]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
auto-inc-dec.c (try_merge): Remove break after return.
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "expmed.h"
30 #include "optabs.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
33 #include "diagnostic-core.h"
34 #include "stor-layout.h"
35 #include "except.h"
36 #include "dojump.h"
37 #include "explow.h"
38 #include "expr.h"
39 #include "common/common-target.h"
40 #include "output.h"
41
42 static rtx break_out_memory_refs (rtx);
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
49 {
50 int width = GET_MODE_PRECISION (mode);
51
52 /* You want to truncate to a _what_? */
53 gcc_assert (SCALAR_INT_MODE_P (mode)
54 || POINTER_BOUNDS_MODE_P (mode));
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C, given that X has
75 mode MODE. INPLACE is true if X can be modified inplace or false
76 if it must be treated as immutable. */
77
78 rtx
79 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
80 bool inplace)
81 {
82 RTX_CODE code;
83 rtx y;
84 rtx tem;
85 int all_constant = 0;
86
87 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
88
89 if (c == 0)
90 return x;
91
92 restart:
93
94 code = GET_CODE (x);
95 y = x;
96
97 switch (code)
98 {
99 CASE_CONST_SCALAR_INT:
100 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
101 mode);
102 case MEM:
103 /* If this is a reference to the constant pool, try replacing it with
104 a reference to a new constant. If the resulting address isn't
105 valid, don't return it because we have no way to validize it. */
106 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
107 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
108 {
109 rtx cst = get_pool_constant (XEXP (x, 0));
110
111 if (GET_CODE (cst) == CONST_VECTOR
112 && GET_MODE_INNER (GET_MODE (cst)) == mode)
113 {
114 cst = gen_lowpart (mode, cst);
115 gcc_assert (cst);
116 }
117 tem = plus_constant (mode, cst, c);
118 tem = force_const_mem (GET_MODE (x), tem);
119 /* Targets may disallow some constants in the constant pool, thus
120 force_const_mem may return NULL_RTX. */
121 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
122 return tem;
123 }
124 break;
125
126 case CONST:
127 /* If adding to something entirely constant, set a flag
128 so that we can add a CONST around the result. */
129 if (inplace && shared_const_p (x))
130 inplace = false;
131 x = XEXP (x, 0);
132 all_constant = 1;
133 goto restart;
134
135 case SYMBOL_REF:
136 case LABEL_REF:
137 all_constant = 1;
138 break;
139
140 case PLUS:
141 /* The interesting case is adding the integer to a sum. Look
142 for constant term in the sum and combine with C. For an
143 integer constant term or a constant term that is not an
144 explicit integer, we combine or group them together anyway.
145
146 We may not immediately return from the recursive call here, lest
147 all_constant gets lost. */
148
149 if (CONSTANT_P (XEXP (x, 1)))
150 {
151 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
152 if (term == const0_rtx)
153 x = XEXP (x, 0);
154 else if (inplace)
155 XEXP (x, 1) = term;
156 else
157 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
158 c = 0;
159 }
160 else if (rtx *const_loc = find_constant_term_loc (&y))
161 {
162 if (!inplace)
163 {
164 /* We need to be careful since X may be shared and we can't
165 modify it in place. */
166 x = copy_rtx (x);
167 const_loc = find_constant_term_loc (&x);
168 }
169 *const_loc = plus_constant (mode, *const_loc, c, true);
170 c = 0;
171 }
172 break;
173
174 default:
175 break;
176 }
177
178 if (c != 0)
179 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
180
181 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
182 return x;
183 else if (all_constant)
184 return gen_rtx_CONST (mode, x);
185 else
186 return x;
187 }
188 \f
189 /* If X is a sum, return a new sum like X but lacking any constant terms.
190 Add all the removed constant terms into *CONSTPTR.
191 X itself is not altered. The result != X if and only if
192 it is not isomorphic to X. */
193
194 rtx
195 eliminate_constant_term (rtx x, rtx *constptr)
196 {
197 rtx x0, x1;
198 rtx tem;
199
200 if (GET_CODE (x) != PLUS)
201 return x;
202
203 /* First handle constants appearing at this level explicitly. */
204 if (CONST_INT_P (XEXP (x, 1))
205 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
206 XEXP (x, 1)))
207 && CONST_INT_P (tem))
208 {
209 *constptr = tem;
210 return eliminate_constant_term (XEXP (x, 0), constptr);
211 }
212
213 tem = const0_rtx;
214 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
215 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
216 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
217 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
218 *constptr, tem))
219 && CONST_INT_P (tem))
220 {
221 *constptr = tem;
222 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
223 }
224
225 return x;
226 }
227
228 \f
229 /* Return a copy of X in which all memory references
230 and all constants that involve symbol refs
231 have been replaced with new temporary registers.
232 Also emit code to load the memory locations and constants
233 into those registers.
234
235 If X contains no such constants or memory references,
236 X itself (not a copy) is returned.
237
238 If a constant is found in the address that is not a legitimate constant
239 in an insn, it is left alone in the hope that it might be valid in the
240 address.
