]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
h8300.md (*insv_si_1_n_lshiftrt): Restrict the source operand to those that can be...
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40
41 static rtx break_out_memory_refs PARAMS ((rtx));
42 static void emit_stack_probe PARAMS ((rtx));
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
48 trunc_int_for_mode (c, mode)
49 HOST_WIDE_INT c;
50 enum machine_mode mode;
51 {
52 int width = GET_MODE_BITSIZE (mode);
53
54 /* You want to truncate to a _what_? */
55 if (! SCALAR_INT_MODE_P (mode))
56 abort ();
57
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
61
62 /* Sign-extend for the requested mode. */
63
64 if (width < HOST_BITS_PER_WIDE_INT)
65 {
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
71 }
72
73 return c;
74 }
75
76 /* Return an rtx for the sum of X and the integer C.
77
78 This function should be used via the `plus_constant' macro. */
79
80 rtx
81 plus_constant_wide (x, c)
82 rtx x;
83 HOST_WIDE_INT c;
84 {
85 RTX_CODE code;
86 rtx y;
87 enum machine_mode mode;
88 rtx tem;
89 int all_constant = 0;
90
91 if (c == 0)
92 return x;
93
94 restart:
95
96 code = GET_CODE (x);
97 mode = GET_MODE (x);
98 y = x;
99
100 switch (code)
101 {
102 case CONST_INT:
103 return GEN_INT (INTVAL (x) + c);
104
105 case CONST_DOUBLE:
106 {
107 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
108 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
109 unsigned HOST_WIDE_INT l2 = c;
110 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
111 unsigned HOST_WIDE_INT lv;
112 HOST_WIDE_INT hv;
113
114 add_double (l1, h1, l2, h2, &lv, &hv);
115
116 return immed_double_const (lv, hv, VOIDmode);
117 }
118
119 case MEM:
120 /* If this is a reference to the constant pool, try replacing it with
121 a reference to a new constant. If the resulting address isn't
122 valid, don't return it because we have no way to validize it. */
123 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
124 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
125 {
126 tem
127 = force_const_mem (GET_MODE (x),
128 plus_constant (get_pool_constant (XEXP (x, 0)),
129 c));
130 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
131 return tem;
132 }
133 break;
134
135 case CONST:
136 /* If adding to something entirely constant, set a flag
137 so that we can add a CONST around the result. */
138 x = XEXP (x, 0);
139 all_constant = 1;
140 goto restart;
141
142 case SYMBOL_REF:
143 case LABEL_REF:
144 all_constant = 1;
145 break;
146
147 case PLUS:
148 /* The interesting case is adding the integer to a sum.
149 Look for constant term in the sum and combine
150 with C. For an integer constant term, we make a combined
151 integer. For a constant term that is not an explicit integer,
152 we cannot really combine, but group them together anyway.
153
154 Restart or use a recursive call in case the remaining operand is
155 something that we handle specially, such as a SYMBOL_REF.
156
157 We may not immediately return from the recursive call here, lest
158 all_constant gets lost. */
159
160 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
161 {
162 c += INTVAL (XEXP (x, 1));
163
164 if (GET_MODE (x) != VOIDmode)
165 c = trunc_int_for_mode (c, GET_MODE (x));
166
167 x = XEXP (x, 0);
168 goto restart;
169 }
170 else if (CONSTANT_P (XEXP (x, 1)))
171 {
172 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
173 c = 0;
174 }
175 else if (find_constant_term_loc (&y))
176 {
177 /* We need to be careful since X may be shared and we can't
178 modify it in place. */
179 rtx copy = copy_rtx (x);
180 rtx *const_loc = find_constant_term_loc (&copy);
181
182 *const_loc = plus_constant (*const_loc, c);
183 x = copy;
184 c = 0;
185 }
186 break;
187
188 default:
189 break;
190 }
191
192 if (c != 0)
193 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
194
195 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
196 return x;
197 else if (all_constant)
198 return gen_rtx_CONST (mode, x);
199 else
200 return x;
201 }
202 \f
203 /* If X is a sum, return a new sum like X but lacking any constant terms.
204 Add all the removed constant terms into *CONSTPTR.
205 X itself is not altered. The result != X if and only if
206 it is not isomorphic to X. */
207
208 rtx
209 eliminate_constant_term (x, constptr)
210 rtx x;
211 rtx *constptr;
212 {
213 rtx x0, x1;
214 rtx tem;
215
216 if (GET_CODE (x) != PLUS)
217 return x;
218
219 /* First handle constants appearing at this level explicitly. */
220 if (GET_CODE (XEXP (x, 1)) == CONST_INT
221 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
222 XEXP (x, 1)))
223 && GET_CODE (tem) == CONST_INT)
224 {
225 *constptr = tem;
226 return eliminate_constant_term (XEXP (x, 0), constptr);
227 }
228
229 tem = const0_rtx;
230 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
231 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
232 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
233 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
234 *constptr, tem))
235 && GET_CODE (tem) == CONST_INT)
236 {
237 *constptr = tem;
238 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
239 }
240
241 return x;
242 }
243
244 /* Returns the insn that next references REG after INSN, or 0
245 if REG is clobbered before next referenced or we cannot find
246 an insn that references REG in a straight-line piece of code. */
247
248 rtx
249 find_next_ref (reg, insn)
250 rtx reg;
251 rtx insn;
252 {
253 rtx next;
254
255 for (insn = NEXT_INSN (insn); insn; insn = next)
256 {
257 next = NEXT_INSN (insn);
258 if (GET_CODE (insn) == NOTE)
259 continue;
260 if (GET_CODE (insn) == CODE_LABEL
261 || GET_CODE (insn) == BARRIER)
262 return 0;
263 if (GET_CODE (insn) == INSN
264 || GET_CODE (insn) == JUMP_INSN
265 || GET_CODE (insn) == CALL_INSN)
266 {
267 if (reg_set_p (reg, insn))
268 return 0;
269 if (reg_mentioned_p (reg, PATTERN (insn)))
270 return insn;
271 if (GET_CODE (insn) == JUMP_INSN)
272 {
273 if (any_uncondjump_p (insn))
274 next = JUMP_LABEL (insn);
275 else
276 return 0;
277 }
278 if (GET_CODE (insn) == CALL_INSN
279 && REGNO (reg) < FIRST_PSEUDO_REGISTER
280 && call_used_regs[REGNO (reg)])
281 return 0;
282 }
283 else
284 abort ();
285 }
286 return 0;
287 }
288
289 /* Return an rtx for the size in bytes of the value of EXP. */
290
291 rtx
292 expr_size (exp)
293 tree exp;
294 {
295 tree size = (*lang_hooks.expr_size) (exp);
296
297 if (TREE_CODE (size) != INTEGER_CST
298 && contains_placeholder_p (size))
299 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
300
301 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
302 }
303
304 /* Return a wide integer for the size in bytes of the value of EXP, or -1
305 if the size can vary or is larger than an integer. */
306
307 HOST_WIDE_INT
308 int_expr_size (exp)
309 tree exp;
310 {
311 tree t = (*lang_hooks.expr_size) (exp);
312
313 if (t == 0
314 || TREE_CODE (t) != INTEGER_CST
315 || TREE_OVERFLOW (t)
316 || TREE_INT_CST_HIGH (t) != 0
317 /* If the result would appear negative, it's too big to represent. */
318 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
319 return -1;
320
321 return TREE_INT_CST_LOW (t);
322 }
323 \f
324 /* Return a copy of X in which all memory references
325 and all constants that involve symbol refs
326 have been replaced with new temporary registers.
