]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
Remove experimental hunk that wasn't supposed to be checked in.
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 91, 94-97, 1998, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "toplev.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "expr.h"
31 #include "hard-reg-set.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "insn-flags.h"
35 #include "insn-codes.h"
36
37 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
38 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
39 #endif
40
41 static rtx break_out_memory_refs PROTO((rtx));
42 static void emit_stack_probe PROTO((rtx));
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
48 trunc_int_for_mode (c, mode)
49 HOST_WIDE_INT c;
50 enum machine_mode mode;
51 {
52 int width = GET_MODE_BITSIZE (mode);
53
54 /* We clear out all bits that don't belong in MODE, unless they and our
55 sign bit are all one. So we get either a reasonable negative
56 value or a reasonable unsigned value. */
57
58 if (width < HOST_BITS_PER_WIDE_INT
59 && ((c & ((HOST_WIDE_INT) (-1) << (width - 1)))
60 != ((HOST_WIDE_INT) (-1) << (width - 1))))
61 c &= ((HOST_WIDE_INT) 1 << width) - 1;
62
63 /* If this would be an entire word for the target, but is not for
64 the host, then sign-extend on the host so that the number will look
65 the same way on the host that it would on the target.
66
67 For example, when building a 64 bit alpha hosted 32 bit sparc
68 targeted compiler, then we want the 32 bit unsigned value -1 to be
69 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
70 The later confuses the sparc backend. */
71
72 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT
73 && BITS_PER_WORD == width
74 && (c & ((HOST_WIDE_INT) 1 << (width - 1))))
75 c |= ((HOST_WIDE_INT) (-1) << width);
76
77 return c;
78 }
79
80 /* Return an rtx for the sum of X and the integer C.
81
82 This function should be used via the `plus_constant' macro. */
83
84 rtx
85 plus_constant_wide (x, c)
86 register rtx x;
87 register HOST_WIDE_INT c;
88 {
89 register RTX_CODE code;
90 register enum machine_mode mode;
91 register rtx tem;
92 int all_constant = 0;
93
94 if (c == 0)
95 return x;
96
97 restart:
98
99 code = GET_CODE (x);
100 mode = GET_MODE (x);
101 switch (code)
102 {
103 case CONST_INT:
104 return GEN_INT (INTVAL (x) + c);
105
106 case CONST_DOUBLE:
107 {
108 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
109 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
110 HOST_WIDE_INT l2 = c;
111 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
112 HOST_WIDE_INT lv, hv;
113
114 add_double (l1, h1, l2, h2, &lv, &hv);
115
116 return immed_double_const (lv, hv, VOIDmode);
117 }
118
119 case MEM:
120 /* If this is a reference to the constant pool, try replacing it with
121 a reference to a new constant. If the resulting address isn't
122 valid, don't return it because we have no way to validize it. */
123 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
124 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
125 {
126 /* Any rtl we create here must go in a saveable obstack, since
127 we might have been called from within combine. */
128 push_obstacks_nochange ();
129 rtl_in_saveable_obstack ();
130 tem
131 = force_const_mem (GET_MODE (x),
132 plus_constant (get_pool_constant (XEXP (x, 0)),
133 c));
134 pop_obstacks ();
135 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
136 return tem;
137 }
138 break;
139
140 case CONST:
141 /* If adding to something entirely constant, set a flag
142 so that we can add a CONST around the result. */
143 x = XEXP (x, 0);
144 all_constant = 1;
145 goto restart;
146
147 case SYMBOL_REF:
148 case LABEL_REF:
149 all_constant = 1;
150 break;
151
152 case PLUS:
153 /* The interesting case is adding the integer to a sum.
154 Look for constant term in the sum and combine
155 with C. For an integer constant term, we make a combined
156 integer. For a constant term that is not an explicit integer,
157 we cannot really combine, but group them together anyway.
158
159 Restart or use a recursive call in case the remaining operand is
160 something that we handle specially, such as a SYMBOL_REF.
161
162 We may not immediately return from the recursive call here, lest
163 all_constant gets lost. */
164
165 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
166 {
167 c += INTVAL (XEXP (x, 1));
168
169 if (GET_MODE (x) != VOIDmode)
170 c = trunc_int_for_mode (c, GET_MODE (x));
171
172 x = XEXP (x, 0);
173 goto restart;
174 }
175 else if (CONSTANT_P (XEXP (x, 0)))
176 {
177 x = gen_rtx_PLUS (mode,
178 plus_constant (XEXP (x, 0), c),
179 XEXP (x, 1));
180 c = 0;
181 }
182 else if (CONSTANT_P (XEXP (x, 1)))
183 {
184 x = gen_rtx_PLUS (mode,
185 XEXP (x, 0),
186 plus_constant (XEXP (x, 1), c));
187 c = 0;
188 }
189 break;
190
191 default:
192 break;
193 }
194
195 if (c != 0)
196 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
197
198 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
199 return x;
200 else if (all_constant)
201 return gen_rtx_CONST (mode, x);
202 else
203 return x;
204 }
205
206 /* This is the same as `plus_constant', except that it handles LO_SUM.
207
208 This function should be used via the `plus_constant_for_output' macro. */
209
210 rtx
211 plus_constant_for_output_wide (x, c)
212 register rtx x;
213 register HOST_WIDE_INT c;
214 {
215 register enum machine_mode mode = GET_MODE (x);
216
217 if (GET_CODE (x) == LO_SUM)
218 return gen_rtx_LO_SUM (mode, XEXP (x, 0),
219 plus_constant_for_output (XEXP (x, 1), c));
220
221 else
222 return plus_constant (x, c);
223 }
224 \f
225 /* If X is a sum, return a new sum like X but lacking any constant terms.
