973 /* The default is that we use a move insn and save in a Pmode object. */
974 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
975 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
976
977 /* See if this machine has anything special to do for this kind of save. */
978 switch (save_level)
979 {
980 #ifdef HAVE_save_stack_block
981 case SAVE_BLOCK:
982 if (HAVE_save_stack_block)
983 fcn = gen_save_stack_block;
984 break;
985 #endif
986 #ifdef HAVE_save_stack_function
987 case SAVE_FUNCTION:
988 if (HAVE_save_stack_function)
989 fcn = gen_save_stack_function;
990 break;
991 #endif
992 #ifdef HAVE_save_stack_nonlocal
993 case SAVE_NONLOCAL:
994 if (HAVE_save_stack_nonlocal)
995 fcn = gen_save_stack_nonlocal;
996 break;
997 #endif
998 default:
999 break;
1000 }
1001
1002 /* If there is no save area and we have to allocate one, do so. Otherwise
1003 verify the save area is the proper mode. */
1004
1005 if (sa == 0)
1006 {
1007 if (mode != VOIDmode)
1008 {
1009 if (save_level == SAVE_NONLOCAL)
1010 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1011 else
1012 *psave = sa = gen_reg_rtx (mode);
1013 }
1014 }
1015 else
1016 {
1017 if (mode == VOIDmode || GET_MODE (sa) != mode)
1018 abort ();
1019 }
1020
1021 if (after)
1022 {
1023 rtx seq;
1024
1025 start_sequence ();
1026 /* We must validize inside the sequence, to ensure that any instructions
1027 created by the validize call also get moved to the right place. */
1028 if (sa != 0)
1029 sa = validize_mem (sa);
1030 emit_insn (fcn (sa, stack_pointer_rtx));
1031 seq = get_insns ();
1032 end_sequence ();
1033 emit_insn_after (seq, after);
1034 }
1035 else
1036 {
1037 if (sa != 0)
1038 sa = validize_mem (sa);
1039 emit_insn (fcn (sa, stack_pointer_rtx));
1040 }
1041 }
1042
1043 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1044 area made by emit_stack_save. If it is zero, we have nothing to do.
1045
1046 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1047 current position. */
1048
1049 void
1050 emit_stack_restore (save_level, sa, after)
1051 enum save_level save_level;
1052 rtx after;
1053 rtx sa;
1054 {
1055 /* The default is that we use a move insn. */
1056 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1057
1058 /* See if this machine has anything special to do for this kind of save. */
1059 switch (save_level)
1060 {
1061 #ifdef HAVE_restore_stack_block
1062 case SAVE_BLOCK:
1063 if (HAVE_restore_stack_block)
1064 fcn = gen_restore_stack_block;
1065 break;
1066 #endif
1067 #ifdef HAVE_restore_stack_function
1068 case SAVE_FUNCTION:
1069 if (HAVE_restore_stack_function)
1070 fcn = gen_restore_stack_function;
1071 break;
1072 #endif
1073 #ifdef HAVE_restore_stack_nonlocal
1074 case SAVE_NONLOCAL:
1075 if (HAVE_restore_stack_nonlocal)
1076 fcn = gen_restore_stack_nonlocal;
1077 break;
1078 #endif
1079 default:
1080 break;
1081 }
1082
1083 if (sa != 0)
1084 {
1085 sa = validize_mem (sa);
1086 /* These clobbers prevent the scheduler from moving
1087 references to variable arrays below the code
1088 that deletes (pops) the arrays. */
1089 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1090 gen_rtx_MEM (BLKmode,
1091 gen_rtx_SCRATCH (VOIDmode))));
1092 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1093 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1094 }
1095
1096 if (after)
1097 {
1098 rtx seq;
1099
1100 start_sequence ();
1101 emit_insn (fcn (stack_pointer_rtx, sa));
1102 seq = get_insns ();
1103 end_sequence ();
1104 emit_insn_after (seq, after);
1105 }
1106 else
1107 emit_insn (fcn (stack_pointer_rtx, sa));
1108 }
1109 \f
1110 #ifdef SETJMP_VIA_SAVE_AREA
1111 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1112 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1113 platforms, the dynamic stack space used can corrupt the original
1114 frame, thus causing a crash if a longjmp unwinds to it. */
1115
1116 void
1117 optimize_save_area_alloca (insns)
1118 rtx insns;
1119 {
1120 rtx insn;
1121
1122 for (insn = insns; insn; insn = NEXT_INSN(insn))
1123 {
1124 rtx note;
1125
1126 if (GET_CODE (insn) != INSN)
1127 continue;
1128
1129 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1130 {
1131 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1132 continue;
1133
1134 if (!current_function_calls_setjmp)
1135 {
1136 rtx pat = PATTERN (insn);
1137
1138 /* If we do not see the note in a pattern matching
1139 these precise characteristics, we did something
1140 entirely wrong in allocate_dynamic_stack_space.
