]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
re PR target/77452 (ICE: in plus_constant, at explow.c:87 with -fno-split-wide-types...
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "expmed.h"
30 #include "optabs.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
33 #include "diagnostic-core.h"
34 #include "stor-layout.h"
35 #include "except.h"
36 #include "dojump.h"
37 #include "explow.h"
38 #include "expr.h"
39 #include "common/common-target.h"
40 #include "output.h"
41
42 static rtx break_out_memory_refs (rtx);
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
49 {
50 int width = GET_MODE_PRECISION (mode);
51
52 /* You want to truncate to a _what_? */
53 gcc_assert (SCALAR_INT_MODE_P (mode)
54 || POINTER_BOUNDS_MODE_P (mode));
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C, given that X has
75 mode MODE. INPLACE is true if X can be modified inplace or false
76 if it must be treated as immutable. */
77
78 rtx
79 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
80 bool inplace)
81 {
82 RTX_CODE code;
83 rtx y;
84 rtx tem;
85 int all_constant = 0;
86
87 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
88
89 if (c == 0)
90 return x;
91
92 restart:
93
94 code = GET_CODE (x);
95 y = x;
96
97 switch (code)
98 {
99 CASE_CONST_SCALAR_INT:
100 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
101 mode);
102 case MEM:
103 /* If this is a reference to the constant pool, try replacing it with
104 a reference to a new constant. If the resulting address isn't
105 valid, don't return it because we have no way to validize it. */
106 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
107 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
108 {
109 rtx cst = get_pool_constant (XEXP (x, 0));
110
111 if (GET_CODE (cst) == CONST_VECTOR
112 && GET_MODE_INNER (GET_MODE (cst)) == mode)
113 {
114 cst = gen_lowpart (mode, cst);
115 gcc_assert (cst);
116 }
117 tem = plus_constant (mode, cst, c);
118 tem = force_const_mem (GET_MODE (x), tem);
119 /* Targets may disallow some constants in the constant pool, thus
120 force_const_mem may return NULL_RTX. */
121 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
122 return tem;
123 }
124 break;
125
126 case CONST:
127 /* If adding to something entirely constant, set a flag
128 so that we can add a CONST around the result. */
129 if (inplace && shared_const_p (x))
130 inplace = false;
131 x = XEXP (x, 0);
132 all_constant = 1;
133 goto restart;
134
135 case SYMBOL_REF:
136 case LABEL_REF:
137 all_constant = 1;
138 break;
139
140 case PLUS:
141 /* The interesting case is adding the integer to a sum. Look
142 for constant term in the sum and combine with C. For an
143 integer constant term or a constant term that is not an
144 explicit integer, we combine or group them together anyway.
145
146 We may not immediately return from the recursive call here, lest
147 all_constant gets lost. */
148
149 if (CONSTANT_P (XEXP (x, 1)))
150 {
151 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
152 if (term == const0_rtx)
153 x = XEXP (x, 0);
154 else if (inplace)
155 XEXP (x, 1) = term;
156 else
157 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
158 c = 0;
159 }
160 else if (rtx *const_loc = find_constant_term_loc (&y))
161 {
162 if (!inplace)
163 {
164 /* We need to be careful since X may be shared and we can't
165 modify it in place. */
166 x = copy_rtx (x);
167 const_loc = find_constant_term_loc (&x);
168 }
169 *const_loc = plus_constant (mode, *const_loc, c, true);
170 c = 0;
171 }
172 break;
173
174 default:
175 break;
176 }
177
178 if (c != 0)
179 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
180
181 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
182 return x;
183 else if (all_constant)
184 return gen_rtx_CONST (mode, x);
185 else
186 return x;
187 }
188 \f
189 /* If X is a sum, return a new sum like X but lacking any constant terms.
190 Add all the removed constant terms into *CONSTPTR.
191 X itself is not altered. The result != X if and only if
192 it is not isomorphic to X. */
193
194 rtx
195 eliminate_constant_term (rtx x, rtx *constptr)
196 {
197 rtx x0, x1;
198 rtx tem;
199
200 if (GET_CODE (x) != PLUS)
201 return x;
202
203 /* First handle constants appearing at this level explicitly. */
204 if (CONST_INT_P (XEXP (x, 1))
205 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
206 XEXP (x, 1)))
207 && CONST_INT_P (tem))
208 {
209 *constptr = tem;
210 return eliminate_constant_term (XEXP (x, 0), constptr);
211 }
212
213 tem = const0_rtx;
214 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
215 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
216 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
217 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
218 *constptr, tem))
219 && CONST_INT_P (tem))
220 {
221 *constptr = tem;
222 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
223 }
224
225 return x;
226 }
227
228 \f
229 /* Return a copy of X in which all memory references
230 and all constants that involve symbol refs
231 have been replaced with new temporary registers.
232 Also emit code to load the memory locations and constants
233 into those registers.
234
235 If X contains no such constants or memory references,
236 X itself (not a copy) is returned.
237
238 If a constant is found in the address that is not a legitimate constant
239 in an insn, it is left alone in the hope that it might be valid in the
240 address.
