]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.cc
Fix minor problem in stack probing
[thirdparty/gcc.git] / gcc / explow.cc
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "optabs.h"
31 #include "expmed.h"
32 #include "profile-count.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "stor-layout.h"
37 #include "langhooks.h"
38 #include "except.h"
39 #include "dojump.h"
40 #include "explow.h"
41 #include "expr.h"
42 #include "stringpool.h"
43 #include "common/common-target.h"
44 #include "output.h"
45
46 static rtx break_out_memory_refs (rtx);
47
48
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
53 {
54 /* Not scalar_int_mode because we also allow pointer bound modes. */
55 scalar_mode smode = as_a <scalar_mode> (mode);
56 int width = GET_MODE_PRECISION (smode);
57
58 /* You want to truncate to a _what_? */
59 gcc_assert (SCALAR_INT_MODE_P (mode));
60
61 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
62 if (smode == BImode)
63 return c & 1 ? STORE_FLAG_VALUE : 0;
64
65 /* Sign-extend for the requested mode. */
66
67 if (width < HOST_BITS_PER_WIDE_INT)
68 {
69 HOST_WIDE_INT sign = 1;
70 sign <<= width - 1;
71 c &= (sign << 1) - 1;
72 c ^= sign;
73 c -= sign;
74 }
75
76 return c;
77 }
78
79 /* Likewise for polynomial values, using the sign-extended representation
80 for each individual coefficient. */
81
82 poly_int64
83 trunc_int_for_mode (poly_int64 x, machine_mode mode)
84 {
85 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
86 x.coeffs[i] = trunc_int_for_mode (x.coeffs[i], mode);
87 return x;
88 }
89
90 /* Return an rtx for the sum of X and the integer C, given that X has
91 mode MODE. INPLACE is true if X can be modified inplace or false
92 if it must be treated as immutable. */
93
94 rtx
95 plus_constant (machine_mode mode, rtx x, poly_int64 c, bool inplace)
96 {
97 RTX_CODE code;
98 rtx y;
99 rtx tem;
100 int all_constant = 0;
101
102 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
103
104 if (known_eq (c, 0))
105 return x;
106
107 restart:
108
109 code = GET_CODE (x);
110 y = x;
111
112 switch (code)
113 {
114 CASE_CONST_SCALAR_INT:
115 return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
116 case MEM:
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
122 {
123 rtx cst = get_pool_constant (XEXP (x, 0));
124
125 if (GET_CODE (cst) == CONST_VECTOR
126 && GET_MODE_INNER (GET_MODE (cst)) == mode)
127 {
128 cst = gen_lowpart (mode, cst);
129 gcc_assert (cst);
130 }
131 else if (GET_MODE (cst) == VOIDmode
132 && get_pool_mode (XEXP (x, 0)) != mode)
133 break;
134 if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
135 {
136 tem = plus_constant (mode, cst, c);
137 tem = force_const_mem (GET_MODE (x), tem);
138 /* Targets may disallow some constants in the constant pool, thus
139 force_const_mem may return NULL_RTX. */
140 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
141 return tem;
142 }
143 }
144 break;
145
146 case CONST:
147 /* If adding to something entirely constant, set a flag
148 so that we can add a CONST around the result. */
149 if (inplace && shared_const_p (x))
150 inplace = false;
151 x = XEXP (x, 0);
152 all_constant = 1;
153 goto restart;
154
155 case SYMBOL_REF:
156 case LABEL_REF:
157 all_constant = 1;
158 break;
159
160 case PLUS:
161 /* The interesting case is adding the integer to a sum. Look
162 for constant term in the sum and combine with C. For an
163 integer constant term or a constant term that is not an
164 explicit integer, we combine or group them together anyway.
165
166 We may not immediately return from the recursive call here, lest
167 all_constant gets lost. */
168
169 if (CONSTANT_P (XEXP (x, 1)))
170 {
171 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
172 if (term == const0_rtx)
173 x = XEXP (x, 0);
174 else if (inplace)
175 XEXP (x, 1) = term;
176 else
177 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
178 c = 0;
179 }
180 else if (rtx *const_loc = find_constant_term_loc (&y))
181 {
182 if (!inplace)
183 {
184 /* We need to be careful since X may be shared and we can't
185 modify it in place. */
186 x = copy_rtx (x);
187 const_loc = find_constant_term_loc (&x);
188 }
189 *const_loc = plus_constant (mode, *const_loc, c, true);
190 c = 0;
191 }
192 break;
193
194 default:
195 if (CONST_POLY_INT_P (x))
196 return immed_wide_int_const (const_poly_int_value (x) + c, mode);
197 break;
198 }
199
200 if (maybe_ne (c, 0))
201 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
202
203 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
204 return x;
205 else if (all_constant)
206 return gen_rtx_CONST (mode, x);
207 else
208 return x;
209 }
210 \f
211 /* If X is a sum, return a new sum like X but lacking any constant terms.
212 Add all the removed constant terms into *CONSTPTR.
213 X itself is not altered. The result != X if and only if
214 it is not isomorphic to X. */
215
216 rtx
217 eliminate_constant_term (rtx x, rtx *constptr)
218 {
219 rtx x0, x1;
220 rtx tem;
221
222 if (GET_CODE (x) != PLUS)
223 return x;
224
225 /* First handle constants appearing at this level explicitly. */
226 if (CONST_INT_P (XEXP (x, 1))
227 && (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
228 XEXP (x, 1))) != 0
229 && CONST_INT_P (tem))
230 {
231 *constptr = tem;
232 return eliminate_constant_term (XEXP (x, 0), constptr);
233 }
234
235 tem = const0_rtx;
236 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
237 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
238 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
239 && (tem = simplify_binary_operation (PLUS, GET_MODE (x),
240 *constptr, tem)) != 0
241 && CONST_INT_P (tem))
242 {
243 *constptr = tem;
244 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
245 }
246
247 return x;
248 }
249
250 \f
251 /* Return a copy of X in which all memory references
252 and all constants that involve symbol refs
253 have been replaced with new temporary registers.
254 Also emit code to load the memory locations and constants
255 into those registers.
256
257 If X contains no such constants or memory references,
258 X itself (not a copy) is returned.
259
260 If a constant is found in the address that is not a legitimate constant
261 in an insn, it is left alone in the hope that it might be valid in the
262 address.
263
264 X may contain no arithmetic except addition, subtraction and multiplication.
265 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
266
267 static rtx
268 break_out_memory_refs (rtx x)
269 {
270 if (MEM_P (x)
271 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
272 && GET_MODE (x) != VOIDmode))
273 x = force_reg (GET_MODE (x), x);
274 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
275 || GET_CODE (x) == MULT)
276 {
277 rtx op0 = break_out_memory_refs (XEXP (x, 0));
278 rtx op1 = break_out_memory_refs (XEXP (x, 1));
279
280 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
281 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
282 }
283
284 return x;
285 }
286
287 /* Given X, a memory address in address space AS' pointer mode, convert it to
288 an address in the address space's address mode, or vice versa (TO_MODE says
289 which way). We take advantage of the fact that pointers are not allowed to
290 overflow by commuting arithmetic operations over conversions so that address
291 arithmetic insns can be used. IN_CONST is true if this conversion is inside
292 a CONST. NO_EMIT is true if no insns should be emitted, and instead
293 it should return NULL if it can't be simplified without emitting insns. */
294
295 rtx
296 convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED,
297 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
298 bool in_const ATTRIBUTE_UNUSED,
299 bool no_emit ATTRIBUTE_UNUSED)
300 {
301 #ifndef POINTERS_EXTEND_UNSIGNED
302 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
303 return x;
304 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
305 scalar_int_mode pointer_mode, address_mode, from_mode;
306 rtx temp;
307 enum rtx_code code;
308
309 /* If X already has the right mode, just return it. */
310 if (GET_MODE (x) == to_mode)
311 return x;
312
313 pointer_mode = targetm.addr_space.pointer_mode (as);
314 address_mode = targetm.addr_space.address_mode (as);
315 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
316
317 /* Here we handle some special cases. If none of them apply, fall through
318 to the default case. */
319 switch (GET_CODE (x))
320 {
321 CASE_CONST_SCALAR_INT:
322 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
323 code = TRUNCATE;
324 else if (POINTERS_EXTEND_UNSIGNED < 0)
325 break;
326 else if (POINTERS_EXTEND_UNSIGNED > 0)
327 code = ZERO_EXTEND;
328 else
329 code = SIGN_EXTEND;
330 temp = simplify_unary_operation (code, to_mode, x, from_mode);
331 if (temp)
332 return temp;
333 break;
334
335 case SUBREG:
336 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
337 && GET_MODE (SUBREG_REG (x)) == to_mode)
338 return SUBREG_REG (x);
339 break;
340
341 case LABEL_REF:
342 temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
343 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
344 return temp;
345
346 case SYMBOL_REF:
347 temp = shallow_copy_rtx (x);
348 PUT_MODE (temp, to_mode);
349 return temp;
350
351 case CONST:
352 {
353 auto *last = no_emit ? nullptr : get_last_insn ();
354 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
355 true, no_emit);
356 if (temp && (no_emit || last == get_last_insn ()))
357 return gen_rtx_CONST (to_mode, temp);
358 return temp;
359 }
360
361 case PLUS:
362 case MULT:
363 /* For addition we can safely permute the conversion and addition
364 operation if one operand is a constant and converting the constant
365 does not change it or if one operand is a constant and we are
366 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
367 We can always safely permute them if we are making the address
368 narrower. Inside a CONST RTL, this is safe for both pointers
369 zero or sign extended as pointers cannot wrap. */
370 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
371 || (GET_CODE (x) == PLUS
372 && CONST_INT_P (XEXP (x, 1))
373 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
374 || XEXP (x, 1) == convert_memory_address_addr_space_1
375 (to_mode, XEXP (x, 1), as, in_const,
376 no_emit)
377 || POINTERS_EXTEND_UNSIGNED < 0)))
378 {
379 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
380 as, in_const, no_emit);
381 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
382 temp, XEXP (x, 1))
383 : temp);
384 }
385 break;
386
387 case UNSPEC:
388 /* Assume that all UNSPECs in a constant address can be converted
389 operand-by-operand. We could add a target hook if some targets
390 require different behavior. */
391 if (in_const && GET_MODE (x) == from_mode)
392 {
393 unsigned int n = XVECLEN (x, 0);
394 rtvec v = gen_rtvec (n);
395 for (unsigned int i = 0; i < n; ++i)
396 {
397 rtx op = XVECEXP (x, 0, i);
398 if (GET_MODE (op) == from_mode)
399 op = convert_memory_address_addr_space_1 (to_mode, op, as,
400 in_const, no_emit);
401 RTVEC_ELT (v, i) = op;
402 }
403 return gen_rtx_UNSPEC (to_mode, v, XINT (x, 1));
404 }
405 break;
406
407 default:
408 break;
409 }
410
411 if (no_emit)
412 return NULL_RTX;
413
414 return convert_modes (to_mode, from_mode,
415 x, POINTERS_EXTEND_UNSIGNED);
416 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
417 }
418
419 /* Given X, a memory address in address space AS' pointer mode, convert it to
420 an address in the address space's address mode, or vice versa (TO_MODE says
421 which way). We take advantage of the fact that pointers are not allowed to
422 overflow by commuting arithmetic operations over conversions so that address
423 arithmetic insns can be used. */
424
425 rtx
426 convert_memory_address_addr_space (scalar_int_mode to_mode, rtx x,
427 addr_space_t as)
428 {
429 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
430 }
431 \f
432
433 /* Return something equivalent to X but valid as a memory address for something
434 of mode MODE in the named address space AS. When X is not itself valid,
435 this works by copying X or subexpressions of it into registers. */
436
437 rtx
438 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
439 {
440 rtx oldx = x;
441 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
442
443 x = convert_memory_address_addr_space (address_mode, x, as);
444
445 /* By passing constant addresses through registers
446 we get a chance to cse them. */
447 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
448 x = force_reg (address_mode, x);
449
450 /* We get better cse by rejecting indirect addressing at this stage.
451 Let the combiner create indirect addresses where appropriate.
452 For now, generate the code so that the subexpressions useful to share
453 are visible. But not if cse won't be done! */
454 else
455 {
456 if (! cse_not_expected && !REG_P (x))
457 x = break_out_memory_refs (x);
458
459 /* At this point, any valid address is accepted. */
460 if (memory_address_addr_space_p (mode, x, as))
461 goto done;
462
463 /* If it was valid before but breaking out memory refs invalidated it,
464 use it the old way. */
465 if (memory_address_addr_space_p (mode, oldx, as))
466 {
467 x = oldx;
468 goto done;
469 }
470
471 /* Perform machine-dependent transformations on X
472 in certain cases. This is not necessary since the code
473 below can handle all possible cases, but machine-dependent
474 transformations can make better code. */
475 {
476 rtx orig_x = x;
477 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
478 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
479 goto done;
480 }
481
482 /* PLUS and MULT can appear in special ways
483 as the result of attempts to make an address usable for indexing.
484 Usually they are dealt with by calling force_operand, below.
485 But a sum containing constant terms is special
486 if removing them makes the sum a valid address:
487 then we generate that address in a register
488 and index off of it. We do this because it often makes
489 shorter code, and because the addresses thus generated
490 in registers often become common subexpressions. */
491 if (GET_CODE (x) == PLUS)
492 {
493 rtx constant_term = const0_rtx;
494 rtx y = eliminate_constant_term (x, &constant_term);
495 if (constant_term == const0_rtx
496 || ! memory_address_addr_space_p (mode, y, as))
497 x = force_operand (x, NULL_RTX);
498 else
499 {
500 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
501 if (! memory_address_addr_space_p (mode, y, as))
502 x = force_operand (x, NULL_RTX);
503 else
504 x = y;
505 }
506 }
507
508 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
509 x = force_operand (x, NULL_RTX);
510
511 /* If we have a register that's an invalid address,
512 it must be a hard reg of the wrong class. Copy it to a pseudo. */
513 else if (REG_P (x))
514 x = copy_to_reg (x);
515
516 /* Last resort: copy the value to a register, since
517 the register is a valid address. */
518 else
519 x = force_reg (address_mode, x);
520 }
521
522 done:
523
524 gcc_assert (memory_address_addr_space_p (mode, x, as));
525 /* If we didn't change the address, we are done. Otherwise, mark
526 a reg as a pointer if we have REG or REG + CONST_INT. */
527 if (oldx == x)
528 return x;
529 else if (REG_P (x))
530 mark_reg_pointer (x, BITS_PER_UNIT);
531 else if (GET_CODE (x) == PLUS
532 && REG_P (XEXP (x, 0))
533 && CONST_INT_P (XEXP (x, 1)))
534 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
535
536 /* OLDX may have been the address on a temporary. Update the address
537 to indicate that X is now used. */
538 update_temp_slot_address (oldx, x);
539
540 return x;
541 }
542
543 /* Convert a mem ref into one with a valid memory address.
544 Pass through anything else unchanged. */
545
546 rtx
547 validize_mem (rtx ref)
548 {
549 if (!MEM_P (ref))
550 return ref;
551 ref = use_anchored_address (ref);
552 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
553 MEM_ADDR_SPACE (ref)))
554 return ref;
555
556 /* Don't alter REF itself, since that is probably a stack slot. */
557 return replace_equiv_address (ref, XEXP (ref, 0));
558 }
559
560 /* If X is a memory reference to a member of an object block, try rewriting
561 it to use an anchor instead. Return the new memory reference on success
562 and the old one on failure. */
563
564 rtx
565 use_anchored_address (rtx x)
566 {
567 rtx base;
568 HOST_WIDE_INT offset;
569 machine_mode mode;
570
571 if (!flag_section_anchors)
572 return x;
573
574 if (!MEM_P (x))
575 return x;
576
577 /* Split the address into a base and offset. */
578 base = XEXP (x, 0);
579 offset = 0;
580 if (GET_CODE (base) == CONST
581 && GET_CODE (XEXP (base, 0)) == PLUS
582 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
583 {
584 offset += INTVAL (XEXP (XEXP (base, 0), 1));
585 base = XEXP (XEXP (base, 0), 0);
586 }
587
588 /* Check whether BASE is suitable for anchors. */
589 if (GET_CODE (base) != SYMBOL_REF
590 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
591 || SYMBOL_REF_ANCHOR_P (base)
592 || SYMBOL_REF_BLOCK (base) == NULL
593 || !targetm.use_anchors_for_symbol_p (base))
594 return x;
595
596 /* Decide where BASE is going to be. */
597 place_block_symbol (base);
598
599 /* Get the anchor we need to use. */
600 offset += SYMBOL_REF_BLOCK_OFFSET (base);
601 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
602 SYMBOL_REF_TLS_MODEL (base));
603
604 /* Work out the offset from the anchor. */
605 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
606
607 /* If we're going to run a CSE pass, force the anchor into a register.
608 We will then be able to reuse registers for several accesses, if the
609 target costs say that that's worthwhile. */
610 mode = GET_MODE (base);
611 if (!cse_not_expected)
612 base = force_reg (mode, base);
613
614 return replace_equiv_address (x, plus_constant (mode, base, offset));
615 }
616 \f
617 /* Copy the value or contents of X to a new temp reg and return that reg. */
618
619 rtx
620 copy_to_reg (rtx x)
621 {
622 rtx temp = gen_reg_rtx (GET_MODE (x));
623
624 /* If not an operand, must be an address with PLUS and MULT so
625 do the computation. */
626 if (! general_operand (x, VOIDmode))
627 x = force_operand (x, temp);
628
629 if (x != temp)
630 emit_move_insn (temp, x);
631
632 return temp;
633 }
634
635 /* Like copy_to_reg but always give the new register mode Pmode
636 in case X is a constant. */
637
638 rtx
639 copy_addr_to_reg (rtx x)
640 {
641 return copy_to_mode_reg (Pmode, x);
642 }
643
644 /* Like copy_to_reg but always give the new register mode MODE
645 in case X is a constant. */
646
647 rtx
648 copy_to_mode_reg (machine_mode mode, rtx x)
649 {
650 rtx temp = gen_reg_rtx (mode);
651
652 /* If not an operand, must be an address with PLUS and MULT so
653 do the computation. */
654 if (! general_operand (x, VOIDmode))
655 x = force_operand (x, temp);
656
657 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
658 if (x != temp)
659 emit_move_insn (temp, x);
660 return temp;
661 }
662
663 /* Load X into a register if it is not already one.
