]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
except.c: Convert prototypes to ISO C90.
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
49 {
50 int width = GET_MODE_BITSIZE (mode);
51
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C.
75
76 This function should be used via the `plus_constant' macro. */
77
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
80 {
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
86
87 if (c == 0)
88 return x;
89
90 restart:
91
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
95
96 switch (code)
97 {
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
100
101 case CONST_DOUBLE:
102 {
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
109
110 add_double (l1, h1, l2, h2, &lv, &hv);
111
112 return immed_double_const (lv, hv, VOIDmode);
113 }
114
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 {
122 tem
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
128 }
129 break;
130
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
137
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
142
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
149
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
152
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
155
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 {
158 c += INTVAL (XEXP (x, 1));
159
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
162
163 x = XEXP (x, 0);
164 goto restart;
165 }
166 else if (CONSTANT_P (XEXP (x, 1)))
167 {
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
170 }
171 else if (find_constant_term_loc (&y))
172 {
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
177
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
181 }
182 break;
183
184 default:
185 break;
186 }
187
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
197 }
198 \f
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
203
204 rtx
205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207 rtx x0, x1;
208 rtx tem;
209
210 if (GET_CODE (x) != PLUS)
211 return x;
212
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
218 {
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
221 }
222
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
230 {
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 }
234
235 return x;
236 }
237
238 /* Return an rtx for the size in bytes of the value of EXP. */
239
240 rtx
241 expr_size (tree exp)
242 {
243 tree size = (*lang_hooks.expr_size) (exp);
244
245 if (CONTAINS_PLACEHOLDER_P (size))
246 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
247
248 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
249 }
250
251 /* Return a wide integer for the size in bytes of the value of EXP, or -1
252 if the size can vary or is larger than an integer. */
253
254 HOST_WIDE_INT
255 int_expr_size (tree exp)
256 {
257 tree t = (*lang_hooks.expr_size) (exp);
258
259 if (t == 0
260 || TREE_CODE (t) != INTEGER_CST
261 || TREE_OVERFLOW (t)
262 || TREE_INT_CST_HIGH (t) != 0
263 /* If the result would appear negative, it's too big to represent. */
264 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
265 return -1;
266
267 return TREE_INT_CST_LOW (t);
268 }
269 \f
270 /* Return a copy of X in which all memory references
271 and all constants that involve symbol refs
272 have been replaced with new temporary registers.
273 Also emit code to load the memory locations and constants
274 into those registers.
275
276 If X contains no such constants or memory references,
277 X itself (not a copy) is returned.
278
279 If a constant is found in the address that is not a legitimate constant
280 in an insn, it is left alone in the hope that it might be valid in the
281 address.
282
283 X may contain no arithmetic except addition, subtraction and multiplication.
284 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
285
286 static rtx
287 break_out_memory_refs (rtx x)
288 {
289 if (GET_CODE (x) == MEM
290 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
291 && GET_MODE (x) != VOIDmode))
292 x = force_reg (GET_MODE (x), x);
293 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
294 || GET_CODE (x) == MULT)
295 {
296 rtx op0 = break_out_memory_refs (XEXP (x, 0));
297 rtx op1 = break_out_memory_refs (XEXP (x, 1));
298
299 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
300 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
301 }
302
303 return x;
304 }
305
306 #ifdef POINTERS_EXTEND_UNSIGNED
307
308 /* Given X, a memory address in ptr_mode, convert it to an address
309 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
310 the fact that pointers are not allowed to overflow by commuting arithmetic
311 operations over conversions so that address arithmetic insns can be
312 used. */
313
314 rtx
315 convert_memory_address (enum machine_mode to_mode, rtx x)
316 {
317 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
318 rtx temp;
319 enum rtx_code code;
320
321 /* Here we handle some special cases. If none of them apply, fall through
322 to the default case. */
323 switch (GET_CODE (x))
324 {
325 case CONST_INT:
326 case CONST_DOUBLE:
327 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
328 code = TRUNCATE;
329 else if (POINTERS_EXTEND_UNSIGNED < 0)
330 break;
331 else if (POINTERS_EXTEND_UNSIGNED > 0)
332 code = ZERO_EXTEND;
333 else
334 code = SIGN_EXTEND;
335 temp = simplify_unary_operation (code, to_mode, x, from_mode);
336 if (temp)
337 return temp;
338 break;
339
340 case SUBREG:
341 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
342 && GET_MODE (SUBREG_REG (x)) == to_mode)
343 return SUBREG_REG (x);
344 break;
345
346 case LABEL_REF:
347 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
348 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
349 return temp;
350 break;
351
352 case SYMBOL_REF:
353 temp = shallow_copy_rtx (x);
354 PUT_MODE (temp, to_mode);
355 return temp;
356 break;
357
358 case CONST:
359 return gen_rtx_CONST (to_mode,
360 convert_memory_address (to_mode, XEXP (x, 0)));
361 break;
362
363 case PLUS:
364 case MULT:
365 /* For addition we can safely permute the conversion and addition
366 operation if one operand is a constant and converting the constant
367 does not change it. We can always safely permute them if we are
368 making the address narrower. */
369 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
370 || (GET_CODE (x) == PLUS
371 && GET_CODE (XEXP (x, 1)) == CONST_INT
372 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
373 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
374 convert_memory_address (to_mode, XEXP (x, 0)),
375 XEXP (x, 1));
376 break;
377
378 default:
379 break;
380 }
381
382 return convert_modes (to_mode, from_mode,
383 x, POINTERS_EXTEND_UNSIGNED);
384 }
385 #endif
386
387 /* Given a memory address or facsimile X, construct a new address,
388 currently equivalent, that is stable: future stores won't change it.