1141
1142 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1143 was defined on a machine where stacks grow towards higher
1144 addresses.
1145
1146 Right now only supported port with stack that grow upward
1147 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1148 if (GET_CODE (pat) != SET
1149 || SET_DEST (pat) != stack_pointer_rtx
1150 || GET_CODE (SET_SRC (pat)) != MINUS
1151 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1152 abort ();
1153
1154 /* This will now be transformed into a (set REG REG)
1155 so we can just blow away all the other notes. */
1156 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1157 REG_NOTES (insn) = NULL_RTX;
1158 }
1159 else
1160 {
1161 /* setjmp was called, we must remove the REG_SAVE_AREA
1162 note so that later passes do not get confused by its
1163 presence. */
1164 if (note == REG_NOTES (insn))
1165 {
1166 REG_NOTES (insn) = XEXP (note, 1);
1167 }
1168 else
1169 {
1170 rtx srch;
1171
1172 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1173 if (XEXP (srch, 1) == note)
1174 break;
1175
1176 if (srch == NULL_RTX)
1177 abort ();
1178
1179 XEXP (srch, 1) = XEXP (note, 1);
1180 }
1181 }
1182 /* Once we've seen the note of interest, we need not look at
1183 the rest of them. */
1184 break;
1185 }
1186 }
1187 }
1188 #endif /* SETJMP_VIA_SAVE_AREA */
1189
1190 /* Return an rtx representing the address of an area of memory dynamically
1191 pushed on the stack. This region of memory is always aligned to
1192 a multiple of BIGGEST_ALIGNMENT.
1193
1194 Any required stack pointer alignment is preserved.
1195
1196 SIZE is an rtx representing the size of the area.
1197 TARGET is a place in which the address can be placed.
1198
1199 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1200
1201 rtx
1202 allocate_dynamic_stack_space (size, target, known_align)
1203 rtx size;
1204 rtx target;
1205 int known_align;
1206 {
1207 #ifdef SETJMP_VIA_SAVE_AREA
1208 rtx setjmpless_size = NULL_RTX;
1209 #endif
1210
1211 /* If we're asking for zero bytes, it doesn't matter what we point
1212 to since we can't dereference it. But return a reasonable
1213 address anyway. */
1214 if (size == const0_rtx)
1215 return virtual_stack_dynamic_rtx;
1216
1217 /* Otherwise, show we're calling alloca or equivalent. */
1218 current_function_calls_alloca = 1;
1219
1220 /* Ensure the size is in the proper mode. */
1221 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1222 size = convert_to_mode (Pmode, size, 1);
1223
1224 /* We can't attempt to minimize alignment necessary, because we don't
1225 know the final value of preferred_stack_boundary yet while executing
1226 this code. */
1227 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1228
1229 /* We will need to ensure that the address we return is aligned to
1230 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1231 always know its final value at this point in the compilation (it
1232 might depend on the size of the outgoing parameter lists, for
1233 example), so we must align the value to be returned in that case.