241
242 X may contain no arithmetic except addition, subtraction and multiplication.
243 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
244
245 static rtx
246 break_out_memory_refs (rtx x)
247 {
248 if (MEM_P (x)
249 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
250 && GET_MODE (x) != VOIDmode))
251 x = force_reg (GET_MODE (x), x);
252 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
253 || GET_CODE (x) == MULT)
254 {
255 rtx op0 = break_out_memory_refs (XEXP (x, 0));
256 rtx op1 = break_out_memory_refs (XEXP (x, 1));
257
258 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
259 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
260 }
261
262 return x;
263 }
264
265 /* Given X, a memory address in address space AS' pointer mode, convert it to
266 an address in the address space's address mode, or vice versa (TO_MODE says
267 which way). We take advantage of the fact that pointers are not allowed to
268 overflow by commuting arithmetic operations over conversions so that address
269 arithmetic insns can be used. IN_CONST is true if this conversion is inside
270 a CONST. NO_EMIT is true if no insns should be emitted, and instead
271 it should return NULL if it can't be simplified without emitting insns. */
272
273 rtx
274 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
275 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
276 bool in_const ATTRIBUTE_UNUSED,
277 bool no_emit ATTRIBUTE_UNUSED)
278 {
279 #ifndef POINTERS_EXTEND_UNSIGNED
280 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
281 return x;
282 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
283 machine_mode pointer_mode, address_mode, from_mode;
284 rtx temp;
285 enum rtx_code code;
286
287 /* If X already has the right mode, just return it. */
288 if (GET_MODE (x) == to_mode)
289 return x;
290
291 pointer_mode = targetm.addr_space.pointer_mode (as);
292 address_mode = targetm.addr_space.address_mode (as);
293 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
294
295 /* Here we handle some special cases. If none of them apply, fall through
296 to the default case. */
297 switch (GET_CODE (x))
298 {
299 CASE_CONST_SCALAR_INT:
300 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
301 code = TRUNCATE;
302 else if (POINTERS_EXTEND_UNSIGNED < 0)
303 break;
304 else if (POINTERS_EXTEND_UNSIGNED > 0)
305 code = ZERO_EXTEND;
306 else
307 code = SIGN_EXTEND;
308 temp = simplify_unary_operation (code, to_mode, x, from_mode);
309 if (temp)
310 return temp;
311 break;
312
313 case SUBREG:
314 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
315 && GET_MODE (SUBREG_REG (x)) == to_mode)
316 return SUBREG_REG (x);
317 break;
318
319 case LABEL_REF:
320 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
321 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
322 return temp;
323
324 case SYMBOL_REF:
325 temp = shallow_copy_rtx (x);
326 PUT_MODE (temp, to_mode);
327 return temp;
328
329 case CONST:
330 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
331 true, no_emit);
332 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
333
334 case PLUS:
335 case MULT:
336 /* For addition we can safely permute the conversion and addition
337 operation if one operand is a constant and converting the constant
338 does not change it or if one operand is a constant and we are
339 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
340 We can always safely permute them if we are making the address
341 narrower. Inside a CONST RTL, this is safe for both pointers
342 zero or sign extended as pointers cannot wrap. */
343 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
344 || (GET_CODE (x) == PLUS
345 && CONST_INT_P (XEXP (x, 1))
346 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
347 || XEXP (x, 1) == convert_memory_address_addr_space_1
348 (to_mode, XEXP (x, 1), as, in_const,
349 no_emit)
350 || POINTERS_EXTEND_UNSIGNED < 0)))
351 {
352 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
353 as, in_const, no_emit);
354 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
355 temp, XEXP (x, 1))
356 : temp);
357 }
358 break;
359
360 default:
361 break;
362 }
363
364 if (no_emit)
365 return NULL_RTX;
366
367 return convert_modes (to_mode, from_mode,
368 x, POINTERS_EXTEND_UNSIGNED);
369 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
370 }
371
372 /* Given X, a memory address in address space AS' pointer mode, convert it to
373 an address in the address space's address mode, or vice versa (TO_MODE says
374 which way). We take advantage of the fact that pointers are not allowed to
375 overflow by commuting arithmetic operations over conversions so that address
376 arithmetic insns can be used. */
377
378 rtx
379 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
380 {
381 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
382 }
383 \f
384
385 /* Return something equivalent to X but valid as a memory address for something
386 of mode MODE in the named address space AS. When X is not itself valid,
387 this works by copying X or subexpressions of it into registers. */
388
389 rtx
390 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
391 {
392 rtx oldx = x;
393 machine_mode address_mode = targetm.addr_space.address_mode (as);
394
395 x = convert_memory_address_addr_space (address_mode, x, as);
396
397 /* By passing constant addresses through registers
398 we get a chance to cse them. */
399 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
400 x = force_reg (address_mode, x);
401
402 /* We get better cse by rejecting indirect addressing at this stage.
403 Let the combiner create indirect addresses where appropriate.
404 For now, generate the code so that the subexpressions useful to share
405 are visible. But not if cse won't be done! */
406 else
407 {
408 if (! cse_not_expected && !REG_P (x))
409 x = break_out_memory_refs (x);
410
411 /* At this point, any valid address is accepted. */
412 if (memory_address_addr_space_p (mode, x, as))
413 goto done;
414
415 /* If it was valid before but breaking out memory refs invalidated it,
416 use it the old way. */
417 if (memory_address_addr_space_p (mode, oldx, as))
418 {
419 x = oldx;
420 goto done;
421 }
422
423 /* Perform machine-dependent transformations on X
424 in certain cases. This is not necessary since the code
425 below can handle all possible cases, but machine-dependent
426 transformations can make better code. */
427 {
428 rtx orig_x = x;
429 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
430 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
431 goto done;
432 }
433
434 /* PLUS and MULT can appear in special ways
435 as the result of attempts to make an address usable for indexing.
436 Usually they are dealt with by calling force_operand, below.
437 But a sum containing constant terms is special
438 if removing them makes the sum a valid address:
439 then we generate that address in a register
440 and index off of it. We do this because it often makes
441 shorter code, and because the addresses thus generated
442 in registers often become common subexpressions. */
443 if (GET_CODE (x) == PLUS)
444 {
445 rtx constant_term = const0_rtx;
446 rtx y = eliminate_constant_term (x, &constant_term);
447 if (constant_term == const0_rtx
448 || ! memory_address_addr_space_p (mode, y, as))
449 x = force_operand (x, NULL_RTX);
450 else
451 {
452 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
453 if (! memory_address_addr_space_p (mode, y, as))
454 x = force_operand (x, NULL_RTX);
455 else
456 x = y;
457 }
458 }
459
460 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
461 x = force_operand (x, NULL_RTX);
462
463 /* If we have a register that's an invalid address,
464 it must be a hard reg of the wrong class. Copy it to a pseudo. */
465 else if (REG_P (x))
466 x = copy_to_reg (x);
467
468 /* Last resort: copy the value to a register, since
469 the register is a valid address. */
470 else
471 x = force_reg (address_mode, x);
472 }
473
474 done:
475
476 gcc_assert (memory_address_addr_space_p (mode, x, as));
477 /* If we didn't change the address, we are done. Otherwise, mark
478 a reg as a pointer if we have REG or REG + CONST_INT. */
479 if (oldx == x)
480 return x;
481 else if (REG_P (x))
482 mark_reg_pointer (x, BITS_PER_UNIT);
483 else if (GET_CODE (x) == PLUS
484 && REG_P (XEXP (x, 0))
485 && CONST_INT_P (XEXP (x, 1)))
486 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
487
488 /* OLDX may have been the address on a temporary. Update the address
489 to indicate that X is now used. */
490 update_temp_slot_address (oldx, x);
491
492 return x;
493 }
494
495 /* If REF is a MEM with an invalid address, change it into a valid address.
496 Pass through anything else unchanged. REF must be an unshared rtx and
497 the function may modify it in-place. */
498
499 rtx
500 validize_mem (rtx ref)
501 {
502 if (!MEM_P (ref))
503 return ref;
504 ref = use_anchored_address (ref);
505 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
506 MEM_ADDR_SPACE (ref)))
507 return ref;
508
509 return replace_equiv_address (ref, XEXP (ref, 0), true);
510 }
511
512 /* If X is a memory reference to a member of an object block, try rewriting
513 it to use an anchor instead. Return the new memory reference on success
514 and the old one on failure. */
515
516 rtx
517 use_anchored_address (rtx x)
518 {
519 rtx base;
520 HOST_WIDE_INT offset;
521 machine_mode mode;
522
523 if (!flag_section_anchors)
524 return x;
525
526 if (!MEM_P (x))
527 return x;
528
529 /* Split the address into a base and offset. */
530 base = XEXP (x, 0);
531 offset = 0;
532 if (GET_CODE (base) == CONST
533 && GET_CODE (XEXP (base, 0)) == PLUS
534 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
535 {
536 offset += INTVAL (XEXP (XEXP (base, 0), 1));
537 base = XEXP (XEXP (base, 0), 0);
538 }
539
540 /* Check whether BASE is suitable for anchors. */
541 if (GET_CODE (base) != SYMBOL_REF
542 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
543 || SYMBOL_REF_ANCHOR_P (base)
544 || SYMBOL_REF_BLOCK (base) == NULL
545 || !targetm.use_anchors_for_symbol_p (base))
546 return x;
547
548 /* Decide where BASE is going to be. */
549 place_block_symbol (base);
550
551 /* Get the anchor we need to use. */
552 offset += SYMBOL_REF_BLOCK_OFFSET (base);
553 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
554 SYMBOL_REF_TLS_MODEL (base));
555
556 /* Work out the offset from the anchor. */
557 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
558
559 /* If we're going to run a CSE pass, force the anchor into a register.