389
390 X must be composed of constants, register and memory references
391 combined with addition, subtraction and multiplication:
392 in other words, just what you can get from expand_expr if sum_ok is 1.
393
394 Works by making copies of all regs and memory locations used
395 by X and combining them the same way X does.
396 You could also stabilize the reference to this address
397 by copying the address to a register with copy_to_reg;
398 but then you wouldn't get indexed addressing in the reference. */
399
400 rtx
401 copy_all_regs (rtx x)
402 {
403 if (GET_CODE (x) == REG)
404 {
405 if (REGNO (x) != FRAME_POINTER_REGNUM
406 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
407 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
408 #endif
409 )
410 x = copy_to_reg (x);
411 }
412 else if (GET_CODE (x) == MEM)
413 x = copy_to_reg (x);
414 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
415 || GET_CODE (x) == MULT)
416 {
417 rtx op0 = copy_all_regs (XEXP (x, 0));
418 rtx op1 = copy_all_regs (XEXP (x, 1));
419 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
420 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
421 }
422 return x;
423 }
424 \f
425 /* Return something equivalent to X but valid as a memory address
426 for something of mode MODE. When X is not itself valid, this
427 works by copying X or subexpressions of it into registers. */
428
429 rtx
430 memory_address (enum machine_mode mode, rtx x)
431 {
432 rtx oldx = x;
433
434 if (GET_CODE (x) == ADDRESSOF)
435 return x;
436
437 #ifdef POINTERS_EXTEND_UNSIGNED
438 if (GET_MODE (x) != Pmode)
439 x = convert_memory_address (Pmode, x);
440 #endif
441
442 /* By passing constant addresses thru registers
443 we get a chance to cse them. */
444 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
445 x = force_reg (Pmode, x);
446
447 /* Accept a QUEUED that refers to a REG
448 even though that isn't a valid address.
449 On attempting to put this in an insn we will call protect_from_queue
450 which will turn it into a REG, which is valid. */
451 else if (GET_CODE (x) == QUEUED
452 && GET_CODE (QUEUED_VAR (x)) == REG)
453 ;
454
455 /* We get better cse by rejecting indirect addressing at this stage.
456 Let the combiner create indirect addresses where appropriate.
457 For now, generate the code so that the subexpressions useful to share
458 are visible. But not if cse won't be done! */
459 else
460 {
461 if (! cse_not_expected && GET_CODE (x) != REG)
462 x = break_out_memory_refs (x);
463
464 /* At this point, any valid address is accepted. */
465 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
466
467 /* If it was valid before but breaking out memory refs invalidated it,
468 use it the old way. */
469 if (memory_address_p (mode, oldx))
470 goto win2;
471
472 /* Perform machine-dependent transformations on X
473 in certain cases. This is not necessary since the code
474 below can handle all possible cases, but machine-dependent
475 transformations can make better code. */
476 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
477
478 /* PLUS and MULT can appear in special ways
479 as the result of attempts to make an address usable for indexing.
480 Usually they are dealt with by calling force_operand, below.
481 But a sum containing constant terms is special
482 if removing them makes the sum a valid address:
483 then we generate that address in a register
484 and index off of it. We do this because it often makes
485 shorter code, and because the addresses thus generated
486 in registers often become common subexpressions. */
487 if (GET_CODE (x) == PLUS)
488 {
489 rtx constant_term = const0_rtx;
490 rtx y = eliminate_constant_term (x, &constant_term);
491 if (constant_term == const0_rtx
492 || ! memory_address_p (mode, y))
493 x = force_operand (x, NULL_RTX);
494 else
495 {
496 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
497 if (! memory_address_p (mode, y))
498 x = force_operand (x, NULL_RTX);
499 else
500 x = y;
501 }
502 }
503
504 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
505 x = force_operand (x, NULL_RTX);
506
507 /* If we have a register that's an invalid address,
508 it must be a hard reg of the wrong class. Copy it to a pseudo. */
509 else if (GET_CODE (x) == REG)
510 x = copy_to_reg (x);
511
512 /* Last resort: copy the value to a register, since
513 the register is a valid address. */
514 else
515 x = force_reg (Pmode, x);
516
517 goto done;
518
519 win2:
520 x = oldx;
521 win:
522 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
523 /* Don't copy an addr via a reg if it is one of our stack slots. */
524 && ! (GET_CODE (x) == PLUS
525 && (XEXP (x, 0) == virtual_stack_vars_rtx
526 || XEXP (x, 0) == virtual_incoming_args_rtx)))
527 {
528 if (general_operand (x, Pmode))
529 x = force_reg (Pmode, x);
530 else
531 x = force_operand (x, NULL_RTX);
532 }
533 }
534
535 done:
536
537 /* If we didn't change the address, we are done. Otherwise, mark
538 a reg as a pointer if we have REG or REG + CONST_INT. */
539 if (oldx == x)
540 return x;
541 else if (GET_CODE (x) == REG)
542 mark_reg_pointer (x, BITS_PER_UNIT);
543 else if (GET_CODE (x) == PLUS
544 && GET_CODE (XEXP (x, 0)) == REG
545 && GET_CODE (XEXP (x, 1)) == CONST_INT)
546 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
547
548 /* OLDX may have been the address on a temporary. Update the address
549 to indicate that X is now used. */
550 update_temp_slot_address (oldx, x);
551
552 return x;
553 }
554
555 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
556
557 rtx
558 memory_address_noforce (enum machine_mode mode, rtx x)
559 {
560 int ambient_force_addr = flag_force_addr;
561 rtx val;
562
563 flag_force_addr = 0;
564 val = memory_address (mode, x);
565 flag_force_addr = ambient_force_addr;
566 return val;
567 }
568
569 /* Convert a mem ref into one with a valid memory address.