241
242 X may contain no arithmetic except addition, subtraction and multiplication.
243 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
244
245 static rtx
246 break_out_memory_refs (rtx x)
247 {
248 if (MEM_P (x)
249 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
250 && GET_MODE (x) != VOIDmode))
251 x = force_reg (GET_MODE (x), x);
252 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
253 || GET_CODE (x) == MULT)
254 {
255 rtx op0 = break_out_memory_refs (XEXP (x, 0));
256 rtx op1 = break_out_memory_refs (XEXP (x, 1));
257
258 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
259 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
260 }
261
262 return x;
263 }
264
265 /* Given X, a memory address in address space AS' pointer mode, convert it to
266 an address in the address space's address mode, or vice versa (TO_MODE says
267 which way). We take advantage of the fact that pointers are not allowed to
268 overflow by commuting arithmetic operations over conversions so that address
269 arithmetic insns can be used. IN_CONST is true if this conversion is inside
270 a CONST. NO_EMIT is true if no insns should be emitted, and instead
271 it should return NULL if it can't be simplified without emitting insns. */
272
273 rtx
274 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
275 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
276 bool in_const ATTRIBUTE_UNUSED,
277 bool no_emit ATTRIBUTE_UNUSED)
278 {
279 #ifndef POINTERS_EXTEND_UNSIGNED
280 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
281 return x;
282 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
283 machine_mode pointer_mode, address_mode, from_mode;
284 rtx temp;
285 enum rtx_code code;
286
287 /* If X already has the right mode, just return it. */
288 if (GET_MODE (x) == to_mode)
289 return x;
290
291 pointer_mode = targetm.addr_space.pointer_mode (as);
292 address_mode = targetm.addr_space.address_mode (as);
293 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
294
295 /* Here we handle some special cases. If none of them apply, fall through
296 to the default case. */
297 switch (GET_CODE (x))
298 {
299 CASE_CONST_SCALAR_INT:
300 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
301 code = TRUNCATE;
302 else if (POINTERS_EXTEND_UNSIGNED < 0)
303 break;
304 else if (POINTERS_EXTEND_UNSIGNED > 0)
305 code = ZERO_EXTEND;
306 else
307 code = SIGN_EXTEND;
308 temp = simplify_unary_operation (code, to_mode, x, from_mode);
309 if (temp)
310 return temp;
311 break;
312
313 case SUBREG:
314 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
315 && GET_MODE (SUBREG_REG (x)) == to_mode)
316 return SUBREG_REG (x);
317 break;
318
319 case LABEL_REF:
320 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
321 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
322 return temp;
323
324 case SYMBOL_REF:
325 temp = shallow_copy_rtx (x);
326 PUT_MODE (temp, to_mode);
327 return temp;
328
329 case CONST:
330 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
331 true, no_emit);
332 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
333
334 case PLUS:
335 case MULT:
336 /* For addition we can safely permute the conversion and addition
337 operation if one operand is a constant and converting the constant
338 does not change it or if one operand is a constant and we are
339 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
340 We can always safely permute them if we are making the address
341 narrower. Inside a CONST RTL, this is safe for both pointers
342 zero or sign extended as pointers cannot wrap. */
343 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
344 || (GET_CODE (x) == PLUS
345 && CONST_INT_P (XEXP (x, 1))
346 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
347 || XEXP (x, 1) == convert_memory_address_addr_space_1
348 (to_mode, XEXP (x, 1), as, in_const,
349 no_emit)
350 || POINTERS_EXTEND_UNSIGNED < 0)))
351 {
352 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
353 as, in_const, no_emit);
354 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
355 temp, XEXP (x, 1))
356 : temp);
357 }
358 break;
359
360 default:
361 break;
362 }
363
364 if (no_emit)
365 return NULL_RTX;
366
367 return convert_modes (to_mode, from_mode,
368 x, POINTERS_EXTEND_UNSIGNED);
369 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
370 }
371
372 /* Given X, a memory address in address space AS' pointer mode, convert it to
373 an address in the address space's address mode, or vice versa (TO_MODE says
374 which way). We take advantage of the fact that pointers are not allowed to
375 overflow by commuting arithmetic operations over conversions so that address
376 arithmetic insns can be used. */
377
378 rtx
379 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
380 {
381 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
382 }
383 \f
384
385 /* Return something equivalent to X but valid as a memory address for something
386 of mode MODE in the named address space AS. When X is not itself valid,
387 this works by copying X or subexpressions of it into registers. */
388
389 rtx
390 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
391 {
392 rtx oldx = x;
393 machine_mode address_mode = targetm.addr_space.address_mode (as);
394
395 x = convert_memory_address_addr_space (address_mode, x, as);
396
397 /* By passing constant addresses through registers
398 we get a chance to cse them. */
399 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
400 x = force_reg (address_mode, x);
401
402 /* We get better cse by rejecting indirect addressing at this stage.
403 Let the combiner create indirect addresses where appropriate.
404 For now, generate the code so that the subexpressions useful to share
405 are visible. But not if cse won't be done! */
406 else
407 {
408 if (! cse_not_expected && !REG_P (x))
409 x = break_out_memory_refs (x);
410
411 /* At this point, any valid address is accepted. */
412 if (memory_address_addr_space_p (mode, x, as))
413 goto done;
414
415 /* If it was valid before but breaking out memory refs invalidated it,
416 use it the old way. */
417 if (memory_address_addr_space_p (mode, oldx, as))
418 {
419 x = oldx;
420 goto done;
421 }
422
423 /* Perform machine-dependent transformations on X
424 in certain cases. This is not necessary since the code
425 below can handle all possible cases, but machine-dependent
426 transformations can make better code. */
427 {
428 rtx orig_x = x;
429 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
430 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
431 goto done;
432 }
433
434 /* PLUS and MULT can appear in special ways
435 as the result of attempts to make an address usable for indexing.
436 Usually they are dealt with by calling force_operand, below.
437 But a sum containing constant terms is special
438 if removing them makes the sum a valid address:
439 then we generate that address in a register
440 and index off of it. We do this because it often makes
441 shorter code, and because the addresses thus generated
442 in registers often become common subexpressions. */
443 if (GET_CODE (x) == PLUS)
444 {
445 rtx constant_term = const0_rtx;
446 rtx y = eliminate_constant_term (x, &constant_term);
447 if (constant_term == const0_rtx
448 || ! memory_address_addr_space_p (mode, y, as))
449 x = force_operand (x, NULL_RTX);
450 else
451 {
452 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
453 if (! memory_address_addr_space_p (mode, y, as))
454 x = force_operand (x, NULL_RTX);
455 else
456 x = y;
457 }
458 }
459
460 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
461 x = force_operand (x, NULL_RTX);
462
463 /* If we have a register that's an invalid address,
464 it must be a hard reg of the wrong class. Copy it to a pseudo. */
465 else if (REG_P (x))
466 x = copy_to_reg (x);
467
468 /* Last resort: copy the value to a register, since
469 the register is a valid address. */
470 else
471 x = force_reg (address_mode, x);
472 }
473
474 done:
475
476 gcc_assert (memory_address_addr_space_p (mode, x, as));
477 /* If we didn't change the address, we are done. Otherwise, mark
478 a reg as a pointer if we have REG or REG + CONST_INT. */
479 if (oldx == x)
480 return x;
481 else if (REG_P (x))
482 mark_reg_pointer (x, BITS_PER_UNIT);
483 else if (GET_CODE (x) == PLUS
484 && REG_P (XEXP (x, 0))
485 && CONST_INT_P (XEXP (x, 1)))
486 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
487
488 /* OLDX may have been the address on a temporary. Update the address
489 to indicate that X is now used. */
490 update_temp_slot_address (oldx, x);
491
492 return x;
493 }
494
495 /* If REF is a MEM with an invalid address, change it into a valid address.
496 Pass through anything else unchanged. REF must be an unshared rtx and
497 the function may modify it in-place. */
498
499 rtx
500 validize_mem (rtx ref)
501 {
502 if (!MEM_P (ref))
503 return ref;
504 ref = use_anchored_address (ref);
505 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
506 MEM_ADDR_SPACE (ref)))
507 return ref;
508
509 return replace_equiv_address (ref, XEXP (ref, 0), true);
510 }
511
512 /* If X is a memory reference to a member of an object block, try rewriting
513 it to use an anchor instead. Return the new memory reference on success
514 and the old one on failure. */
515
516 rtx
517 use_anchored_address (rtx x)
518 {
519 rtx base;
520 HOST_WIDE_INT offset;
521 machine_mode mode;
522
523 if (!flag_section_anchors)
524 return x;
525
526 if (!MEM_P (x))
527 return x;
528
529 /* Split the address into a base and offset. */
530 base = XEXP (x, 0);
531 offset = 0;
532 if (GET_CODE (base) == CONST
533 && GET_CODE (XEXP (base, 0)) == PLUS
534 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
535 {
536 offset += INTVAL (XEXP (XEXP (base, 0), 1));
537 base = XEXP (XEXP (base, 0), 0);
538 }
539
540 /* Check whether BASE is suitable for anchors. */
541 if (GET_CODE (base) != SYMBOL_REF
542 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
543 || SYMBOL_REF_ANCHOR_P (base)
544 || SYMBOL_REF_BLOCK (base) == NULL
545 || !targetm.use_anchors_for_symbol_p (base))
546 return x;
547
548 /* Decide where BASE is going to be. */
549 place_block_symbol (base);
550
551 /* Get the anchor we need to use. */
552 offset += SYMBOL_REF_BLOCK_OFFSET (base);
553 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
554 SYMBOL_REF_TLS_MODEL (base));
555
556 /* Work out the offset from the anchor. */
557 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
558
559 /* If we're going to run a CSE pass, force the anchor into a register.