664 Use mode MODE for the register.
665 X should be valid for mode MODE, but it may be a constant which
666 is valid for all integer modes; that's why caller must specify MODE.
667
668 The caller must not alter the value in the register we return,
669 since we mark it as a "constant" register. */
670
671 rtx
672 force_reg (machine_mode mode, rtx x)
673 {
674 rtx temp, set;
675 rtx_insn *insn;
676
677 if (REG_P (x))
678 return x;
679
680 if (general_operand (x, mode))
681 {
682 temp = gen_reg_rtx (mode);
683 insn = emit_move_insn (temp, x);
684 }
685 else
686 {
687 temp = force_operand (x, NULL_RTX);
688 if (REG_P (temp))
689 insn = get_last_insn ();
690 else
691 {
692 rtx temp2 = gen_reg_rtx (mode);
693 insn = emit_move_insn (temp2, temp);
694 temp = temp2;
695 }
696 }
697
698 /* Let optimizers know that TEMP's value never changes
699 and that X can be substituted for it. Don't get confused
700 if INSN set something else (such as a SUBREG of TEMP). */
701 if (CONSTANT_P (x)
702 && (set = single_set (insn)) != 0
703 && SET_DEST (set) == temp
704 && ! rtx_equal_p (x, SET_SRC (set)))
705 set_unique_reg_note (insn, REG_EQUAL, x);
706
707 /* Let optimizers know that TEMP is a pointer, and if so, the
708 known alignment of that pointer. */
709 {
710 unsigned align = 0;
711 if (GET_CODE (x) == SYMBOL_REF)
712 {
713 align = BITS_PER_UNIT;
714 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
715 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
716 }
717 else if (GET_CODE (x) == LABEL_REF)
718 align = BITS_PER_UNIT;
719 else if (GET_CODE (x) == CONST
720 && GET_CODE (XEXP (x, 0)) == PLUS
721 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
722 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
723 {
724 rtx s = XEXP (XEXP (x, 0), 0);
725 rtx c = XEXP (XEXP (x, 0), 1);
726 unsigned sa, ca;
727
728 sa = BITS_PER_UNIT;
729 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
730 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
731
732 if (INTVAL (c) == 0)
733 align = sa;
734 else
735 {
736 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
737 align = MIN (sa, ca);
738 }
739 }
740
741 if (align || (MEM_P (x) && MEM_POINTER (x)))
742 mark_reg_pointer (temp, align);
743 }
744
745 return temp;
746 }
747
748 /* If X is a memory ref, copy its contents to a new temp reg and return
749 that reg. Otherwise, return X. */
750
751 rtx
752 force_not_mem (rtx x)
753 {
754 rtx temp;
755
756 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
757 return x;
758
759 temp = gen_reg_rtx (GET_MODE (x));
760
761 if (MEM_POINTER (x))
762 REG_POINTER (temp) = 1;
763
764 emit_move_insn (temp, x);
765 return temp;
766 }
767
768 /* Copy X to TARGET (if it's nonzero and a reg)
769 or to a new temp reg and return that reg.
770 MODE is the mode to use for X in case it is a constant. */
771
772 rtx
773 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
774 {
775 rtx temp;
776
777 if (target && REG_P (target))
778 temp = target;
779 else
780 temp = gen_reg_rtx (mode);
781
782 emit_move_insn (temp, x);
783 return temp;
784 }
785 \f
786 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
787 PUNSIGNEDP points to the signedness of the type and may be adjusted
788 to show what signedness to use on extension operations.
789
790 FOR_RETURN is nonzero if the caller is promoting the return value
791 of FNDECL, else it is for promoting args. */
792
793 machine_mode
794 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
795 const_tree funtype, int for_return)
796 {
797 /* Called without a type node for a libcall. */
798 if (type == NULL_TREE)
799 {
800 if (INTEGRAL_MODE_P (mode))
801 return targetm.calls.promote_function_mode (NULL_TREE, mode,
802 punsignedp, funtype,
803 for_return);
804 else
805 return mode;
806 }
807
808 switch (TREE_CODE (type))
809 {
810 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
811 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
812 case POINTER_TYPE: case REFERENCE_TYPE:
813 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
814 for_return);
815
816 default:
817 return mode;
818 }
819 }
820 /* Return the mode to use to store a scalar of TYPE and MODE.
821 PUNSIGNEDP points to the signedness of the type and may be adjusted
822 to show what signedness to use on extension operations. */
823
824 machine_mode
825 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
826 int *punsignedp ATTRIBUTE_UNUSED)
827 {
828 #ifdef PROMOTE_MODE
829 enum tree_code code;
830 int unsignedp;
831 scalar_mode smode;
832 #endif
833
834 /* For libcalls this is invoked without TYPE from the backends
835 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
836 case. */
837 if (type == NULL_TREE)
838 return mode;
839
840 /* FIXME: this is the same logic that was there until GCC 4.4, but we
841 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
842 is not defined. The affected targets are M32C, S390, SPARC. */
843 #ifdef PROMOTE_MODE
844 code = TREE_CODE (type);
845 unsignedp = *punsignedp;
846
847 switch (code)
848 {
849 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
850 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
851 /* Values of these types always have scalar mode. */
852 smode = as_a <scalar_mode> (mode);
853 PROMOTE_MODE (smode, unsignedp, type);
854 *punsignedp = unsignedp;
855 return smode;
856
857 #ifdef POINTERS_EXTEND_UNSIGNED
858 case REFERENCE_TYPE:
859 case POINTER_TYPE:
860 *punsignedp = POINTERS_EXTEND_UNSIGNED;
861 return targetm.addr_space.address_mode
862 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
863 #endif
864
865 default:
866 return mode;
867 }
868 #else
869 return mode;
870 #endif
871 }
872
873
874 /* Use one of promote_mode or promote_function_mode to find the promoted
875 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
876 of DECL after promotion. */
877
878 machine_mode
879 promote_decl_mode (const_tree decl, int *punsignedp)
880 {
881 tree type = TREE_TYPE (decl);
882 int unsignedp = TYPE_UNSIGNED (type);
883 machine_mode mode = DECL_MODE (decl);
884 machine_mode pmode;
885
886 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
887 pmode = promote_function_mode (type, mode, &unsignedp,
888 TREE_TYPE (current_function_decl), 1);
889 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
890 pmode = promote_function_mode (type, mode, &unsignedp,
891 TREE_TYPE (current_function_decl), 2);
892 else
893 pmode = promote_mode (type, mode, &unsignedp);
894
895 if (punsignedp)
896 *punsignedp = unsignedp;
897 return pmode;
898 }
899
900 /* Return the promoted mode for name. If it is a named SSA_NAME, it
901 is the same as promote_decl_mode. Otherwise, it is the promoted
902 mode of a temp decl of same type as the SSA_NAME, if we had created
903 one. */
904
905 machine_mode
906 promote_ssa_mode (const_tree name, int *punsignedp)
907 {
908 gcc_assert (TREE_CODE (name) == SSA_NAME);
909
910 /* Partitions holding parms and results must be promoted as expected
911 by function.cc. */
912 if (SSA_NAME_VAR (name)
913 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
914 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
915 {
916 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
917 if (mode != BLKmode)
918 return mode;
919 }
920
921 tree type = TREE_TYPE (name);
922 int unsignedp = TYPE_UNSIGNED (type);
923 machine_mode pmode = promote_mode (type, TYPE_MODE (type), &unsignedp);
924 if (punsignedp)
925 *punsignedp = unsignedp;
926
927 return pmode;
928 }
929
930
931 \f
932 /* Controls the behavior of {anti_,}adjust_stack. */
933 static bool suppress_reg_args_size;
934
935 /* A helper for adjust_stack and anti_adjust_stack. */
936
937 static void
938 adjust_stack_1 (rtx adjust, bool anti_p)
939 {
940 rtx temp;
941 rtx_insn *insn;
942
943 /* Hereafter anti_p means subtract_p. */
944 if (!STACK_GROWS_DOWNWARD)
945 anti_p = !anti_p;
946
947 temp = expand_binop (Pmode,
948 anti_p ? sub_optab : add_optab,
949 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
950 OPTAB_LIB_WIDEN);
951
952 if (temp != stack_pointer_rtx)
953 insn = emit_move_insn (stack_pointer_rtx, temp);
954 else
955 {
956 insn = get_last_insn ();
957 temp = single_set (insn);
958 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
959 }
960
961 if (!suppress_reg_args_size)
962 add_args_size_note (insn, stack_pointer_delta);
963 }
964
965 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
966 This pops when ADJUST is positive. ADJUST need not be constant. */
967
968 void
969 adjust_stack (rtx adjust)
970 {
971 if (adjust == const0_rtx)
972 return;
973
974 /* We expect all variable sized adjustments to be multiple of
975 PREFERRED_STACK_BOUNDARY. */
976 poly_int64 const_adjust;
977 if (poly_int_rtx_p (adjust, &const_adjust))
978 stack_pointer_delta -= const_adjust;
979
980 adjust_stack_1 (adjust, false);
981 }
982
983 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
984 This pushes when ADJUST is positive. ADJUST need not be constant. */
985
986 void
987 anti_adjust_stack (rtx adjust)
988 {
989 if (adjust == const0_rtx)
990 return;
991
992 /* We expect all variable sized adjustments to be multiple of
993 PREFERRED_STACK_BOUNDARY. */
994 poly_int64 const_adjust;
995 if (poly_int_rtx_p (adjust, &const_adjust))
996 stack_pointer_delta += const_adjust;
997
998 adjust_stack_1 (adjust, true);
999 }
1000
1001 /* Round the size of a block to be pushed up to the boundary required
1002 by this machine. SIZE is the desired size, which need not be constant. */
1003
1004 static rtx
1005 round_push (rtx size)
1006 {
1007 rtx align_rtx, alignm1_rtx;