570 Pass through anything else unchanged. */
571
572 rtx
573 validize_mem (rtx ref)
574 {
575 if (GET_CODE (ref) != MEM)
576 return ref;
577 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
578 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
579 return ref;
580
581 /* Don't alter REF itself, since that is probably a stack slot. */
582 return replace_equiv_address (ref, XEXP (ref, 0));
583 }
584 \f
585 /* Given REF, either a MEM or a REG, and T, either the type of X or
586 the expression corresponding to REF, set RTX_UNCHANGING_P if
587 appropriate. */
588
589 void
590 maybe_set_unchanging (rtx ref, tree t)
591 {
592 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
593 initialization is only executed once, or whose initializer always
594 has the same value. Currently we simplify this to PARM_DECLs in the
595 first case, and decls with TREE_CONSTANT initializers in the second.
596
597 We cannot do this for non-static aggregates, because of the double
598 writes that can be generated by store_constructor, depending on the
599 contents of the initializer. Yes, this does eliminate a good fraction
600 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
601 It also eliminates a good quantity of bugs. Let this be incentive to
602 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
603 solution, perhaps based on alias sets. */
604
605 if ((TREE_READONLY (t) && DECL_P (t)
606 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
607 && (TREE_CODE (t) == PARM_DECL
608 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
609 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
610 RTX_UNCHANGING_P (ref) = 1;
611 }
612 \f
613 /* Return a modified copy of X with its memory address copied
614 into a temporary register to protect it from side effects.
615 If X is not a MEM, it is returned unchanged (and not copied).
616 Perhaps even if it is a MEM, if there is no need to change it. */
617
618 rtx
619 stabilize (rtx x)
620 {
621 if (GET_CODE (x) != MEM
622 || ! rtx_unstable_p (XEXP (x, 0)))
623 return x;
624
625 return
626 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
627 }
628 \f
629 /* Copy the value or contents of X to a new temp reg and return that reg. */
630
631 rtx
632 copy_to_reg (rtx x)
633 {
634 rtx temp = gen_reg_rtx (GET_MODE (x));
635
636 /* If not an operand, must be an address with PLUS and MULT so
637 do the computation. */
638 if (! general_operand (x, VOIDmode))
639 x = force_operand (x, temp);
640
641 if (x != temp)
642 emit_move_insn (temp, x);
643
644 return temp;
645 }
646
647 /* Like copy_to_reg but always give the new register mode Pmode
648 in case X is a constant. */
649
650 rtx
651 copy_addr_to_reg (rtx x)
652 {
653 return copy_to_mode_reg (Pmode, x);
654 }
655
656 /* Like copy_to_reg but always give the new register mode MODE
657 in case X is a constant. */
658
659 rtx
660 copy_to_mode_reg (enum machine_mode mode, rtx x)
661 {
662 rtx temp = gen_reg_rtx (mode);
663
664 /* If not an operand, must be an address with PLUS and MULT so
665 do the computation. */
666 if (! general_operand (x, VOIDmode))
667 x = force_operand (x, temp);
668
669 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
670 abort ();
671 if (x != temp)
672 emit_move_insn (temp, x);
673 return temp;
674 }
675
676 /* Load X into a register if it is not already one.
677 Use mode MODE for the register.
678 X should be valid for mode MODE, but it may be a constant which
679 is valid for all integer modes; that's why caller must specify MODE.
680
681 The caller must not alter the value in the register we return,
682 since we mark it as a "constant" register. */
683
684 rtx
685 force_reg (enum machine_mode mode, rtx x)
686 {
687 rtx temp, insn, set;
688
689 if (GET_CODE (x) == REG)
690 return x;
691
692 if (general_operand (x, mode))
693 {
694 temp = gen_reg_rtx (mode);
695 insn = emit_move_insn (temp, x);
696 }
697 else
698 {
699 temp = force_operand (x, NULL_RTX);
700 if (GET_CODE (temp) == REG)
701 insn = get_last_insn ();
702 else
703 {
704 rtx temp2 = gen_reg_rtx (mode);
705 insn = emit_move_insn (temp2, temp);
706 temp = temp2;
707 }
708 }
709
710 /* Let optimizers know that TEMP's value never changes
711 and that X can be substituted for it. Don't get confused
712 if INSN set something else (such as a SUBREG of TEMP). */
713 if (CONSTANT_P (x)
714 && (set = single_set (insn)) != 0
715 && SET_DEST (set) == temp
716 && ! rtx_equal_p (x, SET_SRC (set)))
717 set_unique_reg_note (insn, REG_EQUAL, x);
718
719 return temp;
720 }
721
722 /* If X is a memory ref, copy its contents to a new temp reg and return
723 that reg. Otherwise, return X. */
724
725 rtx
726 force_not_mem (rtx x)
727 {
728 rtx temp;
729
730 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
731 return x;
732
733 temp = gen_reg_rtx (GET_MODE (x));
734 emit_move_insn (temp, x);
735 return temp;
736 }
737
738 /* Copy X to TARGET (if it's nonzero and a reg)
739 or to a new temp reg and return that reg.