226 Add all the removed constant terms into *CONSTPTR.
227 X itself is not altered. The result != X if and only if
228 it is not isomorphic to X. */
229
230 rtx
231 eliminate_constant_term (x, constptr)
232 rtx x;
233 rtx *constptr;
234 {
235 register rtx x0, x1;
236 rtx tem;
237
238 if (GET_CODE (x) != PLUS)
239 return x;
240
241 /* First handle constants appearing at this level explicitly. */
242 if (GET_CODE (XEXP (x, 1)) == CONST_INT
243 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
244 XEXP (x, 1)))
245 && GET_CODE (tem) == CONST_INT)
246 {
247 *constptr = tem;
248 return eliminate_constant_term (XEXP (x, 0), constptr);
249 }
250
251 tem = const0_rtx;
252 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
253 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
254 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
255 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
256 *constptr, tem))
257 && GET_CODE (tem) == CONST_INT)
258 {
259 *constptr = tem;
260 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
261 }
262
263 return x;
264 }
265
266 /* Returns the insn that next references REG after INSN, or 0
267 if REG is clobbered before next referenced or we cannot find
268 an insn that references REG in a straight-line piece of code. */
269
270 rtx
271 find_next_ref (reg, insn)
272 rtx reg;
273 rtx insn;
274 {
275 rtx next;
276
277 for (insn = NEXT_INSN (insn); insn; insn = next)
278 {
279 next = NEXT_INSN (insn);
280 if (GET_CODE (insn) == NOTE)
281 continue;
282 if (GET_CODE (insn) == CODE_LABEL
283 || GET_CODE (insn) == BARRIER)
284 return 0;
285 if (GET_CODE (insn) == INSN
286 || GET_CODE (insn) == JUMP_INSN
287 || GET_CODE (insn) == CALL_INSN)
288 {
289 if (reg_set_p (reg, insn))
290 return 0;
291 if (reg_mentioned_p (reg, PATTERN (insn)))
292 return insn;
293 if (GET_CODE (insn) == JUMP_INSN)
294 {
295 if (simplejump_p (insn))
296 next = JUMP_LABEL (insn);
297 else
298 return 0;
299 }
300 if (GET_CODE (insn) == CALL_INSN
301 && REGNO (reg) < FIRST_PSEUDO_REGISTER
302 && call_used_regs[REGNO (reg)])
303 return 0;
304 }
305 else
306 abort ();
307 }
308 return 0;
309 }
310
311 /* Return an rtx for the size in bytes of the value of EXP. */
312
313 rtx
314 expr_size (exp)
315 tree exp;
316 {
317 tree size = size_in_bytes (TREE_TYPE (exp));
318
319 if (TREE_CODE (size) != INTEGER_CST
320 && contains_placeholder_p (size))
321 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
322
323 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
324 EXPAND_MEMORY_USE_BAD);
325 }
326 \f
327 /* Return a copy of X in which all memory references
328 and all constants that involve symbol refs
329 have been replaced with new temporary registers.
330 Also emit code to load the memory locations and constants
331 into those registers.
332
333 If X contains no such constants or memory references,
334 X itself (not a copy) is returned.
335
336 If a constant is found in the address that is not a legitimate constant
337 in an insn, it is left alone in the hope that it might be valid in the
338 address.
339
340 X may contain no arithmetic except addition, subtraction and multiplication.
341 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
342
343 static rtx
344 break_out_memory_refs (x)
345 register rtx x;
346 {
347 if (GET_CODE (x) == MEM
348 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
349 && GET_MODE (x) != VOIDmode))
350 x = force_reg (GET_MODE (x), x);
351 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
352 || GET_CODE (x) == MULT)
353 {
354 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
355 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
356
357 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
358 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
359 }
360
361 return x;
362 }
363
364 #ifdef POINTERS_EXTEND_UNSIGNED
365
366 /* Given X, a memory address in ptr_mode, convert it to an address
367 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
368 the fact that pointers are not allowed to overflow by commuting arithmetic
369 operations over conversions so that address arithmetic insns can be
370 used. */
371
372 rtx
373 convert_memory_address (to_mode, x)
374 enum machine_mode to_mode;
375 rtx x;
376 {
377 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
378 rtx temp;
379
380 /* Here we handle some special cases. If none of them apply, fall through
381 to the default case. */
382 switch (GET_CODE (x))
383 {
384 case CONST_INT:
385 case CONST_DOUBLE:
386 return x;
387
388 case LABEL_REF:
389 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
390 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
391 return temp;
392
393 case SYMBOL_REF:
394 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
395 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
396 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
397 return temp;
398
399 case CONST:
400 return gen_rtx_CONST (to_mode,
401 convert_memory_address (to_mode, XEXP (x, 0)));
402
403 case PLUS:
404 case MULT:
405 /* For addition the second operand is a small constant, we can safely
406 permute the conversion and addition operation. We can always safely
407 permute them if we are making the address narrower. In addition,
408 always permute the operations if this is a constant. */
409 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
410 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
411 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
412 || CONSTANT_P (XEXP (x, 0)))))
413 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
414 convert_memory_address (to_mode, XEXP (x, 0)),
415 convert_memory_address (to_mode, XEXP (x, 1)));
416 break;
417
418 default:
419 break;
420 }
421
422 return convert_modes (to_mode, from_mode,
423 x, POINTERS_EXTEND_UNSIGNED);
424 }
425 #endif
426
427 /* Given a memory address or facsimile X, construct a new address,
428 currently equivalent, that is stable: future stores won't change it.
429
430 X must be composed of constants, register and memory references
431 combined with addition, subtraction and multiplication:
432 in other words, just what you can get from expand_expr if sum_ok is 1.
433
434 Works by making copies of all regs and memory locations used
435 by X and combining them the same way X does.