327 Also emit code to load the memory locations and constants
328 into those registers.
329
330 If X contains no such constants or memory references,
331 X itself (not a copy) is returned.
332
333 If a constant is found in the address that is not a legitimate constant
334 in an insn, it is left alone in the hope that it might be valid in the
335 address.
336
337 X may contain no arithmetic except addition, subtraction and multiplication.
338 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
339
340 static rtx
341 break_out_memory_refs (x)
342 rtx x;
343 {
344 if (GET_CODE (x) == MEM
345 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
346 && GET_MODE (x) != VOIDmode))
347 x = force_reg (GET_MODE (x), x);
348 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
349 || GET_CODE (x) == MULT)
350 {
351 rtx op0 = break_out_memory_refs (XEXP (x, 0));
352 rtx op1 = break_out_memory_refs (XEXP (x, 1));
353
354 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
355 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
356 }
357
358 return x;
359 }
360
361 #ifdef POINTERS_EXTEND_UNSIGNED
362
363 /* Given X, a memory address in ptr_mode, convert it to an address
364 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
365 the fact that pointers are not allowed to overflow by commuting arithmetic
366 operations over conversions so that address arithmetic insns can be
367 used. */
368
369 rtx
370 convert_memory_address (to_mode, x)
371 enum machine_mode to_mode;
372 rtx x;
373 {
374 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
375 rtx temp;
376 enum rtx_code code;
377
378 /* Here we handle some special cases. If none of them apply, fall through
379 to the default case. */
380 switch (GET_CODE (x))
381 {
382 case CONST_INT:
383 case CONST_DOUBLE:
384 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
385 code = TRUNCATE;
386 else if (POINTERS_EXTEND_UNSIGNED < 0)
387 break;
388 else if (POINTERS_EXTEND_UNSIGNED > 0)
389 code = ZERO_EXTEND;
390 else
391 code = SIGN_EXTEND;
392 temp = simplify_unary_operation (code, to_mode, x, from_mode);
393 if (temp)
394 return temp;
395 break;
396
397 case SUBREG:
398 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
399 && GET_MODE (SUBREG_REG (x)) == to_mode)
400 return SUBREG_REG (x);
401 break;
402
403 case LABEL_REF:
404 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
405 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
406 return temp;
407 break;
408
409 case SYMBOL_REF:
410 temp = shallow_copy_rtx (x);
411 PUT_MODE (temp, to_mode);
412 return temp;
413 break;
414
415 case CONST:
416 return gen_rtx_CONST (to_mode,
417 convert_memory_address (to_mode, XEXP (x, 0)));
418 break;
419
420 case PLUS:
421 case MULT:
422 /* For addition we can safely permute the conversion and addition
423 operation if one operand is a constant and converting the constant
424 does not change it. We can always safely permute them if we are
425 making the address narrower. */
426 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
427 || (GET_CODE (x) == PLUS
428 && GET_CODE (XEXP (x, 1)) == CONST_INT
429 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
430 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
431 convert_memory_address (to_mode, XEXP (x, 0)),
432 XEXP (x, 1));
433 break;
434
435 default:
436 break;
437 }
438
439 return convert_modes (to_mode, from_mode,
440 x, POINTERS_EXTEND_UNSIGNED);
441 }
442 #endif
443
444 /* Given a memory address or facsimile X, construct a new address,
445 currently equivalent, that is stable: future stores won't change it.
446
447 X must be composed of constants, register and memory references
448 combined with addition, subtraction and multiplication:
449 in other words, just what you can get from expand_expr if sum_ok is 1.
450
451 Works by making copies of all regs and memory locations used
452 by X and combining them the same way X does.
453 You could also stabilize the reference to this address
454 by copying the address to a register with copy_to_reg;
455 but then you wouldn't get indexed addressing in the reference. */
456
457 rtx
458 copy_all_regs (x)
459 rtx x;
460 {
461 if (GET_CODE (x) == REG)
462 {
463 if (REGNO (x) != FRAME_POINTER_REGNUM
464 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
465 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
466 #endif
467 )
468 x = copy_to_reg (x);
469 }
470 else if (GET_CODE (x) == MEM)
471 x = copy_to_reg (x);
472 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
473 || GET_CODE (x) == MULT)
474 {
475 rtx op0 = copy_all_regs (XEXP (x, 0));
476 rtx op1 = copy_all_regs (XEXP (x, 1));
477 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
478 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
479 }
480 return x;
481 }
482 \f
483 /* Return something equivalent to X but valid as a memory address
484 for something of mode MODE. When X is not itself valid, this
485 works by copying X or subexpressions of it into registers. */
486
487 rtx
488 memory_address (mode, x)
489 enum machine_mode mode;
490 rtx x;
491 {
492 rtx oldx = x;
493
494 if (GET_CODE (x) == ADDRESSOF)
495 return x;
496
497 #ifdef POINTERS_EXTEND_UNSIGNED
498 if (GET_MODE (x) != Pmode)
499 x = convert_memory_address (Pmode, x);
500 #endif
501
502 /* By passing constant addresses thru registers
503 we get a chance to cse them. */
504 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
505 x = force_reg (Pmode, x);
506
507 /* Accept a QUEUED that refers to a REG
508 even though that isn't a valid address.