740 MODE is the mode to use for X in case it is a constant. */
741
742 rtx
743 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
744 {
745 rtx temp;
746
747 if (target && GET_CODE (target) == REG)
748 temp = target;
749 else
750 temp = gen_reg_rtx (mode);
751
752 emit_move_insn (temp, x);
753 return temp;
754 }
755 \f
756 /* Return the mode to use to store a scalar of TYPE and MODE.
757 PUNSIGNEDP points to the signedness of the type and may be adjusted
758 to show what signedness to use on extension operations.
759
760 FOR_CALL is nonzero if this call is promoting args for a call. */
761
762 enum machine_mode
763 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
764 int for_call ATTRIBUTE_UNUSED)
765 {
766 enum tree_code code = TREE_CODE (type);
767 int unsignedp = *punsignedp;
768
769 #ifdef PROMOTE_FOR_CALL_ONLY
770 if (! for_call)
771 return mode;
772 #endif
773
774 switch (code)
775 {
776 #ifdef PROMOTE_MODE
777 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
778 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
779 PROMOTE_MODE (mode, unsignedp, type);
780 break;
781 #endif
782
783 #ifdef POINTERS_EXTEND_UNSIGNED
784 case REFERENCE_TYPE:
785 case POINTER_TYPE:
786 mode = Pmode;
787 unsignedp = POINTERS_EXTEND_UNSIGNED;
788 break;
789 #endif
790
791 default:
792 break;
793 }
794
795 *punsignedp = unsignedp;
796 return mode;
797 }
798 \f
799 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
800 This pops when ADJUST is positive. ADJUST need not be constant. */
801
802 void
803 adjust_stack (rtx adjust)
804 {
805 rtx temp;
806 adjust = protect_from_queue (adjust, 0);
807
808 if (adjust == const0_rtx)
809 return;
810
811 /* We expect all variable sized adjustments to be multiple of
812 PREFERRED_STACK_BOUNDARY. */
813 if (GET_CODE (adjust) == CONST_INT)
814 stack_pointer_delta -= INTVAL (adjust);
815
816 temp = expand_binop (Pmode,
817 #ifdef STACK_GROWS_DOWNWARD
818 add_optab,
819 #else
820 sub_optab,
821 #endif
822 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
823 OPTAB_LIB_WIDEN);
824
825 if (temp != stack_pointer_rtx)
826 emit_move_insn (stack_pointer_rtx, temp);
827 }
828
829 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
830 This pushes when ADJUST is positive. ADJUST need not be constant. */
831
832 void
833 anti_adjust_stack (rtx adjust)
834 {
835 rtx temp;
836 adjust = protect_from_queue (adjust, 0);
837
838 if (adjust == const0_rtx)
839 return;
840
841 /* We expect all variable sized adjustments to be multiple of
842 PREFERRED_STACK_BOUNDARY. */
843 if (GET_CODE (adjust) == CONST_INT)
844 stack_pointer_delta += INTVAL (adjust);
845
846 temp = expand_binop (Pmode,
847 #ifdef STACK_GROWS_DOWNWARD
848 sub_optab,
849 #else
850 add_optab,
851 #endif
852 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
853 OPTAB_LIB_WIDEN);
854
855 if (temp != stack_pointer_rtx)
856 emit_move_insn (stack_pointer_rtx, temp);
857 }
858
859 /* Round the size of a block to be pushed up to the boundary required
860 by this machine. SIZE is the desired size, which need not be constant. */
861
862 rtx
863 round_push (rtx size)
864 {
865 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
866
867 if (align == 1)
868 return size;
869
870 if (GET_CODE (size) == CONST_INT)
871 {
872 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
873
874 if (INTVAL (size) != new)
875 size = GEN_INT (new);
876 }
877 else
878 {
879 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
880 but we know it can't. So add ourselves and then do
881 TRUNC_DIV_EXPR. */
882 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
883 NULL_RTX, 1, OPTAB_LIB_WIDEN);
884 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
885 NULL_RTX, 1);
886 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
887 }
888
889 return size;
890 }
891 \f
892 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
893 to a previously-created save area. If no save area has been allocated,
894 this function will allocate one. If a save area is specified, it
895 must be of the proper mode.