436 You could also stabilize the reference to this address
437 by copying the address to a register with copy_to_reg;
438 but then you wouldn't get indexed addressing in the reference. */
439
440 rtx
441 copy_all_regs (x)
442 register rtx x;
443 {
444 if (GET_CODE (x) == REG)
445 {
446 if (REGNO (x) != FRAME_POINTER_REGNUM
447 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
448 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
449 #endif
450 )
451 x = copy_to_reg (x);
452 }
453 else if (GET_CODE (x) == MEM)
454 x = copy_to_reg (x);
455 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
456 || GET_CODE (x) == MULT)
457 {
458 register rtx op0 = copy_all_regs (XEXP (x, 0));
459 register rtx op1 = copy_all_regs (XEXP (x, 1));
460 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
461 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
462 }
463 return x;
464 }
465 \f
466 /* Return something equivalent to X but valid as a memory address
467 for something of mode MODE. When X is not itself valid, this
468 works by copying X or subexpressions of it into registers. */
469
470 rtx
471 memory_address (mode, x)
472 enum machine_mode mode;
473 register rtx x;
474 {
475 register rtx oldx = x;
476
477 if (GET_CODE (x) == ADDRESSOF)
478 return x;
479
480 #ifdef POINTERS_EXTEND_UNSIGNED
481 if (GET_MODE (x) == ptr_mode)
482 x = convert_memory_address (Pmode, x);
483 #endif
484
485 /* By passing constant addresses thru registers
486 we get a chance to cse them. */
487 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
488 x = force_reg (Pmode, x);
489
490 /* Accept a QUEUED that refers to a REG
491 even though that isn't a valid address.
492 On attempting to put this in an insn we will call protect_from_queue
493 which will turn it into a REG, which is valid. */
494 else if (GET_CODE (x) == QUEUED
495 && GET_CODE (QUEUED_VAR (x)) == REG)
496 ;
497
498 /* We get better cse by rejecting indirect addressing at this stage.
499 Let the combiner create indirect addresses where appropriate.
500 For now, generate the code so that the subexpressions useful to share
501 are visible. But not if cse won't be done! */
502 else
503 {
504 if (! cse_not_expected && GET_CODE (x) != REG)
505 x = break_out_memory_refs (x);
506
507 /* At this point, any valid address is accepted. */
508 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
509
510 /* If it was valid before but breaking out memory refs invalidated it,
511 use it the old way. */
512 if (memory_address_p (mode, oldx))
513 goto win2;
514
515 /* Perform machine-dependent transformations on X
516 in certain cases. This is not necessary since the code
517 below can handle all possible cases, but machine-dependent
518 transformations can make better code. */
519 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
520
521 /* PLUS and MULT can appear in special ways
522 as the result of attempts to make an address usable for indexing.
523 Usually they are dealt with by calling force_operand, below.
524 But a sum containing constant terms is special
525 if removing them makes the sum a valid address:
526 then we generate that address in a register
527 and index off of it. We do this because it often makes
528 shorter code, and because the addresses thus generated
529 in registers often become common subexpressions. */
530 if (GET_CODE (x) == PLUS)
531 {
532 rtx constant_term = const0_rtx;
533 rtx y = eliminate_constant_term (x, &constant_term);
534 if (constant_term == const0_rtx
535 || ! memory_address_p (mode, y))
536 x = force_operand (x, NULL_RTX);
537 else
538 {
539 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
540 if (! memory_address_p (mode, y))
541 x = force_operand (x, NULL_RTX);
542 else
543 x = y;
544 }
545 }
546
547 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
548 x = force_operand (x, NULL_RTX);
549
550 /* If we have a register that's an invalid address,
551 it must be a hard reg of the wrong class. Copy it to a pseudo. */
552 else if (GET_CODE (x) == REG)
553 x = copy_to_reg (x);
554
555 /* Last resort: copy the value to a register, since
556 the register is a valid address. */
557 else
558 x = force_reg (Pmode, x);
559
560 goto done;
561
562 win2:
563 x = oldx;
564 win:
565 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
566 /* Don't copy an addr via a reg if it is one of our stack slots. */
567 && ! (GET_CODE (x) == PLUS
568 && (XEXP (x, 0) == virtual_stack_vars_rtx
569 || XEXP (x, 0) == virtual_incoming_args_rtx)))
570 {
571 if (general_operand (x, Pmode))
572 x = force_reg (Pmode, x);
573 else
574 x = force_operand (x, NULL_RTX);
575 }
576 }
577
578 done:
579
580 /* If we didn't change the address, we are done. Otherwise, mark
581 a reg as a pointer if we have REG or REG + CONST_INT. */
582 if (oldx == x)
583 return x;
584 else if (GET_CODE (x) == REG)
585 mark_reg_pointer (x, 1);
586 else if (GET_CODE (x) == PLUS
587 && GET_CODE (XEXP (x, 0)) == REG
588 && GET_CODE (XEXP (x, 1)) == CONST_INT)
589 mark_reg_pointer (XEXP (x, 0), 1);
590
591 /* OLDX may have been the address on a temporary. Update the address
592 to indicate that X is now used. */
593 update_temp_slot_address (oldx, x);
594
595 return x;
596 }
597
598 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
599
600 rtx
601 memory_address_noforce (mode, x)
602 enum machine_mode mode;
603 rtx x;
604 {
605 int ambient_force_addr = flag_force_addr;
606 rtx val;
607
608 flag_force_addr = 0;
609 val = memory_address (mode, x);
610 flag_force_addr = ambient_force_addr;
611 return val;
612 }
613
614 /* Convert a mem ref into one with a valid memory address.
615 Pass through anything else unchanged. */
616
617 rtx
618 validize_mem (ref)
619 rtx ref;
620 {
621 if (GET_CODE (ref) != MEM)
622 return ref;
623 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
624 return ref;
625 /* Don't alter REF itself, since that is probably a stack slot. */
626 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
627 }
628 \f
629 /* Return a modified copy of X with its memory address copied
630 into a temporary register to protect it from side effects.