509 On attempting to put this in an insn we will call protect_from_queue
510 which will turn it into a REG, which is valid. */
511 else if (GET_CODE (x) == QUEUED
512 && GET_CODE (QUEUED_VAR (x)) == REG)
513 ;
514
515 /* We get better cse by rejecting indirect addressing at this stage.
516 Let the combiner create indirect addresses where appropriate.
517 For now, generate the code so that the subexpressions useful to share
518 are visible. But not if cse won't be done! */
519 else
520 {
521 if (! cse_not_expected && GET_CODE (x) != REG)
522 x = break_out_memory_refs (x);
523
524 /* At this point, any valid address is accepted. */
525 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
526
527 /* If it was valid before but breaking out memory refs invalidated it,
528 use it the old way. */
529 if (memory_address_p (mode, oldx))
530 goto win2;
531
532 /* Perform machine-dependent transformations on X
533 in certain cases. This is not necessary since the code
534 below can handle all possible cases, but machine-dependent
535 transformations can make better code. */
536 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
537
538 /* PLUS and MULT can appear in special ways
539 as the result of attempts to make an address usable for indexing.
540 Usually they are dealt with by calling force_operand, below.
541 But a sum containing constant terms is special
542 if removing them makes the sum a valid address:
543 then we generate that address in a register
544 and index off of it. We do this because it often makes
545 shorter code, and because the addresses thus generated
546 in registers often become common subexpressions. */
547 if (GET_CODE (x) == PLUS)
548 {
549 rtx constant_term = const0_rtx;
550 rtx y = eliminate_constant_term (x, &constant_term);
551 if (constant_term == const0_rtx
552 || ! memory_address_p (mode, y))
553 x = force_operand (x, NULL_RTX);
554 else
555 {
556 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
557 if (! memory_address_p (mode, y))
558 x = force_operand (x, NULL_RTX);
559 else
560 x = y;
561 }
562 }
563
564 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
565 x = force_operand (x, NULL_RTX);
566
567 /* If we have a register that's an invalid address,
568 it must be a hard reg of the wrong class. Copy it to a pseudo. */
569 else if (GET_CODE (x) == REG)
570 x = copy_to_reg (x);
571
572 /* Last resort: copy the value to a register, since
573 the register is a valid address. */
574 else
575 x = force_reg (Pmode, x);
576
577 goto done;
578
579 win2:
580 x = oldx;
581 win:
582 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
583 /* Don't copy an addr via a reg if it is one of our stack slots. */
584 && ! (GET_CODE (x) == PLUS
585 && (XEXP (x, 0) == virtual_stack_vars_rtx
586 || XEXP (x, 0) == virtual_incoming_args_rtx)))
587 {
588 if (general_operand (x, Pmode))
589 x = force_reg (Pmode, x);
590 else
591 x = force_operand (x, NULL_RTX);
592 }
593 }
594
595 done:
596
597 /* If we didn't change the address, we are done. Otherwise, mark
598 a reg as a pointer if we have REG or REG + CONST_INT. */
599 if (oldx == x)
600 return x;
601 else if (GET_CODE (x) == REG)
602 mark_reg_pointer (x, BITS_PER_UNIT);
603 else if (GET_CODE (x) == PLUS
604 && GET_CODE (XEXP (x, 0)) == REG
605 && GET_CODE (XEXP (x, 1)) == CONST_INT)
606 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
607
608 /* OLDX may have been the address on a temporary. Update the address
609 to indicate that X is now used. */
610 update_temp_slot_address (oldx, x);
611
612 return x;
613 }
614
615 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
616
617 rtx
618 memory_address_noforce (mode, x)
619 enum machine_mode mode;
620 rtx x;
621 {
622 int ambient_force_addr = flag_force_addr;
623 rtx val;
624
625 flag_force_addr = 0;
626 val = memory_address (mode, x);
627 flag_force_addr = ambient_force_addr;
628 return val;
629 }
630
631 /* Convert a mem ref into one with a valid memory address.
632 Pass through anything else unchanged. */
633
634 rtx
635 validize_mem (ref)
636 rtx ref;
637 {
638 if (GET_CODE (ref) != MEM)
639 return ref;
640 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
641 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
642 return ref;
643
644 /* Don't alter REF itself, since that is probably a stack slot. */
645 return replace_equiv_address (ref, XEXP (ref, 0));
646 }
647 \f
648 /* Given REF, either a MEM or a REG, and T, either the type of X or
649 the expression corresponding to REF, set RTX_UNCHANGING_P if
650 appropriate. */
651
652 void
653 maybe_set_unchanging (ref, t)
654 rtx ref;
655 tree t;
656 {
657 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
658 initialization is only executed once, or whose initializer always
659 has the same value. Currently we simplify this to PARM_DECLs in the
660 first case, and decls with TREE_CONSTANT initializers in the second. */
661 if ((TREE_READONLY (t) && DECL_P (t)
662 && (TREE_CODE (t) == PARM_DECL
663 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
664 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
665 RTX_UNCHANGING_P (ref) = 1;
666 }
667 \f
668 /* Return a modified copy of X with its memory address copied
669 into a temporary register to protect it from side effects.