560 We will then be able to reuse registers for several accesses, if the
561 target costs say that that's worthwhile. */
562 mode = GET_MODE (base);
563 if (!cse_not_expected)
564 base = force_reg (mode, base);
565
566 return replace_equiv_address (x, plus_constant (mode, base, offset));
567 }
568 \f
569 /* Copy the value or contents of X to a new temp reg and return that reg. */
570
571 rtx
572 copy_to_reg (rtx x)
573 {
574 rtx temp = gen_reg_rtx (GET_MODE (x));
575
576 /* If not an operand, must be an address with PLUS and MULT so
577 do the computation. */
578 if (! general_operand (x, VOIDmode))
579 x = force_operand (x, temp);
580
581 if (x != temp)
582 emit_move_insn (temp, x);
583
584 return temp;
585 }
586
587 /* Like copy_to_reg but always give the new register mode Pmode
588 in case X is a constant. */
589
590 rtx
591 copy_addr_to_reg (rtx x)
592 {
593 return copy_to_mode_reg (Pmode, x);
594 }
595
596 /* Like copy_to_reg but always give the new register mode MODE
597 in case X is a constant. */
598
599 rtx
600 copy_to_mode_reg (machine_mode mode, rtx x)
601 {
602 rtx temp = gen_reg_rtx (mode);
603
604 /* If not an operand, must be an address with PLUS and MULT so
605 do the computation. */
606 if (! general_operand (x, VOIDmode))
607 x = force_operand (x, temp);
608
609 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
610 if (x != temp)
611 emit_move_insn (temp, x);
612 return temp;
613 }
614
615 /* Load X into a register if it is not already one.
616 Use mode MODE for the register.
617 X should be valid for mode MODE, but it may be a constant which
618 is valid for all integer modes; that's why caller must specify MODE.
619
620 The caller must not alter the value in the register we return,
621 since we mark it as a "constant" register. */
622
623 rtx
624 force_reg (machine_mode mode, rtx x)
625 {
626 rtx temp, set;
627 rtx_insn *insn;
628
629 if (REG_P (x))
630 return x;
631
632 if (general_operand (x, mode))
633 {
634 temp = gen_reg_rtx (mode);
635 insn = emit_move_insn (temp, x);
636 }
637 else
638 {
639 temp = force_operand (x, NULL_RTX);
640 if (REG_P (temp))
641 insn = get_last_insn ();
642 else
643 {
644 rtx temp2 = gen_reg_rtx (mode);
645 insn = emit_move_insn (temp2, temp);
646 temp = temp2;
647 }
648 }
649
650 /* Let optimizers know that TEMP's value never changes
651 and that X can be substituted for it. Don't get confused
652 if INSN set something else (such as a SUBREG of TEMP). */
653 if (CONSTANT_P (x)
654 && (set = single_set (insn)) != 0
655 && SET_DEST (set) == temp
656 && ! rtx_equal_p (x, SET_SRC (set)))
657 set_unique_reg_note (insn, REG_EQUAL, x);
658
659 /* Let optimizers know that TEMP is a pointer, and if so, the
660 known alignment of that pointer. */
661 {
662 unsigned align = 0;
663 if (GET_CODE (x) == SYMBOL_REF)
664 {
665 align = BITS_PER_UNIT;
666 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
667 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
668 }
669 else if (GET_CODE (x) == LABEL_REF)
670 align = BITS_PER_UNIT;
671 else if (GET_CODE (x) == CONST
672 && GET_CODE (XEXP (x, 0)) == PLUS
673 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
674 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
675 {
676 rtx s = XEXP (XEXP (x, 0), 0);
677 rtx c = XEXP (XEXP (x, 0), 1);
678 unsigned sa, ca;
679
680 sa = BITS_PER_UNIT;
681 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
682 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
683
684 if (INTVAL (c) == 0)
685 align = sa;
686 else
687 {
688 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
689 align = MIN (sa, ca);
690 }
691 }
692
693 if (align || (MEM_P (x) && MEM_POINTER (x)))
694 mark_reg_pointer (temp, align);
695 }
696
697 return temp;
698 }
699
700 /* If X is a memory ref, copy its contents to a new temp reg and return
701 that reg. Otherwise, return X. */
702
703 rtx
704 force_not_mem (rtx x)
705 {
706 rtx temp;
707
708 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
709 return x;
710
711 temp = gen_reg_rtx (GET_MODE (x));
712
713 if (MEM_POINTER (x))
714 REG_POINTER (temp) = 1;
715
716 emit_move_insn (temp, x);
717 return temp;
718 }
719
720 /* Copy X to TARGET (if it's nonzero and a reg)
721 or to a new temp reg and return that reg.
722 MODE is the mode to use for X in case it is a constant. */
723
724 rtx
725 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
726 {
727 rtx temp;
728
729 if (target && REG_P (target))
730 temp = target;
731 else
732 temp = gen_reg_rtx (mode);
733
734 emit_move_insn (temp, x);
735 return temp;
736 }
737 \f
738 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
739 PUNSIGNEDP points to the signedness of the type and may be adjusted
740 to show what signedness to use on extension operations.
741
742 FOR_RETURN is nonzero if the caller is promoting the return value
743 of FNDECL, else it is for promoting args. */
744
745 machine_mode
746 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
747 const_tree funtype, int for_return)
748 {
749 /* Called without a type node for a libcall. */
750 if (type == NULL_TREE)
751 {
752 if (INTEGRAL_MODE_P (mode))
753 return targetm.calls.promote_function_mode (NULL_TREE, mode,
754 punsignedp, funtype,
755 for_return);
756 else
757 return mode;
758 }
759
760 switch (TREE_CODE (type))
761 {
762 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
763 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
764 case POINTER_TYPE: case REFERENCE_TYPE:
765 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
766 for_return);
767
768 default:
769 return mode;
770 }
771 }
772 /* Return the mode to use to store a scalar of TYPE and MODE.
