]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
(assign_parms): Use expr_size when appropriate.
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 #include "config.h"
22 #include "rtl.h"
23 #include "tree.h"
24 #include "flags.h"
25 #include "expr.h"
26 #include "hard-reg-set.h"
27 #include "insn-config.h"
28 #include "recog.h"
29 #include "insn-flags.h"
30 #include "insn-codes.h"
31
32 /* Return an rtx for the sum of X and the integer C.
33
34 This function should be used via the `plus_constant' macro. */
35
36 rtx
37 plus_constant_wide (x, c)
38 register rtx x;
39 register HOST_WIDE_INT c;
40 {
41 register RTX_CODE code;
42 register enum machine_mode mode;
43 register rtx tem;
44 int all_constant = 0;
45
46 if (c == 0)
47 return x;
48
49 restart:
50
51 code = GET_CODE (x);
52 mode = GET_MODE (x);
53 switch (code)
54 {
55 case CONST_INT:
56 return GEN_INT (INTVAL (x) + c);
57
58 case CONST_DOUBLE:
59 {
60 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
61 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
62 HOST_WIDE_INT l2 = c;
63 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
64 HOST_WIDE_INT lv, hv;
65
66 add_double (l1, h1, l2, h2, &lv, &hv);
67
68 return immed_double_const (lv, hv, VOIDmode);
69 }
70
71 case MEM:
72 /* If this is a reference to the constant pool, try replacing it with
73 a reference to a new constant. If the resulting address isn't
74 valid, don't return it because we have no way to validize it. */
75 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
76 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
77 {
78 tem
79 = force_const_mem (GET_MODE (x),
80 plus_constant (get_pool_constant (XEXP (x, 0)),
81 c));
82 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
83 return tem;
84 }
85 break;
86
87 case CONST:
88 /* If adding to something entirely constant, set a flag
89 so that we can add a CONST around the result. */
90 x = XEXP (x, 0);
91 all_constant = 1;
92 goto restart;
93
94 case SYMBOL_REF:
95 case LABEL_REF:
96 all_constant = 1;
97 break;
98
99 case PLUS:
100 /* The interesting case is adding the integer to a sum.
101 Look for constant term in the sum and combine
102 with C. For an integer constant term, we make a combined
103 integer. For a constant term that is not an explicit integer,
104 we cannot really combine, but group them together anyway.
105
106 Use a recursive call in case the remaining operand is something
107 that we handle specially, such as a SYMBOL_REF. */
108
109 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
110 return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
111 else if (CONSTANT_P (XEXP (x, 0)))
112 return gen_rtx (PLUS, mode,
113 plus_constant (XEXP (x, 0), c),
114 XEXP (x, 1));
115 else if (CONSTANT_P (XEXP (x, 1)))
116 return gen_rtx (PLUS, mode,
117 XEXP (x, 0),
118 plus_constant (XEXP (x, 1), c));
119 }
120
121 if (c != 0)
122 x = gen_rtx (PLUS, mode, x, GEN_INT (c));
123
124 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
125 return x;
126 else if (all_constant)
127 return gen_rtx (CONST, mode, x);
128 else
129 return x;
130 }
131
132 /* This is the same as `plus_constant', except that it handles LO_SUM.
133
134 This function should be used via the `plus_constant_for_output' macro. */
135
136 rtx
137 plus_constant_for_output_wide (x, c)
138 register rtx x;
139 register HOST_WIDE_INT c;
140 {
141 register RTX_CODE code = GET_CODE (x);
142 register enum machine_mode mode = GET_MODE (x);
143 int all_constant = 0;
144
145 if (GET_CODE (x) == LO_SUM)
146 return gen_rtx (LO_SUM, mode, XEXP (x, 0),
147 plus_constant_for_output (XEXP (x, 1), c));
148
149 else
150 return plus_constant (x, c);
151 }
152 \f
153 /* If X is a sum, return a new sum like X but lacking any constant terms.