670 If X is not a MEM, it is returned unchanged (and not copied).
671 Perhaps even if it is a MEM, if there is no need to change it. */
672
673 rtx
674 stabilize (x)
675 rtx x;
676 {
677
678 if (GET_CODE (x) != MEM
679 || ! rtx_unstable_p (XEXP (x, 0)))
680 return x;
681
682 return
683 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
684 }
685 \f
686 /* Copy the value or contents of X to a new temp reg and return that reg. */
687
688 rtx
689 copy_to_reg (x)
690 rtx x;
691 {
692 rtx temp = gen_reg_rtx (GET_MODE (x));
693
694 /* If not an operand, must be an address with PLUS and MULT so
695 do the computation. */
696 if (! general_operand (x, VOIDmode))
697 x = force_operand (x, temp);
698
699 if (x != temp)
700 emit_move_insn (temp, x);
701
702 return temp;
703 }
704
705 /* Like copy_to_reg but always give the new register mode Pmode
706 in case X is a constant. */
707
708 rtx
709 copy_addr_to_reg (x)
710 rtx x;
711 {
712 return copy_to_mode_reg (Pmode, x);
713 }
714
715 /* Like copy_to_reg but always give the new register mode MODE
716 in case X is a constant. */
717
718 rtx
719 copy_to_mode_reg (mode, x)
720 enum machine_mode mode;
721 rtx x;
722 {
723 rtx temp = gen_reg_rtx (mode);
724
725 /* If not an operand, must be an address with PLUS and MULT so
726 do the computation. */
727 if (! general_operand (x, VOIDmode))
728 x = force_operand (x, temp);
729
730 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
731 abort ();
732 if (x != temp)
733 emit_move_insn (temp, x);
734 return temp;
735 }
736
737 /* Load X into a register if it is not already one.
738 Use mode MODE for the register.
739 X should be valid for mode MODE, but it may be a constant which
740 is valid for all integer modes; that's why caller must specify MODE.
741
742 The caller must not alter the value in the register we return,
743 since we mark it as a "constant" register. */
744
745 rtx
746 force_reg (mode, x)
747 enum machine_mode mode;
748 rtx x;
749 {
750 rtx temp, insn, set;
751
752 if (GET_CODE (x) == REG)
753 return x;
754
755 if (general_operand (x, mode))
756 {
757 temp = gen_reg_rtx (mode);
758 insn = emit_move_insn (temp, x);
759 }
760 else
761 {
762 temp = force_operand (x, NULL_RTX);
763 if (GET_CODE (temp) == REG)
764 insn = get_last_insn ();
765 else
766 {
767 rtx temp2 = gen_reg_rtx (mode);
768 insn = emit_move_insn (temp2, temp);
769 temp = temp2;
770 }
771 }
772
773 /* Let optimizers know that TEMP's value never changes
774 and that X can be substituted for it. Don't get confused
775 if INSN set something else (such as a SUBREG of TEMP). */
776 if (CONSTANT_P (x)
777 && (set = single_set (insn)) != 0
778 && SET_DEST (set) == temp
779 && ! rtx_equal_p (x, SET_SRC (set)))
780 set_unique_reg_note (insn, REG_EQUAL, x);
781
782 return temp;
783 }
784
785 /* If X is a memory ref, copy its contents to a new temp reg and return
786 that reg. Otherwise, return X. */
787
788 rtx
789 force_not_mem (x)
790 rtx x;
791 {
792 rtx temp;
793
794 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
795 return x;
796
797 temp = gen_reg_rtx (GET_MODE (x));
798 emit_move_insn (temp, x);
799 return temp;
800 }
801
802 /* Copy X to TARGET (if it's nonzero and a reg)
803 or to a new temp reg and return that reg.
804 MODE is the mode to use for X in case it is a constant. */
805
806 rtx
807 copy_to_suggested_reg (x, target, mode)
808 rtx x, target;
809 enum machine_mode mode;
810 {
811 rtx temp;
812
813 if (target && GET_CODE (target) == REG)
814 temp = target;
815 else
816 temp = gen_reg_rtx (mode);
817
818 emit_move_insn (temp, x);
819 return temp;
820 }
821 \f
822 /* Return the mode to use to store a scalar of TYPE and MODE.
823 PUNSIGNEDP points to the signedness of the type and may be adjusted
824 to show what signedness to use on extension operations.
825
826 FOR_CALL is nonzero if this call is promoting args for a call. */
827
828 enum machine_mode
829 promote_mode (type, mode, punsignedp, for_call)
830 tree type;
831 enum machine_mode mode;
832 int *punsignedp;
833 int for_call ATTRIBUTE_UNUSED;
834 {
835 enum tree_code code = TREE_CODE (type);
836 int unsignedp = *punsignedp;
837
838 #ifdef PROMOTE_FOR_CALL_ONLY
839 if (! for_call)
840 return mode;
841 #endif
842
843 switch (code)
844 {
845 #ifdef PROMOTE_MODE
846 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
847 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
848 PROMOTE_MODE (mode, unsignedp, type);
849 break;
850 #endif
851
852 #ifdef POINTERS_EXTEND_UNSIGNED
853 case REFERENCE_TYPE:
854 case POINTER_TYPE:
855 mode = Pmode;
856 unsignedp = POINTERS_EXTEND_UNSIGNED;
857 break;
858 #endif
859
860 default:
861 break;
862 }
863
864 *punsignedp = unsignedp;
865 return mode;
866 }
867 \f
868 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
869 This pops when ADJUST is positive. ADJUST need not be constant. */
870
871 void
872 adjust_stack (adjust)
873 rtx adjust;
874 {
875 rtx temp;
876 adjust = protect_from_queue (adjust, 0);
877
878 if (adjust == const0_rtx)
879 return;
880
881 /* We expect all variable sized adjustments to be multiple of
882 PREFERRED_STACK_BOUNDARY. */
883 if (GET_CODE (adjust) == CONST_INT)
884 stack_pointer_delta -= INTVAL (adjust);
885
886 temp = expand_binop (Pmode,
887 #ifdef STACK_GROWS_DOWNWARD
888 add_optab,
889 #else
890 sub_optab,
891 #endif
892 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
893 OPTAB_LIB_WIDEN);
894
895 if (temp != stack_pointer_rtx)
896 emit_move_insn (stack_pointer_rtx, temp);
897 }
898
899 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
900 This pushes when ADJUST is positive. ADJUST need not be constant. */
901
902 void
903 anti_adjust_stack (adjust)
904 rtx adjust;
905 {
906 rtx temp;
907 adjust = protect_from_queue (adjust, 0);
908
909 if (adjust == const0_rtx)
910 return;
911
912 /* We expect all variable sized adjustments to be multiple of
913 PREFERRED_STACK_BOUNDARY. */
914 if (GET_CODE (adjust) == CONST_INT)
915 stack_pointer_delta += INTVAL (adjust);
916
917 temp = expand_binop (Pmode,
918 #ifdef STACK_GROWS_DOWNWARD
919 sub_optab,
920 #else
921 add_optab,
922 #endif
923 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
924 OPTAB_LIB_WIDEN);
925
926 if (temp != stack_pointer_rtx)
927 emit_move_insn (stack_pointer_rtx, temp);
928 }
929
930 /* Round the size of a block to be pushed up to the boundary required
931 by this machine. SIZE is the desired size, which need not be constant. */
932
933 rtx
934 round_push (size)
935 rtx size;
936 {
937 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
938 if (align == 1)
939 return size;
940 if (GET_CODE (size) == CONST_INT)
941 {
942 int new = (INTVAL (size) + align - 1) / align * align;
943 if (INTVAL (size) != new)
944 size = GEN_INT (new);
945 }
946 else
947 {
948 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
949 but we know it can't. So add ourselves and then do
950 TRUNC_DIV_EXPR. */
951 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
952 NULL_RTX, 1, OPTAB_LIB_WIDEN);
953 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
954 NULL_RTX, 1);
955 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
956 }
957 return size;
958 }
959 \f
960 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
961 to a previously-created save area. If no save area has been allocated,
962 this function will allocate one. If a save area is specified, it
963 must be of the proper mode.