631 If X is not a MEM, it is returned unchanged (and not copied).
632 Perhaps even if it is a MEM, if there is no need to change it. */
633
634 rtx
635 stabilize (x)
636 rtx x;
637 {
638 register rtx addr;
639 if (GET_CODE (x) != MEM)
640 return x;
641 addr = XEXP (x, 0);
642 if (rtx_unstable_p (addr))
643 {
644 rtx temp = copy_all_regs (addr);
645 rtx mem;
646 if (GET_CODE (temp) != REG)
647 temp = copy_to_reg (temp);
648 mem = gen_rtx_MEM (GET_MODE (x), temp);
649
650 /* Mark returned memref with in_struct if it's in an array or
651 structure. Copy const and volatile from original memref. */
652
653 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
654 MEM_COPY_ATTRIBUTES (mem, x);
655 if (GET_CODE (addr) == PLUS)
656 MEM_SET_IN_STRUCT_P (mem, 1);
657
658 /* Since the new MEM is just like the old X, it can alias only
659 the things that X could. */
660 MEM_ALIAS_SET (mem) = MEM_ALIAS_SET (x);
661
662 return mem;
663 }
664 return x;
665 }
666 \f
667 /* Copy the value or contents of X to a new temp reg and return that reg. */
668
669 rtx
670 copy_to_reg (x)
671 rtx x;
672 {
673 register rtx temp = gen_reg_rtx (GET_MODE (x));
674
675 /* If not an operand, must be an address with PLUS and MULT so
676 do the computation. */
677 if (! general_operand (x, VOIDmode))
678 x = force_operand (x, temp);
679
680 if (x != temp)
681 emit_move_insn (temp, x);
682
683 return temp;
684 }
685
686 /* Like copy_to_reg but always give the new register mode Pmode
687 in case X is a constant. */
688
689 rtx
690 copy_addr_to_reg (x)
691 rtx x;
692 {
693 return copy_to_mode_reg (Pmode, x);
694 }
695
696 /* Like copy_to_reg but always give the new register mode MODE
697 in case X is a constant. */
698
699 rtx
700 copy_to_mode_reg (mode, x)
701 enum machine_mode mode;
702 rtx x;
703 {
704 register rtx temp = gen_reg_rtx (mode);
705
706 /* If not an operand, must be an address with PLUS and MULT so
707 do the computation. */
708 if (! general_operand (x, VOIDmode))
709 x = force_operand (x, temp);
710
711 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
712 abort ();
713 if (x != temp)
714 emit_move_insn (temp, x);
715 return temp;
716 }
717
718 /* Load X into a register if it is not already one.
719 Use mode MODE for the register.
720 X should be valid for mode MODE, but it may be a constant which
721 is valid for all integer modes; that's why caller must specify MODE.
722
723 The caller must not alter the value in the register we return,
724 since we mark it as a "constant" register. */
725
726 rtx
727 force_reg (mode, x)
728 enum machine_mode mode;
729 rtx x;
730 {
731 register rtx temp, insn, set;
732
733 if (GET_CODE (x) == REG)
734 return x;
735
736 temp = gen_reg_rtx (mode);
737
738 if (! general_operand (x, mode))
739 x = force_operand (x, NULL_RTX);
740
741 insn = emit_move_insn (temp, x);
742
743 /* Let optimizers know that TEMP's value never changes
744 and that X can be substituted for it. Don't get confused
745 if INSN set something else (such as a SUBREG of TEMP). */
746 if (CONSTANT_P (x)
747 && (set = single_set (insn)) != 0
748 && SET_DEST (set) == temp)
749 {
750 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
751
752 if (note)
753 XEXP (note, 0) = x;
754 else
755 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
756 }
757 return temp;
758 }
759
760 /* If X is a memory ref, copy its contents to a new temp reg and return
761 that reg. Otherwise, return X. */
762
763 rtx
764 force_not_mem (x)
765 rtx x;
766 {
767 register rtx temp;
768 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
769 return x;
770 temp = gen_reg_rtx (GET_MODE (x));
771 emit_move_insn (temp, x);
772 return temp;
773 }
774
775 /* Copy X to TARGET (if it's nonzero and a reg)
776 or to a new temp reg and return that reg.
777 MODE is the mode to use for X in case it is a constant. */
778
779 rtx
780 copy_to_suggested_reg (x, target, mode)
781 rtx x, target;
782 enum machine_mode mode;
783 {
784 register rtx temp;
785
786 if (target && GET_CODE (target) == REG)
787 temp = target;
788 else
789 temp = gen_reg_rtx (mode);
790
791 emit_move_insn (temp, x);
792 return temp;
793 }
794 \f
795 /* Return the mode to use to store a scalar of TYPE and MODE.
796 PUNSIGNEDP points to the signedness of the type and may be adjusted
797 to show what signedness to use on extension operations.
