]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/expmed.c
Add a gen_int_shift_amount helper function
[thirdparty/gcc.git] / gcc / expmed.c
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "predict.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "dojump.h"
40 #include "explow.h"
41 #include "expr.h"
42 #include "langhooks.h"
43 #include "tree-vector-builder.h"
44
45 struct target_expmed default_target_expmed;
46 #if SWITCHABLE_TARGET
47 struct target_expmed *this_target_expmed = &default_target_expmed;
48 #endif
49
50 static void store_fixed_bit_field (rtx, opt_scalar_int_mode,
51 unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT,
53 unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT,
55 rtx, scalar_int_mode, bool);
56 static void store_fixed_bit_field_1 (rtx, scalar_int_mode,
57 unsigned HOST_WIDE_INT,
58 unsigned HOST_WIDE_INT,
59 rtx, scalar_int_mode, bool);
60 static void store_split_bit_field (rtx, opt_scalar_int_mode,
61 unsigned HOST_WIDE_INT,
62 unsigned HOST_WIDE_INT,
63 unsigned HOST_WIDE_INT,
64 unsigned HOST_WIDE_INT,
65 rtx, scalar_int_mode, bool);
66 static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode,
67 unsigned HOST_WIDE_INT,
68 unsigned HOST_WIDE_INT, rtx, int, bool);
69 static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode,
70 unsigned HOST_WIDE_INT,
71 unsigned HOST_WIDE_INT, rtx, int, bool);
72 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
73 static rtx extract_split_bit_field (rtx, opt_scalar_int_mode,
74 unsigned HOST_WIDE_INT,
75 unsigned HOST_WIDE_INT, int, bool);
76 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
77 static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
78 static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
79
80 /* Return a constant integer mask value of mode MODE with BITSIZE ones
81 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
82 The mask is truncated if necessary to the width of mode MODE. The
83 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
84
85 static inline rtx
86 mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement)
87 {
88 return immed_wide_int_const
89 (wi::shifted_mask (bitpos, bitsize, complement,
90 GET_MODE_PRECISION (mode)), mode);
91 }
92
93 /* Test whether a value is zero of a power of two. */
94 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
95 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
96
97 struct init_expmed_rtl
98 {
99 rtx reg;
100 rtx plus;
101 rtx neg;
102 rtx mult;
103 rtx sdiv;
104 rtx udiv;
105 rtx sdiv_32;
106 rtx smod_32;
107 rtx wide_mult;
108 rtx wide_lshr;
109 rtx wide_trunc;
110 rtx shift;
111 rtx shift_mult;
112 rtx shift_add;
113 rtx shift_sub0;
114 rtx shift_sub1;
115 rtx zext;
116 rtx trunc;
117
118 rtx pow2[MAX_BITS_PER_WORD];
119 rtx cint[MAX_BITS_PER_WORD];
120 };
121
122 static void
123 init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode,
124 scalar_int_mode from_mode, bool speed)
125 {
126 int to_size, from_size;
127 rtx which;
128
129 to_size = GET_MODE_PRECISION (to_mode);
130 from_size = GET_MODE_PRECISION (from_mode);
131
132 /* Most partial integers have a precision less than the "full"
133 integer it requires for storage. In case one doesn't, for
134 comparison purposes here, reduce the bit size by one in that
135 case. */
136 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
137 && pow2p_hwi (to_size))
138 to_size --;
139 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
140 && pow2p_hwi (from_size))
141 from_size --;
142
143 /* Assume cost of zero-extend and sign-extend is the same. */
144 which = (to_size < from_size ? all->trunc : all->zext);
145
146 PUT_MODE (all->reg, from_mode);
147 set_convert_cost (to_mode, from_mode, speed,
148 set_src_cost (which, to_mode, speed));
149 }
150
151 static void
152 init_expmed_one_mode (struct init_expmed_rtl *all,
153 machine_mode mode, int speed)
154 {
155 int m, n, mode_bitsize;
156 machine_mode mode_from;
157
158 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
159
160 PUT_MODE (all->reg, mode);
161 PUT_MODE (all->plus, mode);
162 PUT_MODE (all->neg, mode);
163 PUT_MODE (all->mult, mode);
164 PUT_MODE (all->sdiv, mode);
165 PUT_MODE (all->udiv, mode);
166 PUT_MODE (all->sdiv_32, mode);
167 PUT_MODE (all->smod_32, mode);
168 PUT_MODE (all->wide_trunc, mode);
169 PUT_MODE (all->shift, mode);
170 PUT_MODE (all->shift_mult, mode);
171 PUT_MODE (all->shift_add, mode);
172 PUT_MODE (all->shift_sub0, mode);
173 PUT_MODE (all->shift_sub1, mode);
174 PUT_MODE (all->zext, mode);
175 PUT_MODE (all->trunc, mode);
176
177 set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
178 set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
179 set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
180 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
181 set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
182
183 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
184 <= 2 * add_cost (speed, mode)));
185 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
186 <= 4 * add_cost (speed, mode)));
187
188 set_shift_cost (speed, mode, 0, 0);
189 {
190 int cost = add_cost (speed, mode);
191 set_shiftadd_cost (speed, mode, 0, cost);
192 set_shiftsub0_cost (speed, mode, 0, cost);
193 set_shiftsub1_cost (speed, mode, 0, cost);
194 }
195
196 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
197 for (m = 1; m < n; m++)
198 {
199 XEXP (all->shift, 1) = all->cint[m];
200 XEXP (all->shift_mult, 1) = all->pow2[m];
201
202 set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
203 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
204 speed));
205 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
206 speed));
207 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
208 speed));
209 }
210
211 scalar_int_mode int_mode_to;
212 if (is_a <scalar_int_mode> (mode, &int_mode_to))
213 {
214 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
215 mode_from = (machine_mode)(mode_from + 1))
216 init_expmed_one_conv (all, int_mode_to,
217 as_a <scalar_int_mode> (mode_from), speed);
218
219 scalar_int_mode wider_mode;
220 if (GET_MODE_CLASS (int_mode_to) == MODE_INT
221 && GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode))
222 {
223 PUT_MODE (all->zext, wider_mode);
224 PUT_MODE (all->wide_mult, wider_mode);
225 PUT_MODE (all->wide_lshr, wider_mode);
226 XEXP (all->wide_lshr, 1)
227 = gen_int_shift_amount (wider_mode, mode_bitsize);
228
229 set_mul_widen_cost (speed, wider_mode,
230 set_src_cost (all->wide_mult, wider_mode, speed));
231 set_mul_highpart_cost (speed, int_mode_to,
232 set_src_cost (all->wide_trunc,
233 int_mode_to, speed));
234 }
235 }
236 }
237
238 void
239 init_expmed (void)
240 {
241 struct init_expmed_rtl all;
242 machine_mode mode = QImode;
243 int m, speed;
244
245 memset (&all, 0, sizeof all);
246 for (m = 1; m < MAX_BITS_PER_WORD; m++)
247 {
248 all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
249 all.cint[m] = GEN_INT (m);
250 }
251
252 /* Avoid using hard regs in ways which may be unsupported. */
253 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
254 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
255 all.neg = gen_rtx_NEG (mode, all.reg);
256 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
257 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
258 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
259 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
260 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
261 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
262 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
263 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
264 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
265 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
266 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
267 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
268 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
269 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
270 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
271
272 for (speed = 0; speed < 2; speed++)
273 {
274 crtl->maybe_hot_insn_p = speed;
275 set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
276
277 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
278 mode = (machine_mode)(mode + 1))
279 init_expmed_one_mode (&all, mode, speed);
280
281 if (MIN_MODE_PARTIAL_INT != VOIDmode)
282 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
283 mode = (machine_mode)(mode + 1))
284 init_expmed_one_mode (&all, mode, speed);
285
286 if (MIN_MODE_VECTOR_INT != VOIDmode)
287 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
288 mode = (machine_mode)(mode + 1))
289 init_expmed_one_mode (&all, mode, speed);
290 }
291
292 if (alg_hash_used_p ())
293 {
294 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
295 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
296 }
297 else
298 set_alg_hash_used_p (true);
299 default_rtl_profile ();
300
301 ggc_free (all.trunc);
302 ggc_free (all.shift_sub1);
303 ggc_free (all.shift_sub0);
304 ggc_free (all.shift_add);
305 ggc_free (all.shift_mult);
306 ggc_free (all.shift);
307 ggc_free (all.wide_trunc);
308 ggc_free (all.wide_lshr);
309 ggc_free (all.wide_mult);
310 ggc_free (all.zext);
311 ggc_free (all.smod_32);
312 ggc_free (all.sdiv_32);
313 ggc_free (all.udiv);
314 ggc_free (all.sdiv);
315 ggc_free (all.mult);
316 ggc_free (all.neg);
317 ggc_free (all.plus);
318 ggc_free (all.reg);
319 }
320
321 /* Return an rtx representing minus the value of X.
322 MODE is the intended mode of the result,
323 useful if X is a CONST_INT. */
324
325 rtx
326 negate_rtx (machine_mode mode, rtx x)
327 {
328 rtx result = simplify_unary_operation (NEG, mode, x, mode);
329
330 if (result == 0)
331 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
332
333 return result;
334 }
335
336 /* Whether reverse storage order is supported on the target. */
337 static int reverse_storage_order_supported = -1;
338
339 /* Check whether reverse storage order is supported on the target. */
340
341 static void
342 check_reverse_storage_order_support (void)
343 {
344 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
345 {
346 reverse_storage_order_supported = 0;
347 sorry ("reverse scalar storage order");
348 }
349 else
350 reverse_storage_order_supported = 1;
351 }
352
353 /* Whether reverse FP storage order is supported on the target. */
354 static int reverse_float_storage_order_supported = -1;
355
356 /* Check whether reverse FP storage order is supported on the target. */
357
358 static void
359 check_reverse_float_storage_order_support (void)
360 {
361 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
362 {
363 reverse_float_storage_order_supported = 0;
364 sorry ("reverse floating-point scalar storage order");
365 }
366 else
367 reverse_float_storage_order_supported = 1;
368 }
369
370 /* Return an rtx representing value of X with reverse storage order.
371 MODE is the intended mode of the result,
372 useful if X is a CONST_INT. */
373
374 rtx
375 flip_storage_order (machine_mode mode, rtx x)
376 {
377 scalar_int_mode int_mode;
378 rtx result;
379
380 if (mode == QImode)
381 return x;
382
383 if (COMPLEX_MODE_P (mode))
384 {
385 rtx real = read_complex_part (x, false);
386 rtx imag = read_complex_part (x, true);
387
388 real = flip_storage_order (GET_MODE_INNER (mode), real);
389 imag = flip_storage_order (GET_MODE_INNER (mode), imag);
390
391 return gen_rtx_CONCAT (mode, real, imag);
392 }
393
394 if (__builtin_expect (reverse_storage_order_supported < 0, 0))
395 check_reverse_storage_order_support ();
396
397 if (!is_a <scalar_int_mode> (mode, &int_mode))
398 {
399 if (FLOAT_MODE_P (mode)
400 && __builtin_expect (reverse_float_storage_order_supported < 0, 0))
401 check_reverse_float_storage_order_support ();
402
403 if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode))
404 {
405 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
406 return x;
407 }
408 x = gen_lowpart (int_mode, x);
409 }
410
411 result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
412 if (result == 0)
413 result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
414
415 if (int_mode != mode)
416 result = gen_lowpart (mode, result);
417
418 return result;
419 }
420
421 /* If MODE is set, adjust bitfield memory MEM so that it points to the
422 first unit of mode MODE that contains a bitfield of size BITSIZE at
423 bit position BITNUM. If MODE is not set, return a BLKmode reference
424 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
425 of the field within the new memory. */
426
427 static rtx
428 narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode,
429 unsigned HOST_WIDE_INT bitsize,
430 unsigned HOST_WIDE_INT bitnum,
431 unsigned HOST_WIDE_INT *new_bitnum)
432 {
433 scalar_int_mode imode;
434 if (mode.exists (&imode))
435 {
436 unsigned int unit = GET_MODE_BITSIZE (imode);
437 *new_bitnum = bitnum % unit;
438 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
439 return adjust_bitfield_address (mem, imode, offset);
440 }
441 else
442 {
443 *new_bitnum = bitnum % BITS_PER_UNIT;
444 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
445 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
446 / BITS_PER_UNIT);
447 return adjust_bitfield_address_size (mem, BLKmode, offset, size);
448 }
449 }
450
451 /* The caller wants to perform insertion or extraction PATTERN on a
452 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
453 BITREGION_START and BITREGION_END are as for store_bit_field
454 and FIELDMODE is the natural mode of the field.
455
456 Search for a mode that is compatible with the memory access
457 restrictions and (where applicable) with a register insertion or
458 extraction. Return the new memory on success, storing the adjusted
459 bit position in *NEW_BITNUM. Return null otherwise. */
460
461 static rtx
462 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
463 rtx op0, HOST_WIDE_INT bitsize,
464 HOST_WIDE_INT bitnum,
465 unsigned HOST_WIDE_INT bitregion_start,
466 unsigned HOST_WIDE_INT bitregion_end,
467 machine_mode fieldmode,
468 unsigned HOST_WIDE_INT *new_bitnum)
469 {
470 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
471 bitregion_end, MEM_ALIGN (op0),
472 MEM_VOLATILE_P (op0));
473 scalar_int_mode best_mode;
474 if (iter.next_mode (&best_mode))
475 {
476 /* We can use a memory in BEST_MODE. See whether this is true for
477 any wider modes. All other things being equal, we prefer to
478 use the widest mode possible because it tends to expose more
479 CSE opportunities. */
480 if (!iter.prefer_smaller_modes ())
481 {
482 /* Limit the search to the mode required by the corresponding
483 register insertion or extraction instruction, if any. */
484 scalar_int_mode limit_mode = word_mode;
485 extraction_insn insn;
486 if (get_best_reg_extraction_insn (&insn, pattern,
487 GET_MODE_BITSIZE (best_mode),
488 fieldmode))
489 limit_mode = insn.field_mode;
490
491 scalar_int_mode wider_mode;
492 while (iter.next_mode (&wider_mode)
493 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
494 best_mode = wider_mode;
495 }
496 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
497 new_bitnum);
498 }
499 return NULL_RTX;
500 }
501
502 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
503 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
504 offset is then BITNUM / BITS_PER_UNIT. */
505
506 static bool
507 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
508 unsigned HOST_WIDE_INT bitsize,
509 machine_mode struct_mode)
510 {
511 unsigned HOST_WIDE_INT regsize = REGMODE_NATURAL_SIZE (struct_mode);
512 if (BYTES_BIG_ENDIAN)
513 return (bitnum % BITS_PER_UNIT == 0
514 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
515 || (bitnum + bitsize) % (regsize * BITS_PER_UNIT) == 0));
516 else
517 return bitnum % (regsize * BITS_PER_UNIT) == 0;
518 }
519
520 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
521 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
522 Return false if the access would touch memory outside the range
523 BITREGION_START to BITREGION_END for conformance to the C++ memory
524 model. */
525
526 static bool
527 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
528 unsigned HOST_WIDE_INT bitnum,
529 scalar_int_mode fieldmode,
530 unsigned HOST_WIDE_INT bitregion_start,
531 unsigned HOST_WIDE_INT bitregion_end)
532 {
533 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
534
535 /* -fstrict-volatile-bitfields must be enabled and we must have a
536 volatile MEM. */
537 if (!MEM_P (op0)
538 || !MEM_VOLATILE_P (op0)
539 || flag_strict_volatile_bitfields <= 0)
540 return false;
541
542 /* The bit size must not be larger than the field mode, and
543 the field mode must not be larger than a word. */
544 if (bitsize > modesize || modesize > BITS_PER_WORD)
545 return false;
546
547 /* Check for cases of unaligned fields that must be split. */
548 if (bitnum % modesize + bitsize > modesize)
549 return false;
550
551 /* The memory must be sufficiently aligned for a MODESIZE access.
552 This condition guarantees, that the memory access will not
553 touch anything after the end of the structure. */
554 if (MEM_ALIGN (op0) < modesize)
555 return false;
556
557 /* Check for cases where the C++ memory model applies. */
558 if (bitregion_end != 0
559 && (bitnum - bitnum % modesize < bitregion_start
560 || bitnum - bitnum % modesize + modesize - 1 > bitregion_end))
561 return false;
562
563 return true;
564 }
565
566 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
567 bit number BITNUM can be treated as a simple value of mode MODE. */
568
569 static bool
570 simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
571 unsigned HOST_WIDE_INT bitnum, machine_mode mode)
572 {
573 return (MEM_P (op0)
574 && bitnum % BITS_PER_UNIT == 0
575 && bitsize == GET_MODE_BITSIZE (mode)
576 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0))
577 || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
578 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
579 }
580 \f
581 /* Try to use instruction INSV to store VALUE into a field of OP0.
582 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
583 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
584 are as for store_bit_field. */
585
586 static bool
587 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
588 opt_scalar_int_mode op0_mode,
589 unsigned HOST_WIDE_INT bitsize,
590 unsigned HOST_WIDE_INT bitnum,
591 rtx value, scalar_int_mode value_mode)
592 {
593 struct expand_operand ops[4];
594 rtx value1;
595 rtx xop0 = op0;
596 rtx_insn *last = get_last_insn ();
597 bool copy_back = false;
598
599 scalar_int_mode op_mode = insv->field_mode;
600 unsigned int unit = GET_MODE_BITSIZE (op_mode);
601 if (bitsize == 0 || bitsize > unit)
602 return false;
603
604 if (MEM_P (xop0))
605 /* Get a reference to the first byte of the field. */
606 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
607 &bitnum);
608 else
609 {
610 /* Convert from counting within OP0 to counting in OP_MODE. */
611 if (BYTES_BIG_ENDIAN)
612 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
613
614 /* If xop0 is a register, we need it in OP_MODE
615 to make it acceptable to the format of insv. */
616 if (GET_CODE (xop0) == SUBREG)
617 /* We can't just change the mode, because this might clobber op0,
618 and we will need the original value of op0 if insv fails. */
619 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
620 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
621 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
622 }
623
624 /* If the destination is a paradoxical subreg such that we need a
625 truncate to the inner mode, perform the insertion on a temporary and
626 truncate the result to the original destination. Note that we can't
627 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
628 X) 0)) is (reg:N X). */
629 if (GET_CODE (xop0) == SUBREG
630 && REG_P (SUBREG_REG (xop0))
631 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
632 op_mode))
633 {
634 rtx tem = gen_reg_rtx (op_mode);
635 emit_move_insn (tem, xop0);
636 xop0 = tem;
637 copy_back = true;
638 }
639
640 /* There are similar overflow check at the start of store_bit_field_1,
641 but that only check the situation where the field lies completely
642 outside the register, while there do have situation where the field
643 lies partialy in the register, we need to adjust bitsize for this
644 partial overflow situation. Without this fix, pr48335-2.c on big-endian
645 will broken on those arch support bit insert instruction, like arm, aarch64
646 etc. */
647 if (bitsize + bitnum > unit && bitnum < unit)
648 {
649 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
650 "destination object, data truncated into %wu-bit",
651 bitsize, unit - bitnum);
652 bitsize = unit - bitnum;
653 }
654
655 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
656 "backwards" from the size of the unit we are inserting into.
657 Otherwise, we count bits from the most significant on a
658 BYTES/BITS_BIG_ENDIAN machine. */
659
660 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
661 bitnum = unit - bitsize - bitnum;
662
663 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
664 value1 = value;
665 if (value_mode != op_mode)
666 {
667 if (GET_MODE_BITSIZE (value_mode) >= bitsize)
668 {
669 rtx tmp;
670 /* Optimization: Don't bother really extending VALUE
671 if it has all the bits we will actually use. However,
672 if we must narrow it, be sure we do it correctly. */
673
674 if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode))
675 {
676 tmp = simplify_subreg (op_mode, value1, value_mode, 0);
677 if (! tmp)
678 tmp = simplify_gen_subreg (op_mode,
679 force_reg (value_mode, value1),
680 value_mode, 0);
681 }
682 else
683 {
684 tmp = gen_lowpart_if_possible (op_mode, value1);
685 if (! tmp)
686 tmp = gen_lowpart (op_mode, force_reg (value_mode, value1));
687 }
688 value1 = tmp;
689 }
690 else if (CONST_INT_P (value))
691 value1 = gen_int_mode (INTVAL (value), op_mode);
692 else
693 /* Parse phase is supposed to make VALUE's data type
694 match that of the component reference, which is a type
695 at least as wide as the field; so VALUE should have
696 a mode that corresponds to that type. */
697 gcc_assert (CONSTANT_P (value));
698 }
699
700 create_fixed_operand (&ops[0], xop0);
701 create_integer_operand (&ops[1], bitsize);
702 create_integer_operand (&ops[2], bitnum);
703 create_input_operand (&ops[3], value1, op_mode);
704 if (maybe_expand_insn (insv->icode, 4, ops))
705 {
706 if (copy_back)
707 convert_move (op0, xop0, true);
708 return true;
709 }
710 delete_insns_since (last);
711 return false;
712 }
713
714 /* A subroutine of store_bit_field, with the same arguments. Return true
715 if the operation could be implemented.
716
717 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
718 no other way of implementing the operation. If FALLBACK_P is false,
719 return false instead. */
720
721 static bool
722 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
723 unsigned HOST_WIDE_INT bitnum,
724 unsigned HOST_WIDE_INT bitregion_start,
725 unsigned HOST_WIDE_INT bitregion_end,
726 machine_mode fieldmode,
727 rtx value, bool reverse, bool fallback_p)
728 {
729 rtx op0 = str_rtx;
730 rtx orig_value;
731
732 while (GET_CODE (op0) == SUBREG)
733 {
734 bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT;
735 op0 = SUBREG_REG (op0);
736 }
737
738 /* No action is needed if the target is a register and if the field
739 lies completely outside that register. This can occur if the source
740 code contains an out-of-bounds access to a small array. */
741 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
742 return true;
743
744 /* Use vec_set patterns for inserting parts of vectors whenever
745 available. */
746 machine_mode outermode = GET_MODE (op0);
747 scalar_mode innermode = GET_MODE_INNER (outermode);
748 if (VECTOR_MODE_P (outermode)
749 && !MEM_P (op0)
750 && optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing
751 && fieldmode == innermode
752 && bitsize == GET_MODE_BITSIZE (innermode)
753 && !(bitnum % GET_MODE_BITSIZE (innermode)))
754 {
755 struct expand_operand ops[3];
756 enum insn_code icode = optab_handler (vec_set_optab, outermode);
757 int pos = bitnum / GET_MODE_BITSIZE (innermode);
758
759 create_fixed_operand (&ops[0], op0);
760 create_input_operand (&ops[1], value, innermode);
761 create_integer_operand (&ops[2], pos);
762 if (maybe_expand_insn (icode, 3, ops))
763 return true;
764 }
765
766 /* If the target is a register, overwriting the entire object, or storing
767 a full-word or multi-word field can be done with just a SUBREG. */
768 if (!MEM_P (op0)
769 && bitsize == GET_MODE_BITSIZE (fieldmode)
770 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
771 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
772 {
773 /* Use the subreg machinery either to narrow OP0 to the required
774 words or to cope with mode punning between equal-sized modes.