560 We will then be able to reuse registers for several accesses, if the
561 target costs say that that's worthwhile. */
562 mode = GET_MODE (base);
563 if (!cse_not_expected)
564 base = force_reg (mode, base);
565
566 return replace_equiv_address (x, plus_constant (mode, base, offset));
567 }
568 \f
569 /* Copy the value or contents of X to a new temp reg and return that reg. */
570
571 rtx
572 copy_to_reg (rtx x)
573 {
574 rtx temp = gen_reg_rtx (GET_MODE (x));
575
576 /* If not an operand, must be an address with PLUS and MULT so
577 do the computation. */
578 if (! general_operand (x, VOIDmode))
579 x = force_operand (x, temp);
580
581 if (x != temp)
582 emit_move_insn (temp, x);
583
584 return temp;
585 }
586
587 /* Like copy_to_reg but always give the new register mode Pmode
588 in case X is a constant. */
589
590 rtx
591 copy_addr_to_reg (rtx x)
592 {
593 return copy_to_mode_reg (Pmode, x);
594 }
595
596 /* Like copy_to_reg but always give the new register mode MODE
597 in case X is a constant. */
598
599 rtx
600 copy_to_mode_reg (machine_mode mode, rtx x)
601 {
602 rtx temp = gen_reg_rtx (mode);
603
604 /* If not an operand, must be an address with PLUS and MULT so
605 do the computation. */
606 if (! general_operand (x, VOIDmode))
607 x = force_operand (x, temp);
608
609 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
610 if (x != temp)
611 emit_move_insn (temp, x);
612 return temp;
613 }
614
615 /* Load X into a register if it is not already one.
616 Use mode MODE for the register.
617 X should be valid for mode MODE, but it may be a constant which
618 is valid for all integer modes; that's why caller must specify MODE.
619
620 The caller must not alter the value in the register we return,
621 since we mark it as a "constant" register. */
622
623 rtx
624 force_reg (machine_mode mode, rtx x)
625 {
626 rtx temp, set;
627 rtx_insn *insn;
628
629 if (REG_P (x))
630 return x;
631
632 if (general_operand (x, mode))
633 {
634 temp = gen_reg_rtx (mode);
635 insn = emit_move_insn (temp, x);
636 }
637 else
638 {
639 temp = force_operand (x, NULL_RTX);
640 if (REG_P (temp))
641 insn = get_last_insn ();
642 else
643 {
644 rtx temp2 = gen_reg_rtx (mode);
645 insn = emit_move_insn (temp2, temp);
646 temp = temp2;
647 }
648 }
649
650 /* Let optimizers know that TEMP's value never changes
651 and that X can be substituted for it. Don't get confused
652 if INSN set something else (such as a SUBREG of TEMP). */
653 if (CONSTANT_P (x)
654 && (set = single_set (insn)) != 0
655 && SET_DEST (set) == temp
656 && ! rtx_equal_p (x, SET_SRC (set)))
657 set_unique_reg_note (insn, REG_EQUAL, x);
658
659 /* Let optimizers know that TEMP is a pointer, and if so, the
660 known alignment of that pointer. */
661 {
662 unsigned align = 0;
663 if (GET_CODE (x) == SYMBOL_REF)
664 {
665 align = BITS_PER_UNIT;
666 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
667 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
668 }
669 else if (GET_CODE (x) == LABEL_REF)
670 align = BITS_PER_UNIT;
671 else if (GET_CODE (x) == CONST
672 && GET_CODE (XEXP (x, 0)) == PLUS
673 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
674 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
675 {
676 rtx s = XEXP (XEXP (x, 0), 0);
677 rtx c = XEXP (XEXP (x, 0), 1);
678 unsigned sa, ca;
679
680 sa = BITS_PER_UNIT;
681 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
682 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
683
684 if (INTVAL (c) == 0)
685 align = sa;
686 else
687 {
688 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
689 align = MIN (sa, ca);
690 }
691 }
692
693 if (align || (MEM_P (x) && MEM_POINTER (x)))
694 mark_reg_pointer (temp, align);
695 }
696
697 return temp;
698 }
699
700 /* If X is a memory ref, copy its contents to a new temp reg and return
701 that reg. Otherwise, return X. */
702
703 rtx
704 force_not_mem (rtx x)
705 {
706 rtx temp;
707
708 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
709 return x;
710
711 temp = gen_reg_rtx (GET_MODE (x));
712
713 if (MEM_POINTER (x))
714 REG_POINTER (temp) = 1;
715
716 emit_move_insn (temp, x);
717 return temp;
718 }
719
720 /* Copy X to TARGET (if it's nonzero and a reg)
721 or to a new temp reg and return that reg.
722 MODE is the mode to use for X in case it is a constant. */
723
724 rtx
725 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
726 {
727 rtx temp;
728
729 if (target && REG_P (target))
730 temp = target;
731 else
732 temp = gen_reg_rtx (mode);
733
734 emit_move_insn (temp, x);
735 return temp;
736 }
737 \f
738 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
739 PUNSIGNEDP points to the signedness of the type and may be adjusted
740 to show what signedness to use on extension operations.
741
742 FOR_RETURN is nonzero if the caller is promoting the return value
743 of FNDECL, else it is for promoting args. */
744
745 machine_mode
746 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
747 const_tree funtype, int for_return)
748 {
749 /* Called without a type node for a libcall. */
750 if (type == NULL_TREE)
751 {
752 if (INTEGRAL_MODE_P (mode))
753 return targetm.calls.promote_function_mode (NULL_TREE, mode,
754 punsignedp, funtype,
755 for_return);
756 else
757 return mode;
758 }
759
760 switch (TREE_CODE (type))
761 {
762 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
763 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
764 case POINTER_TYPE: case REFERENCE_TYPE:
765 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
766 for_return);
767
768 default:
769 return mode;
770 }
771 }
772 /* Return the mode to use to store a scalar of TYPE and MODE.