1008
1009 if (!SUPPORTS_STACK_ALIGNMENT
1010 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
1011 {
1012 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1013
1014 if (align == 1)
1015 return size;
1016
1017 if (CONST_INT_P (size))
1018 {
1019 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
1020
1021 if (INTVAL (size) != new_size)
1022 size = GEN_INT (new_size);
1023 return size;
1024 }
1025
1026 align_rtx = GEN_INT (align);
1027 alignm1_rtx = GEN_INT (align - 1);
1028 }
1029 else
1030 {
1031 /* If crtl->preferred_stack_boundary might still grow, use
1032 virtual_preferred_stack_boundary_rtx instead. This will be
1033 substituted by the right value in vregs pass and optimized
1034 during combine. */
1035 align_rtx = virtual_preferred_stack_boundary_rtx;
1036 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
1037 NULL_RTX);
1038 }
1039
1040 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1041 but we know it can't. So add ourselves and then do
1042 TRUNC_DIV_EXPR. */
1043 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1044 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1045 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1046 NULL_RTX, 1);
1047 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1048
1049 return size;
1050 }
1051 \f
1052 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1053 to a previously-created save area. If no save area has been allocated,
1054 this function will allocate one. If a save area is specified, it
1055 must be of the proper mode. */
1056
1057 void
1058 emit_stack_save (enum save_level save_level, rtx *psave)
1059 {
1060 rtx sa = *psave;
1061 /* The default is that we use a move insn and save in a Pmode object. */
1062 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1063 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1064
1065 /* See if this machine has anything special to do for this kind of save. */
1066 switch (save_level)
1067 {
1068 case SAVE_BLOCK:
1069 if (targetm.have_save_stack_block ())
1070 fcn = targetm.gen_save_stack_block;
1071 break;
1072 case SAVE_FUNCTION:
1073 if (targetm.have_save_stack_function ())
1074 fcn = targetm.gen_save_stack_function;
1075 break;
1076 case SAVE_NONLOCAL:
1077 if (targetm.have_save_stack_nonlocal ())
1078 fcn = targetm.gen_save_stack_nonlocal;
1079 break;
1080 default:
1081 break;
1082 }
1083
1084 /* If there is no save area and we have to allocate one, do so. Otherwise
1085 verify the save area is the proper mode. */
1086
1087 if (sa == 0)
1088 {
1089 if (mode != VOIDmode)
1090 {
1091 if (save_level == SAVE_NONLOCAL)
1092 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1093 else
1094 *psave = sa = gen_reg_rtx (mode);
1095 }
1096 }
1097
1098 do_pending_stack_adjust ();
1099 if (sa != 0)
1100 sa = validize_mem (sa);
1101 emit_insn (fcn (sa, stack_pointer_rtx));
1102 }
1103
1104 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1105 area made by emit_stack_save. If it is zero, we have nothing to do. */
1106
1107 void
1108 emit_stack_restore (enum save_level save_level, rtx sa)
1109 {
1110 /* The default is that we use a move insn. */
1111 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1112
1113 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1114 STACK_POINTER and HARD_FRAME_POINTER.
1115 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1116 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1117 aligned variables, which is reflected in ix86_can_eliminate.
1118 We normally still have the realigned STACK_POINTER that we can use.
1119 But if there is a stack restore still present at reload, it can trigger
1120 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1121 FRAME_POINTER into a hard reg.
1122 To prevent this situation, we force need_drap if we emit a stack
1123 restore. */
1124 if (SUPPORTS_STACK_ALIGNMENT)
1125 crtl->need_drap = true;
1126
1127 /* See if this machine has anything special to do for this kind of save. */
1128 switch (save_level)
1129 {
1130 case SAVE_BLOCK:
1131 if (targetm.have_restore_stack_block ())
1132 fcn = targetm.gen_restore_stack_block;
1133 break;
1134 case SAVE_FUNCTION:
1135 if (targetm.have_restore_stack_function ())
1136 fcn = targetm.gen_restore_stack_function;
1137 break;
1138 case SAVE_NONLOCAL:
1139 if (targetm.have_restore_stack_nonlocal ())
1140 fcn = targetm.gen_restore_stack_nonlocal;
1141 break;
1142 default:
1143 break;
1144 }
1145
1146 if (sa != 0)
1147 {
1148 sa = validize_mem (sa);
1149 /* These clobbers prevent the scheduler from moving
1150 references to variable arrays below the code
1151 that deletes (pops) the arrays. */
1152 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1153 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1154 }
1155
1156 discard_pending_stack_adjust ();
1157
1158 emit_insn (fcn (stack_pointer_rtx, sa));
1159 }
1160
1161 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1162 function. This should be called whenever we allocate or deallocate
1163 dynamic stack space. */
1164
1165 void
1166 update_nonlocal_goto_save_area (void)
1167 {
1168 tree t_save;
1169 rtx r_save;
1170
1171 /* The nonlocal_goto_save_area object is an array of N pointers. The
1172 first one is used for the frame pointer save; the rest are sized by
1173 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1174 of the stack save area slots. */
1175 t_save = build4 (ARRAY_REF,
1176 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1177 cfun->nonlocal_goto_save_area,
1178 integer_one_node, NULL_TREE, NULL_TREE);
1179 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1180
1181 emit_stack_save (SAVE_NONLOCAL, &r_save);
1182 }
1183
1184 /* Record a new stack level for the current function. This should be called
1185 whenever we allocate or deallocate dynamic stack space. */
1186
1187 void
1188 record_new_stack_level (void)
1189 {
1190 /* Record the new stack level for nonlocal gotos. */
1191 if (cfun->nonlocal_goto_save_area)
1192 update_nonlocal_goto_save_area ();
1193
1194 /* Record the new stack level for SJLJ exceptions. */
1195 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1196 update_sjlj_context ();
1197 }
1198
1199 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1200
1201 rtx
1202 align_dynamic_address (rtx target, unsigned required_align)
1203 {
1204 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1205 but we know it can't. So add ourselves and then do
1206 TRUNC_DIV_EXPR. */
1207 target = expand_binop (Pmode, add_optab, target,
1208 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1209 Pmode),
1210 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1211 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1212 gen_int_mode (required_align / BITS_PER_UNIT,
1213 Pmode),
1214 NULL_RTX, 1);
1215 target = expand_mult (Pmode, target,
1216 gen_int_mode (required_align / BITS_PER_UNIT,
1217 Pmode),
1218 NULL_RTX, 1);
1219
1220 return target;
1221 }
1222
1223 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1224 be dynamically pushed on the stack.
1225
1226 *PSIZE is an rtx representing the size of the area.
1227
1228 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1229 parameter may be zero. If so, a proper value will be extracted
1230 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1231
1232 REQUIRED_ALIGN is the alignment (in bits) required for the region
1233 of memory.
1234
1235 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1236 the additional size returned. */
1237 void
1238 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1239 unsigned required_align,
1240 HOST_WIDE_INT *pstack_usage_size)
1241 {
1242 rtx size = *psize;
1243
1244 /* Ensure the size is in the proper mode. */
1245 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1246 size = convert_to_mode (Pmode, size, 1);
1247
1248 if (CONST_INT_P (size))
1249 {
1250 unsigned HOST_WIDE_INT lsb;
1251
1252 lsb = INTVAL (size);
1253 lsb &= -lsb;
1254
1255 /* Watch out for overflow truncating to "unsigned". */
1256 if (lsb > UINT_MAX / BITS_PER_UNIT)
1257 size_align = 1u << (HOST_BITS_PER_INT - 1);
1258 else
1259 size_align = (unsigned)lsb * BITS_PER_UNIT;
1260 }
1261 else if (size_align < BITS_PER_UNIT)
1262 size_align = BITS_PER_UNIT;
1263
1264 /* We can't attempt to minimize alignment necessary, because we don't
1265 know the final value of preferred_stack_boundary yet while executing
1266 this code. */
1267 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1268 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1269
1270 /* We will need to ensure that the address we return is aligned to
1271 REQUIRED_ALIGN. At this point in the compilation, we don't always
1272 know the final value of the STACK_DYNAMIC_OFFSET used in function.cc
1273 (it might depend on the size of the outgoing parameter lists, for
1274 example), so we must preventively align the value. We leave space
1275 in SIZE for the hole that might result from the alignment operation. */
1276
1277 unsigned known_align = REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM);
1278 if (known_align == 0)
1279 known_align = BITS_PER_UNIT;
1280 if (required_align > known_align)
1281 {
1282 unsigned extra = (required_align - known_align) / BITS_PER_UNIT;
1283 size = plus_constant (Pmode, size, extra);
1284 size = force_operand (size, NULL_RTX);
1285 if (size_align > known_align)
1286 size_align = known_align;
1287
1288 if (flag_stack_usage_info && pstack_usage_size)
1289 *pstack_usage_size += extra;
1290 }
1291
1292 /* Round the size to a multiple of the required stack alignment.