775 In the latter case, use subreg on the rhs side, not lhs. */
776 rtx sub;
777
778 if (bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
779 {
780 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
781 if (sub)
782 {
783 if (reverse)
784 sub = flip_storage_order (GET_MODE (op0), sub);
785 emit_move_insn (op0, sub);
786 return true;
787 }
788 }
789 else
790 {
791 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
792 bitnum / BITS_PER_UNIT);
793 if (sub)
794 {
795 if (reverse)
796 value = flip_storage_order (fieldmode, value);
797 emit_move_insn (sub, value);
798 return true;
799 }
800 }
801 }
802
803 /* If the target is memory, storing any naturally aligned field can be
804 done with a simple store. For targets that support fast unaligned
805 memory, any naturally sized, unit aligned field can be done directly. */
806 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
807 {
808 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
809 if (reverse)
810 value = flip_storage_order (fieldmode, value);
811 emit_move_insn (op0, value);
812 return true;
813 }
814
815 /* Make sure we are playing with integral modes. Pun with subregs
816 if we aren't. This must come after the entire register case above,
817 since that case is valid for any mode. The following cases are only
818 valid for integral modes. */
819 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
820 scalar_int_mode imode;
821 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
822 {
823 if (MEM_P (op0))
824 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
825 0, MEM_SIZE (op0));
826 else
827 op0 = gen_lowpart (op0_mode.require (), op0);
828 }
829
830 /* Storing an lsb-aligned field in a register
831 can be done with a movstrict instruction. */
832
833 if (!MEM_P (op0)
834 && !reverse
835 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
836 && bitsize == GET_MODE_BITSIZE (fieldmode)
837 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
838 {
839 struct expand_operand ops[2];
840 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
841 rtx arg0 = op0;
842 unsigned HOST_WIDE_INT subreg_off;
843
844 if (GET_CODE (arg0) == SUBREG)
845 {
846 /* Else we've got some float mode source being extracted into
847 a different float mode destination -- this combination of
848 subregs results in Severe Tire Damage. */
849 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
850 || GET_MODE_CLASS (fieldmode) == MODE_INT
851 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
852 arg0 = SUBREG_REG (arg0);
853 }
854
855 subreg_off = bitnum / BITS_PER_UNIT;
856 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
857 {
858 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
859
860 create_fixed_operand (&ops[0], arg0);
861 /* Shrink the source operand to FIELDMODE. */
862 create_convert_operand_to (&ops[1], value, fieldmode, false);
863 if (maybe_expand_insn (icode, 2, ops))
864 return true;
865 }
866 }
867
868 /* Handle fields bigger than a word. */
869
870 if (bitsize > BITS_PER_WORD)
871 {
872 /* Here we transfer the words of the field
873 in the order least significant first.
874 This is because the most significant word is the one which may
875 be less than full.
876 However, only do that if the value is not BLKmode. */
877
878 const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
879 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
880 unsigned int i;
881 rtx_insn *last;
882
883 /* This is the mode we must force value to, so that there will be enough
884 subwords to extract. Note that fieldmode will often (always?) be
885 VOIDmode, because that is what store_field uses to indicate that this
886 is a bit field, but passing VOIDmode to operand_subword_force
887 is not allowed. */
888 fieldmode = GET_MODE (value);
889 if (fieldmode == VOIDmode)
890 fieldmode = smallest_int_mode_for_size (nwords * BITS_PER_WORD);
891
892 last = get_last_insn ();
893 for (i = 0; i < nwords; i++)
894 {
895 /* If I is 0, use the low-order word in both field and target;
896 if I is 1, use the next to lowest word; and so on. */
897 unsigned int wordnum = (backwards
898 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
899 - i - 1
900 : i);
901 unsigned int bit_offset = (backwards ^ reverse
902 ? MAX ((int) bitsize - ((int) i + 1)
903 * BITS_PER_WORD,
904 0)
905 : (int) i * BITS_PER_WORD);
906 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
907 unsigned HOST_WIDE_INT new_bitsize =
908 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
909
910 /* If the remaining chunk doesn't have full wordsize we have
911 to make sure that for big-endian machines the higher order
912 bits are used. */
913 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
914 {
915 int shift = BITS_PER_WORD - new_bitsize;
916 rtx shift_rtx = gen_int_shift_amount (word_mode, shift);
917 value_word = simplify_expand_binop (word_mode, lshr_optab,
918 value_word, shift_rtx,
919 NULL_RTX, true,
920 OPTAB_LIB_WIDEN);
921 }
922
923 if (!store_bit_field_1 (op0, new_bitsize,
924 bitnum + bit_offset,
925 bitregion_start, bitregion_end,
926 word_mode,
927 value_word, reverse, fallback_p))
928 {
929 delete_insns_since (last);
930 return false;
931 }
932 }
933 return true;
934 }
935
936 /* If VALUE has a floating-point or complex mode, access it as an
937 integer of the corresponding size. This can occur on a machine
938 with 64 bit registers that uses SFmode for float. It can also
939 occur for unaligned float or complex fields. */
940 orig_value = value;
941 scalar_int_mode value_mode;
942 if (GET_MODE (value) == VOIDmode)
943 /* By this point we've dealt with values that are bigger than a word,
944 so word_mode is a conservatively correct choice. */
945 value_mode = word_mode;
946 else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode))
947 {
948 value_mode = int_mode_for_mode (GET_MODE (value)).require ();
949 value = gen_reg_rtx (value_mode);
950 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
951 }
952
953 /* If OP0 is a multi-word register, narrow it to the affected word.
954 If the region spans two words, defer to store_split_bit_field.
955 Don't do this if op0 is a single hard register wider than word
956 such as a float or vector register. */
957 if (!MEM_P (op0)
958 && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD
959 && (!REG_P (op0)
960 || !HARD_REGISTER_P (op0)
961 || hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1))
962 {
963 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
964 {
965 if (!fallback_p)
966 return false;
967
968 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
969 bitregion_start, bitregion_end,
970 value, value_mode, reverse);
971 return true;
972 }
973 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
974 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
975 gcc_assert (op0);
976 op0_mode = word_mode;
977 bitnum %= BITS_PER_WORD;
978 }
979
980 /* From here on we can assume that the field to be stored in fits
981 within a word. If the destination is a register, it too fits
982 in a word. */
983
984 extraction_insn insv;
985 if (!MEM_P (op0)
986 && !reverse
987 && get_best_reg_extraction_insn (&insv, EP_insv,
988 GET_MODE_BITSIZE (op0_mode.require ()),
989 fieldmode)
990 && store_bit_field_using_insv (&insv, op0, op0_mode,
991 bitsize, bitnum, value, value_mode))
992 return true;
993
994 /* If OP0 is a memory, try copying it to a register and seeing if a
995 cheap register alternative is available. */
996 if (MEM_P (op0) && !reverse)
997 {
998 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
999 fieldmode)
1000 && store_bit_field_using_insv (&insv, op0, op0_mode,
1001 bitsize, bitnum, value, value_mode))
1002 return true;
1003
1004 rtx_insn *last = get_last_insn ();
1005
1006 /* Try loading part of OP0 into a register, inserting the bitfield
1007 into that, and then copying the result back to OP0. */
1008 unsigned HOST_WIDE_INT bitpos;
1009 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
1010 bitregion_start, bitregion_end,
1011 fieldmode, &bitpos);
1012 if (xop0)
1013 {
1014 rtx tempreg = copy_to_reg (xop0);
1015 if (store_bit_field_1 (tempreg, bitsize, bitpos,
1016 bitregion_start, bitregion_end,
1017 fieldmode, orig_value, reverse, false))
1018 {
1019 emit_move_insn (xop0, tempreg);
1020 return true;
1021 }
1022 delete_insns_since (last);
1023 }
1024 }
1025
1026 if (!fallback_p)
1027 return false;
1028
1029 store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start,
1030 bitregion_end, value, value_mode, reverse);
1031 return true;
1032 }
1033
1034 /* Generate code to store value from rtx VALUE
1035 into a bit-field within structure STR_RTX
1036 containing BITSIZE bits starting at bit BITNUM.
1037
1038 BITREGION_START is bitpos of the first bitfield in this region.
1039 BITREGION_END is the bitpos of the ending bitfield in this region.
1040 These two fields are 0, if the C++ memory model does not apply,
1041 or we are not interested in keeping track of bitfield regions.
1042
1043 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1044
1045 If REVERSE is true, the store is to be done in reverse order. */
1046
1047 void
1048 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1049 unsigned HOST_WIDE_INT bitnum,
1050 unsigned HOST_WIDE_INT bitregion_start,
1051 unsigned HOST_WIDE_INT bitregion_end,
1052 machine_mode fieldmode,
1053 rtx value, bool reverse)
1054 {
1055 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1056 scalar_int_mode int_mode;
1057 if (is_a <scalar_int_mode> (fieldmode, &int_mode)
1058 && strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, int_mode,
1059 bitregion_start, bitregion_end))
1060 {
1061 /* Storing of a full word can be done with a simple store.
1062 We know here that the field can be accessed with one single
1063 instruction. For targets that support unaligned memory,
1064 an unaligned access may be necessary. */
1065 if (bitsize == GET_MODE_BITSIZE (int_mode))
1066 {
1067 str_rtx = adjust_bitfield_address (str_rtx, int_mode,
1068 bitnum / BITS_PER_UNIT);
1069 if (reverse)
1070 value = flip_storage_order (int_mode, value);
1071 gcc_assert (bitnum % BITS_PER_UNIT == 0);
1072 emit_move_insn (str_rtx, value);
1073 }
1074 else
1075 {
1076 rtx temp;
1077
1078 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, bitsize, bitnum,
1079 &bitnum);
1080 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (int_mode));
1081 temp = copy_to_reg (str_rtx);
1082 if (!store_bit_field_1 (temp, bitsize, bitnum, 0, 0,
1083 int_mode, value, reverse, true))
1084 gcc_unreachable ();
1085
1086 emit_move_insn (str_rtx, temp);
1087 }
1088
1089 return;
1090 }
1091
1092 /* Under the C++0x memory model, we must not touch bits outside the
1093 bit region. Adjust the address to start at the beginning of the
1094 bit region. */
1095 if (MEM_P (str_rtx) && bitregion_start > 0)
1096 {
1097 scalar_int_mode best_mode;
1098 machine_mode addr_mode = VOIDmode;
1099 HOST_WIDE_INT offset, size;
1100
1101 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
1102
1103 offset = bitregion_start / BITS_PER_UNIT;
1104 bitnum -= bitregion_start;
1105 size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1106 bitregion_end -= bitregion_start;
1107 bitregion_start = 0;
1108 if (get_best_mode (bitsize, bitnum,
1109 bitregion_start, bitregion_end,
1110 MEM_ALIGN (str_rtx), INT_MAX,
1111 MEM_VOLATILE_P (str_rtx), &best_mode))
1112 addr_mode = best_mode;
1113 str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode,
1114 offset, size);
1115 }
1116
1117 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1118 bitregion_start, bitregion_end,
1119 fieldmode, value, reverse, true))
1120 gcc_unreachable ();
1121 }
1122 \f
1123 /* Use shifts and boolean operations to store VALUE into a bit field of
1124 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1125 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1126 the mode of VALUE.
1127
1128 If REVERSE is true, the store is to be done in reverse order. */
1129
1130 static void
1131 store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1132 unsigned HOST_WIDE_INT bitsize,
1133 unsigned HOST_WIDE_INT bitnum,
1134 unsigned HOST_WIDE_INT bitregion_start,
1135 unsigned HOST_WIDE_INT bitregion_end,
1136 rtx value, scalar_int_mode value_mode, bool reverse)
1137 {
1138 /* There is a case not handled here:
1139 a structure with a known alignment of just a halfword
1140 and a field split across two aligned halfwords within the structure.
1141 Or likewise a structure with a known alignment of just a byte
1142 and a field split across two bytes.
1143 Such cases are not supposed to be able to occur. */
1144
1145 scalar_int_mode best_mode;
1146 if (MEM_P (op0))
1147 {
1148 unsigned int max_bitsize = BITS_PER_WORD;
1149 scalar_int_mode imode;
1150 if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize)
1151 max_bitsize = GET_MODE_BITSIZE (imode);
1152
1153 if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1154 MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0),
1155 &best_mode))
1156 {
1157 /* The only way this should occur is if the field spans word
1158 boundaries. */
1159 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1160 bitregion_start, bitregion_end,
1161 value, value_mode, reverse);
1162 return;
1163 }
1164
1165 op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum);
1166 }
1167 else
1168 best_mode = op0_mode.require ();
1169
1170 store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum,
1171 value, value_mode, reverse);
1172 }
1173
1174 /* Helper function for store_fixed_bit_field, stores
1175 the bit field always using MODE, which is the mode of OP0. The other
1176 arguments are as for store_fixed_bit_field. */
1177
1178 static void
1179 store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode,
1180 unsigned HOST_WIDE_INT bitsize,
1181 unsigned HOST_WIDE_INT bitnum,
1182 rtx value, scalar_int_mode value_mode, bool reverse)
1183 {
1184 rtx temp;
1185 int all_zero = 0;
1186 int all_one = 0;
1187
1188 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1189 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1190
1191 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1192 /* BITNUM is the distance between our msb
1193 and that of the containing datum.
1194 Convert it to the distance from the lsb. */
1195 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1196
1197 /* Now BITNUM is always the distance between our lsb
1198 and that of OP0. */
1199
1200 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1201 we must first convert its mode to MODE. */
1202
1203 if (CONST_INT_P (value))
1204 {
1205 unsigned HOST_WIDE_INT v = UINTVAL (value);
1206
1207 if (bitsize < HOST_BITS_PER_WIDE_INT)
1208 v &= (HOST_WIDE_INT_1U << bitsize) - 1;
1209
1210 if (v == 0)
1211 all_zero = 1;
1212 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1213 && v == (HOST_WIDE_INT_1U << bitsize) - 1)
1214 || (bitsize == HOST_BITS_PER_WIDE_INT
1215 && v == HOST_WIDE_INT_M1U))
1216 all_one = 1;
1217
1218 value = lshift_value (mode, v, bitnum);
1219 }
1220 else
1221 {
1222 int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize
1223 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1224
1225 if (value_mode != mode)
1226 value = convert_to_mode (mode, value, 1);
1227
1228 if (must_and)
1229 value = expand_binop (mode, and_optab, value,
1230 mask_rtx (mode, 0, bitsize, 0),
1231 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1232 if (bitnum > 0)
1233 value = expand_shift (LSHIFT_EXPR, mode, value,
1234 bitnum, NULL_RTX, 1);
1235 }
1236
1237 if (reverse)
1238 value = flip_storage_order (mode, value);
1239
1240 /* Now clear the chosen bits in OP0,
1241 except that if VALUE is -1 we need not bother. */
1242 /* We keep the intermediates in registers to allow CSE to combine
1243 consecutive bitfield assignments. */
1244
1245 temp = force_reg (mode, op0);
1246
1247 if (! all_one)
1248 {
1249 rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
1250 if (reverse)
1251 mask = flip_storage_order (mode, mask);
1252 temp = expand_binop (mode, and_optab, temp, mask,
1253 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1254 temp = force_reg (mode, temp);
1255 }
1256
1257 /* Now logical-or VALUE into OP0, unless it is zero. */
1258
1259 if (! all_zero)
1260 {
1261 temp = expand_binop (mode, ior_optab, temp, value,
1262 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1263 temp = force_reg (mode, temp);
1264 }
1265
1266 if (op0 != temp)
1267 {
1268 op0 = copy_rtx (op0);
1269 emit_move_insn (op0, temp);
1270 }
1271 }
1272 \f
1273 /* Store a bit field that is split across multiple accessible memory objects.
1274
1275 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1276 BITSIZE is the field width; BITPOS the position of its first bit
1277 (within the word).
1278 VALUE is the value to store, which has mode VALUE_MODE.
1279 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1280 a BLKmode MEM.
1281
1282 If REVERSE is true, the store is to be done in reverse order.
1283
1284 This does not yet handle fields wider than BITS_PER_WORD. */
1285
1286 static void
1287 store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1288 unsigned HOST_WIDE_INT bitsize,
1289 unsigned HOST_WIDE_INT bitpos,
1290 unsigned HOST_WIDE_INT bitregion_start,
1291 unsigned HOST_WIDE_INT bitregion_end,
1292 rtx value, scalar_int_mode value_mode, bool reverse)
1293 {
1294 unsigned int unit, total_bits, bitsdone = 0;
1295
1296 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1297 much at a time. */
1298 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1299 unit = BITS_PER_WORD;
1300 else
1301 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1302
1303 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1304 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1305 again, and we will mutually recurse forever. */
1306 if (MEM_P (op0) && op0_mode.exists ())
1307 unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ()));
1308
1309 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1310 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1311 that VALUE might be a floating-point constant. */
1312 if (CONSTANT_P (value) && !CONST_INT_P (value))
1313 {
1314 rtx word = gen_lowpart_common (word_mode, value);
1315
1316 if (word && (value != word))
1317 value = word;
1318 else
1319 value = gen_lowpart_common (word_mode, force_reg (value_mode, value));
1320 value_mode = word_mode;
1321 }
1322
1323 total_bits = GET_MODE_BITSIZE (value_mode);
1324
1325 while (bitsdone < bitsize)
1326 {
1327 unsigned HOST_WIDE_INT thissize;
1328 unsigned HOST_WIDE_INT thispos;
1329 unsigned HOST_WIDE_INT offset;
1330 rtx part;
1331
1332 offset = (bitpos + bitsdone) / unit;
1333 thispos = (bitpos + bitsdone) % unit;
1334
1335 /* When region of bytes we can touch is restricted, decrease
1336 UNIT close to the end of the region as needed. If op0 is a REG
1337 or SUBREG of REG, don't do this, as there can't be data races
1338 on a register and we can expand shorter code in some cases. */
1339 if (bitregion_end
1340 && unit > BITS_PER_UNIT
1341 && bitpos + bitsdone - thispos + unit > bitregion_end + 1
1342 && !REG_P (op0)
1343 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1344 {
1345 unit = unit / 2;
1346 continue;
1347 }
1348
1349 /* THISSIZE must not overrun a word boundary. Otherwise,
1350 store_fixed_bit_field will call us again, and we will mutually
1351 recurse forever. */
1352 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1353 thissize = MIN (thissize, unit - thispos);
1354
1355 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1356 {
1357 /* Fetch successively less significant portions. */
1358 if (CONST_INT_P (value))
1359 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1360 >> (bitsize - bitsdone - thissize))
1361 & ((HOST_WIDE_INT_1 << thissize) - 1));
1362 /* Likewise, but the source is little-endian. */
1363 else if (reverse)
1364 part = extract_fixed_bit_field (word_mode, value, value_mode,
1365 thissize,
1366 bitsize - bitsdone - thissize,
1367 NULL_RTX, 1, false);
1368 else
1369 /* The args are chosen so that the last part includes the
1370 lsb. Give extract_bit_field the value it needs (with
1371 endianness compensation) to fetch the piece we want. */
1372 part = extract_fixed_bit_field (word_mode, value, value_mode,
1373 thissize,
1374 total_bits - bitsize + bitsdone,
1375 NULL_RTX, 1, false);
1376 }
1377 else
1378 {
1379 /* Fetch successively more significant portions. */
1380 if (CONST_INT_P (value))
1381 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1382 >> bitsdone)
1383 & ((HOST_WIDE_INT_1 << thissize) - 1));
1384 /* Likewise, but the source is big-endian. */
1385 else if (reverse)
1386 part = extract_fixed_bit_field (word_mode, value, value_mode,
1387 thissize,
1388 total_bits - bitsdone - thissize,
1389 NULL_RTX, 1, false);
1390 else
1391 part = extract_fixed_bit_field (word_mode, value, value_mode,
1392 thissize, bitsdone, NULL_RTX,
1393 1, false);
1394 }
1395
1396 /* If OP0 is a register, then handle OFFSET here. */
1397 rtx op0_piece = op0;
1398 opt_scalar_int_mode op0_piece_mode = op0_mode;
1399 if (SUBREG_P (op0) || REG_P (op0))
1400 {
1401 scalar_int_mode imode;
1402 if (op0_mode.exists (&imode)
1403 && GET_MODE_SIZE (imode) < UNITS_PER_WORD)
1404 {
1405 if (offset)
1406 op0_piece = const0_rtx;
1407 }
1408 else
1409 {
1410 op0_piece = operand_subword_force (op0,
1411 offset * unit / BITS_PER_WORD,
1412 GET_MODE (op0));
1413 op0_piece_mode = word_mode;
1414 }
1415 offset &= BITS_PER_WORD / unit - 1;
1416 }
1417
1418 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1419 it is just an out-of-bounds access. Ignore it. */
1420 if (op0_piece != const0_rtx)
1421 store_fixed_bit_field (op0_piece, op0_piece_mode, thissize,
1422 offset * unit + thispos, bitregion_start,
1423 bitregion_end, part, word_mode, reverse);
1424 bitsdone += thissize;
1425 }
1426 }
1427 \f
1428 /* A subroutine of extract_bit_field_1 that converts return value X
1429 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1430 to extract_bit_field. */
1431
1432 static rtx
1433 convert_extracted_bit_field (rtx x, machine_mode mode,
1434 machine_mode tmode, bool unsignedp)
1435 {
1436 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1437 return x;
1438
1439 /* If the x mode is not a scalar integral, first convert to the
1440 integer mode of that size and then access it as a floating-point
1441 value via a SUBREG. */
1442 if (!SCALAR_INT_MODE_P (tmode))
1443 {
1444 scalar_int_mode int_mode = int_mode_for_mode (tmode).require ();
1445 x = convert_to_mode (int_mode, x, unsignedp);
1446 x = force_reg (int_mode, x);
1447 return gen_lowpart (tmode, x);
1448 }
1449
1450 return convert_to_mode (tmode, x, unsignedp);
1451 }
1452
1453 /* Try to use an ext(z)v pattern to extract a field from OP0.
1454 Return the extracted value on success, otherwise return null.
1455 EXTV describes the extraction instruction to use. If OP0_MODE
1456 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1457 The other arguments are as for extract_bit_field. */
1458
1459 static rtx
1460 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1461 opt_scalar_int_mode op0_mode,
1462 unsigned HOST_WIDE_INT bitsize,
1463 unsigned HOST_WIDE_INT bitnum,
1464 int unsignedp, rtx target,
1465 machine_mode mode, machine_mode tmode)
1466 {
1467 struct expand_operand ops[4];
1468 rtx spec_target = target;
1469 rtx spec_target_subreg = 0;
1470 scalar_int_mode ext_mode = extv->field_mode;
1471 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1472
1473 if (bitsize == 0 || unit < bitsize)
1474 return NULL_RTX;
1475
1476 if (MEM_P (op0))
1477 /* Get a reference to the first byte of the field. */
1478 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1479 &bitnum);
1480 else
1481 {
1482 /* Convert from counting within OP0 to counting in EXT_MODE. */
1483 if (BYTES_BIG_ENDIAN)
1484 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
1485
1486 /* If op0 is a register, we need it in EXT_MODE to make it
1487 acceptable to the format of ext(z)v. */
1488 if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode)
1489 return NULL_RTX;
1490 if (REG_P (op0) && op0_mode.require () != ext_mode)
1491 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1492 }
1493
1494 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1495 "backwards" from the size of the unit we are extracting from.
1496 Otherwise, we count bits from the most significant on a
1497 BYTES/BITS_BIG_ENDIAN machine. */
1498
1499 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1500 bitnum = unit - bitsize - bitnum;
1501
1502 if (target == 0)
1503 target = spec_target = gen_reg_rtx (tmode);
1504
1505 if (GET_MODE (target) != ext_mode)
1506 {
1507 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1508 between the mode of the extraction (word_mode) and the target
1509 mode. Instead, create a temporary and use convert_move to set
1510 the target. */
1511 if (REG_P (target)
1512 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1513 {
1514 target = gen_lowpart (ext_mode, target);
1515 if (partial_subreg_p (GET_MODE (spec_target), ext_mode))
1516 spec_target_subreg = target;
1517 }
1518 else
1519 target = gen_reg_rtx (ext_mode);
1520 }
1521
1522 create_output_operand (&ops[0], target, ext_mode);
1523 create_fixed_operand (&ops[1], op0);
1524 create_integer_operand (&ops[2], bitsize);
1525 create_integer_operand (&ops[3], bitnum);
1526 if (maybe_expand_insn (extv->icode, 4, ops))
1527 {
1528 target = ops[0].value;
1529 if (target == spec_target)
1530 return target;
1531 if (target == spec_target_subreg)
1532 return spec_target;
1533 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1534 }
1535 return NULL_RTX;
1536 }
1537
1538 /* A subroutine of extract_bit_field, with the same arguments.
1539 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1540 if we can find no other means of implementing the operation.