154 Add all the removed constant terms into *CONSTPTR.
155 X itself is not altered. The result != X if and only if
156 it is not isomorphic to X. */
157
158 rtx
159 eliminate_constant_term (x, constptr)
160 rtx x;
161 rtx *constptr;
162 {
163 register rtx x0, x1;
164 rtx tem;
165
166 if (GET_CODE (x) != PLUS)
167 return x;
168
169 /* First handle constants appearing at this level explicitly. */
170 if (GET_CODE (XEXP (x, 1)) == CONST_INT
171 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
172 XEXP (x, 1)))
173 && GET_CODE (tem) == CONST_INT)
174 {
175 *constptr = tem;
176 return eliminate_constant_term (XEXP (x, 0), constptr);
177 }
178
179 tem = const0_rtx;
180 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
181 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
182 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
183 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
184 *constptr, tem))
185 && GET_CODE (tem) == CONST_INT)
186 {
187 *constptr = tem;
188 return gen_rtx (PLUS, GET_MODE (x), x0, x1);
189 }
190
191 return x;
192 }
193
194 /* Returns the insn that next references REG after INSN, or 0
195 if REG is clobbered before next referenced or we cannot find
196 an insn that references REG in a straight-line piece of code. */
197
198 rtx
199 find_next_ref (reg, insn)
200 rtx reg;
201 rtx insn;
202 {
203 rtx next;
204
205 for (insn = NEXT_INSN (insn); insn; insn = next)
206 {
207 next = NEXT_INSN (insn);
208 if (GET_CODE (insn) == NOTE)
209 continue;
210 if (GET_CODE (insn) == CODE_LABEL
211 || GET_CODE (insn) == BARRIER)
212 return 0;
213 if (GET_CODE (insn) == INSN
214 || GET_CODE (insn) == JUMP_INSN
215 || GET_CODE (insn) == CALL_INSN)
216 {
217 if (reg_set_p (reg, insn))
218 return 0;
219 if (reg_mentioned_p (reg, PATTERN (insn)))
220 return insn;
221 if (GET_CODE (insn) == JUMP_INSN)
222 {
223 if (simplejump_p (insn))
224 next = JUMP_LABEL (insn);
225 else
226 return 0;
227 }
228 if (GET_CODE (insn) == CALL_INSN
229 && REGNO (reg) < FIRST_PSEUDO_REGISTER
230 && call_used_regs[REGNO (reg)])
231 return 0;
232 }
233 else
234 abort ();
235 }
236 return 0;
237 }
238
239 /* Return an rtx for the size in bytes of the value of EXP. */
240
241 rtx
242 expr_size (exp)
243 tree exp;
244 {
245 tree size = size_in_bytes (TREE_TYPE (exp));
246
247 if (TREE_CODE (size) != INTEGER_CST
248 && contains_placeholder_p (size))
249 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
250
251 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
252 }
253 \f
254 /* Return a copy of X in which all memory references
255 and all constants that involve symbol refs
256 have been replaced with new temporary registers.
257 Also emit code to load the memory locations and constants
258 into those registers.
259
260 If X contains no such constants or memory references,
261 X itself (not a copy) is returned.
262
263 If a constant is found in the address that is not a legitimate constant
264 in an insn, it is left alone in the hope that it might be valid in the
265 address.
266
267 X may contain no arithmetic except addition, subtraction and multiplication.
268 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
269
270 static rtx
271 break_out_memory_refs (x)
272 register rtx x;
273 {
274 if (GET_CODE (x) == MEM
275 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
276 && GET_MODE (x) != VOIDmode))
277 x = force_reg (GET_MODE (x), x);
278 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
279 || GET_CODE (x) == MULT)
280 {
281 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
282 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
283
284 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
285 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
286 }
287
288 return x;
289 }
290
291 /* Given a memory address or facsimile X, construct a new address,
292 currently equivalent, that is stable: future stores won't change it.
293
294 X must be composed of constants, register and memory references
295 combined with addition, subtraction and multiplication:
296 in other words, just what you can get from expand_expr if sum_ok is 1.
297
298 Works by making copies of all regs and memory locations used
299 by X and combining them the same way X does.