1293 Since the stack is presumed to be rounded before this allocation,
1294 this will maintain the required alignment.
1295
1296 If the stack grows downward, we could save an insn by subtracting
1297 SIZE from the stack pointer and then aligning the stack pointer.
1298 The problem with this is that the stack pointer may be unaligned
1299 between the execution of the subtraction and alignment insns and
1300 some machines do not allow this. Even on those that do, some
1301 signal handlers malfunction if a signal should occur between those
1302 insns. Since this is an extremely rare event, we have no reliable
1303 way of knowing which systems have this problem. So we avoid even
1304 momentarily mis-aligning the stack. */
1305 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1306 {
1307 size = round_push (size);
1308
1309 if (flag_stack_usage_info && pstack_usage_size)
1310 {
1311 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1312 *pstack_usage_size =
1313 (*pstack_usage_size + align - 1) / align * align;
1314 }
1315 }
1316
1317 *psize = size;
1318 }
1319
1320 /* Return the number of bytes to "protect" on the stack for -fstack-check.
1321
1322 "protect" in the context of -fstack-check means how many bytes we need
1323 to always ensure are available on the stack; as a consequence, this is
1324 also how many bytes are first skipped when probing the stack.
1325
1326 On some targets we want to reuse the -fstack-check prologue support
1327 to give a degree of protection against stack clashing style attacks.
1328
1329 In that scenario we do not want to skip bytes before probing as that
1330 would render the stack clash protections useless.
1331
1332 So we never use STACK_CHECK_PROTECT directly. Instead we indirectly
1333 use it through this helper, which allows to provide different values
1334 for -fstack-check and -fstack-clash-protection. */
1335
1336 HOST_WIDE_INT
1337 get_stack_check_protect (void)
1338 {
1339 if (flag_stack_clash_protection)
1340 return 0;
1341
1342 return STACK_CHECK_PROTECT;
1343 }
1344
1345 /* Return an rtx representing the address of an area of memory dynamically
1346 pushed on the stack.
1347
1348 Any required stack pointer alignment is preserved.
1349
1350 SIZE is an rtx representing the size of the area.
1351
1352 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1353 parameter may be zero. If so, a proper value will be extracted
1354 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1355
1356 REQUIRED_ALIGN is the alignment (in bits) required for the region
1357 of memory.
1358
1359 MAX_SIZE is an upper bound for SIZE, if SIZE is not constant, or -1 if
1360 no such upper bound is known.
1361
1362 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1363 stack space allocated by the generated code cannot be added with itself
1364 in the course of the execution of the function. It is always safe to
1365 pass FALSE here and the following criterion is sufficient in order to
1366 pass TRUE: every path in the CFG that starts at the allocation point and
1367 loops to it executes the associated deallocation code. */
1368
1369 rtx
1370 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1371 unsigned required_align,
1372 HOST_WIDE_INT max_size,
1373 bool cannot_accumulate)
1374 {
1375 HOST_WIDE_INT stack_usage_size = -1;
1376 rtx_code_label *final_label;
1377 rtx final_target, target;
1378
1379 /* If we're asking for zero bytes, it doesn't matter what we point
1380 to since we can't dereference it. But return a reasonable
1381 address anyway. */
1382 if (size == const0_rtx)
1383 return virtual_stack_dynamic_rtx;
1384
1385 /* Otherwise, show we're calling alloca or equivalent. */
1386 cfun->calls_alloca = 1;
1387
1388 /* If stack usage info is requested, look into the size we are passed.
1389 We need to do so this early to avoid the obfuscation that may be
1390 introduced later by the various alignment operations. */
1391 if (flag_stack_usage_info)
1392 {
1393 if (CONST_INT_P (size))
1394 stack_usage_size = INTVAL (size);
1395 else if (REG_P (size))
1396 {
1397 /* Look into the last emitted insn and see if we can deduce
1398 something for the register. */
1399 rtx_insn *insn;
1400 rtx set, note;
1401 insn = get_last_insn ();
1402 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1403 {
1404 if (CONST_INT_P (SET_SRC (set)))
1405 stack_usage_size = INTVAL (SET_SRC (set));
1406 else if ((note = find_reg_equal_equiv_note (insn))
1407 && CONST_INT_P (XEXP (note, 0)))
1408 stack_usage_size = INTVAL (XEXP (note, 0));
1409 }
1410 }
1411
1412 /* If the size is not constant, try the maximum size. */
1413 if (stack_usage_size < 0)
1414 stack_usage_size = max_size;
1415
1416 /* If the size is still not constant, we can't say anything. */
1417 if (stack_usage_size < 0)
1418 {
1419 current_function_has_unbounded_dynamic_stack_size = 1;
1420 stack_usage_size = 0;
1421 }
1422 }
1423
1424 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1425
1426 target = gen_reg_rtx (Pmode);
1427
1428 /* The size is supposed to be fully adjusted at this point so record it
1429 if stack usage info is requested. */
1430 if (flag_stack_usage_info)
1431 {
1432 current_function_dynamic_stack_size += stack_usage_size;
1433
1434 /* ??? This is gross but the only safe stance in the absence
1435 of stack usage oriented flow analysis. */
1436 if (!cannot_accumulate)
1437 current_function_has_unbounded_dynamic_stack_size = 1;
1438 }
1439
1440 do_pending_stack_adjust ();
1441
1442 final_label = NULL;
1443 final_target = NULL_RTX;
1444
1445 /* If we are splitting the stack, we need to ask the backend whether
1446 there is enough room on the current stack. If there isn't, or if
1447 the backend doesn't know how to tell is, then we need to call a
1448 function to allocate memory in some other way. This memory will
1449 be released when we release the current stack segment. The
1450 effect is that stack allocation becomes less efficient, but at
1451 least it doesn't cause a stack overflow. */
1452 if (flag_split_stack)
1453 {
1454 rtx_code_label *available_label;
1455 rtx ask, space, func;
1456
1457 available_label = NULL;
1458
1459 if (targetm.have_split_stack_space_check ())
1460 {
1461 available_label = gen_label_rtx ();
1462
1463 /* This instruction will branch to AVAILABLE_LABEL if there
1464 are SIZE bytes available on the stack. */
1465 emit_insn (targetm.gen_split_stack_space_check
1466 (size, available_label));
1467 }
1468
1469 /* The __morestack_allocate_stack_space function will allocate
1470 memory using malloc. If the alignment of the memory returned
1471 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1472 make sure we allocate enough space. */
1473 if (MALLOC_ABI_ALIGNMENT >= required_align)
1474 ask = size;
1475 else
1476 ask = expand_binop (Pmode, add_optab, size,
1477 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1478 Pmode),
1479 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1480
1481 func = init_one_libfunc ("__morestack_allocate_stack_space");
1482
1483 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1484 ask, Pmode);
1485
1486 if (available_label == NULL_RTX)
1487 return space;
1488
1489 final_target = gen_reg_rtx (Pmode);
1490
1491 emit_move_insn (final_target, space);
1492
1493 final_label = gen_label_rtx ();
1494 emit_jump (final_label);
1495
1496 emit_label (available_label);
1497 }
1498
1499 /* We ought to be called always on the toplevel and stack ought to be aligned
1500 properly. */
1501 gcc_assert (multiple_p (stack_pointer_delta,
1502 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
1503
1504 /* If needed, check that we have the required amount of stack. Take into
1505 account what has already been checked. */
1506 if (STACK_CHECK_MOVING_SP)
1507 ;
1508 else if (flag_stack_check == GENERIC_STACK_CHECK)
1509 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1510 size);
1511 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1512 probe_stack_range (get_stack_check_protect (), size);
1513
1514 /* Don't let anti_adjust_stack emit notes. */
1515 suppress_reg_args_size = true;
1516
1517 /* Perform the required allocation from the stack. Some systems do
1518 this differently than simply incrementing/decrementing from the
1519 stack pointer, such as acquiring the space by calling malloc(). */
1520 if (targetm.have_allocate_stack ())
1521 {
1522 class expand_operand ops[2];
1523 /* We don't have to check against the predicate for operand 0 since
1524 TARGET is known to be a pseudo of the proper mode, which must
1525 be valid for the operand. */
1526 create_fixed_operand (&ops[0], target);
1527 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1528 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1529 }
1530 else
1531 {
1532 poly_int64 saved_stack_pointer_delta;
1533
1534 if (!STACK_GROWS_DOWNWARD)
1535 emit_move_insn (target, virtual_stack_dynamic_rtx);
1536
1537 /* Check stack bounds if necessary. */
1538 if (crtl->limit_stack)
1539 {
1540 rtx available;
1541 rtx_code_label *space_available = gen_label_rtx ();
1542 if (STACK_GROWS_DOWNWARD)
1543 available = expand_binop (Pmode, sub_optab,
1544 stack_pointer_rtx, stack_limit_rtx,
1545 NULL_RTX, 1, OPTAB_WIDEN);
1546 else
1547 available = expand_binop (Pmode, sub_optab,
1548 stack_limit_rtx, stack_pointer_rtx,
1549 NULL_RTX, 1, OPTAB_WIDEN);
1550
1551 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1552 space_available);
1553 if (targetm.have_trap ())
1554 emit_insn (targetm.gen_trap ());
1555 else
1556 error ("stack limits not supported on this target");
1557 emit_barrier ();
1558 emit_label (space_available);
1559 }
1560
1561 saved_stack_pointer_delta = stack_pointer_delta;
1562
1563 /* If stack checking or stack clash protection is requested,
1564 then probe the stack while allocating space from it. */
1565 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1566 anti_adjust_stack_and_probe (size, false);
1567 else if (flag_stack_clash_protection)
1568 anti_adjust_stack_and_probe_stack_clash (size);
1569 else
1570 anti_adjust_stack (size);
1571
1572 /* Even if size is constant, don't modify stack_pointer_delta.