1541 if FALLBACK_P is false, return NULL instead. */
1542
1543 static rtx
1544 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1545 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1546 machine_mode mode, machine_mode tmode,
1547 bool reverse, bool fallback_p, rtx *alt_rtl)
1548 {
1549 rtx op0 = str_rtx;
1550 machine_mode mode1;
1551
1552 if (tmode == VOIDmode)
1553 tmode = mode;
1554
1555 while (GET_CODE (op0) == SUBREG)
1556 {
1557 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1558 op0 = SUBREG_REG (op0);
1559 }
1560
1561 /* If we have an out-of-bounds access to a register, just return an
1562 uninitialized register of the required mode. This can occur if the
1563 source code contains an out-of-bounds access to a small array. */
1564 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1565 return gen_reg_rtx (tmode);
1566
1567 if (REG_P (op0)
1568 && mode == GET_MODE (op0)
1569 && bitnum == 0
1570 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1571 {
1572 if (reverse)
1573 op0 = flip_storage_order (mode, op0);
1574 /* We're trying to extract a full register from itself. */
1575 return op0;
1576 }
1577
1578 /* First try to check for vector from vector extractions. */
1579 if (VECTOR_MODE_P (GET_MODE (op0))
1580 && !MEM_P (op0)
1581 && VECTOR_MODE_P (tmode)
1582 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (tmode))
1583 {
1584 machine_mode new_mode = GET_MODE (op0);
1585 if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
1586 {
1587 scalar_mode inner_mode = GET_MODE_INNER (tmode);
1588 unsigned int nunits = (GET_MODE_BITSIZE (GET_MODE (op0))
1589 / GET_MODE_UNIT_BITSIZE (tmode));
1590 if (!mode_for_vector (inner_mode, nunits).exists (&new_mode)
1591 || !VECTOR_MODE_P (new_mode)
1592 || GET_MODE_SIZE (new_mode) != GET_MODE_SIZE (GET_MODE (op0))
1593 || GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode)
1594 || !targetm.vector_mode_supported_p (new_mode))
1595 new_mode = VOIDmode;
1596 }
1597 if (new_mode != VOIDmode
1598 && (convert_optab_handler (vec_extract_optab, new_mode, tmode)
1599 != CODE_FOR_nothing)
1600 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (tmode)
1601 == bitnum / GET_MODE_BITSIZE (tmode)))
1602 {
1603 struct expand_operand ops[3];
1604 machine_mode outermode = new_mode;
1605 machine_mode innermode = tmode;
1606 enum insn_code icode
1607 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1608 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1609
1610 if (new_mode != GET_MODE (op0))
1611 op0 = gen_lowpart (new_mode, op0);
1612 create_output_operand (&ops[0], target, innermode);
1613 ops[0].target = 1;
1614 create_input_operand (&ops[1], op0, outermode);
1615 create_integer_operand (&ops[2], pos);
1616 if (maybe_expand_insn (icode, 3, ops))
1617 {
1618 if (alt_rtl && ops[0].target)
1619 *alt_rtl = target;
1620 target = ops[0].value;
1621 if (GET_MODE (target) != mode)
1622 return gen_lowpart (tmode, target);
1623 return target;
1624 }
1625 }
1626 }
1627
1628 /* See if we can get a better vector mode before extracting. */
1629 if (VECTOR_MODE_P (GET_MODE (op0))
1630 && !MEM_P (op0)
1631 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1632 {
1633 machine_mode new_mode;
1634
1635 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1636 new_mode = MIN_MODE_VECTOR_FLOAT;
1637 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1638 new_mode = MIN_MODE_VECTOR_FRACT;
1639 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1640 new_mode = MIN_MODE_VECTOR_UFRACT;
1641 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1642 new_mode = MIN_MODE_VECTOR_ACCUM;
1643 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1644 new_mode = MIN_MODE_VECTOR_UACCUM;
1645 else
1646 new_mode = MIN_MODE_VECTOR_INT;
1647
1648 FOR_EACH_MODE_FROM (new_mode, new_mode)
1649 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1650 && GET_MODE_UNIT_SIZE (new_mode) == GET_MODE_SIZE (tmode)
1651 && targetm.vector_mode_supported_p (new_mode))
1652 break;
1653 if (new_mode != VOIDmode)
1654 op0 = gen_lowpart (new_mode, op0);
1655 }
1656
1657 /* Use vec_extract patterns for extracting parts of vectors whenever
1658 available. */
1659 machine_mode outermode = GET_MODE (op0);
1660 scalar_mode innermode = GET_MODE_INNER (outermode);
1661 if (VECTOR_MODE_P (outermode)
1662 && !MEM_P (op0)
1663 && (convert_optab_handler (vec_extract_optab, outermode, innermode)
1664 != CODE_FOR_nothing)
1665 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (innermode)
1666 == bitnum / GET_MODE_BITSIZE (innermode)))
1667 {
1668 struct expand_operand ops[3];
1669 enum insn_code icode
1670 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1671 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1672
1673 create_output_operand (&ops[0], target, innermode);
1674 ops[0].target = 1;
1675 create_input_operand (&ops[1], op0, outermode);
1676 create_integer_operand (&ops[2], pos);
1677 if (maybe_expand_insn (icode, 3, ops))
1678 {
1679 if (alt_rtl && ops[0].target)
1680 *alt_rtl = target;
1681 target = ops[0].value;
1682 if (GET_MODE (target) != mode)
1683 return gen_lowpart (tmode, target);
1684 return target;
1685 }
1686 }
1687
1688 /* Make sure we are playing with integral modes. Pun with subregs
1689 if we aren't. */
1690 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
1691 scalar_int_mode imode;
1692 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
1693 {
1694 if (MEM_P (op0))
1695 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
1696 0, MEM_SIZE (op0));
1697 else if (op0_mode.exists (&imode))
1698 {
1699 op0 = gen_lowpart (imode, op0);
1700
1701 /* If we got a SUBREG, force it into a register since we
1702 aren't going to be able to do another SUBREG on it. */
1703 if (GET_CODE (op0) == SUBREG)
1704 op0 = force_reg (imode, op0);
1705 }
1706 else
1707 {
1708 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1709 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1710 emit_move_insn (mem, op0);
1711 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1712 }
1713 }
1714
1715 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1716 If that's wrong, the solution is to test for it and set TARGET to 0
1717 if needed. */
1718
1719 /* Get the mode of the field to use for atomic access or subreg
1720 conversion. */
1721 if (!SCALAR_INT_MODE_P (tmode)
1722 || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1))
1723 mode1 = mode;
1724 gcc_assert (mode1 != BLKmode);
1725
1726 /* Extraction of a full MODE1 value can be done with a subreg as long
1727 as the least significant bit of the value is the least significant
1728 bit of either OP0 or a word of OP0. */
1729 if (!MEM_P (op0)
1730 && !reverse
1731 && lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ())
1732 && bitsize == GET_MODE_BITSIZE (mode1)
1733 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, op0_mode.require ()))
1734 {
1735 rtx sub = simplify_gen_subreg (mode1, op0, op0_mode.require (),
1736 bitnum / BITS_PER_UNIT);
1737 if (sub)
1738 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1739 }
1740
1741 /* Extraction of a full MODE1 value can be done with a load as long as
1742 the field is on a byte boundary and is sufficiently aligned. */
1743 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1744 {
1745 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1746 if (reverse)
1747 op0 = flip_storage_order (mode1, op0);
1748 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1749 }
1750
1751 /* Handle fields bigger than a word. */
1752
1753 if (bitsize > BITS_PER_WORD)
1754 {
1755 /* Here we transfer the words of the field
1756 in the order least significant first.
1757 This is because the most significant word is the one which may
1758 be less than full. */
1759
1760 const bool backwards = WORDS_BIG_ENDIAN;
1761 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1762 unsigned int i;
1763 rtx_insn *last;
1764
1765 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1766 target = gen_reg_rtx (mode);
1767
1768 /* In case we're about to clobber a base register or something
1769 (see gcc.c-torture/execute/20040625-1.c). */
1770 if (reg_mentioned_p (target, str_rtx))
1771 target = gen_reg_rtx (mode);
1772
1773 /* Indicate for flow that the entire target reg is being set. */
1774 emit_clobber (target);
1775
1776 last = get_last_insn ();
1777 for (i = 0; i < nwords; i++)
1778 {
1779 /* If I is 0, use the low-order word in both field and target;
1780 if I is 1, use the next to lowest word; and so on. */
1781 /* Word number in TARGET to use. */
1782 unsigned int wordnum
1783 = (backwards
1784 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1785 : i);
1786 /* Offset from start of field in OP0. */
1787 unsigned int bit_offset = (backwards ^ reverse
1788 ? MAX ((int) bitsize - ((int) i + 1)
1789 * BITS_PER_WORD,
1790 0)
1791 : (int) i * BITS_PER_WORD);
1792 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1793 rtx result_part
1794 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1795 bitsize - i * BITS_PER_WORD),
1796 bitnum + bit_offset, 1, target_part,
1797 mode, word_mode, reverse, fallback_p, NULL);
1798
1799 gcc_assert (target_part);
1800 if (!result_part)
1801 {
1802 delete_insns_since (last);
1803 return NULL;
1804 }
1805
1806 if (result_part != target_part)
1807 emit_move_insn (target_part, result_part);
1808 }
1809
1810 if (unsignedp)
1811 {
1812 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1813 need to be zero'd out. */
1814 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1815 {
1816 unsigned int i, total_words;
1817
1818 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1819 for (i = nwords; i < total_words; i++)
1820 emit_move_insn
1821 (operand_subword (target,
1822 backwards ? total_words - i - 1 : i,
1823 1, VOIDmode),
1824 const0_rtx);
1825 }
1826 return target;
1827 }
1828
1829 /* Signed bit field: sign-extend with two arithmetic shifts. */
1830 target = expand_shift (LSHIFT_EXPR, mode, target,
1831 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1832 return expand_shift (RSHIFT_EXPR, mode, target,
1833 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1834 }
1835
1836 /* If OP0 is a multi-word register, narrow it to the affected word.
1837 If the region spans two words, defer to extract_split_bit_field. */
1838 if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD)
1839 {
1840 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1841 {
1842 if (!fallback_p)
1843 return NULL_RTX;
1844 target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
1845 unsignedp, reverse);
1846 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1847 }
1848 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
1849 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1850 op0_mode = word_mode;
1851 bitnum %= BITS_PER_WORD;
1852 }
1853
1854 /* From here on we know the desired field is smaller than a word.
1855 If OP0 is a register, it too fits within a word. */
1856 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1857 extraction_insn extv;
1858 if (!MEM_P (op0)
1859 && !reverse
1860 /* ??? We could limit the structure size to the part of OP0 that
1861 contains the field, with appropriate checks for endianness
1862 and TARGET_TRULY_NOOP_TRUNCATION. */
1863 && get_best_reg_extraction_insn (&extv, pattern,
1864 GET_MODE_BITSIZE (op0_mode.require ()),
1865 tmode))
1866 {
1867 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
1868 bitsize, bitnum,
1869 unsignedp, target, mode,
1870 tmode);
1871 if (result)
1872 return result;
1873 }
1874
1875 /* If OP0 is a memory, try copying it to a register and seeing if a
1876 cheap register alternative is available. */
1877 if (MEM_P (op0) & !reverse)
1878 {
1879 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1880 tmode))
1881 {
1882 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
1883 bitsize, bitnum,
1884 unsignedp, target, mode,
1885 tmode);
1886 if (result)
1887 return result;
1888 }
1889
1890 rtx_insn *last = get_last_insn ();
1891
1892 /* Try loading part of OP0 into a register and extracting the
1893 bitfield from that. */
1894 unsigned HOST_WIDE_INT bitpos;
1895 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1896 0, 0, tmode, &bitpos);
1897 if (xop0)
1898 {
1899 xop0 = copy_to_reg (xop0);
1900 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1901 unsignedp, target,
1902 mode, tmode, reverse, false, NULL);
1903 if (result)
1904 return result;
1905 delete_insns_since (last);
1906 }
1907 }
1908
1909 if (!fallback_p)
1910 return NULL;
1911
1912 /* Find a correspondingly-sized integer field, so we can apply
1913 shifts and masks to it. */
1914 scalar_int_mode int_mode;
1915 if (!int_mode_for_mode (tmode).exists (&int_mode))
1916 /* If this fails, we should probably push op0 out to memory and then
1917 do a load. */
1918 int_mode = int_mode_for_mode (mode).require ();
1919
1920 target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize,
1921 bitnum, target, unsignedp, reverse);
1922
1923 /* Complex values must be reversed piecewise, so we need to undo the global
1924 reversal, convert to the complex mode and reverse again. */
1925 if (reverse && COMPLEX_MODE_P (tmode))
1926 {
1927 target = flip_storage_order (int_mode, target);
1928 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
1929 target = flip_storage_order (tmode, target);
1930 }
1931 else
1932 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
1933
1934 return target;
1935 }
1936
1937 /* Generate code to extract a byte-field from STR_RTX
1938 containing BITSIZE bits, starting at BITNUM,
1939 and put it in TARGET if possible (if TARGET is nonzero).
1940 Regardless of TARGET, we return the rtx for where the value is placed.
1941
1942 STR_RTX is the structure containing the byte (a REG or MEM).
1943 UNSIGNEDP is nonzero if this is an unsigned bit field.
1944 MODE is the natural mode of the field value once extracted.
1945 TMODE is the mode the caller would like the value to have;
1946 but the value may be returned with type MODE instead.
1947
1948 If REVERSE is true, the extraction is to be done in reverse order.
1949
1950 If a TARGET is specified and we can store in it at no extra cost,
1951 we do so, and return TARGET.
1952 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1953 if they are equally easy. */
1954
1955 rtx
1956 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1957 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1958 machine_mode mode, machine_mode tmode, bool reverse,
1959 rtx *alt_rtl)
1960 {
1961 machine_mode mode1;
1962
1963 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1964 if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
1965 mode1 = GET_MODE (str_rtx);
1966 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1967 mode1 = GET_MODE (target);
1968 else
1969 mode1 = tmode;
1970
1971 scalar_int_mode int_mode;
1972 if (is_a <scalar_int_mode> (mode1, &int_mode)
1973 && strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, int_mode, 0, 0))
1974 {
1975 /* Extraction of a full INT_MODE value can be done with a simple load.
1976 We know here that the field can be accessed with one single
1977 instruction. For targets that support unaligned memory,
1978 an unaligned access may be necessary. */
1979 if (bitsize == GET_MODE_BITSIZE (int_mode))
1980 {
1981 rtx result = adjust_bitfield_address (str_rtx, int_mode,
1982 bitnum / BITS_PER_UNIT);
1983 if (reverse)
1984 result = flip_storage_order (int_mode, result);
1985 gcc_assert (bitnum % BITS_PER_UNIT == 0);
1986 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
1987 }
1988
1989 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, bitsize, bitnum,
1990 &bitnum);
1991 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (int_mode));
1992 str_rtx = copy_to_reg (str_rtx);
1993 }
1994
1995 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1996 target, mode, tmode, reverse, true, alt_rtl);
1997 }
1998 \f
1999 /* Use shifts and boolean operations to extract a field of BITSIZE bits
2000 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2001 otherwise OP0 is a BLKmode MEM.
2002
2003 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
2004 If REVERSE is true, the extraction is to be done in reverse order.
2005
2006 If TARGET is nonzero, attempts to store the value there
2007 and return TARGET, but this is not guaranteed.
2008 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2009
2010 static rtx
2011 extract_fixed_bit_field (machine_mode tmode, rtx op0,
2012 opt_scalar_int_mode op0_mode,
2013 unsigned HOST_WIDE_INT bitsize,
2014 unsigned HOST_WIDE_INT bitnum, rtx target,
2015 int unsignedp, bool reverse)
2016 {
2017 scalar_int_mode mode;
2018 if (MEM_P (op0))
2019 {
2020 if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
2021 BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode))
2022 /* The only way this should occur is if the field spans word
2023 boundaries. */
2024 return extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
2025 unsignedp, reverse);
2026
2027 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
2028 }
2029 else
2030 mode = op0_mode.require ();
2031
2032 return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum,
2033 target, unsignedp, reverse);
2034 }
2035
2036 /* Helper function for extract_fixed_bit_field, extracts
2037 the bit field always using MODE, which is the mode of OP0.
2038 The other arguments are as for extract_fixed_bit_field. */
2039
2040 static rtx
2041 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode,
2042 unsigned HOST_WIDE_INT bitsize,
2043 unsigned HOST_WIDE_INT bitnum, rtx target,
2044 int unsignedp, bool reverse)
2045 {
2046 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2047 for invalid input, such as extract equivalent of f5 from
2048 gcc.dg/pr48335-2.c. */
2049
2050 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2051 /* BITNUM is the distance between our msb and that of OP0.
2052 Convert it to the distance from the lsb. */
2053 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
2054
2055 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2056 We have reduced the big-endian case to the little-endian case. */
2057 if (reverse)
2058 op0 = flip_storage_order (mode, op0);
2059
2060 if (unsignedp)
2061 {
2062 if (bitnum)
2063 {
2064 /* If the field does not already start at the lsb,
2065 shift it so it does. */
2066 /* Maybe propagate the target for the shift. */
2067 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2068 if (tmode != mode)
2069 subtarget = 0;
2070 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
2071 }
2072 /* Convert the value to the desired mode. TMODE must also be a
2073 scalar integer for this conversion to make sense, since we
2074 shouldn't reinterpret the bits. */
2075 scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode);
2076 if (mode != new_mode)
2077 op0 = convert_to_mode (new_mode, op0, 1);
2078
2079 /* Unless the msb of the field used to be the msb when we shifted,
2080 mask out the upper bits. */
2081
2082 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
2083 return expand_binop (new_mode, and_optab, op0,
2084 mask_rtx (new_mode, 0, bitsize, 0),
2085 target, 1, OPTAB_LIB_WIDEN);
2086 return op0;
2087 }
2088
2089 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2090 then arithmetic-shift its lsb to the lsb of the word. */
2091 op0 = force_reg (mode, op0);
2092
2093 /* Find the narrowest integer mode that contains the field. */
2094
2095 opt_scalar_int_mode mode_iter;
2096 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2097 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum)
2098 break;
2099
2100 mode = mode_iter.require ();
2101 op0 = convert_to_mode (mode, op0, 0);
2102
2103 if (mode != tmode)
2104 target = 0;
2105
2106 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
2107 {
2108 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
2109 /* Maybe propagate the target for the shift. */
2110 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2111 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
2112 }
2113
2114 return expand_shift (RSHIFT_EXPR, mode, op0,
2115 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
2116 }
2117
2118 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2119 VALUE << BITPOS. */
2120
2121 static rtx
2122 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
2123 int bitpos)
2124 {
2125 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
2126 }
2127 \f
2128 /* Extract a bit field that is split across two words
2129 and return an RTX for the result.
2130
2131 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2132 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2133 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2134 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2135 a BLKmode MEM.
2136
2137 If REVERSE is true, the extraction is to be done in reverse order. */
2138
2139 static rtx
2140 extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
2141 unsigned HOST_WIDE_INT bitsize,
2142 unsigned HOST_WIDE_INT bitpos, int unsignedp,
2143 bool reverse)
2144 {
2145 unsigned int unit;
2146 unsigned int bitsdone = 0;
2147 rtx result = NULL_RTX;
2148 int first = 1;
2149
2150 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2151 much at a time. */
2152 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2153 unit = BITS_PER_WORD;
2154 else
2155 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2156
2157 while (bitsdone < bitsize)
2158 {
2159 unsigned HOST_WIDE_INT thissize;
2160 rtx part;
2161 unsigned HOST_WIDE_INT thispos;
2162 unsigned HOST_WIDE_INT offset;
2163
2164 offset = (bitpos + bitsdone) / unit;
2165 thispos = (bitpos + bitsdone) % unit;
2166
2167 /* THISSIZE must not overrun a word boundary. Otherwise,
2168 extract_fixed_bit_field will call us again, and we will mutually
2169 recurse forever. */
2170 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2171 thissize = MIN (thissize, unit - thispos);
2172
2173 /* If OP0 is a register, then handle OFFSET here. */
2174 rtx op0_piece = op0;
2175 opt_scalar_int_mode op0_piece_mode = op0_mode;
2176 if (SUBREG_P (op0) || REG_P (op0))
2177 {
2178 op0_piece = operand_subword_force (op0, offset, op0_mode.require ());
2179 op0_piece_mode = word_mode;
2180 offset = 0;
2181 }
2182
2183 /* Extract the parts in bit-counting order,
2184 whose meaning is determined by BYTES_PER_UNIT.
2185 OFFSET is in UNITs, and UNIT is in bits. */
2186 part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode,
2187 thissize, offset * unit + thispos,
2188 0, 1, reverse);
2189 bitsdone += thissize;
2190
2191 /* Shift this part into place for the result. */
2192 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2193 {
2194 if (bitsize != bitsdone)
2195 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2196 bitsize - bitsdone, 0, 1);
2197 }
2198 else
2199 {
2200 if (bitsdone != thissize)
2201 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2202 bitsdone - thissize, 0, 1);
2203 }
2204
2205 if (first)
2206 result = part;
2207 else
2208 /* Combine the parts with bitwise or. This works
2209 because we extracted each part as an unsigned bit field. */
2210 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2211 OPTAB_LIB_WIDEN);
2212
2213 first = 0;
2214 }
2215
2216 /* Unsigned bit field: we are done. */
2217 if (unsignedp)
2218 return result;
2219 /* Signed bit field: sign-extend with two arithmetic shifts. */
2220 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2221 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2222 return expand_shift (RSHIFT_EXPR, word_mode, result,
2223 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2224 }
2225 \f
2226 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2227 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2228 MODE, fill the upper bits with zeros. Fail if the layout of either
2229 mode is unknown (as for CC modes) or if the extraction would involve
2230 unprofitable mode punning. Return the value on success, otherwise
2231 return null.
2232
2233 This is different from gen_lowpart* in these respects:
2234
2235 - the returned value must always be considered an rvalue
2236
2237 - when MODE is wider than SRC_MODE, the extraction involves
2238 a zero extension
2239
2240 - when MODE is smaller than SRC_MODE, the extraction involves
2241 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
2242
2243 In other words, this routine performs a computation, whereas the
2244 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2245 operations. */
2246
2247 rtx
2248 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2249 {
2250 scalar_int_mode int_mode, src_int_mode;
2251
2252 if (mode == src_mode)
2253 return src;
2254
2255 if (CONSTANT_P (src))
2256 {
2257 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2258 fails, it will happily create (subreg (symbol_ref)) or similar
2259 invalid SUBREGs. */
2260 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2261 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2262 if (ret)
2263 return ret;
2264
2265 if (GET_MODE (src) == VOIDmode
2266 || !validate_subreg (mode, src_mode, src, byte))
2267 return NULL_RTX;
2268
2269 src = force_reg (GET_MODE (src), src);
2270 return gen_rtx_SUBREG (mode, src, byte);
2271 }
2272
2273 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2274 return NULL_RTX;
2275
2276 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2277 && targetm.modes_tieable_p (mode, src_mode))
2278 {
2279 rtx x = gen_lowpart_common (mode, src);
2280 if (x)
2281 return x;
2282 }
2283
2284 if (!int_mode_for_mode (src_mode).exists (&src_int_mode)
2285 || !int_mode_for_mode (mode).exists (&int_mode))
2286 return NULL_RTX;
2287
2288 if (!targetm.modes_tieable_p (src_int_mode, src_mode))
2289 return NULL_RTX;
2290 if (!targetm.modes_tieable_p (int_mode, mode))
2291 return NULL_RTX;
2292
2293 src = gen_lowpart (src_int_mode, src);
2294 src = convert_modes (int_mode, src_int_mode, src, true);
2295 src = gen_lowpart (mode, src);
2296 return src;
2297 }
2298 \f
2299 /* Add INC into TARGET. */
2300
2301 void
2302 expand_inc (rtx target, rtx inc)
2303 {
2304 rtx value = expand_binop (GET_MODE (target), add_optab,
2305 target, inc,
2306 target, 0, OPTAB_LIB_WIDEN);
2307 if (value != target)
2308 emit_move_insn (target, value);
2309 }
2310
2311 /* Subtract DEC from TARGET. */
2312
2313 void
2314 expand_dec (rtx target, rtx dec)
2315 {
2316 rtx value = expand_binop (GET_MODE (target), sub_optab,
2317 target, dec,
2318 target, 0, OPTAB_LIB_WIDEN);
2319 if (value != target)
2320 emit_move_insn (target, value);
2321 }
2322 \f
2323 /* Output a shift instruction for expression code CODE,
2324 with SHIFTED being the rtx for the value to shift,
2325 and AMOUNT the rtx for the amount to shift by.
