]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
PR82045: Avoid passing machine modes through "..."
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "profile-count.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "stor-layout.h"
37 #include "except.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "expr.h"
41 #include "common/common-target.h"
42 #include "output.h"
43
44 static rtx break_out_memory_refs (rtx);
45
46
47 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48
49 HOST_WIDE_INT
50 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
51 {
52 /* Not scalar_int_mode because we also allow pointer bound modes. */
53 scalar_mode smode = as_a <scalar_mode> (mode);
54 int width = GET_MODE_PRECISION (smode);
55
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode)
58 || POINTER_BOUNDS_MODE_P (mode));
59
60 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
61 if (smode == BImode)
62 return c & 1 ? STORE_FLAG_VALUE : 0;
63
64 /* Sign-extend for the requested mode. */
65
66 if (width < HOST_BITS_PER_WIDE_INT)
67 {
68 HOST_WIDE_INT sign = 1;
69 sign <<= width - 1;
70 c &= (sign << 1) - 1;
71 c ^= sign;
72 c -= sign;
73 }
74
75 return c;
76 }
77
78 /* Return an rtx for the sum of X and the integer C, given that X has
79 mode MODE. INPLACE is true if X can be modified inplace or false
80 if it must be treated as immutable. */
81
82 rtx
83 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
84 bool inplace)
85 {
86 RTX_CODE code;
87 rtx y;
88 rtx tem;
89 int all_constant = 0;
90
91 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
92
93 if (c == 0)
94 return x;
95
96 restart:
97
98 code = GET_CODE (x);
99 y = x;
100
101 switch (code)
102 {
103 CASE_CONST_SCALAR_INT:
104 return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
105 case MEM:
106 /* If this is a reference to the constant pool, try replacing it with
107 a reference to a new constant. If the resulting address isn't
108 valid, don't return it because we have no way to validize it. */
109 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
110 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
111 {
112 rtx cst = get_pool_constant (XEXP (x, 0));
113
114 if (GET_CODE (cst) == CONST_VECTOR
115 && GET_MODE_INNER (GET_MODE (cst)) == mode)
116 {
117 cst = gen_lowpart (mode, cst);
118 gcc_assert (cst);
119 }
120 if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
121 {
122 tem = plus_constant (mode, cst, c);
123 tem = force_const_mem (GET_MODE (x), tem);
124 /* Targets may disallow some constants in the constant pool, thus
125 force_const_mem may return NULL_RTX. */
126 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
128 }
129 }
130 break;
131
132 case CONST:
133 /* If adding to something entirely constant, set a flag
134 so that we can add a CONST around the result. */
135 if (inplace && shared_const_p (x))
136 inplace = false;
137 x = XEXP (x, 0);
138 all_constant = 1;
139 goto restart;
140
141 case SYMBOL_REF:
142 case LABEL_REF:
143 all_constant = 1;
144 break;
145
146 case PLUS:
147 /* The interesting case is adding the integer to a sum. Look
148 for constant term in the sum and combine with C. For an
149 integer constant term or a constant term that is not an
150 explicit integer, we combine or group them together anyway.
151
152 We may not immediately return from the recursive call here, lest
153 all_constant gets lost. */
154
155 if (CONSTANT_P (XEXP (x, 1)))
156 {
157 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
158 if (term == const0_rtx)
159 x = XEXP (x, 0);
160 else if (inplace)
161 XEXP (x, 1) = term;
162 else
163 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
164 c = 0;
165 }
166 else if (rtx *const_loc = find_constant_term_loc (&y))
167 {
168 if (!inplace)
169 {
170 /* We need to be careful since X may be shared and we can't
171 modify it in place. */
172 x = copy_rtx (x);
173 const_loc = find_constant_term_loc (&x);
174 }
175 *const_loc = plus_constant (mode, *const_loc, c, true);
176 c = 0;
177 }
178 break;
179
180 default:
181 break;
182 }
183
184 if (c != 0)
185 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
186
187 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
188 return x;
189 else if (all_constant)
190 return gen_rtx_CONST (mode, x);
191 else
192 return x;
193 }
194 \f
195 /* If X is a sum, return a new sum like X but lacking any constant terms.
196 Add all the removed constant terms into *CONSTPTR.
197 X itself is not altered. The result != X if and only if
198 it is not isomorphic to X. */
199
200 rtx
201 eliminate_constant_term (rtx x, rtx *constptr)
202 {
203 rtx x0, x1;
204 rtx tem;
205
206 if (GET_CODE (x) != PLUS)
207 return x;
208
209 /* First handle constants appearing at this level explicitly. */
210 if (CONST_INT_P (XEXP (x, 1))
211 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
212 XEXP (x, 1)))
213 && CONST_INT_P (tem))
214 {
215 *constptr = tem;
216 return eliminate_constant_term (XEXP (x, 0), constptr);
217 }
218
219 tem = const0_rtx;
220 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
221 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
222 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
223 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
224 *constptr, tem))
225 && CONST_INT_P (tem))
226 {
227 *constptr = tem;
228 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
229 }
230
231 return x;
232 }
233
234 \f
235 /* Return a copy of X in which all memory references
236 and all constants that involve symbol refs
237 have been replaced with new temporary registers.
238 Also emit code to load the memory locations and constants
239 into those registers.
240
241 If X contains no such constants or memory references,
242 X itself (not a copy) is returned.
243
244 If a constant is found in the address that is not a legitimate constant
245 in an insn, it is left alone in the hope that it might be valid in the
246 address.