300 You could also stabilize the reference to this address
301 by copying the address to a register with copy_to_reg;
302 but then you wouldn't get indexed addressing in the reference. */
303
304 rtx
305 copy_all_regs (x)
306 register rtx x;
307 {
308 if (GET_CODE (x) == REG)
309 {
310 if (REGNO (x) != FRAME_POINTER_REGNUM
311 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
312 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
313 #endif
314 )
315 x = copy_to_reg (x);
316 }
317 else if (GET_CODE (x) == MEM)
318 x = copy_to_reg (x);
319 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
320 || GET_CODE (x) == MULT)
321 {
322 register rtx op0 = copy_all_regs (XEXP (x, 0));
323 register rtx op1 = copy_all_regs (XEXP (x, 1));
324 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
325 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
326 }
327 return x;
328 }
329 \f
330 /* Return something equivalent to X but valid as a memory address
331 for something of mode MODE. When X is not itself valid, this
332 works by copying X or subexpressions of it into registers. */
333
334 rtx
335 memory_address (mode, x)
336 enum machine_mode mode;
337 register rtx x;
338 {
339 register rtx oldx = x;
340
341 /* By passing constant addresses thru registers
342 we get a chance to cse them. */
343 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
344 x = force_reg (Pmode, x);
345
346 /* Accept a QUEUED that refers to a REG
347 even though that isn't a valid address.
348 On attempting to put this in an insn we will call protect_from_queue
349 which will turn it into a REG, which is valid. */
350 else if (GET_CODE (x) == QUEUED
351 && GET_CODE (QUEUED_VAR (x)) == REG)
352 ;
353
354 /* We get better cse by rejecting indirect addressing at this stage.
355 Let the combiner create indirect addresses where appropriate.
356 For now, generate the code so that the subexpressions useful to share
357 are visible. But not if cse won't be done! */
358 else
359 {
360 if (! cse_not_expected && GET_CODE (x) != REG)
361 x = break_out_memory_refs (x);
362
363 /* At this point, any valid address is accepted. */
364 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
365
366 /* If it was valid before but breaking out memory refs invalidated it,
367 use it the old way. */
368 if (memory_address_p (mode, oldx))
369 goto win2;
370
371 /* Perform machine-dependent transformations on X
372 in certain cases. This is not necessary since the code
373 below can handle all possible cases, but machine-dependent
374 transformations can make better code. */
375 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
376
377 /* PLUS and MULT can appear in special ways
378 as the result of attempts to make an address usable for indexing.
379 Usually they are dealt with by calling force_operand, below.
380 But a sum containing constant terms is special
381 if removing them makes the sum a valid address:
382 then we generate that address in a register
383 and index off of it. We do this because it often makes
384 shorter code, and because the addresses thus generated
385 in registers often become common subexpressions. */
386 if (GET_CODE (x) == PLUS)
387 {
388 rtx constant_term = const0_rtx;
389 rtx y = eliminate_constant_term (x, &constant_term);
390 if (constant_term == const0_rtx
391 || ! memory_address_p (mode, y))
392 x = force_operand (x, NULL_RTX);
393 else
394 {
395 y = gen_rtx (PLUS, GET_MODE (x), copy_to_reg (y), constant_term);
396 if (! memory_address_p (mode, y))
397 x = force_operand (x, NULL_RTX);
398 else
399 x = y;
400 }
401 }
402
403 if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
404 x = force_operand (x, NULL_RTX);
405
406 /* If we have a register that's an invalid address,
407 it must be a hard reg of the wrong class. Copy it to a pseudo. */
408 else if (GET_CODE (x) == REG)
409 x = copy_to_reg (x);
410
411 /* Last resort: copy the value to a register, since
412 the register is a valid address. */
413 else
414 x = force_reg (Pmode, x);
415
416 goto done;
417
418 win2:
419 x = oldx;
420 win:
421 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
422 /* Don't copy an addr via a reg if it is one of our stack slots. */
423 && ! (GET_CODE (x) == PLUS
424 && (XEXP (x, 0) == virtual_stack_vars_rtx
425 || XEXP (x, 0) == virtual_incoming_args_rtx)))
426 {
427 if (general_operand (x, Pmode))
428 x = force_reg (Pmode, x);
429 else
430 x = force_operand (x, NULL_RTX);
431 }
432 }
433
434 done:
435
436 /* If we didn't change the address, we are done. Otherwise, mark
437 a reg as a pointer if we have REG or REG + CONST_INT. */
438 if (oldx == x)
439 return x;
440 else if (GET_CODE (x) == REG)
441 mark_reg_pointer (x);
442 else if (GET_CODE (x) == PLUS
443 && GET_CODE (XEXP (x, 0)) == REG
444 && GET_CODE (XEXP (x, 1)) == CONST_INT)
445 mark_reg_pointer (XEXP (x, 0));
446
447 /* OLDX may have been the address on a temporary. Update the address
448 to indicate that X is now used. */
449 update_temp_slot_address (oldx, x);
450
451 return x;
452 }
453
454 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
455
456 rtx
457 memory_address_noforce (mode, x)
458 enum machine_mode mode;
459 rtx x;
460 {
461 int ambient_force_addr = flag_force_addr;
462 rtx val;
463
464 flag_force_addr = 0;
465 val = memory_address (mode, x);
466 flag_force_addr = ambient_force_addr;
467 return val;
468 }
469
470 /* Convert a mem ref into one with a valid memory address.