773 PUNSIGNEDP points to the signedness of the type and may be adjusted
774 to show what signedness to use on extension operations. */
775
776 machine_mode
777 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
778 int *punsignedp ATTRIBUTE_UNUSED)
779 {
780 #ifdef PROMOTE_MODE
781 enum tree_code code;
782 int unsignedp;
783 #endif
784
785 /* For libcalls this is invoked without TYPE from the backends
786 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
787 case. */
788 if (type == NULL_TREE)
789 return mode;
790
791 /* FIXME: this is the same logic that was there until GCC 4.4, but we
792 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
793 is not defined. The affected targets are M32C, S390, SPARC. */
794 #ifdef PROMOTE_MODE
795 code = TREE_CODE (type);
796 unsignedp = *punsignedp;
797
798 switch (code)
799 {
800 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
801 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
802 PROMOTE_MODE (mode, unsignedp, type);
803 *punsignedp = unsignedp;
804 return mode;
805
806 #ifdef POINTERS_EXTEND_UNSIGNED
807 case REFERENCE_TYPE:
808 case POINTER_TYPE:
809 *punsignedp = POINTERS_EXTEND_UNSIGNED;
810 return targetm.addr_space.address_mode
811 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
812 #endif
813
814 default:
815 return mode;
816 }
817 #else
818 return mode;
819 #endif
820 }
821
822
823 /* Use one of promote_mode or promote_function_mode to find the promoted
824 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
825 of DECL after promotion. */
826
827 machine_mode
828 promote_decl_mode (const_tree decl, int *punsignedp)
829 {
830 tree type = TREE_TYPE (decl);
831 int unsignedp = TYPE_UNSIGNED (type);
832 machine_mode mode = DECL_MODE (decl);
833 machine_mode pmode;
834
835 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
836 pmode = promote_function_mode (type, mode, &unsignedp,
837 TREE_TYPE (current_function_decl), 1);
838 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
839 pmode = promote_function_mode (type, mode, &unsignedp,
840 TREE_TYPE (current_function_decl), 2);
841 else
842 pmode = promote_mode (type, mode, &unsignedp);
843
844 if (punsignedp)
845 *punsignedp = unsignedp;
846 return pmode;
847 }
848
849 /* Return the promoted mode for name. If it is a named SSA_NAME, it
850 is the same as promote_decl_mode. Otherwise, it is the promoted
851 mode of a temp decl of same type as the SSA_NAME, if we had created
852 one. */
853
854 machine_mode
855 promote_ssa_mode (const_tree name, int *punsignedp)
856 {
857 gcc_assert (TREE_CODE (name) == SSA_NAME);
858
859 /* Partitions holding parms and results must be promoted as expected
860 by function.c. */
861 if (SSA_NAME_VAR (name)
862 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
863 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
864 {
865 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
866 if (mode != BLKmode)
867 return mode;
868 }
869
870 tree type = TREE_TYPE (name);
871 int unsignedp = TYPE_UNSIGNED (type);
872 machine_mode mode = TYPE_MODE (type);
873
874 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
875 if (mode == BLKmode)
876 {
877 gcc_assert (VECTOR_TYPE_P (type));
878 mode = type->type_common.mode;
879 }
880
881 machine_mode pmode = promote_mode (type, mode, &unsignedp);
882 if (punsignedp)
883 *punsignedp = unsignedp;
884
885 return pmode;
886 }
887
888
889 \f
890 /* Controls the behavior of {anti_,}adjust_stack. */
891 static bool suppress_reg_args_size;
892
893 /* A helper for adjust_stack and anti_adjust_stack. */
894
895 static void
896 adjust_stack_1 (rtx adjust, bool anti_p)
897 {
898 rtx temp;
899 rtx_insn *insn;
900
901 /* Hereafter anti_p means subtract_p. */
902 if (!STACK_GROWS_DOWNWARD)
903 anti_p = !anti_p;
904
905 temp = expand_binop (Pmode,
906 anti_p ? sub_optab : add_optab,
907 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
908 OPTAB_LIB_WIDEN);
909
910 if (temp != stack_pointer_rtx)
911 insn = emit_move_insn (stack_pointer_rtx, temp);
912 else
913 {
914 insn = get_last_insn ();
915 temp = single_set (insn);
916 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
917 }
918
919 if (!suppress_reg_args_size)
920 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
921 }
922
923 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
924 This pops when ADJUST is positive. ADJUST need not be constant. */
925
926 void
927 adjust_stack (rtx adjust)
928 {
929 if (adjust == const0_rtx)
930 return;
931
932 /* We expect all variable sized adjustments to be multiple of
933 PREFERRED_STACK_BOUNDARY. */
934 if (CONST_INT_P (adjust))
935 stack_pointer_delta -= INTVAL (adjust);
936
937 adjust_stack_1 (adjust, false);
938 }
939
940 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
941 This pushes when ADJUST is positive. ADJUST need not be constant. */
942
943 void
944 anti_adjust_stack (rtx adjust)
945 {
946 if (adjust == const0_rtx)
947 return;
948
949 /* We expect all variable sized adjustments to be multiple of
950 PREFERRED_STACK_BOUNDARY. */
951 if (CONST_INT_P (adjust))
952 stack_pointer_delta += INTVAL (adjust);
953
954 adjust_stack_1 (adjust, true);
955 }
956
957 /* Round the size of a block to be pushed up to the boundary required
958 by this machine. SIZE is the desired size, which need not be constant. */
959
960 static rtx
961 round_push (rtx size)
962 {
963 rtx align_rtx, alignm1_rtx;
964
965 if (!SUPPORTS_STACK_ALIGNMENT
966 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
967 {
968 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
969
970 if (align == 1)
971 return size;
972
973 if (CONST_INT_P (size))
974 {
975 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
976
977 if (INTVAL (size) != new_size)
978 size = GEN_INT (new_size);
979 return size;
980 }
981
982 align_rtx = GEN_INT (align);
983 alignm1_rtx = GEN_INT (align - 1);
984 }
985 else
986 {
987 /* If crtl->preferred_stack_boundary might still grow, use
988 virtual_preferred_stack_boundary_rtx instead. This will be
989 substituted by the right value in vregs pass and optimized
990 during combine. */
991 align_rtx = virtual_preferred_stack_boundary_rtx;
992 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
993 NULL_RTX);
994 }
995
996 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
997 but we know it can't. So add ourselves and then do
998 TRUNC_DIV_EXPR. */
999 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1000 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1001 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1002 NULL_RTX, 1);
1003 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1004
1005 return size;
1006 }
1007 \f
1008 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1009 to a previously-created save area. If no save area has been allocated,
1010 this function will allocate one. If a save area is specified, it
1011 must be of the proper mode. */
1012
1013 void
1014 emit_stack_save (enum save_level save_level, rtx *psave)
1015 {
1016 rtx sa = *psave;
1017 /* The default is that we use a move insn and save in a Pmode object. */
1018 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1019 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1020
1021 /* See if this machine has anything special to do for this kind of save. */
1022 switch (save_level)
1023 {
1024 case SAVE_BLOCK:
1025 if (targetm.have_save_stack_block ())
1026 fcn = targetm.gen_save_stack_block;
1027 break;
1028 case SAVE_FUNCTION:
1029 if (targetm.have_save_stack_function ())
1030 fcn = targetm.gen_save_stack_function;
1031 break;
1032 case SAVE_NONLOCAL:
1033 if (targetm.have_save_stack_nonlocal ())
1034 fcn = targetm.gen_save_stack_nonlocal;
1035 break;
1036 default:
1037 break;
1038 }
1039
1040 /* If there is no save area and we have to allocate one, do so. Otherwise
1041 verify the save area is the proper mode. */
1042
1043 if (sa == 0)
1044 {
1045 if (mode != VOIDmode)
1046 {
1047 if (save_level == SAVE_NONLOCAL)
1048 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1049 else
1050 *psave = sa = gen_reg_rtx (mode);
1051 }
1052 }
1053
1054 do_pending_stack_adjust ();
1055 if (sa != 0)
1056 sa = validize_mem (sa);
1057 emit_insn (fcn (sa, stack_pointer_rtx));
1058 }
1059
1060 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1061 area made by emit_stack_save. If it is zero, we have nothing to do. */
1062
1063 void
1064 emit_stack_restore (enum save_level save_level, rtx sa)
1065 {
1066 /* The default is that we use a move insn. */
1067 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1068
1069 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1070 STACK_POINTER and HARD_FRAME_POINTER.