247
248 X may contain no arithmetic except addition, subtraction and multiplication.
249 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
250
251 static rtx
252 break_out_memory_refs (rtx x)
253 {
254 if (MEM_P (x)
255 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
256 && GET_MODE (x) != VOIDmode))
257 x = force_reg (GET_MODE (x), x);
258 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
259 || GET_CODE (x) == MULT)
260 {
261 rtx op0 = break_out_memory_refs (XEXP (x, 0));
262 rtx op1 = break_out_memory_refs (XEXP (x, 1));
263
264 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
265 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
266 }
267
268 return x;
269 }
270
271 /* Given X, a memory address in address space AS' pointer mode, convert it to
272 an address in the address space's address mode, or vice versa (TO_MODE says
273 which way). We take advantage of the fact that pointers are not allowed to
274 overflow by commuting arithmetic operations over conversions so that address
275 arithmetic insns can be used. IN_CONST is true if this conversion is inside
276 a CONST. NO_EMIT is true if no insns should be emitted, and instead
277 it should return NULL if it can't be simplified without emitting insns. */
278
279 rtx
280 convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED,
281 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
282 bool in_const ATTRIBUTE_UNUSED,
283 bool no_emit ATTRIBUTE_UNUSED)
284 {
285 #ifndef POINTERS_EXTEND_UNSIGNED
286 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
287 return x;
288 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
289 scalar_int_mode pointer_mode, address_mode, from_mode;
290 rtx temp;
291 enum rtx_code code;
292
293 /* If X already has the right mode, just return it. */
294 if (GET_MODE (x) == to_mode)
295 return x;
296
297 pointer_mode = targetm.addr_space.pointer_mode (as);
298 address_mode = targetm.addr_space.address_mode (as);
299 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
300
301 /* Here we handle some special cases. If none of them apply, fall through
302 to the default case. */
303 switch (GET_CODE (x))
304 {
305 CASE_CONST_SCALAR_INT:
306 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
307 code = TRUNCATE;
308 else if (POINTERS_EXTEND_UNSIGNED < 0)
309 break;
310 else if (POINTERS_EXTEND_UNSIGNED > 0)
311 code = ZERO_EXTEND;
312 else
313 code = SIGN_EXTEND;
314 temp = simplify_unary_operation (code, to_mode, x, from_mode);
315 if (temp)
316 return temp;
317 break;
318
319 case SUBREG:
320 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
321 && GET_MODE (SUBREG_REG (x)) == to_mode)
322 return SUBREG_REG (x);
323 break;
324
325 case LABEL_REF:
326 temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
327 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
328 return temp;
329
330 case SYMBOL_REF:
331 temp = shallow_copy_rtx (x);
332 PUT_MODE (temp, to_mode);
333 return temp;
334
335 case CONST:
336 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
337 true, no_emit);
338 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
339
340 case PLUS:
341 case MULT:
342 /* For addition we can safely permute the conversion and addition
343 operation if one operand is a constant and converting the constant
344 does not change it or if one operand is a constant and we are
345 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
346 We can always safely permute them if we are making the address
347 narrower. Inside a CONST RTL, this is safe for both pointers
348 zero or sign extended as pointers cannot wrap. */
349 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
350 || (GET_CODE (x) == PLUS
351 && CONST_INT_P (XEXP (x, 1))
352 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
353 || XEXP (x, 1) == convert_memory_address_addr_space_1
354 (to_mode, XEXP (x, 1), as, in_const,
355 no_emit)
356 || POINTERS_EXTEND_UNSIGNED < 0)))
357 {
358 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
359 as, in_const, no_emit);
360 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
361 temp, XEXP (x, 1))
362 : temp);
363 }
364 break;
365
366 default:
367 break;
368 }
369
370 if (no_emit)
371 return NULL_RTX;
372
373 return convert_modes (to_mode, from_mode,
374 x, POINTERS_EXTEND_UNSIGNED);
375 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
376 }
377
378 /* Given X, a memory address in address space AS' pointer mode, convert it to
379 an address in the address space's address mode, or vice versa (TO_MODE says
380 which way). We take advantage of the fact that pointers are not allowed to
381 overflow by commuting arithmetic operations over conversions so that address
382 arithmetic insns can be used. */
383
384 rtx
385 convert_memory_address_addr_space (scalar_int_mode to_mode, rtx x,
386 addr_space_t as)
387 {
388 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
389 }
390 \f
391
392 /* Return something equivalent to X but valid as a memory address for something
393 of mode MODE in the named address space AS. When X is not itself valid,
394 this works by copying X or subexpressions of it into registers. */
395
396 rtx
397 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
398 {
399 rtx oldx = x;
400 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
401
402 x = convert_memory_address_addr_space (address_mode, x, as);
403
404 /* By passing constant addresses through registers
405 we get a chance to cse them. */
406 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
407 x = force_reg (address_mode, x);
408
409 /* We get better cse by rejecting indirect addressing at this stage.
410 Let the combiner create indirect addresses where appropriate.
411 For now, generate the code so that the subexpressions useful to share
412 are visible. But not if cse won't be done! */
413 else
414 {
415 if (! cse_not_expected && !REG_P (x))
416 x = break_out_memory_refs (x);
417
418 /* At this point, any valid address is accepted. */
419 if (memory_address_addr_space_p (mode, x, as))
420 goto done;
421
422 /* If it was valid before but breaking out memory refs invalidated it,
423 use it the old way. */
424 if (memory_address_addr_space_p (mode, oldx, as))
425 {
426 x = oldx;
427 goto done;
428 }
429
430 /* Perform machine-dependent transformations on X
431 in certain cases. This is not necessary since the code
432 below can handle all possible cases, but machine-dependent
433 transformations can make better code. */
434 {
435 rtx orig_x = x;
436 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
437 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
438 goto done;
439 }
440
441 /* PLUS and MULT can appear in special ways
442 as the result of attempts to make an address usable for indexing.
443 Usually they are dealt with by calling force_operand, below.
444 But a sum containing constant terms is special
445 if removing them makes the sum a valid address:
446 then we generate that address in a register
447 and index off of it. We do this because it often makes
448 shorter code, and because the addresses thus generated
449 in registers often become common subexpressions. */
450 if (GET_CODE (x) == PLUS)
451 {
452 rtx constant_term = const0_rtx;
453 rtx y = eliminate_constant_term (x, &constant_term);
454 if (constant_term == const0_rtx
455 || ! memory_address_addr_space_p (mode, y, as))
456 x = force_operand (x, NULL_RTX);
457 else
458 {
459 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
460 if (! memory_address_addr_space_p (mode, y, as))
461 x = force_operand (x, NULL_RTX);
462 else
463 x = y;
464 }
465 }
466
467 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
468 x = force_operand (x, NULL_RTX);
469
470 /* If we have a register that's an invalid address,
471 it must be a hard reg of the wrong class. Copy it to a pseudo. */
472 else if (REG_P (x))
473 x = copy_to_reg (x);
474
475 /* Last resort: copy the value to a register, since
476 the register is a valid address. */
477 else
478 x = force_reg (address_mode, x);
479 }
480
481 done:
482
483 gcc_assert (memory_address_addr_space_p (mode, x, as));
484 /* If we didn't change the address, we are done. Otherwise, mark
485 a reg as a pointer if we have REG or REG + CONST_INT. */
486 if (oldx == x)
487 return x;
488 else if (REG_P (x))
489 mark_reg_pointer (x, BITS_PER_UNIT);
490 else if (GET_CODE (x) == PLUS
491 && REG_P (XEXP (x, 0))
492 && CONST_INT_P (XEXP (x, 1)))
493 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
494
495 /* OLDX may have been the address on a temporary. Update the address
496 to indicate that X is now used. */
497 update_temp_slot_address (oldx, x);
498
499 return x;
500 }
501
502 /* Convert a mem ref into one with a valid memory address.
503 Pass through anything else unchanged. */
504
505 rtx
506 validize_mem (rtx ref)
507 {
508 if (!MEM_P (ref))
509 return ref;
510 ref = use_anchored_address (ref);
511 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
512 MEM_ADDR_SPACE (ref)))
513 return ref;
514
515 /* Don't alter REF itself, since that is probably a stack slot. */
516 return replace_equiv_address (ref, XEXP (ref, 0));
517 }
518
519 /* If X is a memory reference to a member of an object block, try rewriting
520 it to use an anchor instead. Return the new memory reference on success
521 and the old one on failure. */
522
523 rtx
524 use_anchored_address (rtx x)
525 {
526 rtx base;
527 HOST_WIDE_INT offset;
528 machine_mode mode;
529
530 if (!flag_section_anchors)
531 return x;
532
533 if (!MEM_P (x))
534 return x;
535
536 /* Split the address into a base and offset. */
537 base = XEXP (x, 0);
538 offset = 0;
539 if (GET_CODE (base) == CONST
540 && GET_CODE (XEXP (base, 0)) == PLUS
541 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
542 {
543 offset += INTVAL (XEXP (XEXP (base, 0), 1));
544 base = XEXP (XEXP (base, 0), 0);
545 }
546
547 /* Check whether BASE is suitable for anchors. */
548 if (GET_CODE (base) != SYMBOL_REF
549 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
550 || SYMBOL_REF_ANCHOR_P (base)
551 || SYMBOL_REF_BLOCK (base) == NULL
552 || !targetm.use_anchors_for_symbol_p (base))
553 return x;
554
555 /* Decide where BASE is going to be. */
556 place_block_symbol (base);
557
558 /* Get the anchor we need to use. */
559 offset += SYMBOL_REF_BLOCK_OFFSET (base);
560 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
561 SYMBOL_REF_TLS_MODEL (base));
562
563 /* Work out the offset from the anchor. */
564 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
565
566 /* If we're going to run a CSE pass, force the anchor into a register.