1234 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1235 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1236 We must also do an alignment operation on the returned value if
1237 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1238
1239 If we have to align, we must leave space in SIZE for the hole
1240 that might result from the alignment operation. */
1241
1242 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1243 #define MUST_ALIGN 1
1244 #else
1245 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1246 #endif
1247
1248 if (MUST_ALIGN)
1249 size
1250 = force_operand (plus_constant (size,
1251 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1252 NULL_RTX);
1253
1254 #ifdef SETJMP_VIA_SAVE_AREA
1255 /* If setjmp restores regs from a save area in the stack frame,
1256 avoid clobbering the reg save area. Note that the offset of
1257 virtual_incoming_args_rtx includes the preallocated stack args space.
1258 It would be no problem to clobber that, but it's on the wrong side
1259 of the old save area. */
1260 {
1261 rtx dynamic_offset
1262 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1263 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1264
1265 if (!current_function_calls_setjmp)
1266 {
1267 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1268
1269 /* See optimize_save_area_alloca to understand what is being
1270 set up here. */
1271
1272 /* ??? Code below assumes that the save area needs maximal
1273 alignment. This constraint may be too strong. */
1274 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1275 abort ();
1276
1277 if (GET_CODE (size) == CONST_INT)
1278 {
1279 HOST_WIDE_INT new = INTVAL (size) / align * align;
1280
1281 if (INTVAL (size) != new)
1282 setjmpless_size = GEN_INT (new);
1283 else
1284 setjmpless_size = size;
1285 }
1286 else
1287 {
1288 /* Since we know overflow is not possible, we avoid using
1289 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1290 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1291 GEN_INT (align), NULL_RTX, 1);
1292 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1293 GEN_INT (align), NULL_RTX, 1);
1294 }
1295 /* Our optimization works based upon being able to perform a simple
1296 transformation of this RTL into a (set REG REG) so make sure things
1297 did in fact end up in a REG. */
1298 if (!register_operand (setjmpless_size, Pmode))
1299 setjmpless_size = force_reg (Pmode, setjmpless_size);
1300 }
1301
1302 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1303 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1304 }
1305 #endif /* SETJMP_VIA_SAVE_AREA */
1306
1307 /* Round the size to a multiple of the required stack alignment.
1308 Since the stack if presumed to be rounded before this allocation,
1309 this will maintain the required alignment.
1310
1311 If the stack grows downward, we could save an insn by subtracting
1312 SIZE from the stack pointer and then aligning the stack pointer.
1313 The problem with this is that the stack pointer may be unaligned
1314 between the execution of the subtraction and alignment insns and
1315 some machines do not allow this. Even on those that do, some
1316 signal handlers malfunction if a signal should occur between those
1317 insns. Since this is an extremely rare event, we have no reliable
1318 way of knowing which systems have this problem. So we avoid even
1319 momentarily mis-aligning the stack. */
1320
1321 /* If we added a variable amount to SIZE,
1322 we can no longer assume it is aligned. */
1323 #if !defined (SETJMP_VIA_SAVE_AREA)
1324 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1325 #endif
1326 size = round_push (size);
1327
1328 do_pending_stack_adjust ();
1329
1330 /* We ought to be called always on the toplevel and stack ought to be aligned
1331 properly. */
1332 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1333 abort ();
1334
1335 /* If needed, check that we have the required amount of stack. Take into
1336 account what has already been checked. */
1337 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1338 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1339
1340 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1341 if (target == 0 || GET_CODE (target) != REG
1342 || REGNO (target) < FIRST_PSEUDO_REGISTER