1573 The constant size alloca should preserve
1574 crtl->preferred_stack_boundary alignment. */
1575 stack_pointer_delta = saved_stack_pointer_delta;
1576
1577 if (STACK_GROWS_DOWNWARD)
1578 emit_move_insn (target, virtual_stack_dynamic_rtx);
1579 }
1580
1581 suppress_reg_args_size = false;
1582
1583 /* Finish up the split stack handling. */
1584 if (final_label != NULL_RTX)
1585 {
1586 gcc_assert (flag_split_stack);
1587 emit_move_insn (final_target, target);
1588 emit_label (final_label);
1589 target = final_target;
1590 }
1591
1592 target = align_dynamic_address (target, required_align);
1593
1594 /* Now that we've committed to a return value, mark its alignment. */
1595 mark_reg_pointer (target, required_align);
1596
1597 /* Record the new stack level. */
1598 record_new_stack_level ();
1599
1600 return target;
1601 }
1602
1603 /* Return an rtx representing the address of an area of memory already
1604 statically pushed onto the stack in the virtual stack vars area. (It is
1605 assumed that the area is allocated in the function prologue.)
1606
1607 Any required stack pointer alignment is preserved.
1608
1609 OFFSET is the offset of the area into the virtual stack vars area.
1610
1611 REQUIRED_ALIGN is the alignment (in bits) required for the region
1612 of memory.
1613
1614 BASE is the rtx of the base of this virtual stack vars area.
1615 The only time this is not `virtual_stack_vars_rtx` is when tagging pointers
1616 on the stack. */
1617
1618 rtx
1619 get_dynamic_stack_base (poly_int64 offset, unsigned required_align, rtx base)
1620 {
1621 rtx target;
1622
1623 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1624 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1625
1626 target = gen_reg_rtx (Pmode);
1627 emit_move_insn (target, base);
1628 target = expand_binop (Pmode, add_optab, target,
1629 gen_int_mode (offset, Pmode),
1630 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1631 target = align_dynamic_address (target, required_align);
1632
1633 /* Now that we've committed to a return value, mark its alignment. */
1634 mark_reg_pointer (target, required_align);
1635
1636 return target;
1637 }
1638 \f
1639 /* A front end may want to override GCC's stack checking by providing a
1640 run-time routine to call to check the stack, so provide a mechanism for
1641 calling that routine. */
1642
1643 static GTY(()) rtx stack_check_libfunc;
1644
1645 void
1646 set_stack_check_libfunc (const char *libfunc_name)
1647 {
1648 gcc_assert (stack_check_libfunc == NULL_RTX);
1649 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1650 tree ptype
1651 = Pmode == ptr_mode
1652 ? ptr_type_node
1653 : lang_hooks.types.type_for_mode (Pmode, 1);
1654 tree ftype
1655 = build_function_type_list (void_type_node, ptype, NULL_TREE);
1656 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
1657 get_identifier (libfunc_name), ftype);
1658 DECL_EXTERNAL (decl) = 1;
1659 SET_SYMBOL_REF_DECL (stack_check_libfunc, decl);
1660 }
1661 \f
1662 /* Emit one stack probe at ADDRESS, an address within the stack. */
1663
1664 void
1665 emit_stack_probe (rtx address)
1666 {
1667 if (targetm.have_probe_stack_address ())
1668 {
1669 class expand_operand ops[1];
1670 insn_code icode = targetm.code_for_probe_stack_address;
1671 create_address_operand (ops, address);
1672 maybe_legitimize_operands (icode, 0, 1, ops);
1673 expand_insn (icode, 1, ops);
1674 }
1675 else
1676 {
1677 rtx memref = gen_rtx_MEM (word_mode, address);
1678
1679 MEM_VOLATILE_P (memref) = 1;
1680 memref = validize_mem (memref);
1681
1682 /* See if we have an insn to probe the stack. */
1683 if (targetm.have_probe_stack ())
1684 emit_insn (targetm.gen_probe_stack (memref));
1685 else
1686 emit_move_insn (memref, const0_rtx);
1687 }
1688 }
1689
1690 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1691 FIRST is a constant and size is a Pmode RTX. These are offsets from
1692 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1693 or subtract them from the stack pointer. */
1694
1695 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1696
1697 #if STACK_GROWS_DOWNWARD
1698 #define STACK_GROW_OP MINUS
1699 #define STACK_GROW_OPTAB sub_optab
1700 #define STACK_GROW_OFF(off) -(off)
1701 #else
1702 #define STACK_GROW_OP PLUS
1703 #define STACK_GROW_OPTAB add_optab
1704 #define STACK_GROW_OFF(off) (off)
1705 #endif
1706
1707 void
1708 probe_stack_range (HOST_WIDE_INT first, rtx size)
1709 {
1710 /* First ensure SIZE is Pmode. */
1711 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1712 size = convert_to_mode (Pmode, size, 1);
1713
1714 /* Next see if we have a function to check the stack. */
1715 if (stack_check_libfunc)
1716 {
1717 rtx addr = memory_address (Pmode,
1718 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1719 stack_pointer_rtx,
1720 plus_constant (Pmode,
1721 size, first)));
1722 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode,
1723 addr, Pmode);
1724 }
1725
1726 /* Next see if we have an insn to check the stack. */
1727 else if (targetm.have_check_stack ())
1728 {
1729 class expand_operand ops[1];
1730 rtx addr = memory_address (Pmode,
1731 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1732 stack_pointer_rtx,
1733 plus_constant (Pmode,
1734 size, first)));
1735 bool success;
1736 create_input_operand (&ops[0], addr, Pmode);
1737 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1738 gcc_assert (success);
1739 }
1740
1741 /* Otherwise we have to generate explicit probes. If we have a constant
1742 small number of them to generate, that's the easy case. */
1743 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1744 {
1745 HOST_WIDE_INT isize = INTVAL (size), i;
1746 rtx addr;
1747
1748 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1749 it exceeds SIZE. If only one probe is needed, this will not
1750 generate any code. Then probe at FIRST + SIZE. */
1751 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1752 {
1753 addr = memory_address (Pmode,
1754 plus_constant (Pmode, stack_pointer_rtx,
1755 STACK_GROW_OFF (first + i)));
1756 emit_stack_probe (addr);
1757 }
1758
1759 addr = memory_address (Pmode,
1760 plus_constant (Pmode, stack_pointer_rtx,
1761 STACK_GROW_OFF (first + isize)));
1762 emit_stack_probe (addr);
1763 }
1764
1765 /* In the variable case, do the same as above, but in a loop. Note that we
1766 must be extra careful with variables wrapping around because we might be
1767 at the very top (or the very bottom) of the address space and we have to
1768 be able to handle this case properly; in particular, we use an equality
1769 test for the loop condition. */
1770 else
1771 {
1772 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1773 rtx_code_label *loop_lab = gen_label_rtx ();
1774 rtx_code_label *end_lab = gen_label_rtx ();
1775
1776 /* Step 1: round SIZE to the previous multiple of the interval. */
1777
1778 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1779 rounded_size
1780 = simplify_gen_binary (AND, Pmode, size,
1781 gen_int_mode (-PROBE_INTERVAL, Pmode));
1782 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1783
1784
1785 /* Step 2: compute initial and final value of the loop counter. */
1786
1787 /* TEST_ADDR = SP + FIRST. */
1788 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1789 stack_pointer_rtx,
1790 gen_int_mode (first, Pmode)),
1791 NULL_RTX);
1792
1793 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1794 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1795 test_addr,
1796 rounded_size_op), NULL_RTX);
1797
1798
1799 /* Step 3: the loop
1800
1801 while (TEST_ADDR != LAST_ADDR)
1802 {
1803 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1804 probe at TEST_ADDR
1805 }
1806
1807 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1808 until it is equal to ROUNDED_SIZE. */
1809
1810 emit_label (loop_lab);
1811
1812 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1813 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1814 end_lab);
1815
1816 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1817 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1818 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1819 1, OPTAB_WIDEN);
1820
1821 /* There is no guarantee that expand_binop constructs its result
1822 in TEST_ADDR. So copy into TEST_ADDR if necessary. */
1823 if (temp != test_addr)
1824 emit_move_insn (test_addr, temp);
1825
1826 /* Probe at TEST_ADDR. */
1827 emit_stack_probe (test_addr);
1828
1829 emit_jump (loop_lab);
1830
1831 emit_label (end_lab);
1832
1833
1834 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1835 that SIZE is equal to ROUNDED_SIZE. */
1836
1837 /* TEMP = SIZE - ROUNDED_SIZE. */
1838 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1839 if (temp != const0_rtx)
1840 {
1841 rtx addr;
1842
1843 if (CONST_INT_P (temp))
1844 {
1845 /* Use [base + disp} addressing mode if supported. */
1846 HOST_WIDE_INT offset = INTVAL (temp);
1847 addr = memory_address (Pmode,
1848 plus_constant (Pmode, last_addr,
1849 STACK_GROW_OFF (offset)));
1850 }
1851 else
1852 {
1853 /* Manual CSE if the difference is not known at compile-time. */
1854 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1855 addr = memory_address (Pmode,
1856 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1857 last_addr, temp));
1858 }
1859
1860 emit_stack_probe (addr);
1861 }
1862 }
1863
1864 /* Make sure nothing is scheduled before we are done. */
1865 emit_insn (gen_blockage ());
1866 }
1867
1868 /* Compute parameters for stack clash probing a dynamic stack
1869 allocation of SIZE bytes.