1071 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1072 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1073 aligned variables, which is reflected in ix86_can_eliminate.
1074 We normally still have the realigned STACK_POINTER that we can use.
1075 But if there is a stack restore still present at reload, it can trigger
1076 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1077 FRAME_POINTER into a hard reg.
1078 To prevent this situation, we force need_drap if we emit a stack
1079 restore. */
1080 if (SUPPORTS_STACK_ALIGNMENT)
1081 crtl->need_drap = true;
1082
1083 /* See if this machine has anything special to do for this kind of save. */
1084 switch (save_level)
1085 {
1086 case SAVE_BLOCK:
1087 if (targetm.have_restore_stack_block ())
1088 fcn = targetm.gen_restore_stack_block;
1089 break;
1090 case SAVE_FUNCTION:
1091 if (targetm.have_restore_stack_function ())
1092 fcn = targetm.gen_restore_stack_function;
1093 break;
1094 case SAVE_NONLOCAL:
1095 if (targetm.have_restore_stack_nonlocal ())
1096 fcn = targetm.gen_restore_stack_nonlocal;
1097 break;
1098 default:
1099 break;
1100 }
1101
1102 if (sa != 0)
1103 {
1104 sa = validize_mem (sa);
1105 /* These clobbers prevent the scheduler from moving
1106 references to variable arrays below the code
1107 that deletes (pops) the arrays. */
1108 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1109 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1110 }
1111
1112 discard_pending_stack_adjust ();
1113
1114 emit_insn (fcn (stack_pointer_rtx, sa));
1115 }
1116
1117 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1118 function. This should be called whenever we allocate or deallocate
1119 dynamic stack space. */
1120
1121 void
1122 update_nonlocal_goto_save_area (void)
1123 {
1124 tree t_save;
1125 rtx r_save;
1126
1127 /* The nonlocal_goto_save_area object is an array of N pointers. The
1128 first one is used for the frame pointer save; the rest are sized by
1129 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1130 of the stack save area slots. */
1131 t_save = build4 (ARRAY_REF,
1132 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1133 cfun->nonlocal_goto_save_area,
1134 integer_one_node, NULL_TREE, NULL_TREE);
1135 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1136
1137 emit_stack_save (SAVE_NONLOCAL, &r_save);
1138 }
1139
1140 /* Record a new stack level for the current function. This should be called
1141 whenever we allocate or deallocate dynamic stack space. */
1142
1143 void
1144 record_new_stack_level (void)
1145 {
1146 /* Record the new stack level for nonlocal gotos. */
1147 if (cfun->nonlocal_goto_save_area)
1148 update_nonlocal_goto_save_area ();
1149
1150 /* Record the new stack level for SJLJ exceptions. */
1151 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1152 update_sjlj_context ();
1153 }
1154 \f
1155 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1156 static rtx
1157 align_dynamic_address (rtx target, unsigned required_align)
1158 {
1159 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1160 but we know it can't. So add ourselves and then do
1161 TRUNC_DIV_EXPR. */
1162 target = expand_binop (Pmode, add_optab, target,
1163 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1164 Pmode),
1165 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1166 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1167 gen_int_mode (required_align / BITS_PER_UNIT,
1168 Pmode),
1169 NULL_RTX, 1);
1170 target = expand_mult (Pmode, target,
1171 gen_int_mode (required_align / BITS_PER_UNIT,
1172 Pmode),
1173 NULL_RTX, 1);
1174
1175 return target;
1176 }
1177
1178 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1179 be dynamically pushed on the stack.
1180
1181 *PSIZE is an rtx representing the size of the area.
1182
1183 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1184 parameter may be zero. If so, a proper value will be extracted
1185 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1186
1187 REQUIRED_ALIGN is the alignment (in bits) required for the region
1188 of memory.
1189
1190 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1191 the additional size returned. */
1192 void
1193 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1194 unsigned required_align,
1195 HOST_WIDE_INT *pstack_usage_size)
1196 {
1197 unsigned extra = 0;
1198 rtx size = *psize;
1199
1200 /* Ensure the size is in the proper mode. */
1201 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1202 size = convert_to_mode (Pmode, size, 1);
1203
1204 if (CONST_INT_P (size))
1205 {
1206 unsigned HOST_WIDE_INT lsb;
1207
1208 lsb = INTVAL (size);
1209 lsb &= -lsb;
1210
1211 /* Watch out for overflow truncating to "unsigned". */
1212 if (lsb > UINT_MAX / BITS_PER_UNIT)
1213 size_align = 1u << (HOST_BITS_PER_INT - 1);
1214 else
1215 size_align = (unsigned)lsb * BITS_PER_UNIT;
1216 }
1217 else if (size_align < BITS_PER_UNIT)
1218 size_align = BITS_PER_UNIT;
1219
1220 /* We can't attempt to minimize alignment necessary, because we don't
1221 know the final value of preferred_stack_boundary yet while executing
1222 this code. */
1223 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1224 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1225
1226 /* We will need to ensure that the address we return is aligned to
1227 REQUIRED_ALIGN. At this point in the compilation, we don't always
1228 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1229 (it might depend on the size of the outgoing parameter lists, for
1230 example), so we must preventively align the value. We leave space
1231 in SIZE for the hole that might result from the alignment operation. */
1232
1233 extra = (required_align - BITS_PER_UNIT) / BITS_PER_UNIT;
1234 size = plus_constant (Pmode, size, extra);
1235 size = force_operand (size, NULL_RTX);
1236
1237 if (flag_stack_usage_info && pstack_usage_size)
1238 *pstack_usage_size += extra;
1239
1240 if (extra && size_align > BITS_PER_UNIT)
1241 size_align = BITS_PER_UNIT;
1242
1243 /* Round the size to a multiple of the required stack alignment.
1244 Since the stack is presumed to be rounded before this allocation,
1245 this will maintain the required alignment.
1246
1247 If the stack grows downward, we could save an insn by subtracting
1248 SIZE from the stack pointer and then aligning the stack pointer.
1249 The problem with this is that the stack pointer may be unaligned
1250 between the execution of the subtraction and alignment insns and
1251 some machines do not allow this. Even on those that do, some
1252 signal handlers malfunction if a signal should occur between those
1253 insns. Since this is an extremely rare event, we have no reliable
1254 way of knowing which systems have this problem. So we avoid even
1255 momentarily mis-aligning the stack. */
1256 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1257 {
1258 size = round_push (size);
1259
1260 if (flag_stack_usage_info && pstack_usage_size)
1261 {
1262 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1263 *pstack_usage_size =
1264 (*pstack_usage_size + align - 1) / align * align;
1265 }
1266 }
1267
1268 *psize = size;
1269 }
1270
1271 /* Return an rtx representing the address of an area of memory dynamically
1272 pushed on the stack.