773 PUNSIGNEDP points to the signedness of the type and may be adjusted
774 to show what signedness to use on extension operations. */
775
776 machine_mode
777 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
778 int *punsignedp ATTRIBUTE_UNUSED)
779 {
780 #ifdef PROMOTE_MODE
781 enum tree_code code;
782 int unsignedp;
783 #endif
784
785 /* For libcalls this is invoked without TYPE from the backends
786 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
787 case. */
788 if (type == NULL_TREE)
789 return mode;
790
791 /* FIXME: this is the same logic that was there until GCC 4.4, but we
792 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
793 is not defined. The affected targets are M32C, S390, SPARC. */
794 #ifdef PROMOTE_MODE
795 code = TREE_CODE (type);
796 unsignedp = *punsignedp;
797
798 switch (code)
799 {
800 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
801 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
802 PROMOTE_MODE (mode, unsignedp, type);
803 *punsignedp = unsignedp;
804 return mode;
805 break;
806
807 #ifdef POINTERS_EXTEND_UNSIGNED
808 case REFERENCE_TYPE:
809 case POINTER_TYPE:
810 *punsignedp = POINTERS_EXTEND_UNSIGNED;
811 return targetm.addr_space.address_mode
812 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
813 break;
814 #endif
815
816 default:
817 return mode;
818 }
819 #else
820 return mode;
821 #endif
822 }
823
824
825 /* Use one of promote_mode or promote_function_mode to find the promoted
826 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
827 of DECL after promotion. */
828
829 machine_mode
830 promote_decl_mode (const_tree decl, int *punsignedp)
831 {
832 tree type = TREE_TYPE (decl);
833 int unsignedp = TYPE_UNSIGNED (type);
834 machine_mode mode = DECL_MODE (decl);
835 machine_mode pmode;
836
837 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
838 pmode = promote_function_mode (type, mode, &unsignedp,
839 TREE_TYPE (current_function_decl), 1);
840 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
841 pmode = promote_function_mode (type, mode, &unsignedp,
842 TREE_TYPE (current_function_decl), 2);
843 else
844 pmode = promote_mode (type, mode, &unsignedp);
845
846 if (punsignedp)
847 *punsignedp = unsignedp;
848 return pmode;
849 }
850
851 /* Return the promoted mode for name. If it is a named SSA_NAME, it
852 is the same as promote_decl_mode. Otherwise, it is the promoted
853 mode of a temp decl of same type as the SSA_NAME, if we had created
854 one. */
855
856 machine_mode
857 promote_ssa_mode (const_tree name, int *punsignedp)
858 {
859 gcc_assert (TREE_CODE (name) == SSA_NAME);
860
861 /* Partitions holding parms and results must be promoted as expected
862 by function.c. */
863 if (SSA_NAME_VAR (name)
864 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
865 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
866 {
867 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
868 if (mode != BLKmode)
869 return mode;
870 }
871
872 tree type = TREE_TYPE (name);
873 int unsignedp = TYPE_UNSIGNED (type);
874 machine_mode mode = TYPE_MODE (type);
875
876 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
877 if (mode == BLKmode)
878 {
879 gcc_assert (VECTOR_TYPE_P (type));
880 mode = type->type_common.mode;
881 }
882
883 machine_mode pmode = promote_mode (type, mode, &unsignedp);
884 if (punsignedp)
885 *punsignedp = unsignedp;
886
887 return pmode;
888 }
889
890
891 \f
892 /* Controls the behavior of {anti_,}adjust_stack. */
893 static bool suppress_reg_args_size;
894
895 /* A helper for adjust_stack and anti_adjust_stack. */
896
897 static void
898 adjust_stack_1 (rtx adjust, bool anti_p)
899 {
900 rtx temp;
901 rtx_insn *insn;
902
903 /* Hereafter anti_p means subtract_p. */
904 if (!STACK_GROWS_DOWNWARD)
905 anti_p = !anti_p;
906
907 temp = expand_binop (Pmode,
908 anti_p ? sub_optab : add_optab,
909 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
910 OPTAB_LIB_WIDEN);
911
912 if (temp != stack_pointer_rtx)
913 insn = emit_move_insn (stack_pointer_rtx, temp);
914 else
915 {
916 insn = get_last_insn ();
917 temp = single_set (insn);
918 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
919 }
920
921 if (!suppress_reg_args_size)
922 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
923 }
924
925 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
926 This pops when ADJUST is positive. ADJUST need not be constant. */
927
928 void
929 adjust_stack (rtx adjust)
930 {
931 if (adjust == const0_rtx)
932 return;
933
934 /* We expect all variable sized adjustments to be multiple of
935 PREFERRED_STACK_BOUNDARY. */
936 if (CONST_INT_P (adjust))
937 stack_pointer_delta -= INTVAL (adjust);
938
939 adjust_stack_1 (adjust, false);
940 }
941
942 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
943 This pushes when ADJUST is positive. ADJUST need not be constant. */
944
945 void
946 anti_adjust_stack (rtx adjust)
947 {
948 if (adjust == const0_rtx)
949 return;
950
951 /* We expect all variable sized adjustments to be multiple of
952 PREFERRED_STACK_BOUNDARY. */
953 if (CONST_INT_P (adjust))
954 stack_pointer_delta += INTVAL (adjust);
955
956 adjust_stack_1 (adjust, true);
957 }
958
959 /* Round the size of a block to be pushed up to the boundary required
960 by this machine. SIZE is the desired size, which need not be constant. */
961
962 static rtx
963 round_push (rtx size)
964 {
965 rtx align_rtx, alignm1_rtx;
966
967 if (!SUPPORTS_STACK_ALIGNMENT
968 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
969 {
970 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
971
972 if (align == 1)
973 return size;
974
975 if (CONST_INT_P (size))
976 {
977 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
978
979 if (INTVAL (size) != new_size)
980 size = GEN_INT (new_size);
981 return size;
982 }
983
984 align_rtx = GEN_INT (align);
985 alignm1_rtx = GEN_INT (align - 1);
986 }
987 else
988 {
989 /* If crtl->preferred_stack_boundary might still grow, use
990 virtual_preferred_stack_boundary_rtx instead. This will be
991 substituted by the right value in vregs pass and optimized
992 during combine. */
993 align_rtx = virtual_preferred_stack_boundary_rtx;
994 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
995 NULL_RTX);
996 }
997
998 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
999 but we know it can't. So add ourselves and then do
1000 TRUNC_DIV_EXPR. */
1001 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1002 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1003 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1004 NULL_RTX, 1);
1005 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1006
1007 return size;
1008 }
1009 \f
1010 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1011 to a previously-created save area. If no save area has been allocated,
1012 this function will allocate one. If a save area is specified, it
1013 must be of the proper mode. */
1014
1015 void
1016 emit_stack_save (enum save_level save_level, rtx *psave)
1017 {
1018 rtx sa = *psave;
1019 /* The default is that we use a move insn and save in a Pmode object. */
1020 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1021 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1022
1023 /* See if this machine has anything special to do for this kind of save. */
1024 switch (save_level)
1025 {
1026 case SAVE_BLOCK:
1027 if (targetm.have_save_stack_block ())
1028 fcn = targetm.gen_save_stack_block;
1029 break;
1030 case SAVE_FUNCTION:
1031 if (targetm.have_save_stack_function ())
1032 fcn = targetm.gen_save_stack_function;
1033 break;
1034 case SAVE_NONLOCAL:
1035 if (targetm.have_save_stack_nonlocal ())
1036 fcn = targetm.gen_save_stack_nonlocal;
1037 break;
1038 default:
1039 break;
1040 }
1041
1042 /* If there is no save area and we have to allocate one, do so. Otherwise
1043 verify the save area is the proper mode. */
1044
1045 if (sa == 0)
1046 {
1047 if (mode != VOIDmode)
1048 {
1049 if (save_level == SAVE_NONLOCAL)
1050 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1051 else
1052 *psave = sa = gen_reg_rtx (mode);
1053 }
1054 }
1055
1056 do_pending_stack_adjust ();
1057 if (sa != 0)
1058 sa = validize_mem (sa);
1059 emit_insn (fcn (sa, stack_pointer_rtx));
1060 }
1061
1062 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1063 area made by emit_stack_save. If it is zero, we have nothing to do. */
1064
1065 void
1066 emit_stack_restore (enum save_level save_level, rtx sa)
1067 {
1068 /* The default is that we use a move insn. */
1069 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1070
1071 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1072 STACK_POINTER and HARD_FRAME_POINTER.