567 We will then be able to reuse registers for several accesses, if the
568 target costs say that that's worthwhile. */
569 mode = GET_MODE (base);
570 if (!cse_not_expected)
571 base = force_reg (mode, base);
572
573 return replace_equiv_address (x, plus_constant (mode, base, offset));
574 }
575 \f
576 /* Copy the value or contents of X to a new temp reg and return that reg. */
577
578 rtx
579 copy_to_reg (rtx x)
580 {
581 rtx temp = gen_reg_rtx (GET_MODE (x));
582
583 /* If not an operand, must be an address with PLUS and MULT so
584 do the computation. */
585 if (! general_operand (x, VOIDmode))
586 x = force_operand (x, temp);
587
588 if (x != temp)
589 emit_move_insn (temp, x);
590
591 return temp;
592 }
593
594 /* Like copy_to_reg but always give the new register mode Pmode
595 in case X is a constant. */
596
597 rtx
598 copy_addr_to_reg (rtx x)
599 {
600 return copy_to_mode_reg (Pmode, x);
601 }
602
603 /* Like copy_to_reg but always give the new register mode MODE
604 in case X is a constant. */
605
606 rtx
607 copy_to_mode_reg (machine_mode mode, rtx x)
608 {
609 rtx temp = gen_reg_rtx (mode);
610
611 /* If not an operand, must be an address with PLUS and MULT so
612 do the computation. */
613 if (! general_operand (x, VOIDmode))
614 x = force_operand (x, temp);
615
616 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
617 if (x != temp)
618 emit_move_insn (temp, x);
619 return temp;
620 }
621
622 /* Load X into a register if it is not already one.
623 Use mode MODE for the register.
624 X should be valid for mode MODE, but it may be a constant which
625 is valid for all integer modes; that's why caller must specify MODE.
626
627 The caller must not alter the value in the register we return,
628 since we mark it as a "constant" register. */
629
630 rtx
631 force_reg (machine_mode mode, rtx x)
632 {
633 rtx temp, set;
634 rtx_insn *insn;
635
636 if (REG_P (x))
637 return x;
638
639 if (general_operand (x, mode))
640 {
641 temp = gen_reg_rtx (mode);
642 insn = emit_move_insn (temp, x);
643 }
644 else
645 {
646 temp = force_operand (x, NULL_RTX);
647 if (REG_P (temp))
648 insn = get_last_insn ();
649 else
650 {
651 rtx temp2 = gen_reg_rtx (mode);
652 insn = emit_move_insn (temp2, temp);
653 temp = temp2;
654 }
655 }
656
657 /* Let optimizers know that TEMP's value never changes
658 and that X can be substituted for it. Don't get confused
659 if INSN set something else (such as a SUBREG of TEMP). */
660 if (CONSTANT_P (x)
661 && (set = single_set (insn)) != 0
662 && SET_DEST (set) == temp
663 && ! rtx_equal_p (x, SET_SRC (set)))
664 set_unique_reg_note (insn, REG_EQUAL, x);
665
666 /* Let optimizers know that TEMP is a pointer, and if so, the
667 known alignment of that pointer. */
668 {
669 unsigned align = 0;
670 if (GET_CODE (x) == SYMBOL_REF)
671 {
672 align = BITS_PER_UNIT;
673 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
674 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
675 }
676 else if (GET_CODE (x) == LABEL_REF)
677 align = BITS_PER_UNIT;
678 else if (GET_CODE (x) == CONST
679 && GET_CODE (XEXP (x, 0)) == PLUS
680 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
681 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
682 {
683 rtx s = XEXP (XEXP (x, 0), 0);
684 rtx c = XEXP (XEXP (x, 0), 1);
685 unsigned sa, ca;
686
687 sa = BITS_PER_UNIT;
688 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
689 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
690
691 if (INTVAL (c) == 0)
692 align = sa;
693 else
694 {
695 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
696 align = MIN (sa, ca);
697 }
698 }
699
700 if (align || (MEM_P (x) && MEM_POINTER (x)))
701 mark_reg_pointer (temp, align);
702 }
703
704 return temp;
705 }
706
707 /* If X is a memory ref, copy its contents to a new temp reg and return
708 that reg. Otherwise, return X. */
709
710 rtx
711 force_not_mem (rtx x)
712 {
713 rtx temp;
714
715 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
716 return x;
717
718 temp = gen_reg_rtx (GET_MODE (x));
719
720 if (MEM_POINTER (x))
721 REG_POINTER (temp) = 1;
722
723 emit_move_insn (temp, x);
724 return temp;
725 }
726
727 /* Copy X to TARGET (if it's nonzero and a reg)
728 or to a new temp reg and return that reg.
729 MODE is the mode to use for X in case it is a constant. */
730
731 rtx
732 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
733 {
734 rtx temp;
735
736 if (target && REG_P (target))
737 temp = target;
738 else
739 temp = gen_reg_rtx (mode);
740
741 emit_move_insn (temp, x);
742 return temp;
743 }
744 \f
745 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
746 PUNSIGNEDP points to the signedness of the type and may be adjusted
747 to show what signedness to use on extension operations.
748
749 FOR_RETURN is nonzero if the caller is promoting the return value
750 of FNDECL, else it is for promoting args. */
751
752 machine_mode
753 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
754 const_tree funtype, int for_return)
755 {
756 /* Called without a type node for a libcall. */
757 if (type == NULL_TREE)
758 {
759 if (INTEGRAL_MODE_P (mode))
760 return targetm.calls.promote_function_mode (NULL_TREE, mode,
761 punsignedp, funtype,
762 for_return);
763 else
764 return mode;
765 }
766
767 switch (TREE_CODE (type))
768 {
769 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
770 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
771 case POINTER_TYPE: case REFERENCE_TYPE:
772 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
773 for_return);
774
775 default:
776 return mode;
777 }
778 }
779 /* Return the mode to use to store a scalar of TYPE and MODE.