896
897 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
898 are emitted at the current position. */
899
900 void
901 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
902 {
903 rtx sa = *psave;
904 /* The default is that we use a move insn and save in a Pmode object. */
905 rtx (*fcn) (rtx, rtx) = gen_move_insn;
906 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
907
908 /* See if this machine has anything special to do for this kind of save. */
909 switch (save_level)
910 {
911 #ifdef HAVE_save_stack_block
912 case SAVE_BLOCK:
913 if (HAVE_save_stack_block)
914 fcn = gen_save_stack_block;
915 break;
916 #endif
917 #ifdef HAVE_save_stack_function
918 case SAVE_FUNCTION:
919 if (HAVE_save_stack_function)
920 fcn = gen_save_stack_function;
921 break;
922 #endif
923 #ifdef HAVE_save_stack_nonlocal
924 case SAVE_NONLOCAL:
925 if (HAVE_save_stack_nonlocal)
926 fcn = gen_save_stack_nonlocal;
927 break;
928 #endif
929 default:
930 break;
931 }
932
933 /* If there is no save area and we have to allocate one, do so. Otherwise
934 verify the save area is the proper mode. */
935
936 if (sa == 0)
937 {
938 if (mode != VOIDmode)
939 {
940 if (save_level == SAVE_NONLOCAL)
941 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
942 else
943 *psave = sa = gen_reg_rtx (mode);
944 }
945 }
946 else
947 {
948 if (mode == VOIDmode || GET_MODE (sa) != mode)
949 abort ();
950 }
951
952 if (after)
953 {
954 rtx seq;
955
956 start_sequence ();
957 /* We must validize inside the sequence, to ensure that any instructions
958 created by the validize call also get moved to the right place. */
959 if (sa != 0)
960 sa = validize_mem (sa);
961 emit_insn (fcn (sa, stack_pointer_rtx));
962 seq = get_insns ();
963 end_sequence ();
964 emit_insn_after (seq, after);
965 }
966 else
967 {
968 if (sa != 0)
969 sa = validize_mem (sa);
970 emit_insn (fcn (sa, stack_pointer_rtx));
971 }
972 }
973
974 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
975 area made by emit_stack_save. If it is zero, we have nothing to do.
976
977 Put any emitted insns after insn AFTER, if nonzero, otherwise at
978 current position. */
979
980 void
981 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
982 {
983 /* The default is that we use a move insn. */
984 rtx (*fcn) (rtx, rtx) = gen_move_insn;
985
986 /* See if this machine has anything special to do for this kind of save. */
987 switch (save_level)
988 {
989 #ifdef HAVE_restore_stack_block
990 case SAVE_BLOCK:
991 if (HAVE_restore_stack_block)
992 fcn = gen_restore_stack_block;
993 break;
994 #endif
995 #ifdef HAVE_restore_stack_function
996 case SAVE_FUNCTION:
997 if (HAVE_restore_stack_function)
998 fcn = gen_restore_stack_function;
999 break;
1000 #endif
1001 #ifdef HAVE_restore_stack_nonlocal
1002 case SAVE_NONLOCAL:
1003 if (HAVE_restore_stack_nonlocal)
1004 fcn = gen_restore_stack_nonlocal;
1005 break;
1006 #endif
1007 default:
1008 break;
1009 }
1010
1011 if (sa != 0)
1012 {
1013 sa = validize_mem (sa);
1014 /* These clobbers prevent the scheduler from moving
1015 references to variable arrays below the code
1016 that deletes (pops) the arrays. */
1017 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1018 gen_rtx_MEM (BLKmode,
1019 gen_rtx_SCRATCH (VOIDmode))));
1020 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1021 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1022 }
1023
1024 if (after)
1025 {
1026 rtx seq;
1027
1028 start_sequence ();
1029 emit_insn (fcn (stack_pointer_rtx, sa));
1030 seq = get_insns ();
1031 end_sequence ();
1032 emit_insn_after (seq, after);
1033 }
1034 else
1035 emit_insn (fcn (stack_pointer_rtx, sa));
1036 }
1037 \f
1038 #ifdef SETJMP_VIA_SAVE_AREA
1039 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1040 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1041 platforms, the dynamic stack space used can corrupt the original
1042 frame, thus causing a crash if a longjmp unwinds to it. */
1043
1044 void
1045 optimize_save_area_alloca (rtx insns)
1046 {
1047 rtx insn;
1048
1049 for (insn = insns; insn; insn = NEXT_INSN(insn))
1050 {
1051 rtx note;
1052
1053 if (GET_CODE (insn) != INSN)
1054 continue;
1055
1056 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1057 {
1058 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1059 continue;
1060
1061 if (!current_function_calls_setjmp)
1062 {
1063 rtx pat = PATTERN (insn);
1064
1065 /* If we do not see the note in a pattern matching
1066 these precise characteristics, we did something
1067 entirely wrong in allocate_dynamic_stack_space.
1068
1069 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1070 was defined on a machine where stacks grow towards higher
1071 addresses.
1072
1073 Right now only supported port with stack that grow upward
1074 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1075 if (GET_CODE (pat) != SET
1076 || SET_DEST (pat) != stack_pointer_rtx
1077 || GET_CODE (SET_SRC (pat)) != MINUS
1078 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1079 abort ();
1080
1081 /* This will now be transformed into a (set REG REG)
1082 so we can just blow away all the other notes. */
1083 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1084 REG_NOTES (insn) = NULL_RTX;
1085 }
1086 else
1087 {
1088 /* setjmp was called, we must remove the REG_SAVE_AREA
1089 note so that later passes do not get confused by its
1090 presence. */
1091 if (note == REG_NOTES (insn))
1092 {
1093 REG_NOTES (insn) = XEXP (note, 1);
1094 }
1095 else
1096 {
1097 rtx srch;
1098
1099 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1100 if (XEXP (srch, 1) == note)
1101 break;
1102
1103 if (srch == NULL_RTX)
1104 abort ();
1105
1106 XEXP (srch, 1) = XEXP (note, 1);
1107 }
1108 }
1109 /* Once we've seen the note of interest, we need not look at
1110 the rest of them. */
1111 break;
1112 }
1113 }
1114 }
1115 #endif /* SETJMP_VIA_SAVE_AREA */
1116
1117 /* Return an rtx representing the address of an area of memory dynamically
1118 pushed on the stack. This region of memory is always aligned to
1119 a multiple of BIGGEST_ALIGNMENT.