798
799 FOR_CALL is non-zero if this call is promoting args for a call. */
800
801 enum machine_mode
802 promote_mode (type, mode, punsignedp, for_call)
803 tree type;
804 enum machine_mode mode;
805 int *punsignedp;
806 int for_call ATTRIBUTE_UNUSED;
807 {
808 enum tree_code code = TREE_CODE (type);
809 int unsignedp = *punsignedp;
810
811 #ifdef PROMOTE_FOR_CALL_ONLY
812 if (! for_call)
813 return mode;
814 #endif
815
816 switch (code)
817 {
818 #ifdef PROMOTE_MODE
819 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
820 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
821 PROMOTE_MODE (mode, unsignedp, type);
822 break;
823 #endif
824
825 #ifdef POINTERS_EXTEND_UNSIGNED
826 case REFERENCE_TYPE:
827 case POINTER_TYPE:
828 mode = Pmode;
829 unsignedp = POINTERS_EXTEND_UNSIGNED;
830 break;
831 #endif
832
833 default:
834 break;
835 }
836
837 *punsignedp = unsignedp;
838 return mode;
839 }
840 \f
841 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
842 This pops when ADJUST is positive. ADJUST need not be constant. */
843
844 void
845 adjust_stack (adjust)
846 rtx adjust;
847 {
848 rtx temp;
849 adjust = protect_from_queue (adjust, 0);
850
851 if (adjust == const0_rtx)
852 return;
853
854 temp = expand_binop (Pmode,
855 #ifdef STACK_GROWS_DOWNWARD
856 add_optab,
857 #else
858 sub_optab,
859 #endif
860 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
861 OPTAB_LIB_WIDEN);
862
863 if (temp != stack_pointer_rtx)
864 emit_move_insn (stack_pointer_rtx, temp);
865 }
866
867 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
868 This pushes when ADJUST is positive. ADJUST need not be constant. */
869
870 void
871 anti_adjust_stack (adjust)
872 rtx adjust;
873 {
874 rtx temp;
875 adjust = protect_from_queue (adjust, 0);
876
877 if (adjust == const0_rtx)
878 return;
879
880 temp = expand_binop (Pmode,
881 #ifdef STACK_GROWS_DOWNWARD
882 sub_optab,
883 #else
884 add_optab,
885 #endif
886 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
887 OPTAB_LIB_WIDEN);
888
889 if (temp != stack_pointer_rtx)
890 emit_move_insn (stack_pointer_rtx, temp);
891 }
892
893 /* Round the size of a block to be pushed up to the boundary required
894 by this machine. SIZE is the desired size, which need not be constant. */
895
896 rtx
897 round_push (size)
898 rtx size;
899 {
900 #ifdef PREFERRED_STACK_BOUNDARY
901 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
902 if (align == 1)
903 return size;
904 if (GET_CODE (size) == CONST_INT)
905 {
906 int new = (INTVAL (size) + align - 1) / align * align;
907 if (INTVAL (size) != new)
908 size = GEN_INT (new);
909 }
910 else
911 {
912 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
913 but we know it can't. So add ourselves and then do
914 TRUNC_DIV_EXPR. */
915 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
916 NULL_RTX, 1, OPTAB_LIB_WIDEN);
917 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
918 NULL_RTX, 1);
919 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
920 }
921 #endif /* PREFERRED_STACK_BOUNDARY */
922 return size;
923 }
924 \f
925 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
926 to a previously-created save area. If no save area has been allocated,
927 this function will allocate one. If a save area is specified, it
928 must be of the proper mode.
929
930 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
931 are emitted at the current position. */
932
933 void
934 emit_stack_save (save_level, psave, after)
935 enum save_level save_level;
936 rtx *psave;
937 rtx after;
938 {
939 rtx sa = *psave;
940 /* The default is that we use a move insn and save in a Pmode object. */
941 rtx (*fcn) PROTO ((rtx, rtx)) = gen_move_insn;
942 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
943
944 /* See if this machine has anything special to do for this kind of save. */
945 switch (save_level)
946 {
947 #ifdef HAVE_save_stack_block
948 case SAVE_BLOCK:
949 if (HAVE_save_stack_block)
950 fcn = gen_save_stack_block;
951 break;
952 #endif
953 #ifdef HAVE_save_stack_function
954 case SAVE_FUNCTION:
955 if (HAVE_save_stack_function)
956 fcn = gen_save_stack_function;
957 break;
958 #endif
959 #ifdef HAVE_save_stack_nonlocal
960 case SAVE_NONLOCAL:
961 if (HAVE_save_stack_nonlocal)
962 fcn = gen_save_stack_nonlocal;
963 break;
964 #endif
965 default:
966 break;
967 }
968
969 /* If there is no save area and we have to allocate one, do so. Otherwise
970 verify the save area is the proper mode. */
971
972 if (sa == 0)
973 {
974 if (mode != VOIDmode)
975 {
976 if (save_level == SAVE_NONLOCAL)
977 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
978 else
979 *psave = sa = gen_reg_rtx (mode);
980 }
981 }
982 else
983 {
984 if (mode == VOIDmode || GET_MODE (sa) != mode)
985 abort ();
986 }
987
988 if (after)
989 {
990 rtx seq;
991
992 start_sequence ();
993 /* We must validize inside the sequence, to ensure that any instructions
994 created by the validize call also get moved to the right place. */
995 if (sa != 0)
996 sa = validize_mem (sa);
997 emit_insn (fcn (sa, stack_pointer_rtx));
998 seq = gen_sequence ();
999 end_sequence ();
1000 emit_insn_after (seq, after);
1001 }
1002 else
1003 {
1004 if (sa != 0)
1005 sa = validize_mem (sa);
1006 emit_insn (fcn (sa, stack_pointer_rtx));
1007 }
1008 }
1009
1010 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1011 area made by emit_stack_save. If it is zero, we have nothing to do.