964
965 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
966 are emitted at the current position. */
967
968 void
969 emit_stack_save (save_level, psave, after)
970 enum save_level save_level;
971 rtx *psave;
972 rtx after;
973 {
974 rtx sa = *psave;
975 /* The default is that we use a move insn and save in a Pmode object. */
976 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
977 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
978
979 /* See if this machine has anything special to do for this kind of save. */
980 switch (save_level)
981 {
982 #ifdef HAVE_save_stack_block
983 case SAVE_BLOCK:
984 if (HAVE_save_stack_block)
985 fcn = gen_save_stack_block;
986 break;
987 #endif
988 #ifdef HAVE_save_stack_function
989 case SAVE_FUNCTION:
990 if (HAVE_save_stack_function)
991 fcn = gen_save_stack_function;
992 break;
993 #endif
994 #ifdef HAVE_save_stack_nonlocal
995 case SAVE_NONLOCAL:
996 if (HAVE_save_stack_nonlocal)
997 fcn = gen_save_stack_nonlocal;
998 break;
999 #endif
1000 default:
1001 break;
1002 }
1003
1004 /* If there is no save area and we have to allocate one, do so. Otherwise
1005 verify the save area is the proper mode. */
1006
1007 if (sa == 0)
1008 {
1009 if (mode != VOIDmode)
1010 {
1011 if (save_level == SAVE_NONLOCAL)
1012 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1013 else
1014 *psave = sa = gen_reg_rtx (mode);
1015 }
1016 }
1017 else
1018 {
1019 if (mode == VOIDmode || GET_MODE (sa) != mode)
1020 abort ();
1021 }
1022
1023 if (after)
1024 {
1025 rtx seq;
1026
1027 start_sequence ();
1028 /* We must validize inside the sequence, to ensure that any instructions
1029 created by the validize call also get moved to the right place. */
1030 if (sa != 0)
1031 sa = validize_mem (sa);
1032 emit_insn (fcn (sa, stack_pointer_rtx));
1033 seq = get_insns ();
1034 end_sequence ();
1035 emit_insn_after (seq, after);
1036 }
1037 else
1038 {
1039 if (sa != 0)
1040 sa = validize_mem (sa);
1041 emit_insn (fcn (sa, stack_pointer_rtx));
1042 }
1043 }
1044
1045 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1046 area made by emit_stack_save. If it is zero, we have nothing to do.
1047
1048 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1049 current position. */
1050
1051 void
1052 emit_stack_restore (save_level, sa, after)
1053 enum save_level save_level;
1054 rtx after;
1055 rtx sa;
1056 {
1057 /* The default is that we use a move insn. */
1058 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1059
1060 /* See if this machine has anything special to do for this kind of save. */
1061 switch (save_level)
1062 {
1063 #ifdef HAVE_restore_stack_block
1064 case SAVE_BLOCK:
1065 if (HAVE_restore_stack_block)
1066 fcn = gen_restore_stack_block;
1067 break;
1068 #endif
1069 #ifdef HAVE_restore_stack_function
1070 case SAVE_FUNCTION:
1071 if (HAVE_restore_stack_function)
1072 fcn = gen_restore_stack_function;
1073 break;
1074 #endif
1075 #ifdef HAVE_restore_stack_nonlocal
1076 case SAVE_NONLOCAL:
1077 if (HAVE_restore_stack_nonlocal)
1078 fcn = gen_restore_stack_nonlocal;
1079 break;
1080 #endif
1081 default:
1082 break;
1083 }
1084
1085 if (sa != 0)
1086 {
1087 sa = validize_mem (sa);
1088 /* These clobbers prevent the scheduler from moving
1089 references to variable arrays below the code
1090 that deletes (pops) the arrays. */
1091 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1092 gen_rtx_MEM (BLKmode,
1093 gen_rtx_SCRATCH (VOIDmode))));
1094 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1095 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1096 }
1097
1098 if (after)
1099 {
1100 rtx seq;
1101
1102 start_sequence ();
1103 emit_insn (fcn (stack_pointer_rtx, sa));
1104 seq = get_insns ();
1105 end_sequence ();
1106 emit_insn_after (seq, after);
1107 }
1108 else
1109 emit_insn (fcn (stack_pointer_rtx, sa));
1110 }
1111 \f
1112 #ifdef SETJMP_VIA_SAVE_AREA
1113 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1114 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1115 platforms, the dynamic stack space used can corrupt the original
1116 frame, thus causing a crash if a longjmp unwinds to it. */
1117
1118 void
1119 optimize_save_area_alloca (insns)
1120 rtx insns;
1121 {
1122 rtx insn;
1123
1124 for (insn = insns; insn; insn = NEXT_INSN(insn))
1125 {
1126 rtx note;
1127
1128 if (GET_CODE (insn) != INSN)
1129 continue;
1130
1131 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1132 {
1133 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1134 continue;
1135
1136 if (!current_function_calls_setjmp)
1137 {
1138 rtx pat = PATTERN (insn);
1139
1140 /* If we do not see the note in a pattern matching
1141 these precise characteristics, we did something
1142 entirely wrong in allocate_dynamic_stack_space.