2326 Store the result in the rtx TARGET, if that is convenient.
2327 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2328 Return the rtx for where the value is.
2329 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2330 in which case 0 is returned. */
2331
2332 static rtx
2333 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2334 rtx amount, rtx target, int unsignedp, bool may_fail = false)
2335 {
2336 rtx op1, temp = 0;
2337 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2338 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2339 optab lshift_optab = ashl_optab;
2340 optab rshift_arith_optab = ashr_optab;
2341 optab rshift_uns_optab = lshr_optab;
2342 optab lrotate_optab = rotl_optab;
2343 optab rrotate_optab = rotr_optab;
2344 machine_mode op1_mode;
2345 scalar_mode scalar_mode = GET_MODE_INNER (mode);
2346 int attempt;
2347 bool speed = optimize_insn_for_speed_p ();
2348
2349 op1 = amount;
2350 op1_mode = GET_MODE (op1);
2351
2352 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2353 shift amount is a vector, use the vector/vector shift patterns. */
2354 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2355 {
2356 lshift_optab = vashl_optab;
2357 rshift_arith_optab = vashr_optab;
2358 rshift_uns_optab = vlshr_optab;
2359 lrotate_optab = vrotl_optab;
2360 rrotate_optab = vrotr_optab;
2361 }
2362
2363 /* Previously detected shift-counts computed by NEGATE_EXPR
2364 and shifted in the other direction; but that does not work
2365 on all machines. */
2366
2367 if (SHIFT_COUNT_TRUNCATED)
2368 {
2369 if (CONST_INT_P (op1)
2370 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2371 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2372 op1 = gen_int_shift_amount (mode,
2373 (unsigned HOST_WIDE_INT) INTVAL (op1)
2374 % GET_MODE_BITSIZE (scalar_mode));
2375 else if (GET_CODE (op1) == SUBREG
2376 && subreg_lowpart_p (op1)
2377 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2378 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2379 op1 = SUBREG_REG (op1);
2380 }
2381
2382 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2383 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2384 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2385 amount instead. */
2386 if (rotate
2387 && CONST_INT_P (op1)
2388 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2389 GET_MODE_BITSIZE (scalar_mode) - 1))
2390 {
2391 op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode)
2392 - INTVAL (op1)));
2393 left = !left;
2394 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2395 }
2396
2397 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2398 Note that this is not the case for bigger values. For instance a rotation
2399 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2400 0x04030201 (bswapsi). */
2401 if (rotate
2402 && CONST_INT_P (op1)
2403 && INTVAL (op1) == BITS_PER_UNIT
2404 && GET_MODE_SIZE (scalar_mode) == 2
2405 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing)
2406 return expand_unop (HImode, bswap_optab, shifted, NULL_RTX,
2407 unsignedp);
2408
2409 if (op1 == const0_rtx)
2410 return shifted;
2411
2412 /* Check whether its cheaper to implement a left shift by a constant
2413 bit count by a sequence of additions. */
2414 if (code == LSHIFT_EXPR
2415 && CONST_INT_P (op1)
2416 && INTVAL (op1) > 0
2417 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2418 && INTVAL (op1) < MAX_BITS_PER_WORD
2419 && (shift_cost (speed, mode, INTVAL (op1))
2420 > INTVAL (op1) * add_cost (speed, mode))
2421 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2422 {
2423 int i;
2424 for (i = 0; i < INTVAL (op1); i++)
2425 {
2426 temp = force_reg (mode, shifted);
2427 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2428 unsignedp, OPTAB_LIB_WIDEN);
2429 }
2430 return shifted;
2431 }
2432
2433 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2434 {
2435 enum optab_methods methods;
2436
2437 if (attempt == 0)
2438 methods = OPTAB_DIRECT;
2439 else if (attempt == 1)
2440 methods = OPTAB_WIDEN;
2441 else
2442 methods = OPTAB_LIB_WIDEN;
2443
2444 if (rotate)
2445 {
2446 /* Widening does not work for rotation. */
2447 if (methods == OPTAB_WIDEN)
2448 continue;
2449 else if (methods == OPTAB_LIB_WIDEN)
2450 {
2451 /* If we have been unable to open-code this by a rotation,
2452 do it as the IOR of two shifts. I.e., to rotate A
2453 by N bits, compute
2454 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2455 where C is the bitsize of A.
2456
2457 It is theoretically possible that the target machine might
2458 not be able to perform either shift and hence we would
2459 be making two libcalls rather than just the one for the
2460 shift (similarly if IOR could not be done). We will allow
2461 this extremely unlikely lossage to avoid complicating the
2462 code below. */
2463
2464 rtx subtarget = target == shifted ? 0 : target;
2465 rtx new_amount, other_amount;
2466 rtx temp1;
2467
2468 new_amount = op1;
2469 if (op1 == const0_rtx)
2470 return shifted;
2471 else if (CONST_INT_P (op1))
2472 other_amount = gen_int_shift_amount
2473 (mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2474 else
2475 {
2476 other_amount
2477 = simplify_gen_unary (NEG, GET_MODE (op1),
2478 op1, GET_MODE (op1));
2479 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2480 other_amount
2481 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2482 gen_int_mode (mask, GET_MODE (op1)));
2483 }
2484
2485 shifted = force_reg (mode, shifted);
2486
2487 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2488 mode, shifted, new_amount, 0, 1);
2489 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2490 mode, shifted, other_amount,
2491 subtarget, 1);
2492 return expand_binop (mode, ior_optab, temp, temp1, target,
2493 unsignedp, methods);
2494 }
2495
2496 temp = expand_binop (mode,
2497 left ? lrotate_optab : rrotate_optab,
2498 shifted, op1, target, unsignedp, methods);
2499 }
2500 else if (unsignedp)
2501 temp = expand_binop (mode,
2502 left ? lshift_optab : rshift_uns_optab,
2503 shifted, op1, target, unsignedp, methods);
2504
2505 /* Do arithmetic shifts.
2506 Also, if we are going to widen the operand, we can just as well
2507 use an arithmetic right-shift instead of a logical one. */
2508 if (temp == 0 && ! rotate
2509 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2510 {
2511 enum optab_methods methods1 = methods;
2512
2513 /* If trying to widen a log shift to an arithmetic shift,
2514 don't accept an arithmetic shift of the same size. */
2515 if (unsignedp)
2516 methods1 = OPTAB_MUST_WIDEN;
2517
2518 /* Arithmetic shift */
2519
2520 temp = expand_binop (mode,
2521 left ? lshift_optab : rshift_arith_optab,
2522 shifted, op1, target, unsignedp, methods1);
2523 }
2524
2525 /* We used to try extzv here for logical right shifts, but that was
2526 only useful for one machine, the VAX, and caused poor code
2527 generation there for lshrdi3, so the code was deleted and a
2528 define_expand for lshrsi3 was added to vax.md. */
2529 }
2530
2531 gcc_assert (temp != NULL_RTX || may_fail);
2532 return temp;
2533 }
2534
2535 /* Output a shift instruction for expression code CODE,
2536 with SHIFTED being the rtx for the value to shift,
2537 and AMOUNT the amount to shift by.
2538 Store the result in the rtx TARGET, if that is convenient.
2539 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2540 Return the rtx for where the value is. */
2541
2542 rtx
2543 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2544 int amount, rtx target, int unsignedp)
2545 {
2546 return expand_shift_1 (code, mode, shifted,
2547 gen_int_shift_amount (mode, amount),
2548 target, unsignedp);
2549 }
2550
2551 /* Likewise, but return 0 if that cannot be done. */
2552
2553 static rtx
2554 maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2555 int amount, rtx target, int unsignedp)
2556 {
2557 return expand_shift_1 (code, mode,
2558 shifted, GEN_INT (amount), target, unsignedp, true);
2559 }
2560
2561 /* Output a shift instruction for expression code CODE,
2562 with SHIFTED being the rtx for the value to shift,
2563 and AMOUNT the tree for the amount to shift by.
2564 Store the result in the rtx TARGET, if that is convenient.
2565 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2566 Return the rtx for where the value is. */
2567
2568 rtx
2569 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2570 tree amount, rtx target, int unsignedp)
2571 {
2572 return expand_shift_1 (code, mode,
2573 shifted, expand_normal (amount), target, unsignedp);
2574 }
2575
2576 \f
2577 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2578 const struct mult_cost *, machine_mode mode);
2579 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2580 const struct algorithm *, enum mult_variant);
2581 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2582 static rtx extract_high_half (scalar_int_mode, rtx);
2583 static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int);
2584 static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx,
2585 int, int);
2586 /* Compute and return the best algorithm for multiplying by T.
2587 The algorithm must cost less than cost_limit
2588 If retval.cost >= COST_LIMIT, no algorithm was found and all
2589 other field of the returned struct are undefined.
2590 MODE is the machine mode of the multiplication. */
2591
2592 static void
2593 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2594 const struct mult_cost *cost_limit, machine_mode mode)
2595 {
2596 int m;
2597 struct algorithm *alg_in, *best_alg;
2598 struct mult_cost best_cost;
2599 struct mult_cost new_limit;
2600 int op_cost, op_latency;
2601 unsigned HOST_WIDE_INT orig_t = t;
2602 unsigned HOST_WIDE_INT q;
2603 int maxm, hash_index;
2604 bool cache_hit = false;
2605 enum alg_code cache_alg = alg_zero;
2606 bool speed = optimize_insn_for_speed_p ();
2607 scalar_int_mode imode;
2608 struct alg_hash_entry *entry_ptr;
2609
2610 /* Indicate that no algorithm is yet found. If no algorithm
2611 is found, this value will be returned and indicate failure. */
2612 alg_out->cost.cost = cost_limit->cost + 1;
2613 alg_out->cost.latency = cost_limit->latency + 1;
2614
2615 if (cost_limit->cost < 0
2616 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2617 return;
2618
2619 /* Be prepared for vector modes. */
2620 imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode));
2621
2622 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2623
2624 /* Restrict the bits of "t" to the multiplication's mode. */
2625 t &= GET_MODE_MASK (imode);
2626
2627 /* t == 1 can be done in zero cost. */
2628 if (t == 1)
2629 {
2630 alg_out->ops = 1;
2631 alg_out->cost.cost = 0;
2632 alg_out->cost.latency = 0;
2633 alg_out->op[0] = alg_m;
2634 return;
2635 }
2636
2637 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2638 fail now. */
2639 if (t == 0)
2640 {
2641 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2642 return;
2643 else
2644 {
2645 alg_out->ops = 1;
2646 alg_out->cost.cost = zero_cost (speed);
2647 alg_out->cost.latency = zero_cost (speed);
2648 alg_out->op[0] = alg_zero;
2649 return;
2650 }
2651 }
2652
2653 /* We'll be needing a couple extra algorithm structures now. */
2654
2655 alg_in = XALLOCA (struct algorithm);
2656 best_alg = XALLOCA (struct algorithm);
2657 best_cost = *cost_limit;
2658
2659 /* Compute the hash index. */
2660 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2661
2662 /* See if we already know what to do for T. */
2663 entry_ptr = alg_hash_entry_ptr (hash_index);
2664 if (entry_ptr->t == t
2665 && entry_ptr->mode == mode
2666 && entry_ptr->speed == speed
2667 && entry_ptr->alg != alg_unknown)
2668 {
2669 cache_alg = entry_ptr->alg;
2670
2671 if (cache_alg == alg_impossible)
2672 {
2673 /* The cache tells us that it's impossible to synthesize
2674 multiplication by T within entry_ptr->cost. */
2675 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2676 /* COST_LIMIT is at least as restrictive as the one
2677 recorded in the hash table, in which case we have no
2678 hope of synthesizing a multiplication. Just
2679 return. */
2680 return;
2681
2682 /* If we get here, COST_LIMIT is less restrictive than the
2683 one recorded in the hash table, so we may be able to
2684 synthesize a multiplication. Proceed as if we didn't
2685 have the cache entry. */
2686 }
2687 else
2688 {
2689 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2690 /* The cached algorithm shows that this multiplication
2691 requires more cost than COST_LIMIT. Just return. This
2692 way, we don't clobber this cache entry with
2693 alg_impossible but retain useful information. */
2694 return;
2695
2696 cache_hit = true;
2697
2698 switch (cache_alg)
2699 {
2700 case alg_shift:
2701 goto do_alg_shift;
2702
2703 case alg_add_t_m2:
2704 case alg_sub_t_m2:
2705 goto do_alg_addsub_t_m2;
2706
2707 case alg_add_factor:
2708 case alg_sub_factor:
2709 goto do_alg_addsub_factor;
2710
2711 case alg_add_t2_m:
2712 goto do_alg_add_t2_m;
2713
2714 case alg_sub_t2_m:
2715 goto do_alg_sub_t2_m;
2716
2717 default:
2718 gcc_unreachable ();
2719 }
2720 }
2721 }
2722
2723 /* If we have a group of zero bits at the low-order part of T, try
2724 multiplying by the remaining bits and then doing a shift. */
2725
2726 if ((t & 1) == 0)
2727 {
2728 do_alg_shift:
2729 m = ctz_or_zero (t); /* m = number of low zero bits */
2730 if (m < maxm)
2731 {
2732 q = t >> m;
2733 /* The function expand_shift will choose between a shift and
2734 a sequence of additions, so the observed cost is given as
2735 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2736 op_cost = m * add_cost (speed, mode);
2737 if (shift_cost (speed, mode, m) < op_cost)
2738 op_cost = shift_cost (speed, mode, m);
2739 new_limit.cost = best_cost.cost - op_cost;
2740 new_limit.latency = best_cost.latency - op_cost;
2741 synth_mult (alg_in, q, &new_limit, mode);
2742
2743 alg_in->cost.cost += op_cost;
2744 alg_in->cost.latency += op_cost;
2745 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2746 {
2747 best_cost = alg_in->cost;
2748 std::swap (alg_in, best_alg);
2749 best_alg->log[best_alg->ops] = m;
2750 best_alg->op[best_alg->ops] = alg_shift;
2751 }
2752
2753 /* See if treating ORIG_T as a signed number yields a better
2754 sequence. Try this sequence only for a negative ORIG_T
2755 as it would be useless for a non-negative ORIG_T. */
2756 if ((HOST_WIDE_INT) orig_t < 0)
2757 {
2758 /* Shift ORIG_T as follows because a right shift of a
2759 negative-valued signed type is implementation
2760 defined. */
2761 q = ~(~orig_t >> m);
2762 /* The function expand_shift will choose between a shift
2763 and a sequence of additions, so the observed cost is
2764 given as MIN (m * add_cost(speed, mode),
2765 shift_cost(speed, mode, m)). */
2766 op_cost = m * add_cost (speed, mode);
2767 if (shift_cost (speed, mode, m) < op_cost)
2768 op_cost = shift_cost (speed, mode, m);
2769 new_limit.cost = best_cost.cost - op_cost;
2770 new_limit.latency = best_cost.latency - op_cost;
2771 synth_mult (alg_in, q, &new_limit, mode);
2772
2773 alg_in->cost.cost += op_cost;
2774 alg_in->cost.latency += op_cost;
2775 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2776 {
2777 best_cost = alg_in->cost;
2778 std::swap (alg_in, best_alg);
2779 best_alg->log[best_alg->ops] = m;
2780 best_alg->op[best_alg->ops] = alg_shift;
2781 }
2782 }
2783 }
2784 if (cache_hit)
2785 goto done;
2786 }
2787
2788 /* If we have an odd number, add or subtract one. */
2789 if ((t & 1) != 0)
2790 {
2791 unsigned HOST_WIDE_INT w;
2792
2793 do_alg_addsub_t_m2:
2794 for (w = 1; (w & t) != 0; w <<= 1)
2795 ;
2796 /* If T was -1, then W will be zero after the loop. This is another
2797 case where T ends with ...111. Handling this with (T + 1) and
2798 subtract 1 produces slightly better code and results in algorithm
2799 selection much faster than treating it like the ...0111 case
2800 below. */
2801 if (w == 0
2802 || (w > 2
2803 /* Reject the case where t is 3.
2804 Thus we prefer addition in that case. */
2805 && t != 3))
2806 {
2807 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2808
2809 op_cost = add_cost (speed, mode);
2810 new_limit.cost = best_cost.cost - op_cost;
2811 new_limit.latency = best_cost.latency - op_cost;
2812 synth_mult (alg_in, t + 1, &new_limit, mode);
2813
2814 alg_in->cost.cost += op_cost;
2815 alg_in->cost.latency += op_cost;
2816 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2817 {
2818 best_cost = alg_in->cost;
2819 std::swap (alg_in, best_alg);
2820 best_alg->log[best_alg->ops] = 0;
2821 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2822 }
2823 }
2824 else
2825 {
2826 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2827
2828 op_cost = add_cost (speed, mode);
2829 new_limit.cost = best_cost.cost - op_cost;
2830 new_limit.latency = best_cost.latency - op_cost;
2831 synth_mult (alg_in, t - 1, &new_limit, mode);
2832
2833 alg_in->cost.cost += op_cost;
2834 alg_in->cost.latency += op_cost;
2835 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2836 {
2837 best_cost = alg_in->cost;
2838 std::swap (alg_in, best_alg);
2839 best_alg->log[best_alg->ops] = 0;
2840 best_alg->op[best_alg->ops] = alg_add_t_m2;
2841 }
2842 }
2843
2844 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2845 quickly with a - a * n for some appropriate constant n. */
2846 m = exact_log2 (-orig_t + 1);
2847 if (m >= 0 && m < maxm)
2848 {
2849 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2850 /* If the target has a cheap shift-and-subtract insn use
2851 that in preference to a shift insn followed by a sub insn.
2852 Assume that the shift-and-sub is "atomic" with a latency
2853 equal to it's cost, otherwise assume that on superscalar
2854 hardware the shift may be executed concurrently with the
2855 earlier steps in the algorithm. */
2856 if (shiftsub1_cost (speed, mode, m) <= op_cost)
2857 {
2858 op_cost = shiftsub1_cost (speed, mode, m);
2859 op_latency = op_cost;
2860 }
2861 else
2862 op_latency = add_cost (speed, mode);
2863
2864 new_limit.cost = best_cost.cost - op_cost;
2865 new_limit.latency = best_cost.latency - op_latency;
2866 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2867 &new_limit, mode);
2868
2869 alg_in->cost.cost += op_cost;
2870 alg_in->cost.latency += op_latency;
2871 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2872 {
2873 best_cost = alg_in->cost;
2874 std::swap (alg_in, best_alg);
2875 best_alg->log[best_alg->ops] = m;
2876 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2877 }
2878 }
2879
2880 if (cache_hit)
2881 goto done;
2882 }
2883
2884 /* Look for factors of t of the form
2885 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2886 If we find such a factor, we can multiply by t using an algorithm that
2887 multiplies by q, shift the result by m and add/subtract it to itself.
2888
2889 We search for large factors first and loop down, even if large factors
2890 are less probable than small; if we find a large factor we will find a
2891 good sequence quickly, and therefore be able to prune (by decreasing
2892 COST_LIMIT) the search. */
2893
2894 do_alg_addsub_factor:
2895 for (m = floor_log2 (t - 1); m >= 2; m--)
2896 {
2897 unsigned HOST_WIDE_INT d;
2898
2899 d = (HOST_WIDE_INT_1U << m) + 1;
2900 if (t % d == 0 && t > d && m < maxm
2901 && (!cache_hit || cache_alg == alg_add_factor))
2902 {
2903 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2904 if (shiftadd_cost (speed, mode, m) <= op_cost)
2905 op_cost = shiftadd_cost (speed, mode, m);
2906
2907 op_latency = op_cost;
2908
2909
2910 new_limit.cost = best_cost.cost - op_cost;
2911 new_limit.latency = best_cost.latency - op_latency;
2912 synth_mult (alg_in, t / d, &new_limit, mode);
2913
2914 alg_in->cost.cost += op_cost;
2915 alg_in->cost.latency += op_latency;
2916 if (alg_in->cost.latency < op_cost)
2917 alg_in->cost.latency = op_cost;
2918 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2919 {
2920 best_cost = alg_in->cost;
2921 std::swap (alg_in, best_alg);
2922 best_alg->log[best_alg->ops] = m;
2923 best_alg->op[best_alg->ops] = alg_add_factor;
2924 }
2925 /* Other factors will have been taken care of in the recursion. */
2926 break;
2927 }
2928
2929 d = (HOST_WIDE_INT_1U << m) - 1;
2930 if (t % d == 0 && t > d && m < maxm
2931 && (!cache_hit || cache_alg == alg_sub_factor))
2932 {
2933 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2934 if (shiftsub0_cost (speed, mode, m) <= op_cost)
2935 op_cost = shiftsub0_cost (speed, mode, m);
2936
2937 op_latency = op_cost;
2938
2939 new_limit.cost = best_cost.cost - op_cost;
2940 new_limit.latency = best_cost.latency - op_latency;
2941 synth_mult (alg_in, t / d, &new_limit, mode);
2942
2943 alg_in->cost.cost += op_cost;
2944 alg_in->cost.latency += op_latency;
2945 if (alg_in->cost.latency < op_cost)
2946 alg_in->cost.latency = op_cost;
2947 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2948 {
2949 best_cost = alg_in->cost;
2950 std::swap (alg_in, best_alg);
2951 best_alg->log[best_alg->ops] = m;
2952 best_alg->op[best_alg->ops] = alg_sub_factor;
2953 }
2954 break;
2955 }
2956 }
2957 if (cache_hit)
2958 goto done;
2959
2960 /* Try shift-and-add (load effective address) instructions,
2961 i.e. do a*3, a*5, a*9. */
2962 if ((t & 1) != 0)
2963 {
2964 do_alg_add_t2_m:
2965 q = t - 1;
2966 m = ctz_hwi (q);
2967 if (q && m < maxm)
2968 {
2969 op_cost = shiftadd_cost (speed, mode, m);
2970 new_limit.cost = best_cost.cost - op_cost;
2971 new_limit.latency = best_cost.latency - op_cost;
2972 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2973
2974 alg_in->cost.cost += op_cost;
2975 alg_in->cost.latency += op_cost;
2976 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2977 {
2978 best_cost = alg_in->cost;
2979 std::swap (alg_in, best_alg);
2980 best_alg->log[best_alg->ops] = m;
2981 best_alg->op[best_alg->ops] = alg_add_t2_m;
2982 }
2983 }
2984 if (cache_hit)
2985 goto done;
2986
2987 do_alg_sub_t2_m:
2988 q = t + 1;
2989 m = ctz_hwi (q);
2990 if (q && m < maxm)
2991 {
2992 op_cost = shiftsub0_cost (speed, mode, m);
2993 new_limit.cost = best_cost.cost - op_cost;
2994 new_limit.latency = best_cost.latency - op_cost;
2995 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2996
2997 alg_in->cost.cost += op_cost;
2998 alg_in->cost.latency += op_cost;
2999 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3000 {
3001 best_cost = alg_in->cost;
3002 std::swap (alg_in, best_alg);
3003 best_alg->log[best_alg->ops] = m;
3004 best_alg->op[best_alg->ops] = alg_sub_t2_m;
3005 }
3006 }
3007 if (cache_hit)
3008 goto done;
3009 }
3010
3011 done:
3012 /* If best_cost has not decreased, we have not found any algorithm. */
3013 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
3014 {
3015 /* We failed to find an algorithm. Record alg_impossible for
3016 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3017 we are asked to find an algorithm for T within the same or
3018 lower COST_LIMIT, we can immediately return to the
3019 caller. */
3020 entry_ptr->t = t;
3021 entry_ptr->mode = mode;
3022 entry_ptr->speed = speed;
3023 entry_ptr->alg = alg_impossible;
3024 entry_ptr->cost = *cost_limit;
3025 return;
3026 }
3027
3028 /* Cache the result. */
3029 if (!cache_hit)
3030 {
3031 entry_ptr->t = t;
3032 entry_ptr->mode = mode;
3033 entry_ptr->speed = speed;
3034 entry_ptr->alg = best_alg->op[best_alg->ops];
3035 entry_ptr->cost.cost = best_cost.cost;
3036 entry_ptr->cost.latency = best_cost.latency;
3037 }
3038
3039 /* If we are getting a too long sequence for `struct algorithm'
3040 to record, make this search fail. */
3041 if (best_alg->ops == MAX_BITS_PER_WORD)
3042 return;
3043
3044 /* Copy the algorithm from temporary space to the space at alg_out.