780 PUNSIGNEDP points to the signedness of the type and may be adjusted
781 to show what signedness to use on extension operations. */
782
783 machine_mode
784 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
785 int *punsignedp ATTRIBUTE_UNUSED)
786 {
787 #ifdef PROMOTE_MODE
788 enum tree_code code;
789 int unsignedp;
790 scalar_mode smode;
791 #endif
792
793 /* For libcalls this is invoked without TYPE from the backends
794 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
795 case. */
796 if (type == NULL_TREE)
797 return mode;
798
799 /* FIXME: this is the same logic that was there until GCC 4.4, but we
800 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
801 is not defined. The affected targets are M32C, S390, SPARC. */
802 #ifdef PROMOTE_MODE
803 code = TREE_CODE (type);
804 unsignedp = *punsignedp;
805
806 switch (code)
807 {
808 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
809 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
810 /* Values of these types always have scalar mode. */
811 smode = as_a <scalar_mode> (mode);
812 PROMOTE_MODE (smode, unsignedp, type);
813 *punsignedp = unsignedp;
814 return smode;
815
816 #ifdef POINTERS_EXTEND_UNSIGNED
817 case REFERENCE_TYPE:
818 case POINTER_TYPE:
819 *punsignedp = POINTERS_EXTEND_UNSIGNED;
820 return targetm.addr_space.address_mode
821 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
822 #endif
823
824 default:
825 return mode;
826 }
827 #else
828 return mode;
829 #endif
830 }
831
832
833 /* Use one of promote_mode or promote_function_mode to find the promoted
834 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
835 of DECL after promotion. */
836
837 machine_mode
838 promote_decl_mode (const_tree decl, int *punsignedp)
839 {
840 tree type = TREE_TYPE (decl);
841 int unsignedp = TYPE_UNSIGNED (type);
842 machine_mode mode = DECL_MODE (decl);
843 machine_mode pmode;
844
845 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
846 pmode = promote_function_mode (type, mode, &unsignedp,
847 TREE_TYPE (current_function_decl), 1);
848 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
849 pmode = promote_function_mode (type, mode, &unsignedp,
850 TREE_TYPE (current_function_decl), 2);
851 else
852 pmode = promote_mode (type, mode, &unsignedp);
853
854 if (punsignedp)
855 *punsignedp = unsignedp;
856 return pmode;
857 }
858
859 /* Return the promoted mode for name. If it is a named SSA_NAME, it
860 is the same as promote_decl_mode. Otherwise, it is the promoted
861 mode of a temp decl of same type as the SSA_NAME, if we had created
862 one. */
863
864 machine_mode
865 promote_ssa_mode (const_tree name, int *punsignedp)
866 {
867 gcc_assert (TREE_CODE (name) == SSA_NAME);
868
869 /* Partitions holding parms and results must be promoted as expected
870 by function.c. */
871 if (SSA_NAME_VAR (name)
872 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
873 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
874 {
875 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
876 if (mode != BLKmode)
877 return mode;
878 }
879
880 tree type = TREE_TYPE (name);
881 int unsignedp = TYPE_UNSIGNED (type);
882 machine_mode mode = TYPE_MODE (type);
883
884 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
885 if (mode == BLKmode)
886 {
887 gcc_assert (VECTOR_TYPE_P (type));
888 mode = type->type_common.mode;
889 }
890
891 machine_mode pmode = promote_mode (type, mode, &unsignedp);
892 if (punsignedp)
893 *punsignedp = unsignedp;
894
895 return pmode;
896 }
897
898
899 \f
900 /* Controls the behavior of {anti_,}adjust_stack. */
901 static bool suppress_reg_args_size;
902
903 /* A helper for adjust_stack and anti_adjust_stack. */
904
905 static void
906 adjust_stack_1 (rtx adjust, bool anti_p)
907 {
908 rtx temp;
909 rtx_insn *insn;
910
911 /* Hereafter anti_p means subtract_p. */
912 if (!STACK_GROWS_DOWNWARD)
913 anti_p = !anti_p;
914
915 temp = expand_binop (Pmode,
916 anti_p ? sub_optab : add_optab,
917 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
918 OPTAB_LIB_WIDEN);
919
920 if (temp != stack_pointer_rtx)
921 insn = emit_move_insn (stack_pointer_rtx, temp);
922 else
923 {
924 insn = get_last_insn ();
925 temp = single_set (insn);
926 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
927 }
928
929 if (!suppress_reg_args_size)
930 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
931 }
932
933 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
934 This pops when ADJUST is positive. ADJUST need not be constant. */
935
936 void
937 adjust_stack (rtx adjust)
938 {
939 if (adjust == const0_rtx)
940 return;
941
942 /* We expect all variable sized adjustments to be multiple of
943 PREFERRED_STACK_BOUNDARY. */
944 if (CONST_INT_P (adjust))
945 stack_pointer_delta -= INTVAL (adjust);
946
947 adjust_stack_1 (adjust, false);
948 }
949
950 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
951 This pushes when ADJUST is positive. ADJUST need not be constant. */
952
953 void
954 anti_adjust_stack (rtx adjust)
955 {
956 if (adjust == const0_rtx)
957 return;
958
959 /* We expect all variable sized adjustments to be multiple of
960 PREFERRED_STACK_BOUNDARY. */
961 if (CONST_INT_P (adjust))
962 stack_pointer_delta += INTVAL (adjust);
963
964 adjust_stack_1 (adjust, true);
965 }
966
967 /* Round the size of a block to be pushed up to the boundary required
968 by this machine. SIZE is the desired size, which need not be constant. */
969
970 static rtx
971 round_push (rtx size)
972 {
973 rtx align_rtx, alignm1_rtx;
974
975 if (!SUPPORTS_STACK_ALIGNMENT
976 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
977 {
978 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
979
980 if (align == 1)
981 return size;
982
983 if (CONST_INT_P (size))
984 {
985 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
986
987 if (INTVAL (size) != new_size)
988 size = GEN_INT (new_size);
989 return size;
990 }
991
992 align_rtx = GEN_INT (align);
993 alignm1_rtx = GEN_INT (align - 1);
994 }
995 else
996 {
997 /* If crtl->preferred_stack_boundary might still grow, use
998 virtual_preferred_stack_boundary_rtx instead. This will be
999 substituted by the right value in vregs pass and optimized
1000 during combine. */
1001 align_rtx = virtual_preferred_stack_boundary_rtx;
1002 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
1003 NULL_RTX);
1004 }
1005
1006 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1007 but we know it can't. So add ourselves and then do
1008 TRUNC_DIV_EXPR. */
1009 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1010 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1011 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1012 NULL_RTX, 1);
1013 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1014
1015 return size;
1016 }
1017 \f
1018 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1019 to a previously-created save area. If no save area has been allocated,
1020 this function will allocate one. If a save area is specified, it
1021 must be of the proper mode. */
1022
1023 void
1024 emit_stack_save (enum save_level save_level, rtx *psave)
1025 {
1026 rtx sa = *psave;
1027 /* The default is that we use a move insn and save in a Pmode object. */
1028 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1029 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1030
1031 /* See if this machine has anything special to do for this kind of save. */
1032 switch (save_level)
1033 {
1034 case SAVE_BLOCK:
1035 if (targetm.have_save_stack_block ())
1036 fcn = targetm.gen_save_stack_block;
1037 break;
1038 case SAVE_FUNCTION:
1039 if (targetm.have_save_stack_function ())
1040 fcn = targetm.gen_save_stack_function;
1041 break;
1042 case SAVE_NONLOCAL:
1043 if (targetm.have_save_stack_nonlocal ())
1044 fcn = targetm.gen_save_stack_nonlocal;
1045 break;
1046 default:
1047 break;
1048 }
1049
1050 /* If there is no save area and we have to allocate one, do so. Otherwise
1051 verify the save area is the proper mode. */
1052
1053 if (sa == 0)
1054 {
1055 if (mode != VOIDmode)
1056 {
1057 if (save_level == SAVE_NONLOCAL)
1058 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1059 else
1060 *psave = sa = gen_reg_rtx (mode);
1061 }
1062 }
1063
1064 do_pending_stack_adjust ();
1065 if (sa != 0)
1066 sa = validize_mem (sa);
1067 emit_insn (fcn (sa, stack_pointer_rtx));
1068 }
1069
1070 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1071 area made by emit_stack_save. If it is zero, we have nothing to do. */
1072
1073 void
1074 emit_stack_restore (enum save_level save_level, rtx sa)
1075 {
1076 /* The default is that we use a move insn. */
1077 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1078
1079 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1080 STACK_POINTER and HARD_FRAME_POINTER.