471 Pass through anything else unchanged. */
472
473 rtx
474 validize_mem (ref)
475 rtx ref;
476 {
477 if (GET_CODE (ref) != MEM)
478 return ref;
479 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
480 return ref;
481 /* Don't alter REF itself, since that is probably a stack slot. */
482 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
483 }
484 \f
485 /* Return a modified copy of X with its memory address copied
486 into a temporary register to protect it from side effects.
487 If X is not a MEM, it is returned unchanged (and not copied).
488 Perhaps even if it is a MEM, if there is no need to change it. */
489
490 rtx
491 stabilize (x)
492 rtx x;
493 {
494 register rtx addr;
495 if (GET_CODE (x) != MEM)
496 return x;
497 addr = XEXP (x, 0);
498 if (rtx_unstable_p (addr))
499 {
500 rtx temp = copy_all_regs (addr);
501 rtx mem;
502 if (GET_CODE (temp) != REG)
503 temp = copy_to_reg (temp);
504 mem = gen_rtx (MEM, GET_MODE (x), temp);
505
506 /* Mark returned memref with in_struct if it's in an array or
507 structure. Copy const and volatile from original memref. */
508
509 MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
510 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
511 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
512 return mem;
513 }
514 return x;
515 }
516 \f
517 /* Copy the value or contents of X to a new temp reg and return that reg. */
518
519 rtx
520 copy_to_reg (x)
521 rtx x;
522 {
523 register rtx temp = gen_reg_rtx (GET_MODE (x));
524
525 /* If not an operand, must be an address with PLUS and MULT so
526 do the computation. */
527 if (! general_operand (x, VOIDmode))
528 x = force_operand (x, temp);
529
530 if (x != temp)
531 emit_move_insn (temp, x);
532
533 return temp;
534 }
535
536 /* Like copy_to_reg but always give the new register mode Pmode
537 in case X is a constant. */
538
539 rtx
540 copy_addr_to_reg (x)
541 rtx x;
542 {
543 return copy_to_mode_reg (Pmode, x);
544 }
545
546 /* Like copy_to_reg but always give the new register mode MODE
547 in case X is a constant. */
548
549 rtx
550 copy_to_mode_reg (mode, x)
551 enum machine_mode mode;
552 rtx x;
553 {
554 register rtx temp = gen_reg_rtx (mode);
555
556 /* If not an operand, must be an address with PLUS and MULT so
557 do the computation. */
558 if (! general_operand (x, VOIDmode))
559 x = force_operand (x, temp);
560
561 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
562 abort ();
563 if (x != temp)
564 emit_move_insn (temp, x);
565 return temp;
566 }
567
568 /* Load X into a register if it is not already one.
569 Use mode MODE for the register.
570 X should be valid for mode MODE, but it may be a constant which
571 is valid for all integer modes; that's why caller must specify MODE.