1012
1013 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1014 current position. */
1015
1016 void
1017 emit_stack_restore (save_level, sa, after)
1018 enum save_level save_level;
1019 rtx after;
1020 rtx sa;
1021 {
1022 /* The default is that we use a move insn. */
1023 rtx (*fcn) PROTO ((rtx, rtx)) = gen_move_insn;
1024
1025 /* See if this machine has anything special to do for this kind of save. */
1026 switch (save_level)
1027 {
1028 #ifdef HAVE_restore_stack_block
1029 case SAVE_BLOCK:
1030 if (HAVE_restore_stack_block)
1031 fcn = gen_restore_stack_block;
1032 break;
1033 #endif
1034 #ifdef HAVE_restore_stack_function
1035 case SAVE_FUNCTION:
1036 if (HAVE_restore_stack_function)
1037 fcn = gen_restore_stack_function;
1038 break;
1039 #endif
1040 #ifdef HAVE_restore_stack_nonlocal
1041 case SAVE_NONLOCAL:
1042 if (HAVE_restore_stack_nonlocal)
1043 fcn = gen_restore_stack_nonlocal;
1044 break;
1045 #endif
1046 default:
1047 break;
1048 }
1049
1050 if (sa != 0)
1051 sa = validize_mem (sa);
1052
1053 if (after)
1054 {
1055 rtx seq;
1056
1057 start_sequence ();
1058 emit_insn (fcn (stack_pointer_rtx, sa));
1059 seq = gen_sequence ();
1060 end_sequence ();
1061 emit_insn_after (seq, after);
1062 }
1063 else
1064 emit_insn (fcn (stack_pointer_rtx, sa));
1065 }
1066 \f
1067 #ifdef SETJMP_VIA_SAVE_AREA
1068 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1069 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1070 platforms, the dynamic stack space used can corrupt the original
1071 frame, thus causing a crash if a longjmp unwinds to it. */
1072
1073 void
1074 optimize_save_area_alloca (insns)
1075 rtx insns;
1076 {
1077 rtx insn;
1078
1079 for (insn = insns; insn; insn = NEXT_INSN(insn))
1080 {
1081 rtx note;
1082
1083 if (GET_CODE (insn) != INSN)
1084 continue;
1085
1086 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1087 {
1088 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1089 continue;
1090
1091 if (!current_function_calls_setjmp)
1092 {
1093 rtx pat = PATTERN (insn);
1094
1095 /* If we do not see the note in a pattern matching
1096 these precise characteristics, we did something
1097 entirely wrong in allocate_dynamic_stack_space.
1098
1099 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1100 was defined on a machine where stacks grow towards higher
1101 addresses.
1102
1103 Right now only supported port with stack that grow upward
1104 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1105 if (GET_CODE (pat) != SET
1106 || SET_DEST (pat) != stack_pointer_rtx
1107 || GET_CODE (SET_SRC (pat)) != MINUS
1108 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1109 abort ();
1110
1111 /* This will now be transformed into a (set REG REG)
1112 so we can just blow away all the other notes. */
1113 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1114 REG_NOTES (insn) = NULL_RTX;
1115 }
1116 else
1117 {
1118 /* setjmp was called, we must remove the REG_SAVE_AREA
1119 note so that later passes do not get confused by its
1120 presence. */
1121 if (note == REG_NOTES (insn))
1122 {
1123 REG_NOTES (insn) = XEXP (note, 1);
1124 }
1125 else
1126 {
1127 rtx srch;
1128
1129 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1130 if (XEXP (srch, 1) == note)
1131 break;
1132
1133 if (srch == NULL_RTX)
1134 abort();
1135
1136 XEXP (srch, 1) = XEXP (note, 1);
1137 }
1138 }
1139 /* Once we've seen the note of interest, we need not look at
1140 the rest of them. */
1141 break;
1142 }
1143 }
1144 }
1145 #endif /* SETJMP_VIA_SAVE_AREA */
1146
1147 /* Return an rtx representing the address of an area of memory dynamically
1148 pushed on the stack. This region of memory is always aligned to
1149 a multiple of BIGGEST_ALIGNMENT.
1150
1151 Any required stack pointer alignment is preserved.
1152
1153 SIZE is an rtx representing the size of the area.
1154 TARGET is a place in which the address can be placed.
1155
1156 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1157
1158 rtx
1159 allocate_dynamic_stack_space (size, target, known_align)
1160 rtx size;
1161 rtx target;
1162 int known_align;
1163 {
1164 #ifdef SETJMP_VIA_SAVE_AREA
1165 rtx setjmpless_size = NULL_RTX;
1166 #endif
1167
1168 /* If we're asking for zero bytes, it doesn't matter what we point
1169 to since we can't dereference it. But return a reasonable
1170 address anyway. */
1171 if (size == const0_rtx)
1172 return virtual_stack_dynamic_rtx;
1173
1174 /* Otherwise, show we're calling alloca or equivalent. */
1175 current_function_calls_alloca = 1;
1176
1177 /* Ensure the size is in the proper mode. */
1178 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1179 size = convert_to_mode (Pmode, size, 1);
1180
1181 /* We will need to ensure that the address we return is aligned to
1182 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1183 always know its final value at this point in the compilation (it
1184 might depend on the size of the outgoing parameter lists, for
1185 example), so we must align the value to be returned in that case.
1186 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1187 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1188 We must also do an alignment operation on the returned value if
1189 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1190
1191 If we have to align, we must leave space in SIZE for the hole
1192 that might result from the alignment operation. */
1193
1194 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (PREFERRED_STACK_BOUNDARY)
1195 #define MUST_ALIGN 1
1196 #else
1197 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1198 #endif
1199
1200 if (MUST_ALIGN)
1201 {
1202 if (GET_CODE (size) == CONST_INT)
1203 size = GEN_INT (INTVAL (size)
1204 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1205 else
1206 size = expand_binop (Pmode, add_optab, size,
1207 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1208 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1209 }
1210
1211 #ifdef SETJMP_VIA_SAVE_AREA
1212 /* If setjmp restores regs from a save area in the stack frame,
1213 avoid clobbering the reg save area. Note that the offset of
1214 virtual_incoming_args_rtx includes the preallocated stack args space.