1081 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1082 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1083 aligned variables, which is reflected in ix86_can_eliminate.
1084 We normally still have the realigned STACK_POINTER that we can use.
1085 But if there is a stack restore still present at reload, it can trigger
1086 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1087 FRAME_POINTER into a hard reg.
1088 To prevent this situation, we force need_drap if we emit a stack
1089 restore. */
1090 if (SUPPORTS_STACK_ALIGNMENT)
1091 crtl->need_drap = true;
1092
1093 /* See if this machine has anything special to do for this kind of save. */
1094 switch (save_level)
1095 {
1096 case SAVE_BLOCK:
1097 if (targetm.have_restore_stack_block ())
1098 fcn = targetm.gen_restore_stack_block;
1099 break;
1100 case SAVE_FUNCTION:
1101 if (targetm.have_restore_stack_function ())
1102 fcn = targetm.gen_restore_stack_function;
1103 break;
1104 case SAVE_NONLOCAL:
1105 if (targetm.have_restore_stack_nonlocal ())
1106 fcn = targetm.gen_restore_stack_nonlocal;
1107 break;
1108 default:
1109 break;
1110 }
1111
1112 if (sa != 0)
1113 {
1114 sa = validize_mem (sa);
1115 /* These clobbers prevent the scheduler from moving
1116 references to variable arrays below the code
1117 that deletes (pops) the arrays. */
1118 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1119 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1120 }
1121
1122 discard_pending_stack_adjust ();
1123
1124 emit_insn (fcn (stack_pointer_rtx, sa));
1125 }
1126
1127 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1128 function. This should be called whenever we allocate or deallocate
1129 dynamic stack space. */
1130
1131 void
1132 update_nonlocal_goto_save_area (void)
1133 {
1134 tree t_save;
1135 rtx r_save;
1136
1137 /* The nonlocal_goto_save_area object is an array of N pointers. The
1138 first one is used for the frame pointer save; the rest are sized by
1139 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1140 of the stack save area slots. */
1141 t_save = build4 (ARRAY_REF,
1142 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1143 cfun->nonlocal_goto_save_area,
1144 integer_one_node, NULL_TREE, NULL_TREE);
1145 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1146
1147 emit_stack_save (SAVE_NONLOCAL, &r_save);
1148 }
1149
1150 /* Record a new stack level for the current function. This should be called
1151 whenever we allocate or deallocate dynamic stack space. */
1152
1153 void
1154 record_new_stack_level (void)
1155 {
1156 /* Record the new stack level for nonlocal gotos. */
1157 if (cfun->nonlocal_goto_save_area)
1158 update_nonlocal_goto_save_area ();
1159
1160 /* Record the new stack level for SJLJ exceptions. */
1161 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1162 update_sjlj_context ();
1163 }
1164 \f
1165 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1166 static rtx
1167 align_dynamic_address (rtx target, unsigned required_align)
1168 {
1169 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1170 but we know it can't. So add ourselves and then do
1171 TRUNC_DIV_EXPR. */
1172 target = expand_binop (Pmode, add_optab, target,
1173 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1174 Pmode),
1175 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1176 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1177 gen_int_mode (required_align / BITS_PER_UNIT,
1178 Pmode),
1179 NULL_RTX, 1);
1180 target = expand_mult (Pmode, target,
1181 gen_int_mode (required_align / BITS_PER_UNIT,
1182 Pmode),
1183 NULL_RTX, 1);
1184
1185 return target;
1186 }
1187
1188 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1189 be dynamically pushed on the stack.
1190
1191 *PSIZE is an rtx representing the size of the area.
1192
1193 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1194 parameter may be zero. If so, a proper value will be extracted
1195 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1196
1197 REQUIRED_ALIGN is the alignment (in bits) required for the region
1198 of memory.
1199
1200 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1201 the additional size returned. */
1202 void
1203 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1204 unsigned required_align,
1205 HOST_WIDE_INT *pstack_usage_size)
1206 {
1207 unsigned extra = 0;
1208 rtx size = *psize;
1209
1210 /* Ensure the size is in the proper mode. */
1211 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1212 size = convert_to_mode (Pmode, size, 1);
1213
1214 if (CONST_INT_P (size))
1215 {
1216 unsigned HOST_WIDE_INT lsb;
1217
1218 lsb = INTVAL (size);
1219 lsb &= -lsb;
1220
1221 /* Watch out for overflow truncating to "unsigned". */
1222 if (lsb > UINT_MAX / BITS_PER_UNIT)
1223 size_align = 1u << (HOST_BITS_PER_INT - 1);
1224 else
1225 size_align = (unsigned)lsb * BITS_PER_UNIT;
1226 }
1227 else if (size_align < BITS_PER_UNIT)
1228 size_align = BITS_PER_UNIT;
1229
1230 /* We can't attempt to minimize alignment necessary, because we don't
1231 know the final value of preferred_stack_boundary yet while executing
1232 this code. */
1233 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1234 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1235
1236 /* We will need to ensure that the address we return is aligned to
1237 REQUIRED_ALIGN. At this point in the compilation, we don't always
1238 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1239 (it might depend on the size of the outgoing parameter lists, for
1240 example), so we must preventively align the value. We leave space
1241 in SIZE for the hole that might result from the alignment operation. */
1242
1243 extra = (required_align - BITS_PER_UNIT) / BITS_PER_UNIT;
1244 size = plus_constant (Pmode, size, extra);
1245 size = force_operand (size, NULL_RTX);
1246
1247 if (flag_stack_usage_info && pstack_usage_size)
1248 *pstack_usage_size += extra;
1249
1250 if (extra && size_align > BITS_PER_UNIT)
1251 size_align = BITS_PER_UNIT;
1252
1253 /* Round the size to a multiple of the required stack alignment.
1254 Since the stack is presumed to be rounded before this allocation,
1255 this will maintain the required alignment.
1256
1257 If the stack grows downward, we could save an insn by subtracting
1258 SIZE from the stack pointer and then aligning the stack pointer.
1259 The problem with this is that the stack pointer may be unaligned
1260 between the execution of the subtraction and alignment insns and
1261 some machines do not allow this. Even on those that do, some
1262 signal handlers malfunction if a signal should occur between those
1263 insns. Since this is an extremely rare event, we have no reliable
1264 way of knowing which systems have this problem. So we avoid even
1265 momentarily mis-aligning the stack. */
1266 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1267 {
1268 size = round_push (size);
1269
1270 if (flag_stack_usage_info && pstack_usage_size)
1271 {
1272 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1273 *pstack_usage_size =
1274 (*pstack_usage_size + align - 1) / align * align;
1275 }
1276 }
1277
1278 *psize = size;
1279 }
1280
1281 /* Return an rtx representing the address of an area of memory dynamically
1282 pushed on the stack.