1073 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1074 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1075 aligned variables, which is reflected in ix86_can_eliminate.
1076 We normally still have the realigned STACK_POINTER that we can use.
1077 But if there is a stack restore still present at reload, it can trigger
1078 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1079 FRAME_POINTER into a hard reg.
1080 To prevent this situation, we force need_drap if we emit a stack
1081 restore. */
1082 if (SUPPORTS_STACK_ALIGNMENT)
1083 crtl->need_drap = true;
1084
1085 /* See if this machine has anything special to do for this kind of save. */
1086 switch (save_level)
1087 {
1088 case SAVE_BLOCK:
1089 if (targetm.have_restore_stack_block ())
1090 fcn = targetm.gen_restore_stack_block;
1091 break;
1092 case SAVE_FUNCTION:
1093 if (targetm.have_restore_stack_function ())
1094 fcn = targetm.gen_restore_stack_function;
1095 break;
1096 case SAVE_NONLOCAL:
1097 if (targetm.have_restore_stack_nonlocal ())
1098 fcn = targetm.gen_restore_stack_nonlocal;
1099 break;
1100 default:
1101 break;
1102 }
1103
1104 if (sa != 0)
1105 {
1106 sa = validize_mem (sa);
1107 /* These clobbers prevent the scheduler from moving
1108 references to variable arrays below the code
1109 that deletes (pops) the arrays. */
1110 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1111 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1112 }
1113
1114 discard_pending_stack_adjust ();
1115
1116 emit_insn (fcn (stack_pointer_rtx, sa));
1117 }
1118
1119 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1120 function. This should be called whenever we allocate or deallocate
1121 dynamic stack space. */
1122
1123 void
1124 update_nonlocal_goto_save_area (void)
1125 {
1126 tree t_save;
1127 rtx r_save;
1128
1129 /* The nonlocal_goto_save_area object is an array of N pointers. The
1130 first one is used for the frame pointer save; the rest are sized by
1131 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1132 of the stack save area slots. */
1133 t_save = build4 (ARRAY_REF,
1134 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1135 cfun->nonlocal_goto_save_area,
1136 integer_one_node, NULL_TREE, NULL_TREE);
1137 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1138
1139 emit_stack_save (SAVE_NONLOCAL, &r_save);
1140 }
1141
1142 /* Record a new stack level for the current function. This should be called
1143 whenever we allocate or deallocate dynamic stack space. */
1144
1145 void
1146 record_new_stack_level (void)
1147 {
1148 /* Record the new stack level for nonlocal gotos. */
1149 if (cfun->nonlocal_goto_save_area)
1150 update_nonlocal_goto_save_area ();
1151
1152 /* Record the new stack level for SJLJ exceptions. */
1153 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1154 update_sjlj_context ();
1155 }
1156 \f
1157 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1158 static rtx
1159 align_dynamic_address (rtx target, unsigned required_align)
1160 {
1161 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1162 but we know it can't. So add ourselves and then do
1163 TRUNC_DIV_EXPR. */
1164 target = expand_binop (Pmode, add_optab, target,
1165 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1166 Pmode),
1167 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1168 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1169 gen_int_mode (required_align / BITS_PER_UNIT,
1170 Pmode),
1171 NULL_RTX, 1);
1172 target = expand_mult (Pmode, target,
1173 gen_int_mode (required_align / BITS_PER_UNIT,
1174 Pmode),
1175 NULL_RTX, 1);
1176
1177 return target;
1178 }
1179
1180 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1181 be dynamically pushed on the stack.
1182
1183 *PSIZE is an rtx representing the size of the area.
1184
1185 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1186 parameter may be zero. If so, a proper value will be extracted
1187 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1188
1189 REQUIRED_ALIGN is the alignment (in bits) required for the region
1190 of memory.
1191
1192 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1193 the additional size returned. */
1194 void
1195 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1196 unsigned required_align,
1197 HOST_WIDE_INT *pstack_usage_size)
1198 {
1199 unsigned extra = 0;
1200 rtx size = *psize;
1201
1202 /* Ensure the size is in the proper mode. */
1203 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1204 size = convert_to_mode (Pmode, size, 1);
1205
1206 if (CONST_INT_P (size))
1207 {
1208 unsigned HOST_WIDE_INT lsb;
1209
1210 lsb = INTVAL (size);
1211 lsb &= -lsb;
1212
1213 /* Watch out for overflow truncating to "unsigned". */
1214 if (lsb > UINT_MAX / BITS_PER_UNIT)
1215 size_align = 1u << (HOST_BITS_PER_INT - 1);
1216 else
1217 size_align = (unsigned)lsb * BITS_PER_UNIT;
1218 }
1219 else if (size_align < BITS_PER_UNIT)
1220 size_align = BITS_PER_UNIT;
1221
1222 /* We can't attempt to minimize alignment necessary, because we don't
1223 know the final value of preferred_stack_boundary yet while executing
1224 this code. */
1225 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1226 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1227
1228 /* We will need to ensure that the address we return is aligned to
1229 REQUIRED_ALIGN. At this point in the compilation, we don't always
1230 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1231 (it might depend on the size of the outgoing parameter lists, for
1232 example), so we must preventively align the value. We leave space
1233 in SIZE for the hole that might result from the alignment operation. */
1234
1235 extra = (required_align - BITS_PER_UNIT) / BITS_PER_UNIT;
1236 size = plus_constant (Pmode, size, extra);
1237 size = force_operand (size, NULL_RTX);
1238
1239 if (flag_stack_usage_info && pstack_usage_size)
1240 *pstack_usage_size += extra;
1241
1242 if (extra && size_align > BITS_PER_UNIT)
1243 size_align = BITS_PER_UNIT;
1244
1245 /* Round the size to a multiple of the required stack alignment.
1246 Since the stack is presumed to be rounded before this allocation,
1247 this will maintain the required alignment.
1248
1249 If the stack grows downward, we could save an insn by subtracting
1250 SIZE from the stack pointer and then aligning the stack pointer.
1251 The problem with this is that the stack pointer may be unaligned
1252 between the execution of the subtraction and alignment insns and
1253 some machines do not allow this. Even on those that do, some
1254 signal handlers malfunction if a signal should occur between those
1255 insns. Since this is an extremely rare event, we have no reliable
1256 way of knowing which systems have this problem. So we avoid even
1257 momentarily mis-aligning the stack. */
1258 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1259 {
1260 size = round_push (size);
1261
1262 if (flag_stack_usage_info && pstack_usage_size)
1263 {
1264 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1265 *pstack_usage_size =
1266 (*pstack_usage_size + align - 1) / align * align;
1267 }
1268 }
1269
1270 *psize = size;
1271 }
1272
1273 /* Return an rtx representing the address of an area of memory dynamically
1274 pushed on the stack.