1215 It would be no problem to clobber that, but it's on the wrong side
1216 of the old save area. */
1217 {
1218 rtx dynamic_offset
1219 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1220 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1221
1222 if (!current_function_calls_setjmp)
1223 {
1224 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1225
1226 /* See optimize_save_area_alloca to understand what is being
1227 set up here. */
1228
1229 #if !defined(PREFERRED_STACK_BOUNDARY) || !defined(MUST_ALIGN) || (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1230 /* If anyone creates a target with these characteristics, let them
1231 know that our optimization cannot work correctly in such a case. */
1232 abort();
1233 #endif
1234
1235 if (GET_CODE (size) == CONST_INT)
1236 {
1237 int new = INTVAL (size) / align * align;
1238
1239 if (INTVAL (size) != new)
1240 setjmpless_size = GEN_INT (new);
1241 else
1242 setjmpless_size = size;
1243 }
1244 else
1245 {
1246 /* Since we know overflow is not possible, we avoid using
1247 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1248 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1249 GEN_INT (align), NULL_RTX, 1);
1250 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1251 GEN_INT (align), NULL_RTX, 1);
1252 }
1253 /* Our optimization works based upon being able to perform a simple
1254 transformation of this RTL into a (set REG REG) so make sure things
1255 did in fact end up in a REG. */
1256 if (!register_operand (setjmpless_size, Pmode))
1257 setjmpless_size = force_reg (Pmode, setjmpless_size);
1258 }
1259
1260 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1261 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1262 }
1263 #endif /* SETJMP_VIA_SAVE_AREA */
1264
1265 /* Round the size to a multiple of the required stack alignment.
1266 Since the stack if presumed to be rounded before this allocation,
1267 this will maintain the required alignment.
1268
1269 If the stack grows downward, we could save an insn by subtracting
1270 SIZE from the stack pointer and then aligning the stack pointer.
1271 The problem with this is that the stack pointer may be unaligned
1272 between the execution of the subtraction and alignment insns and
1273 some machines do not allow this. Even on those that do, some
1274 signal handlers malfunction if a signal should occur between those
1275 insns. Since this is an extremely rare event, we have no reliable
1276 way of knowing which systems have this problem. So we avoid even
1277 momentarily mis-aligning the stack. */
1278
1279 #ifdef PREFERRED_STACK_BOUNDARY
1280 /* If we added a variable amount to SIZE,
1281 we can no longer assume it is aligned. */
1282 #if !defined (SETJMP_VIA_SAVE_AREA)
1283 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1284 #endif
1285 size = round_push (size);
1286 #endif
1287
1288 do_pending_stack_adjust ();
1289
1290 /* If needed, check that we have the required amount of stack. Take into
1291 account what has already been checked. */
1292 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1293 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1294
1295 /* Don't use a TARGET that isn't a pseudo. */
1296 if (target == 0 || GET_CODE (target) != REG
1297 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1298 target = gen_reg_rtx (Pmode);
1299
1300 mark_reg_pointer (target, known_align / BITS_PER_UNIT);
1301
1302 /* Perform the required allocation from the stack. Some systems do
1303 this differently than simply incrementing/decrementing from the
1304 stack pointer, such as acquiring the space by calling malloc(). */
1305 #ifdef HAVE_allocate_stack
1306 if (HAVE_allocate_stack)
1307 {
1308 enum machine_mode mode = STACK_SIZE_MODE;
1309 insn_operand_predicate_fn pred;
1310
1311 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[0].predicate;
1312 if (pred && ! ((*pred) (target, Pmode)))
1313 #ifdef POINTERS_EXTEND_UNSIGNED
1314 target = convert_memory_address (Pmode, target);
1315 #else
1316 target = copy_to_mode_reg (Pmode, target);
1317 #endif
1318
1319 if (mode == VOIDmode)
1320 mode = Pmode;
1321
1322 size = convert_modes (mode, ptr_mode, size, 1);
1323 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1324 if (pred && ! ((*pred) (size, mode)))
1325 size = copy_to_mode_reg (mode, size);
1326
1327 emit_insn (gen_allocate_stack (target, size));
1328 }
1329 else
1330 #endif
1331 {
1332 #ifndef STACK_GROWS_DOWNWARD
1333 emit_move_insn (target, virtual_stack_dynamic_rtx);
1334 #endif
1335 size = convert_modes (Pmode, ptr_mode, size, 1);
1336 anti_adjust_stack (size);
1337 #ifdef SETJMP_VIA_SAVE_AREA
1338 if (setjmpless_size != NULL_RTX)
1339 {
1340 rtx note_target = get_last_insn ();
1341
1342 REG_NOTES (note_target)
1343 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1344 REG_NOTES (note_target));
1345 }
1346 #endif /* SETJMP_VIA_SAVE_AREA */
1347 #ifdef STACK_GROWS_DOWNWARD
1348 emit_move_insn (target, virtual_stack_dynamic_rtx);
1349 #endif
1350 }
1351
1352 if (MUST_ALIGN)
1353 {
1354 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1355 but we know it can't. So add ourselves and then do
1356 TRUNC_DIV_EXPR. */
1357 target = expand_binop (Pmode, add_optab, target,
1358 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1359 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1360 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1361 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1362 NULL_RTX, 1);
1363 target = expand_mult (Pmode, target,
1364 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1365 NULL_RTX, 1);
1366 }
1367
1368 /* Some systems require a particular insn to refer to the stack
1369 to make the pages exist. */
1370 #ifdef HAVE_probe
1371 if (HAVE_probe)
1372 emit_insn (gen_probe ());
1373 #endif
1374
1375 /* Record the new stack level for nonlocal gotos. */
1376 if (nonlocal_goto_handler_slots != 0)
1377 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1378
1379 return target;
1380 }
1381 \f
1382 /* Emit one stack probe at ADDRESS, an address within the stack. */
1383
1384 static void
1385 emit_stack_probe (address)