1120
1121 Any required stack pointer alignment is preserved.
1122
1123 SIZE is an rtx representing the size of the area.
1124 TARGET is a place in which the address can be placed.
1125
1126 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1127
1128 rtx
1129 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1130 {
1131 #ifdef SETJMP_VIA_SAVE_AREA
1132 rtx setjmpless_size = NULL_RTX;
1133 #endif
1134
1135 /* If we're asking for zero bytes, it doesn't matter what we point
1136 to since we can't dereference it. But return a reasonable
1137 address anyway. */
1138 if (size == const0_rtx)
1139 return virtual_stack_dynamic_rtx;
1140
1141 /* Otherwise, show we're calling alloca or equivalent. */
1142 current_function_calls_alloca = 1;
1143
1144 /* Ensure the size is in the proper mode. */
1145 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1146 size = convert_to_mode (Pmode, size, 1);
1147
1148 /* We can't attempt to minimize alignment necessary, because we don't
1149 know the final value of preferred_stack_boundary yet while executing
1150 this code. */
1151 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1152
1153 /* We will need to ensure that the address we return is aligned to
1154 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1155 always know its final value at this point in the compilation (it
1156 might depend on the size of the outgoing parameter lists, for
1157 example), so we must align the value to be returned in that case.
1158 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1159 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1160 We must also do an alignment operation on the returned value if
1161 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1162
1163 If we have to align, we must leave space in SIZE for the hole
1164 that might result from the alignment operation. */
1165
1166 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1167 #define MUST_ALIGN 1
1168 #else
1169 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1170 #endif
1171
1172 if (MUST_ALIGN)
1173 size
1174 = force_operand (plus_constant (size,
1175 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1176 NULL_RTX);
1177
1178 #ifdef SETJMP_VIA_SAVE_AREA
1179 /* If setjmp restores regs from a save area in the stack frame,
1180 avoid clobbering the reg save area. Note that the offset of
1181 virtual_incoming_args_rtx includes the preallocated stack args space.
1182 It would be no problem to clobber that, but it's on the wrong side
1183 of the old save area. */
1184 {
1185 rtx dynamic_offset
1186 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1187 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1188
1189 if (!current_function_calls_setjmp)
1190 {
1191 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1192
1193 /* See optimize_save_area_alloca to understand what is being
1194 set up here. */
1195
1196 /* ??? Code below assumes that the save area needs maximal
1197 alignment. This constraint may be too strong. */
1198 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1199 abort ();
1200
1201 if (GET_CODE (size) == CONST_INT)
1202 {
1203 HOST_WIDE_INT new = INTVAL (size) / align * align;
1204
1205 if (INTVAL (size) != new)
1206 setjmpless_size = GEN_INT (new);
1207 else
1208 setjmpless_size = size;
1209 }
1210 else
1211 {
1212 /* Since we know overflow is not possible, we avoid using
1213 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1214 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1215 GEN_INT (align), NULL_RTX, 1);
1216 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1217 GEN_INT (align), NULL_RTX, 1);
1218 }
1219 /* Our optimization works based upon being able to perform a simple
1220 transformation of this RTL into a (set REG REG) so make sure things
1221 did in fact end up in a REG. */
1222 if (!register_operand (setjmpless_size, Pmode))
1223 setjmpless_size = force_reg (Pmode, setjmpless_size);
1224 }
1225
1226 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1227 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1228 }
1229 #endif /* SETJMP_VIA_SAVE_AREA */
1230
1231 /* Round the size to a multiple of the required stack alignment.
1232 Since the stack if presumed to be rounded before this allocation,
1233 this will maintain the required alignment.