1143
1144 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1145 was defined on a machine where stacks grow towards higher
1146 addresses.
1147
1148 Right now only supported port with stack that grow upward
1149 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1150 if (GET_CODE (pat) != SET
1151 || SET_DEST (pat) != stack_pointer_rtx
1152 || GET_CODE (SET_SRC (pat)) != MINUS
1153 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1154 abort ();
1155
1156 /* This will now be transformed into a (set REG REG)
1157 so we can just blow away all the other notes. */
1158 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1159 REG_NOTES (insn) = NULL_RTX;
1160 }
1161 else
1162 {
1163 /* setjmp was called, we must remove the REG_SAVE_AREA
1164 note so that later passes do not get confused by its
1165 presence. */
1166 if (note == REG_NOTES (insn))
1167 {
1168 REG_NOTES (insn) = XEXP (note, 1);
1169 }
1170 else
1171 {
1172 rtx srch;
1173
1174 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1175 if (XEXP (srch, 1) == note)
1176 break;
1177
1178 if (srch == NULL_RTX)
1179 abort ();
1180
1181 XEXP (srch, 1) = XEXP (note, 1);
1182 }
1183 }
1184 /* Once we've seen the note of interest, we need not look at
1185 the rest of them. */
1186 break;
1187 }
1188 }
1189 }
1190 #endif /* SETJMP_VIA_SAVE_AREA */
1191
1192 /* Return an rtx representing the address of an area of memory dynamically
1193 pushed on the stack. This region of memory is always aligned to
1194 a multiple of BIGGEST_ALIGNMENT.
1195
1196 Any required stack pointer alignment is preserved.
1197
1198 SIZE is an rtx representing the size of the area.
1199 TARGET is a place in which the address can be placed.
1200
1201 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1202
1203 rtx
1204 allocate_dynamic_stack_space (size, target, known_align)
1205 rtx size;
1206 rtx target;
1207 int known_align;
1208 {
1209 #ifdef SETJMP_VIA_SAVE_AREA
1210 rtx setjmpless_size = NULL_RTX;
1211 #endif
1212
1213 /* If we're asking for zero bytes, it doesn't matter what we point
1214 to since we can't dereference it. But return a reasonable
1215 address anyway. */
1216 if (size == const0_rtx)
1217 return virtual_stack_dynamic_rtx;
1218
1219 /* Otherwise, show we're calling alloca or equivalent. */
1220 current_function_calls_alloca = 1;
1221
1222 /* Ensure the size is in the proper mode. */
1223 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1224 size = convert_to_mode (Pmode, size, 1);
1225
1226 /* We can't attempt to minimize alignment necessary, because we don't
1227 know the final value of preferred_stack_boundary yet while executing
1228 this code. */
1229 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1230
1231 /* We will need to ensure that the address we return is aligned to
1232 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1233 always know its final value at this point in the compilation (it
1234 might depend on the size of the outgoing parameter lists, for
1235 example), so we must align the value to be returned in that case.
1236 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1237 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1238 We must also do an alignment operation on the returned value if
1239 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1240
1241 If we have to align, we must leave space in SIZE for the hole
1242 that might result from the alignment operation. */
1243
1244 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1245 #define MUST_ALIGN 1
1246 #else
1247 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1248 #endif
1249
1250 if (MUST_ALIGN)
1251 size
1252 = force_operand (plus_constant (size,
1253 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1254 NULL_RTX);
1255
1256 #ifdef SETJMP_VIA_SAVE_AREA
1257 /* If setjmp restores regs from a save area in the stack frame,
1258 avoid clobbering the reg save area. Note that the offset of
1259 virtual_incoming_args_rtx includes the preallocated stack args space.
1260 It would be no problem to clobber that, but it's on the wrong side
1261 of the old save area. */
1262 {
1263 rtx dynamic_offset
1264 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1265 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1266
1267 if (!current_function_calls_setjmp)
1268 {
1269 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1270
1271 /* See optimize_save_area_alloca to understand what is being
1272 set up here. */
1273
1274 /* ??? Code below assumes that the save area needs maximal
1275 alignment. This constraint may be too strong. */
1276 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1277 abort ();
1278
1279 if (GET_CODE (size) == CONST_INT)
1280 {
1281 HOST_WIDE_INT new = INTVAL (size) / align * align;
1282
1283 if (INTVAL (size) != new)
1284 setjmpless_size = GEN_INT (new);
1285 else
1286 setjmpless_size = size;
1287 }
1288 else
1289 {
1290 /* Since we know overflow is not possible, we avoid using
1291 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1292 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1293 GEN_INT (align), NULL_RTX, 1);
1294 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1295 GEN_INT (align), NULL_RTX, 1);
1296 }
1297 /* Our optimization works based upon being able to perform a simple
1298 transformation of this RTL into a (set REG REG) so make sure things
1299 did in fact end up in a REG. */
1300 if (!register_operand (setjmpless_size, Pmode))
1301 setjmpless_size = force_reg (Pmode, setjmpless_size);
1302 }
1303
1304 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1305 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1306 }
1307 #endif /* SETJMP_VIA_SAVE_AREA */
1308
1309 /* Round the size to a multiple of the required stack alignment.
1310 Since the stack if presumed to be rounded before this allocation,
1311 this will maintain the required alignment.