1386 rtx address;
1387 {
1388 rtx memref = gen_rtx_MEM (word_mode, address);
1389
1390 MEM_VOLATILE_P (memref) = 1;
1391
1392 if (STACK_CHECK_PROBE_LOAD)
1393 emit_move_insn (gen_reg_rtx (word_mode), memref);
1394 else
1395 emit_move_insn (memref, const0_rtx);
1396 }
1397
1398 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1399 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1400 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1401 subtract from the stack. If SIZE is constant, this is done
1402 with a fixed number of probes. Otherwise, we must make a loop. */
1403
1404 #ifdef STACK_GROWS_DOWNWARD
1405 #define STACK_GROW_OP MINUS
1406 #else
1407 #define STACK_GROW_OP PLUS
1408 #endif
1409
1410 void
1411 probe_stack_range (first, size)
1412 HOST_WIDE_INT first;
1413 rtx size;
1414 {
1415 /* First see if we have an insn to check the stack. Use it if so. */
1416 #ifdef HAVE_check_stack
1417 if (HAVE_check_stack)
1418 {
1419 insn_operand_predicate_fn pred;
1420 rtx last_addr
1421 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1422 stack_pointer_rtx,
1423 plus_constant (size, first)),
1424 NULL_RTX);
1425
1426 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1427 if (pred && ! ((*pred) (last_addr, Pmode)))
1428 last_addr = copy_to_mode_reg (Pmode, last_addr);
1429
1430 emit_insn (gen_check_stack (last_addr));
1431 return;
1432 }
1433 #endif
1434
1435 /* If we have to generate explicit probes, see if we have a constant
1436 small number of them to generate. If so, that's the easy case. */
1437 if (GET_CODE (size) == CONST_INT
1438 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1439 {
1440 HOST_WIDE_INT offset;
1441
1442 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1443 for values of N from 1 until it exceeds LAST. If only one
1444 probe is needed, this will not generate any code. Then probe
1445 at LAST. */
1446 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1447 offset < INTVAL (size);
1448 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1449 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1450 stack_pointer_rtx,
1451 GEN_INT (offset)));
1452
1453 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1454 stack_pointer_rtx,
1455 plus_constant (size, first)));
1456 }
1457
1458 /* In the variable case, do the same as above, but in a loop. We emit loop
1459 notes so that loop optimization can be done. */
1460 else
1461 {
1462 rtx test_addr
1463 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1464 stack_pointer_rtx,
1465 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1466 NULL_RTX);
1467 rtx last_addr
1468 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1469 stack_pointer_rtx,
1470 plus_constant (size, first)),
1471 NULL_RTX);
1472 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1473 rtx loop_lab = gen_label_rtx ();
1474 rtx test_lab = gen_label_rtx ();
1475 rtx end_lab = gen_label_rtx ();
1476 rtx temp;
1477
1478 if (GET_CODE (test_addr) != REG
1479 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1480 test_addr = force_reg (Pmode, test_addr);
1481
1482 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1483 emit_jump (test_lab);
1484
1485 emit_label (loop_lab);
1486 emit_stack_probe (test_addr);
1487
1488 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1489
1490 #ifdef STACK_GROWS_DOWNWARD
1491 #define CMP_OPCODE GTU
1492 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1493 1, OPTAB_WIDEN);
1494 #else
1495 #define CMP_OPCODE LTU
1496 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1497 1, OPTAB_WIDEN);
1498 #endif
1499
1500 if (temp != test_addr)
1501 abort ();
1502
1503 emit_label (test_lab);
1504 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1505 NULL_RTX, Pmode, 1, 0, loop_lab);
1506 emit_jump (end_lab);
1507 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1508 emit_label (end_lab);
1509
1510 /* If will be doing stupid optimization, show test_addr is still live. */
1511 if (obey_regdecls)
1512 emit_insn (gen_rtx_USE (VOIDmode, test_addr));
1513
1514 emit_stack_probe (last_addr);
1515 }
1516 }
1517 \f
1518 /* Return an rtx representing the register or memory location
1519 in which a scalar value of data type VALTYPE
1520 was returned by a function call to function FUNC.
1521 FUNC is a FUNCTION_DECL node if the precise function is known,
1522 otherwise 0. */
1523
1524 rtx
1525 hard_function_value (valtype, func)
1526 tree valtype;
1527 tree func ATTRIBUTE_UNUSED;
1528 {
1529 rtx val = FUNCTION_VALUE (valtype, func);
1530 if (GET_CODE (val) == REG
1531 && GET_MODE (val) == BLKmode)
1532 {
1533 int bytes = int_size_in_bytes (valtype);
1534 enum machine_mode tmpmode;
1535 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1536 tmpmode != VOIDmode;
1537 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1538 {
1539 /* Have we found a large enough mode? */
1540 if (GET_MODE_SIZE (tmpmode) >= bytes)
1541 break;
1542 }
1543
1544 /* No suitable mode found. */
1545 if (tmpmode == VOIDmode)
1546 abort ();
1547
1548 PUT_MODE (val, tmpmode);
1549 }
1550 return val;
1551 }
1552
1553 /* Return an rtx representing the register or memory location
1554 in which a scalar value of mode MODE was returned by a library call. */
1555
1556 rtx
1557 hard_libcall_value (mode)
1558 enum machine_mode mode;
1559 {
1560 return LIBCALL_VALUE (mode);
1561 }
1562
1563 /* Look up the tree code for a given rtx code
1564 to provide the arithmetic operation for REAL_ARITHMETIC.
1565 The function returns an int because the caller may not know
1566 what `enum tree_code' means. */
1567
1568 int
1569 rtx_to_tree_code (code)
1570 enum rtx_code code;
1571 {
1572 enum tree_code tcode;
1573
1574 switch (code)
1575 {
1576 case PLUS:
1577 tcode = PLUS_EXPR;
1578 break;
1579 case MINUS:
1580 tcode = MINUS_EXPR;
1581 break;
1582 case MULT:
1583 tcode = MULT_EXPR;
1584 break;
1585 case DIV:
1586 tcode = RDIV_EXPR;
1587 break;
1588 case SMIN:
1589 tcode = MIN_EXPR;
1590 break;
1591 case SMAX:
1592 tcode = MAX_EXPR;
1593 break;
1594 default:
1595 tcode = LAST_AND_UNUSED_TREE_CODE;
1596 break;
1597 }
1598 return ((int) tcode);
1599 }