1283
1284 Any required stack pointer alignment is preserved.
1285
1286 SIZE is an rtx representing the size of the area.
1287
1288 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1289 parameter may be zero. If so, a proper value will be extracted
1290 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1291
1292 REQUIRED_ALIGN is the alignment (in bits) required for the region
1293 of memory.
1294
1295 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1296 stack space allocated by the generated code cannot be added with itself
1297 in the course of the execution of the function. It is always safe to
1298 pass FALSE here and the following criterion is sufficient in order to
1299 pass TRUE: every path in the CFG that starts at the allocation point and
1300 loops to it executes the associated deallocation code. */
1301
1302 rtx
1303 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1304 unsigned required_align, bool cannot_accumulate)
1305 {
1306 HOST_WIDE_INT stack_usage_size = -1;
1307 rtx_code_label *final_label;
1308 rtx final_target, target;
1309
1310 /* If we're asking for zero bytes, it doesn't matter what we point
1311 to since we can't dereference it. But return a reasonable
1312 address anyway. */
1313 if (size == const0_rtx)
1314 return virtual_stack_dynamic_rtx;
1315
1316 /* Otherwise, show we're calling alloca or equivalent. */
1317 cfun->calls_alloca = 1;
1318
1319 /* If stack usage info is requested, look into the size we are passed.
1320 We need to do so this early to avoid the obfuscation that may be
1321 introduced later by the various alignment operations. */
1322 if (flag_stack_usage_info)
1323 {
1324 if (CONST_INT_P (size))
1325 stack_usage_size = INTVAL (size);
1326 else if (REG_P (size))
1327 {
1328 /* Look into the last emitted insn and see if we can deduce
1329 something for the register. */
1330 rtx_insn *insn;
1331 rtx set, note;
1332 insn = get_last_insn ();
1333 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1334 {
1335 if (CONST_INT_P (SET_SRC (set)))
1336 stack_usage_size = INTVAL (SET_SRC (set));
1337 else if ((note = find_reg_equal_equiv_note (insn))
1338 && CONST_INT_P (XEXP (note, 0)))
1339 stack_usage_size = INTVAL (XEXP (note, 0));
1340 }
1341 }
1342
1343 /* If the size is not constant, we can't say anything. */
1344 if (stack_usage_size == -1)
1345 {
1346 current_function_has_unbounded_dynamic_stack_size = 1;
1347 stack_usage_size = 0;
1348 }
1349 }
1350
1351 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1352
1353 target = gen_reg_rtx (Pmode);
1354
1355 /* The size is supposed to be fully adjusted at this point so record it
1356 if stack usage info is requested. */
1357 if (flag_stack_usage_info)
1358 {
1359 current_function_dynamic_stack_size += stack_usage_size;
1360
1361 /* ??? This is gross but the only safe stance in the absence
1362 of stack usage oriented flow analysis. */
1363 if (!cannot_accumulate)
1364 current_function_has_unbounded_dynamic_stack_size = 1;
1365 }
1366
1367 do_pending_stack_adjust ();
1368
1369 final_label = NULL;
1370 final_target = NULL_RTX;
1371
1372 /* If we are splitting the stack, we need to ask the backend whether
1373 there is enough room on the current stack. If there isn't, or if
1374 the backend doesn't know how to tell is, then we need to call a
1375 function to allocate memory in some other way. This memory will
1376 be released when we release the current stack segment. The
1377 effect is that stack allocation becomes less efficient, but at
1378 least it doesn't cause a stack overflow. */
1379 if (flag_split_stack)
1380 {
1381 rtx_code_label *available_label;
1382 rtx ask, space, func;
1383
1384 available_label = NULL;
1385
1386 if (targetm.have_split_stack_space_check ())
1387 {
1388 available_label = gen_label_rtx ();
1389
1390 /* This instruction will branch to AVAILABLE_LABEL if there
1391 are SIZE bytes available on the stack. */
1392 emit_insn (targetm.gen_split_stack_space_check
1393 (size, available_label));
1394 }
1395
1396 /* The __morestack_allocate_stack_space function will allocate
1397 memory using malloc. If the alignment of the memory returned
1398 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1399 make sure we allocate enough space. */
1400 if (MALLOC_ABI_ALIGNMENT >= required_align)
1401 ask = size;
1402 else
1403 ask = expand_binop (Pmode, add_optab, size,
1404 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1405 Pmode),
1406 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1407
1408 func = init_one_libfunc ("__morestack_allocate_stack_space");
1409
1410 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1411 ask, Pmode);
1412
1413 if (available_label == NULL_RTX)
1414 return space;
1415
1416 final_target = gen_reg_rtx (Pmode);
1417
1418 emit_move_insn (final_target, space);
1419
1420 final_label = gen_label_rtx ();
1421 emit_jump (final_label);
1422
1423 emit_label (available_label);
1424 }
1425
1426 /* We ought to be called always on the toplevel and stack ought to be aligned
1427 properly. */
1428 gcc_assert (!(stack_pointer_delta
1429 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1430
1431 /* If needed, check that we have the required amount of stack. Take into
1432 account what has already been checked. */
1433 if (STACK_CHECK_MOVING_SP)
1434 ;
1435 else if (flag_stack_check == GENERIC_STACK_CHECK)
1436 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1437 size);
1438 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1439 probe_stack_range (STACK_CHECK_PROTECT, size);
1440
1441 /* Don't let anti_adjust_stack emit notes. */
1442 suppress_reg_args_size = true;
1443
1444 /* Perform the required allocation from the stack. Some systems do
1445 this differently than simply incrementing/decrementing from the
1446 stack pointer, such as acquiring the space by calling malloc(). */
1447 if (targetm.have_allocate_stack ())
1448 {
1449 struct expand_operand ops[2];
1450 /* We don't have to check against the predicate for operand 0 since
1451 TARGET is known to be a pseudo of the proper mode, which must
1452 be valid for the operand. */
1453 create_fixed_operand (&ops[0], target);
1454 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1455 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1456 }
1457 else
1458 {
1459 int saved_stack_pointer_delta;
1460
1461 if (!STACK_GROWS_DOWNWARD)
1462 emit_move_insn (target, virtual_stack_dynamic_rtx);
1463
1464 /* Check stack bounds if necessary. */
1465 if (crtl->limit_stack)
1466 {
1467 rtx available;
1468 rtx_code_label *space_available = gen_label_rtx ();
1469 if (STACK_GROWS_DOWNWARD)
1470 available = expand_binop (Pmode, sub_optab,
1471 stack_pointer_rtx, stack_limit_rtx,
1472 NULL_RTX, 1, OPTAB_WIDEN);
1473 else
1474 available = expand_binop (Pmode, sub_optab,
1475 stack_limit_rtx, stack_pointer_rtx,
1476 NULL_RTX, 1, OPTAB_WIDEN);
1477
1478 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1479 space_available);
1480 if (targetm.have_trap ())
1481 emit_insn (targetm.gen_trap ());
1482 else
1483 error ("stack limits not supported on this target");
1484 emit_barrier ();
1485 emit_label (space_available);
1486 }
1487
1488 saved_stack_pointer_delta = stack_pointer_delta;
1489
1490 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1491 anti_adjust_stack_and_probe (size, false);
1492 else
1493 anti_adjust_stack (size);
1494
1495 /* Even if size is constant, don't modify stack_pointer_delta.