3045 We avoid using structure assignment because the majority of
3046 best_alg is normally undefined, and this is a critical function. */
3047 alg_out->ops = best_alg->ops + 1;
3048 alg_out->cost = best_cost;
3049 memcpy (alg_out->op, best_alg->op,
3050 alg_out->ops * sizeof *alg_out->op);
3051 memcpy (alg_out->log, best_alg->log,
3052 alg_out->ops * sizeof *alg_out->log);
3053 }
3054 \f
3055 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3056 Try three variations:
3057
3058 - a shift/add sequence based on VAL itself
3059 - a shift/add sequence based on -VAL, followed by a negation
3060 - a shift/add sequence based on VAL - 1, followed by an addition.
3061
3062 Return true if the cheapest of these cost less than MULT_COST,
3063 describing the algorithm in *ALG and final fixup in *VARIANT. */
3064
3065 bool
3066 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
3067 struct algorithm *alg, enum mult_variant *variant,
3068 int mult_cost)
3069 {
3070 struct algorithm alg2;
3071 struct mult_cost limit;
3072 int op_cost;
3073 bool speed = optimize_insn_for_speed_p ();
3074
3075 /* Fail quickly for impossible bounds. */
3076 if (mult_cost < 0)
3077 return false;
3078
3079 /* Ensure that mult_cost provides a reasonable upper bound.
3080 Any constant multiplication can be performed with less
3081 than 2 * bits additions. */
3082 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
3083 if (mult_cost > op_cost)
3084 mult_cost = op_cost;
3085
3086 *variant = basic_variant;
3087 limit.cost = mult_cost;
3088 limit.latency = mult_cost;
3089 synth_mult (alg, val, &limit, mode);
3090
3091 /* This works only if the inverted value actually fits in an
3092 `unsigned int' */
3093 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
3094 {
3095 op_cost = neg_cost (speed, mode);
3096 if (MULT_COST_LESS (&alg->cost, mult_cost))
3097 {
3098 limit.cost = alg->cost.cost - op_cost;
3099 limit.latency = alg->cost.latency - op_cost;
3100 }
3101 else
3102 {
3103 limit.cost = mult_cost - op_cost;
3104 limit.latency = mult_cost - op_cost;
3105 }
3106
3107 synth_mult (&alg2, -val, &limit, mode);
3108 alg2.cost.cost += op_cost;
3109 alg2.cost.latency += op_cost;
3110 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3111 *alg = alg2, *variant = negate_variant;
3112 }
3113
3114 /* This proves very useful for division-by-constant. */
3115 op_cost = add_cost (speed, mode);
3116 if (MULT_COST_LESS (&alg->cost, mult_cost))
3117 {
3118 limit.cost = alg->cost.cost - op_cost;
3119 limit.latency = alg->cost.latency - op_cost;
3120 }
3121 else
3122 {
3123 limit.cost = mult_cost - op_cost;
3124 limit.latency = mult_cost - op_cost;
3125 }
3126
3127 synth_mult (&alg2, val - 1, &limit, mode);
3128 alg2.cost.cost += op_cost;
3129 alg2.cost.latency += op_cost;
3130 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3131 *alg = alg2, *variant = add_variant;
3132
3133 return MULT_COST_LESS (&alg->cost, mult_cost);
3134 }
3135
3136 /* A subroutine of expand_mult, used for constant multiplications.
3137 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3138 convenient. Use the shift/add sequence described by ALG and apply
3139 the final fixup specified by VARIANT. */
3140
3141 static rtx
3142 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
3143 rtx target, const struct algorithm *alg,
3144 enum mult_variant variant)
3145 {
3146 unsigned HOST_WIDE_INT val_so_far;
3147 rtx_insn *insn;
3148 rtx accum, tem;
3149 int opno;
3150 machine_mode nmode;
3151
3152 /* Avoid referencing memory over and over and invalid sharing
3153 on SUBREGs. */
3154 op0 = force_reg (mode, op0);
3155
3156 /* ACCUM starts out either as OP0 or as a zero, depending on
3157 the first operation. */
3158
3159 if (alg->op[0] == alg_zero)
3160 {
3161 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
3162 val_so_far = 0;
3163 }
3164 else if (alg->op[0] == alg_m)
3165 {
3166 accum = copy_to_mode_reg (mode, op0);
3167 val_so_far = 1;
3168 }
3169 else
3170 gcc_unreachable ();
3171
3172 for (opno = 1; opno < alg->ops; opno++)
3173 {
3174 int log = alg->log[opno];
3175 rtx shift_subtarget = optimize ? 0 : accum;
3176 rtx add_target
3177 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3178 && !optimize)
3179 ? target : 0;
3180 rtx accum_target = optimize ? 0 : accum;
3181 rtx accum_inner;
3182
3183 switch (alg->op[opno])
3184 {
3185 case alg_shift:
3186 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3187 /* REG_EQUAL note will be attached to the following insn. */
3188 emit_move_insn (accum, tem);
3189 val_so_far <<= log;
3190 break;
3191
3192 case alg_add_t_m2:
3193 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3194 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3195 add_target ? add_target : accum_target);
3196 val_so_far += HOST_WIDE_INT_1U << log;
3197 break;
3198
3199 case alg_sub_t_m2:
3200 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3201 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3202 add_target ? add_target : accum_target);
3203 val_so_far -= HOST_WIDE_INT_1U << log;
3204 break;
3205
3206 case alg_add_t2_m:
3207 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3208 log, shift_subtarget, 0);
3209 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3210 add_target ? add_target : accum_target);
3211 val_so_far = (val_so_far << log) + 1;
3212 break;
3213
3214 case alg_sub_t2_m:
3215 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3216 log, shift_subtarget, 0);
3217 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3218 add_target ? add_target : accum_target);
3219 val_so_far = (val_so_far << log) - 1;
3220 break;
3221
3222 case alg_add_factor:
3223 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3224 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3225 add_target ? add_target : accum_target);
3226 val_so_far += val_so_far << log;
3227 break;
3228
3229 case alg_sub_factor:
3230 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3231 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3232 (add_target
3233 ? add_target : (optimize ? 0 : tem)));
3234 val_so_far = (val_so_far << log) - val_so_far;
3235 break;
3236
3237 default:
3238 gcc_unreachable ();
3239 }
3240
3241 if (SCALAR_INT_MODE_P (mode))
3242 {
3243 /* Write a REG_EQUAL note on the last insn so that we can cse
3244 multiplication sequences. Note that if ACCUM is a SUBREG,
3245 we've set the inner register and must properly indicate that. */
3246 tem = op0, nmode = mode;
3247 accum_inner = accum;
3248 if (GET_CODE (accum) == SUBREG)
3249 {
3250 accum_inner = SUBREG_REG (accum);
3251 nmode = GET_MODE (accum_inner);
3252 tem = gen_lowpart (nmode, op0);
3253 }
3254
3255 insn = get_last_insn ();
3256 set_dst_reg_note (insn, REG_EQUAL,
3257 gen_rtx_MULT (nmode, tem,
3258 gen_int_mode (val_so_far, nmode)),
3259 accum_inner);
3260 }
3261 }
3262
3263 if (variant == negate_variant)
3264 {
3265 val_so_far = -val_so_far;
3266 accum = expand_unop (mode, neg_optab, accum, target, 0);
3267 }
3268 else if (variant == add_variant)
3269 {
3270 val_so_far = val_so_far + 1;
3271 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3272 }
3273
3274 /* Compare only the bits of val and val_so_far that are significant
3275 in the result mode, to avoid sign-/zero-extension confusion. */
3276 nmode = GET_MODE_INNER (mode);
3277 val &= GET_MODE_MASK (nmode);
3278 val_so_far &= GET_MODE_MASK (nmode);
3279 gcc_assert (val == (HOST_WIDE_INT) val_so_far);
3280
3281 return accum;
3282 }
3283
3284 /* Perform a multiplication and return an rtx for the result.
3285 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3286 TARGET is a suggestion for where to store the result (an rtx).
3287
3288 We check specially for a constant integer as OP1.
3289 If you want this check for OP0 as well, then before calling
3290 you should swap the two operands if OP0 would be constant. */
3291
3292 rtx
3293 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3294 int unsignedp, bool no_libcall)
3295 {
3296 enum mult_variant variant;
3297 struct algorithm algorithm;
3298 rtx scalar_op1;
3299 int max_cost;
3300 bool speed = optimize_insn_for_speed_p ();
3301 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3302
3303 if (CONSTANT_P (op0))
3304 std::swap (op0, op1);
3305
3306 /* For vectors, there are several simplifications that can be made if
3307 all elements of the vector constant are identical. */
3308 scalar_op1 = unwrap_const_vec_duplicate (op1);
3309
3310 if (INTEGRAL_MODE_P (mode))
3311 {
3312 rtx fake_reg;
3313 HOST_WIDE_INT coeff;
3314 bool is_neg;
3315 int mode_bitsize;
3316
3317 if (op1 == CONST0_RTX (mode))
3318 return op1;
3319 if (op1 == CONST1_RTX (mode))
3320 return op0;
3321 if (op1 == CONSTM1_RTX (mode))
3322 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3323 op0, target, 0);
3324
3325 if (do_trapv)
3326 goto skip_synth;
3327
3328 /* If mode is integer vector mode, check if the backend supports
3329 vector lshift (by scalar or vector) at all. If not, we can't use
3330 synthetized multiply. */
3331 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3332 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3333 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3334 goto skip_synth;
3335
3336 /* These are the operations that are potentially turned into
3337 a sequence of shifts and additions. */
3338 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3339
3340 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3341 less than or equal in size to `unsigned int' this doesn't matter.
3342 If the mode is larger than `unsigned int', then synth_mult works
3343 only if the constant value exactly fits in an `unsigned int' without
3344 any truncation. This means that multiplying by negative values does
3345 not work; results are off by 2^32 on a 32 bit machine. */
3346 if (CONST_INT_P (scalar_op1))
3347 {
3348 coeff = INTVAL (scalar_op1);
3349 is_neg = coeff < 0;
3350 }
3351 #if TARGET_SUPPORTS_WIDE_INT
3352 else if (CONST_WIDE_INT_P (scalar_op1))
3353 #else
3354 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3355 #endif
3356 {
3357 int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
3358 /* Perfect power of 2 (other than 1, which is handled above). */
3359 if (shift > 0)
3360 return expand_shift (LSHIFT_EXPR, mode, op0,
3361 shift, target, unsignedp);
3362 else
3363 goto skip_synth;
3364 }
3365 else
3366 goto skip_synth;
3367
3368 /* We used to test optimize here, on the grounds that it's better to
3369 produce a smaller program when -O is not used. But this causes
3370 such a terrible slowdown sometimes that it seems better to always
3371 use synth_mult. */
3372
3373 /* Special case powers of two. */
3374 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3375 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3376 return expand_shift (LSHIFT_EXPR, mode, op0,
3377 floor_log2 (coeff), target, unsignedp);
3378
3379 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3380
3381 /* Attempt to handle multiplication of DImode values by negative
3382 coefficients, by performing the multiplication by a positive
3383 multiplier and then inverting the result. */
3384 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3385 {
3386 /* Its safe to use -coeff even for INT_MIN, as the
3387 result is interpreted as an unsigned coefficient.
3388 Exclude cost of op0 from max_cost to match the cost
3389 calculation of the synth_mult. */
3390 coeff = -(unsigned HOST_WIDE_INT) coeff;
3391 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3392 mode, speed)
3393 - neg_cost (speed, mode));
3394 if (max_cost <= 0)
3395 goto skip_synth;
3396
3397 /* Special case powers of two. */
3398 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3399 {
3400 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3401 floor_log2 (coeff), target, unsignedp);
3402 return expand_unop (mode, neg_optab, temp, target, 0);
3403 }
3404
3405 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3406 max_cost))
3407 {
3408 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3409 &algorithm, variant);
3410 return expand_unop (mode, neg_optab, temp, target, 0);
3411 }
3412 goto skip_synth;
3413 }
3414
3415 /* Exclude cost of op0 from max_cost to match the cost
3416 calculation of the synth_mult. */
3417 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
3418 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3419 return expand_mult_const (mode, op0, coeff, target,
3420 &algorithm, variant);
3421 }
3422 skip_synth:
3423
3424 /* Expand x*2.0 as x+x. */
3425 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
3426 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
3427 {
3428 op0 = force_reg (GET_MODE (op0), op0);
3429 return expand_binop (mode, add_optab, op0, op0,
3430 target, unsignedp,
3431 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3432 }
3433
3434 /* This used to use umul_optab if unsigned, but for non-widening multiply
3435 there is no difference between signed and unsigned. */
3436 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3437 op0, op1, target, unsignedp,
3438 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3439 gcc_assert (op0 || no_libcall);
3440 return op0;
3441 }
3442
3443 /* Return a cost estimate for multiplying a register by the given
3444 COEFFicient in the given MODE and SPEED. */
3445
3446 int
3447 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3448 {
3449 int max_cost;
3450 struct algorithm algorithm;
3451 enum mult_variant variant;
3452
3453 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3454 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3455 mode, speed);
3456 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3457 return algorithm.cost.cost;
3458 else
3459 return max_cost;
3460 }
3461
3462 /* Perform a widening multiplication and return an rtx for the result.
3463 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3464 TARGET is a suggestion for where to store the result (an rtx).
3465 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3466 or smul_widen_optab.
3467
3468 We check specially for a constant integer as OP1, comparing the
3469 cost of a widening multiply against the cost of a sequence of shifts
3470 and adds. */
3471
3472 rtx
3473 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3474 int unsignedp, optab this_optab)
3475 {
3476 bool speed = optimize_insn_for_speed_p ();
3477 rtx cop1;
3478
3479 if (CONST_INT_P (op1)
3480 && GET_MODE (op0) != VOIDmode
3481 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3482 this_optab == umul_widen_optab))
3483 && CONST_INT_P (cop1)
3484 && (INTVAL (cop1) >= 0
3485 || HWI_COMPUTABLE_MODE_P (mode)))
3486 {
3487 HOST_WIDE_INT coeff = INTVAL (cop1);
3488 int max_cost;
3489 enum mult_variant variant;
3490 struct algorithm algorithm;
3491
3492 if (coeff == 0)
3493 return CONST0_RTX (mode);
3494
3495 /* Special case powers of two. */
3496 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3497 {
3498 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3499 return expand_shift (LSHIFT_EXPR, mode, op0,
3500 floor_log2 (coeff), target, unsignedp);
3501 }
3502
3503 /* Exclude cost of op0 from max_cost to match the cost
3504 calculation of the synth_mult. */
3505 max_cost = mul_widen_cost (speed, mode);
3506 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3507 max_cost))
3508 {
3509 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3510 return expand_mult_const (mode, op0, coeff, target,
3511 &algorithm, variant);
3512 }
3513 }
3514 return expand_binop (mode, this_optab, op0, op1, target,
3515 unsignedp, OPTAB_LIB_WIDEN);
3516 }
3517 \f
3518 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3519 replace division by D, and put the least significant N bits of the result
3520 in *MULTIPLIER_PTR and return the most significant bit.
3521
3522 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3523 needed precision is in PRECISION (should be <= N).
3524
3525 PRECISION should be as small as possible so this function can choose
3526 multiplier more freely.
3527
3528 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3529 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3530
3531 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3532 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3533
3534 unsigned HOST_WIDE_INT
3535 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3536 unsigned HOST_WIDE_INT *multiplier_ptr,
3537 int *post_shift_ptr, int *lgup_ptr)
3538 {
3539 int lgup, post_shift;
3540 int pow, pow2;
3541
3542 /* lgup = ceil(log2(divisor)); */
3543 lgup = ceil_log2 (d);
3544
3545 gcc_assert (lgup <= n);
3546
3547 pow = n + lgup;
3548 pow2 = n + lgup - precision;
3549
3550 /* mlow = 2^(N + lgup)/d */
3551 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3552 wide_int mlow = wi::udiv_trunc (val, d);
3553
3554 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3555 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3556 wide_int mhigh = wi::udiv_trunc (val, d);
3557
3558 /* If precision == N, then mlow, mhigh exceed 2^N
3559 (but they do not exceed 2^(N+1)). */
3560
3561 /* Reduce to lowest terms. */
3562 for (post_shift = lgup; post_shift > 0; post_shift--)
3563 {
3564 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3565 HOST_BITS_PER_WIDE_INT);
3566 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3567 HOST_BITS_PER_WIDE_INT);
3568 if (ml_lo >= mh_lo)
3569 break;
3570
3571 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3572 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3573 }
3574
3575 *post_shift_ptr = post_shift;
3576 *lgup_ptr = lgup;
3577 if (n < HOST_BITS_PER_WIDE_INT)
3578 {
3579 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
3580 *multiplier_ptr = mhigh.to_uhwi () & mask;
3581 return mhigh.to_uhwi () >= mask;
3582 }
3583 else
3584 {
3585 *multiplier_ptr = mhigh.to_uhwi ();
3586 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3587 }
3588 }
3589
3590 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3591 congruent to 1 (mod 2**N). */
3592
3593 static unsigned HOST_WIDE_INT
3594 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3595 {
3596 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3597
3598 /* The algorithm notes that the choice y = x satisfies
3599 x*y == 1 mod 2^3, since x is assumed odd.
3600 Each iteration doubles the number of bits of significance in y. */
3601
3602 unsigned HOST_WIDE_INT mask;
3603 unsigned HOST_WIDE_INT y = x;
3604 int nbit = 3;
3605
3606 mask = (n == HOST_BITS_PER_WIDE_INT
3607 ? HOST_WIDE_INT_M1U
3608 : (HOST_WIDE_INT_1U << n) - 1);
3609
3610 while (nbit < n)
3611 {
3612 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3613 nbit *= 2;
3614 }
3615 return y;
3616 }
3617
3618 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3619 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3620 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3621 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3622 become signed.
3623
3624 The result is put in TARGET if that is convenient.
3625
3626 MODE is the mode of operation. */
3627
3628 rtx
3629 expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0,
3630 rtx op1, rtx target, int unsignedp)
3631 {
3632 rtx tem;
3633 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3634
3635 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3636 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3637 tem = expand_and (mode, tem, op1, NULL_RTX);
3638 adj_operand
3639 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3640 adj_operand);
3641
3642 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3643 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3644 tem = expand_and (mode, tem, op0, NULL_RTX);
3645 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3646 target);
3647
3648 return target;
3649 }
3650
3651 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3652
3653 static rtx
3654 extract_high_half (scalar_int_mode mode, rtx op)
3655 {
3656 if (mode == word_mode)
3657 return gen_highpart (mode, op);
3658
3659 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3660
3661 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3662 GET_MODE_BITSIZE (mode), 0, 1);
3663 return convert_modes (mode, wider_mode, op, 0);
3664 }
3665
3666 /* Like expmed_mult_highpart, but only consider using a multiplication
3667 optab. OP1 is an rtx for the constant operand. */
3668
3669 static rtx
3670 expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1,
3671 rtx target, int unsignedp, int max_cost)
3672 {
3673 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3674 optab moptab;
3675 rtx tem;
3676 int size;
3677 bool speed = optimize_insn_for_speed_p ();
3678
3679 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3680
3681 size = GET_MODE_BITSIZE (mode);
3682
3683 /* Firstly, try using a multiplication insn that only generates the needed
3684 high part of the product, and in the sign flavor of unsignedp. */
3685 if (mul_highpart_cost (speed, mode) < max_cost)
3686 {
3687 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3688 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3689 unsignedp, OPTAB_DIRECT);
3690 if (tem)
3691 return tem;
3692 }
3693
3694 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3695 Need to adjust the result after the multiplication. */
3696 if (size - 1 < BITS_PER_WORD
3697 && (mul_highpart_cost (speed, mode)
3698 + 2 * shift_cost (speed, mode, size-1)
3699 + 4 * add_cost (speed, mode) < max_cost))
3700 {
3701 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3702 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3703 unsignedp, OPTAB_DIRECT);
3704 if (tem)
3705 /* We used the wrong signedness. Adjust the result. */
3706 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3707 tem, unsignedp);
3708 }
3709
3710 /* Try widening multiplication. */
3711 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3712 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3713 && mul_widen_cost (speed, wider_mode) < max_cost)
3714 {
3715 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3716 unsignedp, OPTAB_WIDEN);
3717 if (tem)
3718 return extract_high_half (mode, tem);
3719 }
3720
3721 /* Try widening the mode and perform a non-widening multiplication. */
3722 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3723 && size - 1 < BITS_PER_WORD
3724 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3725 < max_cost))
3726 {
3727 rtx_insn *insns;
3728 rtx wop0, wop1;
3729
3730 /* We need to widen the operands, for example to ensure the
3731 constant multiplier is correctly sign or zero extended.
3732 Use a sequence to clean-up any instructions emitted by
3733 the conversions if things don't work out. */
3734 start_sequence ();
3735 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3736 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3737 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3738 unsignedp, OPTAB_WIDEN);
3739 insns = get_insns ();
3740 end_sequence ();
3741
3742 if (tem)
3743 {
3744 emit_insn (insns);
3745 return extract_high_half (mode, tem);
3746 }
3747 }
3748
3749 /* Try widening multiplication of opposite signedness, and adjust. */
3750 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3751 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3752 && size - 1 < BITS_PER_WORD
3753 && (mul_widen_cost (speed, wider_mode)
3754 + 2 * shift_cost (speed, mode, size-1)
3755 + 4 * add_cost (speed, mode) < max_cost))
3756 {
3757 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3758 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3759 if (tem != 0)
3760 {
3761 tem = extract_high_half (mode, tem);
3762 /* We used the wrong signedness. Adjust the result. */
3763 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3764 target, unsignedp);
3765 }
3766 }
3767
3768 return 0;
3769 }
3770
3771 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3772 putting the high half of the result in TARGET if that is convenient,
3773 and return where the result is. If the operation can not be performed,
3774 0 is returned.
3775
3776 MODE is the mode of operation and result.
3777
3778 UNSIGNEDP nonzero means unsigned multiply.
3779
3780 MAX_COST is the total allowed cost for the expanded RTL. */
3781
3782 static rtx
3783 expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1,
3784 rtx target, int unsignedp, int max_cost)
3785 {
3786 unsigned HOST_WIDE_INT cnst1;
3787 int extra_cost;
3788 bool sign_adjust = false;
3789 enum mult_variant variant;
3790 struct algorithm alg;
3791 rtx tem;
3792 bool speed = optimize_insn_for_speed_p ();
3793
3794 /* We can't support modes wider than HOST_BITS_PER_INT. */
3795 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3796
3797 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3798
3799 /* We can't optimize modes wider than BITS_PER_WORD.