1312
1313 If the stack grows downward, we could save an insn by subtracting
1314 SIZE from the stack pointer and then aligning the stack pointer.
1315 The problem with this is that the stack pointer may be unaligned
1316 between the execution of the subtraction and alignment insns and
1317 some machines do not allow this. Even on those that do, some
1318 signal handlers malfunction if a signal should occur between those
1319 insns. Since this is an extremely rare event, we have no reliable
1320 way of knowing which systems have this problem. So we avoid even
1321 momentarily mis-aligning the stack. */
1322
1323 /* If we added a variable amount to SIZE,
1324 we can no longer assume it is aligned. */
1325 #if !defined (SETJMP_VIA_SAVE_AREA)
1326 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1327 #endif
1328 size = round_push (size);
1329
1330 do_pending_stack_adjust ();
1331
1332 /* We ought to be called always on the toplevel and stack ought to be aligned
1333 properly. */
1334 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1335 abort ();
1336
1337 /* If needed, check that we have the required amount of stack. Take into
1338 account what has already been checked. */
1339 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1340 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1341
1342 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1343 if (target == 0 || GET_CODE (target) != REG
1344 || REGNO (target) < FIRST_PSEUDO_REGISTER
1345 || GET_MODE (target) != Pmode)
1346 target = gen_reg_rtx (Pmode);
1347
1348 mark_reg_pointer (target, known_align);
1349
1350 /* Perform the required allocation from the stack. Some systems do
1351 this differently than simply incrementing/decrementing from the
1352 stack pointer, such as acquiring the space by calling malloc(). */
1353 #ifdef HAVE_allocate_stack
1354 if (HAVE_allocate_stack)
1355 {
1356 enum machine_mode mode = STACK_SIZE_MODE;
1357 insn_operand_predicate_fn pred;
1358
1359 /* We don't have to check against the predicate for operand 0 since
1360 TARGET is known to be a pseudo of the proper mode, which must
1361 be valid for the operand. For operand 1, convert to the
1362 proper mode and validate. */
1363 if (mode == VOIDmode)
1364 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1365
1366 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1367 if (pred && ! ((*pred) (size, mode)))
1368 size = copy_to_mode_reg (mode, size);
1369
1370 emit_insn (gen_allocate_stack (target, size));
1371 }
1372 else
1373 #endif
1374 {
1375 #ifndef STACK_GROWS_DOWNWARD
1376 emit_move_insn (target, virtual_stack_dynamic_rtx);
1377 #endif
1378
1379 /* Check stack bounds if necessary. */
1380 if (current_function_limit_stack)
1381 {
1382 rtx available;
1383 rtx space_available = gen_label_rtx ();
1384 #ifdef STACK_GROWS_DOWNWARD
1385 available = expand_binop (Pmode, sub_optab,
1386 stack_pointer_rtx, stack_limit_rtx,
1387 NULL_RTX, 1, OPTAB_WIDEN);
1388 #else
1389 available = expand_binop (Pmode, sub_optab,
1390 stack_limit_rtx, stack_pointer_rtx,
1391 NULL_RTX, 1, OPTAB_WIDEN);
1392 #endif
1393 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1394 space_available);
1395 #ifdef HAVE_trap
1396 if (HAVE_trap)
1397 emit_insn (gen_trap ());
1398 else
1399 #endif
1400 error ("stack limits not supported on this target");
1401 emit_barrier ();
1402 emit_label (space_available);
1403 }
1404
1405 anti_adjust_stack (size);
1406 #ifdef SETJMP_VIA_SAVE_AREA
1407 if (setjmpless_size != NULL_RTX)
1408 {
1409 rtx note_target = get_last_insn ();
1410
1411 REG_NOTES (note_target)
1412 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1413 REG_NOTES (note_target));
1414 }
1415 #endif /* SETJMP_VIA_SAVE_AREA */
1416
1417 #ifdef STACK_GROWS_DOWNWARD
1418 emit_move_insn (target, virtual_stack_dynamic_rtx);
1419 #endif
1420 }
1421
1422 if (MUST_ALIGN)
1423 {
1424 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1425 but we know it can't. So add ourselves and then do
1426 TRUNC_DIV_EXPR. */
1427 target = expand_binop (Pmode, add_optab, target,
1428 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1429 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1430 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1431 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1432 NULL_RTX, 1);
1433 target = expand_mult (Pmode, target,
1434 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1435 NULL_RTX, 1);
1436 }
1437
1438 /* Some systems require a particular insn to refer to the stack
1439 to make the pages exist. */
1440 #ifdef HAVE_probe
1441 if (HAVE_probe)
1442 emit_insn (gen_probe ());
1443 #endif
1444
1445 /* Record the new stack level for nonlocal gotos. */
1446 if (nonlocal_goto_handler_slots != 0)
1447 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1448
1449 return target;
1450 }
1451 \f
1452 /* A front end may want to override GCC's stack checking by providing a
1453 run-time routine to call to check the stack, so provide a mechanism for
1454 calling that routine. */
1455
1456 static GTY(()) rtx stack_check_libfunc;
1457
1458 void
1459 set_stack_check_libfunc (libfunc)
1460 rtx libfunc;
1461 {
1462 stack_check_libfunc = libfunc;
1463 }
1464 \f
1465 /* Emit one stack probe at ADDRESS, an address within the stack. */
1466
1467 static void
1468 emit_stack_probe (address)
1469 rtx address;
1470 {
1471 rtx memref = gen_rtx_MEM (word_mode, address);
1472
1473 MEM_VOLATILE_P (memref) = 1;
1474
1475 if (STACK_CHECK_PROBE_LOAD)
1476 emit_move_insn (gen_reg_rtx (word_mode), memref);
1477 else
1478 emit_move_insn (memref, const0_rtx);
1479 }
1480
1481 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1482 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1483 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1484 subtract from the stack. If SIZE is constant, this is done
1485 with a fixed number of probes. Otherwise, we must make a loop. */
1486
1487 #ifdef STACK_GROWS_DOWNWARD
1488 #define STACK_GROW_OP MINUS
1489 #else
1490 #define STACK_GROW_OP PLUS
1491 #endif
1492
1493 void
1494 probe_stack_range (first, size)
1495 HOST_WIDE_INT first;
1496 rtx size;
1497 {
1498 /* First ensure SIZE is Pmode. */
1499 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1500 size = convert_to_mode (Pmode, size, 1);