1273
1274 Any required stack pointer alignment is preserved.
1275
1276 SIZE is an rtx representing the size of the area.
1277
1278 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1279 parameter may be zero. If so, a proper value will be extracted
1280 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1281
1282 REQUIRED_ALIGN is the alignment (in bits) required for the region
1283 of memory.
1284
1285 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1286 stack space allocated by the generated code cannot be added with itself
1287 in the course of the execution of the function. It is always safe to
1288 pass FALSE here and the following criterion is sufficient in order to
1289 pass TRUE: every path in the CFG that starts at the allocation point and
1290 loops to it executes the associated deallocation code. */
1291
1292 rtx
1293 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1294 unsigned required_align, bool cannot_accumulate)
1295 {
1296 HOST_WIDE_INT stack_usage_size = -1;
1297 rtx_code_label *final_label;
1298 rtx final_target, target;
1299
1300 /* If we're asking for zero bytes, it doesn't matter what we point
1301 to since we can't dereference it. But return a reasonable
1302 address anyway. */
1303 if (size == const0_rtx)
1304 return virtual_stack_dynamic_rtx;
1305
1306 /* Otherwise, show we're calling alloca or equivalent. */
1307 cfun->calls_alloca = 1;
1308
1309 /* If stack usage info is requested, look into the size we are passed.
1310 We need to do so this early to avoid the obfuscation that may be
1311 introduced later by the various alignment operations. */
1312 if (flag_stack_usage_info)
1313 {
1314 if (CONST_INT_P (size))
1315 stack_usage_size = INTVAL (size);
1316 else if (REG_P (size))
1317 {
1318 /* Look into the last emitted insn and see if we can deduce
1319 something for the register. */
1320 rtx_insn *insn;
1321 rtx set, note;
1322 insn = get_last_insn ();
1323 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1324 {
1325 if (CONST_INT_P (SET_SRC (set)))
1326 stack_usage_size = INTVAL (SET_SRC (set));
1327 else if ((note = find_reg_equal_equiv_note (insn))
1328 && CONST_INT_P (XEXP (note, 0)))
1329 stack_usage_size = INTVAL (XEXP (note, 0));
1330 }
1331 }
1332
1333 /* If the size is not constant, we can't say anything. */
1334 if (stack_usage_size == -1)
1335 {
1336 current_function_has_unbounded_dynamic_stack_size = 1;
1337 stack_usage_size = 0;
1338 }
1339 }
1340
1341 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1342
1343 target = gen_reg_rtx (Pmode);
1344
1345 /* The size is supposed to be fully adjusted at this point so record it
1346 if stack usage info is requested. */
1347 if (flag_stack_usage_info)
1348 {
1349 current_function_dynamic_stack_size += stack_usage_size;
1350
1351 /* ??? This is gross but the only safe stance in the absence
1352 of stack usage oriented flow analysis. */
1353 if (!cannot_accumulate)
1354 current_function_has_unbounded_dynamic_stack_size = 1;
1355 }
1356
1357 final_label = NULL;
1358 final_target = NULL_RTX;
1359
1360 /* If we are splitting the stack, we need to ask the backend whether
1361 there is enough room on the current stack. If there isn't, or if
1362 the backend doesn't know how to tell is, then we need to call a
1363 function to allocate memory in some other way. This memory will
1364 be released when we release the current stack segment. The
1365 effect is that stack allocation becomes less efficient, but at
1366 least it doesn't cause a stack overflow. */
1367 if (flag_split_stack)
1368 {
1369 rtx_code_label *available_label;
1370 rtx ask, space, func;
1371
1372 available_label = NULL;
1373
1374 if (targetm.have_split_stack_space_check ())
1375 {
1376 available_label = gen_label_rtx ();
1377
1378 /* This instruction will branch to AVAILABLE_LABEL if there
1379 are SIZE bytes available on the stack. */
1380 emit_insn (targetm.gen_split_stack_space_check
1381 (size, available_label));
1382 }
1383
1384 /* The __morestack_allocate_stack_space function will allocate
1385 memory using malloc. If the alignment of the memory returned
1386 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1387 make sure we allocate enough space. */
1388 if (MALLOC_ABI_ALIGNMENT >= required_align)
1389 ask = size;
1390 else
1391 ask = expand_binop (Pmode, add_optab, size,
1392 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1393 Pmode),
1394 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1395
1396 func = init_one_libfunc ("__morestack_allocate_stack_space");
1397
1398 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1399 1, ask, Pmode);
1400
1401 if (available_label == NULL_RTX)
1402 return space;
1403
1404 final_target = gen_reg_rtx (Pmode);
1405
1406 emit_move_insn (final_target, space);
1407
1408 final_label = gen_label_rtx ();
1409 emit_jump (final_label);
1410
1411 emit_label (available_label);
1412 }
1413
1414 do_pending_stack_adjust ();
1415
1416 /* We ought to be called always on the toplevel and stack ought to be aligned
1417 properly. */
1418 gcc_assert (!(stack_pointer_delta
1419 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1420
1421 /* If needed, check that we have the required amount of stack. Take into
1422 account what has already been checked. */
1423 if (STACK_CHECK_MOVING_SP)
1424 ;
1425 else if (flag_stack_check == GENERIC_STACK_CHECK)
1426 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1427 size);
1428 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1429 probe_stack_range (STACK_CHECK_PROTECT, size);
1430
1431 /* Don't let anti_adjust_stack emit notes. */
1432 suppress_reg_args_size = true;
1433
1434 /* Perform the required allocation from the stack. Some systems do
1435 this differently than simply incrementing/decrementing from the
1436 stack pointer, such as acquiring the space by calling malloc(). */
1437 if (targetm.have_allocate_stack ())
1438 {
1439 struct expand_operand ops[2];
1440 /* We don't have to check against the predicate for operand 0 since
1441 TARGET is known to be a pseudo of the proper mode, which must
1442 be valid for the operand. */
1443 create_fixed_operand (&ops[0], target);
1444 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1445 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1446 }
1447 else
1448 {
1449 int saved_stack_pointer_delta;
1450
1451 if (!STACK_GROWS_DOWNWARD)
1452 emit_move_insn (target, virtual_stack_dynamic_rtx);
1453
1454 /* Check stack bounds if necessary. */
1455 if (crtl->limit_stack)
1456 {
1457 rtx available;
1458 rtx_code_label *space_available = gen_label_rtx ();
1459 if (STACK_GROWS_DOWNWARD)
1460 available = expand_binop (Pmode, sub_optab,
1461 stack_pointer_rtx, stack_limit_rtx,
1462 NULL_RTX, 1, OPTAB_WIDEN);
1463 else
1464 available = expand_binop (Pmode, sub_optab,
1465 stack_limit_rtx, stack_pointer_rtx,
1466 NULL_RTX, 1, OPTAB_WIDEN);
1467
1468 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1469 space_available);
1470 if (targetm.have_trap ())
1471 emit_insn (targetm.gen_trap ());
1472 else
1473 error ("stack limits not supported on this target");
1474 emit_barrier ();
1475 emit_label (space_available);
1476 }
1477
1478 saved_stack_pointer_delta = stack_pointer_delta;
1479
1480 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1481 anti_adjust_stack_and_probe (size, false);
1482 else
1483 anti_adjust_stack (size);
1484
1485 /* Even if size is constant, don't modify stack_pointer_delta.