3800 ??? We might be able to perform double-word arithmetic if
3801 mode == word_mode, however all the cost calculations in
3802 synth_mult etc. assume single-word operations. */
3803 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3804 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3805 return expmed_mult_highpart_optab (mode, op0, op1, target,
3806 unsignedp, max_cost);
3807
3808 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3809
3810 /* Check whether we try to multiply by a negative constant. */
3811 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3812 {
3813 sign_adjust = true;
3814 extra_cost += add_cost (speed, mode);
3815 }
3816
3817 /* See whether shift/add multiplication is cheap enough. */
3818 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3819 max_cost - extra_cost))
3820 {
3821 /* See whether the specialized multiplication optabs are
3822 cheaper than the shift/add version. */
3823 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3824 alg.cost.cost + extra_cost);
3825 if (tem)
3826 return tem;
3827
3828 tem = convert_to_mode (wider_mode, op0, unsignedp);
3829 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3830 tem = extract_high_half (mode, tem);
3831
3832 /* Adjust result for signedness. */
3833 if (sign_adjust)
3834 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3835
3836 return tem;
3837 }
3838 return expmed_mult_highpart_optab (mode, op0, op1, target,
3839 unsignedp, max_cost);
3840 }
3841
3842
3843 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3844
3845 static rtx
3846 expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
3847 {
3848 rtx result, temp, shift;
3849 rtx_code_label *label;
3850 int logd;
3851 int prec = GET_MODE_PRECISION (mode);
3852
3853 logd = floor_log2 (d);
3854 result = gen_reg_rtx (mode);
3855
3856 /* Avoid conditional branches when they're expensive. */
3857 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3858 && optimize_insn_for_speed_p ())
3859 {
3860 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3861 mode, 0, -1);
3862 if (signmask)
3863 {
3864 HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
3865 signmask = force_reg (mode, signmask);
3866 shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd);
3867
3868 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3869 which instruction sequence to use. If logical right shifts
3870 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3871 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3872
3873 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3874 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3875 || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
3876 > COSTS_N_INSNS (2)))
3877 {
3878 temp = expand_binop (mode, xor_optab, op0, signmask,
3879 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3880 temp = expand_binop (mode, sub_optab, temp, signmask,
3881 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3882 temp = expand_binop (mode, and_optab, temp,
3883 gen_int_mode (masklow, mode),
3884 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3885 temp = expand_binop (mode, xor_optab, temp, signmask,
3886 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3887 temp = expand_binop (mode, sub_optab, temp, signmask,
3888 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3889 }
3890 else
3891 {
3892 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3893 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3894 signmask = force_reg (mode, signmask);
3895
3896 temp = expand_binop (mode, add_optab, op0, signmask,
3897 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3898 temp = expand_binop (mode, and_optab, temp,
3899 gen_int_mode (masklow, mode),
3900 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3901 temp = expand_binop (mode, sub_optab, temp, signmask,
3902 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3903 }
3904 return temp;
3905 }
3906 }
3907
3908 /* Mask contains the mode's signbit and the significant bits of the
3909 modulus. By including the signbit in the operation, many targets
3910 can avoid an explicit compare operation in the following comparison
3911 against zero. */
3912 wide_int mask = wi::mask (logd, false, prec);
3913 mask = wi::set_bit (mask, prec - 1);
3914
3915 temp = expand_binop (mode, and_optab, op0,
3916 immed_wide_int_const (mask, mode),
3917 result, 1, OPTAB_LIB_WIDEN);
3918 if (temp != result)
3919 emit_move_insn (result, temp);
3920
3921 label = gen_label_rtx ();
3922 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3923
3924 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3925 0, OPTAB_LIB_WIDEN);
3926
3927 mask = wi::mask (logd, true, prec);
3928 temp = expand_binop (mode, ior_optab, temp,
3929 immed_wide_int_const (mask, mode),
3930 result, 1, OPTAB_LIB_WIDEN);
3931 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3932 0, OPTAB_LIB_WIDEN);
3933 if (temp != result)
3934 emit_move_insn (result, temp);
3935 emit_label (label);
3936 return result;
3937 }
3938
3939 /* Expand signed division of OP0 by a power of two D in mode MODE.
3940 This routine is only called for positive values of D. */
3941
3942 static rtx
3943 expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
3944 {
3945 rtx temp;
3946 rtx_code_label *label;
3947 int logd;
3948
3949 logd = floor_log2 (d);
3950
3951 if (d == 2
3952 && BRANCH_COST (optimize_insn_for_speed_p (),
3953 false) >= 1)
3954 {
3955 temp = gen_reg_rtx (mode);
3956 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3957 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3958 0, OPTAB_LIB_WIDEN);
3959 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3960 }
3961
3962 if (HAVE_conditional_move
3963 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3964 {
3965 rtx temp2;
3966
3967 start_sequence ();
3968 temp2 = copy_to_mode_reg (mode, op0);
3969 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
3970 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3971 temp = force_reg (mode, temp);
3972
3973 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3974 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3975 mode, temp, temp2, mode, 0);
3976 if (temp2)
3977 {
3978 rtx_insn *seq = get_insns ();
3979 end_sequence ();
3980 emit_insn (seq);
3981 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3982 }
3983 end_sequence ();
3984 }
3985
3986 if (BRANCH_COST (optimize_insn_for_speed_p (),
3987 false) >= 2)
3988 {
3989 int ushift = GET_MODE_BITSIZE (mode) - logd;
3990
3991 temp = gen_reg_rtx (mode);
3992 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3993 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
3994 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3995 > COSTS_N_INSNS (1))
3996 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
3997 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3998 else
3999 temp = expand_shift (RSHIFT_EXPR, mode, temp,
4000 ushift, NULL_RTX, 1);
4001 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4002 0, OPTAB_LIB_WIDEN);
4003 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4004 }
4005
4006 label = gen_label_rtx ();
4007 temp = copy_to_mode_reg (mode, op0);
4008 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
4009 expand_inc (temp, gen_int_mode (d - 1, mode));
4010 emit_label (label);
4011 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4012 }
4013 \f
4014 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
4015 if that is convenient, and returning where the result is.
4016 You may request either the quotient or the remainder as the result;
4017 specify REM_FLAG nonzero to get the remainder.
4018
4019 CODE is the expression code for which kind of division this is;
4020 it controls how rounding is done. MODE is the machine mode to use.
4021 UNSIGNEDP nonzero means do unsigned division. */
4022
4023 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4024 and then correct it by or'ing in missing high bits
4025 if result of ANDI is nonzero.
4026 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4027 This could optimize to a bfexts instruction.
4028 But C doesn't use these operations, so their optimizations are
4029 left for later. */
4030 /* ??? For modulo, we don't actually need the highpart of the first product,
4031 the low part will do nicely. And for small divisors, the second multiply
4032 can also be a low-part only multiply or even be completely left out.
4033 E.g. to calculate the remainder of a division by 3 with a 32 bit
4034 multiply, multiply with 0x55555556 and extract the upper two bits;
4035 the result is exact for inputs up to 0x1fffffff.
4036 The input range can be reduced by using cross-sum rules.
4037 For odd divisors >= 3, the following table gives right shift counts
4038 so that if a number is shifted by an integer multiple of the given
4039 amount, the remainder stays the same:
4040 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4041 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4042 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4043 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4044 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4045
4046 Cross-sum rules for even numbers can be derived by leaving as many bits
4047 to the right alone as the divisor has zeros to the right.
4048 E.g. if x is an unsigned 32 bit number:
4049 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4050 */
4051
4052 rtx
4053 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
4054 rtx op0, rtx op1, rtx target, int unsignedp)
4055 {
4056 machine_mode compute_mode;
4057 rtx tquotient;
4058 rtx quotient = 0, remainder = 0;
4059 rtx_insn *last;
4060 rtx_insn *insn;
4061 optab optab1, optab2;
4062 int op1_is_constant, op1_is_pow2 = 0;
4063 int max_cost, extra_cost;
4064 static HOST_WIDE_INT last_div_const = 0;
4065 bool speed = optimize_insn_for_speed_p ();
4066
4067 op1_is_constant = CONST_INT_P (op1);
4068 if (op1_is_constant)
4069 {
4070 wide_int ext_op1 = rtx_mode_t (op1, mode);
4071 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4072 || (! unsignedp
4073 && wi::popcount (wi::neg (ext_op1)) == 1));
4074 }
4075
4076 /*
4077 This is the structure of expand_divmod:
4078
4079 First comes code to fix up the operands so we can perform the operations
4080 correctly and efficiently.
4081
4082 Second comes a switch statement with code specific for each rounding mode.
4083 For some special operands this code emits all RTL for the desired
4084 operation, for other cases, it generates only a quotient and stores it in
4085 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4086 to indicate that it has not done anything.
4087
4088 Last comes code that finishes the operation. If QUOTIENT is set and
4089 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4090 QUOTIENT is not set, it is computed using trunc rounding.
4091
4092 We try to generate special code for division and remainder when OP1 is a
4093 constant. If |OP1| = 2**n we can use shifts and some other fast
4094 operations. For other values of OP1, we compute a carefully selected
4095 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4096 by m.
4097
4098 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4099 half of the product. Different strategies for generating the product are
4100 implemented in expmed_mult_highpart.
4101
4102 If what we actually want is the remainder, we generate that by another
4103 by-constant multiplication and a subtraction. */
4104
4105 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4106 code below will malfunction if we are, so check here and handle
4107 the special case if so. */
4108 if (op1 == const1_rtx)
4109 return rem_flag ? const0_rtx : op0;
4110
4111 /* When dividing by -1, we could get an overflow.
4112 negv_optab can handle overflows. */
4113 if (! unsignedp && op1 == constm1_rtx)
4114 {
4115 if (rem_flag)
4116 return const0_rtx;
4117 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
4118 ? negv_optab : neg_optab, op0, target, 0);
4119 }
4120
4121 if (target
4122 /* Don't use the function value register as a target
4123 since we have to read it as well as write it,
4124 and function-inlining gets confused by this. */
4125 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
4126 /* Don't clobber an operand while doing a multi-step calculation. */
4127 || ((rem_flag || op1_is_constant)
4128 && (reg_mentioned_p (target, op0)
4129 || (MEM_P (op0) && MEM_P (target))))
4130 || reg_mentioned_p (target, op1)
4131 || (MEM_P (op1) && MEM_P (target))))
4132 target = 0;
4133
4134 /* Get the mode in which to perform this computation. Normally it will
4135 be MODE, but sometimes we can't do the desired operation in MODE.
4136 If so, pick a wider mode in which we can do the operation. Convert
4137 to that mode at the start to avoid repeated conversions.
4138
4139 First see what operations we need. These depend on the expression
4140 we are evaluating. (We assume that divxx3 insns exist under the
4141 same conditions that modxx3 insns and that these insns don't normally
4142 fail. If these assumptions are not correct, we may generate less
4143 efficient code in some cases.)
4144
4145 Then see if we find a mode in which we can open-code that operation
4146 (either a division, modulus, or shift). Finally, check for the smallest
4147 mode for which we can do the operation with a library call. */
4148
4149 /* We might want to refine this now that we have division-by-constant
4150 optimization. Since expmed_mult_highpart tries so many variants, it is
4151 not straightforward to generalize this. Maybe we should make an array
4152 of possible modes in init_expmed? Save this for GCC 2.7. */
4153
4154 optab1 = (op1_is_pow2
4155 ? (unsignedp ? lshr_optab : ashr_optab)
4156 : (unsignedp ? udiv_optab : sdiv_optab));
4157 optab2 = (op1_is_pow2 ? optab1
4158 : (unsignedp ? udivmod_optab : sdivmod_optab));
4159
4160 FOR_EACH_MODE_FROM (compute_mode, mode)
4161 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4162 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
4163 break;
4164
4165 if (compute_mode == VOIDmode)
4166 FOR_EACH_MODE_FROM (compute_mode, mode)
4167 if (optab_libfunc (optab1, compute_mode)
4168 || optab_libfunc (optab2, compute_mode))
4169 break;
4170
4171 /* If we still couldn't find a mode, use MODE, but expand_binop will
4172 probably die. */
4173 if (compute_mode == VOIDmode)
4174 compute_mode = mode;
4175
4176 if (target && GET_MODE (target) == compute_mode)
4177 tquotient = target;
4178 else
4179 tquotient = gen_reg_rtx (compute_mode);
4180
4181 #if 0
4182 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4183 (mode), and thereby get better code when OP1 is a constant. Do that
4184 later. It will require going over all usages of SIZE below. */
4185 size = GET_MODE_BITSIZE (mode);
4186 #endif
4187
4188 /* Only deduct something for a REM if the last divide done was
4189 for a different constant. Then set the constant of the last
4190 divide. */
4191 max_cost = (unsignedp
4192 ? udiv_cost (speed, compute_mode)
4193 : sdiv_cost (speed, compute_mode));
4194 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4195 && INTVAL (op1) == last_div_const))
4196 max_cost -= (mul_cost (speed, compute_mode)
4197 + add_cost (speed, compute_mode));
4198
4199 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4200
4201 /* Now convert to the best mode to use. */
4202 if (compute_mode != mode)
4203 {
4204 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4205 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4206
4207 /* convert_modes may have placed op1 into a register, so we
4208 must recompute the following. */
4209 op1_is_constant = CONST_INT_P (op1);
4210 if (op1_is_constant)
4211 {
4212 wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
4213 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4214 || (! unsignedp
4215 && wi::popcount (wi::neg (ext_op1)) == 1));
4216 }
4217 else
4218 op1_is_pow2 = 0;
4219 }
4220
4221 /* If one of the operands is a volatile MEM, copy it into a register. */
4222
4223 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4224 op0 = force_reg (compute_mode, op0);
4225 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4226 op1 = force_reg (compute_mode, op1);
4227
4228 /* If we need the remainder or if OP1 is constant, we need to
4229 put OP0 in a register in case it has any queued subexpressions. */
4230 if (rem_flag || op1_is_constant)
4231 op0 = force_reg (compute_mode, op0);
4232
4233 last = get_last_insn ();
4234
4235 /* Promote floor rounding to trunc rounding for unsigned operations. */
4236 if (unsignedp)
4237 {
4238 if (code == FLOOR_DIV_EXPR)
4239 code = TRUNC_DIV_EXPR;
4240 if (code == FLOOR_MOD_EXPR)
4241 code = TRUNC_MOD_EXPR;
4242 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4243 code = TRUNC_DIV_EXPR;
4244 }
4245
4246 if (op1 != const0_rtx)
4247 switch (code)
4248 {
4249 case TRUNC_MOD_EXPR:
4250 case TRUNC_DIV_EXPR:
4251 if (op1_is_constant)
4252 {
4253 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4254 int size = GET_MODE_BITSIZE (int_mode);
4255 if (unsignedp)
4256 {
4257 unsigned HOST_WIDE_INT mh, ml;
4258 int pre_shift, post_shift;
4259 int dummy;
4260 wide_int wd = rtx_mode_t (op1, int_mode);
4261 unsigned HOST_WIDE_INT d = wd.to_uhwi ();
4262
4263 if (wi::popcount (wd) == 1)
4264 {
4265 pre_shift = floor_log2 (d);
4266 if (rem_flag)
4267 {
4268 unsigned HOST_WIDE_INT mask
4269 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4270 remainder
4271 = expand_binop (int_mode, and_optab, op0,
4272 gen_int_mode (mask, int_mode),
4273 remainder, 1,
4274 OPTAB_LIB_WIDEN);
4275 if (remainder)
4276 return gen_lowpart (mode, remainder);
4277 }
4278 quotient = expand_shift (RSHIFT_EXPR, int_mode, op0,
4279 pre_shift, tquotient, 1);
4280 }
4281 else if (size <= HOST_BITS_PER_WIDE_INT)
4282 {
4283 if (d >= (HOST_WIDE_INT_1U << (size - 1)))
4284 {
4285 /* Most significant bit of divisor is set; emit an scc
4286 insn. */
4287 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4288 int_mode, 1, 1);
4289 }
4290 else
4291 {
4292 /* Find a suitable multiplier and right shift count
4293 instead of multiplying with D. */
4294
4295 mh = choose_multiplier (d, size, size,
4296 &ml, &post_shift, &dummy);
4297
4298 /* If the suggested multiplier is more than SIZE bits,
4299 we can do better for even divisors, using an
4300 initial right shift. */
4301 if (mh != 0 && (d & 1) == 0)
4302 {
4303 pre_shift = ctz_or_zero (d);
4304 mh = choose_multiplier (d >> pre_shift, size,
4305 size - pre_shift,
4306 &ml, &post_shift, &dummy);
4307 gcc_assert (!mh);
4308 }
4309 else
4310 pre_shift = 0;
4311
4312 if (mh != 0)
4313 {
4314 rtx t1, t2, t3, t4;
4315
4316 if (post_shift - 1 >= BITS_PER_WORD)
4317 goto fail1;
4318
4319 extra_cost
4320 = (shift_cost (speed, int_mode, post_shift - 1)
4321 + shift_cost (speed, int_mode, 1)
4322 + 2 * add_cost (speed, int_mode));
4323 t1 = expmed_mult_highpart
4324 (int_mode, op0, gen_int_mode (ml, int_mode),
4325 NULL_RTX, 1, max_cost - extra_cost);
4326 if (t1 == 0)
4327 goto fail1;
4328 t2 = force_operand (gen_rtx_MINUS (int_mode,
4329 op0, t1),
4330 NULL_RTX);
4331 t3 = expand_shift (RSHIFT_EXPR, int_mode,
4332 t2, 1, NULL_RTX, 1);
4333 t4 = force_operand (gen_rtx_PLUS (int_mode,
4334 t1, t3),
4335 NULL_RTX);
4336 quotient = expand_shift
4337 (RSHIFT_EXPR, int_mode, t4,
4338 post_shift - 1, tquotient, 1);
4339 }
4340 else
4341 {
4342 rtx t1, t2;
4343
4344 if (pre_shift >= BITS_PER_WORD
4345 || post_shift >= BITS_PER_WORD)
4346 goto fail1;
4347
4348 t1 = expand_shift
4349 (RSHIFT_EXPR, int_mode, op0,
4350 pre_shift, NULL_RTX, 1);
4351 extra_cost
4352 = (shift_cost (speed, int_mode, pre_shift)
4353 + shift_cost (speed, int_mode, post_shift));
4354 t2 = expmed_mult_highpart
4355 (int_mode, t1,
4356 gen_int_mode (ml, int_mode),
4357 NULL_RTX, 1, max_cost - extra_cost);
4358 if (t2 == 0)
4359 goto fail1;
4360 quotient = expand_shift
4361 (RSHIFT_EXPR, int_mode, t2,
4362 post_shift, tquotient, 1);
4363 }
4364 }
4365 }
4366 else /* Too wide mode to use tricky code */
4367 break;
4368
4369 insn = get_last_insn ();
4370 if (insn != last)
4371 set_dst_reg_note (insn, REG_EQUAL,
4372 gen_rtx_UDIV (int_mode, op0, op1),
4373 quotient);
4374 }
4375 else /* TRUNC_DIV, signed */
4376 {
4377 unsigned HOST_WIDE_INT ml;
4378 int lgup, post_shift;
4379 rtx mlr;
4380 HOST_WIDE_INT d = INTVAL (op1);
4381 unsigned HOST_WIDE_INT abs_d;
4382
4383 /* Since d might be INT_MIN, we have to cast to
4384 unsigned HOST_WIDE_INT before negating to avoid
4385 undefined signed overflow. */
4386 abs_d = (d >= 0
4387 ? (unsigned HOST_WIDE_INT) d
4388 : - (unsigned HOST_WIDE_INT) d);
4389
4390 /* n rem d = n rem -d */
4391 if (rem_flag && d < 0)
4392 {
4393 d = abs_d;
4394 op1 = gen_int_mode (abs_d, int_mode);
4395 }
4396
4397 if (d == 1)
4398 quotient = op0;
4399 else if (d == -1)
4400 quotient = expand_unop (int_mode, neg_optab, op0,
4401 tquotient, 0);
4402 else if (size <= HOST_BITS_PER_WIDE_INT
4403 && abs_d == HOST_WIDE_INT_1U << (size - 1))
4404 {
4405 /* This case is not handled correctly below. */
4406 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4407 int_mode, 1, 1);
4408 if (quotient == 0)
4409 goto fail1;
4410 }
4411 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4412 && (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
4413 && (rem_flag
4414 ? smod_pow2_cheap (speed, int_mode)
4415 : sdiv_pow2_cheap (speed, int_mode))
4416 /* We assume that cheap metric is true if the
4417 optab has an expander for this mode. */
4418 && ((optab_handler ((rem_flag ? smod_optab
4419 : sdiv_optab),
4420 int_mode)
4421 != CODE_FOR_nothing)
4422 || (optab_handler (sdivmod_optab, int_mode)
4423 != CODE_FOR_nothing)))
4424 ;
4425 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d)
4426 && (size <= HOST_BITS_PER_WIDE_INT
4427 || abs_d != (unsigned HOST_WIDE_INT) d))
4428 {
4429 if (rem_flag)
4430 {
4431 remainder = expand_smod_pow2 (int_mode, op0, d);
4432 if (remainder)
4433 return gen_lowpart (mode, remainder);
4434 }
4435
4436 if (sdiv_pow2_cheap (speed, int_mode)
4437 && ((optab_handler (sdiv_optab, int_mode)
4438 != CODE_FOR_nothing)
4439 || (optab_handler (sdivmod_optab, int_mode)
4440 != CODE_FOR_nothing)))
4441 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4442 int_mode, op0,
4443 gen_int_mode (abs_d,
4444 int_mode),
4445 NULL_RTX, 0);
4446 else
4447 quotient = expand_sdiv_pow2 (int_mode, op0, abs_d);
4448
4449 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4450 negate the quotient. */
4451 if (d < 0)
4452 {
4453 insn = get_last_insn ();
4454 if (insn != last
4455 && abs_d < (HOST_WIDE_INT_1U
4456 << (HOST_BITS_PER_WIDE_INT - 1)))
4457 set_dst_reg_note (insn, REG_EQUAL,
4458 gen_rtx_DIV (int_mode, op0,
4459 gen_int_mode
4460 (abs_d,
4461 int_mode)),
4462 quotient);
4463
4464 quotient = expand_unop (int_mode, neg_optab,
4465 quotient, quotient, 0);
4466 }
4467 }
4468 else if (size <= HOST_BITS_PER_WIDE_INT)
4469 {
4470 choose_multiplier (abs_d, size, size - 1,
4471 &ml, &post_shift, &lgup);
4472 if (ml < HOST_WIDE_INT_1U << (size - 1))
4473 {
4474 rtx t1, t2, t3;
4475
4476 if (post_shift >= BITS_PER_WORD
4477 || size - 1 >= BITS_PER_WORD)
4478 goto fail1;
4479
4480 extra_cost = (shift_cost (speed, int_mode, post_shift)
4481 + shift_cost (speed, int_mode, size - 1)
4482 + add_cost (speed, int_mode));
4483 t1 = expmed_mult_highpart
4484 (int_mode, op0, gen_int_mode (ml, int_mode),
4485 NULL_RTX, 0, max_cost - extra_cost);
4486 if (t1 == 0)
4487 goto fail1;
4488 t2 = expand_shift
4489 (RSHIFT_EXPR, int_mode, t1,
4490 post_shift, NULL_RTX, 0);
4491 t3 = expand_shift
4492 (RSHIFT_EXPR, int_mode, op0,
4493 size - 1, NULL_RTX, 0);
4494 if (d < 0)
4495 quotient
4496 = force_operand (gen_rtx_MINUS (int_mode, t3, t2),
4497 tquotient);
4498 else
4499 quotient
4500 = force_operand (gen_rtx_MINUS (int_mode, t2, t3),
4501 tquotient);
4502 }
4503 else
4504 {
4505 rtx t1, t2, t3, t4;
4506
4507 if (post_shift >= BITS_PER_WORD
4508 || size - 1 >= BITS_PER_WORD)
4509 goto fail1;
4510
4511 ml |= HOST_WIDE_INT_M1U << (size - 1);
4512 mlr = gen_int_mode (ml, int_mode);
4513 extra_cost = (shift_cost (speed, int_mode, post_shift)
4514 + shift_cost (speed, int_mode, size - 1)
4515 + 2 * add_cost (speed, int_mode));
4516 t1 = expmed_mult_highpart (int_mode, op0, mlr,
4517 NULL_RTX, 0,
4518 max_cost - extra_cost);
4519 if (t1 == 0)
4520 goto fail1;
4521 t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0),
4522 NULL_RTX);
4523 t3 = expand_shift
4524 (RSHIFT_EXPR, int_mode, t2,
4525 post_shift, NULL_RTX, 0);
4526 t4 = expand_shift
4527 (RSHIFT_EXPR, int_mode, op0,
4528 size - 1, NULL_RTX, 0);
4529 if (d < 0)
4530 quotient
4531 = force_operand (gen_rtx_MINUS (int_mode, t4, t3),
4532 tquotient);
4533 else
4534 quotient
4535 = force_operand (gen_rtx_MINUS (int_mode, t3, t4),
4536 tquotient);
4537 }
4538 }
4539 else /* Too wide mode to use tricky code */
4540 break;
4541
4542 insn = get_last_insn ();
4543 if (insn != last)
4544 set_dst_reg_note (insn, REG_EQUAL,
4545 gen_rtx_DIV (int_mode, op0, op1),
4546 quotient);
4547 }
4548 break;
4549 }
4550 fail1:
4551 delete_insns_since (last);
4552 break;
4553
4554 case FLOOR_DIV_EXPR:
4555 case FLOOR_MOD_EXPR:
4556 /* We will come here only for signed operations. */
4557 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
4558 {
4559 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4560 int size = GET_MODE_BITSIZE (int_mode);
4561 unsigned HOST_WIDE_INT mh, ml;
4562 int pre_shift, lgup, post_shift;
4563 HOST_WIDE_INT d = INTVAL (op1);
4564
4565 if (d > 0)
4566 {
4567 /* We could just as easily deal with negative constants here,
4568 but it does not seem worth the trouble for GCC 2.6. */
4569 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4570 {
4571 pre_shift = floor_log2 (d);
4572 if (rem_flag)
4573 {
4574 unsigned HOST_WIDE_INT mask
4575 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4576 remainder = expand_binop
4577 (int_mode, and_optab, op0,
4578 gen_int_mode (mask, int_mode),
4579 remainder, 0, OPTAB_LIB_WIDEN);
4580 if (remainder)
4581 return gen_lowpart (mode, remainder);
4582 }
4583 quotient = expand_shift
4584 (RSHIFT_EXPR, int_mode, op0,
4585 pre_shift, tquotient, 0);
4586 }
4587 else
4588 {
4589 rtx t1, t2, t3, t4;
4590
4591 mh = choose_multiplier (d, size, size - 1,
4592 &ml, &post_shift, &lgup);
4593 gcc_assert (!mh);
4594
4595 if (post_shift < BITS_PER_WORD
4596 && size - 1 < BITS_PER_WORD)
4597 {
4598 t1 = expand_shift
4599 (RSHIFT_EXPR, int_mode, op0,
4600 size - 1, NULL_RTX, 0);
4601 t2 = expand_binop (int_mode, xor_optab, op0, t1,
4602 NULL_RTX, 0, OPTAB_WIDEN);
4603 extra_cost = (shift_cost (speed, int_mode, post_shift)
4604 + shift_cost (speed, int_mode, size - 1)
4605 + 2 * add_cost (speed, int_mode));
4606 t3 = expmed_mult_highpart
4607 (int_mode, t2, gen_int_mode (ml, int_mode),
4608 NULL_RTX, 1, max_cost - extra_cost);
4609 if (t3 != 0)
4610 {
4611 t4 = expand_shift
4612 (RSHIFT_EXPR, int_mode, t3,
4613 post_shift, NULL_RTX, 1);
4614 quotient = expand_binop (int_mode, xor_optab,
4615 t4, t1, tquotient, 0,
4616 OPTAB_WIDEN);
4617 }
4618 }
4619 }
4620 }
4621 else
4622 {
4623 rtx nsign, t1, t2, t3, t4;
4624 t1 = force_operand (gen_rtx_PLUS (int_mode,
4625 op0, constm1_rtx), NULL_RTX);
4626 t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX,
4627 0, OPTAB_WIDEN);
4628 nsign = expand_shift (RSHIFT_EXPR, int_mode, t2,
4629 size - 1, NULL_RTX, 0);
4630 t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign),
4631 NULL_RTX);
4632 t4 = expand_divmod (0, TRUNC_DIV_EXPR, int_mode, t3, op1,
4633 NULL_RTX, 0);
4634 if (t4)
4635 {
4636 rtx t5;
4637 t5 = expand_unop (int_mode, one_cmpl_optab, nsign,
4638 NULL_RTX, 0);
4639 quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5),
4640 tquotient);
4641 }
4642 }
4643 }
4644
4645 if (quotient != 0)
4646 break;
4647 delete_insns_since (last);
4648
4649 /* Try using an instruction that produces both the quotient and
4650 remainder, using truncation. We can easily compensate the quotient
4651 or remainder to get floor rounding, once we have the remainder.