572
573 The caller must not alter the value in the register we return,
574 since we mark it as a "constant" register. */
575
576 rtx
577 force_reg (mode, x)
578 enum machine_mode mode;
579 rtx x;
580 {
581 register rtx temp, insn;
582
583 if (GET_CODE (x) == REG)
584 return x;
585 temp = gen_reg_rtx (mode);
586 insn = emit_move_insn (temp, x);
587 /* Let optimizers know that TEMP's value never changes
588 and that X can be substituted for it. */
589 if (CONSTANT_P (x))
590 {
591 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
592
593 if (note)
594 XEXP (note, 0) = x;
595 else
596 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, x, REG_NOTES (insn));
597 }
598 return temp;
599 }
600
601 /* If X is a memory ref, copy its contents to a new temp reg and return
602 that reg. Otherwise, return X. */
603
604 rtx
605 force_not_mem (x)
606 rtx x;
607 {
608 register rtx temp;
609 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
610 return x;
611 temp = gen_reg_rtx (GET_MODE (x));
612 emit_move_insn (temp, x);
613 return temp;
614 }
615
616 /* Copy X to TARGET (if it's nonzero and a reg)
617 or to a new temp reg and return that reg.
618 MODE is the mode to use for X in case it is a constant. */
619
620 rtx
621 copy_to_suggested_reg (x, target, mode)
622 rtx x, target;
623 enum machine_mode mode;
624 {
625 register rtx temp;
626
627 if (target && GET_CODE (target) == REG)
628 temp = target;
629 else
630 temp = gen_reg_rtx (mode);
631
632 emit_move_insn (temp, x);
633 return temp;
634 }
635 \f
636 /* Return the mode to use to store a scalar of TYPE and MODE.
637 PUNSIGNEDP points to the signedness of the type and may be adjusted
638 to show what signedness to use on extension operations.
639
640 FOR_CALL is non-zero if this call is promoting args for a call. */
641
642 enum machine_mode
643 promote_mode (type, mode, punsignedp, for_call)
644 tree type;
645 enum machine_mode mode;
646 int *punsignedp;
647 int for_call;
648 {
649 enum tree_code code = TREE_CODE (type);
650 int unsignedp = *punsignedp;
651
652 #ifdef PROMOTE_FOR_CALL_ONLY
653 if (! for_call)
654 return mode;
655 #endif
656
657 switch (code)
658 {
659 #ifdef PROMOTE_MODE
660 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
661 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
662 PROMOTE_MODE (mode, unsignedp, type);
663 break;
664 #endif
665
666 case POINTER_TYPE:
667 break;
668 }
669
670 *punsignedp = unsignedp;
671 return mode;
672 }
673 \f
674 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
675 This pops when ADJUST is positive. ADJUST need not be constant. */
676
677 void
678 adjust_stack (adjust)
679 rtx adjust;
680 {
681 rtx temp;
682 adjust = protect_from_queue (adjust, 0);
683
684 if (adjust == const0_rtx)
685 return;
686
687 temp = expand_binop (Pmode,
688 #ifdef STACK_GROWS_DOWNWARD
689 add_optab,
690 #else
691 sub_optab,
692 #endif
693 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
694 OPTAB_LIB_WIDEN);
695
696 if (temp != stack_pointer_rtx)
697 emit_move_insn (stack_pointer_rtx, temp);
698 }
699
700 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
701 This pushes when ADJUST is positive. ADJUST need not be constant. */
702
703 void
704 anti_adjust_stack (adjust)
705 rtx adjust;
706 {
707 rtx temp;
708 adjust = protect_from_queue (adjust, 0);
709
710 if (adjust == const0_rtx)
711 return;
712
713 temp = expand_binop (Pmode,
714 #ifdef STACK_GROWS_DOWNWARD
715 sub_optab,
716 #else
717 add_optab,
718 #endif
719 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
720 OPTAB_LIB_WIDEN);
721
722 if (temp != stack_pointer_rtx)
723 emit_move_insn (stack_pointer_rtx, temp);
724 }
725
726 /* Round the size of a block to be pushed up to the boundary required
727 by this machine. SIZE is the desired size, which need not be constant. */
728
729 rtx
730 round_push (size)
731 rtx size;
732 {
733 #ifdef STACK_BOUNDARY
734 int align = STACK_BOUNDARY / BITS_PER_UNIT;
735 if (align == 1)
736 return size;
737 if (GET_CODE (size) == CONST_INT)
738 {
739 int new = (INTVAL (size) + align - 1) / align * align;
740 if (INTVAL (size) != new)
741 size = GEN_INT (new);
742 }
743 else
744 {
745 size = expand_divmod (0, CEIL_DIV_EXPR, Pmode, size, GEN_INT (align),
746 NULL_RTX, 1);
747 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
748 }
749 #endif /* STACK_BOUNDARY */
750 return size;
751 }
752 \f
753 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
754 to a previously-created save area. If no save area has been allocated,
755 this function will allocate one. If a save area is specified, it
756 must be of the proper mode.