1234
1235 If the stack grows downward, we could save an insn by subtracting
1236 SIZE from the stack pointer and then aligning the stack pointer.
1237 The problem with this is that the stack pointer may be unaligned
1238 between the execution of the subtraction and alignment insns and
1239 some machines do not allow this. Even on those that do, some
1240 signal handlers malfunction if a signal should occur between those
1241 insns. Since this is an extremely rare event, we have no reliable
1242 way of knowing which systems have this problem. So we avoid even
1243 momentarily mis-aligning the stack. */
1244
1245 /* If we added a variable amount to SIZE,
1246 we can no longer assume it is aligned. */
1247 #if !defined (SETJMP_VIA_SAVE_AREA)
1248 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1249 #endif
1250 size = round_push (size);
1251
1252 do_pending_stack_adjust ();
1253
1254 /* We ought to be called always on the toplevel and stack ought to be aligned
1255 properly. */
1256 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1257 abort ();
1258
1259 /* If needed, check that we have the required amount of stack. Take into
1260 account what has already been checked. */
1261 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1262 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1263
1264 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1265 if (target == 0 || GET_CODE (target) != REG
1266 || REGNO (target) < FIRST_PSEUDO_REGISTER
1267 || GET_MODE (target) != Pmode)
1268 target = gen_reg_rtx (Pmode);
1269
1270 mark_reg_pointer (target, known_align);
1271
1272 /* Perform the required allocation from the stack. Some systems do
1273 this differently than simply incrementing/decrementing from the
1274 stack pointer, such as acquiring the space by calling malloc(). */
1275 #ifdef HAVE_allocate_stack
1276 if (HAVE_allocate_stack)
1277 {
1278 enum machine_mode mode = STACK_SIZE_MODE;
1279 insn_operand_predicate_fn pred;
1280
1281 /* We don't have to check against the predicate for operand 0 since
1282 TARGET is known to be a pseudo of the proper mode, which must
1283 be valid for the operand. For operand 1, convert to the
1284 proper mode and validate. */
1285 if (mode == VOIDmode)
1286 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1287
1288 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1289 if (pred && ! ((*pred) (size, mode)))
1290 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1291
1292 emit_insn (gen_allocate_stack (target, size));
1293 }
1294 else
1295 #endif
1296 {
1297 #ifndef STACK_GROWS_DOWNWARD
1298 emit_move_insn (target, virtual_stack_dynamic_rtx);
1299 #endif
1300
1301 /* Check stack bounds if necessary. */
1302 if (current_function_limit_stack)
1303 {
1304 rtx available;
1305 rtx space_available = gen_label_rtx ();
1306 #ifdef STACK_GROWS_DOWNWARD
1307 available = expand_binop (Pmode, sub_optab,
1308 stack_pointer_rtx, stack_limit_rtx,
1309 NULL_RTX, 1, OPTAB_WIDEN);
1310 #else
1311 available = expand_binop (Pmode, sub_optab,
1312 stack_limit_rtx, stack_pointer_rtx,
1313 NULL_RTX, 1, OPTAB_WIDEN);
1314 #endif
1315 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1316 space_available);
1317 #ifdef HAVE_trap
1318 if (HAVE_trap)
1319 emit_insn (gen_trap ());
1320 else
1321 #endif
1322 error ("stack limits not supported on this target");
1323 emit_barrier ();
1324 emit_label (space_available);
1325 }
1326
1327 anti_adjust_stack (size);
1328 #ifdef SETJMP_VIA_SAVE_AREA
1329 if (setjmpless_size != NULL_RTX)
1330 {
1331 rtx note_target = get_last_insn ();
1332
1333 REG_NOTES (note_target)
1334 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1335 REG_NOTES (note_target));
1336 }
1337 #endif /* SETJMP_VIA_SAVE_AREA */
1338
1339 #ifdef STACK_GROWS_DOWNWARD
1340 emit_move_insn (target, virtual_stack_dynamic_rtx);
1341 #endif
1342 }
1343
1344 if (MUST_ALIGN)
1345 {
1346 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1347 but we know it can't. So add ourselves and then do
1348 TRUNC_DIV_EXPR. */
1349 target = expand_binop (Pmode, add_optab, target,
1350 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1351 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1352 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1353 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1354 NULL_RTX, 1);
1355 target = expand_mult (Pmode, target,
1356 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1357 NULL_RTX, 1);
1358 }
1359
1360 /* Record the new stack level for nonlocal gotos. */
1361 if (nonlocal_goto_handler_slots != 0)
1362 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1363
1364 return target;
1365 }
1366 \f
1367 /* A front end may want to override GCC's stack checking by providing a
1368 run-time routine to call to check the stack, so provide a mechanism for
1369 calling that routine. */
1370
1371 static GTY(()) rtx stack_check_libfunc;
1372
1373 void
1374 set_stack_check_libfunc (rtx libfunc)
1375 {
1376 stack_check_libfunc = libfunc;
1377 }
1378 \f
1379 /* Emit one stack probe at ADDRESS, an address within the stack. */
1380
1381 static void
1382 emit_stack_probe (rtx address)
1383 {
1384 rtx memref = gen_rtx_MEM (word_mode, address);
1385
1386 MEM_VOLATILE_P (memref) = 1;
1387
1388 if (STACK_CHECK_PROBE_LOAD)
1389 emit_move_insn (gen_reg_rtx (word_mode), memref);
1390 else
1391 emit_move_insn (memref, const0_rtx);
1392 }
1393
1394 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1395 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1396 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1397 subtract from the stack. If SIZE is constant, this is done
1398 with a fixed number of probes. Otherwise, we must make a loop. */
1399
1400 #ifdef STACK_GROWS_DOWNWARD
1401 #define STACK_GROW_OP MINUS
1402 #else
1403 #define STACK_GROW_OP PLUS
1404 #endif
1405
1406 void
1407 probe_stack_range (HOST_WIDE_INT first, rtx size)
1408 {
1409 /* First ensure SIZE is Pmode. */
1410 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1411 size = convert_to_mode (Pmode, size, 1);
1412
1413 /* Next see if the front end has set up a function for us to call to