1870
1871 We compute ROUNDED_SIZE, LAST_ADDR, RESIDUAL and PROBE_INTERVAL.
1872
1873 Additionally we conditionally dump the type of probing that will
1874 be needed given the values computed. */
1875
1876 void
1877 compute_stack_clash_protection_loop_data (rtx *rounded_size, rtx *last_addr,
1878 rtx *residual,
1879 HOST_WIDE_INT *probe_interval,
1880 rtx size)
1881 {
1882 /* Round SIZE down to STACK_CLASH_PROTECTION_PROBE_INTERVAL */
1883 *probe_interval
1884 = 1 << param_stack_clash_protection_probe_interval;
1885 *rounded_size = simplify_gen_binary (AND, Pmode, size,
1886 GEN_INT (-*probe_interval));
1887
1888 /* Compute the value of the stack pointer for the last iteration.
1889 It's just SP + ROUNDED_SIZE. */
1890 rtx rounded_size_op = force_operand (*rounded_size, NULL_RTX);
1891 *last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1892 stack_pointer_rtx,
1893 rounded_size_op),
1894 NULL_RTX);
1895
1896 /* Compute any residuals not allocated by the loop above. Residuals
1897 are just the ROUNDED_SIZE - SIZE. */
1898 *residual = simplify_gen_binary (MINUS, Pmode, size, *rounded_size);
1899
1900 /* Dump key information to make writing tests easy. */
1901 if (dump_file)
1902 {
1903 if (*rounded_size == CONST0_RTX (Pmode))
1904 fprintf (dump_file,
1905 "Stack clash skipped dynamic allocation and probing loop.\n");
1906 else if (CONST_INT_P (*rounded_size)
1907 && INTVAL (*rounded_size) <= 4 * *probe_interval)
1908 fprintf (dump_file,
1909 "Stack clash dynamic allocation and probing inline.\n");
1910 else if (CONST_INT_P (*rounded_size))
1911 fprintf (dump_file,
1912 "Stack clash dynamic allocation and probing in "
1913 "rotated loop.\n");
1914 else
1915 fprintf (dump_file,
1916 "Stack clash dynamic allocation and probing in loop.\n");
1917
1918 if (*residual != CONST0_RTX (Pmode))
1919 fprintf (dump_file,
1920 "Stack clash dynamic allocation and probing residuals.\n");
1921 else
1922 fprintf (dump_file,
1923 "Stack clash skipped dynamic allocation and "
1924 "probing residuals.\n");
1925 }
1926 }
1927
1928 /* Emit the start of an allocate/probe loop for stack
1929 clash protection.
1930
1931 LOOP_LAB and END_LAB are returned for use when we emit the
1932 end of the loop.
1933
1934 LAST addr is the value for SP which stops the loop. */
1935 void
1936 emit_stack_clash_protection_probe_loop_start (rtx *loop_lab,
1937 rtx *end_lab,
1938 rtx last_addr,
1939 bool rotated)
1940 {
1941 /* Essentially we want to emit any setup code, the top of loop
1942 label and the comparison at the top of the loop. */
1943 *loop_lab = gen_label_rtx ();
1944 *end_lab = gen_label_rtx ();
1945
1946 emit_label (*loop_lab);
1947 if (!rotated)
1948 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1949 Pmode, 1, *end_lab);
1950 }
1951
1952 /* Emit the end of a stack clash probing loop.
1953
1954 This consists of just the jump back to LOOP_LAB and
1955 emitting END_LOOP after the loop. */
1956
1957 void
1958 emit_stack_clash_protection_probe_loop_end (rtx loop_lab, rtx end_loop,
1959 rtx last_addr, bool rotated)
1960 {
1961 if (rotated)
1962 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, NE, NULL_RTX,
1963 Pmode, 1, loop_lab);
1964 else
1965 emit_jump (loop_lab);
1966
1967 emit_label (end_loop);
1968
1969 }
1970
1971 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1972 while probing it. This pushes when SIZE is positive. SIZE need not
1973 be constant.
1974
1975 This is subtly different than anti_adjust_stack_and_probe to try and
1976 prevent stack-clash attacks
1977
1978 1. It must assume no knowledge of the probing state, any allocation
1979 must probe.
1980
1981 Consider the case of a 1 byte alloca in a loop. If the sum of the
1982 allocations is large, then this could be used to jump the guard if
1983 probes were not emitted.
1984
1985 2. It never skips probes, whereas anti_adjust_stack_and_probe will
1986 skip the probe on the first PROBE_INTERVAL on the assumption it
1987 was already done in the prologue and in previous allocations.
1988
1989 3. It only allocates and probes SIZE bytes, it does not need to
1990 allocate/probe beyond that because this probing style does not
1991 guarantee signal handling capability if the guard is hit. */
1992
1993 void
1994 anti_adjust_stack_and_probe_stack_clash (rtx size)
1995 {
1996 /* First ensure SIZE is Pmode. */
1997 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1998 size = convert_to_mode (Pmode, size, 1);
1999
2000 /* We can get here with a constant size on some targets. */
2001 rtx rounded_size, last_addr, residual;
2002 HOST_WIDE_INT probe_interval, probe_range;
2003 bool target_probe_range_p = false;
2004 compute_stack_clash_protection_loop_data (&rounded_size, &last_addr,
2005 &residual, &probe_interval, size);
2006
2007 /* Get the back-end specific probe ranges. */
2008 probe_range = targetm.stack_clash_protection_alloca_probe_range ();
2009 target_probe_range_p = probe_range != 0;
2010 gcc_assert (probe_range >= 0);
2011
2012 /* If no back-end specific range defined, default to the top of the newly
2013 allocated range. */
2014 if (probe_range == 0)
2015 probe_range = probe_interval - GET_MODE_SIZE (word_mode);
2016
2017 if (rounded_size != CONST0_RTX (Pmode))
2018 {
2019 if (CONST_INT_P (rounded_size)
2020 && INTVAL (rounded_size) <= 4 * probe_interval)
2021 {
2022 for (HOST_WIDE_INT i = 0;
2023 i < INTVAL (rounded_size);
2024 i += probe_interval)
2025 {
2026 anti_adjust_stack (GEN_INT (probe_interval));
2027 /* The prologue does not probe residuals. Thus the offset
2028 here to probe just beyond what the prologue had already
2029 allocated. */
2030 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
2031 probe_range));
2032
2033 emit_insn (gen_blockage ());
2034 }
2035 }
2036 else
2037 {
2038 rtx loop_lab, end_loop;
2039 bool rotate_loop = CONST_INT_P (rounded_size);
2040 emit_stack_clash_protection_probe_loop_start (&loop_lab, &end_loop,
2041 last_addr, rotate_loop);
2042
2043 anti_adjust_stack (GEN_INT (probe_interval));
2044
2045 /* The prologue does not probe residuals. Thus the offset here
2046 to probe just beyond what the prologue had already
2047 allocated. */
2048 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
2049 probe_range));
2050
2051 emit_stack_clash_protection_probe_loop_end (loop_lab, end_loop,
2052 last_addr, rotate_loop);
2053 emit_insn (gen_blockage ());
2054 }
2055 }
2056
2057 if (residual != CONST0_RTX (Pmode))
2058 {
2059 rtx label = NULL_RTX;
2060 /* RESIDUAL could be zero at runtime and in that case *sp could
2061 hold live data. Furthermore, we do not want to probe into the
2062 red zone.