757
758 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
759 are emitted at the current position. */
760
761 void
762 emit_stack_save (save_level, psave, after)
763 enum save_level save_level;
764 rtx *psave;
765 rtx after;
766 {
767 rtx sa = *psave;
768 /* The default is that we use a move insn and save in a Pmode object. */
769 rtx (*fcn) () = gen_move_insn;
770 enum machine_mode mode = Pmode;
771
772 /* See if this machine has anything special to do for this kind of save. */
773 switch (save_level)
774 {
775 #ifdef HAVE_save_stack_block
776 case SAVE_BLOCK:
777 if (HAVE_save_stack_block)
778 {
779 fcn = gen_save_stack_block;
780 mode = insn_operand_mode[CODE_FOR_save_stack_block][0];
781 }
782 break;
783 #endif
784 #ifdef HAVE_save_stack_function
785 case SAVE_FUNCTION:
786 if (HAVE_save_stack_function)
787 {
788 fcn = gen_save_stack_function;
789 mode = insn_operand_mode[CODE_FOR_save_stack_function][0];
790 }
791 break;
792 #endif
793 #ifdef HAVE_save_stack_nonlocal
794 case SAVE_NONLOCAL:
795 if (HAVE_save_stack_nonlocal)
796 {
797 fcn = gen_save_stack_nonlocal;
798 mode = insn_operand_mode[(int) CODE_FOR_save_stack_nonlocal][0];
799 }
800 break;
801 #endif
802 }
803
804 /* If there is no save area and we have to allocate one, do so. Otherwise
805 verify the save area is the proper mode. */
806
807 if (sa == 0)
808 {
809 if (mode != VOIDmode)
810 {
811 if (save_level == SAVE_NONLOCAL)
812 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
813 else
814 *psave = sa = gen_reg_rtx (mode);
815 }
816 }
817 else
818 {
819 if (mode == VOIDmode || GET_MODE (sa) != mode)
820 abort ();
821 }
822
823 if (after)
824 {
825 rtx seq;
826
827 start_sequence ();
828 /* We must validize inside the sequence, to ensure that any instructions
829 created by the validize call also get moved to the right place. */
830 if (sa != 0)
831 sa = validize_mem (sa);
832 emit_insn (fcn (sa, stack_pointer_rtx));
833 seq = gen_sequence ();
834 end_sequence ();
835 emit_insn_after (seq, after);
836 }
837 else
838 {
839 if (sa != 0)
840 sa = validize_mem (sa);
841 emit_insn (fcn (sa, stack_pointer_rtx));
842 }
843 }
844
845 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
846 area made by emit_stack_save. If it is zero, we have nothing to do.
847
848 Put any emitted insns after insn AFTER, if nonzero, otherwise at
849 current position. */
850
851 void
852 emit_stack_restore (save_level, sa, after)
853 enum save_level save_level;
854 rtx after;
855 rtx sa;
856 {
857 /* The default is that we use a move insn. */
858 rtx (*fcn) () = gen_move_insn;
859
860 /* See if this machine has anything special to do for this kind of save. */
861 switch (save_level)
862 {
863 #ifdef HAVE_restore_stack_block
864 case SAVE_BLOCK:
865 if (HAVE_restore_stack_block)
866 fcn = gen_restore_stack_block;
867 break;
868 #endif
869 #ifdef HAVE_restore_stack_function
870 case SAVE_FUNCTION:
871 if (HAVE_restore_stack_function)
872 fcn = gen_restore_stack_function;
873 break;
874 #endif
875 #ifdef HAVE_restore_stack_nonlocal
876
877 case SAVE_NONLOCAL:
878 if (HAVE_restore_stack_nonlocal)
879 fcn = gen_restore_stack_nonlocal;
880 break;
881 #endif
882 }
883
884 if (sa != 0)
885 sa = validize_mem (sa);
886
887 if (after)
888 {
889 rtx seq;
890
891 start_sequence ();
892 emit_insn (fcn (stack_pointer_rtx, sa));
893 seq = gen_sequence ();
894 end_sequence ();
895 emit_insn_after (seq, after);
896 }
897 else
898 emit_insn (fcn (stack_pointer_rtx, sa));
899 }
900 \f
901 /* Return an rtx representing the address of an area of memory dynamically
902 pushed on the stack. This region of memory is always aligned to
903 a multiple of BIGGEST_ALIGNMENT.