1343 || GET_MODE (target) != Pmode)
1344 target = gen_reg_rtx (Pmode);
1345
1346 mark_reg_pointer (target, known_align);
1347
1348 /* Perform the required allocation from the stack. Some systems do
1349 this differently than simply incrementing/decrementing from the
1350 stack pointer, such as acquiring the space by calling malloc(). */
1351 #ifdef HAVE_allocate_stack
1352 if (HAVE_allocate_stack)
1353 {
1354 enum machine_mode mode = STACK_SIZE_MODE;
1355 insn_operand_predicate_fn pred;
1356
1357 /* We don't have to check against the predicate for operand 0 since
1358 TARGET is known to be a pseudo of the proper mode, which must
1359 be valid for the operand. For operand 1, convert to the
1360 proper mode and validate. */
1361 if (mode == VOIDmode)
1362 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1363
1364 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1365 if (pred && ! ((*pred) (size, mode)))
1366 size = copy_to_mode_reg (mode, size);
1367
1368 emit_insn (gen_allocate_stack (target, size));
1369 }
1370 else
1371 #endif
1372 {
1373 #ifndef STACK_GROWS_DOWNWARD
1374 emit_move_insn (target, virtual_stack_dynamic_rtx);
1375 #endif
1376
1377 /* Check stack bounds if necessary. */
1378 if (current_function_limit_stack)
1379 {
1380 rtx available;
1381 rtx space_available = gen_label_rtx ();
1382 #ifdef STACK_GROWS_DOWNWARD
1383 available = expand_binop (Pmode, sub_optab,
1384 stack_pointer_rtx, stack_limit_rtx,
1385 NULL_RTX, 1, OPTAB_WIDEN);
1386 #else
1387 available = expand_binop (Pmode, sub_optab,
1388 stack_limit_rtx, stack_pointer_rtx,
1389 NULL_RTX, 1, OPTAB_WIDEN);
1390 #endif
1391 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1392 space_available);
1393 #ifdef HAVE_trap
1394 if (HAVE_trap)
1395 emit_insn (gen_trap ());
1396 else
1397 #endif
1398 error ("stack limits not supported on this target");
1399 emit_barrier ();
1400 emit_label (space_available);
1401 }
1402
1403 anti_adjust_stack (size);
1404 #ifdef SETJMP_VIA_SAVE_AREA
1405 if (setjmpless_size != NULL_RTX)
1406 {
1407 rtx note_target = get_last_insn ();
1408
1409 REG_NOTES (note_target)
1410 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1411 REG_NOTES (note_target));
1412 }
1413 #endif /* SETJMP_VIA_SAVE_AREA */
1414
1415 #ifdef STACK_GROWS_DOWNWARD
1416 emit_move_insn (target, virtual_stack_dynamic_rtx);
1417 #endif
1418 }
1419
1420 if (MUST_ALIGN)
1421 {
1422 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1423 but we know it can't. So add ourselves and then do
1424 TRUNC_DIV_EXPR. */
1425 target = expand_binop (Pmode, add_optab, target,
1426 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1427 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1428 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1429 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1430 NULL_RTX, 1);
1431 target = expand_mult (Pmode, target,
1432 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1433 NULL_RTX, 1);
1434 }
1435
1436 /* Some systems require a particular insn to refer to the stack
1437 to make the pages exist. */
1438 #ifdef HAVE_probe
1439 if (HAVE_probe)
1440 emit_insn (gen_probe ());
1441 #endif
1442
1443 /* Record the new stack level for nonlocal gotos. */
1444 if (nonlocal_goto_handler_slots != 0)
1445 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1446
1447 return target;
1448 }
1449 \f
1450 /* A front end may want to override GCC's stack checking by providing a
1451 run-time routine to call to check the stack, so provide a mechanism for
1452 calling that routine. */
1453
1454 static GTY(()) rtx stack_check_libfunc;
1455
1456 void
1457 set_stack_check_libfunc (libfunc)
1458 rtx libfunc;
1459 {
1460 stack_check_libfunc = libfunc;
1461 }
1462 \f
1463 /* Emit one stack probe at ADDRESS, an address within the stack. */
1464
1465 static void
1466 emit_stack_probe (address)
1467 rtx address;
1468 {
1469 rtx memref = gen_rtx_MEM (word_mode, address);
1470
1471 MEM_VOLATILE_P (memref) = 1;
1472
1473 if (STACK_CHECK_PROBE_LOAD)
1474 emit_move_insn (gen_reg_rtx (word_mode), memref);
1475 else
1476 emit_move_insn (memref, const0_rtx);
1477 }
1478
1479 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1480 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1481 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1482 subtract from the stack. If SIZE is constant, this is done