2063
2064 If TARGET_PROBE_RANGE_P then the target has promised it's safe to
2065 probe at offset 0. In which case we no longer have to check for
2066 RESIDUAL == 0. However we still need to probe at the right offset
2067 when RESIDUAL > PROBE_RANGE, in which case we probe at PROBE_RANGE.
2068
2069 If !TARGET_PROBE_RANGE_P then go ahead and just guard the probe at *sp
2070 on RESIDUAL != 0 at runtime if RESIDUAL is not a compile time constant.
2071 */
2072 anti_adjust_stack (residual);
2073
2074 if (!CONST_INT_P (residual))
2075 {
2076 label = gen_label_rtx ();
2077 rtx_code op = target_probe_range_p ? LT : EQ;
2078 rtx probe_cmp_value = target_probe_range_p
2079 ? gen_rtx_CONST_INT (GET_MODE (residual), probe_range)
2080 : CONST0_RTX (GET_MODE (residual));
2081
2082 if (target_probe_range_p)
2083 emit_stack_probe (stack_pointer_rtx);
2084
2085 emit_cmp_and_jump_insns (residual, probe_cmp_value,
2086 op, NULL_RTX, Pmode, 1, label);
2087 }
2088
2089 rtx x = NULL_RTX;
2090
2091 /* If RESIDUAL isn't a constant and TARGET_PROBE_RANGE_P then we probe up
2092 by the ABI defined safe value. */
2093 if (!CONST_INT_P (residual) && target_probe_range_p)
2094 x = GEN_INT (probe_range);
2095 /* If RESIDUAL is a constant but smaller than the ABI defined safe value,
2096 we still want to probe up, but the safest amount if a word. */
2097 else if (target_probe_range_p)
2098 {
2099 if (INTVAL (residual) <= probe_range)
2100 x = GEN_INT (GET_MODE_SIZE (word_mode));
2101 else
2102 x = GEN_INT (probe_range);
2103 }
2104 else
2105 /* If nothing else, probe at the top of the new allocation. */
2106 x = plus_constant (Pmode, residual, -GET_MODE_SIZE (word_mode));
2107
2108 emit_stack_probe (gen_rtx_PLUS (Pmode, stack_pointer_rtx, x));
2109
2110 emit_insn (gen_blockage ());
2111 if (!CONST_INT_P (residual))
2112 emit_label (label);
2113 }
2114 }
2115
2116
2117 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
2118 while probing it. This pushes when SIZE is positive. SIZE need not
2119 be constant. If ADJUST_BACK is true, adjust back the stack pointer
2120 by plus SIZE at the end. */
2121
2122 void
2123 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
2124 {
2125 /* We skip the probe for the first interval + a small dope of 4 words and
2126 probe that many bytes past the specified size to maintain a protection
2127 area at the botton of the stack. */
2128 const int dope = 4 * UNITS_PER_WORD;
2129
2130 /* First ensure SIZE is Pmode. */
2131 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
2132 size = convert_to_mode (Pmode, size, 1);
2133
2134 /* If we have a constant small number of probes to generate, that's the
2135 easy case. */
2136 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
2137 {
2138 HOST_WIDE_INT isize = INTVAL (size), i;
2139 bool first_probe = true;
2140
2141 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
2142 values of N from 1 until it exceeds SIZE. If only one probe is
2143 needed, this will not generate any code. Then adjust and probe
2144 to PROBE_INTERVAL + SIZE. */
2145 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
2146 {
2147 if (first_probe)
2148 {
2149 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
2150 first_probe = false;
2151 }
2152 else
2153 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2154 emit_stack_probe (stack_pointer_rtx);
2155 }
2156
2157 if (first_probe)
2158 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2159 else
2160 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
2161 emit_stack_probe (stack_pointer_rtx);
2162 }
2163
2164 /* In the variable case, do the same as above, but in a loop. Note that we
2165 must be extra careful with variables wrapping around because we might be
2166 at the very top (or the very bottom) of the address space and we have to
2167 be able to handle this case properly; in particular, we use an equality
2168 test for the loop condition. */
2169 else
2170 {
2171 rtx rounded_size, rounded_size_op, last_addr, temp;
2172 rtx_code_label *loop_lab = gen_label_rtx ();
2173 rtx_code_label *end_lab = gen_label_rtx ();
2174
2175
2176 /* Step 1: round SIZE to the previous multiple of the interval. */
2177
2178 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
2179 rounded_size
2180 = simplify_gen_binary (AND, Pmode, size,
2181 gen_int_mode (-PROBE_INTERVAL, Pmode));
2182 rounded_size_op = force_operand (rounded_size, NULL_RTX);
2183
2184
2185 /* Step 2: compute initial and final value of the loop counter. */
2186
2187 /* SP = SP_0 + PROBE_INTERVAL. */
2188 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2189
2190 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
2191 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
2192 stack_pointer_rtx,
2193 rounded_size_op), NULL_RTX);
2194
2195
2196 /* Step 3: the loop
2197
2198 while (SP != LAST_ADDR)
2199 {
2200 SP = SP + PROBE_INTERVAL
2201 probe at SP
2202 }
2203
2204 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
2205 values of N from 1 until it is equal to ROUNDED_SIZE. */
2206
2207 emit_label (loop_lab);
2208
2209 /* Jump to END_LAB if SP == LAST_ADDR. */
2210 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
2211 Pmode, 1, end_lab);
2212
2213 /* SP = SP + PROBE_INTERVAL and probe at SP. */
2214 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2215 emit_stack_probe (stack_pointer_rtx);
2216
2217 emit_jump (loop_lab);
2218
2219 emit_label (end_lab);
2220
2221
2222 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
2223 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
2224
2225 /* TEMP = SIZE - ROUNDED_SIZE. */
2226 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
2227 if (temp != const0_rtx)
2228 {
2229 /* Manual CSE if the difference is not known at compile-time. */
2230 if (GET_CODE (temp) != CONST_INT)
2231 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
2232 anti_adjust_stack (temp);
2233 emit_stack_probe (stack_pointer_rtx);
2234 }
2235 }
2236
2237 /* Adjust back and account for the additional first interval. */
2238 if (adjust_back)
2239 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2240 else
2241 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2242 }
2243
2244 /* Return an rtx representing the register or memory location
2245 in which a scalar value of data type VALTYPE
2246 was returned by a function call to function FUNC.
2247 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
2248 function is known, otherwise 0.
2249 OUTGOING is 1 if on a machine with register windows this function
2250 should return the register in which the function will put its result
2251 and 0 otherwise. */
2252
2253 rtx
2254 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
2255 int outgoing ATTRIBUTE_UNUSED)
2256 {
2257 rtx val;
2258
2259 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
2260
2261 if (REG_P (val)
2262 && GET_MODE (val) == BLKmode)
2263 {
2264 unsigned HOST_WIDE_INT bytes = arg_int_size_in_bytes (valtype);
2265 opt_scalar_int_mode tmpmode;
2266
2267 /* int_size_in_bytes can return -1. We don't need a check here
2268 since the value of bytes will then be large enough that no
2269 mode will match anyway. */
2270
2271 FOR_EACH_MODE_IN_CLASS (tmpmode, MODE_INT)
2272 {
2273 /* Have we found a large enough mode? */
2274 if (GET_MODE_SIZE (tmpmode.require ()) >= bytes)
2275 break;
2276 }
2277
2278 PUT_MODE (val, tmpmode.require ());
2279 }
2280 return val;
2281 }
2282
2283 /* Return an rtx representing the register or memory location
2284 in which a scalar value of mode MODE was returned by a library call. */
2285
2286 rtx
2287 hard_libcall_value (machine_mode mode, rtx fun)
2288 {
2289 return targetm.calls.libcall_value (mode, fun);
2290 }
2291
2292 /* Look up the tree code for a given rtx code
2293 to provide the arithmetic operation for real_arithmetic.
2294 The function returns an int because the caller may not know
2295 what `enum tree_code' means. */
2296
2297 int
2298 rtx_to_tree_code (enum rtx_code code)
2299 {
2300 enum tree_code tcode;
2301
2302 switch (code)
2303 {
2304 case PLUS:
2305 tcode = PLUS_EXPR;
2306 break;
2307 case MINUS:
2308 tcode = MINUS_EXPR;
2309 break;
2310 case MULT:
2311 tcode = MULT_EXPR;
2312 break;
2313 case DIV:
2314 tcode = RDIV_EXPR;
2315 break;
2316 case SMIN:
2317 tcode = MIN_EXPR;
2318 break;
2319 case SMAX:
2320 tcode = MAX_EXPR;
2321 break;
2322 default:
2323 tcode = LAST_AND_UNUSED_TREE_CODE;
2324 break;
2325 }
2326 return ((int) tcode);
2327 }
2328
2329 #include "gt-explow.h"