904
905 Any required stack pointer alignment is preserved.
906
907 SIZE is an rtx representing the size of the area.
908 TARGET is a place in which the address can be placed.
909
910 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
911
912 rtx
913 allocate_dynamic_stack_space (size, target, known_align)
914 rtx size;
915 rtx target;
916 int known_align;
917 {
918 /* Ensure the size is in the proper mode. */
919 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
920 size = convert_to_mode (Pmode, size, 1);
921
922 /* We will need to ensure that the address we return is aligned to
923 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
924 always know its final value at this point in the compilation (it
925 might depend on the size of the outgoing parameter lists, for
926 example), so we must align the value to be returned in that case.
927 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
928 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
929 We must also do an alignment operation on the returned value if
930 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
931
932 If we have to align, we must leave space in SIZE for the hole
933 that might result from the alignment operation. */
934
935 #if defined (STACK_DYNAMIC_OFFSET) || defined(STACK_POINTER_OFFSET) || defined (ALLOCATE_OUTGOING_ARGS)
936 #define MUST_ALIGN
937 #endif
938
939 #if ! defined (MUST_ALIGN) && (!defined(STACK_BOUNDARY) || STACK_BOUNDARY < BIGGEST_ALIGNMENT)
940 #define MUST_ALIGN
941 #endif
942
943 #ifdef MUST_ALIGN
944
945 #if 0 /* It turns out we must always make extra space, if MUST_ALIGN
946 because we must always round the address up at the end,
947 because we don't know whether the dynamic offset
948 will mess up the desired alignment. */
949 /* If we have to round the address up regardless of known_align,
950 make extra space regardless, also. */
951 if (known_align % BIGGEST_ALIGNMENT != 0)
952 #endif
953 {
954 if (GET_CODE (size) == CONST_INT)
955 size = GEN_INT (INTVAL (size)
956 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
957 else
958 size = expand_binop (Pmode, add_optab, size,
959 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
960 NULL_RTX, 1, OPTAB_LIB_WIDEN);
961 }
962
963 #endif
964
965 #ifdef SETJMP_VIA_SAVE_AREA
966 /* If setjmp restores regs from a save area in the stack frame,
967 avoid clobbering the reg save area. Note that the offset of
968 virtual_incoming_args_rtx includes the preallocated stack args space.
969 It would be no problem to clobber that, but it's on the wrong side
970 of the old save area. */
971 {
972 rtx dynamic_offset
973 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
974 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
975 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
976 NULL_RTX, 1, OPTAB_LIB_WIDEN);
977 }
978 #endif /* SETJMP_VIA_SAVE_AREA */
979
980 /* Round the size to a multiple of the required stack alignment.
981 Since the stack if presumed to be rounded before this allocation,
982 this will maintain the required alignment.