1496 The constant size alloca should preserve
1497 crtl->preferred_stack_boundary alignment. */
1498 stack_pointer_delta = saved_stack_pointer_delta;
1499
1500 if (STACK_GROWS_DOWNWARD)
1501 emit_move_insn (target, virtual_stack_dynamic_rtx);
1502 }
1503
1504 suppress_reg_args_size = false;
1505
1506 /* Finish up the split stack handling. */
1507 if (final_label != NULL_RTX)
1508 {
1509 gcc_assert (flag_split_stack);
1510 emit_move_insn (final_target, target);
1511 emit_label (final_label);
1512 target = final_target;
1513 }
1514
1515 target = align_dynamic_address (target, required_align);
1516
1517 /* Now that we've committed to a return value, mark its alignment. */
1518 mark_reg_pointer (target, required_align);
1519
1520 /* Record the new stack level. */
1521 record_new_stack_level ();
1522
1523 return target;
1524 }
1525
1526 /* Return an rtx representing the address of an area of memory already
1527 statically pushed onto the stack in the virtual stack vars area. (It is
1528 assumed that the area is allocated in the function prologue.)
1529
1530 Any required stack pointer alignment is preserved.
1531
1532 OFFSET is the offset of the area into the virtual stack vars area.
1533
1534 REQUIRED_ALIGN is the alignment (in bits) required for the region
1535 of memory. */
1536
1537 rtx
1538 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align)
1539 {
1540 rtx target;
1541
1542 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1543 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1544
1545 target = gen_reg_rtx (Pmode);
1546 emit_move_insn (target, virtual_stack_vars_rtx);
1547 target = expand_binop (Pmode, add_optab, target,
1548 gen_int_mode (offset, Pmode),
1549 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1550 target = align_dynamic_address (target, required_align);
1551
1552 /* Now that we've committed to a return value, mark its alignment. */
1553 mark_reg_pointer (target, required_align);
1554
1555 return target;
1556 }
1557 \f
1558 /* A front end may want to override GCC's stack checking by providing a
1559 run-time routine to call to check the stack, so provide a mechanism for
1560 calling that routine. */
1561
1562 static GTY(()) rtx stack_check_libfunc;
1563
1564 void
1565 set_stack_check_libfunc (const char *libfunc_name)
1566 {
1567 gcc_assert (stack_check_libfunc == NULL_RTX);
1568 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1569 }
1570 \f
1571 /* Emit one stack probe at ADDRESS, an address within the stack. */
1572
1573 void
1574 emit_stack_probe (rtx address)
1575 {
1576 if (targetm.have_probe_stack_address ())
1577 emit_insn (targetm.gen_probe_stack_address (address));
1578 else
1579 {
1580 rtx memref = gen_rtx_MEM (word_mode, address);
1581
1582 MEM_VOLATILE_P (memref) = 1;
1583
1584 /* See if we have an insn to probe the stack. */
1585 if (targetm.have_probe_stack ())
1586 emit_insn (targetm.gen_probe_stack (memref));
1587 else
1588 emit_move_insn (memref, const0_rtx);
1589 }
1590 }
1591
1592 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1593 FIRST is a constant and size is a Pmode RTX. These are offsets from
1594 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1595 or subtract them from the stack pointer. */
1596
1597 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1598
1599 #if STACK_GROWS_DOWNWARD
1600 #define STACK_GROW_OP MINUS
1601 #define STACK_GROW_OPTAB sub_optab
1602 #define STACK_GROW_OFF(off) -(off)
1603 #else
1604 #define STACK_GROW_OP PLUS
1605 #define STACK_GROW_OPTAB add_optab
1606 #define STACK_GROW_OFF(off) (off)
1607 #endif
1608
1609 void
1610 probe_stack_range (HOST_WIDE_INT first, rtx size)
1611 {
1612 /* First ensure SIZE is Pmode. */
1613 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1614 size = convert_to_mode (Pmode, size, 1);
1615
1616 /* Next see if we have a function to check the stack. */
1617 if (stack_check_libfunc)
1618 {
1619 rtx addr = memory_address (Pmode,
1620 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1621 stack_pointer_rtx,
1622 plus_constant (Pmode,
1623 size, first)));
1624 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode,
1625 addr, Pmode);
1626 }
1627
1628 /* Next see if we have an insn to check the stack. */
1629 else if (targetm.have_check_stack ())
1630 {
1631 struct expand_operand ops[1];
1632 rtx addr = memory_address (Pmode,
1633 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1634 stack_pointer_rtx,
1635 plus_constant (Pmode,
1636 size, first)));
1637 bool success;
1638 create_input_operand (&ops[0], addr, Pmode);
1639 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1640 gcc_assert (success);
1641 }
1642
1643 /* Otherwise we have to generate explicit probes. If we have a constant
1644 small number of them to generate, that's the easy case. */
1645 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1646 {
1647 HOST_WIDE_INT isize = INTVAL (size), i;
1648 rtx addr;
1649
1650 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1651 it exceeds SIZE. If only one probe is needed, this will not
1652 generate any code. Then probe at FIRST + SIZE. */
1653 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1654 {
1655 addr = memory_address (Pmode,
1656 plus_constant (Pmode, stack_pointer_rtx,
1657 STACK_GROW_OFF (first + i)));
1658 emit_stack_probe (addr);
1659 }
1660
1661 addr = memory_address (Pmode,
1662 plus_constant (Pmode, stack_pointer_rtx,
1663 STACK_GROW_OFF (first + isize)));
1664 emit_stack_probe (addr);
1665 }
1666
1667 /* In the variable case, do the same as above, but in a loop. Note that we
1668 must be extra careful with variables wrapping around because we might be
1669 at the very top (or the very bottom) of the address space and we have to
1670 be able to handle this case properly; in particular, we use an equality
1671 test for the loop condition. */
1672 else
1673 {
1674 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1675 rtx_code_label *loop_lab = gen_label_rtx ();
1676 rtx_code_label *end_lab = gen_label_rtx ();
1677
1678 /* Step 1: round SIZE to the previous multiple of the interval. */
1679
1680 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1681 rounded_size
1682 = simplify_gen_binary (AND, Pmode, size,
1683 gen_int_mode (-PROBE_INTERVAL, Pmode));
1684 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1685
1686
1687 /* Step 2: compute initial and final value of the loop counter. */
1688
1689 /* TEST_ADDR = SP + FIRST. */
1690 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1691 stack_pointer_rtx,
1692 gen_int_mode (first, Pmode)),
1693 NULL_RTX);
1694
1695 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1696 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1697 test_addr,
1698 rounded_size_op), NULL_RTX);
1699
1700
1701 /* Step 3: the loop
1702
1703 while (TEST_ADDR != LAST_ADDR)
1704 {
1705 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1706 probe at TEST_ADDR
1707 }
1708
1709 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1710 until it is equal to ROUNDED_SIZE. */
1711
1712 emit_label (loop_lab);
1713
1714 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1715 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1716 end_lab);
1717
1718 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1719 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1720 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1721 1, OPTAB_WIDEN);
1722
1723 gcc_assert (temp == test_addr);
1724
1725 /* Probe at TEST_ADDR. */
1726 emit_stack_probe (test_addr);
1727
1728 emit_jump (loop_lab);
1729