4652 Notice that we compute also the final remainder value here,
4653 and return the result right away. */
4654 if (target == 0 || GET_MODE (target) != compute_mode)
4655 target = gen_reg_rtx (compute_mode);
4656
4657 if (rem_flag)
4658 {
4659 remainder
4660 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4661 quotient = gen_reg_rtx (compute_mode);
4662 }
4663 else
4664 {
4665 quotient
4666 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4667 remainder = gen_reg_rtx (compute_mode);
4668 }
4669
4670 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4671 quotient, remainder, 0))
4672 {
4673 /* This could be computed with a branch-less sequence.
4674 Save that for later. */
4675 rtx tem;
4676 rtx_code_label *label = gen_label_rtx ();
4677 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4678 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4679 NULL_RTX, 0, OPTAB_WIDEN);
4680 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4681 expand_dec (quotient, const1_rtx);
4682 expand_inc (remainder, op1);
4683 emit_label (label);
4684 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4685 }
4686
4687 /* No luck with division elimination or divmod. Have to do it
4688 by conditionally adjusting op0 *and* the result. */
4689 {
4690 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4691 rtx adjusted_op0;
4692 rtx tem;
4693
4694 quotient = gen_reg_rtx (compute_mode);
4695 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4696 label1 = gen_label_rtx ();
4697 label2 = gen_label_rtx ();
4698 label3 = gen_label_rtx ();
4699 label4 = gen_label_rtx ();
4700 label5 = gen_label_rtx ();
4701 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4702 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4703 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4704 quotient, 0, OPTAB_LIB_WIDEN);
4705 if (tem != quotient)
4706 emit_move_insn (quotient, tem);
4707 emit_jump_insn (targetm.gen_jump (label5));
4708 emit_barrier ();
4709 emit_label (label1);
4710 expand_inc (adjusted_op0, const1_rtx);
4711 emit_jump_insn (targetm.gen_jump (label4));
4712 emit_barrier ();
4713 emit_label (label2);
4714 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4715 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4716 quotient, 0, OPTAB_LIB_WIDEN);
4717 if (tem != quotient)
4718 emit_move_insn (quotient, tem);
4719 emit_jump_insn (targetm.gen_jump (label5));
4720 emit_barrier ();
4721 emit_label (label3);
4722 expand_dec (adjusted_op0, const1_rtx);
4723 emit_label (label4);
4724 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4725 quotient, 0, OPTAB_LIB_WIDEN);
4726 if (tem != quotient)
4727 emit_move_insn (quotient, tem);
4728 expand_dec (quotient, const1_rtx);
4729 emit_label (label5);
4730 }
4731 break;
4732
4733 case CEIL_DIV_EXPR:
4734 case CEIL_MOD_EXPR:
4735 if (unsignedp)
4736 {
4737 if (op1_is_constant
4738 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4739 && (HWI_COMPUTABLE_MODE_P (compute_mode)
4740 || INTVAL (op1) >= 0))
4741 {
4742 scalar_int_mode int_mode
4743 = as_a <scalar_int_mode> (compute_mode);
4744 rtx t1, t2, t3;
4745 unsigned HOST_WIDE_INT d = INTVAL (op1);
4746 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
4747 floor_log2 (d), tquotient, 1);
4748 t2 = expand_binop (int_mode, and_optab, op0,
4749 gen_int_mode (d - 1, int_mode),
4750 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4751 t3 = gen_reg_rtx (int_mode);
4752 t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1);
4753 if (t3 == 0)
4754 {
4755 rtx_code_label *lab;
4756 lab = gen_label_rtx ();
4757 do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab);
4758 expand_inc (t1, const1_rtx);
4759 emit_label (lab);
4760 quotient = t1;
4761 }
4762 else
4763 quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3),
4764 tquotient);
4765 break;
4766 }
4767
4768 /* Try using an instruction that produces both the quotient and
4769 remainder, using truncation. We can easily compensate the
4770 quotient or remainder to get ceiling rounding, once we have the
4771 remainder. Notice that we compute also the final remainder
4772 value here, and return the result right away. */
4773 if (target == 0 || GET_MODE (target) != compute_mode)
4774 target = gen_reg_rtx (compute_mode);
4775
4776 if (rem_flag)
4777 {
4778 remainder = (REG_P (target)
4779 ? target : gen_reg_rtx (compute_mode));
4780 quotient = gen_reg_rtx (compute_mode);
4781 }
4782 else
4783 {
4784 quotient = (REG_P (target)
4785 ? target : gen_reg_rtx (compute_mode));
4786 remainder = gen_reg_rtx (compute_mode);
4787 }
4788
4789 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4790 remainder, 1))
4791 {
4792 /* This could be computed with a branch-less sequence.
4793 Save that for later. */
4794 rtx_code_label *label = gen_label_rtx ();
4795 do_cmp_and_jump (remainder, const0_rtx, EQ,
4796 compute_mode, label);
4797 expand_inc (quotient, const1_rtx);
4798 expand_dec (remainder, op1);
4799 emit_label (label);
4800 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4801 }
4802
4803 /* No luck with division elimination or divmod. Have to do it
4804 by conditionally adjusting op0 *and* the result. */
4805 {
4806 rtx_code_label *label1, *label2;
4807 rtx adjusted_op0, tem;
4808
4809 quotient = gen_reg_rtx (compute_mode);
4810 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4811 label1 = gen_label_rtx ();
4812 label2 = gen_label_rtx ();
4813 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4814 compute_mode, label1);
4815 emit_move_insn (quotient, const0_rtx);
4816 emit_jump_insn (targetm.gen_jump (label2));
4817 emit_barrier ();
4818 emit_label (label1);
4819 expand_dec (adjusted_op0, const1_rtx);
4820 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4821 quotient, 1, OPTAB_LIB_WIDEN);
4822 if (tem != quotient)
4823 emit_move_insn (quotient, tem);
4824 expand_inc (quotient, const1_rtx);
4825 emit_label (label2);
4826 }
4827 }
4828 else /* signed */
4829 {
4830 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4831 && INTVAL (op1) >= 0)
4832 {
4833 /* This is extremely similar to the code for the unsigned case
4834 above. For 2.7 we should merge these variants, but for
4835 2.6.1 I don't want to touch the code for unsigned since that
4836 get used in C. The signed case will only be used by other
4837 languages (Ada). */
4838
4839 rtx t1, t2, t3;
4840 unsigned HOST_WIDE_INT d = INTVAL (op1);
4841 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4842 floor_log2 (d), tquotient, 0);
4843 t2 = expand_binop (compute_mode, and_optab, op0,
4844 gen_int_mode (d - 1, compute_mode),
4845 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4846 t3 = gen_reg_rtx (compute_mode);
4847 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4848 compute_mode, 1, 1);
4849 if (t3 == 0)
4850 {
4851 rtx_code_label *lab;
4852 lab = gen_label_rtx ();
4853 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4854 expand_inc (t1, const1_rtx);
4855 emit_label (lab);
4856 quotient = t1;
4857 }
4858 else
4859 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4860 t1, t3),
4861 tquotient);
4862 break;
4863 }
4864
4865 /* Try using an instruction that produces both the quotient and
4866 remainder, using truncation. We can easily compensate the
4867 quotient or remainder to get ceiling rounding, once we have the
4868 remainder. Notice that we compute also the final remainder
4869 value here, and return the result right away. */
4870 if (target == 0 || GET_MODE (target) != compute_mode)
4871 target = gen_reg_rtx (compute_mode);
4872 if (rem_flag)
4873 {
4874 remainder= (REG_P (target)
4875 ? target : gen_reg_rtx (compute_mode));
4876 quotient = gen_reg_rtx (compute_mode);
4877 }
4878 else
4879 {
4880 quotient = (REG_P (target)
4881 ? target : gen_reg_rtx (compute_mode));
4882 remainder = gen_reg_rtx (compute_mode);
4883 }
4884
4885 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4886 remainder, 0))
4887 {
4888 /* This could be computed with a branch-less sequence.
4889 Save that for later. */
4890 rtx tem;
4891 rtx_code_label *label = gen_label_rtx ();
4892 do_cmp_and_jump (remainder, const0_rtx, EQ,
4893 compute_mode, label);
4894 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4895 NULL_RTX, 0, OPTAB_WIDEN);
4896 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4897 expand_inc (quotient, const1_rtx);
4898 expand_dec (remainder, op1);
4899 emit_label (label);
4900 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4901 }
4902
4903 /* No luck with division elimination or divmod. Have to do it
4904 by conditionally adjusting op0 *and* the result. */
4905 {
4906 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4907 rtx adjusted_op0;
4908 rtx tem;
4909
4910 quotient = gen_reg_rtx (compute_mode);
4911 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4912 label1 = gen_label_rtx ();
4913 label2 = gen_label_rtx ();
4914 label3 = gen_label_rtx ();
4915 label4 = gen_label_rtx ();
4916 label5 = gen_label_rtx ();
4917 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4918 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4919 compute_mode, label1);
4920 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4921 quotient, 0, OPTAB_LIB_WIDEN);
4922 if (tem != quotient)
4923 emit_move_insn (quotient, tem);
4924 emit_jump_insn (targetm.gen_jump (label5));
4925 emit_barrier ();
4926 emit_label (label1);
4927 expand_dec (adjusted_op0, const1_rtx);
4928 emit_jump_insn (targetm.gen_jump (label4));
4929 emit_barrier ();
4930 emit_label (label2);
4931 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4932 compute_mode, label3);
4933 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4934 quotient, 0, OPTAB_LIB_WIDEN);
4935 if (tem != quotient)
4936 emit_move_insn (quotient, tem);
4937 emit_jump_insn (targetm.gen_jump (label5));
4938 emit_barrier ();
4939 emit_label (label3);
4940 expand_inc (adjusted_op0, const1_rtx);
4941 emit_label (label4);
4942 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4943 quotient, 0, OPTAB_LIB_WIDEN);
4944 if (tem != quotient)
4945 emit_move_insn (quotient, tem);
4946 expand_inc (quotient, const1_rtx);
4947 emit_label (label5);
4948 }
4949 }
4950 break;
4951
4952 case EXACT_DIV_EXPR:
4953 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
4954 {
4955 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4956 int size = GET_MODE_BITSIZE (int_mode);
4957 HOST_WIDE_INT d = INTVAL (op1);
4958 unsigned HOST_WIDE_INT ml;
4959 int pre_shift;
4960 rtx t1;
4961
4962 pre_shift = ctz_or_zero (d);
4963 ml = invert_mod2n (d >> pre_shift, size);
4964 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
4965 pre_shift, NULL_RTX, unsignedp);
4966 quotient = expand_mult (int_mode, t1, gen_int_mode (ml, int_mode),
4967 NULL_RTX, 1);
4968
4969 insn = get_last_insn ();
4970 set_dst_reg_note (insn, REG_EQUAL,
4971 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4972 int_mode, op0, op1),
4973 quotient);
4974 }
4975 break;
4976
4977 case ROUND_DIV_EXPR:
4978 case ROUND_MOD_EXPR:
4979 if (unsignedp)
4980 {
4981 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4982 rtx tem;
4983 rtx_code_label *label;
4984 label = gen_label_rtx ();
4985 quotient = gen_reg_rtx (int_mode);
4986 remainder = gen_reg_rtx (int_mode);
4987 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4988 {
4989 rtx tem;
4990 quotient = expand_binop (int_mode, udiv_optab, op0, op1,
4991 quotient, 1, OPTAB_LIB_WIDEN);
4992 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 1);
4993 remainder = expand_binop (int_mode, sub_optab, op0, tem,
4994 remainder, 1, OPTAB_LIB_WIDEN);
4995 }
4996 tem = plus_constant (int_mode, op1, -1);
4997 tem = expand_shift (RSHIFT_EXPR, int_mode, tem, 1, NULL_RTX, 1);
4998 do_cmp_and_jump (remainder, tem, LEU, int_mode, label);
4999 expand_inc (quotient, const1_rtx);
5000 expand_dec (remainder, op1);
5001 emit_label (label);
5002 }
5003 else
5004 {
5005 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5006 int size = GET_MODE_BITSIZE (int_mode);
5007 rtx abs_rem, abs_op1, tem, mask;
5008 rtx_code_label *label;
5009 label = gen_label_rtx ();
5010 quotient = gen_reg_rtx (int_mode);
5011 remainder = gen_reg_rtx (int_mode);
5012 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
5013 {
5014 rtx tem;
5015 quotient = expand_binop (int_mode, sdiv_optab, op0, op1,
5016 quotient, 0, OPTAB_LIB_WIDEN);
5017 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 0);
5018 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5019 remainder, 0, OPTAB_LIB_WIDEN);
5020 }
5021 abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0);
5022 abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0);
5023 tem = expand_shift (LSHIFT_EXPR, int_mode, abs_rem,
5024 1, NULL_RTX, 1);
5025 do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label);
5026 tem = expand_binop (int_mode, xor_optab, op0, op1,
5027 NULL_RTX, 0, OPTAB_WIDEN);
5028 mask = expand_shift (RSHIFT_EXPR, int_mode, tem,
5029 size - 1, NULL_RTX, 0);
5030 tem = expand_binop (int_mode, xor_optab, mask, const1_rtx,
5031 NULL_RTX, 0, OPTAB_WIDEN);
5032 tem = expand_binop (int_mode, sub_optab, tem, mask,
5033 NULL_RTX, 0, OPTAB_WIDEN);
5034 expand_inc (quotient, tem);
5035 tem = expand_binop (int_mode, xor_optab, mask, op1,
5036 NULL_RTX, 0, OPTAB_WIDEN);
5037 tem = expand_binop (int_mode, sub_optab, tem, mask,
5038 NULL_RTX, 0, OPTAB_WIDEN);
5039 expand_dec (remainder, tem);
5040 emit_label (label);
5041 }
5042 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5043
5044 default:
5045 gcc_unreachable ();
5046 }
5047
5048 if (quotient == 0)
5049 {
5050 if (target && GET_MODE (target) != compute_mode)
5051 target = 0;
5052
5053 if (rem_flag)
5054 {
5055 /* Try to produce the remainder without producing the quotient.
5056 If we seem to have a divmod pattern that does not require widening,
5057 don't try widening here. We should really have a WIDEN argument
5058 to expand_twoval_binop, since what we'd really like to do here is
5059 1) try a mod insn in compute_mode
5060 2) try a divmod insn in compute_mode
5061 3) try a div insn in compute_mode and multiply-subtract to get
5062 remainder
5063 4) try the same things with widening allowed. */
5064 remainder
5065 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5066 op0, op1, target,
5067 unsignedp,
5068 ((optab_handler (optab2, compute_mode)
5069 != CODE_FOR_nothing)
5070 ? OPTAB_DIRECT : OPTAB_WIDEN));
5071 if (remainder == 0)
5072 {
5073 /* No luck there. Can we do remainder and divide at once
5074 without a library call? */
5075 remainder = gen_reg_rtx (compute_mode);
5076 if (! expand_twoval_binop ((unsignedp
5077 ? udivmod_optab
5078 : sdivmod_optab),
5079 op0, op1,
5080 NULL_RTX, remainder, unsignedp))
5081 remainder = 0;
5082 }
5083
5084 if (remainder)
5085 return gen_lowpart (mode, remainder);
5086 }
5087
5088 /* Produce the quotient. Try a quotient insn, but not a library call.
5089 If we have a divmod in this mode, use it in preference to widening
5090 the div (for this test we assume it will not fail). Note that optab2
5091 is set to the one of the two optabs that the call below will use. */
5092 quotient
5093 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
5094 op0, op1, rem_flag ? NULL_RTX : target,
5095 unsignedp,
5096 ((optab_handler (optab2, compute_mode)
5097 != CODE_FOR_nothing)
5098 ? OPTAB_DIRECT : OPTAB_WIDEN));
5099
5100 if (quotient == 0)
5101 {
5102 /* No luck there. Try a quotient-and-remainder insn,
5103 keeping the quotient alone. */
5104 quotient = gen_reg_rtx (compute_mode);
5105 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
5106 op0, op1,
5107 quotient, NULL_RTX, unsignedp))
5108 {
5109 quotient = 0;
5110 if (! rem_flag)
5111 /* Still no luck. If we are not computing the remainder,
5112 use a library call for the quotient. */
5113 quotient = sign_expand_binop (compute_mode,
5114 udiv_optab, sdiv_optab,
5115 op0, op1, target,
5116 unsignedp, OPTAB_LIB_WIDEN);
5117 }
5118 }
5119 }
5120
5121 if (rem_flag)
5122 {
5123 if (target && GET_MODE (target) != compute_mode)
5124 target = 0;
5125
5126 if (quotient == 0)
5127 {
5128 /* No divide instruction either. Use library for remainder. */
5129 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5130 op0, op1, target,
5131 unsignedp, OPTAB_LIB_WIDEN);
5132 /* No remainder function. Try a quotient-and-remainder
5133 function, keeping the remainder. */
5134 if (!remainder)
5135 {
5136 remainder = gen_reg_rtx (compute_mode);
5137 if (!expand_twoval_binop_libfunc
5138 (unsignedp ? udivmod_optab : sdivmod_optab,
5139 op0, op1,
5140 NULL_RTX, remainder,
5141 unsignedp ? UMOD : MOD))
5142 remainder = NULL_RTX;
5143 }
5144 }
5145 else
5146 {
5147 /* We divided. Now finish doing X - Y * (X / Y). */
5148 remainder = expand_mult (compute_mode, quotient, op1,
5149 NULL_RTX, unsignedp);
5150 remainder = expand_binop (compute_mode, sub_optab, op0,
5151 remainder, target, unsignedp,
5152 OPTAB_LIB_WIDEN);
5153 }
5154 }
5155
5156 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5157 }
5158 \f
5159 /* Return a tree node with data type TYPE, describing the value of X.
5160 Usually this is an VAR_DECL, if there is no obvious better choice.
5161 X may be an expression, however we only support those expressions
5162 generated by loop.c. */
5163
5164 tree
5165 make_tree (tree type, rtx x)
5166 {
5167 tree t;
5168
5169 switch (GET_CODE (x))
5170 {
5171 case CONST_INT:
5172 case CONST_WIDE_INT:
5173 t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type)));
5174 return t;
5175
5176 case CONST_DOUBLE:
5177 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5178 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5179 t = wide_int_to_tree (type,
5180 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5181 HOST_BITS_PER_WIDE_INT * 2));
5182 else
5183 t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
5184
5185 return t;
5186
5187 case CONST_VECTOR:
5188 {
5189 int units = CONST_VECTOR_NUNITS (x);
5190 tree itype = TREE_TYPE (type);
5191 int i;
5192
5193 /* Build a tree with vector elements. */
5194 tree_vector_builder elts (type, units, 1);
5195 for (i = 0; i < units; ++i)
5196 {
5197 rtx elt = CONST_VECTOR_ELT (x, i);
5198 elts.quick_push (make_tree (itype, elt));
5199 }
5200
5201 return elts.build ();
5202 }
5203
5204 case PLUS:
5205 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5206 make_tree (type, XEXP (x, 1)));
5207
5208 case MINUS:
5209 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5210 make_tree (type, XEXP (x, 1)));
5211
5212 case NEG:
5213 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5214
5215 case MULT:
5216 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5217 make_tree (type, XEXP (x, 1)));
5218
5219 case ASHIFT:
5220 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5221 make_tree (type, XEXP (x, 1)));
5222
5223 case LSHIFTRT:
5224 t = unsigned_type_for (type);
5225 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5226 make_tree (t, XEXP (x, 0)),
5227 make_tree (type, XEXP (x, 1))));
5228
5229 case ASHIFTRT:
5230 t = signed_type_for (type);
5231 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5232 make_tree (t, XEXP (x, 0)),
5233 make_tree (type, XEXP (x, 1))));
5234
5235 case DIV:
5236 if (TREE_CODE (type) != REAL_TYPE)
5237 t = signed_type_for (type);
5238 else
5239 t = type;
5240
5241 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5242 make_tree (t, XEXP (x, 0)),
5243 make_tree (t, XEXP (x, 1))));
5244 case UDIV:
5245 t = unsigned_type_for (type);
5246 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5247 make_tree (t, XEXP (x, 0)),
5248 make_tree (t, XEXP (x, 1))));
5249
5250 case SIGN_EXTEND:
5251 case ZERO_EXTEND:
5252 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5253 GET_CODE (x) == ZERO_EXTEND);
5254 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5255
5256 case CONST:
5257 {
5258 rtx op = XEXP (x, 0);
5259 if (GET_CODE (op) == VEC_DUPLICATE)
5260 {
5261 tree elt_tree = make_tree (TREE_TYPE (type), XEXP (op, 0));
5262 return build_vector_from_val (type, elt_tree);
5263 }
5264 if (GET_CODE (op) == VEC_SERIES)
5265 {
5266 tree itype = TREE_TYPE (type);
5267 tree base_tree = make_tree (itype, XEXP (op, 0));
5268 tree step_tree = make_tree (itype, XEXP (op, 1));
5269 return build_vec_series (type, base_tree, step_tree);
5270 }
5271 return make_tree (type, op);
5272 }
5273
5274 case SYMBOL_REF:
5275 t = SYMBOL_REF_DECL (x);
5276 if (t)
5277 return fold_convert (type, build_fold_addr_expr (t));
5278 /* fall through. */
5279
5280 default:
5281 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5282
5283 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5284 address mode to pointer mode. */
5285 if (POINTER_TYPE_P (type))
5286 x = convert_memory_address_addr_space
5287 (SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5288
5289 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5290 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5291 t->decl_with_rtl.rtl = x;
5292
5293 return t;
5294 }
5295 }
5296 \f
5297 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5298 and returning TARGET.