983
984 If the stack grows downward, we could save an insn by subtracting
985 SIZE from the stack pointer and then aligning the stack pointer.
986 The problem with this is that the stack pointer may be unaligned
987 between the execution of the subtraction and alignment insns and
988 some machines do not allow this. Even on those that do, some
989 signal handlers malfunction if a signal should occur between those
990 insns. Since this is an extremely rare event, we have no reliable
991 way of knowing which systems have this problem. So we avoid even
992 momentarily mis-aligning the stack. */
993
994 #ifdef STACK_BOUNDARY
995 /* If we added a variable amount to SIZE,
996 we can no longer assume it is aligned. */
997 #if !defined (SETJMP_VIA_SAVE_AREA) && !defined (MUST_ALIGN)
998 if (known_align % STACK_BOUNDARY != 0)
999 #endif
1000 size = round_push (size);
1001 #endif
1002
1003 do_pending_stack_adjust ();
1004
1005 /* Don't use a TARGET that isn't a pseudo. */
1006 if (target == 0 || GET_CODE (target) != REG
1007 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1008 target = gen_reg_rtx (Pmode);
1009
1010 mark_reg_pointer (target);
1011
1012 #ifndef STACK_GROWS_DOWNWARD
1013 emit_move_insn (target, virtual_stack_dynamic_rtx);
1014 #endif
1015
1016 /* Perform the required allocation from the stack. Some systems do
1017 this differently than simply incrementing/decrementing from the
1018 stack pointer. */
1019 #ifdef HAVE_allocate_stack
1020 if (HAVE_allocate_stack)
1021 {
1022 enum machine_mode mode
1023 = insn_operand_mode[(int) CODE_FOR_allocate_stack][0];
1024
1025 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1026 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1027 (size, mode)))
1028 size = copy_to_mode_reg (mode, size);
1029
1030 emit_insn (gen_allocate_stack (size));
1031 }
1032 else
1033 #endif
1034 anti_adjust_stack (size);
1035
1036 #ifdef STACK_GROWS_DOWNWARD
1037 emit_move_insn (target, virtual_stack_dynamic_rtx);
1038 #endif
1039
1040 #ifdef MUST_ALIGN
1041 #if 0 /* Even if we know the stack pointer has enough alignment,
1042 there's no way to tell whether virtual_stack_dynamic_rtx shares that
1043 alignment, so we still need to round the address up. */
1044 if (known_align % BIGGEST_ALIGNMENT != 0)
1045 #endif
1046 {
1047 target = expand_divmod (0, CEIL_DIV_EXPR, Pmode, target,
1048 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1049 NULL_RTX, 1);
1050
1051 target = expand_mult (Pmode, target,
1052 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1053 NULL_RTX, 1);
1054 }
1055 #endif
1056
1057 /* Some systems require a particular insn to refer to the stack
1058 to make the pages exist. */
1059 #ifdef HAVE_probe
1060 if (HAVE_probe)
1061 emit_insn (gen_probe ());
1062 #endif
1063
1064 return target;
1065 }
1066 \f
1067 /* Return an rtx representing the register or memory location
1068 in which a scalar value of data type VALTYPE
1069 was returned by a function call to function FUNC.
1070 FUNC is a FUNCTION_DECL node if the precise function is known,
1071 otherwise 0. */
1072
1073 rtx
1074 hard_function_value (valtype, func)
1075 tree valtype;
1076 tree func;
1077 {
1078 return FUNCTION_VALUE (valtype, func);
1079 }
1080
1081 /* Return an rtx representing the register or memory location
1082 in which a scalar value of mode MODE was returned by a library call. */
1083
1084 rtx
1085 hard_libcall_value (mode)
1086 enum machine_mode mode;
1087 {
1088 return LIBCALL_VALUE (mode);
1089 }
1090
1091 /* Look up the tree code for a given rtx code
1092 to provide the arithmetic operation for REAL_ARITHMETIC.
1093 The function returns an int because the caller may not know
1094 what `enum tree_code' means. */
1095
1096 int
1097 rtx_to_tree_code (code)
1098 enum rtx_code code;
1099 {
1100 enum tree_code tcode;
1101
1102 switch (code)
1103 {
1104 case PLUS:
1105 tcode = PLUS_EXPR;
1106 break;
1107 case MINUS:
1108 tcode = MINUS_EXPR;
1109 break;
1110 case MULT:
1111 tcode = MULT_EXPR;
1112 break;
1113 case DIV:
1114 tcode = RDIV_EXPR;
1115 break;
1116 case SMIN:
1117 tcode = MIN_EXPR;
1118 break;
1119 case SMAX:
1120 tcode = MAX_EXPR;
1121 break;
1122 default:
1123 tcode = LAST_AND_UNUSED_TREE_CODE;
1124 break;
1125 }
1126 return ((int) tcode);
1127 }