1730 emit_label (end_lab);
1731
1732
1733 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1734 that SIZE is equal to ROUNDED_SIZE. */
1735
1736 /* TEMP = SIZE - ROUNDED_SIZE. */
1737 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1738 if (temp != const0_rtx)
1739 {
1740 rtx addr;
1741
1742 if (CONST_INT_P (temp))
1743 {
1744 /* Use [base + disp} addressing mode if supported. */
1745 HOST_WIDE_INT offset = INTVAL (temp);
1746 addr = memory_address (Pmode,
1747 plus_constant (Pmode, last_addr,
1748 STACK_GROW_OFF (offset)));
1749 }
1750 else
1751 {
1752 /* Manual CSE if the difference is not known at compile-time. */
1753 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1754 addr = memory_address (Pmode,
1755 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1756 last_addr, temp));
1757 }
1758
1759 emit_stack_probe (addr);
1760 }
1761 }
1762
1763 /* Make sure nothing is scheduled before we are done. */
1764 emit_insn (gen_blockage ());
1765 }
1766
1767 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1768 while probing it. This pushes when SIZE is positive. SIZE need not
1769 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1770 by plus SIZE at the end. */
1771
1772 void
1773 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1774 {
1775 /* We skip the probe for the first interval + a small dope of 4 words and
1776 probe that many bytes past the specified size to maintain a protection
1777 area at the botton of the stack. */
1778 const int dope = 4 * UNITS_PER_WORD;
1779
1780 /* First ensure SIZE is Pmode. */
1781 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1782 size = convert_to_mode (Pmode, size, 1);
1783
1784 /* If we have a constant small number of probes to generate, that's the
1785 easy case. */
1786 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1787 {
1788 HOST_WIDE_INT isize = INTVAL (size), i;
1789 bool first_probe = true;
1790
1791 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1792 values of N from 1 until it exceeds SIZE. If only one probe is
1793 needed, this will not generate any code. Then adjust and probe
1794 to PROBE_INTERVAL + SIZE. */
1795 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1796 {
1797 if (first_probe)
1798 {
1799 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1800 first_probe = false;
1801 }
1802 else
1803 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1804 emit_stack_probe (stack_pointer_rtx);
1805 }
1806
1807 if (first_probe)
1808 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1809 else
1810 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1811 emit_stack_probe (stack_pointer_rtx);
1812 }
1813
1814 /* In the variable case, do the same as above, but in a loop. Note that we
1815 must be extra careful with variables wrapping around because we might be
1816 at the very top (or the very bottom) of the address space and we have to
1817 be able to handle this case properly; in particular, we use an equality
1818 test for the loop condition. */
1819 else
1820 {
1821 rtx rounded_size, rounded_size_op, last_addr, temp;
1822 rtx_code_label *loop_lab = gen_label_rtx ();
1823 rtx_code_label *end_lab = gen_label_rtx ();
1824
1825
1826 /* Step 1: round SIZE to the previous multiple of the interval. */
1827
1828 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1829 rounded_size
1830 = simplify_gen_binary (AND, Pmode, size,
1831 gen_int_mode (-PROBE_INTERVAL, Pmode));
1832 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1833
1834
1835 /* Step 2: compute initial and final value of the loop counter. */
1836
1837 /* SP = SP_0 + PROBE_INTERVAL. */
1838 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1839
1840 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1841 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1842 stack_pointer_rtx,
1843 rounded_size_op), NULL_RTX);
1844
1845
1846 /* Step 3: the loop
1847
1848 while (SP != LAST_ADDR)
1849 {
1850 SP = SP + PROBE_INTERVAL
1851 probe at SP
1852 }
1853
1854 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1855 values of N from 1 until it is equal to ROUNDED_SIZE. */
1856
1857 emit_label (loop_lab);
1858
1859 /* Jump to END_LAB if SP == LAST_ADDR. */
1860 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1861 Pmode, 1, end_lab);
1862
1863 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1864 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1865 emit_stack_probe (stack_pointer_rtx);
1866
1867 emit_jump (loop_lab);
1868
1869 emit_label (end_lab);
1870
1871
1872 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1873 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1874
1875 /* TEMP = SIZE - ROUNDED_SIZE. */
1876 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1877 if (temp != const0_rtx)
1878 {
1879 /* Manual CSE if the difference is not known at compile-time. */
1880 if (GET_CODE (temp) != CONST_INT)
1881 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1882 anti_adjust_stack (temp);
1883 emit_stack_probe (stack_pointer_rtx);
1884 }
1885 }
1886
1887 /* Adjust back and account for the additional first interval. */
1888 if (adjust_back)
1889 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1890 else
1891 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1892 }
1893
1894 /* Return an rtx representing the register or memory location
1895 in which a scalar value of data type VALTYPE
1896 was returned by a function call to function FUNC.
1897 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1898 function is known, otherwise 0.
1899 OUTGOING is 1 if on a machine with register windows this function
1900 should return the register in which the function will put its result
1901 and 0 otherwise. */
1902
1903 rtx
1904 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1905 int outgoing ATTRIBUTE_UNUSED)
1906 {
1907 rtx val;
1908
1909 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1910
1911 if (REG_P (val)
1912 && GET_MODE (val) == BLKmode)
1913 {
1914 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1915 opt_scalar_int_mode tmpmode;
1916
1917 /* int_size_in_bytes can return -1. We don't need a check here
1918 since the value of bytes will then be large enough that no
1919 mode will match anyway. */
1920
1921 FOR_EACH_MODE_IN_CLASS (tmpmode, MODE_INT)
1922 {
1923 /* Have we found a large enough mode? */
1924 if (GET_MODE_SIZE (tmpmode.require ()) >= bytes)
1925 break;
1926 }
1927
1928 PUT_MODE (val, tmpmode.require ());
1929 }
1930 return val;
1931 }
1932
1933 /* Return an rtx representing the register or memory location
1934 in which a scalar value of mode MODE was returned by a library call. */
1935
1936 rtx
1937 hard_libcall_value (machine_mode mode, rtx fun)
1938 {
1939 return targetm.calls.libcall_value (mode, fun);
1940 }
1941
1942 /* Look up the tree code for a given rtx code
1943 to provide the arithmetic operation for real_arithmetic.
1944 The function returns an int because the caller may not know
1945 what `enum tree_code' means. */
1946
1947 int
1948 rtx_to_tree_code (enum rtx_code code)
1949 {
1950 enum tree_code tcode;
1951
1952 switch (code)
1953 {
1954 case PLUS:
1955 tcode = PLUS_EXPR;
1956 break;
1957 case MINUS:
1958 tcode = MINUS_EXPR;
1959 break;
1960 case MULT:
1961 tcode = MULT_EXPR;
1962 break;
1963 case DIV:
1964 tcode = RDIV_EXPR;
1965 break;
1966 case SMIN:
1967 tcode = MIN_EXPR;
1968 break;
1969 case SMAX:
1970 tcode = MAX_EXPR;
1971 break;
1972 default:
1973 tcode = LAST_AND_UNUSED_TREE_CODE;
1974 break;
1975 }
1976 return ((int) tcode);
1977 }
1978
1979 #include "gt-explow.h"