1486 The constant size alloca should preserve
1487 crtl->preferred_stack_boundary alignment. */
1488 stack_pointer_delta = saved_stack_pointer_delta;
1489
1490 if (STACK_GROWS_DOWNWARD)
1491 emit_move_insn (target, virtual_stack_dynamic_rtx);
1492 }
1493
1494 suppress_reg_args_size = false;
1495
1496 /* Finish up the split stack handling. */
1497 if (final_label != NULL_RTX)
1498 {
1499 gcc_assert (flag_split_stack);
1500 emit_move_insn (final_target, target);
1501 emit_label (final_label);
1502 target = final_target;
1503 }
1504
1505 target = align_dynamic_address (target, required_align);
1506
1507 /* Now that we've committed to a return value, mark its alignment. */
1508 mark_reg_pointer (target, required_align);
1509
1510 /* Record the new stack level. */
1511 record_new_stack_level ();
1512
1513 return target;
1514 }
1515
1516 /* Return an rtx representing the address of an area of memory already
1517 statically pushed onto the stack in the virtual stack vars area. (It is
1518 assumed that the area is allocated in the function prologue.)
1519
1520 Any required stack pointer alignment is preserved.
1521
1522 OFFSET is the offset of the area into the virtual stack vars area.
1523
1524 REQUIRED_ALIGN is the alignment (in bits) required for the region
1525 of memory. */
1526
1527 rtx
1528 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align)
1529 {
1530 rtx target;
1531
1532 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1533 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1534
1535 target = gen_reg_rtx (Pmode);
1536 emit_move_insn (target, virtual_stack_vars_rtx);
1537 target = expand_binop (Pmode, add_optab, target,
1538 gen_int_mode (offset, Pmode),
1539 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1540 target = align_dynamic_address (target, required_align);
1541
1542 /* Now that we've committed to a return value, mark its alignment. */
1543 mark_reg_pointer (target, required_align);
1544
1545 return target;
1546 }
1547 \f
1548 /* A front end may want to override GCC's stack checking by providing a
1549 run-time routine to call to check the stack, so provide a mechanism for
1550 calling that routine. */
1551
1552 static GTY(()) rtx stack_check_libfunc;
1553
1554 void
1555 set_stack_check_libfunc (const char *libfunc_name)
1556 {
1557 gcc_assert (stack_check_libfunc == NULL_RTX);
1558 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1559 }
1560 \f
1561 /* Emit one stack probe at ADDRESS, an address within the stack. */
1562
1563 void
1564 emit_stack_probe (rtx address)
1565 {
1566 if (targetm.have_probe_stack_address ())
1567 emit_insn (targetm.gen_probe_stack_address (address));
1568 else
1569 {
1570 rtx memref = gen_rtx_MEM (word_mode, address);
1571
1572 MEM_VOLATILE_P (memref) = 1;
1573
1574 /* See if we have an insn to probe the stack. */
1575 if (targetm.have_probe_stack ())
1576 emit_insn (targetm.gen_probe_stack (memref));
1577 else
1578 emit_move_insn (memref, const0_rtx);
1579 }
1580 }
1581
1582 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1583 FIRST is a constant and size is a Pmode RTX. These are offsets from
1584 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1585 or subtract them from the stack pointer. */
1586
1587 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1588
1589 #if STACK_GROWS_DOWNWARD
1590 #define STACK_GROW_OP MINUS
1591 #define STACK_GROW_OPTAB sub_optab
1592 #define STACK_GROW_OFF(off) -(off)
1593 #else
1594 #define STACK_GROW_OP PLUS
1595 #define STACK_GROW_OPTAB add_optab
1596 #define STACK_GROW_OFF(off) (off)
1597 #endif
1598
1599 void
1600 probe_stack_range (HOST_WIDE_INT first, rtx size)
1601 {
1602 /* First ensure SIZE is Pmode. */
1603 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1604 size = convert_to_mode (Pmode, size, 1);
1605
1606 /* Next see if we have a function to check the stack. */
1607 if (stack_check_libfunc)
1608 {
1609 rtx addr = memory_address (Pmode,
1610 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1611 stack_pointer_rtx,
1612 plus_constant (Pmode,
1613 size, first)));
1614 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr,
1615 Pmode);
1616 }
1617
1618 /* Next see if we have an insn to check the stack. */
1619 else if (targetm.have_check_stack ())
1620 {
1621 struct expand_operand ops[1];
1622 rtx addr = memory_address (Pmode,
1623 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1624 stack_pointer_rtx,
1625 plus_constant (Pmode,
1626 size, first)));
1627 bool success;
1628 create_input_operand (&ops[0], addr, Pmode);
1629 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1630 gcc_assert (success);
1631 }
1632
1633 /* Otherwise we have to generate explicit probes. If we have a constant
1634 small number of them to generate, that's the easy case. */
1635 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1636 {
1637 HOST_WIDE_INT isize = INTVAL (size), i;
1638 rtx addr;
1639
1640 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1641 it exceeds SIZE. If only one probe is needed, this will not
1642 generate any code. Then probe at FIRST + SIZE. */
1643 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1644 {
1645 addr = memory_address (Pmode,
1646 plus_constant (Pmode, stack_pointer_rtx,
1647 STACK_GROW_OFF (first + i)));
1648 emit_stack_probe (addr);
1649 }
1650
1651 addr = memory_address (Pmode,
1652 plus_constant (Pmode, stack_pointer_rtx,
1653 STACK_GROW_OFF (first + isize)));
1654 emit_stack_probe (addr);
1655 }
1656
1657 /* In the variable case, do the same as above, but in a loop. Note that we
1658 must be extra careful with variables wrapping around because we might be
1659 at the very top (or the very bottom) of the address space and we have to
1660 be able to handle this case properly; in particular, we use an equality
1661 test for the loop condition. */
1662 else
1663 {
1664 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1665 rtx_code_label *loop_lab = gen_label_rtx ();
1666 rtx_code_label *end_lab = gen_label_rtx ();
1667
1668 /* Step 1: round SIZE to the previous multiple of the interval. */
1669
1670 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1671 rounded_size
1672 = simplify_gen_binary (AND, Pmode, size,
1673 gen_int_mode (-PROBE_INTERVAL, Pmode));
1674 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1675
1676
1677 /* Step 2: compute initial and final value of the loop counter. */
1678
1679 /* TEST_ADDR = SP + FIRST. */
1680 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1681 stack_pointer_rtx,
1682 gen_int_mode (first, Pmode)),
1683 NULL_RTX);
1684
1685 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1686 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1687 test_addr,
1688 rounded_size_op), NULL_RTX);
1689
1690
1691 /* Step 3: the loop
1692
1693 while (TEST_ADDR != LAST_ADDR)
1694 {
1695 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1696 probe at TEST_ADDR
1697 }
1698
1699 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1700 until it is equal to ROUNDED_SIZE. */
1701
1702 emit_label (loop_lab);
1703
1704 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1705 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1706 end_lab);
1707
1708 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1709 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1710 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1711 1, OPTAB_WIDEN);
1712
1713 gcc_assert (temp == test_addr);
1714
1715 /* Probe at TEST_ADDR. */
1716 emit_stack_probe (test_addr);
1717
1718 emit_jump (loop_lab);
1719
1720 emit_label (end_lab);
1721
1722