1501
1502 /* Next see if the front end has set up a function for us to call to
1503 check the stack. */
1504 if (stack_check_libfunc != 0)
1505 {
1506 rtx addr = memory_address (QImode,
1507 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1508 stack_pointer_rtx,
1509 plus_constant (size, first)));
1510
1511 #ifdef POINTERS_EXTEND_UNSIGNED
1512 if (GET_MODE (addr) != ptr_mode)
1513 addr = convert_memory_address (ptr_mode, addr);
1514 #endif
1515
1516 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1517 ptr_mode);
1518 }
1519
1520 /* Next see if we have an insn to check the stack. Use it if so. */
1521 #ifdef HAVE_check_stack
1522 else if (HAVE_check_stack)
1523 {
1524 insn_operand_predicate_fn pred;
1525 rtx last_addr
1526 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1527 stack_pointer_rtx,
1528 plus_constant (size, first)),
1529 NULL_RTX);
1530
1531 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1532 if (pred && ! ((*pred) (last_addr, Pmode)))
1533 last_addr = copy_to_mode_reg (Pmode, last_addr);
1534
1535 emit_insn (gen_check_stack (last_addr));
1536 }
1537 #endif
1538
1539 /* If we have to generate explicit probes, see if we have a constant
1540 small number of them to generate. If so, that's the easy case. */
1541 else if (GET_CODE (size) == CONST_INT
1542 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1543 {
1544 HOST_WIDE_INT offset;
1545
1546 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1547 for values of N from 1 until it exceeds LAST. If only one
1548 probe is needed, this will not generate any code. Then probe
1549 at LAST. */
1550 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1551 offset < INTVAL (size);
1552 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1553 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1554 stack_pointer_rtx,
1555 GEN_INT (offset)));
1556
1557 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1558 stack_pointer_rtx,
1559 plus_constant (size, first)));
1560 }
1561
1562 /* In the variable case, do the same as above, but in a loop. We emit loop
1563 notes so that loop optimization can be done. */
1564 else
1565 {
1566 rtx test_addr
1567 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1568 stack_pointer_rtx,
1569 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1570 NULL_RTX);
1571 rtx last_addr
1572 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1573 stack_pointer_rtx,
1574 plus_constant (size, first)),
1575 NULL_RTX);
1576 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1577 rtx loop_lab = gen_label_rtx ();
1578 rtx test_lab = gen_label_rtx ();
1579 rtx end_lab = gen_label_rtx ();
1580 rtx temp;
1581
1582 if (GET_CODE (test_addr) != REG
1583 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1584 test_addr = force_reg (Pmode, test_addr);
1585
1586 emit_note (NULL, NOTE_INSN_LOOP_BEG);
1587 emit_jump (test_lab);
1588
1589 emit_label (loop_lab);
1590 emit_stack_probe (test_addr);
1591
1592 emit_note (NULL, NOTE_INSN_LOOP_CONT);
1593
1594 #ifdef STACK_GROWS_DOWNWARD
1595 #define CMP_OPCODE GTU
1596 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1597 1, OPTAB_WIDEN);
1598 #else
1599 #define CMP_OPCODE LTU
1600 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1601 1, OPTAB_WIDEN);
1602 #endif
1603
1604 if (temp != test_addr)
1605 abort ();
1606
1607 emit_label (test_lab);
1608 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1609 NULL_RTX, Pmode, 1, loop_lab);
1610 emit_jump (end_lab);
1611 emit_note (NULL, NOTE_INSN_LOOP_END);
1612 emit_label (end_lab);
1613
1614 emit_stack_probe (last_addr);
1615 }
1616 }
1617 \f
1618 /* Return an rtx representing the register or memory location
1619 in which a scalar value of data type VALTYPE
1620 was returned by a function call to function FUNC.
1621 FUNC is a FUNCTION_DECL node if the precise function is known,
1622 otherwise 0.
1623 OUTGOING is 1 if on a machine with register windows this function
1624 should return the register in which the function will put its result
1625 and 0 otherwise. */
1626
1627 rtx
1628 hard_function_value (valtype, func, outgoing)
1629 tree valtype;
1630 tree func ATTRIBUTE_UNUSED;
1631 int outgoing ATTRIBUTE_UNUSED;
1632 {
1633 rtx val;
1634
1635 #ifdef FUNCTION_OUTGOING_VALUE
1636 if (outgoing)
1637 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1638 else
1639 #endif
1640 val = FUNCTION_VALUE (valtype, func);
1641
1642 if (GET_CODE (val) == REG
1643 && GET_MODE (val) == BLKmode)
1644 {
1645 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1646 enum machine_mode tmpmode;
1647
1648 /* int_size_in_bytes can return -1. We don't need a check here
1649 since the value of bytes will be large enough that no mode
1650 will match and we will abort later in this function. */
1651
1652 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1653 tmpmode != VOIDmode;
1654 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1655 {
1656 /* Have we found a large enough mode? */
1657 if (GET_MODE_SIZE (tmpmode) >= bytes)
1658 break;
1659 }
1660
1661 /* No suitable mode found. */
1662 if (tmpmode == VOIDmode)
1663 abort ();
1664
1665 PUT_MODE (val, tmpmode);
1666 }
1667 return val;
1668 }
1669
1670 /* Return an rtx representing the register or memory location
1671 in which a scalar value of mode MODE was returned by a library call. */
1672
1673 rtx
1674 hard_libcall_value (mode)
1675 enum machine_mode mode;
1676 {
1677 return LIBCALL_VALUE (mode);
1678 }
1679
1680 /* Look up the tree code for a given rtx code
1681 to provide the arithmetic operation for REAL_ARITHMETIC.
1682 The function returns an int because the caller may not know
1683 what `enum tree_code' means. */
1684
1685 int
1686 rtx_to_tree_code (code)
1687 enum rtx_code code;
1688 {
1689 enum tree_code tcode;
1690
1691 switch (code)
1692 {
1693 case PLUS:
1694 tcode = PLUS_EXPR;
1695 break;
1696 case MINUS:
1697 tcode = MINUS_EXPR;
1698 break;
1699 case MULT:
1700 tcode = MULT_EXPR;
1701 break;
1702 case DIV:
1703 tcode = RDIV_EXPR;
1704 break;
1705 case SMIN:
1706 tcode = MIN_EXPR;
1707 break;
1708 case SMAX:
1709 tcode = MAX_EXPR;
1710 break;
1711 default:
1712 tcode = LAST_AND_UNUSED_TREE_CODE;
1713 break;
1714 }
1715 return ((int) tcode);
1716 }
1717
1718 #include "gt-explow.h"