1414 check the stack. */
1415 if (stack_check_libfunc != 0)
1416 {
1417 rtx addr = memory_address (QImode,
1418 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1419 stack_pointer_rtx,
1420 plus_constant (size, first)));
1421
1422 #ifdef POINTERS_EXTEND_UNSIGNED
1423 if (GET_MODE (addr) != ptr_mode)
1424 addr = convert_memory_address (ptr_mode, addr);
1425 #endif
1426
1427 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1428 ptr_mode);
1429 }
1430
1431 /* Next see if we have an insn to check the stack. Use it if so. */
1432 #ifdef HAVE_check_stack
1433 else if (HAVE_check_stack)
1434 {
1435 insn_operand_predicate_fn pred;
1436 rtx last_addr
1437 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1438 stack_pointer_rtx,
1439 plus_constant (size, first)),
1440 NULL_RTX);
1441
1442 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1443 if (pred && ! ((*pred) (last_addr, Pmode)))
1444 last_addr = copy_to_mode_reg (Pmode, last_addr);
1445
1446 emit_insn (gen_check_stack (last_addr));
1447 }
1448 #endif
1449
1450 /* If we have to generate explicit probes, see if we have a constant
1451 small number of them to generate. If so, that's the easy case. */
1452 else if (GET_CODE (size) == CONST_INT
1453 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1454 {
1455 HOST_WIDE_INT offset;
1456
1457 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1458 for values of N from 1 until it exceeds LAST. If only one
1459 probe is needed, this will not generate any code. Then probe
1460 at LAST. */
1461 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1462 offset < INTVAL (size);
1463 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1464 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1465 stack_pointer_rtx,
1466 GEN_INT (offset)));
1467
1468 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1469 stack_pointer_rtx,
1470 plus_constant (size, first)));
1471 }
1472
1473 /* In the variable case, do the same as above, but in a loop. We emit loop
1474 notes so that loop optimization can be done. */
1475 else
1476 {
1477 rtx test_addr
1478 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1479 stack_pointer_rtx,
1480 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1481 NULL_RTX);
1482 rtx last_addr
1483 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1484 stack_pointer_rtx,
1485 plus_constant (size, first)),
1486 NULL_RTX);
1487 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1488 rtx loop_lab = gen_label_rtx ();
1489 rtx test_lab = gen_label_rtx ();
1490 rtx end_lab = gen_label_rtx ();
1491 rtx temp;
1492
1493 if (GET_CODE (test_addr) != REG
1494 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1495 test_addr = force_reg (Pmode, test_addr);
1496
1497 emit_note (NOTE_INSN_LOOP_BEG);
1498 emit_jump (test_lab);
1499
1500 emit_label (loop_lab);
1501 emit_stack_probe (test_addr);
1502
1503 emit_note (NOTE_INSN_LOOP_CONT);
1504
1505 #ifdef STACK_GROWS_DOWNWARD
1506 #define CMP_OPCODE GTU
1507 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1508 1, OPTAB_WIDEN);
1509 #else
1510 #define CMP_OPCODE LTU
1511 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1512 1, OPTAB_WIDEN);
1513 #endif
1514
1515 if (temp != test_addr)
1516 abort ();
1517
1518 emit_label (test_lab);
1519 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1520 NULL_RTX, Pmode, 1, loop_lab);
1521 emit_jump (end_lab);
1522 emit_note (NOTE_INSN_LOOP_END);
1523 emit_label (end_lab);
1524
1525 emit_stack_probe (last_addr);
1526 }
1527 }
1528 \f
1529 /* Return an rtx representing the register or memory location
1530 in which a scalar value of data type VALTYPE
1531 was returned by a function call to function FUNC.
1532 FUNC is a FUNCTION_DECL node if the precise function is known,
1533 otherwise 0.
1534 OUTGOING is 1 if on a machine with register windows this function
1535 should return the register in which the function will put its result
1536 and 0 otherwise. */
1537
1538 rtx
1539 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1540 int outgoing ATTRIBUTE_UNUSED)
1541 {
1542 rtx val;
1543
1544 #ifdef FUNCTION_OUTGOING_VALUE
1545 if (outgoing)
1546 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1547 else
1548 #endif
1549 val = FUNCTION_VALUE (valtype, func);
1550
1551 if (GET_CODE (val) == REG
1552 && GET_MODE (val) == BLKmode)
1553 {
1554 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1555 enum machine_mode tmpmode;
1556
1557 /* int_size_in_bytes can return -1. We don't need a check here
1558 since the value of bytes will be large enough that no mode
1559 will match and we will abort later in this function. */
1560
1561 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1562 tmpmode != VOIDmode;
1563 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1564 {
1565 /* Have we found a large enough mode? */
1566 if (GET_MODE_SIZE (tmpmode) >= bytes)
1567 break;
1568 }
1569
1570 /* No suitable mode found. */
1571 if (tmpmode == VOIDmode)
1572 abort ();
1573
1574 PUT_MODE (val, tmpmode);
1575 }
1576 return val;
1577 }
1578
1579 /* Return an rtx representing the register or memory location
1580 in which a scalar value of mode MODE was returned by a library call. */
1581
1582 rtx
1583 hard_libcall_value (enum machine_mode mode)
1584 {
1585 return LIBCALL_VALUE (mode);
1586 }
1587
1588 /* Look up the tree code for a given rtx code
1589 to provide the arithmetic operation for REAL_ARITHMETIC.
1590 The function returns an int because the caller may not know
1591 what `enum tree_code' means. */
1592
1593 int
1594 rtx_to_tree_code (enum rtx_code code)
1595 {
1596 enum tree_code tcode;
1597
1598 switch (code)
1599 {
1600 case PLUS:
1601 tcode = PLUS_EXPR;
1602 break;
1603 case MINUS:
1604 tcode = MINUS_EXPR;
1605 break;
1606 case MULT:
1607 tcode = MULT_EXPR;
1608 break;
1609 case DIV:
1610 tcode = RDIV_EXPR;
1611 break;
1612 case SMIN:
1613 tcode = MIN_EXPR;
1614 break;
1615 case SMAX:
1616 tcode = MAX_EXPR;
1617 break;
1618 default:
1619 tcode = LAST_AND_UNUSED_TREE_CODE;
1620 break;
1621 }
1622 return ((int) tcode);
1623 }
1624
1625 #include "gt-explow.h"