1723 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1724 that SIZE is equal to ROUNDED_SIZE. */
1725
1726 /* TEMP = SIZE - ROUNDED_SIZE. */
1727 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1728 if (temp != const0_rtx)
1729 {
1730 rtx addr;
1731
1732 if (CONST_INT_P (temp))
1733 {
1734 /* Use [base + disp} addressing mode if supported. */
1735 HOST_WIDE_INT offset = INTVAL (temp);
1736 addr = memory_address (Pmode,
1737 plus_constant (Pmode, last_addr,
1738 STACK_GROW_OFF (offset)));
1739 }
1740 else
1741 {
1742 /* Manual CSE if the difference is not known at compile-time. */
1743 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1744 addr = memory_address (Pmode,
1745 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1746 last_addr, temp));
1747 }
1748
1749 emit_stack_probe (addr);
1750 }
1751 }
1752
1753 /* Make sure nothing is scheduled before we are done. */
1754 emit_insn (gen_blockage ());
1755 }
1756
1757 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1758 while probing it. This pushes when SIZE is positive. SIZE need not
1759 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1760 by plus SIZE at the end. */
1761
1762 void
1763 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1764 {
1765 /* We skip the probe for the first interval + a small dope of 4 words and
1766 probe that many bytes past the specified size to maintain a protection
1767 area at the botton of the stack. */
1768 const int dope = 4 * UNITS_PER_WORD;
1769
1770 /* First ensure SIZE is Pmode. */
1771 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1772 size = convert_to_mode (Pmode, size, 1);
1773
1774 /* If we have a constant small number of probes to generate, that's the
1775 easy case. */
1776 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1777 {
1778 HOST_WIDE_INT isize = INTVAL (size), i;
1779 bool first_probe = true;
1780
1781 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1782 values of N from 1 until it exceeds SIZE. If only one probe is
1783 needed, this will not generate any code. Then adjust and probe
1784 to PROBE_INTERVAL + SIZE. */
1785 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1786 {
1787 if (first_probe)
1788 {
1789 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1790 first_probe = false;
1791 }
1792 else
1793 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1794 emit_stack_probe (stack_pointer_rtx);
1795 }
1796
1797 if (first_probe)
1798 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1799 else
1800 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1801 emit_stack_probe (stack_pointer_rtx);
1802 }
1803
1804 /* In the variable case, do the same as above, but in a loop. Note that we
1805 must be extra careful with variables wrapping around because we might be
1806 at the very top (or the very bottom) of the address space and we have to
1807 be able to handle this case properly; in particular, we use an equality
1808 test for the loop condition. */
1809 else
1810 {
1811 rtx rounded_size, rounded_size_op, last_addr, temp;
1812 rtx_code_label *loop_lab = gen_label_rtx ();
1813 rtx_code_label *end_lab = gen_label_rtx ();
1814
1815
1816 /* Step 1: round SIZE to the previous multiple of the interval. */
1817
1818 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1819 rounded_size
1820 = simplify_gen_binary (AND, Pmode, size,
1821 gen_int_mode (-PROBE_INTERVAL, Pmode));
1822 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1823
1824
1825 /* Step 2: compute initial and final value of the loop counter. */
1826
1827 /* SP = SP_0 + PROBE_INTERVAL. */
1828 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1829
1830 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1831 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1832 stack_pointer_rtx,
1833 rounded_size_op), NULL_RTX);
1834
1835
1836 /* Step 3: the loop
1837
1838 while (SP != LAST_ADDR)
1839 {
1840 SP = SP + PROBE_INTERVAL
1841 probe at SP
1842 }
1843
1844 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1845 values of N from 1 until it is equal to ROUNDED_SIZE. */
1846
1847 emit_label (loop_lab);
1848
1849 /* Jump to END_LAB if SP == LAST_ADDR. */
1850 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1851 Pmode, 1, end_lab);
1852
1853 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1854 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1855 emit_stack_probe (stack_pointer_rtx);
1856
1857 emit_jump (loop_lab);
1858
1859 emit_label (end_lab);
1860
1861
1862 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1863 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1864
1865 /* TEMP = SIZE - ROUNDED_SIZE. */
1866 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1867 if (temp != const0_rtx)
1868 {
1869 /* Manual CSE if the difference is not known at compile-time. */
1870 if (GET_CODE (temp) != CONST_INT)
1871 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1872 anti_adjust_stack (temp);
1873 emit_stack_probe (stack_pointer_rtx);
1874 }
1875 }
1876
1877 /* Adjust back and account for the additional first interval. */
1878 if (adjust_back)
1879 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1880 else
1881 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1882 }
1883
1884 /* Return an rtx representing the register or memory location
1885 in which a scalar value of data type VALTYPE
1886 was returned by a function call to function FUNC.
1887 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1888 function is known, otherwise 0.
1889 OUTGOING is 1 if on a machine with register windows this function
1890 should return the register in which the function will put its result
1891 and 0 otherwise. */
1892
1893 rtx
1894 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1895 int outgoing ATTRIBUTE_UNUSED)
1896 {
1897 rtx val;
1898
1899 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1900
1901 if (REG_P (val)
1902 && GET_MODE (val) == BLKmode)
1903 {
1904 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1905 machine_mode tmpmode;
1906
1907 /* int_size_in_bytes can return -1. We don't need a check here
1908 since the value of bytes will then be large enough that no
1909 mode will match anyway. */
1910
1911 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1912 tmpmode != VOIDmode;
1913 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1914 {
1915 /* Have we found a large enough mode? */
1916 if (GET_MODE_SIZE (tmpmode) >= bytes)
1917 break;
1918 }
1919
1920 /* No suitable mode found. */
1921 gcc_assert (tmpmode != VOIDmode);
1922
1923 PUT_MODE (val, tmpmode);
1924 }
1925 return val;
1926 }
1927
1928 /* Return an rtx representing the register or memory location
1929 in which a scalar value of mode MODE was returned by a library call. */
1930
1931 rtx
1932 hard_libcall_value (machine_mode mode, rtx fun)
1933 {
1934 return targetm.calls.libcall_value (mode, fun);
1935 }
1936
1937 /* Look up the tree code for a given rtx code
1938 to provide the arithmetic operation for real_arithmetic.
1939 The function returns an int because the caller may not know
1940 what `enum tree_code' means. */
1941
1942 int
1943 rtx_to_tree_code (enum rtx_code code)
1944 {
1945 enum tree_code tcode;
1946
1947 switch (code)
1948 {
1949 case PLUS:
1950 tcode = PLUS_EXPR;
1951 break;
1952 case MINUS:
1953 tcode = MINUS_EXPR;
1954 break;
1955 case MULT:
1956 tcode = MULT_EXPR;
1957 break;
1958 case DIV:
1959 tcode = RDIV_EXPR;
1960 break;
1961 case SMIN:
1962 tcode = MIN_EXPR;
1963 break;
1964 case SMAX:
1965 tcode = MAX_EXPR;
1966 break;
1967 default:
1968 tcode = LAST_AND_UNUSED_TREE_CODE;
1969 break;
1970 }
1971 return ((int) tcode);
1972 }
1973
1974 #include "gt-explow.h"