1275
1276 Any required stack pointer alignment is preserved.
1277
1278 SIZE is an rtx representing the size of the area.
1279
1280 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1281 parameter may be zero. If so, a proper value will be extracted
1282 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1283
1284 REQUIRED_ALIGN is the alignment (in bits) required for the region
1285 of memory.
1286
1287 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1288 stack space allocated by the generated code cannot be added with itself
1289 in the course of the execution of the function. It is always safe to
1290 pass FALSE here and the following criterion is sufficient in order to
1291 pass TRUE: every path in the CFG that starts at the allocation point and
1292 loops to it executes the associated deallocation code. */
1293
1294 rtx
1295 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1296 unsigned required_align, bool cannot_accumulate)
1297 {
1298 HOST_WIDE_INT stack_usage_size = -1;
1299 rtx_code_label *final_label;
1300 rtx final_target, target;
1301
1302 /* If we're asking for zero bytes, it doesn't matter what we point
1303 to since we can't dereference it. But return a reasonable
1304 address anyway. */
1305 if (size == const0_rtx)
1306 return virtual_stack_dynamic_rtx;
1307
1308 /* Otherwise, show we're calling alloca or equivalent. */
1309 cfun->calls_alloca = 1;
1310
1311 /* If stack usage info is requested, look into the size we are passed.
1312 We need to do so this early to avoid the obfuscation that may be
1313 introduced later by the various alignment operations. */
1314 if (flag_stack_usage_info)
1315 {
1316 if (CONST_INT_P (size))
1317 stack_usage_size = INTVAL (size);
1318 else if (REG_P (size))
1319 {
1320 /* Look into the last emitted insn and see if we can deduce
1321 something for the register. */
1322 rtx_insn *insn;
1323 rtx set, note;
1324 insn = get_last_insn ();
1325 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1326 {
1327 if (CONST_INT_P (SET_SRC (set)))
1328 stack_usage_size = INTVAL (SET_SRC (set));
1329 else if ((note = find_reg_equal_equiv_note (insn))
1330 && CONST_INT_P (XEXP (note, 0)))
1331 stack_usage_size = INTVAL (XEXP (note, 0));
1332 }
1333 }
1334
1335 /* If the size is not constant, we can't say anything. */
1336 if (stack_usage_size == -1)
1337 {
1338 current_function_has_unbounded_dynamic_stack_size = 1;
1339 stack_usage_size = 0;
1340 }
1341 }
1342
1343 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1344
1345 target = gen_reg_rtx (Pmode);
1346
1347 /* The size is supposed to be fully adjusted at this point so record it
1348 if stack usage info is requested. */
1349 if (flag_stack_usage_info)
1350 {
1351 current_function_dynamic_stack_size += stack_usage_size;
1352
1353 /* ??? This is gross but the only safe stance in the absence
1354 of stack usage oriented flow analysis. */
1355 if (!cannot_accumulate)
1356 current_function_has_unbounded_dynamic_stack_size = 1;
1357 }
1358
1359 final_label = NULL;
1360 final_target = NULL_RTX;
1361
1362 /* If we are splitting the stack, we need to ask the backend whether
1363 there is enough room on the current stack. If there isn't, or if
1364 the backend doesn't know how to tell is, then we need to call a
1365 function to allocate memory in some other way. This memory will
1366 be released when we release the current stack segment. The
1367 effect is that stack allocation becomes less efficient, but at
1368 least it doesn't cause a stack overflow. */
1369 if (flag_split_stack)
1370 {
1371 rtx_code_label *available_label;
1372 rtx ask, space, func;
1373
1374 available_label = NULL;
1375
1376 if (targetm.have_split_stack_space_check ())
1377 {
1378 available_label = gen_label_rtx ();
1379
1380 /* This instruction will branch to AVAILABLE_LABEL if there
1381 are SIZE bytes available on the stack. */
1382 emit_insn (targetm.gen_split_stack_space_check
1383 (size, available_label));
1384 }
1385
1386 /* The __morestack_allocate_stack_space function will allocate
1387 memory using malloc. If the alignment of the memory returned
1388 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1389 make sure we allocate enough space. */
1390 if (MALLOC_ABI_ALIGNMENT >= required_align)
1391 ask = size;
1392 else
1393 ask = expand_binop (Pmode, add_optab, size,
1394 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1395 Pmode),
1396 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1397
1398 func = init_one_libfunc ("__morestack_allocate_stack_space");
1399
1400 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1401 1, ask, Pmode);
1402
1403 if (available_label == NULL_RTX)
1404 return space;
1405
1406 final_target = gen_reg_rtx (Pmode);
1407
1408 emit_move_insn (final_target, space);
1409
1410 final_label = gen_label_rtx ();
1411 emit_jump (final_label);
1412
1413 emit_label (available_label);
1414 }
1415
1416 do_pending_stack_adjust ();
1417
1418 /* We ought to be called always on the toplevel and stack ought to be aligned
1419 properly. */
1420 gcc_assert (!(stack_pointer_delta
1421 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1422
1423 /* If needed, check that we have the required amount of stack. Take into
1424 account what has already been checked. */
1425 if (STACK_CHECK_MOVING_SP)
1426 ;
1427 else if (flag_stack_check == GENERIC_STACK_CHECK)
1428 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1429 size);
1430 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1431 probe_stack_range (STACK_CHECK_PROTECT, size);
1432
1433 /* Don't let anti_adjust_stack emit notes. */
1434 suppress_reg_args_size = true;
1435
1436 /* Perform the required allocation from the stack. Some systems do
1437 this differently than simply incrementing/decrementing from the
1438 stack pointer, such as acquiring the space by calling malloc(). */
1439 if (targetm.have_allocate_stack ())
1440 {
1441 struct expand_operand ops[2];
1442 /* We don't have to check against the predicate for operand 0 since
1443 TARGET is known to be a pseudo of the proper mode, which must
1444 be valid for the operand. */
1445 create_fixed_operand (&ops[0], target);
1446 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1447 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1448 }
1449 else
1450 {
1451 int saved_stack_pointer_delta;
1452
1453 if (!STACK_GROWS_DOWNWARD)
1454 emit_move_insn (target, virtual_stack_dynamic_rtx);
1455
1456 /* Check stack bounds if necessary. */
1457 if (crtl->limit_stack)
1458 {
1459 rtx available;
1460 rtx_code_label *space_available = gen_label_rtx ();
1461 if (STACK_GROWS_DOWNWARD)
1462 available = expand_binop (Pmode, sub_optab,
1463 stack_pointer_rtx, stack_limit_rtx,
1464 NULL_RTX, 1, OPTAB_WIDEN);
1465 else
1466 available = expand_binop (Pmode, sub_optab,
1467 stack_limit_rtx, stack_pointer_rtx,
1468 NULL_RTX, 1, OPTAB_WIDEN);
1469
1470 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1471 space_available);
1472 if (targetm.have_trap ())
1473 emit_insn (targetm.gen_trap ());
1474 else
1475 error ("stack limits not supported on this target");
1476 emit_barrier ();
1477 emit_label (space_available);
1478 }
1479
1480 saved_stack_pointer_delta = stack_pointer_delta;
1481
1482 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1483 anti_adjust_stack_and_probe (size, false);
1484 else
1485 anti_adjust_stack (size);
1486
1487 /* Even if size is constant, don't modify stack_pointer_delta.