5299
5300 If TARGET is 0, a pseudo-register or constant is returned. */
5301
5302 rtx
5303 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5304 {
5305 rtx tem = 0;
5306
5307 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5308 tem = simplify_binary_operation (AND, mode, op0, op1);
5309 if (tem == 0)
5310 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5311
5312 if (target == 0)
5313 target = tem;
5314 else if (tem != target)
5315 emit_move_insn (target, tem);
5316 return target;
5317 }
5318
5319 /* Helper function for emit_store_flag. */
5320 rtx
5321 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5322 machine_mode mode, machine_mode compare_mode,
5323 int unsignedp, rtx x, rtx y, int normalizep,
5324 machine_mode target_mode)
5325 {
5326 struct expand_operand ops[4];
5327 rtx op0, comparison, subtarget;
5328 rtx_insn *last;
5329 scalar_int_mode result_mode = targetm.cstore_mode (icode);
5330 scalar_int_mode int_target_mode;
5331
5332 last = get_last_insn ();
5333 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5334 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5335 if (!x || !y)
5336 {
5337 delete_insns_since (last);
5338 return NULL_RTX;
5339 }
5340
5341 if (target_mode == VOIDmode)
5342 int_target_mode = result_mode;
5343 else
5344 int_target_mode = as_a <scalar_int_mode> (target_mode);
5345 if (!target)
5346 target = gen_reg_rtx (int_target_mode);
5347
5348 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5349
5350 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5351 create_fixed_operand (&ops[1], comparison);
5352 create_fixed_operand (&ops[2], x);
5353 create_fixed_operand (&ops[3], y);
5354 if (!maybe_expand_insn (icode, 4, ops))
5355 {
5356 delete_insns_since (last);
5357 return NULL_RTX;
5358 }
5359 subtarget = ops[0].value;
5360
5361 /* If we are converting to a wider mode, first convert to
5362 INT_TARGET_MODE, then normalize. This produces better combining
5363 opportunities on machines that have a SIGN_EXTRACT when we are
5364 testing a single bit. This mostly benefits the 68k.
5365
5366 If STORE_FLAG_VALUE does not have the sign bit set when
5367 interpreted in MODE, we can do this conversion as unsigned, which
5368 is usually more efficient. */
5369 if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (result_mode))
5370 {
5371 convert_move (target, subtarget,
5372 val_signbit_known_clear_p (result_mode,
5373 STORE_FLAG_VALUE));
5374 op0 = target;
5375 result_mode = int_target_mode;
5376 }
5377 else
5378 op0 = subtarget;
5379
5380 /* If we want to keep subexpressions around, don't reuse our last
5381 target. */
5382 if (optimize)
5383 subtarget = 0;
5384
5385 /* Now normalize to the proper value in MODE. Sometimes we don't
5386 have to do anything. */
5387 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5388 ;
5389 /* STORE_FLAG_VALUE might be the most negative number, so write
5390 the comparison this way to avoid a compiler-time warning. */
5391 else if (- normalizep == STORE_FLAG_VALUE)
5392 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5393
5394 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5395 it hard to use a value of just the sign bit due to ANSI integer
5396 constant typing rules. */
5397 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5398 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5399 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5400 normalizep == 1);
5401 else
5402 {
5403 gcc_assert (STORE_FLAG_VALUE & 1);
5404
5405 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5406 if (normalizep == -1)
5407 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5408 }
5409
5410 /* If we were converting to a smaller mode, do the conversion now. */
5411 if (int_target_mode != result_mode)
5412 {
5413 convert_move (target, op0, 0);
5414 return target;
5415 }
5416 else
5417 return op0;
5418 }
5419
5420
5421 /* A subroutine of emit_store_flag only including "tricks" that do not
5422 need a recursive call. These are kept separate to avoid infinite
5423 loops. */
5424
5425 static rtx
5426 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5427 machine_mode mode, int unsignedp, int normalizep,
5428 machine_mode target_mode)
5429 {
5430 rtx subtarget;
5431 enum insn_code icode;
5432 machine_mode compare_mode;
5433 enum mode_class mclass;
5434 enum rtx_code scode;
5435
5436 if (unsignedp)
5437 code = unsigned_condition (code);
5438 scode = swap_condition (code);
5439
5440 /* If one operand is constant, make it the second one. Only do this
5441 if the other operand is not constant as well. */
5442
5443 if (swap_commutative_operands_p (op0, op1))
5444 {
5445 std::swap (op0, op1);
5446 code = swap_condition (code);
5447 }
5448
5449 if (mode == VOIDmode)
5450 mode = GET_MODE (op0);
5451
5452 /* For some comparisons with 1 and -1, we can convert this to
5453 comparisons with zero. This will often produce more opportunities for
5454 store-flag insns. */
5455
5456 switch (code)
5457 {
5458 case LT:
5459 if (op1 == const1_rtx)
5460 op1 = const0_rtx, code = LE;
5461 break;
5462 case LE:
5463 if (op1 == constm1_rtx)
5464 op1 = const0_rtx, code = LT;
5465 break;
5466 case GE:
5467 if (op1 == const1_rtx)
5468 op1 = const0_rtx, code = GT;
5469 break;
5470 case GT:
5471 if (op1 == constm1_rtx)
5472 op1 = const0_rtx, code = GE;
5473 break;
5474 case GEU:
5475 if (op1 == const1_rtx)
5476 op1 = const0_rtx, code = NE;
5477 break;
5478 case LTU:
5479 if (op1 == const1_rtx)
5480 op1 = const0_rtx, code = EQ;
5481 break;
5482 default:
5483 break;
5484 }
5485
5486 /* If we are comparing a double-word integer with zero or -1, we can
5487 convert the comparison into one involving a single word. */
5488 scalar_int_mode int_mode;
5489 if (is_int_mode (mode, &int_mode)
5490 && GET_MODE_BITSIZE (int_mode) == BITS_PER_WORD * 2
5491 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5492 {
5493 rtx tem;
5494 if ((code == EQ || code == NE)
5495 && (op1 == const0_rtx || op1 == constm1_rtx))
5496 {
5497 rtx op00, op01;
5498
5499 /* Do a logical OR or AND of the two words and compare the
5500 result. */
5501 op00 = simplify_gen_subreg (word_mode, op0, int_mode, 0);
5502 op01 = simplify_gen_subreg (word_mode, op0, int_mode, UNITS_PER_WORD);
5503 tem = expand_binop (word_mode,
5504 op1 == const0_rtx ? ior_optab : and_optab,
5505 op00, op01, NULL_RTX, unsignedp,
5506 OPTAB_DIRECT);
5507
5508 if (tem != 0)
5509 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5510 unsignedp, normalizep);
5511 }
5512 else if ((code == LT || code == GE) && op1 == const0_rtx)
5513 {
5514 rtx op0h;
5515
5516 /* If testing the sign bit, can just test on high word. */
5517 op0h = simplify_gen_subreg (word_mode, op0, int_mode,
5518 subreg_highpart_offset (word_mode,
5519 int_mode));
5520 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5521 unsignedp, normalizep);
5522 }
5523 else
5524 tem = NULL_RTX;
5525
5526 if (tem)
5527 {
5528 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5529 return tem;
5530 if (!target)
5531 target = gen_reg_rtx (target_mode);
5532
5533 convert_move (target, tem,
5534 !val_signbit_known_set_p (word_mode,
5535 (normalizep ? normalizep
5536 : STORE_FLAG_VALUE)));
5537 return target;
5538 }
5539 }
5540
5541 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5542 complement of A (for GE) and shifting the sign bit to the low bit. */
5543 if (op1 == const0_rtx && (code == LT || code == GE)
5544 && is_int_mode (mode, &int_mode)
5545 && (normalizep || STORE_FLAG_VALUE == 1
5546 || val_signbit_p (int_mode, STORE_FLAG_VALUE)))
5547 {
5548 scalar_int_mode int_target_mode;
5549 subtarget = target;
5550
5551 if (!target)
5552 int_target_mode = int_mode;
5553 else
5554 {
5555 /* If the result is to be wider than OP0, it is best to convert it
5556 first. If it is to be narrower, it is *incorrect* to convert it
5557 first. */
5558 int_target_mode = as_a <scalar_int_mode> (target_mode);
5559 if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (int_mode))
5560 {
5561 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5562 int_mode = int_target_mode;
5563 }
5564 }
5565
5566 if (int_target_mode != int_mode)
5567 subtarget = 0;
5568
5569 if (code == GE)
5570 op0 = expand_unop (int_mode, one_cmpl_optab, op0,
5571 ((STORE_FLAG_VALUE == 1 || normalizep)
5572 ? 0 : subtarget), 0);
5573
5574 if (STORE_FLAG_VALUE == 1 || normalizep)
5575 /* If we are supposed to produce a 0/1 value, we want to do
5576 a logical shift from the sign bit to the low-order bit; for
5577 a -1/0 value, we do an arithmetic shift. */
5578 op0 = expand_shift (RSHIFT_EXPR, int_mode, op0,
5579 GET_MODE_BITSIZE (int_mode) - 1,
5580 subtarget, normalizep != -1);
5581
5582 if (int_mode != int_target_mode)
5583 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5584
5585 return op0;
5586 }
5587
5588 mclass = GET_MODE_CLASS (mode);
5589 FOR_EACH_MODE_FROM (compare_mode, mode)
5590 {
5591 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5592 icode = optab_handler (cstore_optab, optab_mode);
5593 if (icode != CODE_FOR_nothing)
5594 {
5595 do_pending_stack_adjust ();
5596 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5597 unsignedp, op0, op1, normalizep, target_mode);
5598 if (tem)
5599 return tem;
5600
5601 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5602 {
5603 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5604 unsignedp, op1, op0, normalizep, target_mode);
5605 if (tem)
5606 return tem;
5607 }
5608 break;
5609 }
5610 }
5611
5612 return 0;
5613 }
5614
5615 /* Subroutine of emit_store_flag that handles cases in which the operands
5616 are scalar integers. SUBTARGET is the target to use for temporary
5617 operations and TRUEVAL is the value to store when the condition is
5618 true. All other arguments are as for emit_store_flag. */
5619
5620 rtx
5621 emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0,
5622 rtx op1, scalar_int_mode mode, int unsignedp,
5623 int normalizep, rtx trueval)
5624 {
5625 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5626 rtx_insn *last = get_last_insn ();
5627
5628 /* If this is an equality comparison of integers, we can try to exclusive-or
5629 (or subtract) the two operands and use a recursive call to try the
5630 comparison with zero. Don't do any of these cases if branches are
5631 very cheap. */
5632
5633 if ((code == EQ || code == NE) && op1 != const0_rtx)
5634 {
5635 rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5636 OPTAB_WIDEN);
5637
5638 if (tem == 0)
5639 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5640 OPTAB_WIDEN);
5641 if (tem != 0)
5642 tem = emit_store_flag (target, code, tem, const0_rtx,
5643 mode, unsignedp, normalizep);
5644 if (tem != 0)
5645 return tem;
5646
5647 delete_insns_since (last);
5648 }
5649
5650 /* For integer comparisons, try the reverse comparison. However, for
5651 small X and if we'd have anyway to extend, implementing "X != 0"
5652 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5653 rtx_code rcode = reverse_condition (code);
5654 if (can_compare_p (rcode, mode, ccp_store_flag)
5655 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5656 && code == NE
5657 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5658 && op1 == const0_rtx))
5659 {
5660 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5661 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5662
5663 /* Again, for the reverse comparison, use either an addition or a XOR. */
5664 if (want_add
5665 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5666 optimize_insn_for_speed_p ()) == 0)
5667 {
5668 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5669 STORE_FLAG_VALUE, target_mode);
5670 if (tem != 0)
5671 tem = expand_binop (target_mode, add_optab, tem,
5672 gen_int_mode (normalizep, target_mode),
5673 target, 0, OPTAB_WIDEN);
5674 if (tem != 0)
5675 return tem;
5676 }
5677 else if (!want_add
5678 && rtx_cost (trueval, mode, XOR, 1,
5679 optimize_insn_for_speed_p ()) == 0)
5680 {
5681 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5682 normalizep, target_mode);
5683 if (tem != 0)
5684 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5685 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5686 if (tem != 0)
5687 return tem;
5688 }
5689
5690 delete_insns_since (last);
5691 }
5692
5693 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5694 the constant zero. Reject all other comparisons at this point. Only
5695 do LE and GT if branches are expensive since they are expensive on
5696 2-operand machines. */
5697
5698 if (op1 != const0_rtx
5699 || (code != EQ && code != NE
5700 && (BRANCH_COST (optimize_insn_for_speed_p (),
5701 false) <= 1 || (code != LE && code != GT))))
5702 return 0;
5703
5704 /* Try to put the result of the comparison in the sign bit. Assume we can't
5705 do the necessary operation below. */
5706
5707 rtx tem = 0;
5708
5709 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5710 the sign bit set. */
5711
5712 if (code == LE)
5713 {
5714 /* This is destructive, so SUBTARGET can't be OP0. */
5715 if (rtx_equal_p (subtarget, op0))
5716 subtarget = 0;
5717
5718 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5719 OPTAB_WIDEN);
5720 if (tem)
5721 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5722 OPTAB_WIDEN);
5723 }
5724
5725 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5726 number of bits in the mode of OP0, minus one. */
5727
5728 if (code == GT)
5729 {
5730 if (rtx_equal_p (subtarget, op0))
5731 subtarget = 0;
5732
5733 tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0,
5734 GET_MODE_BITSIZE (mode) - 1,
5735 subtarget, 0);
5736 if (tem)
5737 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5738 OPTAB_WIDEN);
5739 }
5740
5741 if (code == EQ || code == NE)
5742 {
5743 /* For EQ or NE, one way to do the comparison is to apply an operation
5744 that converts the operand into a positive number if it is nonzero
5745 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5746 for NE we negate. This puts the result in the sign bit. Then we
5747 normalize with a shift, if needed.
5748
5749 Two operations that can do the above actions are ABS and FFS, so try
5750 them. If that doesn't work, and MODE is smaller than a full word,
5751 we can use zero-extension to the wider mode (an unsigned conversion)
5752 as the operation. */
5753
5754 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5755 that is compensated by the subsequent overflow when subtracting
5756 one / negating. */
5757
5758 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5759 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5760 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5761 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5762 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5763 {
5764 tem = convert_modes (word_mode, mode, op0, 1);
5765 mode = word_mode;
5766 }
5767
5768 if (tem != 0)
5769 {
5770 if (code == EQ)
5771 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5772 0, OPTAB_WIDEN);
5773 else
5774 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5775 }
5776
5777 /* If we couldn't do it that way, for NE we can "or" the two's complement
5778 of the value with itself. For EQ, we take the one's complement of
5779 that "or", which is an extra insn, so we only handle EQ if branches
5780 are expensive. */
5781
5782 if (tem == 0
5783 && (code == NE
5784 || BRANCH_COST (optimize_insn_for_speed_p (),
5785 false) > 1))
5786 {
5787 if (rtx_equal_p (subtarget, op0))
5788 subtarget = 0;
5789
5790 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5791 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5792 OPTAB_WIDEN);
5793
5794 if (tem && code == EQ)
5795 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5796 }
5797 }
5798
5799 if (tem && normalizep)
5800 tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem,
5801 GET_MODE_BITSIZE (mode) - 1,
5802 subtarget, normalizep == 1);
5803
5804 if (tem)
5805 {
5806 if (!target)
5807 ;
5808 else if (GET_MODE (tem) != target_mode)
5809 {
5810 convert_move (target, tem, 0);
5811 tem = target;
5812 }
5813 else if (!subtarget)
5814 {
5815 emit_move_insn (target, tem);
5816 tem = target;
5817 }
5818 }
5819 else
5820 delete_insns_since (last);
5821
5822 return tem;
5823 }
5824
5825 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5826 and storing in TARGET. Normally return TARGET.
5827 Return 0 if that cannot be done.
5828
5829 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5830 it is VOIDmode, they cannot both be CONST_INT.
5831
5832 UNSIGNEDP is for the case where we have to widen the operands
5833 to perform the operation. It says to use zero-extension.
5834
5835 NORMALIZEP is 1 if we should convert the result to be either zero
5836 or one. Normalize is -1 if we should convert the result to be
5837 either zero or -1. If NORMALIZEP is zero, the result will be left
5838 "raw" out of the scc insn. */
5839
5840 rtx
5841 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5842 machine_mode mode, int unsignedp, int normalizep)
5843 {
5844 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5845 enum rtx_code rcode;
5846 rtx subtarget;
5847 rtx tem, trueval;
5848 rtx_insn *last;
5849
5850 /* If we compare constants, we shouldn't use a store-flag operation,
5851 but a constant load. We can get there via the vanilla route that
5852 usually generates a compare-branch sequence, but will in this case
5853 fold the comparison to a constant, and thus elide the branch. */
5854 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5855 return NULL_RTX;
5856
5857 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5858 target_mode);
5859 if (tem)
5860 return tem;
5861
5862 /* If we reached here, we can't do this with a scc insn, however there
5863 are some comparisons that can be done in other ways. Don't do any
5864 of these cases if branches are very cheap. */
5865 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5866 return 0;
5867
5868 /* See what we need to return. We can only return a 1, -1, or the
5869 sign bit. */
5870
5871 if (normalizep == 0)
5872 {
5873 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5874 normalizep = STORE_FLAG_VALUE;
5875
5876 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5877 ;
5878 else
5879 return 0;
5880 }
5881
5882 last = get_last_insn ();
5883
5884 /* If optimizing, use different pseudo registers for each insn, instead
5885 of reusing the same pseudo. This leads to better CSE, but slows
5886 down the compiler, since there are more pseudos. */
5887 subtarget = (!optimize
5888 && (target_mode == mode)) ? target : NULL_RTX;
5889 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5890
5891 /* For floating-point comparisons, try the reverse comparison or try
5892 changing the "orderedness" of the comparison. */
5893 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5894 {
5895 enum rtx_code first_code;
5896 bool and_them;
5897
5898 rcode = reverse_condition_maybe_unordered (code);
5899 if (can_compare_p (rcode, mode, ccp_store_flag)
5900 && (code == ORDERED || code == UNORDERED
5901 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5902 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5903 {
5904 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5905 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5906
5907 /* For the reverse comparison, use either an addition or a XOR. */
5908 if (want_add
5909 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5910 optimize_insn_for_speed_p ()) == 0)
5911 {
5912 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5913 STORE_FLAG_VALUE, target_mode);
5914 if (tem)
5915 return expand_binop (target_mode, add_optab, tem,
5916 gen_int_mode (normalizep, target_mode),
5917 target, 0, OPTAB_WIDEN);
5918 }
5919 else if (!want_add
5920 && rtx_cost (trueval, mode, XOR, 1,
5921 optimize_insn_for_speed_p ()) == 0)
5922 {
5923 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5924 normalizep, target_mode);
5925 if (tem)
5926 return expand_binop (target_mode, xor_optab, tem, trueval,
5927 target, INTVAL (trueval) >= 0,
5928 OPTAB_WIDEN);
5929 }
5930 }
5931
5932 delete_insns_since (last);
5933
5934 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5935 if (code == ORDERED || code == UNORDERED)
5936 return 0;
5937
5938 and_them = split_comparison (code, mode, &first_code, &code);
5939
5940 /* If there are no NaNs, the first comparison should always fall through.
5941 Effectively change the comparison to the other one. */
5942 if (!HONOR_NANS (mode))
5943 {
5944 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5945 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5946 target_mode);
5947 }
5948
5949 if (!HAVE_conditional_move)
5950 return 0;
5951
5952 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5953 conditional move. */
5954 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5955 normalizep, target_mode);
5956 if (tem == 0)
5957 return 0;
5958
5959 if (and_them)
5960 tem = emit_conditional_move (target, code, op0, op1, mode,
5961 tem, const0_rtx, GET_MODE (tem), 0);
5962 else
5963 tem = emit_conditional_move (target, code, op0, op1, mode,
5964 trueval, tem, GET_MODE (tem), 0);
5965
5966 if (tem == 0)
5967 delete_insns_since (last);
5968 return tem;
5969 }
5970
5971 /* The remaining tricks only apply to integer comparisons. */
5972
5973 scalar_int_mode int_mode;
5974 if (is_int_mode (mode, &int_mode))
5975 return emit_store_flag_int (target, subtarget, code, op0, op1, int_mode,
5976 unsignedp, normalizep, trueval);
5977
5978 return 0;
5979 }
5980
5981 /* Like emit_store_flag, but always succeeds. */
5982
5983 rtx
5984 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5985 machine_mode mode, int unsignedp, int normalizep)
5986 {
5987 rtx tem;
5988 rtx_code_label *label;
5989 rtx trueval, falseval;
5990
5991 /* First see if emit_store_flag can do the job. */
5992 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5993 if (tem != 0)
5994 return tem;
5995
5996 if (!target)
5997 target = gen_reg_rtx (word_mode);
5998
5999 /* If this failed, we have to do this with set/compare/jump/set code.
6000 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6001 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
6002 if (code == NE
6003 && GET_MODE_CLASS (mode) == MODE_INT
6004 && REG_P (target)
6005 && op0 == target
6006 && op1 == const0_rtx)
6007 {
6008 label = gen_label_rtx ();
6009 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
6010 NULL_RTX, NULL, label,
6011 profile_probability::uninitialized ());
6012 emit_move_insn (target, trueval);
6013 emit_label (label);
6014 return target;
6015 }
6016
6017 if (!REG_P (target)
6018 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
6019 target = gen_reg_rtx (GET_MODE (target));
6020
6021 /* Jump in the right direction if the target cannot implement CODE
6022 but can jump on its reverse condition. */
6023 falseval = const0_rtx;
6024 if (! can_compare_p (code, mode, ccp_jump)
6025 && (! FLOAT_MODE_P (mode)
6026 || code == ORDERED || code == UNORDERED
6027 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6028 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6029 {
6030 enum rtx_code rcode;
6031 if (FLOAT_MODE_P (mode))
6032 rcode = reverse_condition_maybe_unordered (code);
6033 else
6034 rcode = reverse_condition (code);
6035
6036 /* Canonicalize to UNORDERED for the libcall. */
6037 if (can_compare_p (rcode, mode, ccp_jump)
6038 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
6039 {
6040 falseval = trueval;
6041 trueval = const0_rtx;
6042 code = rcode;
6043 }
6044 }
6045
6046 emit_move_insn (target, trueval);
6047 label = gen_label_rtx ();
6048 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
6049 label, profile_probability::uninitialized ());
6050
6051 emit_move_insn (target, falseval);
6052 emit_label (label);
6053
6054 return target;
6055 }
6056 \f
6057 /* Perform possibly multi-word comparison and conditional jump to LABEL
6058 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6059 now a thin wrapper around do_compare_rtx_and_jump. */
6060
6061 static void
6062 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
6063 rtx_code_label *label)
6064 {
6065 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
6066 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
6067 NULL, label, profile_probability::uninitialized ());
6068 }