1483 with a fixed number of probes. Otherwise, we must make a loop. */
1484
1485 #ifdef STACK_GROWS_DOWNWARD
1486 #define STACK_GROW_OP MINUS
1487 #else
1488 #define STACK_GROW_OP PLUS
1489 #endif
1490
1491 void
1492 probe_stack_range (first, size)
1493 HOST_WIDE_INT first;
1494 rtx size;
1495 {
1496 /* First ensure SIZE is Pmode. */
1497 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1498 size = convert_to_mode (Pmode, size, 1);
1499
1500 /* Next see if the front end has set up a function for us to call to
1501 check the stack. */
1502 if (stack_check_libfunc != 0)
1503 {
1504 rtx addr = memory_address (QImode,
1505 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1506 stack_pointer_rtx,
1507 plus_constant (size, first)));
1508
1509 #ifdef POINTERS_EXTEND_UNSIGNED
1510 if (GET_MODE (addr) != ptr_mode)
1511 addr = convert_memory_address (ptr_mode, addr);
1512 #endif
1513
1514 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1515 ptr_mode);
1516 }
1517
1518 /* Next see if we have an insn to check the stack. Use it if so. */
1519 #ifdef HAVE_check_stack
1520 else if (HAVE_check_stack)
1521 {
1522 insn_operand_predicate_fn pred;
1523 rtx last_addr
1524 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1525 stack_pointer_rtx,
1526 plus_constant (size, first)),
1527 NULL_RTX);
1528
1529 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1530 if (pred && ! ((*pred) (last_addr, Pmode)))
1531 last_addr = copy_to_mode_reg (Pmode, last_addr);
1532
1533 emit_insn (gen_check_stack (last_addr));
1534 }
1535 #endif
1536
1537 /* If we have to generate explicit probes, see if we have a constant
1538 small number of them to generate. If so, that's the easy case. */
1539 else if (GET_CODE (size) == CONST_INT
1540 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1541 {
1542 HOST_WIDE_INT offset;
1543
1544 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1545 for values of N from 1 until it exceeds LAST. If only one
1546 probe is needed, this will not generate any code. Then probe
1547 at LAST. */
1548 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1549 offset < INTVAL (size);
1550 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1551 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1552 stack_pointer_rtx,
1553 GEN_INT (offset)));
1554
1555 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1556 stack_pointer_rtx,
1557 plus_constant (size, first)));
1558 }
1559
1560 /* In the variable case, do the same as above, but in a loop. We emit loop
1561 notes so that loop optimization can be done. */
1562 else
1563 {
1564 rtx test_addr
1565 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1566 stack_pointer_rtx,
1567 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1568 NULL_RTX);
1569 rtx last_addr
1570 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1571 stack_pointer_rtx,
1572 plus_constant (size, first)),
1573 NULL_RTX);
1574 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1575 rtx loop_lab = gen_label_rtx ();
1576 rtx test_lab = gen_label_rtx ();
1577 rtx end_lab = gen_label_rtx ();
1578 rtx temp;
1579
1580 if (GET_CODE (test_addr) != REG
1581 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1582 test_addr = force_reg (Pmode, test_addr);
1583
1584 emit_note (NULL, NOTE_INSN_LOOP_BEG);
1585 emit_jump (test_lab);
1586
1587 emit_label (loop_lab);
1588 emit_stack_probe (test_addr);
1589
1590 emit_note (NULL, NOTE_INSN_LOOP_CONT);
1591
1592 #ifdef STACK_GROWS_DOWNWARD
1593 #define CMP_OPCODE GTU
1594 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1595 1, OPTAB_WIDEN);
1596 #else
1597 #define CMP_OPCODE LTU
1598 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1599 1, OPTAB_WIDEN);
1600 #endif
1601
1602 if (temp != test_addr)
1603 abort ();
1604
1605 emit_label (test_lab);
1606 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1607 NULL_RTX, Pmode, 1, loop_lab);
1608 emit_jump (end_lab);
1609 emit_note (NULL, NOTE_INSN_LOOP_END);
1610 emit_label (end_lab);
1611
1612 emit_stack_probe (last_addr);
1613 }
1614 }
1615 \f
1616 /* Return an rtx representing the register or memory location
1617 in which a scalar value of data type VALTYPE
1618 was returned by a function call to function FUNC.