1488 The constant size alloca should preserve
1489 crtl->preferred_stack_boundary alignment. */
1490 stack_pointer_delta = saved_stack_pointer_delta;
1491
1492 if (STACK_GROWS_DOWNWARD)
1493 emit_move_insn (target, virtual_stack_dynamic_rtx);
1494 }
1495
1496 suppress_reg_args_size = false;
1497
1498 /* Finish up the split stack handling. */
1499 if (final_label != NULL_RTX)
1500 {
1501 gcc_assert (flag_split_stack);
1502 emit_move_insn (final_target, target);
1503 emit_label (final_label);
1504 target = final_target;
1505 }
1506
1507 target = align_dynamic_address (target, required_align);
1508
1509 /* Now that we've committed to a return value, mark its alignment. */
1510 mark_reg_pointer (target, required_align);
1511
1512 /* Record the new stack level. */
1513 record_new_stack_level ();
1514
1515 return target;
1516 }
1517
1518 /* Return an rtx representing the address of an area of memory already
1519 statically pushed onto the stack in the virtual stack vars area. (It is
1520 assumed that the area is allocated in the function prologue.)
1521
1522 Any required stack pointer alignment is preserved.
1523
1524 OFFSET is the offset of the area into the virtual stack vars area.
1525
1526 REQUIRED_ALIGN is the alignment (in bits) required for the region
1527 of memory. */
1528
1529 rtx
1530 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align)
1531 {
1532 rtx target;
1533
1534 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1535 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1536
1537 target = gen_reg_rtx (Pmode);
1538 emit_move_insn (target, virtual_stack_vars_rtx);
1539 target = expand_binop (Pmode, add_optab, target,
1540 gen_int_mode (offset, Pmode),
1541 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1542 target = align_dynamic_address (target, required_align);
1543
1544 /* Now that we've committed to a return value, mark its alignment. */
1545 mark_reg_pointer (target, required_align);
1546
1547 return target;
1548 }
1549 \f
1550 /* A front end may want to override GCC's stack checking by providing a
1551 run-time routine to call to check the stack, so provide a mechanism for
1552 calling that routine. */
1553
1554 static GTY(()) rtx stack_check_libfunc;
1555
1556 void
1557 set_stack_check_libfunc (const char *libfunc_name)
1558 {
1559 gcc_assert (stack_check_libfunc == NULL_RTX);
1560 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1561 }
1562 \f
1563 /* Emit one stack probe at ADDRESS, an address within the stack. */
1564
1565 void
1566 emit_stack_probe (rtx address)
1567 {
1568 if (targetm.have_probe_stack_address ())
1569 emit_insn (targetm.gen_probe_stack_address (address));
1570 else
1571 {
1572 rtx memref = gen_rtx_MEM (word_mode, address);
1573
1574 MEM_VOLATILE_P (memref) = 1;
1575
1576 /* See if we have an insn to probe the stack. */
1577 if (targetm.have_probe_stack ())
1578 emit_insn (targetm.gen_probe_stack (memref));
1579 else
1580 emit_move_insn (memref, const0_rtx);
1581 }
1582 }
1583
1584 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1585 FIRST is a constant and size is a Pmode RTX. These are offsets from
1586 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1587 or subtract them from the stack pointer. */
1588
1589 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1590
1591 #if STACK_GROWS_DOWNWARD
1592 #define STACK_GROW_OP MINUS
1593 #define STACK_GROW_OPTAB sub_optab
1594 #define STACK_GROW_OFF(off) -(off)
1595 #else
1596 #define STACK_GROW_OP PLUS
1597 #define STACK_GROW_OPTAB add_optab
1598 #define STACK_GROW_OFF(off) (off)
1599 #endif
1600
1601 void
1602 probe_stack_range (HOST_WIDE_INT first, rtx size)
1603 {
1604 /* First ensure SIZE is Pmode. */
1605 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1606 size = convert_to_mode (Pmode, size, 1);
1607
1608 /* Next see if we have a function to check the stack. */
1609 if (stack_check_libfunc)
1610 {
1611 rtx addr = memory_address (Pmode,
1612 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1613 stack_pointer_rtx,
1614 plus_constant (Pmode,
1615 size, first)));
1616 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr,
1617 Pmode);
1618 }
1619
1620 /* Next see if we have an insn to check the stack. */
1621 else if (targetm.have_check_stack ())
1622 {
1623 struct expand_operand ops[1];
1624 rtx addr = memory_address (Pmode,
1625 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1626 stack_pointer_rtx,
1627 plus_constant (Pmode,
1628 size, first)));
1629 bool success;
1630 create_input_operand (&ops[0], addr, Pmode);
1631 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1632 gcc_assert (success);
1633 }
1634
1635 /* Otherwise we have to generate explicit probes. If we have a constant
1636 small number of them to generate, that's the easy case. */
1637 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1638 {
1639 HOST_WIDE_INT isize = INTVAL (size), i;
1640 rtx addr;
1641
1642 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1643 it exceeds SIZE. If only one probe is needed, this will not
1644 generate any code. Then probe at FIRST + SIZE. */
1645 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1646 {
1647 addr = memory_address (Pmode,
1648 plus_constant (Pmode, stack_pointer_rtx,
1649 STACK_GROW_OFF (first + i)));
1650 emit_stack_probe (addr);
1651 }
1652
1653 addr = memory_address (Pmode,
1654 plus_constant (Pmode, stack_pointer_rtx,
1655 STACK_GROW_OFF (first + isize)));
1656 emit_stack_probe (addr);
1657 }
1658
1659 /* In the variable case, do the same as above, but in a loop. Note that we
1660 must be extra careful with variables wrapping around because we might be
1661 at the very top (or the very bottom) of the address space and we have to
1662 be able to handle this case properly; in particular, we use an equality
1663 test for the loop condition. */
1664 else
1665 {
1666 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1667 rtx_code_label *loop_lab = gen_label_rtx ();
1668 rtx_code_label *end_lab = gen_label_rtx ();
1669
1670 /* Step 1: round SIZE to the previous multiple of the interval. */
1671
1672 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1673 rounded_size
1674 = simplify_gen_binary (AND, Pmode, size,
1675 gen_int_mode (-PROBE_INTERVAL, Pmode));
1676 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1677
1678
1679 /* Step 2: compute initial and final value of the loop counter. */
1680
1681 /* TEST_ADDR = SP + FIRST. */
1682 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1683 stack_pointer_rtx,
1684 gen_int_mode (first, Pmode)),
1685 NULL_RTX);
1686
1687 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1688 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1689 test_addr,
1690 rounded_size_op), NULL_RTX);
1691
1692
1693 /* Step 3: the loop
1694
1695 while (TEST_ADDR != LAST_ADDR)
1696 {
1697 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1698 probe at TEST_ADDR
1699 }
1700
1701 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1702 until it is equal to ROUNDED_SIZE. */
1703
1704 emit_label (loop_lab);
1705
1706 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1707 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1708 end_lab);
1709
1710 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1711 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1712 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1713 1, OPTAB_WIDEN);
1714
1715 gcc_assert (temp == test_addr);
1716
1717 /* Probe at TEST_ADDR. */
1718 emit_stack_probe (test_addr);
1719
1720 emit_jump (loop_lab);
1721
1722 emit_label (end_lab);
1723
1724
1725 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1726 that SIZE is equal to ROUNDED_SIZE. */
1727
1728 /* TEMP = SIZE - ROUNDED_SIZE. */
1729 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1730 if (temp != const0_rtx)
1731 {
1732 rtx addr;
1733
1734 if (CONST_INT_P (temp))
1735 {
1736 /* Use [base + disp} addressing mode if supported. */
1737 HOST_WIDE_INT offset = INTVAL (temp);
1738 addr = memory_address (Pmode,
1739 plus_constant (Pmode, last_addr,
1740 STACK_GROW_OFF (offset)));
1741 }
1742 else
1743 {
1744 /* Manual CSE if the difference is not known at compile-time. */
1745 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1746 addr = memory_address (Pmode,
1747 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1748 last_addr, temp));
1749 }
1750
1751 emit_stack_probe (addr);
1752 }
1753 }
1754
1755 /* Make sure nothing is scheduled before we are done. */
1756 emit_insn (gen_blockage ());
1757 }
1758
1759 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1760 while probing it. This pushes when SIZE is positive. SIZE need not
1761 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1762 by plus SIZE at the end. */
1763
1764 void
1765 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1766 {
1767 /* We skip the probe for the first interval + a small dope of 4 words and
1768 probe that many bytes past the specified size to maintain a protection
1769 area at the botton of the stack. */
1770 const int dope = 4 * UNITS_PER_WORD;
1771
1772 /* First ensure SIZE is Pmode. */
1773 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1774 size = convert_to_mode (Pmode, size, 1);
1775
1776 /* If we have a constant small number of probes to generate, that's the
1777 easy case. */
1778 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1779 {
1780 HOST_WIDE_INT isize = INTVAL (size), i;
1781 bool first_probe = true;
1782
1783 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1784 values of N from 1 until it exceeds SIZE. If only one probe is
1785 needed, this will not generate any code. Then adjust and probe
1786 to PROBE_INTERVAL + SIZE. */
1787 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1788 {
1789 if (first_probe)
1790 {
1791 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1792 first_probe = false;
1793 }
1794 else
1795 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1796 emit_stack_probe (stack_pointer_rtx);
1797 }
1798
1799 if (first_probe)
1800 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1801 else
1802 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1803 emit_stack_probe (stack_pointer_rtx);
1804 }
1805
1806 /* In the variable case, do the same as above, but in a loop. Note that we
1807 must be extra careful with variables wrapping around because we might be
1808 at the very top (or the very bottom) of the address space and we have to
1809 be able to handle this case properly; in particular, we use an equality
1810 test for the loop condition. */
1811 else
1812 {
1813 rtx rounded_size, rounded_size_op, last_addr, temp;
1814 rtx_code_label *loop_lab = gen_label_rtx ();
1815 rtx_code_label *end_lab = gen_label_rtx ();
1816
1817
1818 /* Step 1: round SIZE to the previous multiple of the interval. */
1819
1820 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1821 rounded_size
1822 = simplify_gen_binary (AND, Pmode, size,
1823 gen_int_mode (-PROBE_INTERVAL, Pmode));
1824 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1825
1826
1827 /* Step 2: compute initial and final value of the loop counter. */
1828
1829 /* SP = SP_0 + PROBE_INTERVAL. */
1830 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1831
1832 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1833 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1834 stack_pointer_rtx,
1835 rounded_size_op), NULL_RTX);
1836
1837
1838 /* Step 3: the loop
1839
1840 while (SP != LAST_ADDR)
1841 {
1842 SP = SP + PROBE_INTERVAL
1843 probe at SP
1844 }
1845
1846 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1847 values of N from 1 until it is equal to ROUNDED_SIZE. */
1848
1849 emit_label (loop_lab);
1850
1851 /* Jump to END_LAB if SP == LAST_ADDR. */
1852 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1853 Pmode, 1, end_lab);
1854
1855 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1856 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1857 emit_stack_probe (stack_pointer_rtx);
1858
1859 emit_jump (loop_lab);
1860
1861 emit_label (end_lab);
1862
1863
1864 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1865 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1866
1867 /* TEMP = SIZE - ROUNDED_SIZE. */
1868 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1869 if (temp != const0_rtx)
1870 {
1871 /* Manual CSE if the difference is not known at compile-time. */
1872 if (GET_CODE (temp) != CONST_INT)
1873 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1874 anti_adjust_stack (temp);
1875 emit_stack_probe (stack_pointer_rtx);
1876 }
1877 }
1878
1879 /* Adjust back and account for the additional first interval. */
1880 if (adjust_back)
1881 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1882 else
1883 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1884 }
1885
1886 /* Return an rtx representing the register or memory location
1887 in which a scalar value of data type VALTYPE
1888 was returned by a function call to function FUNC.
1889 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1890 function is known, otherwise 0.
1891 OUTGOING is 1 if on a machine with register windows this function
1892 should return the register in which the function will put its result
1893 and 0 otherwise. */
1894
1895 rtx
1896 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1897 int outgoing ATTRIBUTE_UNUSED)
1898 {
1899 rtx val;
1900
1901 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1902
1903 if (REG_P (val)
1904 && GET_MODE (val) == BLKmode)
1905 {
1906 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1907 machine_mode tmpmode;
1908
1909 /* int_size_in_bytes can return -1. We don't need a check here
1910 since the value of bytes will then be large enough that no
1911 mode will match anyway. */
1912
1913 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1914 tmpmode != VOIDmode;
1915 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1916 {
1917 /* Have we found a large enough mode? */
1918 if (GET_MODE_SIZE (tmpmode) >= bytes)
1919 break;
1920 }
1921
1922 /* No suitable mode found. */
1923 gcc_assert (tmpmode != VOIDmode);
1924
1925 PUT_MODE (val, tmpmode);
1926 }
1927 return val;
1928 }
1929
1930 /* Return an rtx representing the register or memory location
1931 in which a scalar value of mode MODE was returned by a library call. */
1932
1933 rtx
1934 hard_libcall_value (machine_mode mode, rtx fun)
1935 {
1936 return targetm.calls.libcall_value (mode, fun);
1937 }
1938
1939 /* Look up the tree code for a given rtx code
1940 to provide the arithmetic operation for real_arithmetic.
1941 The function returns an int because the caller may not know
1942 what `enum tree_code' means. */
1943
1944 int
1945 rtx_to_tree_code (enum rtx_code code)
1946 {
1947 enum tree_code tcode;
1948
1949 switch (code)
1950 {
1951 case PLUS:
1952 tcode = PLUS_EXPR;
1953 break;
1954 case MINUS:
1955 tcode = MINUS_EXPR;
1956 break;
1957 case MULT:
1958 tcode = MULT_EXPR;
1959 break;
1960 case DIV:
1961 tcode = RDIV_EXPR;
1962 break;
1963 case SMIN:
1964 tcode = MIN_EXPR;
1965 break;
1966 case SMAX:
1967 tcode = MAX_EXPR;
1968 break;
1969 default:
1970 tcode = LAST_AND_UNUSED_TREE_CODE;
1971 break;
1972 }
1973 return ((int) tcode);
1974 }
1975
1976 #include "gt-explow.h"