1619 FUNC is a FUNCTION_DECL node if the precise function is known,
1620 otherwise 0.
1621 OUTGOING is 1 if on a machine with register windows this function
1622 should return the register in which the function will put its result
1623 and 0 otherwise. */
1624
1625 rtx
1626 hard_function_value (valtype, func, outgoing)
1627 tree valtype;
1628 tree func ATTRIBUTE_UNUSED;
1629 int outgoing ATTRIBUTE_UNUSED;
1630 {
1631 rtx val;
1632
1633 #ifdef FUNCTION_OUTGOING_VALUE
1634 if (outgoing)
1635 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1636 else
1637 #endif
1638 val = FUNCTION_VALUE (valtype, func);
1639
1640 if (GET_CODE (val) == REG
1641 && GET_MODE (val) == BLKmode)
1642 {
1643 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1644 enum machine_mode tmpmode;
1645
1646 /* int_size_in_bytes can return -1. We don't need a check here
1647 since the value of bytes will be large enough that no mode
1648 will match and we will abort later in this function. */
1649
1650 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1651 tmpmode != VOIDmode;
1652 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1653 {
1654 /* Have we found a large enough mode? */
1655 if (GET_MODE_SIZE (tmpmode) >= bytes)
1656 break;
1657 }
1658
1659 /* No suitable mode found. */
1660 if (tmpmode == VOIDmode)
1661 abort ();
1662
1663 PUT_MODE (val, tmpmode);
1664 }
1665 return val;
1666 }
1667
1668 /* Return an rtx representing the register or memory location
1669 in which a scalar value of mode MODE was returned by a library call. */
1670
1671 rtx
1672 hard_libcall_value (mode)
1673 enum machine_mode mode;
1674 {
1675 return LIBCALL_VALUE (mode);
1676 }
1677
1678 /* Look up the tree code for a given rtx code
1679 to provide the arithmetic operation for REAL_ARITHMETIC.
1680 The function returns an int because the caller may not know
1681 what `enum tree_code' means. */
1682
1683 int
1684 rtx_to_tree_code (code)
1685 enum rtx_code code;
1686 {
1687 enum tree_code tcode;
1688
1689 switch (code)
1690 {
1691 case PLUS:
1692 tcode = PLUS_EXPR;
1693 break;
1694 case MINUS:
1695 tcode = MINUS_EXPR;
1696 break;
1697 case MULT:
1698 tcode = MULT_EXPR;
1699 break;
1700 case DIV:
1701 tcode = RDIV_EXPR;
1702 break;
1703 case SMIN:
1704 tcode = MIN_EXPR;
1705 break;
1706 case SMAX:
1707 tcode = MAX_EXPR;
1708 break;
1709 default:
1710 tcode = LAST_AND_UNUSED_TREE_CODE;
1711 break;
1712 }
1713 return ((int) tcode);
1714 }
1715
1716 #include "gt-explow.h"